Markus Bjgnnes, Marius Nilsen

ROS 2 Integration of the ABB YuMi Dual-
Arm Robot and the Zivid One 3D Camera
for Autonomous Manipulation of Small
Components

Master’s thesis in Robotics and Automation
Supervisor: Lars Tingelstad

June 2020

NTNU

oo
c
=
()
()
£
oo
c
W]
Y—
o
>
=
)
1o}
T
[N

&
ST
()
29 0
< £
] [}
()
=& G
o —
c o
© =)
(0] %)
LC) =]
35 E
gRc
wv ©
Y— C
o ©
> ©
F
()
>z &
(9]
5 9
S
< Y—
8 %5
20 +~
v c
e 2
(e}
z €
o
o
(]
[a)

@ NTNU

Norwegian University of
Science and Technology

Preface

This thesis concludes five years of studies at the Department of Mechanical and
Industrial Engineering at NTNU. We would like to express our gratitude towards
our supervisor Lars Tingelstad for valuable advice and guidance the last two
semesters. We would also like to thank Martin Ingvaldsen, at Zivid AS, for valu-
able input regarding the use of their cameras.

Work on this thesis was conducted during the Covid-19 pandemic. In accordance
with NTNU policy, we did not have access to the laboratory facilities from 13th
of March to the 4th of May.

Moo Poere= b Wdor

Sammendrag

Hovedmalet for denne avhandling er utviklingen av et robotsystem for ekstern
styring av en toarmet ABB YuMi industrirobot. Robotsystemet skal utfore opp-
gaver som autonom handtering av sma komponenter i montasjeoperasjoner. Til
dette formalet, presenterer vi metodikk og implementasjonsdetaljer for et ROS 2
basert system. Systemet integrer 3D datasyn for estimering av objekters posisjon
og orientering, samt automatisk bevegelsesplanlegging.

Roboten styres ved hjelp av sine "Externally Guided Motion" og "Robot Web Ser-
vices" grensesnitt. Gjennom disse styres roboten eksternt i sanntid fra et system
implementert i ROS 2. For implementasjon av automatisk bevegelsesplanlegging
brukes den initielle Movelt 2 Betaen. Robotsystemet benytter en samplingsbasert
og en lineser kartesisk baneplanlegginsmetode. Objekters posisjon og orientering
innhentes fra ngyaktige punktskyer generert av en Zivid One 3D kamera. Forpross-
esering av punktskyer gjgres ved hjelp av programvarebiblioteket PCL, estimering
av posisjon og orientering gjgres ved & benytte "point pair features". Styring av
Zivid One 3D kameraet samt estimering av objekters posisjon og orientering er
integrert i robotsystemet ved hjelp av ROS 2.

Systemets komponenter ble testet bade isolert og samlet. Testing av objektdetek-
sjonsmetoden viste at denne palitelig fant objekter. Videre viste testing at bane-
planleggingsmetodene robust planla baner som unngikk hindringer i rommet. Sys-
temvalidering ble gjennomfort i et eksperiment hvor komponenter plukkes fra en
boks og plasseres i en annen. Systemet klarte autonomt & gjennomfgre oppgaven
péa en palitelig mate, noe som indikerer at systemet kan benyttes i industrielle
montasjeoperasjoner.

Abstract

The main objective of this thesis is the development of a system for external
control of the ABB YuMi dual arm industrial robot. The robot system is intended
to be applied for industrial assembly purposes, carrying out tasks such as the
autonomous handling of small components. To this end, we present methodology
and implementation details for a ROS 2 based system, integrating 3D computer
vision for object pose estimation and automatic motion planning.

The robot is controlled using the Externally Guided Motion and Robot Web
Services control interfaces. Through these, the robot is externally controlled in a
real-time manner from a robot control system implemented in ROS 2. Automatic
motion planning is implemented using the initial Movelt 2 Beta in sampling-based
and linear Cartesian motion planning pipelines. Object poses are obtained from
accurate point clouds generated by a Zivid One 3D camera. Preprocessing of
point clouds is implemented using the PCL software library and pose estimation
is done using point pair features. Both control of the Zivid One 3D camera and
pose estimation functionality is integrated into the robot system using ROS 2.

The implemented system components were tested both individually and in an in-
tegrated system configuration. Individual tests showed that the pose estimation
pipeline was able to reliably find the pose of objects from point clouds. Further-
more, both motion planning pipelines were able to reliably plan motions, avoiding
collisions with the environment. System integration was tested in a bin picking
application. The system was able to autonomously and reliably perform the bin
picking task, demonstrating the applicability of the system to industrial compo-
nent handling tasks.

Contents

2

1 Introduction 1
1.1 Objectives o 2
1.2 Contributions 2
1.3 Thesis structure 3
Preliminaries 5
2.1 Kinematic Modelling of Rigid Bodies 5

2.1.1 Pose of Rigid Bodies 5
2.1.2 Rotation Matrices 6
2.1.3 Elementary Rotations 7
2.1.4 Rotations as Linear Transformations 7
2.1.5 Euler Angles 7
2.1.6 Skew Symmetric Representation of a Vector 8
2.1.7 Rotations as Matrix Exponentials and Logarithms 8
2.1.8 The Unit Quaternion 9
2.1.9 Homogeneous Transformations 10
2.2 Kinematics of Open Chains 10
2.2.1 Forward Kinematics 10
2.2.2 Inverse Kinematics 12
2.2.3 Analytical Inverse Kinematics 12
2.2.4 Numerical Inverse Kinematics 13
2.3 Dynamic Modelling of Open Chains 14
2.4 Computer Vision 14
2.4.1 Pinhole Camera Model 14
2.4.2 Corner Detection 17
2.4.3 Camera Calibration 18
2.44 Point Clouds 18
2.4.5 Mathematical Description of Planes 19
2.4.6 Fitting a Plane to a Set of Points 19
2.4.7 Finding the Transformation Between two Point Clouds . . . 20
2.4.8 TIterative Closest Point 21

2.4.9 Structured Light 3D Scanners 21

viii

Contents

2.5 Robot Operating System 2 22
Pose Estimation 25
3.1 Geometry Based Approaches 26
3.1.1 Point Pair Feature Matching 26
3.1.2 Multimodal Point Pair Features. 27

3.2 Template based matchingo . 28
3.2.1 LINEMOD 29

3.3 Deep Learning Based Approaches 30
3.3.1 Decision Forests 30
3.3.2 PoseCNN e 31
3.3.3 DeepIM 32
3.34 Dense Fusion 33

3.4 System Integration Concerns 34
3.5 Hand Eye Calibrations Using Point Clouds 35
3.6 Kinematics of the Hand-Eye Calibration Problem 37
3.7 A Solution to the Hand-Eye Calibration Problem 41
3.8 Procedure for Hand-Eye Calibration 42
3.9 Hand-Eye Calibration Using Point Clouds 43
3.9.1 Calculation of Calibration Error 44
Motion Planning 47
4.1 Configuration Space and Operational Space 47
4.2 Path and Trajectoryo L. 48
4.2.1 Trajectory Planning 48

4.3 Defining the Motion Planning Problem 51
4.4 Motion Planning Methods 0L 52
4.5 Movelt 2: ROS 2 Motion Planning Framework 53
4.5.1 OMPL-based Motion Planning Pipeline 54
4.5.2 Linear Cartesian Motion Planning Pipeline 59
Estimation of External Forces 61
5.1 Method for Estimation of External Forces 62
System Description 65
6.1 Hardware 65
6.1.1 ABB YuMi 65
6.1.2 Zivid One Structured Light 3D Camera 69

6.2 External Computer 70
6.3 Software 70
6.3.1 External Control Interfaces of YuMi 70

6.3.2 ROS 2 Robot Control Architecture 73

Contents

6.3.3
6.3.4
6.3.5
6.3.6

Motion Planning System,
Pose Estimation System
Sensor-less Force Estimation System
Bin Picking System oo

7 Experiments
7.1 Hand-Eye Calibration,

7.1.1
7.1.2

Simulations of Hand-Eye Calibration using Point Clouds . .
Hand-Eye Calibration of the ABB YuMi and Zivid One 3D

CAICra . . . v v v vt e e e e e e e e e e e e e e e e e e

7.2 Pose Estimation
7.3 Motion Planning oo

7.3.1
7.3.2

OMPL-based Movelt 2 Motion Planning Pipeline
Linear Cartesian Movelt 2 Motion Planning Pipeline

74 Bin Picking
7.5 External Force Estimation

8 Discussion

8.1 Hand Eye Calibration Using Point Clouds
8.2 Pose Estimation System
8.3 Motion Planning oo oo
8.4 External Force Estimation,
8.5 System Integration and Bin Picking

Conclusion and Further Work

9.1 Conclusion
9.2 Further Work e

ix

115
115
115

119
122
125
125
127
129
133

137
137
138
139
142
143

List of Figures

2.1 Coordinate frames {a} and {b}.o 6
2.2 Two link planararm 12
2.3 Pinhole camera model. L oo 15
2.4 Camera and world coordinate systems. 16
2.5 Plane with normal vector, mn. 19
2.6 Illustration of triangulation principle for a structured light scanner 22
2.7 State and transitions of a node with managed lifecycle 24
3.1 TIllustration of point pair features. 26
3.2 Components of a multimodal point pair feature 28
3.3 Example object with different modalities 29
3.4 DeeplIM pose refinement pipeline 32
3.5 Overview of the Dense Fusion pipeline 33
3.6 Calibration setups 38
3.7 A camera mounted rigidly close to the robot end-effector 40
4.1 Motion timing law with imposed trapezoidal joint velocity profile . 49
4.2 Trajectories obtained through interpolating polynomials 50
4.3 The EXTEND procedure 56
4.4 An example of a bounding volume hierarchy. 57
4.5 Flowchart of the OMPL-based Movelt 2 motion planning pipeline. 59
6.1 YuMi front facing. 66
6.2 YuMi’s workspaceo 67
6.3 The FlexPendant. 68
6.4 Smart Grippers 68
6.5 Zivid One 3D camera 69
6.6 Data flow of EGM Position Guidance. 72
6.7 Simplified EGM control loop. 72
6.8 Statemachineo oL 74
6.9 Figure showing the separation of modules into ROS 2 namespaces. 76
6.10 UML class diagram of the abstract RobotHardware class. 7

6.11 Simplified UML diagram of the AbbEgmHardware class. 78

xii

6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14

List of Figures

Data flow diagram of the complete ros2_control control loop. . . 80
Simplified UML diagram of the YumiRobotManager class. 81
Simplified UML diagram of the SgControl class. 82
UML, RobotManagerClient and GripperClient 82
Screenshot of YuMi visualized in Rviz2. 83
Simplified UML diagram of the Moveit2Wrapper class. 85

Flow chart of the execution flow of an OMPL-based motion method. 86
Flow chart of the execution flow of a linear Cartesian motion method. 88

Simplified UML diagram of the ObjectManager class.. 89
Simplified UML diagram of the MotionCoordinator class. 90
Execution flow of a MotionCoordinator nonlinear motion 91
Execution flow of a MotionCoordinator motion 93
Overview of the main components in the pose estimation system . 94
Data Flow between the components in the pose estimation system. 95
UML Class diagram for the pose estimation package. 96
Structure of the EstimatePose service. 97
Surface match services Lo 97
Local object coordinate system 99
UML Class diagram for the user level API. 101
Mustration of gripper alignment 102
Data flow external force estimation 103
Simplified UML diagram of the ETorqueReceiver class. 104
UML, ExternalForce and KdlWrapper 105
Bin picking program flow. oL oo 107
Planning scene with registered objects. 108
pick_object execution flow. 000000 110
place_in_ object execution flow. L. 112

Calibration on data with added noise from N(u,0?) = N(0,0.01) . 117
Calibration on data with added noise from N(u,0?) = N(0,100.0) 117

Noise/error small Lo L 118
Noise/error large 119
Calibration board, ABB YuMi 120
Errors for hand eye calibration on dataset 1 121
Errors for hand eye calibration on dataset 2 121
Prepossessed point cloud L0000 123
Pose estimation, time vsscore 124
Pose estimation matches, exampleso 000 125
The base pose and the planning scene as seen in Rviz2. 126
Response times of the OMPL-based motion planning pipeline . . . 127
Response times of the linear Cartesian motion planning pipeline . 128

Average pick and cycle times Lo 132

List of Figures xiii

7.15 External force estimate, known force 134
7.16 Oscillations present in the system after motion of the manipulator. 135
7.17 External force estimate, force in xy-plane 136

List of Tables

6.1
6.2
6.3

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14

Properties of YuMi. oo oo 66
External computer specifications.o 70
RAPID modules of the state machine. 74
Final translation errors for 3D and 3D plane fit methods. 118
Final errors for hand eye calibration on dataset 1 121
Final errors for hand eye calibration on dataset 2 122
Pose estimation match scores Lo 124
Experiment data, OMPL-based motion planning pipeline 127
Linear Cartesian parameters 128
Linear Cartesian experiment data 129
Planning success rates of the experiments. 129
Bin picking experiment system parameters 130
HALCON settings used in the bin picking experiment. 130
Bin picking successeso 131
Error types for bin picking o000 131
Distribution of error types for experiments with aborted picks . . . 131
Pose estimation processing timeo 131

Acronyms

6DoF Six Degrees of Freedom.
API Application Programming Interface.
BVH Bounding Volume Hierarchies.

CAD Computer Aided Design.
CNN Convolutional Neural Network.

DDS Data Distribution Service.
EGM Externally Guided Motion.
FCL Flexible Collision Library.
GUI Graphical User Interface.
HTTP Hypertext Transfer Protocol.

ICP Iterative Closest Point.

IDE Integrated Development Environment.
KDL Kinematics and Dynamics Library.
LAN Local Area Network.

OMPL Open Motion Planning Library.

OS Operating System.

xviii

PCL Point Cloud Library.

QoS Quality of Service.

RANSAC Random Sample Consensus.
REST Representational State Transfer.

RGB Red Green Blue.

RGB-D Red Green Blue Depth.

ROS Robot Operating System.

ROS 2 Robot Operating System 2.
RRT Rapidly-Exploring Random Tree.
RWS Robot Web Services.

SDK Software Development Kit.
STL Stereolithography.

TCP Tool Center Point.

TCP/IP Transmission Control Protocol.

UDP User Datagram Protocol.
UML Unified Modelling Language.

URDF Universal Robot Description Format.

URI Uniform Resource Identifier.

Acronyms

Chapter 1

Introduction

In current manufacturing environments there exists a requirement to continu-
ously increase the degree of automation in order to improve efficiency and reduce
costs. Simultaneously, it is important to maintain the ability to rapidly adapt
to product variations on the same production line, especially for small batch size
production [21]. In particular, the assembly stage of a manufacturing process is
both time consuming and in many cases the most labour intensive [20]. Assembly
often involves the handling of small components, picked from bins, which require
automation solutions with a higher level of autonomy than those traditionally
employed in large scale productions industries where robots often carry out the
same repetitive motions continuously.

To increase the degree of automation in difficult assembly and component han-
dling tasks, robotics solutions such as the ABB YuMi has been developed. These
collaborative robots allow for closer interaction between human and machine in
an effort to increase the efficiency of both. Increasing the level of autonomy and
degree of adaptability of these robotics solutions require integration of additional
system capabilities such as decision making based on the surrounding environ-
ment.

To this end, integration of computer vision systems and motion planning algo-
rithms capable of obstacle avoidance can be employed. This makes autonomous
interaction with the robot’s surroundings and safer operation in the presence of
obstacles possible. Computer vision systems process digital imaging data giving
machines visual perception, which can allow robots to gain awareness of it’s envi-
ronment. This awareness permits planning and execution of robot motions to be
defined by simple task specifications.

In this thesis, we present a robot system capable of autonomous handling of small
components. The system integrates a vision system utilizing a Zivid One 3D
camera. The robot is externally controlled and a motion planning system capable

Chapter 1 Introduction

of obstacle avoidance is implemented using the Moveit 2 Beta. System integration
is done using ROS 2.

1.1

Objectives

The main objectives of this thesis are:

1.2

Implement software which can be used to control the ABB YuMi from an
external computer through it’s external control interfaces.

Implement functionality for automatic motion planning and obstacle avoid-
ance.

Implement software for integrating the Zivid One 3D camera into the robotic
system.

Implement software for integrating object pose estimation methods into the
robotic system.

Develop and implement a method for robotic hand-eye calibration using the
Zivid One 3D camera.

Implement a system for sensor-less estimation of external forces acting on
the robot end-effector.

Test and validate all system components both individually and in an inte-
grated system configuration.

Contributions

The main contributions of this thesis are:

An open source ROS 2 software solution for external control of the ABB
YuMi.

System integration of a Zivid 3D camera and pose estimation methods.

Early adoption and testing of the Beta release for the Movelt 2 Motion
Planning Framework.

Investigation and implementation of robotic hand-eye calibration using ac-
curate point cloud data for extrinsic camera calibration.

1.3 Thesis structure 3

1.3 Thesis structure

The thesis is structured as follows. Chapter 2 presents preliminary theory on
robotics, computer vision and the ROS 2 framework. Chapter 3 investigates
literature regarding methods for object recognition and pose estimation using
computer vision, and discusses challenges for implementing these into a robotics
system. A developed method using point clouds for robotic hand-eye calibration
is also presented. In Chapter 4, the problem of motion and trajectory planning
is characterized, and two motion planning pipelines using the Movelt 2 Beta are
outlined. Chapter 5 presents use cases for the measurement of external forces
acting on the robot end-effector, and presents a method for estimation of these
forces without the use of a dedicated sensor. Chapter 6 presents the implemented
robotics system. This chapter is divided into two parts, one covering hardware
and one covering the software implementations. Chapter 7 presents experiments
carried out to evaluate the performance of the implemented system. Each of the
main system components are tested individually in addition to a system integra-
tion test where a bin-picking task is carried out. The results of the experiments
and overall system performance, are discussed in Chapter 8. This chapter also
contains concluding remarks as well as suggestions for further work improving and
using the implemented system.

Chapter 2

Preliminaries

The aim of this chapter is to provide the reader with the necessary theoretical
knowledge regarding methods used for modelling of rigid bodies in 3D space, the
fundamentals used in computer vision systems, and a conceptual description of
ROS 2. The theoretical concepts presented in this chapter is gathered from several
textbooks as well as papers published in widely accepted journals [60], [13], [39],
[26], [27]. The majority of the contents of this chapter are based on the delivery
in the specialisation project in the course TPK4560, at NTNU [9, 46].

2.1 Kinematic Modelling of Rigid Bodies

The kinematics of rigid bodies is a central concept used in modelling and control
of robot manipulators. It provides a powerful tool for representing the position
and orientation, or pose, of rigid bodies in three dimensional space. The term
robot manipulator is used as a general term meaning a robotic arm. Robotic
arms consist of rigid links connected together by joints. These joints can vary
in type, but the most common ones are revoulute with one rotational degree of
freedom and prismatic joints with one translational degree of freedom.

2.1.1 Pose of Rigid Bodies

Rigid bodies in 3D space have three positional degrees of freedom and three rota-
tional degrees of freedom, adding up to a total of six degrees of freedom. Having
a robust mathematical representation for the pose of rigid bodies is fundamental
for the development of methods used in modelling kinematic chains. This rep-
resentation is based on matrices in the special orthogonal group, SO(3) and the
special Euclidean group, SE(3).

6 Chapter 2 Preliminaries

2.1.2 Rotation Matrices

Rotation matrices can be used to represent the difference in orientation of a co-
ordinate system {a} and a rotated coordinate system {b}. Coordinate frames in
3D space are represented as 3 x 3 matrices with each column being a unit vector.
This set of column vectors make up an orthogonal basis for R®. The axes of the
reference coordinate system can be represented as the columns of the identity
matrix in R3%3,

(2.1)

O = O
= o O

1
{(I}:[:Iia Ya Za]: 8

The rotated frame {b} is obtained by applying the linear transformation Ry,
representing the rotation from frame {a} to frame {b}. The elements of the
rotation matrix Ry, is as shown below.

TiL T2 T13
Rop = |ro1 122 723 (2.2)
31 T32 T33

Each column of the matrix representing coordinate frame {b} are the the direc-
tional unit vectors of the the axes of frame {b} given in the coordinates of frame
{a}. SO(3) has the following definition:

Re SO(3) = {R e R¥3 RTR = I**3 det(R) = 1} (2.3)
From this it follows that
RT = R™! (2.4)
Za
Zb
? Yb
Ya
La
Ty

Figure 2.1: Coordinate frames {a} and {b}.

2.1 Kinematic Modelling of Rigid Bodies 7

2.1.3 Elementary Rotations

Elementary rotations are defined as rotations by an angle 6 about one of the three
principal axes of a coordinate frame. Elementary rotations about the z, y, and z
axes are presented below:

[cosf —sinf 0]
R.(0) = |sinf cosf O0Of, (2.5)
0 0 1
[cosf 0 sind]
Ry(0) = 0 1 0 |, (2.6)
—sinf 0 cosf

1 0 0
R;(0) = |0 cosf —sind|. (2.7)
0 sinf cosf

2.1.4 Rotations as Linear Transformations

Given the coordinate frames a, b, ¢ where the orientation of frame b in the coor-
dinates of frame a is defined by the rotation matrix R, and the orientation of
frame ¢ in the coordinates of frame b is defined by the rotation matrix Rp., we can
obtain the orientation of frame ¢ in the coordinates of frame a as the rotation ma-
trix Ry composed from the intermediate rotations Ry, and Rp. as Rqe = Rap Rpe-
The interpretation of this operation is that frame a is first rotated to frame b by
Ry, frame b is then rotated by Ry to frame c.

It is important to note that matrix multiplication operations for matrices in SO(3)
are associative: (RjRg)R3 = Ri(R2R3), but not commutative: (RjRs # RaoRy).
The interpretation of pre- or post multiplication by a rotation matrix is that
pre-multiplcation results in a rotation about the current body frame, while a
post-multiplication results in a rotation about a fixed reference frame.

2.1.5 Euler Angles

As there are three degrees of rotational freedom in 3D space, the parametrization
of the orientation of a rigid body can be represented by three independent rotation
angles. This parametrization is referred to as Fuler angles. It is possible to
construct several different representations of the orientation of a rigid body using
Euler angles e.g. ZYZ, XY Z, XZX and ZY X, where X, Y and Z represent
elementary rotations about the z, y and z axes respectively. ZY X-Euler angles
are derived below.

8 Chapter 2 Preliminaries

Given a rigid body with orientation defined by the body frame b, initially aligned
with the fixed space frame s. The orientation of frame b in the coordinates of
frame a are parametrized by the triplet of angles («, 3,) in the following rotation
operations.

e The rotation about the z-axis of the fixed frame s by the angle «, resulting
in the body frame s/,

e The rotation about the y-axis of the body frame s’ by the angle 3, resulting
in the body frame s”,

e The rotation about the z-axis of the body frame s” by the angle v, resulting
in the body frame b.

Ry = Rz(a)Ry(ﬁ>Rx(7) =

cosa —sina 0 cosf 0 sing]| |1 0 0
sina cosa 0 0 1 0 0 cosy —sinvy| =
0 0 1| |—sinfg 0 cosfB| [0 siny cosy (2.8)

CaCB CaSBSy — SaCy CaSACy + SaSy

SaC8 SaSgSy + CaCy SaSBCy — CqSy

—53 CBS5~ caCy
Here cy = cosf, sy = sin @ are used for the convenience of a more compact nota-
tion.

2.1.6 Skew Symmetric Representation of a Vector

A skew symmetric matrix S € R™ " satisfies the condition that S7 = —S, mean-
ing that the transpose of the matrix is equal to its negative. Given a vector
v € R3, a skew symmetric matrix can be constructed from v as:

0 —v, 1y
v = v, 0 —v, (2.9)
—Vy Vg 0

2.1.7 Rotations as Matrix Exponentials and Logarithms

The matrix exponential coordinates is a parametrization of a rotation matrix by
a vector kf € R3 where k is the unit vector representing the axis of rotation
in R3 and @ is a scalar value representing the angle of rotation about the axis
k. Writing 0 and k separately gives the angle-axis representation of the rotation
matrix. The matrix logarithm is represented by the skew symmetric matrix k>0,
and is a member of the Lie algebra, denoted so(3), of the special orthogonal group,

2.1 Kinematic Modelling of Rigid Bodies 9

SO(3). The elements of the lie algebra so(3) can be interpreted as the tangent
space of the manifold SO(3) at the identity element. The matrix logarithm is
related to the rotation matrix by:

kX0 € so(3) = Re SOB3): ¥ =R (2.10)

The matrix exponential, e*? is calculated by Rodrigues’ formula:

R(k,0) =1+ sin(0)k™ + (1 — cos(9))k* k™ (2.11)

where I is the identity matrix in R3*3. Given a rotation represented by R € SO(3)
the matrix exponential coordinate representation can be found by the following
relation:

SO(3) — s0(3): R+ log(R) =k*6 (2.12)

The angle of rotation 6 and the axis of rotation k are calculated from Equa-
tions (2.13) and (2.14).

t -1
6 =cos ! (race(2R)> (2.13)
1 32 — 723
= 281119 13 —T31 (214)
21 —T12

Here trace(R) is the sum of the elements on the principal diagonal of R and
rij are the elements of R. Note that this holds only when trace(R) # —1 and
trace(R) # 3, as it would result in sin 6 = 0.

2.1.8 The Unit Quaternion

The unit quaternion provides a useful four-parameter representation for rotations
or orientations in 3D space. The unit quaternion is defined as Q(n, €) where:

1 = cos (g) (2.15)

€ = sin (g) k (2.16)

Here 6 and k refer to the rotation angle and axis of rotation from Section 2.1.7
respectively. The scalar part n and the vector part ¢ make up the quaternion

10 Chapter 2 Preliminaries

vector Q = [, €, €y, €;]. For the unit quaternion, the following holds:

QI =/ + 2+ 2 +e2 = (2.17)
The quaternion product @1 * (02 is defined as:

Q1% Q2 = [mn2 — €17 €2, M€ + 1Mo, €1 X €2 (2.18)

Which corresponds to the product of the two rotation matrices R1, Ro.

2.1.9 Homogeneous Transformations

Homogeneous transformation matrices in the special Euclidean group SE(3) are
the set of all 4 x 4 matrices on the form

1 Ti2 T3t

T_ [R t] _|To1 T2 723 o (2.19)

r31 T3z T3z i3
0 0 0 1

where R € SO(3) and t € R3. Multiplication with homogeneous transformation
matrices is associative: (T172)T3 = T1(12T3), but not commutative: 71T # ToT7.
Homogeneous transformation matrices have three important uses.

e Represent the orientation and position of a rigid body.
e Change the reference frame in which a vector or frame is represented.
e Displace a vector or frame.

The inverse of a matrix T' € SE(3) is also in SE(3), this also holds for the product
of two matrices in SE(3). The inverse of a homogeneous transformation matrix
can be calculated from:

. [r &' [RT —RTt
lelo 1] :[0)] (2.20)

2.2 Kinematics of Open Chains

2.2.1 Forward Kinematics

Forward, or direct, kinematics are used to calculate the position and orientation
of the robot end-effector based on the joint configuration. For a robot with n

2.2 Kinematics of Open Chains 11

variable joints the joint configuration vector q is written as:

q=I[q1, g2, Gnl (2.21)

where ¢; is the joint parameter of joint 1, go is the joint parameter for joint 2
an so on. The forward kinematics of a kinematic chain can be expressed as the
product of homogeneous transformation matrices, each depending on a single joint
variable g;.

Ton(q) = To1(q1)T12(g2) - T(n-1)n(qn) (2.22)

Where T(;_1); is the transformation from the coordinate frame attached to joint
number ¢ — 1 to the coordinate frame attached to joint number ¢. The resulting
matrix T, is the transformation from the coordinate frame attached to joint 1 to
the coordinate frame attached to joint n.

The pose of the robot end-effector frame {t} relative to the base frame {b} is
obtained from

Tyt = TooTon (@) Tt (2.23)

Where Tyg and T,,; are constant transformations. The transformation from the
last robot joint to the end-effector frame T),; has to be calibrated when using
different end-effectors. There are several different methods used for deriving the
forward kinematics of a robotic manipulator, such as the Denavit-Hartenberg
(DH) convention [27] and the method using products of exponentials based on
joint twists. The method of deriving the forward kinematics of an open chain
manipulator based on the DH-convention based on is presented below.

The DH-convention uses four parameters (a;,d;, o, 6;) to define the pose of the
frame attached to joint ¢ in reference to the frame attached to joint ¢ — 1. The
parameters are assigned when the manipulator is in a pre-defined zero-position,
meaning that all the joint variables are set to zero (g = [0, 0, ..., 0]). a; and d;
are the respective translations along the z;_1 and z;_; axes from the origin of
frame 7 — 1 to the origin of frame 4. «; is the rotation about the x;_1 axis and 6;
is the rotation about the z;_; axis. For revolute joints the variable ¢; = 6; and for
prismatic joints the joint variable is ¢; = d;. The joint transformation between
joint ¢ — 1 and ¢ is a function of the joint variable ¢; and is calculated as

cosl; —sinb;cosa; sinf;sinca; a; cosb;
_|sinf; cosb;cosc; —cosbsina; a;sind;
Ti-1yi(q) = o , , (2.24)
0 sin «; COS o d;

0 0 0 1

12 Chapter 2 Preliminaries

2.2.2 Inverse Kinematics

Inverse kinematics is the process of solving the joint configuration vector g of the
manipulator, given a desired pose in the task space. The problem of solving the
inverse kinematics for a manipulator can be formulated as finding a solution g
which satisfies the forward kinematics of the manipulator f(q) = X, for a given
pose X € SE(3).

2.2.3 Analytical Inverse Kinematics

Analytical inverse kinematics seeks calculate the manipulator joint variables given
the desired pose of the end-effector frame in the workspace. Analytic solutions
generally use the geometric relationships between manipulator links and joints to
find a general expression for each joint variable. A brief example showing these
expressions for a simple planar arm consisting of two links is provided to illustrate
the concept.

Figure 2.2: Two link planar arm. Figure from [39].

Considering the manipulator structure in Figure 2.2 with the joint variables 61, 65
link lengths L1, L2 and end-effector location z,y. The orientation of the end-
effector is not considered. From the law of cosines we get.

L3+ L3 —2L1Lycos(B) = 22 + ¢ (2.25)

re-arranging this we find the expressions for a and 3

L2 L2_ 2 _ .2
B:cos_1< 17 y) (2.26)

2L1Lo

L2 o L2 2 2
o =cos ! (1 2t 1y (2.27)

2L/ 72 + y?

2.2 Kinematics of Open Chains 13

The angle ~ is found by
~ = arctan <i) (2.28)

taking care to consider which quadrant the end-effector is in, in order to get the
correct angle. The two possible solutions shown in 2.2 consists of a configuration
where the arm is to the left of the end-effector position, and a configuration where
the arm is to the right of the end-effector position.

Right: 6y =v—a, b =71 —f (2.29)

Left: 01 =y +a, O =5 —m (2.30)

2.2.4 Numerical Inverse Kinematics

The numerical inverse kinematics problem is a consists of finding the roots of
a non-linear matrix equation. There exist several iterative methods for solving
such an equations. One method is the Newton-Raphson method which uses the
first order Taylor expansion for a differentiable function g(q) to solve the inverse
problem. The Newton-Raphson method is briefly presented in the following.

