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Abstract

Generally, optimal well controls to maximize net present value (NPV) are obtained by coupling

of numerical reservoir simulation with an optimization algorithm. This approach requires a

significant number of numerical reservoir simulations that are computationally expensive and

time-consuming due to complex flow behavior of reservoir. As a result, it becomes a necessity

to develop a fast and accurate alternative. Light mathematical models, such as proxy models,

have a high capability to identify very complex and non-linear behavior in short time, such as

complex dynamic flow behavior of reservoir.

This study proposes a methodology that begins by developing smart proxy models (SPMs) for a

synthetic field model, based on Artificial Neural Networks (ANNs) and then integrate the estab-

lished proxy models with Genetic Algorithm (GA) to solve the well control optimization prob-

lem. Three ANN models are developed using reservoir simulator data to predict field production

profiles, i.e., field oil production rate, field water injection rate, and field water production rate

based on sets of well control values, i.e., bottom-hole pressures (BHP). Latin hypercube sam-

pling is used to prepare the database utilized for constructing SPMs. Hyperparameter optimiza-

tion study assists in finding the best ANN architecture for each proxy. Various performance met-

rics are explored to comment on "goodness" of the proxy models. The proposed methodology

also includes sensitivity study of GA control parameters using SPM-GA coupling and introduces

the possibility for occasional retraining and multiple quality checks of ANNs as more data is

gathered. From SPM-GA coupling, the optimum well control parameters, namely bottom hole

pressures of injectors and producers, which maximize net present value, are investigated.

The developed proxy models produce outputs within seconds, while the reservoir simulator

takes an average time of 30 minutes for the synthetic field i.e. Olympus. SPM-GA coupling works

well for well control optimization study by finding BHP configuration that gives significant in-

crease of 35% in net present values (NPV), and requires fewer numerical simulations compared

to the traditional approach. The results show that the established proxy models are found to be

robust and efficient tools for mimicking the numerical simulator performance in well control

optimization. Significant reduction in computational time and resources is observed.
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Chapter 1
Introduction

This opening chapter presents brief explanation of the motivation behind this master’s thesis

and its objectives.

1.1 Background

The first phase in oil and gas development is primary recovery with the support of natural drive

mechanism present in the reservoir. Reservoir’s natural driving mechanism becomes incapable

of supporting an efficient and economically attractive oil recovery, as the pressure in the reser-

voir decreases due to oil production; thus, a secondary recovery method is used. The most

widely used secondary recovery method to increase oil production and ultimate hydrocarbon

recovery is waterflooding. Injected water helps to retain the pressure in the long run and dis-

places the oil towards the producers, hence, resulting in an improved sweep efficiency. Op-

timization studies are conducted to find the optimal well control settings for producers and

injectors that maximize net present value (NPV) or the ultimate hydrocarbon recovery. In gen-

eral, coupling numerical simulations with a suitable optimization algorithm searches a much

larger problem space compared to experimental studies carried out in reservoir labs (Ma et al.,

2019). Optimization methods are essential for determining the best field development strat-

egy. Well placement/selection, well control, and completion design optimization are examples

of optimization problems encountered during the field development process. In recent years,

optimization algorithms such as evolutionary strategies and gradient-based techniques have

been widely applied to the field development optimization problems (Isebor et al., 2014; Bellout

and Volkov, 2018). However, application of these optimization algorithms requires a significant

1



Chapter 1. Introduction

number of computationally expensive dynamic simulations to obtain optimal solutions. More-

over, stochastic optimization algorithms due to population based nature, require even a larger

number of function evaluations. This makes direct application of these optimization algorithms

with a numerical simulator a time-consuming and expensive procedure.

