
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

M
as

te
r’s

 th
es

is

Charlotte Heggem
Nina Marie Wahl

Mobile Navigation and Manipulation

Configuration and Control of the KMR iiwa with
ROS2

Master’s thesis in Engineering & ICT

Supervisor: Lars Tingelstad

June 2020

Charlotte Heggem
Nina Marie Wahl

Mobile Navigation and Manipulation

Configuration and Control of the KMR iiwa with ROS2

Master’s thesis in Engineering & ICT
Supervisor: Lars Tingelstad
June 2020

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

Preface

This thesis completes our master’s degree within Engineering & ICT at the Norwe-
gian University of Science and Technology in Trondheim. The project is conducted
for the research group Robotics and Automation at the Department of Mechanical
and Industrial Engineering. The work was carried out during the spring of 2020.

The work is conducted at the Norwegian Manufacturing Research Laboratory,
MANULAB, at NTNU in Trondheim. Due to the Covid-19 situation, the MAN-
ULAB was closed for eight weeks, and after reopening, the access was restricted.
Due to this, priorities have been required for feasible work.

We would like to thank our supervisor Lars Tingelstad, for guidance, encourage-
ment and support during this project. We would also like to thank Adam Leon
Kleppe for technical assistance in the laboratory.

We would also like to thank our friends and family for their support and valuable
input and discussions. We are grateful that you are always available for a chat, and
have helped us keep our motivation and focus during these long and hard-working
days.

This thesis assumes the reader has basic knowledge within robotics, programming
and ICT. It is advantageous to be familiar with the robot operating system ROS.
We hope this thesis will be beneficial for anyone with interest within KMR iiwa
robots and ROS2.

Charlotte Heggem & Nina Marie Wahl
10-06-2020

Abstract

This thesis investigates how to operate a mobile robot, the KMR iiwa, manufac-
tured by KUKA, through interaction with ROS2. The KMR iiwa consists of a
robot arm, LBR iiwa 14 R820, mounted on the base of a mobile platform, KMP
200 omniMove.

It is desired that the implemented system accomplish a fetch and carry scenario
between work stations. The system utilizes the mobile base and the manipula-
tor, the integrated sensors of the KMR iiwa, in addition to external sensors and
actuators. To enable transmission of data between the devices and the ROS2
framework, a communication architecture is developed. Different ROS2 stacks
are used to perform the subtasks, which are split into SLAM, mobile navigation,
motion planning and control of a manipulator and object detection. A behavior
tree, which is a decision-making mechanism, connects the system.

A comprehensive system that is suitable for the environment and the tools avail-
able at the laboratory is developed. The system is verified through experiments
where the robot is interacting with the relevant ROS2 stacks. It was desired
to complement the integrated lidars of the KMR iiwa with RGB-D cameras to
capture the environment in three-dimensional space. Configurations of sensors
and techniques have been investigated to create a map of the environment that
fully represents the scene. The ROS2 stack for navigation required comprehensive
tuning to interact with a large and rectangular robot with holonomic drive. The
results presented within navigation concerns how the KMR iiwa can be operated
safely in the environment. Within manipulation, motion commands available for
the LBR have been explored to make it compatible with the ROS2 motion plan-
ner. A proof-of-concept object detection model is developed to localize objects to
be grasped and carried by the robot. Finally, suggestions on how the system can
be further developed are presented.

This thesis presents a robot system with high relevance and potential for the
industry. The system creates a foundation for being able to perform further
research and interesting experiments with the KMR iiwa.

Sammendrag

Denne masteroppgaven omhandler å kontrollere en mobil robot, KMR iiwa, pro-
dusert av KUKA, via interaksjon med ROS2. En KMR iiwa består av en robot
arm, LBR iiwa 14 R820, som er montert på en mobil platform, KMP 200 omni-
Move.

Det er ønskelig at det implementerte systemet kan gjennomføre et scenario der
roboten kan plukke opp og frakte objekter mellom arbeidsstasjoner. Til dette
bruker systemet den mobile basen og manipulatoren, i tillegg til eksterne sensorer
og aktuatorer. En kommunikasjonsarkitektur er utviklet for å overføre data mel-
lom enhetene og ROS2. Deretter blir ROS2 pakker brukt for å gjennomføre de
ulike deloppgavene. Disse kan deles inn i SLAM, navigering, bevegelse av ma-
nipulator og gjenkjenning av objekter. Konseptet behavior tree brukes for å ta
avgjørelser og bytte mellom oppgaver, noe som knytter hele systemet sammen.

Et helhetlig system som er tilpasset miljøet og det utstyret som er tilgjengelig
på robotlaboratoriet har blitt utviklet. Systemet er verifisert gjennom eksperi-
menter der roboten bruker de ulike ROS2 pakkene til å gjennomføre oppgaver.
For å kunne observere hele miljøet var det ønskelig å komplementere de integrerte
laserne på KMR iiwaen med RGB-D kameraer. Ulike sensorkonfigurasjoner og
teknikker har derfor blitt undersøkt og testet for å lage et kart som represen-
terer det fullstendige miljøet på laboratoriet. Ettersom KMR iiwaen er en stor,
rektangulær robot som kjører holonomisk, krevde ROS2 pakken som er brukt for
navigering grundig gjennomgang av parametere. Resultatet er en robot som trygt
kan navigere rundt på egenhånd. For å bruke manipulatoren måtte roboten gjøres
kompatibel med bevegelsesplanleggeren i ROS2. Dette krevde undersøkelser av
de tilgjengelige bevegelsene for LBRen. En enkel detekteringsmodell er brukt
til å lokalisere objekter som kan plukkes opp og fraktes på roboten. Til slutt
presenterer vi forslag til hvordan systemet kan utvikles videre.

Denne masteroppgaven presenterer et robotsystem som er relevant, og har stort
potensial, for industrien. Det implementerte systemet danner et grunnlag for å
kunne gjennomføre videre forskning og interessante eksperimenter med en KMR
iiwa.

Contents

Preface i

Abstract iii

Sammendrag v

1. Introduction 1
1.1. Background and Motivation . 1
1.2. Previous Work . 2

1.2.1. Challenges . 3
1.3. Contributions . 4
1.4. Problem Description . 4
1.5. Related Work . 5
1.6. Outline . 7

I. Fundamentals 9

2. Preliminaries 11
2.1. Behavior Trees . 11

2.1.1. Types of Nodes . 12
2.2. Computer Vision . 14

2.2.1. Projective Geometry . 14
2.2.2. Camera Model . 15
2.2.3. Camera Calibration . 17
2.2.4. Stereo Vision . 17
2.2.5. Image Rectification . 20
2.2.6. Features . 20
2.2.7. Segmentation . 21
2.2.8. Object Detection . 21

2.3. Simultaneous Localization and Mapping 24
2.3.1. Map . 24
2.3.2. Online and Full SLAM . 25

viii Contents

2.3.3. Filter and Optimization SLAM 26
2.3.4. Local and Global SLAM . 26
2.3.5. Maximum A Posteriori Estimate 28
2.3.6. Localization . 29
2.3.7. Mapping . 31

3. Hardware 33
3.1. KMR iiwa . 33

3.1.1. Operating Modes . 34
3.1.2. Software . 35
3.1.3. KMP 200 omniMove . 35
3.1.4. LBR iiwa 14 R820 . 38

3.2. Robotiq 2F-85 Gripper . 44
3.2.1. Gripper Register Mapping 45
3.2.2. Modbus RTU Communication 48

3.3. Intel Realsense Depth Camera D435 48
3.3.1. ROS Software . 50
3.3.2. Calibration . 51

4. ROS2 53
4.1. Introduction to ROS . 53
4.2. Concepts . 54
4.3. Stacks for SLAM . 57

4.3.1. Cartographer . 57
4.3.2. RTAB-Map . 58

4.4. Behaviortree.CPP . 59
4.5. Navigation2 . 60
4.6. MoveIt2 . 64

4.6.1. Configurations . 64
4.6.2. How MoveIt Works . 65

4.7. Stacks for Object Detection . 67
4.7.1. OpenVINO Toolkit . 68
4.7.2. Object Analytics . 70

II. Achievements and Evaluation 73

5. System Description 75
5.1. Setup . 75

5.1.1. Physical Installations . 75
5.1.2. Software Setup . 78

Contents ix

5.2. Robot Model and Simulation . 82
5.2.1. URDF . 82
5.2.2. Gazebo . 82

5.3. Physical Architecture . 84
5.4. Communication Architecture . 85

5.4.1. Remote PC . 87
5.4.2. Sunrise Cabinet . 90

5.5. Sunrise Application . 92
5.6. Behavior Tree . 94

5.6.1. Tree Nodes . 96
5.7. Server Nodes . 98

5.7.1. BehaviorTree Node . 98
5.7.2. NavigationSupport Node 99
5.7.3. RunMoveIt Node . 100
5.7.4. Gripper Node . 101
5.7.5. ObjectDetection Node . 102

6. System Review 105
6.1. Communication Architecture . 105

6.1.1. Communication Protocol 106
6.1.2. Network . 106

6.2. Sunrise . 107
6.2.1. KMP Sensor Data . 107
6.2.2. KMP Motions . 108
6.2.3. LBR Motions . 109
6.2.4. Safety . 109

6.3. ROS . 111
6.3.1. Actions . 111
6.3.2. Programming Language . 112

6.4. Sensors and Actuators . 112
6.4.1. Robotiq 25-85 Gripper . 112
6.4.2. Intel Realsense Cameras . 113

6.5. Remarks . 114

7. SLAM 115
7.1. Experimental Environment . 115
7.2. Results . 116

7.2.1. Odometry . 117
7.2.2. Mapping . 119
7.2.3. Final Maps . 125
7.2.4. Mapping the Robot Cells 125

x Contents

7.3. Discussion . 126
7.3.1. Odometry . 127
7.3.2. Mapping . 128
7.3.3. Remarks . 131

8. Navigation 133
8.1. Results . 133

8.1.1. Velocities . 133
8.1.2. Dynamic Replanning . 136
8.1.3. Dynamic Adjustment of Velocities 138
8.1.4. Voxel Layer with Camera Data 138

8.2. Discussion . 140
8.2.1. Tuning . 140
8.2.2. Evaluation of Results . 145
8.2.3. Remarks . 147

9. Manipulation 149
9.1. Experimental Setup . 149
9.2. Results . 149

9.2.1. Joint States . 149
9.2.2. Path Planning . 152

9.3. Discussion . 155
9.3.1. Hand Eye Calibration . 155
9.3.2. Joint States . 156
9.3.3. Path Planning . 156
9.3.4. Remarks . 158

10.Object Detection 159
10.1. Results . 159

10.1.1. Training . 159
10.1.2. Experiments . 160

10.2. Discussion . 161
10.2.1. Training . 161
10.2.2. Experiments . 161

11.Mobile Navigation and Manipulation 163
11.1. Experimental Setup . 163
11.2. Results . 164

11.2.1. Video: composed1 . 164
11.2.2. Video: composed2 . 165
11.2.3. Video: manipulation . 165

11.3. Discussion . 165

Contents xi

III. Conclusion 169

12.Conclusion 171
12.1. Further Work . 171

12.1.1. Requirements . 171
12.1.2. Suggestions . 172
12.1.3. Going Further . 173

12.2. Concluding Remarks . 173

Bibliography 176

Appendix 183

A. Digital Attachments 187

B. Conference Paper 189

C. Github Repository 197
C.1. Hierarchy . 197
C.2. kmriiwa_ws . 199
C.3. kmr_behaviortree . 200
C.4. kmr_bringup . 201
C.5. kmr_communication . 202
C.6. kmr_manipulator . 203
C.7. kmr_moveit2 . 204
C.8. kmr_msgs . 205
C.9. kmr_navigation2 . 206
C.10.kmr_simulation . 207
C.11.kmr_slam . 208
C.12.kmr_sunrise . 209

D. Javadoc 211

E. Operating the KMR 215
E.1. SmartPAD . 216
E.2. Signal Units . 217
E.3. Launching an Application . 217

List of Figures

1.1. Architecture from specialization project 3

2.1. Sequence and selector nodes . 13
2.2. Behavior tree example . 14
2.3. The pinhole camera model . 16
2.4. Calibration board . 18
2.5. Epipolar geometry . 19
2.6. The baseline affects the field of view 20
2.7. Feature matching . 21
2.8. Illustration of a Convolutional Neural Network 22
2.9. Segmentation . 23
2.10. Outline of the SLAM problem . 25
2.11. Graphical representation of SLAM 26
2.12. SLAM front-end and back-end . 27
2.13. Loop closure . 28
2.14. Lidar odometry pipeline . 30
2.15. Visual odometry pipeline . 31
2.16. SLAM block diagram . 32

3.1. KMR iiwa . 34
3.2. KMP preinstalled components . 36
3.3. Monitored areas by the laser scanners 36
3.4. LBR iiwa 14 R820 . 39
3.5. Workspace of the LBR . 40
3.6. Interface of the media flange Touch electrical 41
3.7. Individual motion types for the LBR 42
3.8. Spline motion type . 43
3.9. The Robotiq 2F-85 Adaptive Gripper 44
3.10. Gripper memory and control logic 45
3.11. Intel Realsense Depth Camera D435 49
3.12. Calibration board for the Dynamic Calibrator 52

4.1. Middleware implementation of a ROS action 56

xiv List of Figures

4.2. Architecture of Cartographer . 58
4.3. Architecture of RTAB-Map . 59
4.4. Architecture of Navigation2 . 61
4.5. Costmap cell values related to distance from robot 63
4.6. MoveIt motion planning pipeline 67
4.7. OpenVINO Toolkit workflow for deploying a deep learning model . 68
4.8. Creating pipelines with the OpenVINO stack 69
4.9. Architecture of the Object Analytics pipeline 70

5.1. Installation space for additional components 76
5.2. Gripper adapter . 77
5.3. A D435 camera attached to the manipulator 78
5.4. Three D435 cameras attached to the KMP 78
5.5. Cartesian workspace for the LBR 79
5.6. Safety configuration in Sunrise Workbench 80
5.7. The circular box used for grasping 81
5.8. URDF model of the D435 camera and the Robotiq gripper 83
5.9. URDF model of KMR with devices 83
5.10. Physical Architecture . 84
5.11. Communication Architecture . 86
5.12. Sunrise application flow diagram 93
5.13. Implemented behavior tree . 95
5.14. Search areas for manipulator . 96
5.15. System illustration including server nodes 98

6.1. Network response time . 107

7.1. Environment for testing . 116
7.2. Robot cells in the MANULAB . 116
7.3. Ground truth for odometry evaluation 117
7.4. Cartographer: lidar and visual odometry separated 118
7.5. Cartographer: lidar and visual odometry combined 118
7.6. RTAB-Map: lidar and visual odometry 119
7.7. Cartographer: two scans . 120
7.8. Cartographer: Three point clouds 120
7.9. Cartographer: Two scans and three point clouds 121
7.10. Cartographer: Five scans . 121
7.11. RTAB-Map: Two lidar scans . 123
7.12. RTAB-Map: Three RGB-D cameras 123
7.13. RTAB-Map: Multi-session mapping 124
7.14. RTAB-Map: 2 cameras and 2 lidars 124
7.15. Final maps . 125

List of Figures xv

7.16. Maps of the robot cells . 126

8.1. Navigation2: Odometry velocities vs commanded velocities 135
8.2. Navigation2: Dynamic replanning 137
8.3. Navigation2: Dynamical adjustment of velocity 138
8.4. Navigation2: Area for the voxel layer experiment 139
8.5. Navigation2: Voxel layer . 139
8.6. Circular footprint of robot . 141

9.1. Experimental setup for manipulation 150
9.2. MoveIt: Joint states of the LBR vs trajectory 152
9.3. MoveIt: End-effector position, experiment 1 153
9.4. MoveIt: End-effector position, experiment 2 154
9.5. MoveIt: End-effector position, experiment 3 155

10.1. TensorBoard: total loss . 159
10.2. TensorBoard: precision . 160
10.3. Object detection: 2D detection and 3D localization 160

11.1. Experimental setup for mobile navigation and manipulation 164

D.1. Javadoc overview . 212
D.2. Javadoc Node abstract class . 213

E.1. Rear of a KMP . 215
E.2. SmartHMI . 216

List of Tables

3.1. Size of monitored fields for velocity in x-direction 37
3.2. Size of monitored fields for velocity in y-direction 38
3.3. LBR iiwa 14 R820 axis data . 39
3.4. Relative transformation between two frames 41
3.5. Registers of the gripper . 45
3.6. Inputs registers of the gripper . 46
3.7. Output registers of the gripper . 47
3.8. RTU Message Frame . 48
3.9. Technical specifications of the D435 Camera 50
3.10. Intrinsic parameters of the D435 Camera 51
3.11. Extrinsic parameters of the D435 Camera 51

5.1. Publishers for publishing data from the KMR to ROS 88
5.2. Subscribers for subscribing to data from ROS to the KMR 89
5.3. KmpStatusdata message . 89
5.4. LbrStatusdata message . 90

Listings

5.1. MoveManipulator action . 88
5.2. PlanToFrame action . 101
5.3. Gripper action . 102
5.4. ObjectSearch action . 103

Abbreviations

AMCL Adaptive Monte Carlo Localization.

DWA Dynamic Window Approach.

EFI Enhanced Function Interface.

F2F Frame-To-Frame.

F2M Frame-To-Map.

FDI Fast Data Interface.

I/O Input/Output.

iiwa Intelligent Industrial Work Assistant.

IMU Inertial Measurement Unit.

IR Intermediate Representation.

KMP KUKA Mobile Platform.

KMR KUKA Mobile Robot.

KUKA Keller und Knappich Augsburg.

LBR Lighweight Robot.

NTP Network Time Protocol.

PLC Programmable Logic Controller.

PTP Point-To-Point.

RGB Red Green Blue.

xxii Abbreviations

RGB-D Red Green Blue Depth.

ROS Robot Operating System.

S2M Scan-To-Map.

S2S Scan-To-Scan.

SLAM Simulatenous Localization And Mapping.

SRDF Semantic Robot Description Format.

TCP Transmission Control Protocol.

UDP User Datagram Protocol.

URDF Unified Robot Description Format.

XML Extensible Markup Language.

Chapter 1.

Introduction

1.1. Background and Motivation
Today, the world is entering the industry 4.0 revolution. Industry 4.0 encourages
to data exchange, automation, decentralization and increased interaction between
humans and machines. Technology changes the way the industry operates and
tries to make the companies more effective, agile and profitable.

KUKA is one of the world’s leading providers of intelligent robot-based automa-
tion [1]. Within Industry 4.0, mobility is an important driver. KUKA focuses on
developing multiple concepts for more flexible, intelligent and mobile units that
can be used within industrial production. Such a robot is the KMR iiwa, hereby
referred to as KMR. The KMR is a combination of a robot arm, LBR iiwa 14
R820, mounted on the base of a mobile platform, KMP 200 omniMove. The mo-
bile platform and manipulator will be referred to as KMP and LBR, respectively.
The platform has Mecanum wheels making it flexible and enable omnidirectional
motion, and laser scanners, which makes it possible to monitor the environment.
This, together with the possibilities from the installed manipulator on the base,
makes the KMR meet the requirements for Industry 4.0 perfectly. Autonomous
transportation is useful in applications in hospitals, for sorting of parcels in a post
office or supplying parts to a work station in a production hall. Especially during
this years’ pandemic, Covid-19, autonomous robots could have been useful for
performing tasks without the need of humans. They entail zero risk of infection
and allows the production to continue running.

ROS is an open-source robot operating system that includes software libraries
and tools to help developers create robot applications. It aims to be the stan-
dard that can be used by any type of robot [2]. ROS is created for distributed
computing with a modular design. This, together with the flexibility given by
different programming languages and operative systems, makes it a good fit for

2 Chapter 1. Introduction

the Industry 4.0. Integration between the KMR and ROS2, the second version of
ROS, is desired. To clarify if the topic of interest is the first or second version of
ROS, or ROS as a concept, the first version of ROS will be referred to as ROS1.

This thesis is an extension of the work conducted in the specialization project
during the autumn of 2019. The objectives of the specialization project were to
conduct research and get familiar with both the KMR and ROS2, and develop
a simple proof-of-concept for communication between the systems. Now, this
prototype should be further developed to create a comprehensive system that can
be used at the Norwegian Manufacturing Research Laboratory, MANULAB, at
NTNU.

Sections that describes important information about the KMR and ROS are in-
cluded from the specialization thesis. This is done to deliver a comprehensive
thesis presenting a complete system. Whenever sections are reused, this is clearly
marked in the text.

1.2. Previous Work
During the fall of 2019, the authors worked on the specialization project Configu-
ration and Control of KMR iiwa with ROS2 [3]. The project concerned developing
a prototype that integrated the operating system of a KMR with ROS2. To limit
the scope, the focus was only interaction with the mobile base. The system is
compatible with the ROS2 stacks Cartographer and Navigation2. The prototype
has several points of improvement and potential for extensions.

The system is based on a simple architecture, shown in Figure 1.1. The architec-
ture consists of a remote PC with ROS2 installed and the controller of the KMR,
Sunrise Cabinet. The two components communicate through a TCP communica-
tion socket. The application API_ROS2_KMR is a Sunrise application, which is
launched at the Sunrise Cabinet. It communicates with the remote PC, handling
the retrieval of sensor data from the robot and executing motion commands. The
application is based on a single thread running a loop where messages from the
remote PC are both read and executed. The ROS node kmr_communication is
responsible for handling the communication with the robot, processing the data
received and returning motion commands. Further, the node communicates with
other nodes on the ROS network from stacks such as Cartographer and Naviga-
tion2.

1.2. Previous Work 3

Remote PC

Sunrise Cabinet

TCP

FAST RTPS
kmr_communication

API_ROS2_KMR

pub
...

pub
sub

pub
sub

/topics
ROS2

FAST RTPS

ROS2 nodes

Figure 1.1.: Architecture of the prototype developed as a part of the specializa-
tion project conducted during the fall 2019 [3, p. 56].

1.2.1. Challenges

The focus during the project was to find the functionality for retrieving the desired
data and executing the necessary commands. The performance of the ROS stacks
was tested to a small extent. Several issues were discovered along the way.

The developed architecture had multiple drawbacks. A single ROS node handled
the communication between the KMR and ROS2. This works for a smaller sys-
tem, but is not practical as the system gets more functionality. A drawback is
that if some part of the system causes an error, everything will be terminated.
Another drawback is that it is not possible to launch only some of the functional-
ity. Especially if the LBR is included in the system, it should be possible to run
only the mobile vehicle or the manipulator. In addition, a large amount of code
in the same files is difficult to read and handle.

Several maps obtained by utilizing the Cartographer stack were included as re-
sults. The robot cells in the MANULAB are surrounded by gratings located
approximately 180 mm above the ground. The SICK laser scanners on the KMP
scan the environment in 2D at a height of 150 mm above the ground. This led to
unsatisfying results as the laser scanners did not detect the gratings. In addition,
the Cartographer node depends on a preconfigured parameter file that was not ad-
justed during the project. In order to obtain satisfying maps of the environment,
the parameters must be tuned and action must be taken regarding the gratings.

4 Chapter 1. Introduction

The same applies to the parameters of the Navigation2 stack. The parameters
used are retrieved from an example project related to a Turtlebot3 robot. A
Turtlebot3 robot is a small sized differential drive mobile robot, which means the
parameters must be tuned to work correctly with a large and heavy robot as the
KMR. During the project, a conflict between the built-in safety restrictions on the
KMR and the Navigation2 controller was discovered. The SICK laser scanners
monitor predefined areas around the platform. The size of the areas depends on
the current velocity of the robot, where maximum velocity corresponds to the
largest field configuration. If the scanners detect an object inside an area, the
safety restriction of the robot is activated and stops the movement. When the
KUKA Navigation Solution software controls the vehicle, the velocity is automat-
ically adapted based on whether the monitored fields are violated. The controller
of Navigation2 does not implement behavior for handling these restrictions, and
this causes a conflict. When an emergency stop occurs, the navigation fails as
the robot is not showing enough progress. The vehicle is not able to drive out
of a violated area as all the commands from the Navigation2 controller are at a
higher speed than allowed by the KMP. To make the navigation work optimally,
this must be taken into account. Several solutions were suggested in the project
report. They require research, but it is unlikely that the suggestions solve the
problem in an acceptable manner.

1.3. Contributions
During the spring, the authors published a paper in the context of the 3rd In-
ternational Symposium on Small-scale Intelligent Manufacturing Systems, SIMS
2020 [4]. The paper presents the system for controlling the KMR with ROS2
and verification of the system with Cartographer and Navigation2. The paper
concerns the work conducted in the specialization project, together with the new
architecture of the system, which was implemented during the first part of the
spring. The authors will present the work at the conference on the 11th of June
2020. The paper is attached in Appendix B.

1.4. Problem Description
The main objective of this thesis is to enable autonomous operation of the KMR
in the MANULAB. This involves exploring different combinations of hardware
and external software, together with implemented software.

Multiple challenges with the previously developed prototype were identified, which
are included as a part of the scope of this thesis. The challenges can be split into
communication, mapping and navigation.

1.5. Related Work 5

The communication architecture should be more scalable and flexible to cope with
further expansions. Fault handling must be improved to deal with both expected
and unexpected events in a better way. A physical architecture for the platform
must be developed to connect and assemble the external sensors and actuators
considering communication and power supply. The experimental platform should
be an extension of the KMR.

The environment at the MANULAB is complex with a lot of obstacles, which
makes it challenging to create a good map. To improve the mapping from the
specialization project, multiple cameras should be added to the mobile base. Dif-
ferent methods to utilize both the laser and camera data for performing SLAM
should be examined.

Regarding navigation, the focus should be on how to operate the KMR safely.
The built-in safety configurations of the robot need to be explored, and solutions
must be found to interact with these. Compatibility with Navigation2 is previ-
ously accomplished, but the performance is not satisfactory. Further research and
tuning of parameters are required to achieve autonomous navigation of the KMR.

To create a comprehensive system that exploits the possibilities of the robot,
functionality to control the LBR should be added. As for the mobile base, it is
desirable to utilize ROS2 for control. Including functionality for the LBR requires
a thorough review of the Sunrise system to find the correct methods for moving
it. The communication interface must be extended to include the manipulator.

An example of a typical area of application for a KMR is in a factory, where it
can navigate around and carry objects between work stations. It is desired to
accomplish such a fetch and carry scenario to combine the functionality of both
the KMP and LBR. This includes the need for an overall control logic handling
the task switching in the system.

Computer vision can be utilized for recognition and localization of objects. A
camera is required to detect the objects and functionality for using a gripper is
necessary to pick them up.

1.5. Related Work
Work related to operating robots manufactured by KUKA with ROS has been
researched, but so far, nothing has been found regarding ROS2 or the KMR.
Dömel et al. present a concept towards fully autonomous mobile manipulation
using ROS1 and KUKA omniRob [5], conducted at the German Aerospace Center.
The KUKA omniRob is an older version of the KMR and is built on a different
control system. The project is to a small degree interacting through ROS and it

6 Chapter 1. Introduction

is not open source.

Sunrise applications are written in Java, which makes it possible to exploit the
ROS Java client library to control KUKA robots with ROS externally. Virga and
Esposito provide a ROS stack for interaction with the LBR [6], developed at the
Interdisciplinary Research Laboratory at Computer Aided Medical Procedures, at
the Technical University of Munich. The system is built with an architecture based
on native ROS Java nodes. The nodes are launched on the robot controller, such
that the two operating systems can exchange data by publishing messages utilizing
the ROS framework. The stack includes functionality for a variety of different
motions controls and tools for simulation as well as controlling the manipulator
with the ROS MoveIt stack. The software is built on the ROS1, and according to
a statement by Virga from August 2019, no plans for porting the project to ROS2
exist [7].

In December 2019, Thomas Rühr, Senior developer at Corporate Research KUKA
Deutschland GmbH, presented their research on mobile manipulation with the
KMR and ROS1 in the context of a ROS-Industrial Conference. The research
group is working on offering a catalog of URDF models and official ROS drivers
for KUKA robots, including the mobile platforms. At the moment, the group
focus on ROS1, as it is still is the most widespread ROS distribution. Currently,
Rühr is working on a ROSJava Adapter to control KUKA mobile platforms with
ROS, similar to the system developed by Virga and Esposito.

As a part of our research, we have been in contact with Rühr via email. In the
emails, Rühr states that the development is at an early stage, and points out
several challenges they have faced during the implementation [8]. As a manu-
facturer, KUKA guarantees that their products comply to certain standards. A
main problem with ROS is how to maintain single point-of-control and the strict
safety restrictions of their robots. Another challenge Rühr mention is the synchro-
nization of clocks, which is a topic in computer science that aims to coordinate
otherwise independent clocks. Briefly explained, real clocks will differ after some
amount of time due to clock drift, as clocks count time at slightly different rates.
The challenge in this particular case is to synchronize the Sunrise clock with the
ROS time. Virga and Esposito propose a solution based on NTP synchronization
with a server running on the ROS master. The current pragmatic solution of
Rühr is to use the ROS timestamps to overwrite the timestamps from the Sunrise
system, which, according to Rühr, is a sufficient solution in their experience.

1.6. Outline 7

1.6. Outline
The overall structure of this thesis takes the form of twelve chapters, where
the consecutive chapters are organized into the following parts: Fundamentals,
Achievements and Evaluation, and Conclusion.

Fundamentals

Chapters 2 to 4 concern the fundamentals of this thesis, which includes looking
into the relevant theoretical background material and getting familiar with the
hardware and software which are applied in this work.

Chapter 2 presents basic theory and concepts applied in the conducted work,
mainly related to computer vision and SLAM.

Chapter 3 introduces the physical components of the robot system, together with
their corresponding software.

Chapter 4 presents the robot operating system ROS2, together with stacks that are
utilized for SLAM, navigation, manipulator motion planning and object detection.

Achievements and Evaluation

Chapters 5 to 11 concern implementations, results and discussion of the achieve-
ments. The resulting system is comprehensive and covers a wide field of disci-
plines. It has, therefore, been considered a proper solution to present the compo-
nents in their respective chapters.

Chapter 5 presents the developed system. This includes both the physical archi-
tecture and the implemented software.

Chapter 6 evaluates the implemented system and discusses important decisions
that have been made.

Chapter 7 presents the results obtained for performing SLAM with the developed
system.

Chapter 8 considers the navigation of the KMP by using the Navigation2 stack.

Chapter 9 presents planning and motion control of the LBR by using the MoveIt2
stack.

Chapter 10 evaluates the object detection approach used in the work.

Chapter 11 covers the system as a whole. The different components are composed
into a comprehensive system.

8 Chapter 1. Introduction

Conclusion

Chapter 12 concludes the thesis, including suggestions for improvements and fur-
ther work.

Part I.

Fundamentals

Chapter 2.

Preliminaries

This chapter presents fundamental theory for the concepts applied in the work.

Section 2.1 presents behavior trees, which is a task switching structure commonly
used in artificial intelligence and robotics. Section 2.2 introduces the field of
computer vision. Computer vision is highly relevant for multiple robotic tasks,
where the robot has to assess and recognize the environment. It is a broad field,
and only topics important for the work conducted is included.

It is desired to perform Simultaneous Localization and Mapping, SLAM, with the
implemented system. Visual Simultaneous Localization and Mapping, VSLAM,
extends SLAM by applying 3D image data to describe the environment. An
introduction to the SLAM problem is given in Section 2.3. Some of the content
in this section is based on the theory presented in the specialization project.

2.1. Behavior Trees
A behavior is a way an agent thinks and acts. It can be simple, like touch an object
or press play, or it can be a composition of multiple behaviors. The behaviour
of walking to a location often consists of multiple sub-actions, like pass through
a door, use a key if the door is locked and so on. A behavior tree is an artificial
intelligence technique to structure these behaviors into plans for the agent. It is
commonly referred to as a task switching structure, as it helps to decide when
and to what action do we switch. Another well-known task switching structure is
the finite state machines.

As the name suggests, it has a tree structure with a root node, which splits into
branches with multiple nodes and ends up in leaf nodes. The nodes are executed,
or ticked, in a specific order. When finished, every node returns a status: success,
failure or running. The status informs the parent node about the performance

12 Chapter 2. Preliminaries

of the behavior, and gives the possibility to reason about whether to switch to
a new behavior or not. If the node was succeeding, you might want to continue
a sequence of actions, but if not, a fallback should be invoked. A behavior tree
often implements a service-oriented architecture, where the leaf nodes of the tree
work as clients and communicate with a server that performs the task.

Behavior trees have many benefits. They are user friendly to read and control,
and are simple to create. The complexity will increase with scale, but a lot of
graphical tools exist to make it easier to handle big trees. Dependencies between
the components make it easy to change some parts of the tree without affecting
the rest. The hierarchical structure makes actions exist on many levels of details,
and the structure captures this in a natural way. Hence, a behavior tree is flexible,
scalable and can be changed rapidly. A limitation of the more naive versions of
behavior trees is that they only evaluate nodes from left to right. However, it
is possible to implement other functionality like priorities and costs. A behavior
tree works in a reactive manner, which means an action is just a fixed response
to a given situation. This could be bad, especially in gaming, as it could be easy
for an enemy to determine what your response to actions would be. This could
be improved by adding good conditions and randomness to the choice of action.

2.1.1. Types of Nodes

A behavior tree is put together by three different types of nodes: primitives,
decorators and composites.

The primitives are the most basic behaviors and consist of conditions and actions.
The conditions check the state of something, like is the door open, and returns
true or false based on the condition. A condition node does not change the world,
and would never return the running status. Actions do something that changes
the world in some way, like open the door or move agent. The primitives are
also called the execution nodes, or leaf nodes, as they are always leaf nodes of
the tree. They do not have any children. The primitives can be defined by using
parameters, which can specify the behavior of the node. For example, a node
handling walking could use input parameters to specify which coordinates the
agent should walk to. While the other types of nodes are used to specify the
structure and execution of the behavior tree, the primitives are providing the
actual functionality of the code.

The decorators can have one child node, and their job is to change something
about this. A decorator makes it possible to use action nodes for other purposes,
without changing the code of the action. This adds flexibility and more control of
an action. Some commonly used decorators are an inverter, which always negates
the result of the child node, retry, which ticks the child again if it returns failure,

2.1. Behavior Trees 13

or loop, where the child node is reticked a specific number of times independently
of the return.

The third type is composites. The composites node describes how to group the
simpler behavior types together, and it can have one to an infinite number of
children. Composite nodes are typically sequences, selectors or parallels.

A sequence consists of a set of child nodes where the children need to return
success for the sequence to succeed. The actions in the sequence are executed in
order. If one of the nodes fails, the sequence fails immediately, and the rest of
the sequence will not be executed. The child nodes are linked together by the
logical operator AND. An example of a sequence could be approach enemy, which
consists of locating enemy, planning a path to the enemy and follow the path to
the enemy. There is no point in planning a path if you were not able to locate
the enemy, and there is no point in following a path if it was not possible to plan
a path. This example is illustrated in Figure 2.1a.

While the child nodes in a sequence is linked by the AND operator, a selector
works as an OR gate. If one of the child nodes returns success, the selector
returns success immediately, and the rest of the nodes will not be executed. This
behavior is the same as an if-else statement, where the next nodes are executed
only if the previous one failed. A selector could be useful in, for example, a search
problem, as illustrated in Figure 2.1b. First, try searching in the kitchen, if an
object is not found, search in the living room, before searching the bedroom. The
selector fails if all of the children fail.

Sequence
Approach enemy

Follow path to
enemy

Plan path to
enemyLocate enemy

S S

S

F

(a) Illustrative of sequence node.

Selector
Search for object

Search
bedroom

Search living
roomSearch kitchen

FF

S

F

(b) Illustrative of selector node.

Figure 2.1.: Sequence and selector nodes.

A parallel behavior node is used when multiple child nodes are to be executed in
parallel. These nodes are more complex than the previous and introduce much
threading. Nevertheless, it is useful in specific cases, for example, if you want to
run against an enemy and shoot at the same time. It would be very impractical
to have to run, stop, shoot, then start running again. For this type of nodes, a
policy of when it fails and succeeds must be defined.

14 Chapter 2. Preliminaries

Composite

Decorator

Leaf

Composite Composite

Leaf Leaf Leaf

Leaf Leaf

Figure 2.2.: An example of a behavior tree constituted by leaf, decorator and
composite nodes.

An example of how a behavior tree could be put together by these types of nodes
is shown in Figure 2.2.

2.2. Computer Vision
The field of computer vision concerns using mathematical models to interpret
a digital image in the same way that the human brain does [9]. This includes
recognizing three-dimensional structures, recognizing objects and being able to
describe this in different light conditions, resolution and scales. Today, computer
vision has come a long way, but it is still far from what a human can do.

Computer vision is used in a variety of fields and is important in the field of
robotics. To make an intelligent robot, it has to behave and make choices like a
human, which includes assessing and recognizing the environment like a human.
For a robot navigation problem, computer vision is helpful for obstacle avoidance,
mapping and in general exploring the environment. This could be performed with
other types of sensors as well, such as laser scanners, but they tend to provide
a less informative description of the environment. For a pick and place robot,
advanced vision is essential to be able to identify, localize and grasp the correct
objects from one place to another.

The following subsections provide an introduction to basic computer vision topics.

2.2.1. Projective Geometry

Euclidean geometry represents a three-dimensional space, denoted as X, Y, Z. In
computer vision, the 3D world is projected into a 2D image, and it is more useful to
use projective geometry. Projective geometry adds an extra dimension, denoted
W. Coordinates in the projective geometry are called homogenous coordinates.

2.2. Computer Vision 15

Homogenous coordinates give a way to express infinite with a finite number. A
point infinitely far away in the world will always have definite coordinates in
the picture. The W is basically a scaling transformation for the 3D coordinate.
When increasing in dimensions, W is usually set to 1, as it then does not affect
X, Y, Z. While Euclidean geometry gives a unique representation of a point,
projective geometry is only unique up to scale. This means that only the scaling
relationship between the points is known. Equation (2.1) shows how to construct
a homogeneous vector from a cartesian vector, while Equation (2.2) shows how to
convert a homogenous vector to cartesian.

xy
z

 ∈ R3 7→

x
y
z
1

 ∈ P3 (2.1)

x
y
z
w

 ∈ P3 7→

x/wy/w
z/w

 ∈ R3 (2.2)

2.2.2. Camera Model

A camera model commonly applied in computer vision is the pinhole camera
model, also called the perspective camera model. It describes the correspondence
between observed points in the world and points in an image. A pinhole camera a
simple type of camera with a small aperture. The aperture is so small that from
all the rays reflecting off a point in the world, exactly one enters the camera and
creates a point at the image plane. This makes each point in the scene correspond
to a single point in the image. Figure 2.3 shows the pinhole camera model, where
a point in space, X, is mapped into a point, x, in the image plane. A straight line
combines the point in space, the point in the image and the camera center. The
image plane is placed in a distance, f, from the camera center. This distance is
called the focal length. This geometry forms triangles, which can be used to find
the projection from world coordinates to image coordinates.

The pinhole camera model is represented by the camera matrix. The camera
matrix describes a matrix that can be used to map from homogeneous 3D world
coordinates to 2D homogeneous image coordinates. It is shown in Equation (2.3),
and is composed of two transformations, a perspective and an affine transforma-
tion. A perspective projection, handled by the extrinsic matrix, that maps the
world point, x, into a normalized image plane, xn. An affine transformation, han-
dled by the intrinsic matrix, that maps the point in the normalized image plane,

16 Chapter 2. Preliminaries

xn, into the pixel plane, u. The normalized image plane is an image plane with a
fixed position, with z set to 1, in the camera frame. Equation (2.4) shows how a
point in the 3D world, x, is mapped into a pixel, u, in the image plane.

Figure 2.3.: The pinhole camera model. C is the camera centre and p is the
principal point, or optical center. The image plane is placed in front of the camera
center [10, p. 154].

P︸︷︷︸
Camera
matrix

= K︸︷︷︸
Intrinsic
matrix

×
[
R t

]
︸ ︷︷ ︸
Extrinsic
matrix

(2.3)

u = Px = K
[
R t

]
x (2.4)

The extrinsic matrix describes the pose of the world frame relative to the camera
frame. Hence, it is a transformation matrix consisting of a 3×3 rotation matrix,
R, and a 3×1 translation vector, t.

The intrinsic matrix, K, also known as the camera calibration matrix, describes
the camera intrinsics. It is used to map 3D camera points to 2D pixel coordinates.
It’s parameters are given in Equation (2.5), and can all be found in Figure 2.3.

K =

fx s x0
0 fy y0
0 0 1

 (2.5)

(x0, y0) is the principal point, also called optical center. This is where the principal
axis, which is the z-axis pointing forward from the camera’s projective center,
intersects with the image plane. fx and fy are the focal length in x- and y-
direction. This is the distance from the camera center to the image plane. The
entry s is the skew parameter, and it defines the skew between the x and y-axis
in the image. This is typically ignored, and set to 0.

2.2. Computer Vision 17

A full decomposition of the camera matrix is shown in Equation (2.6).

P =

Intrinsic Matrix︷ ︸︸ ︷1 0 x0
0 1 y0
0 0 1

︸ ︷︷ ︸
2D Translation

×

fx 0 0
0 fy 0
0 0 1

︸ ︷︷ ︸

2D Scaling

×

1 s/fx 0
0 1 0
0 0 1

︸ ︷︷ ︸

2D Shear

×

Extrinsic Matrix︷ ︸︸ ︷[
I t

]
︸ ︷︷ ︸

3D Translation

×
[
R 0
0 1

]
︸ ︷︷ ︸

3D Rotation

(2.6)

2.2.3. Camera Calibration

The camera calibration process concerns finding the internal and external camera
quantities that affect the process of creating an image. It typically includes esti-
mating the extrinsic, intrinsic and distortion parameters. Distortion parameters
correct if straight lines in the scene do not appear straight in the image. An ac-
curate camera model is essential when reconstructing the world model, especially
for robot interaction with the world.