Consider the desired, known, end-effector pose x4, associated with an unknown
joint-configuration gqq, and the current end-effector pose z;, associated with the
current joint-configuration g; such that x; = f(q;). Where f is the forward
kinematics function for the manipulator. The problem to be solved by the Newton-
Raphson algorithm is then formulated as

9(q) =z4— f(q) =0 (2.31)

where the solution g = qq is desired. The first order Taylor series expansion for
the kinematics, given an initial guess q; is

zq = f(qa) = f(ai) + gé (ga — o) = f(qo) + J(qi)Aqg; (2.32)
q;

where J(g;) is the manipulator Jacobian defining the linear transformation V =
J(q)q from the joint velocities to the end-effector twist, evaluated at q;. Equa-
tion (2.32) is manipulated to solve for Ag;

Ag; = J'(q;)(za — f(ai)) (2.33)

where J(q;) is the pseudo inverse of the Jacobian matrix to account for manipu-
lators where the number of joints, n # 6, resulting in a non-square Jacobian. Ag;
is used as the update term for the iterative solver so that g;4+1 = q; + Ag;. The

14 Chapter 2 Preliminaries

joint vector is updated in this manner until Equation (2.31) is satisfied within a
predefined error threshold € so that g(q) < ¢, resulting in the convergence g — gq.

2.3 Dynamic Modelling of Open Chains

Modelling of a manipulator’s dynamics are used to account for the forces and
torques which result in the motion described by the kinematics. This dynamic
model is used in the design of the actuators, and to derive control schemes for the
manipulator.

The general dynamics equation for an open chain manipulator consisting of n
joints is

T =M(q)q+C(a.9)q + 9(q) (2.34)
Where 7 € R" is the actuator torques, M(q)q is the torque contribution from
joint-acceleration, C(q,q)q is the torque contribution from Coriolis forces and
9(q) is the torque contribution from gravity.

As with forward and inverse kinematics, the concepts of forward and inverse dy-
namics are useful. Forward dynamics is the process of calculating the manipu-
lator’s joint-acceleration given the joint position and velocity (g, q), in a given
joint-state, and the applied joint-torques. This is described by the following equa-
tion.

g=M"(q)(r—Clq,4)q —9(q)) (2.35)

The inverse dynamics problem is the process of calculating the joint-torques re-
quired to achieve a desired joint-acceleration given the current joint-state (g, q).
The inverse problem is described by Equation (2.34).

2.4 Computer Vision

Making use of cameras in robotics systems enables the robot to interact au-
tonomously with its environment. Some of the central methods and models in
computer vision are presented in this section.

2.4.1 Pinhole Camera Model

The pinhole camera model shown in Figure 2.3 is commonly used for modelling
a real camera for use in computer vision applications. It models a simple camera
where light is emitted through a pin-hole in the camera center, this simplification
means that each point in the scene is projected as a single point in the image
plane. Given a camera coordinate frame denoted {c} and a world coordinate

2.4 Computer Vision 15

frame denoted by {w}, as shown in Figure 2.4. A point p in the scene with
homogeneous coordinates given in the the camera frame is defined as

Le

=, Y

To, = ZZ (2.36)
1

Figure 2.3: Pinhole camera model.

and the position of the same point in the world coordinate frame is

Lw
U= Z: (2.37)
1

the transformation of reference frames for this point is given by

7, = T, (2.38)

where T, is the homogeneous transformation matrix representing the transfor-
mation from {c} to {w}.

16 Chapter 2 Preliminaries

Fep
Twc

Fop P
{w}

Figure 2.4: Camera and world coordinate systems.

The normalized coordinates of the point represented by g, projected onto the
image plane is given by

. Sz 1, 1 Zc 52
§= syl = T = Y| = |5 (2.39)
1 C C Zc 1

The conversion between homogeneous and non-homogeneous vector coordinates
can be done by

1000 7’:“" .
r=IF=10 1 0 0] |"| = |r (2.40)

r Yy

00 1 0] T,

The normalized image coordinates can now be calculated as

R 1 .
5= Z—cHrgp = ZHTWT% (2.41)

The corresponding pixel coordinate values are calculated from the following.

u = isx + ug (2.42)

Pw

2.4 Computer Vision 17

v= isx + v (2.43)
Ph

Here f is the focal length of the camera, p,, and pp is the width and height of
each pixel, and ug and vg is the image plane center coordinates. Conversion from
normalized image coordinates to homogeneous pixel coordinates is possible using

p=K3 (2.44)

where K is the camera intrinsic parameter matrix.

piw uQ fo 0 ¢
K=10 pih vl =10 f, ¢ (2.45)
0 0 1 0 0 1

Equations (2.41) and (2.44) can be combined to the projective camera transfor-
mation.
zep = KTy Ty, (2.46)

Which enables the calculation of pixel coordinates corresponding to a point 77,

given the relative transformation between {c} and {w}. This formulation is the
basis for solving of the inverse problem where the pixel values of a point is known,
and the position in the coordinates of the fixed world frame {w} is desired.

2.4.2 Corner Detection

In computer vision applications, the ability to detect distinct points on an object
reliably under varying lighting conditions and from different viewing angles is very
important for several applications including calibration, tracking and pose estima-
tion. A corner can be formalized as the point at which two edges meet. Therefore
an important step in any corner detection algorithm requires the detection of
edges in an image.

Edges are usually found by finding the boundaries where the gradient of pixel
intensity and color is abrupt. One way of doing this is by convolving the image
with a gradient finding patch for z, and y directions. For instance the Sobel
edge detector uses the patches in Equation (2.47) and Equation (2.48) to find the
points at which the image gradient is large in the x and y directions respectively.

Gyo=|-2 0 2 (2.47)

18 Chapter 2 Preliminaries

~1 -2 -1
Gy=10 0 0 (2.48)
1 2 1

The edges found by this method can be used to efficiently find corners in an image
using a variety of different corner detection algorithms like Harris [26], CSS [41]
or SUSAN [61].

2.4.3 Camera Calibration

Intrinsic camera calibration is the process of establishing the camera’s intrinsic
parameters. The model used in Section 2.4.1 is simplified in the sense that the
light passes through a pin-hole directly to the sensor. In a real camera, lenses
focus the light in a way not accounted for in the pin-hole model, this needs to be
corrected for by finding a set of distortion coefficients. The calibration parameters
obtained by intrinsic calibration are the ones in Equation (2.45) accounting for
focal distance, principal distance and the coordinates of the principal point. The
distortion coefficients account for radial and tangential distortion, these are used
to remove distortion effects from the image.

Extrinsic camera calibration solves the problem of estimating the pose of the
camera in relation to the calibration object. This is a required step in the two step
camera calibration algorithm presented in [64]. This algorithm provides efficient
camera calibration based on co-planar calibration points. The extrinsic camera
calibration is also central in solving the hand-eye calibration problem.

2.4.4 Point Clouds

A point cloud can be defined as a set consisting of n points having positions in 3D
space p; = [;,yi, z]!. For generation of point clouds the accurate estimation of
the distance of a point from the camera along the optical axis, z;, is critical as this
allows for calculation of the 3D position of the point relative to the camera using
Equation (2.46). This distance can be estimated using a variety of methods such
as stereo vision, time-of-flight range finders or structured light 3D scanners. Point
clouds generated using these methods will often have an associated image color
intensity for each point, (I 4); = [14, i, bi]”, resulting in the notation [(Z4)i, P
for each point in the image.

2.4 Computer Vision 19

2.4.5 Mathematical Description of Planes

A plane 7 = [a, b, ¢,d]”, with normal vector n = [a,b,c|T at a distance I%II from

the origin, is defined as the set of all points p = [z, ¥, 2|7 satisfying

ax+by+cz+d=0 (2.49)

X

Figure 2.5: Plane with normal vector, n.

2.4.6 Fitting a Plane to a Set of Points
If a homogeneous point p; = [z4, ¥i, 2, 1]T is on the plane 7, the following holds.
pilm=0 (2.50)

This property can be used to find the best fit plane corresponding to a set of
n homogeneous points. Following the derivation in [19], define a matrix A =
[p1, P2,..., pu]t € R4, The plane m must satisfy

Pli a
Am = |72 i —0 (2.51)
pa”| Ld
The singular value decomposition of A is
A= ciu1v1! + oougva’ + osugvs! + oqugvg’ (2.52)

where 01 > 09 > 03 and 04 = 0. The only non-trivial solution for the plane 7 is

along vy giving the solution
™= ki’U4 (253)

20 Chapter 2 Preliminaries

for some scale factor k. If the points in A are all on the plane, the solution is exact,
otherwise it is the best fit solution minimizing the absolute orthogonal distance
from each point to the plane.

2.4.7 Finding the Transformation Between two Point Clouds

Given two point clouds, A € R*** and B € R™*4, with n corresponding homoge-
neous points denoted a; and b; respectively the optimal transformation between
them can be found by the minimization problem in Equation (2.57).

The correspondence between the point clouds is formulated as

B=TA (2.54)
T— [10% ﬂ € SE(3) (2.55)

Which can be written as
b, = Ra; +t (2.56)

The expression to be minimized is the mean sum of square errors between the
points in B and the transformed points T A.

1 ¢ 18
n=—> |Tai—bil| = ~> | Ra; +t — b;” (2.57)
=1 i=1

The optimal rotation is found by centring the two point clouds in the origin by
subtracting the centroid (Equation (2.58)) of the point cloud from each point,
then finding the best fit rotation by using the solution to orthogonal Procrustes
problem (Equation (2.62)), which maximizes Equation (2.59).

1 & 1
cq = —Zai, cp = —Zbi (2.58)
i i
m}f%xtrace(RH) (2.59)
H=(A-ca)(B-cp)t (2.60)

The optimal rotation, R, is then found from the singular value decomposition of
H:
UsVT = svd(H) (2.61)

R=VSsU” (2.62)

where S is the Umeyama correction (Equation (2.64)) to ensure that R is on

2.4 Computer Vision 21

SO(3). The optimal translation is then found from:

t=—Rca+cp (2.63)
1 0 0

S=10 1 0 (2.64)
0 0 det(VUT)

It should be noted that this translation is dependent on the solution for R €
SO(3), which means that the resulting translation is dependent on the optimiza-
tion of the rotational problem in Equation (2.59).

2.4.8 Iterative Closest Point

The Iterative Closest Point (ICP) algorithm [8] uses an iterative approach to
match two point clouds. The goal of is to find the transformation between the
captured point cloud A and the model point cloud B, which minimizes the summed
square distance of each matched point. The algorithm is comprised of the following
steps. For each point b; in B find the point y in A which minimizes the euclidean
distance between the two points so that

d(bi,y) = gggllbi —yl| (2.65)

Compute the transformation between A and B using the matches and apply this
transformation to each point in A. Iterate until the mean square error of matched
points is below a desired threshold.

2.4.9 Structured Light 3D Scanners

Structured light 3D scanners is a category of depth sensors for imaging purposes
which utilizes triangulation of a known light pattern to determine depth. The
scanner consists of a light projector and a offset camera with known relative
position and orientations to one another. The light is projected onto the scene
and the deformation in the light pattern is used to triangulate the distance to the
object on which the light shines.

22 Chapter 2 Preliminaries

Figure 2.6: Illustration of triangulation principle for a structured light scanner,
figure from [24].

Using the principle illustrated in Figure 2.6 the distance z from the camera to the
object is calculated from the angle o and the displacement of projected lines p as

z=P (2.66)

tan o

2.5 Robot Operating System 2

Robot Operating System 2 (ROS 2) is the second version of the Robot Operating
System (ROS). The initial distribution of ROS was developed by Willow Garage
in 2007 with the goal to reduce the need for re-writing code in robotics research
and have since been widely adopted. ROS is not an operational system is the
traditional sense, but functions as a flexible framework for writing robotics soft-
ware. It provides a build system, a collection of software packages, tools and a
set of conventions for code organization [4]. The initial distribution of ROS 2
was released in 2018. The distribution used in this thesis, Eloquent Elusor, was
released in 2019.

ROS 2 utilize a file system whose main components are packages, metapackages,
and workspaces. Packages are the most fundamental unit for organizing software,
and is the smallest self-contained unit in the file system. A package might contain
source code, configuration files or external libraries. The goal of the package is to
organize software in a reusable and easy-to-consume manner. Related packages

2.5 Robot Operating System 2 23

can be grouped and represented by metapackages. Metapackages do not install
any files and are used to simply aggregate packages into groups. The directory
containing a project’s packages and metapackages is called a workspace. When
using the ROS 2 build system, the build commands are called for a workspace,
building the packages located within the root workspace folder. Built code can
be utilized across workspaces.

A system built using ROS 2 consists of a number of processes, potentially on a
number of different hosts, connected at runtime in a peer-to-peer topology. ROS 2
applications are built using nodes, components and libraries. A node is a process
that performs computation, typically representing a subprogram within the ROS
2 system. In a topology context, node is interchangeable with ’software module’.
A component is a container process which may contain several executables and
nodes. Composition of multiple nodes into a component is typically used to reduce
overhead on the communication between the nodes. Some code entities are not
executable code, but defines useful resources, these are defined as libraries.

Nodes contained within different processes can communicate via topics, services
and actions. Communication over topics are message oriented in the publish-
subscribe pattern. A topic is a named data stream to which nodes can publish
messages of a specified type. Topics support many-to-one, one-to-many, one-to-
one and many-to-many communication. Communication is anonymous, meaning
publishers publish to a topic without knowledge of the subscribers, and vice versa.
Topics are typically used for continuous data streams like sensor data or robot
state. Services are based on the client-server paradigm, where one node advertise a
service, allowing other nodes to make us of the offered service. Services are named
and typed, one-to-one and are typically used for remote procedure calls. Services
in ROS 2 are asynchronous, meaning a service call is non-blocking. Actions are
a combination of topic and service communication. An action is initiated in
the same manner as a service, however the server can, upon request from the
client, stream feedback and status over topics to the client. Additionally the client
have the opportunity to cancel the requested goal. Actions are asynchronous and
typically used for relatively time consuming tasks, like moving the robot towards
a goal.

Lifecycle nodes are a special type of nodes allowing for runtime node management.
Lifecycle nodes share the same base interfaces of regular ROS 2 nodes. Managing
the lifecycle of nodes consist of controlling it’s transition through a set of states.
The states are UNCONFIGURED, INACTIVE, ACTIVATE, FINALIZED. Tran-
sitions are invoked using ROS 2 services provided by the lifecycle node interface.
The states and transitions of the lifycle is depicted in fig. 2.7.

24

Chapter 2 Preliminaries

Unconfigured

onError
[SUCCES:

ErrorProcessing

do / onError()

onError
[FAILURE]

Finalized

destroy()

®

Error Raised

onConfigure:

create() [FAILURE]

onCleanup
[SUCCESS]

configure()

[cleaningup] [configuring]
do / onCleanup() J ldo/or\Cor\ﬂgure()

Error Raised Error Raised

onConfigure

cleanup() [SUCCESS]

Inactive

shutdown()

ShuttingDown

shutdown()
onActivate:
[FAILURE]

onDeactivate

[SUCCESS] activate()

[peactvating | [Actvatng)
do / onDeactivate() J ldo/onAcuvateo

Error Raised Error Raised

onActivate:

deactivate() [SUCCESS]

Active
do / callbacks

do / onShutdown()

Error Raised

timers
etc.

Error Raised

shutdown()

onShutdown:
[SUCCESS]

Figure 2.7: State and transition diagram for nodes with managed life cycles.

Figure from [40].

ROS 2 uses a Data Distribution Service (DDS) as middleware. DDS is a data-
centric end-to-end middleware standard used for dependable low latency data
exchange [69]. DDS employs a virtual data space which, to the applications, ap-
pear as native memory. Applications read and write in this data space via an
application programming interface as if it was in local storage. In reality, the
DDS sends messages to update the appropriate store on the remote nodes, effec-
tively ensuring operations are performed on the data directly instead of copies or
reconstructions. Moreover, a DDS middleware is inherently decentralized, pro-
vides dynamic discovery of participants and supports specification of Quality of
Service (QoS) for communication channels. Meaning, in ROS 2, a fully decen-
tralized system can be realized. Furthermore, topics can be configured with QoS
settings, meaning topics can be configured after prioritization, or to enhance a
specific property, e.g. reliability or speed. This, in combination with copy-less
data transfer, render ROS 2 more suited for real-time applications.

Chapter 3

Pose Estimation

The accurate estimation of Six Degrees of Freedom (6DoF) object poses in the
robot workspace is an important part of bin-picking applications. Pose estimation
methods making use of intensity images, point cloud data, or both in combination,
is an active field of research with a magnitude of different approaches. This
chapter is divided into two parts. The first part presents an overview of available
methods for object pose estimation, this serves as a foundation for discussion
regarding implementing pose estimation in an industrial bin-picking system. The
second part is about hand-eye calibration, which is critical in integrating the pose
estimation system with the overall robot system. Here, a method developed for
hand-eye calibration of depth sensors, making use of accurate point cloud data is
presented.

It is useful to categorize different methods for object pose estimation based on the
base method they employ. These categories are geometry based, template based
and deep learning based. As regards reviews of current state-of-the-art methods
Hodan et al. [31] conducted a comprehensive study comparing various different
approaches for pose estimation. Their findings show that geometry based methods
using point pair features [17, 16, 67] generally outperform other approaches under
most conditions. It should however be noted that this conclusion reflects the
state-of-the-art before 2018. More resent developments based on deep learning
[70, 68] show promising results when compared with geometry and template based
methods.

Comparisons between various pose estimation methods are based the on accuracy
of the estimated pose evaluated against a known ground truth pose. In [30] an
evaluation metric based on Visible Surface Discrepancy is proposed, calculating
the estimation error over the visible surface of the object. If the ground truth
pose for an object is known the accuracy may be measured as the discrepancy
between the predicted pose and the ground truth. Another important evaluation

26 Chapter 3 Pose Estimation

metric is estimation time, which directly affects the rate at which the system can
process imaging data. This may be an important consideration to avoid having
bottlenecks in a robotics system.

3.1 Geometry Based Approaches

Geometry based methods aim to match geometric features sampled from 3D-
model representations of an object, with a point cloud captured from a 3D imaging
System.

3.1.1 Point Pair Feature Matching

Object pose estimation based on global model description using oriented point
pair features was introduced by Drost et al. [17]. This model is matched with a
scene using a fast voting scheme, where similar points pair features in the model
and the scene are grouped together.

Creation of, and matching using point pair features assumes that both the model
and the input scene consist of a finite number of 3D points with an associated
surface normal. A point pair feature generated by two points mi and mg is
defined using the vector d between the two points, and the two surface normals
n1 and nsg as

F(ml,mz) = (HdH, Z(nl,d), A(nz,d),l(nl,nz)) = (Fl,FQ,Fg,F4) (3.1)

Where Fy, Fs, F3, Fy denote the four parameters in reference to Figure 3.1, and
Z(a,b) € [0,].

Figure 3.1: Illustration of how point pair features are generated from a pair of
points. Figure from [17]

3.1 Geometry Based Approaches 27

A global model descriptor for the object is built by generating point pair fea-
tures for all point pairs on the model surface. The points used to represent
the surface of the object is sampled from a 3D CAD model. Similar point pair
features are then mapped to the same sets. This means that if the point pair
features Fy(mq, ma), Fo(mg, my), F3(ms, mg) are similar they well be stored
in the same set S; = {F1, Fa, F3}. All the sets representing the model descriptor
are stored in a hash table, which allows for constant time searches using a similar
point pair feature in the test scene as the key.

At test time an efficient voting scheme is used to match the model descriptor
to the scene. This method seeks to maximize the number of points in the scene
which lie on the model by finding the best fit local coordinates. For this purpose a
fixed reference point s, is used. This point is paired with every other point in the
scene s; € S, the trained model descriptor is the searched for point pairs which
match the scene. For each match (m,, m;) on the model, the transformation
which maps to the corresponding points (s, s;) in the scene is calculated. This
voting scheme requires the reference points s; to lie on the surface of the model to
be found. This necessitates the use of multiple reference point in order to increase
the likelihood of at least one of them being part of the model surface.

Practical implementations of pose estimation using point pair features requires
the tuning of several parameters in the training stage, and in the matching stage.
The goal is to determine a set of parameters which optimise the trade-off between
speed and accuracy at test time. These parameters are, relative sampling step:
the density of uniformly sampled surface points during model training relative to
the model diameter. Relative scene sampling step: the portion of points in the
test scene to be used for matching, increasing this value increases the robustness
of matching at a cost of matching time. Relative distance step: determines how
finely the hash table buckets are discretized, using a to coarse discretization may
lead to matching of non-similar point pairs and using a to fine discretization can
reduce the matching rate to much. Additionally parameters related to point cloud
normal computation and parameters for ICP pose refinement (Section 2.4.8) may
have an impact on both accuracy and speed.

3.1.2 Multimodal Point Pair Features

In order to increase the robustness of the pose estimation, the technique presented
in [17] was extended using a multimodal feature descriptor for object surface and
silhouettes [16]. This descriptor uses edges detected in an intensity image to find
geometric 3D edges in the captured scene. Multimodal point pair features for a
point on the geometric edge e and a reference point on the object surface 7 in the
perspective-corrected intensity image is represented by the four parameter feature

28 Chapter 3 Pose Estimation

vector
F(e,r) - (d(e,r),ozd,an,av) (3.2)

where d(e, r) is the metric distance between the points, oy = Z(eq,e — r) is the
angle between the edge gradient at point e and the vector from e to r, a,, =
Z(ny,e — r) is the angle between the surface normal vector at r and the vector
from e to r, o, = Z(n,,v,) is the angle between the surface normal at 7 and the
directional vector towards the camera at . The feature vector components are
depicted in Figure 3.2.

Geometric edges
€q
ol Qg
e N aq
‘ el —
\ VSL_Lem T TS
\ \ .
A} \\
'\ N —e—1r ™ /
N
\\ an \\ ‘\\
N N r %
~ \
\

Figure 3.2: Components of a multimodal point pair feature. Figure from [16].

Model training consists of generating multimodal point pair features from multiple
viewpoints sampled uniformly from a sphere around the object. The features
are generated by rendering the model from different viewpoints and detecting
geometric edges. Multimodal point pair features are then calculated for each edge
point, and each reference point on the visible surface. The features are then stored
in a hash table similar to [17].

3.2 Template based matching

Object pose estimation methods based on templates aim to match pre-generated
object templates in an image or point cloud. Templates can be created using
several different image properties, such as edges, image intensity, image gradients
or surface normals [32]. Template matching methods for pose estimation in clut-
tered scenes have been shown to yield good results by [31] when compared to both
learning based approaches and approaches based on point pair features.

3.2 Template based matching 29

3.2.1 LINEMOD

LINEMOD or multimodal-LINE is a method presented in [28] utilizing image
features in different modalities to create templates for object matching. Their
particular method uses image gradients extracted from a three channel RGB in-
tensity image, and surface normals calculated from a point cloud generated from
a 3D scanner, as illustrated in Figure 3.3.

Templates are generated from a set of reference images {Op, }mea of the object
in different modalities M and are defined as

= ({Om}mGMaP) (33)

Where P is a list of pairs (r,m) made up of the positions 7 of a specific feature in
the modality m. Templates are generated by taking reference images of the object
from different viewpoints around the object. The authors of [28] used about 2000
templates per object for matching. The ground truth pose for each template is
found using markers which can be robustly detected. At test time the input image
is divided up into small regions which are matched with the template features.
Similar features are found using the following similarity measure.

EUZm}tmem, T, c) = Z (max fm((Om(r),Im(t))> (3.4)

(r,m)eP teR(e+r)

Where R(c + r) defines the neighborhood of a given size centered on location
(c+) in the input image and f, is the similarity score for modality m between
the reference image and the input image. This means that the local neighborhood
around a template feature at position r is aligned with the local features in the
input image at location t.

¥
i
g .?' ,)f
v’H\

Figure 3.3: Example object with different modalities. Figure from [28].

The LINEMOD detection scheme was further improved, and fully automated, by
the work presented in [29]. The ability to train templates directly from sam-

30 Chapter 3 Pose Estimation

pled viewpoints on 3D models of the objects was introduced. This significantly
improved both the coverage and acquisition speed compared to manually sam-
pling using an RGB-D sensor on physical objects. The resulting pose estimation
pipeline is compared directly to the one developed by Drost et al. [17]. Scores are
given as a percentage of correctly predicted poses compared with the ground truth
pose for the object. On the dataset used, the authors report that their method
outperformed the one of Drost et al. by an average of 17.7 percent on accuracy,
while being an order of magnitude faster at test time.

In an effort to reduce the computational complexity of template based methods
utilizing sliding windows such as LINEMOD, at test time, a cascade style evalu-
ation of image locations is employed in [32].

3.3 Deep Learning Based Approaches

Pose estimation methods based on deep learning prior to 2018 were shown by
Hodan et al. [31] to be promising, but lacking in both accuracy and robustness
compared to geometry and template based approaches. The reviewed methods
were generally based on neural networks learning object features, primarily work-
ing on 2D intensity images, with some utilizing depth data for further pose refine-
ment. Recent improvements upon these techniques and further development on
approaches implemented based on geometric deep learning utilizing full 3D point
clouds for pose estimation show promising results, improving accuracy, robustness
and speed at test time.

3.3.1 Decision Forests

The problem of 6DoF pose estimation of textured and textureless objects is ap-
proached in [10] by introducing a joint dense 3D object coordinate predictor and
object class labeler. To this end a decision forest is used to classify each pixel
in an RGB-D image resulting in a prediction on which of the trained objects the
pixel belongs to, and its location on the object known as object coordinate. Each
predicted object coordinate corresponds to a 3D point on the 3D model of the
object. Pose predictions are made using a RANSAC optimization scheme which
samples sets of correspondences. The pose representing the best match is then
iteratively refined to ensure proper alignment of the poses.

During training RGB-D features are learned from manually segmented images of
the test objects. Pixel regions are sampled from this segmented image, and the
forest is trained using ground truth object points. The pose estimation problem is
formulated as an energy optimization problem, this minimization problem is used
both during training and at test time for detection and pose refinement. Reported

3.3 Deep Learning Based Approaches 31

experimental results show that their method performed slightly better than the
template based LINEMOD approach on the dataset from [28] while being more
robust under difficult lighting conditions.

3.3.2 PoseCNN

Introduced in [70], PoseCNN is a Convolutional Neural Network (CNN) for 6DoF
pose estimation using RGB images. The network is trained end-to-end, and the
pose estimation pipeline consists of three main parts. A CNN performs semantic
segmentation, labeling each pixel in the input image according to the object it
belongs to. This results in a segmented image where each pixel is either labeled
as part of an object of interest or as part of the background. The segmented pixel
labels are then used to predict the translation from the camera center to the center
of the object. Using a regression network, the the 2D pixel coordinates for each
pixel on an object and it’s distance from the camera is found. A Hough voting
scheme is used to determine the pixel coordinate of the object’s center point. A
pin-hole camera model (Section 2.4.1) is then used to retrieve the position of the
object in the camera coordinate system. Orientation is estimated for each object
in the image using a regression network. Input to this network is the output
features from the feature extraction part of the segmentation network, cropped
by region of interest bounding boxes. The regression network consists of three
fully connected layers which output a predicted unit quaternion representing 3D
orientation.

The method for estimating the pixel coordinates of the object center improves the
robustness towards occlusion, meaning the network is able to determine the object
center even when it is not visible. The authors introduced a new loss function
which does not penalize the orientation predictor for regressing to a valid orien-
tation differing from the ground truth orientation in cases of symmetric objects.
These features resulted in a pose estimation pipeline which is robust against both
occlusion and self-symmetric objects. PoseCNN was evaluated on the Occluded-
LINEMOD dataset [29]. The performance of the network was rather poor when
utilizing the pipeline as a stand-alone pose estimator. However, when paired with
an ICP refinement step the method outperformed both the implementations by
Hinterstoisser et al. [29] and Brachmann et al. [10]. This final refinement step
does require the accurate acquisition of depth imaging data in addition to the
RGB images.

32 Chapter 3 Pose Estimation

3.3.3 DeepIM

DeepIM or Deep Iterative Matching as introduced by Li et al. in [38] aim to utilize
RGB images to estimate and refine the pose of an object in a cluttered scene. Their
pipeline uses several convolutional neural networks for image pre-processing and
pose refinement. The concept which is implemented in their approach is to use
a trained neural network to iteratively refine the predicted object pose, given an
initial pose estimate. In each iteration a rendered representation of the object’s
3D model is compared with a segmented crop of the object in the input image.
The network then predicts the difference in pose between the pose of the rendered
object and the object in the image, this is used to update the pose estimate which
is then fed to the next iteration. The conceptual pipeline is shown in Figure 3.4.

- »| posel® >®

|£Ap0[:|sem)
| f

D |

3D model — 3D mode

_’/ Network

4 y A
Rendered image Rendered image
1
|

)]

) 4

Observed image

Figure 3.4: DeepIM pose refinement pipeline. Figure from [38].

The input image is cropped by using a pre-processing network to extract only
the area of the image containing the object of interest. The authors experimented
with two object detection networks, PoseCNN [70], and Faster R-CNN [55]. These
networks output a predicted bounding box for the object, which was used for crop-
ping. PoseCNN also outputs a predicted pose for the object, Faster R-CNN was
modified by the authors to also output an estimate for the object orientation,
while the center of the object bounding box was used to estimate 3D position.
This was however less accurate than the pose estimate from PoseCNN. It is noted
that the DeepIM pipeline performed similarly when using either pre-process net-
work. Overall performance of this RGB only method is reported to be similar to
approaches which use depth data for pose refinement, such as the use of ICP in
combination with PoseCNN, while improving processing time.

3.3 Deep Learning Based Approaches 33

3.3.4 Dense Fusion

Wang et al. [68] combines the power of convolutional neural networks for feature
extraction and segmentation in the Euclidean domain, i.e. on 2D images, with
the application of emerging developments within geometric deep learning [54]
to encode geometric features directly from unordered 3D point sets. This new
approach to feature extraction from point clouds differ from approaches which
utilize learning on depth data represented as intensity images, such as in [18] where
RGB and depth images are used to learn robotic grasping using two convolutional
neural networks trained end-to-end on synthetic depth data. Instead geometric
deep learning allow for the application of deep neural network models on non
Euclidean domains such as graphs or manifolds [11]. A point cloud representing a
3D surface is a type of discrete manifold, which lends itself well to these techniques.

In Dense Fusion the object pixel segmentation and learned image features are
combined with the segmented point cloud and extracted geometric features to
attain dense correspondences between 3D point features and image features. Cor-
respondences are found on a per pixel level by matching a point in the point cloud
with a single pixel using a pin-hole camera projection based on known camera pa-
rameters. These combined features serve as the input to a network which learns
to predict the pose of an object based on the densely fused local features as well
as global features created from all local features.

The pose predictor is trained using a loss function based on the average absolute
distance between sampled points on the object in the ground truth pose, and
points on the surface of the object transformed by the predicted pose. Since one
pose estimate is given per densely fused feature, special care is given to penalize
predictions with a low confidence score.

color - 5 =
embeddings pixel-wise dense fusion

p— (,¥))
CNN

object
- | segmentation

6D pose estimation

matching

masked point

PointNet o=

geometry
embeddings
per-pixel
feature

MLP

rediction per pixel
p perpl average
pixel-wise feature pooling

pixel (x,y) i=1..N
(%;,¥4)
O rotaton R pose (x2)

predictor global

/ ftranslation t; feature
(XpoYp)

argmax(c)
% confidence ¢,

Figure 3.5: Overview of the Dense Fusion pipeline. Figure from [68].

34 Chapter 3 Pose Estimation

While the accuracy of the predicted poses are shown to be 3.5% higher than that
of PoseCNN + ICP refinement, on the YCB-Video dataset [72], it is clear that
some form of pose refinement should be used to maximize the accuracy of the
pipeline. However, in a similar vein to [38] the authors of [68] see the use of ICP
based algorithms as having a severe detrimental effect on the possessing time of
their pipeline. To this end a stand-alone refinement network utilizing densely
fused features is proposed. The pose is refined by iteratively reducing the resid-
ual pose between the current segmented object point cloud and the transformed
model point cloud. This refinement network can be trained at the same time as
the main pose estimation network, but can only be introduced after the main
network has converged due to poor learning performance on noisy input pose es-
timates. Overall performance of the Dense Fusion pipeline can be summarized
as outperforming state-of-the-art pose estimation pipelines, both based on RGB
and RGB-D data, by several percentage points on widely used datasets [28, 72].
It is also noted that the per frame processing time is 200 times faster than that
of PoseCNN-+ICP.