As discussed in (Khor et al., 2017), various techniques with varying computational require-

ments have been proposed to address the problems encountered in the oil field development

and production system optimization. Techniques implemented to reduce the computational

cost associated with optimization problems can be divided into two general approaches. The

first approach addresses flow problems by replacing complex numerical simulation models

with reduced-order models or models based on simplified flow physics. In contrast, second

set of techniques entails reducing the dimension of the optimization problem, i.e. reducing

the number of optimization variables. Methods based on the first approach include employing

reduced-order numerical models (Van Doren et al., 2006; Jansen and Durlofsky, 2017) and vir-

tual intelligence-based proxies (Ma et al., 2019; Nasir, 2020; Jin et al., 2020; Tang et al., 2021). The

second approach includes methods such as multilevel optimization (Awotunde and Sibaweihi,

2018) and two-stage optimization strategy (Nasir et al., 2021), to name a few. Awotunde (2019)

provides a review of several dimension reduction techniques for well control optimization. This

thesis uses the first approach and proposes implementing smart proxy models (SPMs) based

on artificial intelligence (AI) techniques to represent the non-linear dynamic behavior of the

reservoir.

AI-based techniques have been applied in petroleum and reservoir engineering to solve a va-

riety of conventional and unconventional problems (Ridha and Mansoori, 2005; Mohaghegh,

2007; Nait Amar et al., 2020). Among AI methods, artificial neural network (ANN) is the most

well-known due to its effectiveness and flexibility in recognizing highly complex and non-linear

systems (as in the case of numerical simulator’s responses) within a short time frame (Nait Amar

et al., 2018). Some areas with successful applications of ANNs as proxy models in reservoir en-

gineering, include optimization studies (Sayyafzadeh and Alrashdi, 2019; Nait Amar et al., 2020;

Nasir, 2020; Teixeira and Secchi, 2019), history matching (Shahkarami et al., 2014), uncertainty

studies (Mohaghegh et al., 2006). Since the output of reservoir forecasting is a sequential prob-

lem, researchers have begun to use the long short-term memory (LSTM) network algorithm in

recent years. However, oil production data is strongly phased in nature and is often divided

into periods of increasing production, stable production and decreasing production. Tang et al.

(2021) stated that when using standard LSTM neural networks to forecast oil field productions,

there will be issues with neural network generalization, low prediction precision, and even neg-

ative values for the expected output, with significant deviations (Peng et al., 2020).

To overcome the shortcomings of existing solutions, ANN is used in this work to build multi-

2



1.2 Objectives

input and single output proxy models to predict dynamic field productions. In contrast to the

existing research, influence of inputs from previous timesteps on current timestep is not em-

phasized; instead, this behavior is left to the ANNs to learn. These models are built using data

generated from a commercial numerical reservoir simulator, named Eclipse. Proposed models

are coupled with an appropriate optimization algorithm to determine the optimal well control

settings that give the highest NPV. SPM-GA coupling has a faster optimization speed, more com-

parison schemes, and can find the optimum control frequency.

Nasir (2020) stated that field development optimization problem is often solved separately for

each petroleum field due to variation in geological models and constraints involved, which fur-

ther results in a large number of costly flow simulation runs for each field under consideration.

This suggests that field development optimization can benefit from methodologies with a gen-

eralized optimization workflow that can be applied to several petroleum fields. Therefore, this

thesis proposes a workflow that allows for multiple quality checks and occasional retraining of

the SPMs. Furthermore, choice of performance metrics to evaluate the accuracy of the SPMs

are examined, in addition to the usefulness of the established SPMs to solve the well control

optimization. This thesis also provides a comprehensive review of the literature on the ANN

models utilized in this study, so that individuals with no prior knowledge of the subject can also

understand the foundation of the thesis.

1.2 Objectives

The thesis’s main objective is to develop a methodology for constructing SPMs and integrate

SPMs with an optimization algorithm to solve well control optimization task. This methodology

is implemented based on a synthetic reservoir model, named Olympus.

Following tasks are performed to achieve the main objective of this thesis:

1. Define and formulate optimization problem to be solved.

2. Generate simulation cases using an appropriate sampling method in defined solution

space.

3. Build dataset consisting of necessary information extracted from the reservoir simulator

and then divide it into training, validation, and test samples. Generate more dataset for

blind testing.

3
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4. Construct SPMs to predict field oil production rate, field water production rate and field

water injection rate.

5. Evaluate performance of proxies using suitable accuracy metrics.

6. Set a base case well control values.

7. Use SPM-GA coupling for sensitivity analysis of GA control parameters

8. Quality check and retrain proxy models as more data is gathered.

9. Find the optimal BHPs configuration corresponding to maximum NPV obtained from

SPM-GA coupling

10. Simulate a case with the optimal BHPs control settings obtained from SPM-GA coupling

using the numerical reservoir simulator and calculate the NPV.

