
Initial Integration of Data-Driven
Health-Indicators in the Petroleum
Industry

June 2020

M
as

te
r's

 th
es

is

M
aster's thesis

Kolbjørn Trøstheim Flaarønning
Mari Elida Tuhus

2020
Kolbjørn Trøstheim

 Flaarønning, M
ari Elida Tuhus

NT
NU

N
or

w
eg

ia
n 

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

Fa
cu

lty
 o

f E
ng

in
ee

rin
g

De
pa

rt
m

en
t o

f M
ec

ha
ni

ca
l a

nd
 In

du
st

ria
l E

ng
in

ee
rin

g





Initial Integration of Data-Driven Health-
Indicators in the Petroleum Industry

Kolbjørn Trøstheim Flaarønning
Mari Elida Tuhus

Master's Thesis in Engineering and ICT 
Submission date: June 2020
Supervisor: Jørn Vatn

Norwegian University of Science and Technology
Department of Mechanical and Industrial Engineering





i

Preface

This thesis marks the end of the five-year study program Engineering and

ICT, at the Norwegian University of Science and Technology. The master

thesis was written in spring 2020 as a final work of research. The master

thesis was conducted in close collaboration with Teekay Offshore Pro-

duction AS, as the company wanted to explore the possibilities for imple-

menting data-driven health indicators. It is assumed that the reader has

fundamental knowledge within the field of maintenance, and machine

learning knowledge is preferred. Then again, the theoretical framework

required for understanding the fundamentals of the machine learning

techniques used in this thesis is found in Chapter 3.
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Abstract

Condition monitoring has become a vital maintenance strategy across

many industries. Obtaining information regarding health-condition of

the system’s components can profoundly reduce the operational costs

as well as reduce the risk of catastrophic events. With today’s emerging

technology, it is possible to install sensors on every imaginable system

component. Sensor technology generates a vast amount of data which,

if interpreted correctly, leads to more insightful information. However,

this does require sophisticated strategies regarding data acquisition, pro-

cessing and advanced predictive techniques, as real-life data tends to

be inconsistent, noisy and incomplete. This thesis proposes the initial

step for implementing data-driven models to strengthen the predictive

abilities in Teekay Offshore Production’s maintenance strategy. A health-

indicator for systems including compressors, turbines and diesel engines

require a comprehensive data collection and might be too intricate to

solve with the laws of physics. Thus, this thesis aims to research the pos-

sibility of using machine learning models to strengthen the predictive

abilities of companies in the petroleum industry. Similar to most real-

life datasets, the obtained data was of high dimension, complex struc-

ture and low quality. This thesis specifically focused on ensuring high

data quality by performing an extensive grid-search through the domain

of preprocessing techniques. The techniques were validated after their

ability to improve the prediction accuracy, as the main objective of this

thesis is to create an accurate health-indicator for a compression train.

Three types of recurrent neural networks, alongside two baseline mod-

els, one classical statistical model and one multilayer perceptron, were

created. The baseline models created the possibility of assessing the po-

tential value of increasing the complexity of the models. The three re-

current neural networks outperformed both baseline models. The high-

est performing recurrent neural network was the Long-Short Term Mem-

ory with an increased performance of 17.18% in terms of prediction ac-
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curacy. Finally, a hybrid model combining the strengths of the highest

performing recurrent neural network and the classical autoregressive in-

tegrated moving average model was implemented. The hybrid model

leveraged the strength of both individual models and obtained an in-

creased performance of 27.51% compared to the baseline models. A hy-

brid model achieved the best result in this research, as it captured both

the linear and non-linear relationships in the real-life dataset.
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Sammendrag

Tilstandsovervåkning har blitt en essensiell vedlikeholdsstrategi i flere

bransjer. Muligheten til å samle systemdata om helsetilstanden til kom-

ponenter gjør det mulig å redusere driftskostnader betraktelig, samt re-

dusere risikoen for katastrofale hendelser. Med dagens teknologiske fram-

skritt er det mulig å installere sensorer på og overvåke alle tenkelige gjen-

stander. Sensorteknologi generer en enorm mengde data, noe som gir

en verdifull innsikt hvis den tolkes korrekt. Ettersom data fra industrien

ofte er ufullstendig, inkonsistent og inneholder støy, kreves det sofistik-

erte strategier ved datainnsamling og dataprosessering, samt avanserte

prediktive fremgangsmåter. Denne masteroppgaven foreslår implementer-

ing av datadrevne modeller for å øke den prediktive evnen i vedlikeholdsstrate-

gien til Teekay Offshore Production. En helseindikator som overvåker

kompressorer, turbiner og dieselmotorer krever en omfattende innsam-

ling av data. Derfor er det lagt et stort fokus på å sikre høy datakvalitet

ved å utføre omfattende tester av ulike databehandlingsmetoder.

Tre recurrent neural networks, samt to baseline-modeller, henholdvis

en klassisk statistisk modell og et flerlags perceptron, er implementert.

Baseline-modellene sikrer muligheten til å vurdere verdien av å øke kom-

pleksiteten på modellene. Recurrent neural networks modellene presterte

bedre enn samtlige baseline-modeller, hvor long-short term modellen

skilte seg spesielt ut med en relativ forbedring på 17.18%. Til slutt ble en

hybridmodell implementert for å kombinere styrkene fra den klassiske

autoregressive integrating moving average modellen og fra recurrent neu-

ral networks. Hybridmodellen oppnådde en forbedring på 27.51% sam-

menlignet med baseline-modellene og er dermed det beste resultatet i

dette arbeidet.
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Chapter 1

Introduction

1.1 Background

The exponential increase of generated data facilitates the opportunity for

companies to extract valuable information concerning their business op-

erations. With today’s emerging technology and Internet of Things, it is

possible to monitor and collect data from every component imaginable.

The rise of Artificial Intelligence (AI) and Machine Learning (ML) has

proven to be a reliable tool in data mining across many industries. In-

creased data processing capacity and computationally efficient models

result in new approaches that can infer intricate patterns and relation-

ships that were otherwise not obtainable. Increasing the amount and

quality of the knowledge regarding relevant systems have always been a

desirable action and can be achieved by data-driven machine learning

models. However, moving from theory to practice and from simulated to

real-life data proposes several challenges.

In order to research the challenges of setting theory to practice, this

master thesis is written in collaboration with Teekay Offshore Production

AS. Teekay is a leading company in providing FPSO solutions to compa-

nies extracting oil and gas in deep water and under harsh weather con-

ditions. The safety and reliability of the plant is the primary concern for

3
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Teekay, and requires continuous monitoring of the system, as well as a

carefully scheduled maintenance routine. Being able to move from a pre-

ventive and corrective to a predictive maintenance routine is desirable,

to stay competitive in an industry currently experiencing harsh weather.

Creating a model able to say something about the future health-state

of a component would be a first step for the company towards an en-

tirely data-driven maintenance routine. Machine learning has over the

last decades, become a contestant to the classical statistical models in

terms of forecasting. Artificial neural networks (ANN) have proven to be

the state-of-the-art within the ML discipline regarding time-series fore-

casting. This claim is widely supported by a broad specter of research,

such as Adebiyi, Adewumi, and Ayo (2014), Karbasi, Laskukalayeh, and

Seiad Mohammad Fahimifard (2009) to name a few. Nevertheless, the

classical statistical models, such as ARIMA, are still severe contestants to

neural networks. Nevertheless, in most research, these models and their

performance are compared using simulated data, which differs signifi-

cantly from real-world time-series. Han, Pei, and Kamber (2011) define

the quality of data by three parameters; consistency, accuracy and com-

pleteness. However, real-life data tend to be inconsistent, incomplete

and unstructured. Thus, when dealing with real-life data, an extensive

preprocessing phase is required. Naduvil-Vadukootu, Angryk, and Riley

(2017) highlight in their research how an extensive preprocessing phase

resulted in a data-driven model with a simpler structure and a more ac-

curate predictor. Also, Elsworth and Güttel (2020) highlights the impor-

tance of preprocessing, but as real-life datasets vary from domain and

problem of interest, there still does not exist a pipeline of preprocessing-

techniques transforming raw data to high quality data.

The main incentive behind this thesis is to apply the theory of in-

formation technology and machine learning in a real-world application.

Teekay, among other companies in the petroleum industry, has a strong

desire to improve their operations by continuously integrating new tech-
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nology. Teekay’s available data and domain expertise combined with the

ICT knowledge of the authors of this thesis, paved the way for an exper-

iment to integrate machine learning into Teekay’s maintenance strategy.

The availability of real-life data also allowed for the comparison between

the state-of-the-art ML-models and traditional statistical models, from

a real-life perspective. Moving from theory to practice naturally results

in more uncertainty and unexpected challenges. Hence, the goal of this

thesis is to highlight, discuss and overcome the challenges of implement-

ing machine learning on real-life data. The research aims to be the be-

ginning of a digital transition, which potentially could increase Teekay’s

competitive advantage. This thesis includes the necessary steps in con-

verting the available data from the Piranema vessel into data applicable

in a machine learning model with the hypothesis that a machine learn-

ing model could enhance the system monitoring on the vessel. Multiple

machine learning models, alongside a traditional predictive model, are

created and reviewed to determine the benefits and challenges of incor-

porating machine learning into the maintenance strategy.

1.2 Problem description

Teekay has multiple FPSO vessels where the Piranema Spirit located out-

side of Brazil is the one regarded in this thesis. Since the production

started in 2007, the Piranema unit has experienced a problem with its gas

compression system. The FPSO, short for Floating Production Storage

and Offloading, extracts and processes the crude oil, which is later stored

onboard the vessel. The gas extracted from the wells is later reinjected,

in order to extract the remaining crude oil from the wells. In order for

the gas injection to be effective, the injected natural gas needs to main-

tain a certain level of pressure. Increasing the pressure of the gas is done

by compressing the gas through a three-stage compression train. Figure

1.1 shows the positioning of the exhaust outlets for the OPRA turbines
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and the air inlets for the Solar Turbines. The OPRA turbines function

as the primary power source on the FPSO and the Solar turbines power

the shafts running the compression trains. Given a certain wind degree

and wind speed, the exhaust from the OPRA turbines enters the air in-

lets of the Solar turbines. Polluted air entering the Solar inlets decreases

the turbine function, resulting in reduced compression performance. By

collecting historical sensory data from the FPSO, the scope of this thesis

is to create a machine learning model that can indicate the future health

state of the compression trains. The health indicator aims to predict the

future performance for the compression trains. Predicting future per-

formance creates the opportunity to execute preventive actions to avoid

critical events such as process shutdowns.

Figure 1.1: Illustrative overview of the position of the OPRA exhaust out-
lets and the Solar air inlets.
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1.3 Objectives

• Understand the fundamentals and specifics of the OPRA turbine

systems and gas compressor system, by performing qualitative anal-

ysis such as a fault tree diagram and a failure mode and effect anal-

ysis.

• Find a suitable target variable that accurately indicates the perfor-

mance of the compression system.

• Research strategies and techniques regarding data collection, ex-

traction and processing of real-life data.

• Search the literature to identify machine learning models suitable

for time-series prediction.

• Implement multiple ML models as well as a statistical model for

performance comparison for time-series prediction, in order to cre-

ate a health-indicator.

• Explore possible benefits for Teekay Offshore Production of imple-

menting predictive models

1.4 Scope & Limitations

The models implemented in this thesis are designed to evaluate the gas

compression system on the Piranema Spirit vessel. The acquired data

is limited to three OPRA turbines, three Solar turbines, three compres-

sion trains and weather data. Although this already is a complex system

with many components, the models are capable of extending the even

larger system. The data provided by the IP21 database consist of compo-

nent sensory time-series data which are not designed to perform com-

prehensive data analysis. Hence, the main work involves preparing the

data such that it is usable in machine learning models. The scope of the
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ML models is limited to predicting a health indicator of the compression

system.

1.5 Contributions

As this thesis functions as a first step of implementing ML into Teekay’s

maintenance strategy the main contributions are as follows:

• An in-depth review of the state-of-the-art of machine learning on

real-life data. A comprehensive literature review was completed in

the fall of 2019 where as Chapter 4 summarizes the relevant find-

ings. Particularly highlighted is the use of ML on real-life applica-

tions and machine learning in time-series predictions.

• A data preprocessing approach transforming Teekay’s available data

into data suitable for machine learning analysis.

• An analysis of multiple machine learning based health indicators

for the compression train to asses the benefits and challenges of

different model configurations.

1.6 Outline

First and foremost, Chapter 1 presents an introduction to the area of re-

search, the main objectives and the contributions from this thesis. As

this thesis is written in collaboration with a company, Chapter 2 gives a

brief introduction of Teekay Offshore Production AS and their mainte-

nance routine. Chapter 3 covers the theoretical framework for the thesis,

while Chapter 4 shortly summarizes the literary findings. Introduced in

Chapter 5 is the problem of research. The chapter gives a detailed expla-

nation of the compressor trains, and the components involved. Chapter

6 depicts the preprocessing phase, followed by the modelling phase in
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Chapter 7. The results and analysis are summarized in Chapter 8, while

a comprehensive discussion is given in Chapter 9. The conclusion of the

thesis is drawn in Chapter 10, and last but not least, Chapter 11 suggest

areas of research for future work.

1.7 Barriers

As this thesis was conducted during the global pandemic Covid-19, it

brought some challenges to the conduction of the research. When Nor-

way closed down the 12th of March 2020, we were still in daily meetings

with the engineers in Teekay, outlining the thesis formulation, and look-

ing at potential features of interest. Domain knowledge is a crucial first

step of any Machine Learning task, and when the pandemic peaked, the

company had to prioritise differently. It was a time-consuming phase

getting access to the software required for working from home, involving

getting internal Teekay computers shipped to Oslo. We want to send our

gratitude once again to Teekay, especially four employees, Erlend Me-

land, Kristian Holm Jensen, Bjørn Olav Ness and Jostein Vada, for helping

us through this challenging phase of the research.
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Chapter 2

Teekay Offshore Production AS

2.1 Introduction

Starting as a regional shipping company, Teekay Offshore Production is

now a market leader in providing FPSO solutions to oil production com-

panies. FPSO is an acronym for "Floating Production Storage and Of-

floading", used in the production and processing of hydrocarbons and

storage of oil. As the world’s leading marine services company, Teekay

is an important link in the global energy supply chain. The goal is to

contribute to sustainable business and environment by limiting the cli-

matic footprint. Sustainability and safety are among the critical values

for the company, and all decisions consider the people, planet and po-

tential profit.

2.2 Teekay’s Floating Vessels

2.2.1 FPSO

FPSO is a floating unit used to process, produce and store oil until it is

shipped to shore (Gupta and Grossmann 2011). The floating production

system receives and process the crude oil from a sub-sea reservoir, sep-

11
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arates the refined oil and stores it onboard until it is offloaded to tanker

vessels. The majority of FPSO units are shaped like ships, and due to

their shape they are suitable for a broad range of water depth and envi-

ronmental conditions (Duggal, Heyl, Ryu, et al. 2009). FPSOs are often

preferred in frontier offshore regions as they are easy to install. Using

such a device instead of oil-rigs results in reduced upfront investments,

retained value because the device can be relocated to other fields and a

low abandonment costs.

2.2.2 The Piranema Spirit Vessel

This thesis explores a current issue at the Piranema Spirit vessel, one of

Teekay’s FPSO units. Piranema is a new built FPSO, designed by Teekay

for Petrobras, a Brazilian multinational corporation in the petroleum in-

dustry. The unit has been operating since 2007 and has the capacity of

producing 25.000 barrels per day (BPD). Piranema is also the name of

the oil-field, discovered in 2001 and is localized at the continental shelf

the Brazilian state of Sergipe, 37 km from the coastline. The production

started in 2007, and back then the Piranema unit produced on average

4254 barrels per day of refined oil (OffShore-Energy-Today 2019). Shown

in Figure 2.1 is a photo of the unit in operation.

Figure 2.1: Photo of the FPSO vessel Piranema. (Photo:Petrobras)
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2.3 Maintenance Strategy at Piranema

The maintenance strategy on the vessel focuses on ensuring the required

standards to be met, relating to safety-critical equipment, reduce un-

planned shutdowns, and optimization of the total cost for the mainte-

nance routine. The strategy is obtained by implementing sufficient and

correct maintenance routines, followed by a precise and correct execu-

tion. Planning of forthcoming preventive maintenance routines, and en-

suring the availability and quality of spare parts is a crucial step for meet-

ing these requirements. Another crucial step includes having the neces-

sary systems, procedures, routines, personnel and material for testing,

inspection and maintenance of all technical equipment clearly defined.

Teekay highlights the focus on the improvement of documentation of

maintenance and operation. All preventive and corrective maintenance

tasks are specified using the Star Information and Planning System de-

scribed in Section 2.3.4.1.

2.3.1 Constraints

As the FPSO is located in the Brazilian shore, it is the Brazilian Shelf State

legislation that sets the requirements and constraints. An example is that

the Piranema Vessel needs to follow some essential guidelines, such as

the NR-131 , which is a regulation establishing the minimum conditions

for the installation and operation of boilers and pressure vessels in Brazil.

In addition, Teekay has its own class and flag state requirements. The

contractors can state individual requirements in the contract. For exam-

ple, the current contractor fines Teekay if the water injection system is

not functioning, even if its usage is not required. The contractor also has

requirements in terms of up-time, but not what Teekay does to satisfy the

up-time requirement.

1http://www.braziliannr.com/brazilian-regulatory-standards/
nr13-boilers-and-pressure-vessels/

http://www.braziliannr.com/brazilian-regulatory-standards/nr13-boilers-and-pressure-vessels/
http://www.braziliannr.com/brazilian-regulatory-standards/nr13-boilers-and-pressure-vessels/
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2.3.2 Maintenance at the FPSO

The maintenance onboard the FPSO is carried out as a combination of

preventive, corrective and conditional maintenance. An integrated part

of the maintenance strategy is to have spare parts and other equipment

available onboard for preventive maintenance, and the predefined criti-

cal equipment available for corrective maintenance. The items are clas-

sified in terms of criticality, where criticality is defined as the potential

consequence of a failure based on safety, health, environment, and di-

rect cost to restore its function. The result of such a classification is the

guidance for the selection of maintenance strategy and prioritization of

maintenance task. A component in need of maintenance is defined as

an item with lost intended function, its function significantly reduced or

if it is malfunctioning. STAR generates work orders for preventive main-

tenance, and safety-critical elements are tested regularly to ensure that

they meet the performance standards. Work orders for corrective main-

tenance cover unplanned maintenance activities and breakdowns.

2.3.3 Condition Monitoring

By using condition monitoring, the development of degradation is es-

timated based on different measurements such as performance, vibra-

tion level and temperature. The necessary corrective or preventive ac-

tions can be planned according to the level of degradation. For various

pumps and electric motors, such monitoring is an adequate measure.

However, for more sophisticated types of machinery, like compressor,

turbines and diesel engines, comprehensive data collection and calcula-

tion is required to produce an adequate evaluation of the performance.
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2.3.4 Information Systems

2.3.4.1 STAR Information and Planning System

STAR Information and Planning System is a computer-based maintenance

system used for the planning and administration of the maintenance

work on the FPSO. The primary purpose of such a system is to provide

an effective administration of the maintenance work, an overview of his-

torical data and available spare parts. STAR IPS controls the planning of

maintenance including implementation and reporting of all completed

preventive and corrective activities. All maintenance activities are histor-

ically reported into STAR IPS, where each report contains relevant find-

ings, consumption of spare parts and work description. The reported

data allows for continuous improvement of the maintenance activities

and the selection of required equipment.

2.3.4.2 Win CC

The Figure in 2.2 shows a snapshot of the system used by the control

room operators when monitoring and controlling all the processes on

the production plant. A general term for this type of system is a supervi-

sory control and data acquisition system (SCADA), and the specific type

used on the Piranema vessel is Win CC, delivered by Siemens. By using

such systems, the process engineers can control and monitor the pro-

cess plant, by gathering and analyzing data from the different sensors

and valves.
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Figure 2.2: Snapshot of the SCADA system on the Piranema Vessel

2.3.4.3 IP21

The Win CC system receives sensor data in real-time in order to control

and monitor the process plants. The data is later stored in the IP21 in-

formation system. IP21 is known to be a powerful tool used in a variety

of fields within petroleum production. The system is used to improve

work practices and to reduce downtime by providing historical data for

trending, reporting and other analyses.



Chapter 3

Theoretical Framework

3.1 Data Preprocessing

The exponential increase in generated data facilitates the opportunity

for companies to extract valuable information concerning their business.

However, utilizing real-life data is easier said than done. Real-life data is

often inconsistent, incomplete and gathered from multiple sources. In

order to utilize data-mining (DM) and machine learning (ML) techniques

to extract valuable information, the data requires processing such that

it is suitable and optimal. The preprocessing step is necessary to pro-

vide high-quality data to the subsequent models. Han, Pei, and Kamber

(2011) defines the quality of data by the three parameters; consistency,

accuracy and completeness. Raw real-life data is often of low quality;

hence there is a great emphasis on data preprocessing in every DM and

ML problem. Different preprocessing steps and techniques are reviewed

in the following subsections.

3.1.1 Data Preparation

Data preprocessing can be divided into two main steps, data prepara-

tion and data reduction (Garcia, Luengo, and Herrera 2015). Roughly,

17



18 CHAPTER 3. THEORETICAL FRAMEWORK

the data preparation step involves the transformation of raw data into

usable and model-suitable data. The data reduction step transforms the

data such that model performance increases. The data extracted from

relational databases are oftentimes not processed and contain errors,

inconsistencies and noise. The following subsections explain the most

common techniques in transforming raw data into usable data.