3.4 System Integration Concerns

For application of object pose estimators in automation of industrial component
handling tasks, the production lead time and process adaptability may be con-
sidered as important as accuracy or frame processing time. Especially for robotic
bin-picking systems deployed for small batch size production runs, or in produc-
tion environments where low turnover times is an important consideration, the
ability to quickly deploy object pose estimation systems for new components is
important. If the pose estimation approach at hand requires a large amount of
training data or lengthy supervised training it may not be cost effective despite
boasting state-of-the-art performance at test time. These factors must be con-
sidered before implementing methods or systems for object pose estimation in
industrial manufacturing applications.

For this reason geometry and template based approaches, which in many cases
only require a 3D model of the object, lend themselves well to this kind of appli-
cation. These methods "learn" matching features in a matter of seconds compared
to the hours or even days of training required for deep learning based approaches.
In addition most deep learning based approaches require very large datasets with
annotated object poses or pixel masks for each frame used for learning. This
necessitates a time-consuming process of dataset creation before new objects can
be included in the system. The process of dataset generation can however, in
some cases, be automated using physics simulators and rendering engines for the
creation of synthetic datasets, as seen in [18]. Further developments on the use

3.5 Hand Eye Calibrations Using Point Clouds 35

of synthetically generated training data as well as development of pipelines which
can predict poses of unseen objects, is likely an important step in reducing lead
times for the deployment of deep learning based pose estimators.

There are of course other considerations which impact the effectiveness of each ap-
proach. For instance, geometry and template based methods have been shown to
be less robust in heavily occluded scenes. Under similar conditions deep learning
based methods are shown to perform comparatively better. Another consideration
is frame processing time. For bin-picking operations picking objects from a sta-
tionary bin, the longer processing time of geometry and template based approaches
may provide adequate performance if it does not impact the overall cycle time to
severely. In another application, for instance if a robot were to pick objects from
a moving conveyor belt, the vastly faster frame processing time of deep learning
based approaches may be necessary. Real time pose estimation and tracking of
moving objects is likely outside the capabilities of geometry and template based
approaches. It does however seem feasible for deep learning based approaches,
given the current state of today’s research. Especially when considering that cur-
rent research on deep learning on non Euclidean domains are in relatively early
stages compared with the more mature methods employed in convolutional neural
networks on 2D images.

3.5 Hand Eye Calibrations Using Point Clouds

In order for a robotic manipulator to interact with its environment using vision
systems, the pose of the camera relative to the robot base frame (eye-in-base,
Figure 3.6b) or relative the robot end-effector frame (eye-in-hand, Figure 3.6a)
must be found. The hand-eye calibration is used to transform the estimated pose
of an object in the camera frame to obtain the pose of this object in the robot
base-frame. In this section the kinematics of the hand eye calibration problem
will be presented. A solution to the hand eye calibration problem will be derived
following the method in [51], in addition a method utilising point clouds for hand-
eye calibration is presented. The remainder of this section is based on the delivery
in the specialization project in the course TPK4560 at NTNU [9].

Work on solving the hand-eye calibration problem began in the late 1980s. At
that time digital cameras were becoming good enough to be utilized in computer
vision tasks for robotics. The hand-eye calibration problem was first formulated
as a system of homogeneous matrix equations on the form AX = X B where
A represents robot motion and B represents camera motion. Shiu and Ahmad
[59] found a closed form solution to this problem which satisfied the conditions
for uniqueness. The determination of orientation was solved as the solution to a
set of eight linear equations with four unknowns. Tsai and Lenz [65] proposed a

36 Chapter 3 Pose Estimation

different solution to the same problem formulation. They solved the rotational
part of the calibration equation by represented the rotation by a unit unit vector
k. and an angle 6. The solution is formulated in a way that it can yield an exact
closed form solution when two pose pairs are used, or a least squares solution if
more pose pairs are used in the presence of noise. More pose pairs are used to
help mitigate the effect of noisy measurements. Their solution is tested on both
generated noisy data and on real robot/camera pose pairs. The camera positions
are estimated using the extrinsic calibration methods introduced in [64]. Another
solution which also generalizes to a linear least squares solution when noise is
present is proposed by Park and Martin [51]. All solutions mentioned this far
have proposed a separable solution to the problem by decoupling the rotation
and translation parts of the formulated system of equations. First the solution
for the rotational part of the hand-eye calibration matrix is found, then this is
used to solve a set of vector equations to find the translation part. This is a good
idea because it yields a relatively simple numerical optimization problem, but the
linearization of the rotation problem can become ill conditioned in the presence
of noise. Some of these issues were mitigated in the solution proposed by Horaud
and Fadi [33]. Here, a formulation to the hand-eye calibration problem on the
form of MY = M'Y B where the 3 x 4 perspective matrices M and M’ of the
camera in two different positions are used in stead of an explicit formulation of the
extrinsic and intrinsic parameters. Two different solutions to this new formulation
is presented. One closed form solution using linear least squares for optimization,
and a non-linear solution using the Levenberg-Marquardt method to optimize the
hand-eye transformation matrix. The second solution mitigates errors associated
with decoupling rotation and translation, by optimizing both simultaneously.

The authors of [34] use time-of-flight and structured light 3D scanners to find the
extrinsic parameters of the sensor by matching a the pose of a 3D model with
captured 3D data. This was then used for hand-eye calibration using the method
introduced by Tsai and Lenz. Their findings suggest that using their method
of finding the extrinsic parameters of the cameras resulted in slightly more ac-
curate hand-eye calibration results compared with the 2D image based method
of extrinsic calibration. The 3D method did however require a more labour in-
tensive process for dataset gathering, and was significantly more computationally
expensive than the 2D image methods.

3.6 Kinematics of the Hand-Eye Calibration Problem 37

3.6 Kinematics of the Hand-Eye Calibration Problem

Given a eye-in-hand robot-camera configuration as shown in Figure 3.6a, with the
following coordinate frames defined: robot base frame {b}, robot end-effector/tool
frame {t}, a camera frame {c} and an object frame {o}, the objective is to de-
termine the pose of the object frame in the coordinates of the robot base frame.
The transformation from the {b} frame to the {¢} frame, T}, is found by using
the forward kinematics of the robot manipulator, and the transformation from
the {c} frame to the {o} frame, T,, is found by a pose estimation algorithm. The
transformation from the {t} frame to the {c} frame, T}, is calculated by hand-eye
calibration. The notation X = Tj. is often used for the unknown transformation
between {t} and {c}. Having determined all these transformations the pose of the
object in the robot base frame, T}, can be calculated by

Tbo = TbtﬂcTto (35)

38 Chapter 3 Pose Estimation

Teo

(a) Eye-in-hand calibration

(b) Eye-in-base calibration

Figure 3.6: Calibration setups, (a) camera mounted rigidly in relation to the
end-effector frame, and (b) camera mounted rigidly in relation to the robot base
frame.

3.6 Kinematics of the Hand-Eye Calibration Problem 39

To find the unknown camera calibration X, pairs of robot-camera configurations
are used, as shown in Figure 3.7. Each pose pair consists of two robot poses and
two camera poses. In the first configuration of the pose pair, the pose of the tool
frame in {b} and the pose of the object frame in {c} is denoted A, and Bi,
respectively. In the second configuration of the pose pair the poses are denoted
Aqp and Byp. The convention used is that the capital letter is used to distinguish
between tool and object pose, the number is used to tell the pose pairs apart,
and the lower case letters are used to differentiate between the first and second
configuration in a specific pose pair.

Since the pose of the object in the robot base frame, Tj,, is the same for all
pose configurations we can insert the pose pairs in to Equation (3.5) to get the
following:

A1, X B1gy = A1 X By (3.6)

Pre-multiplying both sides of Equation (3.6) with A7,' and post-multiplying both
sides with By;' yields Equations (3.7) and (3.8).

AL A1 X = X BBy, (3.7)

A X = XBy (3.8)

Where A;, By are the relative transformations between the two poses in pose pair
1, for the tool and camera respectively. These transformations are shown as A
and B in Figure 3.7. In order to find a unique solution for X at least two pose
pairs must be used. To reduce the impact of noisy measurements it is usual to
use several pose pairs, yielding a set of n equations.

A X =XB
Ay X = X By
A3X = X Bs

(3.9)

Anle =XB, 1
A, X = XB,

40 Chapter 3 Pose Estimation

(e} ,
X

pose 1

camera

B

Figure 3.7: A camera mounted rigidly close to the robot end-effector. Figure
from [39].

Derivation of the set of equations used in calibration of eye-in-base robot-camera
configurations as in Figure 3.6b are only slightly different from the one used for
eye-in-hand. Referencing Figure 3.6b the unknown transformation to be estimated
is Ty, herafter denoted X, from base frame to camera frame. The constant
transformation T3, from the tool frame to the object frame is used to determine
the lhs. and the rhs. of Equation (3.6). This constant transformation can be

expressed as
Tyo = Ty XTeo, (3.10)

for each configuration . This is used to formulate the problem as a set of equations
on the form of AX = X B, where A is the relative motion of the robot end-effector
and B is the relative motion of the calibration object rigidly mounted to the end-
effector.

3.7 A Solution to the Hand-Eye Calibration Problem 41

3.7 A Solution to the Hand-Eye Calibration Problem

The derivation of the least squares solution to the set of equations presented
in Equation (3.9), follows the method developed by Park and Martin[51]. This
solution splits the problem of solving for the optimal orientation and the optimal
translation between the reference frame and the camera frame into to separate
problems. First the optimal rotation problem on SO(3) is solved, this is then used
to find the optimal translation. The combined result is the optimal transformation
on SE(3).

The matrix form of Equation (3.8) is Equation (3.11), which can be written as a
pair of equations for rotation and translation (Equations (3.12) and (3.13)).

Ri to) [Re t.| [R. t.][Ry
s s)
RaR:c = R:cRb (312)
Roty +ta = Roty + t, (3.13)

The best fit solution for the unknown rotation R, between frame {¢} and frame
{c} minimizes 7;.

m =Y | Relog(Ryi) — log(Ras)II” = | Re(Ouks)i — (Baka)sll” (3.14)
i=1 i=1

This minimization problem is equivalent to solving for the R, which maximizes
trace(R K, K1) (3.15)

Where K, = [(c%k:a)l, ooy (Qaka)n] € R3*™ and Ky = [(ebkb)l, cees (6bkzb)n] € R3xn,
The optimal R, is found by the singular value decomposition (SVD) of the matrix
product K3 K! and forming R, as in Equation (3.17), where S the Umeyama
correction Equation (2.64) ensuring that R, is a member of SO(3).

UsVT = svd(K,KT) (3.16)

R, =VSUT (3.17)

42 Chapter 3 Pose Estimation

The optimal translation is found as the vector t; which minimizes 7.

n

2= Z H(Rai - ngg)tx — Rytpi + tai
i=1

2
(3.18)

The solution to this minimization problem is formulated as the least square solu-
tion to the matrix equation

Cty =d (3.19)
Ral - I3X3 thbl +ta1

C = Ra2 - 1—3><3 , d = RmtbQ + ta2 (320)
Ry — 1973 Roton + tan

The optimal translation is then found as
t, =C'd (3.21)

Where CT is the pseudo-inverse of C.

The resulting hand eye calibration matrix representing the tool-to-camera or base-
to-camera transformation is

X = le tw] (3.22)

3.8 Procedure for Hand-Eye Calibration

The basic procedure for hand-eye calibration consists of the following steps.

1. Create a calibration dataset consisting of robot end-effector poses and im-
ages taken of the calibration object in different robot configurations.

2. Conduct extrinsic camera calibration for each robot configuration in order
to find the pose of the calibration object in the camera frame for each image.

3. Create pose pairs and calculate relative robot and camera motion or robot
and calibration object motion for each pose pair to obtain a set of equations
as in Equation (3.9).

4. Calculate the best fit transformation between the robot end-effector frame
and the camera frame by solving this set of equations.

3.9 Hand-Eye Calibration Using Point Clouds 43

3.9 Hand-Eye Calibration Using Point Clouds

To make use of the 3D point cloud data which generated by depth sensors, a
method for extrinsic camera calibration utilizing point cloud data has been devel-
oped. First the corners of the calibration chessboard are found in the RGB image
using the OpenCV python method findChessboardCorners (). This function call
returns the sub-pixel coordinates of the internal corners on the chessboard. From
these it would be possible to extract the 3D data directly, but since chessboard
corners are high color contrast areas, the 3D data at these points is generally
noisier than the data which corresponds to smoother gradient image regions. In-
stead the center point of each chessboard square is considered. The sub-pixel
coordinates of these points are found as the point of intersection of each square’s
diagonals. The 3D point cloud from the Zivid One 3d camera is arranged in a
1920 x 1200 x 3 matrix where points can be extracted using integer indices, e.g
[202, 560]. Since the center point pixel-coordinates of each square generally will
be a tuple of floats, e.g (202.56, 560.23), the 3D point corresponding to these
pixel coordinates cannot be extracted directly. The four 3D points corresponding
to the integer indices around the center point, (202, 560), (203, 560), (202, 561),
(203, 261), are linearly interpolated to find the 3D coordinates of the center point
in the camera coordinate system. This process is carried out for every center point
on the calibration board, and for every image taken, to obtain a set of reliably
placed 3D points on the calibration object relative to the camera.

For extrinsic camera calibration, the pose of the chessboard in the camera frame
is found by fitting a plane to the 3D center-points, where the normal vector of the
plane defines the z-axis of the chessboard coordinate frame. The z-axis is found
by fitting a line to the 3D points along the long axis of the board, this vector is
then projected into the plane orthogonal with the z-axis. The y-axis is found as
the cross product y = z x z. Each axis is then normalized to obtain a set of unit
coordinate axes forming a basis in R3. This coordinate system is affixed to the
centroid (Equation (2.58)) of the point cloud. When using this method of finding
the extrinsic calibration of the camera for hand-eye calibration, the calibration
method is referenced as the "3D plane fit method".

Since the formulation of the hand-eye calibration problem does not require the
explicit pose of the camera in each configuration, only the relative motion of the
camera or chessboard between two configurations, the transformation between
the point clouds obtained in each configuration can be used instead. When using
this method for hand-eye calibration it is referenced as the "3D correspondence
method" or simply as the "3D method". The 3D plane fit method and the 3D
method are collectively referred to as the "3D point cloud methods".

44 Chapter 3 Pose Estimation

3.9.1 Calculation of Calibration Error

To evaluate the error of the different hand-eye calibration methods due to noise,
the mean deviation in pose from the average estimated calibration object pose
is considered. For eye-in-hand calibration the pose is referenced to the robot
base frame, for eye-in-base calibration the pose is referenced to the end-effector
frame. In both cases the constant transformation used to derive Equation (3.6)
and Equation (3.10) is considered.

For error calculation on hand-eye calibration using OpenCV extrinsic calibration
and the 3D plane fit method the pose of the calibration object is calculated for each
robot configuration. This is done using the robot pose, the hand eye calibration
and the extrinsic camera calibration, Equation (3.5). From this the mean rotation
vector and the mean translation vector is calculated and used as an estimate for
the ground truth pose of the calibration object. The error for each object pose
estimation is then calculated as the transformation between the ground truth pose
and the estimated object pose.

(Terror)i = (Tbo)é; (Tbo)i (3.23)

Where (Terror)i is the estimation error for robot configuration i, (Tp,)gr is the
estimated ground truth pose, and (7},); is the pose estimation of the calibration
object using configuration i. The hand eye calibration error is represented as
translation error and rotation error. Translation error is calculated as the mean
norm of the translation error vectors for all the estimates (Equation (3.24)), rota-
tion error is calculated as the mean of the absolute value of the rotation angle error
for all the estimates (Equation (3.25)). The angle of rotation, 6, is calculated
using Equation (2.13).

1
terr = E Z ||(terr)i’| (324)
=0
1
Ocrr = n Z [1(Oerr)il| (3.25)
=0

For the 3D correspondence method, the pose of the calibration object is not
explicitly known. The calibration error is therefore calculated slightly differently,
while using the same metrics. The position of each calibration point on the
calibration object is estimated using Equation (3.26) for each configuration 1.

(P)i = (Th)i(The) (P5)i (3.26)

3.9 Hand-Eye Calibration Using Point Clouds 45

where P? € R**" is the homogeneous representation of the object point cloud in
the robot base coordinate system and PS € R is the position of each calibration
point in the camera coordinate system. An estimated ground truth position for
each calibration point is calculated as the mean position from all the estimates
[(PY)o, (P%)q, (PY),...,(P?),]. The error transformation is then calculated for
each object pose estimation using point correspondences between the ground truth
point cloud (P%)gr and the calibration point cloud P? for each configuration

i. The translation and rotation error is then calculated using Equations (3.24)
and (3.25).

Chapter 4

Motion Planning

In traditional robotized automation, obstacles are avoided by manual specifica-
tion of the path of the manipulator. In order to avoid the cumbersome process
of manually specifying paths around obstacles, motion planning algorithms can
be employed. Motion planning algorithms convert high-level specifications of mo-
tions into specific descriptions of how to move, specifically solving the problem of
determining the required translations and rotations to move a robot toward a goal
while avoiding known obstacles in its workspace. For a robot to autonomously
manipulate its environment, there is a need to endow the robot with capabilities
to automatically plan its motions. In this chapter, the problem of motion and tra-
jectory planning will be characterized. A sampling-based and a linear Cartesian
motion planning pipeline using the Movelt 2 Beta is outlined. The theoretical
concepts presented in this chapter are based on descriptions and definitions from
[37], [39] and [60].

4.1 Configuration Space and Operational Space

In order to establish convenient formulations, the notion of configuration space
and operational space is introduced. The configuration space is given as the space
containing all possible configurations a robot can assume. A configuration is a
complete specification of every position of every point of the robot. For a robot
with rigid links and n degrees of freedom, a minimum number of n real-valued
coordinates are needed to represent a configuration [39]. In general, for a robot
B, made up of an open chain of r rigid links of known dimension and shape,
connected by m revolute joints, the configuration is given by the vector of the
relative orientations ¢ = [q1 ... ¢m]? between the links. The configuration space
C for an m degree of freedom open chain is given by an m-dimensional manifold,
however the shape of the manifold depends on the geometric properties of the
kinematic chain. For instance, the geometric shape of the configuration space of

48 Chapter 4 Motion Planning

an m degree of freedom open chain with a fixed base, will be of the shape of
an m-dimensional torus [60]. Most robot manipulators have a large number of
degrees of freedom, an thus the configuration space is often a high-dimensional
space.

The operational space of a robot describes the space in which its manipulation
is most easily specified, typically the three dimensional Cartesian space. While a
configuration is a complete specification of a robot’s pose, a pose is not necessarily
a complete specification of a robots configuration. A pose in the operational space
may be achievable by more than one configuration, especially if the robot features
any degree of kinematic redundancy. In literature, operational space and task
space is often used interchangeably.

4.2 Path and Trajectory

Furthermore it is useful to establish a clear distinction between a path and a tra-
jectory. A path is a set of waypoints in the planning space which the manipulator
has to follow while executing its motion [60]. The planning space can be either
the configuration space or the operational space. By this definition the path is
a purely geometric description of motion. A trajectory is a path coupled with a
time-parameterization specifying the time at which each waypoint of the path is
to be reached.

4.2.1 Trajectory Planning

Trajectory planning is the process of generating the reference inputs to the mo-
tion control that executes the planned path. The minimal requirement is that
the planned trajectory can be completed by the manipulator. As the path only
satisfies kinematic constraints, dynamic and differential constraints must be con-
sidered by the trajectory planner. Trajectory planning algorithms must therefore
generate suitably smooth trajectories that adheres to the manipulators actuator
limits. Trajectory planning can be done in the joint space and operational space.

Joint space trajectory planning algorithms generate a sequence of values for the
joint variables which cause the manipulator to be moved from the starting config-
uration to the goal configuration while respecting any imposed constraints. This
is typically done by generating a function g(¢) interpolating the vector of joint
variables at each waypoint. Two cases of joint space trajectory planning prob-
lems will be considered: point-to-point motion and motion through a sequence of
points. Both problems will be generalized to the case of a single joint variable.

In the case of point-to-point motion, only the start and goal configuration and the

4.2 Path and Trajectory 49

travelling time are specified. This is the simplest case. In this situation a joint is
to move from an initial joint configuration ¢; to a final joint configuration ¢y in
a given time ;. In this setting, the end-effector path is not considered, and the
path itself contains only a starting configuration and a goal configuration. The
nth-order polynomial function used to interpolate the start and goal can impose
a specific joint velocity or joint acceleration profile, or optimize a performance
index. For instance, the cubic polynomial ¢(t) = ast® + ast? + a1t + ag can be
used to produce a parabolic joint velocity profile and a linear joint acceleration
profile. Another common approach is imposing a trapezoidal joint velocity profile.
With this method a trapezoidal joint velocity profile is assigned, with a ramp-up,
cruise and deceleration phase. In each phase the joint acceleration is constant:
constant joint acceleration in the ramp-up phase, zero joint acceleration in the
cruise phase and constant joint deceleration in the deceleration phase. The joint
position, velocity and acceleration profile of a joint motion with trapezoidal joint
velocity profile is illustrated in Figure 4.1.

Figure 4.1: Characterization of a motion timing law with imposed trapezoidal
joint velocity profile. Figure adapted from [60].

In most cases the path consists of more than two points. Intermediate points be-
tween the start and goal configuration allows more complex motion to be defined
with better precision. Thus, it may be more convenient to define the trajectory as
a motion through a sequence of points. However, adding points to the trajectory
increases its polynomial complexity. N path points to be reached at specific time
instances requires a (N — 1)-order polynomial to interpolate. Hence, for trajec-
tories consisting of many intermediate path points, a high-order polynomial is
required. Using a single high-order polynomial has many disadvantages: initial
and final velocities cannot be specified, oscillatory behavior increase, changing a
path point require the entire polynomial to be recalculated, and it is computation-
ally complex to solve [60]. A high-order polynomial can however be avoided by
using several low-order interpolating polynomials joined smoothly at waypoints.
With this technique, to to be able to specify joint velocity and joint acceleration at
waypoints, the functions interpolating the segments between the waypoints must
be at least twice-differentiable, meaning the cubic polynomial is the lowest-order

50 Chapter 4 Motion Planning

interpolating polynomial that can be used in this manner. This type of interpola-
tion is typically referred to as spline interpolation, and is a popular interpolation
technique in trajectory planning. A spline is a function defined piecewise by poly-
nomials which are smoothly fitted at the joins, ensuring continuity of the function
and its derivatives.

A simpler, alternative approach to the two formerly mentioned techniques is linear
interpolation with blends. With this method, the trajectory is implemented using
linear polynomials between the waypoints with blended joins between each linear
segment. Blends are added to avoid discontinuity problems, typically using either
a circular or cubic blend, depending on the differentiability requirements put on
the trajectory. Due to the blends, the trajectory passes nearby, but do not reach
any of the intermediate path points. A trajectory obtained by interpolating low-
order polynomials can be seen in Figure 4.2a. Interpolation using linear segments
and cubic joins can be seen in Figure 4.2b.

q J\ q A
q,
‘e Iy =45 Gy =1
i My My =i
| [i A |
fo g, sy | . g A !
_] ’/ i i3 1 ; : ; 3/ |
‘ | | Ao | Aoy |
4 =Gy i ! 4= SCAELEN
i 3 i i Ote i
I i " L - i t " o
=0 Iz Ia = ¢ H=0 2 t3 L=y P’
(a) Interpolating low-order polynomials (b) Linear polynomials with cubic

blends

Figure 4.2: Trajectories obtained through interpolating polynomials. Figures
from [60].

In some cases, it may be desirable to plan the trajectory directly in the opera-
tional space of the robot. This can be done via either generating a time-sequence
of operational space waypoints or by generating the time-parameterization of the
parametric representation of the path. For both techniques, the waypoints of the
trajectory in operational space must be transformed to the configuration space in
real-time using an inverse kinematics algorithm. This adds significant computa-
tional complexity to the trajectory planning problem and puts an upper limit to
the possible configuration space sampling frequency. Trajectories generated in op-
erational space often result in a more 'natural’ motion, however operational space
trajectory planning is slower and the resulting joint motions are not necessarily
smooth.

4.3 Defining the Motion Planning Problem 51

4.3 Defining the Motion Planning Problem

In order to address the motion planning problem in a precise manner, it is con-
venient to define the canonical problem. In this thesis, we will use the definition
formulated in Siciliano et al. [60]. Given a robot B, which consist of a single
rigid body or a kinematic chain with either fixed or mobile base, that moves in a
Euclidean workspace W = RY, where N = 2 or 3. Let Oy, ..., O, be the obstacles,
i.e. fixed rigid objects in V. It is assumed that the geometry of B, O, ...,0, is
known, and that B is not subject to any kinematic constraints. The motion plan-
ning problem is then defined as the following: given the initial pose of the robot
B in W, if it exists, find a path, i.e. a continuous sequence of poses, which drives
the robot BB between the initial and goal pose while avoiding contacts between B
and the obstacles Oq, ..., O,. Report a failure if such a path does not exist.

By introducing the notion of the C-obstacle region and the free configuration
space Cfree a more compact formulation can be reached. Let C-obstacle denote
the ’image’ in C of an obstacle O; present in W. Then let CO; denote the subset
of configurations that cause a contact between the robot B and the obstacle O;.
CO; is then defined as:

CO; ={qeC:B(q)N0O; #0}. (4.1)

Then, the C-obstacle region is the union of all subsets CO; that cause the robot B
to be in contact with any obstacle Oq, ..., O,. Meaning the the C-obstacle region,
CO, is the union of CO;, i =1,...,p

co = ij co; (4.2)

=1

The free configuration space is then defined as Cfree = C — CO. While C is a
connected space, due to the obstacles, Cyc. is not necessarily fully connected.
With these definitions, we formulate the compact version of the canonical motion
planning problem. Assume B is not subject to any kinematic constraints. The
initial and goal pose of B is mapped to C as the initial configuration g; and the
goal configuration g,. Planning a collision free motion for the robot B means
generating a path connecting g; and g, contained in single, connected subset of
Cfree, and reporting a failure otherwise. The formulated definition assumes the
robot to be the only object in motion in the workspace and that the placement
and geometry of the obstacle are known a priori to the planning.

The formulated definition of the motion planning problem has reduced motion
planning to an entirely geometrical path planning problem. This is useful as

52 Chapter 4 Motion Planning

many methods solve the geometric path planning problem in one step, and apply
trajectory planning to generate a feasible trajectory in another step.

4.4 Motion Planning Methods

There is no single planner suitable for every robot and every motion planning
problem. Dependent on the task at hand and the robot to be used, different
planning algorithms is typically to be preferred. There are several classes of plan-
ners, however, with our purely geometrical definition, it can be argued there are
roughly three main categories: combinatorial methods, sampling-based methods
and potential field methods. Combinatorial methods represent the connectivity
of the free configuration space Cyce by constructing a roadmap. A roadmap is a
graph where each vertex represent a configuration and each edge a path between
two configurations, containing enough paths to adequately describe the connec-
tivity of Cfree [37]. This requires an explicit computation of the C-obstacle region
CQO, which is a very complex computation. Combinatorial methods is mainly sep-
arated by how they construct the roadmap. After the roadmap is constructed, a
graph search algorithm is deployed to find a feasible path between the initial con-
figuration g; and the goal configuration g,. Depending on the search algorithm
used, different path properties can be prioritized, e.g. shortest path or greatest
distance to obstacles. Combinatorial methods are complete, meaning a solution
can be guaranteed to be found if it exists, and a failure will be reported otherwise.
They are also multiple-query, as once the roadmap is constructed, and no changes
in the environment occurs, the same roadmap can be used to solve multiple plan-
ning queries. Owing to the need for a explicit computation of CO, combinatorial
methods are unsuitable for high-dimensional problems. A large portion of com-
binatorial motion planning algorithms are dedicated to the planar mobile robot
case, with C = R?, CO; is polygonal and the robot B is a polygon only capable of
translation.

Sampling-based methods are a very popular set of methods for high dimensional
planning problems. Sampling-based methods avoid the explicit calculation of
CO by sampling the configuration space using either a deterministic or random-
ized sampling scheme. The methods typically build a roadmap incrementally by
collision-checking sampled configurations using a separate collision checker, adding
collision-free configurations to the roadmap and discarding those in collision [37].
By outsourcing collision checking to a separate module, the planners can be ap-
plied to a wider range of problems by tailoring the collision detector to the specific
robot or application. Alternatively, a very efficient collision-detection algorithm
can be used to achieve a fast planning. Owing to the probabilistic nature of the
sampling-based planners they are probabilistically complete, meaning they can

4.5 Movelt 2: ROS 2 Motion Planning Framework 53

guarantee to eventually find a solution, if it exists, however they cannot detect an
impossible planning request. Sampling-based methods can be both single-query
and multiple-query. Multiple-query methods use a probabilistic approach to map
the set of possible configurations Cyye.. This map is used to process later queries
at a lower computational expense. This requires CO to be static. Even using a
probabilistic approach mapping of Cy,.. is computationally very expensive.

Potential field methods are based on an entirely different approach. Instead of
generating a roadmap, they construct a differentiable real-valued function U used
to guide the motion of the robot. The potential function U is obtained as the
superposition of an attractive potential to the goal and a repulsive potential from
the C-obstacles [60]. Planning is done incrementally: at each configuration g
the next step is determined from the negative gradient —VU (q) of the potential,
which indicates the most promising direction in the configuration space. However,
this gradient-descent based approach do not guarantee a solution to be found, as
the planning can get stuck in a local minima. Although there are techniques
for handling local minima, potential field methods are generally not complete.
However, unlike combinatorial methods and sampling-based methods, potential
field methods are suitable for online planning. The formerly presented families of
methods dependent on a priori knowledge of the geometrical characterization of
the environment and plan the path before any motion is initiated. Online planning
refers to planning where some of this information is gathered from sensors and
used to incrementally generate the path during motion. Potential field methods
plan in an incremental fashion, allowing new obstacle repulsive fields to be added
between iterations in the planning. Potential field methods are suited to plan in
high-dimensional spaces, and are inherently single-query.

4.5 Movelt 2: ROS 2 Motion Planning Framework

The Movelt motion planning framework is a set of open-source ROS packages of-
fering capabilities for motion planning, manipulation, 3D perception, kinematics,
control and navigation [12]. It was originally developed by Willow Garage as a
generalized version of the _navigation package developed for the PR2 robot,
with the first beta released in 2013 and the first official version, Movelt 1.0, in
2019 [5]. In February 2020, the first beta for the ROS 2 version of Movelt, Movelt
2, was released. In the Movelt 2 beta release, much of the core components of
Movelt 1.0 has been ported to ROS 2. Most notably missing is the MoveGroup
high-level ROS API which gives access to Movelt functionalities through ROS
actions, services and topics. Instead, the moveit_cpp C++ high-level API is
available. This is an advanced developer API which gives access to core Movelt 2
functionality directly [43].

54 Chapter 4 Motion Planning

In agreement with our definition of the motion planning problem from Section 4.3,
in Movelt 2, the motion planners are setup to plan paths [42]. In the complete
motion planning pipeline, the motion planner of choice is chained together with
planning request adapters, which provide options for preprocessing of planning
request, and postprocessing of the planned path. A typical planning pipeline con-
sists of three stages: preprocessing, planning and postprocessing. In the prepro-
cessing stage, an incoming planning request issued from user code is preprocessed
in one ore more planning request adapters to ensure the request is valid and con-
tains the required fields. In the planning stage, the motion planner plans a path
according to the preprocessed motion planning request, using a dedicated collision
checker module to ensure a collision free path is generated. In the postprocessing
stage, the generated path is time-parameterized to create a workable trajectory.