11. Compare the optimum NPV with the base case and analyze the results.

1.3 Outline

The rest of the thesis contains the following sections in chronological order:

• Chapter 2. Theory: presents theories and principles used in this study, including literature

studies and how they are relevant.

• Chapter 3. Methodology: presents project workflow showing how the tasks were approached

to reach the main objective and the setup for optimization problem solved in this study.

• Chapter 4. Results: presents findings and outcomes of the tasks involved in development

of SPMs and results of optimization runs.

• Chapter 5. Discussion: discusses implications of results obtained in Chapter 4, in addition

to limitations of the work.

• Chapter 6. Conclusion and Recommendation for further work: this chapter sums up the

most important findings based on the results obtained, and provides ideas for further re-

search.

4



Chapter 2
Theory

This chapter presents underlying theories and principles used in this study, including literature

reviews and their relevance to this study. This chapter covers the aspects of field development

optimization, optimization algorithms, and artificial intelligence.

2.1 Field Development Optimization1

Petroleum field development encompasses operations involving various engineering disciplines.

A range of decisions can be made for various aspects of field development such as drilling, fa-

cility operation, and reservoir production by solving an associated optimization problem. Field

development decisions with reservoir related focus deal with the way wells are configured within

a reservoir (Baumann et al., 2020). Potential optimization parameters can be well configura-

tion parameters, e.g., number, type, location, completion design and control settings of in-

jection/production wells. The well-level optimization problem can be divided into three cat-

egories: well control, well completion design and well placement. This work focuses only on

well control optimization that is explained below. However, well placement optimization is also

discussed to develop an understanding of the topic. Figure 2.1 2 summarizes papers from a his-

torical study, along with their focus area and optimization methods applied in the petroleum

industry (DiCarlo et al., 2019).

1This section is adapted and modified from author’s specialization project (Chaturvedi, 2020).
2In Fig. 2.1, LP is an abbreviation for Linear Programming, NLP for Non-Linear Programming, MILP for Mixed-

Integer Linear Programming, and MINLP for Mixed-Integer Non-Linear Programming.
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Figure 2.1: Summary of optimization methods and applications in petroleum industry (DiCarlo et al.,
2019).

2.1.1 Well Control Optimization

Well control optimization deals with finding the optimum settings of control parameters that,

for instance, maximize oil and gas production and decrease water production or optimize injec-
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tion schedules, to improve sweep efficiency (water flooding). Commonly used control variables

are well bottom hole pressures (BHP), rates, or a combination of BHPs and rates, for producers

and injectors at a specific time.

Many methodologies developed to solve well control optimization problem employ a variety

of optimization algorithms. Wang et al. (2019) used both deterministic (generalized pattern

search (GPS)) and stochastic algorithms (particle swarm optimization (PSO) and covariance ma-

trix adaptation evolution strategy (CMA-ES)) together with a multiscale approach with variable

control frequencies to solve the problem. (Isebor et al., 2014) used derivative-free, and (Arouri

and Sayyafzadeh, 2020) used gradient based methods. In the traditional approach, the BHPs

or rates are passed to a reservoir simulator such as Eclipse to obtain values of different compo-

nents required for NPV computation. In contrast, this thesis encourages use of proxy models for

optimization study by passing control variables as inputs into the proxy models and obtaining

desired outputs.

2.1.2 Well Placement Optimization

Goal of well placement optimization is to find optimal locations to drill a new producer or injec-

tor. This is an essential task because it determines the area of a reservoir that can be produced

or flooded. The reservoir management team specifies the total number and type of wells and

their operational settings, such as BHP or injection rates, to be used in determining optimal

well locations. Constraints are typically imposed to ensure well placement within a specific re-

gion of reservoir based on engineering experiences and specific reservoir knowledge such as

faults and thief zones; it is critical to impose limitations on the feasibility search area of new

wells (Sadigov, 2019). It is necessary to accurately translate these identified constraints into rea-

sonable constraints within the problem formulation process. Once an optimization framework

is set up, the success of optimization work depends on both the optimizer’s constraint han-

dling capability and the efficiency of the search algorithm being implemented (Jesmani et al.,

