
Robotic Hand-Eye Calibration using Point Clouds

Markus Bjønnes

December 11, 2019

Abstract

Hand-eye calibration is an important step in implementing vision systems for robotics.

The presented report investigates the use of point clouds generated from an accurate 3D

scanner to calculate relative camera motion for hand-eye calibration purposes. A brief

review of related research is presented in the introduction chapter. Findings suggest that

hand-eye calibration methods using 3D point clouds are promising, but that the methods

implemented were computationally expensive in comparison to conventional methods. In

this project two methods for hand-eye calibration using point clouds are implemented

and tested against the co-planar point calibration algorithm implemented in the OpenCV

library. The 3D methods utilize color images of a chessboard to find distinct points in the

image, a 3D point cloud is then extracted from these points and used for extrinsic camera

calibration. This method of extracting 3D data for calibration is fast, since it does not

depend on advanced matching algorithms like the ones utilizing a 3D calibration object.

Simulations on generated noisy calibration datasets show that both methods implemented

produce similar results, allowing the hand-eye calibration algorithm to converge. A lab-

oratory robot cell consisting of a KUKA Agilus KR6 r900 sixx robot manipulator with

a Zivid One structured light 3D scanner attached to its end-effector is used for hand-eye

calibration experiments. Experimental results on datasets created using the laboratory

setup show the 3D point cloud methods performing slightly better than the OpenCV

algorithm, especially when the point cloud data being used has a low degree of noise.

Methods for tuning the parameters of the Zivid One 3D scanner to improve the quality

of calibration datasets are also explored, resulting in improved performance of the 3D

point cloud algorithms. Experiments using different calibration object setups and varying

imaging strategies regarding the position of the camera in relation to the calibration board

indicated that there exists an optimal distance for the specific 3D scanner used for the

experiments.

i

Contents

1 Introduction 1

1.1 Problem Description and Objectives . 1

1.2 Related Work . 1

1.3 Report Structure . 3

2 Preliminaries on Robot Kinematics and Computer Vision 4

2.1 Kinematic Modelling of Rigid Bodies . 4

2.1.1 Pose of Rigid Bodies . 4

2.1.2 Rotation Matrices . 5

2.1.3 Elementary Rotations . 6

2.1.4 Rotations as Linear Transformations 6

2.1.5 Euler Angles . 7

2.1.6 Skew Symmetric Representation of a Vector 7

2.1.7 Rotations as Matrix Exponentials and Logarithms 8

2.1.8 Homogeneous Transformations . 9

2.1.9 Forward Kinematics . 9

2.2 Computer Vision . 10

2.2.1 Pinhole Camera Model . 10

2.2.2 Corner Detection . 13

2.2.3 Camera Calibration . 14

2.2.4 Point Clouds . 14

2.2.5 Mathematical Description of Planes 14

2.2.6 Fitting a Plane to a Set of Points 15

2.2.7 Finding the Transformation Between two Point Clouds 15

2.2.8 Structured Light 3D Scanners . 17

3 Hand-Eye Calibration 18

3.1 Kinematics of the Hand-Eye Calibration Problem 18

3.2 A Solution to the Hand-Eye Calibration Problem by Solving AX = XB

on SE(3) . 20

3.2.1 Procedure for Hand-Eye Calibration 22

ii

4 System Description 23

4.1 Robot Manipulator . 23

4.2 Zivid One Camera . 25

4.3 Hand-Eye Calibration Software . 25

4.3.1 3D Point Cloud Calibration Method 27

4.3.2 Calculation of Estimation Error . 28

5 Experiments 32

5.1 Experiments . 32

5.1.1 Tuning 3D Camera Capture Parameters 32

5.1.2 Hand-Eye Calibration Using Generated Noisy Data 33

5.1.3 Hand-Eye Calibration on Real Datasets 35

5.2 Results . 35

5.2.1 Camera Parameter Tuning . 35

5.2.2 Hand-Eye Calibration Using Generated Noisy Data 38

5.2.3 Hand-Eye Calibration on Real Datasets 43

6 Discussion 51

6.1 Capture parameter tuning . 51

6.2 Hand-Eye Calibration on Generated noisy data 52

6.3 Hand-Eye Calibration on Real datasets . 52

7 Conclusion and future work 55

7.1 Conclusion . 55

7.2 Future Work . 56

Appendix A Calibration Chessboards 59

Appendix B Code 63

B.1 homogeneous transformations.py . 63

B.2 utils.py . 64

B.3 zivid hand eye calibrator.py . 64

B.4 capture.py . 65

Appendix C Design Drawings 66

iii

List of Figures

2.1 Coordinate frames {a} and {b}. 6

2.2 Pinhole camera model [12] . 11

2.3 Camera and world coordinate systems . 12

2.4 Plane with normal vector, n . 15

2.5 Illustration of triangulation principle for a structured light scanner. [15] . . 17

3.1 Robot with a camera mounted close to the end-effector, and an object with

attached coordinate frame. 19

3.2 A camera mounted rigidly close to the robot end-effector [9] 20

4.1 KUKA Agilus KR6 r900 sixx, workspace [16] 24

4.2 Robot manipulator with mounted camera 24

4.3 End-effector assembly . 25

4.4 Method and logic of the capture module. 30

4.5 Procedure for hand-eye calibration using the ZividHECalibrator class. . . . 31

5.1 Depth maps for images taken with default and tuned parameters. 37

5.2 Logarithmic intensity histograms images taken with default and tuned pa-

rameters. 37

5.3 Depth map from image taken of a calibration object with black squares.

Tuned parameters from table 5.1 are used. 38

5.4 Calibration on data with added noise from N(µ, σ2) = N(0, 0.01) 38

5.5 Calibration on data with added noise from N(µ, σ2) = N(0, 0.04) 39

5.6 Calibration on data with added noise from N(µ, σ2) = N(0, 0.09) 39

5.7 Calibration on data with added noise from N(µ, σ2) = N(0, 0.16) 39

5.8 Calibration on data with added noise from N(µ, σ2) = N(0, 0.25) 40

5.9 Calibration on data with added noise from N(µ, σ2) = N(0, 1.0) 40

5.10 Calibration on data with added noise from N(µ, σ2) = N(0, 4.0) 40

5.11 Calibration on data with added noise from N(µ, σ2) = N(0, 9.0) 41

5.12 Calibration on data with added noise from N(µ, σ2) = N(0, 16.0) 41

5.13 Calibration on data with added noise from N(µ, σ2) = N(0, 25.0) 41

5.14 Calibration on data with added noise from N(µ, σ2) = N(0, 100.0) 42

iv

5.15 Scatter plot and trend line for noise standard deviations 0.1, 0.2, 0.3, 0.4, 0.5 43

5.16 Scatter plot and trend line for noise standard deviations 1.0, 2.0, 3.0, 4.0, 5.0, 10.0 43

5.17 Chessboard pose, estimated using OpenCV extrinsic camera calibration.

The placement of the chessboard coordinate frame is defined in the camera

calibration stage. Chessboard corners are marked using the drawChess-

boardCorners() function of OpenCV. 44

5.18 Chessboard pose, estimated using 3D point clouds for extrinsic camera

calibration. Square center points are marked by blue dots. The chessboard

coordinate frame is placed in the centroid of the point cloud comprised of

the center points. 44

5.19 Visualization of robot end-effector poses relative to the base frame 45

5.20 Chessboard pose, estimated using 3D point clouds for extrinsic camera

calibration. 45

5.21 Dataset1. Hand-eye calibration errors on images captured at a distance in

the range 600-700 mm from the calibration object . 9× 6 chessboard with

square size of 20.0 mm fig. A.1. Camera settings as in table 5.2 46

5.22 Dataset 2. Hand-eye calibration errors on images captured at a distance

of 600-800 mm from the calibration object. 9 × 6 chessboard with square

size of 20.0 mm. fig. A.1. Camera settings as in table 5.1 46

5.23 Dataset 3. Hand-eye calibration errors on images captured at a distance of

750-950 mm from the calibration object. 21 × 14 chessboard with square

size of 13.8 mm. Gray value 180 fig. A.2. Camera settings as in table 5.1 . 47

5.24 Dataset 4. Hand-eye calibration errors on images captured at a distance of

800-1000 mm from the calibration object. 20× 13 chessboard with square

size of 13.9 mm. Gray value 130fig. A.3. Camera settings as in table 5.2 . . 48

5.25 Dataset 5. Hand-eye calibration errors on images captured at a distance of

800-1200 mm from the calibration object. 20× 13 chessboard with square

size of 13.9 mm. Gray value 130 fig. A.3. Camera settings as in table 5.2 . 48

5.26 Visualization of the hand-eye transformation in (5.4) resulting from hand-

eye calibration on dataset 3. The robot end-effector is denoted “EF” and

the camera center is denoted “c0” . 49

5.27 Rough estimate of the position of the camera center, illustrated on a 3D

model of the end-effector assembly. 50

A.1 9× 6. Square size 20.0 mm. [18] . 60

A.2 21× 14. Gray value 180. 61

A.3 20× 13. Gray value 130. 62

v

List of Tables

4.1 KUKA Agilus KR6 r900 sixx, technical specifications 23

4.2 Overview of files used for hand-eye calibration 26

5.1 Manually tuned camera parameters. 36

5.2 Automatically tuned camera parameters. 36

5.3 Final translation errors and rotation errors for 3D and 3D plane fit methods. 42

5.4 Final errors on Dataset 1. 46

5.5 Final errors on Dataset 2. 47

5.6 Final errors on Dataset 3. 47

5.7 Final errors on Dataset 4. 48

5.8 Final errors on Dataset 5. 49

vi

Chapter 1

Introduction

1.1 Problem Description and Objectives

In manufacturing environments with a high degree of automation, one particularly chal-

lenging task is the handling of randomly positioned and orientated objects by robotic

manipulators. This task is dependent on the utilization of computer vision technologies

for accurate estimation of the six degrees of freedom pose of objects in 3D space, in con-

sort with robust trajectory control of the robot manipulator. When the pose of the object

has been determined in relation to the coordinate system of the camera it is necessary to

calculate the position of the object in relation to the base coordinate frame of the robot in

order to manipulate it. The transformation between the robot end-effector frame and the

camera frame is called the hand-eye transformation, and is found by means of hand-eye

calibration. Hand-eye calibration is the focus of this project.

With the introduction of high accuracy 3D imaging equipment used for point cloud

generation, it is necessary to investigate whether this accurate position data can be utilized

to increase the accuracy of hand-eye calibration compared with conventional methods. To

this end the main objectives of this project are:

1. Design and assemble a bracket for mounting the 3D scanner on a robot arm.

2. Design and implement a software system for hand-eye calibration utilizing point

cloud data of a scene captured by a 3D scanner.

3. Evaluate the accuracy of the hand-eye calibration when using different methods for

calculation of relative camera poses.