4.5.1 OMPL-based Motion Planning Pipeline

In order for Movelt 2 to function with different motion planners from different
libraries, Movelt 2, similar to the original Movelt, integrates motion planners
through a plugin interface. The beta release of Movelt 2 used in this thesis in-
tegrates motion planners from the Open Motion Planning Library (OMPL) [63],
and comes bundled with the OMPL motion planners. OMPL is an open-source
C++ library of sampling-based motion planners. OMPL is centered around the
planners and provides a uniform interface with clear mappings between abstract
classes and theoretical concepts. OMPL therefore integrates nicely in complex
systems. However, being constrained to only the planners, OMPL provide no
means for visualization or collision checking. Collision checking is handled by a
StateValidity checker which interfaces with an external collision checker to evalu-
ate if a sampled state is collision-free. Most of the motion planners in OMPL are
geometric path planners, considering only geometric and kinematic constraints.

In the OMPL-based motion planning pipeline in Movelt 2, a motion planning
request is constructed from a planning goal. A planning goal is constructed using
a constraint message containing fields for joint constraints, position constraints,
orientation constraints and visibility constraints. Joint constraints are used for
state goal planning and position and orientation constraints for pose goal plan-
ning. Visibility constraints can be used to enforce visibility of a link in a defined
volume representing the cameras field of view. Regardless of which constraints
are used to define the goal, planning is performed in the configuration space. For
a pose goal, the goal must therefore be transformed to a configuration before
planning can start. This is performed behind the scenes by the kinematics plugin.
For manipulators where several configurations can yield the same pose, the goal
configuration realized can differ between planning requests to the same pose goal.

4.5 Movelt 2: ROS 2 Motion Planning Framework 55

Preprocessing is performed on the given motion planning request using four plan-
ning request adapters: FixStartStateBounds, FixWorkspaceBounds, FixStart-
StateCollision and FixStartStatePathConstraints. The FixStartStateBounds
adapter handles situations where the start state of the robot is slightly outside
the specified joint limits. This may occur when the specified joint limits is slightly
more constrained than the real joint limits. In this situation the adapter will mod-
ify the start state to be within the joint limits. The FixWorkspaceBounds adapter
sets a default workspace of a 10mx10mx 10m cube to be used for motion planning
request when no workspace bounds are given. The FixStartStateCollision adapter
will attempt to sample a new collision-free configuration of the robot if the start
state is in collision. The amount it will be allowed to adjust the joint values of the
start state is specified by an user defined value called the "jiggle_factor'. Ad-
ditionally, the start state will be checked to be within the path constraints given
by the motion planning request. If needed, the FixStartStatePathConstraints
adapter will attempt to plan a a path between the start configuration to a new
location where the path constraint is obeyed, and set this to be the start state for
planning.

When the motion planning request have been preprocessed, it is sent to the mo-
tion planner specified for the planning request. The RRT-Connect motion planner
is the default planner of the OMPL-based motion planning pipeline in Movelt 2.
Due to Movelt 2 currently missing functionality for changing the motion planner
employed, RRT-Connect will be the motion planner employed in this thesis. RRT-
Connect is a sampling-based motion planning algorithm first proposed by Kuffner
and LaValle in [35], and is based on the principle of two Rapidly-Exploring Ran-
dom Trees (RRT). RRT is a tree data structure which is incrementally extended
using a randomized extension-procedure to be repeated at every iteration. At
each iteration, a randomly selected configuration ¢qnq is sampled from C. The
tree is then searched with the nearest neighbour algorithm to find the configura-
tion @neqr already stored in the tree which is the closest to g,qng- Then gneqr and
Grand are joined with a segment, and a new configuration ¢, is found by travers-
ing this segment a fixed distance € from ¢neqr. A collision check is performed on
Gnew by an external collision checker to ensure it is collision-free, i.e. to verify
that gnew € Cpree- If qnew is found to be collision-free, it is added to the tree as
a vertex, together with the edge connecting ¢peqr t0 @new. The tree is extended
in this fashion until there exist a path between the start configuration ¢ssq,+ and
the goal configuration ggoq. RRTs are very efficient in exploring the configuration
space, and the procedure for generating new candidate configuration is biased
towards new, unvisited regions of Cy.e.. The extension-procedure is summarized
in Algorithm 1 and illustrated in Figure 4.3.

56 Chapter 4 Motion Planning

Algorithm 1 EXTEND(T,q)

Gnear < NEAREST NEIGHBOR(q, 7)
if NEW__ CONFIG(q, ¢near, Gnew then
T .add_vertex(gnew)
T'addfedge(Qnearv qnew)
if gnew = q then
Return Reached
else
Return Advanced
Return Trapped

’L_f_’ / e

Urand

QH(.’!H"

Figure 4.3: The EXTEND procedure. Figure from [35].

RRT-Connect is based on two ideas: growing two RRTs, T, rooted at the start
configuration gsqr¢ and 7, rooted at the goal configuration ggoq, and the Connect
heuristic. The Connect heuristic is a greedy function that attempts to extend
an RRT over a larger distance. Instead of extending the RRT in a single € step,
the Connect heuristic repeats the extension step until either g,.,,q or an obstacle
is reached. RRT-Connect alternate between growing the two trees until they
connect, at which point a solution is found. In each iteration of RRT-Connect,
one tree is extended and an attempt to connect the trees is made. In the next
iteration the roles are swapped. The extension is done using the normal RRT
extension procedure listed in Algorithm 1, however the attempt at connecting
the two threes is done using the CONNECT heuristic, during which the nearest
vertex of the other three is attempted extended to the new vertex grqnqg. The
swapping of roles allow both trees to explore Cy... while trying to establish a
connection between them. The Connect function can be seen in Algorithm 2 the
full RRT-Connect algorithm can bee seen in Algorithm 3.

Algorithm 2 CONNECT(T,q) Algorithm 3 RRT-Connect(gstart; 4goal)
repeat Teo.init(); Tp.init();
S + EXTEND(T,q); for k=1 to K do
until not (S = Advanced) Grand < RANDOM__CONFIG();
Return S; if not (EXTEND(74, @rand) = Trapped) then

if (CONNECT(7p, gnew) = Reached) then
Return PATH(74, Tp);
SWAP (Ta, Tp);
Return Failure;

Sampled states from the planner are checked for collision with the planning scene,
a representation of the world around the robot and the robot’s state. The world

4.5 Movelt 2: ROS 2 Motion Planning Framework 57

representation in the planning scene can be modified in a real-time manner from
sensor data, or predefined using geometric primitives and meshes. Collision is
checked by collision check queries to the Flexible Collision Library (FCL) [50].
FCL is an open-source library that includes various techniques for efficient col-
lision detection and proximity computation. The library represents objects with
Bounding Volume Hierarchies (BVH) and uses hierarchical object representation
and tree traversal techniques to speed up collision checking. A BVH is a tree data
structure of geometric objects, where the objects are bounded by bounding vol-
umes in a hierarchical manner. The bounding volumes form the internal nodes of
tree, while the objects the leaves. All child node bounding volumes are enclosed
by their parent node bounding volume. The root bounding volume enclose all
bounding volumes of the tree. If a parent volume is found to have no overlap,
the child volumes the parent do not need to be checked. The BVH presentation
therefore removes the need to check for collision on every geometric primitive
comprising a object, and thus saves a lot of computation. An example of a BVH
can be seen in Figure 4.4.

Figure 4.4: An example of a bounding volume hierarchy.

Movelt 2 checks for collision using discrete collision check queries. A discrete
collision check query is executed in three phases: first a self-collision check, then
a broad-phase collision check, and finally a narrow-phase collision check. Self-
collisions are checked with an unpadded version of the provided collision meshes
of the robot. If passed, the the broad-phase check is started. In the broad-
phase collision check, a sweep-and-prune algorithm is executed. The environment
around the robot is modelled with axis-aligned bounding boxes in a BVH, and the
algorithm traverse the hierarchy-trees searching for overlapping bounding boxes.
Next, narrow-phase collision checking calculations are executed for the overlap-
ping pairs of bounding boxes. These calculations are performed directly on the
meshes of the objects in the bounding boxes, which are a far more computation-
ally expensive than collision checking on bounding boxes. However, due to the
use of BVHs, these calculations are kept to a minimum.

58 Chapter 4 Motion Planning

Collision checking is done in the Cartesian space. Therefore, sampled configu-
rations are run through a forward kinematics algorithm to find the pose of the
manipulator at that state before the robot’s padded collision meshes are checked
for overlaps the axis aligned bounding volumes of the obstacles. Additionally, the
segments connecting the vertices of the path are also collision checked at inter-
mittent points. Collision checking is a very computationally expensive operation
and accounts for a large part of the computational expense of a motion planning
request. To alleviate this, Movelt 2 uses an AllowedCollisionMatrix datatype to
store information about pairs of bodies that do not need to be collision checked.
Objects which can never be in collision, or will always be in collision, for instance
some links of the robot, may be encoded into the matrix. The AllowedCollision-
Matrix can also be modified during runtime.

When a collision-free path is found, the path is postprocessed with a
time-parameterization to transform it to an executable trajectory. In this pipeline,
the adapter AddTimeOptimalParameterization is used. The adapter generates a
smooth time-optimal trajectory within the given bounds on joint velocities and
joint accelerations after the principle introduced in [36]. The adapter generates the
trajectory in two steps: first a preprocessing step to make the found path twice-
differentiable, next the time-optimal time-parameterization, where a trajectory
which exactly follows the differentiable path within the given bounds on joint
velocity and joint acceleration is produced.

RRT-Connect, and most sampling-based planners, produce paths in configura-
tion space consisting of waypoints connected with straight line segments. At
the waypoints, the path is not differentiable. For the algorithm to able to time-
parameterize these paths directly, these connections must be be smoothed. This
is done in a preprocessing step in the time-parameterization by adding circular
blends around the waypoints. The blends are limited to not encompass more
than half of the neighboring linear segments, and a maximum deviation from the
original path is enforced. The time-parameterization is given in joint velocity and
joint acceleration and computes a time-optimal trajectory where the manipulator
is moving as close as possible to its velocity limits by applying either minimum
or maximum acceleration. The trajectory is computed using a limit curve con-
structed from the minimum of the joint velocity and joint acceleration. This curve
is found in the (s, $) plane, where s denotes the travelled arc length.

After the time-parameterization, the pipeline has completed its processing of the
motion planning request, and a viable, collision-free trajectory has been produced.
A flowchart of the pipeline can be seen in Figure 4.5.

4.5 Movelt 2: ROS 2 Motion Planning Framework 59

FiWorkspaceBounds |
FixStartStateBounds |

MotionPlanRequest | _, RO SEESS ke ke ‘—:- RRT-Connect | — | addTimeOptimalTimeParamterization

!

PlanningScene

!

FCL

FixStartStatePathConstraints

Figure 4.5: Flowchart of the OMPL-based Movelt 2 motion planning pipeline.

4.5.2 Linear Cartesian Motion Planning Pipeline

While the OMPL-based pipeline presented in Section 4.5.1 will find a viable,
collision-free trajectory, the trajectory can take any arbitrary path in the opera-
tional space as long as the constraints of the motion planning request is satisfied.
In many applications, constraining the motion to a Cartesian motion primitive
may be required, for instance in bin-picking, assembly or welding applications.
There is however no option to constrain the trajectory to a a Cartesian motion
primitive in the OMPL-based pipeline. Thus, a second linear Cartesian Movelt
2 motion planning pipeline using Movelt 2 resources is developed. The outlined
linear Cartesian Movelt 2 motion planning pipeline consists of tree steps: an inter-
polation step for finding configurations along a straight line toward the given pose
goal, a collision check of the interpolated path and finally time-parameterization
to obtain a trajectory.

The interpolation is done using the Cartesianlnterpolator of Movelt 2. A pose
goal is given to the interpolator together with limits on allowed maximum Carte-
sian distance between waypoints and maximum allowed joint value jumps in the
state space. A set of configuration space waypoints forming a straight line be-
tween the start pose and goal pose in Cartesian space is produced. Configura-
tion space waypoints are generated by finding the next waypoint in Cartesian
space, and transforming this to the configuration space using an numerical in-
verse kinematics solver. When a path is found, the path is collision checked using
FCL. This collision check procedure is done similarly to the OMPL-based motion
planning pipeline. When deemed collision free, the path is time-parameterized.
The time-parameterization is applied using the addlterativeSplineParameteriza-
tion planning adapter. The adapter respects limits on joint velocity and joint
accelerations.

The code-implementations of the Movelt 2 motion planing pipelines is presented
in Section 6.3.3.

Chapter 5

Estimation of External Forces

The measurement or estimation of external forces acting on a robot manipulator
can be used for several applications. One application which is particularly useful
for collaborative robots is the application of contact force monitoring for collision
detection purposes. This can be used as a safety feature in robotics systems by
immediately seizing motion upon the detection of a collision in order to reduce
damage to the environment, the robot, or human workers interacting with the ma-
nipulator. Another useful application is the use of measurements, or estimations,
of forces acting in the robot end-effector frame to control the robot. This type
of force control can be especially useful for assembly operations involving compo-
nents with tight tolerances or where a specified force or torque is to be applied to
meet the required specifications in an assembly. Force control can also be used in
combination with constraint based control where the robot is programmed based
on the constraints of an assembly, e.g. the alignment of the axes of a hole and a
cylinder. In this case force control can be used to detect errors in alignment based
on the forces and moments resulting from contact and adjust the robot accord-
ingly. To facilitate these applications we intend to implement a system for the
sensor-less estimation of end-effector forces and moments, thus, the main purpose
of this chapter is to present the methods used for such a purpose.

The use of force control rely on accurate measurements of forces and torques
applied to the robot end-effector. These measurements are generally done with
dedicated force-torque sensors attached to the end-effector. This type of sen-
sor allows for direct measurement of the contact forces between the robot and
the environment. Implementation of such a sensor may, however, not always be
convenient or at all possible. Instances where the end-effector payload would be
severely reduced due to the added weight of the sensor, or where the robot man-
ufacturer does not provide a means of attaching such a sensor, inhibit their use.
This is the case for the ABB YuMi which has a payload limit of 0.5 kg. In these
cases a scheme for sensor-less estimation of contact forces based on the robot

62 Chapter 5 Estimation of External Forces

dynamics and applied actuator torques can be used.

5.1 Method for Estimation of External Forces

The model used for estimation of forces between the robot end-effector and the
surrounding environment is based on the work of De Luca et al. [15, 14]. Their
model is used for collision detection without the use of external sensors. A similar
model is utilized by Nicolis et al. [45] and by Polverini et al. [53] in constraint
based force control schemes carrying out tasks such as peg-in-hole assembly. The
derivation of a method for estimation of contact forces on the end-effector frame
follows.

Recall Equation (2.34) describing the inverse dynamics problem for a serial ma-
nipulator, derived using a Lagrangian approach. This equation is modified to also
include the resulting motor torques 7 from contact forces between the end-effector
and the environment.

T+ 7. = M(q)§ +C(q,4)d + 9(q) (5.1)

The system Lagrangian £ = K(q,q) — P(q), where K and P are the kinetic
and potential energy of the system respectively, is used to derive the system’s
generalized momentum p. The elements of p are found from

_ 0L 0K(q,q) 9P(q) _1.70M(q).

pi = 24, 9 Bd; 5 36 (5.2)
Define the generalized momentum for the system as
p=M(q)q (5.3)
with time derivative p = %p = M (q)q, which satisfies
p=7+7.-C(q,9) —9g(q) (5.4)
The external torques are estimated by calculating the residual
r=Kn|p- [(r-Cla.d)d - gla) +)it (5.5
The residual satisfies
7= Kpg(te —1) (5.6)

The contact forces can then be calculated by establishing the relationship between
external forces and the torques resulting from these forces.

5.1 Method for Estimation of External Forces 63

Starting with the definition of power P = % = FTV. For external forces acting

on the end-effector we have
P.=Fl'y, (5.7)

where F; is the wrench of forces and torques acting on the end-effector frame
and V; is the end-effector twist. This same quantity can be calculated from the
actuator torques resulting from the external wrench 7. and the joint-velocities.

P =T1.q (5.8)

From this we find the relationship between the contact forces and the resulting
joint-torques.

Tl g = FI'V (5.9)
' q=FJ(q)q (5.10)
Te=J (@) F; (5.11)

Where J(q) is the manipulator Jacobian defining the mapping V = J(q)q. Using
Equation (5.11) the external forces can be estimated from the residual calculated
in Equation (5.5) as

Fy=JY(q)'r (5.12)

Where JT(qT) is the pseudo inverse of the manipulator Jacobian, for an n x m
Jacobian matrix. If the Jacobian matrix is n x n it is invertable.

Chapter 6

System Description

The realized robot system integrates automatic motion planning, 3D computer
vision and external force estimation. The system is a continuation of the work in
[46], and comprises several hardware and software components. The implementa-
tion of, and the interaction between these components are described within this
chapter.

6.1 Hardware
6.1.1 ABB YuMi

The robot used in this thesis is the collaborative, dual-arm industrial robot IRB
14000 YuMi, introduced by ABB in 2015 [1]. It was designed for assembly opera-
tions in manufacturing, specifically to meet the production needs of the consumer
electronics industry [71]. Being a collaborative robot, YuMi is designed to operate
safely alongside humans. YuMi’s arms are therefore lightweight and padded, and
the robot controller can stop the motors upon detected collision. The arms are
equipped with seven revolute joints, providing seven degrees of freedom to each
arm. This allows YuMi to maintain a larger workspace and reach more diverse
poses than a traditional 6-axis industrial robot. Due to its low weight and ta-
ble mountings, YuMi can be easily moved and redeployed. YuMi can be seen in
Figure 6.1.

66 Chapter 6 System Description

Figure 6.1: YuMi front facing.

YuMi is fast and precise. Measured at the Tool Center Point (TCP), with no
eternal loads, it is capable of Cartesian velocities of 1.5 m/s and a Cartesian
acceleration of 11 m/s? while maintaining positional repeatability of 0.02 mm [71].
Being designed for assembly of consumer electronics, it has got a low payload of
0.5 kg. The arms have overlapping workspaces, meaning there is a volume in the
workspace where both arms can reach the desired pose, giving YuMi flexibility in
more complex, dual-arm manipulation tasks. A summary of properties from the
data sheet are given in Table 6.1. A front and side view of its workspace can be
seen in Figure 6.2.

Property Value

Degrees of freedom 7 per arm
Payload 0.5 kg

Reach 559 mm
Width, Length, height [mm] | 399 x 449 x 571
Weight 38 kg

Max TCP Velocity 1.5 m/s

Max TCP Acceleration 11 m/s?
Acceleration time 0-1 m/s 0.12s

Position repeatability 0.02 mm

Table 6.1: Properties of YuMi.

6.1 Hardware 67

1016

451

(a) Workspace, front view. (b) Workspace, side view.

Figure 6.2: YuMi’s workspace. Figures from [71]

YuMi features an embedded robot controller, a FlexPedant control tablet and
two Smart Grippers. The embedded controller is based on ABB’s IRC5 robot
controller and contains all the electronics required to control and drive the robot.
The robot controller runs the RobotWare operating system. The robot controller
and RobotWare comprise a closed system where the user has restricted access
to the lower layers of the system. The embedded controller has two modes of
operation: Manual mode and Automatic mode. In manual mode, the operator
controls the robot via the FlexPendant. The operator can manually jog the robot’s
arm, manually grip and jog the grippers and perform other operations available
through the FlexPendant. Programs loaded to the controller can be stepped
through but not run normally. TCP speed is limited in manual mode to 250
mm/s [48]. Automatic mode allows programs to control the robot.

The FlexPendant is a hand-held control tablet that can control many of the func-
tions involved with operating the robot system. The FlexPendant is connected to
the robot controller via a wired connection and is equipped with a touch-screen,
tactile buttons, an emergency stop button and a multi-directional joystick. The
FlexPendant is a separate computer from the robot controller. The underlying
OS of the FlexPendant is Windows CE, Microsoft’s operating system for embed-
ded devices [23]. A Graphical User Interface (GUI) runs on top of Windows CE
and is the environment the user interacts with. The FlexPendant is particularly
useful for starting and stopping program execution, debugging, monitoring of pro-
gram execution, and jogging of the robot. Error messages are displayed on the
screen in addition to log messages informing the user of events in the system. The
FlexPendant can bee seen in Figure 6.3.

68 Chapter 6 System Description

Figure 6.3: The FlexPendant.

The Smart Gripper is a multi-functional gripper specifically made for assembly
and part handling. The gripper has a servo module and can optionally be equipped
with a vision module and up to two vacuum modules. The vacuum modules
are located on either side of the gripper and the vision module is located inside
the palm. The maximum gripping force is 20 N, the combined maximum travel
distance of the fingers is 50 mm and the maximum speed is 25 mm/s. The YuMi
used in this work has two Smart Grippers. The right gripper is equipped with
the vision module and the left with a top-mounted vacuum module. The Smart
Gripper is depicted in Figure 6.1 and Figure 6.4.

(a) Side view. (b) Top view.

Figure 6.4: CAD drawing of a smart gripper equipped with the vision module
and two suction modules.

Programming of ABB robots is done in the RAPID programming language, ABB’s
in-house developed programming language. RAPID programs consist of program
modules and system modules. Program modules use the .mod extension and con-
tain the executable code. System modules use the .sys extension and are used

6.1 Hardware 69

to define common data and routines, functioning similar to libraries. Program
and system modules are organized into tasks. A task represents an application
on the robot. Tasks can be linked to a mechanical unit group, which is a sys-
tem parameter representing a mechanical device managed by the robot controller,
typically an arm. While multiple tasks can be run in parallel, only one task is al-
lowed motion control privileges for each mechanical unit group. RAPID programs
can be written in the RobotStudio Integrated Development Environment (IDE).
RobotStudio provides an environment for modeling, simulation, offline and online
programming of ABB robots and robot cells. When programming offline, code
can be tested on a simulated robot running on a virtual controller in a simulated
environment.

6.1.2 Zivid One Structured Light 3D Camera

The Zivid One structured light 3D camera used in this work, facilitates rapid
capture of accurate 3D point cloud data from a scene, as well as high resolution
color images. The specified accuracy of the camera is 0.1 mm at a distance of
0.6 m, and the maximum acquisition frequency is 10 Hz. The camera has a wide
array of settings which can be tuned in order to capture 3D data with low levels of
noise under varying lighting conditions. In addition, the settings can be adjusted
for difficult objects, such as very dark low texture objects, or shiny objects. This
makes it suited for object detection and pose estimation tasks related to robotic
bin picking in industrial settings.

The Zivid camera can be controlled using the Zivid SDK [7] which contains the
core API used to implement camera functionality in our system. In addition to the
API, the desktop application Zivid Studio is a useful tool for quick troubleshooting
and calibration of the camera settings for optimal image acquisition.

Figure 6.5: Zivid One 3D camera

70 Chapter 6 System Description

6.2 External Computer

The robot is controlled from an external desktop computer. The specifications
are listed in Table 6.2.

Component | Type

RAM 16 GB DDR3 @ 1600 Mhz
CPU Intel Core i7-4790K @ 4.00GHz
GPU Nvidia GTX 780 Ti

0S Ubuntu 18.04.4 LTS

Table 6.2: External computer specifications.

6.3 Software

6.3.1 External Control Interfaces of YuMi

ABB robots can be controlled through two external control interfaces, Robot
Web Services (RWS) and Externally Guided Motion (EGM). RWS is a networked
API that leverage the Hypertext Transfer Protocol (HTTP) to control aspects
of a IRC5 robot controller [56]. The networked API is RESTful, meaning the
API follow the Representational State Transfer (REST) specification. This places
requirements on the resources to be directly accessible via an URI and for com-
munication to be stateless [22]. A robot web service is defined by a resource URI
and one of the REST-approved HTTP verbs defining the action to be performed
on the resource. Responses are delivered in either the JSON or XML format.
RWS enables control of aspects of the robot that normally would require physical
access to the robot, for instance starting program execution, changing parameters,
inspecting system info or stopping motors. RWS does not provide means for high
frequency communication. The use of RWS require the robot controller to be in
auto mode.

EGM is a low-latency, high-frequency motion control interface available for Robot-
Ware through an additional licence [6]. When activated, RAPID instructions for
setup and control will become available to the user, and a set of system set-
tings will be installed. EGM offers two modes of operation, Position Guidance
and Path Correction. Position Guidance provides a low-level interface to the
robot controller, allowing robot motion to be controlled from an external device.
Position guidance opens an interface directly to the motor reference generator,
allowing an external device to issue motion references and control the robot in
real-time. By issuing references directly to the low-level motion system, bypassing
the internal path planner, reading and writing positions to the motion system can

6.3 Software 71

be done every 4 ms, with a control lag of 10-20 ms depending on the robot type.
This is the lowest latency method for external motion control supported by ABB
robot controllers. EGM Position Guidance can be used with joint references in
joint mode and pose references in pose mode. Joint mode is supported by all
ABB manipulators, while pose mode is only supported for 6-axis manipulators,
and therefore unavailable to YuMi. Path Correction provides means to produce
path adjustments to a preprogrammed path from data obtained from an external
sensor. A corrected path is constructed from the correction data, and the robot
is moved according to the adjusted path.

Using EGM Position Guidance, an external device transmits motion references to
the robot controller and receives joint state feedback in the form of joint position
and velocity, at a rate of 250 hz. Motion references and joint state feedback are
transmitted by UDP transport in accordance to the EGM Sensor Protocol, an
ABB developed application protocol designed for high-speed communication with
minimal overhead. The protocol utilizes Google Protocol Buffers (Protobuf) for
efficient serialization and deserialization of the messages. The structure of mes-
sages transmitted using protobuf are defined in proto definition files. The proto
definition file is compiled by the protobuf compiler, generating code for serializa-
tion and deserialization of the message type. Both communication participants
require this code. The Protobuf serialization procedure converts messages to a
binary format. The EGM Sensor protocol features no built-in synchronization of
requests and responses or handling of lost messages.

The external device and the robot controller operate in a server-client relationship.
The external device launches an EGM server which must be available to the
EGM client before a connection can be made. Via a RAPID command, the robot
controller creates a client which connects to an EGM server located at a predefined
IP address. After a connection has been established, the EGM client transmits
information about the current joint states to the EGM server every 4 ms. The
EGM server sends commands asynchronously to the client, which are executed by
the motion control system. The data flow when using Position guidance is shown
in Figure 6.6.

72 Chapter 6 System Description

Check for)
Send new Tefidrr:relce
motion reference
External Device reference G EGM Motion Control
e

_/ feeback

Send
feedback

Figure 6.6: Data flow of EGM Position Guidance.

The EGM control system executes the desired motion by issuing joint speed com-
mands to the motor control system. The control loop is based the following
relation between speed and position [6, p. 343]

speed = k * (pos_ref - pos) + speed_ ref (6.1)

speed denotes the commanded speed sent to the motion control system from EGM.
speed__ref denotes a reference speed fed forward in the control system. Likewise,
pos_ ref denotes a fed forward, reference position. pos denotes the desired position
received from the external computer. The position gain factor k is composed of
two configurable constants that are modifiable by the user.

k = PCG *PPG (6.2)

EGM controller

Commanded speed Mation Control
System

LP fitter

Mation reference

External Device

__

Figure 6.7: Simplified EGM control loop.

As shown in Equation (6.1), the Position Guidance control system controls the
joint speed. However, both joint position and joint speed commands may be is-
sued from the external device to induce motion via EGM Position Guidance. PPG

6.3 Software 73

denotes the proportional position gain constant specified in the system configura-
tion of the robot controller, and cannot be altered at runtime. PCG denotes the
Proportional Correction Gain RAPID parameter. PCG can be changed at run-
time using RAPID instructions and can be used to tune the k-factor by adjusting
how much of the proportional position gain is to be used. PCG can be set to 0
to control the joint velocities directly from the external device. Low pass filtering
can be applied if the motion references are based on noisy sensor data. Using
EGM Position Guidance, the responsibility of generating smooth trajectories are
transferred to the user. The path planner is bypassed by EGM, meaning the ma-
nipulator’s path is created directly from user input. The robot will react quickly
to all position references sent to the controller, also faulty ones.

6.3.2 ROS 2 Robot Control Architecture

A ROS 2 robot control architecture to control YuMi from an external computer
has been developed. The developed architecture is made up of tasks running
on the robot controller, and a larger ROS 2 architecture on an external com-
puter. Communication between YuMi and the external computer is done using
EGM and RWS. The external computer and the robot are connected to the same
LAN. Maintaining an open EGM connection requires that a RAPID program is
continuously running an EGM client on the robot controller. To this end, the
StateMachine RobotWare Add-In [62] has been deployed on the robot controller.
The StateMachine Add-In provides a state machine implementation in RAPID
code and is intended to be used with external devices using RWS, and option-
ally with EGM. The Add-In installs RAPID modules and system files, connects
modules to tasks and mechanical unit groups, adds a set of I/O signals, and loads
configurations to the system. A state machine can only manage one mechanical
unit group, thus for YuMi, two instances of the state machine are loaded.

The state machine implemented in RAPID code is a finite-state machine. There
are four possible states: "Initialize", "Idle", "Run EGM motion" and "Run RAPID
routine". Transitions between the states are interrupt driven. Transitions between
states can be invoked from the external computer, allowing the state machine to
be externally controlled. A diagram showing the states and some state transitions
is depicted in Figure 6.8.

74 Chapter 6 System Description

Start RAPID motion task
{with program pointer at main process)

Initialization fimished

«F"ﬁd‘ T8
Start EGM Start RAFLD
meaticn routing

o ’

wh
2%

7
EGM motion RAPID routine
finished fimishad
P

-—

#

#
EGM miotion
running
v
Y

_‘-

-

i
Mon-bocking
RAPID rowutine
runmning

,

[

RAPID routine
running

r
Start
non-blecking
-RJEPID routing

Figure 6.8: Diagram showing state machine sates and transitions. Figure from
[66].

The state machine installed by the Add-In is made up of five RAPID modules:
TRobMain, TRobEGM, TRobRAPID, TRobSG and TRobUtility. Additionally
a optional watchdog module, TRobWatchdog is loaded. The modules are loaded
into one task, which is then coupled to one mechanical unit group. The installa-
tion installs the modules needed by the system. If the robot controller does not
have EGM enabled, or does not include smart grippers, their respective modules
TRobEGM and TRobSG will not be installed. The modules are listed in Table 6.3.

Module Contains

TRobMain The program itself. Includes the "'main()".

TRobEGM Functions and variables related to EGM motion state.
TRobRAPID Functions and variables related to RAPID routine state.
TRobSG Functions and variables related to Smart Gripper operation.
TRobUtility Commonly used functionalities and helper functions.
TRobWatchdog | Watchdog supervising the system.

Table 6.3: RAPID modules of the state machine.

6.3 Software 75

In the "Initialize" state the modules of the state machine are initialized. The state
is automatically entered as the main RAPID script is executed. After leaving this
state, the state machine can never return to this state. The "Idle" state is the base
operational mode entered when the state machine is successfully initialized. In
this state, the TRobMain module executes an infinite loop. Available transitions
from this state are "Start EGM motion" and "Start RAPID routine". The Idle
state is the only state directly reachable from all states.

In the "Run RAPID Routine" state, the state machine can execute predefined
RAPID routines loaded to the robot controller. Together with the I/O signal to
trigger the transition to the state, the name of the rapid routine must be provided
by the external device. Runtime-configurations for the RAPID routine can be
set in a similar fashion. RAPID routines can be executed both in a blocking
and asynchronous manner. When finished, the state machine returns to "Idle"
automatically.

