
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f G

eo
sc

ie
nc

e
an

d
Pe

tr
ol

eu
m

Ådne Årevik Vikdal
M

ulti-Phase Segm
entation of Im

aged Fluid D
istribution in Porous M

edia U
sing D

eep Learning

Ådne Årevik Vikdal

Multi-Phase Segmentation of Imaged
Fluid Distribution in Porous Media
Using Deep Learning

Master’s thesis in Engineering and ICT
Supervisor: Carl Fredrik Berg

June 2021M
as

te
r’s

 th
es

is

Ådne Årevik Vikdal

Multi-Phase Segmentation of Imaged
Fluid Distribution in Porous Media
Using Deep Learning

Master’s thesis in Engineering and ICT
Supervisor: Carl Fredrik Berg
June 2021

Norwegian University of Science and Technology
Faculty of Engineering
Department of Geoscience and Petroleum

Abstract

Precise segmentation of CT images is a cornerstone in the creation of digital rock
models. The traditional segmentation workflow is tedious as it relies on manual
interaction and quality control, making it prone to operator bias. Most deep learn-
ing approaches use manually segmented images as ground truths, and the models
suffer from inherent user bias. Existing published research has only focused on
the segmentation of solids and pore space and the segmentation of the solids into
minerals.

This thesis implements several deep learning models for automatic segmenta-
tion of micro-CT images into multiple fluid phases and solids. To the best of the
author’s knowledge, there does not exist any published work on deep learning
approaches that segments fluid distribution in the pore space as of yet.

The thesis also explores the potential for using synthetic data in the training of
deep learning models. The data is created by using a force-biased algorithm and
the Lubachevsky-Stillinger algorithm to create jammed sphere packs. Morpholog-
ical invasion is used to create a fluid distribution consisting of oil and water in the
pore space of the sphere packs. Synthetic data creation removes the user bias from
the ground truth segmentations that most existing deep learning approaches on
porous media segmentation suffer from. Three deep learning models are trained
on synthetic images. Their performance on authentic micro-CT images is com-
pared to the segmentations created by a model trained on manual, pixel-wise
annotations of the micro-CT images.

MultiRes U-Net is the best performing model trained on synthetic images. It
generates accurate segmentations but still has some limitations. These limitations
are assumed to be connected to a lack of variety of porosity and contact angles
in the training dataset and should easily be resolved by modifying the training
dataset.

iii

Sammendrag

Nøyaktig segmentering av CT-bilder er en nøkkelfaktor i utviklingen av Digital
Rock Models. Tradisjonell segmenteringsarbeidsflyt er arbeidskrevende ettersom
den er avhengig av manuell samhandling og kvalitetskontroll. De fleste nevrale
nettverkstilnærminger nytter manuelt segmenterte bilder som ground truths, og
slike modeller blir derfor påvirket av operatøren som gjennomfører segmenterin-
gen av ground truth-bildene.

Tidligere forskning har fokusert på segmentering av CT-bilder til faste stof-
fer og porerom, og segmentering av faste stoffer til mineral. Denne masteropp-
gaven implementerer flere nevrale nettverksmodeller for automatisk segmenter-
ing av mikro-CT bilder til fluidfaser og fast stoff. Såvidt forfatteren vet, er det
ikke tidligere publisert forskning om nevrale nettverk som segmenterer fluiddis-
tribusjonen i porerommet.

Masteroppgaven utforsker potensialet for å nytte syntetiske CT-bilder for å
trene nevrale nettverksmodeller. En force-biased-algoritme og Lubachevsky-
Stillinger-algoritmen blir brukt til å generere kulepakker. Videre blir morfologisk
invadering benyttet til å danne en fluiddistribusjon med vann og olje i porevol-
umet. Disse kulepakkene blir deretter prosessert for å etterligne CT-bilder. Syn-
tetisk datagenerering gjør at ground truth-bildene ikke blir påvirket av den som
lagde dem. I denne oppgaven er tre nevrale nettverk trent med syntetiske bilder.
Disse nettverkene er testet på ekte mikro-CT-bilder, og resultatene er sammen-
lignet med segmenteringene fra et nevralt nettverk trent med ekte bilder, der
ground truth-bildene er laget ved hjelp av manuell annotering.

Av nettverkene som er trent på syntetiske bilder, er det MultiRes U-Net som
gir de beste segmenteringene. Selv om den gir nøyaktige segmenteringer, har
den likevel noen svakheter. Svakhetene er trolig knyttet til treningsdataen og kan
enkelt fjernes ved å modifisere treningsdatasettet.

v

Acknowledgement

This master thesis is written at the Department of Geoscience and Petroleum,
Norwegian University of Science and Technology. It is the final product of the
master program in Engineering & ICT, with specialization in ICT & Petroleum
Engineering.

I would like to extend my gratitude to my supervisor, Carl Fredrik Berg, for
providing me with an interesting topic for this master thesis, and for your knowl-
edge, guidance and interesting discussions during my work on this master thesis.

I would also like to thank Haili Long-Sanouiller and Petricore AS for providing
me with micro-CT images. Thanks to my family for your support during my five
years at NTNU, and thanks to my friends and classmates for making these years
in Trondheim so great.

vii

Contents

Abstract . iii
Sammendrag . v
Acknowledgement . vii
Contents . ix
Figures . xiii
Tables . xv
Acronyms . xvii
1 Introduction . 1
2 Background . 5

2.1 Digital Rock Physics . 5
2.2 Acquisition of Micro-CT Images . 6
2.3 Traditional Segmentation Approaches 7

2.3.1 Spatial Filtering . 7
2.3.2 Noise and Artifact Removal . 7
2.3.3 Thresholding . 8
2.3.4 Morphological Operations . 8
2.3.5 Cluster Analysis . 10
2.3.6 Watershed Segmentation . 10

2.4 Computer Vision . 10
2.5 Conventional Machine Learning . 11

2.5.1 Gradient Descent . 11
2.5.2 Support Vector Machine . 12

2.6 Deep Learning . 13
2.6.1 Artificial Neural Networks . 13
2.6.2 Convolutional Neural Networks 14
2.6.3 Learning . 15
2.6.4 Residual Learning . 20

2.7 Related research . 20
3 Theory . 23

3.1 Sphere Pack Generation . 23
3.1.1 Force-Biased Sphere Packing . 24
3.1.2 Lubachevsky-Stillinger Sphere Packing 25

3.2 Morphological Invasion . 28
3.3 Fully Convolutional Network (FCN) . 29

ix

x Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

3.4 U-Net . 31
3.5 MultiRes U-Net . 33
3.6 Deep Learning Training . 36
3.7 Support Vector Machine . 38

3.7.1 Hinge Loss . 38
3.7.2 L2 Regularization . 39
3.7.3 One versus All . 39

4 Methodology . 41
4.1 Materials . 41

4.1.1 Glass Beads . 41
4.1.2 Micro-CT Scanning . 42

4.2 Traditional segmentation . 42
4.3 Manual annotation . 46

4.3.1 Data Augmentation . 46
4.4 Synthetic Data Creation . 49

4.4.1 Sphere Pack Generation . 49
4.4.2 Increase Porosity . 50
4.4.3 Morphological Invasion . 50
4.4.4 Change contact angle . 52
4.4.5 Preprocess Into Synthetic Micro-CT Images 54

4.5 Conventional Machine Learning . 55
4.5.1 Feature Extraction . 55
4.5.2 Support Vector Machine . 55

4.6 Deep Learning . 56
4.6.1 U-Net Trained on Manual Annotations 56
4.6.2 Models for Synthetic Images . 57
4.6.3 Test on Authentic Micro-CT images 60

4.7 Evaluation Metrics . 60
4.8 Hardware and Software . 61

5 Results and Discussion . 63
5.1 Quantitative results on test set . 63

5.1.1 2D U-Net . 65
5.1.2 2D MultiRes U-Net . 66
5.1.3 3D U-Net . 68

5.2 Performance on Test Images . 69
5.2.1 2D U-Net . 69
5.2.2 2D MultiRes U-Net . 70
5.2.3 3D U-Net . 71

5.3 Performance on Authentic Micro-CT Images 72
5.3.1 Oil-Wet Glass Beads . 72
5.3.2 Intermediate Wet Glass Beads 78

5.4 Areas of Improvement For the Models Trained on Synthetic Images 82
5.5 Probability Heatmap . 85
5.6 Overall Discussion . 87

Contents xi

6 Conclusion . 91
7 Further Work . 93

7.1 Extend Dataset . 93
7.2 Optimize Training . 93
7.3 Train 3D MultiRes U-Net . 93
7.4 Use Deeper 3D Patches . 94
7.5 Develop Sophisticated Testing Pipelines 94
7.6 Create More Realistic Dataset . 94

Bibliography . 95

Figures

1.1 Specialization Project Segmentation . 2

2.1 Illustration of Scanning Configuration 6
2.2 Original CT Slice . 7
2.3 Otsu’s Method . 9
2.4 Morphological Operations . 9
2.5 Computer Vision Tasks . 11
2.6 Support Vector Machine . 12
2.7 Artificial Neural Network . 14
2.8 Convolution Operation . 15
2.9 Sigmoid Function . 16
2.10 ReLU Function . 17
2.11 Overfitting and Underfitting . 18
2.12 Early Stopping . 19
2.13 Residual Learning . 20

3.1 Lubachecsky-Stillinger Collision . 26
3.2 Sphere Pack Characteristics . 27
3.3 Morphological Invasion Illustration . 29
3.4 Fully Convolutional Network Architecture 30
3.5 Fully Convolutional Network Results 30
3.6 Transposed Convolution . 31
3.7 U-Net Architecture . 33
3.8 MultiRes U-Net Building Blocks . 34
3.9 Res Path . 35
3.10 MultiRes U-Net Architecture . 36
3.11 Hinge Loss . 38

4.1 Markers for Watershed Segmentation 43
4.2 Results from Watershed Segmentation 44
4.3 K-means Clustering and Gaussian Mixture Model segmentation . . . 45
4.4 Otsu Multiclass Thresholding . 46
4.5 Original Image and Corresponding Mask 47
4.6 Splitted Annotated Image . 47

xiii

xiv Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

4.7 Data Augmentation Transformations 48
4.8 Initial Sphere Packing and Jammed Sphere Packing 50
4.9 Morphological Invasion of Binary Grid 51
4.10 Contact Angle Modification by Erosion 53
4.11 Comparison of Authentic Micro-CT Image and Preprocessed Syn-

thetic Image . 54
4.12 Mask and Image of Invaded Initial Sphere Packing 55
4.13 Accuracy and Loss Plot . 57
4.14 Intersection over Union . 61

5.1 2D U-Net Confusion Matrix . 65
5.2 2D U-Net Accuracy and Loss Plot . 66
5.3 2D MultiRes U-Net Confusion Matrix 67
5.4 2D MultiRes U-Net Accuracy and Loss Plot 67
5.5 3D U-Net Confusion Matrix . 68
5.6 3D U-Net Accuracy and Loss Plot . 68
5.7 2D U-Net Test Image Segmentation . 70
5.8 2D MultiRes U-Net Test Image Segmentation 70
5.9 3D U-Net Test Image Segmentation . 71
5.10 Segmentation of Oil-Wet Glass Beads 74
5.11 Segmentation of Oil-Wet Glass Beads 75
5.12 Segmentation of Oil-Wet Glass Beads 77
5.13 Segmentation of Intermediate Wet Glass Beads 79
5.14 Segmentation of Intermediate Wet Glass Beads 80
5.15 Segmentation of Intermediate Wet Glass Beads 81
5.16 Segmentation Issue: One Phase Fluid Image 83
5.17 Segmentation Issue: One Phase Fluid Image 84
5.18 Segmentation Issue: Two Phase Fluid Image 85
5.19 Probability Heatmap For Segmentations 86

Tables

4.1 Total Trainable Parameters . 59

5.1 Model Evaluation . 63
5.2 Recall . 64
5.3 Precision . 64
5.4 F1 Score . 65

xv

Acronyms

Adam Adaptive Moment Estimation. 37

ANN Artificial Neural Network. 13, 15, 17

CNN Convolutional Neural Network. 14, 15, 17, 20, 21

FCN Fully Convolutional Network. ix, 29, 31

IoU Intersection over Union. 61

ReLU Rectified Linear Unit. 15, 16, 32

SGD Stochastic Gradient Descent. 11, 37, 38, 66

SVM Support Vector Machine. 12, 38, 56

xvii

Chapter 1

Introduction

Micro-CT images of core samples of porous media describe the pore geometry in
high resolution. The images can be used to derive rock and fluid properties, which
may lead to a deeper understanding of the rock properties, pore structure and the
processes that control the transport of fluids in porous media. With digitized core
samples, these properties will be determined faster than in a traditional laboratory.

In order to develop precise digital rock models, a crucial step is the segmenta-
tion of the micro-CT images. Traditional segmentation methods are often tedious
as they require manual interaction and quality control, and are hence prone to op-
erator bias. Semantic segmentation with neural networks has made tremendous
progress in recent years due to advances in convolutional neural networks.

This master thesis is a continuation of a specialization project completed dur-
ing the fall semester of 2020. The project studied machine learning approaches
that automatically creates precise segmentations of micro-CT images of a bead
pack filled with oil and water. One deep learning model, one conventional ma-
chine learning model, and one grayscale thresholding algorithm were implemented
and compared. These are a 2D U-Net, a Support Vector Machine and Otsu segmen-
tation, respectively. The first two models were trained with manually annotated
ground truth images. To make this thesis self contained, the results from the spe-
cialization projects are included in the results section.

The deep learning model from the specialization project has some issues. One
of them is the ability to correctly segment small cross-sections of the solid parti-
cles. A lot of noise and blur often surrounds these cross-sections, as may be seen
in Figure 1.1. This makes the images very hard for the operator to annotate be-
cause it is difficult to determine where the boundaries between the solid and the
pore space are. The annotations will therefore be biased by the operator and not
consistent.

This is the main issue with deep learning approaches; in order to create a
good model, one needs an extensive dataset with precise, unbiased ground truths.
These are hard to come by, as both manual pixel-wise annotations and traditional
multi-step segmentations are almost impossible to create without operator bias.
According to Wang, Shabaninejad, et al. (2021), the issue of segmentation user

1

2 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

Figure 1.1: Segmentation from the specialization project. The left image is the
original image, while the right image is the result from U-Net. The model struggles
to segment small cross sections of the solid particles.

bias is an as of yet unaddressed issue in Digital Rock Physics.
This is the reason for the change in methodology. Instead of creating ground

truths to existing micro-CT images, the opposite is done. Ground truths are created
and processed to resemble micro-CT images. This way, the ground truths will be
objective and pixel perfect and allow for 3D images, which was not possible to
annotate with the previous methodology. The use of 3D images allows information
to be extracted from the depth dimension of the images, which should improve
the segmentation of the small cross-sections mentioned above.

Synthetic images also allow for the fluid distribution in the pore space to be
precisely segmented. In the last years, much research has been conducted on
multi-mineral segmentation and pore space segmentation, but according to Wang,
Blunt, et al. (2021), work on estimation of fluid phase distribution using Deep
Learning techniques has not yet been published.

In this thesis, the ground truths are created by generating sphere packs that
contain oil and water. Then processing is done to transform the ternary ground
truth images into micro-CT images. Data augmentation is implemented to extend
the dataset and add variance, before it is used as input to the deep learning train-
ing. Three versions of U-Net is implemented in this study; a 2D U-Net, a 3D U-Net
and a 2D MultiRes U-Net. U-Net is a fully convolutional neural network proposed
in Ronneberger et al. (2015). By using a contracting and expanding path com-
bined with connections between the paths and a large number of feature channels,
the U-Net is capable of producing precise segmentations with good localization.

The research question in this thesis is as follows: Is it possible to create a model
that can be used to automatically digitize the fluid phases and matrix of micro-CT
images precisely? Due to the difficulties in obtaining datasets with precise ground
truth segmentations, a sub-question is: Is it possible to achieve quality segmenta-
tions on authentic micro-CT images with models that are trained on synthetic im-
ages?

In Chapter 2, background material that is needed for later sections is intro-
duced and explained. Chapter 3 shows details of the theoretical foundations of
sphere pack generation, morphological invasion and deep learning with convo-

Chapter 1: Introduction 3

lutional neural networks. Chapter 4 describes the methodology of the study and
explains how the data is created and processed, in addition to how the models
were implemented, trained and evaluated. In Chapter 5 the results from the seg-
mentation of the testing set and the authentic micro-CT images are presented and
discussed. Chapter 6 concludes the study, and Chapter 7 presents ideas for further
work.

Because this master thesis is a continuation of the specialization project, some
sections are reworked and expanded versions of the corresponding sections in the
specialization project. These sections include most of the Background chapter,
Section 3.3, 3.4, 3.6 and 3.7 in the Theory chapter, and Section 4.1, 4.2, 4.3, 4.5,
4.6.1 and 4.7 in the Methodology chapter.

Chapter 2

Background

In this section, a brief introduction to the concepts needed as background for the
theory and methodology sections is given.

2.1 Digital Rock Physics

The purpose of Digital Rock Physics, as described by Andrä et al. (2013), is "to
discover, understand and model relations between remotely-sensed geophysical
observables and in-situ rock properties". Traditionally, rock physics models were
based on empirical relations from lab measurements, or on theoretical models
based on idealized microstructures calibrated with measurements. These mod-
els are often oversimplified with regards to the geometry they represent and the
physical interactions within them. Cross-property analyses are challenging, as the
various rock property models represent the rock microstructure differently.

With micro-CT images of core samples, the pore geometry is represented in
high resolution. These images may be segmented to be used as input in a range
of advanced simulations of the physical processes. Among them are fluid flow
to quantify permeability, electrical current flow to quantify resistivity, and elastic
deformation to quantify elastic moduli and the elastic wave velocity (Andrä et al.
2013). Because the features are captured in a non-invasive and non-destructive
manner, the core samples can still be analyzed in the lab afterwards (Wildenschild
et al. 2013).

A prerequisite for digital rock physics to be successful is the precision and ef-
ficiency of the segmentation of the micro-CT images. Segmentation is the process
of separating the images into multiple sub-volumes and assign different labels to
different sub-volumes. A common way to do this is described in Section 2.3.

A challenge in developing high-quality digital rock models has been the limited
access to datasets that include unbiased ground truths that can be used for training
supervised models and benchmarking. Often, the researchers need to create their
own ground truths, which is nearly impossible to do without bias.

5

6 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

2.2 Acquisition of Micro-CT Images

Wildenschild et al. (2013) describes X-ray microtomography to be the most com-
mon technique to image core samples. It is able to capture information in all three
dimensions in a non-destructive manner in a scale that is well suited to study the
processes and variables of importance to subsurface flow in porous media.

The CT scanner consists of an X-ray source and a series of detectors. The X-
rays originating from the source pass through the object, and the detectors, which
are on the other side of the object, measures how much the X-ray signal has been
attenuated. The detector’s response to one pass through the object is called a view.
Multiple views are obtained by either rotating the source and detectors around the
object or rotating the object itself. An image of the scanning configuration can be
found in Figure 2.1. The views from one rotation of the object are reconstructed
to form a two-dimensional image called a slice. By scanning different planes of
the object, i.e. different heights, multiple slices are created and construct a three-
dimensional image of the object (Ketcham et al. 2001). An example of a slice from
this thesis is seen in Figure 2.2.

Figure 2.1: Illustration of the scanning configuration. The black object at the top
represents the X-ray source, and the curved, black bar at the bottom represents
the detectors. The round, white element in the middle represents the object to
be scanned, and the arrows represent rotational motion. This can be caused by
either rotating the object or the detectors and source (Ketcham et al. 2001).

Because rock samples do not have any limitations regarding acceptable radi-
ation dose, industrial CT systems are of higher energy and have longer exposure
times than in the medical industry, where these systems were originally devel-
oped. Therefore, smaller detectors may be used, which give higher resolution,
since the reduction in a signal that follows from the reduction in surface area
on the detector is compensated for by using higher X-Ray intensities or exposure
times (Ketcham et al. 2001).

Chapter 2: Background 7

Figure 2.2: Original CT slice. The small spheres are cross-sections of the glass
beads, the bright matter surrounding the beads is water and the dark is oil. The
circle surrounding all the beads is the cross-section of the glass container in which
the beads are placed.