1.2 Related Work

Work on solving the hand-eye calibration problem began in the late 1980s. At that time

digital cameras were becoming good enough to be utilized in computer vision tasks for

1

robotics. The hand-eye calibration problem was first formulated as a system of homoge-

neous matrix equations on the form AX = XB where A represents robot motion and B

represents camera motion. Shiu and Ahmad [1] found a closed form solution to this prob-

lem which satisfied the conditions for uniqueness. The rotation determination problem

was solved by solving a set of eight linear equations with four unknowns. Tsai and Lenz

[2] proposed a different solution to the same problem formulation. They solved the rota-

tional part of the calibration equation by represented the rotation by its unit eigenvector

nx and an angle θx. The solution is formulated in a way that it can yield an exact closed

form solution when two pose pairs are used, or a least squares solution if more pose pairs

are used. Many pose pairs are used to help mitigate the effect of noise in measurements.

Their solution is tested on both generated noisy data and on real robot/camera pose pairs.

The camera positions are estimated using the extrinsic calibration methods introduced in

[3]. Another solution which also generalizes to a linear least squares solution when noise

is present is proposed by Park and Martin [4]. All these solutions decouple the rotation

and translation parts of the formulated system of equations. First the solution for the

rotational part of the hand-eye calibration matrix is found, then this is used to solve a set

of vector equations to find the translation part. This is a good idea because it yields a

relatively simple numerical optimization problem, but the linearisation on of the rotation

problem can become ill conditioned in the presence of noise. Some of these issues were

mitigated in the solution proposed by Horaud and Fadi [5]. They proposed a formulation

to the hand-eye calibration problem on the form of MY = M ′Y B where the 3×4 perspec-

tive matrices M and M ′ of the camera in two different positions are used in stead of an

explicit formulation of the extrinsic and intrinsic parameters. Two different solutions to

this new formulation is presented. One closed form solution using linear least squares for

optimization, and a non-linear solution using the Levenberg-Marquardt method to opti-

mize the hand-eye transformation matrix. The second solution mitigates errors associated

with decoupling rotation and translation, by optimizing both simultaneously.

The authors of [6] use time-of-flight and structured light 3D scanners to find the extrin-

sic parameters of the sensor by matching a the pose of a 3D model with captured 3D data.

This was then used for hand-eye calibration using the method introduced by Tsai and

Lenz. Their findings suggest that using their method of finding the extrinsic parameters

of the cameras resulted in slightly more accurate hand-eye calibration results compared

with the 2D image based method of extrinsic calibration. The 3D method did however

require a more labour intensive process for dataset gathering, and was significantly more

computationally expensive than the 2D image method.

2

1.3 Report Structure

The report is structured as follows. In Chapter 2 the necessary pre-requisites related

to robotics and computer vision are presented in order to provide the reader with the

required theoretical background. In Chapter 3 the kinematics of the hand-eye calibration

problem and a solution based on [4] is presented, as well as the general procedure for

hand-eye calibration of a robot utilizing a vision system. In Chapter 4 the setup used for

experiments related to hand-eye calibration is presented. In Chapter 5 the experimental

results are presented, these are discussed in Chapter 6. Chapter 7 contains the conclusion

and suggested future work.

3

Chapter 2

Preliminaries on Robot Kinematics

and Computer Vision

This chapter will provide the reader with the necessary theoretical knowledge regarding

methods used for modelling the kinematics of rigid bodies in 3D space, as well as the

fundamentals used in computer vision systems. The theoretical concepts presented in

this chapter is gathered from several textbooks as well as papers published in widely

accepted journals [7], [8], [9], [10], [11].

2.1 Kinematic Modelling of Rigid Bodies

The kinematics of rigid bodies is a central concept used in modelling and control of robot

manipulators. It provides a powerful tool for representing the position and orientation,

or pose, of rigid bodies in three dimensional space. The term robot manipulator is used

as a general term meaning a robotic arm. Robotic arms consist of rigid links connected

together by joints. These joints can vary in type, but the most common ones are revoulute

with one rotational degree of freedom and prismatic joints with one translational degree

of freedom.

2.1.1 Pose of Rigid Bodies

Rigid bodies in 3D space have three positional degrees of freedom and three rotational

degrees of freedom, adding up to a total of six degrees of freedom. Having a robust math-

ematical representation for the pose of rigid bodies is fundamental for the development

of methods used in modelling kinematic chains. This representation is based on matrices

in the special orthogonal group, SO(3) and the special Euclidean group, SE(3).

4

2.1.2 Rotation Matrices

Rotation matrices can be used to represent the difference in orientation of a coordinate

system {a} and a rotated coordinate system {b}. Coordinate frames in 3D space are

represented as 3 × 3 matrices with each column being a unit vector. This set of column

vectors make up an orthogonal basis for R3. The axes of the reference coordinate system

can be represented as the columns of the identity matrix in R3×3.

{a} =
[
xa ya za

]
=

1 0 0

0 1 0

0 0 1

 (2.1)

The rotated frame {b} is obtained by applying the linear transformation Rab, repre-

senting the rotation from frame {a} to frame {b}. The elements of the rotation matrix

Rab is as shown below.

Rab =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 , (2.2)

Each column of the matrix representing coordinate frame {b} are the the directional unit

vectors of the the axes of frame {b} given in the coordinates of frame {a}. SO(3) has the

following definition:

R ∈ SO(3) = {R ∈ R3×3, RTR = I3×3, det(R) = 1} (2.3)

From this it follows that

RT = R−1 (2.4)

5

xa

ya

za

xb

yb

zb

Figure 2.1: Coordinate frames {a} and {b}.

2.1.3 Elementary Rotations

Elementary rotations are defined as rotations by an angle θ about one of the three principal

axes of a coordinate frame. Elementary rotations about the z, y, and x axes are presented

below.

Rz(θ) =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (2.5)

Ry(θ) =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 (2.6)

Rx(θ) =

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 (2.7)

2.1.4 Rotations as Linear Transformations

Given the coordinate frames a, b, c where the orientation of frame b in the coordinates

of frame a is defined by the rotation matrix Rab, and the orientation of frame c in the

coordinates of frame b is defined by the rotation matrix Rbc, we can obtain the orientation

of frame c in the coordinates of frame a as the rotation matrix Rac composed from the

intermediate rotations Rab and Rbc as Rac = RabRbc. The interpretation of this operation

is that frame a is first rotated to frame b by Rab, frame b is then rotated by Rbc to frame

c.

6

It is important to note that matrix multiplication operations for matrices in SO(3)

are associative: (R1R2)R3 = R1(R2R3), but not commutative: (R1R2 6= R2R1). The

interpretation of pre- or post multiplication by a rotation matrix is that pre-multiplcation

results in a rotation about the current body frame, while a post-multiplication results in

a rotation about a fixed reference frame.

2.1.5 Euler Angles

As there are three degrees of rotational freedom in 3D space, the parametrization of the

orientation of a rigid body can be represented by three independent rotation angles. This

parametrization is referred to as Euler angles. It is possible to construct several different

representations of the orientation of a rigid body using Euler angles e.g. ZYZ, XYZ, XZX

and ZYX, where X, Y and Z represent elementary rotations about the x, y and z axes

respectively. ZYX-Euler angles are derived below.

Given a rigid body with orientation defined by the body frame b, initially aligned with

the fixed space frame s. The orientation of frame b in the coordinates of frame a are

parametrized by the triplet of angles (α, β, γ) in the following rotation operations.

• The rotation about the z-axis of the fixed frame s by the angle α, resulting in the

body frame s′

• The rotation about the y-axis of the body frame s′ by the angle β, resulting in the

body frame s′′

• The rotation about the x-axis of the body frame s′′ by the angle γ, resulting in the

body frame b

Rsb = Rz(α)Ry(β)Rx(γ) =cosα − sinα 0

sinα cosα 0

0 0 1


 cos β 0 sin β

0 1 0

− sin β 0 cos β


1 0 0

0 cos γ − sin γ

0 sin γ cos γ

 =

cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ

sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ


(2.8)

Where cθ = cos θ, sθ = sin θ are used for the convenience of a more compact notation.

2.1.6 Skew Symmetric Representation of a Vector

A skew symmetric matrix S ∈ Rn×n satisfies the condition that ST = −S, meaning that

the transpose of the matrix is equal to its negative. Given a vector v ∈ R3, a skew

7

symmetric matrix can be constructed from v by (2.9).

v× =

 0 −vz vy

vz 0 −vx
−vy vx 0

 (2.9)

2.1.7 Rotations as Matrix Exponentials and Logarithms

The matrix exponential coordinates is a parametrization of a rotation matrix by a vector

kθ ∈ R3 where k is the unit vector representing the axis of rotation in R3 and θ is a scalar

value representing the angle of rotation about the axis k. Writing θ and k separately gives

the angle-axis representation of the rotation matrix. The matrix logarithm is represented

by the skew symmetric matrix k×θ, and is a member of the Lie algebra, denoted so(3),

of the special orthogonal group, SO(3). The elements of the lie algebra so(3) can be

interpreted as the tangent space of the manifold SO(3) at the identity element. The

matrix logarithm is related to the rotation matrix by:

k×θ ∈ so(3) −→ R ∈ SO(3) : ek
×θ = R (2.10)

The matrix exponential, ek
×θ, is calculated by Rodrigues’ formula (2.11).

R(k, θ) = I + sin(θ)k× + (1− cos(θ))k×k× (2.11)

where I is the identity matrix in R3×3. Given a rotation represented by R ∈ SO(3) the

matrix exponential coordinate representation can be found by the following relation:

SO(3)→ so(3) : R 7→ log(R) = k×θ (2.12)

The angle of rotation θ and the axis of rotation k are calculated from (2.13) and (2.14).

θ = cos−1
(

trace(R)− 1

2

)
(2.13)

k =
1

2 sin θ

r32 − r23r13 − r31
r21 − r12

 (2.14)

Where trace(R) is the sum of the elements on the principal diagonal of R and rij are the

elements of R. Note that this holds only when trace(R) 6= −1 and trace(R) 6= 3, as it

would result in sin θ = 0.

8

2.1.8 Homogeneous Transformations

Homogeneous transformation matrices in the special Euclidean group SE(3) are the set

of all 4× 4 matrices on the form

T =

[
R t

0 1

]
=


r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

0 0 0 1

 (2.15)

where R ∈ SO(3) and t ∈ R3. Multiplication with homogeneous transformation matrices

is associative: (T1T2)T3 = T1(T2T3), but not commutative: T1T2 6= T2T1. Homogeneous

transformation matrices have three important uses.

• Represent the orientation and position of a rigid body.

• Change the reference frame in which a vector or frame is represented.

• Displace a vector or frame.