In the "Run EGM Motion" state, the state machine starts an EGM client and
opens an EGM channel to the EGM server. Upon successful connection, received
motion references are executed. If no commands are received between the time
of connection and a defined time limit, the state machine will stop, and return to
the "Idle" state. The "Run EGM Motion" state can be exited by an I/O signal
triggering an EGM stop signal. As two state machines are needed for YuMi, two

EGM clients are constructed on the robot controller each connecting to separate
EGM servers.

Additional functionality is defined in "TRobSG" and "TRobUtility". "TRobSG"
provides routines for operation of the smart grippers, such as calibration, jogging,
gripping, and suction control. "TRobUtilities" contains commonly used utilities.

The ROS 2 robot control architecture is composed of seven modules: AbbEgmHard-
ware, YumiRobotManager, SgControl, JointStateController, JointTrajectoryCon-
troller, ParameterServer and GlobalJointStates. Owing to the need for two EGM
servers, and to avoid left- and right-specific classes, the architecture is split into
three ROS 2 namespaces. A namespace for the left arm, a namespace for the right
and a global namespace for arm-agnostic modules. Both the left arm and right
arm namespace contain an instance of AbbEgmHardware, SgControl, Parame-
terServer, JointStateController and JointTrajectoryController. The YumiRobot-
Manager and GlobalJointStates modules exist in the global namespace. All mod-
ules in the left arm namespace "/1" are exclusively involved with the left arm and
its resources, likewise in the right arm namespace "/r". The modules located in
the global namespace are not associated with a specific arm. The separation of
modules into the namespaces can bee seen in Figure 6.9.

76 Chapter 6 System Description

h
i Left arm namespace: /| H i Right arm namespace: /I
H H

AbbEgmHardware JointStateController AbbEgmHardware JointStateController

JointTrajectoryController JointTrajectoryController

| |
ParameterServer SgControl ‘ ParameterServer
|

Globals

SgControl ‘
|

YumiRobotManager GlobalJoint States

Figure 6.9: Figure showing the separation of modules into ROS 2 namespaces.

AbbEgmHardware

A central concept in ROS and ROS 2 is hardware abstraction. In the devel-
oped architecture, hardware abstraction is provided through the AbbEgmHardare
class. AbbEgmHardware hosts a EGM server transmitting motion commands to
an EGM client on YuMi. The component must be able to receive robot states
and transmit motion commands in a low-latency and reliable manner. In or-
der to achieve this, the component is built into the ROS 2 control framework,
ros2_control [57]. ros2_control provides a framework for hardware abstrac-
tion, allows for implementation of robot-agnostic controllers, and provides capabil-
ities to manage robot controllers with emphasis on real-time performance. Specif-
ically, ros2_control is a collection of C++ ROS 2 packages containing robot-
agnostic base classes with standardized interfaces. From these, robot-specific
hardware interfaces can be derived and robot agnostic robot controllers can be in-
tegrated. Additionally, robot controllers can be developed once and implemented
on different hardware.

The three main components in the framework are the two abstract classes RobotH-
ardware and ControllerInterface, and the controller manager. Data is shared
within the ros2_control framework using three custom "handle" data types:

JointStateHandle, JointCommandHandle and OperationModeHandle. The han-
dle data type facilitates efficient, copy-free data transfer. JointStateHandle con-
tains pointers to the read data of a single joint, containing fields for joint position,
joint velocity and joint torque. JointCommandHandle contains a pointer to the
command to be issued to a joint. OperationModeHandle contains a pointer to

6.3 Software 77

the operation mode of the joint, allowing specification of read and write privi-
leges to specific joints. The handles, and the data they point to, reside within
the robot-specific hardware interface, which must be derived from the abstract
RobotHardware class. RobotHardware provides a common interface towards all
hardware interfaces. It contains pointers to the handles and methods for interact-
ing with the handle-pointers. The methods form the interface which controllers
are expecting to interact with, and are the key-enabler for robot-agnostic con-
trollers. A UML diagram of the RobotHardware class can be seen in Figure 6.10.

RobotHardware
- registered_joint_state handles_ . vector<const JointStateHandle*>
- registered_joint_command_handles_ : vector<JointCommandHandle*>
- registered_operation_mode_handles_ : vector<OperationModeHandle*>
+ register_joint_state_handle(joint_handle : JointStateHandle*) : hardware interface ret t
+ register_joint_command_handle(joint_handle : JointCommandHandle*) : hardware_interface_ret_t
+ register_operation_mode_handle(operation_mode : OperationModeHandle*) : hardware_interface_ret_t
+ get_joint state handle(name : string, joint state handle : JointStateHandle**) . hardware_interface ret t
+ get_joint_command_handle(name : string, joint_command_handle : JointCommandHandle**) 1 hardware_interface_ret_t
+ get_operation_mode_handle_handle(name : string, operation_mode_handle : OperationModeHandle**) : hardware_interface ret_t
+ get_registered joint_names() : vector<string>
+ get_registered_write_op_names() : vector<string>
+ get_registered joint state_ handles() : vector<const JointStateHandle*>
+ get_registered_joint_command_handles() : vector<JointCommandHandle*>
+ get_registered operation mode handles() : vector<OperationModeHandle*>

Figure 6.10: UML class diagram of the abstract RobotHardware class.

The derived robot specific hardware interface contains hardware-specific methods
for communicating with the hardware, wrapped in a simple init(), read() and
write() APIL. AbbEgmHardware is the developed robot-specific hardware inter-
face. It is designed to be the interface to a single arm, meaning two instances
are required to control both arms. The EGM communication is implemented
using the open-source abb_libegm [2] C++ library, developed and maintained
by ABB. It provides all the necessary resources to set up an EGM server and
communicate with an EGM client. AbbEgmHardware uses the high-level API
EGMControllerInterface available through abb_libegm. EGMControllerInterface
provides methods for launching an EGM server, establishing connection with an
EGM client, reading of robot state and transmission of commands.

The class is arm-agnostic. It represents a specific arm by loading arm-specific
parameters from the namespaced ParameterServer. The ParameterServer loads
a configuration file containing the arm-specific parameters and offers the param-
eters through services. Interaction with the ParameterServer is only performed
at startup, in the init () method. After the required information about the arm
is retrieved from the ParameterServer, the method constructs the EGM server
and handles, registers pointers to these in RobotHardware, and awaits a connec-
tion from an EGM client. The init () function call is blocking until a successful
connection between the EGM client and the EGM server has been made.

78 Chapter 6 System Description

AbbEgmHardware’s read () method waits until a message from the EGM client
is received or a timeout limit is reached. If a message is received within the
timeout limit, using EGMControllerInterface’s read() method, the state is read
into a abb_libegm input-container residing in the class. The contents are then
deserialized in accordance with the EGM Sensor Protocol and written into the
registered joint state handles. AbbEgmHardware’s write() method copies the
contents of the joint command handles to a abb_libegm output-container, whose
contents are serialized in accordance to the EGM Sensor Protocol and sent to the
EGM client using EGMControllerInterface’s write () method. A simplified UML
diagram of AbbEgmHardware is depicted in Figure 6.11.

RobotHardware
T J

AbbEgmHardware
- joint_state_handles_ : vector<JointStateHandle>
- joint_command_handles : vector<lointCommandHandle>
- read_op_handles_ : vector<OperationModeHandle>
- write_op_handles_ : vector<OperationModeHandle>
- state_ 1 abb::wrapper::egm::Input
- command_ : abb::wrappper::egm::Output
- egm_interface : EGMControllerInterface?*
- node_ : rclcpp::Node* EGMCaontrollerinterface
+ init() : hardware_interface_ret + waitForMessage(timeout_ms : int) : bool
+ read() : hardware_interface_ret + read(p_inputs : Input*) : void
+ write() : hardware_interface_ret + write(outputs : Output&) ¢ void

Figure 6.11: Simplified UML diagram of the AbbEgmHardware class.

Controllers used within the ros2_control framework must inherit from the Con-
trollerInterface class. ControllerInterface provides a standardized interface to-
wards controllers. The ControllerInterface class is derived from the LifecycleN-
odelnterface base class, allowing it’s lifecycle to be managed similar to a Lifecy-
cleNode. Setup and initialization is split into on_configure () and on_activate ()
methods. By having all controllers in this format, a single entity can manage all
controllers simultaneously. This is handled by the ControllerManager. The Con-
trollerManager is given a pointer to the hardware interface in it’s constructor.
After construction, the ControllerManager has four responsibilities: loading, con-
figuring, and activating the controllers, and applying the update () method in the
control loop. The update () method applies the controllers’ update law and com-
putes the commands to be issued. The ControllerManager calls update () for all
activated controllers. Thus it enables the use multiple controllers in conjunction.
The ControllerManager can at any moment deactivate or activate controllers,

6.3 Software 79

allowing controllers to be hot-swapped during runtime.

AbbEgmHardware, the ControllerManager and the controllers are run in the same
executable. The executable runs a control loop at 250 hz. In each iteration, the
current robot joint states are read and joint commands calculated and transmit-
ted to the EGM client. A simplified version of this executable can be seen in
Listing 6.1.

int main(){

robot = AbbEgmHardware ();
robot.init ();

ControllerManager controller_ manager(&AbbEgmHardware) ;
xx Controllers are loaded, configured and activated xx

// The control loop.

while (rclepp::ok()){
robot.read ();
controller_manager .update ();
robot . write ();

}

xx Teardown . x x
return 0;

}

Listing 6.1: Simplified implementation of the control loop executable.

JointStateController and JointTrajectoryController

Two controllers are implemented. The purpose of the JointStateController is to
publish read joint states. In it’s update() method, it reads the JointStateHan-
dles and generates a JointState message which is published on a namespaced
/joint_states topic.

JointTrajectoryController provides the commands to be issued to the robot. The
controller subscribes to a /joint_trajectory_controller/joint_trajectory
topic within its namespace. On this topic it receives JointTrajectory messages
containing a vector of the joint names and a vector of waypoints specifying joint
position, joint velocity and joint acceleration of the joints, at specific timestamps.

When it’s update () method is called, the controller finds the next waypoint in
the trajectory. When a new waypoint in the trajectory is reached, the JointCom-
mandHandle of the hardware interface is updated with the joint position specified

80 Chapter 6 System Description

in the waypoint. The update law of the JointTrajectoryController can thus be said
to be a timestamp-managed joint position control. In addition, two more features
are introduced. The first feature is the ability for a external ROS 2 node to stop
the execution of a trajectory and to remove it from the controller. The feature
is topic-activated, where a subscriber in the controller listens for a Bool message
on a joint_trajectory_controller/arm_stop topic within the namespace. If a
message containing "true" is received, the execution of the trajectory is stopped.
A data flow diagram of the control loop for the right arm, showing the controllers
and their interactions with the hardware interface and their topics is depicted in
Figure 6.12.

L»{ topic: /rfjoint_states

i]
i [
] i
] i
| update() !
e ControllerManager '
i AbbEgmHardwars i
i update) i
L I [- - i
i EGMControllerinterface JointTrajectory Controller i
| ,
! i : ’
i . T—{ topic: /rfjoint_frajectory_controller/fjoint_trajectory | |
i i : !
i Class dats membears topic: /rfjoint_frajectory_controllerfarm_stop | |
i update) i
L i
i JointStateCantroller E
i i
] i
) i
| |
| |
] i

Figure 6.12: Data flow diagram of the complete ros2_control control loop.

YumiRobotManager and SgControl

YumiRobotManager is a module providing general robot-management function-
alities. SgControl is used to control a Smart Gripper. Both YumiRobotManager
and SgControl communicates with the robot controller through its RWS interface.
The RWS communication is implemented using the open-source abb_librws C++
library [3]. The library is developed and maintained by ABB, and contains im-
plementations facilitating use of RWS. abb_librws contains two high-level API
classes: RWSInterface and RWSStateMachinelnterface. RWSInterface provides
most of the RWS functionality through its methods. The methods abstract away
the details of the HT'TP-based communication wrapping them in convenient func-
tion calls. RWSStateMachinelnterface inherits from RWSInterface. It provides
methods for interaction with a state machine. It is aware of the state machine

6.3 Software 81

specific RAPID variables, routines and system configurations, and offers state
machine specific services like invoking state transitions.

During initialization the YumiRobotManager ensures that both state machines are
in the "Idle" state. Issuing of the "Start EGM Motion" state machine transition
signal is offered as a ROS 2 service. Furthermore, ROS 2 services for transition-
ing the state machine out of the "Run EGM motion" state and for checking if
state machine is currently in the "Idle" state is provided. A simplified UML class
diagram can bee seen in Figure 6.13.

YumiRobotManager
- node_ : rclcpp::Node*
- stop_egm_srv_ i rclcpp::iService*
- start_egm_srv_ : rclepp::Service*
- is_ready_srv_ 1 rclcpp::Service*
- stop_motors_srv : rclepp: Service*
- rws_state_machine_interface_ : RwSStateMachineInterface*
+ init()) : bool RWSStateMachinelnterface
+ start_state_machine() : bool
+ go_to_state() : bool
+ configure() i hool
+ stop_egm() : bool

Figure 6.13: Simplified UML diagram of the YumiRobotManager class.

SgControl is a class featuring methods for controlling a smart gripper. The control
of the Smart Gripper is offered to the rest of the ROS 2 system through an action
and topic interface. Gripping is offered with a grip action. Jogging of the gripper
is offered through a topic interface. SgControl subscribes to a /jog_gripper topic
within the namespace. The topic contains information about the desired position
of the gripper. The current gripper position is published to a /gripper_pos topic
within the namespace. SgControl controls the grippers using the RWSStateMa-
chinelnterface. A simplified UML class diagram of SgControl can bee seen in
Figure 6.14.

82 Chapter 6 System Description

SgControl
- node_ : rclcpp::Node*
- grip_action_server : rclepp_action::Server*
- jog_gripper_subscription_ : rclepp::Subscription*
- gripper_position_publisher_ : rclcpp::Publisher*
- rws_state_machine_interface_ : RWSStateMachineInterface*
£ () s 8 L RWSStateMachineinterface
+ publish_gripper_position() : void
- grip_in() 1 bool
- grip_out() 1 bool ’—
- jog_gripper(pos : float) ¢ void

Figure 6.14: Simplified UML diagram of the SgControl class.

The user-level API for utilizing the YumiRobotManager and SgControl modules
within ROS 2 is provided by two classes, RobotManagerClient and GripperClient.
The classes offer methods to use the functionalities provided by YumiRobotMan-
ager and SgControl respectively. A simplified UML diagram of RobotManager-
Client and GripperCient is depicted in Figure 6.15.

RobotManagerClient GripperClient

+ init() ¢ bool + init() : bool

+ start_egm() ¢ bool + grip_in() : void

+ stop_egm() : bool + grip_out() : void

+ robot_is ready() : bool + jog gripper(goal pos : double) : void

+ stop_motors() : bool noc
- - node_ : rclcpp: :Node*

- node_ : rclcpp::Node* - action_client_ : rclepp_action::Client*
o S U S

Figure 6.15: Simplified UML diagrams of the RobotManagerClient and Grip-
perClient classes.

Simulated Backend and Visualization

Offline robot programming allows new algorithms and applications to be tested
safely in a simulated environment. Offline robot programming can significantly
reduce the downtime caused by reconfiguration and reprogramming of industrial
robots. In the developed ROS robot control architecture, this is achieved by
robot visualization using Rviz2 [58] and a simulated backend. Rviz2 is commonly
used for robot visualization in ROS 2. Rviz2 loads a Universal Robot Description
Format (URDF) file detailing the kinematics and inertial properties of the robot
and STL 3D model representations the robot links. URDF is an XML-variant
used extensively in the ROS and ROS 2 ecosystems. Rviz2 can visualize the
robot state by subscribing to a topic reporting the joint state messages, but can

6.3 Software 83

also visualize point clouds from 3D cameras and other sensor data.

In the developed ROS 2 robot control architecture, rviz2 is configured to visualize
YuMi by listening on a global /joint_states topic. The topic is created by the
GlobalJointStates module, which subscribers to left and right arm joint states
and finger positions, and publishes a combined JointState message on the global
/joint_states topic. A screenshot of YuMi visualized in rviz2 can bee seen in
fig. 6.16.

Figure 6.16: Screenshot of YuMi visualized in Rviz2.

A simulated backend has been developed to facilitate offline programming. The
backend is organized in the same manner as the architecture for controlling the
physical robot. When simulated, AbbEgmHardware writes its commands directly
into the read-state container. YumiRobotManager offer the same services simu-
lating the hardware response. SgControl simulate gripping and jogging function-
alities. For the ROS 2 application, using the interfaces, the simulated backend
cannot be differentiated from the normal architecture.

84 Chapter 6 System Description

6.3.3 Motion Planning System

This section will present the developed motion planning system built using Movelt
2 Beta release. The motion planning system features an implementation of the
OMPL-based Movelt 2 motion planning pipeline outlined in Section 4.5.1 and
the linear Cartesian Movelt 2 motion planning pipeline outlined in Section 4.5.2.
The motion planning system is integrated with developed ROS 2 robot control
architecture presented in Section 6.3.2. Together these provide a unified robot
control user interface.

The motion planning system is comprised of three classes: Moveit2Wrapper,
ObjectManager and MotionCoordinator. Moveit2Wrapper is the robot-centric
Movelt 2 interface, containing the implementations of the OMPL-based and lin-
ear Cartesian Movelt 2 motion planning pipelines. ObjectManager manages ob-
jects in the planning scene and offers methods to manipulate these using Movelt
2 interfaces. MotionCoordinator provides a high-level user API combining the
functionalities of Moveit2Wrapper and ObjectManager to provide more complex
task specific functionality. This API is used to develop applications utilizing the
ROS 2 robot control architecture.

Moveit2Wrapper

Moveit2Wrapper wraps the moveit_cpp API and other interfaces of Moveilt 2 in
order to a create robot-centric API towards the Movelt 2 motion planning frame-
work. It provides capabilities to plan and command motions, poll information
about the robot state and manage collision avoidance for the robot. It is initial-
ized through a init() function call, during which a planning scene containing
the robot’s static environment is launched. The modelled environment makes the
system aware of static obstacles within the robot workspace.

Moveit2Wrapper can be configured to be used with any robot prepared for con-
trol through the Movelt 2 framework. Planning and motion are initiated and
commanded using the PlanningComponent component of Movelt 2 and an asso-
ciated JointTrajectoryPublisher. A PlanningComponent is a planning unit rep-
resenting a joint group, for instance an arm, and the JointTrajectoryPublisher
is responsible for publishing the found solution. The published solution is exe-
cuted by the JointTrajectoryController. PlanningComponentInfo is a structure
defined in Moveit2Wrapper used to encapsulate a PlanningComponent and the
associated JointTrajectoryPublisher. Additionally, to further streamline the in-
teractions with the Movelt 2 framework, other PlanningComponent information
is also included. All PlanningComponents to be controlled are registered in a
hash table using the associated name as key. A simplified UML class diagram of
Moveit2Wrapper and PlanningComponentInfo can be seen in Figure 6.17.

6.3 Software 85

Moveit2Wrapper
- node_ : rclepp::Node
- moveit_cpp : moveit::planning_interface: :MoveitCpp*
- robot_state_publisher_ : rclepp::Publisher*
- planning_components_hash_ : unordered map<string, PlanningCompenentInfo>
+ init() : bool
+ pose_to_pose_motion(...) : bool
+ cartesian_pose_to_pose_motion(...) : bool
+ state to state motion(...) : bool
+ dual_arm_state_to_state_motion(...) : bool
+ launch_planning_scene() : void
+ pose_reached(...) : bool
+ state_reached(...) : bool
+ pose_valid(...) : bool
+ get_current_state(planning_component : string) : wvecter<double>
+ find_pose(link_name : string) : vector<double>
+ disable_collisien(...) : void
+ gripper_closed(planning_component : string) : bool
+ gripper_open(planning_component : string) : bool
+ gripper_pos(planning_component : string) : double
+ get_planning components_hash() : unordered_map<string, PlanningComponentInfo>*
+ get_planning_interface() : moveit::planning_interface::MoveitCpp*

PlanningComponentinfo
+ planning_component : moveit::planning_interface: :PlanningComponent*
+ joint_group : moveit::core::JointModelGroup*
+ secondary_joint_groups : unordered_map<string, moveit::core::JointModelGroup*>
+ trajectory publisher : rclepp::Publisher*
+ stop_signal_publisher : rclcpp::Publisher*
+ in_motion : bool
+ should_replan : bool
+ num_joints :uint
+ ee_link i string
+ ee joint : string
+ joint_names ! vector<string>
+ home_configuration ¢ vector<double>

Figure 6.17: Simplified UML diagram of the Moveit2Wrapper class.

The most important functionalities offered by Moveit2Wrapper are the motion
methods implementing the OMPL-based and linear Cartesian Movelt 2 motion
planning pipelines outlined in Section 4.5.1 and Section 4.5.2. Moveit2Wrapper of-
fers three motion methods applying the OMPL-based pipeline to plan and execute
motion: state_to_state_motion(), pose_to_pose_motion() and the YuMi-
specific dual_arm_state_to_state_motion(). state_to_state_motion() and
pose_to_pose_motion() differ only on how the goal is defined, and implements
the same OMPL-based motion planning pipeline. Initially, the goal is defined
using a Constraint message, where either a state or a pose is imposed as the con-
straint for the goal. Next, it attempts to plan a trajectory to the constrained
goal. If unsuccessful a set number of retries are allowed. If desired, and no other
PlanningComponent is in motion, the planned motion can be visualized before
execution. Finally the found trajectory is published using the JointTrajectory-
Publisher associated with the PlanningComponent. The planned motion can be
executed asynchronously or in a blocking manner. When called in a blocking
manner the methods will not return until the commanded motion is complete.
When called asynchronously the methods returns after the trajectory is pub-

86 Chapter 6 System Description

lished. While specifically written for the ABB YuMi, the dual-arm method follow
the same steps. The execution flow is illustrated in Figure 6.18.

e ™ Input:
I: Method called :I - Goal given by vector containing a pose or state.

- Parameters for the requested motion.
A A

- Parameters for execution of the method
Goal specified for the

FlanningCmponent

—

Flanning paramters
defined for the
planning request

Attempt to plan a MotionPlanningRequest internallyconstructed
motion to the goal from goal and planning parameters

Attempt to plan a
mation to the goal

Flanning succesfull?

Another
planning compaonent
in motion?

Should visualize

V /7
planned motion? Allowed to retry

Flanning succesfull?

Return false

IMation is visualized Trajectory published

Block until goal
considered
reached

Blocking call?

I"I0¢

Return true

Figure 6.18: Flow chart of the execution flow of an OMPL-based motion method.

6.3 Software 87

The linear Cartesian motion planning pipeline is implemented in the
cartesian_pose_to_pose_motion() method. It takes a goal pose as input to-
gether with parameters defining the maximum allowed step size between way-
points in the the Cartesian path, and the maximum allowed step size in the
configuration space during computation. When a path has been interpolated,
a series of checks are applied. Initially, a check is performed to verify that the
found path reaches the goal pose. If passed, the linearity of the path is assessed.
If sufficiently linear, the path is collision checked. If deemed collision-free, the
path is time-parameterized using the addlterativeSplineParameterization plan-
ning adapter. If desired, and no other planning component is in motion, the
planned motion can be visualized before execution. Finally, the found trajectory
is published using the JointTrajectoryPublisher associated with the Planning-
Component. Similar to the OMPL-based motion methods, the planned motion
can be executed asynchronously or in a blocking manner. The execution flow is
illustrated in Figure 6.19.

88 Chapter 6 System Description

s ™ Input:

(\ - Pose vector.

I_ MEhodalkn _al - Parameters for the requested motion.
___ v - Parameters for execution of the method

Pose vector
converted to global
transform

Attempt to interpolate
a straight line path to
global transform

Path reaches

pose? — Return false

Path satisfies
required lingarity?

yes

Is path in collision?

Time-parameterize

no Another
planning component

in motion?

Should visualize
planned motion?

Maotion is visualized Trajectory published

Block until goal
considerad
reached

Blocking call?

no¢

Return true

Figure 6.19: Flow chart of the execution flow of a linear Cartesian motion
method.

6.3 Software 89

ObjectManager

ObjectManager is the object-centric interface to the Movelt 2 framework. It
provides capabilities to load and add 3D models as meshes to the planning scene,
keeps an updated registry of the objects in the scene and offers methods to manage
the objects and modify their properties. The object registry consists of three hash
tables: a hash table of registered meshes and their info, a hash table of registered
solid primitives and their info and an object info lookup table. The mesh register
uses a string containing the identifier of the object as key, and stores a MeshData
data type containing the identifier and the extents of the mesh. The solid primitive
register likewise uses a string containing the identifier of the object as key, and
stores a SolidPrimitiveData data type containing the identifier, the dimensions
of the solid primitive and the type of solid primitive. The object info lookup
table uses a string containing the identifier of the object as key, and stores a
ObjectData data type. An ObjectData contains the identifier, a bool indicating
if its a collision object, the object type, the last observed pose of the object.

When initialized, the class loads all STL 3D models found in the companion ROS
2 package "object_files" as meshes. The meshes are registered appropriately
in the registers, but not yet added to the planning scene. Adding objects to
the planning scene, removal of objects from the planning scene, displacement and
other manipulation of a registered object can be done through the API at runtime.
A simplified UML class diagram of ObjectManager is depicted in Figure 6.20.

ObjectManager
- moveit_cpp_ : moveit::planning_interface: :MoveitCpp* MeshData
- objects_hash : unordered map<string, ObjectData> @7 T 3 AT
- registered_solid_primitives_ : unordered_map<string, SolidPrimitiveData> o COECES § e D
- registered_meshs : unordered_map<string, MeshData>
+ dnit() : bool SolidPrimitiveData
+ activate() bool
+ find_object(object_id : string) vector<double> @7 +id : string
+ add object to scene(...) . void + dimensions : vector<double>
+ move_object(object_id : string, pose : vector<double>) void + type : SolidPrimitiveType
+ set_object_color(object_id : string, rgba : vector<float>) : void
+ remove_object from_scene(object id : string, update scene : bool) bool
+ attach_object(object_id : string, link : string) : void ObjectData
+ detatch_object(object_id : string) void
+ object_held(link : string) 1 string + id string
+ get_object_dimensions(object_id : string) : vector<double> @— + collision object : bool
- load_and_register_models(path_to_models_dir : string) : void + type : ObjectType
+ last_observed_pose : vector<double>
<<enumeration>> <<enumeration>>
ObjectType SolidPrimitiveType
SOLID _PRIMITIVE BOX
MESH SPHERE

CYLINDER
CONE

Figure 6.20: Simplified UML diagram of the ObjectManager class.

90 Chapter 6 System Description

MotionCoordinator

MotionCoordinator encompasses several modules reviewed so far. It contains an
instance of the RobotManagerClient, two instances of the GripperClient, an in-
stance of the KdlWrapper (will be presented in section 6.3.5), an instance of the
Moveit2Wrapper and an instance of the ObjectManager. MotionCoordinator uni-
fies robot control and motion planning in a high level API. This API is used
to access all robot system functionality required for task specific application de-
velopment. A simplified UML class diagram of MotionCoordinator is depicted
Figure 6.21.

MotionCoardinator
- node_ i rclcpp::Node*
- yumi_manager : rws_clients::RobotManagerclient* Moveit2Wrapper
- left_gripper_ : rws_clients::Gripperclient*
- right_gripper ¢ rws_clients::GripperClient* k
- moveit2_wrapper_ : moveit2_wrapper: :Moveit2wrapper*
- object_manager : moveit2 Wrapper::ObjectManager*
- kd1_Wrapper_ : Kdlwrapper*
05 ObjectManager
+ init() bool =
+ activate() : bool
+ terminate_egm_session() + void
+ move to_pose(...) : void
+ move_to_object(...) + void KdlWrapper
+ linear_move_to_pose(...) : void
+ linear_move_to_object(...) + void ‘F
+ move_to_state(...) : void
+ move_to_home(...) ¢ void
+ pick_object(...) :int —
+ place_at_object(...) ¢ dnt RobotMangerClient
+ stop(planning_component : string) : void
+ grab_object(object_id : string, planning_component : string) :@ void ‘F
CAITEES + drop_object(object_id : string, planning_component : string) : void
Error + add_object(...) i void
+ remove_object(object_id : string) : void
INVALID_POSE (TY + move_object(object_id : string, pose : vector<double>) : void GripperClient
LINEAR_PLAN_FAIL N Gbjsctiprasent{objos thidla s tring) : bool
GRIP_FAIL - equivalent_state(...) 1 vector<double>
PLANNING_SCENE_FAIL

Figure 6.21: Simplified UML diagram of the MotionCoordinator class.

During initialization of the MotionCoordinator instance, all interfaces and sys-
tem modules are initialized. During activation, the StartEgm service is called,
the planning scene containing the static robot environment is launched and the
ObjectManager instance activated.

MotionCoordinator utilize functionality offered in Moveit2Wrapper to plan and
execute motion. A planning goal can be defined as pose, a state or an ob-
ject registered in the ObjectManager. Different methods are invoked depend-
ing on the goal. If the goal is defined as a pose either the move_to_pose() or
linear_move_to_pose() method is used depending on the path requirements. If
the goal is defined as a state, the move_to_state () method is used. If the goal is
defined as an object, either the move_to_object () or linear_move_to_object ()
methods are used depending on the path requirements, to move to the object’s
pose.

6.3 Software 91

For nonlinear pose-to-pose and state-to-state motions, an initial test checking
if the registered end-effector of the planning component is already at the goal is
performed. When the goal is specified using a pose or a state, this is done directly.
When the goal is specified using a registered object, the planning scene is polled for
the object, and the registered end-effector of the planning component is checked
against a pose with a user-specified addition in the positive z-direction over the
object pose. If passed robot motion is initiated. Event-triggered replanning can
be activated for the motion. The event triggering replanning can for instance
be a change in the planning scene!. Replanning allows for a path to be altered
during motion execution. The execution flow is illustrated in Figure 6.22. A blue
star indicates where the pose of the object is polled when the goal is given as a
registered object.

Vd ™, Input:

' | - Goal given as pose, state or object.

\ Method called) - Parameters for the requested mofion.
___ ___,/ - Parameters for execution of the method

yes
Allready at

goal? Return

Replanning
desired?

Moveitl2Wrapper motion
method called

Moveit2Wrapper mofion
method called
asynchronously

yes yes

Should replan Goal reached? Return

no -~

stop

*

method called

Moveil2'\Wrapper motion ‘
asynchronously

Figure 6.22: Execution flow of a MotionCoordinator nonlinear pose-to-pose and
state-to-state motion.

!Can be seen in "event_ triggered_replanning demo.mp4" in the digital appendix.

92 Chapter 6 System Description

For linear pose-to-pose motion calling methods, two tests must be passed be-
fore cartesian_pose_to_pose() is called. The first test checks whether the
end-effector of the PlanningComponent is already at the goal. The second test
checks whether the goal pose is a valid pose to protect against impossible planning
queries. An example of a invalid pose can be a goal pose inherently in collision.
After the tests, cartesian_pose_to_pose() is called. If no solution was found,
and retries are permitted, the motion calling method enters a loop. In this loop,
two efforts are made for each retry to change the initial configuration of the Plan-
ningComponent to enable the Cartesian motion method to find a solution. The
first effort attempts to find an equivalent configuration which gives the same pose
of the end-effector as the initial configuration. This is done using a numerical
inverse kinematics solver within the KdlWrapper instance. The solver used is uti-
lizes the Newton-Raphson algorithm presented in Section 2.2.4. In each attempt,
to find a equivalent configuration, the inverse kinematic solver iterates through a
predefined list of seeds. The seeds can be randomly distributed, or more focused
in specific sections of the workspace. If an equivalent configuration is found, the
configuration is checked for validity. If deemed valid, the manipulator is moved
to the state, and the cartesian_pose_to_pose() motion method is called again.
If no equivalent configuration was found, the configuration was not deemed valid
or no solution was found by cartesian_pose_to_pose(), the second effort is
initiated.