2015). The constraints ensure that the optimizer search for the optimal solution in the specified

region of formation, maintain inter-well distance and avoid drilling wells in challenging geolog-

ical structures. Similar to well control, many methodologies are developed and applied to well

placement optimization problems as well, including derivative-free (Badru and Kabir, 2003; Jes-

mani et al., 2015; Maschio et al., 2008; Sadigov, 2019) and gradient-based methods (Volkov and

Bellout, 2018).
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2.2 Optimization Theory

2.2.1 Optimization Problem3

This section discusses the optimization problem in general and specifically describes the well

control optimization problem. An optimization problem consists of three components: the ob-

jective function, control variables, and constraints. The mathematical formulation of the opti-

mization problem can be written as follows (Nocedal and Wright, 2006) :

mi nx∈Rn f (x) subject to ci (x) =
0, i ∈ E

≥ 0, i ∈ I

Here,

• x is the vector of variables, also called unknowns or parameters,

• f is the objective function we want to minimize or maximize,

• ci is constraint function, that is scalar function of x which defines certain equations and

inequalities that the vector x must satisfy,

• E and I are sets of indices for equality and inequality constraints, respectively.

In field development optimization problems, a reservoir simulator is used to solve fluid flow

equations in porous media to compute the objective function associated with a given input vari-

able. The objective function in such problems is usually NPV or the weighted sum of cumulative

fluid productions from the reservoir.

The typical objective function associated with well control optimization problem evaluates NPV

while accounting for various costs such as oil price, injection cost, and water production cost.

In this work, the objective function of interest is the NPV, and the author only deals with bound

constraints. Equation 2.1 is one method for calculating NPV (Bellout, 2014):

N PV (x,u) =
Ns∑

k=1

( Np∑
j=1

po qo
j ,k (u, x)∆tk −

Np∑
j=1

cw p qw p
j ,k (u, x)∆tk −

Ni∑
j=1

cwi qwi
j ,k (u, x)∆tk

)/
(1+d)t

(2.1)

3This section is adapted and modified from author’s specialization project (Chaturvedi, 2020).
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Where Np and Ni are total number of producers and injectors in the system, q j ,k
o ,q j ,k

w p , and q j ,k
wi

are the flow rates of the oil, water produced and water injected for well j at the output interval

k, respectively, and ∆tk is the length of each Ns time steps of simulation. The oil price, the cost

of water produced and injected are represented by po , cw p and cwi , respectively. d stands for

discount rate expressed in fraction, and t is the total number of years, starting from zero at first

year. Discount rate is defined as interest rate that is used for calculating the present value of

future cash flow of a project (Chang et al., 2019). The author uses 0.08 discount factor in this

work.

2.2.2 Optimization Algorithms

A mathematical optimization is defining an objective function and then finding an input value

within a predefined space corresponding to maximum or minimum of the objective function.

An optimization algorithm is a procedure that is iteratively executed by comparing various so-

lutions until an optimum solution is found. Depending on the focus or the characteristics used

for comparison, optimization algorithms can be classified in various ways. One approach to

categorize optimization algorithms is based on derivative information of objective function,

which separates these algorithms into gradient-based (or derivative-based) and gradient-free

(or derivative-free). Another way to classify optimization algorithms is by search strategy, which

might be deterministic or stochastic. Deterministic and stochastic algorithms are two types of

widely used optimization algorithms. A deterministic algorithm will always produce the same

output when given a particular set of input because the solution of this method depends on

the initial seeds. On the contrary, stochastic optimization consists of algorithms that solve an

optimization problem by including mathematical randomness in their search strategy (Cavaz-

zuti, 2013). This project is mainly concerned with genetic algorithm (GA) that is stochastic and

population based. GA, PSO and APPS are discussed in detail further.