The inverse of a matrix T ∈ SE(3) is also in SE(3), this also holds for the product

of two matrices in SE(3). The inverse of a homogeneous transformation matrix can be

calculated from:

T−1 =

[
R t

0 1

]−1
=

[
RT −RT t

0 1

]
(2.16)

2.1.9 Forward Kinematics

Forward, or direct, kinematics are used to calculate the position and orientation of the

robot end-effector based on the joint configuration. For a robot with n variable joints the

joint configuration vector q is written as

q = [q1, q2, ..., qn] (2.17)

where q1 is the joint parameter of joint 1, q2 is the joint parameter for joint 2 an so on. The

forward kinematics of a kinematic chain can be expressed as the product of homogeneous

transformation matrices, each depending on a single joint variable qi.

T0n(q) = T01(q1)T12(q2)...T(n−1)n(qn) (2.18)

Where T(i−1)i is the transformation from the coordinate frame attached to joint number

i − 1 to the coordinate frame attached to joint number i. The resulting matrix T0n is

the transformation from the coordinate frame attached to joint 1 to the coordinate frame

attached to joint n.

9

The pose of the robot end-effector frame {t} relative to the base frame {b} is obtained

from

Tbt = Tb0T0n(q)Tnt (2.19)

Where Tb0 and Tnt are constant transformations. The transformation from the last robot

joint to the end-effector frame Tnt has to be calibrated when using different end-effectors.

There are several different methods used for deriving the forward kinematics of a robotic

manipulator, such as the Denavit-Hartenberg (DH) convention [11] and the method using

products of exponentials based on joint twists. The method of deriving the forward kine-

matics of an open chain manipulator based on the DH-convention based on is presented

below.

The DH-convention uses four parameters (ai, di, αi, θi) to define the pose of the frame

attached to joint i in reference to the frame attached to joint i − 1. The parameters

are assigned when the manipulator is in a pre-defined zero-position, meaning that all the

joint variables are set to zero (q = [0, 0, ..., 0]). ai and di are the respective translations

along the xi−1 and zi−1 axes from the origin of frame i− 1 to the origin of frame i. αi is

the rotation about the xi−1 axis and θi is the rotation about the zi−1 axis. For revolute

joints the variable qi = θi and for prismatic joints the joint variable is qi = di. The

joint transformation between joint i− 1 and i is a function of the joint variable qi and is

calculated as

T(i−1)i(qi) =


cos θi − sin θicosαi sin θi sinαi ai cos θi

sin θi cos θicosαi − cos θisinαi ai sin θi

0 sinαi cosαi di

0 0 0 1

 (2.20)

2.2 Computer Vision

Making use of cameras in robotics systems enables the robot to interact autonomously

with its environment. Some of the central methods and models in computer vision are

presented in this section.

2.2.1 Pinhole Camera Model

The pinhole camera model shown in Figure 2.2 is commonly used for modelling a real

camera for use in computer vision applications. It models a simple camera where light is

emitted through a pin-hole in the camera center, this simplification means that each point

in the scene is projected as a single point in the image plane. Given a camera coordinate

frame denoted {c} and a world coordinate frame denoted by {w}, as shown in Figure 2.3.

A point p in the scene with homogeneous coordinates given in the the camera frame is

10

defined as

r̃ccp =


xc

yc

zc

1

 (2.21)

Figure 2.2: Pinhole camera model [12]

and the position of the same point in the world coordinate frame is

r̃wwp =


xw

yw

zw

1

 (2.22)

the transformation of reference frames for this point is given by

r̃ccp = Tcwr̃
w
wp (2.23)

where Tcw is the homogeneous transformation matrix representing the transformation

from {c} to {w}.

11

Figure 2.3: Camera and world coordinate systems

The normalized coordinates of the point represented by rccp projected onto the image

plane is given by

s̃ =

sxsy
1

 =
1

zc
rccp =

1

zc

xcyc
zc

 =


xc
zc
yc
zc

1

 (2.24)

The conversion between homogeneous and non-homogeneous vector coordinates can be

done by

r = Πr̃ =

1 0 0 0

0 1 0 0

0 0 1 0



rx

ry

rz

1

 =

rxry
rz

 (2.25)

The normalized image coordinates can now be calculated as

s̃ =
1

zc
Πr̃ccp =

1

zc
ΠTcwr̃

w
wp (2.26)

The corresponding pixel coordinate values are calculated from the following.

u =
f

ρw
sx + u0 (2.27)

v =
f

ρh
sx + v0 (2.28)

12

Here f is the focal length of the camera, ρw and ρh is the width and height of each pixel,

and u0 and v0 is the image plane center coordinates. Conversion from normalized image

coordinates to homogeneous pixel coordinates is possible using.

p̃ = Ks̃ (2.29)

Where K is the camera intrinsic parameter matrix.

K =


f
ρw

0 u0

0 f
ρh

v0

0 0 1

 =

fx 0 cx

0 fy cy

0 0 1

 (2.30)

Equations (2.26) and (2.29) can be combined to the projective camera transformation.

zcp̃ = KΠTcwr̃
w
wp (2.31)

Which enables the calculation of pixel coordinates corresponding to a point r̃wwp, given the

relative transformation between {c} and {w}. This formulation is the basis for solving of

the inverse problem where the pixel values of a point is known, and the position in the

coordinates of the fixed world frame {w} is desired.

2.2.2 Corner Detection

In computer vision applications, the ability to detect distinct points on an object reliably

under varying lighting conditions and from different viewing angles is very important for

several applications including calibration, tracking and pose estimation. A corner can be

formalized as the point at which two edges meet. Therefore an important step in any

corner detection algorithm requires the detection of edges in an image.

Edges are usually found by finding the boundaries where the gradient of pixel intensity

and color is abrupt. One way of doing this is by convolving the image with a gradient

finding patch for x, and y directions. For instance the Sobel edge detector uses the patches

in (2.32) and (2.33) to find the points at which the image gradient is large in the x and

y directions respectively.

Gx =

−1 0 1

−2 0 2

−1 0 1

 (2.32)

Gy =

−1 −2 −1

0 0 0

1 2 1

 (2.33)

The edges found by this method can be used to efficiently find corners in an image using

13

a variety of different corner detection algorithms like Harris [10], CSS [13] or SUSAN [14].

2.2.3 Camera Calibration

Intrinsic camera calibration is the process of establishing the camera’s intrinsic param-

eters. The model used in Section 2.2.1 is simplified in the sense that the light passes

through a pin-hole directly to the sensor. In a real camera, lenses focus the light in a

way not accounted for in the pin-hole model, this needs to be corrected for by finding a

set of distortion coefficients. The calibration parameters obtained by intrinsic calibration

are the ones in (2.30) accounting for focal distance, principal distance and the coordi-

nates of the principal point. The distortion coefficients account for radial and tangential

distortion, these are used to remove distortion effects from the image.

Extrinsic camera calibration solves the problem of estimating the pose of the camera in

relation to the calibration object. This is a required step in the two step camera calibration

algorithm presented in [3]. This algorithm provides efficient camera calibration based on

coplanar calibration points. The extrinsic camera calibration is also central in solving the

hand-eye calibration problem.

2.2.4 Point Clouds

A point cloud can be defined as a set consisting of n points having positions in 3D space

pi = [xi, yi, zi]
T . For generation of point clouds the accurate estimation of the distance of

a point from the camera along the optical axis, zi, is critical as this allows for calculation

of the 3D position of the point relative to the camera using (2.31). This distance can be

estimated using a variety of methods such as stereo vision, time-of-flight range finders or

structured light 3D scanners. Point clouds generated using these methods will often have

an associated image color intensity for each point, (Irgb)i = [ri, gi, bi]
T , resulting in the

notation [(Irgb)i, pi] for each point in the image.

2.2.5 Mathematical Description of Planes

A plane π = [a, b, c, d]T , with normal vector n = [a, b, c]T at a distance d
|n| from the origin,

is defined as the set of all points p = [x, y, z]T satisfying

ax+ by + cz + d = 0 (2.34)

14

n

x

y

z

Figure 2.4: Plane with normal vector, n

2.2.6 Fitting a Plane to a Set of Points

If a homogeneous point p̃i = [xi, yi, zi, 1]T is on the plane π, the following holds.

p̃Ti π = 0 (2.35)

This property can be used to find the best fit plane corresponding to a set of n homoge-

neous points. Following the derivation in [12], define a matrix A = [p1, p2, ..., pn]T ∈ Rn×4.

The plane π must satisfy

Aπ =


pT1
pT2
...

pTn



a

b

c

d

 = 0 (2.36)

The singular value decomposition of A is

A = σ1u1v
T
1 + σ2u2v

T
2 + σ3u3v

T
3 + σ4u4v

T
4 (2.37)

where σ1 > σ2 > σ3 and σ4 = 0. The only non-trivial solution for the plane π is along v4

giving the solution

π = kv4 (2.38)

for some scale factor k. If the points in A are all on the plane, the solution is exact,

otherwise it is the best fit solution minimizing the absolute orthogonal distance from each

point to the plane.

2.2.7 Finding the Transformation Between two Point Clouds

Given two point clouds, A ∈ Rn×4 and B ∈ Rn×4, with n corresponding homogeneous

points denoted ai and bi respectively the optimal transformation between them can be

found by the minimization problem in (2.42).

15

The correspondence between the point clouds is formulated as

B = TA (2.39)

T =

[
R t

0 1

]
∈ SE(3) (2.40)

Which can be written as

bi = Rai + t (2.41)

The expression to be minimized is the mean sum of square errors between the points in

B and the transformed points TA.

η =
1

n

n∑
i=1

‖Tai − bi‖2 =
1

n

n∑
i=1

‖Rai + t− bi‖2 (2.42)

The optimal rotation is found by centring the two point clouds in the origin by subtracting

the centroid (2.43) of the point cloud from each point, then finding the best fit rotation

by using the solution to orthogonal Procrustes problem (2.47), which maximizes (2.44).

cA =
1

n

n∑
i=1

ai, cB =
1

n

n∑
i=1

bi (2.43)

max
R

trace(RH) (2.44)

H = (A− cA)(B − cB)T (2.45)

The optimal rotation is then found ny (2.47) by using the singular value decomposition

of H

UΣV T = svd(H) (2.46)

R = V SUT (2.47)

Where S is the Umeyama correction (2.49) to ensure that R is on SO(3). The optimal

translation is then found from

t = −RcA + cB (2.48)

S =

1 0 0

0 1 0

0 0 det(V UT)

 (2.49)

16

It should be noted that this translation is dependent on the solution for R ∈ SO(3), which

means that the resulting translation is dependent on the optimization of the rotational

problem in (2.44).

2.2.8 Structured Light 3D Scanners

Structured light 3D scanners is a category of depth sensors for imaging purposes which

utilizes triangulation of a known light pattern to determine depth. The scanner consists

of a light projector and a offset camera with known relative position and orientations

to one another. The light is projected onto the scene and the deformation in the light

pattern is used to triangulate the distance to the object on which the light shines.