3.1.1.1 Data Cleaning

Data cleaning is an essential step of the preprocessing phase when deal-

ing with real-life data. The data might be dirty, meaning that it can con-

tain missing or wrong values (Garcia, Luengo, and Herrera 2015). Hav-

ing a dirty dataset will profoundly impact the performance of machine

learning models in various degrees. Especially susceptible to dirty data

are distance-based models which are highly dependent on the data val-

ues (Garcia, Luengo, and Herrera 2015). If these values are dirty, there is

a high probability that the model will provide incorrect predictions. Ac-

cording to W. Kim et al. (2003), dirty data can be divided into three forms;

missing data, wrong or noisy data and inconsistencies. Identifying and

processing dirty data instances is not straight forward. The wrong de-

tection will result in the removal of correct data, and missed detections

lead to falsely trained models. There are different techniques to handle

missing data and wrong data:

• Noisy data is often due to random errors in the measured variables,

which results in outlier instances. There are multiple techniques

to identify and remove these outliers, which is further explained in

Section 3.1.1.5.

• Similarly, there exist multiple techniques to treat missing values

in a dataset. Section 3.1.1.3 presents a further explanation of the

topic.
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3.1.1.2 Data Normalization

Real-life data is often collected from multiple sources, and the attribute’s

properties may vary. Most machine learning algorithms do not perform

well when the numerical range of the attributes have different scaling.

Thus, data normalization or feature scaling, as it is sometimes called, is

required. Normalization has also proven to speed up the learning pro-

cess of artificial neural networks (Garcia, Luengo, and Herrera 2015).

3.1.1.2.1 Min-Max Normalization

Min-Max Normalization is a rather simple scaling technique, used to trans-

form each attributes to a standard desirable range. Given a numerical

attribute A with numerical values v , the goal is to scale the values to an

optimal range denoted by [new −mi nA,new −maxA]. The new values

of v are then denoted as v ′ and calculated in Equation 3.1.

v ′ = v −mi nA

maxA −mi nA
(new −maxA −new −mi nA)+new −mi nA, (3.1)

where maxA is the original maximum value of attribute A and maxB is

the original value of attribute B.

It is common when normalizing the data to assign the attributes in the

range [0,1], which means that new − mi nA = 0 and new − maxA = 1.

Figure 3.1 is an example of scaling within the interval [0,1]. The interval

[-1,1] is also very often applied.
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Figure 3.1: Graphical plot illustrating the effect of the Min-Max normal-
ization technique. The original datapoints are scaled to the range of [0,1].

3.1.1.2.2 Z-score Normalization

Another widely used normalization technique is the Z-score normaliza-

tion, which utilizes the average value and the standard deviation of the

attributes. Given an attribute A with values v , mean value A and stan-

dard deviation σA, then the new value, v ′ is calculated in Equation 3.2.

v ′ = v − A

σA
, (3.2)

where the mean value of A is calculated in Equation 3.3.

A = 1

n

n∑
i=1

vi , (3.3)

where n is the total number of values v of attribute A. The standard de-

viation is calculated in Equation 3.4.

σA =+
√

1

n

n∑
i=1

(vi − A)2 (3.4)

This transformation ensures that the attribute has a mean value of

0 and a standard deviation equal to 1. Figure 3.2 illustrates the Z-score

normalization technique.
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Figure 3.2: Graphical plot illustrating the effect of the Z-score normaliza-
tion technique. The original datapoints that are transformed such that
the attribute has a mean value of zero and standard deviation of one.

3.1.1.2.3 Decimal Scaling Normalization

A third possible normalization technique is the decimal scaling normal-

ization. This method ensures that the values of an attribute are lower

than 1 after the transformation. This is done by a simple division, as

shown in Equation 3.5.

v ′ = v

10 j
, (3.5)

where v is the original value, v ′ is the new value after transformation and

j is assigned such that new −maxA < 1.

3.1.1.3 Data Imputation

When working with real data, missing data points will occur in the dataset.

Missing data points can be a result of component failure, sensor failure,

among many other reasons. Imputation is the process of substituting

these missing data points, often referred to as NaN (Not a Number), with

substituted values (Jerez et al. 2010). The following subsections summa-

rizes the most commonly used imputation techniques.
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3.1.1.3.1 Univariate Imputation

Univariate imputation techniques substitute the missing value by replac-

ing the NaN values with a value derived from its own observations. Sum-

marized below are the most commonly used techniques for univariate

imputation.

Mean

Using mean as imputation technique is as simple as substituting the miss-

ing value with the mean value of the attribute. Such an approach has

the benefit of not changing the sample mean for the variable, and at the

same time being computationally cheap. Mean is an unbiased estimate

for an observation randomly selected from a normal distribution. Never-

theless, the missing values in a real-life dataset are seldom random, and

such an approach may lead to inconsistent bias. The simple technique

does neither consider the time-aspect if the dataset was to be sequential.

Median

The median refers to the middle value in a sequence of observations,

when the data points are arranged from the least to the most significant

number. Replacing the missing values with the median of an attribute is

suitable when the attribute has a skewed distribution, and the number

of missing observations is low. For an attribute having a large number of

missing values, such a technique will result in a significant loss of varia-

tion.

Observations

Substituting the NaN values with other observations is a commonly used

technique when dealing with time-series data. The missing data-points

can either be replaced using Forward Filling which propagates the last

observed non-null value forward, or Backward Fill which propagates the

first observed non-null backwards.
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Interpolation

By using interpolation, a mathematical function is fitted to the existing

data points, and this function is used to impute the missing data points.

The simplest type of interpolation is Linear Interpolation, which calcu-

lates a mean between the values before and after the missing data point.

Whereas Polynomial interpolation is a mathematical function fitted to

the existing data points of the lowest possible degree, later used to calcu-

late the missing data points. Interpolation is a commonly used technique

when dealing with time-series, as it considers the sequential property of

the data.

3.1.1.4 Multivariant Imputation

In contrast to the univariate techniques, multivariate imputation tech-

niques consider all the available features and its observations when im-

puting and substituting for the missing values.

KNN

K-nearest neighbours is a well-known machine learning algorithm, and a

commonly used imputation technique. The algorithm imputes the miss-

ing values by finding the k nearest observations, referred to as neigh-

bours, and calculate the mean or the weighted mean of the neighbours.

Hence, a distance metric is required, and the Euclidean distance, the

Manhattan distance and the Minkowski Distance are commonly used,

as seen in Equation 3.24, 3.25 and 3.26, respectively. The algorithm is

elaborated further in Section 3.3.1.2.

Model Based Imputation

Model-based imputation is an iterative technique, where a data-driven

model is created, and the missing values are treated as the target vari-

able, one at the time. By creating different machine learning models, one

can iterate through the whole dataset and replace all the missing values
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with the output of the ML-model. Typical machine learning model used

for this matter are Logistic Regression, Decision Trees and Support Vector

Machines.

3.1.1.5 Noise Identification & Outliers

Noisy dataset with many outliers can lead to a falsely trained model. It

is important to detect and observe abnormal instances. Some outliers

might occur due to measurement errors which then needs to be trans-

formed such that the model trains on valid data. Another reason for

outliers is that the system is experiencing abnormal behaviour. In such

cases, it is interesting to detect these outliers such that preventive actions

can be executed. In both scenarious, detection of outliers are essential

and the following subsection presents one of these techniques.

3.1.1.5.1 DBSCAN

There exist several ways to deal with outliers; one of them is the cluster-

based algorithm called Density-based Spatial Clustering of Applications

with Noise (DBSCAN). As the name implies, the DBSCAN is a density-

based clustering algorithm. The goal of a density-based clustering ap-

proach is to identify randomly shaped clusters (Ashour and Sunoallah

2011). Clusters are defined as dense groupings of data points which are

separated by sparse regions of data points. An example is depicted in

Figure 3.3, where two clusters, the red and green data points, have been

identified by their dense regions of data points.
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Figure 3.3: Graphical plot illustrating datapoints that form two clusters.

The main benefit of the DBSCAN and density-based algorithms, in

general, is that they require less domain knowledge in terms of deter-

mining the number of clusters, compared to non-density-based cluster-

ing algorithms. For example, the K-means algorithm, which is a non-

density-based clustering algorithm, requires a suggestion of the number

of clusters in the dataset as an input, whereas the DBSCAN will detect

the natural number of clusters automatically (Gan, Ma, and J. Wu 2007).

However, it does require some domain knowledge to determine its’ two

main parameter inputs:

• eps is the minimum distance between two data points. If the dis-

tance between two data points is lower than or equal to the prede-

termined eps, then these two data points are considered as neigh-

bours.

• mi n_poi nt is the minimum amount of data points to create a clus-

ter.

The algorithm works as follows, given a set of data points K with pre-

determined values of eps and mi n_poi nt , then all of the data points

can be classified as either an outlier, a core-point or a density-reachable

point.
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• A point x is a core point if there exist at least mi n_poi nt s points

that are within the distance of eps. This includes point x itself.

• A point y is classified as directly reachable from core point x, if the

distance between point y and point x is less than eps.

• A point y is classified as reachable to core point x, if there exist a

path x1, ..., xn , where x1 = x and xn = y and each x j+1 is directly

reachable from x j . In other words, the entire path must consist of

core points, with the possible exception of the final point y .

• Points that are not classified as a core point, nor a density-reachable

point is classified as an outlier. This means that the outlier point is

not reachable from any other point.

The DBSCAN creates clusters and core points by finding data points

that have at least mi n_poi nt s data points that are within the distance

eps of the core point. Then it iteratively finds directly reachable points

from the core points. When all points are processed, the natural num-

ber of clusters have been discovered, as well as each point have been

assigned to its corresponding cluster or defined as an outlier.

3.1.2 Data Reduction

With today’s technology and IoT, the collected datasets are often exten-

sive, containing millions of samples with thousands of attributes. Al-

though many machine learning models require vast amounts of data,

the model efficiency can be improved by reducing the size of the dataset,

without affecting the accuracy of the model. Data reduction techniques

are used to create new representations of the dataset, where most of the

integrity is kept, and the volume is reduced (Garcia, Luengo, and Herrera

2015).
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3.1.2.1 Feature Selection

Feature selection is the process of creating a subset of relevant features

from the original dataset (Guyon and Elisseeff 2003). The end goal is a

reduced subset that makes the predictive model nearly as accurate or

sometimes even more accurate than a model with the original dataset.

There are multiple reasons why feature selection is an essential prepro-

cessing step in machine learning. First, reducing the dataset also reduces

the computational complexity of the problem. With today’s technology,

it is possible to monitor and gather data from every imaginable compo-

nent. However, not all data are equally relevant and can be disregarded

to achieve more efficient models. In addition to computational com-

plexity, feature selection also reduces the amount of redundant informa-

tion, which makes it easier to understand the behaviour of models. Also,

performing analysis on high-dimensional data might be more challeng-

ing than on lower-dimensional data due to the curse of dimensionality

(Friedman 1997). The next subsections explain the automated feature

selection process by reviewing the most common selection techniques.

3.1.2.1.1 Amount of Variance

One way to categorise the relevance of the features is to measure how

much they vary. A feature that does not vary much often has little predic-

tive power (Guyon and Elisseeff 2003). In other words, the feature does

not contain much information. For instance, a feature with a zero vari-

ance will always have one distinct value which will not have an impact on

the performance of the model. Therefore, it is desirable to identify fea-

tures with zero or low variance, which is done with the following equa-

tion:

V AR(x) =σ2 = 1

n

n∑
i=n

(xi −µ)2, (3.6)
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where xi is the value of sample i of feature x, µ is the mean value of fea-

ture x, V AR(x) is the variance of feature x andσ is the standard deviation

of feature x.

3.1.2.1.2 Feature Correlation

Removing redundant information will reduce computational complexity

without significantly reduce model performance. Redundant informa-

tion can be identified by calculating the correlation coefficients between

the features (Meng, Rosenthal, and Rubin 1992). If two features are highly

correlated, one of them should be removed. The three most common

ways to calculate the correlation coefficients between features are:

• Pearson’s Coefficient of Correlation

• Spearman’s Ranking Method

• Kendall Tau’s Coefficient of Correlation

Pearson’s Coefficient of Correlation

Pearson’s Coefficient of Correlation is often used to determine how cor-

related two numerical attributes are (Meng, Rosenthal, and Rubin 1992).

The formula is given by:

r A,B =
∑m

i=1(ai − A)(bi −B)

mσAσB
=

∑m
i=1(ai bi )−m AB

mσAσB
, (3.7)

where ai and bi are the values of attributes A and B, A and B repre-

sent the mean values of A and B, m is the number of instances, and σA

and σB are the standard deviation of A and B, respectively. r A,B ranges

between -1 and 1, where a positive value represents a positive correla-

tion between attribute A and B. In other words, if the value of attribute

A increases, then the value of attribute B increases. A negative r A,B rep-

resents a negative correlation, hence if the value of attribute A increases,
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then the value attribute B decreases. The magnitude of r A,B describes

how positively or negatively correlated the two attributes are. r A,B = 0

means that the two attributes are independent of each other.

Spearman’s Ranking Method

Spearman’s Ranking Method between two features is the same as the

Pearson Coefficient of Correlation with the ranked values of the features.

There exist multiple ranking methods Wilcoxon (1992), which are out of

the scope of this thesis. The Spearman’s rank coefficient is then:

ρr A ,rB = Cov(r A,rB )

σr A ·σrB

, (3.8)

where r A and rB denote the ranked variables A and B , respectively. Sim-

ilarly, σr A and σrB represent the standard deviation of r A and rB .

Kendall Tau’s Coefficient of Correlation

Kendall Tau’s Coefficient of Correlation describes the statistical associa-

tion between features by their rank (Meng, Rosenthal, and Rubin 1992).

A feature’s rank is the relationship between the samples, where the sam-

ples relationship is defined as either greater than, less than or equal to it’s

successor. Let (a1,b1), (a2,b2), ..., (am ,bm) be a set of samples for feature

A and B . Any pair of samples (ai ,bi ) and (a j ,b j ), where i < j is:

• concordant if both ai > a j and bi > b j , or if both ai < a j and bi <
b j ,

• discordant if ai > a j and bi < b j or if ai < a j and bi < b j and bi >
b j ,

• neither concordant nor discordant if ai = a j and bi = b j .
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The Kendall coefficient, τ is then defined as:

τ= (number o f concor d ant pai r s)− (number o f di scor d ant pai r s)(m
2

) ,

(3.9)

where
(m

2

) = m(m−1)
2 is the binominal coefficient which refers to the

number of ways to choose two samples from m samples. If the ranking

between X and Y is perfect, then the τ coefficient equals 1. If the ranking

is perfect negative, then the τ coefficient equals -1. If X and Y are inde-

pendent of each other, then the τ coefficient is zero.

Usage of Correlation Methods

The difference between the correlation techniques are summarized be-

low:

• Pearson’s Coefficient of Correlation is a parametric measure which

means that it assumes that the sampled data can be modelled by a

probability distribution with defined parameters (Geisser and John-

son 2006). Besides, it tries to evaluate the relationship between two

variables with a linear function.

• Spearman’s Ranking Method is a non-parametric measure which

uses the rank correlation between two features. It attempts to as-

sess the relationship with a monotonic function (Geisser and John-

son 2006).

• Kendall Tau’s Coefficient of Correlation is a non-parametric mea-

sure. Similar to Spearman, it tries to assess the relationship be-

tween two features with a monotonic function. It is often used

when the number of samples is small (Meng, Rosenthal, and Ru-

bin 1992).

A correlation matrix can be created by using either of the abovemen-

tioned methods which displays the correlation between all features in
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a dataset.

3.1.2.1.3 Wrapper methods

The idea behind wrapper methods is to select subsets of features that

are separately used to train a model. By comparing the performance of

each trained model, the most optimal subset of features can be selected.

There exist multiple different wrapper methods, among these are the For-

ward Feature Selection and the Backward Feature Selection. The forward

feature selection method begins with one feature, and iteratively adds

features and measure the model’s performances. The arrangement of

the way features are added varies. It is ideal to begin with the feature

that yields the highest model performance on its own, then add the next

best feature and so on. In order to do this, each feature has to be fed

into the model and their respective model performances collected. An-

other arrangement could be to sort the features by their correlation with

the target variable. By using these arrangements, it is possible to locate

when the model is not significantly improving and remove the remaining

features. Backward feature selection works similarly. However, it begins

with all the features and iteratively drops one by one. The same arrange-

ments, only reversed, can be applied to this method, and again locate

when the model performance is significantly decreasing.

3.1.2.2 Feature Extraction

Feature extraction is the process of reformatting, combining and trans-

forming the original dataset, to create new features from the existing

ones (Khalid, Khalil, and Nasreen 2014). By creating new features, the

dimensionality of the original dataset is reduced, by filtering out noise

and data without significance. A dataset containing more features than

necessary can potentially harm the learning of any algorithm, and make

the learning phase more computationally expensive. The idea behind

feature extraction is to find a lower dimension p, that is a good represen-
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tation of the original dataset of dimension n. The downside of applying

feature extraction techniques to the dataset is the interpretability of the

data, as new features p might be a combination of several features, hence

loosing their physical meaning. In the most real-world dataset, the train-

ing instances are not spread uniformly across all dimensions. Many fea-

tures are almost constant, while others are highly correlated. As a result

of this, the instances may lie within a much lower-dimensional subspace

of the high-dimensional space.

3.1.2.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is the most popular dimension-

ality reduction algorithm. The algorithm works by first calculating the

principal components of the dataset, using Singular Value Decomposition

(SVD). SVD decomposes the matrix X into the dot product of the tree ma-

trices shown in equation 3.10, and the matrix VT contains the principal

components. After identifying all principal components, the dimension-

ality of the dataset can be reduced down to m dimensions defined by

the m first principal components, as shown in Equation 3.11. Wm is the

matrix containing the m first principal components (Jolliffe and Cadima

2016).

U ·Σ ·VT = X (3.10)

Xm−pr o j = X ·Wm (3.11)

A requirement for the PCA is to chose a number of dimensions that pre-

serves a sufficiently large portion of the variance in the original dataset.

3.1.2.2.2 Kernel Principal Components Analysis

The Kernel Principal Components Analysis (KPCA) is an extension of

PCA introducing the Kernel Trick. The Kernel is a mathematical tech-

nique which maps the data instances into a higher dimension space,
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known as the feature space. By projecting the data into a higher dimen-

sion, non-linear relationship between the data instances can be discov-

ered. The approach is based on the logic that a linear decision bound-

ary in a high dimensional space is equivalent to a non-linear decision

boundary in a low dimensional space. By mapping data to a high dimen-

sional space, the non-linear structures in the data can be represented

(Géron 2019). KPCA applies this logic and can represent the non-linear

structures of the data. Thus, a dataset not linearly separable on the orig-

inal attributes can be separated by mapping the attributes to a higher

dimensional feature space. The KPCA does so by introduction a ker-

nel function, which is a function capable of computing the dot product

of φ(a)T ·φ(b) based on the original vectors a and b, not knowing the

transformation φ. The most common kernel functions are the linear, the

polynomial, the Gaussian radial basic function and the Sigmoid func-

tion, shown in equation 3.12, 3.13, 3.14 and 3.15.

Linear:K (a,b) = aT ·b (3.12)

Polynomial : K (a,b) = (γaT ·b+ r )d (3.13)

Gaussian RBFK (a,b) = exp(−γ∥∥aT ·b
∥∥2

) (3.14)

SigmoidK (a,b) = t anh(γaT ·b+ r ) (3.15)

3.2 Machine Learning

The term Machine Learning was first coined in 1959 by the American

pioneer in the field of artificial intelligence Arthur Samuel. Samuel de-

scribed ML as a field of study where computers can learn without being

explicitly programmed (T. M. Mitchell 1997). In other words, without any
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human interaction computers can improve their learning process based

on experience. The question then arises; what does it mean that a com-

puter is learning? An Engineer-oriented definition of machine learning

was given by Tom Mitchell back in 1997

"A computer program is said to learn from experience E with respect

to some class of tasks T and performance measure P, if its performance at

tasks in T, as measured by P, improves with experience E."

T. Mitchell 1997 Page 2

An example could be, given a task T of predicting stock prices. An

ML model can learn from previous experience E, in this case, historical

stock prices. If the model has successfully learned, it will then do better

on predicting future stock prizes P. The way the model learns, is similar

to the way humans are programmed to learn from experience. Consider

the task, T, of tossing paper into a bin. The performance measure P is

now the distance between the bin and the position of the paper. The first

attempt might result in the paper landing way past the bin. The force

is therefore decreased in the second attempt. This time the angle of the

toss was not perfect, and therefore adjusted for in the third attempt. Sim-

ilarly, when an ML model predicts stock prizes, an error is calculated and

adjusted for in the next prediction attempt.



3.2. MACHINE LEARNING 35

Figure 3.4: Comparative overview between traditional programming and
machine learning.

The basic difference between ML and traditional programming is de-

picted in Figure 3.4. Traditional programming requires human interac-

tion to create the program logic and decision rules. Then given some in-

put data, the desired output can be obtained from the created program.

In contrast, machine learning models create the program logic and deci-

sion rules by inferring the relationship between the input and the desired

output. This program is then used to produce an output from new un-

seen inputs. Implicitly, this means that ML models require some learning

response or output signal (T. M. Mitchell 1997).

3.2.1 Classification of Machine Learning

The different types of machine learning problems can be separated into

three groups, depending on the nature of the learning response.

3.2.1.1 Supervised Learning

Supervised learning (SL) is used for the majority of practical machine

learning problems (Brownlee 2016). As the name implies, supervised al-

gorithms are trained under supervision. This means that the data fed

into the algorithm also include the correct response variables, often re-

ferred to as labels. A definition provided by Liu and Y. Wu (2012) defines

supervised learning in the following manner.
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“Supervised Learning is a machine learning paradigm for acquiring

the input-output relationship information of a system based on a given

set of paired input-output training samples”.