2.3 Traditional Segmentation Approaches

Due to the fact that the scanned 3D objects often are more than 1000 voxels in
the three directions, it is not feasible to segment the images manually, and image
processing algorithms are required. The methods for segmenting the images range
from simple thresholding to advanced workflows with several steps.

The typical workflow for segmenting micro-CT images of rock samples consists
of spatial filtering, noise and artefact removal, thresholding, morphological opera-
tions and cluster analysis. Each step does not produce a unique result, and manual
interaction and quality control are therefore needed (Andrä et al. 2013). The dif-
ferent steps and why they are performed are explained below in Section 2.3.1 to
2.3.5.

2.3.1 Spatial Filtering

The images often suffer from non-uniform brightness distribution where, for ex-
ample, the voxels in the centre of the sample are brighter than the voxels at the
edges of the sample. This is usually corrected by fitting a brightness profile that
characterizes the inhomogeneity. Then the pixel values are adjusted in order to
make the profile uniform (Andrä et al. 2013).

2.3.2 Noise and Artifact Removal

The images usually contain noise, and this is typically removed with the non-local
means denoising algorithm, which is introduced by Buades et al. (2005). This

8 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

filter uses the mean of all pixels in the image weighed by how similar they are to
the pixel to be smoothed. This is shown to achieve better results and less loss of
information than in the local mean methods.

Ring artefacts are caused by shifts in output from individual detectors, which
causes the corresponding ray to have anomalous values and the reconstruction
to form circular streaks at the greatest overlap of these rays. These rings may be
removed in several ways. If the image is not yet reconstructed, vertical lines can
simply be removed. On the other hand, if the image is reconstructed, it can be
transformed into polar coordinates before vertical lines are removed, and then
transformed back to cartesian coordinates. Yet another solution is to detect circles
with radii bigger than some threshold value and exclude these circles from the
analysis (Andrä et al. 2013; Ketcham et al. 2001).

2.3.3 Thresholding

Now thresholding is performed on the image to reduce the images to two or a few
classes. Thresholding means assigning one class to all pixels with intensity lower
than a fixed constant and assign all other pixels to a different class. Therefore, in
its simplest form, it creates binary images. It can be extended to more classes by
using several threshold values.

A range of studies has been conducted on how to best determine the threshold
value for the segmentation. The most popular method is Otsu’s method, which is
described by Otsu (1979). This method selects the threshold that minimizes the
intra-class intensity variance, which for two classes is the same as maximizing the
inter-class variance. It does this by first creating the histogram of the image and
computing the probabilities for each pixel value. Then it loops through all pos-
sible threshold values and computes the inter-class variance, and in the end, it
chooses the threshold value with the maximum inter-class variance. In Figure 2.3
there is an example of an image that is segmented with Otsu’s method, where the
corresponding histogram and threshold value also are visualized. It is straightfor-
ward to extend the algorithm to multiple classes, and the procedure is explained
by Otsu (1979).

The Otsu method has some limitations. For example, it does not yield satis-
factory performance when one of the classes is much smaller than the other, the
image contains noise, or different classes have similar pixel values but different
textures. Because of these limitations, thresholding is often just one of many steps
in a segmentation workflow.

2.3.4 Morphological Operations

Morphological operations are a set of non-linear image processing operations that
process images based on the shape or morphology of features in an image. These
operations rely only on the relative ordering of pixel values and not on the actual
values. They are therefore well-suited operations to apply on binary images. The
basic operations are dilation and erosion. Dilation works like a local maximum

Chapter 2: Background 9

Figure 2.3: Otsu’s method. From left to right: Original image, segmented image,
and histogram of the original image with the threshold value visualized (3.3.9.7.
Otsu thresholding — Scipy lecture notes n.d.).

filter, where it iterates over every pixel, uses a surrounding kernel, and assigns
the maximum value of the kernel to the target pixel. Erosion is the opposite of di-
lation and acts as a local minimum filter. In other words, dilation expands features
and erosion shrinks or removes them. By combining these operations in different
ways, other operations are formed. Examples are opening, which is an erosion
followed by a dilation, and closing, which is the other way around. Opening re-
moves narrow connections, and closing removes small holes in the images (Raid
et al. 2014). Visualisations of the operations is found in Figure 2.4. These oper-
ations are useful for improving the results from thresholding. Figure 2.3 shows
that there are a lot of white dots on the segmented lawn. An opening operation
would remove these dots and make a better segmentation.

Erosion and dilation Morphological opening

Morphological closing

Figure 2.4: Morphological operations (Joram n.d.).

10 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

2.3.5 Cluster Analysis

After the previous operation, the image is segmented, but sometimes a cluster
analysis is performed to identify and remove isolated pore regions (Andrä et al.
2013). There are multiple ways to do this, but the most common algorithm is
Fuzzy c-Means (Bezdek et al. 1984). The details of this algorithm are not covered
because it is not used in this study.

2.3.6 Watershed Segmentation

Watershed segmentation is a method that uses image morphology to segment
images. The intuition behind the algorithm is that the image is treated like a to-
pographic landscape with ridges and valleys, and the algorithm divides the image
into adjacent drainage basins. There exist a drainage basin for each local mini-
mum, and this basin corresponds to all of the pixels whose steepest gradient path
ends up in the local minimum (Beucher et al. 1992). Watershed segmentation is
further explained in Section 4.2.

2.4 Computer Vision

The purpose of computer vision is to describe the world that we see in one or
more pictures and reconstruct its properties. Object detection and classification
has been one of the topics that have been studied the most in computer science
(Szeliski 2010).

Image classification determines which classes are present in a given image.
The task of classifying images can be extended with several levels of sophisti-
cation. According to Girshick et al. (2014), the different levels are described as
image classification, image classification with localization, semantic segmentation
and instance segmentation. Until the rise of convolutional neural networks for this
problem in 2012, this was an unsolved problem unless one had just a few classes.
Szeliski (2010) claims that no one yet has constructed a system that approaches
the performance level of a two-year-old child. Classification with localization is
an enhancement of image classification. Here, the localization of the predicted
class is specified, commonly with a bounding box. Semantic segmentation is an
enhancement where one also precisely segment the boundaries of the different
classes, while instance segmentation separates between different instances of the
same class. The levels are visualised in Figure 2.5.

Semantic segmentation differs from image classification and image detection
by labelling every pixel of the input image. This dense prediction naturally leads
to a segmentation, which is what we require in this study.

Chapter 2: Background 11

Figure 2.5: Differences between different levels of classification (Li et al. 2017).

2.5 Conventional Machine Learning

According to Jordan et al. (2015), machine learning is focused on two aspects.
The first is how to construct computer systems able to learn and improve from
experience. The second aspect is determining which laws of statistics, computation
and information that govern all learning systems, including humans, computers
and organizations. Machine learning can be split into supervised and unsupervised
methods.

In supervised learning, all instances are labelled, which means that we have
prior knowledge of the output value. The goal of supervised learning is to train a
model that, given a sample of data and desired output, is able to approximate the
relationship between the input and the output. Common use cases for supervised
learning are classification and regression (Jordan et al. 2015).

Unsupervised learning does not have labelled output, and its goal is to infer
the structure between data points. Typical use cases are clustering, representation
learning and density estimation (Jordan et al. 2015).

2.5.1 Gradient Descent

Gradient descent is an old algorithm that was suggested by Cauchy in 1847. Be-
cause of its simplicity, it is often used within machine learning. The objective of
gradient descent is to descend a slope and find a minimum, and it is, therefore,
an optimization algorithm. It is iterative and starts at an arbitrary location in the
search space and moves in steps in the direction with the steepest slope until it
reaches a minimum (Bottou 2010).

Gradient descent is not efficient for large datasets with many features because
it requires calculating the gradients of all features of all data points for each itera-
tion. An enhancement of gradient descent that mitigates this problem is Stochastic
Gradient Descent (SGD). This algorithm stochastically, i.e., randomly, picks one
data point or a small batch of data points from the dataset at each iteration and

12 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

calculates the direction with the steepest slope. This dramatically speeds up the
computation time, and due to its simplicity and efficiency, it is widely used (Bottou
2010).

2.5.2 Support Vector Machine

The Support Vector Machine (SVM) was introduced by Cortes and Vapnik (1995).
It is a learning machine for binary classification, and its basic idea is that input
vectors are non-linearly mapped to very high-dimension feature spaces. The goal
of the SVM is to construct a linear decision surface. An optimal hyperplane is de-
scribed as a linear decision function with the maximal margin between the vectors
of the two classes. The margin is visualized by the dark green dotted lines in Fig-
ure 2.6. The method creates support vectors that define the margin of the largest
separation between the classes, and the decision boundary is set in the middle of
the margin, as illustrated by the bright green dotted line in Figure 2.6. To accom-
modate for potential outliers and errors in the training set, it is common to use a
soft margin. This means that the SVM is allowed to make a certain number of mis-
takes in the training process in order to make the margin as big as possible. After
that, the other points may be correctly classified. To use the SVM to segment pic-
tures, one first needs to extract features from the image. A common way to do this
is by employing different filters to the image and recording the filter responses.
Examples of filters are Gabor filters, edge filters, Gaussian filters, median filters.
Additionally, Gray Level Co-occurrence Matrix (GLCM) features may be used to
characterize the texture of the images.

Figure 2.6: Example of decision boundary in Support Vector Machines. The soft
margin, drawn with a dark green line, allows for some outliers in order to make
the margin wide. The decision boundary is defined to be in the middle of the
margin and is drawn with bright green (Misra 2019).

Chapter 2: Background 13

2.6 Deep Learning

Conventional machine learning techniques are limited in their ability to process
data in their raw form. In the case of image segmentation, they depend on fea-
ture extraction with the use of filters. Deep learning methods use representation
learning, which means that they can learn and discover patterns in raw data. The
methods transform the input data in a simple but non-linear manner, making deep
learning able to see patterns at a higher, more abstract level. This way, the algo-
rithms develop deeper and deeper feature maps, and these maps are learned from
the data by using a general-purpose learning procedure (LeCun et al. 2015).

According to LeCun et al. (2015), deep learning has led to significant advances
in solving a range of problems. It has beaten records in image recognition, speech
recognition, predicting activity of potential drug molecules, natural language un-
derstanding and many more. Because the results depend on the data and com-
putational power, it is expected that deep learning will have continued success in
the future.

2.6.1 Artificial Neural Networks

Jain et al. (1996) describes Artificial Neural Network (ANN) to be a massively
parallel computing system consisting of a large number of simple processors with
many interconnections. These networks are inspired by biological neural networks
and try to use some "organizational" principles, which are believed to be used in
the human brain.

Architecture
ANNs consist of artificial neurons and edges. Each neuron receives input and pro-
duces an output, which is sent to other neurons. The input can be features, e.g.,
from images or outputs from other neurons. The edges connect the neurons to
each other and deliver the output from one neuron as an input to a different neu-
ron. Both the neurons and the edges have a weight that represents its importance
(Jain et al. 1996).

Usually, the neurons are organized in layers, where neurons in one layer only
have connections to the neurons in the next layer. ANNs typically consists of an
input layer, multiple hidden layers, and an output layer. Sometimes, each node
in a layer is connected to all nodes in the subsequent layer; this is called fully
connected layers. Another way to organize the connection is with pooling, where
a group of neurons in one layer is connected to one neuron in the next layer. Net-
works that consist of only pooling connections are called feedforward networks
(Jain et al. 1996). A picture of a general artificial neural network with fully con-
nected layers is displayed in Figure 2.7.

14 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

Figure 2.7: Example of an artificial neural network (Bre et al. 2018).

2.6.2 Convolutional Neural Networks

Convolutional Neural Network (CNN) are designed to process data in the form
of multiple arrays, e.g. an RGB image is made up of three matrices containing
the pixel values in the red, green and blue channel. The essential ideas behind
convolutional networks are shared weights, local connections, pooling and the
use of many layers (LeCun et al. 2015).

Convolution
Convolution is a linear operation, and a convolution between two functions pro-
duces a third function that expresses how the shape of one is modified by the
other. The convolutions in CNNs are between kernels and input data or feature
maps. The kernel is a small two-dimensional matrix that functions as a filter. In
the convolution operation, the kernel is convolved, i.e., moved over the entire in-
put data, and the dot product is calculated and stored in the feature map, which is
the output of the convolution operation (Nielsen 2015). The discrete convolution
operation is shown in Equation (2.1), where O is a single output in the feature
map, I is the input data to the convolution and K is the kernel.

O(i, j) = (I ∗ K)(i, j) =
∑

m

∑

n

I(i +m, j + n)K(m, n) (2.1)

In Figure 2.8 we see an example of how the features are calculated.

Architecture
CNNs are typically structured as a series of stages, where the first stages usually
consist of convolutional layers and pooling layers. The results from all convolu-
tions are stored in feature maps, and each element in a feature map is connected
to a local patch in the previous layer, which is called the receptive field, through

Chapter 2: Background 15

Figure 2.8: Example of convolution with input dimension 5x5, padding of size
1, kernel size 3 and stride 1. The blue pixels on the bottom are the input and
the green pixels are the output from the convolution. The shaded pixel on the
output (green) represents the output from one convolution operation between
the shaded input area and the kernel. When the kernel has convolved over the
entire input, the green output is created (Pröve 2017).

a set of weights called a feature bank. A non-linearity, e.g., a Rectified Linear Unit
(ReLU), is employed on the result of this locally weighted sum. All of the features
in the feature map shares the same filter bank (LeCun et al. 2015). This means that
there are far fewer weights in CNNs than in ANNs. There are, of course, different
filter banks for different layers in order to capture different kinds of features in
the input.

The role of the pooling layers is to merge semantically similar features into
one. It does this by coarsening the feature maps. The most common pooling oper-
ation is max-pooling. It finds the maximum value in a patch and uses it to represent
the patch as a whole (LeCun et al. 2015).

2.6.3 Learning

Learning in deep learning is the task of updating the network architecture and
connection weights in order for the network to perform a specific task. To be able
to explain this, we first need to understand activation functions and backpropa-
gation.

Activation Functions
Activation functions decide whether a neuron should be activated or not. It does
this by calculating the weighted average of the input and adding a bias. Its purpose

16 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

is to make the output of a neuron non-linear. The activation functions are essential
to training a network since it adds non-linearities, enabling complex relationships
to be formed. It is a prerequisite for backpropagation since it supplies the gradient
and the error needed to update the weights and biases (Nielsen 2015). The two
activation functions used in this paper are the Softmax function and ReLU.

To understand the Softmax function, it is easiest first to understand the Sig-
moid function. The Sigmoid function is bounded, differentiable and shaped like an
"S", as seen in Figure 2.9. Several common Sigmoid functions exist, but in machine
learning, the Sigmoid function usually refers to the logistic function. This function
maps any real numbers to the range (0,1). A Sigmoid function is usually placed as
the last layer in the neural network because it efficiently maps the model’s output
to a probability score (Nielsen 2015). The logistic function is shown in Figure 2.9.

Figure 2.9: Sigmoid function, which here is the same as the logistic function.

Sigmoid functions are usually used for segmenting images with two classes,
but in this paper, where there are three classes, the Softmax activation function
is used. The Softmax function resembles a multi-class Sigmoid function. A useful
property of the Softmax function is that the sum of the outputs equal one, so it
outputs a multinomial probability distribution (Nielsen 2015).

ReLU is a piecewise linear function. It will output its input directly if it is
positive, and if it is negative, it will output zero. Because of its simplicity and
strong performance, it is the most common activation function in neural networks.
Its linearity for positive values ensures that it preserves many of the properties that
make linear models easy to optimize (Brownlee 2019). The ReLU is displayed in
Figure 2.10.

Backpropagation
Backpropagation is the most used algorithm for calculating the gradients in feed-
forward neural networks. The gradient is calculated with respect to all of the
weights in the network. It is able to do this efficiently by starting at the end of
the network and calculating the partial derivatives of the loss function for each
weight with the use of the chain rule and iteratively moves towards the start of the

Chapter 2: Background 17

Figure 2.10: ReLu function.

network. This calculation is done for each input-output example (Nielsen 2015).
The training process starts with the network being supplied with a batch of

training data. A sample from the batch is propagated through the network based
on the connection weights and biases. At the end of the network, an output is
created. The output is compared to the ground truth data, and the difference is
calculated with a loss function. Then, backpropagation calculates the gradient of
this loss function w.r.t. all of the weights in the network. The network repeats
this process for all of the samples in the batch. After every sample in the batch is
processed, it computes the average gradients for all of the gradients obtained by
backpropagation for each weight. These gradients are input to an optimizer, e.g.,
gradient descent, which decides how the weights should be adjusted in order to
minimize the loss function. There is a subtle difference in the learning process for
ANNs and CNNs. For ANNs, the weights may be considered the relative importance
for each edge in the network. For CNNs, the weights are the elements in the filter
banks, i.e., the convolution kernel elements. This means that in CNNs, every layer
shares the same weights, and, as a consequence, there are far fewer weights in
CNNs (LeCun et al. 2015).

Other essential concepts are hyperparameters, overfitting and underfitting,
data splitting, regularization, and batch normalization. These concepts are briefly
explained below.

Hyperparameters
A hyperparameter is a parameter that is set prior to the learning process. Examples
of hyperparameters are learning rate, which is the size of the corrective steps in
the learning process, number of hidden layers in the neural network, and batch
size in the learning process (Nielsen 2015).

Overfitting and Underfitting
Overfitting means that the model learns the training data to such an extent that
it does not perform well when used on unseen data. It learns the random fluc-

18 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

tuations and noise in the training data, and consequently, it will perform poorly
when applied to different data (Nielsen 2015).

Underfitting occurs when a model is not trained enough. This means that it
will not give a strong performance on either training data or unseen data (Nielsen
2015). Figure 2.11 visualises overfitting and underfitting.

Figure 2.11: Example of underfitting, overfitting and a well-fitted model (Kiourt
et al. 2020).

Data Split
In supervised learning, it is common to split the data. One typically split between
a training set, validation set and testing set. The purpose of doing this is to detect
and avoid overfitting. The training set is used to train the model and update the
weights in the model. While the model is training, it regularly is tested on the
validation set. This validation set gives an unbiased evaluation of the model while
it is training and is used to update the hyperparameters in the model. It is also
used for Early Stopping, i.e. to terminate the training if the model starts to overfit.
The test set is used only to test the model after the training process is finished to
give an unbiased evaluation of the final model (Nielsen 2015).

Regularization
Regularization is a range of techniques that reduce a neural network’s complexity
during training and therefore prevents overfitting. Examples of regularization are
dropout, early stopping, and data augmentation, all used in this paper (Nielsen
2015).

Dropout means that there is a predefined probability that a neuron is turned
off during a backpropagation. This will lead to a less complex model because
there will be fewer connections in the network, which reduces the probability of
overfitting.

Early stopping stops the model’s training when the training error keeps going
down but the validation error goes up or has stagnated. This is a sign of overfitting,
and techniques for early stopping help mitigate this. Figure 2.12 illustrates an

Chapter 2: Background 19

example of a graph that plots error vs the number of epochs. It shows that the
model is optimally trained when the validation error is at its minimum. The model
is underfitted if the number of epochs is lower and overfitted when it is higher.

Data augmentation increases the dataset by creating modified copies of the
original data. This is important when using small datasets to make the model
able to generalize and to avoid overfitting. Different kinds of data augmentation
techniques lead to resilience against diverse data and acts as a regularizer. Some
examples are described below.

Transformations augmentation - Different kinds of transformations are applied
to the input image and the corresponding mask. Examples are flips, shifts, rota-
tions, distortions or a combination of these, making the model invariant to these
transformations in the input image.

Color augmentation - Brightness, contrast, hue and saturation are changed to
make the model able to generalize. This will improve performance for images
from different scanners or with different lighting etc.

Blur augmentation- Blur is added to the input image to make the model re-
silient to images of poor quality.

Noise augmentation - Noise is added to the input image to make the model
resilient to this.

Figure 2.12: Error vs number of epochs.