Figure 2.5: Illustration of triangulation principle for a structured light scanner. [15]

Using the principle illustrated in Figure 2.5 the distance z from the camera to the

object is calculated from the angle α and the displacement of projected lines p as

z =
p

tanα
(2.50)

17

Chapter 3

Hand-Eye Calibration

In this chapter the kinematics of the hand eye calibration problem will be presented. A

solution to the hand eye calibration problem will be derived following the method in [4].

In order for a robotic manipulator to interact with its environment using vision systems,

the pose of the camera relative to the robot end-effector frame must be found. This is to

be able to transform the estimated 6D object pose of an object in the camera frame to

obtain the 6D pose of this object in the robot base-frame.

3.1 Kinematics of the Hand-Eye Calibration Prob-

lem

Given a robot configuration as shown in Figure 3.1, with the following coordinate frames

defined: robot base frame {b}, robot end-effector/tool frame {t}, a camera frame {c} and

an object frame {o}, the objective is to determine the pose of the object frame in the

coordinates of the robot base frame. The transformation from the {b} frame to the {t}
frame, Tbt, is found by using the forward kinematics of the robot manipulator, and the

transformation from the {c} frame to the {o} frame, Tco, is found by a pose estimation

algorithm. The transformation from the {t} frame to the {c} frame, Ttc, is calculated by

hand-eye calibration. The notation X = Ttc is often used for the unknown transformation

between {t} and {c}. Having determined all these transformations the pose of the object

in the robot base frame, Tbo can be calculated by

Tbo = TbtTtcTto (3.1)

18

Figure 3.1: Robot with a camera mounted close to the end-effector, and an object with
attached coordinate frame.

To find the unknown camera calibration X pairs of robot-camera configurations are

used, as shown in figure 3.2. In the first configuration of the pose pair, the pose of the tool

frame in {b} and the pose of the object frame in {c} is denoted A1a and B1a respectively.

In the second configuration of the pose pair the poses are denoted A1b and B1b. The

convention used is that the capital letter is used to distinguish between tool and object

pose, the number is used to tell the pose pairs apart, and the lower case letters are used

to differentiate between the first and second configuration in a specific pose pair.

Since the pose of the object in the robot base frame, Tbo, is the same for all pose

configurations we can insert the pose pairs in to (3.1) to get the following equation: (3.2).

A1aXB1a = A1bXB1b (3.2)

Pre-multiplying both sides of eq. 3.2 with A−11b and post-multiplying both sides with B−11b

yields eq. 3.3, 3.4.

A−11b A1aX = XB1bB
−1
1a (3.3)

19

A1X = XB1 (3.4)

Where A1, B1 are the relative transformations between the two poses in pose pair 1. These

transformations are shown as A and B in figure 3.2. In order to find a unique solution

for X at least two pose pairs must be used. To reduce the impact of noisy measurements

it is usual to use many (n) pose pairs, yielding a set of n equations (3.5).

A1X = XB1

A2X = XB2

A3X = XB3

...

An−1X = XBn−1

AnX = XBn

(3.5)

Figure 3.2: A camera mounted rigidly close to the robot end-effector [9]

3.2 A Solution to the Hand-Eye Calibration Problem

by Solving AX = XB on SE(3)

The derivation of the least squares solution to the set of equations presented in (3.5),

follows the method developed by Park and Martin[4]. This solution splits the problem

of solving for the optimal orientation and the optimal translation between the tool-frame

20

and the camera-frame into to separate problems. First the optimal rotation problem on

SO(3) is solved, this is then used to find the optimal translation. The combined result is

the optimal transformation on SE(3).

The matrix form of equation 3.4 is (3.6), which can be written as the pair of equations

(3.7) and (3.8). [
Ra ta

0 1

][
Rx tx

0 1

]
=

[
Rx tx

0 1

][
Rb tb

0 1

]
(3.6)

RaRx = RxRb (3.7)

Ratx + ta = Rxtb + tx (3.8)

The best fit solution for the unknown rotation Rx between frame {t} and frame {c}
minimizes η1.

η1 =
n∑
i=1

‖Rxlog(Rbi)− log(Rai)‖2 =
n∑
i=1

‖Rx(θbkb)i − (θaka)i‖2 (3.9)

This minimization problem is equivalent to solving for the Rx which maximizes

trace(RxKbK
T
a) (3.10)

Where Ka = [(θaka)1, ..., (θaka)n] ∈ R3×n and Kb = [(θbkb)1, ..., (θbkb)n] ∈ R3×n. The

optimal Rx is then found by the singular value decomposition of the matrix product

KbK
T
a and forming Rx as in (3.12), where S the Umeyama correction (2.49) to ensure

that Rx is a member of SO(3).

UΣV T = svd(KbK
T
a) (3.11)

Rx = V SUT (3.12)

The optimal translation is found as the vector tx which minimizes η2.

η2 =
n∑
i=1

∥∥(Rai − I3×3)tx −Rxtbi + tai
∥∥2 (3.13)

The solution to this minimization problem is formulated as the least square solution to

the matrix equation

Ctx = d (3.14)

21

C =


Ra1 − I3×3

Ra2 − I3×3

...

Ran − I3×3

 , d =


Rxtb1 + ta1

Rxtb2 + ta2

...

Rxtbn + tan

 (3.15)

The optimal translation is then found as

tx = (CTC)−1Cd (3.16)

Where (CTC)−1C is the pseudo-inverse of C.

The resulting hand eye calibration matrix representing the tool-to-camera transfor-

mation is

Ttc =

[
Rx tx

0 1

]
(3.17)

3.2.1 Procedure for Hand-Eye Calibration

The basic procedure for hand-eye calibration consists of the following steps.

1. Create a calibration dataset consisting of robot end-effector poses and images taken

of the calibration object in different robot configurations.

2. Conduct extrinsic camera calibration for each robot configuration in order to find

the pose of the calibration object in the camera frame for each image.

3. Create pose pairs and calculate relative camera and robot motion for each pose pair

to obtain a set of equations as in (3.5).

4. Calculate the best fit transformation between the robot end-effector frame and the

camera frame by solving this set of equations.

22

Chapter 4

System Description

For the purposes of verifying the functionality of the implemented hand eye calibration

methods, a robot manipulator with an in-hand mounted 3D camera is used. This chapter

describes the hardware and software components comprising the robot cell, and the hand

eye calibration tools used.

4.1 Robot Manipulator

The robot manipulator used in this project is the KUKA Agilus KR6 r900 sixx. The

technical specifications for the manipulator found in [16] are presented in Table 4.1 and

the operational workspace of the manipulator as well as the dimensions of each link are

shown in Figure 4.1.

The end-effector assembly is pictured in Figure 4.3. The camera mounting-bracket is

fixed onto the robot end-effector flange and is designed with the required clearances as

to not limit the movement of the robot end-effector. Drawings for the mounting-bracket

are found in appendix C. The end-effector tool is mounted onto the camera mount. This

is a Robotiq 2D-85 two finger gripper with a maximum grip width of 85 mm. The use

of this gripper is outside the scope of this project, however the grip-center of the tool

is the reference for the tool-to-camera transformation (3.17) attained from the hand eye

calibration.

Maximum reach 901.5 mm

Maximum payload 6 kg

Pose repeatability ±0.03 mm

Number of axes 6

Footprint 320 mm × 320 mm

Weight approx. 52 kg

Table 4.1: KUKA Agilus KR6 r900 sixx, technical specifications

23

Figure 4.1: KUKA Agilus KR6 r900 sixx, workspace [16]

Figure 4.2: Robot manipulator with mounted camera

24

Figure 4.3: End-effector assembly

4.2 Zivid One Camera

The Zivid One structured light 3D scanner used in this project facilitates the fast capture

of accurate 3D point cloud data from a scene, as well as a high resolution color image.

The specified accuracy of the camera is 0.1 mm and the maximum acquisition frequency

is 10 Hz. The camera has a wide array of settings which can be tuned in order to capture

high precision 3D data in varying lighting conditions. In addition the settings can be

adjusted for difficult objects, such as very dark objects, low texture objects or shiny

objects. This makes it suited to object detection and pose estimation tasks related to

robotic bin picking.

4.3 Hand-Eye Calibration Software

The software developed for hand-eye calibration of the laboratory robot setup consists of

two main modules. A short description of all source files is provided in Table 4.2. The

module used for dataset capture interfaces with both the Zivid One camera and the robot

controller in order to capture both the pose of the robot end-effector and the .zdf file from

the camera in an efficient manner. The software communicates with the robot controller

over a UDP connection and receives continuous updates of the robot pose formatted as an

xml-file. Communication with the camera is handled trough the python wrapper for the

Zivid C++ API which provides access to functions for easy adjustment of image capture

settings and capturing of .zdf files.

25

Marius Nilsen

Marius Nilsen

The robot end-effector pose is represented in the xml-file as a vector [x, y, z, A,B,C]

where x, y and z represent the position given in cartesian coordinates and A, B and C

is the ZYX Euler angle parametrization of the orientation (2.8). The software stores the

pose as a homogeneous transformation matrix in a plain-text file with the file-extension

.t4. The n pairs of images and poses are numbered from 0 to (n − 1) in order to keep

track of the matching robot poses and images. The procedure for creating a calibration

dataset using this module is shown in Figure 4.4.

Filename Language External De-

pendencies

Description

homogeneous

transformations.py

python numpy Contains the class HTransf which pro-

vides functionality for manipulating ma-

trices in SE(3) using theory from Sec-

tion 2.1

capture.py python Zivid-API,

numpy,

OpenCV

Used to create datasets for HE-

calibration

zividHEcalibrator.py python numpy,

Zivid-API,

OpenCV,

matplotlib

Contains ZividHECalibrator class used

for hand-eye calibration of Zivid cameras.

utils.py python numpy, Zivid-

API, OpenCV

Contains utilities used for calibration and

experiments.

create chessboard.py python OpenCV,

numpy

Used to create custom calibration pat-

terns

intrinsics.cpp C++ Zivid-API Used to retrieve the intrinsic camera pa-

rameters of the Zivid camera

Table 4.2: Overview of files used for hand-eye calibration

The main module for doing hand-eye calibration facilitates the following core func-

tionality:

• loading of datasets

• intrinsic and extrinsic camera calibration

• hand-eye calibration using the algorithm developed by Park and Martin

• visualization of camera poses, robot poses and the hand-eye calibration represented

as the pose of the camera relative to the end-effector frame

26

• calculation of error in the hand-eye calibration

The order of required operations when using the module for calibration on an existing

dataset is shown in Figure 4.5.