Liu and Y. Wu 2012

The dataset is partitioned into two parts, a training set and a vali-

dation set, in order to train the algorithm. The training set consists of

all relevant data features, as well as the response variable. By using this

dataset, the goal is to approximate a mapping function based on the in-

put data (X ) and use this function to predict the output variable (Y ).

Y = f (X )

The learning process stops when the algorithm reaches the desired

level of performance, which is measured by using the trained algorithm

on the validation set, which does not contain the response or target vari-

ables. Compared to human learning, students are provided with correct

approaches to solve different problems before an exam. The students

derive rules and logic from this information and use it when solving new

problems on the exam.

Supervised learning can be further categorized, depending on the na-

ture of the problem it attempts to solve. These are regression and classi-

fication problems, where it is important to identify the properties of the

response variable.

• Regression: Problems where the model tries to approximate a map-

ping function based on the input data (X ) to continuous or numer-

ical output variables (Y ). For instance, predicting stock prices is

a regression problem since the response or output variable, stock

price is continuous.
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• Classification: Problems where the model tries to approximate the

mapping function based on the input data (X ) to discrete or cate-

gorical output variables (Y ). Image recognition is a type of classi-

fication, where the task could be to determine whether the image

displays a car or a bike. The response or output variable is now

discrete.

3.2.1.2 Unsupervised Learning

Unsupervised learning is when the model infers relationships on the in-

put data when there is no response variable present. Since there is no

response variable, this is not the type of algorithm that is used in predic-

tion and decision making. However, by restructuring the input data, it

can identify intricate patterns like associating features into classes or lo-

cating uncorrelated values (Ghahramani 2003). Deriving these patterns

provides insight regarding the nature of the data, which is useful infor-

mation when implementing a supervised learning model. This type of

learning can be compared to when humans determine different classes

from multiple objects, like categorizing a set of books into different gen-

res. Unsupervised learning can be grouped into two subcategories, clus-

ter analysis and association rules.

3.2.1.3 Reinforcement Learning

Reinforcement learning (RFL) is a learning system where an agent ob-

serves the environment and performs actions based on the observations.

Different actions rewards different scores and the agent seeks to obtain

the highest possible score. Hence, such a system is defined by the fact

that there is less feedback, since it is not the proper action but only the

evaluation of the chosen action that is given by the external expert. Such

an algorithm learns the best strategy by itself, called policy, over time.

Such a policy defines what action the agent should choose in a specific

situation.
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3.2.2 Data in Machine Learning

Machine learning models are only as good as the data from which they

are built. Therefore, both the quantity and the quality of the data col-

lected are crucial for developing high-performance models. In addition,

the models require some response to determine if they have successfully

learned. In other words, an indication of how well the model general-

izes over the problem domain. This is done by dividing the collected

data into a training, validation and test set. As displayed in Figure 3.5,

both the training and validation set is used during training. The ML al-

gorithm infers the relationship between the input variables and the tar-

get variable in the training set. This relationship is continuously evalu-

ated while training by making predictions on the input variables of the

validation set. The predictions are measured against the correct target

variables from the validation set, which yields a prediction error. The ML

algorithm then adjusts its parameters depending on the magnitude and

direction of the calculated error. This process is repeated until the ML

algorithm is satisfied with the prediction error or when it is not able to

improve its performance. When the training has ended, the final model

is evaluated by making predictions on the unseen input variables from

the test set. The prediction error on the test set reflects the performance

of the final model.
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Figure 3.5: Explanatory illustration of the learning process in machine
learning frameworks.

3.2.2.1 Cross-Validation

When a model has completed its training, en error estimate can be de-

rived by the difference in the predicted values and the correct target val-

ues. This is referred to as the evaluation of the residuals Browne (2000)

and reflects the prediction error on the training set. However, this error

estimate does not reflect the trained model’s ability to make a predic-

tion on unseen data. Cross validation is used to evaluate how well the

trained model generalize on new and independent data (Browne 2000).

Cross-validation techniques differ in the way that the original dataset is

divided into a training set and a test set. The validation set depicted in

Figure 3.5 is only used during training and must not be confused with the

unseen test set when referring to cross-validation.
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3.2.2.1.1 Holdout Validation

Holdout validation is the simplest form of cross-validation. The orig-

inal dataset is separated into a training and test set. During training,

the model attempts to infer the relationship between the input variables

and the target variables from the training set. The model performance is

then evaluated by making predictions on the unseen test set. This per-

formance measure is more accurate than the evaluation of the residuals

because it, to some extent, describes how well the model generalizes on

independent data. The downside of this validation technique is that it

is heavily dependent on the samples in the training and test set. Ideally,

both the training and test sets should represent the entire problem do-

main. However, this is often not the case in real-world examples. If the

training set consists of observation such that it partially represents the

problem domain, it will not be able to capture patterns that might occur

in the test set.

3.2.2.1.2 K-fold Validation

K-fold validation is a validation technique used to improve the holdout

validation by creating multiple instances of the ML model which train on

different arrangements of the dataset. It divides the original dataset into

k subsets and performs k iterations of the holdout validation method

such that for each iteration one of the k subsets is the test set, and the

training set is remaining k −1 subsets combined, as shown in Figure 3.6.

The final model performance is calculated by averaging over the per-

formance from each iteration. Training and validating across the entire

dataset improves the model’s inferred relationships between input and

target variables (Fushiki 2011).
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Figure 3.6: Dataset partition during k-fold cross validation. Five different
arrangement of the original dataset are created, indicating five complete
iterations of the entire data.

3.2.2.2 Cross-Validation with Time Series

Additional considerations need to be taken into account when perform-

ing cross-validation on time series data. It is critical to preserve the time

series aspect of the data, such that the model can leverage this informa-

tion (Bergmeir and Benıtez 2012). Hence, the data needs to be temporally

separated into training and test sets. This means that the test set must

contain observations that occur chronologically after the observations in

the training set. One validation technique that preserves the time-series

aspect is the holdout validation method, given that the test comes after

the training set. However, as mentioned above, using holdout validation

is not sufficient enough in order to obtain a robust predictive model. K-

fold validation is not a good validation method on time series data, as it

does not preserve the sequential aspect of a time-series.

3.2.2.2.1 Nested Cross Validation

Figure 3.7 displays how the data can be partitioned when using the nested

cross-validation technique. Similar to the k-fold validation, the nested

cross-validation technique performs multiple iterations on the original

data (Hasselt 2013). However, to preserve the time series property of
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the data, the test set of each partition must contain observations that

occur after the observations in the training set. As a result, the model

can not utilize the entire dataset in each partition as the k-fold validation

technique. The final model performance is the combined average of the

model performances on each partition.

Figure 3.7: Dataset partition during nested cross validation. The datasets
are arranged such that they preserves the time series aspect.

Another important consideration is the positioning of the validation

set. As explained in Section 3.2.2, the validation set is continuously used

during training to tune and evaluate the training parameters. In order

to accurately train the model on time series data, the validation set must

contain observations that occur after the observations in the training set,

as well as before the observations in the test set. Figure 3.8 shows the

entire process of nested cross-validation on time series data. The data

is separated into three partitions with correct positioning of the train-

ing, validation and test sets. Three instances of the model are created

and trained on the training and validation subsets from each partition.

Its residuals and prediction error on the test set are evaluated for each

model. The final model performance is then the combined average of

the three individual models.
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Figure 3.8: Modeling approach when targeting time series data with
nested cross validation.

3.3 Machine Learning Models

3.3.1 Supervised Models

3.3.1.1 Linear Regression

Linear regression (LR) is one of the most popular and vastly used ma-

chine learning algorithms. As its name would suggest, LR solves regres-

sion problems which means that it predicts values within a continuous

and numerical range.

Y = f (x) (3.16)

Equation 3.16 shows the relationship between the independent in-

put variable X and the dependent output variable Y . This results in a

linear relationship between the input data and the output. LR aims to

find a linear mapping function based on the observed input data in or-

der to calculate the output variable Y . A Linear Regression model can be

represented by equation 3.17.

Y = θ0 +θ1x1 +θ2x2 + ...+θn xn , (3.17)

where Y is the predicted value or the output, θ0 is the bias therm,

θ1,θ2, ...,θn are the model weights and x1, x2, ..., xn are the feature values.

The LR model aims to obtain the set of weight θ1,θ2, ...,θn , which forms a
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line that best fits the data. This line is referred to as the regression line and

is obtained by minimizing the mean of squares of the vertical deviation

between each datapoint and the fitted line, otherwise known as mean

least squares (Seber and Lee 2012). As an example, consider the simple

linear regression Y = θ0+θ1x1. Let the initial weights be θ0 = 1.5 and θ1 =
0, which forms the green line in Figure 3.9. In this particular example, the

loss function is the mean square error, which is calculated in Equation

3.18.

MSE = 1

n

n∑
i=0

(yi − yi )2, (3.18)

where n is the number of datapoints, y is the correct target values and y

is the predicted target values. Inserting the simple regression function Y

results in Equation 3.19.

MSE = 1

n

n∑
i=0

(yi − (θ0 +θ1x1))2 (3.19)

The MSE of the initial green line is 4.75, and by visual inspection of

Figure 3.9, it is clear that this line is not the best fit of the data points.

The LR algorithm attempts to find a better fit by using gradient meth-

ods which reduce the loss function (Ruder 2016). One gradient method

is the gradient descent which minimizes the MSE by finding the partial

derivative of the loss function concerning the model weights. Equation

3.20 finds the partial derivative with respect to the bias θ0.

Dθ0 =
1

n

n∑
i=0

2(yi − (θ0 +θ1x1)) (3.20)

Equation 3.21 finds the partial derivative with respect to the model weight

θ1.

Dθ1 =
1

n

n∑
i=0

2(yi − (θ0 +θ1x1))(−x1) (3.21)
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The weight θ1 and bias θ0 are then updated by using Equation 3.22 and

3.23.

θ0 = θ0 −MSE ×Dθ0 (3.22)

θ1 = θ1 −MSE ×Dθ1 (3.23)

The algorithm repeats this process until the MSE is minimized. The or-

ange line in Figure 3.9 is the final regression line which best fits the data.

Figure 3.9: Illustrative example of a simple linear regression. The green
line represents the initial regression line, whereas the yellow line repre-
sents the optimal regression line.

3.3.1.2 K-Nearest Neighbours

K-nearest Neighbours (KNN) is an algorithm used for both classification

and regression problems and is also widely used for pattern recognition

and data mining. When an unknown data point occurs, the algorithm

aims to classify which class it belongs to based on its k nearest neigh-

bours. An essential part of the algorithm is the distance measure. Such a

measure is used to determine which of the k data points are closest to the

data point being classified. The Euclidean distance in Equation 3.24, the



46 CHAPTER 3. THEORETICAL FRAMEWORK

Manhattan distance in Equation 3.25 and the Minkowski distance given

in Equation 3.26 are the most commonly used distance metrics.

Euclidean Distance :

√√√√ k∑
i=1

(xi − yi )2 (3.24)

Manhattan Distance :
k∑

i=1
| xi − yi | (3.25)

Minkowski Distance : (
k∑

i=1
(| xi − yi |)q )

1
q (3.26)

Figure 3.10 shows a categorical variable plotted, and the goal of this

example is to classify a new data record as blue, red or green. Given a

new data point x, the k most similar records from the training set are

located. The similarity between the data records is measured according

to different distance measures, and in the example seen in Figure 3.11,

the Euclidean Distance is used. The unclassified data point x will be as-

signed to a group based on the observation of which group the majority

of its k-nearest neighbours belongs to. The most important parameter to

tune is k, the number of neighbours used to make the classification de-

cision. Figure 3.11 shows the clusters with the k parameter tuned to 1, 10

and 50 respectively. As mentioned, the KNN-algorithm can also be used

for regression tasks by returning the average value of all of the k-nearest

neighbours of the data sample x.
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Figure 3.10: Result of assigning datapoints to three different classes using
k-nearest neighbours.

Figure 3.11: Illustration of the different decision boundaries for k = 1, 10
and 50 for the KNN algorithm

3.3.1.3 Support Vector Machines

A support Vector Machine (SVM) is a versatile ML algorithm, used for

both linear and non-linear classification, regression, and outlier detec-

tion. The basic idea is to find a hyperplane in a n dimensional-space

that best separates the classified instances. Shown in Figure 3.12 is the

simplest version of such an algorithm. As shown, the dataset is linearly

separable, and the decision boundary is created by separating the dataset

with the largest possible margin, called large margin classification (Géron

2019). Only the data instances lying on the margin separating the classes

are stored, known as the Support Vectors, marked in red in Figure 3.12

and 3.13. These margins are later used to classify a new datapoint as ei-
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ther green or blue. Large Margin Classification is only applicable if the

dataset is linearly separable, and it is also susceptible to outliers, as seen

in Figure 3.13. The width of the decision boundary is significantly de-

creased due to one single outlier, as seen in Figure 3.13.

Figure 3.12: Illustrative example of SVM’s decision margin for linearly
separable classes

Figure 3.13: Illustrative example of SVM’s sensitivity to outliers

One approach to handle nonlinear datasets is the same as the logic

used in Section 3.1.2.2.2, by projecting the data to a higher-dimensional

space, which can result in a linearly separable dataset. As seen in Fig-

ure 3.14, the data points in one dimension are not separable, but after

being projected to a two-dimensional space, the categorical groups are

perfectly separated by a line.
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Figure 3.14: Illustration of a dataset linearly separable after scaling to a
higher dimension.

3.3.2 Artificial Neural Networks

An artificial neural network is a computational model inspired by the

brain’s architecture in order to build an intelligent machine. ANNs are

the very core of deep learning which is defined as large or complex neu-

ral networks. Such networks are sturdy, versatile and scalable and are

used to tackle large and highly complex ML problems. A neural network

consists of three different layers, the input, output and the hidden layers.

The input and output layer is nothing more than what the word indicates,

the input and the output of the computational model. The interesting as-

pect of a neural network is what happens between these two layers, in the

hidden layer, often referred to as the black box layer. The number of hid-

den layers depends on the structure and complexity of the task to solve,

and this also counts for the number of nodes, referred to as neurons.

3.3.2.1 Perceptron

The perceptron has one of the simplest architectures, and is based on an

artificial neuron called a linear threshold unit (LTU). The input and out-

put of a LTU are numbers and each input is associated with a weight. Fig-

ure 3.15 shows a simple example of a LTU, where X = x1, x2, x3, ..., xn are

the input variables, W = w1, w2, w3, ..., wn are the corresponding weights

and y is the calculated output.
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Figure 3.15: Illustration of a linear threshold unit with n inputs.

The LTU computes a weighted sum of its inputs as shown in Equation

3.27, and then applies a step function to that sum and outputs the results

as shown in Equation 3.28.

z = w1x1 +w2x2 +w3x3 + ...+wn xn = w T · x (3.27)

yw (x) = step(z) = step(w T · x) (3.28)

Common step functions are:

• Heaviside step function

• Signum function

A simple perceptron architecture consists of multiple LTUs. In other words,

the hidden layer consists of multiple neurons that are all connected to

each input neuron.
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3.3.2.2 Multi-Layer Perceptron

A Multi-Layer Perceptron (MLP) is composed of one input layer, one or

more layers of perceptrons, called hidden layers and one finale layer called

the output layer. When an artificial neural network has two or more hid-

den layers, it is called a deep neural network (DNN). Figure 3.16 displays a

multi-layer perceptron with two hidden layers. Both the input layer and

the hidden layers consist of n neurons, and each neuron is connected to

every other neuron in the subsequent layers. The input neurons are now

referred to as the set a0
1, a0

2, a0
3, ..., a0

n .

Figure 3.16: Illustration of a multilayer perceptron with one input layer,
two hidden layers and one output layer.

In a forward pass, each value of a subsequent neuron is dependent

on all preceding neurons with their corresponding weights as shown is

Equation 3.29

ak
n =σ(w k−1

1 ak−1
1 +w k−1

2 ak−1
2 +w k−1

3 ak−1
3 +...+w k−1

n ak−1
n ) =σ((W k−1)T ak−1),

(3.29)

Where k represents the hidden and input layers. The step function z

is replaced with the sigmoid activation function,σ, such that the network
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obtains properties which makes it able to perform back-propagation as

explained later in Section 3.3.2.3. The sigmoid function takes an input,

in this case, the weighted sum of all the preceding neurons and maps it

to a value between 0 and 1 (Naduvil-Vadukootu, Angryk, and Riley 2017).

The value ak
n for each neuron, including the output neuron is calculated

using equation 3.29. When the predicted output value is obtained, it can

be measured against the correct target value, and the network can begin

its backward pass.

3.3.2.3 Back-Propagation

Back-propagation is the heart of a neural network and is used to identify

which adjustments to the network’s weights that cause the most signifi-

cant decrease to the cost function (Hecht-Nielsen 1992). It is essentially

how the network learns. To illustrate this technique, the above network

has been simplified into the network depicted in Figure 3.17. This net-

work consists of 4 neurons, where a0
1 is the input neuron, a1

1 and a2
1 rep-

resent the neuron in each respective hidden layer and a3
1 is the output

neuron

Figure 3.17: Illustration of a simplified multilayer perceptron with one
neuron in each layer.

Given the correct output value of one training example y1, the cor-

responding cost is calculated by the square error as shown in Equation

3.30.

C0 = (a3
1 − y1)2 (3.30)

As a remainder, the a3
1 is dependent on the the previous neuron a2

1

and the corresponding weight w 2 as shown in equation 3.29. To further
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simplify, consider only the two last nodes a3
1 and a2

1, and a3
1 = σ(z(2)),

where z(2) = w 2a2
1. The cost function is now rewritten in Equation 3.31.

C0 = (σ(z(2))− y1)2 (3.31)

The goal is to reduce the cost C0 by adjusting the value of weight w 2.

This is achieved by using the chain rule to find the partial derivative of

the cost with the respect to the weight as shown in Equation 3.32.

∂C0

∂w 2
= ∂z(2)

∂w 2

∂a2
1

∂z(2)

∂C0

∂a2
1

, (3.32)

where each of the partial derivatives are shown in Equations 3.33, 3.34

and 3.35.

∂z(2)

∂w 2
= a1

1 (3.33)

∂a2
1

∂z(2)
=σ′(z(2)) (3.34)

∂C0

∂a2
1

= 2(a2
1 − y0) (3.35)

Equation 3.36 shows the final cost function.

∂C0

∂w 2
= a1

1σ
′(z(2))2(a2

1 − y0) (3.36)

Equation 3.37 shows the above example extended such that it regards not

only 1 training sample, but n training samples.

∂C

∂w 2
= 1

n

n−1∑
k=0

∂Ck

∂w 2
(3.37)

The contribution from each neuron to the network cost is calculated

until the algorithm reaches the input layer. This backward pass efficiently

measures the cost gradient across all the connection weights in the net-
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work by propagating the cost gradient backwards in the network, hence

the name of the algorithm. In addition, for more extensive networks, like

the multi-layer perceptron depicted in Figure 3.16, each component of

the gradient vector need to be calculated. For each training instance, the

backpropagation algorithm makes a prediction, the forward pass, mea-

sures the cost, then goes through each layer in reverse to measure the

cost contribution from each connection, the backward pass, and finally,

the weights are tweaked to reduce the cost.

3.3.2.4 Activation Functions

Each neuron in the neural network is assigned an activation function,

which acts as a mathematical gate between the input fed into the neuron

and the output transmitted to the next layer of neurons (Elsworth and

Güttel 2020). Choosing a suitable activation function is critical in terms

of model accuracy and computational efficiency. In addition, depend-

ing on the nature of the data, some activation functions result in a faster

model convergence, while other activation functions might prevent the

same model from converging at all.

3.3.2.4.1 Binary Step Function

One simple activation function is the binary step function, which is a

threshold-based activation function (Elsworth and Güttel 2020). It takes

the input or the weighted average from the previous layer, and if this sig-

nal is above a determined threshold, then the same signal is forwarded

to the next layer of neurons. The main downside with such an activation

function is that it does not allow for multi-value outputs, it just provides

the binary signal "off/on" or "true/false".

3.3.2.4.2 Linear Activation Function

The linear activation function takes the input signal x and transform it to

an output signal y by using the linear function y = bx + c (Elsworth and
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Güttel 2020). Contrary to the binary step function, the linear activation

function is able to provide multi-valued outputs. The main downside of

this activation function is that it prevents the use of back-propagation.

Recall from Section 3.3.2.3, that the back-propagation step required the

gradient of the cost function in order to identify the impact of adjusted

weights. The gradient of the linear function y = bx+c is constant, mean-

ing that it has no relation with the input signal x. In other words, it

is impossible to perform back-propagation. A neural network with the

applied linear activation function is, therefore, just a simple regression

model.

3.3.2.4.3 Non-linear Activation Functions

Non-linear activation functions are essential when it comes to learning

complex data like audio, images and non-linear datasets with high di-

mensionality. The activation function presented below are non-linear

and used in modern neural networks. They all address the main down-

side with a linear activation function, namely the ability to perform back-

propagation.

Sigmoid Activation Function

The sigmoid activation function takes the input signal x and maps it to

an output signal between 0 and 1, by using the formula in Equation 3.38.

φ(x) = 1

1+exp−x
(3.38)

Figure 3.18 shows the plotted curve of the sigmoid function. This

function is differentiable, which means that the slope of the curve can

be obtained and it enables the use of back-propagation. The main down-

sides are that it is computationally expensive as well as it is suffering from

the vanishing gradient problem elaborated in Section 3.3.2.5.
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Figure 3.18: Illustrative curve of the sigmoid activation function.