Batch Normalization
Batch normalization normalizes the output of a layer by subtracting the batch
average and divides it by the batch standard deviation. This can be applied to any
layer in the network and improves the speed and reliability in neural networks,
and have a regularization effect (Santurkar et al. 2018).

20 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

Figure 2.13: Residual learning. F(x) + x is realized with a shortcut connection
(He et al. 2016).

2.6.4 Residual Learning

Increasing depth and complexity for neural networks have led to increased diffi-
culties in neural network training. One of the main obstacles is the degradation
problem; When the network depth increases, the accuracy gets saturated before
a rapid decline in accuracy occurs. Unexpectedly, this degradation is not caused
by overfitting (He et al. 2016).

He et al. (2016) proposes deep residual learning as a solution to the degra-
dation problem. Instead of letting each stack of layers in the network fit a de-
sired underlying mapping, they fit a residual mapping. Let the desired underlying
mapping be denoted by H(x), and the stacked non-linear layers fit the mapping
F(x) := H(x)− x . The original mapping may then be denoted as F(x) + x . The
authors of the paper hypothesize that it is easier to optimize the residual mapping
than the original, unreferenced mapping (He et al. 2016).

The mapping F(x) + x may be realized by feedforward networks with short-
cut connections that skips one or more layers. Different operations can be added
in the shortcut connection, but in the paper, they simply use identity mapping,
whose outputs are added to the outputs of the stacked layers (He et al. 2016).
See Figure 2.13 for an illustration of the architecture of the building block.

Experiments show that networks that implement these building blocks are
easier to optimize than equivalent networks without these shortcut connections.
They are also able to gain accuracy by increasing the depth in the network and
does not suffer from the degradation problem (He et al. 2016).

2.7 Related research

In this section, some related research on segmentation of images of porous media
is presented.

Wang, Blunt, et al. (2021) describes techniques and common neural network
architectures used in digital core analysis and reviews recent studies to demon-
strate all of the tasks where Deep Learning is beneficial. They also shed light on
the challenges and limitations of deep learning. The review concludes that CNNs

Chapter 2: Background 21

used for segmentation have improved the issues of inherent bias in the segmen-
tation, the high sensitivity of physical modelling, and the increased difficulty in
segmenting noisy images. However, an issue that plagues the segmentation CNNs
is the lack of available datasets over a broad range of samples. They also empha-
size that the results achieved with deep learning in pore-scale imaging are still in
the early stages of research.

The authors of the review above also published Wang, Shabaninejad, et al.
(2021). They implement and test four CNN architectures for 2D and 3D segmen-
tations in ten configurations. Manually segmented micro-CT images of sandstone
are used as ground truth, and they achieve a high voxelwise accuracy above 99%.
They use downstream analysis to validate the physical accuracy. These measures
show high variance with permeabilities and connectivities orders of magnitude
off. They also introduce a new network, which is a combination of a U-Net and
ResNet. It is, however, not the same network as the MultiRes U-Net, which is used
in this thesis. The hybrid network in this paper uses the original skip connections
instead of the Res paths, which is explained in Section 3.5. It also differs in the
sense that they operate on authentic data, while this thesis works on synthetic
data.

Kjerland (2017) implements a three-dimensional convolutional neural net-
work called DeepMedic, which was originally intended for brain tumor segmen-
tions. They train the network for three different use cases, coronary segmentation,
brain tumor segmentations from MRI images and digital rocks segmentations.
They segment the digital rocks into three classes; grain, multi-phase and pore.

Andresen et al. (2019) uses three different convolutional neural networks
to segment micro-CT images of Bentheimer, Berea and Carbonate sandstone ob-
tained from Petricore. The ground truth segmentations were generated by combin-
ing the segmentations produced by five operators, which used a multi-thresholding
algorithm. They use one enhancement of U-Net, where the down-sampling con-
volution blocks are replaced with residual down-sampling blocks. They also use
a version of a pyramid network, which resembles U-Net, but there are some key
differences: The skip connections are modified with a 1x1 convolution operation,
each layer in the upsampling path makes a prediction, and all of the predictions
are concatenated in order to make a segmentation. The third model, which they
call Hybrid Digital Rock Network, is an enhancement of the first, where they in-
clude multiple adjacent channel inputs in order to gain information of the neigh-
bouring pixels in the depth dimension. The last network is able to outperform the
DeepMedic network’s performance in the work of Kjerland (2017). The authors
believe that a 3D approach will be better, but currently, the size of 3D patches are
limited by hardware capabilities.

A major caveat of the studies mentioned above is the quality of the ground
truth data. They use manually segmented images as ground truths, and these will
be affected by the inherent user bias. Therefore, this study differs from the ones
mentioned above by using synthetic data, which removes the user bias from the
training process. It also differs by segmenting the fluid distribution in the pore

22 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

space, which according to Wang, Blunt, et al. (2021) has not been done in any
published works on deep learning. Among else, this makes it possible to extract
contact angles directly from the segmented images.

Chapter 3

Theory

This section will describe the foundation of the sphere pack generation and then
dive into the details of the deep learning models used in this thesis.

3.1 Sphere Pack Generation

This thesis uses vials filled with glass beads and fluids as an approximation for
porous media. There are several benefits of this. The glass beads are of exact
spherical shape and diameter, and the wetting conditions can be modified as de-
sired. The exact spherical shape of the glass beads makes it possible to generate
synthetic images of spheres with given diameters, which may be used to either
replace or expand existing datasets of micro-CT images of glass beads.

In semantic segmentation, it is a great advantage to use synthetic data. Firstly,
the process of creating ground truths to 3D data is exhaustive. Secondly, the re-
sults from these manual or semi-automatic annotations are often not precise and
are biased by the person that made the annotations. The synthetic images are
created the other way around. First, the ground truth is created, and then it is
processed to resemble an authentic image. The process of imitating authentic im-
ages is, of course, a challenge. However, by using a range of data augmentation
techniques, the resulting images could possibly cover image output from a wide
range of scanners. In other words, the variety in the images is beneficial to the
generalization of the model since different CT scanners give images with differ-
ent properties. Training on images from just one or a few scanners could make
the resulting model unfit for other scanners.

Random arrangements of spheres are useful to model systems for a range of
physical and engineering problems. Sphere packs are crucial in determining the
macroscopic granular nature of porous materials and liquid flow characteristics
(Bezrukov et al. 2002). There exist numerous algorithms for generating sphere
packs. Two of them, force-biased sphere packing and the Lubachevsky-Stillinger
algorithm, are used in this thesis and presented below.

23

24 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

3.1.1 Force-Biased Sphere Packing

The theory in this section is based on Bezrukov et al. (2002). The force-biased al-
gorithm is part of the family of algorithms called Collective Rearrangement. The
algorithm is able to generate packings with a wide range of densities. The al-
gorithm starts with a set of N spheres, {b(ri , di)} with the centers, ri uniformly
distributed in a parallelepipedal container, and diameters di determined by a pre-
scribed distribution function. It is, therefore, common with overlapping in the
initial configuration. For convenience, it is assumed that the minimum diameter
is 1.

The algorithm iteratively improves the initial configuration. In this iteration,
each sphere are assigned two diameters: the inner diameter d in

i = did
in and the

outer diameter dout
i = did

out . The value of the d in factor is chosen so that there
are no overlaps in the system and exactly two spheres are in contact. The outer
diameter factor dout is initially calculated from the equation

VV,nom =
volume of

∑N
i=1 b(x i , dout

i)

volume of container
=

π
6 (dout)3

∑N
i=1 d3

i

volume of container
(3.1)

where VV,nom is given as an input parameter.
The algorithm attempts to reduce the number of overlaps with the following

two operations:

• push apart overlapping spheres by choosing a new position
• gradually shrink the spheres by reducing dout

The pushing operations usually increase d in whereas shrinking reduces dout .
When d in ≥ dout the algorithm is stopped. Then a system of non-intersecting
spheres is obtained with diameters proportional to the initial diameters, di .

In every step of the iteration, the algorithm defines a "repulsion force", Fi j ,
between each pair (i, j) of overlapping spheres:

Fi j = ρ1i j pi j
r j − ri

r j − ri

(3.2)

where pi j is a potential function, ρ is a scaling factor and 1i j is equal to 0 if
b(ri , dout

i)∩ b(r j , dout
j) =∅ and equal to 1 otherwise.

The new position for sphere i is given by

ri := ri +
1

2di

j 6=i
∑

Fi j (3.3)

This ensures that large spheres move slower than the small spheres. It is non-
trivial to choose a suitable potential function. For the case of equal spheres, as is
the case in this thesis, the potential function may be proportional to the volume
of intersection of the overlapping spheres i and j, as given by

pi j = (

ri − r j

2 − (dout)2) (3.4)

Chapter 3: Theory 25

The shrinking operation in the iteration reduces the outer diameter,

dout := dout − (
1
2
)δ

dout
st

2τ
(3.5)

where δ is the integer part of −log10(VV,nom − VV,act), where VV,act is the cur-
rent volume fraction of the spheres, dout

st is the start value of dout given in Equa-
tion (3.1), and τ is the contraction rate of the outer diameter. τ controls the
execution time of the algorithm and influences the final packing density.

3.1.2 Lubachevsky-Stillinger Sphere Packing

The Lubachevsky-Stillinger algorithm was proposed in Lubachevsky et al. (1990)
and all of the information presented in this section stems from that article. It is
stated that "its most general version concerns the inquiry of non-overlapping ar-
rangements of D-dimensional spheres, D=1, 2, 3, ..., N confined to a "rectangular"
region ΩD of size L1 × L2 × ...× LD".

The events in the algorithm are processed in an event-driven fashion and not
in a time-driven fashion. This means that there is no calculation required on main-
taining the positions and velocities of the particles between the collisions.

The algorithm starts by placing N points randomly within the unit cell ΩD.
The points are assigned random velocities, whose components are independently
distributed at random between -1 and 1. These points will move at their initial
velocity along a straight line until a collision happens.

At t = 0 the points are infinitesimal, but they begin to grow at a common rate
into elastic D-spheres with diameters given by some function a(t). It is required
that a(0) = 0 and that a(t) is continuous and nondecreasing with a → ∞ for
t →∞. Therefore, the probability for collisions increases with time.

The objective is to sample initial configurations and velocities statistically us-
ing a common a(t) but generate several starting points. For all starting points,
time is allowed to progress until the system jams up, and the collision rate in
principle must diverge. The final packing depends on the combination of initial
starting points, their initial velocities, and the time-dependent collision diameter
a(t). The weights w(q) with which the packings q are sampled still depend on
a(t) after averaging over the initial conditions.

Since the diameters of the spheres changes with time, the collision dynamics
do not conserve energy, and must be altered. Suppose particle 1 and 2 have veloc-
ities v1 and v2 respectively before the collision. As is shown in Figure 3.1, these
velocities are expressed as a sum of the parallel and transverse velocity related to
the line of centers:

v1 = v(p)1 + v(t)1 (3.6)

v2 = v(p)2 + v(t)2 (3.7)

We thus have that v(p)i · v
(t)
i = 0 and v(t)i · (r2 − r1) = 0, i=1,2. The transverse

velocities remains unchanged after a collision, but the parallel components are

26 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

Figure 3.1: Pair collision dynamic for expanding spheres. Velocities are expressed
as a sum of parallel and transverse velocities to the line of centers (Lubachevsky
et al. 1990).

modified with an additive h. Assume that v∗1 and v∗2 are the velocities right after
the collision, we have that

v∗1 = [v
(p)
2 + hu12] + v(t)1 (3.8)

v∗2 = [v
(p)
1 + hu21] + v(t)2 (3.9)

where u12 is the unit vector:

u12 = (r1 − r2)/|r1 − r2|= −u21 (3.10)

If 2h exceeds the diameter growth rate a′(tc), collisions occur at discrete iso-
lated times.

The difference in kinetic energies after and before a collision is proportional
to

1
2
(|v∗1|

2 + |v∗2|
2 − |v1|2 − |v2|2) = h(v(p)1 − v(p)2) · u21 + h2 (3.11)

A requirement for collisions is

(v(p)1 − v(p)2) · u21 > 0 (3.12)

That means that the difference in kinetic energy shown in Equation (3.11)
is strictly positive since h > 0. Therefore, the total kinetic energy in the system
increases with each collision.

Lets assume a constant diameter growth rate

a(t) = a0 t (ao > 0) (3.13)

This means that jamming will occur in a finite time. The sampling weights
w(q) for the jammed disk packings depend on the choice of a0. Typically, jamming
occurs in an irregular structure if a0 is large compared to the mean initial particle

Chapter 3: Theory 27

Figure 3.2: Illustration of a packing with rattlers, monovacancies and shear frac-
tures. The rattlers are the non-shaded disks, a monovacancy may be found in the
center of the image, and the shear fractures are the visible linear shears in the
packing (Lubachevsky et al. 1990).

speed. For small a0, the extended collision dynamics makes the system rearrange
into a nearly crystalline packing. Therefore, the sampling weights will depend on
a0 in a way that makes the mean covered area fraction a monotonically increasing
function of a0.

The Lubachevsky-Stillinger algorithm produces random disk/sphere packings
with characteristics unlikely to emerge from the standard sequential construc-
tion procedures. These characteristics include monovacancies, rattlers, and linear
shear fractures. Rattlers are trapped, but unjammed grains. The linear shear frac-
tures preserve bond orientational order, but disrupt translational order within the
crystalline grains. All these characteristics are illustrated in Figure 3.2.

28 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

3.2 Morphological Invasion

To simulate the primary drainage process, a pore-morphology-based simulation
may be used.

The following explanation of the process is from Berg et al. (2020), and the
original procedure is from Hazlett (1995) and modified in Hilpert et al. (2001).

In this section, perfect wetting is assumed, with cos(Θ) = 1. It is, however,
possible to extend the procedure to other contact angles, as will be presented in
Section 4.4.4. The method also assumes that the two principal curvatures of the
fluid-fluid surface are equal and not infinite. This leads to errors in the Laplace
pressure which especially affects the wetting phase pendular rings between spher-
ical grains. However, the efficiency and accuracy for most of the drainage process
outweigh the errors.

The method is based on morphological erosion and dilation, which are ex-
plained in Section 2.3.4. Initially, the pore space is filled with fluid 1, which is the
wetting phase. One side of the porous media is connected to a reservoir of fluid
2. In this thesis, fluid 1 is water, and fluid 2 is oil.

For a subset of the pore space, X ⊂ Ω, C(X) is defined as the part of X that is
connected to the side-plane connected to the fluid 2 reservoir.

The corresponding curvature rc from a pressure difference ∆p is given by the
Young-Laplace equation rc(∆p) = 2/(σ∆p). The portion of the pore space filled
with oil at pressure ∆p is given by

C({Ω	 S[rc(∆p)]} ⊕ S[rc(∆p)]), (3.14)

where S(r) is a sphere with radius r, 	 is erosion and ⊕ is dilation. rp(x) is
the smallest value r so that x ∈ C(y | dt(y)< r).

To find the fluid distribution at different pressures, the distance transform dt
is calculated, which gives the Euclidean distance between any point x ∈ V and
the closest point in the solid phase s ∈ V \Ω.

dt(x) = min{‖x − s‖ | s ∈ V \Q} (3.15)

Then, the critical path radius rp(x) is calculated for a path from the inlet to
point x . That means the minimal distance dt along the path with the largest min-
imal distance:

rp(x) = max{min{dt(y) | y ∈ S} |S ∈ S}, (3.16)

where S is the set of paths from x to the inlet. This equation is solved for rp
with a modified version of Dijkstra’s algorithm.

Now there are two spheres spanned by the value of the distance transform
and the critical radii. A point x is assigned to the largest sphere covering it as

cd t(x) = max{dt(y) | ‖x − y‖ < dt(y)},
crp(x) = max{rp(y) | ‖x − y‖ < rp(y)}. (3.17)

cd t(x) and crp(x) can be related to the morphological operations:

Chapter 3: Theory 29

{x | cd t(x) ≤ r}= [Ω	 S(r)]⊕ S(r) = X (r),

{x | crp(x) ≤ r}= C[X (r)]. (3.18)

Equation (3.18) relates the calculated values for crp to the morphological de-
scription C[X (r)] for fluids at different pressures, as given by Equation (3.14).

We then have that crp(x) is proportional to the pressure differences when
fluid 1 is displaced by fluid 2 at point x . To illustrate the process, consider a sim-
ple 2D example. X (r) = [Ω	 S(r)]⊕ S(r) for different radii values r is shown in
Figure 3.3a. We have that X (r) = {x | cd t(x) ≤ r}, where cd t is given by Equa-
tion (3.18). For larger subradii r, the subset X (r) ⊂ Ω is not connected to the
top-side of the figure, which is considered to be the inlet. Therefore, C[X (r)] will
be an empty set for larger values of r, which is seen in Figure 3.3b. This simulates
the pressure difference needed for invading different parts of the porous medium.

(a) (b)

Figure 3.3: (a) - Two-dimensional example. Pore space Ω in colors and solid
phase V \ Ω in white. The figure shows X (r) = [Ω 	 S(r)] ⊕ S(r) for different
radii values r, which are shown in the color bar. This is equivalent to cd t . (b) -
The connected part C[X (r)] of the subsets X(r) shown in the left image. This is
equivalent to crp (Berg et al. 2020).

3.3 Fully Convolutional Network (FCN)

Fully convolutional networks for semantic segmentation was introduced by Long
et al. (2015). When it was introduced, it exceeded the state-of-the-art in seman-
tic segmentation. The authors adapted contemporary classification networks into
fully convolutional networks, added skip-connections, and performed an upsam-
pling operation that enabled them to predict each pixel in the input image.

Architecture
The network of the original fully convolutional network proposed by Long et al.

30 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

(2015) is displayed in Figure 3.4. It starts with two convolutional operations fol-
lowed by a max pool operation and repeats this pattern with operations four times.
The second last operation is a 1x1 convolution that predicts a class for each pixel in
the last, coarse feature map. The final operation is an upsampling that upsamples
the prediction to the original input resolution. In order to improve the precision
of the upsampling, feature maps from previous layers in the network are concate-
nated to the final convolutional layer, before the final upsampling and prediction.
These connections are called skip-connections and refine the spatial precision of
the output because the earlier convolutional layers capture finer details in the im-
age than the coarser, later layers. By combining the fine and coarse layers, the
model is able to make local predictions that respect the global structure. Long et
al. (2015) implements multiple versions of the networks with differing numbers
of skip connections. Their performance is visualized in Figure 3.5

Figure 3.4: Fully convolutional network architecture (Long et al. 2015).

Figure 3.5: Fully convolutional network results (Long et al. 2015).

Chapter 3: Theory 31

Upsampling
The upsampling operation is often referred to as deconvolution, but this is not

mathematically true. It is rather a transposed convolution, or sometimes as simple
as a nearest neighbour interpolation. The transposed convolution may be thought
of as padding the pixels that are going to be upsampled with zeros and computing
the convolution the same way as described in Section 2.6.2. The padding depends
on the size of the kernel, and the number of padding layers is one less than the
kernel size. Stride has a different meaning in a transposed convolution than in
a regular convolution. In a transposed convolution, stride can be thought of as
increasing the distance between the pixels in the input image, which means that
increasing stride leads to increasing output dimensions. Figure 3.6 visualizes the
transposed convolution with one and two strides. It is important to note that the
transposed convolution does not recreate the input to a convolution like a decon-
volution. It just recreates the spatial dimensions (Xiang 2017).

Stride = 1 Stride = 2

Figure 3.6: Transposed convolution. The input is colored in blue and the transpar-
ent pixels surrounding the input is the padding. The green pixels are the output
created after the kernel has convolved over the input. The strides in transposed
convolution correspond to increasing the distance between the input pixels (Xi-
ang 2017).

3.4 U-Net

U-Net is an enhancement of the Fully Convolutional Network (FCN) and was pro-
posed by Ronneberger et al. (2015).

U-Net extends the FCN with a symmetric, expanding path, where the upsam-
pling operations are used instead of the max pool operations used in the contract-
ing path. An image of the architecture is shown in Figure 3.7.