The second effort, dubbed the fallback effort, is a heuristic approach which lever-
ages the stochasticity of the OMPL-based motion planing pipeline. The planner
used, RRT-Connect, plans in configuration space. If the goal is given as a pose, the
pose must be transformed to a configuration before planning. Movelt 2 Beta em-
ploys a numerical inverse kinematics solver using the current configuration of the
PlanningComponent as seed. Thus, the goal configuration is likely to be found to
be different for two different starting configurations. When also considering that
two poses close together in Cartesian space may be far apart in the configuration
space, it is likely that moving the end-effector to two random poses nearby the
original pose before returning to the original pose, may cause the manipulator to
be stationed in a different section of the configuration space. The fallback effort
employs this technique. If the fallback effort also is unable to find a solution, the
retries_left counter is decremented and the loop continues until a solution is
found or no more retries are allowed. The execution flow is illustrated in Fig-
ure 6.23. A blue star indicates where the pose of the object is polled when the
goal is given by an registered object.

6.3 Software

Ve ™ Input:

{ | - 3oal given as pose, state or object.

l_ LJEEd) F2d _al - Parameters for the requested motion.
AN / - Parameters for execution of the method

Allready at

goal? Return true

Valid pose? Return false

cartesian_pose_fo_pose_mofion|...)

Solution found? Retries left?

Return false

find equivalent state

Return true

Equivalent,
sufficiently different
state found?

State valid?

[Move to state]

!

cartesian_pose_fo_pose_motion(..) ‘

Solution found?

Return frue

Fallback

el e

h 4
[Find and move to random]

nearby pose

v

[Find and move to random

nearby pose

[Move back to original pose

v

[cartesian_pose_fo_pose_motion(..)

|

L e e e e e

no

Solution found?

Return true

93

Figure 6.23: Execution flow of a MotionCoordinator motion calling method for

linear motion in Cartesian space.

94 Chapter 6 System Description

6.3.4 Pose Estimation System

The pose estimation system consists of three ROS 2 modules: a Pose Estimation
module which is used for image processing and object detection, the Zivid ROS 2
module which is used to control the Zivid camera, and a Pose Estimation Manager
module serving mainly as a user level API while also being responsible for tasks
such as coordinate frame transformations and creation of feasible robot grasps
from object poses. The pose estimation system, while integrated into the robot
system at large, can be seen as completely separate from the robot control archi-
tecture. As such, it can be used for a number of object detection tasks serving
various purposes. A detailed description of each component comprising the pose
estimation system is provided in its own section. A diagram showing a general
overview of the system is depicted in Figure 6.24, and a diagram showing the data
flow between system components is depicted in Figure 6.25.

Pose Estimation

Manager

User Level API

Interfaces

v 1 v 1

{ Zivid ROS } Pose Estimation

ROS 2 Modules

External Software Packages

——— —— 1
- OpenCV Surface
[Zivid SDK } [MV Tec HALCON } { Match }

Figure 6.24: Overview of the main components in the pose estimation system,
as well as important external software packages used.

6.3 Software 95

ROS 2
ROS 2 Nodes
Service
Request
- publish
Jzivid_camera_container
£
Service
Response
Service Service
™ Request Request
» »
»
fpose_estimation_manager fzivid_parameter_server
< <
Service Service
A Response Response
Service
@ Request
= »
&
g [pose_estimation_coniainer
g <
Service]
Response @
=
=
@
o
=
publish @™
|
ROS 2 Topics |
v /_.___\r !
- |
lobject_pose points !
1
1
I
1

Figure 6.25: Data Flow between the components in the pose estimation system.

Pose Estimation ROS 2 Module

The pose estimation module is implemented using several C++ classes, princi-
pal of which is the PoseEstimation class. This class is derived from the ROS 2
LifecycleNode class, thus an instance of the PoseEstimation class is a LifecycleN-
ode. This is done to allow for the use of ROS 2 interfaces, as well as runtime
life cycle management. In addition to interfacing functionality, the PoseEstima-
tion class implements methods for preprocessing of point clouds, such as removal
of planes and filtering based on a region of interest. Pose estimation function-
ality is implemented in separate classes. The functionality of which is incor-
porated in the PoseEstimation class through instantiated members. Currently
object pose estimation using point pair feature matching is implemented with the
MVTec HALCON computer vision library [44] and OpenCV. The modular design
of PoseEstimation was chosen to allow for easy incorporation of additional pose

96 Chapter 6 System Description

estimation methods implemented in separate classes. Core functionality required
to prepare input to each of the pose estimation methods is kept at the top level.
The modular design and inter-class relationships can be seen in the UML class
diagram in Figure 6.26.

rclepp_lifecycle: :LifecycleNode

;

PoseEstimation

HalconSurfaceMatch

- chesshoard_pose_estimator_ : ChesshoardPoseEstimator - models_ : map<string, HObjectModel3D>
- cv_surface match : OpencvsurfaceMatch - surface_models : map<string, HSurfaceModel>
- halcon_surface_match_ 1 HalconSurfaceMatch - model_names_ 1 vector<string>

- use_halcon_match_ : bool - current_scene_ : HobjectModel3D

- num_planes_ toint - path_to_scene_ T ostring

- filter_pose_ vector<float> ’— - models_dir_path_ string

- filter_out : string - pose_estimation_log_ : fstream

- filter_radius_ float

- path_to_scene ¢ string P

- Xz xtiixarray e e i ool

- rgb_ 1 xtiixarray + find_object_in_scene(...)

- pose_estimation_success ¢ bool + update_current_scene(...)

- pnt_cld_recieved_ bool

- point_cloud_) relepp: :PointCloud2* OpenCVSurfaceMatch

- estimate_pose_service_ i rclepp::Service®

- init_cv_surface_match_service_ . rclcpp::Service* - models_ : map<string, cv::Mat>

- init_halcon_surface match_service_ : rclcpp::Service* - model_names. : vector<string>

- point_cloud_sub_ : rclepp::Subscription*

- models_dir_path_ string
‘— - detectors_ map<string, PPF3DDetector>

load_model(...)
load_models_from_dir(...)
train_models(...
find_object_in_scene(...)
get_trained_models()

on_configure(...)
on_activate(...)

on_deactivate(...)

on_cleanup(...)

on_shutdown(...)

remove_planes(...)

- filter_points(...)

- publish_pose(...)

- estimate_pose(...)

- estimate_pose_service_handler(...

- init_cv_surface_match_service handler(...)

[
ok

ChesshoardPoseEstimator

. init_halcon_surface match. service handier(...) - board_pose_ ¢ oxtiixarray

- point_cloud_sub_callback(...) - rgh_ i ocviiMat

- create_point_tensors(...) - xyz ©oXtiixarray

- create_surface_match_pc(...) - corner_array_ 1 Xt:ixarray
- feature_pnt_cld_ : Xt:ixarray
- found_corners_ : bool

+ estimate _pose(...)

+ extract_feature_pnt_cld(...)
+ show_img()

+ set_point_cloud(...)

Figure 6.26: UML Class diagram for the pose estimation package.

As can be seen in the data flow diagram (Figure 6.25), the PoseEstimation class is
contained in the node /pose_estimation_container. The ROS 2 interfaces used
are services and topics. Services provided by the PoseEstimation node include
EstimatePose, InitCvSurfaceMatch and InitHalconSurfaceMatch, the structure of
these are detailed below. In addition, the inherited services from the LifecycleNode
class are also available.

The EstimatePose service exposes the pose estimation functionality of the class
to the ROS 2 system. The structure of the EstimatePose service is depicted in
Figure 6.27. The request field consists of the name of the object to be found,
the number of planes which are to be removed from the point cloud, whether to

6.3 Software 97

filter out inliers or outliers of the region of interest, and if a new region of interest
should be stored based on the requested object pose. The response field contains
a bool which tells the service caller whether the desired object pose was found.

string object

int64 num_planes
string filter out
float32 filter_radius

bool store filter pose

bool success

Figure 6.27: Structure of the EstimatePose service.

The InitCvSurfaceMatch and InitHalconSurfaceMatch services initializes HAL-
CON and OpenCV surface matching respectively. The structure of the surface
match initialization services is depicted in fig. 6.28. The request field of the these
services contain a string which represents the path to the directory where the 3D
models, used for point pair feature matching, are stored. The response field con-
tains a bool which tells the service caller whether the initialization was successful
or not.

1 string model dir path

bool success

Figure 6.28: Structure of InitCvSurfaceMatch and InitHalconSurfaceMatch ser-
vices

The pose estimation node subscribes to the /points topic, which contains Point-
Cloud2 ROS 2 messages used to store point clouds. Each time a new point cloud
is received, a pointer to the point cloud message is stored in a member variable,
ensuring that the most recent point cloud is always available. After an object
pose is found by the pipeline, it is published as a PoseStamped ROS 2 message to
the /object_pose topic, making it available to all nodes subscribing to the topic.

In an effort to reduce the number of points processed by the point pair feature
algorithm, two methods of point cloud segmentation are used. One finds planes
and removes points close to them, another removes points outside (or inside) a
set region of interest. The C++ Point Cloud Library (PCL) [52] is used ex-
tensively for this purpose. The plane filtering algorithm is implemented in the

98 Chapter 6 System Description

remove_planes () method. It uses a RANSAC scheme to find planes in the scene,
then removes points closer than 5 mm to the plane. The number of planes to be
removed from the scene is given as an input to the function call. The function is
called recursively until the desired number of planes have been removed. When
the pose of an object is to be found, it is possible to specify whether the object’s
pose should be stored as the region of interest for filtering purposes. This pose
is stored in the filter_pose_ member variable. For any subsequent pose esti-
mation request it is possible to filter out either inliers or ouliers of this region
of interest. This functionality is implemented in the filter_points() method.
This function calculates the distance of each point to the center of the region of
interest, if this distance is larger than filter_radius_ the points are either re-
moved or kept depending on whether outliers or inliers are to be removed. Since
both these filtering methods are required to loop over all the points in the point
cloud, they result in an increase in processing time of the preprocessing of the
point cloud. This is alleviated using parallelization techniques available through
OpenMP library [47]. The preprocessing of the point clouds significantly increase
the robustness and reduces the processing time of the point pair feature detection
algorithm, reducing the total pose estimation time.

HALCON Surface Match

MVTec HALCON is a commercially available image processing software package
with a wide array of functionality. The HalconSurfaceMatch class wraps the point
pair feature based pose estimation functionality available through the HalconCpp
API in a set of convenient methods. An overview of the class can be found in
Figure 6.26.

The load_models() method takes a string with the path to the location of the
directory where object 3D models are stored in a PLY file format, as input. The
3D models in this directory are loaded into a hash table where the key to each
object is a string representing the name of the object, extracted from the file-
name. In the generate_surface_models() method, surface models (point pair
feature models) are created for each model and stored in another hash table using
the same keys. The find_object_in_scene () method takes the name of the ob-
ject to be found as input and uses the surface_models hash table to match the
correct surface model to the current point cloud scene. The load_models() and
generate_surface_models () are invoked once using the InitHalconSurfaceMatch
service, while the update_current_scene() and find_object_in_scene() is in-
voked each time a new object is to be found.

The HALCON API allows for the adjustment of matching parameters. The most
important of these are "Relative Sampling Distance Model", "Relative Sampling

6.3 Software 99

Distance Scene" and "Key Point Fraction". "Relative Sampling Distance Model"
determines the distance between each sampled point on the 3D model of the
object, relative to the model size, used for feature generation during training.
"Relative Sampling Distance Scene" determines the distance between scene points
sampled during matching, relative to the size of the model to be matched. These
two parameters directly influence the number of point pair features used for object
detection, and has a great influence on performance. Decreasing either relative
sampling distances increase the robustness of the matching while being detri-
mental to the processing time. "Key Point Fraction" determines the number of
scene points to be used during matching. Increasing this number influences the
matching similar to decreasing relative sampling distances.

The poses found by the point pair feature matching algorithm are based on the
local coordinate system of the object, as defined in the 3D model. This information
is important when using the poses, for instance when bin-picking. The local object
coordinate system has it’s origin at the point where a robot should grip the object.
The y-axis is aligned with the axis of symmetry for the object, for objects where
such an axis exists.

Figure 6.29: Position and alignment of the local object coordinate system for
the nail_polish 3D model.

100 Chapter 6 System Description

Zivid ROS 2 Module

The Zivid ROS 2 module is used to control, and interface with Zivid cameras. It
was ported from the ROS module supplied by Zivid AS to ROS 2 by Associate
Professor Lars Tingelstad at the Department of Mechanical and Industrial Engi-
neering, NTNU. Implementation details will therefore not be covered, instead an
overview of important functionality is presented.

The Zivid ROS 2 module is implemented in the ZividCamera class and functions
as an interface between the Zivid SDK hardware interface, and the remainder
of the ROS 2 system. The ZividCamera class inherits from the ROS 2 Life-
cycleNode class. Through ROS 2 services, functionality such as connecting to
and disconnecting from cameras, capturing 2D images and 3D point clouds, and
adjusting camera settings is provided. Establishing connection to an available
camera and disconnecting from it is done automatically when the ROS 2 lifecycle
node transitions through different states. The ACTIVATE transition connects to
an available camera and the DEACTIVATE transition disconnects from the cur-
rently connected camera. Camera settings are updated automatically from the
camera parameter server. Camera settings are changed using the SetParameter
service provided by the parameter server. The integration of the Zivid ROS 2
module into the ROS 2 pose estimation system is detailed in Figure 6.25.

Pose Estimation Manager

The PoseEstimationManager class encapsulates functionality to control the Zivid
Camera module and the Pose Estimation module. In addition, functionality used
for coordinate frame transformations. The PoseEstimationManager class is de-
rived from the ROS 2 rclepp::Node class. Interfaces to the
/pose_estimation_container and /zivid_camera_container are provided by
the offered ROS 2 services. Data is transferred using ROS 2 topics.

6.3 Software 101

rclepp::Node

PoseEstimationManager

+ pose_transformer : PoseTransformer*
- camera_parameters_ : vector<rclcpp::Parameter>

get_state(...)

change_state(...)

call capture_srv(...)

call estimate_pose_srv(...)

call init _cv surface match_srv(...)
call_init_halcon_surface_match_srv(...)
add camera parameter(...)

clear camera parameters()
call_set_param srv(...)

tH+ b+t

PoseTransformer
- pose_node_ v rclepp:iNode*
- pose_sub_ i rclepp::iSubscription*
- pose_msg_ : vector<float>
- he_calibration_mat_ : Eigen::Affine3f

get_pose _msg()
apply_he_calibration(...)
ohj_in_base frame()
hover_pose()
pose_estimation_callback(...)

e

Figure 6.30: UML Class diagram for the user level API.

The PoseEstimationManager class provides the user with the change_state()
method for invoking lifecycle node transitions. These transitions are invoked
using the services of the LifecycleNode base of ZividCamera and PoseEstima-
tion. Using the Capture service offered by /zivid_camera_container, a point
cloud is captured and published as a PointCloud2 message on the /points topic.
Camera parameters can be changes using the service SetParameters offered by
the /zivid_parameter_server node. This functionality is provided to the user
through the call_capture_srv() and call_set_param_srv() methods respec-
tively. Parameters to be sent to the parameter server must first be stored locally in
the vector camera_parameters_, this is done using the add_camera_parameter ()
method. The interface of /pose_estimation_container are made available to
the user thought the three methods call_estimate_pose_srv(),

102 Chapter 6 System Description

call_init_cv_surface_match_srv() and
call_init_halcon_surface _match_srv().

The PoseEstimationManager obtains the pose of the found object by subscribing
to the /object_pose topic. The PoseEstimationManager uses an instance of the
PoseTransformer class to transform the object pose from the camera coordinate
frame to a gripable pose in the robot base coordinate frame. This is done by first
transforming the object pose in the camera frame to the robot base frame using
the hand eye transformation. This pose can however not be used directly as a
end-effector grasp pose. For objects with at least one axis of symmetry, the pose
is not uniquely defined. Because of the way the local coordinate systems for each
object is defined in the 3D models, the y-axis of the object will always be found
correctly by the pose estimator. For all objects, the grip point position is defined
by the placement of the local coordinate system. The grasp orientation is found
by aligning the y-axis of the the robot end-effector with the y-axis of the object.
The z-axis of the end-effector is set to be orthogonal to the y-axis, making sure
that the z component of the end-effector z-axis is negative. This ensures that the
grip pose is always reachable, as long as it is within the robot workspace. The
end-effector alignment is depicted in Figure 6.31.

Y_object

Y_object
Z_gripper

(a) Gripper alignment on the (b) Gripper alignment on the
nail_polish model. screw_driver model.

Figure 6.31: Illustration of gripper alignment with the local object coordinate
system.

6.3 Software 103

6.3.5 Sensor-less Force Estimation System

The system for continuous estimation of end-effector forces consists of three main
components. The first component etorque_sender is a task on the robot con-
troller responsible for reading the external joint torques estimated by the robot
controller and sending these to the external computer. The next component is the
/e_torque_receiver_node responsible for receiving the data sent from the robot
controller, processing the data stream and publishing the joint torques on ROS 2
topics. Finally, the /external_force_node component uses the estimated exter-
nal joint torques to calculate the corresponding external force in the end-effector

frame. An overview of the system components and data flow between them is
depicted in Figure 6.32.

Robot Controller

I etorque_sender
W
ROS 2 Nodes
fe_torque_receiver_node

TCRIIP

ROS 2 System

-
La

lexternal_force_node

S

f
|

——

publish
subscribe

subscribe

publish

;
! ROS 2 Topics
!

frfexternal_joint_torques I TCP_wrench
ljoint_states

fliexternal_joint_torques

MITCP_wrench

b

Figure 6.32: Diagram showing the data flow within the external force estimation
system.

etorque__sender

etorque_sender is the task on the robot controller responsible for reading and
transmitting motor torques caused by an external load on an assigned arm. The
task hosts a TCP /IP server, reads the motor torques caused by an external load us-
ing the TestSignDefine RAPID functionality and transmits the read motor torques
with a frequency of about 800 hz. TestSignDefine constructs an internal channel

104 Chapter 6 System Description

between a variable in the RAPID code and a internal signal defined by a nu-
merical signal ID. The channel is configured with a sampling time used to define
the frequency at which the signal is sampled and the variable value is updated.
etorque_sender uses seven TestSignDefine channels configured to access the "Ex-
ternal torque signal" signal of a joint with a sampling time of 0.001 s, meaning
seven variables are updated in a multithreaded manner with a frequency of 1000
hz. Once a client has connected to the server, the task enters the transmission
loop. In this loop the motor torques are read from the test signals, written into a
comma-separated string with start and end delimiters, and sent over the socket.
To transmit the motor torques caused by an external load for both arms, two tasks
must be running on the robot controller. However, in the version of RobotWare
used in this thesis, RobotWare 6.10.01, the number of TestSignDefine channels
allowed at once is limited to 12. Motor torques are therefore only transmitted for
the right arm.

ETorqueReceiver

ETorqueReceiver is the ROS 2 module communicating with the etorque_sender
task. The module is implemented using a class containing methods to establish a
connection to the robot controller, start and stop receiving motor torques, parsing
and publishing received motor torque to a namespaced
/external_joint_torques ROS 2 topic. The module is launched by a dedicated
executable. The class is depicted in Figure 6.33.

ETorqueReceiver
+ establish_connection(num_retries : int) : bool
+ disconnect() : bool
+ start_stream() : void
+ stop_stream() : void
- parse_and_publish(data : string) : void
- node_ : rclcpp: :Node*
- e_torques_ : array<double, 7>
- publisher_ : rclepp::Publisher*

Figure 6.33: Simplified UML diagram of the ETorqueReceiver class.

KDL Wrapper

Orocos Kinematics and Dynamics Library (KDL) [49] is a powerful open source
C++ library used to perform direct and inverse kinematics as well as modelling
of robot dynamics. Through the use of URDFs, the library can be applied to any
robot, since, all kinematic and inertial data is stored within this format. To make

6.3 Software 105

use of the KDL software package, a class encapsulating the functionality required
in our system has been created. This was partly done in an effort integrate
the user API into the overall robotics system, particularly when it comes to the
use of standard C++ containers in the place of API specific data types, where
appropriate. The exposed API of the KdlWrapper class can be seen in Figure 6.34.

External Force

ExternalForce uses the external joint torques, the current joint configuration, and
joint velocities to calculate contact forces or loads applied to the end-effector
frame. The dynamic properties of the manipulator in a given configuration is
calculated using the KdlWrapper API. Since the external torques estimated by
the robot controller includes forces which are due to gravity acting on the manip-
ulator, this must be compensated for before the contact forces can be calculated.
This is done by first calculating the torques due to gravity in the given configura-
tion using the dynamics_gravity () method of the KdlWrapper. These torques
are subtracted from the total external joint torques. The TCP wrench is cal-
culated using Equation (5.11), where the manipulator Jacobian is found using
the calculate_jacobian() method of the KdlWrapper. The resulting forces and
moments are then published on the namespaced topic /TCP_wrench, making them
available to other nodes in the system.

ExternalForce KdIWrapper

- kdl_wrapper_ : Kdlwrapper
- g1 1 vector<float>
- qr_ 1 vector<float> + init(...)
- g dot 1 1 vector<float> + inverse_kinematics_right(...)
_ . + inverse_kinematics_left(...)

g _dot_v_ : "?th(float) ._ + forward_kinematics right(...)
- torques_1_ 1 Eigen::Matrix + forward kinematics left(...)
- torques_r : Eigen::Matrix + ge%_[lggt_an‘?g)

. Ei oA + get_left_arm

- ext_torques_l_ : Eigen::Matrix + dynamics_inertia(...)
- ext_torques_r : Eigen: :Matrix + dynamics_coriolis(...)
- joints_1_ : int + dynamics_gravity(...)

L . + calculate_jacobian(...)
- joints_r_ 1 int J
- jacobian_1 : KDL::Jacohian
- jacobian_r_ : KDL::jacobian
- ext_force node_ ! rclcpp::Node*
- joint_state sub_ : rclepp::Subscription*
- ext_torque_sub_ : rclcpp::Subscription*
- wrench_pub_1 : rclepp:tPublisher*
- wrench_pub_r_ : rclepp::Publisher*
+ estimate TCP_wrenc()
+ get_force_node(...)
- joint_state_callback(...)
- external_torques_callback(...)
- populate_wrench_msg(...)

Figure 6.34: UML class diagram for the ExternalForce class and exposed API
of the KdlWrapper class.

106 Chapter 6 System Description

6.3.6 Bin Picking System

The developed system components are required to function both individually and
in an integrated fashion. The implementation of a bin picking system is used
as a demonstration and testing platform for the robot system architecture. The
bin picking system makes use of the robot control architecture presented in Sec-
tion 6.3.2, the motion planning architecture presented in Section 6.3.3 and the
pose estimation architecture presented in Section 6.3.4.

The bin picking system is implemented using the user level APIs presented in the
preceding sections. The execution sequence is as follows. First the robot control
and motion planning system is initialized and activated using MotionCoordinator.
Then the pose estimation system is initialized by setting Zivid camera parameters,
connecting to the camera and initializing the HALCON surface match function-
ality. At this point, all components of the system architecture are initialized and
ready. The first step in the bin picking process is to capture a point cloud of the
current scene, locating the pick and place bins using the pose estimation system,
and registering them as collision objects in the planning scene. To ensure con-
sistent capture of the scene, the robot arm used for picking moves to a standby
state where it does not obstruct the field of view of the camera. For each object
to be picked a new point cloud is captured and the pose of the object is found by
the pose estimation system. The object is then registered in the planning scene.
This object is then picked and placed by the manipulator. The process then re-
peats with the manipulator moving to it’s standby state between each point cloud
capture. The program flow is depicted in Figure 6.35, the planning scene during
picking is shown in fig. 6.36.

6.3 Software

P

1.

P ~

Initialize architecture

Move to home pose

Y

" s ‘r b
Find bins o Capture scene
l‘r “n s "
Register bins to - e
scene »* Move to standby €

h

Find requested object

"

r

P

Fy

Capture scene

A 4
Reagister object to - . .
scene > Pick object
g ‘r a Y
Flace object
Mo
Yes

Figure 6.35:

==

Bin picking program flow.

107

108 Chapter 6 System Description

Figure 6.36: Image showing the planning scene during bin picking with the
manipulator in it’s standby configuration. The modelled static environment sur-
rounding the robot can be seen in green. The pick bin is shown in blue, the place
bin in orange and the object to be picked (nail polish) is shown in red. For vi-
sualization purposes the point cloud as captured by the Zivid camera is overlaid
in the scene. The point cloud is however not part of the planning scene used for
obstacle avoidance.

Picking

Picking of objects is implemented in MotionCoordinator in the pick_object ()
method. The method is designed to pick an object registered in the ObjectMan-
ager. The method moves the end-effector of the arm to a hover pose above the
gripping point on the object to be picked, moves the end-effector in a straight line
down to the gripping point on the object, grips the object and returns in a straight
line to the hover pose, avoiding collisions with the surroundings. The method is
entirely self-contained, meaning as long as the planning scene is updated correctly,
no outside logic is needed.

The pick method starts by polling the planning scene for the pose and dimensions
of the given object. If the object cannot be found, the pick is aborted and an
PLANNING_SCENE_FAIL error is returned. If found, the end-effector of the arm is
moved to the hover pose over the object, and the gripper is jogged to the width
of the object plus an extra predefined margin of error to account for planning
scene inaccuracies. Additionally, to account for slight inaccuracies of the pick bin
placement, collision checking is disabled between the fingers of the gripper and
the bin during the pick. This is done to increase the number of objects eligible
for a pick.

After the gripper is opened sufficiently, and collision checking between the fingers

6.3 Software 109

of the gripper has been disabled, the gripping pose of the object is checked for va-
lidity. If, for instance the gripping pose will cause the gripper base to be in contact
with the bin, this test will be failed, the method aborted and a INVALID_POSE
error returned. If passed, the method attempts to plan a straight line motion
down to the gripping pose, given an allowed number of retries to plan a solution.
If no straight line solution is found, the pick is aborted and a LINEAR_PLAN_FAIL
error is returned. If found, the end-effector is moved down to the gripping pose
in a straight line and the object is gripped. When the object is gripped, it is
attached to the end-effector link in the planning scene. It is thus included in the
obstacle avoidance for the manipulator in future motion planning.

In the next step, a straight line motion back up to the hover pose is attempted.
Being inside the bin, no retires are allowed. If no solution is found, a nonlinear
motion up to the hover pose is planned. When the hover pose is reached, collision
checking is re-enabled between the fingers and the bin. Before the pick_object ()
method returns, a check to verify that the gripper contains the object is performed.
If the object is dropped, a GRIP_FAIL is returned. The execution flow of a
pick_object () call is illustrated in Figure 6.37.

110 Chapter 6 System Description

1

) h Grip in, attach object and dizable
Find object pose and collision between object and
h allowed_collisions

Attempt to move to
no hover poseina

Pose and extents FLANNING_SGENE_FAIL straight line

found?

Move normally to
hover pose

Solution found?

Move to haver pose
and jog gripper

Disable collision
checking between
fingers and bin

Enable collision checking
between object and
allowed_collisions

no
)) Gripper contain

|7
I grip pose valid® NUALID_POSE object? GRIP_FAIL
Attempt to move to
gripping pose in a Success

straight line
no
Solution found? LINEAR_PLAN_FAIL

Figure 6.37: pick_object execution flow.

6.3 Software 111

Placing

Placing of objects is implemented in MotionCoordinator in the place_in_object ()
method. The method attempts to move the end-effector of the arm in a straight
line to a hover pose above the place bin. Next, the end-effector is moved down to
the drop pose, in the place bin, in a straight line. At the drop pose, the gripper
releases the object and attempts to move the end-effector in a straight line back
up to the hover pose. Similar to the pick_object() method, it is completely
self-contained and capable of avoiding collisions.

The method starts by checking whether the gripper contains an object. If dropped,
the method returns a GRIP_FAIL error and aborts. If passed, the method attempts
to plan linear path moving the end-effector in a straight line to a hover pose
above the place-object. To avoid unnecessary motions increasing the probability
of dropping the object, no retries are given. A straight line motion is preferred,
but not required. If no solution is found, a nonlinear path to the hover pose is
generated instead.

When the hover pose is reached, the method attempts to plan a straight line
motion moving the end-effector to the drop pose. If unable, the object is dropped
and detached from the end-effector in the planning scene, before returning success.
When the drop pose is reached, the object is dropped and detached. Thereafter
an attempts to plan a straight line motion moving the end-effector up to the
hover pose is made. If no solution is found, a nonlinear motion to the hover pose
is initiated. When the hover pose is reached, the method returns success. The
execution flow of a place_in_object () call is illustrated in Figure 6.38.

112 Chapter 6 System Description

.-/‘.-- -\
| Method called |

AN 4

Gripper contain

object? GRIP_FAIL

Attempt to Failure
move to hover pose in

a straight line

Move normally to
hover pose

Gripper contain

object? GRIP_FAIL

Attempt to Failure Open gripper.
move to drop pose in detatch object Success
a straight line and close gripper

Success

Open gripper
and detach object

Attempt to Failure
mave to hover pose in

a sfraight line

Move normally to
hover pose

Success

Cloze gripper

Success

Figure 6.38: place_in_ object execution flow.

6.3 Software 113

enum error

{
INVALID POSE = —1,
LINEAR PLAN FAIL = —2,
GRIP FAIL = -3,
PLANNING SCENE FAIL = —4
};

Listing 6.2: The error enum.

Error Handling

In a robotic system with a high level of autonomy, a number of potential errors
are bound to occur during operation. These must be detected and handled in
order to avoid undesired system stops. Since the static environment is modelled
in the planning scene, and the bins are detected and modelled, the system is able
to avoid collisions. Any object held by the manipulator is also collision checked
to prevent collisions between the held object and the environment. If the robot
drops or fails to grasp an object during picking, this is detected by the system.
The system then aborts that pick-place sequence and returns to the standby state
for the next attempt. Furthermore, the pose estimation system is able to detect
pose estimates likely to be false positives. False positives are most likely to occur
when every instance of an object has already been picked. If an object detection
is found to be a false positive, the system tries to find a different object. Another
failure mode is if the detected object is in a location where the manipulator would
collide with it’s environment or the pick bin during picking. In this situation, the
pick is not attempted and the system continues with the next object. In order for
the manipulator to reliably grasp objects, the approach to the object should be
following a linear path in the operational space. If such a path cannot be found,
the pick is also aborted.

Chapter 7

Experiments

Testing and performance evaluation of the individual system components is an
important step in the implementation and deployment of such a system. To this
end, a series of experiments were conducted for each component, both in isolation
and when integrated as part of a task specific robotics solution for bin picking.
Each experiment is presented in a similar manner. The goal of the experiment
describes what we want to learn about the system by carrying out the test. The
experimental method describes the setup and methodology of the experiment. The
evaluation metric describes what quantitative data is to be gathered. Finally, the
experimental results are presented.

7.1 Hand-Eye Calibration

7.1.1 Simulations of Hand-Eye Calibration using Point Clouds
Goal

Using generated noisy point cloud data for hand eye calibration is useful to deter-
mine the noise-sensitivity of the calibration methods. By generating a synthetic
dataset and adding Gaussian noise, the robustness of the methods can be deter-
mined by evaluating the calibration error. The simulation results will be used to
determine the robustness of 3D point cloud methods for hand eye calibration on
noisy datasets.