Hyperbolic Tangent Activation Function

The hyperbolic tangent activation function is in many ways similar to the

sigmoid function. It is differentiable, but instead of mapping the values

between 0 and 1, it maps the input signal between −1 and 1. The output

signal is obtained by feeding the input signal into the Equation 3.39. The

curve of the activation function is depicted in Figure 3.19.

t anh(x) = 2

1+exp−2x
−1 (3.39)

Figure 3.19: Illustrative curve of the tangent hyperbolic activation func-
tion.

The hyperbolic tangent function suffers from the same vanishing gra-
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dient problem as the sigmoid function. The main advantage of the hy-

perbolic tangent function compared to the sigmoid function is that neg-

ative input signals are mapped more strongly negative. Also, it is zero-

centred meaning that input signals close to 0 are also mapped near 0.

Rectified Linear Unit Activation Function

The rectified linear unit (ReLU) activation function is the most popular

activation function due to its computational efficiency. As depicted in

Figure 3.20, the ReLU is half-rectified, which means that when the in-

put signal is below or equal to 0 then the output signal is mapped to 0.

Although it looks like a linear function, the ReLU is differentiable and en-

ables back-propagation.

Figure 3.20: Illustrative curve of the rectified linear unit activation func-
tion.

3.3.2.5 Problem of Vanishing Gradient

Vanishing gradient refers to the problem where the gradient of the cost

function of a neural network approaches 0 due to the use of some ac-

tivation function in many layers of the network (Hochreiter 1998). For

instance, the sigmoid function maps the input signals within the range

[0,1], which means that a significant change in the input signal yields a



58 CHAPTER 3. THEORETICAL FRAMEWORK

small change in the output signal. In order words, the derivative of the

activation function becomes small, as depicted in Figure 3.21.

Figure 3.21: The Sigmoid activation function plotted against the deriva-
tive of the Sigmoid function.

This problem arises for more extensive neural networks with multiple

hidden layers that use activation function like the sigmoid or the hyper-

bolic tangent. During back-propagation, the chain rule is used to ob-

tain the network gradient by multiplying the gradient of each layer from

the final layer down to the initial layer. As mentioned above, this gra-

dient becomes small if the sigmoid activation function is applied and if

the network also consists of many layers, then by the chain rule, the net-

work gradient becomes a product of many small gradients. The network

gradient decreases exponentially when propagating down to the initial

layer (Hochreiter 1998). A small network gradient results in the network’s

weights not being correctly updated and the network would fail to train.

3.3.2.6 Stochastic Gradient Descent

Computing a back-propagation step on the entire dataset is computa-

tionally heavy if the dataset is quite large. Stochastic gradient descent in-

creases the computational efficiency of back-propagation by randomly

shuffling the data and dividing it into multiple subsets or batches. Then
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it performs one forward pass and one back-propagation step on each

batch. Put differently; the first batch is fed through the network, and

predictions are made. The cost function is obtained, and the network’s

weights are adjusted by using back-propagation. This process is repeated

until all batches have been processed.

3.3.2.7 Error Metrics

Error metrics are used to evaluate model performance during and af-

ter training. While training, the error metric defines the cost function,

which is used during back-propagation. Different error metrics inherent

unique properties which directly impact how the network learns. Elabo-

rated in the following sections are the most used error metrics for regres-

sion problems.

3.3.2.7.1 Mean Square Error

As shown in Equation 3.40, the mean squared error (MSE) is the average

of the squared difference between the predicted target values, y and the

actual target values, y . Due to the squaring of the difference, this metric

penalizes small errors.

MSE = 1

n

∑
(y − y)2 (3.40)

3.3.2.7.2 Root Mean Square Error

The root mean squared error (RMSE) is the most used error metric in

regression problems. As shown in Equation 3.41, it takes the square root

of the MSE, and the squaring of the difference before taking the average

results in a high penalty on large errors.

RMSE =
p

MSE =
√

1

n

∑
(y − y)2 (3.41)
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3.3.2.7.3 Mean Absolute Error

Mean absolute error (MAE) is the average of the absolute difference be-

tween the predicted target value, y and the correct target value y , as

shown in Equation 3.42. Compared to MSE, this error metric does not

square the difference which means that it does not penalize errors as

strong as the MSE and are more robust to outliers.

M AE = 1

n

∑ |y − y | (3.42)

3.3.2.7.4 R2 or Coefficient of Determination

The coefficient of determination is a regression error metric that com-

pares the model with a baseline. The baseline is obtained by taking the

mean of the data, and the R2 is then calculated as shown in Equation

3.43.

R2 = 1− MSE(model )

MSE(basel i ne)
(3.43)

3.3.2.7.5 Adjusted R2

The adjusted R2 is an improvement of the original R2, which takes into

account the number of encountered observations. By doing so, it pro-

vides a more realistic error metric which is always lower than the original

R2. The formula for the adjusted R2 is found in Equation 3.44, where n

is the number of observations and k is the number of independent vari-

ables.

Ad j ustedR2 = 1−
[(

n −1

n −k −1

)
· (1−R2)] (3.44)

3.3.2.8 Overfitting

As explained in Section 3.2.2 neural networks are trained by dividing the

dataset into a training set and a testing set. The model is trained using the
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training data, and later the performance of the trained model is evalu-

ated. For any machine learning algorithm, the "bias-variance dilemma"

is highly relevant and involves finding a balance between the accuracy

and the generalization of a model. An example of such a trade-off is that

a model can perform exceptionally well on training data while showing

poor accuracy when applied to a test set. This concept is called over-

fitting and happens when a model too well represents the training data,

hence it will fail to generalize well on data outside the training set, char-

acterized by a large variance. Hence overfitting the model to the training

set will result in a training error converging to zero, while the test error

will increase drastically. Such an error indicates that the model is not

capable of making accurate predictions on observations not previously

seen in training. The bias represents the inability of the physical model

to accurately approximate the function, known as the approximation er-

ror. The variance represents the inadequacy of the empirical knowledge

in the training sample, known as estimation error. There is a trade-off be-

tween these two, typically known as the loss function, shown in Equation

3.45.

Loss function = (Bi as)2 +V ar i ance (3.45)

The model with the optimal predictive capability is the one that leads

to the best balance between bias and variance. Both can only be elim-

inated in the case when the number of training samples becomes in-

finitely large.

3.3.3 Recurrent Neural Networks

Recurrent neural networks (RNN) is a type of neural network that makes

use of the sequential information that the input may have (Liang and

Bose 1996). This is in contrast to the traditional feed-forward neural

network, which assumes that all inputs are independent. Such an as-
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sumption holds for many tasks, but for problems like sentence sentiment

analysis or time-series predictions, there is a lot of information in the se-

quence of the input.

Figure 3.22: Simple illustration of a recurrent neural network that utilizes
information from preivous timesteps.

Similar to feed-forward neural networks, the recurrent neural net-

works consist of an input layer, an output layer and hidden layers. The

difference is that the hidden layers in a recurrent neural network have

connections to back to themselves. As Figure 3.22 shows the hidden layer

ht has a connection to the hidden layer ht−1 that occurred at the pre-

vious time step t . In this case, the number of observations, previously

noted as n, is replaced with t , which for easier explanation refers to the

time when observation t occurred. With the architecture in Figure 3.22,

the neural network is now able to use the information from previous time

steps. W x ,W h ,W y represents the weight vectors of the input layer, pre-

vious hidden layer and output layer respectively. The way the recurrent

neural network evolves is shown in Equations 3.46 and 3.47.

ht = f (w x xt +w hht−1) (3.46)
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yt = g (w y ht ) (3.47)

f and g are some suitable activation functions. Equation 3.46 shows

that the state of the hidden layer at time t is dependent of the state of

the hidden layer at previous timestep t − 1 and the input signal at time

t . Equation 3.47 states the the output signal at time t is only dependent

of the state of the hidden layer at time t . Figure 3.23 shows the recur-

rent neural network when unfolded. The length of the unfolded recur-

rent network is dependent on the length of the input sequence and the

output sequence. The length of the input sequence defines how much

previous information the networks take into account when performing

predictions. The output sequence defines how many time steps into the

future, k, the model tries to predict, which is the hidden state at time

t +k.

Figure 3.23: Illustration of an unfolded recurrent neural network.

3.3.3.1 Gated Recurrent Unit

Traditional recurrent neural networks suffer from the vanishing gradient

problem explained in Section 3.3.2.5. Gated Recurrent Unit (GRU) is a

type of recurrent neural network that solves this problem by introducing
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a reset gate and a forget gate in each cell structure of the traditional recur-

rent neural network (Ravanelli et al. 2018). Figure 3.22 illustrated a RNN

with only one cell per hidden layer. The number of cells in each hidden

layer is equal to the number of previous time steps that the network re-

members when performing predictions, in other words, the length of the

input sequence. Figure 3.24 shows a RNN that remembers three previous

states.

Figure 3.24: Illustration of an unfolded recurrent neural network with
three cells.

The structure in each cell is depicted in Figure 3.25. Each cell con-

tains an update gate and an forget gate, which are two vectors that decide

what information to pass on. During the training of a GRU, these vectors

are configured only to remember the relevant information of the past.

Both the update gate, zt and the forget gate rt is defined in Equation 3.48.

The update gate decides how much past information the network should

remember, while the reset gate determines how much past information

the network should forget.

zt = rt =σ(w x xt +w hht−1) (3.48)
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The current memory content, h′
t , applies the reset gate to determine the

relevant past information, as shown in Equation 3.49.

h′
t = tanh(w x xt + rt ◦w hht−1), (3.49)

where ◦ is the Hadamard product (Horn 1990) and tanh is the non-

linear activation function. The final memory content, ht contains the

information that is passed to the next time step t+1 and is used to predict

the output yt . The update gate is then applied, as shown in Equation

3.50.

ht = zt ◦ht−1 + (1− zt )◦h′
t (3.50)

Figure 3.25: Internal architecture of one cell in a Gated Recurrent Unit
network.

Figure 3.25 and the corresponding equations (3.48, 3.49 and 3.50) il-

lustrate how the GRU network control the flow of information by using

the update and reset gates. The problem of vanishing gradient is solved,
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which makes the network better at using past information to predict the

future.

3.3.3.2 Long-Short Term Memory

Long-Short Term Memory (LSTM) is another type of RNN, which sim-

ilarly to the GRU controls the flow of information in order to solve the

problem of vanishing gradient (Ravanelli et al. 2018). The GRU had two

gates, the update and forget gates, whereas the LSTM implements three

gates, namely the input, output and forget gates. Hence, the cell struc-

ture of the LSTM is a bit different from the GRU. The main difference is

that the LSTM is more suitable when required to remember longer se-

quences of data, where the GRU is less complex and trains faster (Ra-

vanelli et al. 2018).

3.4 Statistical Forecasting Approaches

3.4.1 Classical Time Series Models

3.4.1.1 ARIMA

The ARIMA model is a classical statistical tool for analyzing and fore-

casting for time-series data. Such models have the capabilities to rep-

resent stationary and non-stationary time-series to produce a forecast,

based on the historical data of a single variable (Kumar and Anand 2014).

ARIMA is an acronym for Auto Regressive Integrated Moving Average.

The AR in the model stands for Auto Regressive, and is a linear regression

model. The variable of interest is forecasted using a linear combination

of the past values of the variable (Hyndman and Athanasopoulos 2018).

Seen in Equation 3.51 is an auto regressive model of order p. The value

of Y (t ) depends only on its own lags.

Yt = c +β1Yt−1 +β2Yt−2 +βp Yt−p +εt (3.51)
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MA is acronym for Moving Average and instead of using past values,

a moving average model uses past forecast error in its model. Seen in

Equation 3.52 is the model for moving average of order q, where εt is

white noise.

Yt =α+εt +φ1εt−1 +φ2εt−2...+φqεq−1 (3.52)
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Chapter 4

Literature Review

In the project thesis, an extensive literature review of the use of machine

learning for predictive maintenance and fault detection was conducted.

Summarized in the following sections are findings and discoveries rele-

vant for this master thesis, as well supplementary findings in the litera-

ture related to time-series, forecasting, and the new obstacles that arise

when using real-life data compared to simulated data.

4.1 Time-Series and Forecasting

Being able to predict the future is a significant competitive advantage

for any industry and business. Time series analysis and forecasting have

been an active research area over the last decades, and there is still being

put much effort into developing methods that can contribute to decision-

making by performing time series analysis and forecasting. The accuracy

of these methods is crucial, and the research of improving the precision

and effectiveness of forecasting models has never stopped (G. P. Zhang

2003).
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4.1.1 Time Series Models and Applications

In 1970, George Box and Gwilym Jenkins published their book Time series

analysis, forecasting and control, where they proposed the Box-Jenkings

method. For nonstationary time series, the approach starts with the as-

sumption that the process that generated the time series can be approx-

imated by the classical model Autoregressive Integrated Moving Average

(ARIMA) (Box et al. 2015). The forecasting domain has been influenced

for a long time by linear statistical methods such as the ARIMA model.

Classical models have the advantage of being easily accessible, and dur-

ing the past four decades, ARIMA has been the most popular method in

time series forecasting. The model describes how the dynamics of the

time series behave over time and continues the model dynamics into the

future. However, in 1970 and 1980, it became increasingly clear that lin-

ear models are not adaptable to most real-world applications. Machine

learning models became a severe contestant to classical statistical mod-

els by creating non-parametric nonlinear models using only historical

data to learn about the stochastic dependency between the past and the

future. Paul John Werbos, known as the pioneer of recurrent neural net-

works, found that classical artificial neural networks outperformed clas-

sical statistical methods such as linear regression (Bontempi, Taieb, and

Le Borgne 2012).

Since the ARIMA model has been widely used in forecasting research

and practice, comparing ARIMA to different deep learning models has

a broad area of application. Particularly many studies have been ap-

plied to financial time series forecasting, and the results show that ANN

models outperform the ARIMA models. This is also supported by a case

study on Iranian poultry retail price done by Karbasi, Laskukalayeh, and

Seiad Mohammad Fahimifard (2009) and a study on stock data obtained

from the New York Stock Exchange, where the findings support this claim

(Adebiyi, Adewumi, and Ayo 2014). ARIMA and ANN are often compared

with mixed conclusions depending on the superiority of prediction and
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forecasting performance.

Even though neural network often outperforms classical models, they

are not always superior. S. Fahimifard et al. (2009) reviews the need for

exchange rate forecasting in order to prevent its disruptive movements

by comparing several models (GARCH, ARIMA, ANN, ANFIS). Briefly, the

conclusion was that the ANFIS model had an effective result in forecast-

ing the accuracy of the exchange rate. In financial time series, many stud-

ies have been using ANNs (G. Zhang, Patuwo, and Hu 1998). Neverthe-

less, K.-j. Kim (2003), F. E. Tay and L. Cao (2001) and L.-J. Cao and F. E. H.

Tay (2003) highlights that SVMs also provides a promising alternative for

financial time-series forecasting. Voyant et al. (2017) tries in his research

to forecast the amount of solar radiation by exploring different machine

learning models. By trying to predict the amount of solar radiation in

different cities, multi-layer perceptron (MLP) in most cases outperforms

ARIMA, but occasions of the opposite are also presented. Also, less typi-

cal predictors are created as a part of the research, such as SVM, SVR and

k-means clustering. Voyant concludes that ARIMA and ANN as methods

are almost equivalent in terms of quality of prediction, but the flexibility

of ANN as universal nonlinear approximation makes it more preferable

than the classical ARIMA model. However, the authors argue that the

quality of the prediction depends highly on the quality of the data.

4.1.2 Time-Series Prediction From A Real-Life Perspective

Several authors argue in their research papers, discussing different pre-

dictors, that the quality of the predictor is equivalent to the quality of

the data. Data preprocessing and reduction is essential when working

with real-world datasets, which tend to be unstructured, inconsistent

and noisy. The method of time series forecasting relies on the idea that

historical data includes inherent patterns that convey useful information

about future descriptions (Parmezan, Souza, and Batista 2019). These

patterns are usually non-trivial to identify, and their discovery is one of
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the primary goals of the time series processing. As mentioned, deep

neural networks are known to be the state-of-the-art approach for time-

series prediction, but from a real-life perspective, the preprocessing phase

has a significant impact on the accuracy of the model and predictions.

In research on the importance of preprocessing Naduvil-Vadukootu,

Angryk, and Riley (2017) creates a state-of-the-art ANN model, using data

preprocessed with time-series specific techniques. Their research demon-

strates how preprocessing leads to simpler architectures and more accu-

rate predictions. The inherent complexity of time-series data stems from

high dimensionality. Naudvil highlights the importance of exploratory

data analysis, in which a deeper understanding of the data is achieved

through visualization as histogram, box-plots and scatter plots, and by

the use of correlation analysis which brings out the relationships and

other patterns between the dependent and independent variables. Only

by the use of simple preprocessing techniques such as scaling and in-

terpolation, the model gets a much higher accuracy, than on a model

processing the raw dataset. Elsworth and Güttel (2020) also highlights

the importance of preprocessing in his research, as feeding unprocessed

numerical data into a LSTM network is unlikely to forecast values out-

side the numerical range of the training set (Elsworth and Güttel 2020).

Therefore it is essential to remove linear time-series trends, as the fore-

casting will be poor otherwise. By using an interval of length N = 2000,

with values in the interval [0,0.5], the LSTM model trained on raw data

fails to forecast values greater than 0.5, and the author suggests the so-

lutions of differencing the data before feeding it into the LSTM model,

thereby removing the linear trend. Machine learning methods trained

on raw numerical time series data show fundamental limitations, such

as high sensitivity to hyper-parameters and even initialization of random

weights (Elsworth and Güttel 2020).

When working with raw data, the need for preprocessing is decisive.

Nevertheless, since the dataset varies for each problem and domain, there
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is no recipe for success to create a dataset that is free of noise, inconsis-

tencies, outliers, and missing values. Amongst many other researchers,

Ramırez-Gallego et al. (2017) highlight that data scientists spend most

of their time preprocessing data, rather than mining or modelling. Ad-

ditionally, N. Zhang and Lu (2007) state in their publication that it is a

well-known fact that data scientists spend 80% of their time preprocess-

ing, and 20 % modelling. Further, both authors claim that in the context

of data preprocessing there is a long road ahead, in terms of reduction

rates, computational time and memory usage in order to prepare a real-

life dataset for mining or modelling.



74 CHAPTER 4. LITERATURE REVIEW



Chapter 5

System Description

Teekay states in their maintenance manual that systems including com-

pressor, turbines and diesel engines require a comprehensive data col-

lection and calculation to produce an adequate state evaluation. Prob-

lems involving such components might be too intricate to be solved with

the laws of physics and classical statistical methods, and state-of-the-art

machine learning models might be a better solution to such problems.

This chapter outlines the problem of research by giving a brief explana-

tion of each component involved.

5.1 Problem of Interest

At the Piranema Vessel, Teekay is currently experiencing a problem with

the gas compression system. It has been an ongoing issue since the start

of production of the Piranema oil field in 2007. As seen in Figure 5.1, the

position of the OPRA turbine exhaust outlet is somewhat close to the air

inlet of the SOLAR turbine. The SOLAR turbine operates the three gas

compressor trains, both seen in Figure 5.2. The exhaust from the OPRA

turbines has been a lingering problem since the operation start, causing

two adverse effects.

First and foremost, it creates a high temperature near the 2nd stage
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separator area, as this area is located right above the OPRA Turbines out-

let. Increased heat and polluted air affect the working environment for

personnel performing regular maintenance operations. Secondly, on days

with little wind, the exhaust from the OPRA Turbines goes into the SOLAR

turbine air inlets. Polluted air into the compression system can lead to a

significant loss in compressor efficiency, with the cascade effect of occa-

sional process shut down (PSD) trips, with high cost due to penalisation.

To be able to say something about the future performance of the com-

pressors would be a great benefit for Teekay Offshore Production. With

the use of such an indicator, a PSD-trip can potentially be avoided, and

thereby increase the safety onboard the process plant and reduce costs.

Figure 5.1: Illustrative overview of the position of the OPRA exhaust out-
lets and the Solar air inlets.
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Figure 5.2: Overview of the Solar turbine and compressor trains. (Photo:
Screenshot from a 3D model of the FPSO)

5.1.1 Possible Solutions

Different solutions to the problem briefly described in Section 5.1 have

been proposed over the years by the engineers in Teekay. As sketched in

Figure 5.3, a possible solution was to extend the exhaust outlets of the

OPRA turbines with 5 meters to prevent the polluted air from entering

the SOLAR Turbines air inlets. A downside of this solution would be an

increase in temperature on the 2nd stage separator, which will prevent

regular maintenance operations from being executed. Another disad-

vantage is related to the helipad and helicopter operations, as local and

possibly quick changes in air temperature might cause turbulence.
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Figure 5.3: Possible solution of extending the exhaust outlets of the OPRA
turbines.

Another solution discussed among the maintenance engineers was

to create an exhaust manifold routed overboard, as sketched in Figure

5.4. Such a solution could potentially have prevented the exhaust from

coming into the air inlet of the compressors and will help regarding the

hot exhaust on the 2nd stage separator. The downsides of such a solution

would be the considerable cost and an exhaust outlet close to the lifeboat

section.

Figure 5.4: Second possible solution of rerouting the exhaust outlets
overboard.
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5.2 Qualitative Analysis

As previously mentioned, polluted air into the SOLAR turbine air inlets

can have the cascade effect of an occasional process shut down trip, due

to low compression efficiency. To illustrate the possible combinations of

critical events that potentially can cause a PSD-trip, a fault tree diagram

(FTD) is drawn. The purpose of this diagram is to illustrate the logical

interrelation between the basic events, that apart or together may lead

to a PSD trip (Lewins 2013). From the root node, the possible failures

and events causing a PSD trip are combined through logical AND and

OR gates in a binary approach (Rausand and Høyland 2003). In Figure

5.5 the root node is defined as the critical event PSD Trip. A trip of the

compressor system will result in extensive flaring, and too much flaring

will harm the "up-time" for the production. As Teekay is restricted to

keep the amount of monthly flaring under a predefined limit, a PSD trip

might result in the need to reduce oil production, in order to stay within

the monthly flaring allowance. As seen the Figure 5.5, a Process Shut

Down trip can be caused by several different events being:

• The OPRA Turbines not delivering the required grid power.