32 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

Contracting Path
The contracting path consists of a fixed pattern of operations. The first layer in the
network is the input image. A convolutional operation is performed on the input
image. To account for the loss of border pixels after the convolutional operation,
the input images are first padded to make the dimension of the output the same as
the input image. After every convolution, a Rectified Linear Unit (ReLU)function
is applied to the output. Another convolution is performed on the output from
the first convolution before a max-pooling operation is performed. This halves
the spatial dimension and hence makes the feature map coarser. This order of op-
erations, with two convolutions, each followed by a ReLU, and one max-pooling
operation, is repeated until we get to the bottom of the network. The number of
filters is doubled for each layer in the network. Together with the coarser spatial
resolution, this allows for bigger and more complex features to be captured and
learned. The first feature maps are able to capture edges with different orienta-
tions and colour. As we move down the network, these feature maps are combined
and able to extract basic grids, textures and patterns. Moving even further down,
these are combined to be able to extract increasingly complex features, for exam-
ple, bikes or faces, depending on the content in the training images (Ronneberger
et al. 2015).

Expanding Path
The expanding path is symmetric to the contracting path, and together they form
the shape of a U, hence the name U-Net. The pooling operation in the contract-
ing path is replaced by an upsampling operation. The upsampling is done with the
transposed convolution, which is explained in Section 3.3. The feature maps in the
contracting path are fused with the feature maps in the expanding path with skip-
connections. This is simply done by concatenating the feature maps, i.e., stack
them on top of each other, and then convolution is performed with these con-
catenated feature maps as input. As we move up the expanding path, the spatial
dimensions of the feature maps increase, but the number of feature maps is halved
for each layer. These skip connections combine the spatial information from the
contracting path with the semantic information from the contracting path, increas-
ing the precision of the prediction in the boundary area between the segmented
classes. At the final layer, a 1x1 convolution with a Softmax activation function
maps the feature maps to the desired number of classes (Ronneberger et al. 2015).

Expanding To 3D
It is straightforward to extend the network to 3D. One simply replaces all of its
2D operations with the corresponding 3D operations, and add an extra dimension
for the kernel and strides.

Chapter 3: Theory 33

Figure 3.7: Original U-Net architecture (Ronneberger et al. 2015).

3.5 MultiRes U-Net

MultiRes U-Net is a modified version of the original U-Net and was first proposed
by Ibtehaz et al. (2020). In their paper, they show that there is a slight improve-
ment in performance on ideal images, but remarkable gains have been attained
for challenging images.

The recent advancements in the field of deep computer vision led Ibtehaz et
al. (2020) to try to improve the U-Net. A particular issue that the authors wanted
to address was to make the network more robust to segment objects at different
scales. They were inspired by the Inception architecture (Szegedy et al. 2015)
that introduced Inception blocks that used convolutional layers of varying ker-
nel sizes in parallel to inspect the objects from different scales. The results from
these convolutional layers were combined and passed on to deeper layers in the
network.

In each layer in the U-Net, a sequence of two 3x3 convolutions is used, and
Szegedy et al. (2015) shows that this operation resembles a 5x5 convolutional op-
eration. Therefore, Ibtehaz et al. (2020) modifies the U-Net with a multi-resolutional
analysis capability by running a 3x3 and 7x7 in parallel to the 5x5 convolution.
This is shown in Figure 3.8a.

The use of convolutional operations in parallel severely increases the memory
requirement. This is solved by factorizing the bigger 5x5 and 7x7 convolutions
using a sequence of 3x3 convolutional blocks that approximate the 5x5 and 7x7
convolutional operations. This is shown in Figure 3.8b. The output from the three

34 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

.

Figure 3.8: a - Inception block. Convolutional layers with various kernel sizes can
inspect objects from different scales. b - The inception block may be factorized as
a series of 3x3 convolutions. c - MultiRes block. Because of memory constraints,
the numbers of filters in the convolutional operations is gradually increased. A
residual connection is added for efficient training (Ibtehaz et al. 2020).

convolutional blocks are concatenated to extract the spatial feature from different
scales (Ibtehaz et al. 2020).

The factorization of the convolutional operations greatly reduces the memory
requirement, but the network is still demanding. If two convolutional operations
are present in succession, the number of filters in the first one has a quadratic
effect on the memory. Therefore, the number of filters is gradually increased in the
convolutional operations. There is also added residual connections, as explained
in Section 2.6.4, with a 1x1 convolution, which leads to increased efficiency in
training. This is called a MultiRes Block, and is shown in Figure 3.8c (Ibtehaz et
al. 2020).

Ibtehaz et al. (2020) claim that a flaw of the skip connections in the U-Net
might be that there is a semantic gap between the two features that are merged
in the skip connection. For example, the first skip connection bridges the encoder
before the first pooling with the decoder after the last deconvolution operation.
The features from the encoder are supposed to be lower level features as they are
computed in the earlier layers of the network. On the other hand, the decoder
features are supposed to be of a much higher level because they are computed at
the deep layers in the network. The authors claim that "the fusion of these two
arguably incompatible sets of features could cause some discrepancy throughout
the learning thereby adversely affecting the prediction procedure" (Ibtehaz et al.
2020).

To alleviate the disparity between the contracting and expanding path, they
propose to incorporate some convolutional layers along with the skip connections.
The hypothesis is that convolutional operations should balance the semantic gap.
To make the learning more efficient, residual connections are added to the skip
connections. Therefore, instead of simply passing the features from the encoder
to the decoder, the features are passed through a chain of convolutional layers
with residual connections and then concatenated with the decoder features. These
new skip connections, or ’shortcut paths’, are called ’Res paths’, and are shown in
Figure 3.9

Chapter 3: Theory 35

Figure 3.9: Res path. The skip connections from the U-Net is enhanced with a
series of convolutions with residual connections. The convolutions are meant to
bridge the semantic gap between the encoder and decoder in the network (Ibte-
haz et al. 2020).

Architecture
The MultiRes U-Net replaces the two convolutional operations in the U-Net with
the proposed MultiRes block. For each block, the parameter W is assigned to con-
trol the number of filters of the convolutional layers inside the block. The value
of W is computed as

W = α× U (3.19)

where U is the number of filters in the corresponding layer of the U-Net and α
is a scalar coefficient. This allows for a convenient way to control the number
of parameters and keep them comparable to U-Net. A default value of α = 1.67
is set to keep the number of parameters slightly below the number in the U-Net
(Ibtehaz et al. 2020).

As mentioned, it is beneficial to assign increasing numbers of filters in the suc-
cessive convolutional operations in the MultiRes block, and therefore it is assigned
�W

6

�

,
�W

3

�

and
�W

2

�

to the three successive convolutional operations, respectively.
As in the U-Net, after each pooling or deconvolution operation, the value of W
gets doubled or halved, respectively (Ibtehaz et al. 2020).

The skip connections in the U-Net are replaced by the proposed Res paths.
Since the semantic gap between the encoder and decoder are expected to decrease
as we move down the network, the number of convolutional operations in the
Res paths are gradually reduced from 4 to 1 along the four Res paths. In order to
account for the number of feature maps in the encoder-decoder, there are used
32, 64, 128 and 256 filters in the four Res paths respectively (Ibtehaz et al. 2020).

All of the convolutional layers, except for the final output layer, are activated
with the ReLU activation function. The final is originally activated with a Sigmoid
function, but due to that this paper studies a multiclass segmentation, a Softmax
function is used instead. A diagram of the MultiRes U-Net is found in Figure 3.10.

36 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

Figure 3.10: Diagram of the MultiRes U-Net architecture (Ibtehaz et al. 2020).

3.6 Deep Learning Training

Loss Function
The loss function that is minimized in all of the deep learning models in this

thesis is the categorical cross-entropy. The variation used is often called Softmax
Loss, since it is a Softmax activation followed by a cross-entropy loss. The Softmax
activation is defined as

f (s)i =
esi

∑C
j es j

(3.20)

where si is the output score and C is the number of classes. The cross-entropy
loss is defined as

h(s, t) = −
C
∑

i

t i log(f (s)i (3.21)

where t i is the ground truth. Since the ground truth is one-hot, and only one
element, t i = tp, in the ground truth vector is true, and hence not zero, we find
that

h(s) = −log

esp

∑C
j es j

!

(3.22)

where sp is the score of the true class. The gradient of the loss function with
respect to the output layer is

∂

∂ sp

−log

esp

∑C
j es j

!!

=
esp

∑C
j es j
− 1 (3.23)

for the true class. For the negative classes, it is

∂

∂ sp

−log

esp

∑C
j es j

!!

=
esn

∑C
j es j

(3.24)

Chapter 3: Theory 37

The derivations above are retrieved from Gómez (2018).

Backpropagation, which is explained in Section 2.6.3, is then used to find the
gradient with respect to the weights in the previous layers. Then an optimizer is
employed to adjust the weights in order to minimize the loss function.

Adaptive Moment Estimation (Adam)
The optimizer used in the implementations is Adam. This is an extension of

Stochastic Gradient Descent (SGD), which is explained in Section 2.5.1, and is de-
signed specifically for training neural networks. Adam computes individual adap-
tive learning rates for the different weights from estimates of the first and second
moments of the gradients. This improves performance on problems with sparse
gradients and noisy inputs. Empirical results show that Adam performs better than
other stochastic optimization methods (Kingma et al. 2014). The pseudocode is
shown in Algorithm 1.

Algorithm 1: Adam pseudocode
Require: α: Stepsize
Require: β1,β2 ∈ [0,1) : Exponential decay rates for the moment
estimates

Require: f (θ): Stochastic objective function with parameters θ
Require: θ0: Initial parameter vector

m0← 0 (Initialize 1st moment vector)
v0← 0 (Initialize 2nd moment vector)
t0← 0 (Initialize timestep)
while θt not converged do

t ← t + 1
gt ←∇θ f (θt−1) (Get gradient w.r.t. stochastic objective at
timestep t)

mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first moment
estimate)

vt ← β2 · vt−1 + (1− β2) · g2
t (Update biased second raw moment

estimate)
m̂t ← mt/(1−β

t)
1 (Compute bias-corrected first moment estimate)

v̂t ← vt/(1− β t
2) (Compute bias-corrected second raw moment

estimate)
θt ← θt−1 −α · m̂t/(

p

v̂t + ε) (Update parameters)
end
return θt (Resulting parameters)

In the algorithm, all vector operations are element-wise and a good default
setting is α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8. The pseudocode is
retrieved from Kingma et al. (2014).

38 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

3.7 Support Vector Machine

I have also implemented a Stochastic Gradient Descent (SGD) (Section 2.5.1)
classifier that minimizes the hinge loss. This is the same as a linear SVM (Sec-
tion 2.5.2).

3.7.1 Hinge Loss

The hinge loss is a convex loss function and is defined as

l(y) = max(0, 1− t · y) (3.25)

where y is the prediction and t is the target for the prediction. The loss function
is visualized in Figure 3.11. The dotted line is drawn at x=1. A positive distance
from the boundary means that an instance is correctly classified, and a negative
means it is incorrectly classified. Positive distances above one are not penalized,
but positive distances below one are penalized more the smaller the distance is.
Wrongly classified instances are penalized more the bigger the distance from the
boundary is. Because the correctly classified instances with small distances to the
boundary are penalized, the loss function tries to make a margin, with width = 1
on either side of the boundary, i.e., the hinge loss aims to maximize the decision
boundary between the two classes that are going to be classified. Depending on
the regularization term, which is explained below, the margin will allow for some
outliers to be incorrectly classified (Crammer et al. 2001). The margins are seen
in Figure 2.6.

Figure 3.11: Hinge loss. The x-axis is the distance from the boundary and the
y-axis is the loss. Correctly classified points near the boundary are penalised.
Wrongly classified points are classified more the further they are from the bound-
ary. The dotted line is drawn at x=1.

Chapter 3: Theory 39

3.7.2 L2 Regularization

To avoid overfitting, L2 regularization is used. It means that a term consisting of
the sum of the squared feature weights, scaled by a scalar λ is added to the loss
function:

L2= λ
N
∑

i=1

w2
i (3.26)

When minimizing the loss function, the term forces the weights to be small,
i.e., the model complexity is also minimized. A small lambda will make the model
prone to overfitting, and a big lambda will lead to an increased risk of underfitting.
Hence, a small lambda will choose a narrower margin than a big lambda (Cortes,
Mohri, et al. 2012).

By introducing weights to the hinge loss and adding the regularizer, the loss
function becomes

f (y, w) =
N
∑

i=1

max(0, t iw
T yi) +λw2 (3.27)

3.7.3 One versus All

Because the version of hinge loss defined above only works for binary classifica-
tion, the one versus all strategy is used to expand to multiclass classification. This
means that N classifiers need to be trained when there are N classes, i.e., one clas-
sifier for each class. Each classifier is only able to distinguish between one class
and all other classes. This means that the input to the classification is passed to all
of the classifiers. Then, the classifier with the highest probability score determines
which class that is assigned to the input.

Chapter 4

Methodology

In this chapter, the methodology for the project is described. Section 4.1 explains
the materials used for testing the models, and Section 4.2 describes workflows of
traditional segmentation, which is used to create ground truth training images.
Section 4.3 presents the process of manually annotating ground truth training
images and the steps required to make them ready for use in a deep learning
approach, while Section 4.4 describes the process of making synthetic training
data. Section 4.5 explains the implementation of the Support Vector Machine,
and Section 4.6 presents the implementation and training of the deep learning
models. Section 4.7 presents the evaluation metrics used to compare the models
and Section 4.8 lists the software and hardware used in this project.

All of the scripts marked in italics are hyperlinks and points to the Github
repository that accompanies this thesis. If a printed copy of the thesis is used, the
scripts may be found by navigating to:
https://github.com/aavikdal/FluidFlowSegmentation.

4.1 Materials

The materials used in this study are micro-CT images of two glass vials containing
glass beads, oil and water. One of the vials contains oil-wet glass beads, and the
other contains intermediate-wet glass beads. The vial is filled with water and oil
and is scanned in a micro-CT scanner.

4.1.1 Glass Beads

The glass beads are produced by Sigmund Lindner GmnH 1 and are polished high
precision soda lime glass beads. They have a radius of 1.0 mm +/- 0.02 mm. The
beads are packed in a glass vial with 10mm inner diameter, 12mm outer diameter
and height of 100mm, which is called a DURAN Culture Tube, with DIN thread

1https://www.sigmund-lindner.com/en/

41

https://github.com/aavikdal/FluidFlowSegmentation
https://www.sigmund-lindner.com/en/

42 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

and screw cap from PBT. The space between the glass beads is filled with water
and oil.

The wetting of the glass beads is altered by being soaked in a solution of
Hydrocarbon Soluble Siliconizing Fluid. The solution is diluted by heptane to 1
volume percent for an oil-wet result and 0.05 volume percent for intermediate-
wet. The fluid is manufactured by Thermo Scientific TM 2. The beads are soaked
in the solution for 5 minutes before they are washed with heptane and methanol.
Then they are dried in the oven at 80◦C for 60 minutes.

When the solution is applied to glass, the unhydrolyzed chlorines in the so-
lution react with surface silanols to form a hydrophobic and tightly bonded film
over the entire surface.

The glass beads are wetted by brine in a glass dish and placed into a vial filled
with brine. Then, a syringe filled with oil, with a needle as long as the vial’s length,
is inserted till the bottom of the vial, and oil is injected slowly. The oil will move
up and push the brine out of the vial. Once some of the oil reaches the top, the
injection is stopped, and the needle is pulled out. The vial is then sealed and put
upside down, and is left for a couple of hours before it is scanned.

4.1.2 Micro-CT Scanning

Petricore AS scanned the pack of beads in the mCT lab 3 in a HeliScan micro-CT
scanner 4 from ThermoFisher. It scans in a helical manner, making it able to scan
the entire object in one scan. This makes the images less prone to artefacts than
traditional multi-scan with stitching. The scanner has autofocus, drift correction
and delivers a high signal to noise ratio. It has a spatial resolution of 800 nm and
is able to scan samples with diameters up to 240 mm. The process of scanning the
bead pack took approximately 10 hours. After scanning, a reconstruction software
developed by ThermoFischer reconstructed the image with an iterative approach.

The centre 512x512 pixels of 50 slices of the image are cropped in order to
remove the cross-section of the glass vial that the glass beads are packed in. An
example of such an image slice is shown in the top-left image in Figure 4.2.

4.2 Traditional segmentation

This section describes the process of using traditional segmentation approaches
for creating ground truth training images from the micro-CT images introduced
in the previous section.

Multiple workflows are tested, and to simplify the process of selecting the
best method, they are first tested on images with two classes, water and glass
beads, and then the most promising candidates are extended to three classes. The

2https://www.thermofisher.com
3http://www.petricore.com/en/laboratories/trondheim
4https://www.thermofisher.com/no/en/home/electron-microscopy/products/microct/

heliscan-microct.html

https://www.thermofisher.com
http://www.petricore.com/en/laboratories/trondheim
https://www.thermofisher.com/no/en/home/electron-microscopy/products/microct/heliscan-microct.html
https://www.thermofisher.com/no/en/home/electron-microscopy/products/microct/heliscan-microct.html

Chapter 4: Methodology 43

details for watershed segmentation and Otsu thresholding are explained below.
Other workflows tested are K-means clustering and Gaussian mixture models, but
the details of the implementation of these are not shown. However, results from
these methods are seen in Figure 4.3.

Watershed Segmentation
Watershed segmentation is the first method used to create ground truths. The

watershed segmentation starts with an Otsu thresholding operation.
As explained in Section 2.3.3 Otsu thresholding is an easy and straightfor-

ward way to segment images. It is not resilient to noise, so the images need to
be denoised with non-local means (2.3.2) before the Otsu threshold is calculated
and the image segmented. Then, a morphological opening operation (2.3.4) is
performed to remove narrow connections and small white holes.

The watershed segmentation (2.3.6) needs to have markers defined to instan-
tiate the segmentation. In practice, this means to define pixels that are certain to
correspond to a class for all classes. First, the pixels that are sure to be the back-
ground (water) are defined. It is done by using several iterations of morphological
dilation, which expands the glass beads, and effectively moves the boundary be-
tween the glass beads and the water into the water. This removes the boundary
pixels from the background and is seen in the left image in Figure 4.1. This ensures
that what is left in the background class is water only. The distance transform is
used to identify the pixels that are certain to be in the foreground (glass beads).
It changes the pixel values of the foreground (glass beads) to correspond to the
distance to the closest water-bead boundary for each pixel. This means that the
pixels with the highest values are the pixels furthest from the boundaries. By se-
lecting the top 10 percent of the pixels, they are certain to be in the foreground.
This is shown in the middle image in Figure 4.1.

Figure 4.1: The pixel regions used as markers in the watershed segmentation.
From left to right: The certain background pixels in black, the certain foreground
pixels in white, and the boundary region in white.

By subtracting the foreground from the background, the unknown pixels are
identified, i.e., the boundary pixels. This region is visualized in the right picture in
Figure 4.1. Now we know which classes are located on either side of the bound-

44 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

aries. The watershed segmentation is then applied to the unknown pixels. The
result from the watershed segmentation is seen in Figure 4.2. We see that the
edges have sawtooth shapes, which we know the glass beads do not have. In the
same figure, we can see that the results from the Otsu thresholding are better, and
therefore the Otsu segmentation is expanded to three classes, rather than using
the watershed segmentation.

Figure 4.2: Result from Otsu thresholding and watershed segmentation

Otsu multiclass thresholding
Because of the promising results from the Otsu thresholding, it is expanded to be
able to segment all three classes. The results are seen in Figure 4.4. The shapes
and edges of the glass beads are good, but the segmentation is struggling with
the edges between oil and water, and predicts a thin sheet of glass in between the
phases, which obviously is wrong. It is understandable that it does this since the
brightness value of glass is in between the values for water and oil. Therefore, Otsu
thresholding is not used to create ground truths. However, because it is a simple

Chapter 4: Methodology 45

Figure 4.3: K-means clustering and Gaussian mixture model segmentation

and commonly used algorithm, its results are compared to the results obtained
from the deep learning approaches. Its implementation is found in otsu.py. The
input images are denoised with non-local means before two thresholds are calcu-
lated. If the distance between the two thresholds is below a predefined margin,
the image is considered to consist of two classes, and a regular Otsu thresholding
is performed. If the distance is above the margin, the two thresholds are used to
segment the image, which gives a segmentation with three classes. The margin is
set to be 5 for the results presented later.