Method

Noisy point cloud data is generated, simulating an eye-in-hand configuration, by
selecting a ground truth calibration object pose in the robot base frame (TfO)GT
and a ground truth hand-eye transformation matrix, (7;.)gr. These were chosen

116 Chapter 7 Experiments

to be
0 —1 0 200 1 0 0 50
1 0 0 70 01 0 O
b _ _
0O 0 0 1 00 0 1

Random robot poses (Ty;); are then generated. The values for the elements of the
rotation vectors kf are drawn from the normal distribution N(u,0?) = N(0,72)
and the elements for the translation vector of each pose are generated from the
normal distribution N(u,0?) = N(0,(300v/3)2). It should be noted that the
generated poses need not be feasible in the physical system. The corresponding
pose of the chessboard in the camera frame (T,,); is calculated as

(Teo)i = (Tw)i(Tie)ar) ™" (Tvo) o (7.2)

To evaluate the sensitivity of the calibration methods, a point cloud centred in
the robot base consisting of n x m points spaced in correspondence to the center
points on the calibration chessboard squares is generated. To each point in this
point cloud, a Gaussian noise vector with mean value p and standard deviation
o is added, resulting in a set of noisy homogeneous chessboard points for each
robot configuration, P; € R¥*("*m) Thig point cloud is then transformed to the
position of the calibration object using (Tp,)G resulting in the object point cloud
(Fo)i-

(Po)i = (Tbo)GTPi (7.3)

Evaluation Metric

The set of generated noisy calibration points and generated robot poses are used
to do hand eye calibration. Error estimates are calculated using Equation (3.24)
and Equation (3.25) presented in Section 3.9.1. This is done using an increasing
number of pose pairs in order to determine when the error converges. The final
translation and rotation errors of each method is used as the performance metric.

7.1 Hand-Eye Calibration

Results

0.200 4

0.1754

Translation estimation error [mm]

0.025 4

0.150 1

0.125

0.100 1

0.075 1

0.050 1

— 3D
3D plane fit

~N~—

10 20 30 20 50
Pose pairs

(a) Translation error

Rotation estimation error [deg]

0.007

0.006 q

0.005 4

0.004

0.003 4

— 3D
3D plane fit

10 20 30 40 50
Pose pairs

(b) Rotation error

117

Figure 7.1: Calibration on data with added noise from N (u,0?) = N(0,0.01)

Translation estimation error [mm]

=
¥

=
S

®

o

IS

N

— 3D
3D plane fit

\/\’“M —
10 20 30

40 50
Pose pairs

(a) Translation error

Figure 7.2: Calibration on data

Rotation estimation error [deg]

Iy
o

=4
©

o
o

e
<

0.6 q

— 3D
3D plane fit

SN

10 20 30 40 50
Pose pairs.

(b) Rotation error

with added noise from N(u,0?) = N(0,100.0)

118 Chapter 7 Experiments
Noise dist Trans. error Trans. error Rot. error Rot. error
N(p,0?) 3D [mm] 3D plane fit [mm] | 3D [deg] | 3D plane fit [deg]
N(0,0.01) 0.02581 0.01683 0.00496 0.002617
N(0,0.04) 0.05593 0.05195 0.01019 0.01257
N(0,0.09) 0.06975 0.06480 0.01729 0.02219
N(0,0.16) 0.07710 0.06077 0.02007 0.02821
N(0,0.25) 0.11530 0.10083 0.02887 0.03444
N(0,1.0) 0.22951 0.17882 0.05036 0.070979
N(0,9.0) 0.59217 0.68763 0.16361 0.21507
N(0,16.0) 0.85008 0.64449 0.21464 0.29222
N(0,25.0) 1.23648 0.77810 0.27990 0.38845
N(0,100.0) 2.25496 1.99512 0.56434 0.83999

Table 7.1: Final translation errors and rotation errors for 3D and 3D plane fit
methods.

Translation estimation error [mm]

e
=
S

°
=
°

o
o
@

e
=
=)

o
o
=

o
o
[N

] —

3D plane fit

Rotation estimation error [deg]

0.1 0.2 03 0.4

Noise standard deviation [mm]

0.5

0.035 4

0.030

0.025 4

0.020 4

0.015

0.0101

0.005 4

0.000

—0.005

- 3D
3D plane fit

0.1 0.2

0.3 0.4 05

Noise standard deviation [mm]

(a) Noise/translation error relationship (b) Noise/rotation error relationship

Figure 7.3: Scatter plot and trend line for noise standard deviations
0.1,0.2,0.3,0.4,0.5

7.1 Hand-Eye Calibration

2.0

Translation estimation error [mm]

— 3D
3D plane fit

Rotation estimation error [deg]

o
®

e
<

k=4
o

o
G

o
b

o
w

o
¥

119

— 3D
3D plane fit

o
i

2 4 6 8 10 2 4 6 8 10
Noise standard deviation [mm] Noise standard deviation [mm]

(a) Noise/translation error relationship (b) Noise/rotation error relationship

Figure 7.4: Scatter plot and trend line for noise standard deviations
1.0,2.0,3.0,4.0,5.0,10.0

7.1.2 Hand-Eye Calibration of the ABB YuMi and Zivid One 3D
camera

Goal

The goal of this experiment is to evaluate the performance of, and compare, hand-
eye calibration based on OpenCV extrinsic calibration and based on the two 3D
point cloud methods. The outcome of this experiment will hopefully provide
some insight into the strengths and weaknesses of each method. In addition to
this, determination of the the hand-eye transformation for the robot-camera setup
is necessary in order to make further use of the robot vision system.

Method

In our robotic system, the camera is rigidly attached in relation to the robot
base frame, as shown in Figure 3.6b. For hand-eye calibration of this setup, the
calibration pattern must be rigidly mounted to the robot end-effector frame. To
this end, a bracket to hold the calibration pattern was designed and 3D printed.
The bracket is depicted in Figure 7.5. The bracket attaches to the robot end-
effector using the grippers. To ensure that the bracket does not move when
calibrating. The grip point on the bracket is designed to fit exactly to the shape
of the grippers.

120 Chapter 7 Experiments

Figure 7.5: 3D printed calibration board rigidly attached to the robot end-
effector.

Calibration datasets consist of pairs of robot poses and point cloud images from
the Zivid camera. For each pose-image pair in the dataset, the robot was led to
a pose and the corresponding image was taken. This was done until a dataset
consisting of more than 15 pose-image pairs were gathered. The robot poses
were collected using RWS and stored in plain text files. Images were taken using
the Zivid C++ APIL. Two datasets are used to evaluate the calibration methods.
For the calibration a python program implementing the methods described in
Section 3.5 is used.

Evaluation Metric

Evaluation of the hand-eye calibration is based on the final translation and ro-
tation error for each method. These are calculated using Equation (3.24) and
Equation (3.25). To show how the algorithm converges as the number of pose-
image pairs are increased, the error metrics are plotted against the number of
pose pairs.

7.1 Hand-Eye Calibration

Results

60 -

v
S

&
S

Translation estimation error [mm]
N w
o S

-
S

°©

— 3D
3D plane fit
—— openCV

125 15.0

Pose pairs

75 10.0

(a) Translation error

Rotation estimation error [deg]
= = N
o o o

o
o

— 3D
3D plane fit
—— openCv

75 10.0

125 15.0

Pose pairs

(b) Rotation error

121

Figure 7.6: Translation and rotation errors for hand eye calibration on dataset

1.

3D plane fit 3D OpenCV
Translation error [mm|] 1.5414 1.4218 | 6.0985
Rotation error [deg] 0.3133 0.2708 | 1.0899

Table 7.2: Final translation and rotation errors for all three method on dataset

1.

Translation estimation error [mm]

— 3D
3D plane fit
—— openCV

N~ — ——

4 6 8 10 12 14 16 18
Pose pairs

(a) Translation error

1.04

0.8 1

0.6 4

Rotation estimation error [deg]

0.2 4

— 3D
3D plane fit
—— openCv

10 12 14
Pose pairs

(b) Rotation error

Figure 7.7: Translation and rotation errors for hand eye calibration on dataset

2.

122 Chapter 7 Experiments

3D plane fit 3D OpenCV
Translation error [mm] 2.0707 2.2702 | 29157
Rotation error [deg] 0.2065 0.3702 | 0.8327

Table 7.3: Final translation and rotation errors for all three method on dataset
2.

Hand-eye transformation matrix resulting from the 3D plane fit method on dataset

—0.039 —0.963 0.266 189.847

—0.988 —0.002 —-0.150 63.982

0.145 —0.269 —-0.952 687.990
0 0 0 1

Tye = (74)

7.2 Pose Estimation

Goal

The goal of this experiment is to evaluate the performance of the pose estimation
pipeline implemented in the robotics system. The results from this test can be
used to make adjustments to improve the overall performance and robustness of
the pose estimation.

Method

Data from the pose estimation pipeline were logged continuously, both from stand
alone tests and while carrying out bin picking experiments. The pose estimation
pipeline was set up to log the total matching time, i.e. the time it takes from the
EstimatePose service is called to an object pose is found. Additionally, the match
score calculated by the HALCON point pair feature algorithm were also logged.
The match score is calculated as the ratio of points sampled from the 3D model,
matched to the scene point cloud. This results in the score always being a number
between 0 and 1.0, with a score of 1.0 indicating that all the sampled points of
an object has been matched with at scene point. Pose estimation time and match
score were logged each time the pose estimation service was called. During the
pose estimation experiment, ROI filtering was performed removing all outliers. In
addition, the ground plane was removed. For pose estimation of the bin objects
the whole point cloud was processed.

7.2 Pose Estimation 123

Figure 7.8: Prepossessed point cloud used for matching with region of interest
filter and ground plane removed.

Evaluation Metric

The performance of the pose estimation pipeline is evaluated based on matching
time for each object, the average score for each object, and the false positive rate
for the overall pose estimation system. The accuracy of the point pair feature
matching algorithm will not be discussed as this has been extensively investigated
previously by other researchers.

124

Results

Pose Estimation Data

Chapter 7 Experiments

1.0 A
= bin5

* biné

e small_marker
« nail_polish

= battery

0.9 4
0.8 4
0.7 1
0.6

05 | b

Matching Score

0.4

0.3

0.1

0.0 —

. oK
L P
0.2 @"""
—
/ .
N, .

4.5 6.0 7.5

9.0 10.5 12.0 13.5

Matching Time

15.0 16.5 18.0 19.5

21.0

Figure 7.9: Matching time vs matching score for five different objects used in the
picking experiments. Mean match scores and pose estimation times are marked

by squares.

Entries encircled in red were manually identified as false positive

matches. Entries encircled in green were identified by the system. The encircled
entries of bin6 were pose estimates carried out on an empty bin, the remainder

were taken with objects in the bin.

Object

Mean Time [s]

Mean Score

stddev Time [s]

stddev Score

small_marker
nail_polish
battery

binb (place bin)
bin6 (pick bin)

291
3.14
3.73
17.85
16.15

0.45
0.24
0.43
0.75
0.79

0.67
0.79
0.93
2.36
2.54

0.06
0.04
0.05
0.05
0.15

Table 7.4: Per object means and standard deviations for match times and scores

7.3 Motion Planning 125

Figure 7.10: Visualization of object matches for nail_polish (a), battery (b)
and small_marker (c). Matches for bin5 (orange) and biné (blue) are only
valid in (a) due to the robot slightly moving them during picking.

7.3 Motion Planning

7.3.1 OMPL-based Movelt 2 Motion Planning Pipeline
Goal

The goal of the experiment is to evaluate the performance of the OMPL-based
Movelt 2 motion planning pipeline. The outcome of the experiment can hopefully
provide insight into how the pipeline can be used to reliably produce solutions in
a larger system.

Method

Two experiments were conduced. In the experiments, the pipeline was asked to
move the end-effector of the right arm from its home configuration to a randomly
generated pose. The randomly generated poses are generated by adding a random
translation and rotation to a base pose in front of YuMi. The magnitude of the

126 Chapter 7 Experiments

translation was 15 cm. The rotation was about either the z or y axis with an
angle randomly selected between 20 and 50 degrees. Planning was conducted in
a static planning scene consisting of obstacles to be avoided. The random poses
were generated in an unobstructed section of the workspace. The base pose and
the planning scene can bee seen in Figure 7.11. 100 repetitions were conducted
in both experiments. In the first experiment, no additional planning attempts
were allowed. In the second, three retries were allowed upon a planning failure,
meaning a total of four planning attempts were permitted. In both experiments,
the pipeline will timeout after 2.0 seconds.

Figure 7.11: The base pose and the planning scene as seen in Rviz2.

A response time is defined as the time between planning was initiated, and a bool
indicating planning success or failure was returned. Retries are included in the
response times. The experiment was conducted using the simulated backend.

Evaluation Metric

The performance of the motion pipeline is evaluated based on it’s success rate,
mean response time, worst case response time (WCRT).

7.3 Motion Planning 127

Results
o] Mean: 0.067 16 Mean: 0.094
Bl Success 15 4 Bl Success
sl B Failure 14 4
13
7 12
1
e 10
@ g a9
25
g3 § 5l
5 5
g 4 g 71
(=] 64
3 5 |
2 4
34
14 21
1]
0 0
[}

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 .00 005 010 015 020 025 030 035 040 045
Planning times [s] (bar width = 0.003 s) Planning times [s] (bar width = 0.008 s)

(a) Experiment A, 0 allowed retries. (b) Experiment B, 3 allowed retries.

Figure 7.12: Recorded response times of the OMPL-based motion planning
pipeline.

Experiment Allowed Mean Time [s] | WCRT [s] | stddev Time [s] | Success Rate
Attempts

A 1 0.0670 0.1943 0.0305 86 %

B 4 0.0938 0.4172 0.0644 100 %

Table 7.5: Statistics and success rates measured in the two experiments.

7.3.2 Linear Cartesian Movelt 2 Motion Planning Pipeline
Goal

The goal of the experiment is to evaluate the performance of the linear Cartesian
Movelt 2 motion planning pipeline. The outcome of the experiment can hopefully
provide insight into how the pipeline can be used to reliably produce solutions in
a larger system.

Method

Three experiments were conducted. In the first experiment, the pipeline was
tasked with moving the end-effector of the right arm linearly in Cartesian space
from a randomly generated starting pose, to a pose with the same orientation 10
cm away in the negative z-direction of the base frame and back to the starting
pose. Only one planning attempt for each motion was allowed. In the second
experiment, the pipeline was tasked with moving the end-effector of the right arm
linearly in Cartesian space from a randomly generated starting pose, to a pose with
the same orientation 10 cm away in the positive y-direction of the base frame and

128 Chapter 7 Experiments

back to the starting pose. Only one planning attempt for each motion was allowed.
In the third experiment, planning to the same pose as in the second experiment
was conducted. Three retries were allowed. Due to the motions performed during
the retries, the planning times for this experiment were not recorded. In all three
experiments, the random starting pose was generated by in the manner described
in Section 7.3.1. If planning failed toward the goal, a return solution was not
attempted. 50 repetitions were conducted in all experiments.

A response time is defined as the time between planning was initiated, and a
bool indicating planning success or failure was returned. The experiment was
conducted using the simulated backend. The parameters used with the pipeline
is presented in Table 7.6.

Parameter Value
Cartesian max step 0.002
Joint threshold factor limit 6

Table 7.6: Parameters used with the linear Cartesian motion planning pipeline.

Evaluation Metric

The performance of the linear Cartesian Movelt 2 motion planning pipeline is
evaluated based on its success rate planning to the goal, returning from the goal
and consecutively to the goal and back, it’s mean response time, and it’s worst
case response time (WCRT).

Results
19 17
184 Mean: 0.012 I Success, down 16 4 Mean, success: 0.013 [Success, to
174 = Failure, down 15 Em Failure, to
g : Emm Success, up 14 4 I Success, return
144 = Failure, up 134 mm Failure, return

12 4
111
10 1
9

Occurences
Occurences

8
7
6
5
4
3
2
1
o]
0.

8
7
6
5
4
3
2
1
0
Q.

.000 0.008 0.016 0.024 0.032 0040 0048 0.056 0.004 000 0.008 0.016 0.024 0.032 0.040 0.048 0.056 0.064

Planning times [s] (bar width = 0.0015 s) Planning times [s] (bar width = 0.0015 s)
(a) Experiment 1, linear motion along the (b) Experiment 2, linear motion along the
Cartesian z-axis. Cartesian y-axis.

Figure 7.13: Recorded response times of the linear Cartesian motion planning
pipeline.

7.4 Bin Picking

Experiment | Num samples | Mean Time [s] | WCRT [s] | stddev Time [s]
1 96 0.0122 0.0585 0.0060
2 89 0.0131 0.0645 0.0072

129

Table 7.7: Mean time, standard deviation and worst case response time of the
experiments.

Experiments Success Rate

To Return | To and Return | Overall
1 92 % | 95.5 % 88 % 93.7 %
2 8% | 97.4 % 76 % 86.5 %
3 96 % N/A N/A 96 %

Table 7.8: Planning success rates of the experiments.

7.4 Bin Picking

Goal

The goal of the bin picking experiment is to evaluate the performance of the
implemented robotics system in a realistic component handling task. Of particular
interest is the evaluation of the error handling mechanism in the system, and where
improvements can be made in order to increase the system robustness.

Method

The experimental setup constitutes the robotics system as described, two bins,
and three different components which are to be picked from one bin and placed in
another. The three components are battery, small_marker and nail_polish.
The pick-bin and place-bin were both placed randomly in the scene and must
be detected by the pose estimation system and registered in the planning scene,
before objects are picked. A total of 9 runs, consisting of 10 required picks, were
conducted using the system parameters in Tables 7.9 and 7.10. These parameters
were tuned between runs in an attempt to reduce the pick time and cycle time.

130 Chapter 7 Experiments

Experiment |, 5 4 4 5 6,7,3,9
Parameter
Num Planes Filtered 0 1 1 1
ROI Filtering ON ON ON ON
Max joint speed [deg/s] 57.3/57.3 | 57.3/57.3 | 57.3/57.3 | 180,/400
Max joint acc. [deg/s?] 57.3/57.3 | 57.3/57.3 | 57.3/57.3 180/180
Linear Speed Scaling, pick 1 1 0.3 1
Standby Configuration Home Home Home Alternative

Table 7.9: System parameters for each of the experiments. Max joint velocities
and accelerations are given for the first 4 joints and and the last 3, [first/last].
The alternative configuration is slightly outside the camera’s field of view, closer
to the bins than the home configuration.

Experiment
HALCON Setting 1,2,4,5,6,7,8,9 3
Rel. Sample Dist. Model 0.03 0.02
Rel. Sample Dist. Match 0.03 0.02
Key Point Fraction 0.5 0.5

Table 7.10: HALCON settings used in the bin picking experiment.

Evaluation Metric

Evaluation of the bin-picking capabilities of the robotics system can be divided
into two categories, robustness and performance. Robustness is measured by
the ability of the system to handle errors when they occur in an effort to avoid
undesired stops. Performance is measured by average pick time i.e. the time the
system uses on a successful pick-place operation, and by average cycle time i.e.
the average time taken to perform a pick-place operation when error handling is
necessary. Under ideal operating conditions, when few errors occur, average cycle
time should be close to average pick time.

7.4 Bin Picking 131

Results

Planned Picks 90
Successful Picks | 89
Attempts 106

Table 7.11: Number of planned picks, successful picks and the number of at-
tempted picks during the experiment. The number of attempts represent the
sum of successful picks, aborted picks due to error handling and outright failed
attempts where the system does not detect the error when it occurs.

Error Type Number of Failures | Number of Failures Handled
Grip Failure 3 3
Invalid Pose 11 11
Linear Planning Failure 0 0
Pose Estimation Failure 3 2
Total 17 16

Table 7.12: Failure modes for the 17 unsuccessful attempts. One false positive
object match was not detected.

Experiment | Grip Failure | Invalid Pose | PE Failure
1 - 4 -
4 - 1 -
5 - 3 1
6 1 - -
7 1 - -
8 1 - 1
9 2 - 1

Table 7.13: Distribution of error types for experiments with aborted picks.

Experiment 1 2 3 4 5 6 7 8 9

Avg. Detection Time | 14.50 | 15.05 | 20.65 | 5.79 | 5.14 | 4.35 | 4.35 | 4.33 | 4.72

Table 7.14: Average processing time for the pose estimation pipeline, including
the point cloud acquisition time, for each experiment.

132 Chapter 7 Experiments

80
n Average Pick Time mmm Aborted Pick Attempts
Average Cycle Time EEE Linear Retries
70 A
60 |
50
0] o
w J - L
g 40 10
= 9
= »]
30 A
. F7
-6
P4 3
20 4] L5
-4
3
10
F2
I N
o] . 11 K
1 2 3 4 5 6 7 8 9
Experiment

Figure 7.14: Average pick and cycle times. The number of aborted picks are
shown as red bars, the number of linear planning retries accumulated over each
the experiment are shown as black bars. These are numbered on the right hand
side vertical axis.

Videos of experiment 7 and 9 can be found in the digital appendix.

7.5 External Force Estimation 133

7.5 External Force Estimation

Goal

The goal of this experiment is to test and evaluate the system for estimation
of external forces acting in the end-effector frame. The results are to be used to
determine whether or not the force estimation system can be used for applications
such as force control in it’s current state.

Method

While the robot arm is stationary various forces is applied to the robot end-
effector. These forces are either applied by hand or by placing an object with a
known mass in line with one of the axes of the end-effector frame. The forces
applied by hand are mainly to observe the response of the system under load, as
the direction and particularly the magnitude of the force vector is uncertain. The
test using a known mass should yield results which can be used to evaluate the
systems ability to accurately estimate forces on the system.

Evaluation Metric

Evaluation of the force estimation system is based on the accuracy of the force
estimate when loaded with a known mass, and the it’s ability to detect forces in
different directions and decompose the force vector in each axis of the end-effector
frame. The system is also evaluated by it’s practical usability for force control
applications.

Results

Unfortunately we were unable to acquire the correct mass and inertial data for the
manipulator used in the experiments. The consequence of this is that the system
is not able to correctly compensate for the contribution to external torques due to
gravity. This results in incorrect offsets for all the measured torques which again
results in incorrect offsets for the force estimates. The system was therefore only
evaluated based on the difference in measured force for each axis. For visualisation
purposes each data entry is centered at 0.0 to show the deviation from the initial
force/torque values.

134 Chapter 7 Experiments

4.5
4.0 —_— X

3.5 1 I
3.0 1 ¥
2.5 I
2.0
1.5
1.0 A
0.5 4
0.0 4
—0.5
-1.01
71_5 P
—-2.0 4
_2.5 -
—3.01
_3.5
_4.0 -
745 P
—5.0 4
-5.5 4
—6.0 1
6.5
_?IO -
-75 T T ‘ T T
0.0 2.5 5.0 7.5 10.0 12,5 15.0 17.5

Time [s]

()

Estimated Force [N]

External Motor Torques [Nm]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time [s]

(b)

Figure 7.15: External force estimate (a) and external torque measurements (b)
when placing an object weighing 0.498 kg roughly in line with the end-effector
z-axis.

7.5 External Force Estimation

Estimated force vector from Figure 7.15a, with the end-effector under load.

2.04

1.5 A

External Motor Torques [Nm]

-1.0 4

-1.5 4

F = (—0.5,0.0, —4.4)N

||F|| = 4.42N

1.0 4

0.5 4

0.0

[=]
N
5
[=1]
o 1
)
5

Time [s]

135

(7.5)

(7.6)

Figure 7.16: Oscillations present in the system after motion of the manipulator.

136 Chapter 7 Experiments

4.0 —_— X

3.0 4 ¥
2.5 —z

Estimated Force [N]
|
AN
wn
!

_T .5 T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Time [s]

()

0.5 1

0.0 +

—0.5 4

External Motor Torques [Nm]

—1.5 4

T
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5
Time [s]

(b)

Figure 7.17: External force estimate (a) and external torque measurements (b)
when applying a force in the zy-plane of the end-effector frame.

Chapter 8

Discussion

8.1 Hand Eye Calibration Using Point Clouds

Simulation of hand-eye calibration using generated noisy point clouds show that
both the 3D point cloud correspondence method and the 3D plane fit method pro-
duce relative camera poses accurate enough for the hand-eye calibration algorithm
to converge. Both methods also result in similar convergence rates. There does
however appear to be a difference in which error metric is minimized by the two
methods. Observing the plots of the final errors for both methods in Figures 7.3
and 7.4 it is clear that the 3D plane fit method results in a lower translation error
at all noise levels. The error trend lines for the two methods also diverge slightly
as the noise level increases, indicating that the position estimate of the 3D plane
fit method is also more robust when it comes to increases in noise levels compared
with the 3D correspondence method. The opposite is observed in the plots of
rotation error vs. noise level. Here the 3D correspondence method is consistently
more accurate than the 3D planar method. The trend lines also diverge, indicat-
ing that the orientation estimate of the 3D plane fit method is more sensitive to
increases in noise level than the 3D correspondence method.

It is difficult to pin-point the exact reason for the observed results. Both methods
calculate the relative pose of the camera, for use in hand-eye calibration by con-
sidering the translation of each calibration point cloud’s centroid. The average
translation of the centroid between the ground truth point cloud and the centroid
for each calibration point cloud is used as the metric for calculating the error
in the calibration for both methods. It would be reasonable to expect that the
method which can achieve the highest orientation accuracy would also achieve the
highest position accuracy, since the optimal rotation matrix is used to optimize
the translation vector in the hand-eye calibration algorithm used. This is however
not consistent with the simulation results.

138 Chapter 8 Discussion

The results of hand-eye calibration on datasets gathered using the YuMi robot and
Zivid One camera, show that all three methods tested allow for convergence of the
hand-eye calibration algorithm on the available datasets. The point cloud meth-
ods do however converge faster than the OpenCV based method and result in more
accurate calibrations. Our calibration method had, on average, 2.46 times lower
translation error and 3.3 times lower rotation error compared to the OpenCV 2D
method. The performance of the two 3D methods were fairly comparable, with
the 3D plane fit method performing better on dataset 1 and the 3D point cloud
correspondence method performing better on dataset 2. The observed difference
in translation and rotation accuracy of the two methods in the simulations were
not corroborated in the calibration on real data. On the real datasets the method
with the lower rotation error also had the lower translation error, this is more in
line with what one might expect based on the implemented hand-eye calibration
method. It is also unlikely that the noise characteristics are similar for the simula-
tions and real data. The simulations do not consider inaccuracies in the absolute
positioning of the robot end-effector or slight movements in the calibration board
relative to the end-effector during dataset collection, which are certainly present
in calibration of the real robot system. The practical application of the resulting
hand-eye calibration matrix was tested in the bin picking experiment, confirm-
ing that the calibration error is sufficiently small for the manipulation of small
components using 3D vision.

8.2 Pose Estimation System

The pose estimation pipeline performed well, with the vast majority of attempted
matches resulting in a correctly identified object and pose. This was observed
using the visualization of the planning scene in rviz2, as exemplified in Figure 7.10.
A few false positive matches were not identified as such by the pipeline. This
is because we somewhat naively, through initial testing using the nail_polish
object, determined that a lower score limit for a true positive match should be
0.2. This limit was however too low for the remainder of the objects. The method
used by HALCON to calculate match scores results in different expected scores for
each object type. The expected score depends on the percentage of the object’s
surface likely to be visible to the 3D camera during pose estimation. For the the
nail_polish object, the percentage of it’s surface captured in the point cloud is
likely to be between 20% and 30%. For the battery and small_marker objects,
this number is likely to be somewhere between 40% and 60%. This explains why a
lower score limit of 0.2 was selected based on initial testing with the nail_polish
object.

To lower the false positive rate, a per object minimum match score should be

8.3 Motion Planning 139

implemented. This score can be determined using the mean score and the score
standard deviation of true positive matches. Since the false positive matches were
observed to have a significantly lower score than the true positive matches, the
lower limit can be selected fairly conservatively to ensure that all true positives
are identified as such. It is however the case that undetected false positives can be
very detrimental in robot applications as they may result in unexpected behaviour.
For this reason it is prudent to err on the side of caution when selecting the lower
score limit. If new objects are introduced to the system, an initial lower score limit
should be based on the percentage of the surface likely to be visible by the camera
at any time. In our experiment, it should be noted, false positives only occurred
when the object searched for by the pipeline was not present in the scene.

The match time observed in our experiment is consistent with what is expected
from the performance of point pair feature matching algorithms. The compara-
tively longer times for the two bins were likely due to the fairly large size of these
objects, resulting in a larger amount of point pair features being sampled. They
were also matched against an unfiltered point cloud, as no region of interest is
determined at the time of matching, and removal of the ground plane resulted the
determination of the bin’s height over the base being poorly conditioned. In this
case we consider this detriment to performance as an acceptable cost for more
robust matching. The large variation in score for bin6 was due to the variation
in visible surface when it was loaded with components compared to when it was
empty. The bin was found consistently even when it was loaded with components,
since a relatively large percentage of the surface was still visible to the camera.

8.3 Motion Planning

The experiments testing the performance of the OMPL-based Movelt 2 motion
planning pipeline indicate a clear improvement in success rate when given multiple
planning attempts. In the first experiment, the pipeline was able to solve 86% of
the planning requests without any additional attempts. Over the 100 requests, a
mean response time of 67 ms was measured, with a worst case response time of 194
ms and a standard deviation of 30 ms. In the second experiment the pipeline was
given 3 additional planning attempts, which resulted in all 100 planning requests
being successfully solved. Over the 100 planning request, a mean response of 94
ms was measured, with a worst case response time of 417 ms and a standard
deviation of 64 ms.

The experiments indicate that additional planning attempts will elevate the suc-
cess rate for a given planning request. This can partly be explained by the stochas-
tic nature of the employed RRT-Connect motion planner, and partly due to how
a pose goal is transformed to a configuration in the pipeline. RRT-Connect uses

140 Chapter 8 Discussion

a randomized sampler, which cause the two trees to often grow completely differ-
ently even for planning attempts towards the same goal configuration. In addition,
the pose goal may be realized as a different joint configuration by the pipeline, as
the kinematic redundancy of YuMi enable a multitude of different configuration
to yield the same end-effector pose. Due to the variability of the determined goal
configuration and the grown trees, re-calling the planner upon failed planning
seem to be an efficient strategy to increase the reliability of the pipeline.

It is also noted the mean response time increases with 3 allowed replanning at-
tempts. As additional attempts are included in the response times, this is ex-
pected. Even so, for both experiments, most response times seem to hover around
50 ms. As the first experiment showed, it can be expected that 86% of the re-
quests will be solved in the first attempt in this region of the workspace. With
this in mind, it is expected that most successful planning attempts will be within
roughly the same range of response times. The increased mean, worst case re-
sponse time and standard deviation is explained by the more computationally
expensive 'new’ successes produced by allowing retries. The random poses gener-
ated were both in close vicinity of each other, and in an unobstructed section of
the robots workspace. It is therefore unknown whether these results can be ex-
trapolated to more difficult planning scenarios. This notwithstanding, the results
suggest the pipeline is reliable enough to be used in a larger system.

The experiments testing the performance of the linear Cartesian Movelt 2 motion
planning pipeline suggest the pipeline may perform differently depending on the
direction of the desired the linear Cartesian motion. In the first experiment,
motion in the negative z-direction of the base frame was desired. 50 attempts
at planning a motion 10 cm in this direction and back to the start pose were
conducted. Over the 96 response times, a mean response time of 12 ms, with a
worst case response time of 58 ms and a standard deviation of 6 ms was measured.
In the second experiment, motion in the positive y-direction of the base frame was
desired. Likewise the first experiment, 50 attempts at planning a motion 10 cm in
this direction and then back to the start pose were conducted. This time, owing
to a lower success rate in planning the first motion to the goal, 89 response times
were measured. The mean response time was found to be 13 ms, the worst case
response time was measured to 64 ms and the standard deviation 7 ms. The first
experiment recorded success rates of 92% to the goal, 95.5% returning from the
goal, a 88% success rate at finding a solution to the goal and back and an overall
success rate of 93.7% over all attempts. The second experiment recorded lower
success rates in most categories, a 78% success rate to the goal, a 97.4% success
rate returning from the goal, a 76% success rate at finding a solution to the goal
and back and an overall success rate of 86.4%.