• A reduced compressor efficiency due to either compression train

shut down or reduced efficiency of the Solar Turbines.

A combination of events that will lead to a PSD Trip is called a Cut Set.

A cut set is said to be minimal if the set cannot be reduced without losing

its status as a cut sets (Rausand and Høyland 2003). The criticality of a

cut set depends on its order, referring to the number of events making

up a set. As seen in Table 5.1 the FTD narrows down to 11 minimal cut

sets. The occurrence of these event(s) in each minimal cut set will result

in the top event, a PSD trip. The qualitative analysis given is simplified,

and each of the basic events can be composed into an individual fault

tree diagram.
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Figure 5.5: Fault tree diagram yielding cut sets regarding a process shut-
down event.

Table 5.1: Minimal cut sets corresponding to the fault tree diagram.

Degree Minimal Cut Sets
1 {Wind Direction}, {Wind Speed }

2
{CT1 Shut Down, CT2 Shut Down}, {CT1 Shut Down, CT3 Shut Down}, {CT2 Shut Down, CT3 Shut Down}
{Solar 1 Shut Down, Solar 2 Shut Down}, {Solar 1 Shut Down, Solar 3 Shut Down}, {Solar 2 Shut Down, Solar 3 Shut Down}
{OPRA 1 Shut Down, OPRA 2 Shut Down}, {OPRA 1 Shut Down, OPRA 3 Shut Down}, {OPRA 2 Shut Down, OPRA 3 Shut Down}

5.2.1 Component Description

The following section contains a brief explanation of the components

that potentially could be involved in causing a PSD trip. A PSD trip is

a result of the failure of either the OPRA Turbines, the SOLAR turbines

or the components in the compression train. To gain insight into the
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failure- modes, effects and causes for each component, a simplified Fail-

ure Modes and Effects Analysis (FMEA) were conducted. The simplified

FMEA is seen in Table 5.2.

Table 5.2: Summary of the failure mode and effect analysis.

Component Function Failure Mode Failure Effects Failure Causes Controls

OPRA Turbine Power generator to the FPSO
Fail to start/stop on demand. Breakdown.
Vibration, Noise, Overheating

Shutdown of the Solar Turbine Fuel availability / quality

Solar Turbine
Power generator for
the compression trains

Fail to start/stop on demand.
Breakdown. Vibration,
Noise, Overheating

Reduced compressor efficiency.
Shutdown of the compression trains

High temperature and pressure Sensors

Gas Compressor Compresses the gas
Fail to compress the
gas to the required pressure

Reduced compressor efficiency.
Potential PSD - trip

High temperature or pressure.
To high flow rate. Leakage

Valves and Sensors

Heat-Exchanger
Reduce temperature of the gas.
A cooling medium (water) is used
to cool gas and to condensate out liquid

Fail to cool the gas to
meet the required temperature

Reduced compressor efficiency.
Potential PSD - trip

High temperature. To high flow rate Valves and Sensors

Scrubber
Separate liquids and
condensate from the natural gas

Fail to clean the natural gas.
Reduced compressor efficiency.
Potential PSD - trip

To high flow rate and amount
of liquids and condensate in the gas

Valves and Sensors

Flare Tower
Dispose gas from the
compression trains
when a shut down occurs

Fail to dispose the gas
Ignition. Fatal consequences
for the FPSO

Reduced compressor efficiency. EV

Valves Adjust flow.
Fail to open/close on demand.
Delay

Potential PSD - trip To high flow rate Sensors

5.2.1.1 OPRA turbines

The Piranema vessel is equipped with three OPRA Turbines, function-

ing as the main power generators onboard the Piranema Vessel. There is

also one backup diesel generator and one emergency generator. As seen

in the FTD in Figure 5.5, failure of two of the three turbines will cause

the event of a PSD Trip. With a certain wind degree and wind speed the

exhaust from the OPRA turbines will go into the air inlet of the SOLAR

Turbines, a scenario that also can potentially cause a PSD trip due to the

reduced compressor performance. Usually, the three power turbines op-

erate in parallel at around 50% load, and the system load is managed by

the process engineers through the SCADA system.

5.2.1.2 SOLAR Turbines

Each of the three gas compression trains consist of single shaft 3 stage

Dresser Rand back to back compressor driven by SOLAR Mars 100 Gas

Turbines. The SOLAR turbines provide the required mechanical power

to the compressors in order to re-inject gas to the subsea wells at 284

barg.
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5.2.1.3 Flare

The flare system functions as the central safety system onboard the pro-

duction plant. The purpose of the flare system is to receive and safely

dispose and burn gas from the plant, which is often under high pressure.

The main flaring scenarios can be divided into three groups: production

flaring, emergency flaring and process flaring (Emam 2015). Production

flaring occurs during the exploration and production of oil/gas sectors.

There is a need to evaluate the quality of the gas before heavily investing

in that particular sector. During these evaluations, there is often no con-

tainer for the gas, and it has to be burnt down instead. Emergency flaring

refers to the burning of gas due to some process upset. Component fail-

ures, like a compressor failure or a broken valve, may lead to overpres-

surization, which needs to be relieved through burning the excess gas.

These emergencies involve a high volume of gas with high velocity being

burned. In case of a PSD trip, the emergency valve (EV), as seen in Figure

5.7, will be opened, and the gas burns off safely through the flare tower.

If the gas is not fully burnt it is a chance it will ignite and explode.

5.2.1.4 Gas Compressor Train

The primary purpose of the gas compression system is to compress the

produced gas up to 284 bar g . The gas is reinjected to the subsea wells

to enhance oil production and to extend the lifetime of the wells. The

produced wells consist of gas-liquid (condensate) that enter the produc-

tion plant at 10 bar g . The main separators separate the gas from liq-

uid, where the gas is routed to the compression train inlets. Here the

gas is compressed from around 9 bar g up to well reinjection pressure of

284 bar g with intermediate cooling and scrubbing. Figure 5.6 illustrates

the second compression stage, and an explanation of each component is

given in detail in the following list.
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Figure 5.6: Schematic displaying one compressor and the surrounding
equipment in the second compressor stage at the Piranema vessel.

C Compressor

Natural gas needs to be compressed for reinjection for oil produc-

tion optimization to the subsea wells. In the compressor stage, the

gas is compressed in a factor of three. Three compressor stages are

operating in series on the Piranema vessel, in order to achieve the

required reinjection pressure.

HE Heat-Exchanger

The compression phase generates much heat, which results in high

gas discharge temperatures. In order to not exceed design temper-

ature limitations and high volumetric flows into the subsequent

compression stages, cooling is required between the compression

stages. Heat exchangers cool the gas, which also results in liquid

condensation as the operating point passes the dewpoint and into

the two-phase region (gas + liquid). The gas coolers, Heat-Exchanger,

operate with corrosion inhibited fresh water from the on-board

cooling medium system.

SS Suction Scrubber

The suction scrubber is required to protect the compressor from

seeing liquids on the inlet. The scrubber separates gas and con-
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densed liquids (water + HC condensate) received from the upstream

heat exchanger. Gas is routed to the next compression stage, while

liquids are recycled back to the oil production plant. Upstream in

the 3rd stage compressors, the gas is dehydrated by removing the

water. The gas is dehydrated to ensure good quality fuel gas for the

power and compressor gas turbines and also to protect the subsea

wells from experiencing hydrate (ice) formation.

Flare Flare

If needed, the emergency valve (EV) will be opened so that the

gas can be burned off in a safe manner through the flare tower.

Unignited gas released to the atmosphere is called "cold venting",

which is not desired and can lead to an explosion as a worst-case

scenario.

V Valves

XV: Safety isolation valves ensure process volume segregation dur-

ing a PSD. If an incident occurs, the valves can isolate the system

and prevent errors.

TV: The temperature control valve opens if the gas temperature

is too high or too low, in order to adjust the amount of cooling

medium that is feed to the gas cooler.

PV: The Anti-Surge valve ensures that the compressor operates away

from the surge line preventing equipment damage due to surge.

These valves are usually fast and controlled by the compressor con-

trol system.

EV: The emergency valve will open towards flare (process volume

blow-down) if the pressure or temperature in the system is too high.
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The gas goes through three compression stages, as illustrated in Fig-

ure 5.7, before it is reinjected into the wells.

Figure 5.7: Schematic displaying the three compressor trains with corre-
sponding components at the Piranema vessel.
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Chapter 6

Preprocessing

Creating an accurate health indicator for a compression train requires a

vast amount of historical data. The sensor data was retrieved from the

Piranema-server stationed at the FPSO in Brazil. Similar to the data ex-

tracted from the Piranema-server, real-world dataset differs from simu-

lated data in many ways and poses many more challenges when creat-

ing an accurate model. Such data is often unformulated, composed of

missing data points, noisy data, outliers and inconsistent data. Hence,

preprocessing is an essential yet time-consuming phase. In this chapter,

a comprehensive preprocessing of the Piranema Dataset is performed

in order to create an accurate predictive model. First and foremost by

exploring the dataset to potentially find new points of interest, next by

imputing missing values, detecting outliers, scale the data and select the

most relevant features for a future ML model.

6.1 Data Exploration

The dataset obtained from Teekay’s FPSO Piranema contains 70 differ-

ent features containing data related to weather conditions, the Solar tur-

bines, the OPRA turbines and the compression trains. Given the num-

ber of features, the goal of the exploration phase is to get a better un-
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derstanding of the collected features and potentially find new points of

interest among the data. After collecting the data from the server of the

Piranema Vessel, a thorough exploration of the data set is required in or-

der to gain valuable insight.

6.1.1 Limitations

6.1.1.1 Time Limitation

The Piranema Vessel started its production back in 2007, and the data

obtained from its server is dated back to 01.06.2007. The data series ex-

tracted from the IP21 information system has an hourly sampling rate.

By exploring the dataset, there is a vast majority of sensors not logging at

this point in time. Thus, the data set is limited to the time frame shown

in Table 6.1.

Table 6.1: Table indicating the time frame limitation.

TimeFrame Limitation
Start Date End Date
13.05.2011 08:00 27.02.2020 00:00

6.1.1.2 Missing Values

Even after limiting the time frame, the dataset contains missing values,

which is common for real-life datasets. A simple and basic strategy com-

monly used is to discard the entire row containing a missing value, often

referred to as a NaN. NaN indicates that a value is undefined. The num-

ber of such values in the given dataset was 110839, meaning that a total

of 2.05 % of values in the dataset is NaN values. Discarding all the rows

containing such values could result in loss of valuable data and essential

patterns. Thus, incomplete values must be imputed.



6.1. DATA EXPLORATION 89

6.1.1.3 Label Encoding

All of the features in the dataset is of numerical type. Thus, no label en-

coding will be necessary. If the dataset contained categorical features,

these must have been encoded, meaning that a feature of categorical

type, for example, ON and OFF, would have been encoded to the nu-

merical values 1 and 0.

6.1.2 Explanation of the Features

6.1.2.1 Weather Data

The features related to the weather are information regarding the wind

speed and the wind direction at the FPSO. In all there are five features,

with the names Wind Speed Sensor 1, Wind Speed Sensor 2, Wind Direc-

tion Sensor 1, Wind Direction Sensor 2 and Deg Heading.

6.1.2.2 SOLAR Turbine Data

For each of the three Solar Turbines the Air Inlet Temperature, T5 Temper-

ature which is the turbine combustion chamber temperature, Discharge

Pressure, Speed Set Point, Producer Speed and the RPM, short for revolu-

tions per minute, are the given features.

6.1.2.3 OPRA Turbine Data

The feature related to the OPRA turbines is the outlet exhaust tempera-

ture logged for each turbine and named OPRA Gas Temperature.

6.1.2.4 Compressor Train

As shown in Figure 5.7 in Section 5.2.1.4 the compressor train system

consist of three individual compressors. All three compressors each have

three stages. For each stage the Suction Temperature, Suction Pressure,

Flow Indicator, Discharge Temperature and Discharge Pressure are logged.
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6.1.2.5 Flare

HP Flare, short for High-Pressure Flare is the rate of flared gas. The flare

tower has a safety function of burning and disposing excessive gas from

the FPSO.

6.1.3 Target Variable Identification and Creation

Primarily, the scope of the ML model is to create an ML driven health

indicator of the compression trains. Providing the current and future

health would yield useful information such that the engineers of Teekay

can adjust the operation on the vessel to avoid a PSD trip. A target vari-

able which indicates the compression system’s performance is therefore

required. During the close collaboration with the process engineers at

Teekay, several possible target variables were suggested and evaluated.

This subsection covers the process of obtaining and constructing the dif-

ferent target variables, as well as evaluating their advantages and disad-

vantages.

6.1.3.1 Compressor Efficiency

Calculating a compressor’s efficiency is a complex task, which differs sig-

nificantly for compressor types as well as the fluid being processed. It

combines multiple disciplines like chemistry, fluid dynamics, thermody-

namics and mechanics. The assumption was that given the input vari-

ables to the compressor system, the difference between the expected

compressor effect, Wexpected , and the actual compressor effect, Wactual ,

could be a reliable target variable for indicating the compressor perfor-

mance. The expected compressor effect is an estimate derived from the

official performance document of the compressor, whereas the actual

compressor effect is a theoretical estimate based on the physical prop-

erties of the compressor and its’ medium.

The first step was to calculate the expected compressor effect. The
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compressor performance documents consist of multiple performance

curves, where one of them is pictured in Figure 6.1.

Figure 6.1: Official performance curves from Dresser-Rand, the provider
of the compressors.

This empirical data is obtained by testing and measuring relevant pa-

rameters of the compressor during normal conditions. Hence, it will pro-

vide the expected compressor effect given the assumption that every-

thing works under a normal condition. The effect is dependent on the

volumetric inlet flow, as well as the RPM of the turbine running the com-

pression train. A quick inspection of the RPM history from the turbines

shows that when they are operating, they run on a reasonably steady

RPM, ranging from 12700 to 13200. Therefore, the relevant values in

the following calculations lie in between two of the given performance

curves. Hence, the next step was to obtain the corresponding equations

of the relevant performance curves.

These equations were not available and had to be reconstructed. Get-

Data Graph Digitizer is a program used to digitize graphs and plots from
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an existing pdf or image. The process of retrieving the data correspond-

ing to the graphs is done manually by following the steps presented in

Figure 6.2 and 6.3. Figure 6.2 illustrates how to select the start and end

point of the x and y axis on the image, and followed by entering the re-

spective mi n and max value. Figure 6.3 illustrates how to hover the cur-

sor over the graph, to select the relevant datapoints.

Figure 6.2: Illustration of the first step for retrieving datapoints with the
GetData Graph Digitizer program.

Figure 6.3: Illustration of the second step for retrieving datapoints with
the GetData Graph Digitizer program.

Polynomial interpolation was used to obtain the corresponding equa-

tion to the collected data points. The interpolation was simply done

by using Excels built-in interpolation function. With the equations ob-

tained, the next step was to calculate the volumetric flow, which was the

input value when determining the compressor effect.
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Volumetric flow rate is the volume of fluid that passes per unit of

time and is often represented by the letter Q. The Piranema database

provides continuous monitoring of the mass flow, represented as volu-

metric flowrate in standard conditions (1 atm, 20degC ). It is a com-

mon practice to use standard units for volumetric flow rates to perform

easier comparisons between gaseous flows. Standard volumetric flow

rates represent the actual volumetric flow corrected to the standardised

properties of pressure and temperature. There exist many different stan-

dards, each having their baseline properties. The standard used at The

Piranema Vessel is 101.2 kPaa and 25 degC (288 K ).

The actual volumetric flow is calculated by applying the Ideal Gas

Law shown in Equation 6.1, where Qactual is the actual volumetric flow

in m3

h , Qstd is the standard volumetric flow Sm3

h , Pstd is pressure at stan-

dard conditions at 101325 Pa, Pactual is pressure at actual condition in

Pa, Tstd is temperature at standard conditions in Kelvin, 288.15 degK,

Tactual is temperature at actual condition in Kelvin, Zstd is compress-

ibility factor at standard conditions, and Zactual is compressibility factor

at actual conditions.

Qactual =Qstd · pstd ·Tactual ·Zactual

pactual ·Tstd ·Zstd
(6.1)

The compressibility factor is defined as the ratio of actual volume at

a given pressure and temperature to the ideal volume under the same

conditions of pressure and temperature. In other words, the ratio of the

molar volume of a gas to the molar volume of an ideal gas at the same

temperature and pressure. Due to the small change in temperature and

pressure between the standard conditions and the actual conditions, the

compressibility factors are nearly equal, resulting in the fraction Zactual
Zstd

≈
1 and the equation can be rewritten as Equation 6.2.
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Qactual =Qstd · pstd ·Tactual

pactual ·Tstd
(6.2)

The variables Qstd , pactual and Tactual are all values measured by the

sensor system on the Piranema vessel, while pstd and Tstd are both stan-

dard values. The compressor effect for each sample in the dataset can

now be calculated by entering the actual volumetric flow into the ob-

tained equations from the performance curves.

With the obtained expected compressor effect, the next step was to

calculate the actual compressor effect for each sample. The calculations

in the obtained equations from the performance curves had the assump-

tions that the compressor was operating during normal conditions. When

estimating the actual compressor effect, the assumption no longer holds,

where the operating conditions vary. The attempt was to calculate the

theoretical compressor work for an ideal gas and then compensate for

the assumption of an isentropic process by using the polytropic efficiency

which is given in the compressor performance doc

Equation 6.3 expresses the specific compressor work.

w =− k

k −1
·p1·v1·

[(
p2

p1

) k−1
k −1

]
=− k

k −1
·m·Rspeci f i c ·T1·

[(
p2

p1

) k−1
k −1

]
,

(6.3)

where k is the isentropic coefficient, T1 is the temperature of the gas in

Kelvin K , R is the specific gas constant and p2
p1

is the pressure ratio.

The specific gas constant is given by the universal gas constant R di-

vided by the molar mass M of the gas mixture, as shown in Equation 6.4.

Rspeci f i c =
R

M
= 8314

23.90
= 347.87 (6.4)

The specific work w is multiplied with the compressibility factor Z of the

gas, expressed in Equation 6.5.
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wi deal = w ·Z (6.5)

Using Equation 6.6 compensates for the assumption of the ideal gas, by

dividing the specific compressor work with the polytropic efficiency.

wactual =
wi deal

pol y tr opi c e f f i ci enc y
(6.6)

The polytropic efficiency varies with the type of compressor as well as

the operating conditions. The values are obtained from the compressor

performance document.

Finally, the compressor effect is determined by multiplying the com-

pressor work with the mass flow, as shown in Equation 6.7.

Wactual = wactual ·m, (6.7)

where m = ρ ·Qactual . ρ refers to the density of the gas and Qactual is the

volumetric flow calculated in equation 6.2.

The difference ∆W between We , the expected effect if the conditions

are normal, and Wactual , the effect during the actual conditions, can now

be calculated and used as a metric for evaluating the operating condi-

tions for the compressors. The hypothesis was that an increase in ∆W

would indicate a weakened compressor performance.

6.1.3.2 High Pressure Flaring

Another potential variable that could represent the compressor perfor-

mance was the amount of gas burnt off in the flare system. During nor-

mal operating conditions, the amount of flared gas is steady and low. A

decrease in compressor performance naturally results in the compres-

sion trains not being able to compress the desired amount of gas per unit

time. A decrease in compression efficiency leads to an over-pressurized

system, where pressure needs to be relived through flaring. Thus, the dif-
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ference in flaring burnt per unit of time can be an indication of normal

vs abnormal condition for the compression system.

Figure 6.4: High pressure flare rate sampled every hour from 2011 til
2012.

Figure 6.4 shows the rate of gas being flared off every hour from 2011

to 2012. Gas flaring is a necessity to ensure safety onboard the vessel and

to reduce the potential damage of components. However, excess flaring

will result in significant economic loss and a negative impact on the en-

vironment. Reviewing the historical data shows that the amount of flared

gas is relatively stable, though it does experience some extreme spikes.

6.1.3.3 Choice of Target Variable

Introducing gas flaring as a target variable can have multiple benefits.

Firstly, it can function as a reliable indicator of the compression train

performance. Having a well-describing target variable is crucial in or-

der to create an accurate model, that can recognize patterns leading up

to system damage and identify problem areas. As mentioned in Section

5.2, Teekay Offshore Production is assigned a monthly flaring allowance.
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If the company exceeds this limit, the process plant needs to be shut-

down. Thus, an indicator also predicting the future amount of flare can

potentially contribute to optimizing the up-time for the plant. High pres-

sure flaring are in most cases related to low compression efficiency, but

can also be a result of the start or shutdown of a well or to check the

quality of the oil. Despite this level of uncertainty, high pressure flaring

is chosen as the target variable, due to an even higher level of uncertainty

using ∆W . This is further discussed in Section 9.2.

6.2 Tentative Model

Being able to evaluate the performance of different preprocessing tech-

niques is essential in order to create a dataset of exquisite quality. Several

of the preprocessing techniques also require a model to perform their de-

sired actions. Thus, a tentative ML-model is created in order to accom-

plish both cases. After an exploration of the dataset in Section 6.1.1.1, it

became essential to create a model that leverages the properties of the

data. As the data is sequential, an essential requirement was a model uti-

lizing the time-series aspect of the data. Both the literature and theory

affirm that the best performing machine learning model on time-series

is a recurrent neural network. Keep in mind that the model created is

only tentative and does not reflect a fully optimized model. Neverthe-

less, several optimizations steps are completed, like cross-validation and

averaging over multiple runs to ensure valid results.