4.3.1 3D Point Cloud Calibration Method

To make use of the 3D point cloud data which the Zivid One camera generates, a method

for extrinsic camera calibration utilizing point cloud data has been implemented. First

the corners of the calibration chessboard are found in the rgb image using the OpenCV

python method cv2.findChessboardCorners(...). This function call returns the sub-pixel

coordinates of the internal corners on the chessboard. From these it would be possible

to extract the 3D data directly, but since chessboard corners are high color contrast

areas, the 3D data at these points is generally noisier. Instead the center point of each

chessboard square is considered. The sub-pixel coordinates of these points are found as

the point of intersection of each square’s diagonals. The 3D point cloud is arranged in a

1920×1200×3 matrix where points can be extracted using integer indices, e.g [202, 560].

Since the center point pixel-coordinates of each square generally will be a tuple of floats,

e.g (202.56, 560.23), the 3D point corresponding to these pixel coordinates cannot be

extracted directly. The four 3D points corresponding to the integer indices around the

center point, (202, 560), (203, 560), (202, 561), (203, 261), are linearly interpolated to

find the 3D coordinates of the center point in the camera coordinate system. This process

is carried out for every center point on the calibration board, and for every image taken,

to obtain a 3D point cloud on the calibration object for each camera pose.

For extrinsic camera calibration, the pose of the chessboard in the camera frame is

found by fitting a plane to the 3D center-points, where the normal vector of the plane

defines the z-axis of the chessboard coordinate frame. The x-axis is found by fitting a

line to the 3D points along the long axis of the board, this vector is then projected into

the plane orthogonal with the z-axis. The y-axis is found as the cross product y = z × x.

Each axis is then normalized to obtain a set of unit coordinate axes forming a basis of R3.

This coordinate system is affixed to the centroid (2.43) of the point cloud. When using

this method of finding the extrinsic calibration of the camera for hand-eye calibration,

the calibration method is referenced as the “3D plane fit method”.

Since the formulation of the hand-eye calibration problem does not require the ex-

plicit pose of the camera in each configuration, only the relative motion of the camera

between two configurations, the transformation between the point clouds obtained in each

configuration can be used instead. When using this method for hand-eye calibration it

is referenced as the “3D correspondence method” or simply as the “3D method”. These

two methods are collectivly called the “3D point cloud methods”.

27

4.3.2 Calculation of Estimation Error

To evaluate the error in the different hand-eye calibration methods, the mean deviation in

pose from the average estimated calibration object pose is considered. The implemented

methods are slightly different for OpenCV/3D plane fit method and for the 3D point

cloud method, but both are based on the same principle.

For error calculation on hand-eye calibration using OpenCV and the 3D plane fit

method the pose of the calibration object is calculated for each robot configuration. This

is done using the robot pose, the hand eye calibration and the extrinsic camera calibration

(3.1). From this the mean rotation vector and the mean translation vector is calculated

and used as an estimate for the ground truth pose of the calibration object. The error for

each object pose estimation is then calculated as the transformation between the ground

truth pose and the estimated object pose.

(Terror)i = (Tbo)
−1
GT (Tbo)i (4.1)

Where (Terror)i is the estimation error for robot configuration i, (Tbo)GT is the esti-

mated ground truth pose, and (Tbo)i is the pose estimation of the calibration object using

configuration i. The hand eye calibration error is represented as translation error and

rotation error. Translation error is calculated as the mean norm of the translation error

vectors for all the estimates (4.2), rotation error is calculated as the mean of the absolute

value of the rotation angle error for all the estimates (4.3). The angle of rotation, θerr, is

calculated using (2.13).

terr =
1

n

n∑
i=0

||(terr)i|| (4.2)

θerr =
1

n

n∑
i=0

|(θerr)i| (4.3)

The hand eye calibration error using the 3D correspondence method is calculated in

a similar way to the 2D planar method. The position of each calibration point on the

calibration object is estimated using (4.4) for each configuration i.

(P b
o)i = (Tbt)i(Ttc)(P

c
o)i (4.4)

where P b
o ∈ R4×n is the homogeneous representation of the object point cloud in the robot

base coordinate system and P c
o ∈ R4×n is the position of each calibration point in the

camera coordinate system. An estimated ground truth position for each calibration point

is calculated as the mean position from all the estimates [(P b
o)0, (P

b
o)1, (P

b
o)2, ..., (P

b
o)n].

The error transformation is then calculated for each object pose estimation using point

correspondences between the ground truth point cloud (P b
o)GT and the calibration point

28

Marius Nilsen

cloud P b
o for each configuration i. The translation and rotation error is then calculated

using Equations (4.2) and (4.3).

29

Initialize size of the
dataset, capture

folder, robot ip addr
and port nb.

Establish connection
to robot controller
and Zivid camera.

Initialize configuration
counter.

Wait for user to press
enter to capture.

Display image for
manual check that
the chessboard is

fully visible.

Not fully visible.Fully visible

Save image and
robot pose, iterate

configuration counter
by one.

If(configuration
counter < dataset

size)

True False

Break

Figure 4.4: Method and logic of the capture module.

30

Initialize the
calibrator class with

calibration board
dimensions.

Load robot poses
and .zdf files.

Intrinsic and extrinsic
camera calibration

using open cv.

Extrinsic camera
calibration using
point cloud data.

Create pose pairs.

Calculate the hand-
eye transformation.

Visialization Calculate error
metrics

Figure 4.5: Procedure for hand-eye calibration using the ZividHECalibrator class.

31

Chapter 5

Experiments

In this chapter, experiments conducted to evaluate the robustness of the hand eye calibra-

tion methods and an experiment in which the optimal capture parameters are found are

presented. The description, goal, methods, and metrics of each experiment is provided in

Section 5.1 and the results are presented in Section 5.2.

5.1 Experiments

5.1.1 Tuning 3D Camera Capture Parameters

In order for the Zivid camera to be able to capture accurate 3D data from an image, the

capture parameters must be tuned.

Goal

The goal of this experiment is to find a set of optimal capture parameters for the Zivid

One camera. These are to be used to increase the accuracy and precision of the 3D data

used for hand eye calibration.

Method

The following parameters are tunable trough the Zivid Studio desktop application.

32

Setting Options

Exposure time 6500µs− 100000µs

Iris 0− 72

Reflection filter On/Off

Contrast filter On/Off

High Dynamic Range (HDR) On/Off

Brightness 0.00− 1.80

Gain 1.0− 16.0

The method used for manually finding the best possible parameters follows the guide

provided by Zivid on their website [17] for getting good quality data on calibration chess-

boards. This method uses the logarithmic pixel intensity histogram as well as the depth

image to optimize the parameters above by trial and error. It recommends using HDR

with frames optimized for camera positions close to, at medium distance, and further

away from the chessboard. The assisted capture functionality in Zivid Studio is also used

to automatically tune the camera parameters.

Evaluation Metric

The evaluation metrics used for manual parameter tuning are the pixel intensity histogram

and the subjective observation of the evenness of the chessboard depth data. In addition

the total number of invalid values on the chessboard, returned as “not a number” (NaN)

should be minimized. The tuned parameters should place the logarithmic intensity of the

pixels on the calibration board in the rightmost section of the histogram. The number

of NaN points are found by visual inspection of the color coded depth map of the point

cloud. NaN points show up as black pixels in the depth map.

5.1.2 Hand-Eye Calibration Using Generated Noisy Data

Using generated noisy pose data for hand eye calibration is useful to determine the noise-

sensitivity of the calibration methods. By generating a synthetic dataset and adding

Gaussian noise the robustness of the methods can be determined by evaluating the cali-

bration error.

Goal

The findings of this experiment will be used as a basis for discussing the robustness of 3D

point cloud methods for hand eye calibration on noisy datasets.

33

Method

Noisy point cloud data is generated by selecting a ground truth calibration object pose

in robot base frame (T bbo)GT and hand eye transformation matrix, (Ttc)GT . These were

chosen to be

(T bbo)GT =


0 −1 0 200

1 0 0 70

0 0 1 0

0 0 0 1

 , (Ttc)GT =


1 0 0 50

0 1 0 0

0 0 1 100

0 0 0 1

 (5.1)

Random robot poses (Tbt)i are then generated. The values for the elements of the ro-

tation vectors kθ are drawn from the normal distribution N(µ, σ2) = N(0, π2) and the

elements for the translation vector of each pose are generated from the normal distribu-

tion N(µ, σ2) = N(0, (300
√

3)2). It should be noted that the generated poses need not

be feasible in the physical system, however σ = 300
√

3mm ensures that the generated

positions are somewhat close to being within the operational space of the KUKA agilus

robot. The corresponding pose of the chessboard in the camera frame ((Tco)i) is then

calculated as

(Tco)i = ((Tbt)i(Ttc)GT)−1(Tbo)GT (5.2)

We have now obtained a noise free dataset of robot poses and camera poses. To evalu-

ate the sensitivity of the calibration methods utilizing point clouds for extrinsic camera

calibration, a point cloud centred in the robot base, consisting of n × m points spaced

in correspondence to the center points on the calibration chessboard is generated. To

each point in this point cloud a Gaussian noise vector with mean value µ and standard

deviation σ is added, resulting in a set of noisy homogeneous chessboard points for each

robot configuration, Pi ∈ R4×(n×m). This point cloud is then transformed to the position

of the calibration object using (Tbo)GT resulting in the object point cloud (Po)i.

(Po)i = (Tbo)GTPi (5.3)

Evaluation Metric

The set of generated noisy calibration points and generated robot poses are used to do

hand eye calibration. Error estimates are calculated using (4.2) and (4.3) in Section 4.3.2.

This is done using an increasing number of configurations in order to determine when the

error converges. The final error on translation and rotation for each method is used as

the performance metric.

34

5.1.3 Hand-Eye Calibration on Real Datasets

Goal

The goal of this experiment is to evaluate the robustness of the hand eye calibration based

on OpenCV extrinsic calibration and based on the 3D point cloud methods. The outcome

of this experiment will hopefully provide some insight into the strengths and weaknesses of

each method, which can be used to decide which method to use under various conditions.

In addition to this, finding the hand-eye transformation for the setup is necessary in order

to make further use of the robot vision system.

Method

Datasets were created using the capture software described in Section 4.3. Emphasis was

put varying the pose of the end-effector orientations about all three axes of rotation as

is recommended in [2]. Both the OpenCV method and the 3D point cloud methods were

used for extrinsic calibration of the camera for each dataset.

Evaluation metrics

The error values for both methods are plotted against the number of configurations used in

the calibration. The final rotation and translation error obtained using all configurations

in the dataset, in addition to the rate of conversion, is used as the evaluation criterion for

each calibration method.

5.2 Results

5.2.1 Camera Parameter Tuning

The camera settings are tuned using the method above. To illustrate the difference

between the default settings and the tuned settings, example depth maps are presented

in fig. 5.1.