Genetic Algorithm (GA)

John Holland along with his collaborators proposed this algorithm based on Darwin’s theory of

evolution (Holland, 1975). GA is a population-based stochastic and derivative-free optimiza-

tion algorithm. GA often employs biological concepts such as selection, inheritance, mutation,

crossover, parents, children, offspring, and reproduction. An encoded string representing an

individual solution is referred to as a chromosome, and the values of objective functions are

referred to as fitness. This algorithm is better suited if the objective function is non-smooth,

time-consuming to evaluate, or noisy in some way.
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Each individual’s values are then ranked from best to worst. The selection, crossover, and mu-

tation process are then applied. This results in a new generation whose properties are selected

from high-rank generation through selection and crossover. In addition, mutation helps in pre-

venting the solution from converging to local optima. The process is then iterated until the

fittest individual is identified, and each iteration results in a new generation. The algorithm will

stop when it exceeds the targeted fitness level or the maximum number of generations. The

final individual with the best solution in the solution space is selected as the optimization prob-

lem solution. Figure 2.2 illustrates the typical GA workflow followed by description of the steps

involved.

Figure 2.2: Flowchart showing GA optimization scheme, modified from (Chuang et al., 2016).

Initialization

Evolution usually begins with a population of randomly generated individuals. Each individual

is the proposed solution to the defined problem and has properties that later can be altered.

These properties can be defined in binary, permutation, or real number encoding. Every in-

dividual is a set of unique variables known as gene. These genes are then linked together to

form an individual, also known as a chromosome. Figure 2.3 illustrates the terms for an easier

comprehension.

Selection Operation

The selection operation is based on the fitness of each individual. The fitness value represents

the quality of the solution and is used to select the best individuals. Best individuals are chosen

as parents to create a mating pool. Then, they produce offsprings that inherit the parents’ char-

acteristics and are passed on to the next generation. The higher the parents’ fitness, the better

the offspring’s fitness, thus, the better the chances of survival. Therefore, individuals with the

highest fitness are more likely to get selected to breed a new generation. After calculating the fit-
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Figure 2.3: Illustration of population, genes, and chromosome in GA.

ness of each individual, a specific selection method is applied. Selection methods are typically

probabilistic; roulette wheel and elitism selection are two of selection methods.

Roulette wheel selection (RWS) is closely similar to repeatedly spinning a one-armed roulette

wheel, with the sizes of the holes reflecting the selection probabilities (Eiben and Smith, 2003).

In the RWS, probability (Pi ) of selecting an individual i is calculated by dividing fitness of that

individual , fi by total fitness of the generation with population size of N, as shown in Eq. 2.2

(Grefenstette, 2000).

Pi = fi∑N
i=1 f i

(2.2)

Elitism selection method transfers a small portion of best individuals in the current population

to next generation without any changes (Grefenstette, 2000). This is done to ensure that maxi-

mum fitness value within the population is never reduced. These selected individuals are also

referred to as Parents.

Variation Operator

Specific variation operators, such as mutation and crossover, are applied to the parent chro-

mosomes in each iteration to generate offspring chromosomes. Both variation operators are

stochastic, as outputs depend on outcomes of series of random choices (Eiben and Smith, 2003).

Crossover is a binary variation operator, and as the name indicates, it merges information from

two parents chosen from the pool of selected individuals to produce one or two offsprings. Re-

combination works based on the principle that by mating two individuals with different yet de-
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sirable characteristics, one can produce offspring with each of those characteristics (Eiben and

Smith, 2003).

Mutation is a unary variation operator. It is applied to one individual and delivers a slightly mod-

ified mutant, the child. It alters one or more genes in a chromosome from its initial value. While

most GAs combine mutation and crossover, the mutation is often treated as a background oper-

ator to ensure that the population has a diverse pool of individuals that can be manipulated by

crossover (Grefenstette, 2000). Therefore, mutation is applied to preserve population diversity,

prevent premature convergence, and avoid being stuck in the local optima if it ever becomes

trapped.

Termination

The generational process will continue until the termination condition is satisfied. Followings

are, but not limited to, some of the termination options for GA (Eiben and Smith, 2003):

• The total number of fitness evaluations reaches a predefined threshold.

• Maximum allowed CPU time elapses.

• The fitness improvement remains below a certain threshold for some time (i.e., for many

generations or fitness evaluations).