6.2.1 Tentative Model Architecture

The model used in the preprocessing phase is a Gated Recurrent Unit

(GRU) network, which is a type of recurrent neural network. As explained

in Section 3.3.3.1, GRU is a modified version of a simple recurrent neu-

ral network. The most significant strength of the GRU compared to a

simple RNN is the ability to eliminate the vanishing gradient problem,
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elaborated in Section 3.3.2.5. In short, by eliminating the vanishing gra-

dient problem, the model is able to utilize previous relevant information,

which is desirable when performing predictions on time series data. Due

to the large dataset, the dataset is split into batches of 256 samples. Such

a partitioning means that only 256 samples are used in each forward and

backward pass in the network. Increasing the batch size increases the re-

quired memory space. Hence, using larger batch sizes or even the entire

dataset in one forward and backward pass might exceed the memory ca-

pacity. The sequence length is set to 100 samples, which means that the

model evaluates data from the 100 previous samples, in this case, the last

100 hours. The number of units in each hidden cell is set to 512 and the

sigmoid function is used as the activation function. The root mean square

propagation (RMSP) algorithm is used to update the model weights with

a learning rate of 0.001. Finally, the monitored loss metric is set to the

mean square error. The majority of the parameters mentioned above is

determined by the most common values used in previous experiments

on similar data.

Some further modifications have been implemented to ensure valid

results. First, a nested cross validation technique was implemented such

that the final model score is the combined average of the separate model

scores on various partitions of the dataset. Five different partitions of

the data were used as shown in Table 6.2. The partitions are arranged

to preserve the time series aspect of the data. In example, the training

set of partition 1 contains the first 50% of the data and the validation set

contains the remaining 50%.
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Table 6.2: Partition of dataset used for training and validation of the ten-
tative model.

% of training data % of validation data
Partition 1 50 50
Partition 2 60 40
Partition 3 70 30
Partition 4 80 20
Partition 5 90 10

To even further validate the results, five separate models are trained

on each partition, where the combined average scores reflect the model

performance. Each separate model is trained on the entire dataset at

least ten times, in other words, the epoch parameter is set to 10. Two call-

back functions, early stopping and model checkpoint were implemented

in order collect the best results from each model. Each model perfor-

mance is evaluated by predicting values on the unseen test set and calcu-

lating the root mean square error, RMSE. The entire source code is found

in appendix A.2, and Algorithm 1 shows the pseudocode.

Algorithm 1 Tentative Model for Preprocessing

1: for each Partition do
2: Train 10 separate models
3: for each of the 10 separate models do
4: Perform 10 iterations on the training set
5: for each iteration do
6: Stop training if the validation loss doesn’t improve
7: Save the weights from the best performing model
8: end for
9: Perform predictions on the unseen test set

10: Calculate the RMSE of the prediction
11: end for
12: Calculate the average RSME over all models
13: end for
14: Calculate the average RSME over all partitions
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6.3 Imputation of Missing Values

The goal of an imputation technique is to replace all the NaN values in

order to create a complete dataset. Some ML models are capable of han-

dling such values, but they are the exception, not the rule. In the ex-

ploration phase, a number of 110389 missing values were encountered

in the Piranema dataset. These NaN values must be replaced with sub-

stituted values and is a way of avoiding the pitfall of discarding entire

rows containing missing values. In Figures 6.5 and 6.6 a heat map illus-

trating the data instance on the y-axis and the variables on the x-axis is

shown. The segments in white illustrate a NaN value and black illustrates

a numerical data point. There are several variables with larger segments

containing NaN values, and thus imputing these missing variables is an

essential step in the preprocessing phase.

Figure 6.5: Heat Map illustration of NaN values for features 0 to 37
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Figure 6.6: Heat Map illustration of NaN values for features 38 to 70

6.3.1 Comparison of Imputation Techniques

A partition of the dataset not containing any NaN values is used to com-

pare the different imputation techniques. Some of the imputation meth-

ods take into account that the dataset is sequential, while others do not.

Univariate methods such as Mean, Median and Most Frequent do not

take the time-series aspect into account, while Backward Filling, For-

ward Filling and Interpolation do. As for the multivariate techniques,

the time-series aspect is not considered.

After exploring the dataset, the segment within range [1500 - 5000]

does not contain any NaN values and will be used to illustrate the differ-

ent imputation techniques, called DComplete . The original dataset con-

tains 110 839 NaN values of a total of 5.395.880 datapoints, meaning that

2.05% of the datapoints are NaN values. Thus a total of 2.05 % of the

existing datapoints will be removed to illustrate the accuracy of the dif-

ferent imputation techniques, creating D Incompl ete . In order to quantify

the performance of imputation algorithms, the following steps have been

done:

• Create the dataset Dcompl ete from the Piranema dataset.

• Create a new dataset Di ncomplete which is a replica of Dcompl ete but
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with 2.05% of missing values.

• Apply the different imputation techniques to impute the missing

values of Di ncomplete .

• Compare the difference between Dcompl ete and Di ncompl ete

6.3.1.1 Univariate Imputation

All the NaN values in the Di ncomplete dataset is imputed using different

univariate imputation techniques introduced in Section 3.1.1.3.1, in or-

der to illustrate the bias that imputation techniques can introduce to the

dataset. Table 6.3 shows the original value and the imputed value using

the imputation techniques Mean, Median, Forward Fill and Backward

Fill, Linear and Polynomial interpolation, respectively. To say something

about the quality of the imputation method, the RMSE is calculated us-

ing the imputed value ŶHPF l ar e and the original value YHPF l ar e , as shown

in table 6.4

Table 6.3: Table showing some instances of the original and imputed val-
ues for the variable HP-Flare.

DComplete D Incompl ete with Imputation Methods:

Data Instance Original Mean Median Forward Backward Linear Poly

1551 728.90 744.61 67.70 754.10 733.70 743.90 771.93

1632 737.80 744.61 67.70 725.70 737.90 731.80 675.33

1663 1443.60 744.61 67.70 994.20 1561.80 1278.00 875.32

1677 574.50 744.61 67.70 592.40 555.10 573.75 554.62

1766 575.60 744.61 67.70 596.10 575.60 585.85 610.12
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Table 6.4: Mean square error and standard deviation between the actual
and the imputed value.

Imputation Method RMSE STD

Mean 53.45 1291.29

Median 51.87 1312.77

Forward Fill 54.42 1342.08

Backward Fill 34.01 806.43

Linear Interpolation 43.92 1061.65

Polynomial Interpolation 55.68 1216.10

6.3.1.2 Comparison Univariate and Multivariate

In an attempt to compare the imputation techniques, a recurrent neu-

ral network will be trained to predict the target variable HP Flare. At

random 2.5 % of the values in the dataset will be replaced with NaN-

values, creating the dataset D Incompl ete . First all the NaN values in the

D Incompl ete dataset will be imputed using univariate methods that gave

the most accurate results, which were the Forward Filling, Backward Fill-

ing and Linear Interpolation, as well as some multivariate imputation

techniques provided in the Scikit ML library. The applied multivariate

imputation techniques were an iterative decision tree and an iterative and

non-iterative version of k-nearest neighbour. After imputing the entire

dataset, the feature HP Flare will be predicted using the trained recurrent

network explained in Section 6.2. The root mean square error and stan-

dard deviation is then calculated to give an estimate of the model’s ac-

curacy. The approach of comparing the different imputation techniques

is summarized in following list. The attempt was executed ten times, all

giving the same results as seen in Figure 6.7. Thus, linear interpolation

was the technique yielding the most accurate predictions, and was cho-

sen as the imputation technique to be used in the modelling phase.

1. Remove 2.5% of the values in DComplete to create Di ncomplete
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2. Apply several imputation techniques to calculate the missing vari-

ables of Di ncompl ete

3. Train the tentative model on all versions of the imputed dataset

Di ncomplete

4. Calculate the RMSE between the predicted ŷ and the actual value

y

Figure 6.7: Comparison of different imputation techniques measured in
terms of root mean square error illustrated in blue and corresponding
standard deviation.

6.4 Identifying Outliers & Operational Modes

The DBSCAN algorithm was used to detect the different operational modes

for each feature in the dataset and identify unwanted abnormal obser-

vations. As mentioned in Section 3.1.1.5, the input parameters of the



6.4. IDENTIFYING OUTLIERS & OPERATIONAL MODES 105

DBSCAN were the eps and mi n_poi nt s. These values were manually

determined by inspection and were different for each feature due to the

varying range of values. Figure 6.8 shows the result of DBSCAN used on

four of the features. The dataset is reduced down to a month of data for

easier visualization.

Figure 6.8: Results of DBSCAN applied on four features to determine
their operational modes.

The algorithm can identify the different operational modes for each

feature. The top right plot displays the gas pressure at the suction of

the 1st stage of compression train A. The algorithm identifies two op-

erational modes which are values around 0 bar, where the compressor

is turned off, and values among 9 bars where the compressor is operat-

ing. The remaining values coloured in purple, as seen in Figure 6.8 are

identified as outliers and require further analysis.

The outlier values, which lies in between the two operational modes,

could indicate the starting and stopping of the compressor. If that is the
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case, then these values should not be considered as abnormal behaviour.

Though, it could also represent a smaller error where the compressor is

not fed a gas with the correct properties. This must be investigated in

comparison with relevant systems components. The outlier values above

the 9 bar, shows that the gas entering the compressor has a much higher

pressure than it is supposed to have. This is a clear indicator that the

system is not working correctly. There could be multiple reasons for this

result, like sensor failure or component failure.

The bottom left plot in Figure 6.8 shows the amount of gas that is

flared off. There is no clear indication of multiple operational modes.

However, the algorithm defines the range of the most common values,

such that values located outside this range are identified as points of in-

terest. These outliers are of great interest in order to explain abnormal

behaviour, as well as providing information regarding potential future

threats.

6.5 Feature Scaling

Another critical step during preprocessing is feature scaling, as discussed

in Section 3.1.1.2. Though exceptions exist, most ML algorithms do not

perform well when numerical attributes have different scaling. There-

fore, multiple scaling techniques have separately been applied to the dataset

and evaluated. As an example, Figure 6.9 illustrates five samples from the

original dataset, whereas Figure 6.10 displays the same five samples af-

ter applied to three different scaling techniques. The plots combine two

features that initially had a significant range difference. After applying

the Min-Max-Normalization, Z-Score Normalization and Decimal Scal-

ing Normalization, it is evident that the different feature ranges have sig-

nificantly been reduced.
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Figure 6.9: The original data points
in the feature scaling evaluation.

Figure 6.10: Data points after mul-
tiple scaling techniques.

Another example is displayed in Figures 6.11, 6.12, 6.13 and 6.14. Box-

plots are used to visualize the distributions of features; in this case, five

features were selected. Figure 6.11 shows the feature distributions from

the original dataset and displays that the feature ranges are greatly un-

like. As shown, the feature RPM Turbine A consists of data distributed

over a range much larger than the remaining four features.
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Figure 6.11: Boxplot visualizing
the distribution of five features
from the original dataset.

Figure 6.12: Boxplot visualiz-
ing the distribution of five fea-
tures after the Min-Max normal-
ization.

Figure 6.13: Boxplot visualizing
the distribution of five features
after the Z-score normalization.

Figure 6.14: Boxplot visualizing
the distribution of five features
after the decimal normalization.

Figure 6.12 displays the distribution of the same features after being

scaled with the Min-Max Normalization techniques. The feature ranges

are now the same, where the data lies between the values 0 and 1. The

Min-Max normalization technique is suitable for data that does not fol-

low a Gaussian distribution. However, it is significantly sensitive to out-

liers. Figure 6.13 shows the same data after applied to the Z-Score nor-

malization technique. The feature ranges are not the same, but more
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similar than the ranges from the original dataset. In this case, the features

are arranged in a way that they have a mean value of 0 and a standard de-

viation of 1. This scaling technique is best suitable when the data is close

to normally distributed. The final plot, Figure 6.14 displays the features

after being scaled with the Decimal normalization technique. Similar to

the Min-Max normalization, the Decimal normalization technique pro-

duces values between 0 and 1.

The next step is to evaluate the scaling technique most suitable for

the given dataset. In order to perform such an evaluation, the tenta-

tive model described in Section 6.2 was fed four different datasets. These

four sets includes the original dataset before scaling and scaled using the

three different techniques. These four dataset includes three normalized

versions of the dataset described in Section 6.1.2, as well as the original

dataset.The hypothesis behind the experiment was that the model error,

would indicate the impact of the different scaling strategies. As explained

in Section 3.1.1.2, scaling of data may have an impact on how fast mod-

els converge. It is therefore desirable to collect information regarding the

models’ convergence time to find the most suitable scaling technique. It

is not the model error in itself, but the difference in error between the

models that are of interest.

Table 6.5: Results from the tentative model on the original dataset, the
applied Min-Max normalization dataset, the applied Z-score normaliza-
tion dataset and the applied decimal normalization dataset.

Mean RSME by Nested Cross-Validation STD RSME by Nested Cross-Validation

Original Data set 4555.13 277.86

Min-Max Normalization 3575.68 356.38

Z-Score Normalization 4013.27 256.97

Decimal Scaling 4553.12 277.92

The tentative model is used on each of the four datasets, where the

results are described in Table 6.5. It is a significant difference in terms

of loss before and after feature scaling, except for decimal scaling. No-

tably, the model applied with the Min-Max normalization has performed
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significantly better than the model with the original dataset. Not sur-

prisingly, the model applied with the Z-Score normalization has not per-

formed equally well since this scaling technique is best suitable on nor-

mally distributed data, and the original dataset does not follow such a

distribution. Figures 6.15, 6.16, 6.17 and 6.18 displays the loss curves for

both the training and validation set for each model. Again, the model

with the Min-Max normalization techniques outperforms the remaining

models in terms of reaching convergence faster. The Min-Max normal-

ization model reaches convergence on the validation set after approxi-

mately three epochs, whereas the decimal scaling model reaches con-

vergence after 12 epochs. The model with the Z-Score normalization

and the model with the original dataset does not indicate any stable con-

vergence. Overall, the Min-Max normalization is the highest performing

scaling technique and is therefore chosen.
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Figure 6.15: Mean square error
on the training- and test set with
the original data.

Figure 6.16: Mean square error
on the training- and test set after
Min-Max normalization

Figure 6.17: Mean square error
on the training- and test set after
Z-Score normalization

Figure 6.18: Mean square error
on the training- and test set after
decimal normalization

6.6 Feature Selection

The collected dataset from the IP21 database contains 70 features, where

one is the target variable. As explained in Section 3.1.2.1, the purpose

of feature selection is to reduce the dimensionality of the data. With re-

duced dimensionality follows reduced computational time, and in some

cases increased model accuracy due to the removal of confusing infor-

mation. In addition, it is desirable to remove features that have no cor-

relation with the target variable or do not provide any new information.

This section describes the feature selection steps applied to the dataset,

starting with inspecting and visualizing the data. Further, each feature
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is measured by its variance before all features are compared with each

other and the target variable to reduce redundant information. Finally, a

recurrent neural network has been used to select the last remaining fea-

tures.

6.6.1 Percent of Missing Values

The first selection step was to inspect the features for missing values.

A common rule of thumb is to remove features that contain 95% miss-

ing values and perform imputation techniques on features with less than

50% missing values. Features with 50 to 95% missing values should not

be applied with an imputation technique, but rather be replaced by a

binary variable representing the presence of the feature samples. Fig-

ure 6.19 displays the percentage of missing values for the features in the

dataset.

Figure 6.19: Displays the number of features with their percentage of
missing values.

There are no features that have 95% missing values nor more than

50% missing values. The highest percentage of missing values is only
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13%, which means that no features are removed or replaced in this step.

By theory and by information gathered from previous experiments with

machine learning models on real data, the missing values were dealt with

by using different imputation techniques. This is explained in section

6.3.

6.6.2 Amount of Variation

The next step was to evaluate each feature by its variance. Features that

have no variances will act like a constant and will have no impact on

the model predictability and should be removed. Features with a very

low variance are selected for further investigation. Figure 6.20 shows the

variance for the each feature in the dataset.

Figure 6.20: Displays the variance of 70 features in the dataset.

The feature variances range from approximately 25% to below 1%. As

explained in Section 3.1.2.1.1, the goal is to remove features that do not

vary much, which often means identifying the long tail. There is no clear

indication of a long tail in terms of feature variance in this dataset, but
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more of a linear trend. However, eleven features have a variance below

1%. All are selected for further investigation.

6.6.3 Correlation with Target

Before potentially removing features, whether it is due to missing values,

variation or correlation, their correlation with the target variable needs to

be evaluated. Even though their properties locally do not seem that sig-

nificant, they can still have a great impact on the target variable. There-

fore, removing these features will result in a less accurate model. Fig-

ure 6.21 shows the correlation between the entire dataset with the tar-

get variable. The features range from 29% to almost 0% correlation with

the target variable. Figure 6.22 displays the correlation with the target

variable among the eleven selected features from the variance step. The

correlation method applied in this step is the Spearman Rank Method

3.1.2.1.2. Some of the selected features are significantly correlated with

the target variable and should not be removed. Others are not heavily

correlated and are removed. The selected features and their respective

correlation with the target variable are displayed in Table 6.6, where the

features marked in bold are the ones that were removed.

Figure 6.21: All feature’s correla-
tion with the target variable.

Figure 6.22: Eleven selected fea-
ture’s correlation with the target
variable.
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Table 6.6: Showing eleven selected features and their corresponding cor-
relation with the target variable.

Absolute Correlation with Target Variable

Suction Gas Pressure CB2 0.275496
Suction Gas Pressure CC2 0.185307

Suction Gas Temperature CC1 0.171897
Suction Gas Pressure CA2 0.125283

Air Inlet Temperature - GTA 0.083347
Suction Gas Temperature CA1 0.083043
Suction Gas Temperature CA3 0.068078

Deg Heading 0.063430
Suction Gas Temperature CB3 0.056711
Suction Gas Temperature CC3 0.030285
Suction Gas Temperature CB1 0.007518

6.6.4 Pairwise Correlation

An important aspect of feature selection is to remove redundant infor-

mation. Features that are heavily correlated provides a lot of the same

information, which is unwanted with respect to computational time. The

pairwise correlation technique identifies pairs of features that are heavily

correlated by using the correlation matrix of the data. If the correlation

coefficient between the two features is higher than a defined threshold,

then one of the features are removed. In essence, this means that if the

threshold is quite large, the data can be reduced without losing too much

information.

For selecting features based on pairwise correlations a custom func-

tion, Pairwise Correlation Selection was created. The source code is lo-

cated in Appendix A.1, and the pseudocode is found in Algorithm 2. The

algorithm iterates through each feature of the remaining dataset after be-

ing processed in Section 6.6.1, 6.6.2 and 6.6.3. For each of the features,

the correlation matrix of the dataset is calculated by using the Spearman

Rank Method. All features that have a correlation coefficient greater than
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0.95, with the currently evaluated feature are collected. Then each of the

collected features, including the evaluated feature, are measured against

the target variable. The feature with the highest correlation with the tar-

get variable is kept, while the remaining features are removed. This en-

sures that a minimal amount of information is lost, while the number of

features is significantly reduced. After running the pairwise correlation

algorithm on the dataset, 18 features were removed.

Algorithm 2 Pairwise Correlation Selection

1: for each feature, x, in Correlation Matrix do
2: Find the correlation coefficient, c, between x and each remaining

feature
3: if c > 95 then
4: Select the current feature
5: end if
6: Calculate the correlation coefficient between the selected features

and the target variable
7: Drop all features which don’t have the highest coefficient
8: Update the Correlation Matrix
9: end for

6.6.5 Wrapper Methods

As explained in Section 3.1.2.1.3, wrapper methods select features by find-

ing the subset of the original data that provides the highest model per-

formance. The model used is the tentative model described in Section

6.2. The forward feature selection strategy is performed on two different

feature arrangements. The first arrangement was by feature correlation

with the target variable. Hence, the feature with the highest absolute cor-

relation with the target variable was first inserted into the subset and run

through the model. Then the feature with the second-highest absolute

correlation was added to the subset and fed to the model. This process

continued until all features were added into the subset and yielded the
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result presented in Figure 6.23.

Figure 6.24 displays the result after using the second feature arrange-

ment. In this case, all features have been selecting as individual datasets

and run through the tentative model. The different model scores are now

the metric that decides the arrangement of the features.

Figure 6.23: Result after per-
forming the forward feature se-
lection technique with a target
correlation-based arrangement

Figure 6.24: Result after per-
forming the forward feature
selection technique with a
model performance-based
arrangement

Reviewing the results, the arrangement after the target variable cor-

relation yielded the smallest subset of features while remaining a high

model accuracy. After completing all the feature selection steps, the orig-

inal dataset was reduced from 70 to 49 features.

6.7 Feature Extraction

The original dataset contains 70 features, and the goal of the feature ex-

traction phase is to reduce the dimensionality of the data but without los-

ing important information. As explained in the theoretical framework, in

real-world datasets, the data is not uniformly spread across all dimen-

sions. Some features are almost constant, and others highly correlated.

As a result, a majority of the instances might lie in a lower-dimensional

subspace of the high-dimensional space. The Piranema dataset consists
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of 70 features, and some of these data instances might be noisy data or

data of little significance. A dataset containing more features than neces-

sary might harm the learning phase of the ML algorithms. Thus, the goal

is to find a simpler representation of the dataset in a lower dimension.