Parameter tuning resulted in the settings presented in table 5.1 being used when

capturing calibration datasets. Three HDR frames were used, with iris settings as listed

in the talbe. All other settings were kept the same for each HDR frame. These frames

were tuned separately to yield best possible results on near, middle and far distances to

the calibration board. This should result in good 3D point cloud data over a range of

distances [17].

35

Setting Value

Exposure time 8333µs

Iris [16, 26, 50]

Reflection filter On

Contrast filter On

High Dynamic Range (HDR) On

Brightness 1.0

Gain 1.0

Table 5.1: Manually tuned camera parameters.

The assisted capture mode in Zivid Studio was also used to attain camera settings.

This resulted in the settings in table 5.2.

Setting Value

Exposure time 8333µs

Iris [22, 31, 68]

Reflection filter On

Contrast filter On

High Dynamic Range (HDR) On

Brightness 1.0

Gain 1.0

Table 5.2: Automatically tuned camera parameters.

36

(a) Default settings (b) Manually tuned settings

(c) Automatically tuned settings

Figure 5.1: Depth maps for images taken with default and tuned parameters.

(a) Default settings

(b) Manually tuned settings

(c) Automatically tuned settings

Figure 5.2: Logarithmic intensity histograms images taken with default and tuned pa-
rameters.

37

Figure 5.3: Depth map from image taken of a calibration object with black squares. Tuned
parameters from table 5.1 are used.

5.2.2 Hand-Eye Calibration Using Generated Noisy Data

Simulations were done by generating a calibration set consisting of 50 robot configurations.

Gaussian noise with increasing standard deviation was added to each point cloud. Hand

eye calibration and error estimation was then carried out with an increasing number of

pose pairs for each noise level, this is shown in Figures 5.4 to 5.14. The final errors for

each simulation are shown in Table 5.3, and plotted in Figures 5.15 and 5.16.

(a) Translation error (b) Rotation error

Figure 5.4: Calibration on data with added noise from N(µ, σ2) = N(0, 0.01)

38

(a) Translation error (b) Rotation error

Figure 5.5: Calibration on data with added noise from N(µ, σ2) = N(0, 0.04)

(a) Translation error (b) Rotation error

Figure 5.6: Calibration on data with added noise from N(µ, σ2) = N(0, 0.09)

(a) Translation error (b) Rotation error

Figure 5.7: Calibration on data with added noise from N(µ, σ2) = N(0, 0.16)

39

(a) Translation error (b) Rotation error

Figure 5.8: Calibration on data with added noise from N(µ, σ2) = N(0, 0.25)

(a) Translation error (b) Rotation error

Figure 5.9: Calibration on data with added noise from N(µ, σ2) = N(0, 1.0)

(a) Translation error (b) Rotation error

Figure 5.10: Calibration on data with added noise from N(µ, σ2) = N(0, 4.0)

40

(a) Translation error (b) Rotation error

Figure 5.11: Calibration on data with added noise from N(µ, σ2) = N(0, 9.0)

(a) Translation error (b) Rotation error

Figure 5.12: Calibration on data with added noise from N(µ, σ2) = N(0, 16.0)

(a) Translation error (b) Rotation error

Figure 5.13: Calibration on data with added noise from N(µ, σ2) = N(0, 25.0)

41

(a) Translation error (b) Rotation error

Figure 5.14: Calibration on data with added noise from N(µ, σ2) = N(0, 100.0)

It should be noted that while some of the graphs appear to show more variation in

error as it converges, this is mostly due to the different scaling on the y-axis, which i

dependent on the initial error.

Noise distribution Translation error Translation error Rotation error Rotation error

N(µ, σ2) 3D [mm] 3D plane fit [mm] 3D [deg] 3D plane fit [deg]

N(0, 0.01) 0.02581 0.01683 0.00496 0.002617

N(0, 0.04) 0.05593 0.05195 0.01019 0.01257

N(0, 0.09) 0.06975 0.06480 0.01729 0.02219

N(0, 0.16) 0.07710 0.06077 0.02007 0.02821

N(0, 0.25) 0.11530 0.10083 0.02887 0.03444

N(0, 1.0) 0.22951 0.17882 0.05036 0.070979

N(0, 4.0) 0.47090 0.38327 0.11798 0.16087

N(0, 9.0) 0.59217 0.68763 0.16361 0.21507

N(0, 16.0) 0.85008 0.64449 0.21464 0.29222

N(0, 25.0) 1.23648 0.77810 0.27990 0.38845

N(0, 100.0) 2.25496 1.99512 0.56434 0.83999

Table 5.3: Final translation errors and rotation errors for 3D and 3D plane fit methods.

42

(a) Noise/translation error relationship (b) Noise/rotation error relationship

Figure 5.15: Scatter plot and trend line for noise standard deviations 0.1, 0.2, 0.3, 0.4, 0.5

(a) Noise/translation error relationship (b) Noise/rotation error relationship

Figure 5.16: Scatter plot and trend line for noise standard deviations
1.0, 2.0, 3.0, 4.0, 5.0, 10.0

5.2.3 Hand-Eye Calibration on Real Datasets

Presented here are the results of hand-eye calibration on datasets captured using the

laboratory setup. Including examples showing the estimated pose of the calibration boards

in the camera coordinate frame using both the OpenCV- and the 3D plane fit methods

(Figures 5.17 and 5.18). The tools used for visualization of camera- and robot poses

are also demonstrated in Figures 5.18 and 5.19, these have been useful for validation of

extrinsic camera calibration. The error plots from calibration on the datasets are shown

in Figures 5.21 to 5.25. Additionally the hand-eye transformation resulting in the lowest

translational error is presented in (5.4).

43

Figure 5.17: Chessboard pose, estimated using OpenCV extrinsic camera calibration. The
placement of the chessboard coordinate frame is defined in the camera calibration stage.
Chessboard corners are marked using the drawChessboardCorners() function of OpenCV.

Figure 5.18: Chessboard pose, estimated using 3D point clouds for extrinsic camera cali-
bration. Square center points are marked by blue dots. The chessboard coordinate frame
is placed in the centroid of the point cloud comprised of the center points.

44

Figure 5.19: Visualization of robot end-effector poses relative to the base frame

Figure 5.20: Chessboard pose, estimated using 3D point clouds for extrinsic camera cali-
bration.

45

(a) Translation error (b) Rotation error

Figure 5.21: Dataset1. Hand-eye calibration errors on images captured at a distance in
the range 600-700 mm from the calibration object . 9× 6 chessboard with square size of
20.0 mm fig. A.1. Camera settings as in table 5.2

3D 3D plane fit OpenCV

Translation error [mm] 1.455 2.112 1.582

Rotation error [deg] 0.109 0.860 0.216

Table 5.4: Final errors on Dataset 1.

(a) Translation error (b) Rotation error

Figure 5.22: Dataset 2. Hand-eye calibration errors on images captured at a distance of
600-800 mm from the calibration object. 9 × 6 chessboard with square size of 20.0 mm.
fig. A.1. Camera settings as in table 5.1

46

3D 3D plane fit OpenCV

Translation error [mm] 1.575 1.715 2.178

Rotation error [deg] 0.103 0.558 0.663

Table 5.5: Final errors on Dataset 2.

(a) Translation error (b) Rotation error

Figure 5.23: Dataset 3. Hand-eye calibration errors on images captured at a distance of
750-950 mm from the calibration object. 21× 14 chessboard with square size of 13.8 mm.
Gray value 180 fig. A.2. Camera settings as in table 5.1

3D 3D plane fit OpenCV

Translation error [mm] 1.035 1.272 0.970

Rotation error [deg] 0.073 0.102 0.272

Table 5.6: Final errors on Dataset 3.

47

(a) Translation error (b) Rotation error

Figure 5.24: Dataset 4. Hand-eye calibration errors on images captured at a distance of
800-1000 mm from the calibration object. 20 × 13 chessboard with square size of 13.9
mm. Gray value 130fig. A.3. Camera settings as in table 5.2

3D 3D plane fit OpenCV

Translation error [mm] 2.295 1.998 3.573

Rotation error [deg] 0.136 0.144 0.884

Table 5.7: Final errors on Dataset 4.

(a) Translation error (b) Rotation error

Figure 5.25: Dataset 5. Hand-eye calibration errors on images captured at a distance of
800-1200 mm from the calibration object. 20 × 13 chessboard with square size of 13.9
mm. Gray value 130 fig. A.3. Camera settings as in table 5.2

48

3D 3D plane fit OpenCV

Translation error [mm] 3.052 3.016 2.327

Rotation error [deg] 0.137 0.148 0.215

Table 5.8: Final errors on Dataset 5.

Ttc =


−0.045 0.999 0.000 −145.462

−0.986 −0.045 −0.159 72.845

−0.159 −0.007 0.987 −180.656

0 0 0 1

 (5.4)

Figure 5.26: Visualization of the hand-eye transformation in (5.4) resulting from hand-eye
calibration on dataset 3. The robot end-effector is denoted “EF” and the camera center
is denoted “c0”

49

Figure 5.27: Rough estimate of the position of the camera center, illustrated on a 3D
model of the end-effector assembly.

50

Chapter 6

Discussion

This chapter contains analysis and discussion of the results obtained from the experiments

presented in section 5.2.

6.1 Capture parameter tuning

The process of manually tuning the capture parameters on the Zivid One camera was

fairly straight forward using the steps and method described in [17]. The images taken

with the default settings were overexposed which resulted in noisy or no point cloud data

in several areas of the calibration board. Tuning mainly consisted of adjusting the iris

value to reduce or increase the exposure of the image depending on what was observed

in the histograms and the depth maps. It was found that adjusting the other parameters

such as gain, brightness, exposure time and filter values had little to no positive effect

on the resulting image. These were therefore left on their default values. Exposure time

could also be used to adjust the level of exposure in the image, but tuning of the iris

values was found to give more control over the exposure and the number of values in the

depth map for a larger range of distances to the calibration object.

Using the assisted capture mode in Zivid Studio resulted in fairly even depth mappings

on the calibration board as can be seen in Figure 5.1c. However in the rgb images the

calibration board tended to be slightly overexposed compared with the manually tuned

settings, this is because of the higher iris values used which allows for more light to hit

the imaging sensor. It is noted that the setup of the calibration object when automatic

tuning was used, while similar to the one used for manual tuning, was different in that the

calibration board was offset from the floor. This likely led to the automatic tuning software

trying to optimize the camera parameters to capture good 3D data over a larger range of

distances. Which might lead to more noisy data compared with images captured with the

manually tuned parameters. Automatic tuning with the same calibration board setup as

was used for the manual tuning resulted in similar settings to the ones in Table 5.2, but

51

Marius Nilsen

with a lower max iris value of 54.

It was also observed that using calibration boards with black squares resulted in poor

depth data, as can be seen in Figure 5.3. This is because of the high contrast between

white and black pixels in the image. The solution to this problem is to use calibration

boards which have white and gray squares. This solves the problem by removing high

contrast pixel values close together, while still providing enough contrast to allow for

reliable corner detection on the chessboard.