The general principle for camera calibration is to find the correspondence between
a number of known 3D points in the world and their projection in an image.
A calibration board is commonly used for this purpose. The boards are easily
recognized and measured, and as the design of the board is known, errors between
reality and the image can easily be detected. A calibration board often uses a
chessboard pattern, as the example in Figure 2.4. In the figure, the corners of the
pattern are detected by the camera. Calibration by the use of a calibration board
is called targeted calibration. It is also possible to perform target-less calibration.

2.2.4. Stereo Vision

Stereo vision is the process of using two cameras to find a 3D representation of
an image. This is done by finding correspondent pixels in the two images and
projecting their positions into 3D [9, p. 469]. This is the same way the human
perception work, where the depth is found based on the differences between the
left and the right eye. Without a second camera with a known relative position,
it is not possible to determine the 3D position of the points in the image plane as
the depth is unknown.

The problem of finding correspondent pixels in two images is called the correspon-
dence problem. Geometric relations between the 3D points and their projection
onto the 2D image planes of each camera make up constraints. These relations

18 Chapter 2. Preliminaries

Figure 2.4.: A typical calibration board glued to a rigid surface. The colored
markers denote detected corners [11].

constitute what is called the epipolar geometry, and the information is implicit
in the relative pose and calibrations of the cameras [9, p. 472]. In favor of a
regular pixel matching problem, stereo matching has the advantage of knowing
both the relative position between the cameras and the calibration parameters
of the cameras. The geometric constraints make the search for alternative pixel
matches largely reduced. The relations are deduced by using the assumption that
the cameras can be approximated by the pinhole camera model.

The following list describes terms related to epipolar geometry. These entities are
visualized in Figure 2.5.

• The baseline is the line connecting the two camera centers.

• The epipolar plane is the plane bounded by the baseline, hence the two
camera centers, and the point of interest.

• An epipole is the intersection point between the image plane and the base-
line.

• An epipolar line is the intersection line between the epipolar plane and
the image plane.

A point in the world, x, is projected into the left image plane to a point pl. This
point could have come from any point on the projection line between x and pl.
Each of these points projects to possible pr points in the right image plane. This is
illustrated in Figure 2.5. The possible points lie along the epipolar line in the right
image. This means, for each image point in the left image plane, the corresponding
point in the right image plane must be on the known epipolar line. This constraint
is called the epipolar constraint. Epipolar constraints can also be described by the

2.2. Computer Vision 19

x

Cl

Epipolar line

Epipolar planepl

el

Epipole

Baseline Cr

Epipolar line

pr

er

Epipole

Figure 2.5.: The epipolar geometry. Cl and Cr denotes the left and right camera
center. x is the point of interest, pl and pr are the point of interest in the image
plane and el and er denote the left and right epipole.

essential or the fundamental matrix. Both matrices are 3× 3 matrices describing
point correspondence between two points in two images. The essential matrix,
E, describes the correspondence between points in normalized image coordinates,
while the fundamental matrix, F, relates points in pixel coordinates. To achieve
normalized image coordinates, the intrinsic parameters of the camera must be
known. The origin of the coordinates is at the optical center, and the focal length
is used to normalize the x and y coordinates.

The two matrices are related as follows:

E = (K ′)TFK (2.7)

where K ′ and K is the intrinsic calibration matrix of the cameras involved.

As the essential matrix includes the intrinsic parameters of the camera, it has only
five degrees of freedom. Thus, it is easier to find than the fundamental matrix
with seven degrees of freedom.

The baseline between the cameras is highly affecting the total field of view, FOV.
Therefore, it is important to find the right baseline when designing a camera with
stereo vision. A short baseline gives a bigger FOV leading to more uncertainty
regarding the depth. A wider baseline gives a smaller FOV, which gives a better
distance estimation. This is illustrated in Figure 2.6. On the other hand, it is
harder to find matching pixels and the search problem gets more complex, leading
to lower quality of the result.

20 Chapter 2. Preliminaries

(a) Large baseline (b) Small baseline

Figure 2.6.: The size of the baseline affects the field of view. A large baseline
gives a smaller field of view, while a short baseline gives a larger [12].

2.2.5. Image Rectification

Image rectification is an important part of the correspondence problem. The
epipolar constraint causes the search for corresponding pixels to be limited to
only the epipolar line instead of the whole picture. If the images are rectified,
which means aligned to be coplanar, the search is limited to one dimension. This
dimension is a horizontal line parallel to the baseline. A one dimensional search
is faster and reduces the possibility of wrong matches.

2.2.6. Features

In computer vision, features are informative parts of images relevant to computer
vision applications. Examples of features are edges, corners, blobs, ridges or whole
objects. Feature detection is a low-level image processing operation which localizes
features in images. A well known feature detection algorithm is the Harris Corner
detector [13]. The idea is to pass a sliding window over each pixel of an image,
searching for differences in intensity for a small displacement in all directions.
Pixels that exceed a certain threshold and are local maxima within a particular
window are classified as corners. Feature extraction is the process of computing
descriptors for the detected features and is related to dimension reduction of
images. A feature descriptor contains encoded information about a feature, and
can be used to differentiate one feature from another. An important characteristic
of a descriptor is that it is invariant to image transformations, such that a feature
can be recognized in images taken from different points of view. Feature matching
can be performed based on these descriptors, which is useful in applications like
object classification, or for computing relative transformation between two camera
frames. An example of feature matching is shown in Figure 2.7. The motive is

2.2. Computer Vision 21

the same, but the adjustments and viewpoints of the images differ.

Figure 2.7.: Feature matching in images of the same motive considered in dif-
ferent conditions [14].

2.2.7. Segmentation

An image can be partitioned into segments, each containing important information
for further processing of the image. Segmentation creates a mask for each object in
an image, where each segment is a group of pixels with similar attributes. Region-
based segmentation differs objects from the background by searching for a sharp
contrast in pixels. This can be done by calculating the average pixel value for a
greyscale image and apply it as a threshold, known as threshold segmentation.
Objects with pixel values higher than the threshold are denoted as foreground,
while lower valued pixels are classified as background. Edge segmentation finds
the boundaries of objects in an image by searching for regions separated by edges
by feature detection. Clustering techniques known from machine learning can also
be applied for segmentation. The process divides pixels of an image into several
clusters, where the points in each cluster are more similar to other points in that
same cluster than those in other clusters.

2.2.8. Object Detection

Object detection is one of the most complex challenges of computer vision and
concerns recognition and localization of real-world object instances in images. The
general term object detection can be broken down into a collection of computer
vision related tasks that involve identifying objects in images.

Image classification involves predicting the class of an object in an image based
on predefined class labels.

22 Chapter 2. Preliminaries

Object localization refers to identifying the location of the detected objects in an
image and drawing a bounding box around it. A bounding box is an imaginary
box that embraces the detected object and can be defined in 2D or 3D, indicating
the pose of the instance.

Object detection combines the two tasks, and locate the presence of objects with
a bounding box along with the class for each of the located objects in the image.
A relevant approach for each of the problems is described in this section.

Image Classification

A Convolutional Neural Network, CNN, is a deep learning algorithm commonly
applied in computer vision. The network takes an image as input, assign im-
portance to objects in the image and is able to differentiate objects from others.
The output can be a single class or a probability of classes that best describes
the image. A computer can perform image classification by searching for features
such as edges and curves, and then building up to more abstract concepts through
a series of layers. A CNN consists of an input and an output layer, as well as
multiple hidden layers.

Figure 2.8.: Illustration of a Convolutional Neural Network [15].

Figure 2.8 shows an example of a typical CNN. The first layer in a network is
always a convolutional layer, which is designed for detection. The convolution
layer passes a filter, or a kernel, over the image and extract features. The filter
is an array of numbers, known as weights. The pooling layers downsample the
extracted information to retain only the most important information. Commonly,
the network layers alternate between convolution and other types of layers, such
as pooling layers. The hidden layers include nonlinear activation functions that
enable the network to learn and model nonlinearity.

2.2. Computer Vision 23

Figure 2.9.: An example of a segmented desk scene. Planar surfaces are outlined
in color. The red arrows indicates the normal direction of the segmented planes
[16].

The output layer is called a fully connected layer, which based on the features
extracted throughout the network, determines to which class the features mostly
correlate.

Initially, the weights or filter values of the network are randomized, and the layers
are not able to extract features. An evaluation method for how well the network
models the given data is by a loss function. It is desired to minimize the loss for a
neural network by optimizing its weights. The process of adjusting the layers for
the defined classes is through a process referred to as training of the network. For
the training process, a data set consisting of images with corresponding class labels
are applied. Similarly, a test data set of images and labels can be constructed to
validate that the network works as desired when the training process is finished.

Object Localization

Object localization attempts to identify the location of an object in an image with
known class label and region of interest in 2D. Given a point cloud, segmentation
can be applied to detect the boundaries of the object within a 3D region. One
such algorithm is the Organized Multi Plane Segmentation [16], which attempts
to segment points present in a point cloud.

An example of a segmentation process of a table with objects is shown in Fig-
ure 2.9. The algorithm starts by calculating normals for each point. Further,
planes are estimated from planar regions in the point cloud with similar normals.
Then, clusters that connect points that are similar based on criteria such as color,
depth and normals are created. This results in segments of objects and planes.
In order to localize the 3D objects in space, contiguous clusters of points above

24 Chapter 2. Preliminaries

planar surfaces, such as the table, are extracted. By only considering the points
of interest, according to the 2D region of interest, the corresponding segmentation
in three dimensions of the object can be retrieved. A bounding box surrounding
the segmented points describes the pose of the object in three dimensions.

2.3. Simultaneous Localization and Mapping
SLAM, Simultaneous Localization And Mapping, is the process of mapping an
unknown environment while localizing relative to the map. The goal is to use the
environment to update the pose of the robot. SLAM exists in many varieties, and
a selection of approaches are presented in this section. As the KMR only moves
in the plane, only 2D SLAM is considered.

The requirements of the problem is a mobile robot, a device to provide measure-
ments of the environment and transformations defining the position of the sensors
in relation to the base of the robot. This section will present both lidar and visual
SLAM. Lidar SLAM uses lidars, either 2D or 3D, to map an unknown environ-
ment. Visual SLAM, denoted VSLAM, concerns creating a map by the use of
camera sensors and computer vision.

Odometry is the use of data from sensors to estimate the change in position
over time, where the sensors can be wheel encoders, IMUs, lidars or cameras
[17]. As the odometry from the wheel encoders often is erroneous, the range
measurements can be used to correct the position of the robot. The motion of the
robot, relative to the world, can be reconstructed by tracking how the environment
appears to move through sequences of measurements. This process is described
in Section 2.3.6 for both 2D and 3D input data.

In general, SLAM consists of the steps landmark extraction, data association,
state update and processing of new observations, as illustrated in Figure 2.10.

The pose of the robot is updated by measuring the environment and observing how
the robot moves. When the robot moves, the uncertainty in the pose is updated.
Features are extracted from the range measurements of the environment. The data
is associated and matched with previous observations. Re-observed landmarks are
used to update the robot’s pose and new landmarks are added as new observations
in a submap of the current state.

2.3.1. Map

A map is an organized representation of submaps containing observed landmarks
in the environment. A submap is a local representation of a scene with a prede-
fined size. Landmarks are stationary features that can easily be re-observed and

2.3. Simultaneous Localization and Mapping 25

Figure 2.10.: Outline of the SLAM problem with input and steps of the process.

distinguished from the environment. When calculating a map of the environment,
it is assumed that the robot’s odometry and observations are known, while the
pose of the robot and the poses of landmarks are unknown. A typical map format
for navigation applications is the occupancy grid map. In an occupancy grid map,
the environment is represented as discrete grids, cells, where each grid has a value
based on whether it is occupied or not. Assuming the pose of the robot is known,
a posterior probability for each cell is computed based on range measurements
from sensors. The value of the grid represents the degree of occupancy where 100
is fully occupied, and 0 is free. If the occupancy of a cell is unknown, it has the
value -1.

2.3.2. Online and Full SLAM

The SLAM problem can be classified as online SLAM or full SLAM. Online SLAM
attempts to recover only the most recent pose of the robot. Full SLAM estimates
the entire path of robot poses after all data has been gathered, and can be de-
scribed by the probabilistic term:

p(x0:T ,m|z1:T , u1:T) (2.8)

Equation (2.8) represents the probability of a path, x0:T , and a map, m, given the
range measurements, z1:T , and the odometry, u1:T , of the robot. The uncertainty
in the state, or robot pose, and the uncertainty of the observed landmarks are
kept track of and updated as new measurements arrive. The full SLAM problem
can be conveniently modelled and expressed with a graph representation as in
Figure 2.11.

26 Chapter 2. Preliminaries

Figure 2.11.: Graphical representation of the SLAM problem [18].

A high probability is desired for the estimates of the map and the states of the
robot, which makes Equation (2.8) an optimization problem.

2.3.3. Filter and Optimization SLAM

Approaches to solve SLAM can be based on either filtering or optimization meth-
ods. In a filter-based approach, the information about the environment and the
states of the robot are maintained as a probability density function. The esti-
mation and update steps are performed recursively. Kalman filters and particle
filters are known approaches to this variant of SLAM. The optimization-based ap-
proaches use a graph structure to represent the robot measurements and poses and
are commonly referred to as graph-based SLAM. The nodes represent states and
measurements acquired at the poses. The edges represent constraints consisting
of the relative transformation between two poses. The optimization process con-
cerns finding the configuration of robot poses that best satisfies the constraints.
The transformations are either odometry measurements between two robot posi-
tions or determined by aligning the observations acquired at the two locations.
The latter is known as bundle adjustment. It is defined as the process of refining
the 3D coordinates describing the scene and the transformations between a set of
images taken from different viewpoints. The graph-based approach is a commonly
applied method in visual SLAM [19], and is the one emphasized in this work.

2.3.4. Local and Global SLAM

The SLAM process can be decomposed as front-end and back-end subsystems,
as shown in Figure 2.12. Local SLAM is the front-end component that builds
a succession of submaps. The back-end subsystem performs global SLAM in

2.3. Simultaneous Localization and Mapping 27

parallel, which means detecting loop closure constraints and optimizing the pose
graph.

Figure 2.12.: SLAM systems decomposed by the front-end and back-end com-
ponents [19, p. 124].

The local submaps created in the front-end include data associations that only
depend on recent scans. When a specified amount of data is inserted into the
submap, a new submap is created. The submaps are locally correct, but they
might drift over time, as illustrated in Figure 2.13. When the red robot moves
to the green position, it creates a constraint defined by the relative pose ∆ and
the covariance matrix Σ. Range measurements are illustrated as red dots on the
white racks. As each submap only contains a few observations, the localization
error will grow over time. In Figure 2.13a, drift has occurred, and the righter
most rack seems tilted in the map. This is fixed by global SLAM, also known
as loop closure. When the robot comes out of the area between the racks, the
robot attempts to recognize features based on every feature previously observed.
The goal is to align the submaps and create a global map. Loop closure makes
it possible to retain the correct topology of the environment and to reduce the
uncertainties in the pose and landmark estimates.

The global map is created as a topological graph where the submaps are nodes
and the edges are their relative alignment to each other. This is a nonlinear
optimization problem where the edges are to be optimized to reduce the error
within the cycles that occur in the graph. The optimization problem can be run
in batches when there are enough available submaps in the graph.

28 Chapter 2. Preliminaries

(a) Local SLAM (b) Global SLAM

Figure 2.13.: The small red dots corresponds to range measurements, while the
larger circles corresponds to positions of the robot. In Figure 2.13b a loop closure
is detected between the red and the yellow circles. Loop closure correct the true
topology and reduce errors due to drift that occur over time [20].

2.3.5. Maximum A Posteriori Estimate

Global SLAM concerns estimation and inference on the data received from front-
end. The problem is formulated as the estimation of a set of unknown state
variables, X, that includes both the pose of the robot and the structure of the
environment. Z is a set of noisy sensor measurements that depend on the true
state X. The Maximum A Posteriori estimate, MAP, defined in Equation (2.9), is
a commonly used estimator for X [21].

XMAP = argmax
X

p(X|Z)

= argmax
X

p(Z|X)p(X)
p(Z)

= argmax
X

l(X;Z)p(X)

(2.9)

Equation (2.9) maximizes the posterior probability, p(X|Z), of the states X given
the measurements Z. After applying Bayes’s law, the resulting equation is a func-
tion of l(X;Z) ∝ p(Z|X), which is the likelihood of the states X given the measure-
ments Z. The likelihood can be seen as a sensor model that evaluates how well
the measurements fit the current estimate for the states X. The density p(X) is
the prior density over the states, which evaluates how well the current estimate
fits with any prior knowledge about X. Nonlinear least square methods can be
applied to find the MAP estimate for the states X, given noisy measurements
and corresponding measurement prediction models. The full derivation is given
in [21], but summarized is the goal of the process to minimize a measurement er-
ror function, which is the difference between the measurement prediction function

2.3. Simultaneous Localization and Mapping 29

and the measurement.

The measurement error function in the MAP estimate is based on either a geomet-
ric or a photometric error. The geometric error measures the difference between
the measured pixel correspondence and the predicted pixel position, given the
current estimation of the robot pose and an observed point in the 3D scene. The
photometric error directly compares intensities in two frames to determine the
transformation. In VSLAM, the pose estimation can be classified as either indi-
rect or direct. Indirect approaches, also known as feature-based methods, start
by finding feature correspondences and use these to optimize the geometric er-
ror. Direct approaches skip the feature extraction step and use image intensity to
optimize the photometric error directly.

2.3.6. Localization

Localization relative to a map is performed by using odometry and transforma-
tions between measurements. Odometry can be calculated from any sensors ca-
pable of estimating the change in position over time. Lidar odometry estimates
the change in position over time by comparing a succession of scans. Similarly,
visual odometry uses cameras to estimate the motion by comparing frames. The
problem is modeled as the minimization of a nonlinear least squares problem.
The parameter to determine is the transformation matrix, corresponding to the
motion between two measurements. Two different approaches are distinguished
by whether to match new data against the previous data received or a local map.
For lidar odometry, new scans are compared either to the last scan, Scan-To-Scan
(S2S), or to the local submap created from previous scans, Scan-To-Map (S2M).
The same concept applies for visual odometry, where new frames are compared
either to the previous frame, Frame-To-Frame (F2F), or submap, Frame-To-Map
(F2M), considering 3D features instead of scans. The Frame- or Scan-To-Map
approach will be further emphasized.

Lidar Odometry

Lidar odometry is the process of finding a transformation between two scans mea-
suring the same scene in order to estimate the motion of the robot. The process
is depicted in Figure 2.14 and described as following. The input point clouds are
filtered, or downsampled, and normals are computed. Normals are necessary to
be able to recognize planes in the space. Points are aligned in the point cloud
map by considering nearby points or planes. The correspondences are unknown,
and the matching requires a motion prediction to estimate a transformation. This
prediction can be based on a motion model based on previous point registrations

30 Chapter 2. Preliminaries

or odometry from other sensors. The pose is updated from the calculated trans-
formation, and the odometry is corrected with a corresponding covariance. If
enough points correspond in the matching module, the points are added to the
point cloud map. This is done by subtracting the map from the new point cloud,
only leaving new points which are further added to the point cloud map.

Figure 2.14.: Block diagram showing the lidar odometry pipeline. TF (trans-
formation) defines the position of the camera in relation to the base of the robot
[22].

Visual Odometry

Visual odometry is the process of finding a transformation between two image
frames, measuring the same scene, in order to estimate the motion of the robot.
The process is depicted in Figure 2.15 and described as following. Features are
detected in the input image data, which are further matched with features in the
local map. A motion model can be used to estimate where in the current frame
the already contained features should appear. In this way, the search window
for corresponding features is limited. The motion is estimated by computing the
transformation of the current frames accordingly to the features in the map. For
a transformation to be accepted, a minimum number of matches are required.
Further, the transformation is refined by local bundle adjustment. The odometry

2.3. Simultaneous Localization and Mapping 31

is updated based on the estimated transformation, with a corresponding covari-
ance. The extracted features from the new frame with no matches in the map are
added to the local submap. For matched features, the position of the features in
the map is refined based on the transformation obtained from bundle adjustment.

Figure 2.15.: Block diagram showing the visual odometry pipeline. TF (trans-
formation) defines the position of the camera in relation to the base of the robot
[22].

2.3.7. Mapping

The following description of the mapping process is based on the creation of a 2D
occupancy grid map using a graph-based approach. Graph-based SLAM is built
on a structure of nodes with edges representing relative poses and confidences.
A block diagram of a graph-based SLAM system is shown in Figure 2.16. Each
node stores observations and a local submap describing the environment for its
estimated pose. The graph in total represents a global map of the environment.

A local occupancy grid is computed from a few consecutive sensor measurements,
where the grid cells are either denoted as empty or occupied cells. New sensor
data is continuously processed and aligned to the local grid map, where the pro-
cessing of the input depends on the type of data. For 2D lidar data, each ray
is processed, and if hitting an object the cell is denoted as occupied. The cells

32 Chapter 2. Preliminaries

Figure 2.16.: Block diagram of graph-based SLAM system.

between the lidar and the obstacle are denoted as empty. It is assumed that the
ray is parallel to the ground, such that it can not detect the floor. 3D depth
images are projected in 3D space and transformed, resulting in a point cloud in
the robot base frame. A segmentation algorithm eliminates points corresponding
to the ground. The normals of the point cloud are computed, and points with
normals pointing upwards within a certain angle are labeled as horizontal planes.
Further, segmentation is performed on planes close to the ground, according to
the robot coordinate system, to recognize and eliminate the plane correspond-
ing to the floor. The remaining points are denoted as obstacles. The points are
further projected and merged into 2D space. Cells with points are denoted as
occupied and cells between the sensor and the obstacle, including ground points,
are denoted as empty. New measurement data are initially inserted into the local
submap according to a pose estimate based on the odometry. The alignment can
further be refined through a scan matching process to optimize the local occu-
pancy grid.

When a local occupancy grid no longer changes, it is considered as finished, and a
new submap is started from new measurements. A new node is established in the
graph with the local occupancy grid, measurements of the environment and its
estimated relative pose. Features and scans from the sensor measurements, which
are to be used for matching, are kept in the node. The local occupancy grid of the
node is transformed into the global occupancy grid based on its pose estimation.
The node’s observations are compared to nearby, previously created nodes in
the graph. Edges are added to the graph representing a transformation between
two nodes, either as subsequent nodes or through loop closure detection. The
transformation is computed based on the motion estimation approach described
for visual odometry. If a loop closure is detected, a graph optimization approach
is applied to minimize the residual errors in the graph introduced from the cycle.
The computed error is propagated through the whole graph, re-assembling the
global map according to the optimized poses for all of the nodes.

Chapter 3.

Hardware

This chapter comprises the physical components that this work concerns, together
with their corresponding software.

A comprehensive description of the KMR was given in Chapter 3 of the special-
ization project [3]. A selection of the content from previous work is reproduced
and complemented in this chapter. Section 3.1 describes the KMR in general.
Section 3.1.3 presents the mobile platform, KMP, including components and how
the vehicle can be configured. Section 3.1.4 presents the manipulator, LBR, in-
cluding how the robot arm can be programmed for motion. Motion programming
of the platform is omitted as it is not a part of the scope of this thesis.

The work includes extending the KMR robot system with a gripper and cameras.
A Robotiq 2F-85 gripper is described in Section 3.2. Section 3.3 presents the Intel
Realsense D435 depth camera.

3.1. KMR iiwa
KMR is a designation for mobile robot systems from KUKA, and iiwa is short
for intelligent industrial work assistant. The KMR iiwa, shown in Figure 3.1, is
composed of the KMP 200 omniMove and the LBR iiwa 14 R820 [23].

The intended use of the mobile robot is to handle automated manufacturing tasks
and transport components. It can be moved around freely, link solitary production
cells and conduct industrial tasks, resulting in versatile and effective production
units. The manipulator can only be moved when the platform is stationary, and
the platform can only be moved when the manipulator is stagnant in a specific
position. This position is located over the base, hereafter referred to as the drive
position.

Sunrise Cabinet is the control hardware of the KMR and is contained inside the

34 Chapter 3. Hardware

Figure 3.1.: KMR iiwa is composed of a mobile platform and a lightweight
manipulator [24].

mobile base. There are two PCs inside the Cabinet, the KUKA control PC and
the Navigation PC. Motions executed by the KMR is controlled by the Cabinet,
and it monitors the kinematic systems of both the KMP and the LBR.

The KUKA smartPAD is a teach pendant with a touch-sensitive display that
can be used to jog the KMR manually and to launch applications. It must be
connected to the platform by cable.

3.1.1. Operating Modes

There are three main operating modes for the KMR, T1, T2 and AUT. The manual
operating modes, T1 and T2, can be used for testing of programs. T1 is the manual
reduced velocity mode, and T2 is the manual high velocity mode. In manual mode,
the smartPAD can be used to operate the KMR by either jogging the robot or
by executing an application. When jogging the robot, it is moved according to
the robot coordinate system. In autonomous, AUT, mode, the platform can be
operated by KUKA NavigationSolution software or by an application. Before the
KMR can be controlled in AUT mode, the PositionAndGMSReferencing program
needs to be launched to calibrate the sensors of the LBR. The position referencing
checks whether the saved zero position of the motor of an axis corresponds to the
actual mechanical zero position [25, p. 319]. A description of how the KMR is
operated can be found in Appendix E.

3.1. KMR iiwa 35

3.1.2. Software

KUKA Sunrise OS is a system software for industrial robots, operated by the
Sunrise Cabinet. Sunrise OS offers functionality for programming, motion control
and configuration of advanced robot applications. The software is installed on an
external Windows 7 PC, referred to as the work computer, which connects to the
KMR via ethernet.

Programming related to the Sunrise components of the system is performed in
Sunrise Workbench on the work computer. Sunrise Workbench is a Java-based
development environment for developing robot applications and managing Sunrise
projects. A Sunrise project contains the necessary data for the operation of a
robot system and is configured and connected to a specific robot. The safety
configuration file of the project contains safety functions preconfigured by KUKA
and can be edited in Sunrise Workbench. The I/O configuration file of the project
contains the complete bus structure with associated I/O mappings of the KMR,
which can be edited in KUKA WorkVisual. WorkVisual is a program for I/O
configuration and mapping coordinated with the robot controller and the PLC
for motion and safety control [25, p. 217].

A Sunrise project can contain Sunrise applications as well as regular Java files.
Sunrise applications define the tasks that are to be executed at the controller,
and only one application can be executed at the controller at a time. Sunrise
background applications can be executed on the controller parallel to a Sunrise
application, to perform monitoring of sensors or control tasks for external devices.

Sunrise applications are based on KUKA RoboticsAPI and are characterized by
the extension of a RoboticsAPIApplication. KUKA RoboticsAPI is a Java in-
terface for controlling KUKA robots and external devices. It contains predefined
data types that are required for programming KUKA robots and are based on the
object-oriented Robotics API [26], for developing software for industrial robotic
applications. KUKA RoboticsAPI allows general specifications of motions, de-
vices, control, handling requests and I/O operations. Additional software for con-
trolling and programming the KMP includes Sunrise Mobility and KUKA Nav-
igation Solution. Mobility extends KUKA RoboticsAPI with platform-specific
software for configuring and programming mobile platforms. Navigation Solu-
tion is an optional software package that provides functionality for autonomous
navigation and SLAM for mobile platforms.

3.1.3. KMP 200 omniMove

The mobile platform KMP works as a transporter of the LBR and for any prod-
ucts to be carried. The KMP is equipped with four Mecanum wheels, and two

36 Chapter 3. Hardware

SICK S300 Expert laser scanners, shown in Figure 3.2. The mobile platform can
be moved omnidirectionally, in both positive and negative x- and y-direction and
rotated around the z-axis. It can also be moved in multiple directions simulta-
neously, that is, in diagonal direction or moving around curves by superimposing
linear motion and rotation.

(a) Mecanum wheels [23, p. 31] (b) SICK S300 Expert laser scanner [27]

Figure 3.2.: Preinstalled components on the KMP 200 omniMove.

SICK Laser Scanners

The SICK S300 Expert is a compact laser measurement system that scans the
environment in two dimensions by using infrared laser beams. The scanners can
measure the distance to obstacles up to 30 meters away with the time-of-flight
principle [28, p. 123].

(a) Structure of the monitoring range
[29, p. 115] (b) KMP with the monitoring range [23,

p. 44].

Figure 3.3.: KMP with laser scanners and the monitored areas.

As shown in Figure 3.3a, the lasers B1 and B4 are positioned diagonally opposite

3.1. KMR iiwa 37

one another. Each scanner has a range of 270°, covering one long side and one
short side of the vehicle. The front side (+X) and the right-hand side (-Y) are
covered by scanner B1, while B4 covers the rear side (-X) and the left-hand side
(+Y). The lasers scan at the height of 150±10 mm above the ground, as illustrated
in Figure 3.3b.

The laser scanners have two functions. The primary purpose is to operate as the
safety equipment of the system by monitoring predefined areas around the vehicle.
The second function is to provide laser range data for autonomous navigation with
KUKA Navigation Solution. The monitored areas are divided into two fields, the
warning field and the protective field. The size of the two fields depends on the
velocity and the direction of the platform. For example, if the vehicle drives
forwards, only the fieldsets of laser scanner B1 are active. The maximum size of
the protective field is 3 m. Table 3.1 and 3.2 shows the size of the monitored
fields for different velocities in X and Y direction, respectively1. When the KMR
is operated in T1 or T2 mode, and the velocity of the platform is less than 0.13 m

s ,
the laser scanners are inactive [23, p. 70]. Inactive in this context means that the
protective field and warning field are not monitored. The laser scanners are always
active in AUT mode and provide scans that are processed by the Navigation PC.
The behavior of the system, when these fields are violated, depends on the selected
operation mode. If the warning field is violated in AUT mode, the maximum
velocity of the vehicle is reduced to 100 mm/s. The vehicle stops if the protective
area is violated independently of the operation mode.

Table 3.1.: Size of monitored fields for velocity in x-direction [30, p. 121]
Velocity [mm/s] Protective field [m] Warning field [m]

100 0.45 0.49
200 0.55 0.63
300 0.66 0.78
400 0.76 0.92
500 0.87 1.21
600 0.97 1.36
700 1.08 1.36
800 1.18 1.50
900 1.29 1.65
1000 1.21 1.61
1100 1.32 1.76

1The values are taken directly from the documentation of Sunrise Mobility [30]. The values for
the field sizes for a velocity of 1000 mm/s in X-direction seems to be incorrect.

38 Chapter 3. Hardware

Table 3.2.: Size of monitored fields for velocity in y-direction [30, p. 121]
Velocity [mm/s] Protective field [m] Warning field [m]

100 0.43 0.47
200 0.54 0.62
280 0.62 0.73
300 0.64 0.76
400 0.75 0.91
500 0.87 1.07
620 0.91 1.16

Safety Bus System

The safety functionality of the mobile platform is controlled by a Siemens PLC.
The laser scanners are integrated with the aid of an EFI gateway to enable the
bidirectional transmission of data between the lasers and the PLC. The PLC re-
ceives data from the lasers, which are processed and further sent to the controller.
If the protective or warning field is violated, safety events are triggered on the
controller, such as stopping the vehicle or reducing the velocity.

PROFIsafe is a PROFINET-based safety interface that is used for communication
between the PLC, the controller and the scanners. PROFINET is an Ethernet-
based field bus, and is the industry technical standard for data communication
over IWLAN [31, p. 21]. The system is characterized by the fast delivery of data
in 1ms or less, which is considered real-time [32].

3.1.4. LBR iiwa 14 R820

The LBR iiwa 14 R820, in Figure 3.4, is the manipulator that, together with the
KMP, constitute the KMR iiwa. Sunrise Cabinet is the controller of the robot
arm, and the electronics of the LBR is internally routed to the controller. The
LBR is intended for handling tools and for processing or transferring components
[33, p. 7]. The robot arm has a position accuracy of ± 0.1 mm, and can thus
be used for precise assembly work. The designation 14 stands for the payload
capacity of the robot, which is 14 kg. R820 refers to the maximum reach of the
robot arm, which is 820 mm, as shown in Figure 3.5b.

The LBR is mainly made of aluminum and is classified as a lightweight robot. It
is a jointed-arm robot with seven controllable axes, as shown in Figure 3.4, and
is based on the structure of a human arm. Every joint has a motor for moving
the joints and integrated sensors that provide information about position, torque,
and temperature. The sensors in the axis have protective functions to control the

3.1. KMR iiwa 39

Figure 3.4.: LBR iiwa 14 R820 [34] [33, p. 10].

motion of the robot arm. Axis range sensors ensure that the axis range is adhered
to, and torque sensors ensure that the permissible axis loads are not exceeded.
Axis data for the LBR is listed in Table 3.3, including the motion ranges and the
speed limitations for each axis. The workspace of the LBR is derived from the
axis ranges. The workspace and the dimensions of the robot arm are showed in
Figure 3.5.

Table 3.3.: LBR iiwa 14 R820 axis data [33, p. 20]
Axis Motion range [deg] Speed with maximum payload [deg/s]
A1 ± 170 85
A2 ± 120 85
A3 ± 170 100
A4 ± 120 75
A5 ± 170 130
A6 ± 120 135
A7 ± 175 135

For Cartesian space motion commands, the controller needs to find the joint

40 Chapter 3. Hardware

(a) Side view (b) Top view

Figure 3.5.: Workspace of the LBR. Dimensions are in mm and degrees [33,
p. 21].

positions along a Cartesian path and calculate the inverse position and velocity
kinematics of the robot. Due to the axis positions and combinations of these,
Cartesian motions of the robot may be limited. This is known as singularity
positions. The mobility of the manipulator is reduced and should, therefore, be
avoided. A typical case is if a small change in Cartesian space requires extensive
changes to the axis angles.

Media Flange

The media flange is an universal interface that makes it possible to connect compo-
nents to the robot flange, such as tools or grippers. The media flange is integrated
into the seventh axis of the LBR and is designated as MF in Figure 3.5a. The
media flange is an universal interface that enables the user to connect electrical
and pneumatic components to the robot flange. It provides transmission of data
signals and comes in several variants with different interfaces. All media flanges
have a hole pattern conforming to DIN ISO 9409-1-50-7-M6. The media flange
used in this work is the Touch Electrical media flange, shown in Figure 3.6. This
flange makes it possible to connect electrical components to the end-effector and
contains four interfaces designated as circled numbers in Figure 3.6. 1 (x74) is
the interface for analog signals and CAT5, 2 (x75) is external power supply, 3

(x3) is for internal power supply and digital I/Os and 4 (x2) is the EtherCAT
connection port.

3.1. KMR iiwa 41

Figure 3.6.: Interface of the media flange Touch electrical [35, p. 147].

Motion Programming

The LBR can be programmed by individual motions or by blocks of individual
motions forming a trajectory. For all types of motion, the start point of the motion
is the endpoint of the previous motion. The term Tool Center Point, TCP, is used
for the reference point that is commanded to go to the requested position of a
motion type. The TCP coordinate system is a Cartesian coordinate system and is,
by default, equal to the flange coordinate system. The TCP should be configured
as the working point of an eventual tool mounted at the flange.

Points in Cartesian space are defined as frames, where the point is the origin of
the frame. Frames are defined by a transformation relative to its parent frame.
The transformation describes how the frame is offset and oriented relative to a
reference frame by the translations and rotations defined in Table 3.4.

Table 3.4.: Relative transformation between two frames
Translation [mm]

X Translation along the X axis from the origin of the reference system
Y Translation along the Y axis from the origin of the reference system
Z Translation along the Z axis from the origin of the reference system

Rotation [deg]
A Rotation about the Z axis of the reference system
B Rotation about the Y axis of the reference system
C Rotation about the X axis of the reference system

The available individual motions for the LBR are linear motion (LIN), circular
motion (CRC) and point-to-point (PTP). These movements are illustrated in

42 Chapter 3. Hardware

(a) Linear (b) Circular

(c) Point-to-point

Figure 3.7.: Individual motion types for the LBR [25, p. 374].

Figure 3.7.

Linear motion guides the TCP along a straight line in space to a specified endpoint.
A circular motion guides the TCP along a circular path. An auxiliary point and
an endpoint must be specified to calculate the circular motion. For both the LIN
and CIRC motions types, the specified points are defined by a frame with absolute
Cartesian coordinates.

A PTP motion guides the TCP along the fastest path to the defined endpoint.
Due to the difference in maximum velocities for the joints, linear motion is not
necessarily the fastest. The endpoint can be defined in the following ways:

• By specifying the angle configuration in radians for each of the seven joints.

• By defining the endpoint as a frame with absolute coordinates. If the end
pose is defined in Cartesian coordinates, the joint configuration of the robot
is not unique.

An individual motion can be programmed with motion parameters specifying the
velocities, accelerations and jerk for each of the joints. The parameters can be
defined as either absolute Cartesian values or as relative values in percentage of
the axis-specific limitations. For a PTP motion, only the latter parameter option
is available. The robot moves as fast as possible within the constraints of the
physical limits and the programmed motion parameters. If no value is set for a

3.1. KMR iiwa 43

Figure 3.8.: A curved path with the Spline motion type, consisting of several
PTP segments [25, p. 376].

parameter, the motion is executed with the fastest possible value.

There are two different types of grouped motions, Spline and Motion Batch. Com-
mon is that they consist of a group of individual motion segments that together
form a path with the specified end poses of the individual segments. The differ-
ence is the approach used for approximate positioning. Approximate positioning
allows a more smooth motion, as it does not go through the endpoint of each of the
individual motions, but calculates the shortest motion approximately through the
specified endpoints. Motion batch cuts the corner past a programmed point based
on a defined approximation radius or distance. The robot never passes through
the points, but point defines the contour of the motion. Spline motions are more
computationally expensive, as they calculate a path to pass through each point
rather than passing near them.

As illustrated in as Figure 3.8, Splines are suitable for complex paths, as the
robot can execute curved paths in a continuous motion. A Spline can contain any
number of segments of any length, as long as it is within the available memory.
However, to reduce the calculation time of the path, it is recommended with a
maximum of 500 segments per Spline, and that each segment is longer than 5 mm
in a relative distance from the last endpoint [25]. Two different types of Splines
exist, joint path (JP) and continuous path (CP). A JP Spline can only contain
PTP motions, while a CP Spline can contain LIN and CIRC motion types. Each
of the individual motions defines the velocities and accelerations for the motion.
The velocity is reduced below the specified values for abrupt changes in direction
or orientations and motions in the vicinity of singularities.

Motion commands can be executed either synchronously or asynchronously. Syn-
chronous execution of a motion is done by the function move(). The motion
commands are sent sequentially to the controller. The program is not further
executed until the motion is finished. Asynchronous execution is done by the

44 Chapter 3. Hardware

function moveAsync(). The next command of the program is executed immedi-
ately after the motion command is sent. Approximate positioning is only carried
out for motions executed asynchronously.

3.2. Robotiq 2F-85 Gripper
Robotiq produces universal robot grippers, sensors and controllers to make au-
tomation easy, fast and accessible. Robotiq 2F-85 Adaptive Gripper, shown in
Figure 3.9, is an end effector designed for grasping and temporarily holding ob-
jects and is intended for installation on manipulators. It consists of two fingers
with an opening of 85 mm in between, and a single actuator for opening and
closing the fingers. Each finger has two joints and is under-actuated, meaning
that there are fewer motors than the number of joints [36, p.11]. This allows the
fingers to adapt to the shape objects to be grasped automatically and enables
simple control of the gripper. Robotiq provides several options for the fingertips
or finger pads, and they can easily be replaced. The 2F-85 gripper has embedded
object detection using force sensors.

Figure 3.9.: The Robotiq 2F-85 Adaptive Gripper has two fingers and a opening
of 85 mm [36].

A coupling must be used when mounting the gripper at the manipulator to inte-
grate the electronics. The gripper is powered and controlled through the coupling
via a device cable that carries a 24V DC supply and Modbus RTU communication
over RS-485 [36, p.16]. Robotiq provides couplings with different bolt patterns to
adapt the gripper to different manipulators. An adapter plate may be required if
the available coupling is not compatible with the end effector at the robot.

Robotiq offers controllers that support other industrial communication protocols
than the default Modbus RTU. The controller can be configured to support real-

3.2. Robotiq 2F-85 Gripper 45

time Ethernet protocols like Modbus TCP, EtherCAT and PROFINET. Each
controller is by default configured for one protocol, but additional software can
be downloaded from Robotiq Support to reconfigure the controller.

3.2.1. Gripper Register Mapping

The 2F-85 gripper has an internal memory that is shared with the Robotiq con-
troller, illustrated in Figure 3.10.

Figure 3.10.: Memory and control logic of the gripper.

One part of the memory is for robot output, and the other part of the memory is
for robot input. Further, these are divided into registers defined in Table 3.5.

Table 3.5.: Registers of the 2F-85 Gripper [36, p.47]
Register Gripper Input Gripper Output
Byte 0 Action Request Gripper Status
Byte 1 Reserved Reserved
Byte 2 Reserved Fault Status
Byte 3 Position Request Position Request Echo
Byte 4 Speed Position
Byte 5 Force Current

Byte 6-15 Reserved Reserved

46 Chapter 3. Hardware

The controller can write to the gripper input registers to activate functionalities or
read the gripper output registers to retrieve the status of the gripper. Communica-
tion between the controller and the gripper is done through messages, indicating
what registers to write or read. Each message consists of 16 bytes, where the
hexadecimal numerical system encodes each byte.

Gripper Input

The registers for gripper inputs with corresponding fields are listed in Table 3.6.

Table 3.6.: Inputs registers of the 2F-85 Gripper [36, p.51]
Robot
Output

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Action
Request

0 rARD rATR rGTO 0 rACT

Position
Request

rPR

Speed rSP
Force rFR

The Action Request stores information in four fields 3.6. rACT is the activate
gripper bit, which enables activation of the gripper. Activation must be done
before any other actions by setting the rACT bit to 1. rGTO is the bit corre-
sponding to the Go To command. When this bit is set to 1, the gripper moves to
the requested position according to the configuration set by the remaining regis-
ters. The bits rARD and rATR can be used for automatic release functionality
for emergencies and is not intended to be used under normal operating conditions.