There appears to be little difference in the response times of a successful planning

8.3 Motion Planning 141

attempt between the two experiments. The increase in mean response time, worst
case response time and standard deviation appear to be caused by the increased
number of unsuccessful planning attempts. Even though both experiments plan
linear motion in unobstructed sections of the robots workspace, planning in the
negative z-direction of the base frame show a 14% better success rate to the
goal. This may be caused by the mechanical layout of the robot. The arm of the
robot is required to cross in front of its torso, which possibly is a section of the
workspace in which it is more difficult to plan linear Cartesian motions. Returning
from the goal, the motion planning pipeline displays a similar success rate in the
experiments.

The linear Cartesian motion planning experiments indicate that when a solution
for a short linear Cartesian motion from an initial pose to a goal pose is found, a
returning linear Cartesian motion from the goal pose back to the initial pose can
also be expected to be found. This is somewhat unsurprising as the Cartesian
interpolator uses a numerical inverse kinematic solver using the last configuration
as seed, meaning the exact same path as the path to the goal is likely to be found
in reverse. It is noted that this result was achieved for a short motion in an
unobstructed part of the robot’s workspace. It is not certain that this will be the
case in general. Furthermore, while the returning motion is reliably found, the
motion to the goal does not deliver the same guarantees. In the last experiment,
the planning to the goal was conducted allowing for 3 retry iterations. This
increased the success rate to 96%, indicating that if given additional retries, the
motion planning pipeline should be able to reliably find solutions. It is noted that
the retries are very time consuming due to the additional motions performed.

The two sets of experiments testing the two Movelt 2 motion planning pipelines
highlights the different time-complexities and reliabilities of the pipelines. The
OMPL-based pipeline appears to plan on average 6-7 times slower than the linear
Cartesian pipeline. The large difference in time-complexity can be explained by
a combination of two factors, the different approaches employed to plan paths,
and the difference in operational space distance between the start and goal pose.
Path planning in the linear Cartesian pipeline is less complex than in the OMPL-
based pipeline as the path is predefined as the straight line between two points.
The Cartesian interpolator transforms the pose waypoints on the straight line in
operational space to the configuration space using inverse kinematics. This pro-
cess is less complex than the path planning of RRT-Connect in the OMPL-based
pipeline. In the experiments, the operational space distance is also shorter for
the linear Cartesian pipeline. This results in fewer states being collision checked,
which is a very computational expensive operation.

142 Chapter 8 Discussion

8.4 External Force Estimation

While initial tests of the external force estimation module appeared to yield
promising results, further testing indicated that the capability of the system was
lacking. The main problem with the overall system is the presence of sinusoidal
oscillations in the external torques estimated by the robot controller. We are un-
able to determine the reason behind these observations as we do not have access to
the software implementation responsible for the torque estimates. The oscillations
are dampened out over time, as can be seen in Figure 7.16. After sufficient time
has passed the system is at rest and further investigation of the force estimation
can be conducted.

In the test where a known force of 4.88 Newtons was placed in line with end-
effector z-axis, the direction of the estimated force is as expected. The estimated
force had a component in the z-direction with a magnitude of 4.4 Newtons and a
component in the z-direction with a magnitude of 0.5 Newtons. The force vector
has a magnitude of 4.42 Newtons, which is 9.5% less than the applied force. An
interesting observation is that the estimated force component in the z-direction
does not return to it’s initial baseline after the load is removed, instead it reports
a force of 0.5 Newtons in the opposite direction of the applied load. The difference
in estimated force in the z-direction during and after the load is applied is 4.9
Newtons. This value is within a surprisingly small margin of error of the applied
force. The phenomenon of external joint torques not returning to the same value
after loading is also observed in Figure 7.17a. One likely reason for the difference
in resting torque before and after loading might be differing static friction levels,
which are not accounted for in our model.

It is clear that while the dynamic modelling implemented in the ExternalForce
class, calculating forces from joint torques appears to work as intended, the ex-
ternal torques estimated by the robot controller do not lend themselves well to
this type of application. The oscillating behavior after motion and unpredictable
behavior after application of forces, render the current system unsuitable to any
application requiring a reasonable level of accuracy. The external torque values
are used by the robot controller to detect collisions, it is however unclear how,
or if, these values are processed for this purpose. Due to the limited payload of
YuMi, the implementation of a system for measuring forces acting on the end-
effector frame without the use of external sensors is worth pursuing further. To
this end it would be interesting to implement a system for estimation of external
torques based on the derivations in Chapter 5.

8.5 System Integration and Bin Picking 143

8.5 System Integration and Bin Picking

While there is room for improvement, the developed robot system was able to
reliably pick and place components from a cluttered bin. Over nine experiments,
a total of 17 errors were encountered. Of these, 16 were correctly categorized
and successfully handled in accordance to the four defined failure modes of the
system. One error was not detected, and resulted in a system failure. The fail-
ure was caused by a false positive match by the object pose estimation system.
Different parameters were employed in the motion planning and pose estimation
systems over the nine experiments. The first three experiments were performed
using default Movelt 2 joint speed and joint acceleration limits, and no planes
were removed from the point cloud in the pose estimation pipeline. In these ex-
periments, the detection time was roughly 12 seconds, the average successful pick
time was 46.2 seconds, while the average cycle time was 50.9 seconds. Five picks
were aborted in experiment 1, in experiment 2 and 3 none were aborted. In ex-
periment 3, a total of five linear retries were conducted to find a linear Cartesian
motion down into the pick bin. The first two experiments utilised the same set-
tings for the pose estimation pipeline, and unsurprisingly the average detection
times recorded were similar. In the third experiment, the relative sampling dis-
tances was decreased to 0.02 in HALCON. This increased the detection time with
about 5 seconds, with no clear improvement in accuracy.

For the remainder of the experiments, the ground plane in the point cloud was
removed in the pose estimation pipeline. This resulted in three times faster object
pose estimation. In experiment 4, faster pose estimation in combination with only
one aborted pick, and no retry iterations being necessary during linear Cartesian
motion planning, resulted in a significantly lower average pick and cycle time,
respectively 32.2 and 34.8 seconds. In experiment five a reduced downwards linear
Cartesian motion speed scaling was tested while using the same configurations as
in experiment four. This resulted in a slighter higher pick and cycle time. In
experiment five, four picks were aborted, this was caused by invalid poses where
the pick would have resulted in a collision. In experiments 6, 7, 8 and 9, the joint
speed and joint accelerations limits were increased, and the standby configuration
was changed to the alternative configuration. The average pick and cycle time
of these experiments was 22.8 and 25.4 seconds respectively. In experiment 6
and 7 one pick was aborted, and no retry iterations were necessary. Thus, these
exhibit similar pick and cycle times. In experiment 8 and 9, 2 and 3 aborted picks
occurred, leading to higher cycle times. In experiment 9, two retry iterations were
performed, further increasing both the cycle and pick times.

From the data captured in the bin picking experiments, it appears that the retry
system employed for planning of linear Cartesian motions is very time consuming.
This was highlighted in experiment 3. While no picks were aborted in experiment

144 Chapter 8 Discussion

3, it appears the conducted retry iterations when finding a linear Cartesian motion
were almost equally time consuming as the aborted picks suffered in experiment
1. It is noted that the detection time in experiment 3 was 5 seconds longer than
in experiment 1 and 2, and thus accounts for 5 out of the 13 second increase in
cycle time from experiment 2 to experiment 3. The effect of retry iterations can
also be seen in experiment nine. While useful to reduce the number of aborted
picks, the retry iterations do not decrease the cycle time significantly. As was
seen in experiment 3, it’s most distinct effect was keeping the pick and cycle
times similar. Aborted picks have the opposite effect, as the average cycle time
will increase without affecting the average pick time. In industrial settings, the
cycle time is of greater importance than the pick time. Knowing the average cycle
time is necessary to determine the number of components that can be picked
or handled during a unit of time, or how long it takes to pick or handle a set
number of objects. Additionally, the average cycle time should be stable to provide
operational predictability. The additional time added by retry iterations, can be
reduced by changing the implementation of the linear Cartesian retry system.
The motions performed to find a different manipulator configuration can instead
be simulated, resulting in a single motion to the new configuration.

The processing time of the pose estimation pipeline proved to be rather sensitive
to changes in the size of the input point cloud. Removing the ground plane in
addition to performing region of interest filtering greatly reduces the total number
of points. With fewer points, the processing time was reduced to about 32% of the
processing time when the ground plane was not removed. The HALCON settings
used in our experiments were based on recommended values [25]. Our values were
selected with the matching robustness in mind. Parameter values which result in
fewer points being processed would likely have resulted in a slight improvement in
processing time, at a detriment to robustness. The parameters used in our tests
resulted in correct matches when the object was present in the scene, within a
reasonable time frame for the employed matching algorithm. The performance of
the point pair feature matching algorithm, while not being state-of-the-art for pose
estimation, was able to process imaging data at a reasonable rate. The average for
the pick objects in experiments 4-9, excluding the image acquisition time, was 3.36
seconds. For deployment of this system in an industrial environment, for instance
as part of an assembly line, this relatively high processing time is not ideal. The
main advantage of the pose estimation system in it’s current configuration is the
ease with which new components can be introduced and recognised by the system.
Fast reconfiguration for new components allows for shorter turnover times for the
system.

Several improvements can be envisioned for the bin picking system. The frequent
occurrence of invalid end-effector poses in the picking phase was due to the length
of the fingers being very similar to the depth of the pick-bin. This made it difficult

8.5 System Integration and Bin Picking 145

for the gripper to grasp objects which were close to the walls of the bin, as this
would have resulted in a collision between the gripper base and the top edge of
the bin wall. This problem can be resolved by using a set of fingers longer than
the depth of the bin. With this change it is likely that the majority of the aborted
pick attempts due to invalid poses could have been carried out. Attempts which
were aborted due to the gripper dropping the object could have been avoided if
the grippers had a higher coefficient of friction than the ones currently used. The
single false positive match not detected by the pose estimation pipeline must be
eliminated to ensure safe and reliable operation. To this end, the score limit for
detection of false positives should be adjusted in accordance with the discussion in
Section 8.2. The OMPL-based motion planning pipeline using the RRT-Connect
motion planner does not optimize for direct paths. The efficiency of the bin-
picking system can be improved by altering the OMPL-based motion planning
pipeline to produce more direct paths. This can be done by changing to a more
direct planning algorithm.

The interaction between the system components worked as intended. The com-
ponent’s ability to detect errors and report these to the system integration layer
ensured that the behaviour of the system was predictable, reducing the probabil-
ity of undesired system stops. The architecture is applicable to several industrial
manufacturing applications involving the handling of small components. In it’s
current configuration, the system is able to avoid known obstacles, and has the
ability to detect new obstacles within cameras relatively narrow field of view.
To improve the system’s ability to work safely in close proximity with humans,
additional sensors could be added to detect obstacles within the whole robot
workspace. Because of the modular base-architecture this can be done without
major reworking of the current code base. The current system has the ability
to perform event triggered re-planning of motions when changes in the planning
scene occurs. Thus, if a module tasked with using sensor data to model and
monitor obstacles in the planning scene is developed, the current system can be
employed to avoid obstacles in a dynamic scene.

Chapter 9

Conclusion and Further Work

9.1 Conclusion

This thesis has presented methodology and implementation details for a developed
system for external control of an ABB YuMi dual arm industrial robot. The de-
veloped system integrated a state-of-the-art Zivid One 3D camera for object pose
estimation together with a motion planning system capable of collision avoidance,
allowing for autonomous manipulation of components in a partially structured
environment. The robot was externally controlled using the Externally Guided
Motion (EGM) and Robot Web Services (RWS) interfaces. The motion plan-
ning system was implemented using the initial Movelt 2 Beta release. The pose
estimation pipeline was implemented using point pair features for matching 3D
models to point clouds. The system components were integrated using ROS 2.
In addition, a method for extrinsic camera calibration using point clouds for use
in robotic hand-eye calibration has been developed. A system for estimation of
external end-effector forces was also implemented.

The implemented system components were tested both individually and in an
integrated system configuration. The pose estimation pipeline was able to reli-
ably find the pose of objects from point clouds. The pipeline was tested on three
objects with differing geometry. The average processing time was 3.36 seconds.
The motion planning system consists of linear Cartesian and OMPL-based mo-
tion planning pipelines. The linear Cartesian motion planning pipeline was found
to have a success rate of 96% with an average planning time of 12.65 ms. The
OMPL-based motion planning pipeline was found to have a success rate of 100%
with an average planning time of 84.4 ms. The method developed for hand-eye
calibration was tested against an OpenCV based 2D method. Our calibration
method had, on average, 2.46 times lower translation error and 3.3 times lower
rotation error compared with the OpenCV method. The resulting hand-eye trans-
formation was used successfully in a robot vision system. The performance of the

148 Chapter 9 Conclusion and Further Work

implemented external force estimation system was found not to be sufficient to
merit it’s use in any application requiring accurate force measurements. This was
due to noisy and inaccurate measurements of external joint torques, transmitted
from the robot controller. System integration was tested in a bin picking ap-
plication, where objects were picked from a cluttered bin and placed in another
container. The system was able autonomously and reliably perform the speci-
fied tasks, demonstrating the applicability of the system to industrial component
handling tasks.

9.2 Further Work

To further improve the performance of the implemented pose estimation system,
some shortcomings should be addressed. The occurrence of false positive matches
can be reduced, or eliminated outright, by implementing the per object score
limit, in accordance with the discussion in section 8.2. Since the processing time
is closely linked to the currently used point pair feature method, it is unlikely that
this can be improved. If faster pose estimation is required, a different method for
pose estimation should be implemented as a new module of the pose estimation
system.

The fallback effort in the retry system of the linear Cartesian Movelt 2 motion
planning pipeline should be altered. The motions performed to find a different ma-
nipulator configuration should be simulated, and not executed on the robot. This
can be done by extracting the last RobotState of a found trajectory and imposing
it on the PlanningComponent. This should allow planning to be performed from
the configuration defined in the imposed RobotState. After two motions have
been simulated, a linear Cartesian planning attempt can be performed from the
resulting RobotState. Additionally, the equivalent state effort can be altered to
more reliably find configurations yielding the same end-effector pose. This can be
achieved by extending the predefined list of seeds or using an analytical inverse
kinematics solver.

The paths found by RRT-Connect are rarely direct and often involve unnecessary
motions. The newest version of the Movelt 2 Beta include functionality to change
the employed motion planner. To produce more direct paths, a sampling-based
planner optimizing for short paths can be selected. Specifically, the potential of
the RRT* algorithm should be investigated.

Currently the trajectory generated by the path planner is used directly to control
the manipulator. This can in some cases result in jagged motions. If smoother
manipulator motion is desired, joint trajectory interpolation capabilities should
be implemented as part of the trajectory controller.

References

ABB unwveils the future of human-robot collaboration: YuMi®). 2014. URL:
https://new.abb.com/news/detail/13110/abb-unveils-the-future-
of-human-robot-collaboration-yumir (visited on 03/30/2020).

abb__libegm. URL: https://github.com/ros-industrial/abb_libegm
(visited on 05/22/2020).

abb__librws. URL: https://github. com/ros-industrial/abb_librws
(visited on 05/25/2020).

About ROS. URL: https://www.ros.org/about-ros/ (visited on 03/29/2020).

Announcing Movelt 1.0 and a Master Branch. 2019. URL: https://moveit.
ros . org/moveit ! /ros/2019/03/08/announcing - the -moveit-1-
release.html (visited on 03/27/2020).

Application manual - Controller software IRC5. Rev. C. ABB Robotics.
2016.

Zivid AS. Zivid SDK. 2020. URL: http://www.zivid.com/sdk (visited on
05/22/2020).
Paul J Besl and Neil D McKay. “Method for registration of 3-D shapes”.

In: Sensor fusion IV: control paradigms and data structures. Vol. 1611. In-
ternational Society for Optics and Photonics. 1992, pp. 586-606.

Markus Bjgnnes. “Robotic Hand Eye Calibration using Point Clouds”. De-
livery in the specialization project, in the course TPK4560. Dec. 2019.

Eric Brachmann, Alexander Krull, Frank Michel, Stefan Gumhold, Jamie
Shotton, and Carsten Rother. “Learning 6d object pose estimation using 3d

object coordinates”. In: European conference on computer vision. Springer.
2014, pp. 536-551.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre
Vandergheynst. “Geometric deep learning: going beyond euclidean data”.
In: IEEFE Signal Processing Magazine 34.4 (2017), pp. 18-42.

Sachin Chitta, Ioan Sucan, and Steve Cousins. “Moveit![ros topics]”. In:
IEEE Robotics € Automation Magazine 19.1 (2012), pp. 18-19.

https://new.abb.com/news/detail/13110/abb-unveils-the-future-of-human-robot-collaboration-yumir
https://new.abb.com/news/detail/13110/abb-unveils-the-future-of-human-robot-collaboration-yumir
https://github.com/ros-industrial/abb_libegm
https://github.com/ros-industrial/abb_librws
https://www.ros.org/about-ros/
https://moveit.ros.org/moveit!/ros/2019/03/08/announcing-the-moveit-1-release.html
https://moveit.ros.org/moveit!/ros/2019/03/08/announcing-the-moveit-1-release.html
https://moveit.ros.org/moveit!/ros/2019/03/08/announcing-the-moveit-1-release.html
http://www.zivid.com/sdk

[15]

[22]

[23]

[24]

References

Peter Corke. Robotics, vision and control: fundamental algorithms in MATLAB®)

second, completely revised. Vol. 118. Springer, 2017.

Alessandro De Luca, Alin Albu-Schaffer, Sami Haddadin, and Gerd Hirzinger.
“Collision detection and safe reaction with the DLR-III lightweight manip-
ulator arm”. In: 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE. 2006, pp. 1623-1630.

Alessandro De Luca and Raffaella Mattone. “Sensorless robot collision de-
tection and hybrid force/motion control”. In: Proceedings of the 2005 IEEE
international conference on robotics and automation. IEEE. 2005, pp. 999—
1004.

Bertram Drost and Slobodan Ilic. “2012 Second International Conference

on 3D Imaging, Modeling, Processing, Visualization & Transmission”. In:
IEEE. 2012, pp. 9-16.

Bertram Drost, Markus Ulrich, Nassir Navab, and Slobodan Ilic. “Model
globally, match locally: Efficient and robust 3D object recognition”. In: 2010
IEEE computer society conference on computer vision and pattern recogni-
tion. Ieee. 2010, pp. 998-1005.

Jonatan S Dyrstad, Marianne Bakken, Esten I Grgtli, Helene Schulerud,
and John Reidar Mathiassen. “Bin Picking of Reflective Steel Parts using
a Dual-Resolution Convolutional Neural Network Trained in a Simulated
Environment”. In: 2018 IEEFE International Conference on Robotics and
Biomimetics (ROBIO). IEEE. 2018, pp. 530-537.

Olav Egeland. Robot Vision. Jan. 2019.

Hk ElMaraghy and W ElMaraghy. “Smart adaptable assembly systems”.
In: Procedia CIRP 44.4-13 (2016), pp. 127-128.

Asa Fasth, Johan Stahre, and Kerstin Dencker. “Level of automation analy-
sis in manufacturing systems”. In: Advances in Human Factors, Ergonomics,
and Safety in Manufacturing and Service Industries. Chapter (2010), pp. 233
242.

Roy T Fielding and Richard N Taylor. Architectural styles and the design of
network-based software architectures. Vol. 7. University of California, Irvine
Irvine, 2000.

FlexPendant Development. 2016. URL: http://developercenter.robotstudio.

com/flexpendant/manuals (visited on 04/01,/2020).

Andreas Georgopoulos, Ch Ioannidis, and A Valanis. “Assessing the per-
formance of a structured light scanner”. In: International Archives of Pho-
togrammetry, Remote Sensing and Spatial Information Sciences 38.Part 5
(2010), pp. 251-255.

http://developercenter.robotstudio.com/flexpendant/manuals
http://developercenter.robotstudio.com/flexpendant/manuals

References 151

[25] HALCON Operator Reference, 3D Matching. URL: https://www.mvtec.
com/doc/halcon/13/en/find_surface_model.html (visited on 06/08/2020).

[26] Christopher G Harris, Mike Stephens, et al. “A combined corner and edge
detector.” In: Alvey vision conference. Vol. 15. 50. Citeseer. 1988, pp. 10—
5244.

[27] Richard S Hartenberg and Jacques Denavit. “A kinematic notation for lower
pair mechanisms based on matrices”. In: Journal of applied mechanics 77.2
(1955), pp. 215-221.

[28] Stefan Hinterstoisser, Stefan Holzer, Cedric Cagniart, Slobodan Ilic, Kurt
Konolige, Nassir Navab, and Vincent Lepetit. “Multimodal templates for
real-time detection of texture-less objects in heavily cluttered scenes”. In:
2011 international conference on computer vision. IEEE. 2011, pp. 858-865.

[29] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary
Bradski, Kurt Konolige, and Nassir Navab. “Model based training, detection
and pose estimation of texture-less 3d objects in heavily cluttered scenes”.
In: Asian conference on computer vision. Springer. 2012, pp. 548-562.

[30] Tom&s Hodan, Jiri Matas, and Stepan Obdrzalek. “On evaluation of 6D
object pose estimation”. In: FEuropean Conference on Computer Vision.
Springer. 2016, pp. 606—619.

[31] Tomas Hodan, Frank Michel, Eric Brachmann, Wadim Kehl, Anders Glent-
Buch, Dirk Kraft, Bertram Drost, Joel Vidal, Stephan Ihrke, Xenophon
Zabulis, et al. “Bop: Benchmark for 6d object pose estimation”. In: Pro-
ceedings of the European Conference on Computer Vision (ECCYV). 2018,
pp. 19-34.

[32] Tomas Hodaii, Xenophon Zabulis, Manolis Lourakis, Stépan Obdrzélek, and
Jif1 Matas. “Detection and fine 3D pose estimation of texture-less objects
in RGB-D images”. In: 2015 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). IEEE. 2015, pp. 4421-4428.

[33] Radu Horaud and Fadi Dornaika. “Hand-eye calibration”. In: The interna-
tional journal of robotics research 14.3 (1995), pp. 195-210.

[34] Svenja Kahn, Dominik Haumann, and Volker Willert. “Hand-eye calibration
with a depth camera: 2D or 3D?” In: 2014 International Conference on
Computer Vision Theory and Applications (VISAPP). Vol. 3. IEEE. 2014,
pp- 481-489.

[35] James J Kuffner and Steven M LaValle. “RRT-connect: An efficient ap-
proach to single-query path planning”. In: Proceedings 2000 ICRA. Mil-
lennium Conference. IEEFE International Conference on Robotics and Au-
tomation. Symposia Proceedings (Cat. No. 00CH37065). Vol. 2. IEEE. 2000,
pp. 995-1001.

https://www.mvtec.com/doc/halcon/13/en/find_surface_model.html
https://www.mvtec.com/doc/halcon/13/en/find_surface_model.html

[39]
[40]

[41]

[42]

[46]

i~
Y

Ny
0,

Ny
=/

References

Tobias Kunz and Mike Stilman. “Time-optimal trajectory generation for
path following with bounded acceleration and velocity”. In: Robotics: Sci-
ence and Systems VIII (2012), pp. 1-8.

Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox. “DeepIM: Deep
Iterative Matching for 6D Pose Estimation”. In: The European Conference
on Computer Vision (ECCYV). Sept. 2018.

Kevin M Lynch and Frank C Park. Modern Robotics. Cambridge University
Press, 2017.

Managed nodes. URL: https : //design . ros2 . org/articles/node _
lifecycle.html (visited on 06/08/2020).

Farzin Mokhtarian and Riku Suomela. “Robust image corner detection through
curvature scale space”. In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 20.12 (1998), pp. 1376-1381.

Motion Planning Pipeline — mowveit_tutorials Melodic documentation. URL:
https://ros-planning.github.io/moveit _tutorials/doc/motion _
planning_pipeline/motion_planning_pipeline_tutorial.html (vis-
ited on 03/27/2020).

MowveltCpp Tutorial — moveit_tutorials Melodic documentation. URL: https:
//ros-planning . github.io/moveit _tutorials/doc/moveit _cpp/
moveitcpp_tutorial.html (visited on 03/27/2020).

MVTec HALCON. URL: https://www.mvtec . com/products/halcon/
(visited on 06/07/2020).

Davide Nicolis, Andrea Maria Zanchettin, and Paolo Rocco. “Constraint-
based and sensorless force control with an application to a lightweight dual-
arm robot”. In: IEEE Robotics and Automation Letters 1.1 (2016), pp. 340—
347.

Marius Nilsen. “ROS2 Integration of ABB IRB 14000 YuMi”. Delivery in
the specialization project, in the course TPK4560. Dec. 2019.

Open Multi-Processing. URL: https://www.openmp.org/.
Operating Manual - IRB 1400. Rev. E. ABB Robotics. 2018.

Orocos Kinematics and Dynamics. URL: https://www.orocos . org/kdl
(visited on 06/07/2020).

Jia Pan, Sachin Chitta, and Dinesh Manocha. “FCL: A general purpose
library for collision and proximity queries”. In: 2012 IEEE International
Conference on Robotics and Automation. IEEE. 2012, pp. 3859-3866.

https://design.ros2.org/articles/node_lifecycle.html
https://design.ros2.org/articles/node_lifecycle.html
https://ros-planning.github.io/moveit_tutorials/doc/motion_planning_pipeline/motion_planning_pipeline_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/motion_planning_pipeline/motion_planning_pipeline_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/moveit_cpp/moveitcpp_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/moveit_cpp/moveitcpp_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/moveit_cpp/moveitcpp_tutorial.html
https://www.mvtec.com/products/halcon/
https://www.openmp.org/
https://www.orocos.org/kdl

References 153

[51]

[55]

[56]

[57]

[58]
[59]

Frank C Park and Bryan J Martin. “Robot sensor calibration: solving AX
= XB on the Euclidean group”. In: IEEE Transactions on Robotics and
Automation 10.5 (1994), pp. 717-721.

Point Cloud Library. URL: https://pointclouds.org/.

Matteo Parigi Polverini, Andrea Maria Zanchettin, Sebastiano Castello, and
Paolo Rocco. “Sensorless and constraint based peg-in-hole task execution
with a dual-arm robot”. In: 2016 IEEFE International Conference on Robotics
and Automation (ICRA). IEEE. 2016, pp. 415-420.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. “Pointnet: Deep
learning on point sets for 3d classification and segmentation”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2017,
pp. 652-660.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. “Faster r-cnn:
Towards real-time object detection with region proposal networks”. In: Ad-
vances in neural information processing systems. 2015, pp. 91-99.

Robot Web Services. URL: http://developercenter .robotstudio.com/
blobproxy/devcenter/Robot_Web_Services/html/index.html (visited
on 04/05/2020).

r0s2__control. URL: https://github.com/ros-controls/ros2_control
(visited on 05/21/2020).

rviz_wiki. URL: https://github.com/ros2/rviz (visited on 05/25/2020).

Yiu Cheung Shiu and Shaheen Ahmad. “Calibration of wrist-mounted robotic
sensors by solving homogeneous transform equations of the form AX = XB”.
In: ieee Transactions on Robotics and Automation 5.1 (1989), pp. 16-29.

Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Robotics:
modelling, planning and control. Springer Science & Business Media, 2010.

Stephen M Smith and J Michael Brady. “SUSAN—a new approach to low
level image processing”. In: International journal of computer vision 23.1
(1997), pp. 45-78.

StateMachine Add-In 1.1. URL: https://robotapps.robotstudio.com/#/
viewApp/c163de01-792e-4892-2290-37dbe050b6e1 (visited on 05/20/2020).

Ioan A Sucan, Mark Moll, and Lydia E Kavraki. “The open motion planning
library”. In: IEEFE Robotics € Automation Magazine 19.4 (2012), pp. 72-82.

Roger Tsai. “A versatile camera calibration technique for high-accuracy 3D
machine vision metrology using off-the-shelf TV cameras and lenses”. In:
IEEE Journal on Robotics and Automation 3.4 (1987), pp. 323-344.

https://pointclouds.org/
http://developercenter.robotstudio.com/blobproxy/devcenter/Robot_Web_Services/html/index.html
http://developercenter.robotstudio.com/blobproxy/devcenter/Robot_Web_Services/html/index.html
https://github.com/ros-controls/ros2_control
https://github.com/ros2/rviz
https://robotapps.robotstudio.com/#/viewApp/c163de01-792e-4892-a290-37dbe050b6e1
https://robotapps.robotstudio.com/#/viewApp/c163de01-792e-4892-a290-37dbe050b6e1

References

Roger Y Tsai and Reimar K Lenz. “A new technique for fully autonomous
and efficient 3D robotics hand/eye calibration”. In: IEEE Transactions on
robotics and automation 5.3 (1989), pp. 345-358.

User Manual StateMachine Add-In 1.1. ABB AB, Robotics. 2019.

Joel Vidal, Chyi-Yeu Lin, and Robert Marti1. “6D pose estimation using an
improved method based on point pair features”. In: 2018 4th international
conference on control, automation and robotics (iccar). IEEE. 2018, pp. 405—
409.

Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martin-Martin, Cewu Lu, Li Fei-
Fei, and Silvio Savarese. “Densefusion: 6d object pose estimation by iterative
dense fusion”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2019, pp. 3343-3352.

What is DDS? URL: https://www.dds-foundation.org/what-is-dds-3/
(visited on 04/03,/2020).

Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. “Posecnn:

A convolutional neural network for 6d object pose estimation in cluttered
scenes”. In: arXiv preprint arXiv:1711.00199 (2017).

YuMi Data Sheet. Rev. H. ABB Robotics. 2019.

Menglong Zhu, Konstantinos G Derpanis, Yinfei Yang, Samarth Brahmb-
hatt, Mabel Zhang, Cody Phillips, Matthieu Lecce, and Kostas Daniilidis.
“Single image 3D object detection and pose estimation for grasping”. In:
2014 IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2014, pp. 3936-3943.

https://www.dds-foundation.org/what-is-dds-3/

@ NTNU

Norwegian University of
Science and Technology

	Introduction
	Objectives
	Contributions
	Thesis structure

	Preliminaries
	Kinematic Modelling of Rigid Bodies
	Kinematics of Open Chains
	Dynamic Modelling of Open Chains
	Computer Vision
	Robot Operating System 2

	Pose Estimation
	Geometry Based Approaches
	Template based matching
	Deep Learning Based Approaches
	System Integration Concerns
	Hand Eye Calibrations Using Point Clouds
	Kinematics of the Hand-Eye Calibration Problem
	A Solution to the Hand-Eye Calibration Problem
	Procedure for Hand-Eye Calibration
	Hand-Eye Calibration Using Point Clouds

	Motion Planning
	Configuration Space and Operational Space
	Path and Trajectory
	Defining the Motion Planning Problem
	Motion Planning Methods
	MoveIt 2: ROS 2 Motion Planning Framework

	Estimation of External Forces
	Method for Estimation of External Forces

	System Description
	Hardware
	External Computer
	Software

	Experiments
	Hand-Eye Calibration
	Pose Estimation
	Motion Planning
	Bin Picking
	External Force Estimation

	Discussion
	Hand Eye Calibration Using Point Clouds
	Pose Estimation System
	Motion Planning
	External Force Estimation
	System Integration and Bin Picking

	Conclusion and Further Work
	Conclusion
	Further Work