6.7.1 Principal Component Analysis

As explained in the theoretical framework in Section 6.7.1 the dimen-

sionality is reduced by calculating the principal components and reduc-

ing the dimensionality of the dataset down to n dimensions, defined by

the n first principal components. The Explained Ratio is a function in

the Scikit-Learn library which indicates the proportion of variance in

the original dataset that is preserved in the reduced dataset of n dimen-

sions. Figure 6.25 is the cumulative explained variance plotted along

the y-axis, and the number of components plotted along the x-axis. The

curve quantifies how much of the 70-dimensional variance from the orig-

inal Piranema dataset that is contained within the first n dimensions.

Figure 6.25 indicates that approximately 95% of the variance is preserved

within the first three components.

Figure 6.25: Variance contained compared to number of selected com-
ponents.
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According to the Principal Component Analysis, the 70-dimensional

dataset can be projected into 3 dimensions, by projecting each data point

along the direction which preserves the largest amount variance. In Fig-

ure 6.26 the dataset is projected into three dimensions, and preserving

95% of the variance within the dataset. Table 6.7 shows the amount of

variance preserved given a different number of features or dimensions.

Figure 6.26: Graphical plot of the dataset projected into three dimen-
sions.

Table 6.7: Number of dimensions required to preserve selected amount
of variance.

Number of Features / Dimensions Variance Preserved
3 0.9500
5 0.99
9 0.9999

The same recurrent neural network as described in Section 6.2 is trained

on the original dataset and datasets reduced to 3, 5 and 9 dimensions,
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respectively. Figure 6.27 shows a plot of the root mean square error and

the standard deviation, for the predictions for the original dataset and

datasets reduced down to 3, 5 and 9 dimensions. As seen, the variance

between the different error rates is rather small, validating the fact that

the PCA reduction algorithm preserved the variance of the original dataset.

The dataset applied PCA preserving 0.9999 per cent of the variance yields

the best result, reducing the dimensionality of the dataset from 70 to 9 di-

mensions.

Figure 6.27: Illustrating RMSE in blue and STD as a black line for the
dataset reduced with PCA and the original dataset

6.7.2 Kernel Principal Component Analysis

As explained in the theoretical framework by introducing the kernel trick,

the principal component analysis can be used to represent a nonlinear

structure that the PCA was not able to discover. The introduction of the

kernel trick applied to the PCA makes it possible to perform nonlinear

projection for dimensionality reduction. The kPCA is an unsupervised

learning algorithm, and standard for unsupervised learning algorithm is

that there is not a performance measure. As this step is a part of the pre-



6.7. FEATURE EXTRACTION 121

processing for a regression problem, a simple linear regression model will

be fitted to the original dataset, and by calculating the accuracy of this

model the kernel function and the tuning of the hyperparameter γ will

be made.

For this task a grid search is used, which is simply an exhaustive search

through a specified subset of possible kernel functions and values for γ,

to get the most accurate prediction when using a simple linear regression

model to predict the variable of HP Flare. The optimal kernel function

and tuning of γ for the same number of dimensions as in Table 6.7 was

found, shown in Table 6.8.

Table 6.8: Choice of kernel function and tuning of the gamma parameter
for KPCA corresponding to number of dimensions/components

Number of Components Kernel Function γ

3 RBF 0.0055

5 Cosine 0.0033

9 RBF 0.00166

Looking at the size of the Piranema dataset, the computation of a ker-

nel principal component analysis would require a tremendous amount

of random access memory (RAM). Similar to Support Vector Machines,

the entire matrix for K (xi , x j ) needs to be calculated, where xi are the

sample points. Given that the Piranema dataset contains 5395880 data

points, the kPCA-algorithm would have to compute (5395880)2 terms

and store it in matrix K . Such a calculation would require an enormous

memory capacity, and even if the memory requirement was fulfilled, the

matrix multiplication would take O(n3), resulting in O(53958803) for the

Piranema dataset. Hence, such an analysis is not applied to the Piranema

dataset, due to the memory and computation complexity.
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Chapter 7

Modelling

This chapter outlines the configurations of the models used to predict

the future flare rate, HP Flare, on the Piranema vessel. A predictor for

HP Flare can be interpreted as an indicator for compression efficiency,

as extensive flaring is related to low efficiency. Thus, HP Flare can be

used as an indicator for a potential PSD-trip, since a low compression

efficiency can result in such a trip. The literature affirms that the state-

of-the-art model in the ML-domain for time-series predictions are re-

current neural networks. Thus, three types of RNN are created. The first

model created was a Simple RNN, which is the most basic version of such

a network. Furthermore, a GRU network and an LSTM network are cre-

ated. These networks have more advanced configurations than the first

model. For comparison, two additional models are created, namely a

multi-layer perceptron and an ARIMA model. The multi-layer percep-

tron functions as a baseline for comparing recurrent neural networks

with non-recurrent neural networks. The ARIMA model is implemented

in order to compare the performance of neural networks with traditional

statistical methods. The two baseline models create the opportunity of

assessing the potential value of increasing the complexity of the models.

Finally, to combine the advantages of machine learning and statistical

methods, a hybrid model was created. All implemented code and the
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used dataframe is to be found on Github. 1.

7.1 Time-Series Forecasting

The models created are measured in their ability to predict the value of

HP Flare one hour into the future. Such a prediction is done without

any knowledge of future x variables and based simply on the historical

values. This means that the models are trained on a dataset with lagged

variables. Given a target instance yt , then a lagged target instance yt+k

is obtained by shifting the data by k rows. This ensures that the inputs at

time t corresponds to the output at time t +k. This concept is illustrated

in Table 7.1. Regarding the models in this thesis, the lag constant k is

set to 1. Due to the complexity of the targeted system, this thesis focuses

on configuring models that yield accurate one-step-ahead predictions. A

natural adaption for future work will be to extend the prediction horizon

further. The error metric used to estimate the models’ ability to make

predictions is the root mean square error, as explained in Section 3.41.

Table 7.1: Example of a dataset with a lag constants k = [0,1,2].

x1
t x1

t x3
t yt yt+1 yt+2

50 2 10 1 2 3
25 32 1 2 3 4
2 45 78 3 4 5
22 3 67 4 5 -
12 66 45 5 - -

7.2 Libraries

All models are written using Google Colab notebooks, which is an on-

line cloud-based environment designed to train machine learning and

1https://github.com/kolbjornf/Master-Thesis

https://github.com/kolbjornf/Master-Thesis
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deep learning models. It leverages the computational power of Google

hardware with high performing GPUs2. The programming language is

Python which yields the Numpy library used for multidimensional ma-

trix operations. Additional libraries like Pandas and Matplotlib are used

for data visualization and inspection. Tensorflow is an open-source ma-

chine learning platform provided by Google. It contains all the necessary

tools and function to build a state-of-the-art machine learning model.

7.3 Recurrent Neural Network

Due to the size of the data, all neural networks are trained using mini-

batch gradient descent, elaborated in chapter 3.3.2.6. This ensures a more

efficient training process by performing back-propagation on smaller sub-

sets, rather than on the entire dataset. Subsets or batches are created

with a custom made batch generator which preserves the time series as-

pect of the data. It was imperative to create a function that automatically

yielded batches that were separated chronologically in order to provide

valid predictions. The batch generator source code is located in appendix

A.3. The data is divided into training, validation and test sets which are

all divided into smaller batches. Similar to the tentative RNN model used

during preprocessing in chapter 6.2, the nested cross validation 3.2.2.2.1

is used to ensure valid results and all the neural networks are following

the same approach presented in Algorithm 1.

7.3.1 Architecture & Hyperparameters

The Simple RNN, GRU and LSTM follow the same architecture with some

slight modifications. Multiple architecture designs and hyperparameter

choices have been tested and evaluated, where Table 7.2 summarizes the

setup of hyperparameters that yielded the highest performance for each

2Graphics Processing Units
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model. Table 7.3 displays the network architecture that is equal for all the

RNNs.

Table 7.2: Summary of the hyperparameter setups for the highest per-
forming versions of Simple RNN, GRU and LSTM.

Simple RNN GRU LSTM
Error Metric Root Mean Square Error Root Mean Square Error Root Mean Square Error
Optimizer Root Mean Square Propagation Adam Adam
Learning Rate 0.001 0.001 0.001
Regularization Dropout Dropout Dropout
Batch Size 740 370 370
Lookback 100 200 200
Callback Checkpoint & Early Stopping Checkpoint & Early Stopping Checkpoint & Early Stopping

Table 7.3: Summery of the corresponding architecture of the Simple
RNN, GRU and LSTM.

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer
Number of Units 50 50 1 1
Activation Function Tangent Hyperbolic Tangent Hyperbolic Linear Leaky ReLU
Dropout 0.3 0.3 - -

• Optimizer: Amongst many available optimizers, the root mean square

propagation and the Adam yielded the highest performance.

• Regularization: A dropout regularization technique has been ap-

plied to the input and first hidden layer of the network. The dropout

probability is set to 0.3, which means that every node in the layer

has a 30% chance of being deactivated. Naturally, this means that

the network must find alternative paths during training. Imple-

menting dropout in neural networks are common practice, which

often reduces the chance of overfitting (Srivastava et al. 2014).

• Lookback: Refers to the number of previous samples taken into ac-

count when performing predictions. A lookback value of 200 with

a sampling rate of one hour means that the model leverages infor-

mation from the last 8 days.
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• Callback: Two callback functions are applied to each network. The

Checkpoint function ensures that the set of feature weights with

the highest performance on the validation set during training are

saved and used when performing predictions on the test set. The

Early Stopping function stops the training when the performance

on the validation set is no longer improving. Initially, the number

of epochs is set to 50. If three consecutive epochs with no improve-

ment on the validation set occur, then the training is stopped.

7.3.2 Multilayer perceptron

The multilayer perceptron consists of an input layer, one hidden layer

and an output layer. The input and hidden layers have a linear activa-

tion function which effectively makes it equivalent to a linear regression

model. Similar to the RNNs, the output layer has the Leaky ReLU activa-

tion function, which provides a linear transformation of positive values,

whereas negative values are transformed close to zero. The type of net-

work is not recurrent, hence the lookback value is 0. The error metric,

optimizer and learning rate are similar to the Simple RNN, and dropout

and callback regularization techniques are applied.

7.4 ARIMA

The ARIMA model is constructed using the statsmodels library, which is

a python module with functions designed for statistical modelling. The

ARIMA function only uses the target variable HP Flare when performing

its future predictions. As explained in Section 3.4.1, the ARIMA model is

a combination of an autoregressive model, a moving average model and

an integration term. The model parameters are p, d and q.

• p, refers to the autoregression (AR) term, which is the number of

lagged samples used in each prediction.
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• d, refers to the integrated (I) term, which is the number of times

samples are differenced.

• q, refers to the moving average (MA) term, which is the size of the

moving average window.

7.5 Hybrid Model

Reviewing the performance of the recurrent neural networks compared

to the ARIMA model, we observed that RNNs were able to provide accu-

rate predictions for abnormal values, but failed to capture small changes

in the target variable. On the other hand, the ARIMA model was able

to consistently recognize small changes in the target variable but missed

greatly when abnormal values occurred. Hence, we propose a final model,

combining the highest performing recurrent neural network, the LSTM,

and the ARIMA model in order to merge the strengths of both individ-

ual models. The hypothesis was that the hybrid model would be able to

predict the small changes in the target value during normal operation,

as well as to detect the occurrence of abnormal behaviour. The hybrid

model executes the ARIMA model on each batch of the data. The pre-

dicted values from the ARIMA model is then transformed into a new fea-

ture and inserted into the data batches. The first batch is then fed into

the LSTM, where a forward and backward pass is completed and weights

updated. The next batch is then inserted into the updated LSTM, and this

process continues until all the batches are processed, which is equivalent

to one epoch. Predictions on the validation set are then performed be-

fore the next epoch begins as illustrated in Figure 7.1. The pseudocode is

found in Algorithm 3.
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Figure 7.1: Illustration of the proposed hybrid model combining LSTM
and ARIMA.

Algorithm 3 Hybrid Model

1: Split the dataset into training, validation and test set
2: Split the training set into n batches
3: for each batch x do
4: Perform predictions, Y with the ARIMA model
5: Transform x by inserting Y , yielding new batch x ′

6: end for
7: for each epoch in the LSTM model do
8: for each new batch x ′ do
9: Train the LSTM model

10: Update weights
11: end for
12: Perform predictions on the validation set
13: end for
14: Perform predictions on the test set
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Chapter 8

Results & Analysis

This chapter outlines the results of the highest performing configura-

tions of each model presented in Chapter 7. The chapter presents and

discusses the results of the three recurrent neural networks and the two

baseline models. In addition, three different datasets are evaluated to as-

sess the effect of data preprocessing. Model performance is defined as its

ability to generalize well over unseen data. Translated to this particular

problem, the performance of a model refers to the ability to accurately

predict the future health condition of the compression train. To ensure

valid and comparable results, each model follows the same approach.

The training set provides samples which are used to adjust the feature

weights according to the correct target variable. Obtaining a high per-

formance on the training set is not difficult, but it is not desirable if it

reduces the performance on unseen data. In this case, the model only

memorizes the correct answers on limited information, rather than in-

ferring patterns and relationships that are applicable to new data. The

validation set is used to find the set of feature weights, obtained during

training, that yields the highest performance on unseen data. This ef-

fectively means that it reduces the performance on the training set while

optimizing the models’ ability to generalize over new data. The final eval-

uation is determined on the test set, which reflects the model’s actual
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performance. All models are evaluated using the root mean square error

metric.

8.1 Dataset Comparison

The importance of feature scaling and imputation is evaluated in Chap-

ter 6. After evaluating every technique with a simple RNN-model, the

min-max scaling and linear interpolation proved to be the best tech-

niques for the dataset. This section assesses the effects of data reduction,

more specific, feature extraction and feature selection. As explained in

Chapter 6, reducing the number of features also reduces the complexity

of the model. A reduction in dimensionality results in a more efficient

and potentially more accurate model. The data reduction step yielded

two datasets. The first consisted of 9 features after applying the princi-

pal component analysis. By reducing the dataset from 70 to 9 features

0.9999 per cent of the variance is still preserved in the dataset. The sec-

ond dataset consisted of 49 features after the multiple selection methods

described in Section 6.6. Both datasets are fed to three different RNNs

alongside the original dataset for comparison. The result is displayed in

Table 8.1, indicating the RMSE for each dataset.

Table 8.1: Results summarizing the effects of data preprocessing re-
flected in the root mean square error.

RMSE for Entire Dataset RMSE for Feature Extraction (PCA) RMSE for Feature Selection
Training Set Test Set Training Set Test Set Training Set Test Set

Simple RNN 4042 3359 4284 3740 4002 3365
GRU 4451 3358 4407 3686 4404 3288
LSTM 4328 3344 4476 3441 4146 3224

Compared to the models fed the original dataset, the models fed the

dataset where the feature selection algorithm is applied are consistently

performing better both in the training and test phase. One exception is

that the simple RNN model performed slightly better when fed the orig-

inal test set. On average, models with the feature selection dataset have
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increased their performance of 1.82% on the test set and 2.08% on the

training set compared to the models with the original dataset. Regard-

ing the dataset with the feature extraction methods, the average perfor-

mance decreased by 8.02% on the test set and 2.71% on the training set.

In conclusion, the dataset that yielded the highest performance was the

feature selection dataset and is the dataset used further for comparing

the performance of the different models.

8.2 Model Comparison

The two baseline models, the ARIMA and the multilayer perceptron, yield

the benchmark performances in order to assess the advantages or disad-

vantages of increasing the model complexity. To make the results com-

parable, every model follows the same approach and assumptions. Ex-

cept for the ARIMA, which is a univariate model and the hybrid model, all

models are fed the same dataset. Every model has the possibility of run-

ning 50 epochs, although training is stopped when 3 consecutive epochs

show no improvement on the validation set. Each model is run 10 times,

where the average performance reflects the final result. Nested cross-

validation is applied to each model. Such a performance indicator en-

sures an even more valid representation of how well each model general-

izes on unseen data. Table 8.2 provides the final result and the compared

performances.

Table 8.2: Performance of each implemented model and summary of
performance compared to baseline models.

RMSE Score Baseline Comparison, %
Training Set Validation Set Test Set ARIMA Multilayer Perceptron

ARIMA 4999 4444 3893 - -6.78
Multilayer Perceptron 4541 4385 3629 6.78 -
Simple RNN 4002 3408 3365 13.56 7.27
GRU 4404 3394 3288 15.54 9.39
LSTM 4146 3327 3224 17.18 11.16
Hybrid 3625 3417 2822 27.51 22.23
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All the recurrent neural networks have a higher performance than

both of the baseline models. In the case of the ARIMA benchmark, the re-

sults state that neural networks, both recurrent and non-recurrent, have

at least 6.78% increased performance. This illustrates the effect of cre-

ating more complex models. In the case of the second benchmark, all

the recurrent neural networks are outperforming the multi-layer percep-

tron by at least 7.27%. That recurrent neural networks outperform the

multi-layer perceptron model emphasizes the importance of leveraging

past information and considering the time-series property of the dataset.

Amongst the recurrent neural networks, the LSTM had the highest per-

formance with an improvement of 17.18% compared to the ARIMA, and

11.16% compared to the multi-layer perceptron.

The performance of the hybrid model confirms our hypothesis of

combining the strengths of classic statistical and machine learning meth-

ods. The average performance increased with 27.51% compared to the

ARIMA and 22.23% compared to the multi-layer perceptron. In addi-

tion, the performance increased with 12.45% compared to the highest

performing recurrent neural network, the LSTM. Figure 8.1 and 8.2 dis-

plays the predicted against the correct target variable for the LSTM and

hybrid model respectively. The hybrid model is far more capable of pre-

dicting values in the range of 1000 to 15000 compared to the LSTM. Simi-

lar to the LSTM, the hybrid model remains robust enough to detect even

larger target variables (>20000). Figure 8.3 and 8.4 illustrates the benefits

of integrating the ARIMA into the hybrid model. The LSTM alone is, to

some extent, able to recognize large spikes, but does not infer informa-

tion regarding smaller values. On the other hand, the hybrid model is

even better in its predictions of large spikes, as well as able to capture the

changes in smaller values.
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Figure 8.1: Illustration of predicted compared to correct target values of
the LSTM model.

Figure 8.2: Illustration of predicted compared to correct target values of
the hybrid model.

Figure 8.3: 70 sample illustration showing the performance of the LSTM
model on smaller changes in the target variable.
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Figure 8.4: 70 sample illustration showing the performance of the hybrid
model on smaller changes in the target variable.

Figure 8.5 illustrates the loss and required number of epochs to reach

convergence of each model. The hybrid model outperforms the remain-

ing models in terms of loss and reaches convergence later than the LSTM

and GRU. The Simple RNN and the multi-layer perceptron are the worst-

performing models, though the Simple RNN does converge, while the

multi-layer perceptron shows no indication of convergence.

Figure 8.5: Illustration of the training loss per epoch for each imple-
mented model.



Chapter 9

Discussion

This chapter includes a comprehensive reflection corresponding to the

objectives introduced in Section 1.3. Section 9.1 highlights the impor-

tance of conducting qualitative analysis in order to gain essential do-

main knowledge of the problem of interest before going into the pre-

processing phase. Reflections regarding the choice of the target variable

and the importance of a well-describing dependent variable are found

in Section 9.2. Section 9.3 discusses the necessity of data preprocessing,

particularly important when the data is inconsistent and unreliable. The

potential value of increasing the complexity of the model by introduc-

ing machine- and deep learning is reviewed in Section 9.4. Section 9.5

discusses on the benefits and challenges of combining multiple mod-

els. Conclusively, reflections concerning how Teekay Offshore Produc-

tion can benefit from ensuing the digital transformation is found in Sec-

tion 9.6.

9.1 Profound Domain Knowledge

Even though machine learning allows unbiased modelling of complex

problems, incorporating domain knowledge is always beneficial. Per-

forming the qualitative analysis in Section 5.2 gave a more in-depth per-
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spicacity of the components on the FPSO, as the petroleum industry was

a new domain for us. Conducting analysis such as the FMEA and FTD

gave profound insight, even though all findings are not directly applica-

ble to the models created. For instance, the shut-down of 2 out of 3 OPRA

turbines will also cause a PSD-trip, and the same goes for the SOLAR tur-

bines. If these failure times had been traceable in the IP21-system, this

information could also have been incorporated in the models. After con-

ducting the FMEA analysis, it became clear that the main reason for high-

pressure flaring was low compression efficiency. Thus, we proposed HP

Flare as the target variable for the predictive models. Truly understand-

ing the data and the problem of interest is crucial. If there exists no rela-

tionship between the features and the target, no model would be able to

provide any predictions.

9.2 Choice of Target Variable

As previously stated, in order to avoid PSD trips by obtaining a robust fu-

ture health predictor of the compression train, an accurate performance

indicator is required. Determining a target variable best describing the

performance of the compression train was a complex task, and this thesis

introduced several reasonable dependent variables.

Primarily, using ∆W as target variable, describing the difference be-

tween the expected compression efficiency WE and the actual efficiency

WA, could potentially provide a strong indication of the compression

performance. However, neither of the values, WE or WA, are monitored

and logged in the SCADA-system. Thus, both values had to be derived

from an official performance document and a theoretical estimate of the

physical properties of the compressor and the processed fluid, respec-

tively. Such an analysis would require broad domain expertise and com-

bine several engineering disciplines. Process engineers at Teekay did

some calculations on this matter a few years ago but were not able to
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determine whether the derived calculations explained the performance

of the compressors accurately. When applying theory in practice, many

assumptions have to be made. Such assumptions added a lot of uncer-

tainty to the actual performance variable, WA, and it was hard to deter-

mine whether the calculations gave an accurate estimate of the perfor-

mance. Deriving such a performance measure with high accuracy was

attempted but proved to be far too complex. Due to the uncertainty sur-

rounding the approach and calculations, we decided to discard this po-

tential target variable.