The bytes declaring the Position Request, Speed and Force each include one field.
The hexadecimal 0x00 and 0xFF correspond to the minimum and maximum val-
ues for the fields, respectively. The Position Request, rPR, is used to configure
the position of the gripper’s fingers. The minimum value corresponds to a fully
opened position with 85 mm opening, while the maximum value correspond to
fully closed. The Speed, rSP, is used to set the speed of the gripper movements.
The Force, rFR, defines the gripping force. The gripping force decides the lim-
itation of the current sent to the motor while in motion. If the current exceeds
this limit, the gripper will stop, and object detection is triggered. Minumum force
must be applied to very fragile or deformable objects, while maximum force can
be applied for solid objects.

3.2. Robotiq 2F-85 Gripper 47

Gripper Output

The registers for gripper outputs with corresponding fields are listed in Table 3.7.

Table 3.7.: Output registers of the 2F-85 gripper [36, p.48]
Robot
Input

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Gripper
Status

gOBJ gSTA gGTO 0 gACT

Fault
Status

kFLT gFLT

Position
Request
Echo

gPR

Position gPO

The status Gripper Status contains the fields gOBJ, gSTA, gGTO and gACT,
as listed in Table 3.7. gOBJ is the Object Dectection Status, which contain
information about whether a grasp motion was successful. When picking an object
with the rGTO command, the gOBJ bits provide information of the gripping
motion as follows:

- Bits 00 = In motion: Gripper is in motion towards the requested position.

- Bits 01 = Object detection while opening: Gripper have stopped before the
requested position was reached due to contact with an object while opening.

- Bits 10 = Object detection while closing: Gripper have stopped before the
requested position was reached due to contact with object while closing.

- Bits 11 = Requested position: The gripper is at the requested position, and
no object was detected.

Action Status, gGTO, echoes the defined rGTO bit, and is 1 if there is an active
action request. gSTA provides information about the activation process, and
the bits equal 11 when the activation is completed. The Fault Status returns
error messages that are useful for troubleshooting. It can, for example, tell if the
gripper is not activated before a Go To command is sent. Position Request Echo,
gPR, echoes the requested position for the gripper and Position, gPO, provide
the actual position read from the encoder.

48 Chapter 3. Hardware

3.2.2. Modbus RTU Communication

The gripper is controlled by the Modbus RTU serial protocol, which is a Master-
Slave protocol [37, p. 5]. The slave in this context is the gripper. Each message
is formatted according to the RTU Message Frame shown in Table 3.8.

Table 3.8.: RTU Message Frame [37, p. 13]
Slave Address Function Code Data CRC
1 byte 1 byte 0-252 bytes 2 bytes

The slave address for controlling the gripper using the Modbus RTU protocol is
by default 0x0009 [36, p. 63].

The function code indicates what kind of action to perform. The following function
codes are used in normal operations:

• Function code 16 (0x10) is used for sending functionality messages to the
gripper.

• Function code 03 (0x03) is used for requesting information from the gripper.

For each message with function code 16 received by the slave, the slave responds
to the master by confirming that the functionality request is received. As slaves
typically do not transmit data without a request, it is required to send a message
with function code 03 to retrieve information from the gripper. Continuously
sending messages with function code 03 can be used to retrieve the gripper output
until either the requested position is reached or an object is detected. The Modbus
RTU messages include a checksum generated based on the content of the message
by the method Cyclical Redundancy Checking, CRC [37, p. 14].

3.3. Intel Realsense Depth Camera D435
Intel Realsense Technology is a series of technology from Intel which assist devices
perceiving the environment. It consists of vision-based solutions like depth and
tracking cameras, depth and tracking modules and lidars. There is also an open-
source SDK that offers wrappers in multiple programming languages.

The Intel Realsense Depth Camera D435 is shown in Figure 3.11a. It is part
of the D400 product line that was launched in January 2018. The camera uses
stereo depth technology and a vision processor to perform depth sensing of the
environment. The D435 camera has characteristics that make is a good fit for
robotic applications. It is lightweight, has a small size, long range, real-time

3.3. Intel Realsense Depth Camera D435 49

(a) The camera (b) Components of the camera

Figure 3.11.: Intel Realsense Depth Camera D435 [38].

image processing and handles different lighting conditions [38]. A summary of the
main specifications of the camera is listed in Table 3.9.

The D435 camera consists of an Intel RealSense Module D430, an Intel RealSense
Vision Processor D4 and a RGB Camera. The depth module has two cameras,
referred to as imagers and an infrared projector, which are used to calculate
depth. The left and right imagers are identical cameras with identical settings
[39, p. 15]. The infrared projector is used to project a random dot pattern
onto a scene, which can further be used to discover low-texture surfaces. Typical
low-texture surfaces are walls, doors and desks. The placement of the different
components is shown in Figure 3.11b. The total depth FOV of the camera is
87° ± 3° × 58° ± 1° × 95° ± 3°, in respectively horizontal, vertical and diagonal
direction. The field of view is wider than for other D400 camera models, which
is advantageous in robotic applications to sense as much of the environment as
possible at the same time. Another important feature in robotic applications is
the real-time processing of images. This is made possible by the low powered
Vision Processor D4.

The left and right imagers have a global shutter type, which is different from the
rolling type of earlier camera models. A global shutter sensor scans the entire
image simultaneously, instead of sequentially, line by line. The shutter makes the
image freeze, and there is no blur on moving objects. This makes the camera
a good fit for tasks like robot navigation or object detection, as both cases may
involve motion. Another advantage of the global shutter is the low sensitivity
to light, which makes it possible to navigate in an environment with low or bad
lightning.

50 Chapter 3. Hardware

Table 3.9.: Summary of the main technical specifications of the D435 Camera [39,
38]
Specification Value
Length × Depth × Height 90 mm × 25 mm × 25 mm
Weight 72 gr
Major components Intel RealSense Module D430, RGB Cam-

era, Intel RealSense Vision Processor D4
Image Sensor Technology Global Shutter, 3µ m × 3µ m pixel size

Depth Field of View (FOV)
Horizontal: 87°± 3°
Vertical: 58°± 1°
Depth: 95°± 3°

Maximum range Approximately 10 m
Minimum Depth Distance 0.105 m
Baseline 50 mm
Focal length 1.93 mm
Screw type Camera mount screw (1/4"-20)

3.3.1. ROS Software

AROS2 wrapper exists for using Intel RealSense D400 series cameras with ROS [40].
The camera node processes data from the camera sensors and publishes it to the
appropriate topic making the data ready to use for ROS applications.

The published data and the respective topics are as follows:

• Rectified depth image: /camera/depth/image_rect_raw

• Color image: /camera/color/image_raw

• Rectified infra1 image: /camera/infra1/image_rect_raw

• Rectified infra2 image: /camera/infra2/image_rect_raw

• Depth registered point cloud: /camera/aligned_depth_to_color/color/points

The rectified depth image is the processed stereo depth image coming from the
imagers and the infrared projector. The color image is from the RGB Camera,
and the rectified infra1 and infra2 images are from the left and right imagers. The
depth point cloud is processed from the depth image. As the image data is taken
with different cameras, it is defined in different frames. The camera node also
publishes the transformations between the different frames.

3.3. Intel Realsense Depth Camera D435 51

Table 3.10.: Intrinsic parameters of the D435 Camera [41, p. 12]. All parameters
exist for both left, right and RGB camera.
Parameter Description Specified as
Focal length See Section 2.2.4 [fx; fy] in pixels
Principal point See Section 2.2.4 [px; py] in pixels
Distortion See Section 2.2.3 Brown’s distortion

model [k1; k2; p1;
p2; k3]

Table 3.11.: Extrinsic parameters of the D435 Camera [41, p. 12]
Parameter Description Specified as
RotationLeftRight Rotation from right camera coor-

dinate system to left camera co-
ordinate system

3x3 rotation matrix

TranslationLeftRight Translation from right camera
coordinate system to left camera
coordinate system

3x1 vector [mm]

RotationLeftRGB Rotation from RGB camera coor-
dinate system to left camera co-
ordinate system

3x3 rotation matrix

TranslationLeftRGB Translation from RGB camera
coordinate system to left camera
coordinate system

3x1 vector [mm]

3.3.2. Calibration

Intel RealSense Technology provides calibration software of the cameras in the
D400-series [41]. This software, called Dynamic Calibrator, makes it possible
for the end-users to recalibrate their cameras easily. They also provide an API,
Dynamic Calibration Tool API, which makes it possible for developers to create
custom calibration applications. The software provides a dynamic calibration pro-
cess where the motion of the camera is evaluated, which means only the extrinsic
parameters are updated. It is assumed that this is a recalibration process, which
means the nominal parameters are known. The intrinsic and extrinsic parameters
of the camera are listed in Table 3.10 and 3.11. The left camera is the reference
camera and is located at world origin.

52 Chapter 3. Hardware

Figure 3.12.: Calibration board for the Dynamic Calibrator [41, p.71].

The D400-series cameras support two different types of dynamic calibration, rec-
tification calibration and depth scale calibration. These algorithms find the pa-
rameters necessary to rectify the images, as well as the extrinsic parameters. The
DynamicCalibrator only support these algorithms in a targeted calibration mode.
The target in Figure 3.12 can be printed or displayed on an Apple or Android
phone through the app DynamicTargetTool. If the target is printed onto paper,
the correct dimensions, shown in Figure 3.12, must be preserved.

The calibration procedure consists of both rectification and depth scale calibra-
tion. For devices with a RGB camera, as D435 has, a step for calibrating the
RGB camera is also included.

Chapter 4.

ROS2

ROS is short for Robot Operating System and is an open-source operating system
for robots. It includes tools and libraries to handle the software programming of
robots without having to deal with hardware. A thorough introduction of ROS
was made in the specialization project. The content is partly reproduced, as it is
essential to have a basic understanding of ROS and how it works to understand this
thesis. Of the reproduced content, some sections are shortened while others are
extended based on the relevance of the thesis. Besides, new stacks and concepts
are introduced.

Section 4.1 and 4.2 introduce ROS2 and important concepts. Section 4.3 in-
troduces two SLAM stacks, Cartographer and RTAB-Map. Section 4.4 address
the BehaviorTreeCPP library, which is not a ROS library, but a dependency for
packages based on behavior trees. Section 4.5 and 4.6 describe Navigation2 and
MoveIt2, which are used for path planning and controlling the mobile platform
and manipulator. The libraries used for object detection are presented in Section
4.7.

4.1. Introduction to ROS
Even though ROS is called an operating system, it is a middleware. It is built
on top of another operating system but provides all the services and functionality
one would expect from an actual operating system. The middleware is handling
the communication between different programs, and there exist plug and play
libraries that can be used to customize the system for the desired application.

ROS2 aims to be more flexible and universal than the first version of ROS, and
there is added support for real-time programming. ROS2 is built on top of DDS,
Data Distribution Service, that provides a publish and subscribe transport con-
cept similar to the one used by ROS. It offers a distributed discovery feature,

54 Chapter 4. ROS2

which allows any two DDS programs to discover and communicate with each
other as in a peer-to-peer network [42]. The default ROS2 middleware interface
is the DDS implementation Fast RTPS delivered by eProsima [43]. There exist
several language-specific ROS2 client libraries based on the same functionality for
ROS2. Rclpy and rclcpp based on Python and C++, respectively, are the two client
libraries maintained by the ROS2 core team. Nodes written with different client
libraries can communicate because all client libraries implement code generators
to interact with the ROS interface [44]. ROS2 is state-of-the-art software and is
currently under massive deployment. In general, ROS2 tries to be cleaner and
faster, and it will most likely become the primary robot operative system in the
future.

4.2. Concepts
This section briefly explain the most common used ROS terms and concepts.

A node is a process that performs computations. A robot system can typically
be broken down into multiple separate parts, and each node handles one specific
part. It could be to handle the localization, the navigation or a specific sensor.
A goal is to build the nodes modular for easy reusability such that a node can be
reused in a different project where the same purpose is needed. All the nodes are
connected in a graph and communicate through topics and services. It can publish
and subscribe to different topics, or provide or use services. For a mobile robot,
a typical scenario could be that the node handling a laser scanner sends the laser
data to the node handling obstacle detection. This node performs the necessary
computations and sends this information to the node handling path planning.

A parameter is a configuration value of a node. A node can have an unlimited
number of parameters, and the parameters only belong to that specific node.
The parameters can be integers, floats, booleans, strings, and lists. They are
usually set when creating the node but can be dynamically reconfigured using the
communication concept ROS services.

The nodes exist within a structure called a package. All the software is organized
in packages. The package includes everything needed to have a proper software
module, such as programs, external dependencies, configuration files and data sets.
The goal is to collect software in an easily reusable way. There exist thousands of
official ROS packages in addition to packages created by users. Not all the official
ROS1 packages are migrated to ROS2, but new ones are continuously ported.
Packages with collective functionality can be organized into stacks.

The communication between nodes is based on sending and receiving messages.
A message can be made of common data types like integers, floats and strings,

4.2. Concepts 55

but also arrays or nested structures. Files describing the message type are called
msg files and are simple files describing what kind of data structure this message
type supports. A message can be of the standard data types, or a custom made
message type put together by multiple fields of the standard types.

ROS utilizes three different methods for communication between the nodes, top-
ics, services and actions. A topic works as a communication bus, based on the
publish-subscribe pattern from software architecture. The topic is a middle-state
that transfers messages between the nodes. The nodes that publish information,
publishers, do not know which nodes that subscribe to the topic and keep pub-
lishing information regardless of whether there are any subscribers. The nodes
interested in information, subscribers, express interest in a specific topic, and re-
ceives messages if there are any from the topic. They have no information about
where the messages are published. A node can both be a publisher and subscriber
at the same time, and there are no limitations in how many topics it can publish
to or subscribe. A topic can only receive messages of one specific type, either a
datatype or a ROS message type, which is defined when the topic is created.

Communication through topics never provides any feedback. If a node needs a
response to a request, they should use services instead. ROS services are based on
the client-server software architecture, where a client can send a message request
to the server and receive a response. The service clients and servers are directly
created inside the ROS nodes. A practical use case for a ROS service could be to
reset a simulation and get a response to whether the request succeeded or not. A
service works as a one-time communication, which means that the two nodes are
disconnected when the response is returned.

ROS also provides a third way of communicating. Actions are used when a request
takes a long time to complete, and there is a chance that the user wants to cancel
the request or receive feedback on the progress. Action communication consists
of two components: a server and a client. The action server provides an action
while the client sends goals and monitors the feedback. Communication between
the server and the client happens through multiple messages. These messages are
defined in an action specification, .action file, which specifies the goal, result and
feedback. The goal message is sent to specify the action, the feedback message
is sent continuously and describes the progress of completing the goal, while the
result message is sent exactly once when the action is completed.

Communication by actions is made up of three services and two topics. The
services are send goal, cancel goal, get result, and the topics are /feedback and
/status. This is illustrated in Figure 4.1. The send goal service provides the
server with the goal, and the server returns whether the goal was accepted or
rejected. The cancel goal service is used by the client if wanting to cancel a
currently executed goal on the action server, and a response code indicating any

56 Chapter 4. ROS2

failures is returned. The get result service is used by the client to request the
final result of the goal. The service returns the defined result message and the
final status of the goal. The server publishes information on two topics. On the
status topic, the current status of the goal is published. It can be either accepted,
executing, canceling, succeeded, aborted or canceled. This topic is used by the
server for introspection and is not used by the client. On the feedback topic, the
defined feedback message is published by the server. An API for using ROS action
methods is implemented in the client libraries, which means the users do not have
to handle the topics and services directly.

Figure 4.1.: Middleware implementation of a ROS action, made up of three
services and two topics [45].

The following paragraphs are not describing ROS concepts, but tools and software
which are highly relevant when working with ROS.

A robotic system typically has many coordinate frames. Tf is a ROS package
that keeps track of all the different frames and their relative transformations. Tf
keeps track of the relationship between frames in a tree structure, and all frames
of the robot need to be connected through a tf tree. The information is either
published to the /tf_static or /tf topic, based on if the transformation is static or
dynamically changing. Each message includes a transform, both translation and
rotation, from one frame to another.

URDF is an Universal Robotic Description Format used by ROS to describe the
different parts of a robot and how they are connected. The URDF file is written in
XML file format, and XML tags describe each component of the robot. The URDF
describes all the characteristics of the robot in a human-readable way. The robot
is described by using links describing the components and joints, which connect
the components. The information related to the links can be visual features,
inertia, mass and collision properties, describing the range of interference of the
link. If the geometry of the link is simple, it can be described directly in the

4.3. Stacks for SLAM 57

URDF file. There is support for boxes, cylinders and spheres. If a more complex
shape is required, it can be done by including a mesh. Each link has a separate
frame, and the joints define the transformations between all frames. By using a
ROS package called robot_state_publisher, the information from the URDF can
be published to a topic and be available for other nodes depending on tf. Hence,
the URDF should be an exact representation of the robot.

Rviz is a ROS visualization tool. It can visualize 3D models of a robot in addition
to different types of data. The main purpose is to visualize the information from
ROS topics, making it possible to validate if the data is correct.

Gazebo is a software used for simulation, modeling and testing of algorithms. It
is a 3D simulator that provides models of robots, sensors and environments to
perform realistic simulations. It has a physics engine that makes it possible to
add physical constraints to the environment, which makes the simulations more
realistic. Besides, different sensors and cameras are supported. Gazebo is open-
source and has a high performance, which makes it a popular simulation tool.

4.3. Stacks for SLAM
Two libraries that provide SLAM for ROS2 are Cartographer and RTAB-MAP.
Common is that they support both lidar and visual SLAM and that they are
based on a graph-based SLAM approach. Both stacks support 2D occupancy grid
maps as output, which enable easy integration with navigation solutions such as
Navigation2. The maps created can be saved by using the map server package
included in Navigation2.

4.3.1. Cartographer

Cartographer is a part of Google’s open-source code. It can be used for both 2D
and 3D lidar graph-based SLAM, and the range measuring data can be of the
types 2D scans, multi-echo sensor scans or 3D point clouds.

Figure 4.2 shows a block diagram of the Cartographer system. Cartographer is
built on two subsystems for local SLAM and global SLAM, handled by the car-
tographer_node and occupancy_grid_ node. The cartographer node is the local
trajectory builder that generates and publishes local occupancy grid maps. The
occupancy grid node handles the assembly of submaps to a global map accord-
ing to a S2M approach. Constraints between the submaps are added either as
loop closures or as successive maps. The local SLAM approach is based on lidar
odometry, but wheel odometry or data from an IMU can be provided to get more
robust scan matching. The pose extrapolator uses sensor data to predict where

58 Chapter 4. ROS2

Figure 4.2.: The architecture of the Cartographer stack [46].

the next scan should be inserted into the submap. For both scan matching to local
submaps and graph optimization, Cartographer uses Ceres Solver [47], which is an
open-source C++ library for solving non-linear optimization problems. Finished
submaps are added to the pose graph, which is optimized in the global SLAM
thread running in the background. When the constraints graph is optimized, the
submaps are rearranged to form a coherent global occupancy grid map.

4.3.2. RTAB-Map

RTAB-Map, Real-Time Appearance-Based Mapping, is an open-source library. A
ROS wrapper exists to utilize RTAB-Map in ROS applications, which is main-
tained by Introlab [48]. RTAB-Map provides an approach for visual and lidar
SLAM and implements a variety of solutions for input and output in both 2D and
3D. For sensor input, it supports depth, stereo and RGB-D images, and also laser
scans and laser scan point clouds.

Figure 4.3 shows a block diagram of the RTAB-Map node in the ROS wrapper.

4.4. Behaviortree.CPP 59

The required inputs are odometry and transformations to define the position of the
sensors relative to the base of the robot. The odometry can be calculated based
on odometry from the wheel encoders or odometry from measurement sensors.
RTAB-map supports both S2S/F2F and /F2M.

The input is synchronized before passed to the graph-based SLAM algorithm,
using either exact or approximate synchronization. Exact synchronization requires
that the input has the same timestamp, while approximate synchronization is used
for data coming from different sensors, and attempts to synchronize the sensor
topics with minimum delay.

Figure 4.3.: The architecture of the RTAB-Map stack [22].

The loop closure detector uses a bag-of-words approach to determine if a frame
comes from a previously visited location. A new constraint is added to the graph
if a loop closure is detected, then a graph optimizer minimizes the errors in the
map. A memory management approach is used to limit the number of locations
used for loop closure detection and graph optimization to enable real-time features
for large-scale environments. The memory is separated into a short term memory,
STM, a long term memory LTM and a working memory, WM.

4.4. Behaviortree.CPP
The library BehaviorTree.CPP [49] can be used to create and handle behavior
trees. It provides features for creating behavior trees from XML-representations,
running asynchronous actions and creating custom tree nodes as plugins that can
be loaded at run-time.

Behaviortree.CPP uses behavior trees described by an XML file. The nodes in
the tree can either be predefined nodes from the library or custom nodes. Custom
nodes must be registered into a BehaviorTreeFactory before they can be used. All
nodes are meant to be general and reuseable and BehaviorTree.CPP uses ports

60 Chapter 4. ROS2

to have a dataflow within the tree. The ports can be used to provide input to a
node and retrieve the output. The output from a node can also be used as input
to another node. BehaviorTree.CPP provides the functionality blackboard, which
is a place to store and share values between the nodes in the tree. The values
are stored in the blackboard in key/value pairs. The input ports can read from
the blackboard, and the output port writes to it. Ports are connected by using
the same key for the output of one node and the input of another, such that they
point to the same entry of the blackboard.

4.5. Navigation2
Navigation2 is a library with tools that can be combined to control mobile robots.
The main goal of Navigation2 is to drive the robot from a start pose to a goal
pose. This task can be split into subtasks, which are all handled by Navigation2.
These include handling maps, localizing the robot, path planning, path following,
obstacle avoidance and creation of costmaps of sensor data.

To navigate, information about the environment and about how the robot moves
are required. Sensor data is used to create a local costmap, and the data can
either be laser scans or point clouds. A static map of the environment, of the
type occupancy grid map, is also required. Also, odometry data and transforma-
tions between the sensor frame and odometry frame must be available. The goal
of navigation is to navigate to a given pose in the environment. The user can
provide this pose either through topics or Rviz. The output from Navigation2
is continuously published velocity commands making the robot follow a planned
path to the goal pose. These commands describe the linear and angular velocity
in three directions.

Navigation2 is built upon behavior trees that control the overall workflow. The
BT Navigation Server handles this. The two primary action leaf nodes of the
tree handle the computation of a path to a given pose and path following. The
leaf nodes send requests to servers to perform the actions. These servers can be
replaced with various algorithms performing the same action.

The global path planner, Navfn, performs the creation of a path. Navfn imple-
ments the Djikstra search algorithm and uses a global costmap to find the path
with a minimum cost between the start and end points. Djikstra algorithm is
guaranteed to find the shortest path under any condition. The local planner han-
dles the path following. The local planner, called DWB, uses the plan from the
global planner and a local costmap to produce the velocities making the robot
reach the goal state. DWB is an improvement of the local planning algorithm,
DWA, applied in ROS1.

4.5. Navigation2 61

While navigating, the robot is also localized on the map. The localization al-
gorithm AMCL performs the localization. The key idea of AMCL is to express
a hypothesis about the robot’s pose by a set of weighted particles. The sensor
readings are used to give each particle a weight based on how likely it is that the
particle represents the correct position of the robot. Particles with low weight
are unlikely and will be replaced with more likely particles, making the particles
converge to the correct pose of the robot. Random particles are inserted to be
able to recover from false convergence.

The Navigation2 stack includes recovery behavior, which is triggered if the robot is
lost. Currently, this includes performing spins in-place, performing a linear trans-
lation by a given distance, and stopping, which brings the robot to a stationary
state.

Figure 4.4 shows the architecture of the system. As Navigation2 is under heavy
development, the different parts of the architecture have been changing rapidly,
and some are still subject to changes.

Figure 4.4.: The architecture of the Navigation2 stack [50].

Local Planner

The basic idea of the DWA algorithm, which the local planner DWB is based on, is
to find the available velocity commands and evaluate how they would perform. A
velocity search space is created based on a discrete sampling of the control space,
dx, dy and dθ, to find out what command velocities are available. Simulation of

62 Chapter 4. ROS2

each sampling is performed to see what would happen if the velocity were applied
for a short time.

Different critics then evaluate these trajectories. Each critic gives the trajectories
a score based on specified criteria before the scores are combined to give a final
value for the trajectory. The trajectory with the highest score is chosen and
determines the velocities of the robot. Each of the critics is given a weight based
on the importance of the criteria. The weights can be tuned to control the qualities
of the chosen trajectories.

The following critics are available in Navigation2:

• BaseObstacle: Gives a score based on whether the path is in collision at any
of the poses in the trajectory.

• ObstacleFootprint: Gives a score based on whether the robot’s footprint
touches obstacles or not. Only the border of the footprint is evaluated.

• GoalAlign: Gives a score based on how well the trajectory is aligned with
the goal pose.

• GoalDist: Gives a score based on the distance from the trajectory to the
goal pose.

• PathAlign: Gives a score based on how well the trajectory is aligned with
the path created by the global planner.

• PathDist: Gives a score based on how far the trajectory is from the global
path.

• PreferForward: Gives a score based on how much the robot moves forward.
Trajectories with backward movement and turning are penalized.

• RotateToGoal: Penalizes trajectories consisting of linear movements, if within
a certain distance from the goal.

• Oscillation: Gives a score based on if the trajectory is oscillating.

• Twirling: Penalizes trajectories with pure rotational velocities.

Costmaps

To handle path planning and obstacle avoidance, Navigation2 relies on costmaps,
which is a dynamic representation of the space. In a costmap, each grid is cat-
egorized based on if the area could be moved to or not, and the grid values are
costs. Each pixel has a value between 0 and 255. The range is split into different

4.5. Navigation2 63

classes: free, low collision probability, high collision probability, collision area or
occupied.

Navigation2 is based on a layered costmap structure where different costmaps
layers can be defined, constituting one full costmap. The available costmap layers
are static, obstacle, voxel and inflation layer. The static layer is a representation
of the occupancy grid map. The obstacle and voxel layers are both based on
sensor data. While the obstacle layer is created based on 2D data, the voxel layer
uses 3D data. The inflation layer is where the obstacles are inflated to define a
cost for the surrounding cells. The cost values are strongly related to the distance
between the robot and the obstacle, and the relationship is shown in Figure 4.5.

Figure 4.5.: Costmap cell value seen in the context of the distance to the obstacle
[51, p. 356].

Navigation2 uses both a global costmap and a local costmap. The global costmap
inflates the obstacles in the occupancy grid map and is used for creating a long-
term path. The local costmap is not related to the static map and is built by
inflating obstacles observed by the robot’s sensors. This happens in real-time and
is used for local planning.

64 Chapter 4. ROS2

4.6. MoveIt2
The motion planning problem for manipulators consists of similar challenges as
for a mobile robot. The goal is to find a path between a start position and an end
position, which avoids collisions and is cost-optimized. MoveIt is one of the most
used manipulation software for ROS and is used by more than 100 different robots
[52]. MoveIt2 Beta is the second version of MoveIt, created for ROS2, and was
launched in February 2020. It is the first beta version released for MoveIt2. It has
most of the core functionality from MoveIt, including motion planning, collision
checking, trajectory execution, inverse kinematics and visualization in Rviz [53].
MoveIt2 plans to utilize the advantages of ROS2 to enable faster and more reactive
planning and realtime control of robot arms [53]. MoveIt has a higher level ROS
interface, MoveGroup, and a graphical interface, MoveItSetupAssistant, which
are meant to be a user-friendly access to the functionality. This feature is not
yet ported to MoveIt2, which means users will have to use the APIs directly. A
higher-level interface for MoveIt2 called MoveItCpp does exist, which does not use
ROS functionality to access the core functionality. As many ROS stacks, MoveIt
is based on a plugin architecture, where algorithms and libraries can be changed
with a better fit.

For simplicity, MoveIt2 will hereby be referred to as MoveIt. If the information
is specific for either the first or second version of MoveIt, they will be referred to
as MoveIt1 and MoveIt2.

4.6.1. Configurations

MoveIt uses different plugins for almost every task, and the plugins can be con-
figured using ROS parameters. Each plugin has a separate configuration file with
parameters. Two files for describing the robot are the URDF and SRDF files.

URDF

MoveIt uses the URDF file to get a description of the robot and information for
motion planning. The limit tag specifies the limits of what the joint can handle
regarding joint movement, effort and velocity. The URDF also specifies a visual
and collision mesh. The collision meshes are included in the collision checking
performed during the planning. These should cover the relevant area, but at the
same time not be too detailed. An over-detailed mesh deeply affects the collision
checking time.

4.6. MoveIt2 65

SRDF

Another file describing the robot is the SRDF, Semantic Robot Description For-
mat, file. It complements the URDF file and specifies robot configurations and
additional information necessary for the planning.

Groups are a concept from the SRDF file, which is a collection of links or joints.
The child links of a joint or the parent joint of a link are automatically included.
Actions performed by MoveIt are done on a group, and a motion plan is created
for a specific group.

Some joints are unactuated, and not possible to control, even though they are not
fixed. These joints should be specified as passive joints in the SRDF to make sure
the planners know they cannot plan for this joint. An example of a passive joint is
a caster. Another type of joint that should be specified is virtual joints. A virtual
joint can be used to specify the relationship between the robot and the world;
hence, it defines the pose of the robot relative to the world. For a manipulator,
this joint is typically fixed, but for a mobile robot moving around in the world, it
could be a planar joint.

The SRDF should also be used to define information related to collisions between
the links. The collision checking process checks by default for collisions between
all joints. Pairwise collision checking between links can be disabled. This should
be done between adjacent links, which are already in a collision, and between links
where a collision can never occur.

Configurations of the joints that are used regularly can be defined and saved with
a unique id, which makes it possible to reuse the pose easily. A configuration can
be created as a group state, where id, group, and value for each of the joints are
specified. This could, for example, be the default position of the manipulator.

4.6.2. How MoveIt Works

As mentioned, a motion planner is specified through a plugin. The most pop-
ular planner in MoveIt is Open Motion Planning Library [54], OMPL, and it is
currently the only planner supported for MoveIt2. OMPL is open-source and
implements randomized sampling-based planning algorithms [55].

A motion plan request specifies what the planner should do, and includes con-
straints and a goal for the planning. The different constraints can be:

• The joint, velocity and acceleration constraints specified in the URDF.

• A position constraint, where the position of a link must be within a region.

66 Chapter 4. ROS2

• An orientation constraint, where the orientation of a link must be within
specific limits.

• A visibility constraint, where a point on a link must be within the visibility
of a sensor.

A goal for the plan can be set in four different ways:

• By giving the name of a pose configuration specified in the SRDF file.

• By giving a pose and a link, where the link should end in this pose.

• By giving a RobotState object. A RobotState is a representation of a robot’s
state, which includes position, velocity, acceleration and effort.

• By defining a MoveIt Constraint message. A Constraint message includes
four lists defining joint constraints, position constraints, orientation con-
straints and visibility constraints for each joint.

Parameters defining how the planner should look for a trajectory can be defined
in the motion plan request. Examples of parameters are the number of planning
attempts, allowed planning time and a scaling factor of the max velocity and
acceleration.

When the motion plan request is processed and sent to the planner, a motion plan
result is returned. A planner typically generates a plan, which means there is no
timing involved between the points in the plan. MoveIt includes a trajectory pro-
cessing routine, which handles the plan and generates a trajectory. A trajectory
is both a path and information about how to traverse the path with respect to
time. The plan is time parameterized by adding the constraints for joints, velocity
and acceleration. This makes sure every waypoint is reached within a fixed time
interval.

The process of creating a motion plan response from a motion plan request consists
of a pipeline with multiple stages. It must include the motion planner, but can
also include multiple stages for preprocessing of the motion plan request, and
post-processing of the motion plan response. These stages are named planning
request adapters. The motion planning pipeline is represented in Figure 4.6. The
mentioned time parameterization is such a post-processing stage. An example of
a preprocessing stage could be to fix the start state bounds. This stage makes sure
the start state of the joints are within the joint limits, which may be necessary
if the joint limits are not properly configured. When the motion plan response
is completed, the created trajectory will move the group of joints to the desired
location.

By default, collision checking is performed during planning, and MoveIt uses the
open-source library FCL, Flexible Collision Library [57]. The collision checking

4.7. Stacks for Object Detection 67

Figure 4.6.: The MoveIt motion planning pipeline [56].

is performed on both meshes, primitive shapes and octomap objects. Octomap
is a library implementing 3D occupancy grid mapping approaches to create maps
representing a full 3D model of the world [58]. During motion planning, collision
checking is the most expensive operation, and the number of collision checks
should be reduced if possible [56]. This is why it is helpful to disable collisions
that never occurs in the SRDF file.

MoveIt also uses a plugin for handling kinematics of the robot. The default inverse
kinematics plugin is KDL, Kinematics and Dynamics Library [59].

A planning scene represents the environment. It represents the world around
the robot, and also the state of the robot. A planning scene monitor manages
a planning scene. The planning scene monitor listens to state information from
the robot concerning the joints, sensor information and user input. The planning
scene is used both during planning and collision checking.

4.7. Stacks for Object Detection
Intel Robot DevKit Project contains robotics-related open-source software com-
ponents under the ROS2 framework. It can be used for perceptual computation,
neuron network-based object detection and 3D localization with RealSense data
[60]. This section presents two ROS2 stacks from this project and how they can
be applied together to obtain 3D localization of objects.

The ROS2 OpenVINO toolkit is based on the general OpenVINO toolkit, which
is first presented to be able to describe the ROS2 wrapper further. The stack

68 Chapter 4. ROS2

can be used for detecting objects in 2D images by inferencing data through a
neural network. Another stack is Object Analytics, which consumes data from
the camera and the detected object to localize the objects in 3D.

4.7.1. OpenVINO Toolkit

Open Visual Inference and Neural Network Optimization, OpenVINO, is a toolkit
developed by Intel. The toolkit is based on convolutional neural networks and
extends computer vision workloads across, mainly, Intel hardware. OpenVINO
includes different libraries and tools, such as DLDT, OpenCV and Open Model
Zoo. The Deep Learning Deployment Toolkit, DLDT, provides deep learning im-
plementation and consists of the Model Optimizer and the inference engine to run
deep learning networks [61]. Model Optimizer is used for training networks, and
include functionality to import pre-trained models from deep learning frameworks
and convert it to an optimized unified intermediate representation, IR, file [62].
The IR graph is represented by a xml file and a binary file. The XML file de-
scribes the network topology by its layers and edges and defines the mathematical
operations for each node, while the binary file contains information about weights
and biases.

Figure 4.7.: OpenVINO Toolkit workflow for deploying a deep learning model
[62].

The IR network can be read and inferred with the inference engine, as illustrated
in Figure 4.7. The inference engine is a C++ library that allows high performance
on the inference of images and integration into customized applications.

Open Model Zoo is a repository with ready-to-use, public deep learning networks
that are trained by Intel teams. The pre-trained models can be used instead of
generating custom networks to speed-up the development and production deploy-
ment process.

OpenCV is an open-source library developed by Intel that includes computer

4.7. Stacks for Object Detection 69

vision algorithms and machine learning and deep learning functionality. OpenCV
supports models from several deep learning frameworks like TensorFlow.

ROS2 Openvino Toolkit

The ROS2 wrapper extends the OpenVINO toolkit and adapts it to the ROS
system. The inference engine supports different types of detection, whereas object
detection will be further addressed as it is the feature of interest. Intel Realsense
cameras are supported as input for gaining image data, which can be provided
via ROS topics. The stack includes the entities pipeline, parameter manager and
pipeline manager. Figure 4.8 illustrates how the components co-work together for
object detection.

Figure 4.8.: Logic flow for creating pipelines with the OpenVINO stack.

The pipeline node is a default for the different features and must be launched with
a specified configuration file, including an IR model. The parameter manager pro-
cesses the configurations for the pipeline and passes the parsed configuration to
the pipeline procedure. A pipeline instance is created according to the config-
urations and further included in the pipeline manager for lifecycle control and

70 Chapter 4. ROS2

inference action triggering.

The pipeline processes the data from the resource component, builds up the struc-
tured inference network, and passes the data through the network. The inference
results are further published to a topic containing messages of the type Object-
InBox. This message includes information about the object type, the detection
probability and the region of interest in the image. The region of interest is defined
as a 2D bounding box in pixels that encloses the object in the image.

The pipeline manager manages all the created pipelines and makes it possible to
run more than one pipeline in the same process. This way, multiple pipelines
with the same resource can be created with custom configurations. The pipeline
manager also has features for inference requests or external demands from the user.
This is implemented by the use of a ROS service, which can be used for starting,
stopping, pausing and retrieving status information from existing pipelines.

4.7.2. Object Analytics

Object Analytics is a ROS2 stack for real-time object tracking and localization in
3D [63]. The object detection pipeline is shown in Figure 4.9. Only the localization
task will be addressed, as it is the feature of interest for this project.

Figure 4.9.: Architecture of the Object Analytics pipeline [63].

The object analytics node takes detected objects from the OpenVINO node and
data from a camera as input and provides the 3D pose of the objects in the im-
age. More specifically, the node subscribes to the topics containing color images
and point clouds from the Realsense node. The node processes the image data
from the camera and localizes the detected objects in the camera frames in 3D
bounding boxes. The localization is done according to the approach described in
Section 2.2.8, which is based on the Organized Multi Plane Segmenter Algorithm.

4.7. Stacks for Object Detection 71

The object analytics node publishes customized ROS messages of type ObjectsIn-
Boxes3D. Such a message contains information about the detected object, the
region of interest in the image and the bounding box enclosing the object in 3D.
The bounding box is defined by minimum and maximum values that locate the
diagonal of the box in the camera coordinate frame.

Part II.

Achievements and Evaluation

Chapter 5.

System Description

This thesis aims to create a concept towards a fully autonomous system focusing
on fetch and carry operations as an important representative for industrial tasks.
This includes utilizing the KMP and range sensors for navigation, the LBR and
the Robotiq gripper for fetching objects and Intel Realsense cameras for detecting
objects and sensing the environment.

Setup and preparations for the system are presented in Section 5.1. Section 5.2
presents the models created for describing the robot and using it in simulation.
An overall overview of the physical architecture is presented in Section 5.3. Three
PCs control the system, a control PC inside the KMR, an Intel NUC and a
remote PC. The two latter both have ROS Eloquent installed, and are further
referred to as external PCs. The communication between the control PC and the
remote PC is described in Section 5.4. Section 5.5 concerns the software on the
control PC. The software running on the external PCs is primarily controlled by a
behavior tree. This implementation is described in Section 5.6. The behavior tree
further communicates with multiple server nodes, which are connected to external
hardware and software. The server nodes are described in Section 5.7.

5.1. Setup
For the system to function, setup and preparations of the different components
are conducted. This applies to both physical components, described in Section
5.1.1, and software setup, described in Section 5.1.2.

5.1.1. Physical Installations

In addition to the KMR, the physical components in the system include a small
form factor PC, Intel NUC, four Intel Realsense D435 depth cameras and a Robo-

76 Chapter 5. System Description

tiq 2F-85 gripper.

Intel NUC

An Intel NUC mini PC is used as an onboard computer to provide electricity and
function as a communication medium to the external components installed on the
robot.

The KMP has an installation space for additional components in the front of the
vehicle, shown in Figure 5.1. This space includes different interfaces for connecting
to the robot. The NUC is stored inside this space.

Figure 5.1.: Installation space for additional components in the KMP [23, p. 45].

The computer supports an input voltage of 19V. As the voltage outputs on the
robot only provide 48V DC or 24V DC, an DC-AC power inverter is used to
provide the NUC with electricity. This inverter uses the 48V DC power interface
in the installation space of the KMP.

Ubuntu 18.04 and ROS Eloquent are installed on the NUC, making it possible to
communicate with other ROS nodes through Fast RTPS and the ROS network.

Robotiq 2F-85 Gripper

The default gripper coupling is not compatible with the media flange of the LBR,
and an external adapter is used. There is no adapter that fits this exact combina-
tion at the retailer, so this had to be created. It was desired to attach a camera to
the manipulator, and hence, a camera mount had to be included on the adapter.
The adapter was 3D modeled and machined in the laboratory at NTNU. The
finished adapter can be seen in Figure 5.2.

5.1. Setup 77

Figure 5.2.: The adapter used to connect the gripper to the media flange of the
LBR.

The gripper is connected to a Robotiq universal controller which is supplied power
by the 24V DC interface in the installation space of the KMP. The controller is
connected to the NUC by USB, making it possible to communicate with the
gripper over Modbus RTU.

Intel Realsense D435

Four Intel Realsense D435 cameras are used in this setup. Three cameras are
installed at the mobile base to use within SLAM and navigation. The last camera
is installed at the manipulator to perform object localization. The D435 cameras
use a different type of screw than the mounting holes at the mobile base. To be
able to attach the cameras to the base, three mounting plates were created. The
metal plates are rectangular with three screw holes. Two of them attach the plate
to the mobile base, while the last one is used to attach the camera to the plate.
One camera is placed at the front of the base, one at the left side and one at the
right side. Each camera has a horizontal field of view of 87° ± 3°, which means
the fields are not overlapping. The camera at the manipulator is attached to the
created adapter. The cameras are connected to the NUC through USB. Figure
5.3 shows the camera at the manipulator, while Figure 5.4 shows the cameras
attached to the mobile base.

78 Chapter 5. System Description

Figure 5.3.: A D435 camera is mounted at the end-effector.

(a) One camera installed on each side (b) Camera installed at the front

Figure 5.4.: Three D435 cameras mounted on the KMP.

5.1.2. Software Setup

The software setup includes a description of safety configurations of the KMR
required to make the robot compatible with our system, followed by a description
of how the object detection model was created.

5.1. Setup 79

Sunrise Safety Configurations

The safety configuration of a Sunrise project contains tables defining different
restrictions with corresponding consequences. The Customer PSM (Permanent
safety-oriented monitoring) table includes user-specific safety functions. The
safety functions are preconfigured by KUKA, but can be deactivated and changed
by users.