6.2 Hand-Eye Calibration on Generated noisy data

The results of this experiment show that both the 3D point cloud correspondence method

and the 3D plane fit method yield relative camera poses which are good enough for the

hand-eye algorithm to converge on a noisy dataset. Both methods also result in similar

convergence rates. There does however appear to be a slight difference in which error

the two methods minimizes. By looking at the plots of the final errors from each noise

level in Figures 5.15 and 5.16 it is clear that the 3D plane fit method results in a lower

translation error at all noise levels. The error trend lines for the two methods also diverge

slightly as the noise level increases, indicating that the position estimate of the 3D plane

fit method is also more robust when it comes to increases in noise levels compared with

the 3D correspondence method. The opposite is observed in the plots of rotation error vs.

noise level. Here the 3D correspondence method is consistently more accurate than the 3D

planar method. The trend lines also diverge indicating that the orientation estimate of the

3D planar method is more sensitive to increases in noise level than the 3D correspondence

method.

It is difficult to pin-point the exact reason for the observed results. Both methods

calculate the relative motion of the camera, for use in hand-eye calibration, by considering

the translation of the centroid of each image point cloud. The average translation of

the centroid between the ground truth point cloud and the centroid for each image point

cloud is used as the metric for calculating the error in the calibration for both methods. It

would be reasonable to expect that the method which can achieve the highest orientation

accuracy would also achieve the highest position accuracy, since the resulting rotation

matrix is used to optimize the translation vector in the hand-eye calibration algorithm

used. This is however not consistent with the simulation results.

6.3 Hand-Eye Calibration on Real datasets

The results from hand-eye calibration on real datasets show that there are some differences

in the calibration accuracy achieved by the different methods used (3D correspondence,

3D plane fit and OpenCV) to calculate relative camera motion in a pose pair . On

52

Marius Nilsen

Marius Nilsen

Marius Nilsen

Marius Nilsen

dataset 1 (Figure 5.21) the camera parameters obtained from the assisted capture mode

were used. The calibration object was a 9 × 6 chessboard with 20.0 mm gray and white

squares. Here the 3D point correspondence method and OpenCV performed significantly

better than the 3D plane fit method, both on translation- and rotation accuracy. On

dataset 2 (Figure 5.22) the same chessboard as in dataset 1 was used, however the camera

parameters were obtained by manual tuning. The results show the two 3D methods

performing better than OpenCV on translation accuracy while only the 3D correspondence

method performed well on rotation accuracy. While the only difference between these two

datasets should be the camera parameters, this is unlikely to be the case. Since datasets

are captured by manually by moving the robot between poses, the quality of the images

taken of the calibration object and how well the resulting pose pairs facilitate optimization

of the hand-eye calibration algorithm has an effect on the final results. However, it is

expected that the point cloud data captured in dataset 2 is less noisy than the point

cloud data in dataset 1 because of the manually tuned camera parameters. This is the

probable reason why the two 3D methods outperform OpenCV on this dataset.

Dataset 3 (fig. 5.23) is captured using the same manually tuned parameters as in

dataset 2. The main difference is that the calibration board used is a 21× 14 chessboard

with 13.8 mm gray and white squares. The gray level of the squares are comparable to the

chessboard used in dataset 1 and 2. On this dataset the 3D correspondence method and

the OpenCV method performed best on translation accuracy while the two 3D methods

outperformed OpenCV on rotation accuracy. By comparing the results on dataset 2 and 3

it appears as using calibration boards with more squares result in higher overall accuracy

across all methods tested. This is most likely due to the fact that any particularly noisy

points have less of an effect on the overall accuracy of the camera pose estimation.

Datasets 4 (fig. 5.24) and 5 (fig. 5.25) were captured using the automatically tuned

camera settings. The chessboard used here was of similar dimensions as the one in dataset

3, but with darker gray squares. The images in these datasets were captured further away

from the calibration object which likely resulted in both noisier point cloud data as well as

a reduced number of pixels on the calibration object. The two 3D methods outperformed

OpenCV on dataset 4, but OpenCV had a lower translational error on dataset 5. The

sudden spike observed in rotation error of OpenCV on dataset 4 is likely to be caused by

a large error in an extrinsic camera calibration on a single image. But looking at the at

the placement of the coordinate frames for each board no suspects were found.

The results of hand-eye calibration on datasets 1, 2 and 3 show better performance

than calibration done on datasets 4 and 5. This is most likely due to the differences

in calibration setup. Firstly a lighter gray was used on the calibration chessboard in

datasets 1, 2 and 3 compared to the one in datasets 4 and 5. Second, datasets 1 and 2

were captured with the calibration board laying directly on a flat surface, the images were

taken closer to and over a smaller range of distances than in datasets 4 and 5. Thirdly

53

the camera settings used in datasets 4 and 5 could have resulted in noisier image- and

point cloud data. These factors are seen as likely to affect the quality of the datasets,

which has an impact on the calibration accuracy.

The results of hand-eye calibration on datasets 1, 2 and 3 are inconsistent with the

results from the results from hand-eye calibration on generated noisy datasets. The re-

sults of hand-eye calibration on datasets 1, 2 and 3 show that the accuracy of the 3D

correspondence method is better than the 3D plane fit method both on translation and

on rotation. The results of hand-eye calibration on datasets 4 and 5 are more in line

with what was expected based on the simulations. On these datasets the 3D plane fit

method was better than the 3D correspondence method on translation accuracy, while

the opposite was true for rotation accuracy. This was also observed in the simulations.

One possible reason for this is that the 3D plane fit method is more noise-tolerant than

the 3D correspondence method, while the base-line accuracy of the 3D correspondence

method is lower than the 3D plane fit method in cases where the point cloud data has

low noise levels. Since the point cloud data in datasets 4 and 5 is likely to be noisier than

in 1, 2 and 3, due to the setup of the experiment, the same tendencies are observed for

datasets 4 and 5 as for the simulations.

54

Marius Nilsen

Chapter 7

Conclusion and future work

7.1 Conclusion

In this project report theory and methodology for hand-eye calibration using point clouds

for extrinsic camera calibration is presented. Experiments investigating the optimal pa-

rameters for capturing datasets, and the performance of the various calibration methods

were conducted. Experimental results indicate that the accuracy of the hand-eye calibra-

tion is correlated with the overall quality of the calibration datasets.

Two methods were implemented for hand-eye calibration using 3D point clouds, re-

ferred to as the “3D correspondence method” and the “3D plane fit method”. Simulations

on noisy point cloud data indicate both methods as suitable. Analysis show that the 3D

correspondence method resulted in better performance on orientation estimate, while the

3D plane fit method performed better on position estimates. The results show that both

methods perform well on point clouds with high levels of noise.

Datasets for hand-eye calibration were created using a robot manipulator with a Zivid

One structured light 3D scanner attached to the end-effector. Hand-eye calibration re-

sulted in the 3D correspondence method performing slightly better than the 3D plane

fit method overall. The extrinsic camera calibration method implemented in OpenCV

generally performed on a comparable level to the 3D methods. OpenCV achieved the

lowest translation error on some datasets, but the rotational errors were generally higher

than for the 3D methods. The 3D correspondence method was the most consistent overall

resulting in both low translation and rotation error, while the two other methods generally

seem to optimize for one of them.

Using 3D point clouds extracted from simple planar calibration objects allow for fast

extrinsic camera calibration, since robust corner detection algorithms can be used for point

matching. The overall accuracy is dependent on the accuracy of the 3D scanner and the

precision is dependent on the level and distribution of noise in the point clouds. Using

these methods are a viable alternative to the conventional methods utilizing coplanar

55

Marius Nilsen

image points for extrinsic camera calibration when calibrating 3D scanners for use in

vision tasks for robotic applications.

7.2 Future Work

The results of the work presented in this report can be used to calibrate vision systems

used in robotics. The natural continuation of this is to implement such a system to do

various tasks such as assembly operations or random bin picking. Verifying the accuracy

of the hand-eye calibration methods for practical applications would be an important step

in doing so. Additionally a system for automatic dataset creation using optimal robot

poses would be very beneficial for rapid and more consistent hand-eye calibration. This is

because manual acquisition of datasets is slow and might not capture the optimal poses

for hand-eye calibration.

56

Bibliography

[1] Y. C. Shiu and S. Ahmad, “Calibration of wrist-mounted robotic sensors by solv-

ing homogeneous transform equations of the form ax= xb”, ieee Transactions on

Robotics and Automation, vol. 5, no. 1, pp. 16–29, 1989.

[2] R. Y. Tsai and R. K. Lenz, “A new technique for fully autonomous and efficient

3d robotics hand/eye calibration”, IEEE Transactions on robotics and automation,

vol. 5, no. 3, pp. 345–358, 1989.

[3] R. Tsai, “A versatile camera calibration technique for high-accuracy 3d machine vi-

sion metrology using off-the-shelf tv cameras and lenses”, IEEE Journal on Robotics

and Automation, vol. 3, no. 4, pp. 323–344, 1987.

[4] F. C. Park and B. J. Martin, “Robot sensor calibration: Solving ax= xb on the

euclidean group”, IEEE Transactions on Robotics and Automation, vol. 10, no. 5,

pp. 717–721, 1994.

[5] R. Horaud and F. Dornaika, “Hand-eye calibration”, The international journal of

robotics research, vol. 14, no. 3, pp. 195–210, 1995.

[6] S. Kahn, D. Haumann, and V. Willert, “Hand-eye calibration with a depth cam-

era: 2d or 3d?”, in 2014 International Conference on Computer Vision Theory and

Applications (VISAPP), IEEE, vol. 3, 2014, pp. 481–489.

[7] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: modelling, planning

and control. Springer Science & Business Media, 2010.

[8] P. Corke, Robotics, vision and control: fundamental algorithms in MATLAB R© sec-

ond, completely revised. Springer, 2017, vol. 118.

[9] K. M. Lynch and F. C. Park, Modern Robotics. Cambridge University Press, 2017.

[10] C. G. Harris, M. Stephens, et al., “A combined corner and edge detector.”, in Alvey

vision conference, Citeseer, vol. 15, 1988, pp. 10–5244.

[11] R. S. Hartenberg and J. Denavit, “A kinematic notation for lower pair mechanisms

based on matrices”, Journal of applied mechanics, vol. 77, no. 2, pp. 215–221, 1955.

[12] O. Egeland, Robot vision, Jan. 2019.

57

[13] F. Mokhtarian and R. Suomela, “Robust image corner detection through curvature

scale space”, IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 20, no. 12, pp. 1376–1381, 1998.

[14] S. M. Smith and J. M. Brady, “Susan—a new approach to low level image process-

ing”, International journal of computer vision, vol. 23, no. 1, pp. 45–78, 1997.