The watershed segmentation will not suffer from falsely predicting solids be-
tween the oil and water. However, it will still suffer from sawtooth edges and is
not suitable for being used as ground truth images. The Gaussian mixture models
and k-means clustering give good results for two classes, as is seen in Figure 4.3.
However, they also struggle with the boundary between oil and water for three
classes.

https://github.com/aavikdal/FluidFlowSegmentation/blob/main/Specialization%20Project/otsu.py

46 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

Figure 4.4: Otsu multiclass thresholding

4.3 Manual annotation

Because the traditional methods are not able to give good enough segmentations
to be used as ground truth images in a machine learning approach, the images
are instead annotated manually. This is done in a web application available on
apeer.com, which is a free platform funded by ZEISS. They host an annotator
application that allows for pixel-level annotation, making it possible to segment
the images accurately. With this tool, better results are achieved than with the
efforts above. An example of an original image and the corresponding annotated
mask is shown in Figure 4.5. 50 512x512 images are annotated, and each of them
is split into nine 256x256 images. This means that the second half in one image
corresponds to the first half in the subsequent image, as shown in Figure 4.6.
This gives redundancy in the pixel values, but not in the semantic meaning. For
example, pixels in the rightmost, top half-circle in Figure 4.6 is the same as the
pixels in the top, middle circle in the second image, but the semantic meaning is
different. In the first image, the pixels are part of a half-circle, whereas they are
part of a full circle in the second image. It is, therefore, a useful data augmentation
to split images this way.

4.3.1 Data Augmentation

Next, data augmentation is used to increase the size of the dataset and add diver-
sity to it. The different augmentation techniques used are noise, rotation, vertical
flip, horizontal flip, grid distortion, blur and downscaling, which makes it a total
of 50 ·9 · (1+7) = 3600 images. The implementation of the data augmentation is
called ImageAugmentation.py and is found in the Github repository. The augmen-
tations done for one image is seen in Figure 4.7.

apeer.com
apeer.com
https://github.com/aavikdal/FluidFlowSegmentation/blob/main/Specialization%20Project/ImageAugmentation.py
https://github.com/aavikdal/FluidFlowSegmentation

Chapter 4: Methodology 47

Figure 4.5: Original image and corresponding annotated mask

Figure 4.6: Two subsequent images and their corresponding masks. The right
half of the first image is the left half of the second image.

48 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

Figure 4.7: Data augmentation transformations applied to one image

Chapter 4: Methodology 49

4.4 Synthetic Data Creation

As an effort to eliminate user bias, synthetic training data is generated. The data
creation consists of sphere pack generation (4.4.1), morphological invasion (4.4.3)
and preprocessing (4.4.5) Additionally, methods for expanding the variety of poros-
ity (4.4.2) and contact angles (4.4.4) are included.

4.4.1 Sphere Pack Generation

The packing generation program is developed by Baranau et al. (2014) and avail-
able on Github, and is used to generate a monodisperse packing with 1000 parti-
cles.

First, a force-biased algorithm, as explained in Section 3.1.1 is used to gen-
erate a dense pack from an initial Poisson sphere pack. Then this packing is the
input to the Lubachevsky-Stillinger algorithm, explained in Section 3.1.2. Both al-
gorithms need to be used because the Lubachevsky-Stillinger algorithm will only
work correctly when the initial packing has a relatively large density (0.4-0.6),
otherwise, collisions with far particles will be missed because they will not be in-
cluded as possible neighbours. The following lines are used to generate the pack-
ing.

PackingGeneration.exe -fba | tee log_fba.txt
PackingGeneration.exe -ls | tee log_ls.txt

After execution of the algorithms, the diameters of the particles in the final
sphere pack is rescaled with a MATLAB script that is included in the Packing Gener-
ation Github repository. The scripts for scaling the diameters and saving the parti-
cle coordinates and diameters to CSV files is found in the Github repository, where
they are called ReadPackingScript.m and readFinishedPacking.m, respectively.

With the script loadInitialPackingData.py, the sphere pack is transformed from
spatial coordinates of the centers of the spheres to a 3-dimensional matrix. The op-
timal resolution for the preceding use is hard to determine because it will always
be a compromise between field of view and resolution. A higher resolution leads
to more details and precision in the image, but the field of view will be reduced
due to the memory constraints of the hardware. Having a sufficient field of view
is essential because most deep learning models are trained to detect features, and
if the field of view is too small, some features will be too big to be represented
in the images and will hence not be extracted by the models. As the models are
tested on authentic micro-CT images, the resolution of the synthetic images is set
to approximately the same resolution, where the diameter of the sphere is 160
voxels.

The matrix consists of integers of values 0 and 255, where 255 represents
solids, and 0 represents pore space. The matrix is cropped to a dimension of
1024x1024x1024, which corresponds to 8 GB. This matrix is again cropped into
eight 512x512x512 matrices. Figure 4.8 shows a slice of the 1024 grid before and

https://github.com/VasiliBaranov/packing-generation
https://github.com/aavikdal/FluidFlowSegmentation
https://github.com/aavikdal/FluidFlowSegmentation/blob/main/Master%20Project/ReadPackingScript.m
https://github.com/aavikdal/FluidFlowSegmentation/blob/main/Master%20Project/readFinishedPacking.m
https://github.com/aavikdal/FluidFlowSegmentation/blob/main/Master%20Project/loadInitialPackingData.py

50 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

after the packing procedure. All of the spheres are identical, and the slices are
cross-sections of 3D grids.

(a) Slice of 1024 grid before packing (b) Slice of 1024 grid after packing

Figure 4.8: Initial sphere packing and jammed sphere packing

4.4.2 Increase Porosity

Some initial results on the sphere pack described above shows that the created
models struggle when the images contain large pores. This is because the sphere
packing in the training dataset is more densely packed than the authentic micro-
CT images that the models are trained on. It is, therefore, evident that the dataset
needs more variety in porosity. This is solved by adding the initial sphere pack,
that was created before the packing script was executed, to the training dataset.

These two porosities represent the extreme cases of porosity, and the models
should therefore be able to provide decent segmentations for all of the porosities
in this range. However, ideally, more sphere packs with different porosities should
be added.

4.4.3 Morphological Invasion

A script that performs morphological invasion is used to invade each 5123 matrix
with oil. The script is described in Section 3.2. It was developed in the paper Berg
et al. (2020) and is found in the Github repository, where it is called morpholog-
icalInvasion.py. The resulting grid from the script consists of a single brightness
value for solids and a continuous range of brightness values that represent the
fluid distribution in the pore space of the grid. By using different cut-off values
to binarize the continuous fluid distribution, different oil-water distributions are
obtained. Values below the cut-off are set to water, and values above the cut-off

https://github.com/aavikdal/FluidFlowSegmentation/blob/main/Master%20Project/morphologicalInvasion.py
https://github.com/aavikdal/FluidFlowSegmentation/blob/main/Master%20Project/morphologicalInvasion.py

Chapter 4: Methodology 51

(a) 1024 grid.Binary (b) 512 grid. Binary.

(c) 512 grid after invasion. Continuous. (d) 512 grid after cutoff. Ternary.

Figure 4.9: Morphological invasion of binary grid

are set to oil. Thus, the images are converted to ternary images, i.e., a single
brightness value for oil, water, and solids.

The procedure is illustrated in Figure 4.9. Figure 4.9a shows a slice of the
10243 grid and Figure 4.9b shows a slice of one cropped 5123 grid. Figure 4.9c
shows the result from the morphological invasion. The black disks are solid parti-
cles, and the pore space has continuous brightness values. By binarizing the pore
space with different cut-off values, different oil-water distributions are obtained.
Figure 4.9d shows a slice of the resulting ternary grid after applying a cut-off value
of 6.

52 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

4.4.4 Change contact angle

The initial results shows that the models struggle to segment the contact angles
right when being used on authentic micro-CT images. This is expected because
the images generated straight from the morphological invasion contain water-wet
solids, and the images that the models are tested on are oil-wet or intermediate-
wet solids.

It is, therefore, necessary to add sphere packs with other contact angles. This is
done by modifying one binary 5123 grid, i.e. a grid with just solids and pore space,
with 20 iterations of morphological erosion, which is explained in Section 2.3.4.
Because the solids have value of 255 and the pore space 0, the erosion causes
the spheres to shrink in size. Morphological invasion is performed on the result-
ing eroded grid before the spheres are resized to their original size. Because of
the increased pore space during the invasion, the oil will flow beyond the orig-
inal boundaries between the spheres and the pore space, and when the spheres
are resized to their original size, the contact angle will be changed. Figure 4.10a
shows a slice of the eroded grid and Figure 4.10b shows the eroded slice after
the morphological invasion is performed. Figure 4.10c shows the ternary ground
truth image, which is created by binarizing the pore space by using a cut-off value,
and Figure 4.10d shows the slice when the spheres are resized to their original
size.

By comparing Figure 4.10 and Figure 4.12, it is easy to see that the contact
angle is modified. In Figure 4.12 the solids are perfect water-wet, and in Fig-
ure 4.10a, the contact angle may be characterized as intermediate-wet.

Chapter 4: Methodology 53

(a) Eroded grid. Binary. (b) Invaded, eroded grid. Continuous.

(c) Eroded, invaded grid after cutoff.
Ternary. (d) Expanded spheres. Ternary.

Figure 4.10: Contact angle modification by erosion.

54 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

4.4.5 Preprocess Into Synthetic Micro-CT Images

The images from the morphological invasion are ternary images and do not re-
semble authentic micro-CT images. The process of imitating micro-CT images is
done by first changing the brightness values for oil, solids, and water to 51, 61
and 67, respectively, which are the average values for the three classes in the au-
thentic micro-CT images used in the testing. Then noise and blur are applied to
the images. Noise is applied with different kernel sizes, and the blur is Gaussian.
This processing is quite simple, and one expects more artefacts in an actual micro-
CT image, but these artefacts will vary from scanner to scanner and operator to
operator. The aim is to use data augmentation in the training process to add more
artefacts and variance to the dataset in order to make the images both general
and specific enough to be used on all kinds of micro-CT images. An example of
an authentic micro-CT image and one created synthetically by the method ex-
plained is seen in Figure 4.11. The implementation of the preprocessing is called
preProcessImages.py .

(a) Authentic micro-CT image (b) Preprocessed synthetic image

Figure 4.11: Comparison of authentic micro-CT image and preprocessed syn-
thetic image

Both the ternary images from the morphological invasion, which is used as
ground truth images, and the preprocessed images, are cropped into 256x256x16
images for the 3D models and 256x256x1 for the 2D models.

Ideally, it would be beneficial to use a larger image depth than 16 pixels. This
is, however, not feasible due to hardware constraints. The width and height are
chosen to be 256 pixels in order to make the comparison with the 2D models
straight-forward.

The reason for experimenting with 3D patches is that the 2D models struggle
to segment sphere caps near the end of the solid particles. A hypothesis is that
including the adjacent slices in the depth dimension should improve this issue.

https://github.com/aavikdal/FluidFlowSegmentation/blob/main/Master%20Project/preProcessImages.py

Chapter 4: Methodology 55

There will, of course, exist 3D patches where the ends of the solids will be in
either the foremost or rearmost slice in the patch, and the adjacent pixels that
would help predict the difficult pixels will be in the neighbouring patch. They
will, however, not occur often. An alternative that would remove this problem
may be to consider all of the slices in the patch but only segment the middle slice
in each segmentation.

(a) Mask (b) Image

Figure 4.12: Mask and image of invaded initial sphere packing.

4.5 Conventional Machine Learning

A conventional machine learning approach is implemented and compared against
the deep learning approaches.

4.5.1 Feature Extraction

For the convolutional neural networks, the features of the images are extracted
automatically in the convolutional layers. This is not the case for traditional ma-
chine learning algorithms, so the features need to be extracted manually. This is
done by applying a range of filters to the images and recording the responses in a
table, where each row contains the filter responses for one pixel. Each row in this
table is an input entry in the model training. There are applied approximately 40
filters to the images, including multiple Gabor filters, Gaussian filters, median fil-
ters and multiple edge filters. The implementation is called feature_extraction.py.

4.5.2 Support Vector Machine

It was originally planned to implement the Random Forest algorithm, but because
of its inability to do iterative learning, which exhausts the computer’s memory,

https://github.com/aavikdal/FluidFlowSegmentation/blob/main/Specialization%20Project/feature_extraction.py

56 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

the Support Vector Machine, as explained in Section 3.7, is used instead. The al-
gorithm is called svm.py. The dataset is imbalanced because there are far more
pixels corresponding to glass beads than to oil. The default configuration gives
poor results, and class weights need to be applied to the model. They adjust the
importance each pixel of each class has on the training process. The theoretical
correct class weights are calculated from the total number of pixels correspond-
ing to each class and applied to the model. However, better results are obtained
by setting the weights with trial and error. The SVM is trained on the manually
annotated images.

4.6 Deep Learning

In this section, the implementation and training of the deep learning models are
presented. One model is trained on the annotated images, and three models are
trained on the synthetic images. Because they were implemented at different
times, the methodology differs slightly. The terms used to describe the methodol-
ogy and implementation may be found in Section 2.6.2 in the Background chapter.

4.6.1 U-Net Trained on Manual Annotations

In this section, the implementation and training of the U-Net trained on the man-
ually annotated images are described. The foundation of U-Net is presented in
Section 3.4.

Implementation
U-Net is implemented using Tensorflow Keras, and the implementation is called
UNet.py. There are some differences to the original architecture proposed by Ron-
neberger et al. (2015). Here, padding is used to keep the spatial dimensions of
the feature maps throughout the layers. After each convolutional layer, a batch
normalization is performed to normalize the outputs from the convolution and
improve the network’s reliability. An input image size of 256x256 is used, and
at the bottom of the network, the size of the feature maps is downsampled to
8x8. The number of feature channels ranges from 16 to 128. The dimensions in
the model, i.e., input image size, number of feature channels and downsampling
rate, are changed in order to adapt the training process to work well on the GPU,
listed in Section 4.8.

Training
The model is trained with a batch size of 8 and a train-validation-test split of ap-
proximately 0.7 - 0.15 - 0.15. Some additional preprocessing is done before the
images are input to U-Net. The implementation of the preprocessing is called pre-
pare_data_unet.py and the training process is implemented in train_unet.py. The
Adam optimizer (3.6) is used to optimize the categorical cross-entropy loss (3.6)

https://github.com/aavikdal/FluidFlowSegmentation/blob/main/Specialization%20Project/svm.py
https://github.com/aavikdal/FluidFlowSegmentation/blob/main/Specialization%20Project/UNet.py
https://github.com/aavikdal/FluidFlowSegmentation/blob/main/Specialization%20Project/prepare_data_unet.py
https://github.com/aavikdal/FluidFlowSegmentation/blob/main/Specialization%20Project/prepare_data_unet.py
https://github.com/aavikdal/FluidFlowSegmentation/blob/main/Specialization%20Project/train_unet.py

Chapter 4: Methodology 57

function. The number of epochs is set to 30, but the Early Stopping callback stops
the training after 29 epochs since the validation loss has stagnated. The total train-
ing time is approximately 20 minutes. The training and validation accuracy and
losses for each of the epochs is seen in Figure 4.13. We see that the accuracy for
both the training and validation set is increasing slowly until it passes 25 epochs,
where it starts to stagnate.

Accuracy plot Loss plot

Figure 4.13: Accuracy and loss plot

4.6.2 Models for Synthetic Images

In this section, the implementation and training of the models trained on synthetic
images are described. Because the models trained on annotated images and the
models trained on synthetic images originally were two separate projects, the im-
plementation and training of the models differ.

Three deep learning models are trained on synthetic images, 2D U-Net, 3D
U-Net, and a 2D MultiRes U-Net.

2D U-Net
The 2D U-Net is a slightly modified version of the original U-Net proposed in
Ronneberger et al. (2015). The implementation is called UNet2DDropout.py and
is briefly explained below.

Contracting path:
The input layer receives 256x256x1 images, and the network starts with 16 fea-
ture channels. It halves the image dimensions and doubles the number of feature
channels for each layer until it reaches the bottom layer with an image dimension
of 16 and 256 feature channels. Each layer in the contracting path consists of a
3x3 convolution followed by a batch normalization, a ReLU activation, a dropout,
another 3x3 convolution, a batch normalization, a ReLU activation function, and a
max pool operation with strides equal to two, which reduces the spatial dimension
with a factor of two.

Expanding path:
The U-Net is symmetric and therefore doubles the image dimensions and halves

https://github.com/aavikdal/FluidFlowSegmentation/blob/main/Master%20Project/UNet2DDropout.py

58 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

the feature channel for each layer as it moves up the expanding path until it
reaches the input dimensions of 256x256. The layers differ slightly from the layers
in the contracting path. Instead of ending with a max pool, the layers start with a
2x2 transposed convolution (3.3) with strides equal to two. This means that the
input to the layer is upsampled and doubles in size. Because it is a convolution,
the training will modify how upsamples are done to achieve the best results. This
also means that there is one more convolution per layer in the expanding path
than in the contracting path. Also, there are skip connections between the layers
in the contracting and expanding path. These are made by concatenating the re-
sults from the corresponding layer in the contracting path with the results from
the layer below in the expanding path.

The final operation of the network is a 1x1 convolution with three feature
channels, where each of the three channels correspond to a class. The Softmax
activation function is employed on the result of the convolution, and the result is
a 256x256x3 matrix. Each element in the matrix is the probability that the pixel
in the same x-y position in the input image belongs to the class determined by
the z-dimension in the resulting matrix. E.g., the pixel in position [0,0,0] is the
probability that pixel [0,0] in the input image belongs to class number 0. A pixel-
wise segmentation is made by using numpy.argmax(prediction, axis=-1), which
selects the highest probability for each position in the x-y plane and returns the
z-index, which is the predicted class.

3D U-Net
The 3D U-Net is similar to the 2D version, but there are some differences. All of the
operations in the 2D U-Net are replaced with the corresponding 3D operations.
Other than that, the only difference is that the max pooling operation in the z-
dimension of the 3D image is only performed in the top two layers due to the
shallow depth of the input images, which are 16 pixels deep. The implementation
is also available in the Github repository and is called UNet3DDropout.py.

2D MultiRes U-Net
The implementation of the 2D MultiRes U-Net is called multiResUNet2D.py. The
network is introduced by Ibtehaz et al. (2020), and the implementation is re-
trieved from their Github repository. The convolutional layers in the original U-
Net are here replaced with Res Blocks, and the skip connections are replaced with
Res Paths, as explained in Section 3.5. Other than that, it follows the same design
with contracting and expanding paths that are tied together. To extend the orig-
inal architecture to multiclass segmentation, the Sigmoid function at the end of
the network is replaced with a Softmax function.

As is seen in Table 4.1, the MultiRes U-Net has significantly more trainable
parameters than the other two models. This is because the feature channels in
the MultiRes U-Net ranges from 32 to 512, and from 16 to 256 in the other U-
Nets. Also, the convolutional operations in the Res Paths lead to more trainable

https://github.com/aavikdal/FluidFlowSegmentation
https://github.com/aavikdal/FluidFlowSegmentation/blob/main/Master%20Project/UNet3DDropout.py
https://github.com/aavikdal/FluidFlowSegmentation/blob/main/Master%20Project/multiResUNet2D.py

Chapter 4: Methodology 59

2D U-Net 2D MultiRes U-Net 3D U-Net
1 943 795 7 238 086 2 701 171

Table 4.1: Total trainable parameters

parameters. Despite the difference in the number of trainable parameters, the
training times do not differ much and range from 24 to 30 hours.

Model Training
Because both 2D and 3D networks are trained, there are implemented two training
pipelines. The implementation of the 2D version is called train2DNN.py and the
3D version is called train3DNN.py.

All the models are trained from scratch with the Adam optimizer (3.6) which
minimizes the categorical cross-entropy (3.6).