The row Small cubes at DrivePosition specifies a monitored workspace. When
used in automatic operating mode, the LBR must remain inside the workspace
at all times. The workspace is defined as a Cartesian cuboid relative to the
manipulator’s coordinate system. An example of such a workspace is illustrated
in Figure 5.5, where 1 denotes the origin.

Figure 5.5.: Example of a cartesian workspace for the LBR. 1 denotes the origin
of the workspace [25, p. 298].

The predefined size of the cuboid only allows small perturbations around the drive
position. If the LBR moves outside the cuboid, an emergency stop is triggered.
This safety configuration is included to avoid collisions. The size of the space was
increased, such that the robot arm could be fully stretched in every direction.

80 Chapter 5. System Description

Figure 5.6.: Safety configuration Customer PSM table in Sunrise Workbench.
The row Small cubes at DrivePosition is adjusted to increase the workspace of
the LBR.

Figure 5.6 shows the Customer PSM table and the row that was changed. The
new workspace is defined as a cuboid with size 2m× 2m× 3.5m.

Object Detection Model

This section presents the process of creating an object detector model for the
circular box shown in Figure 5.7.

A dataset was created based on approximately 1000 images of the circular box.
The images were created as snapshots from videos capturing the box, taken with
varying points of view, scale and light adjustments.

LabelImg [64] is a graphical image annotation tool that can be used to label
objects in bounding boxes in images. Each image was labeled through LabelImg,
which creates an associated XML annotations file. The annotation file includes
information about the image in addition to the label name and the specified

5.1. Setup 81

Figure 5.7.: The black circular box used for object detection and grasping
throughout the project. The box has a diameter of 7 cm.

coordinates of the bounding box. Thereafter, the dataset was split into a training
set and a testing set. The dataset was divided according to the Pareto principle,
namely 80 % of the images in the training set and the remaining as the testing
set.

TensorFlow [65] is an open-source framework developed by Google designed to
build neural networks for machine learning. TensorFlow Object Detection API
[66] is a framework built on top of TensorFlow containing tools and pretrained
models to construct customized object detection models. A model of the data set
was created by utilizing the TensorFlow Object Detection API. First, a label map
was created, which maps the labels of the data set to an id. This file is further used
for training and detection processes. TensorFlow Records were created for each
subset by running converting scripts1. TensorFlow Records are TensorFlows’s
custom binary storage format which are the required input data for the training
process.

A pretrained model from TensorFlow [67] was used to initialize the model. This
concept is referred to as transfer learning, where a model developed for a task
is reused as the starting point for a model for a different task. The model
ssd_inception_v2_coco was chosen as it provides a good trade-off between perfor-
mance and speed [68]. Based on these files and the TensorFlow records, the model
was retrained and evaluated by a script2 from TensorFlow Object Detection API.
The model is trained until it reached satisfying metrics.

TensorBoard is a program that can be used to monitor and evaluate the progress
of the training. The model is evaluated based on metrics as precision, recall and
loss.

1https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/
training.html

2https://github.com/tensorflow/models/blob/master/research/object_detection/
model_main.py

https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/training.html
https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/training.html
https://github.com/tensorflow/models/blob/master/research/object_detection/model_main.py
https://github.com/tensorflow/models/blob/master/research/object_detection/model_main.py

82 Chapter 5. System Description

The training was terminated at step 30,661, which corresponds to a period of
approximately 6 hours. The snapshots were taken at half-way through, approxi-
mately step 14,000, and at the end of the training process. Each of the rightmost
subimages correspond to the ground truth defined through the labeling process,
while the leftmost subimages are the detection attempt of the model. It is de-
sired to use the ROS2 Object Analytics stack, which depends on the OpenVINO
toolkit. The OpenVINO Model Optimizer provides a script3 for for converting
TensorFlow inference graphs to IR. The Model Optimizer script produces the IR
representation of the network, which can be loaded and inferred with the Open-
VINO Inference Engine.

5.2. Robot Model and Simulation

5.2.1. URDF

The URDF of the KMR created in the specialization project is reused during this
project. As new components are added to the system, these had to be added
to the URDF as well. This includes the D435 cameras and the Robotiq 2F-85
gripper. The individual components can be seen in Figure 5.8.

The mesh and description of the D435 cameras are found at [69]. This project
only includes a mesh for the visuals, hence, the collision geometry is described by
a rectangular box. This component is reused four times in the URDF. One time
at the manipulator, and three times at the mobile base. As the transformations
received from the URDF are highly relevant for achieving correct sensor data, the
new components must be attached in exact positions. Therefore, the adapter and
plates produced, described in Section 5.1.1, are also included. They are modeled
as a cylindrical plate and three rectangular boxes. The meshes and description
of the Robotiq 2F-85 gripper are retrieved from [70]. The complete URDF of the
KMR with all devices included can be seen in Figure 5.9.

The Tf package keeps track of the frames in the robot system. Most of the
transforms are retrieved from the URDF file. The frames related to the camera
frames are published by the Realsense camera ode, while the transform between
the odometry and the base of the robot, and the laser scanners and the scan
frames are published by their respective data publisher.

5.2.2. Gazebo

Simulation has been an important part of this work, meaning a complete Gazebo
model had to be created. The model is created with the same components as the

3https://github.com/opencv/dldt/blob/2020/model-optimizer/mo_tf.py

https://github.com/opencv/dldt/blob/2020/model-optimizer/mo_tf.py

5.2. Robot Model and Simulation 83

(a) Model of the D435 camera.
(b) Model of the Robotiq 2F-85 gripper.

Figure 5.8.: Visualizations of the URDF models for the camera and the gripper.

Figure 5.9.: The complete URDF model of the KMR with all devices included.
This includes four Mecanum wheels, two SICK sensors, four D435 cameras, a
Robotiq gripper and adapters.

URDF except for the gripper, as the gripper was not relevant for the simulated
experiments.

To have proper working simulated components, different plugins are added. The
plugin gazebo_ros_ray_sensor is used for the SICK scanners and is configured to
publish laser scan data to ROS. For the D435 cameras, the libgazebo_ros_camera
plugin is used. In general, it publishes raw images and camera info for generic

84 Chapter 5. System Description

camera sensors. The plugin was configured to publish raw depth images and point
clouds. The libgazebo_ros_joint_state_publisher plugin publishes the state of
joints in simulation. This is currently used for the four wheels, but do not have
any vital functionality regarding the experiments performed in simulation. The
plugin libgazebo_ros_planar_move is used to create the holonomic movement.
It uses twist messages to move an entity in the XY plane and publishes odometry
data, which makes it a good fit for experiments related to Navigation2.

5.3. Physical Architecture
The physical architecture of the robot system is illustrated in Figure 5.10. The
KMR is the central unit, including the Mecanum wheels and the SICK S300 Safety
Scanners. The other devices are installed on the robot to extend the functionality
and abilities of the system.

Sunrise Cabinet

Control PCNavigation PC

KMRiiwaSunriseApplication
FDI

SICK S300 Safety Scanner

TCP / UDP

Robotiq 2F-85
gripper

Intel NUC

Modbus RTU

Onboard
computer

Sensor readings
Connection
Component
Motion command

Fast RTPS

Remote PC

Mecanum wheels

Intel Realsense D435

Figure 5.10.: The physical architecture of the robot system with components
and communication medium denoted.

5.4. Communication Architecture 85

The Sunrise application, KMRiiwaSunriseApplication, is installed on the control
PC in the Sunrise Cabinet. It handles the communication with internal devices on
the robot to execute motion and retrieve sensor data. Motions commands are sent
to the joint motors of the LBR and the motors of the wheels on the KMP. Sensor
readings from the Mecanum wheels and SICK lasers are retrieved at the control
PC through a FDI connection to the Navigation PC, which is further connected
to the components. The sensor readings in the joints are retrieved directly by the
robot controller through internal couplings.

The Sunrise application running on the control PC further communicates with the
remote PC through a TCP or UDP connection. The data from the four cameras
are published to the ROS network by the onboard computer. The Robotiq 2F-85
gripper is mounted on the LBR and communicates with the onboard computer
through the Modbus RTU serial protocol. The onboard computer communicates
with the remote computer over the ROS network utilizing the Fast RTPS middle-
ware.

5.4. Communication Architecture
A new communication architecture between the KMP and ROS has been im-
plemented based on the drawbacks of the former architecture, mentioned in Sec-
tion 1.2.1. According to the previously described definition of a ROS node, a node
should have a specific purpose, and each node should handle one part. In the new
architecture, the communication task is split into multiple subtasks, where each
node is handling a separate subtask of the communication.

The separate tasks of the communication are:

• Sending commands from ROS to the KMP.

• Sending data from the SICK scanners from the KMR to ROS.

• Sending odometry data from the KMR to ROS.

• Sending status messages about the KMP from the KMR to ROS.

• Sending commands from ROS to the LBR.

• Sending status messages about the LBR from the KMR to ROS.

• Sending data from the sensors on the LBR to ROS. This data describes the
position and torque of the seven joints in the manipulator.

Each of these tasks has an associated node which handles the task, and are
launched from the remote PC. Similarly, on the Sunrise Cabinet, separate Java
programs are run to handle each task. For simplicity, these Java classes are also

86 Chapter 5. System Description

referred to as nodes as they provide mainly the same functionality as the ROS
nodes. Each of the ROS nodes creates a separate connection to its corresponding
Java node. The connection can be either TCP or UDP, as both protocols are im-
plemented. Messages between ROS and Sunrise are transmitted with the selected
protocol as strings on the format shown in Equation Equation (5.1).

Length >︸ ︷︷ ︸
Additional
Information

Type (LaserID) Timestamp Data︸ ︷︷ ︸
Message

(5.1)

The additional information, Length, is only included if the message is sent over
TCP. As TCP is a buffer protocol, this is necessary to ensure that the whole
message is read. The Type field describes what kind of data this message includes,
and is necessary to know how the data should be processed. If the message is
coming from the robot, an example of a type could be Odometry. An odometry
message further contains a data field describing the pose and velocity of the robot.

The new architecture for communication between the KMR and ROS is illustrated
in Figure 5.11. The solution is scalable, and more nodes can be added if necessary.
This architecture is also described in the paper in Appendix B, which was written
in March 2020.

Sunrise Cabinet

KMRiiwaSunriseApplication

FAST RTPS

/topics
ROS2FAST RTPS

ROS2 nodes

Remote PC

kmp_odometry

pub
sub

pub

UDP/TCP

kmp_status_reader kmp_commanderkmp_sensor_reader

lbr_command

pub
sub

pub

lbr_status

pub
sub

pub

kmp_laser

pub
sub

pub

kmp_status

pub
sub

pub

kmp_command

pub
sub

pub

lbr_sensordata

pub
sub

pub

lbr_commanderlbr_sensor_reader lbr_status_reader

Figure 5.11.: The architecture of the communication system between the KMR
and ROS.

5.4. Communication Architecture 87

5.4.1. Remote PC

On the remote PC, there are seven different nodes available for communica-
tion with the KMR: kmp_odometry, kmp_laser, kmp_command, kmp_status,
lbr_sensordata, lbr_status and lbr_command.

During the initialization of the nodes, they establish either a TCP or UDP con-
nection to the Sunrise Cabinet. The connection type and the IP address of the
robot are specified as parameters. The nodes either implement publishers or sub-
scribers, based on the direction of the data. The nodes sending data from ROS
to the KMR have subscribers, subscribing to the relevant ROS topic. The nodes
receiving data from the KMR have publishers to publish the data to the correct
ROS topic. All the publishers and subscribers and their associated ROS topics
are listed in Table 5.1 and 5.2. Data read from the topics are formatted as ROS
messages and need to be formatted as regular strings, while the data from the
KMR are transferred as a string and need to be formatted as ROS messages before
they can be published. Both types of nodes include data processing methods to
format the strings the correct way.

The nodes initialize the TCPSocket and UDPSocket objects. The socket classes
include functionality for connecting to the socket, closing the socket, and send-
ing and receiving messages. A more specific description of the functionality for
transmission over TCP and UDP is given in the specialization project report [3,
p. 55-60].

The kmp_odometry and kmp_laser nodes handle the sensor information retrieved
from the KMP. The kmp_command node subscribes to multiple ROS topics and
forwards the commands from each topic. The currently supported commands
are move with an absolute velocity, move to a given pose and shutdown. The
shutdown command is essential to be able to shut down all connections and threads
in the program correctly. The ability of moving with an absolute velocity is
crucial for the use of Navigation2. Velocity commands and pose commands can
be sent through an implemented keyboard, which can be run from the terminal
by the user. The kmp_status node retrieves information from the KMP and
stores the information in a ROS message named KmpStatusdata. This message
type, which is shown in Table 5.3, is custom made for the interface and includes
information that is useful when operating the robot. The lbr_status node has
the same functionality, and publish the status data from the LBR as a custom
LbrStatusdata message. The fields included in a LbrStatusdata message are shown
in Table 5.4. The lbr_sensordata node handles sensor data coming from the LBR.
The data includes the angle and measured torque of each of the seven joints of
the manipulator. The information is combined into a ROS JointState message.
This information is necessary to perform path planning for the manipulator.

88 Chapter 5. System Description

Table 5.1.: Publishers for publishing data from the KMR to ROS
Name Message

type
Topic Description

pub_odometry Odometry /odom Odometry information.
pub_laserscan1 LaserScan /scan_1 Data from B1 S300 laser

(front).
pub_laserscan2 LaserScan /scan_2 Data from B4 S300 laser

(back).
pub_kmp_statusdata KmpStatusdata /kmp_statusdata Information about the

KMP.
pub_lbr_statusdata LbrStatusdata /lbr_statusdata Information about the

LBR.
pub_lbr_sensordata JointState /joint_states Information about the

torque and angular po-
sition of each of the
seven joints in the ma-
nipulator.

Goal
trajectory_msgs / JointTrajectory path

Result
bool success
string error

Feedback

Listing 5.1: The MoveManipulator action for moving the manipulator along a
planned trajectory.

The lbr_command node handles commands to the LBR. Currently, it is possible
to control the manipulator in two different manners. The first is to use one of
the implemented keyboards which publish data the node subscribes to. From
the keyboard, movement can be set for each joint, either to the left or right.

5.4. Communication Architecture 89

Table 5.2.: Subscribers for subscribing to data from ROS to the KMR
Name Message

type
Topic Description

sub_twist Twist /cmd_vel Make KMP move at a
certain velocity.

sub_pose Pose /pose Make KMP move to a
certain pose.

sub_shutdown String /shutdown Make the application on
the Sunrise controller
shutdown. Any string
sent to this topic do the
same purpose.

sub_manipulator_vel String /manipulator_vel Make each joint of the
manipulator move.

Table 5.3.: Fields included in a KmpStatusdata message
Name Message type Description
header std_msgs/Header Regular header for all ROS messages.
operation_mode String The KMR has three different operation

modes. This field states the current
mode.

ready_to_move Boolean True if the robot is ready to move, and
no safety rules is violated.

warning_field_clear Boolean False if either of the warning fields of the
S300 sensors are violated.

protective_field_clear Boolean False if either of the protective fields of
the S300 sensors are violated.

is_kmp_moving Boolean True if the KMP is moving.
kmp_safetystop Boolean True if the KMP performs a safety stop.

This happens if any of the internal safety
monitoring functions of the Sunrise soft-
ware are violated.

It is possible to move multiple joints at the same time, but not to control the
velocity of the motion. The second way to control the manipulator is by providing

90 Chapter 5. System Description

Table 5.4.: Fields included in a LbrStatusdata message
Name Message type Description
header std_msgs/Header Regular header for all ROS messages.
ready_to_move Boolean True if the manipulator is ready to move,

and no safety rules is violated.
is_lbr_moving Boolean True if the LBR is moving.
lbr_safetystop Boolean True if the LBR performs a safety stop.

This happens if any of the internal safety
monitoring functions of the Sunrise soft-
ware are violated.

it a trajectory. This method is used by the behavior tree, which is based on
ROS actions. The node, therefore, implements a custom made ROS action called
MoveManipulator to receive a generated trajectory. This action is shown in Listing
5.1. The goal is a trajectory for the joints, which are processed and sent to the
LBR. The response is a boolean variable based on whether or not the request was
a success. For the lbr_command to verify whether or not the movement was a
success, the node subscribes to the status data from the LBR published by the
lbr_status node. This status data includes the field is_lbr_moving. When this
field is changed from true to false, it is assumed that the movement is completed
successfully.

The lbr_command node can also receive shutdown commands for the same pur-
pose as for the kmp_command node. Both nodes implement this functionality,
as there may be cases where only the KMP or the LBR are in use.

5.4.2. Sunrise Cabinet

Six Java classes are implemented to communicate with the ROS nodes:
kmp_sensor_data, kmp_commander, kmp_status_data, lbr_sensor_data,
lbr_status_data and lbr_commander. The classes, hereby referred to as nodes,
are responsible for sending sensor and status data, and for carrying out motion
commands received from the ROS nodes.

Each node extends an abstract Node class containing conventional methods and
variables, as the nodes have common functionality. The Node class is further
an extension of the Java Thread class, making it possible to execute each of the
communication nodes as threads.

Each node has an ISocket instance, which is an interface for socket objects. The

5.4. Communication Architecture 91

interface was created to ease the possibility of using different protocols. The two
classes implementing the interface, TCPSocket and UDPSocket, contains func-
tionality for establishing socket objects for the protocol options TCP and UDP,
and for handling the socket objects and transmission of data. When the main
application is launched, the nodes are initiated with the preferred protocol for
communication and a port. Hence, each of the communication nodes establishes
a socket object to transmit the data to the corresponding ROS node.

The kmp_commander receives commands from the corresponding ROS node.
Two different types of motions can be executed. A pose command message in-
cludes coordinates of a pose relative to the robot. A predefined motion type from
KUKA RoboticsAPI is used to move the KMP to the defined pose. Velocity
motions are carried out by jogging the robot by utilizing methods from a KM-
Pjogger instance. The KMPjogger class is implemented to handle the execution
of motion and threads. For each new jogging execution, a new scheduled thread
is started, and the class ensures they are terminated correctly to avoid the ac-
cumulation of threads. The kmp_status_reader uses functionality from KUKA
RoboticsAPI to retrieve information from the robot. The status message is pe-
riodically sent to the remote PC, containing the information listed in Table 5.3.
The kmp_sensor_reader class handles both the data from the SICK sensors and
the odometry data, and establishes separate sockets for each. An FDI connection
is established between the node and the Navigation PC, which makes it possible
to subscribe to sensor data. A data listener class performs this subscription. The
listener monitors the FDI connection and retrieves odometry data from the wheel
encoders and scan data from the SICK scanners via the connection. When new
sensor data are available, the data are transmitted to the corresponding ROS
nodes for each of the data types. A method for automatic reconnection and sub-
scription is implemented to handle cases where the FDI connection disconnects
during program execution.

The lbr_commander receives messages containing motion commands from the
corresponding ROS node, either with type setLBRmotion or pathPointLBR. The
first type of motion message is shown in Equation (5.2) and can be used to move
one or more joints of the LBR.

setLBRmotion︸ ︷︷ ︸
Message
Type

JointIndex Direction︸ ︷︷ ︸
Motion specification for a joint

(5.2)

The JointIndex specifies which of the seven joints to be moved, and the direction
specifies if it is going to be moved to a negative angle (-1), positive angle (+1) or
stop (0). When a joint is commanded to move, it continuously moves until a stop

92 Chapter 5. System Description

signal is received or until the joint reaches its maximum angle. The other motion
message type, pathPointLBR, is used for trajectories. A trajectory consists of
points in space relative to the current joint configuration of the LBR. Each point
in the trajectory is sent as an individual message from the ROS node, as shown
in Equation (5.3).

pathPointLBR︸ ︷︷ ︸
Message
Type

Type︸ ︷︷ ︸
Point
Type

[Poses] [V elocities] [Accelerations]︸ ︷︷ ︸
Joint specifications for a PTP motion

(5.3)

The point type defines whether the point is the start point, endpoint or a waypoint
of the trajectory. Each of the joint specification arrays contains seven values, one
for each joint of the LBR. The information received for a point is stored as a PTP-
point instance, based on an object of the PTP motion type from KUKA Robotics
API. If the point is of the type start point, the list containing the trajectory
segments is cleared. Points of type waypoints are added to the list of segments.
If the point is of the type endpoint, it is the last in the trajectory. A SplineJP
motion is initialized with the segments representing the trajectory and executed
asynchronously. A listener is added to the SplineJP instance, which updates the
lbr_status_reader when the motion is finished.

The lbr_status_reader retrieves information from the robot and transmits it pe-
riodically to the remote PC, similar to the kmp_status_reader node. The status
message contains the information in Table 5.4. The lbr_sensor_reader periodi-
cally sends sensor data from the LBR to the corresponding ROS node. For each of
the seven joints, the sensor data available is the joint position and the measured
torque.

5.5. Sunrise Application
The KMRiiwaSunriseApplication is the application running on the Sunrise Cab-
inet, as shown in Figure 5.11. The KMRiiwaSunriseApplication is the overall
component of the Java program, while the functionality is spread across the com-
munication nodes. The main functions of the KMRiiwaSunriseApplication can be
summarized with the following tasks, and are illustrated in Figure 5.12.

• Initialize the Java instances used to communicate with the actual devices.

• Initialize and handle the communication nodes.

• Handle behavior at emergency stops.

5.5. Sunrise Application 93

• Ensure that the program terminates properly.

Initialize device instances

Initialize communication
nodes

Initialize Run Shutdown

Commander
node

connected Shutdown received

 Close nodes

shutdown_application()run()

Emergency stopResume after
pause event

OnSafetyStateChanged()

 Notify nodes
Wait for connection from ROS

Start SafetyStateListener

KMRiiwaSunriseApplication

Figure 5.12.: Flow diagram of the KMRiiwaSunriseApplication.

In the initialization phase, Java instances of the KMP, the LBR and the Sunrise
Cabinet are initiated. As Java is an object-oriented programming language, it
is important that the same instances are used throughout the whole program.
Each of the communication nodes is further initialized with the necessary device
instances, the desired type of protocol and the communication port to be used by
the node. As mentioned, a node establishes a socket connection upon initialization
and waits for a connection from the corresponding ROS node. The application
will only continue running if one of the commander nodes have established a
connection. This is done for safety reasons to ensure that the application can
be terminated from ROS, as only the commander nodes can receive messages
from ROS. If no connections are established to any of the commander nodes
at the first attempt, the system will try to reconnect for a specified interval of
time, and then terminate if the attempts are unsuccessful. If a connection to a
commander node is successfully established, the application moves on to the run
phase. The remaining nodes will only be started if their individual connection
has been successfully established. This way, only the nodes with corresponding
ROS nodes running are started, reducing unnecessary processes. If a Java node
is not connected on the first attempt, it will try to reconnect periodically in the
background. Therefore, if a ROS node is launched at a later time than the Sunrise
application is started, the corresponding Java node will notice and connect to the
node.

The KMRiiwaSunriseApplication initializes a SafetyStateListener class, which is
implemented to notify the relevant nodes in the case of an emergency stop. If
an emergency stop occurs, the status nodes transmit the information to the ROS
node. The commander nodes implement a thread that continually listens to the

94 Chapter 5. System Description

safety state and cancels the current motion, if any. When an emergency stop
occurs, the application running at the Sunrise Cabinet is paused. The KMRiiwa-
SunriseApplication is set as automatically resumable, which makes it possible to
relaunch the application automatically. When an application is paused due to an
emergency stop, the background application AutomaticResumeBackgroundTask
will attempt to relaunch the application after a period of 3 seconds [30, p. 92].
If there are no violations of the safety restrictions of the system, the application
will continue running from the place it was interrupted.

The KMRiiwaSunriseApplication is run until either lbr_commander or
kmp_commander receives a shutdown message. Then, it moves on to the shut-
down phase, and all of the nodes are notified. The communication nodes are
closed by specific methods for each node defined in the individual classes.

5.6. Behavior Tree
A behavior tree at the remote PC controls the logic carried out by the KMR. The
logics include navigation of the mobile vehicle, movement of the manipulator,
searching for objects by a camera and gripper functionality. The implementation
is based on the Behaviortree.CPP library.

The leave nodes of the tree are made as in a service-oriented architecture. Each
leave node acts as a client node that communicates with the associated server,
which further performs the actual operation. An example of this is the MoveGrip-
per node that communicates with the ROS gripper node, which further communi-
cates with the actual gripper. As the behavior tree nodes are communicating with
ROS nodes, the module named nav2_behavior_tree from Navigation2 is reused
for simplification. This module provides a C++ template class for integrating ROS
actions into the behavior tree and also a generic BehaviorTreeEngine class that
simplifies the integration of behavior tree processing into ROS nodes [71]. Hence,
the behavior tree nodes and the ROS nodes communicate through ROS actions.

The behavior tree which will be presented in this section is created based on a
fetch and carry scenario. It is illustrated in Figure 5.13, and is read from left to
right. The tree is generic, and the nodes can be combined in different ways to get
the desired behavior. This tree is an example of how the implemented nodes can
be combined and carry out the following behavior.

The mobile vehicle navigates to a given goal pose. If the navigation is successful,
behavior related to the manipulator is invoked. This behavior is split into finding
an object and handling the object. The first task is to look for an object. There
are three predefined search areas, illustrated in Figure 5.14. Search areas 1 and
3 are 90° to the left and right from the manipulator drive position, respectively,

5.6. Behavior Tree 95

S
eq
ue
nc
e

M
ai

nM
an

ip
ul

at
or

Tr
ee

S
el
ec
to
r

Fi
nd

 O
bj

ec
t

S
eq
ue
nc
e

H
an

dl
e

O
bj

ec
t

S
eq
ue
nc
e

Se
ar

ch
 a

re
a1

S
eq
ue
nc
e

Se
ar

ch
 a

re
a2

S
eq
ue
nc
e

Se
ar

ch
 a

re
a3

S
eq
ue
nc
e

M
ov

e
to

se

ar
ch

 a
re

a
O

bj
ec

t
Se

ar
ch

M
ov

e
Pl

an

pa
th

S
eq
ue
nc
e

M
ov

e
to

se

ar
ch

 a
re

a
O

bj
ec

t
Se

ar
ch

M
ov

e
Pl

an

pa
th

S
eq
ue
nc
e

M
ov

e
to

se

ar
ch

 a
re

a
O

bj
ec

t
Se

ar
ch

M
ov

e
Pl

an

pa
th

S
el
ec
to
r

U
na

bl
e

to
 p

ic
k

ob
je

ct

S
eq
ue
nc
e

Pi
ck

 O
bj

ec
t

S
eq
ue
nc
e

M
ov

e
to

 d
riv

e
po

si
tio

n

S
eq
ue
nc
e

M
ov

e
to

ob

je
ct

M
ov

e
G

rip
pe

r

M
ov

e
Pl

an

pa
th

S
eq
ue
nc
e

Le
av

e
O

bj
ec

t

S
el
ec
to
r

Fi
nd

 e
m

pt
y

ar
ea

S
el
ec
to
r

C
he

ck
 a

re
as

S
eq
ue
nc
e

M
ov

e
to

em

pt
y

fr
am

e M
ov

e
Pl

an

pa
th

M
ov

e
G

rip
pe

r

M
ov

e
Pl

an

pa
th

S
eq
ue
nc
e

M
ov

e
to

 d
riv

e
po

si
tio

n M
ov

e
Pl

an

pa
th

C
he

ck

ar
ea

1
C

he
ck

ar

ea
2

C
he

ck

ar
ea

3

D
ec
or
at
or

Fo
rc

eF
ai

lu
re M

ov
e

G
rip

pe
r

S
eq
ue
nc
e

M
ai

nT
re

e

N
av

ig
at

eV
eh

ic
le

D
ec
or
at
or

Fo
rc

eF
ai

lu
re

S
eq
ue
nc
e

M
ov

e
to

 d
riv

e
po

si
tio

n

M
ov

e
Pl

an

pa
th

D
ec
or
at
or

Fo
rc

eF
ai

lu
re

Figure 5.13.: The implemented behavior tree. The composite and decorator
nodes are denoted by names in the tree. Nodes without an explanation are prim-
itives nodes, hence either condition or action nodes.

96 Chapter 5. System Description

while search area 2 is 180° away from drive position. A path is planned to the
given search area, the manipulator follows the path and starts searching for an
object using the camera attached to the manipulator. If no object is found, the
same logic is carried out for the next area. If an object is found, the subtree
concerned with finding an object is successful, and the behavior for handling the
object is invoked. If no object is found in any of the areas, the manipulator moves
back to the drive position, and the tree fails. Handling the object consists of
moving to the object and closing the gripper to pick up the object. If performed
successfully, an empty place on the vehicle to put the object is looked up. If no
empty place is found, the gripper opens again and leaves the object. If an empty
place exists, a path is planned and executed to this place. The gripper opens to
leave the object, and the manipulator is moved back to the drive position. If this
is executed successfully, the whole tree is successful and completed.

Search area 2

Search area 1Search area 3

Figure 5.14.: There are three predefined search areas for the manipulator. Search
areas 1 and 3 are 90° to the left and right from the manipulator drive position,
respectively, while search area 2 is 180° from drive position.

5.6.1. Tree Nodes

The behavior tree in Figure 5.13 consists of both primitive, decorator and com-
posite nodes. A single decorator node is used, ForceFailure, which is a predefined
node from BehaviorTree.CPP. This node will always return failure, independently
of what the child node returns. In some situations, failure handling is necessary if
the action fails. Such a situation is if no object is found in any of the search areas,
the gripper fails to pick up the object or if no space was found to leave the object.
If this happens, the tree should not fail immediately, but move the manipulator
back to drive position. The failure handling might succeed, but the behavior tree
should not be further processed as the original task failed. The ForceFailure node

5.6. Behavior Tree 97

makes sure the failure handling also returns failure, causing the whole tree to fail.

Two types of composite nodes are used, sequences and selectors. The Behav-
iorTree.CPP library provides different variants for both types of nodes. Among
them is the Fallback node, which is a basic selector node and the one used in our
implementation.

For the primitive nodes, one condition node and six different action nodes are im-
plemented. The primitive nodes are custom made and preregistered, which means
they can be reused as desired in different behavior trees. They communicate with
the associated ROS nodes through custom made ROS actions. The custom made
ROS actions are described together with the relevant ROS node in section 5.7.
The implemented primitive nodes are PlanManipulatorPath, MoveManipulator,
NavigateVehicle, EmptyFrame, MoveGripper and ObjectSearch.

PlanManipulatorPath is an action node that communicates with the RunMoveIt
node. This node has two input ports, plan_to_frame and object_pose. The first
describes which frame the manipulator should be moved to based on a set of
predefined frames. These frames are defined in the SRDF file. For situations
where an object is to be grasped, the frame can not be predefined. A path to the
object needs to be planned by MoveIt. Therefore, if the given plan_to_frame is
Object, the input port object_pose is used to define the pose MoveIt should plan
to. The path returned is written to the output port manipulator_path.

MoveManipulator is an action node which is connected to the LBR commands
node. This node does always follow the PlanManipuatorPath in a sequence, which
means this node reads the output path written by the planning node. The path is
sent to the LBR command node through a ROS action. When this action returns
success, the blackboard is updated with the current frame of the manipulator.

NavigateVehicle is an action node communicating with Navigation2. Navigation2
is handling the navigation and control of the mobile vehicle. The current goal
pose is read from the blackboard and sent directly to Navigation2. Unlike the
other behavior tree nodes, the navigation node uses a predefined action from
Navigation2 named NavigateToPose.

EmptyFrame is a condition node that checks whether an area on the vehicle base
is empty or not. There are three predefined areas at the base, named carryarea1,
carryarea2 and carryarea3. The status of the areas are stored as variables in the
blackboard, and when starting up, they are all set to true, meaning they are
empty. When objects are picked up and placed in the areas on the vehicle, the
associated variable in the blackboard is set to false, meaning they are not empty.

MoveGripper is an action node that communicates with the Gripper node and
invokes the gripper to open or close. Which action to perform is set through the

98 Chapter 5. System Description

input port called action. If the gripper is opened and the current frame of the
manipulator is either carryarea1, carryarea2 or carryarea3, an object was left in
this area. The blackboard is updated and the status of the area is set to false.
The EmptyFrame condition node will then detect this frame as taken.

ObjectSearch is an action node that communicates with the ObjectDetection node.
If the ObjectDetection node successfully finds an object, the pose of the object is
written to the output port object_pose.

5.7. Server Nodes
The leaf nodes in the behavior tree communicate with corresponding server nodes.
These server nodes communicate with the hardware and external software.

Figure 5.15 gives an overview of the nodes and how they are connected to the
rest of the system. The node executing the behavior tree is also described in
this section, although it is not part of the server nodes. The Navigation2 node is
omitted from this section as it is an external node and not implemented by us.

Server Nodes

Sunrise Cabinet

RunMoveItNavigation2

BehaviorTree

Communication Nodes

kmp_status lbr_statuslbr_commandkmp_odometry kmp_laser kmp_command lbr_sensordata

Object
Detection GripperNavigation

Support

Figure 5.15.: An illustration showing the server nodes and how they communi-
cate with the rest of the system.

5.7.1. BehaviorTree Node

The BehaviorTree node is the superior controller of the system. It initializes
the behavior tree by reading the XML description and passes it to the Behav-

5.7. Server Nodes 99

iorTreeEngine class. The BehaviorTreeEngine class has two methods:
buildTreeFromText() and run(). It uses BehaviorTree.CPP to create and exe-
cute the behavior tree.

When using navigation as a part of the behavior tree, the Navigation2 stack is
dependent on receiving an initial pose for the robot. Usually, this is given by
manually setting a pose in Rviz. For the solution to be fully autonomous, an
initial pose is set during the initialization of the node. This is performed by a
ROS publisher, publishing to the /initialpose topic, which is the same method
Rviz uses to set the pose. The solution demands that the robot starts in the
same position every time. When a robot is not in use, it is typically located
at the charging station. Hence, this is considered to be a suitable solution. This
position is defined in the BehaviorTree node’s parameter file as the home position.

The BehaviorTree node has a method for initializing a new navigation goal pose.
This is done by reading a list of goals from the parameter file and setting the first
pose in the list as the current goal in the blackboard of the tree. In the parameter
file, three work stations are predefined with coordinates, and the goal list consists
of a combination of these work stations. The goal list can be changed, and addi-
tional work stations can be defined in the parameter file by the user. The behavior
tree is executed by calling the run()-method from the BehaviorTreeEngine class.
Independently of whether the execution of the tree fails or succeeds, another goal
pose is initialized, and the behavior tree is executed again. The sequence contin-
ues until the goal list is empty. When the goal list is empty, the vehicle drives
back to the home position.

5.7.2. NavigationSupport Node

The NavigationSupport node is independent of the behavior tree and is created
as a support node for Navigation2. It supplements Navigation2 by dealing with
the built-in safety restrictions of the KMR, which cause the problem described in
Section 1.2.1.

Newly implemented behavior in Navigation2 makes it possible to update the pa-
rameters which specify the maximum velocities dynamically. The responsibility
of the NavigationSupport node is to monitor the warning and protective fields
of the KMP. This information is included in the KmpStatusdata message and is
continuously updated. The node subscribes to status data and takes action if the
parameter values are changed.

If the parameter defining if the warning field is clear changes from true to false,
an object is detected close to the robot, and the speed must be lowered. If the
same parameter changes from false to true, the robot has moved away from the

100 Chapter 5. System Description

object, and the velocity can be increased. The velocity is changed by making
a call to a ROS service within the Navigation2 controller server. This service
is named SetParameters and is used to change parameters on the node at run-
time. The relevant parameters are max_vel_x, max_vel_y, max_vel_theta and
max_speed_xy. The parameters are changed between two static arrays denoting
high and low velocity.

As the size of the warning and protective fields decreases when the velocity is
reduced, the status of the warning field will immediately change back to true
when the velocities are lowered. Similarly, when the velocities are increased, the
size of the warning fields increases accordingly. This makes the warning field
parameter, and hence, the velocities, jump back and forth between true and false,
and high and low. A time threshold is used to avoid this behavior. The velocities
are not changed if they have been changed within the last three seconds. After
three seconds, the obstacle has most likely passed, or it is sufficiently close to
remain in the warning field, such that the robot continues driving at low speed.

5.7.3. RunMoveIt Node

The RunMoveIt node handles motion planning for the manipulator. It takes
advantage of the MoveItCpp interface, which configures and loads MoveIt2 func-
tionality. Further, the planning scene is initialized. As the KMR moves around in
the MANULAB, the planning scene should be dynamically updated with sensor
data. It was decided to neglect collision objects in the environment during the
experiments to simplify the setup. The node has functionality for adding static
collision objects, as it was widely used during testing and debugging.

MoveItCpp is also used to set up a planning component. A planning compo-
nent class includes methods for setting goals and execute planning, based on the
concepts described in Section 4.6.2. The planning component is defined to be
manipulator, where manipulator is the chain going from the base of the LBR to
an imaginary point in the middle of the gripper’s fingers.

The node implements an action server named PlanToFrame, which the behavior
tree node PlanManipulatorPath connects to. The PlanToFrame action is shown
in Listing 5.2. The goal message consists of both a frame and a pose. The goal
for the planning component is mainly set to be the frame, which defines a joint
configuration specified in the SRDF file. The exception is when the frame is
Object, where the goal is set to be the given pose. The imaginary point within
the gripper is set as the link to end in this pose. For all other frames, the pose
field is empty.

5.7. Server Nodes 101

Goal
string frame
geometry_msgs / PoseStamped pose

Result
bool success
trajectory_msgs / JointTrajectory path
string error

Feedback

Listing 5.2: PlanToFrame action for planning the manipulator path to a given
frame.

The SRDF file includes joint configurations for the frames driveposition, search1,
search2, search3, carryarea1, carryarea2 and carryarea3. The search frames are
the different configurations for performing object search, and the carry areas are
different configurations for leaving an object on the vehicle base. It also defines
the previously mentioned group manipulator.

When an action request is received, the goal is set, and the performed plan-
ning results in a trajectory. The response to the action request includes both a
boolean value determining whether or not the planning was successful as well as
the planned trajectory. The plan is visualized in Rviz if the program is run during
execution.

5.7.4. Gripper Node

The Gripper node contains functionality for controlling the Robotiq 2F-85 gripper
using Modbus RTU. The messages described in Section 3.2.1 are used to commu-
nicate with the gripper. They are defined in the class GripperMsg, where each
message is stored as an enum.

Initially, the gripper is activated, and further, the node has methods for opening
and closing the gripper. The messages of these requests have function code 16 and
data specified in Table 3.7. Common for both types of motion requests is that
the bits rGTO and rACT are set to 1. The position byte, rPR, is either set to
fully open or fully closed. When opening, full speed and full force is requested,
while when closing, the force is set to half of the maximum value to account for
fragile objects.

102 Chapter 5. System Description

The Gripper node is connected to the MoveGripper behavior tree node through
a ROS action. The action message is defined in Listing 5.3.

Goal
string action

Result
bool success
string error

Feedback

Listing 5.3: The Gripper action for opening and closing a gripper.

The goal message defines what action to perform, either open or close the gripper.
The result message includes a boolean describing if the request was a success or
not. This information is obtained by transmitting a message with function code
03 to the gripper and read the received response. The received response contains
the data specified in Table 3.6. Further, the byte in the response corresponding
to the gripper status is read. When opening the gripper, the motion is a success
if the requested position is reached. In our project, the only purpose of closing
the gripper is to pick up an object. With this in mind, successful closing of the
gripper is defined to be when an object is detected between the gripper fingers. If
the gripper fails to close around an object, the action request fails.

5.7.5. ObjectDetection Node

The ObjectDetection node contains functionality for controlling the object detec-
tion process.

The node depends on three other nodes, which must be launched at startup: a Re-
alSense node, an OpenVINO node and an Object Analytics node. The RealSense
node must be launched to publish image data from the D435 camera attached to
the manipulator. The OpenVINO node starts an object detection pipeline. The
object detection model to be used in the pipeline and the confidence threshold for
the search are set as parameters. This node is responsible for recognizing objects
in 2D. The Object Analytics node is launched to localize the detected objects in
3D.

5.7. Server Nodes 103

As object detection is a computationally heavy process, it should be performed
only when necessary. The pipeline manager in the ROS2 OpenVINO framework
allows to control existing pipelines. This is done by sending calls to a ROS service
in the pipeline node. The service can be used to run and pause the object detection
pipeline. The Object Analytics node subscribes to the topic containing detected
objects in 2D images. If no messages are published, the node will not search for
3D poses of objects.

As the previous nodes, this one is also connected to the behavior tree through
a ROS action. The ROS action ObjectSearch is shown in Listing 5.4. When a
request for an object search is retrieved, the object detection pipeline is started
by a call to the pipeline service. The ObjectDetection node subscribes to the
topic containing 3D bounding boxes of the detected object. If the probability for
a detected object is above a specified threshold, the center point of the box is
calculated and returned. A probability check is repeated in this step to ensure
that the pose of the detected object is a good fit. The orientation for the pose of
the object is set to a fixed value, which was found experimentally. If an object
is found, the action request is successful. The outcome is returned in the action
response as a boolean, together with the pose of the object.

Goal

Result
bool success
geometry_msgs / PoseStamped pose
string error

Feedback

Listing 5.4: The ObjectSearch action to start searching for an object by the
attached camera.

Chapter 6.

System Review

This chapter discusses and evaluates the implemented system. The evaluation
focuses on the parts where important decisions or actions have been made during
the development and parts which could have been improved. First, the commu-
nication architecture is considered in Section 6.1. Next, in Sections 6.2 and 6.3, a
review of the communicating subsystems, namely Sunrise and ROS, is given. Sec-
tion 6.4 discuss the external sensors and actuators applied in the work. Finally,
remarks on the system architecture are given in Section 6.5.

6.1. Communication Architecture
The new architecture works in a satisfactory manner. The performed changes
made it easy to add the new LBR nodes to expand the system. As was desired,
nodes can be launched individually, which makes it straightforward to test sepa-
rate parts of the system. For the Sunrise implementation, the ISocket interface
and the abstract Node class makes it simple to use different socket types or add
more communication nodes. This confirms that the architecture makes the system
more scalable and flexible.