As an alternative target variable, the amount of high pressure flaring,

HP Flare was proposed. A high value of flaring is an indication of low

compression efficiency, as the gas has to be burnt off to release pressure

in the process plant. However, flaring is also a result of the process plant

starting up or shutting down. Hence, the multiple reasons for flaring cre-

ate a bias in the target variable. However, the highest peaks of flare, rang-

ing from [50 000 - 200 000] is most likely a result of low compression ef-

ficiency, and being able to predict such peaks indicates the compressors

health state. Although this target variable introduces a level of uncer-

tainty, we evaluated it to be a more robust performance indicator since it

is logged in the SCADA-system. Compared to the∆W , choosing HP Flare

would remove the uncertainty concerning data validity, whereas the∆W

calculations would not necessarily reflect the real world. That being said,

comprehensive testing and calculations of∆W performed by domain ex-

perts would probably yield a more robust indicator of the compressor

performance. As mentioned several times, working on real-world appli-

cations is a multidisciplinary task, and it would be beneficial to incorpo-

rate an interdisciplinary strategy to further improve the work completed

in this thesis.



140 CHAPTER 9. DISCUSSION

9.3 Preprocessing

When dealing with real-life data, both the literature and theory regarding

preprocessing agree on the fact that it is a time consuming and essen-

tial phase. Gan, Ma, and J. Wu (2007) stated in their research in 2007

that preprocessing consumed more than 80 per cent of the time of a

modelling phase, and a decade later, Ramırez-Gallego et al. (2017) stated

the same. Computer science is one of the most swiftly developing fields

of discovery. Still, the researchers stated the same about the time con-

sumption of preprocessing, even a decade apart. As real-life datasets will

vary from problem domain and industry, and differ in quality, dimen-

sion and structure, there exists no state-of-the-art pipeline of prepro-

cessing techniques to transform a raw dataset into a high-quality dataset.

The most applicable techniques have to be determined based on the raw

data available, as well as for the problem of interest. The data obtained

from Teekay Offshore Production was of an extreme dimension, both in

terms of features, samples and cardinality. To be able to create a dataset

without noise, inconsistency, missing values and outliers, an extensive

grid-search through different preprocessing techniques was executed.

The quality of a preprocessing technique was validated using a simple

RNN network, in order to determine which of the techniques improved

the quality of the predictor. As stated in the literature, this was a time-

consuming part of the research, as there exist multiple approaches for

imputation, scaling, detecting outliers, selecting the most relevant fea-

tures and for reducing dimensionality. The techniques that gave the best

result for the problem of interest are by no means applicable for another

real-life dataset, making it hard to determine an overall recipe to suc-

cess for preprocessing. Even though researches state that preprocess-

ing is time-consuming, Naduvil-Vadukootu, Angryk, and Riley (2017),

Elsworth and Güttel (2020) amongst others emphasizes the importance

of preprocessing in their research, as this leads to a better understanding

of the dataset, simpler models and more accurate predictions. Also, the
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models proposed in this research achieved a higher accuracy and a more

simple structure, when fed preprocessed data rather than raw data, as

seen in Table 8.1. One can demonstrate that the quality of a predictor is

only as good as the quality of the data, emphasizing the importance of

such a premodelling phase.

9.4 Modelling

According to the literary findings in Chapter 4, machine and deep learn-

ing models tend to outperform classical methods, due to their ability to

derive complex relationships from non-linear and non-parametric data.

The increase of available data combined with efficient models and hard-

ware makes machine learning models capable of solving a more compre-

hensive range of intricate problems. However, due to the models’ com-

plexity, the creator is left with little to no understanding of how the model

derives the relationships. Machine Learning models are also highly de-

pendent on the quality of the data. Ideally, the available data should

cover all the areas of the problem domain so that the model will general-

ize well on new data. Nevertheless, this is often not the case, especially in

real-world applications. In our research, the main objective was to cre-

ate an accurate health-indicator for the compression train onboard the

Piranema vessel. In order to be accurate and valuable, the model must be

able to detect the degradation of the component’s state of health. Since

ML models are highly dependent on the data available, the data must

consist of observations from a degraded state, as well as data from a

normal condition. In practice, this means running a component further

than the recommended safety criteria in order to gather data from a de-

graded state. Such a scenario is both expensive and potentially danger-

ous.

The literature also emphasizes the value of implementing simpler mod-

els. Such models might not provide a result as accurate as an ML model,
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but presents intuitive information regarding the causes of change in the

target variable. For instance, by observing the direction and magnitude

of the coefficients of a linear regression model, one can derive the fea-

tures with the highest impact on the target variable. Performing a similar

operation on deep neural networks yields a broad set of feature weights

which are difficult to trace back to the original features.

In this research, a great emphasis is put on testing out multiple dif-

ferent models. Cross-validation and averaging over multiple executions

ensure valid results that truly reflect its performance. Baseline models

were also created to assess the benefits of increasing model complexity.

The results in Chapter 8, show that the recurrent neural networks outper-

form both baseline models. The results display the advantages of choos-

ing models designed for non-linear time-series. In addition, , looking at

the convergence in Figure 8.5 in Section 8.2, the networks designed to

overcome the common challenge of vanishing gradient are all reaching

convergence faster, at least in terms of epochs. Such a property is ben-

eficial when networks are required to compute predictions in real-time.

Then again, the computation time per epoch for both the GRU and LSTM

networks are higher than for the Simple RNN. Both GRU and LSTM incor-

porate more information regarding the past, which naturally increases

the models’ complexity. In terms of scalability, the tradeoff between ac-

curacy and speed is crucial. Prediction accuracy has been the main per-

formance measure for the created models. However, with today’s rate of

generated data and safety requirements, it might be desirable to sacrifice

some accuracy for speed. For instance, a model that provides warnings

after hazardous events occur has no value.

9.5 Hybrid Model

The different models created in this research tended to capture different

changes in the target variable. Such an observation was the reason for
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the proposition for the hybrid model, combining the strengths of classic

statistics and state-of-the-art machine learning models. As previously

mentioned in Chapter 8, the LSTM model was able to detect large spikes

in the target variable but did not perform well on smaller changes un-

der normal condition. On the other hand, the ARIMA model general-

ized well on smaller changes in the target variable but was not able to

detect abnormal behaviour. The literature emphasizes the strengths of

combining multiple models to create a more robust predictor. It is chal-

lenging in practice to determine whether a time-series is generated from

a linear or a non-linear process. Never the less, real-world time-series

are rarely pure linear or non-linear. In this thesis, we propose a hybrid-

model, combing the strength of the linear ARIMA model and the non-

linear LSTM-RNN network. These models are used jointly aiming to cap-

ture the different form of relations in the time-series data provided from

Teekay. Such a hybrid model takes advantage of the unique strength of

ARIMA and RNN in linear and non-linear modelling. The result shows

that the hybrid model outperforms the highest-scoring RNN by 12.45%.

More interestingly, inspecting figures 8.3 and 8.4 show that the hybrid

model did inherit the advantages of both models. The hybrid model was

able to provide accurate predictions during normal and abnormal be-

haviour. It especially improved the accuracy of detecting abnormal be-

haviour compared to the LSTM. The result of the hybrid-model initiates

the proposal of incorporating additional models.

9.6 Gain for Teekay Offshore Production

Teekay monitors and stores a large amount of data. However, the data is

not designed such that it is easily applicable in advanced machine learn-

ing analysis. Achieving the end goal of a fully automated condition mon-

itoring system requires a restructuring of the database. Unstructured

data, such as free text is not compatible with supervised machine learn-
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ing models and should be transformed. Hence, parts of the maintenance

strategy, such as reporting maintenance events and logging component

health after testing or inspection, must be stored as structured data. To-

day the sensory data is stored in IP21, whereas the corresponding event

data is stored in STAR IPS. Combining these two databases and creating

the connection between the sensor and event data would yield data more

suitable for advanced analysis. First, the occurrence of missing sensory

data could be explained by the corresponding event. When performing

analysis, it is desirable to know if the missing data is due to a planned

event such as component maintenance, or unplanned events such as

sensor malfunction or abnormal component behaviour. Secondly, iden-

tifying these events creates an opportunity for a profound analysis of

specific scenarios. For instance, the models implemented in this the-

sis could be further specialized to obtain information of component be-

haviour prior to selected events. This increases the understanding and

insight of the data, such that the decision-makers can apply actions with

a higher level of certainty. Furthermore, it would be easier to expand the

proposed model in this thesis to other components on the vessel. A re-

construction of the database will increase the complexity of the available

data, which ML models are far more capable of accurately interpret, as

the results of this thesis substantiates.
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Conclusion

The use of machine learning in condition-based monitoring is a field

of study with great potential. Rapidly obtaining valuable information

is beneficial in terms of competitive advantage, safety and sustainabil-

ity. The increasing amount of available data creates the opportunity for

companies to optimize their business strategies with precise predictive

abilities. This thesis has explored the potential benefits of introducing

machine learning in Teekay Offshore Production’s maintenance strategy

by creating a predictive health-indicator. We conducted a comprehen-

sive review of the theory and literature regarding different approaches for

implementing ML-models and preprocessing data when applied to the

real-world domain. Creating an accurate health-indicator requires high-

quality data and efficient data-driven models. Hence, the primary con-

cern of this thesis has been to ensure high-quality data, as the obtained

dataset was unstructured, inconsistent and noisy. The achievement of

this goal required extensive experimental research in the preprocessing

domain, in order to obtain the highest possible data quality. As the lit-

erature states,this was a time-consuming task, as it still does not exist a

state-of-the-art pipeline of preprocessing techniques. By implementing

several methods and validating the transformed dataset using a predic-

tor, we were able to select the methods most suitable for our time-series.
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The importance of preprocessing is further confirmed when executing

the optimized final model, which performed significantly better when

fed preprocessed rather than raw data. We emphasize that these tech-

niques can by no means ensure high-quality for another real-life dataset,

as real-life data vary significantly in terms of quality, dimension and com-

plexity. The implemented predictive models reflect state of the art within

the field of ML with innovative solutions for inconsistent and sophisti-

cated systems. Traditional time-series forecasting has been challenged

by comparing classical statistical methods and recurrent neural networks.

The LSTM significantly outperformed the baseline models with an in-

creased performance of 17.18%. Seeing that the literature emphasizes

the advantages of hybrid models, we propose a predictive model which

combines the strengths of the classical ARIMA and the LSTM. The hybrid

model’s predictive performance significantly outperforms the baseline

models and RNNs with an increase of 27.51% and 12.45%, respectively.

As real-life data is seldom purely linear or non-linear, it is natural that a

model able to detect both relations performs better.

The implemented models are proposed as the first initial integra-

tion of data-driven health-indicators. An accurate prediction of HP Flare

can predict the future performance of the compression efficiency. This

would yield useful information that the maintenance engineers can in-

corporate to avoid unwanted events such as a PSD trip. Reviewing the

results, we argue that implementing ML in Teekay’s maintenance strat-

egy is worth the investment. However, this requires comprehensive re-

structuring regarding data allocation with a greater emphasis on ensur-

ing reliable and consistent data. Having sensor data logged in one sys-

tem, and unstructured data in another is the main obstacle Teekay needs

to overcome, in order to follow the digital transformation. Several of

the preprocessing steps required in this research can be replaced with a

well-structured database, providing applicable data for real-time analy-

sis. Embedding predictive strategies into the maintenance strategy yields
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more information that the engineers in Teekay can utilize in their daily

operations and future planning. By reconstructing the database and in-

troducing predictive strategies, the company’s fundamental values can

be strengthened, by optimizing all decisions considering people, planet

and potential profit
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Chapter 11

Further Work

Due to time limitations, interesting adaptions for the researched prob-

lem were left for future research. This thesis focuses on the obstacles of

using real-life data for time series forecasting in order to create a health

indicator to support Teekays maintenance routine. The research con-

ducted in this thesis is a first step into the world of automated decision

making. By creating data-driven models; the goal is to provide Teekay

with an ultimate toolbox to perform such analysis and use the data gen-

erated over the past decade to gain valuable insights to the process. To

reach this goal, a lot of research, new adaptions and testing of new ap-

proaches remain.

11.1 Extensions of Problem of Research

The problem study in this thesis is a complex one. As mentioned in Sec-

tion 5.1.1, Teekay engineers have, over the years, proposed several possi-

ble solutions. The approach of this thesis was to research the possibility

of solving this problem by creating a machine-learning model to be used

as a health indicator. Due to the time constraints, other propositions

have not been tested, but using other methods to attempt to solve this

problem will be an interesting area of research.
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First and foremost, identifying a better target variable could poten-

tially give a result with higher accuracy for the time-series predictions.

Using the compressor’s efficiency, as discussed in Section 6.1.3.1 is a com-

plex task, combining several engineering disciplines like chemistry, fluid

dynamics and thermodynamics. A research collaboration between stu-

dents in these fields, as well as computer engineering students, would

have been an interesting continuation of this thesis. Using expert knowl-

edge of the physics and chemistry behind the compressor trains could

potentially result in a better and more accurate target variable describing

the efficiency of the compressor. By having a more accurate target vari-

able, known in classical statistics as the dependent variable, the model

can potentially discover new relations and patterns between the depen-

dent and independent variables.

Secondly, this research only explores the possibility of creating a health-

indicator using data-driven models, both by using machine-learning and

the classical statistical model ARIMA. As mentioned, combining students

with multiple disciplines would add an extra dimension to this research.

A clear understanding of the compressor trains efficiency, in combina-

tion with traditional statistical tools, would tackle the uncertainties and

high variability in the system behaviour. Instead of building a time-dependent

model, an interesting field of research would be to try to create an incre-

mental degradation model, and model the degradation level between tk

and t j . Then again, such a model requires that the probability density

functions for the variables can be estimated using classic statistical tools.

Given this requirement, one could try to model the degradation by a Levy

or Gamma process etc., with a predefined threshold.

Thirdly, after creating an accurate health-indicator for the efficiency

of the compression system, an interesting extension of this thesis will be

to optimize the preventive maintenance routine. Such a routine could

balance the risk of failure and the cost of maintenance, based on the in-

dications from the data-driven model.
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11.2 Future Collaborations with Teekay

This thesis is the first step into exploring the possibility of a fully-automated

decision system for Teekay Offshore Solution. Exploring such opportu-

nities is critical to maintaining relevance and competitiveness in a world

more inclined to data-driven solutions. Teekay would greatly benefit from

collaborating with students in the future and exploring other fields of

study where data automation would be an interesting approach.

STAR IPS, as described in Section 2.3.4.1 is the program used for plan-

ning and administration of the maintenance work. After having executed

both corrective and preventive maintenance, the engineer has to fill out a

form in the program, describing the work details and the current health-

status for the components. Everything is written in free-text, with no use

of a predefined template. This issue limits the opportunities of taking ad-

vantage of historical knowledge because the status of a component is re-

ported in various ways. The components sensor values are logged in the

IP 21 system, while failure times are reported in STAR IPS. Applying deep

learning to unstructured text might be a solution for extracting relevant

information and organizing such information. This idea is a complex

task but would be of great advantage for the company. A clear overview

of the failure times of every component would simplify the work of cre-

ating accurate health-indicator models.
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Appendix A

Source Code

A.1 Pairwise Correlation

#---------- Pairwise Correlation
-------------------------------------------,→

pc_data = data.copy()
print('Original dataset shape: {}'.format(pc_data.shape))
if True: # If True, drop columns with low variance

pc_data = pc_data.drop(features_low_variance_corr, axis
= 1),→

print('Dataset shape after dropping features:
{}'.format(pc_data.shape)),→

pc_data_index = pc_data.columns

#Calculates the correlation matrix
pc_corr_matrix = pc_data.corr(method = 'spearman')
pc_corr_matrix_target = abs(pd.concat([pc_data, target],

axis = 1, sort = False),→

.corr(method = 'spearman').iloc[-1])
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temp = pc_corr_matrix_target
corrMatrix_final = pc_corr_matrix

#Method that finds features that are correlated above the
threshold,,→

#then find the feature that are most correlated with the
target variable,,→

#delete the remaining features.
for col in corrMatrix_final:

if col in corrMatrix_final.keys():
thisCol = []
thisVars = []
for i in range(len(corrMatrix_final)):

if abs(corrMatrix_final[col][i]) == 1.0 and
col != corrMatrix_final.keys()[i]:,→

thisCorr = 0
else:

thisCorr = (1 if
abs(corrMatrix_final[col][i]) > 0.95
else -1) *
abs(temp[[temp.keys()[i]]].values)

,→

,→

,→

thisCol.append(thisCorr)
thisVars.append(corrMatrix_final.keys()[i])

mask = np.ones(len(thisCol), dtype = bool)

ctDelCol = 0

for n, j in enumerate(thisCol):
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mask[n] = (False if ((j[0] != max(thisCol)) &
(j[0] >= 0)) else True),→

if ((j[0] != max(thisCol)) & (j[0] >= 0)):
corrMatrix_final.pop('%s' %thisVars[n])
temp.pop('%s' %thisVars[n])
pc_data.pop('%s' %thisVars[n])
ctDelCol += 1

corrMatrix_final = corrMatrix_final[mask]

#Find the correlation with target variable for the
remaining features,→

pc_data = pd.concat([pc_data, target],axis = 1, sort =
False),→

print('Dataset shape after pairwise:
{}'.format(pc_data.shape)),→

pc_remain_corr_matrix = pc_data.corr(method = 'spearman')

if True:
pc_remain_corr_matrix =

abs(pc_remain_corr_matrix.iloc[-1]),→

else:
pc_remain_corr_matrix = pc_remain_corr_matrix.iloc[-1]

pc_remain_corr_matrix =
pc_remain_corr_matrix.sort_values(ascending =
False).iloc[1:]

,→

,→

plt.plot(np.arange(len(pc_remain_corr_matrix)),
pc_remain_corr_matrix),→

plt.xlabel('Number of Features')
plt.ylabel('Correlation with Target')
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print(pc_remain_corr_matrix.index)

A.2 Tentative Model

#----------- Tentative Model --------------------

split = [0.5,0.6,0.7,0.8,0.9]
split = [0.8]
def run_model(data):

final_mse = []
for temp_split in split:

x_data = data.values
y_data = df_targets.values.reshape(-1,1)
if False:# True if evaluating each feature seperately,

otherwise False,→

x_data = x_data.reshape(-1,1)

#Split dataset
num_data = len(x_data)
train_split = temp_split
num_train = int(train_split * num_data)
num_test = num_data - num_train

x_train = x_data[0:num_train]
x_test = x_data[num_train:]
y_train = y_data[0:num_train]
y_test = y_data[num_train:]

num_x_signals = x_data.shape[1]
num_y_signals = y_data.shape[1]



A.2. TENTATIVE MODEL 157

#Scale the data
x_scaler = MinMaxScaler()
x_train_scaled = x_scaler.fit_transform(x_train)
x_test_scaled = x_scaler.transform(x_test)
y_scaler = MinMaxScaler()
y_train_scaled = y_scaler.fit_transform(y_train)
y_test_scaled = y_scaler.transform(y_test)

batch_size = 256
sequence_length = 100

#
generator = batch_generator(batch_size,

sequence_length, num_x_signals, num_y_signals,
num_train, x_train_scaled, y_train_scaled)

,→

,→

validation_data = (np.expand_dims(x_test_scaled,
axis=0), np.expand_dims(y_test_scaled, axis=0)),→

model_mse = []
num_runs = 10
for i in range(num_runs):

#Model Architecture
model = Sequential()
model.add(GRU(units=512,

return_sequences=True,
input_shape=(None, num_x_signals,)))

model.add(Dense(num_y_signals,
activation='sigmoid')),→

optimizer = RMSprop(lr=1e-3)
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model.compile(loss=loss_mse_warmup,
optimizer=optimizer, metrics = ['mse',
r_square])

,→

,→

path_checkpoint = 'best_model'
callback_checkpoint =

ModelCheckpoint(filepath=path_checkpoint,
monitor='val_loss', verbose=1,
save_weights_only=True, save_best_only=True)

,→

,→

,→

callback_early_stopping =
EarlyStopping(monitor='val_loss', patience=3,
verbose=1)

,→

,→

callbacks = [callback_checkpoint,
callback_early_stopping],→

model.fit(x=generator,
epochs=10,
steps_per_epoch=100,
validation_data=validation_data,
callbacks = callbacks)

try:
model.load_weights(path_checkpoint)
print('Success')

except Exception as error:
print("Error trying to load checkpoint.")
print(error)

# Input-signals for the model.
x = np.expand_dims(x_test_scaled, axis=0)
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# Use the model to predict the output-signals.
y_pred = model.predict(x)
y_pred_rescaled =

y_scaler.inverse_transform(y_pred[0]),→

temp_mse = np.sqrt(np.mean(np.square(y_pred_rescaled
- y_test))),→

temp_mse = temp_mse.item()
model_mse.append(temp_mse)

print('Model finished')

print('Split finished')
final_mse.append(np.mean(temp_mse))

return_final_mse = np.array(final_mse)

return return_final_mse

A.3 Batch Generator

def batch_generator_chron(batch_size, sequence_length,
num_x_signals, num_y_signals, num_train,
x_train_scaled, y_train_scaled):

,→

,→

while True:
x_shape = (batch_size, sequence_length,

num_x_signals),→

x_batch = np.zeros(shape=x_shape,
dtype=np.float16),→
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y_shape = (batch_size, sequence_length,
num_y_signals),→

y_batch = np.zeros(shape=y_shape,
dtype=np.float16),→

idx = 0
step_size = int(sequence_length/2)
for i in range(batch_size-1):

x_batch[i] =
x_train_scaled[idx:idx+sequence_length],→

y_batch[i] =
y_train_scaled[idx:idx+sequence_length],→

idx = idx + step_size

yield (x_batch, y_batch)
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