The test data is manually separated from the training data before the training
ta takes place by reserving one of the eight 5123 cubes from the jammed sphere
pack and selecting approximately 10% of the images from the eroded grid and the
initial grid. 20% of the remaining training data is set to be validation data. On-
line data augmentation is performed on the training data. This means that every
time the pipeline fetches a new image and mask, it is a 50% probability that a data
transformation is performed on the image and mask. The augmentation scripts for
the 2D and 3D augmentation are called augmentation2D.py and augmentation.py
and are further explained in Section 4.6.2.

The 3D model is trained with a batch size of 4, which is the largest batch
size that fit in the GPU memory, and the 2D model is trained with a batch size of
32. The number of epochs is set to 100, but the EarlyStopping callback is used
with a monitor on the validation loss and 15 epochs patience, which means that
the training will stop if there is no reduction in the validation loss in the last 15
epochs. The categorical cross-entropy loss function is minimized with the Adam
optimizer, and a callback is used to save checkpoints of the best models. After the
training is finished, the training statistics is saved to a json-file.

Data augmentation
Data augmentation is used to increase the size of the dataset and add diversity. The
augmentation of the synthetic data is implemented to be used on the fly, which
eliminates the need to save the augmented data and keep it in memory. This is dif-
ferent from the annotated images, where the augmentations were performed and
saved on disk before the training process. For each image that is fetched by the
pipeline, there is a predetermined probability, here 0.5, that data augmentation is
performed. The augmentation includes, with uniform probability, flips, rotations,
grid distortions, noise, blur, resizing, gamma adjustments, contrast adjustments,
brightness adjustments, downscaling and cropping, and are implemented with the
albumentations and 3D-volumentations python packages. Not all the augmenta-

https://github.com/aavikdal/FluidFlowSegmentation/blob/main/Master%20Project/train2DNN.py
https://github.com/aavikdal/FluidFlowSegmentation/blob/main/Master%20Project/train3DNN.py
https://github.com/aavikdal/FluidFlowSegmentation/blob/main/Master%20Project/augmentation2D.py
https://github.com/aavikdal/FluidFlowSegmentation/blob/main/Master%20Project/augmentation.py

60 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

tion techniques are available for both 2D and 3D. Therefore, the augmentation is
slightly different.

Testing
A testing framework is implemented to semi-automate the reporting steps done to
compare the results from the models. The pipeline includes a prediction test on the
test set, which is a portion of the data that the models have not seen before. From
the predictions, the accuracy score, intersection over union, f1 score, precision
score and recall are calculated and written to a text file. In addition, the confusion
matrix, the loss plot and the accuracy plot from the model training are generated
and saved to disk. The testing script is called testModel.py .

The models are also tested qualitatively on the test set, allowing weaknesses
to be identified and solutions to be proposed.

4.6.3 Test on Authentic Micro-CT images

In the end, all of the models implemented are tested on the authentic micro-
CT images. Because there are no objective ground truths to these images, the
segmentations are just evaluated qualitatively.

4.7 Evaluation Metrics

Evaluation metrics are used to measure the performance of models and compare
them. There exist several methods for doing this, and some common ones are
listed below. To understand them, we need to understand true positives, true neg-
atives, false positives and false negatives. True positives are when the model cor-
rectly predicts the positive class, and true negatives are when the model correctly
predicts the negative class. False positives are when the model incorrectly predicts
the positive class, and false negatives are when the model incorrectly predicts the
negative class.

Accuracy is the simplest and most common metric. It is the number of correctly
classified predictions divided by all predictions (Eq. 4.1).

accurac y =
T P + T N

T P + T N + F P + FN
(4.1)

Precision is true positives divided by the true positives and false positives, shown
in Equation (4.2). A low precision means that there are many false positives.

precision=
T P

T P + F P
(4.2)

https://github.com/aavikdal/FluidFlowSegmentation/blob/main/Master%20Project/testModel.py

Chapter 4: Methodology 61

Recall is true positives divided by true positives and false negatives (Eq. 4.3). A
low recall means many false negatives.

recal l =
T P

T P + FN
(4.3)

F1 score is simply the harmonic mean of precision and recall.

F1= 2 ·
precision · recal l
precision+ recal l

(4.4)

Intersection over Union (IoU) is the area of overlap divided by the area of
union. It is visualized in Figure 4.14. I.e., it measures the number of pixels in
common between the ground truth and the prediction divided by the total number
of pixels present across both masks. This metric is the most common in semantic
segmentation.

Figure 4.14: Intersection over Union (Rosebrock 2016).

4.8 Hardware and Software

The hardware and software used in this project are:

Hardware
Multicom Kunshan Laptop

• Intel Core i7-6820HK CPU @ 2.70 GHz
• 32 GB RAM
• Nvidia Geforce GTX 1070 Mobile 8 GB 2048 @ 1.44 - 1.65 GPU

Software
Sphere pack generation - PackingGeneration program available at https://github.
com/VasiliBaranov/packing-generation and created in Baranau et al. (2014).
Programming languages - Python and MATLAB ++
Deep learning implementation - Tensorflow Keras in python

https://github.com/VasiliBaranov/packing-generation
https://github.com/VasiliBaranov/packing-generation

62 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

Python IDE - Spyder

Chapter 5

Results and Discussion

In this chapter, the results from the models’ performance are presented. Sec-
tion 5.1 presents the models’ quantitative results, Section 5.2 presents the models’
qualitative results on the test set and Section 5.3 presents the models’ performance
on authentic micro-CT images. In order to simplify the discussion, the dimension
of the model will only be mentioned if it is 3D, so all models mentioned without
dimensions are meant to be 2D.

5.1 Quantitative results on test set

In this section, the models are evaluated based on their performance on the test
set. The test set is disjunct from the training data but consists of the same type of
data. Approximately 10% of the training data was moved from the training folder
to the test folder before any training took place. The test data for the 2D models
and 3D models are slightly different due to the different image size.

Metric 2D U-Net 2D MultiRes U-Net 3D U-Net

Accuracy 0.9943 0.9939 0.9944
IoU 0.9887 0.9879 0.9888

Table 5.1: Model evaluation

As seen in Table 5.1, all of the models perform well on the test set, with ac-
curacies above 99.3% and intersection over union above 98.7%. The 3D U-Net
has the highest accuracy with 0.9944, whereas the MultiRes U-Net has the lowest
accuracy with 0.9939, meaning that the difference between the best and worst is
0.0004= 0.04%. The difference in IoU is 0.9888− 0.9879= 0.0009= 0.09%.

Table 5.2 shows that the U-Net struggles with a low recall for oil and wa-
ter, which are below 97%. A low recall means many false negatives, i.e., that the
models predict there to be solid when the true label is oil or water. The confu-
sion matrix confirms this in Figure 5.1, which shows that in approximately 3%
of the times the true label is either oil or water, the model predicts there to be

63

64 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

Class 2D U-Net 2D MultiRes U-Net 3D U-Net

Oil 0.9698 0.9649 0.9915
Solids 0.9983 0.9996 0.9967
Water 0.9662 0.9469 0.9645

Table 5.2: Recall

solid. However, when the true label is solid, it predicts solid 100% of the time.
It, therefore, seems that the model predicts the solid spheres to be a bit too big.
From Table 5.2 it is evident that also the MultiRes U-Net struggles with low recall
for oil and water. In the confusion matrix (Figure 5.3), it is shown that the model
predicts there to be solid in 5.2% of the cases where the correct label is water. For
oil, the number is 3.4%. The 3D U-Net has a high recall for both oil and solids and
is only struggling with water, where the recall is 96.45%. The problem is that the
model predicts there to be solid when there is water.

A possible reason for the low recall scores is class imbalance. An examination
of the training data revealed that it consists of 8.3% oil, 85.7% solid and 6%
water. The categorical cross-entropy loss function does not take class imbalance
into account. Because there are approximately ten times more solid pixels than
oil pixels, it is more critical for the model to predict the solids correctly to attain
a good accuracy. A loss function with class weights might help to attain more
balanced results.

Class 2D U-Net 2D MultiRes U-Net 3D U-Net

Oil 0.9908 0.9970 0.9907
Solids 0.9954 0.9936 0.9968
Water 0.9831 0.9942 0.9640

Table 5.3: Precision

From Table 5.3, both the U-Net and the MultiRes U-Net have high precision
scores for all classes. However, the 3D U-Net has a low precision score for water. A
low precision score means false positives, i.e. that the model predicts there to be
water when the true label is not water. From the confusion matrix (Figure 5.5), we
see that in 0.25% of the cases where the true label is solid, the model predicts wa-
ter. This might seem like a low value, but keep in mind that there are many more
solid pixels than water pixels, and although this is a low percentage of the solids,
it will be a more significant fraction of the water. This may indicate that it is harder
to correctly segment the boundaries between solids and water than between solids
and oil. From the methodology section, we have that the mean brightness values
of oil, solids, and water are 51, 61 and 67, respectively. The brightness difference
between water and solids is smaller than the difference between solid and oil.
This might be why it is harder to correctly segment the boundaries between solids
and water than between solids and oil.

Chapter 5: Results and Discussion 65

Class 2D U-Net 2D MultiRes U-Net 3D U-Net

Oil 0.9802 0.9807 0.9911
Solids 0.9968 0.9966 0.9968
Water 0.9746 0.9699 0.9642

Table 5.4: F1 score

The f1 scores are reported in Table 5.4. Because it is the harmonic mean of
precision and recall, it gives a better measure of the incorrectly classified pixels
than the Accuracy metric in imbalanced datasets. The harmonic mean penalizes
extreme values and therefore prefers a balanced ratio of precision and recall. As
expected, all models have high f1 scores for the solids and lower f1 scores for oil
and water. The average f1 scores for the three models are 0.9839, 0.9824 and
0.9840 for the U-Net, MultiRes U-Net and the 3D U-Net, respectively. Also, in
this metric the 3D U-Net is performing best and the MultiRes U-Net is performing
worst.

However, it is important to note that these numbers only describe how well
the models are able to segment the synthetic images. A high score on these met-
rics is not worth anything if the models fail to segment the authentic micro-CT
images. Additionally, good results are expected since most pixels should be easy
to segment, and only the boundary sections should be challenging. Therefore, we
must not take for granted that these models make good segmentations because
of their high evaluation metrics. We also need to evaluate the segmented images
qualitatively.

5.1.1 2D U-Net

Figure 5.1: 2D U-Net Confusion Matrix

66 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

(a) Accuracy Plot (b) Loss Plot

Figure 5.2: Accuracy and loss plot for 2D U-Net

The U-Net quickly achieves a training accuracy over 99%, which slowly in-
creases epoch after epoch. The validation accuracy follows the same trend as the
training accuracy but has a few dips on the way. The loss drops quickly for both
the training and validation due to the exponential decay.

The loss has a few spikes that correspond with the dips in the accuracy. These
spikes are normal when using versions of mini-batch SGD on datasets with a high
variance because the weights of the network are updated from the average of
gradients in a small subset of the total data. Therefore, the optimizer performs
frequent updates with high variance that cause the objective function to fluctu-
ate. In other words, the current local minima does not generalize as well as the
local minima at the end of the previous epoch. These fluctuations have both pos-
itive and negative consequences. It enables the optimizer to jump to a new and
potential better local minima, but it also complicates the convergence to the global
minimum.

Due to that the validation loss does not go lower than it does in epoch 23,
the EarlyStopping callback stops the training after 28 epochs since a 15 epochs
patience is used. However, the trend of the validation accuracy is positive, and the
model might achieve better results after more training.

5.1.2 2D MultiRes U-Net

The MultiRes U-Net also quickly achieves a training accuracy over 99%, but the
validation accuracy does not follow as closely to the training accuracy as for the
regular U-Net. The validation accuracy is volatile, but we can see that it has a
positive trend and that the volatility decreases with time. The fact that the valida-
tion accuracy has an increasing trend suggests that it is not overfitting. The model
achieves its lowest validation loss in epoch 19, and the training is therefore ter-

Chapter 5: Results and Discussion 67

Figure 5.3: 2D MultiRes U-Net confusion matrix

(a) Accuracy Plot (b) Loss Plot

Figure 5.4: Accuracy and loss plot for 2D MultiRes U-Net

minated after 34 epochs.

68 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

5.1.3 3D U-Net

Figure 5.5: 3D U-Net confusion matrix

(a) Accuracy Plot (b) Loss Plot

Figure 5.6: Accuracy and loss plot for 3D U-Net

The 3D U-Net quickly achieves a high training accuracy. The validation accu-
racy is volatile, even more than it appears at first, because the y-scale is different
from the other training plots because the validation accuracy drops to 30%. After
approximately 30 epochs, both the training and validation accuracy are stable,
but the training does not end until epoch 67.

The model’s accuracy and loss for the U-Net trained on annotated micro-CT
images are displayed in Figure 4.13 in the Methodology section. Both the valida-

Chapter 5: Results and Discussion 69

tion accuracy and validation loss are less volatile than for the models trained on
synthetic data. It is important to note that for the training of U-Net, only 50 anno-
tated images of size 5122 form the basis of the data before they were cropped, and
the dataset was expanded with data augmentation. For the synthetic data models,
8650 images, also of size 5122, forms the basis before cropping and data augmen-
tation. Additionally, the data augmentation was set to generate a wider variety in
the synthetic images than was the case for the annotated images, and the U-Net
implementation used on the annotated data has fewer feature channels than the
models trained on synthetic data. The bigger dataset size, the wider variety in
data, and an increased number of trainable parameters explain why the synthetic
models were harder to train than the U-Net which was trained on annotated im-
ages. This is also reflected in the training times for the models. The U-Net trained
on annotated images used approximately 20 minutes, while the other models used
more than 24 hours. Longer training times is a disadvantage, but the hypothesis is
that the models trained on a more extensive dataset with more variety should be
able to generalize better. However, the biggest advantage with synthetic images
is that there is no operator bias in the segmented ground truths, because they
are actual ground truths. The dataset might, however, be biased of the operator
that created it, but there should be no problem to add enough variance of all of
the relevant parameters, e.g., porosity, contact angles, fluid distribution and grain
size, to reduce the bias.

5.2 Performance on Test Images

In this section, the resulting segmented images generated from the different mod-
els applied to the test set of synthetic images are visualized. Each figures include
the original image, the mask, i.e., ground truth, the segmentation and the differ-
ence between the segmentation and the mask.

5.2.1 2D U-Net

Figure 5.7 displays the U-Net’s segmentation of a test image. It makes an overall
good segmentation, but the result is not perfect. In the small, triangular pore
spaces, it smooths the corners a bit, and the small solid circle in the bottom right is
not perfectly circular. In the bottom right figure, where the differences are marked
in red, some errors are evident. However, these are dispersed along the edges, and
there are no spots where the red markings are thick.

70 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

Figure 5.7: 2D U-Net segmentation on image from the test set. The difference
between the prediction and mask is visualized in red.

5.2.2 2D MultiRes U-Net

Figure 5.8: 2D MultiRes U-Net segmentation on image from the test set. The
difference between the prediction and mask is visualized in red.

Chapter 5: Results and Discussion 71

Figure 5.8 shows the MultiRes U-Net’s segmentation of the same image as the
U-Net. The MultiRes U-Net does a better job than the U-Net at making the corners
in the tiny pore spaces sharp and the bottom right solid circular. However, from
the red markings, we see that it struggles with the small pore space in the upper
left corner.

5.2.3 3D U-Net

Figure 5.9: 3D U-Net segmentation of image from the test set. The difference
between the prediction and mask is visualized in red.

Figure 5.9 shows a segmentation created by the 3D U-Net. The slice displayed
in the figure is slice number 8 in the 16-pixel deep segmentation, and it should
therefore benefit from depth information in both directions of the slice. It does an
overall good job and makes no major errors, but there is still room for improve-
ment. The boundary between some of the classes are fuzzy, and the solid particle
in the lower middle is not perfectly circular. This is worrying since it seems that the
model has not picked up some key semantics, namely that the boundaries should
be sharp and the solid should be perfect circles.

All models make decent segmentations, but none of them is perfect. The two
2D models seem to perform better than the 3D U-Net, which is interesting because
the 3D U-Net performed best in the quantitative evaluation of the results.

72 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

5.3 Performance on Authentic Micro-CT Images

Section 5.3 shows all of the models’ segmentations of both micro-CT images of
oil-wet and intermediate-wet glass beads. Both the resulting segmentations of
the models implemented in the specialization project and master project are in-
cluded. Each figure displays the original CT image and the resulting segmented
images from Otsu thresholding, a Support Vector Machine, a two-dimensional
U-Net trained on annotated images of oil-wet glass beads, a two-dimensional
and a three-dimensional U-Net trained on synthetic images and finally a two-
dimensional MultiRes U-Net. The contrast of the original CT images is modified
for better visibility.

One of the U-Nets is trained on annotated images from the oil-wet micro-CT
images and is therefore assumed to generate good segmentations on these images.
It is, therefore, interesting to see how the models trained on generic, synthetic
data compares to this. Since there are two 2D U-Net models in the results, the
discussion is simplified by naming the 2D U-Net trained on annotated data U-Net
I and the 2D U-Net trained on synthetic data U-Net II.

5.3.1 Oil-Wet Glass Beads

Two of the models, the 2D U-Net and the SVM are trained on manually anno-
tated images from the oil-wet glass beads. The other 2D U-Net, the 3D U-Net and
the 2D MultiRes U-Net are trained on synthetic images. Figure 5.10 shows the
segmentation of micro-CT image of oil-wet glass beads. As expected, the Otsu
thresholding is able to segment the rough features of the image but is struggling
with the boundaries and predicts there to be a sheet of solid glass between the
oil and water. This is because thresholding only considers the brightness values of
the pixels. There will be a transition in pixel values from black to white between
the oil and water phase, and the pixel values of gray naturally lie between the two
and solids will therefore be predicted.

The Support Vector Machine, which uses filters to extract the features of the
image, is also able to segment the coarse features of the image. However, due
to the small kernel size of the filters, it fails to extract the big scale semantics,
and therefore it is some noise along the edges of the classes. Most of these small
patches could be removed, with, for example, a morphological closing, but one
of the goals for the project is to eliminate the need for manual post-processing of
the segmented images. One could implement automatic closing operations, but
it might remove small objects, e.g., small oil droplets, which is not desirable in
other scenarios.

As expected, the U-Net I generates a more or less flawless segmentation. Nev-
ertheless, one should keep in mind that this model was trained on these exact
images. However, a couple of things could be improved: It seems that the contact
angles are not perfectly recreated, and there is a small dent in the lower, left glass
bead where the intersection of oil, water and solid is.

Chapter 5: Results and Discussion 73

The U-Net II, which is trained on synthetic data, makes an acceptable seg-
mentation. It is able to capture the main features, but there are a couple of errors.
There is a small patch of solid that is being wrongly predicted in the water phase.
From the original image, one sees that this area is a bit darker than the rest of
the water phase, and that is probably the reason for predicting solid there. It is,
however, clear that it has not learned all the relevant semantics of the synthetic
images since there does not exist any solids shaped like that in the training set.
It also struggles to create the correct contact angles, which is especially visible on
the left boundary of the tiny oil droplet.

The 3D U-Net also makes a decent segmentation, but with some obvious er-
rors. The first one being the small oil droplet it wrongly predicts inside the bottom
right glass bead. Right next to it, it also makes a small dent in the glass bead, which
seems to be because of the brightness values of this area. It also wrongly predict
a slight bulge on the glass bead right next to the oil droplet. This is also probably
a brightness value issue. Overall, it seems that the model ranks the importance of
the brightness values too high and have not adequately learned the semantics of
the images.

Visual comparison of the MultiRes U-Net indicates an almost perfect segmen-
tation. The only thing to remark is that it fails to create the correct contact angles
and predicts the glass beads to be water-wet. This is probably due to the lack of
variety of contact angles in the training dataset. The training set primarily consists
of water-wet solids but also contains some intermediate-wet solids. It is therefore
understandable that the model struggles with this, since the glass beads in this
picture are oil-wet.

In short, the best segmentation in Figure 5.10 is made by U-Net I, but the Mul-
tiRes U-Net is not far behind. With more variety of contact angles in the training
set, I am convinced that it can make an equal good segmentation.