In terms of a more fault tolerant system, the individual nodes make it possible for
the system to keep running if one node stops working. This means, for example,
that you can still send shutdown commands and close the system properly, even
though one of the sensor nodes has disconnected due to an error. What should
have been improved is error handling and displaying more messages to the user.
A common problem during experiments has been that one or multiple nodes stop
sending data because of latency in the network. Currently, this can only be
discovered by monitoring the topics where the data is published. A check could
be implemented to notify the user if more than a certain time has passed since a
message was received.

106 Chapter 6. System Review

A main problem with ROS is how to maintain single point-of-control. Any open
interfaces that can lead to undesired robot motion initiated by an attacker will
be considered a safety issue. This is both a risk if someone connects to the
communication ports of the robot, and also if an attacker publishes messages to
the ROS motion topics. The first problem could be solved by configuring the
Java nodes to accept connections only from a registered or identified node. As
the concept of ROS topics is anonymous publishers and subscribers, the second
problem is more complicated. One solution is to validate the data before it is sent
to the robot. As for motion commands, there could be a check to verify if the
velocity is within specified limits. Such validations could prevent extreme values,
but would lead to a less generic system. This is a disadvantage if you want to use
the same communication architecture for multiple robots.

6.1.1. Communication Protocol

The communication between ROS and Sunrise is based on TCP. As stated in
Chapter 5, options for both the UDP and TCP protocol are implemented. The
Sunrise system only has ten ports for communication with external devices [25,
p. 410]. Through experiments, it has emerged that incorrect termination of the
program causes the UDP ports to be unavailable for several hours. As the nodes
of the implemented system communicate over seven different ports, the system
depends on the ports being available at all times. Therefore, TCP has been used,
even though UDP is the preferred communication protocol for real-time applica-
tions. TCP transport includes unnecessary overheads and requires acknowledg-
ments from the receiver. Compared, UDP is more efficient in terms of bandwidth
and less demanding of poor-performing networks. UDP does not ensure that the
message arrives at the receiver, but message loss is not critical in applications
where data is sent frequently. On the other hand, UDP entails a risk for shut-
down and motion commands not to arrive, which should be taken into account.
Switching to the UDP protocol should be done when the system and network are
stable and there is no risk of unexpected errors.

6.1.2. Network

Throughout the experiments, instability in the network was observed, which in-
fluenced the collection of results. Both the external computers and the KMR
must be connected to the same network for transmission of data. The network
is affected when heavy programs are run on the external computers. Figure 6.1
shows the response time over the network captured during two time intervals of
around 10 minutes. The experiment conducted in both cases includes launching
programs related to communication with the KMR, navigation, perception, object

6.2. Sunrise 107

localization and manipulation. The network traffic was captured by sending con-
tinuous pings to the robot controller during the experiments. When no programs
are launched on any of the computers, the average response time is 3 ms. In the
captured data traffic, the average response time is around 200 ms. A package loss
of around 50 % was observed during the execution.

Figure 6.1.: The response time in the network captured during two experiments
that included launching of heavy programs.

The consequence of overloading the network depends on the communication pro-
tocol. For TCP communication, the transmission of data over specific ports stops
when no acknowledgment is received from the listener. For UDP communication,
data packets are lost when delays occur. However, stagnation in the transmission
of data is highly undesirable in a system where it is critical that commands are
received and where sensor data should arrive in real-time. If the problem persists,
further research should be conducted.

6.2. Sunrise

6.2.1. KMP Sensor Data

The sensor data of the KMP is transmitted from the Navigation PC to the Control
PC through a FDI connection. The FDI connection class is included in a JAR
file from the KUKA Navigation Solution software. If there is a latency larger
than 3 seconds in the system, the connection automatically disconnects, which
stops the transmission of sensor data. In addition to complex programs running
on the network, the large number of threads running on the Control PC may be
a source to latency. To overcome this problem, an automatic reconnection was
implemented. This worked to a certain extent, but in situations where the FDI
connection repeatedly disconnected, the sensor data would not be transmitted.

108 Chapter 6. System Review

The FDI connection class has a variable, DATA_TIMEOUT, which controls the
timeout leading to disconnection. The field is declared as private final and, hence,
can not be changed from an external class. Although it has been preferable not
to change the Sunrise system, the only solution was to do a minor change in
the source code of the FDI connection class. The variable DATA_TIMEOUT
was declared as public to enable accessibly from external classes. Further, the
value of the variable was increased to 12 seconds to avoid disconnections. The
adjustments were successful, and disconnections were only observed in scenarios
where the delays in the network were too significant to operate the KMR in
general. However, in these cases, the FDI is automatically reconnected due to the
implemented solution.

6.2.2. KMP Motions

When executing all the Java nodes, nine threads are running, in addition to the
ones established for the jogging motion. A single core on the Control PC in the
Sunrise Cabinet is assigned to the application server. In a multithreaded pro-
cess on a single processor, the processor can switch execution resources between
threads, resulting in concurrent execution. Concurrency indicates that more than
one thread is making progress, but the threads are not actually running simulta-
neously. The switching between threads happens quickly enough that the threads
appear to run simultaneously [72]. The jogging thread handled by the KMPjogger
executes the motion commands periodically at a fixed rate. With fewer threads
running, the default rate of 50 ms was sufficient for smooth motion. As the sys-
tem was expanded with several more processes, it was observed that the motion
of the KMP became jerky. This may have been caused by the increased number
of threads running. The velocity motion became smoother when the rate of the
jogging thread was lowered to 1 ms, but the robot still suffers from insignificant
chopping. However, the Java implementation have potential for improvement. In
general, the program suffers from unnecessary processes which may cause delays
in the system. Threads are created for monitoring critical variables and connec-
tions and to notify other parts of the system. These could be replaced by Java
concepts such as events and listeners to reduce processing. The RoboticsAPI pro-
vides useful functionality for this purpose, such as event triggers [26]. Per today,
the sensor and status data from the LBR is sent occasionally from a thread based
on a time threshold. Background applications can be utilized for reading and
transmitting sensor and status data with a fixed delay. Another solution could
have been to only transmit the data if any values are changed. However, if the
communication protocol is changed to UDP, this might be a bad solution, as it is
not ensured that ROS receives the updates.

6.2. Sunrise 109

6.2.3. LBR Motions

As described in Section 3.1.4, there are several options for executing motions for
the manipulator. Two different types of motions are implemented, one for moving
individual joints and one for following trajectories. The first motion type has
been useful for testing the program and for manually moving the arm when the
system is executed. The second type of motion is required to execute the planned
trajectory from MoveIt. A trajectory consists of several points, which can be
programmed as a group of individual motions.

Initially, it was tested to add each of the points of the trajectory to a list and
execute each segment as a PTP motion. This led to jerky motions, as the distinct
motions were not linked together. An option considered was to group the PTP
motions in a Motion Batch. This type of grouped motion uses an approach for
approximate positioning that leads to deviations from the plan. Therefore, a JP
spline block was a more suitable option. Examples in the documentation of the
Sunrise system shows how to make a new spline motion by defining each point
of the trajectory when the instance is created [25, p. 372]. This approach is not
applicable in our case, as an unknown number of points are received from ROS.
The implemented solution is based on the approach used in the work of Virga
and Esposito [6], using a list of PTP segments. The method makes it possible to
create trajectories of different lengths that lead to continuous motions. However,
it does not make it possible to execute the plan from MoveIt in real-time, as the
trajectory is not executed until the last point is received.

If the LBR is commanded to move to its current joint configuration, hence, it
receives a trajectory with no points and velocities, no motion is carried out. In
the lbr_commander node, a listener is implemented, which notifies the lbr_status
node when a trajectory is finished. When no motion is executed, the listener is not
invoked, and the ROS nodes are never notified that the execution of the trajectory
is finished. A simple check could have been performed to compare the received
endpoint configuration to the previous or current joint configuration. If they are
similar, the variable denoting if the execution of a path is finished should be set
to true, such that the logic on the external computer is aware that the robot is in
the commanded position.

6.2.4. Safety

An important focus during the work was to make the system universal. It should
be easy for a user not familiar with the Sunrise software to use the system to
control the robot, and the system should be applicable to any KMR. At the same
time, it was desired that the ROS integration should interact with Sunrise as it
is, without making any changes to the system. Even though, two of the rows in

110 Chapter 6. System Review

the Customer PSM table have been changed, as the adjustments were considered
as necessary.

Manipulator Work Space

The default workspace of the manipulator is defined above the mobile platform,
such that the LBR is not able to collide with the base. In horizontal space, the
manipulator is not allowed to move outside the projection of the base, as this is
an unknown environment. Increasing the workspace entails a risk, and collision
avoidance should be handled. It still had to be done for the manipulator to be
able to pick up objects from work stations. Initially, the lower boundary of the
workspace was set to z=0, corresponding to the surface of the KMP. The boundary
was later adjusted to a negative z-value, such that the manipulator could grasp
objects from levels lower than the KMP. Setting the boundary of the workspace
lower than the base is a risk, as the arm could collide with the base. This entails
that the path planned by MoveIt is fully trusted.

Protective Field

One of the challenges addressed in Section 1.2.1 was how to interact Navigation2
with the built-in safety functionality of the Sunrise system. More specific, the
safety function that triggers an emergency stop if the protective field is violated.
For safety reasons, the velocities have been kept low during the experiments with
the KMP. As listed in Table 3.1 and 3.2, the sizes of the warning and protective
field are approximately similar for low velocities. As a consequence, there is no
time to reduce the velocity of the robot when an object enters the warning field
before the emergency stop is triggered. The planned approach to solve the problem
was to expand the fieldset of the SICK scanners. The fields can be configured
with the SICK Configuration and Diagnostic Software, CDS. By adding an outer
warning field, one could be notified of an object approaching, and the velocity of
the robot could be reduced before the object entered the original warning field.
Three steps are required to configure the fieldsets. First, the new monitored areas
must be defined using the software SICK CDS. The outputs from the scanner
must be configured as inputs to the Programmable Logic Controller, PLC, of the
robot. This must be done with the TIA Portal and STEP 7 Advanced software
provided by Siemens AG. The software can be used to expand the devices and
safety functions of the bus system. The outputs from the PLC can further be
mapped from the PROFINET bus using KUKA WorkVisual. The last step is
required to access the I/O values in Sunrise Workbench. The advanced edition
of TIA Portal requires a license. A request for this was sent in March, but the
license was never obtained.

6.3. ROS 111

The described solution was a main focus of the work until the middle of the
semester. During the spring, the MANULAB was closed over a longer period,
which prevented the original solution to be carried out. Instead, an alternative
solution had to be found that could be researched and implemented outside the
laboratory. The Radio Control Unit, mentioned in Section 3.1, has a button for
muting the protection fields. The functionality could have been useful for turn-
ing off the monitored fields when necessary. This could, for instance, be to drive
away from an obstacle after an emergency stop was triggered or to approach work
stations and narrow passages. However, it was found that I/O mappings, accord-
ing to the previous description, were necessary to be able to implement muting
from a Java program. The final solution was to deactivate the row Protection
Field Status in the Customer PSM table. This row defines the safety functions
related to a violation of the protective field. When disabled, the safety fields are
still monitored, but do not trigger an emergency stop in the controller. The Java
program of the Radio Control Unit uses a scaling factor to adapt the maximum
velocity according to the status of the safety fields. This is similar to the imple-
mented approach, where the maximum velocities of the Navigation2 controller are
dynamically adjusted conforming to the status of the monitored fields.

As for the solution for the LBR, deactivating the safety functionality of Sunrise
entails relying entirely on the obstacle avoidance functionality of Navigation2.
Based on the results achieved with Navigation2, we concluded it was safe a safe
solution.

Safety is one of the cores of the KUKA systems, and it has been a complex
process to work around all of the restrictions. Endless time has been spent to
understand the system and searching for solutions to work with the built-in safety
functionality of the KMR. As time and resources were not enough for the solution
with extended warning fields, a simpler solution had to be chosen.

6.3. ROS

6.3.1. Actions

For the actions utilized to communicate between the behavior tree nodes and the
server nodes, the validations of success and failure could be improved, and the
feedback functionality is used to a small extent. As for moving the manipula-
tor, the action is presumed to be successful when the status field is_lbr_moving
changes from true to false. This is not a proper validation as it does not ensure if
the arm has followed the trajectory and reached the desired pose. Feedback could
have been used to validate the joint states and make sure the manipulator end in
the requested position. This also applies to when the gripper is closing. As of now,

112 Chapter 6. System Review

the action is a success if the gripper is closing around an object. This is verified
by checking if the force sensor detects any resistance between the fingers when the
movement is finished. In scenarios where the orientation of the gripper is slightly
incorrect, one of the gripper fingers tends to be bent over the object. When the
gripper tries to embrace the object, a force is detected from the finger that is not
bent and the closing motion stops. This leads to incorrect object detection, which
is not handled by the behavior tree. Ideally, the check should be continued when
the manipulator starts to move, to make sure the object was properly gripped.
The parallel nodes in the behavior tree could be utilized to perform two actions
at the same time. Another solution could be to define a more significant force
for the closing motion of the gripper. This could force the gripper to continue
closing, such that it becomes aware that is has missed the object. This solution
depends on the fragility of the object to grip, but could be a proper approach in
our case as the object is solid.

6.3.2. Programming Language

Most of the code running on the external computers are written in Python. The
BehaviorTree node and the RunMoveIt node are written in C++, as to the APIs are
written in this language. A system written in multiple languages might be difficult
for others to use if they are not familiar with both languages. The system was
initially created in Python, as this is the language the authors are more familiar
with. A possible idea is to rewrite the system into C++. Further implementations
could then be simplified, as the ROS client library for C++, rclcpp, have a wider
range of implemented functionality, and most example code for ROS2 is written
in C++. In general, C++ is commonly used for performance and hardware-centric
control, while Python is used for productivity [51].

6.4. Sensors and Actuators

6.4.1. Robotiq 25-85 Gripper

The Robotiq 25-85 gripper is part of the available equipment in stock at the
MANULAB. The coupling is not optimal and has disadvantages associated. For
example, it can lead to windings around the manipulator or the cable can get
hooked up.

The Robotiq Universal Controller can be configured as an EtherCAT device. As
the media flange of the LBR has an EtherCAT interface, it would be a more
elegant solution to reconfigure the controller to use EtherCAT instead of Modbus
RTU. This solution would require a cable for connecting to the EtherCAT port on
the media flange. More specific this is a M8 connection with four poles, which was

6.4. Sensors and Actuators 113

not available at the laboratory. There is also an EtherCAT port located at the
base of the robot arm that could have been used to connect the Robotiq controller.
These configurations would still require cables routed along the manipulator to
the Universal Controller, as the gripper itself is not compatible with EtherCAT,
and the controller can not be mounted at the flange.

According to [73], the Robotiq 3F Adaptive Gripper is a good match with the
LBR, as it is compatible with EtherCAT. The best solution would be to apply the
3F gripper by connecting it directly to the media flange. With this option, it would
be possible to pass the cabling through the inside of the LBR. When connecting
the gripper through the EtherCAT interface, the I/O signals can be configured in
KUKA WorkVisual. The configuration requires few steps and is described briefly
in [74]. This would overall lead to a more presentable solution, where the gripper
could be controlled from Sunrise instead of ROS. In addition, it would be included
in the safety restrictions of the robot, such that collisions between the base and the
gripper is prevented. In terms of architecture and control logic, this solution would
make more sense, as the gripper is an extension of the KUKA robot system. The
KUKA RoboticsAPI contains methods for controlling different tools and would
require less code than the current solution. The current implementation is less
generic as it is specific for the 2F-85 gripper with Modbus-RTU, and can not be
used with other types of tools.

6.4.2. Intel Realsense Cameras

The ROS2 wrapper for the Realsense cameras contains bugs that were revealed
during the work. Each of the camera nodes publishes images in the optical frames
of the camera. Further, the nodes publish transformations from the base frame to
the optical frames. The name of the base frame of the camera can be specified as
a parameter to the node, but there is no such functionality for the optical frames.
With three cameras installed on different poses on the robot, this resulted in
images taken from different points of view being published in the same camera
frame.

Another bug was discovered when two new cameras were purchased during the
spring. When a camera node is launched, the serial number must be specified in
the launch description. The Realsense node saves the serial number as an integer,
and as our new cameras have serial numbers starting with ’0’, this is removed
when the number is read. The node is not able to connect to the cameras as the
given serial numbers are incorrect.

The bugs were solved by creating a fork of the original repository and changing
the code. Additional parameters were added to the node to specify the names for
the optical frames. For the serial numbers, the Realsense node and launch file are

114 Chapter 6. System Review

changed to read and provide the serial number as a string instead of an integer.
That way, the ’0’ at the beginning of the serial number remains.

6.5. Remarks
A focus for the whole system has been to make it scalable and flexible. The
communication architecture can easily be extended with more nodes, both on the
ROS and Java side. Within the behavior tree, other behavior nodes can easily be
added as plugins. The already existing nodes are flexible by utilizing ports to get
input and provide output. Different behavior can be achieved by creating different
combinations of the behavior tree nodes. The external sensors and actuators
can be replaced with different types, and a new ROS node with device-specific
implementation must simply implement the ROS action that communicates with
the behavior tree. The object detection model can be replaced by simply changing
a parameter.

Overall, the architecture of the entire system is designed so that it can easily be
adapted to specific needs.

Chapter 7.

SLAM

The ROS2 stacks Cartographer and RTAB-Map have been applied to create 2D
occupancy grid maps by the SLAM approach. Both stacks have options for lidar
and visual odometry, and for different sensor configurations for creating maps. It is
desirable to exploit as much of the available sensor data as possible to fully capture
the environment. The communication nodes related to the KMP are utilized for
retrieving sensor data and moving the robot in the environment. The experimental
environment is described in Section 7.1. Section 7.2 presents the results obtained,
related to estimation of odometry and creation of maps. The results are evaluated
in Section 7.3 and concludes which stack and sensor configurations that provides
better results.

7.1. Experimental Environment
The experiments are performed at the MANULAB at NTNU in Trondheim. The
area can be seen in Figure 7.1.

Robot cells

The robot cells were used for validating the performance of SLAM during the
specialization project, and is used to validate the improvements in the results.
The robot cells are shown in Figure 7.2.

The MANULAB is characterized by separated areas containing many objects
and obstacles, constituting to a complex environment that is complex to map
accurately. On the other hand, this contributes to a feature-rich environment
suitable for VSLAM.

116 Chapter 7. SLAM

Figure 7.1.: The MANULAB at NTNU used for testing of the system.

Figure 7.2.: Robot cells in the MANULAB used for testing during the autumn.

7.2. Results
The maps provided in this section are created based on a single ROS bag of sensor
data to be able to compare the maps correctly. The blue lines in the maps mark
the trajectory of the KMR.

7.2. Results 117

7.2.1. Odometry

Lidar odometry and visual odometry are evaluated by not providing odometry
from the wheel encoders. The KMR followed an approximately straight path.
The trajectory is shown in Figure 7.3, and is based on the odometry from the
wheel encoders. This is referred to as the ground truth when evaluating the
odometry from range sensors.

Figure 7.3.: The trajectory followed by the KMR down the hallway, based on
wheel encoders, referred to as the ground truth. The map is created by RTAB-
Map.

Cartographer

As Cartographer uses point clouds and laser scans as input, visual odometry is not
the correct theoretical term. Even though, as the point clouds are data from the
cameras, we have chosen to separate the odometry into lidar and visual. Figure 7.4
shows the separated results for lidar odometry and visual odometry. Figure 7.5
shows the estimated odometry using both lidar and point cloud data as input.
When using multiple input sources to estimate odometry, they are all given equal
weight.

118 Chapter 7. SLAM

(a) Sensor input: two scans. (b) Sensor input: three point clouds.

Figure 7.4.: Estimated lidar and visual odometry.

Figure 7.5.: Estimated odometry based on scans and point clouds.

RTAB-Map

RTAB-Map has multiple nodes for computing odometry based on sensor data.
Each node uses one type of sensor data, and only one odometry node can be used
at a time. Hence, odometry based on lidar data and camera data is calculated in
two separate experiments, shown in Figure 7.6.

7.2. Results 119

(a) Sensor input: two scans. (b) Sensor input: three RGB-D cam-
eras.

Figure 7.6.: Estimated lidar and visual odometry.

7.2.2. Mapping

The mapping processes have been conducted with different sensor inputs, de-
pending on the sensor configurations available as input. Two results are provided
for each configuration, based on what was considered interesting for compari-
son. Some of the configurations are shown with and without loop closure, while
different parameter settings are shown for others.

Cartographer

The four following sensor configurations were tested when creating maps with
Cartographer:

1. Two 2D scans.

2. Three 3D point clouds.

3. Two 2D scans and three 3D point clouds.

4. Five 2D scans from lasers and cameras, where the images from the cameras
are converted to scans.

Projecting the depth images from the D435 cameras to 2D scans are obtained
by utilizing the ROS package depthimage_to_laserscan [75]. In addition to the
range measurements listed, odometry from the wheel encoders was used in all
configurations.

120 Chapter 7. SLAM

The maps obtained with the different sensor configurations are shown in Figures
7.7 to 7.10.

(a) Without loop closure (b) With loop closure

Figure 7.7.: Maps created with two scans as input. The maximum depth of the
measurements are set to 15 m.

(a) Without loop closure (b) With loop closure

Figure 7.8.: Maps created with three point clouds as input. The maximum depth
of the measurements are set to 4 m.

7.2. Results 121

(a) Without loop closure. (b) Without loop closure and increased
size of submaps.

Figure 7.9.: Maps created with two scans and three point clouds as input. The
maximum depth of the measurements are set to 4 m.

(a) Without loop closure. (b) With loop closure and increased size
of submaps

Figure 7.10.: Maps created with five scans as input, where the depth images
have been converted to scans. The maximum depth of the measurements are set
to 4 m.

122 Chapter 7. SLAM

RTAB-Map

When creating a 2D occupancy grid map with RTAB-Map, the map is created
by using either lidar data or camera data, but not both at the same time. If
using both lidar and camera data, the map will be created from the scan data,
and the camera will only be used for loop closure detection. When using laser
scans as input, it is only possible to subscribe to one topic at a time. To utilize
both of the scanners, the lidar data can be fused into a single point cloud, and
be given as a laser scan point cloud input. This is done by utilizing the ROS
package pointcloud_to_laserscan [76], which also includes a node for the inverse
transformation.

If both laser data and camera data is present, the data utilized in the map can
be controlled by the parameter Grid/FromDepth. By setting it to true, the map
will be created from only the camera data. RTAB-Map provides a multi-session
mapping functionality of which makes it possible to continue on a previously
saved map in another session. That way, the parameter Grid/FromDepth could
be changed between the sessions.

The following sensor configurations were tested:

1. Two 2D scans fused into one point cloud.

2. Three RGB-D images.

3. Three RGB-D images and two 2D scans, used in separate sessions (multi-
session mapping).

4. Two RGB-D images and two scans fused into a single point cloud.

The maps obtained with the different sensor configurations are shown in Fig-
ures 7.11 to 7.14.

7.2. Results 123

(a) Without loop closure (b) With loop closure

Figure 7.11.: Maps created with data from two lidars. The maximum depth of
the measurements are set to 15 m.

(a) Without loop closure (b) With loop closure

Figure 7.12.: Maps created with image data from three cameras. The maximum
depth of the measurements are set to 4 m.

124 Chapter 7. SLAM

(a) First session: cameras. Second ses-
sion: scans

(b) First session: scans. Second session:
cameras

Figure 7.13.: Maps created with multi-session mapping, where camera data and
lidar data are used in separate sessions. The maximum depth of the scans and
images are set to 15 m and 4 m, respectively.

(a) With loop closure. The maximum
depth of the scans and images are set to
15 m and 4 m, respectively.

(b) Without loop closure. The maxi-
mum depth for the measurements is set
to 4 m.

Figure 7.14.: Maps created with data from two cameras and two lidars fused
into a point cloud.

7.2. Results 125

7.2.3. Final Maps

The final maps used for navigation are shown in Figure 7.15, and are both cre-
ated by Cartographer. The maps are created based on the configurations found
throughout the tuning process. Figure 7.15a is created with data from the cam-
eras and the lidars, while Figure 7.15b is created with scans from the SICK lidars
solely. The latter is made to test the behavior of Navigation2 in areas where the
map does not include obstacles above 150 mm.

(a) Sensor input: two scans and three
point clouds.

(b) Sensor input: two scans.

Figure 7.15.: The final maps created by using the Cartographer stack.

7.2.4. Mapping the Robot Cells

This result is included for a comparison with the previous work. A problem faced
in that work was that the gratings around the robot cells were installed above
the scan height of the SICK scanners. The previously created map is shown in
Figure 7.16a. As the area could not be mapped successfully, this was a motivation
for installing RGB-D cameras at the KMP. The gratings are to be lowered to 150

126 Chapter 7. SLAM

mm, but currently, this is only conducted for parts of the laboratory. Figure 7.16b
shows the area mapped by Cartographer based on both scans and point clouds.
Robot cell number one and two in the picture have gratings in height 180 mm
and 150 mm above the ground, respectively.

(a) Created during the specialization
project [3]. The sensor input is two
scans.

(b) Created during the work of this the-
sis. The sensor input is two scans and
three point clouds.

Figure 7.16.: Maps of the robot cells created by Cartographer.

7.3. Discussion
Different SLAM options for ROS2 were researched, which led to Cartographer
and RTAB-Map. The requirements were that the stack needed to support both
lidar and visual SLAM. Both chosen stacks make it possible to use all of the
available sensor data and experiment with different sensor configurations. In
general, few SLAM implementations for ROS2 were found during the research.
Steve Macenski from Samsung Research America is the main developer of several
ROS2 stacks, and according to him, does it not yet exist any satisfying SLAM
implementation for ROS2 [20]. Macenski is currently working on developing the
SLAM Toolbox, which is to be the default SLAM implementation of ROS2 [20]. In
his repository, he states that both Cartographer and RTAB-Map have quirks that
make them unusable for production robotics applications, and that Cartographer
suffer from lack of maintenance [77]. SLAM Toolbox is not compatible with the
desired use, as it is under development and currently only supports one lidar.
This was also the case for another ROS2 library that was considered, namely
LaMa, Alternative Localization and Mapping. The chosen sensor configurations
were considered as the most relevant for each of the stacks. Both Cartographer
and RTAB-Map contain a large number of parameters, which in theory can be

7.3. Discussion 127

tuned for weeks. The obtained results are satisfying for discussing which stack
and sensor configuration that provides the better maps.

7.3.1. Odometry

The lidar odometry, shown in Figure 7.4a and Figure 7.6a, is initially fair es-
timates. At the end of the hallway, both Cartographer and RTAB-Map faced
challenges with the calculations. For Cartographer, this led to a big drift and
poor results. For RTAB-Map the odometry was lost, and the execution was ter-
minated. According to the documentation of RTAB-Map, the lidar odometry may
drift if there are no constraints on the direction of the robot [22]. This typically
occurs in hallways with parallel walls, such as the experimental area. In contrast
to visual odometry, lidar odometry can not recover from being lost when there is
no motion prediction. Considering Figure 7.4a, the motion prediction at the end
of the hallway is not correct compared to the ground truth, which indicates that
the odometry is lost.

The visual odometry, shown in Figure 7.4b and Figure 7.6b, did not suffer from
drift at the end of the corridor. The walls of the hallway are textured, providing
features for the matching process. While calculating the odometry, RTAB-Map
provides information about the quality of the odometry. If the quality is above
100, the environment has enough features [78]. The observed quality during the
experiment was between 200 and 400, which means the environment is good for
visual odometry. A small drift occurred initially for Cartographer, which later
was corrected. RTAB-Map provided a more wavy trajectory, which might have
been caused by a depth estimation error. This error is addressed in the discussion
in Section 7.3.2.

Figure 7.5 shows the trajectory estimated by Cartographer based on both lidar and
visual odometry combined, which provided a reasonable trajectory compared to
the ground truth. A small drift occurs in the same position as the lidar odometry
got lost, which was corrected by the visual odometry.

The trajectory in Figure 7.3 is solely based on the encoders of the wheels, which
is commonly referred to as erroneous. Visual and lidar odometry are applied
to correct the error [79]. The trajectory in Figure 7.3 does, to a great extent,
corresponds to the actual ground truth. In addition, the KMR robot is newly
purchased and the wheels do not suffer from wear. Hence, it is reasonable to
assume that odometry from the encoders is reliable.

128 Chapter 7. SLAM

7.3.2. Mapping

Cartographer

Cartographer contains parameters that can be tuned for configuring the applied
algorithms and processing of the sensor inputs. The parameters related to range
measurements apply for all inputs, and it is not possible to emphasize or process
the different measurements separately.

As the configuration of the measurement depth applies to all of the input sources,
the sensor data was not fully exploited for every case. When using only scans
from the lidars, the range was set to 15 m. The layout of the MANULAB does
not allow for sensor measurements with the original range of the SICK lasers, and
a range of 15 m was specified to avoid uncertainties in the readings. When point
clouds from the cameras were provided, the range for all sensors was set to 4 m.
The maximum range of the cameras, given in Table 3.9, is approximately 10 m.
For this range, the floor segmentation algorithm of Cartographer did not provide
satisfactory results. Maps created with a longer range than 4 m contained areas
of high uncertainty. Floor segmentation is not applied to the laser scans as the
scans are parallel to the ground, and hence, longer ranges could be used. The
depthimage_to_laserscan package used for converting the depth images to scans
does not implement floor segmentation. If converting the whole image to a scan,
the floor is considered as an obstacle. To handle this, the number of pixel rows in
the image used to generate the laser scan was downgraded to crop the images in
vertical direction. The maximum depth for the conversion is set to 4 m to ensure
that the distant floor is not encountered.

Cartographer uses the pose extrapolator for estimating the position, which is
based on a combination of odometry from the range sensors and the wheel en-
coders. Trusting odometry from range measurements led to a more jerky trajec-
tory, while emphasizing the wheel encoders led to a straight path. On the other
hand, weighting the range measurements low, corresponding to big uncertainty in
the measurements, led to an incomplete map. The Ceres scan matcher was tuned
to emphasize the odometry from the wheels as an initial guess more than the S2M
match, according to the results obtained. The local SLAM results, when using
only the SICK scanners, shown in Figure 7.7a, seem to be affected by the drift in
odometry from lidar odometry. Scans contain less information than point clouds,
making it more challenging to match scans than features. According to the doc-
umentation of Cartographer’s lidar-based approach, scan matching accumulates
error over time that needs to be corrected by graph optimization [80]. As seen in
Figure 7.7b, the loop closure enhances the resulting map.

In the experiments conducted with point clouds from the camera, Figure 7.8 and
7.9, Cartographer provides the same results for local SLAM as with loop closure.

7.3. Discussion 129

This is consistent with the results obtained in Section 7.2.1, where the use of
camera data results in a good localization estimate. When using both scans and
point clouds without loop closure, as in Figure 7.9a, significant obstacles only
measured by the point clouds are not included. Increasing the number of range
data per submap provided a more decent result, shown in Figure 7.9b. Separately,
all of the generated submaps should include every obstacle, but a large number
of overlapping submaps with different observations may lead to that perceptions
disappears from the global map. This was also the case when the input was
five scans, shown in Figure 7.10a. In Figure 7.10b, the size of the submaps was
increased and loop closure was applied. This led to a slightly more detailed map,
similar to the improvement shown for the map obtained with two scans and three
point clouds. Drifts are observed for local SLAM, which was successfully corrected
by the loop closure.

RTAB-Map

The most significant tuning has been related to using multiple cameras, and also
using both 2D lidar data and 3D image data. An essential parameter for making
more of the obstacles be projected to the 2D map has been the NoiseFilteringRa-
dius. By disabling this parameter, more obstacles are included as they are not
removed as noise. As for Cartographer, only one depth can be defined for the
range measurements. The same ranges, hence 15 m and 4 m, are used for the
lidar and camera data.

When using two lidar scans, they must first be converted to point clouds, there-
after merged into a single cloud. RTAB-Map has a node called PointCloudAggre-
gator, which is used for merging the point clouds. The result, shown in Figure
7.11, is a fair map, but, as expected, it lacks features above the lidar plane. In-
cluding loop closure creates a few more double walls, indicating that some loops
are wrongly detected.

When using RTAB-Map with camera data, a problem related to depth estimation
was discovered. Additional walls are created as the front camera and cameras
on the sides calculate different depths to the walls. The depth estimated by the
cameras is different when looking down the hallway and when looking directly
at the wall. This could be related to the known computer vision problem of
featureless walls [81, p. 83], but as the walls in the environment have features
and the D435 cameras use an infrared texture pattern to avoid this problem, this
seems unlikely. Our suggestion is that RTAB-Map is struggling with comparing
the features seen by the different cameras as they are seen in entirely different
angles and do not have overlapping fields of view. This is supported by the fact
that the extra walls are later removed when the area is revisited. The additional

130 Chapter 7. SLAM

walls can easily be seen along the lower right wall in Figure 7.12. This area was
only visited once, as the robot moved sideways on the way back and no camera
re-observed the wall. These walls would probably be removed if the area was
revisited. Except for the redundant walls, the maps provide a good recreation
of the environment, and the objects lacking when using only lidars were present.
Loop closure added some errors to the path, but did not affect the overall map.

Multi-session mapping makes it possible to initiate a new map with its own referen-
tial when starting up. When visiting previously explored areas, a transformation
between the maps can are found, and the maps can be merged. This functional-
ity is mostly used to combine multiple smaller maps of big floors with separate
rooms. The functionality was tested to utilize both camera data and lidar data in
the same map, by changing the parameter Grid/FromDepth between the sessions.
This also makes it possible to change other parameters for the camera and lidar
data, like the maximum depth for mapping.

As can be seen in Figure 7.13, the result of the multi-session mapping depends on
the order of sensor configurations. As the sensors observe different surroundings,
it seems like the environment has changed from the last mapping, and the last data
will seem more likely. When using camera data in the second session, more features
are added to the map, while if using lidar data in the second session, previously
added features are removed. The final result is a merge of the maps created by
cameras and lidars separately, where the last mapping session is weighted more.
As previously seen, the loop closure did not improve the results, and hence, only
the maps without loop closure are replicated. It is superfluous to map the whole
area all over as there are only some features the lidars do not include. What
would probably lead to a better result is to first make a map with lidar data, then
do another mapping with the cameras, only focusing on areas with objects that
the lidars did not catch.

Another point of improvement could be to simplify the path. As of now, the map
created by the multi-session mapping includes a path past the same walls up to
eight times. The more times the lidars pass an area that seems empty, the more
confident the mapping becomes that this object is gone. If the lidars only scan
the area once, it is more likely that the object would be left in the map. This was
observed during the mapping, as the objects were not removed before the second
time passing them.

The multi-session functionality gives decent results, but as Cartographer manages
to utilize all the data in one run, it was desired to achieve the same with RTAB-
Map. We considered the possibility of converting the 2D scans into point clouds,
and then fusing them with the three point clouds from the cameras. This could
be provided as a single laser scan point cloud input to RTAB-Map. When using
the pointcloud_to_laserscan package to convert the laser scans, the fields of the

7.3. Discussion 131

cloud is not equal to the fields of the camera point clouds. When using the
PointCloudAggregator it is only possible to merge the clouds if they contain the
same fields, or the same amount of points, where neither criteria are fulfilled here.
To solve this, the laser scan clouds must be manipulated to equal the camera
point clouds. However, the amount of work this requires caused this solution to
be excluded.

Instead, a similar solution as for Cartographer was tested. The depth images of
the cameras are converted to laser scans, by the same package as in Cartographer.
Further, they are transformed back to point clouds as the original laser scans. This
caused the point clouds to be similar, making it possible to merge them into one
scan cloud. The maps created by this scan cloud is shown in Figure 7.14. It is
desired to use 15 m range for lidars and 4 m range for the cameras. With this
configuration, in Figure 7.14a, the lidar scans observe areas further away than the
cameras, and remove obstacles only observed by the cameras. As the robot moves
away from the area, and the object no longer is detected by the cameras with a
shorter range, it seems like the object has disappeared from the scene. The loop
closure also seemed to have trouble with matching data in different heights. This
caused a map where objects were removed and with multiple double walls. When
visualizing the data during the mapping, it was observed that the scans created
from the depth image were more uneven and noisy than the lidar scans. The
data from the cameras are going through multiple transformations, and this likely
affects the data. Therefore, we are not fully satisfied with this configuration. The
map in Figure 7.14b, where all sensors used 4 m range and without loop closure,
was the best result achieved by the use of a scan cloud.

7.3.3. Remarks

A limitation of the results in Section 7.2, is that they are created from only one
bag of data. This enhances the possibility for comparison between the maps, but
noise and errors in the recordings may have affected the results. During tuning of
the algorithms, a large number of experiments were conducted, leading to maps
not included in the results. This also applies to other bags of data. Observations
showed that the results were not always consistent. For instance, local SLAM
with two scans could provide a perfect map in some cases and others not.

In the bag used to produce the maps in Section 7.2.2, the KMR revisited the same
areas multiple times from different points of view. A simpler, non-overlapping
trajectory leads to a less complicated mapping task, which probably could have
resulted in more neat maps. On the other hand, according to the previous dis-
cussions, the maps could, in specific cases, benefit from more measurements.

A challenge with both Cartographer and RTAB-Map was to fuse the input data.

132 Chapter 7. SLAM

When the maximum depth of the scans is set higher than the value for the camera
data, objects only captured by the cameras are removed. This was a pervasive
problem and was often solved by reducing the range of the lidars or increasing
the size of the submaps. The map of the robot cells, in Figure 7.16b, is based on
point clouds and scans. The lidars only detect robot cell number two, and thus,
robot cell number one is reproduced solely on data from the cameras. Thus, the
installation of the 3D cameras was successful in order to map the robot cells.

Another observation made throughout the experiments was that when local SLAM
was decent, loop closure tended to add more errors to the map rather than reduc-
ing them. Visual loop closure detection is not error-free, and very similar places
can trigger invalid loop closure detections [22]. As previously discussed, the odom-
etry from the wheel encoders does not provide significant drift and correction by
global SLAM might not be necessary.

Of the configurations tested for Cartographer, the most successful map is the one
in Figure 7.9b, created by using two lidars and three point clouds. For RTAB-
Map, the better map was the one created by using multi-session mapping with
lidars in the first session and cameras in the second session, shown in Figure 7.13b.
As Cartographer is the more convenient option of the two stacks, it was chosen
for creating the final maps shown in Figure 7.15.

Chapter 8.

Navigation

The Navigation2 stack has been used for navigation of the KMP. The objectives of
this thesis state that the robot should be safe to navigate autonomously. Within
safe navigation, we have chosen to emphasize dynamic replanning, obstacle avoid-
ance, and the ability to adjust to the safety restrictions of the KMR.

The experimental environment is the same as described in Section 7.1, and the
map used is the one in Figure 7.15a. Section 8.1 presents the results from ex-
perimenting with different functionalities. Section 8.2 comprises a discussion of
the tuning of the different algorithms applied in Navigation2, together with an
evaluation of the obtained results.

8.1. Results
The experiments were carried out by providing an initial pose and goal pose in
Rviz, and utilizing the communication architecture to send commands and retrieve
sensor data. For these experiments, the communication nodes related to the KMP
is applied.

8.1.1. Velocities

The first experiment is related to how the KMP follows the velocity from the
controller in Navigation2. Figure 8.1 shows the odometry readings from the wheel
encoders of the KMP in blue, together with the velocities commanded by the
navigation controller in red.

134 Chapter 8. Navigation

(a) Linear velocity in x-direction

(b) Linear velocity in y-direction

8.1. Results 135

(c) Angular velocity

(d) The path followed by the KMP. The red square denotes the end of the path which is
approximately where the path starts.

Figure 8.1.: The velocities retrieved from the wheel encoders of the KMP are
plotted together with the commanded velocities generated by Navigation2. The
path followed by the robot is shown in (d).

136 Chapter 8. Navigation

8.1.2. Dynamic Replanning

An essential feature of Navigation2 is the ability to replan when obstacles appear
in the environment. For this to be possible, the communication must be suffi-
ciently fast, as the controller needs to have enough time from the sensor data is
retrieved to detect obstacles and create a new plan.

Figure 8.2 shows images of the environment during an experiment. The black areas
are the occupied cells from the static occupancy grid map. The global costmap is
composed of a static layer and an inflation layer. The static costmap is shown in
blue color and the inflation layer in purple. The circular robot footprint is shown
with a green circle, together with the also green particle cloud from AMCL. Sensor
measurements of the environment are shown in white color. Around the robot,
there is a local costmap, denoted with more defined blue and purple colors. The
planned path is pink and connects the origin of the robot to a given goal pose.

When Navigation2 retrieves a goal pose, a path is created, and the robot starts
moving. This is shown in Figure 8.2a. In Figure 8.2b, a person has stepped into
the hallway, which can be recognized by a white spot where the sensors detect the
person’s legs and a costmap around the new obstacle. In Figure 8.2c, the global
planner has taken the new obstacle into account and made a new global plan.

The attached video replanning.mp4 shows the robot moving together with a
recording of the Rviz window during the experiment. A box is placed in the
hallway, and as it can be seen from the video, the robot drives around the box to
avoid a collision.

8.1. Results 137

(a) Initial path (b) Obstacle appear

(c) Replanning due to obstacle

Figure 8.2.: Dynamic replanning with Navigation2. The images are screenshots
from Rviz taken during the experiment. When an obstacle appears in the envi-
ronment, a new global plan is dynamically calculated.

138 Chapter 8. Navigation

8.1.3. Dynamic Adjustment of Velocities

The NavigationSupport node is implemented to dynamically change the maximum
velocities coming of the controller based on the status of the warning field. The
experiments are performed by navigating down the hallway, while two objects are
located near the path. Figure 8.3 shows how the velocity commands in x-direction
sent from the controller are affected, based on if the warning field is violated or
not. The blue line represents the boolean value of the warning field status, where
the value 0 corresponds to a violation of the fields.