[15] A. Georgopoulos, C. Ioannidis, and A. Valanis, “Assessing the performance of a

structured light scanner”, International Archives of Photogrammetry, Remote Sens-

ing and Spatial Information Sciences, vol. 38, no. Part 5, pp. 251–255, 2010.

[16] Kr6 r900 sixx datasheet, 0000-205-456, Rev. 24.1, KUKA Deutschland GmbH, May

2019.

[17] S. Sivcev. (2019). How to get good quality data on zivid calibration checkerboard,

[Online]. Available: https://zivid.atlassian.net/wiki/spaces/ZividKB/

pages/96895020/5.+How+to+get+good+quality+data+on+Zivid+calibration+

checkerboard (visited on 11/07/2019).

[18] Zivid. (2019). Software and documentation, [Online]. Available: http : / / www .

zivid.com/downloads (visited on 12/02/2019).

58

https://zivid.atlassian.net/wiki/spaces/ZividKB/pages/96895020/5.+How+to+get+good+quality+data+on+Zivid+calibration+checkerboard
https://zivid.atlassian.net/wiki/spaces/ZividKB/pages/96895020/5.+How+to+get+good+quality+data+on+Zivid+calibration+checkerboard
https://zivid.atlassian.net/wiki/spaces/ZividKB/pages/96895020/5.+How+to+get+good+quality+data+on+Zivid+calibration+checkerboard
http://www.zivid.com/downloads
http://www.zivid.com/downloads

Appendix A

Calibration Chessboards

Generated chessboards used for hand-eye calibration. Gray value in Figures A.2 and A.3

are the integer value for 8-bit gray scale encoding of the intensity of the gray squares.

This means that the white squares have a value of 255, and black squares would have a

value of 0.

59

9 x 6 - 20 m
m

 / 0.9 - 10/19
help.zivid.com

Figure A.1: 9× 6. Square size 20.0 mm. [18]
60

Figure A.2: 21× 14. Gray value 180.
61

Figure A.3: 20× 13. Gray value 130.
62

Appendix B

Code

Contains an overview of the available method calls and exposed member variables imple-

mented in the files and classes used for hand-eye calibration. Each file is separated into

different sections.

B.1 homogeneous transformations.py

Members of HTransf class

HTransf . ang le

HTransf . a x i s

HTransf . t

HTransf . skew ax i s

HTransf . matrix

Methods of HTransf:

HTransf (a : f loat , k : np . ndarray , t : np . ndarray)

HTransf . f rom matrix (m: np . ndarray)

HTransf . f rom vecs (r : np . ndarray , t : np . ndarray)

HTransf . f rom kuka pose (x : f loat , y : f loat , z : f loat ,

a : f loat , b : f loat , c : f loat)

HTransf . to kuka pose ()

HTransf . to mm ()

HTransf . t r r o t ()

HTransf . t r ()

HTransf . a n g l e a x i s ()

HTransf . rvec ()

HTransf . inv ()

HTransf . confirm SO3 ()

63

B.2 utils.py

Available functions in file:

l o a d z d f (f i l e : str)

l o a d t 4 s (path : str)

c a l i b r a t i o n p t s (nx : int , ny : int ,

s q u a r e s i z e : f loat , p n t c l d s : np . ndarray)

l i n e l i n e i n t e r s e c t (p1 : f loat , p2 : f loat , p3 : f loat , p4 : f loat)

c e n t e r p t s (co rne r s : l i s t , nx : int , ny : int , num imgs : int)

p n t c l d t r a n s f (pnt c ld1 : np . ndarray , pnt c ld2 : np . ndarray)

park mart in (A: l i s t , B: l i s t)

c a l i b e r r 2 D (hec , rob pose s : l i s t , board poses : l i s t)

c a l i b e r r 3 D (hec , rob pose s : l i s t , board pts : l i s t)

i n t e rpo l a t e 2D (f : l i s t , xy : l i s t , x : f loat , y : f loat)

g ene ra t e po s e s (n : int , n o i s e l i s t : l i s t)

p l a n e f i t (pnt c ld : np . ndarray , nx : int , ny : int)

B.3 zivid hand eye calibrator.py

Members of ZividHECalibrator class:

Ziv idHECal ibrator . app

ZividHECal ibrator . nx

Ziv idHECal ibrator . ny

Ziv idHECal ibrator . s q u a r e s i z e

Ziv idHECal ibrator . images

Ziv idHECal ibrator . num imgs

Ziv idHECal ibrator . p o i n t c l o u d s

Ziv idHECal ibrator . XYZs

ZividHECal ibrator . che s sboard pose s

Ziv idHECal ibrator . camera poses

Ziv idHECal ibrator . r obo t po s e s

Ziv idHECal ibrator . rgbs

Ziv idHECal ibrator . camera matrix

Ziv idHECal ibrator . d i s t c o e f f s

Ziv idHECal ibrator . i m a g e f i l e s

Ziv idHECal ibrator . p o s e f i l e s

Ziv idHECal ibrator . c o rne r s

Ziv idHECal ibrator . c e n t e r p o i n t s

64

ZividHECal ibrator . o b j e c t p l a n e s

Ziv idHECal ibrator . board po int s

Ziv idHECal ibrator . rvec s

Ziv idHECal ibrator . tvec s

Ziv idHECal ibrator . HE cal ib

Ziv idHECal ibrator . method

Methods of ZividHECalibrator class:

Ziv idHECal ibrator (nx : int , ny : int , s q r S i z e : f loat)

Ziv idHECal ibrator . l o a d r o b o t p o s e s (path : str)

Ziv idHECal ibrator . l o a d z d f s (path : str)

Ziv idHECal ibrator . l o a d z d f s p a r a l l e l (f o l d e r p a t h : str)

Ziv idHECal ibrator . c a l c u l a t e c h e s s b o a r d p o s e s 2 D ()

Ziv idHECal ibrator . c a l c u l a t e c h e s s b o a r d p o s e s 3 D ()

Ziv idHECal ibrator . draw coord sys (imgNb : int)

Ziv idHECal ibrator . draw coord sys (s e l f , imgNb : int)

Ziv idHECal ibrator . v iz cam pose (

f o cus : str = ’ ob j e c tCen t r i c ’ , axLen : int = 50)

Ziv idHECal ibrator . v i z r o b p o s e (s e l f , axLen : int = 50)

Ziv idHECal ibrator . v i z HE trans f (

X HE: l i s t , showTranslat ion : bool = True , inCamera=False)

Ziv idHECal ibrator . s e t i n t r i n s i c s (pathToK : str , pathToDist : str)

Ziv idHECal ibrator . c a l c u l a t e r e l a t i v e p o s e s (

p o s e p a i r s : int = −1, u s e board pt s : bool = True)

Ziv idHECal ibrator . HE ca l ib ra t i on (A: l i s t , B: l i s t)

Ziv idHECal ibrator . c a l i b e r r o r ()

Ziv idHECal ibrator . e r r i t e r (p l o t=Fal se)

B.4 capture.py

Available functions in file:

connect to camera ()

capture f rame (camera)

s a v e r o b o t s t a t e (f i l ename , xml)

pose monitor (c l i e n t)

65

Appendix C

Design Drawings

66

 5 X
6,00

 2 X
14,00

 2 X 8,00

 95,00

 75,00

 45,00

 42,00

 12,50
 50,00

 37,50

 7,50

 17,50

 17,50

 24,00

 8,50

 15,00

M
arkus Bjønnes

Tlf.: 40295635

A
lum

inium

Brakett for Zivid
 one (C

)

A
A

B
B

C
C

D
D

6 6

5 5

4 4

3 3

2 2

1 1

DRAW
N

C
HK'D

A
PPV

'D

M
FG

Q
.A

UN
LESS O

THERW
ISE SPEC

IFIED
:

D
IM

EN
SIO

N
S A

RE IN
 M

ILLIM
ETERS

SURFA
C

E FIN
ISH:

TO
LERA

N
C

ES:
 LIN

EA
R:

 A
N

G
ULA

R:

FIN
ISH:

D
EBURR A

N
D

BREA

K SHA
RP

ED
G

ES

N
A

M
E

SIG
N

A
TURE

D
A

TE

M
A

TERIA
L:

D
O

 N
O

T SC
A

LE D
RA

W
IN

G
REVISIO

N

TITLE:

D
W

G
 N

O
.

SC
A

LE:1:1
SHEET 1 O

F 1

A
4

W
EIG

HT:

cam
era_bracket_C

SO
LID

W
O

RKS Educational Product. For Instructional U
se O

nly.

67

 75,00

 92,50

 R37,50

 22,27

 22,27

 4 X M
6,00

 40,00

4 X

10,00

4 X
5,30

 45°

 25,50

 25,50

 11,14

 2 X M
8,00

 15,00

 4 X 7,00

 17,50 40,00

M
arkus Bjønnes

Tlf.: 40295635

A
lum

inium

Brakett for Zivid
 one (R)

A
A

B
B

C
C

D
D

6 6

5 5

4 4

3 3

2 2

1 1

DRAW
N

C
HK'D

A
PPV

'D

M
FG

Q
.A

UN
LESS O

THERW
ISE SPEC

IFIED
:

D
IM

EN
SIO

N
S A

RE IN
 M

ILLIM
ETERS

SURFA
C

E FIN
ISH:

TO
LERA

N
C

ES:
 LIN

EA
R:

 A
N

G
ULA

R:

FIN
ISH:

D
EBURR A

N
D

BREA

K SHA
RP

ED
G

ES

N
A

M
E

SIG
N

A
TURE

D
A

TE

M
A

TERIA
L:

D
O

 N
O

T SC
A

LE D
RA

W
IN

G
REVISIO

N

TITLE:

D
W

G
 N

O
.

SC
A

LE:1:1
SHEET 1 O

F 1

A
4

W
EIG

HT:

cam
era_bracket_R

SO
LID

W
O

RKS Educational Product. For Instructional U
se O

nly.

68

	Introduction
	Problem Description and Objectives
	Related Work
	Report Structure

	Preliminaries on Robot Kinematics and Computer Vision
	Kinematic Modelling of Rigid Bodies
	Computer Vision

	Hand-Eye Calibration
	Kinematics of the Hand-Eye Calibration Problem
	A Solution to the Hand-Eye Calibration Problem by Solving AX=XB on SE(3)

	System Description
	Robot Manipulator
	Zivid One Camera
	Hand-Eye Calibration Software

	Experiments
	Experiments
	Results

	Discussion
	Capture parameter tuning
	Hand-Eye Calibration on Generated noisy data
	Hand-Eye Calibration on Real datasets

	Conclusion and future work
	Conclusion
	Future Work

	Appendix Calibration Chessboards
	Appendix Code
	homogeneous_transformations.py
	utils.py
	zivid_hand_eye_calibrator.py
	capture.py

	Appendix Design Drawings