Figure 5.11 shows the segmentation of an image where we see the contours
of the end of a glass bead. In the specialization project, these were shown to be
the most challenging images to segment due to the large amount of blur in the
area. This blur makes it hard to determine where the boundaries should be, and
also, since there is a blur in all three dimensions, if there should be solid there
at all. The proposition in the specialization project suggested that a 3D model
should alleviate this problem since the information in depth should help segment
the ends of the glass beads. The slice displayed in the figure is from the middle of
the 3D patch used in the 3D segmentation, and the 3D model should therefore be
able to make a proper segmentation.

The Otsu thresholding struggles with the boundaries, and the Support Vector
Machine struggles with noise, as in the previous image.

The U-Net I makes an acceptable segmentation but has a couple of flaws. It
predicts there to be solid in the problematic area, but the solid is not perfectly
circular, as it should be, and it is predicted to be a bit too big. It also has issues
segmenting the border of the glass bead on the right side of the image and makes
a big dent.

74 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

Figure 5.10: Segmentation of oil-wet glass beads. SVM and one of the 2D U-Nets
are trained on authentic images from this dataset, while the other 2D U-Net, 2D
MultiRes U-Net and the 3D U-Net are trained on synthetic images.

Chapter 5: Results and Discussion 75

Figure 5.11: Segmentation of oil-wet glass beads.

76 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

The U-Net II mispredicts some water droplets inside one of the glass beads in
Figure 5.11, which is probably due to a non-uniform brightness distribution inside
the glass bead. In the problematic area, it generates an unacceptable segmentation
and predicts a shape like an hour-glass. It is yet again evident that the model ranks
the local features, such as brightness values and gradients, higher than semantics
when generating the segmentation.

The 3D U-Net also struggles with the prediction of the small cross-section and
predicts a half circle in the area. This shows that this model also ranks brightness
values above the semantics of the image. On top of that, the boundaries are fuzzy,
just like in the previous image.

The MultiRes U-Net makes a good segmentation again. It does not predict
anything in the trouble area, and this might be true. It is hard to determine if the
shade in the image is the glass beads or just the blur surrounding it. The contact
angles seem to be acceptable, but it misses a bit of the thin layer of oil on the
surface of the rightmost glass bead.

In this figure, the U-Net I and the MultiRes U-Net makes equally good seg-
mentations. It is hard to decide if the small cross-section of the glass bead should
be included or not, and they both have some issues with the oil on the right-hand
side of the image.

Figure 5.12 shows the segmentation of an image with an imbalanced class
distribution. Class imbalance is particularly bad for Otsu thresholding, as is visible
in the figure. Due to fewer oil-water boundaries, the SVM seems to do a better job
than usual. However, there is still some noise in the segmention and a thin sheet
of glass between the oil and water. The U-Net I generates a good segmentation.
The only flaw I see is that the curvature of the boundary between oil and water
is a bit off. The U-Net II also makes a good segmentation. Also here, the only
flaw is the curvature of the oil-water boundary. The 3D U-Net struggles with the
boundary between the glass beads and the water. One clearly sees that the glass
beads are not perfectly circular. It seems to regard the local brightness information
higher than the global semantic information. The MultiRes U-Net makes a good
segmentation, but the contact angle is a bit off here as well. The bottom oil-water
boundary is segmented water-wet when it should be oil-wet.

Chapter 5: Results and Discussion 77

Figure 5.12: Segmentation of oil-wet glass beads.

78 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

5.3.2 Intermediate Wet Glass Beads

In this section, the models’ performance on intermediate wet glass beads are dis-
played. This means that the SVM and U-Net I are tested on images that are dif-
ferent from the ones they are trained on. However, the differences are minor, and
therefore, it is expected that they generate precise segmentations on these images.

In Figure 5.13 Otsu thresholding makes a decent segmentation but fails to
segment the oil in the pore throats between the glass beads. The Support Vector
Machine seems to struggle less with noise in this image than in the previous im-
ages. However, the boundaries are still a bit fuzzy, and it also struggles with the
boundary between oil and water. The U-Net I makes a good segmentation, and it
seems that it is able to segment the contact angles correctly. The U-Net II gener-
ates a satisfactory segmentation. There is, however, a small spot of water being
predicted inside one of the glass beads, and it seems to predict too little oil in
the pore throats. The 3D U-Net’s segmentation has fuzzy edges and struggles in
the pore throats. As usual, the MultiRes U-Net is the best model from the models
trained on the synthetic data, but it does seem like it also predicts too little oil in
the pore throats and the glass bead in the bottom is not perfectly circular.

In Figure 5.14, the Otsu does a decent job except for the boundaries and the
SVM struggles with noise. Both U-Net I and II generates good segmentations but
fail to make the small glass bead perfectly circular. The 3D U-Net struggles with
very wobbly edges. The MultiRes U-Net makes the best segmentation out of all of
the models, but if we are picky, the contact angles are not perfect, and the top,
right glass bead has a dent on its right side.

Figure 5.15 contains a micro-CT image with many glass beads and a lot of fluid
contacts. Otsu thresholding struggles as usual with the fluid contacts, and the SVM
struggles with noisy edges. U-Net I generates a good segmentation, whereas U-Net
II fails to make the smallest glass bead perfectly circular, and the contact angles
are a bit off. The 3D U-Net creates fuzzy boundaries, but still generates a decent
segmentation. The MultiRes U-Net is yet again the best model trained on synthetic
data but fails to make the segmentation as precise as U-Net I. It fails to make the
smallest glass bead circular, and is way off in segmenting the contact angle on the
middle, left glass bead.

Chapter 5: Results and Discussion 79

Figure 5.13: Segmentation of intermediate wet glass beads.

80 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

Figure 5.14: Segmentation of intermediate wet glass beads.

Chapter 5: Results and Discussion 81

Figure 5.15: Segmentation of intermediate wet glass beads.

82 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

In summary, the U-Net I makes the best segmentations overall, but the Mul-
tiRes U-Net is not far behind. If the training dataset is extended with more vari-
ance in porosity and contact angles, I believe that it will be able to make as good
segmentations as U-Net I. This is remarkable, considering that it is trained on a
simple synthetic dataset where most of the variance has been created by simple
data augmentation.

As expected, the simple Otsu thresholding and the Support Vector Machine
fail to create as good segmentations as the deep learning approaches, but they
are able to extract the main features. Therefore, it is understandable that they
are being used to separate the bulk of the pixels in a multi-step workflow, where
the boundaries are being segmented with other approaches, such as watershed
segmentation.

U-Net II and 3D U-Net struggle more than anticipated and seem to not have
learned the relevant semantics in the data. For example, they often fail to make
circular beads, the boundaries are often fuzzy, and small spots are often wrongly
predicted in the middle of a different class. They seem to be too dependent on the
pixel values and gradients and sometimes unable to see the bigger picture. There
could be several reasons for this; the dataset may be too simple and monotonous,
and thus makes it unnecessary to be able to generalize in order to achieve good
training and validation accuracy. Therefore, it may be enough to learn the local
features. It could also be that an optimization of the hyperparameters, e.g. batch
size, learning rate and learning schedule, lead to better results.

Another reason for the poor performance of the 3D U-Net could be that it is
underfitted, even though the training loss plot does not indicate this. It is trained
on the same dataset as the 2D models, but each picture is naturally 16 times bigger
than for the 2D models. This means that there are fewer images in the 3D dataset.
It, therefore, makes fewer backpropagations than the 2D models, and since the
batch size is just eight times smaller than for the 2D models, it only makes half
the number of updates on the weights in the network as the 2D models. Therefore,
it might need more training data than the 2D models.

It also could be that the models would have performed better if they were
trained with a different loss function. As mentioned earlier, the dataset is imbal-
anced, where there are 8.3% oil, 85.7% solid and 6% water. Therefore, it might
be beneficial to train on a loss function that considers the imbalance, for example,
weighted categorical cross-entropy or focal loss.

5.4 Areas of Improvement For the Models Trained on Syn-
thetic Images

The images below are included to further investigate the areas where the models
trained on synthetic data have room for improvement. The following flaws are
not connected to the lack of variety of porosity and contact angles in the training
set. These are not a representative selection for the results as a whole, but rather

Chapter 5: Results and Discussion 83

some of the worst segmentations generated.

Figure 5.16: Segmentation of one-phase fluid. Water and solid.

Figure 5.16 shows a micro-CT image that only contains glass beads and water.
We see that the 2D and 3D U-Net struggles to draw the boundaries between water
and solid when the boundaries are blurred and hard to define by pixel values
alone. This is often the case at the start or the end of a sphere, i.e., for small cross-
sections of the glass beads, where there is noise in the depth dimension of the
image that makes it hard to define the boundaries. The MultiRes U-Net, on the
other hand, seems to put more emphasis on the semantics and not only on the
brightness value and gradient of each pixel, and thus manages to generate a good
segmentation. Although it is hard to determine if the boundary is placed in the
right place by watching the original image alone, it is at least semantically correct
in the sense that the cross-section is circular.

In Figure 5.17, the 3D U-Net struggles when there are brightness non-uniformity
in the solids. From the original image, we see that the solids are brighter in the
edges than in the center. The pixels in the edges of the solids are mostly predicted
correctly. This might be because the predictions of these pixels are affected by
the gradient between the white and grey pixels, whereas the pixels a bit closer to
the centre are not, and only considers the brightness values. The MultiRes U-Net
makes a good segmentation, and the U-Net makes decent a segmentation, but is
struggling with the small solid in the top left corner.

In Figure 5.18 we see that the 3D U-Net again struggles with brightness non-
uniformity, and predicts water to be in the middle of the solid, and fails to make the

84 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

Figure 5.17: Segmentation of one-phase fluid. Water and solid. 3D U-Net strug-
gles..

small solid particle circular. It yet again proves that it has not learned the seman-
tics of the images and is rather using local information, such as brightness values
and gradients, to segment the image. The MultiRes U-Net makes an excellent seg-
mentation, and the 2D U-Net makes a good segmentation with the exception of
wrongly predicting a small layer of water in the top left corner.

Chapter 5: Results and Discussion 85

Figure 5.18: Segmentation of two-phase fluid. Oil, water and solid.

5.5 Probability Heatmap

Figure 5.19 shows the probability heatmap for the segmentations done by the
four deep learning models on the same image as is segmented in Figure 5.15. The
values on the heatmap are the probabilities calculated for each model that the
segmented class belongs to that class. I.e., if one pixel on the heatmap has the
value 0.8 and the model has predicted the pixel to be solid, the model is 80%
certain that the pixel belongs to the solid class.

U-Net I seems to be 100% certain of the segmentation inside all of the glass
beads and in the fluid phases, and is only uncertain at the boundaries. The bound-
aries with uncertainties is quite narrow, which corresponds to the performance we
have seen from the model.

U-Net II and the 3D U-Net are also uncertain at the boundaries. The main thing
to consider is the high certainties next to low cretainties along the boundary of the
small glass bead in the bottom of the image. I.e., they are certain that the spheres
should not be circular and that the edges should not be smoothed. Additionally,
we see traces of uncertainty in the middle of the glass beads. This suggests again
that these networks are considering the local features, such as brightness values
and gradients more than the two other models. In other words, the two other
models have learned that fluids never occur fluids inside the glass beads, whereas
U-NetII and 3D U-Net have not.

The MultiRes U-Net is also 100% sure of the segmentation inside the glass

86 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

Figure 5.19: Probability heatmap for the segmentations. The heatmaps visualizes
the probabilities calculated by the deep learning models in the segmentation. A
high value means that the model is certain in its segmentation in the area, and a
low value means that the model is uncertain.

Chapter 5: Results and Discussion 87

beads. Interestingly, it is only about 85% certain of the segmentations in the pore
space. However, this does not matter, since 85% is more than enough to make the
correct prediction. The uncertainty field along the boundaries are narrower than
for all of the other models, which suggest that the model is well familiar with the
fact that the edges should be smooth. It does, however, fail to make the bottom
glass bead circular, and is 100% certain that it should have a bulge on the left
side. It is also quite certain in most of the contact angles, even though they are
not correct. This confirms that the reason for failing to recreate the correct contact
angles, which especially was evident in the middle left glass bead in the figure, is
because of a lack of variety in the dataset. We therefore see that there are both
advantages and disadvantages with deep learning models that learn semantics. An
advantage is that the model learn important concepts of the images, for example
that the edges should be smooth and that there should not be any fluids inside
the solids. A disadvantage is that the model perform poorly on data which is not
enough represented in the dataset, for example different contact angles.

5.6 Overall Discussion

From the results presented and discussed above, it is evident that the MultiRes
U-Net is the best performing model trained on synthetic data when it comes
to segmentation of the authentic micro-CT images. Interestingly, it is the worst-
performing model on the test set but the best performing on the authentic images.
There may be many reasons for this, but the main thing to note is that it is the
best generalizing model. The other models may either be overfitted, or depend to
heavily on local features instead of the semantics of the images. Potential meth-
ods for improving their performance are adding more variety to the data, trying
different sized datasets to exclude overfitting, experimenting with different num-
bers of feature channels, and optimizing the training process by changing the
hyperparameters. This includes the batch size, initial learning rate and learning
schedule, among others. More methods for improving the results is found in the
Further Work section. Because of the long training times for the models trained
on synthetic data, ranging from 24 to 30 hours, there was no time to perform
many iterations of the training. Approximately five training iterations of each of
the three networks were done, where the hyperparameters were changed, and
some small modifications to the network were done. The best iteration of each
model was selected and tested on the authentic micro-CT images.

From here on, we will only consider the performance of the MultiRes U-Net
and U-Net I, since the main focus was not to compare the deep learning models,
but simply explore if it is possible to automatically and precisely segment micro-
CT images, possibly with the use of synthetic images. Most of the MultiRes U-Net’s
segmentation flaws may be related to a lack of variety in the training dataset. This
was discovered in the initial results, and actions were taken to alleviate this issue.
However, the actions were time-consuming since the methods for adding data
with higher porosity, and different contact angles both required sphere packs with

88 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

higher porosities to be the input of the morphological invasion. The increased pore
volume naturally led to more calculations in the invasion script. As a consequence,
the run time for the morphological invasion increased from approximately 2 hours
to more than 24 hours. Because of this, there was only enough time to add one
5123 grid with high porosity and one 5123 grid with different wetting conditions.
This alleviated the issues, but it still needs to be added more variety to obtain
better results. Alternatively, one can remove some of the other sphere packs with
the default porosity and wetting conditions so the added data make up a more
significant fraction of the dataset.

The quantitative results shows that the MultiRes U-Net struggles with false
negatives for oil and water. This means that it frequently predicts solid when the
true label is either oil or water. This might be a result from class imbalance and
may be fixed by using a loss function that incorporates class weights to account
for the imbalance. However, because the training set primarily consists of sphere
packs with low porosities, the class imbalance will be reduced when sphere packs
with higher porosities are added.

There is a big difference in training time between U-Net I and the MultiRes
U-Net. U-Net I finishes the training in approximately 20 minutes, while it for the
MultiRes U-Net takes approximately 30 hours. The reason for this is the difference
in network complexity and size of the training dataset. In the U-Net I the feature
channels range from 16 to 128, while for the MultiRes U-Net it ranges from 32 to
512. Additionally, the added convolutions in the Res paths adds even more com-
plexity to the MultiRes U-Net. The result of this is that while the U-Net I only has
597 603 trainable parameters, the MultiRes U-Net has 7 238 086. An increasing
number of feature channels and convolution allows for more complex features to
be extracted, but on the other hand, it slows down the training of the models and
may make them harder to optimize. A low number of feature channels lead to
faster training times, but it may not extract all desired features from the images.
However,in most applications, it does not matter if the training takes 20 minutes
or 30 hours because it is only necessary to train the model once.

The basis for the training of the U-Net I is 50 images of size 5122 before crop-
ping and augmentation. For comparison, the training set of synthetic data is com-
prised of 8650 images before cropping and augmentation. The small dataset con-
sists of manually annotated images, where all of the images come from the same
scan. There is not a high variance in, e.g., contact angles, fluid distribution, and
brightness values. Therefore, the models trained on this dataset are not expected
to produce good segmentations of images with other characteristics when it comes
to these parameters. The large, synthetic dataset is created to be more generic,
and models trained on it should perform well on a wider range of images than
models trained on the small dataset. However, because the models only have been
tested on two micro-CT scans from the same scanner, where the only difference
was the wetting conditions, the generality of the models have not been adequately
tested.

Developing deep learning models may be seen as a balancing act. One wants

Chapter 5: Results and Discussion 89

enough trainable parameters to capture all desired features, but also to balance
it against training times and overfitting. Enough data in the dataset makes the
model both general and specific enough to perform well on all inputs, but too
much data may cause overfitting and unnecessary long training and inference
times. An exciting development to keep an eye on in the years to come is the race
between image quality versus computing power. When the resolution is doubled
in a 3D image, this requires an eightfold increase in computation power not to
reduce the run time. It may, therefore, not be the best idea to create too complex
networks in order to future proof them. However, even though the MultiRes U-
Net may be perceived as complex, if one looks at trainable parameters divided by
image size, it has a lower density of trainable parameters than all of the models
tested by Wang, Shabaninejad, et al. (2021) except one.

Chapter 6

Conclusion

Traditional segmentation approaches of porous media have indisputable weak-
nesses. They are both tedious and results in segmentations with operator bias. In
this work, these issues are addressed by creating manually annotated and syn-
thetic micro-CT images to obtain training datasets for deep learning approaches.
Deep learning makes it possible to automatically segment micro-CT images with-
out the need for pre- or post-processing, and the synthetic dataset has perfect
ground truth segmentations, which reduces the operator bias. One deep learning
model is trained on the annotated images, and three models are trained on the
synthetic images. Finally, they are used to segment authentic micro-CT images,
and the results are compared.

All three models trained on the simple, synthetic data are able to make decent
segmentations on the authentic micro-CT images of a vial filled with glass beads,
oil, and water. However, one of the models, the MultiRes U-Net, is significantly
better than the others. It has some issues with segmenting large pore spaces and
struggles with the contact angles, but this is likely due to the lack of oil-wet con-
tact angles and large pore spaces in the dataset, and may be mitigated by simply
adding images with more variety of contact angles and porosities to the dataset.
Despite being trained on simple synthetic images, it is almost able to generate as
good segmentations as the U-Net trained on the exact images that the models are
tested on.

There are advantages and disadvantages of using both annotated and syn-
thetic images. The models trained on annotated images will be particularly suited
to segment images with the same characteristics as the images it is trained on and
will learn features that will be hard to recreate in the synthetic images. However,
the process of annotating images is tedious, and the model will be affected by the
person annotating the images. Models trained on synthetic images eliminate the
operator bias, but it may be challenging to capture features tied to specific au-
thentic micro-CT images, which may not be represented in the synthetic dataset.

However, the results obtained answers the research questions in the thesis:
It is possible to create a model that may be used to automatically digitize the
fluid phases and matrix of micro-CT images precisely. Additionally, it is possible

91

92 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

to achieve quality segmentations on authentic micro-CT images with models that
are trained on synthetic images.

Chapter 7

Further Work

If I was to continue working on this project or guide someone who wishes to
continue this project, these are the next steps I would make.

7.1 Extend Dataset

The biggest problems of the results are connected to lack of variety in the dataset.
In order to precisely segment the contact angles, more contact angles must be
added to the dataset, because the model is biased as there exists too few in the
training set. The same applies for the porosity.

7.2 Optimize Training

Even though it is time consuming for this large dataset, it would be valuable to
optimize the training by tuning the hyper-parameters. It could be beneficial to
start by tuning the parameters on a subset of the dataset, before eventually fine-
tuning on the whole dataset. Both more and less feature channels for all of the
models should also be tested, and it would be useful to train on datasets with
different size to possibly detect overfitting.

Other loss functions should also be tested. Even though categorical cross-
entropy is the go-to loss function for multiclass segmentation, I think that a loss
function that incorporate weights to account for class imbalance would be better
suited. Suggestions for other loss functions are weighted categorical cross-entropy
and categorical focal loss. These are not natively supported by Keras yet, but there
exists third-party implementations of them which may be used, or you may im-
plement them yourself.

7.3 Train 3D MultiRes U-Net

There exists a 3D version on the MultiRes U-Net, proposed by Ibtehaz et al. (2020),
but due to GPU memory constraints, it was not possible to train this model on the

93

94 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

256x256x16 images. If one has more GPU memory on hand, it would be interest-
ing to see the performance of the 3D version compared to the 2D version.