Figure 8.3.: The velocity commands from Navigation2 is dynamically adjusted
based on whether the warning field is violated or not. A value of 1 denotes that
the warning field is clear, while 0 indicates that an object is nearby.

8.1.4. Voxel Layer with Camera Data

Point clouds can be used as input to generate a 3D obstacle layer in the costmaps
by configuring the local and global planner with a voxel layer. This is useful for
areas with obstacles in such a height that the lidar scanners can not detect them.
Such an area is used in this experiment, and is shown in Figure 8.4. The map
used in the experiments is shown in Figure 7.15b, and is solely created from lidar

8.1. Results 139

scans. The lidars only detect the legs of the desks, and thus, the area in the map
is clear.

Figure 8.4.: Experimental area for testing the voxel layers with obstacles only
detectable by the cameras.

In Figure 8.5a, it can be seen that the cameras detect the desks and denote the
area as occupied. The costmap is affected as shown in Figure 8.5b.

(a) Static map (b) Including costmap

Figure 8.5.: Maps with voxel markers in red denoting where the cameras detect
obstacles.

140 Chapter 8. Navigation

8.2. Discussion
Much of the work comprising Navigation2 has been related to tuning of param-
eters. This process will be addressed in Section 8.2.1. The results presented in
Section 8.1 will then be evaluated in Section 8.2.2.

8.2.1. Tuning

Navigation2 consists of external algorithms, where each has parameters that must
be tuned. The default parameter file in Navigation2 is created for the demo robot
Turtlebot3 and was used as a starting point. However, the Turtlebot3 is a smaller
robot with different preconditions regarding drive type, velocities and footprint
than the KMP.

Important parts of the navigation stack is the localization, performed by AMCL,
planning, performed by Navfn planner, control, performed by DWB, and the
costmaps used for the previous parts listed.

Localization

As a good initial pose of the robot always is provided, the algorithm has shown
sufficient performance. Further tuning of AMCL has therefore not been required.
It was observed during the experiments that if the provided initial pose was a
bit off and the navigation started right away, the chance of hitting an obstacle
increased considerably. AMCL uses some time to localize, making the uncertainty
between the localization, map and observed obstacles high, leading the robot to
drive close to obstacles. To make sure the robot is adequately localized, the robot
should be manually driven a bit back and forth before starting navigation, such
that the robot can be localized in the map. As we use the same starting pose each
time, the exact coordinates are known and the pre-driving is not necessary.

Planning

The Navfn planner assumes a circular robot, which is a disadvantage. The foot-
print of the robot must hence be circular, and big enough to cover the whole
robot. This creates a footprint as in Figure 8.6, which is bigger than the actual
robot.

A global path for the robot is only created if the robot can drive from start to goal
without hitting any obstacles. The circular footprint limits the possibilities for
the robot to drive in narrow places where the robot, in reality, would be able to
drive with the front first. This is also a problem when approaching work stations.

8.2. Discussion 141

Figure 8.6.: As the Navfn planner assumes a circular robot, the circular footprint
of the robot must be big enough to cover the corners of the robot.

The planner assumes the robot is wider than it is, which makes it hard to stop
within a reasonable distance from the work stations.

Compared to the other algorithms used in the navigation stack, the Navfn planner
has few tuneable parameters. This makes it difficult to change the behavior to
fit our needs in a better way. This issue is highly relevant for other users of
Navigation2, and it is planned to implement a better planning approach that
considers the actual footprint and dynamic abilities during 2020 [82].

Control

The DWB local planner has, together with the costmaps, been the priority of the
tuning.

The parameters xy_goal_tolerance and yaw_goal_tolerance define how close to
the requested goal pose the robot must be for the navigation to succeed. The
parameters are set to be 0.2 m and 0.2 radians, respectively. Both values were
lowered from the default values as it is required that the KMP stops in the correct
pose close to the work stations. The manipulator has a range of 820 mm, and
would be able to pick up an object even though the robot is a bit further away.
However, the camera mounted at the manipulator requires a decent angle for the
object detection component to localize the object. Hence, a stricter measurement
is specified for the angle.

Another important parameter is the sim_time. When the DWB algorithm search
for local paths, the possible velocities are simulated to evaluate where the robot

142 Chapter 8. Navigation

would end if this velocity was applied for the given sim_time. This parameter
affects the choice of local paths, and hence, the behavior of the robot. If the value
is low, i.e., 1 second, it is observed that the robot struggles with reaching the
goal when it is close to the right position. It seems like the time is insufficient to
obtain a trajectory that actually reaches the goal. The controller frequency is set
to be 5 Hz, which means the local planner attempts to perform active replanning
in time intervals of 0.2 seconds. When increasing the sim_time, the number of
computations which must be performed in every time interval increases, and will
slow down the controller. Hence, the value should be as low as possible, and at
the same time be high enough for the planner to create continuous paths. We
found that a value of 3 seconds was sufficient for our system.

To detect if the robot makes sufficient progress, the controller continuously checks
if the robot has moved a specific distance within a certain time. The time and
distance are controlled by the parameters movement_time_allowance and re-
quired_movement_radius. As the KMP moves holonomic, it performs mostly
linear movements before finishing off with pure rotational movements to the cor-
rect orientation. When performing only rotations, the movement radius does not
increase. Hence, the navigation would fail if the robot uses more time to rotate to
the goal than the time allowed. The robot will, at maximum, rotate 180 degrees,
or 1.57 radians. When moving at slow speed, the robot has a rotational velocity
of around 0.1 radians, which means it would use about 16 seconds to perform half
a revolution. To make sure the robot does not get stuck when rotating to goal,
the movement time allowance parameter was set to 30 seconds.

The KMP has a higher maximum velocity in x-direction, corresponding to forward
or backward motion. Even though, the maximum velocities for the controller
was set equal for all directions. This makes the local planner not prioritize one
direction over another. We chose to set the maximum velocity in x- and y-direction
to 0.4 m/s, which is about a third of the available x-velocity. Low velocities
decrease the chance of collisions, as it is possible to stop the robot if faults occur
in the system.

The DWB planner choose the local path based on the score given by the different
critics. Tuning the weight of the critics is crucial to control the behavior of
the robot, and the weights are determined through multiple experiments in both
simulation and the real environment The critics are given the following weights,
and an explanation is given in the following paragraphs.

• Twirling: 30.0

• RotateToGoal: 20.0

• PathDist: 20.0

8.2. Discussion 143

• GoalDist: 32.0

• PathAlign: 0.0

• GoalAlign: 0.0

• BaseObstacle: 20.0

• ObstacleFootprint: 0.0

• Oscillation: 0.0

The Twirling critic is significant for holonomic robots. It penalizes rotations and
makes the robot drive linearly as far as possible. Without this critic, the robot
behaves mostly as a non-holonomic robot.

The RotateToGoal critic defines the behavior close to the goal. If decreasing the
weight, all types of motions are accepted near the goal. This causes the robot
to both rotate and drive back and forth in place. By increasing the weight, only
rotations are allowed within a given distance of the goal. This makes the robot
drive to the correct position, and rotate until the desired angle is reached. This
creates more accurate paths and movements.

The critics PathDist, GoalDist, GoalAlign and PathAlign affect the robot in sim-
ilar manners. As long as some of the critics are weighted, the robot follows
the global path approximately and heads for the goal. If none of the critics are
weighted, the robot drives completely off track, and does not seem to try reaching
the goal. Whether to weight the PathDist or GoalDist more, depends on how
much to trust the global path. Experiments show that having a high GoalDist
weight often leads the local planner to cut corners, as it searches for the short-
est path to the goal. The global planner depends on the global costmap, and
hence, as long as the tuning of the global costmap is sufficient, the global path
can be trusted. Therefore, the PathDist is weighted higher than the GoalDist.
Discussions online revealed that the GoalAlign and PathAlign critics might lead
to poor obstacle avoidance [83]. The critics were disabled as no improvements in
the navigation were observed with the critics.

Avoiding obstacles is a high priority, and hence the obstacle critics, BaseObstacle
and ObstacleFootprint, are important. It is desired that the robot rather takes
a detour and avoid obstacles, than taking the fastest way to the goal. Through
experiments, it was found that there are multiple methods to avoid obstacles, but
combining all of them makes the path planning difficult. When using both the
ObstacleFootprint critic and an inflation layer, the possible paths are limited as
the footprint is not allowed to be close to the inflation layer. As the BaseObstacle
critic makes sure the path does not go within the costmaps, and the inflation layer
is tuned to be bigger than the robot, the combination of the BaseObstacle critic

144 Chapter 8. Navigation

and the inflation layer was sufficient for obstacle avoidance. The Oscillation critic
was disabled, as oscillations never occurred as a problem.

Costmaps

All of the available layers, which are the static, obstacle, voxel and inflation layer,
are used for the costmaps. The obstacle layer is configured to use scan data from
both SICK sensors, while the voxel layer uses point cloud data from the cameras
at the mobile base. The sensor inputs are used for both marking obstacles in the
map, as well as clearing them.

Deactivation of the built-in safety functions of the robot entails fully trusting
the controller of Navigation2. The developers of Navigation2 recommend taking
safety precautions when using the stack, as it is under substantial development.
This makes the obstacle avoidance very important, and tuning the inflation layer
enough has been demanding. In this context, the two most essential parameters
are the inflation_radius and the cost_scaling_factor. The inflation radius decides
how far away from the obstacle a zero cost cell should appear, while the cost scaling
factor determines the slope of the cell values. If this parameter is increased, the
cost is decreased. As it is desired that the robot avoids obstacles as much as
possible, the inflation radius should be high. If the radius is too high, tight
areas could be hard to pass through. A high inflation radius should therefore be
combined with a high cost scaling factor. The area used for experiments consists
of narrow areas, which limits the radius of the inflation layer to be 0.9 m. The
cost scaling factor is set to be 10. This values creates the costmap shown in Figure
8.2.

Again, it is a disadvantage that the navigation stack assumes a circular robot.
The circular footprint makes it a requirement that the robot can also pass through
areas sideways or diagonally. This limits the possible paths and makes the tuning
of the inflation layer difficult, as the radius of the inflation layer must be lowered
to allow the robot to pass narrow areas.

Being strict on obstacle avoidance makes it harder to navigate close to work sta-
tions. The inflation layer limits how close to the tables the robot might drive.
As good obstacle avoidance, with a high clearing when passing obstacles, is con-
sidered crucial, we decided to keep the inflation radius higher than desired for
navigating to work stations, and instead find another solution to this problem.

Recovery Behavior

When performing experiments with the real robot, the recovery behavior in Nav-
igation2 was disabled. Information within the Navigation2 repository states that

8.2. Discussion 145

the recovery behavior is under development, and collision avoidance is not inte-
grated. It should therefore only be used during simulations.

8.2.2. Evaluation of Results

Velocities

As can be seen from Figure 8.1, the odometry of the robot follows the commanded
velocity from the Navigation2 controller to a large extent. The odometry is more
noisy than the commanded velocities, which may be related to the frequency of
publishing. The odometry was initially sent from the robot and published to ROS
at a frequency of around 90 Hz. This is unnecessarily fast, and amounts of data
is dropped as Navigation2 can not keep up with the incoming data. To reduce
the amount of unneccesary data transmitted, the frequency was lowered to 20 Hz,
which is the same frequency as for the lidar data. The controller frequency is 5
Hz. Even though, as the path following was sufficient during the experiments,
no further experiments with the goal of increasing the controller frequency were
conducted. As the sensor data is available at a much higher rate, the frequency of
the controller should ideally be higher. This depend on the available CPU, but also
tuneable parameters which require more of the CPU. For example, the number of
velocity samples and the simulation time used by the local planner when searching
for available trajectories will highly affect how fast the local planner will find the
best trajectory. The KMP is a large robot with holonomic drive, and require these
parameters to be higher than for a smaller, differential drive robot.

As discussed in Section 6.2.2, the robot sometimes perform jerky motions. This
can be seen in Figure 8.1, as the graph have spikes going towards zero. Only the
wider spikes correspond to visible chopping in the motion, such as the spike that
occur after 90 seconds, where the odometry remains at zero for a few seconds.

Dynamic Replanning

Figure 8.2 visualizes how the planner is able to perform dynamic replanning. This
is an crucial feature when working in an environment together with other robots
or humans. As can be seen from the video attachment, the replanning happens
almost immediately after the obstacle is detected. During these experiments, the
person appeared about 1.5 m in front of the robot. This gave the controller enough
time to perform a successful replanning, and a shorter distance would probably
also succeed. However, this was not tested due to safety reasons. As the lidar
scanners have a range of about 30 m, insufficient time for replanning should never
occur as a problem.

146 Chapter 8. Navigation

Dynamic Adjustment of Velocities

The NavigationSupport node is implemented to create a similar behavior as the
built-in safety system of the KMR. Figure 8.3 shows how the velocity commands
in the x-direction from the navigation controller coincides with the status of the
warning field. If the warning field is clear, corresponding to the value 1, the ve-
locities are between 0.3 and 0.4 m/s, where 0.4 m/s is defined to be the maximum
allowed velocity. When the warning field is violated, the maximum velocity is
reduced to 0.1 m/s. Towards the end of the plot, the navigation has reached
its target, and the velocities drop regardless of the status of the warning field.
This functionality works as desired and makes it safer to use the robot in a real
environment. It will also be safer for humans to work around the robot, as high
velocities and sudden movements are prevented in the vicinity of humans.

During these experiments, the trigger of safety stops when the protective field
is violated was disabled. If this functionality was active, it would be crucial to
reduce the velocity when moving closer to obstacles to avoid emergency stops.
When the velocity is reduced, so is the size of the protective field, which makes
it possible to move closer to objects. As the safety stops should be enabled in
further work, it is required that this functionality is present.

Voxel Layer with Camera Data

Figure 8.5 shows how including camera data to the navigation improve the costmap,
and hence the planning, within incomplete maps. This is useful in an environment
with tables and objects in different heights, like the MANULAB.

The drawback of adding cameras is the increased amount of data to be processed
and transferred over the network. As described in Section 6.1.2, launching pro-
grams and sending more data heavily affected the response time. When the delay
is high, the navigation is affected as odometry and sensor data is not retrieved fast
enough. As a result, it is not always possible to use three cameras for navigation.
A possible solution is only to use one camera and only provide 3D measurements
for the front of the robot. On the other hand, as the robot moves holonomic, it
can not be assumed that the robot drives in the forward direction, and hence,
using one camera is not a proper solution.

The importance of using 3D data for navigation depends on the map of the en-
vironment. A map could be created by using only lidar scans, and then both
cameras and scans should be used for navigation. This solution would be better
equipped for changes in the environment. If it is not possible to use camera data
for navigation, a more detailed map created with 3D data is required. As the
maps created with both lidar and camera data provide a good representation of

8.2. Discussion 147

the environment, using cameras for navigation is not critical in our system. How-
ever, it is desired to utilize all of the sensors, but this must be evaluated based on
the quality of the network.

8.2.3. Remarks

Overall, using the Navigation2 stack for navigating the KMP has shown to be
a good solution. A demanding challenge was to tune the parameters to avoid
obstacles and, at the same time, be able to get sufficiently close to work stations.
The success ratio was increased by always making the robot turn with the front-
facing the table, as there is less excess space inside the footprint at the front. For
approaching work stations sideways, a solution could be to move the robot closer
to the work station after the navigation has succeeded. This approach could be
automated by always moving sideways for a specified distance to approach the
work stations. If there were an obstacle between the robot and the work station,
the navigation controller would not be able to navigate to the original goal pose
due to the obstacle layer in the costmap. Hence, this is evaluated to be a safe
solution. Another solution could be to exploit the cameras at the base together
with computer vision to find the distance to the work station. This solution would
be more generic as it would be applicable in every environment.

During the work with Navigation2, sudden crashes have occurred for the global
planner and controller. This made navigation impossible and dangerous. When
the controller stops working, the robot keeps moving with the last commanded
velocity without functionality for obstacle avoidance. Much effort was put into
figuring out this problem, which turned out to be a bug in rclcpp, the ROS Client
library for C++. The problem was related to the rcl clock, which was not thread-
safe. Rcl implements the common functionality for the language-specific ROS
Client Libraries. When both the rclcpp clock and rclcpp timerbase access the rcl
clock API without locking, this causes an internal state corruption on concurrent
access in multi-threaded applications. The problem was solved by using a different
branch of rclcpp, where a global mutex gets locked every time the underlying rcl
clock structure is manipulated. This branch is a temporary solution to the bug
for ROS Eloquent, as the problem is fixed for the next ROS release, ROS Foxy.

Chapter 9.

Manipulation

The MoveIt2 stack has been applied to perform motion planning for the LBR.
The experimental setup is presented in Section 9.1. The results are presented in
Section 9.2, and further discussed in Section 9.3.

9.1. Experimental Setup
The KMR was placed in front of a work station made out of stacked cardboard
boxes, as shown in Figure 9.1a.

The experiments were carried out by executing a behavior tree and utilizing the
communication architecture to send commands. Only the communication nodes
related to the LBR are used. The sequence defined in the tree is to plan a path
and move to a goal pose, then move back to the initial pose. The same initial
pose and goal pose were specified in all of the experiments. Figure 9.1b shows the
joint configurations of the start pose, together with the coordinate system used
for the following results. The red axis denotes the x-direction, the green axis is
the y-direction, and the blue axis is the z-direction.

9.2. Results
The experiment described in section 9.1 was performed three times, leading to
MoveIt planning three different paths.

9.2.1. Joint States

Figure 9.2 shows the joint states of the LBR together with the planned joint
states in the trajectory from MoveIt for the three experiments. The joint states

150 Chapter 9. Manipulation

(a) The robot is placed in front of
stacked cardboard boxes. The gripper
middle point and the goal pose is de-
noted by the green and red markers, re-
spectively.

(b) The joint configurations for the start
point during the experiment, together
with the coordinate system used for the
results.

Figure 9.1.: Experimental setup for manipulation.

are shown for joint numbers A1, A5, A6 and A7, where the darker lines correspond
to the actual states. The joint state values are relative to the configuration where
all the joints are zero, which is when the manipulator is fully stretched upwards.

9.2. Results 151

(a) Experiment 1

(b) Experiment 2

152 Chapter 9. Manipulation

(c) Experiment 3

Figure 9.2.: The joint states retrieved from the sensors of the LBR are plotted
together with the trajectory generated by MoveIt for joint number A1, A5, A6
and A7.

9.2.2. Path Planning

Figures 9.3 to 9.5 show the path of the middle point between the gripper’s fingers
for the three experiments. The results are obtained based on the transformation
from the base frame to the center point calculated by the Tf package.

9.2. Results 153

(a) Frame XZ (b) Frame YZ

(c) Frame XY (d) Trajectory in 3D

Figure 9.3.: The position of the end-effector during experiment 1.

154 Chapter 9. Manipulation

(a) Frame XZ (b) Frame YZ

(c) Frame XY (d) Trajectory in 3D

Figure 9.4.: The position of the end-effector during experiment 2.

9.3. Discussion 155

(a) Frame XZ (b) Frame YZ

(c) Frame XY (d) Trajectory in 3D

Figure 9.5.: The position of the end-effector during experiment 3.

9.3. Discussion

9.3.1. Hand Eye Calibration

The goal pose provided to MoveIt is defined in the optical frame of the camera
mounted at the manipulator. A precise transformation between this frame and the
middle point between the gripper fingers is required to create an accurate path.
The hand eye calibration problem is to find the transformation between a sensor
mounted on the robot actuator and the actuator itself. The ROS2 Grasp Library
includes algorithms for conducting the estimation. The tools were applied, but
the resulting transformation was not satisfactory, and the solution was aborted.
The manipulator and gripper models in the URDF model are based on accurate
representations. As we designed the adapter between the two components, the
correct dimensions are known. The transformation between the optical frame
and the base link of the camera is provided by the Realsense node and is also
assumed to be correct. Through experiments, it was found that the transformation

156 Chapter 9. Manipulation

obtained from the URDF model was sufficient, and that hand eye calibration was
not necessary.

9.3.2. Joint States

As can be seen from the three plots in Figure 9.2, the joint states of the LBR
follow the path obtained from MoveIt by varying quality.

In Figure 9.2a, the trajectory followed by the manipulator is, to a great extent,
aligned with the planned trajectory. Common for all the joint states is that they
have a bit steeper slope than the path from MoveIt. As the time of execution is
short, the time difference for completion between the joint states and the path
is less than half a second. As the execution is not happening in real-time, the
difference in time is considered acceptable.

As the LBR moves slightly faster than the planned trajectory, this is assumed
to be due to the approximate positioning performed when Spline motions are
executed. According to the manual, slight path deviations may occur when a tool
is attached to the manipulator [25, p. 370]. Another explanation of the deviation
is that the LBR is not aware of the mounted components. This is a consequence
of the gripper not being integrated into the Sunrise system. Hence, the weight of
the installed components is not taken into consideration by the robot controller.

As can be seen from Figure 9.2b and 9.2c, the manipulator manages to follow the
joint states of the trajectory, but uses a longer time to achieve the same states.
This indicates a lower velocity than the trajectory. A reduction of velocity may
occur for Spline motions with tight corners, due to abrupt change in direction,
or for a major reorientation. During planning, these constraints are taken into
consideration by the robot controller. The LBR moves as fast as it is allowed
within the programmed velocity. The path in experiments 2 and 3 were more
winding than the path in experiment 1. This can be seen from the corresponding
end-effector trajectories in Figures 9.3d, 9.4d and 9.5d. This may have caused the
observed reductions in velocity.

9.3.3. Path Planning

Figures 9.3 to 9.5 show the path of the end-effector from three experiments be-
tween the same two poses. As can be seen, the path between two poses may
be very different for each new planning. The paths are examples of what was
both desired and challenging when using MoveIt for motion planning. The path
achieved in Figure 9.3 is what is desired. The path is almost optimal in terms of
both the length of the path and the time of execution. The end-effector is moved
in an approximately straight line down to the goal pose.

9.3. Discussion 157

Figure 9.4 shows a path where the manipulator makes a big detour before ending
in the correct pose. The subplots for frame XZ and YZ show that the position
is almost similar for the start and end pose in both x- and y-direction. Even
though, the subplot for frame XY shows that the end-effector point has moved a
lot in both directions. OMPL, the default planner applied for MoveIt, is a library
for randomized, non-optimized motion planning algorithms. As the paths are not
optimized, this may lead to long, winding trajectories. This is acceptable for open
surroundings, but may lead to hazard situations if people or obstacles are nearby.

Many planners in OMPL favor the speed of finding a solution over path quality
[84]. The motion planner is configured by plugins, which means trying out another
plugin could be a good option. Currently, no other motion planning libraries are
ported to ROS2, but they will probably be soon. An example of a motion planner
from MoveIt1 which could be used is the Stochastic Trajectory Optimization for
Motion Planning, STOMP, which is optimization-based.

The path in Figure 9.5 reveals another problem. Both subplots for frame XZ
and frame YZ show that the end-effector point goes low in z-direction before it is
raised to the final position. As the manipulator should grasp objects from a work
station, this path causes the gripper to collide with the work station. Another
remark, which can be seen from the subplot of frame YZ, is that the gripper moves
sideways, in y-direction, towards the goal. The orientation of the gripper is such
a way that the gripper pushes the object off the table and away from its original
position. Thus, there is no object to grasp. This problem could have been solved
by setting the goal pose in a given height above the object, then performing a
linear motion down towards the object. The linear motion could be performed
by using a LIN-motion from Sunrise or the Cartesian Path Planner plugin for
MoveIt. The latter is desired as the control should be performed through ROS.

The problem of not avoiding the work station is related to the lack of collision
checking with the environment. As the manipulator was included into the system
during this spring, the focus area has been to make the LBR compatible with
MoveIt. MoveIt does have functionality that was not prioritized to implement,
but which should further be implemented as the systems are compatible. This
includes making a proper representation of the environment for collision checking.
Either point cloud or depth image data from the camera at the manipulator
could be used to update the planning scene dynamically. This would help the
path planning to avoid the work station or other objects around the object to
grasp. Another option is to use octomaps, which are 3D maps, to represent the
environment. The octomaps can be directly used in the collision checking. RTAB-
Map has functionality to create octomaps, and this could be utilized for creating
maps to use with MoveIt.

158 Chapter 9. Manipulation

9.3.4. Remarks

Using MoveIt for path planning gives the desired functionality. As the current
version of MoveIt2 is the first beta version and was launched in February, function-
ality from the first version is lacking. New functionality is continuously ported,
which should be utilized when it is ready. This especially applies to other motion
planners.

Even if collision checking is enabled, there would be a problem if obstacles enter
the area after the path is planned. In MoveIt1, there is support for dynamic path
planning, but this is not yet available for MoveIt2. The only option is to plan a
path, then execute it. A possible solution would be to monitor the area, and if
an obstacle appears, the execution should be stopped, and a new plan should be
created. This can be accomplished by utilizing parallel behavior tree nodes.

MoveIt works with our system, but multiple points of improvement are high-
lighted. These points do not require much effort and can be easily fixed in further
work.

Chapter 10.

Object Detection

This chapter evaluates the developed object detection model for the circular box
shown in Figure 5.7. Section 10.1 presents results obtained for the model. These
are evaluation metrics from the training process and probabilities obtained when
experimenting with the model in the MANULAB. The ROS2 OpenVINO Toolkit
and Object Analytics stack were applied for the experiments, together with the
implemented ObjectDetection node. In Section 10.2, the results are evaluated,
and it is discussed how the model and implementation could have been improved.

10.1. Results

10.1.1. Training

Two common evaluation metrics in machine learning are loss and precision. It is
desirable to have a low loss and a high precision. The metrics were monitored
with TensorBoard during the training process. Figure 10.1 and 10.2 shows the
evolution of the loss and precision through the training process.

(a) Step 14,000 (b) Step 30,000

Figure 10.1.: Evolution of total loss during the training of the model.

160 Chapter 10. Object Detection

(a) Step 14,000 (b) Step 30,000

Figure 10.2.: Evolution of precision during the training of the model.

10.1.2. Experiments

Figure 10.3.: Probabilities for 2D detection and 3D localization of the circular
box during experiments with the model. The blue dots correspond to correctly
recognized objects, while red dots represent incorrect classifications.

The same physical setup, as described in Section 9.1, is applied. The experiments
are conducted by moving the manipulator between the defined search areas while
searching. The poses of the detected objects are saved, and when the manipulator

10.2. Discussion 161

arrives in the correct position, the pose of the last detected object is outputted.
The probabilities for detected objects are shown in Figure 10.3. The blue dots
correspond to correctly recognized objects, while red dots represent objects that
are wrongly identified. A threshold of 50 % is specified for 2D detection. Hence,
all of the probabilities are above this value.

The average probability for correctly detected objects is 73.8% for 2D detection
and 75.5% for 3D localization. For the incorrect classifications, the average prob-
abilities are 63.3% and 73.0%, respectively.

10.2. Discussion

10.2.1. Training

It is advisable to let the model reach a total loss value of at least 2, ideally 1 and
lower, to achieve fair detection results [68]. In Figure 10.1, the loss reaches the
value of 8. Hence, the model is not optimal, and a better model could have been
obtained. As can be seen from the evolution, the graph stops decreasing around
14,000 steps and flattens. The training was stopped at step 30,661 as the total loss
was not expected to decrease any further. As the evolution of the metrics flattened
out, adding more steps to the training process would probably not improve the
model. Considering the oscillating graph in Figure 10.2b, it can be seen that the
model had reached its maximum precision value of 0.42 when the training was
ended. The oscillations might indicate that the model is overfitted. However,
experiments have shown that this does not seem to be the case. Other black
objects were often classified as a circular box, independently of its shape. The
training set mostly included images of the box but should have included similar
objects for the model to be able to distinct the circular box. It is assumed that
the quality of the data set is a possible source of error for the model. The images
in the data set contain the object of interest in scenes with different lighting,
background and scale. Still, the images were taken as snapshots from only seven
different videos. To obtain a better model, more videos could have been used to
provide more variation to the images. Better performance and quicker deployment
could probably be achieved by applying a trained model from the Open Model
Zoo. However, it was desired to develop a custom object detection model, and
this was not considered an option. The detection system is thought to be a proof
of concept and was deemed to be acceptable for the desired use.

10.2.2. Experiments

The probabilities visualized in Figure 10.3 supports the fact that the model is
sufficient. It is observed that the probabilities for 2D detection and 3D localiza-

162 Chapter 10. Object Detection

tion, to a great extent, correlate, which is expected. Even though, it was observed
throughout the experiments that the model at times predicted wrong elements to
be a circular box. The model rather recognized an object in the image, either
incorrect or correct, than not detecting anything.

Another finding from the experiments was that the localization sometimes failed,
even though the object was detected correctly. The bounding box output from
the object detection algorithm was estimated too large. This caused a shift in
the calculated center point, and the gripper did not approach the middle of the
box. This was observed to occur when a shadow behind the box was included
in the bounding box. The model was trained with images taken from different
points of view, and from some angles, the box may seem oval due to the vanishing
point phenomenon. When a shadow occurs behind a dark object, it looks like an
extension of the object, and it may appear similar to as if the box were seen from
a distance.

In the implemented ObjectDetection node, only the position of the center point
for the 3D bounding box is calculated. Initially, the orientation was not set,
corresponding to a pose aligned with the camera optical frame. This turned out
to be incorrect as the trajectory for the manipulator is planned with respect to
the frame of the center point of the gripper. A simple approach was to correct
the orientation based on experimental findings manually. However, what should
have been done was to calculate the orientation of the bounding box, based on its
normals and boundaries.

It was desired to perform object detection only when the manipulator was in one
of the search positions to reduce the processing of data. This could be performed
by utilizing the pipeline service included in the OpenVINO Toolkit. The 2D
detection outputs the objects found in the image frame in every message published.
In contrast, the 3D localization only outputs the first occurrence of a bounding
box. However, if the frame or the object is moving, each new bounding box is
published. Because of this, it was not possible to start the object detection when
the manipulator was in the search position and hence, not moving. An efficient
solution would have been to start running the pipeline when the manipulator
starts moving towards the search position. This could have been realized with
parallel behavior tree nodes. As this behavior was discovered during the last
period of experiments, a more straightforward solution was chosen. As of now,
the detection pipeline is always running. The ObjectDetection node subscribes
to the localization topic and saves the last observed instance of a 3D bounding
box. If the object search is triggered, and the probability of the localization is
sufficient, the pose of the previous occurrence is returned. As expected, this led
to incorrect poses in scenarios where the last localization of the object was saved
when the manipulator was far away from the search position.

Chapter 11.

Mobile Navigation and
Manipulation

In this chapter, the components previously presented are composed to a compre-
hensive system. The composed robot system consists of the KMR, together with
the additional cameras and gripper. The developed system implements function-
ality for the robot to perform a basic fetch and carry scenario. The experimental
setup is presented in Section 11.1. Section 11.2 presents the results of the exper-
iments and Section 11.3 evaluates the performance of the composed system.

11.1. Experimental Setup
The system was tested through two experiments. In the first experiment, the full
system was launched. This includes the system described in the system description
in addition to the addressed ROS stacks. In the second experiment, components
related to navigation and KMP were omitted.

Figure 11.1 illustrates the experimental setup. Two workstations are set up by
cardboard boxes with objects to be grasped and carried.

The behavior tree was executed to carry out the logic for the experiments, which
can be simplified by the following sequence:

1. Navigate to goal

2. Move the arm to the defined search areas

3. Search for object

4. Move to object

5. Grasp object

164 Chapter 11. Mobile Navigation and Manipulation

6. Put the object in a carry area

7. Move the arm to the drive position

The listed sequence further includes subtasks and failure handling, as described
in the system description. In the first experiment, two work stations were defined
as goal poses, which means the total sequence was carried out two times. When
the goal pose list is empty, the robot should move back to the start position. For
the second experiment, task number 2 to 7 were carried out three times while the
KMP was stationary at the first work station.

(a) Setup used in the video composed1 (b) Setup used in the video composed2

Figure 11.1.: The experimental setup with defined work stations in the labo-
ratory. The yellow boxes represent work stations, while the enumerated arrows
defines the goal poses for the experiment.

11.2. Results
Three videos are provided as documentation of the experiments. They can be
found in the digital attachments. The videos composed1.mov and composed2.mov
show the first experiment with the setups in Figure 11.1a and 11.1b, respectively,
while the video manipulation.mov shows the second experiment without naviga-
tion.

11.2.1. Video: composed1
The video shows that the robot drives between the two work stations and back to
the initial position. The robot is not able to localize the object in the first work

11.3. Discussion 165

station and moves on to the second. In the second work station, the object is rec-
ognized, but wrongly localized. This is a consequence of that the last occurrence
of the object is stored simultaneously as the robot arm is moving. The robot tries
to grasp the faulty localized object. However, as the gripper detects no object,
the manipulator is moved back to the drive position, and the robot drives back
to the initial position.

11.2.2. Video: composed2
The video shows that the robot drives between the two work stations and back to
the initial position. In the first work station, the robot successfully localizes and
grasp the object. In the second work station, the object is not recognized in the
first search area, and the manipulator is moved to the second. When starting to
move, the object is localized with respect to the first search area, and the pose is
stored. When the manipulator reaches the second search area, a grasping motion
is executed to the already stored pose as no other object was detected in this
search position. The robot tries to grasp the faulty localized object, but no object
is detected by the gripper, and the manipulator moves to the drive position. The
video was ended while the robot navigated towards the initial position.

11.2.3. Video: manipulation
The video shows the KMR in front of the first work station, where two objects
are located. The robot makes three attempts to pick up the two objects. The first
attempt is successful, and the object is picked up and placed in the first carry
area on the platform. In the second attempt, the position retrieved of the object
is slightly incorrect, leading to that the gripper fails to grasp the object. As the
gripper detects no object, the robot moves the arm back to the drive position.
In the third attempt, the second object is successfully located and grasped. The
object is then placed in the second carry area, as the first area is denoted as
occupied in the blackboard of the behavior tree.

Note: The power inverter used to supply power to the onboard computer did not
work on the day the experiments were conducted. Due to this, an extension cord
was used instead.

11.3. Discussion
The behavior tree simplifies the process of linking components of the system to-
gether, creating a logical structure for sequences of tasks and failure handling. By
defining different trees based on the implemented tree nodes, experiments for a

166 Chapter 11. Mobile Navigation and Manipulation

variety of scenarios can quickly be executed. This has been useful for testing and
validation of the system, such as for the experiments conducted for the composed
system in Section 11.2.

When developing software, an effective approach is to decompose the system and
test each component individually. Hence, a prioritization was to ensure that the
components of the system work as desired separately. As it has emerged through
the results for each part of the system, this was a successful approach, as each
component alone provides satisfactory results. The limited time in the laboratory
affected the time available for testing the system as a whole. During the experi-
ments conducted for the composed system, it was revealed that additional refine-
ments should have been performed for executing the components sequentially. The
points of improvement are minimal and are, to a large extent, concerned with the
object localization part of the system. This is reflected in the videos composed1
and composed2, where the navigation between the work stations is impeccable,
but the localization of the object somehow fails. From the evaluation metrics
of the object detection model, it was assumed poor performance of the model.
This assumption was proven wrong by the result presented in video manipulation,
where the robot is able to localize the object in 3 out of 3 attempts. The only error
that occurs is due to the estimated position being slightly to the left of the center
of the object. As discussed in Section 10.2, this might be due to the shadow of the
object. Several attempts were conducted to carry out the fetch and carry scenario
for the composed system, but the localization tended to fail. A common error was
that the object was detected before the manipulator reached the search position,
or that a similar object was detected in the background. This is, to a large extent,
due to the implemented solution, which searches for objects simultaneously as the
manipulator is moving. On the other hand, the same fault did not occur when
the KMP was standing still. It is suspected that this is caused by latency in the
network when several complex programs are executed at the same time and large
amounts of data are transmitted. If the camera data input to the localization
algorithm is delayed, this will lead to incorrect localization with respect to the
pose of the moving manipulator.

Since the various components of the system might fail on their individual tasks,
it is important to have a decision mechanism that performs fault handling in a
proper manner, which the behavior trees manage. The failure handling of the
behavior tree works as desired for the scenarios shown in the recordings. If the
robot is not able to localize the box or pick it up, it simply moves on to its next
task.

A further focus would have been to make the system work together and trou-
bleshooting why the object detection component fails in the composed system.
Overall, we are satisfied with the resulting system, considering the short time

11.3. Discussion 167

available for testing.

Part III.

Conclusion

Chapter 12.

Conclusion

12.1. Further Work
The content presented as further work is divided into three categories: require-
ments, suggestions and going further. Requirements include adjustments which
must be performed for further development of the system, while the second cat-
egory present suggestions for improving the performance. The latter category
describes interesting options for further potential of the system.

12.1.1. Requirements

A challenge has been to interact Navigation2 with the safety restrictions for the
monitored fields of the KMP. Due to the missing license and the restricted time
in the laboratory, the final solution was to deactivate the emergency stop trigger
for the protective fields. This is not a recommended solution and requires to be
further investigated. A solution was proposed on how the monitored fields of
the SICK laser scanners can be expanded. This way, one can react to observed
obstacles before they enter the protective field, and the velocity can be reduced. In
addition, the muting functionality will most likely be necessary to approach work
stations and drive through narrow passages. The implemented NavigationSupport
node makes it possible to dynamically adjust the velocities according to the status
of the monitored field, such that interacting with the safety functionality should
be an affordable process.

During the work, problems occurred when using the ROS Eloquent installation of
Navigation2. This was due to the ROS C++ client library for ROS Eloquent. The
necessary changes are fixed for the next ROS distribution, Foxy Fitzroy, which
was released 5th of June 2020. The Foxy distribution also includes important
upgrades for the Navigation2 stack. The distribution only provides support for

172 Chapter 12. Conclusion

Ubuntu 20.04, which require that the operating systems of the external computers
are upgraded.

As seen in the results for the composed system, refinements are required for the to-
tal system to work perfectly. This concerns improving the object detection model,
the orientation for the detection and changing the logic relative to when searches
are triggered. When this is conducted, further testing should be performed.

12.1.2. Suggestions

Currently, the two operating systems communicate utilizing TCP. UDP is the
preferable option for real-time applications, and it is suggested to switch protocol
eventually. Support for UDP is already implemented, and changing protocol only
requires specific parameters to be changed.

During the time at the laboratory, there have been problems related to the net-
work. If this problem persists, we recommend investigating this further. Proposed
measures are to test whether improvements are observed with a UDP connection,
investigate if there may be elements in the laboratory that interfere with the
network and test with a different router.

The Java implementation has potential for improvement in the form of making the
code more efficient and reduce processing. This includes utilizing more concepts
from Java and RoboticsAPI, such as events, listeners and background applications.
This may avoid the FDI connection from disconnecting in addition to a more
continuous motion for the KMP.

Currently, the synchronization of clocks between the different computers of the
system is not handled. The current solution is to overwrite the timestamps of the
data received from Sunrise. The timestamps are set by the current time on the
external computer before published to ROS. According to Thomas Rühr, this is
a sufficient solution [1]. Alternatively, he suggests that the remote PC and the
Navigation PC, outputting sensor data, can be synchronized with external NTP.

The Robotiq controller is currently configured for Modbus-RTU, but can be re-
configured to support EtherCAT. If this is done, the interface on the media flange
can be utilized for integrating the mounted gripper to the Sunrise system. This
would lead to a more elegant solution, instead of the controller being connected
to the onboard computer as of today. As the 2F-85 gripper does not support
EtherCAT directly, this solution would still require cables along the manipulator.
The optimal solution would be to exchange the 2F-85 gripper with a tool that
supports one of the interfaces at the media flange, such that unnecessary coupling
is avoided. This enables integration with the Sunrise system, such that the weight
of the tool can be considered during planning.

12.2. Concluding Remarks 173

Regarding path planning for the manipulator, performed by MoveIt, multiple
points of improvement were discussed in Section 9.3. The most important points
are to test other planners, to avoid long, winding trajectories and include sensor
data, and possibly an octomap, to enable collision checking with the environment.

12.1.3. Going Further

To fulfill the requirements for Industry 4.0 in an environment consisting of different
types of robots and machines, information should be shared among the devices.
An interesting use case for the industry is in a facility with several work stations
where components are to be transferred for processing. The KMR needs to have
insight to the processes carried out at the different stations, and commands should
be given hereafter. Further, the mobile robot can be utilized to transport finished
components to other robot cells and to assist processes.

The LBR, with its high precision and positioning, can perform exact machining
and assembly tasks. Other tools than the gripper applied in our work can easily
be mounted and integrated to expand the applications of the manipulator. An
interesting scenario would be to cooperate with other robots in the laboratory. In
this case, perception would be crucial for the robots not to collide and to carry
out operations on specific components.

Two KMRs are present at the MANULAB. The system can be applied to operate
both of the robots simultaneously. The implementation can be reused for the
other robot, but functionality must be added for the two robots to interact with
each other. If a component is ready to be transported from a work station, the
closest of the two robots should be the one to carry out the task. Components
that are larger than the maximum allowed load for an individual robot can be
transported by distributing the weight onto both platforms. The two robots may
also be programmed to cooperate on tasks that require two manipulators, such as
assembling or lifting.

12.2. Concluding Remarks
The main objective of this thesis is to enable autonomous operation of the KMR
iiwa in the MANULAB. The developed system utilizes the mobile base, the manip-
ulator, the integrated sensors of the KMR, and the external sensors and actuators.
An underlying objective for the work is to make the system applicable in the en-
vironment and with the tools available at the MANULAB. This involved testing
different configurations and adapting the system to the resources.

A new architecture for the communication between the KMR and ROS2 was suc-

174 Chapter 12. Conclusion

cessfully created, which satisfies the requirements of being more scalable, flexible
and fault tolerant. The communication architecture has been verified through ex-
periments with the various components of the system. An experimental platform
has been proposed, with the necessary connections between the devices.

The addition of cameras to the mobile base was successful, both related to per-
forming SLAM and improving the navigation. The final map, created with both
laser scanners and cameras, includes all of the features in the environment and
enables safer navigation in the environment.