7.4 Use Deeper 3D Patches

Due to hardware constraints, it was not possible to use larger 3D patches when
training the models in this thesis. But if one have more GPU memory, it should be
beneficial to use deeper 3D patches. This would allow the model to learn more
semantics in the depth dimension, which should benefit the segmentations. Ideally
one should be to be able to contain a whole grain in the 3D patch.

7.5 Develop Sophisticated Testing Pipelines

As the model progresses, it would be useful to use a more sophisticated testing
methodology on the segmentations of the authentic micro-CT images. This might,
however, be complicated, because there are no ground truths to those images. It
would, at least, be interesting to quantify the contact angle in both the segmenta-
tion and authentic image and compare these. Quantifying the contact angles for
the segmentation is straight-forward, and these may be compared to the contact
angles obtained using the method proposed by Khanamiri et al. (2020), which
generates triangular surfaces using micro-CT images. The triangular surfaces are
then smoothed to calculate the contact angles.

7.6 Create More Realistic Dataset

The next step would be to create a more realistic dataset to train the models on.
There are several approaches to this.

One approach is to use a process based reconstruction method, as is proposed
by Bakke et al. (1997, 2002). These methods reconstruct sandstones by modelling
the sandstone-forming geological processes - sedimentation, compaction and di-
agenesis.

Another approach is to create simple synthetic datasets which encode the in-
formation one seeks to extract and letting a cyclic generative adversarial network
perform style transfer between the synthetic and raw data - an unsupervised data
to content transformation, as is proposed by Ihle et al. (2019).

Bibliography

3.3.9.7. Otsu thresholding — Scipy lecture notes (n.d.). http://scipy-lectures.
org/packages/scikit-image/auto_examples/plot_threshold.html. (Ac-
cessed on 12/05/2020).

Andrä, Heiko, Nicolas Combaret, Jack Dvorkin, Erik Glatt, Junehee Han, Matthias
Kabel, Youngseuk Keehm, Fabian Krzikalla, Minhui Lee, Claudio Madonna, et
al. (2013). “Digital rock physics benchmarks—Part I: Imaging and segmenta-
tion.” In: Computers & Geosciences 50, pp. 25–32.

Andresen, Markus and Simen Norby (2019). “Deep Convolutional Encoder-Decoder
Networks for Digital Rock Porosity Segmentation.” MA thesis. NTNU.

Bakke, Stig and Pål-Eric Øren (June 1997). “3-D Pore-Scale Modelling of Sand-
stones and Flow Simulations in the Pore Networks.” In: SPE Journal 2.02,
pp. 136–149. ISSN: 1086-055X. DOI: 10.2118/35479-PA. eprint: https://
onepetro.org/SJ/article-pdf/2/02/136/2126680/spe-35479-pa.pdf.
URL: https://doi.org/10.2118/35479-PA.

— (2002). “Process based reconstruction of sandstones and prediction of trans-
port properties.” In: Transport in porous media 46.2, pp. 311–343.

Baranau, Vasili and Ulrich Tallarek (2014). “Random-close packing limits for monodis-
perse and polydisperse hard spheres.” In: Soft Matter 10 (21), pp. 3826–3841.
DOI: 10.1039/C3SM52959B. URL: http://dx.doi.org/10.1039/C3SM52959B.

Berg, Carl Fredrik, Per Arne Slotte, and Hamid Hosseinzade Khanamiri (Sept.
2020). “Geometrically derived efficiency of slow immiscible displacement in
porous media.” In: Phys. Rev. E 102 (3), p. 033113. DOI: 10.1103/PhysRevE.
102.033113. URL: https://link.aps.org/doi/10.1103/PhysRevE.102.
033113.

Beucher, Serge et al. (1992). “The watershed transformation applied to image
segmentation.” In: Scanning microscopy-supplement-, pp. 299–299.

Bezdek, James C, Robert Ehrlich, and William Full (1984). “FCM: The fuzzy c-
means clustering algorithm.” In: Computers & Geosciences 10.2-3, pp. 191–
203.

Bezrukov, Alexander, Monika Bargieł, and Dietrich Stoyan (2002). “Statistical
Analysis of Simulated Random Packings of Spheres.” In: Particle & Particle Sys-
tems Characterization 19.2, pp. 111–118. DOI: https://doi.org/10.1002/
1521-4117(200205)19:2<111::AID-PPSC111>3.0.CO;2-M. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/1521-4117%28200205%

95

http://scipy-lectures.org/packages/scikit-image/auto_examples/plot_threshold.html
http://scipy-lectures.org/packages/scikit-image/auto_examples/plot_threshold.html
https://doi.org/10.2118/35479-PA
https://onepetro.org/SJ/article-pdf/2/02/136/2126680/spe-35479-pa.pdf
https://onepetro.org/SJ/article-pdf/2/02/136/2126680/spe-35479-pa.pdf
https://doi.org/10.2118/35479-PA
https://doi.org/10.1039/C3SM52959B
http://dx.doi.org/10.1039/C3SM52959B
https://doi.org/10.1103/PhysRevE.102.033113
https://doi.org/10.1103/PhysRevE.102.033113
https://link.aps.org/doi/10.1103/PhysRevE.102.033113
https://link.aps.org/doi/10.1103/PhysRevE.102.033113
https://doi.org/https://doi.org/10.1002/1521-4117(200205)19:2<111::AID-PPSC111>3.0.CO;2-M
https://doi.org/https://doi.org/10.1002/1521-4117(200205)19:2<111::AID-PPSC111>3.0.CO;2-M
https://onlinelibrary.wiley.com/doi/pdf/10.1002/1521-4117%28200205%2919%3A2%3C111%3A%3AAID-PPSC111%3E3.0.CO%3B2-M
https://onlinelibrary.wiley.com/doi/pdf/10.1002/1521-4117%28200205%2919%3A2%3C111%3A%3AAID-PPSC111%3E3.0.CO%3B2-M
https://onlinelibrary.wiley.com/doi/pdf/10.1002/1521-4117%28200205%2919%3A2%3C111%3A%3AAID-PPSC111%3E3.0.CO%3B2-M
https://onlinelibrary.wiley.com/doi/pdf/10.1002/1521-4117%28200205%2919%3A2%3C111%3A%3AAID-PPSC111%3E3.0.CO%3B2-M

96 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

2919%3A2%3C111%3A%3AAID- PPSC111%3E3.0.CO%3B2- M. URL: https://
onlinelibrary.wiley.com/doi/abs/10.1002/1521-4117%28200205%2919%
3A2%3C111%3A%3AAID-PPSC111%3E3.0.CO%3B2-M.

Bottou, Léon (2010). “Large-scale machine learning with stochastic gradient de-
scent.” In: Proceedings of COMPSTAT’2010. Springer, pp. 177–186.

Bre, Facundo, Juan M Gimenez, and Vıctor D Fachinotti (2018). “Prediction of
wind pressure coefficients on building surfaces using artificial neural networks.”
In: Energy and Buildings 158, pp. 1429–1441.

Brownlee, Jason (2019). A Gentle Introduction to the Rectified Linear Unit (ReLU).
https://machinelearningmastery.com/rectified-linear-activation-
function-for-deep-learning-neural-networks/. (Accessed on 12/07/2020).

Buades, Antoni, Bartomeu Coll, and J-M Morel (2005). “A non-local algorithm
for image denoising.” In: 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05). Vol. 2. IEEE, pp. 60–65.

Cortes, Corinna, Mehryar Mohri, and Afshin Rostamizadeh (2012). “L2 regular-
ization for learning kernels.” In: arXiv preprint arXiv:1205.2653.

Cortes, Corinna and Vladimir Vapnik (1995). “Support-vector networks.” In: Ma-
chine learning 20.3, pp. 273–297.

Crammer, Koby and Yoram Singer (2001). “On the algorithmic implementation
of multiclass kernel-based vector machines.” In: Journal of machine learning
research 2.Dec, pp. 265–292.

Girshick, Ross, Jeff Donahue, Trevor Darrell, and Jitendra Malik (2014). “Rich fea-
ture hierarchies for accurate object detection and semantic segmentation.” In:
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 580–587.

Gómez, Raúl (2018). Understanding Categorical Cross-Entropy Loss, Binary Cross-
Entropy Loss, Softmax Loss, Logistic Loss, Focal Loss and all those confusing
names. https://gombru.github.io/2018/05/23/cross_entropy_loss/.
(Accessed on 12/07/2020).

Hazlett, RD (1995). “Simulation of capillary-dominated displacements in micro-
tomographic images of reservoir rocks.” In: Transport in porous media 20.1,
pp. 21–35.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016). “Deep resid-
ual learning for image recognition.” In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 770–778.

Hilpert, Markus and Cass T. Miller (2001). “Pore-morphology-based simulation
of drainage in totally wetting porous media.” In: Advances in Water Resources
24.3. Pore Scale Modeling, pp. 243–255. ISSN: 0309-1708. DOI: https://doi.
org/10.1016/S0309-1708(00)00056-7. URL: https://www.sciencedirect.
com/science/article/pii/S0309170800000567.

Ibtehaz, Nabil and M Sohel Rahman (2020). “MultiResUNet: Rethinking the U-
Net architecture for multimodal biomedical image segmentation.” In: Neural
Networks 121, pp. 74–87.

https://onlinelibrary.wiley.com/doi/pdf/10.1002/1521-4117%28200205%2919%3A2%3C111%3A%3AAID-PPSC111%3E3.0.CO%3B2-M
https://onlinelibrary.wiley.com/doi/pdf/10.1002/1521-4117%28200205%2919%3A2%3C111%3A%3AAID-PPSC111%3E3.0.CO%3B2-M
https://onlinelibrary.wiley.com/doi/pdf/10.1002/1521-4117%28200205%2919%3A2%3C111%3A%3AAID-PPSC111%3E3.0.CO%3B2-M
https://onlinelibrary.wiley.com/doi/abs/10.1002/1521-4117%28200205%2919%3A2%3C111%3A%3AAID-PPSC111%3E3.0.CO%3B2-M
https://onlinelibrary.wiley.com/doi/abs/10.1002/1521-4117%28200205%2919%3A2%3C111%3A%3AAID-PPSC111%3E3.0.CO%3B2-M
https://onlinelibrary.wiley.com/doi/abs/10.1002/1521-4117%28200205%2919%3A2%3C111%3A%3AAID-PPSC111%3E3.0.CO%3B2-M
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://gombru.github.io/2018/05/23/cross_entropy_loss/
https://doi.org/https://doi.org/10.1016/S0309-1708(00)00056-7
https://doi.org/https://doi.org/10.1016/S0309-1708(00)00056-7
https://www.sciencedirect.com/science/article/pii/S0309170800000567
https://www.sciencedirect.com/science/article/pii/S0309170800000567

Bibliography 97

Ihle, Stephan J, Andreas M Reichmuth, Sophie Girardin, Hana Han, Flurin Stauf-
fer, Anne Bonnin, Marco Stampanoni, Karthik Pattisapu, János Vörös, and
Csaba Forró (2019). “Unsupervised data to content transformation with histogram-
matching cycle-consistent generative adversarial networks.” In: Nature Ma-
chine Intelligence 1.10, pp. 461–470.

Jain, Anil K, Jianchang Mao, and K Moidin Mohiuddin (1996). “Artificial neural
networks: A tutorial.” In: Computer 29.3, pp. 31–44.

Joram, Nickson (n.d.). Morphological Operations in Image Processing | by Nick-
son Joram | Medium. https://medium.com/@himnickson/morphological-
operations-in-image-processing-cb8045b98fcc. (Accessed on 12/05/2020).

Jordan, Michael I and Tom M Mitchell (2015). “Machine learning: Trends, per-
spectives, and prospects.” In: Science 349.6245, pp. 255–260.

Ketcham, Richard A and William D Carlson (2001). “Acquisition, optimization
and interpretation of X-ray computed tomographic imagery: applications to
the geosciences.” In: Computers & Geosciences 27.4, pp. 381–400.

Khanamiri, Hamid Hosseinzade, Per Arne Slotte, and Carl Fredrik Berg (2020).
“Contact Angles in Two-Phase Flow Images.” In: Transport in Porous Media
135.3, pp. 535–553.

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic opti-
mization.” In: arXiv preprint arXiv:1412.6980.

Kiourt, Chairi, George Pavlidis, and Stella Markantonatou (Apr. 2020). “Deep
learning approaches in food recognition.” In:

Kjerland, Øyvind (2017). “Segmentation of Coronary Arteries from CT-scans of
the heart using Deep Learning.” MA thesis. NTNU.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning.” In:
nature 521.7553, pp. 436–444.

Li, Fei-Fei, Justin Johnson, and Serena Yeung (2017). Lecture 11: Detection and
Segmentation. http://cs231n.stanford.edu/slides/2017/cs231n_2017_
lecture11.pdf. (Accessed on 12/05/2020).

Long, Jonathan, Evan Shelhamer, and Trevor Darrell (2015). “Fully convolutional
networks for semantic segmentation.” In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3431–3440.

Lubachevsky, Boris D and Frank H Stillinger (1990). “Geometric properties of ran-
dom disk packings.” In: Journal of statistical Physics 60.5, pp. 561–583.

Misra, Rishabh (2019). Support Vector Machines — Soft Margin Formulation and
Kernel Trick | Towards Data Science. https://towardsdatascience.com/
support-vector-machines-soft-margin-formulation-and-kernel-trick-
4c9729dc8efe. (Accessed on 12/05/2020).

Nielsen, Michael A (2015). Neural networks and deep learning. Vol. 2018. Deter-
mination press San Francisco, CA.

Otsu, Nobuyuki (1979). “A threshold selection method from gray-level histograms.”
In: IEEE transactions on systems, man, and cybernetics 9.1, pp. 62–66.

Pröve, Paul-Louis (2017). An Introduction to different Types of Convolutions in
Deep Learning | Towards Data Science. https://towardsdatascience.com/

https://medium.com/@himnickson/morphological-operations-in-image-processing-cb8045b98fcc
https://medium.com/@himnickson/morphological-operations-in-image-processing-cb8045b98fcc
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf
https://towardsdatascience.com/support-vector-machines-soft-margin-formulation-and-kernel-trick-4c9729dc8efe
https://towardsdatascience.com/support-vector-machines-soft-margin-formulation-and-kernel-trick-4c9729dc8efe
https://towardsdatascience.com/support-vector-machines-soft-margin-formulation-and-kernel-trick-4c9729dc8efe
https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d

98 Å. Å. Vikdal: Multi-Phase Segmentation of Imaged Fluid Distribution in Porous Media

types-of-convolutions-in-deep-learning-717013397f4d. (Accessed on
12/05/2020).

Raid, AM, WM Khedr, MA El-Dosuky, and Mona Aoud (2014). “Image restoration
based on morphological operations.” In: International Journal of Computer Sci-
ence, Engineering and Information Technology (IJCSEIT) 4.3, pp. 9–21.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox (2015). “U-net: Convolu-
tional networks for biomedical image segmentation.” In: International Confer-
ence on Medical image computing and computer-assisted intervention. Springer,
pp. 234–241.

Rosebrock, Adrian (2016). Intersection over Union (IoU) for object detection - PyIm-
ageSearch. https://www.pyimagesearch.com/2016/11/07/intersection-
over-union-iou-for-object-detection/. (Accessed on 12/11/2020).

Santurkar, Shibani, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry (2018).
“How does batch normalization help optimization?” In: Advances in neural
information processing systems 31, pp. 2483–2493.

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich (2015).
“Going deeper with convolutions.” In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 1–9.

Szeliski, Richard (2010). Computer vision: algorithms and applications. Springer
Science & Business Media.

Wang, Ying Da, Martin Blunt, Ryan Armstrong, and Peyman Mostaghimi (Feb.
2021). “Deep Learning in Pore Scale Imaging and Modeling.” In: Earth-Science
Reviews 215. DOI: 10.1016/j.earscirev.2021.103555.

Wang, Ying Da, Mehdi Shabaninejad, Ryan T Armstrong, and Peyman Mostaghimi
(2021). “Deep neural networks for improving physical accuracy of 2D and 3D
multi-mineral segmentation of rock micro-CT images.” In: Applied Soft Com-
puting 104, p. 107185.

Wildenschild, Dorthe and Adrian P. Sheppard (2013). “X-ray imaging and analy-
sis techniques for quantifying pore-scale structure and processes in subsurface
porous medium systems.” In: Advances in Water Resources 51. 35th Year An-
niversary Issue, pp. 217–246. ISSN: 0309-1708. DOI: https://doi.org/10.
1016/j.advwatres.2012.07.018. URL: http://www.sciencedirect.com/
science/article/pii/S0309170812002060.

Xiang, Mars (2017). Convolutions: Transposed and Deconvolution Medium. https:
//medium.com/@marsxiang/convolutions-transposed-and-deconvolution-
6430c358a5b6. (Accessed on 12/05/2020).

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://doi.org/10.1016/j.earscirev.2021.103555
https://doi.org/https://doi.org/10.1016/j.advwatres.2012.07.018
https://doi.org/https://doi.org/10.1016/j.advwatres.2012.07.018
http://www.sciencedirect.com/science/article/pii/S0309170812002060
http://www.sciencedirect.com/science/article/pii/S0309170812002060
https://medium.com/@marsxiang/convolutions-transposed-and-deconvolution-6430c358a5b6
https://medium.com/@marsxiang/convolutions-transposed-and-deconvolution-6430c358a5b6
https://medium.com/@marsxiang/convolutions-transposed-and-deconvolution-6430c358a5b6

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f G

eo
sc

ie
nc

e
an

d
Pe

tr
ol

eu
m

Ådne Årevik Vikdal
M

ulti-Phase Segm
entation of Im

aged Fluid D
istribution in Porous M

edia U
sing D

eep Learning

Ådne Årevik Vikdal

Multi-Phase Segmentation of Imaged
Fluid Distribution in Porous Media
Using Deep Learning

Master’s thesis in Engineering and ICT
Supervisor: Carl Fredrik Berg

June 2021M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Acknowledgement
	Contents
	Figures
	Tables
	Acronyms
	Introduction
	Background
	Digital Rock Physics
	Acquisition of Micro-CT Images
	Traditional Segmentation Approaches
	Spatial Filtering
	Noise and Artifact Removal
	Thresholding
	Morphological Operations
	Cluster Analysis
	Watershed Segmentation

	Computer Vision
	Conventional Machine Learning
	Gradient Descent
	Support Vector Machine

	Deep Learning
	Artificial Neural Networks
	Convolutional Neural Networks
	Learning
	Residual Learning

	Related research

	Theory
	Sphere Pack Generation
	Force-Biased Sphere Packing
	Lubachevsky-Stillinger Sphere Packing

	Morphological Invasion
	fcn
	U-Net
	MultiRes U-Net
	Deep Learning Training
	Support Vector Machine
	Hinge Loss
	L2 Regularization
	One versus All

	Methodology
	Materials
	Glass Beads
	Micro-CT Scanning

	Traditional segmentation
	Manual annotation
	Data Augmentation

	Synthetic Data Creation
	Sphere Pack Generation
	Increase Porosity
	Morphological Invasion
	Change contact angle
	Preprocess Into Synthetic Micro-CT Images

	Conventional Machine Learning
	Feature Extraction
	Support Vector Machine

	Deep Learning
	U-Net Trained on Manual Annotations
	Models for Synthetic Images
	Test on Authentic Micro-CT images

	Evaluation Metrics
	Hardware and Software

	Results and Discussion
	Quantitative results on test set
	2D U-Net
	2D MultiRes U-Net
	3D U-Net

	Performance on Test Images
	2D U-Net
	2D MultiRes U-Net
	3D U-Net

	Performance on Authentic Micro-CT Images
	Oil-Wet Glass Beads
	Intermediate Wet Glass Beads

	Areas of Improvement For the Models Trained on Synthetic Images
	Probability Heatmap
	Overall Discussion

	Conclusion
	Further Work
	Extend Dataset
	Optimize Training
	Train 3D MultiRes U-Net
	Use Deeper 3D Patches
	Develop Sophisticated Testing Pipelines
	Create More Realistic Dataset

	Bibliography