Efforts have been made to improve the performance of Navigation2 when applied
with the KMP. The main areas of focus have been to achieve smooth movements,
dynamic replanning, obstacle avoidance and adapting the controller to the safety
restrictions of the KMR. From previously just being compatible with the robot,
the robot may now be navigated safely in a real environment.

To accomplish the objectives for manipulation, the communication architecture
has been expanded, and control of the LBR has been enabled through compatibil-
ity with MoveIt2. Spline motions were found to be the best solution for accurate
execution of the planned trajectories. Functionality for object localization and us-
ing a gripper is implemented, which makes it possible to pick up specific objects
using the manipulator.

The use of behavior trees enabled components to be linked together. From exper-
iments, it has been shown that the implemented behavior trees handle errors in a
satisfactory manner when the individual parts of the system fail.

When executing a complete fetch and carry scenario between different work sta-
tions, the system did not perform as good as desired. The failure is, to a large
extent, concerned with the object localization component. Referring to the at-
tached movies for the scenario including navigation, the object was localized and
correctly picked up in one out of four trials. Without navigation, the object
was correctly localized three out of three times, and correctly picked up two out
of three times. As the other parts of the system work as expected, the object
detection component should be further developed.

Due to the Covid-19 situation, the MANULAB was closed for eight weeks, and
after reopening, the access was restricted. The limited time in the laboratory
influenced the time spent on testing the system as a whole, as it was prioritized
to ensure that the components of the system work separately. The circumstances
also affected priorities that were made along the way, as we depended on solu-
tions that could be simulated and implemented without access to the robot. The
system touches a wide specter of disciplines. It has been prioritized to create
a comprehensive system, and specific parts of the system have been emphasized
more. This applies to SLAM and navigation, as using the KMR safely was con-

12.2. Concluding Remarks 175

sidered as crucial. The system has points of improvement, which are highlighted
as further work. These are consequences of conscious choices made during the
work or have emerged through experiments.

A comprehensive system has been achieved that can navigate autonomously around
the environment and perform basic fetch and carry operations. It creates a foun-
dation for being able to perform other interesting experiments with the KMR
iiwa. The paper published by the authors emphasizes that this is a system with
high relevance and potential. This is also supported by the enthusiasm of KUKA
senior developer Thomas Ruhr after being introduced to our work. The final
implemented solution has the desired functionality and performs acceptably.

Bibliography

[1] Thomas Rühr.Mobile Manipulation with the KUKA KMR iiwa & ROS. Dec.
2019. url: https://static1.squarespace.com/static/51df34b1e4b08840dcfd2841/
t/5e21b72ff52b107943e83dcf/1579267895764/03_Thomas_Ruehr_KUKA_
ROS_I_2019_release_big.pdf (visited on 05/31/2020).

[2] Ricardo Tellez.What is ROS? Sept. 2019. url: https://www.theconstructsim.
com/what-is-ros/ (visited on 06/09/2020).

[3] Charlotte Heggem and Nina Marie Wahl. Configuration and Control of KMR
iiwa with ROS2. Dec. 2019.

[4] NTNU. SIMS 2020 - 3rd International Symposium on Small-scale Intelligent
Manufacturing Systems. 2020. url: https://www.ntnu.edu/ieee-sims-
2020/ (visited on 06/01/2020).

[5] Andreas Dömel, Simon Kriegel, Michael Kaßecker, Manuel Brucker, Tim Bo-
denmüller, and Michael Suppa. Toward fully autonomous mobile manipula-
tion for industrial environments. July 2017. doi: 10.1177/1729881417718588.
(Visited on 05/16/2020).

[6] Salvatore Virga and Marco Esposito. IFL-CAMP/iiwa_stack. Apr. 2020.
url: https://github.com/IFL-CAMP/iiwa_stack (visited on 04/28/2020).

[7] Salvo Virga. Do we have any plans to transplant iiwa to ROS2? · Is-
sue #201 · IFL-CAMP/iiwa_stack. GitHub. Mar. 2019. url: https://
github.com/IFL-CAMP/iiwa_stack/issues/201 (visited on 05/16/2020).

[8] Thomas Rühr. KMR iiwa and ROS. E-mail. Feb. 2020.
[9] Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in

Computer Science. London: Springer London, 2011. isbn: 978-1-84882-934-3
978-1-84882-935-0. doi: 10.1007/978-1-84882-935-0. url: http://link.
springer.com/10.1007/978-1-84882-935-0 (visited on 03/26/2020).

[10] Richard Hartley and Andrew Zisserman.Multiple view geometry in computer
vision. 2nd ed. Cambridge, UK ; New York: Cambridge University Press,
2003. isbn: 978-0-521-54051-3.

[11] OpenCV. Camera Calibration. 2020. url: https://docs.opencv.org/
master/dc/dbb/tutorial_py_calibration.html (visited on 06/01/2020).

https://static1.squarespace.com/static/51df34b1e4b08840dcfd2841/t/5e21b72ff52b107943e83dcf/1579267895764/03_Thomas_Ruehr_KUKA_ROS_I_2019_release_big.pdf
https://static1.squarespace.com/static/51df34b1e4b08840dcfd2841/t/5e21b72ff52b107943e83dcf/1579267895764/03_Thomas_Ruehr_KUKA_ROS_I_2019_release_big.pdf
https://static1.squarespace.com/static/51df34b1e4b08840dcfd2841/t/5e21b72ff52b107943e83dcf/1579267895764/03_Thomas_Ruehr_KUKA_ROS_I_2019_release_big.pdf
https://www.theconstructsim.com/what-is-ros/
https://www.theconstructsim.com/what-is-ros/
https://www.ntnu.edu/ieee-sims-2020/
https://www.ntnu.edu/ieee-sims-2020/
https://doi.org/10.1177/1729881417718588
https://github.com/IFL-CAMP/iiwa_stack
https://github.com/IFL-CAMP/iiwa_stack/issues/201
https://github.com/IFL-CAMP/iiwa_stack/issues/201
https://doi.org/10.1007/978-1-84882-935-0
http://link.springer.com/10.1007/978-1-84882-935-0
http://link.springer.com/10.1007/978-1-84882-935-0
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html

178 Bibliography

[12] Noah Snavely. Lecture 23: Structure from motion and multi-view stereo.
2015. url: https://slideplayer.com/slide/4952501/.

[13] C. Harris and M. Stephens. “A Combined Corner and Edge Detector”.
In: Procedings of the Alvey Vision Conference 1988. Alvey Vision Confer-
ence 1988. Manchester: Alvey Vision Club, 1988. doi: 10.5244/C.2.23.
url: http://www.bmva.org/bmvc/1988/avc-88-023.html (visited on
05/16/2020).

[14] Himanshu Vaghela, Manan Oza, and Sudhir Bagul. Morphological Retina
Keypoint Descriptor. Jan. 2019. url: http://arxiv.org/abs/1901.08213
(visited on 06/01/2020).

[15] Mehmet Hacibeyoglu. (PDF) Human Gender Prediction on Facial Mobil
Images using Convolutional Neural Networks. 2018. url: https://www.
researchgate.net/publication/328405250_Human_Gender_Prediction_
on_Facial_Mobil_Images_using_Convolutional_Neural_Networks/
figures?lo=1 (visited on 06/08/2020).

[16] Alexander J B Trevor, Suat Gedikli, Radu B Rusu, and Henrik I Christensen.
Efficient Organized Point Cloud Segmentation with Connected Components.
2013. url: https://cs.gmu.edu/~kosecka/ICRA2013/spme13_trevor.
pdf.

[17] Carol Fairchild and Dr Thomas L. Harman. ROS Robotics By Example:
Learning to control wheeled, limbed, and flying robots using ROS Kinetic
Kame. Packt Publishing Ltd, Nov. 2017. isbn: 978-1-78847-472-6.

[18] Cyrill Stachniss. Introduction to Robot Mapping. 2012. url: http://ais.
informatik.uni-freiburg.de/teaching/ws12/mapping/pdf/slam01-
intro-4.pdf.

[19] Doaa M. A. Latif, Mohammed A. Megeed Salem, H. Ramadan, and Mo-
hamed I. Roushdy. 3D Graph-based Vision-SLAM Registration and Opti-
mization. 2014. url: http://www.naun.org/main/NAUN/circuitssystemssignal/
2014/a162005-171.pdf (visited on 04/24/2020).

[20] Steve Macenski. ROSCon 2019 Macau: On Use of SLAM Toolbox. Dec. 2019.
url: https://vimeo.com/378682207 (visited on 04/24/2020).

[21] Trym Vegard Haavardsholm. A handbook in Visual SLAM. Sept. 24, 2019.
[22] Mathieu Labbé and François Michaud. RTAB-Map as an open-source lidar

and visual simultaneous localization and mapping library for large-scale and
long-term online operation. Mar. 2019. doi: 10.1002/rob.21831. (Visited
on 05/09/2020).

[23] KUKA Deutschland GmbH. Mobile Robots KMR iiwa omniMove Mobile
Industrial Robot System Assembly and Operating Instructions. Vol. PB9761.
2019. url: xpert.kuka.com.

https://slideplayer.com/slide/4952501/
https://doi.org/10.5244/C.2.23
http://www.bmva.org/bmvc/1988/avc-88-023.html
http://arxiv.org/abs/1901.08213
https://www.researchgate.net/publication/328405250_Human_Gender_Prediction_on_Facial_Mobil_Images_using_Convolutional_Neural_Networks/figures?lo=1
https://www.researchgate.net/publication/328405250_Human_Gender_Prediction_on_Facial_Mobil_Images_using_Convolutional_Neural_Networks/figures?lo=1
https://www.researchgate.net/publication/328405250_Human_Gender_Prediction_on_Facial_Mobil_Images_using_Convolutional_Neural_Networks/figures?lo=1
https://www.researchgate.net/publication/328405250_Human_Gender_Prediction_on_Facial_Mobil_Images_using_Convolutional_Neural_Networks/figures?lo=1
https://cs.gmu.edu/~kosecka/ICRA2013/spme13_trevor.pdf
https://cs.gmu.edu/~kosecka/ICRA2013/spme13_trevor.pdf
http://ais.informatik.uni-freiburg.de/teaching/ws12/mapping/pdf/slam01-intro-4.pdf
http://ais.informatik.uni-freiburg.de/teaching/ws12/mapping/pdf/slam01-intro-4.pdf
http://ais.informatik.uni-freiburg.de/teaching/ws12/mapping/pdf/slam01-intro-4.pdf
http://www.naun.org/main/NAUN/circuitssystemssignal/2014/a162005-171.pdf
http://www.naun.org/main/NAUN/circuitssystemssignal/2014/a162005-171.pdf
https://vimeo.com/378682207
https://doi.org/10.1002/rob.21831
xpert.kuka.com

Bibliography 179

[24] KUKA AG. KMR iiwa - Mobile robot by KUKA AG | DirectIndustry. 2016.
url: https : / / www . directindustry . com / prod / kuka - ag / product -
17587-1714901.html (visited on 06/09/2020).

[25] KUKADeutschland GmbH. System Software KUKA Sunrise.OS 1.16 KUKA
Sunrise.Workbench 1.16 Operating and Programming Instructions for Sys-
tem Integrators. Vol. PB10796. Dec. 2019. url: xpert.kuka.com.

[26] Andreas Angerer, Alwin Hoffmann, Andreas Schierl, Michael Vistein, and
Wolfgang Reif. The Robotics API: An object-oriented framework for model-
ing industrial robotics applications. Taipei, Oct. 2010. doi: 10.1109/IROS.
2010.5649098. (Visited on 05/31/2020).

[27] SICK AG. Safety laser scanners | S300 Standard SICK. 2019. url: https://
www.sick.com/ag/en/opto-electronic-protective-devices/safety-
laser-scanners/s300-standard/c/g187239 (visited on 06/08/2020).

[28] SICK AG. Operating Instructions S300 Safety Laser Scanner SICK Sensor
Intelligence. Vol. 8010948/YY96/2016-02-17. Feb. 2016. url: https://cdn.
sick . com / media / docs / 3 / 13 / 613 / Operating _ instructions _ S300 _
Safety_laser_scanner_en_IM0017613.PDF.

[29] KUKA Roboter GmbH. Mobile Robots KMP 200 omniMove Transport Ve-
hicle Operating Instructions. Vol. PB9761. 2017. url: xpert.kuka.com.

[30] KUKADeutschland GmbH.KUKA Software Option KUKA Sunrise.Mobility
1.11 For KUKA Sunrise.OS 1.16 For KUKA Sunrise.Workbench 1.16. Vol. PB13250.
Aug. 2019. url: xpert.kuka.com.

[31] KUKADeutschland GmbH. System Software KUKA.NavigationSolution 1.14
Operating and Programming Instructions for System Integrators. Vol. PB13076.
June 2019. url: xpert.kuka.com.

[32] Wikipedia. PROFINET. Wikipedia. 2005. url: https://en.wikipedia.
org/wiki/PROFINET (visited on 11/02/2019).

[33] KUKA Deutschland GmbH. Robots LBR iiwa LBR iiwa 7 R800, LBR iiwa
14 R820 Specification. Vol. PB2535. KUKA, May 2019. url: xpert.kuka.
com.

[34] robots.ieee.org/. LBR iiwa - ROBOTS: Your Guide to the World of Robotics.
2013. url: https : / / robots . ieee . org / robots / lbriiwa/ (visited on
03/23/2020).

[35] KUKA Roboter GmbH. Robot Option Media Flange For Product Family
LBR iiwa Assembly and Operating Instructions. Vol. Option Media Flange
V8. Aug. 2016. url: xpert.kuka.com (visited on 03/23/2020).

https://www.directindustry.com/prod/kuka-ag/product-17587-1714901.html
https://www.directindustry.com/prod/kuka-ag/product-17587-1714901.html
xpert.kuka.com
https://doi.org/10.1109/IROS.2010.5649098
https://doi.org/10.1109/IROS.2010.5649098
https://www.sick.com/ag/en/opto-electronic-protective-devices/safety-laser-scanners/s300-standard/c/g187239
https://www.sick.com/ag/en/opto-electronic-protective-devices/safety-laser-scanners/s300-standard/c/g187239
https://www.sick.com/ag/en/opto-electronic-protective-devices/safety-laser-scanners/s300-standard/c/g187239
https://cdn.sick.com/media/docs/3/13/613/Operating_instructions_S300_Safety_laser_scanner_en_IM0017613.PDF
https://cdn.sick.com/media/docs/3/13/613/Operating_instructions_S300_Safety_laser_scanner_en_IM0017613.PDF
https://cdn.sick.com/media/docs/3/13/613/Operating_instructions_S300_Safety_laser_scanner_en_IM0017613.PDF
xpert.kuka.com
xpert.kuka.com
xpert.kuka.com
https://en.wikipedia.org/wiki/PROFINET
https://en.wikipedia.org/wiki/PROFINET
xpert.kuka.com
xpert.kuka.com
https://robots.ieee.org/robots/lbriiwa/
xpert.kuka.com

180 Bibliography

[36] Robotiq.com and leanrobotics.org. Robotiq 2F-85 & 2F-140 for CB-Series
Universal Robots. July 2018. url: https://assets.robotiq.com/website-
assets/support_documents/document/2F- 85_2F- 140_Instruction_
Manual_CB-Series_PDF_20190329.pdf (visited on 03/23/2020).

[37] Modbus.org. MODBUS over Serial Line Specification and Implementation
Guide V1.02. Dec. 2006. url: http://www.modbus.org/docs/Modbus_
over_serial_line_V1_02.pdf (visited on 03/23/2020).

[38] Intel Realsense Technology. Depth Camera D435. Intel® RealSense™ Depth
and Tracking Cameras. 2019. url: https://www.intelrealsense.com/
depth-camera-d435/ (visited on 03/23/2020).

[39] Intel Realsense Technology. Intel RealSense D400 Series Product Family
Datasheet. Jan. 2019. url: https : / / www . intel . com / content / dam /
support/us/en/documents/emerging-technologies/intel-realsense-
technology/Intel-RealSense-D400-Series-Datasheet.pdf (visited on
03/23/2020).

[40] Intel Corporation. ROS2 Wrapper for Intel® RealSense™ Devices. 2019.
url: https://github.com/intel/ros2_intel_realsense (visited on
03/23/2020).

[41] Intel Realsense Technology. Intel RealSense D400 Series Calibration Tools
- User Guide. Jan. 2019. url: https://www.intel.com/content/dam/
support/us/en/documents/emerging-technologies/intel-realsense-
technology/RealSense_D400_Dyn_Calib_User_Guide.pdf (visited on
03/23/2020).

[42] Open Source Robotics Foundation. ROS on DDS. 2014. url: http : / /
design.ros2.org/articles/ros_on_dds.html (visited on 04/28/2020).

[43] Open Source Robotics Foundation. ROS 2 and different DDS/RTPS ven-
dors. 2018. url: https://index.ros.org/doc/ros2/Concepts/DDS-and-
ROS-middleware-implementations/ (visited on 04/28/2020).

[44] Open Source Robotics Foundation. About ROS2 client libraries. 2019. url:
https://index.ros.org/doc/ros2/Concepts/ROS-2-Client-Libraries/
(visited on 04/28/2020).

[45] Open Source Robotics Foundation, Inc. ROS2 Actions. 2019. url: http:
//design.ros2.org/articles/actions.html (visited on 04/27/2020).

[46] The Cartographer Authors. Algorithm walkthrough for tuning — Cartogra-
pher ROS documentation. 2018. url: https://google- cartographer-
ros.readthedocs.io/en/latest/algo_walkthrough.html (visited on
05/23/2020).

[47] Sameer Agarwal and Keir Mierle. Ceres Solver. 2018. url: http://ceres-
solver.org.

https://assets.robotiq.com/website-assets/support_documents/document/2F-85_2F-140_Instruction_Manual_CB-Series_PDF_20190329.pdf
https://assets.robotiq.com/website-assets/support_documents/document/2F-85_2F-140_Instruction_Manual_CB-Series_PDF_20190329.pdf
https://assets.robotiq.com/website-assets/support_documents/document/2F-85_2F-140_Instruction_Manual_CB-Series_PDF_20190329.pdf
http://www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf
http://www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf
https://www.intelrealsense.com/depth-camera-d435/
https://www.intelrealsense.com/depth-camera-d435/
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/Intel-RealSense-D400-Series-Datasheet.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/Intel-RealSense-D400-Series-Datasheet.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/Intel-RealSense-D400-Series-Datasheet.pdf
https://github.com/intel/ros2_intel_realsense
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/RealSense_D400_Dyn_Calib_User_Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/RealSense_D400_Dyn_Calib_User_Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/RealSense_D400_Dyn_Calib_User_Guide.pdf
http://design.ros2.org/articles/ros_on_dds.html
http://design.ros2.org/articles/ros_on_dds.html
https://index.ros.org/doc/ros2/Concepts/DDS-and-ROS-middleware-implementations/
https://index.ros.org/doc/ros2/Concepts/DDS-and-ROS-middleware-implementations/
https://index.ros.org/doc/ros2/Concepts/ROS-2-Client-Libraries/
http://design.ros2.org/articles/actions.html
http://design.ros2.org/articles/actions.html
https://google-cartographer-ros.readthedocs.io/en/latest/algo_walkthrough.html
https://google-cartographer-ros.readthedocs.io/en/latest/algo_walkthrough.html
http://ceres-solver.org
http://ceres-solver.org

Bibliography 181

[48] Introlab. RTAB-Map. RTAB-Map. 2019. url: http://introlab.github.
io/rtabmap/ (visited on 05/10/2020).

[49] Davide Faconti. BehaviorTree.CPP. 2019. url: https://www.behaviortree.
dev/ (visited on 04/20/2020).

[50] ros-planning. ROS2 Navigation2 documentation. 2020. url: https://navigation.
ros.org/ (visited on 06/01/2020).

[51] Yoonseok Pyo, Hancheol Cho, Leon Jung, and Darby Lim. ROS Robot Pro-
gramming (English). ROBOTIS, Dec. 2017. isbn: 979-11-962307-1-5.

[52] PickNik Robotics. MoveIt Motion Planning Framework. 2020. url: https:
//moveit.ros.org/ (visited on 03/24/2020).

[53] PickNik Robotics. MoveIt 2 Beta Release Announcement | MoveIt. 2020.
url: https://moveit.ros.org/moveit/ros2/2020/02/18/moveit-2-
beta-feature-list.html (visited on 03/24/2020).

[54] PickNik Consulting. Planners | MoveIt. url: https://moveit.ros.org/
documentation/planners/ (visited on 04/29/2020).

[55] Rice Kavraki Lab. The Open Motion Planning Library. 2020. url: http:
//ompl.kavrakilab.org/index.html (visited on 03/26/2020).

[56] PickNik Robotics. Concepts, MoveIt. 2020. url: https://moveit.ros.
org/documentation/concepts/ (visited on 03/26/2020).

[57] GAMMA research group. FCL: A Flexible Collision Library. 2013. url:
http://gamma.cs.unc.edu/FCL/fcl_docs/webpage/generated/index.
html (visited on 03/26/2020).

[58] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and
Wolfram Burgard. OctoMap: an efficient probabilistic 3D mapping frame-
work based on octrees. Apr. 2013. doi: 10.1007/s10514- 012- 9321- 0.
(Visited on 03/26/2020).

[59] Orocos. Orocos Kinematics and Dynamics C++ library. Mar. 2020. url:
https://github.com/orocos/orocos_kinematics_dynamics (visited on
03/26/2020).

[60] Intel Corporation. Intel Robot DevKit. 2019. url: https://github.com/
intel/robot_devkit.

[61] Intel Corporation. openvinotoolkit/openvino. GitHub. 2020. url: https :
//github.com/openvinotoolkit/openvino (visited on 05/01/2020).

[62] Intel Corporation.Model Optimizer Developer Guide - OpenVINO™ Toolkit.
2020. url: https://docs.openvinotoolkit.org/latest/_docs_MO_DG_
Deep_Learning_Model_Optimizer_DevGuide.html (visited on 04/01/2020).

http://introlab.github.io/rtabmap/
http://introlab.github.io/rtabmap/
https://www.behaviortree.dev/
https://www.behaviortree.dev/
https://navigation.ros.org/
https://navigation.ros.org/
https://moveit.ros.org/
https://moveit.ros.org/
https://moveit.ros.org/moveit/ros2/2020/02/18/moveit-2-beta-feature-list.html
https://moveit.ros.org/moveit/ros2/2020/02/18/moveit-2-beta-feature-list.html
https://moveit.ros.org/documentation/planners/
https://moveit.ros.org/documentation/planners/
http://ompl.kavrakilab.org/index.html
http://ompl.kavrakilab.org/index.html
https://moveit.ros.org/documentation/concepts/
https://moveit.ros.org/documentation/concepts/
http://gamma.cs.unc.edu/FCL/fcl_docs/webpage/generated/index.html
http://gamma.cs.unc.edu/FCL/fcl_docs/webpage/generated/index.html
https://doi.org/10.1007/s10514-012-9321-0
https://github.com/orocos/orocos_kinematics_dynamics
https://github.com/intel/robot_devkit
https://github.com/intel/robot_devkit
https://github.com/openvinotoolkit/openvino
https://github.com/openvinotoolkit/openvino
https://docs.openvinotoolkit.org/latest/_docs_MO_DG_Deep_Learning_Model_Optimizer_DevGuide.html
https://docs.openvinotoolkit.org/latest/_docs_MO_DG_Deep_Learning_Model_Optimizer_DevGuide.html

182 Bibliography

[63] Intel Corporation. intel/ros2_object_analytics. 2019. url: https://github.
com/intel/ros2_object_analytics (visited on 03/31/2020).

[64] Tzutalin. LabelImg. 2015. url: https://github.com/tzutalin/labelImg
(visited on 03/31/2020).

[65] Google Brain Team. TensorFlow. url: https://www.tensorflow.org/
?hl=nb (visited on 03/31/2020).

[66] Jonathan Huang, Vivek Rathod, Ronny Votel, Chen Sun, Menglong Zhu,
Alireza Fathi, and Zhichao Lu. TensorFlow Object Detection API. 2020.
url: https://github.com/tensorflow/models (visited on 03/31/2020).

[67] Google Brain Team. Tensorflow detection model zoo. 2019. url: https:
//github.com/tensorflow/models/blob/master/research/object_
detection/samples/configs/ssd_inception_v2_coco.config (visited
on 03/31/2020).

[68] Lyudmil Vladimirov. Training Custom Object Detector — TensorFlow Ob-
ject Detection API tutorial documentation. 2018. url: https://tensorflow-
object-detection-api-tutorial.readthedocs.io/en/latest/training.
html (visited on 03/31/2020).

[69] Intel Corporation. ROS1 Wrapper for Intel® RealSense™ Devices. Apr.
2020. url: https://github.com/IntelRealSense/realsense-ros (vis-
ited on 04/23/2020).

[70] Daniel Ordonez. Robotiq 2finger grippers. Apr. 2020. url: https://github.
com/Danfoa/robotiq_2finger_grippers (visited on 04/23/2020).

[71] ros-planning. ros-planning/navigation2. Apr. 2020. url: https://github.
com/ros-planning/navigation2 (visited on 04/20/2020).

[72] Oracle Corporation. Multithreading Concepts. 2010. url: https://docs.
oracle.com/cd/E19253- 01/816- 5137/mtintro- 25092/index.html
(visited on 05/26/2020).

[73] Nicolas Lauzier. The Right Gripper for the Kuka Lightweight Robot (LWR).
blog.robotiq.com/. May 2016. url: https://blog.robotiq.com/bid/
56804/The- Right- Gripper- for- the- Kuka- Lightweight- Robot- LWR
(visited on 03/23/2020).

[74] ZoBotics. ELZo3/RobotiqGripper-2F85-EtherCat-Control. July 2019. url:
https://github.com/ELZo3/RobotiqGripper-2F85-EtherCat-Control
(visited on 03/23/2020).

[75] ros-perception. Depthimage_to_laserscan. 2019. url: https://github.
com/ros-perception/depthimage_to_laserscan/tree/ros2.

[76] ros-perception. pointcloud_to_laserscan. 2019. url: https://github.com/
ros-perception/pointcloud_to_laserscan.

https://github.com/intel/ros2_object_analytics
https://github.com/intel/ros2_object_analytics
https://github.com/tzutalin/labelImg
https://www.tensorflow.org/?hl=nb
https://www.tensorflow.org/?hl=nb
https://github.com/tensorflow/models
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_inception_v2_coco.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_inception_v2_coco.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_inception_v2_coco.config
https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/training.html
https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/training.html
https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/training.html
https://github.com/IntelRealSense/realsense-ros
https://github.com/Danfoa/robotiq_2finger_grippers
https://github.com/Danfoa/robotiq_2finger_grippers
https://github.com/ros-planning/navigation2
https://github.com/ros-planning/navigation2
https://docs.oracle.com/cd/E19253-01/816-5137/mtintro-25092/index.html
https://docs.oracle.com/cd/E19253-01/816-5137/mtintro-25092/index.html
https://blog.robotiq.com/bid/56804/The-Right-Gripper-for-the-Kuka-Lightweight-Robot-LWR
https://blog.robotiq.com/bid/56804/The-Right-Gripper-for-the-Kuka-Lightweight-Robot-LWR
https://github.com/ELZo3/RobotiqGripper-2F85-EtherCat-Control
https://github.com/ros-perception/depthimage_to_laserscan/tree/ros2
https://github.com/ros-perception/depthimage_to_laserscan/tree/ros2
https://github.com/ros-perception/pointcloud_to_laserscan
https://github.com/ros-perception/pointcloud_to_laserscan

Bibliography 183

[77] Steve Macenski. SteveMacenski/slam_toolbox. Apr. 2020. url: https://
github.com/SteveMacenski/slam_toolbox (visited on 04/24/2020).

[78] Mathieu Labbé.Kinect mapping. GitHub. June 2018. url: https://github.
com/introlab/rtabmap (visited on 05/24/2020).

[79] Kevin M. Lynch and Frank C. Park. Modern robotics: mechanics, planning,
and control. Cambridge, UK: Cambridge University Press, 2017. isbn: 978-
1-107-15630-2 978-1-316-60984-2.

[80] Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel Andor. Real-time
loop closure in 2D LIDAR SLAM. Stockholm, Sweden, May 2016. doi: 10.
1109/ICRA.2016.7487258. (Visited on 05/10/2020).

[81] Morgan Quigley, Brian Gerkey, and William D. Smart. Programming Robots
with ROS: A Practical Introduction to the Robot Operating System. 1st.
O’Reilly Media, Inc., 2015. isbn: 1-4493-2389-8.

[82] Steve Macenski. Replace Navfn with Hybrid approach · Issue #1279. GitHub.
Oct. 2019. url: https : / / github . com / ros - planning / navigation2 /
issues/1279 (visited on 05/30/2020).

[83] Brian Wilcox. DWB: PathAlign and GoalAlign critics lead to poor obstacle
avoidance #938. GitHub. 2019. url: https://github.com/ros-planning/
navigation2/issues/938 (visited on 06/05/2020).

[84] ros-planning. OMPL Planner. Jan. 2020. url: https://ros-planning.
github.io/moveit_tutorials/doc/ompl_interface/ompl_interface_
tutorial.html (visited on 06/02/2020).

https://github.com/SteveMacenski/slam_toolbox
https://github.com/SteveMacenski/slam_toolbox
https://github.com/introlab/rtabmap
https://github.com/introlab/rtabmap
https://doi.org/10.1109/ICRA.2016.7487258
https://doi.org/10.1109/ICRA.2016.7487258
https://github.com/ros-planning/navigation2/issues/1279
https://github.com/ros-planning/navigation2/issues/1279
https://github.com/ros-planning/navigation2/issues/938
https://github.com/ros-planning/navigation2/issues/938
https://ros-planning.github.io/moveit_tutorials/doc/ompl_interface/ompl_interface_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/ompl_interface/ompl_interface_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/ompl_interface/ompl_interface_tutorial.html

Appendix

Appendix A.

Digital Attachments

Four videos are provided as digital attachments to the thesis as documentation of
conducted experiments:

• Video: replanning.mp4

• Video: composed1.mov

• Video: composed2.mov

• Video: manipulation.mov

Video replanning is presented in the results for dynamic replanning Section 8.1.2.
Video composed1, composed2 and manipulation are presented in the results for
the comprehensive system in Section 11.2.

The specialization project report is provided as an attachement to the thesis as
it is fundamental for the conducted work:

• PDF: Configuration and Control of KMR iiwa with ROS2

Appendix B.

Conference Paper

The authors published a paper in context of the 3rd International Symposium
on Small-scale Intelligent Manufacturing Systems (SIMS 2020). The conference
is arranged at NTNU Gjøvik from the 10th to the 12th of June 2020. The paper
presents the work conducted from August 2020 to March 2020. The authors will
present their work as a part of the conference on the 11th of June.

Configuration and Control of KMR iiwa Mobile
Robots using ROS2

Charlotte Heggem∗, Nina Marie Wahl∗ and Lars Tingelstad
Department of Mechanical and Industrial Engineering

NTNU, Norwegian University of Science and Technology
Trondheim, Norway

Abstract—In this paper, we present a novel system for con-
trolling a KMR iiwa mobile robot using ROS2. The KMR iiwa
is a mobile robot with a manipulator mounted on the base that
is developed by the robot manufacturer KUKA. The developed
system integrates with the Sunrise.OS operating system of the
mobile robot and exposes sensor and control interfaces over
UDP and TCP sockets. The controllability of the mobile robot
from ROS2 is verified using the Cartographer and Navigation2
projects.

Index Terms—KMR iiwa, ROS2, KUKA, Mobile Robot, In-
dustry 4.0

I. INTRODUCTION

Industry 4.0 is about digitalization, automation, machine
learning, and real-time data. A company that works extensively
with industry 4.0 is the German company KUKA, Keller und
Knappich Augsburg. The company produces robot systems for
the industry and automated production solutions, and focus
on networked, intelligent production. Such a production robot
is the KMR iiwa, KUKA Mobile Robot Intelligent Industrial
Work Assistant, shown in Figure 1.

The KMR iiwa is composed of a robot arm, the LBR iiwa 14
R820, and a mobile platform, the KMP 200 omniMove [1].
LBR is a German abbreviation for lightweight robot, while
KMP is short for KUKA Mobile Platform. The intended use
of the mobile robot is to handle automated manufacturing tasks
and transport components, and it is characterized by its high
degree of mobility and flexibility.

The operating system for the KMR iiwa mobile robots
is KUKA Sunrise.OS. Programming the software requires
knowledge of the Java programming language and the Sunrise
software, including robot specific functions. This could be
a blockade for many developers. Another drawback is that
data and information from the robot are only available locally
in the Sunrise system during executions of applications. In
a decade when everything should be online, compatibility
between networked devices is desired, and information should
be available. Tools that support system integration based on
common platforms are essential for the continuous evolution
of Industry 4.0.

This work was supported by the Norwegian Research Council project
MANULAB: Norwegian Manufacturing Research Laboratory under grant
269898.∗Author names in alphabetical order. Charlotte Heggem and Nina M. Wahl
contributed equally to this work.
978-1-7281-6419-9/20/$31.00 ©2020 IEEE

Fig. 1. The KMR iiwa is composed of a mobile platform and a lightweight
manipulator [2]. Image courtesy of KUKA Nordic AB.

ROS2, Robot Operating System 2, is the second generation
of the open source framework ROS for developing robot appli-
cations with support for several programming languages and
platforms [3]. Integration between Sunrise.OS and ROS2 is
desirable as it would limit the required preknowledge required
to operate the robot and make it more available for users. The
ROS2 packages Cartographer and Navigation2 perform real-
time localization, mapping and navigation of mobile vehicles
and are highly relevant to use with the KMR iiwa.

Two projects with focus on interaction between the LBR
iiwa and ROS have been inspirational for the work presented in
this paper. The LBR iiwa and the KMP is operated by the same
controller, and hence a similar approach for programming the
robot can be applied to the KMP.

Virga and Esposito [4], propose an architecture with native
ROSJava nodes launched on the robot controller. Hence, the
two operating systems can exchange data and commands in
the form of ROS messages over the ROS framework. The
proposed solution requires installation of third-party libraries
on the robot controller to run ROS nodes.

The work by Mokaram et al. [5] provides a simple stan-
dalone application that requires minimal installation on the
robot controller. The architecture of the API consists of two
main components, a single Sunrise.OS application on the robot
controller and a ROS node launched on the external computer.
The ROS node establishes a connection to the controller
over TCP, Transmission Control Protocol. Data and command

190 Appendix B. Conference Paper

messages are transmitted between the two components as
strings.

The two APIs of [4] and [5] are developed for different
purposes, but the implementations contain the same funda-
mental functionality. The main difference between the two
architectures is whether to publish ROS messages directly
from the robot controller or to utilize a middle-layer to handle
the communication. The API of [5] includes simple methods
for directly controlling the robot, while [4] present a more
advanced system, including functionality for simulation in
Gazebo and using the robot with ROS packages as Moveit!.

Work related to integration of KUKA mobile platforms and
ROS has previously been explored to a small extent. Dömel
et. al. present a concept toward fully autonomous mobile
manipulation using ROS and KUKA omniRob, built on a
different control system than the KMR iiwa [6]. However, the
project is not open source.

In this paper, we present a communication interface between
the KMR iiwa and ROS2 to control the mobile platform. The
developed system integrates with the Sunrise.OS operating
system of the mobile robot and exposes sensor and control
interfaces over UDP, User Datagram Protocol, and TCP sock-
ets. The interface is available online [7], and is the first free
and open approach to controlling a KMR iiwa using ROS2.

The main functionality is autonomous navigation in an
unknown, dynamic environment without collision. The goal
is that a user should easily be able to connect to the robot
and control it without any preknowledge about KUKA robotic
systems.

The paper is structured as follows. A description of the
KMR iiwa is presented in Section II. Further, in Section III,
an introduction to ROS2 and the packages Cartographer and
Navigation2 is given. A challenge with the implementation
was to find the correct methods to command and retrieve
data from the robot. The approach for obtaining the correct
methods is described in Section IV. Next, in Section V, follows
a system description with the implemented functionality of the
interface. Section VI presents a verification of the functionality
of developed system. Finally, Section VII concludes the paper.

II. KMR IIWA

A. Hardware

The KMP mobile platform has four mecanum wheels, which
allow the mobile platform to move omnidirectionally. It is
equipped with two SICK S300 safety laser scanners mounted
diagonally opposite of each other.

The S300 is a compact laser measurement system that scans
the environment in two dimensions in the height of 150 mm
above the ground in means of infrared laser beams. Each laser
has a scanning range of 270°, covering one long side and one
short side of the vehicle, and a resolution of 0.5°.

The controller of the robot system, Sunrise Cabinet, is
contained inside the KMP. The Sunrise Cabinet contains two
PCs: one control PC and one navigation PC.

B. Software

KUKA Sunrise.OS is the system software for robots that are
operated by the Sunrise Cabinet. It offers functionality for pro-
gramming and configuration of robot applications. Commands,
sensor data, and information related to the ongoing operation
are only available locally on the robot control system, or the
supplied teach pendant, the SmartPAD.

C. Operation

There are three different approaches for controlling the
KMP: manually, autonomously, or by an application.

The most interesting option in this context is to control
the KMP by a Java-based Sunrise application on the Sunrise
Cabinet. The application can be implemented in the program-
ming environment Sunrise.Workbench. The software packages
KUKA RoboticsAPI and KUKA Sunrise.Mobility contain
methods for obtaining information from the robot system
and executing motions, which are the basis for developing a
program for controlling the KMP.

KUKA.NavigationSolution is an optional software pack-
age with functionality for autonomous navigation of mobile
platforms. The navigation software is based on sensor data
from the S300 laser scanners and the odometry of the mobile
platform.

The KMP can be moved manually by jogging the robot
from the SmartPAD or the Radio Control Unit, an optional
device with joysticks for controlling the platform.

The robot system has three different operation modes. T1
and T2 are manual operation modes used for testing and
verification of programs. AUT is autonomous mode, which
is the operating mode for program execution.

D. Safety

The primary function of the S300 sensors is to operate as
the safety equipment of the system by monitoring predefined
areas around the vehicle. By default, the S300 sensors are
configured with a protective field and a warning field. The size
of the monitored fields depends on the velocity of the vehicle.
The consequence of a violation of the two fields varies with
the operation mode. Generally, a breach of a field causes a
reduction of maximum travel speed or triggers a safety stop
of the vehicle. The laser scanners are not active for velocities
below 0.13 m/s in the manual operation modes.

III. ROS2

ROS [3] is a robot operating system that can be used
with multiple programming languages and has implemented
open source functionality. It includes tools and libraries to
handle the programming of robots without having to deal with
hardware. The main goal of ROS is to provide a standard
that can be used by any robot. ROS2, the second generation
of ROS, is state-of-the-art software and is currently under
massive deployment.

In general, ROS2 is cleaner and faster than the prior version,
in addition to more flexible and universal. One of the main
differences between the two versions is that ROS2 is built

191

on top of DDS, Data Distribution Service, which provides a
distributed discovery feature.

Two ROS2 packages that are relevant for controlling the
KMP is Cartographer [8] and Navigation2 [9].

Cartographer is a package for real-time SLAM, simultane-
ous localization and mapping, and is part of Google’s open
source projects [10].

A map can be created based on the robot’s odometry, trans-
formation information, and sensor information when the robot
moves. The map can further be provided to Navigation2 and be
used for navigation in the environment. The requirement for
the cartographer node is sensor data measuring the distance
to obstacles in the environment. Data from IMU sensors and
odometry sensors can be included to improve the result.

Navigation2 is a package that can be used to control mobile
robots and is based on a velocity controller. The main goal of
applying the package is to navigate the robot from a start
pose to a goal pose. This task can be broken down into
subtasks like handling maps, localization of the robot, obstacle
avoidance, and path following. When an obstacle-free path is
calculated, velocity commands are produced to describe how
the robot should move to follow the path. The navigation
package requires information about the environment and how
the robot moves, which can be provided in the form of a map,
sensor data, and odometry data.

IV. APPROACH

The information required by Cartographer and Navigation2
defines the functional requirements of the system: It must be
possible to retrieve odometry from the wheel encoders and
laser data from the SICK scanners on the KMP, and the vehicle
must be able to be controlled by velocity messages.

The motion commands and sensor retrieval methods from
KUKA RoboticsAPI are limited and are chosen based on
KUKA’s definition of what is the intended use for pro-
gramming the robot. A challenge that was faced during the
development was to find the appropriate methods to retrieve
data and move the KMP for the desired outcome.

As mentioned in Section II-D, the main functionality of
the laser scanners is to monitor predefined areas around the
vehicle. Boolean signals from the lasers indicate whether
the monitored fields are violated, and can be extracted
through defined methods from the KUKA RoboticsAPI. Range
data from the laser scanners are only available through
KUKA.NavigationSolution, and there are no direct methods
to retrieve sensor data through KUKA RoboticsAPI.

The correct method for retrieving the sensor data was
found by investigating the underlying functionality of
KUKA.NavigationSolution. This software package introduces
several views that can be opened in Sunrise Workbench,
among them are the LaserView that visualizes range readings
in real-time. By exploring the source code of the view, it
was found that a FDI, Fast Data Interface, connection is
established to the Navigation PC. The FDI connection utilizes
a UDP socket to transmit data and enables functionality
for subscribing to sensor data. As KUKA.NavigationSolution

relies on the odometry data from the KMP for navigation, this
data can also be subscribed to through the FDI connection.

As for the motion commands, the predefined methods
available from KUKA RoboticsAPI provide functionality for
moving the KMP to an absolute or relative pose. This is not
applicable for the intended use, as Navigation2 sends velocity
commands.

The approach leading to the proposed solution was to
investigate the underlying code of the devices used to jog
the KMP manually. When a jogging button is held on the
smartPAD or the joysticks are used to move the robot with
the Radio Control Unit, the robot is continuously jogged. In
a similar manner, a jog method can be executed continuously
from a Java program to make the robot move with the specified
velocity. The method found to jog the robot enabled access to
the internal functionality of the robot, which is mainly marked
as private and not intended to use for programming by external
users.

By investigation of the source code, it was found that
for each time the jog method is executed, a new thread is
established. As the method is intended for internal use, the
threads are marked as private, and there is no way to handle all
the threads established when continuously calling the method.
Over time this lead to an accumulation of threads, which
is a problem when the number of threads get too high. A
solution to this problem was found in the code of the Radio
Control Unit, which revealed that a support class had to be
implemented to handle the threads. The support class creates
a thread pool for each new jogging execution, which can be
shut down when the velocity motion is finished, and hence,
kill all the threads established.

With the jogging motion it is possible to execute motion
based on velocity commands, which further makes it possible
to move the KMP by the commands from Navigation2.

V. SYSTEM DESCRIPTION

The implemented interface has the following main function-
alities:

• Retrieve laser data from the KMP
• Retrieve odometry data from the KMP
• Retrieve status information from the KMP
• Move the KMP by giving velocity commands in the

terminal
• Move the KMP by setting a goal pose in the terminal
• Use Cartographer to create a map of the environment
• Use Navigation2 to move the KMP
The interface consists of multiple ROS2 nodes running on

a remote PC communicating with a Java program over TCP.
The remote PC does not need to be in the immediate vicinity
of the KMR, but must be connected to the same network.
The Java program, KMRiiwaSunriseApplication, is installed on
the Control PC in the Sunrise Cabinet, which handles further
communication with other internal devices on the robot. The
physical architecture is shown in Figure 2.

Figure 3 shows the architecture of the implemented com-
munication interface between the Java application and the

192 Appendix B. Conference Paper

Fig. 2. Graphical representation of the physical system. Component images
courtesy of KUKA Global.

ROS2 nodes. Each node is responsible for one area and is
communicating with a corresponding Java class on the Sunrise
Cabinet over UDP or TCP. Both protocols are implemented,
and the desired communication type can be set in the system
parameters. By creating separate nodes and connections for
all tasks, it is possible to launch only the nodes needed for a
specific use case. This limits the transferred data and enables
a faster system.

The information is transmitted with the selected protocol as
strings on the following format:

Length >︸ ︷︷ ︸
Additional
Information

Type (LaserID) Timestamp Data︸ ︷︷ ︸
Message

The additional information, Length, is only included if the
message is sent over TCP. As TCP is a buffer protocol, this
is necessary to ensure that the whole message is read.

The Type field describes what kind of data this message
includes, and is necessary to know how the data should
be processed. If the message is coming from the robot, an
example of a type could be Odometry. An odometry message
contains data describing the pose and velocity of the robot.

The pose of the robot is represented by a position vector
x ∈ R3 and a unit quaternion q ∈ S3, while the velocity is
represented by a twist V = (ω, v) ∈ R6 where ω ∈ R3 and
v ∈ R3 are the angular and linear velocities, respectively.

The LaserID only applies for laser scan messages to denote
from which sensor the data is read. The data, in this case,
consist of 540 range readings from the specified laser.

Similarly, a message of type setTwist can be sent, command-
ing a change in the velocity of the robot.

A. Sunrise Application

The KMRiiwaSunriseApplication is the main application
running on the Sunrise Cabinet. The Java classes communi-
cating with ROS2 are initiated from the application as threads
and executed in parallel. The Java classes are responsible for
sending sensor data and other relevant information, and for
carrying out the pose or velocity commands received from
the ROS2 nodes. Support classes are implemented for both

the protocol options TCP and UDP for handling the socket
objects and transmitting data. Each of the Java communication
classes establishes a socket class to transmit the data to the
corresponding ROS2 node.

The kmp sensor reader class is handling both the data
from the S300 laser sensors and the odometry data. An FDI
connection, which is used to transmit odometry and laser
data, is established between an instance of the class and the
Navigation PC. The FDI connection is based on subscriptions,
meaning a data type is only sent if a subscription to the data
type is created. This makes it possible to subscribe to only
laser or odometry data. A data listener class is implemented
that, by subscribing to the data of interest, retrieves odometry
data and laser data through the FDI connection. Further, the
data is transmitted to the two corresponding ROS2 nodes.

The kmp status reader use functionality from KUKA
RoboticsAPI to retrieve information from the robot. Examples
of information that can be retrieved are whether an emergency
stop has been triggered and if there are any obstacles in the
monitored fields.

The kmp commander receives velocity or pose commands
from the corresponding ROS2 node. Pose commands are
executed by the motion type MobilePlatformRelativeMotion
from KUKA RoboticsAPI, while velocity commands are being
carried out by jogging the robot. More specific this is done
by a KMPJogger object, which is implemented to handle the
execution of motion and the accumulation of threads.

B. Remote PC

On the remote PC, there are four different nodes available
for communication with the KMP: kmp odometry, kmp laser,
kmp command and kmp status.

All the nodes have data process methods and ROS publish-
ers and subscribers to correctly handle the data to and from the
KMP. All the publishers and subscribers, and the associated
ROS topic are listed in Table I and II.

The kmp odometry and kmp laser nodes handle the sensor
information retrieved from the KMP, while the kmp command
subscribes to multiple ROS topics and forwards the commands
from each topic. The currently supported commands are: move
with a certain velocity, move to a given pose, and shutdown.
The shutdown command is essential to be able to shut down
all connections and threads in the program correctly.

The kmp status retrieves information data from the KMP
and saves the information to a ROS message, KmpStatusdata.
This message type is custom made for the interface and
includes information that is useful when operating the robot.
The message could be extended with more information if
necessary. The KmpStatusdata includes the information shown
in Table III.

VI. SYSTEM VERIFICATION USING CARTOGRAPHER AND
NAVIGATION2

The ROS packages Cartographer and Navigation2 are used
to verify if the communication and control work as expected.

193

Fig. 3. Architecture of the implemented solution.

TABLE I
PUBLISHERS FOR PUBLISHING DATA FROM KMP TO ROS

Name Message type Topic Description
pub odometry Odometry /odom Odometry information.

pub laserscan1 LaserScan /scan 1 Data from B1 S300 laser (front).

pub laserscan2 LaserScan /scan 2 Data from B4 S300 laser (back).

pub kmp statusdata KmpStatusdata /kmp statusdata Statusdata retrieved in the kmp status node.

TABLE II
SUBSCRIBERS FOR SUBSCRIBING TO DATA FROM ROS TO KMP

Name Message type Topic Description
sub twist Twist /cmd vel Make KMR move at a certain velocity.

sub pose Pose /pose Make KMR move to a certain pose.

sub shutdown String /shutdown Make the application on the Sunrise controller shut-
down. Any string sent to this topic do the same
purpose.

TABLE III
FIELDS INCLUDED IN A KmpStatusdata MESSAGE

Name Message type Description
header std msgs/Header Regular header for all ROS messages.

operation mode String The KMR iiwa has three different operation modes. This field states the current mode.

ready to move Boolean True if the robot is ready to move, and no safety rules is violated.

warning field clear Boolean False if either of the warning fields of the S300 sensors are violated.

protection field clear Boolean False if either of the protection fields of the S300 sensors are violated.

is kmp moving Boolean True if the KMP is moving.

kmp safetystop Boolean True if the KMP performs a safety stop. This happens if any of the internal safety
monitoring functions of Sunrise software are violated.

Both packages include parameter files with multiple parame-
ters that can be tuned to improve the algorithms used. These
parameters are minimally tuned for this experiment, and only
the parameters necessary for the packages to work with our
data have been changed. All available data sources are used,

which includes sensor data from both S300 sensors as well as
odometry data.

By driving the robot around in the laboratory and using
Cartographer, the map in Figure 4 was created. Tuning the
parameters to a more significant extent would likely improve
the result, but was not relevant for testing the communication

194 Appendix B. Conference Paper

Fig. 4. Map created by Cartographer

interface. As mentioned in section II, the SICK scanners
perform a planar scan 150 mm above the ground. This affects
the map, as overhanging obstacles are not detected. Hence,
additional sensors should be included in the system to be able
to perform autonomous navigation safely.

The compatibility with Navigation2 was verified by entering
a goal pose in Rviz to which the KMP was to navigate.
The goal pose is sent to Navigation2 which returns velocity
commands. The use of Navigation2 works as expected for
more straightforward scenarios. When commanded to navigate
to poses in open areas, the robot moves with holonomic
movement and follows the planned path until the requested
goal pose. When the goal pose is set too close to obstacles,
the navigation is not completed.

The maximum velocity specified in the parameter file of
Navigation2 are above 0.13 m/s, which is the velocity where
the sensors are activated for T1 mode. If the sensors detect
an object inside the protective field when driving at a speed
higher than this, the safety restriction of the robot turns in and
stops the movement. This causes the navigation to fail, as the
vehicle is not following the given commands and not showing
enough progress within a time limit. The vehicle is not able to
drive out of this area as all the commands from Navigation2
are at a higher speed than allowed by the robot.

When the KUKA Navigation Solution controls the vehicle,
the velocity is automatically reduced when objects are inside
the protective field. Navigation2 does not implement this
behavior, and this causes a conflict between the built-in safety
restrictions and the navigation controller. To make Navigation2
work optimally, this must be taken into account. Newly
implemented behavior in Navigation2 makes it possible to
update the parameters which specify the maximum velocities
dynamically.

Our suggested solution to the navigation problem is to
monitor the status of the warning fields and protective fields,
which both are included in the KmpStatusdata message, and
use this information to control the velocity. For both operation
modes, the robot stops if an obstacle is detected in the

protective field. The velocity should be reduced when an
obstacle is detected in the warning field to reduce the size of
the protective field. If necessary, a second warning field can be
configured by the use of SICK software, to be notified about
obstacles earlier. This could solve the problem, but would lead
to a less generic system.

VII. CONCLUSION

This paper describes a control interface for operating the
mobile robot KMR iiwa with ROS2. The proposed architecture
is verified by a proof-of-concept implementation that enables
control of the robot from an external computer. The architec-
ture is based on multiple ROS2 nodes with corresponding Java
classes that handle separate tasks. The architecture is created
in a scaleable manner, where more nodes can be added for
additional functionality.

It was desired to navigate the robot by utilizing the ROS2
packages Cartographer and Navigation2. For this purpose,
functionality was implemented to retrieve odometry and laser
data from the sensors, and for the ability to control the model
by velocity commands. The specified ROS2 packages were
used to verify the controllability of the mobile vehicle. The
Cartographer package was able to create a fully recognizable
map of the environment, and simple navigation in the environ-
ment was performed. The verification revealed issues related
to navigation closer to obstacles, and a possible solution for
this was proposed.

Further work include manipulation of the LBR iiwa, im-
proved navigation, and the addition of camera sensors to
handle issues related to 2D laser scans.

The work is open source and available online at https://
github.com/ninamwa/kmriiwa ws.

REFERENCES

[1] KUKA. KMR iiwa omniMove, 2019. https://xpert.kuka.com/app/portal.
[2] Direct Industry. KMR IIWA. https://www.directindustry.com/prod/

kuka-ag/product-17587-1714901.html, 2016. The image is used with
permission from KUKA Nordic AB. Accessed: 2020-03-13.

[3] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote,
Jeremy Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. ROS: an
open-source Robot Operating System. In Proc. of the IEEE Intl. Conf. on
Robotics and Automation (ICRA) Workshop on Open Source Robotics,
Kobe, Japan, May 2009.

[4] Salvatore Virga and Marco Esposito. IFL-CAMP/Iiwa Stack. https:
//github.com/IFL-CAMP/iiwa\ stack, 2019. Accessed: 2019-11-07.

[5] Saeid Mokaram, Jonathan M. Aitken, Uriel Martinez-Hernandez, Iveta
Eimontaite, David Cameron, Joe Rolph, Ian Gwilt, Owen McAree,
and James Law. A ROS-integrated API for the KUKA LBR iiwa
collaborative robot. IFAC-PapersOnLine, 50(1):15859 – 15864, 2017.
20th IFAC World Congress.

[6] Michael Kaßecker Manuel Brucker Tim Bodenmüller Andreas Dömel,
Simon Kriegel and Michael Suppa. Toward fully autonomous mobile
manipulation for industrial environments. International Journal of
Advanced Robotic Systems, 2017.

[7] Charlotte Heggem and Nina Marie Wahl. Project repository: kuka ws.
https://github.com/ninamwa/kmriiwa ws, 2019.

[8] W. Hess, D. Kohler, H. Rapp, and D. Andor. Real-time loop closure in
2D LIDAR SLAM. In 2016 IEEE International Conference on Robotics
and Automation (ICRA), pages 1271–1278, 2016.

[9] ROS2 Navigation. https://ros-planning.github.io/navigation2/. Accessed:
2020-03-27.

[10] Cartographer. https://opensource.google/projects/cartographer. Ac-
cessed: 2020-03-27.

195

Appendix C.

Github Repository

The kmriiwa_ws repository, created as a part of the work of this thesis, is available
at https://github.com/ninamwa/kmriiwa_ws.

C.1. Hierarchy
The software is structured by the following hierarchy:

https://github.com/ninamwa/kmriiwa_ws

198 Appendix C. Github Repository

kmriiwa_ws

kmr_behaviortree

behaviortrees

include

launch

param

plugins

src

kmr_bringup

launch

meshes

rviz

scripts

urdf

kmr_communication

launch

nodes

param

script

kmr_manipulator

launch

model

nodes

param

script

kmr_moveit2

config

launch

rviz

src

kmr_msgs

action

msg

kmr_navgiation2

launch

map

param

rviz

scripts

kmr_simulation

launch

models

worlds

kmr_slam

config

launch

rviz

kmr_sunrise

app

comm

motion

nodes

utilities

C.2. kmriiwa_ws 199

C.2. kmriiwa_ws
Repository for specialization project and master thesis in Robotics & Automation, at NTNU 2019/2020

Manage topics

kmr_behaviortree Merge branch 'eloquent' of https://github.com/ninamwa/kmriiwa_ws into… 23 hours ago

kmr_bringup Merge branch 'eloquent' of https://github.com/ninamwa/kmriiwa_ws into… 23 hours ago

kmr_communication Merge branch 'eloquent' of https://github.com/ninamwa/kmriiwa_ws into… 23 hours ago

kmr_manipulator Merge branch 'eloquent' of https://github.com/ninamwa/kmriiwa_ws into… 23 hours ago

kmr_moveit2 Merge remote-tracking branch 'origin/eloquent' into eloquent 3 days ago

kmr_msgs Update README.md 13 days ago

kmr_navigation2 Merge branch 'eloquent' of https://github.com/ninamwa/kmriiwa_ws into… 23 hours ago

kmr_simulation Merge remote-tracking branch 'origin/eloquent' into eloquent 3 days ago

kmr_slam Merge remote-tracking branch 'origin/eloquent' into eloquent 3 days ago

kmr_sunrise cleanup in Java code 4 days ago

.gitignore nuc files and cartographer tuning 20 days ago

LICENSE Create LICENSE 4 months ago

README.md Update README.md now

 README.md

kmriiwa_ws
Repository for master thesis and specialization project in Robotics & Automation, at NTNU Fall 2019, by Charlotte Heggem and
Nina Marie Wahl.

Intention: This project aims to create a communication API between a KUKA robot, KMR iiwa, and ROS2. Multiple ROS
packages are used for including functionality. Navigation2 is used for navigating the mobile vehicle. Cartographer and RTAB-Map
is used for SLAM. MoveIt2 is used for path planning for the manipulator.

Multiple Intel Realsens D435 cmeras are used to provide better moving and detection of objects. A Robotiq gripper is used for
picking up objects. The cameras and gripper are launched at a separate onboard computer (Intel NUC).

System requirements:

Ubuntu 18.04.3

Python 3.6.9

ROS Eloquent

Required ROS Packages:

Gazebo packages

Navigation2

MoveIt2

Cartographer

RTAB-Map ROS wrapper (dependent on RTAB-Map)

Ros2 Intel Realsense (ROS2 Wrapper for Intel® RealSense™ Devices)

ROS2 Openvino Toolkit (dependent on OpenVino Toolkit)

ROS2 Object Analytics

ninamwa / kmriiwa_ws

Edit

 305 commits 5 branches 0 packages 0 releases 1 environment 2 contributors Apache-2.0

 eloquent Branch: New pull request Create new file Upload files Find file Clone or download

 Update README.md Latest commit 5f1e5e9 nowninamwa

200 Appendix C. Github Repository

C.3. kmr_behaviortree

kmriiwa_ws / kmr_behaviortree /

..

behavior_trees Merge branch 'eloquent' of https://github.com/ninamwa/kmriiwa_ws into… 20 hours ago

include/kmr_behaviortree working mani moving to object last month

launch cleanup NUC 20 hours ago

param added new workstations poses and small cleanup 4 days ago

plugins added new workstations poses and small cleanup 4 days ago

src added new workstations poses and small cleanup 4 days ago

CMakeLists.txt renaming of nodes + making kmr drive back home when finished last month

README.md Create README.md 12 days ago

package.xml merge branch behaviortree into branch eloquent 2 months ago

 README.md

1. Description

This package includes functionality for using a behavior tree to create more complex functionality for the robot. The plugin folder
consists of custom made condition and action nodes. These nodes can be put together in multiple ways to create a full tree.
Different behavior trees are found in the behavior_trees folder, and which tree to use is specified in the launch file. The param file
can be used to specify different information, like positions of workstations and a list of goals. The behaviortree will start over for
every goal pose in the list. When the list is empty, the robot will navigate back to the home position/docking station.

All other nodes which the behavior tree nodes depends upon must be running for the behavior tree to be initalized.

2. Requirements

The following packages needs to be installed:

behaviortree_cpp_v3

3. Run

To launch the behaviortree, run:

$ ros2 launch kmr_behaviortree bt.launch.py

When the behavior tree is initialized, a message to the /start_topic must be sent for the execution of the tree to start. This is done
to make sure everything is correctly set up before starting, and should be removed at a later point.

$ ros2 topic pub /start_topic std_msgs/msg/String {'data: OK'} -1

ninamwa / kmriiwa_ws

 eloquent Branch: Create new file Upload files Find file History

 Merge branch 'eloquent' of https://github.com/ninamwa/kmriiwa_ws into… Latest commit 25d8549 20 hours agoninamwa …

C.4. kmr_bringup 201

C.4. kmr_bringup

kmriiwa_ws / kmr_bringup /

..

launch cleanup NUC 20 hours ago

meshes full renaming from kuka to kmr 2 months ago

rviz nuc files and cartographer tuning 20 days ago

scripts working mani moving to object last month

urdf added gripper adapter link 4 days ago

CMakeLists.txt full renaming from kuka to kmr 2 months ago

README.md Update README.md 8 days ago

package.xml full renaming from kuka to kmr 2 months ago

 README.md

1. Description

This package handles the different files for bringing up the robot and showing it in Rviz.

2. Requirements

The following packages needs to be installed:

joint_state_publisher

robot_state_publisher

3. Run

To visualize the URDF model of the robot in Rviz, you need two terminals and run the following commands:

$ ros2 launch kmr_bringup rviz.launch.py

$ ros2 launch kmr_bringup state_publisher.launch.py

$ ros2 run kmr_bringup dummy_joint_states

The latter will run a dummy joint state publisher which publishes fake data for the joints which are not fixed. This is necessary to
properly visualize the manipulator.

ninamwa / kmriiwa_ws

 eloquent Branch: Create new file Upload files Find file History

 Merge branch 'eloquent' of https://github.com/ninamwa/kmriiwa_ws into… Latest commit 25d8549 20 hours agoninamwa …

202 Appendix C. Github Repository

C.5. kmr_communication

kmriiwa_ws / kmr_communication /

..

launch Merge branch 'eloquent' of https://github.com/ninamwa/kmriiwa_ws into… 20 hours ago

nodes Merge branch 'eloquent' of https://github.com/ninamwa/kmriiwa_ws into… 20 hours ago

param code cleanup, small fixes 4 days ago

script code cleanup, small fixes 4 days ago

CMakeLists.txt merge branch behaviortree into branch eloquent 2 months ago

README.md Update README.md 13 days ago

package.xml merge branch behaviortree into branch eloquent 2 months ago

 README.md

1. Description

This package handles the communication with the KMR iiwa. There is one launch file which will launch all of the seven
communication nodes:

kmp_commands_node

kmp_odometry_node

kmp_laserscan_node

kmp_statusdata_node

lbr_statusdata_node

lbr_commands_node

lbr_sensordata_node

The connection type (UDP/TCP) can be set in the launch parameters. The IP address to your computer should be set in the
parameter file called bringup.yaml. In this file, you can also change the port number for each of the nodes.

2. Run

To launch all of the communcation nodes, run:

$ ros2 launch kmr_communication sunrise_communication.py

ninamwa / kmriiwa_ws

 eloquent Branch: Create new file Upload files Find file History

 Merge branch 'eloquent' of https://github.com/ninamwa/kmriiwa_ws into… Latest commit 25d8549 20 hours agoninamwa …

C.6. kmr_manipulator 203

C.6. kmr_manipulator

kmriiwa_ws / kmr_manipulator /

..

launch Merge branch 'eloquent' of https://github.com/ninamwa/kmriiwa_ws into… 20 hours ago

model objectdetection node updates last month

nodes cleanup NUC 20 hours ago

param code cleanup, small fixes 4 days ago

script fix activation status and compability between gripper and NUC. Fix la… last month

CMakeLists.txt renaming of nodes + making kmr drive back home when finished last month

README.md Update README.md 7 days ago

package.xml full renaming from kuka to kmr 2 months ago

 README.md

1. Description

This package handles tasks associated with manipulation of the LBR iiwa.

Vision using a Intel® RealSense™ D435 camera

Object detection and localization

Grasping using a Robotiq 2F-85 gripping

2. Requirements

The following packages needs to be installed:

ROS2 Intel Realsense

ROS2 Openvino Toolkit

ROS2 Object Analytics

3. Run

The camera and gripper must be connected to a computer by USB. An onboard computer with ROS2 installed is useful for this
puprose. The nodes are launched by running the command:

$ ros2 launch kmr_maniupulator nuc.launch.py

ninamwa / kmriiwa_ws

 eloquent Branch: Create new file Upload files Find file History

 Merge branch 'eloquent' of https://github.com/ninamwa/kmriiwa_ws into… Latest commit 25d8549 20 hours agoninamwa …

204 Appendix C. Github Repository

C.7. kmr_moveit2

kmriiwa_ws / kmr_moveit2 /

..

config change order of search 2 and 3 3 days ago

launch code cleanup, small fixes 4 days ago

rviz full renaming from kuka to kmr 2 months ago

src code cleanup, small fixes 4 days ago

.project full renaming from kuka to kmr 2 months ago

CMakeLists.txt renaming of nodes + making kmr drive back home when finished last month

README.md Create README.md 5 days ago

package.xml merge branch behaviortree into branch eloquent 2 months ago

 README.md

1. Description

This package handles the use of the MoveIt2 package for path planning for the LBR iiwa manipulator.

2. Requirements

The following packages needs to be installed:

MoveIt2

3. Run

Run the following command to launch MoveIt:

$ ros2 launch kmr_moveit2 moveit.launch.py

MoveIt can be used in three different ways:

Through the action PlanToFrame.

By publishing a ROS PoseStamped to the /moveit/goalpose topic

By publishing a ROS String describing a configured frame to the /moveit/frame2 topic. The possible frames are described in
the SRDF file.

ninamwa / kmriiwa_ws

 eloquent Branch: Create new file Upload files Find file History

 Merge remote-tracking branch 'origin/eloquent' into eloquent Latest commit 88a5da5 3 days agoninamwa

C.8. kmr_msgs 205

C.8. kmr_msgs

kmriiwa_ws / kmr_msgs /

..

action renaming of nodes + making kmr drive back home when finished last month

msg working mani moving to object last month

CMakeLists.txt renaming of nodes + making kmr drive back home when finished last month

README.md Update README.md 13 days ago

package.xml rebuilt to own kmr_msgs folder 2 months ago

 README.md

1. Description

This package includes the different set of messages, services and actions which are customized for the kmriiwa workspace.

ninamwa / kmriiwa_ws

 eloquent Branch: Create new file Upload files Find file History

 Update README.md Latest commit 0f6e545 13 days agoninamwa

206 Appendix C. Github Repository

C.9. kmr_navigation2

kmriiwa_ws / kmr_navigation2 /

..

launch code cleanup, small fixes 4 days ago

map small naming fixes 12 days ago

param Merge branch 'eloquent' of https://github.com/ninamwa/kmriiwa_ws into… 20 hours ago

rviz cleanup NUC 20 hours ago

scripts Merge branch 'eloquent' of https://github.com/ninamwa/kmriiwa_ws into… 20 hours ago

CMakeLists.txt keyboard which changes the speed based on warning field last month

README.md Update README.md 13 days ago

package.xml full renaming from kuka to kmr 2 months ago

 README.md

1. Description

This package handles the use of the Navigation2 package for autonomous control of the KMR iiwa robot.

2. Requirements

The following packages needs to be installed:

Navigation2

3. Run

You need two terminals where you are running the commands:

$ ros2 launch kmr_communication sunrise_communication.launch.py

$ ros2 launch kmr_navigation2 navigation2.launch.py

This will launch the communication nodes for communicating with the KMR iiwa, and the navigation stack. In Rviz, you need to
set the inital pose of the robot by pressing the "2D Pose Estimate" button. The robot should get some time to localize itself. Drive
it a around by using a keyboard. This can be launched by running:

$ ros2 run kmr_navigation2 twist_keyboard.py

This keyboard send velocity commands to the robot. The robot can also be navigating by using a pose keyboard, where you are
giving a desired pose of the robot. This can be launched by running:

$ ros2 run kmr_navigation2 pose_keyboard.py

When you are ready to start the navigation, press the "Navigation2 Goal" button, and set the goal target in the map.

The robot can also be navigating by using a pose keyboard, where you are giving a desired pose of the robot. This can be
launched by running:

A keyboard for manually controlling both the mobile vehicle and manipulator at the same time can be launched by running:

$ ros2 run kmr_navigation2 keyboard.py

ninamwa / kmriiwa_ws

 eloquent Branch: Create new file Upload files Find file History

 Merge branch 'eloquent' of https://github.com/ninamwa/kmriiwa_ws into… Latest commit 25d8549 20 hours agoninamwa …

C.10. kmr_simulation 207

C.10. kmr_simulation

kmriiwa_ws / kmr_simulation /

..

launch full renaming from kuka to kmr 2 months ago

models/kmr small naming fixes 12 days ago

worlds full renaming from kuka to kmr 2 months ago

CMakeLists.txt full renaming from kuka to kmr 2 months ago

README.md Update README.md 5 days ago

package.xml full renaming from kuka to kmr 2 months ago

 README.md

1. Description

This package is used for simulating the robot in Gazebo.

2. Requirements

The Gazebo software and the ROS packages for interfacing with Gazebo, called gazebo_ros_pkgs, must be installed.

3. Run

To start up Gazebo, run:

$ ros2 launch kmr_simulation gazebo.launch.py

In addition, you need to launch the robot_state_publisher:

$ ros2 launch kmr_bringup state_publisher.launch.py

This will launch a model of the robot in Gazebo, and it is possible to control it, by using the twist keyboard:

$ ros2 run kmr_navigation2 twist_keyboard.py

The keyboard will make the robot move around in the simulated environment. Other packages like SLAM and Navigation may
also be used together with Gazebo!

ninamwa / kmriiwa_ws

 eloquent Branch: Create new file Upload files Find file History

 Merge remote-tracking branch 'origin/eloquent' into eloquent Latest commit 88a5da5 3 days agoninamwa

208 Appendix C. Github Repository

C.11. kmr_slam

kmriiwa_ws / kmr_slam /

..

config Final maps and SLAM configurations. Increase range of laserscan range… 15 days ago

created_maps code cleanup, small fixes 4 days ago

launch Merge branch 'eloquent' of https://github.com/ninamwa/kuka_ws into el… 15 days ago

rviz nuc files and cartographer tuning 20 days ago

CMakeLists.txt renaming from kmr_cartographer to kmr_slam last month

README.md Update README.md 5 days ago

package.xml renaming from kmr_cartographer to kmr_slam last month

 README.md

1. Description

This package is used for performing realtime SLAM and creating a map together with the KMR iiwa. Both the packages
Cartographer and RTAB-Map can be used.

2. Requirements

The following packages needs to be installed:

Cartographer

Cartographer_ros

RTAB-Map

rtabmap_ros (ROS wrapper for RTAB-Map)

Nav2_map_server (for saving the maps - it is a part of the Navigation2 package)

3. Run

To launch Cartographer, run:

$ ros2 launch kmr_slam cartographer.launch.py

To launch RTAB-Map, run:

$ ros2 launch kmr_slam rtabmap.launch.py

The communication with the KMR must be started, and the robot can be driven around manually by using the implemented
keyboard:

$ ros2 run kmr_navigation2 twist_keyboard.py

If you want to save the map which are created, this can be done by running the following command in a separate terminal:

$ ros2 run nav2_map_server map_saver

ninamwa / kmriiwa_ws

 eloquent Branch: Create new file Upload files Find file History

 Merge remote-tracking branch 'origin/eloquent' into eloquent Latest commit 88a5da5 3 days agoninamwa

C.12. kmr_sunrise 209

C.12. kmr_sunrise

kmriiwa_ws / kmr_sunrise /

..

app cleanup in Java code 4 days ago

comm cleanup in Java code 4 days ago

motion cleanup in Java code 4 days ago

nodes cleanup in Java code 4 days ago

utilities cleanup in Java code 4 days ago

README.md Update readme with dependency 4 days ago

 README.md

1. Description

This package contains the Java program that is to be installed and launched on the Sunrise Cabinet.

In addition to the main application, KMRiiwaSunriseApplication, the package include the following communication nodes:

kmp_commander

kmp_sensor_data

kmp_status_data

lbr_commander

lbr_sensor_data

lbr_status_data

lbr_commander

The Javadocs of the package can be found at https://ninamwa.github.io/kmriiwa_ws/

The connection type (UDP/TCP) and port can be set for each node in the KMRiiwaSunriseApplication. The IP address to the
remote computer must be defined in either of the TCPSocket or UDPsocket classes, depending on the choice of protocol.

The files must be downloaded to a Sunrise project and synchronized to the controller from Sunrise Workbench.

2. Requirements

In addition to the default KUKAJavaLib, the following .jar packages must be added to the library of the project:

com.kuka.common

com.kuka.nav.comm.api

com.kuka.nav.encryption.provider.api

com.kuka.nav.provider

com.kuka.nav.provider

com.kuka.robot.fdi.api

bjprov-djk15on-154

log4j

slf4j.api

slf4j.log4j12

2. Run

The KMRiiwaSunriseApplication can be launched from the smartPAD when the project is installed on the Sunrise Cabinet.

ninamwa / kmriiwa_ws

 eloquent Branch: Create new file Upload files Find file History

 cleanup in Java code Latest commit 0363d0f 4 days agocharlotteheggem

Appendix D.

Javadoc

A javadoc is generated for the Java implementation of the system, which can be
found at https://ninamwa.github.io/kmriiwa_ws/. The documentation con-
tains an overview of the implemented classes and how they are related. Figure D.1
shows the overview page of the package, containing the implemented Java classes
and interfaces. Further, each class contains nested classes, constructors, fields and
methods that can be inspected by navigating the javadocs. An example of a class
page is shown in Figure D.2 for the abstract class Node.

https://ninamwa.github.io/kmriiwa_ws/

212 Appendix D. Javadoc

PACKAGE CLASS USE TREE DEPRECATED INDEX HELP

ALL CLASSES

Package API_ROS2_Sunrise

Interface Description

ISocket

Class Description

CheckOpenPorts

DataController

KMP_commander

KMP_sensor_reader

KMP_status_reader

KMPjogger

KMRiiwaSunriseApplication

LBR_commander

LBR_sensor_reader

LBR_status_reader

Node

PTPpoint

SafetyStateListener

TCPSocket

UDPSocket

Interface Summary

Class Summary

PACKAGE CLASS USE TREE DEPRECATED INDEX HELP

ALL CLASSES SEARCH: Search

Figure D.1.: Javadoc overview of the package API_ROS2_Sunrise with the
implemented Java classes.

213

Package API_ROS2_Sunrise

Class Node

java.lang.Object

java.lang.Thread

API_ROS2_Sunrise.Node

All Implemented Interfaces:

java.lang.Runnable

Direct Known Subclasses:

KMP_commander, KMP_sensor_reader, KMP_status_reader, LBR_commander, LBR_sensor_reader, LBR_status_reader

public abstract class Node

extends java.lang.Thread

Nested Class Summary

Nested classes/interfaces inherited from class java.lang.Thread

java.lang.Thread.State, java.lang.Thread.UncaughtExceptionHandler

Field Summary

Modifier and Type Field Description

boolean closed

static int connection_timeout

Fields inherited from class java.lang.Thread

MAX_PRIORITY, MIN_PRIORITY, NORM_PRIORITY

Constructor Summary

Constructor Description

Node (int port1, java.lang.String Conn1, int port2, java.lang.String Conn2, java.lang.String nodeName)

Node (int port, java.lang.String Conn, java.lang.String nodeName)

Method Summary

Modifier and Type Method Description

abstract void close()

void createSocket()

void createSocket (java.lang.String Type)

boolean getEmergencyStop()

boolean getisKMPConnected()

Fields

Constructors

All Methods Static Methods Instance Methods Abstract Methods Concrete Methods

PACKAGE CLASS USE TREE DEPRECATED INDEX HELP

ALL CLASSES

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

SEARCH: Search

Figure D.2.: Example of a javadoc page for the abstract class Node.

Appendix E.

Operating the KMR

This appendix includes instructions for operating the KMR. The content is repro-
duced based on the specialization project, and is included for users who intend
to use the developed system to control the KMR. First, different components,
indicators and switches on the KMR is presented. Next, a short description of
the smartPAD and how to operate it is given. Next follows a section on how to
launch an application on the Sunrise Cabinet.

The rear side of the KMP contains a panel with components for operating the
vehicle.

Figure E.1.: The rear of a KMP 200 omniMove [23, p. 18].

The elements denoted by circled numbers in figure E.1 will be explained. The main
switch 8 is used to turn on the KMR. The key switch 10 has three positions.
The first is used to operate the KMR with the radio control unit. To operate
the KMR with an application, the key switch must be set to the second position.
The third position is used to release the brakes for emergency operation of the
vehicle. The device for releasing the brakes can be connected at 11 . To use the

216 Appendix E. Operating the KMR

Figure E.2.: The KUKA smartHMI user interface on the smartPAD [23, p. 141].

release device, the robot must be switched off, and the robot can be pushed when
holding the button at the releasing device.

The emergency stop button 1 can be used to stop the KMR. There are two
such buttons at the KMP, one at the front and one at the rear. The panel 3

contains display elements that indicate the states of the robot during operations.
The platform has a LED strip denoted 6 that signals defined states in different
colors. The state indicators can be used for troubleshooting. When stationary,
the KMR can be charged when by inserting the charger to the socket 5 from the
external battery charger. The smartPAD can be connected at 11 .

E.1. SmartPAD
Figure E.2 shows the smartHMI on the smartPAD. An application can be se-
lected by choosing the level for Applications in the navigation bar 1 . The syn-
chronized Sunrise project with the available applications will appear in a list.
Sunrise Projects can be synchronized to the Sunrise Cabinet via Sunrise Work-
bench. In Figure E.2, the tab is grey, indicating that no application is chosen.
When an application is chosen, the display area 5 changes to a different view.

E.2. Signal Units 217

When the motion is enabled, the application is launched by the green button on
the rear of the smartPAD. The yellow status indicator for the Applications level
indicates that an application is paused. Logged information and eventual errors
from launching an application are shown in the display area 5 .

The Robot level in 1 displays the selected platform, and the display area 5

provides information about the chosen robot. The chosen robot can be moved,
or jogged, manually by pressing the jog keys on the left side of the smartPAD.
Operation mode must be set to T1, and the motion must be enabled.

The operating mode of the system can be changed by turning the key switch on
the smartPAD and choosing the desired mode. The smartPAD has three enabling
switches located on the back of the device. All the switches are white and have
three positions: not pressed, fully pressed, and center position. The motion is
enabled if one of the buttons is held at the center position, and the robot can be
moved manually. An emergency stop button is located on the front side of the
smartPAD.

E.2. Signal Units
The KMP has signal units to indicate the states of the robot, the operator panel,
the LED strip and the display on the SICK scanners, which are useful for trou-
bleshooting. Common faults are listed in chapter 12 in the documentation of the
KMR [23, p. 222]. The display elements on the operator panel provide informa-
tion about the state of the vehicle [23, p. 117]. The LED strip around the KMP
indicates the operating state of the vehicle. The different types of signals are
described in the operating manual of the KMR [23, p. 31]. Information about
the SICK laser scanners can be found in the manual [23, p. 224], and different
signals for the display of the panel can be found in the operating instructions for
the SICK S300 [28, p. 117].

E.3. Launching an Application
This description assumes the complete project is installed, with the associated
parts on the work computer and the remote computer. The remote computer must
be connected to the ASUS 5G network, which is the network used by the Sunrise
Cabinet. The IP address and ports defined for TCP or UDP connections must be
set in the corresponding Java socket class and Sunrise application, respectively.
The same information needs to be specified in the bringup configuration file in
kmr_communication.

218 Appendix E. Operating the KMR

The KMR is turned on by turning the main switch on the rear of the KMP from 0
to 1, denoted 8 in figure E.1. After a few seconds, the smartPAD is enlightened,
and the startup of the OS is initialized. When the smartHMI shows the station
display as in figure E.2, the configuration is complete. A yellow status indicator
is shown next to the station, indicating a safety warning that concerns the KMP.
This can be ignored.

If the platform is to be operated in manual mode, it is necessary to be two persons.
One person needs to handle the Sunrise smartPAD to activate motion, while the
other person controls the remote computer. It is advised that the system is started
with no obstacles close to the KMR. The person holding the smartPAD should
keep a distance from the vehicle when launching the application. The application
is selected by choosing the Application tab in the navigation menu. Further, the
white enable button must be pressed, followed by the green start button. Both
buttons are located on the back of the smartPAD. The buttons must be held
through the entire execution to enable the motion of the vehicle.

If the platform is to be operated in autonomous mode, the Java program Posi-
tionAndGMSReferencing needs to be launched. The application can be selected
from the application drop-down menu on the smartPAD. This requires that the
robot is in the operation mode T1. When the program has terminated, the key
on the smartPAD can be switched to select AUT mode. Further, the application
can be selected as described for manual modes. The green start button on the
smartPAD is used to execute the application.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

M
as

te
r’s

 th
es

is

Charlotte Heggem
Nina Marie Wahl

Mobile Navigation and Manipulation

Configuration and Control of the KMR iiwa with
ROS2

Master’s thesis in Engineering & ICT

Supervisor: Lars Tingelstad

June 2020

	Preface
	Abstract
	Sammendrag
	Introduction
	Background and Motivation
	Previous Work
	Challenges

	Contributions
	Problem Description
	Related Work
	Outline

	Fundamentals
	Preliminaries
	Behavior Trees
	Types of Nodes

	Computer Vision
	Projective Geometry
	Camera Model
	Camera Calibration
	Stereo Vision
	Image Rectification
	Features
	Segmentation
	Object Detection

	Simultaneous Localization and Mapping
	Map
	Online and Full SLAM
	Filter and Optimization SLAM
	Local and Global SLAM
	Maximum A Posteriori Estimate
	Localization
	Mapping

	Hardware
	KMR iiwa
	Operating Modes
	Software
	KMP 200 omniMove
	LBR iiwa 14 R820

	Robotiq 2F-85 Gripper
	Gripper Register Mapping
	Modbus RTU Communication

	Intel Realsense Depth Camera D435
	ROS Software
	Calibration

	ROS2
	Introduction to ROS
	Concepts
	Stacks for SLAM
	Cartographer
	RTAB-Map

	Behaviortree.CPP
	Navigation2
	MoveIt2
	Configurations
	How MoveIt Works

	Stacks for Object Detection
	OpenVINO Toolkit
	Object Analytics

	Achievements and Evaluation
	System Description
	Setup
	Physical Installations
	Software Setup

	Robot Model and Simulation
	URDF
	Gazebo

	Physical Architecture
	Communication Architecture
	Remote PC
	Sunrise Cabinet

	Sunrise Application
	Behavior Tree
	Tree Nodes

	Server Nodes
	BehaviorTree Node
	NavigationSupport Node
	RunMoveIt Node
	Gripper Node
	ObjectDetection Node

	System Review
	Communication Architecture
	Communication Protocol
	Network

	Sunrise
	KMP Sensor Data
	KMP Motions
	LBR Motions
	Safety

	ROS
	Actions
	Programming Language

	Sensors and Actuators
	Robotiq 25-85 Gripper
	Intel Realsense Cameras

	Remarks

	SLAM
	Experimental Environment
	Results
	Odometry
	Mapping
	Final Maps
	Mapping the Robot Cells

	Discussion
	Odometry
	Mapping
	Remarks

	Navigation
	Results
	Velocities
	Dynamic Replanning
	Dynamic Adjustment of Velocities
	Voxel Layer with Camera Data

	Discussion
	Tuning
	Evaluation of Results
	Remarks

	Manipulation
	Experimental Setup
	Results
	Joint States
	Path Planning

	Discussion
	Hand Eye Calibration
	Joint States
	Path Planning
	Remarks

	Object Detection
	Results
	Training
	Experiments

	Discussion
	Training
	Experiments

	Mobile Navigation and Manipulation
	Experimental Setup
	Results
	Video: composed1
	Video: composed2
	Video: manipulation

	Discussion

	Conclusion
	Conclusion
	Further Work
	Requirements
	Suggestions
	Going Further

	Concluding Remarks

	Bibliography

	Appendix
	Digital Attachments
	Conference Paper
	Github Repository
	Hierarchy
	kmriiwa_ws
	kmr_behaviortree
	kmr_bringup
	kmr_communication
	kmr_manipulator
	kmr_moveit2
	kmr_msgs
	kmr_navigation2
	kmr_simulation
	kmr_slam
	kmr_sunrise

	Javadoc
	Operating the KMR
	SmartPAD
	Signal Units
	Launching an Application