Particle Swarm Optimization4

Kennedy and Eberhart introduced PSO in 1995 (Eberhart and Kennedy, 1995). PSO is a population-

based stochastic algorithm that has been widely and efficiently deployed in nonlinear optimiza-

tions of varying complexities (Nwankwor et al., 2013). At any given iteration, individuals of the

population are referred to as particles representing possible or potential solution to an optimiza-

tion problem, and collection of particles is called swarm. PSO algorithm solves the problem by

generating a swarm of particles representing solution vectors in the search space and updates

the particles based on the information obtained from the previous run to find the optimal solu-

tion.

In the beginning, each particle is assigned a random velocity and position in search space. At

any given iteration, movement of particles is influenced by two factors: cognitive and social

4This section is adapted and modified from author’s specialization project (Chaturvedi, 2020).
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behavior. The cognitive factor allows movement towards local best solution based on iteration-

to-iteration information, and the social factor is responsible for attraction towards global best

solution based on particle-to-particle interaction. A particle has memory of previous best value

of the objective function and corresponding best position vector; this is called local best (pbest).

In addition, each particle stores in its memory the best solution attained by any particle in the

swarms also referred to as global best (gbest) and experiences attraction towards this solution.

At the end of each iteration, pbest and gbest are updated for each particle, and this process

continues until it reaches stopping criteria. Wang et al. (2019) commented on importance of

population size in algorithm’s ability to utilize good initial guess. They found that effect of initial

guess is important for larger population size. Figure 2.4 illustrates a flowchart for the standard

PSO algorithm.

Figure 2.4: Flowchart showing PSO algorithm.
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At iteration k, if position of i-th particle is represented by a d-dimensional vector xi (k) and veloc-

ity is given by vector vi (k), local best position of particle i is represented by yi (k) and global best

position attained from particle-to-particle interaction is given by y∗(k) , and l1, l2 are learning

factors responsible for cognitive and social behavior, respectively, position and velocity at next

iteration can be computed by Eq. 2.3:

xi (k +1) = xi (k)+ vi (k +1) (2.3)

where, elements of updated velocity vector vi (k +1) are given by Eq. 2.4

vi , j (k +1) = vi , j (k)+ l1r1, j

(
yi , j (k)−xi , j (k)

)
+ l2r2, j

(
y∗

i , j (k)−xi , j (k)
)

(2.4)

Here, j = 1,2,3...d represents the components of dimensions in search space, r1, j and r2, j

are random numbers ranging between 0 and 1. Due to its stochastic nature, PSO algorithm

does not get trapped in local optimum and is computationally efficient for problems contain-

ing a higher number of control variables. The total number of control variables does not have

any impact on the number of evaluations. Therefore, PSO is a good choice for optimization

problems with many control variables. In general, effectiveness and problem solving by PSO is

a population-based phenomenon, emerging from the individual behavior of particles through

their interaction with neighbours in the swarm (Nwankwor et al., 2013).

Asynchronous Parallel Pattern Search5

APPS algorithm was used to solve the optimization task investigated in the author’s specializa-

tion project (Chaturvedi, 2020). APPS is a deterministic and derivative free optimization algo-

rithm with the unique feature that dynamically makes decisions without waiting for the infor-

mation on all processors to be available (Kolda et al., 2003). APPS focuses on parallelization of

search strategy that makes it computationally cost-effective compared to general parallel pat-

tern search (PPS) algorithms.

To be able to understand APPS and its associated advantages, one needs to first get familiar with

PPS. This section further presents the outline of both PPS and APPS algorithms. Basic strategy

for PPS is as following (Kolda and Torczon, 2003):

5This section is adapted and modified from author’s specialization project (Chaturvedi, 2020).
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Initialization:

• Set the iteration k=0

• select a step-length control parameter ∆o

• select a stopping tolerance tol

• select a set of p search directions D = d1, ...,dp

• select a starting point x0 and evaluate f(x0)

Iteration:

• compute xk +∆k di and evaluate f(xk +∆k di ), for i = 1, ..., p, concurrently.

• Determine x+ and f(x+) such that

f (x+) = min f (xk +∆k di ) where i = 1, ...., p

• if f (x+) < f (xk ) then update

(xk+1) =
xk +∆k di , if k ∈ S

xk , otherwise

∆(k+1) =
∆k , if k ∈ S

θ∆k , otherwise

where S is set of successful iterations θ is contraction factor lies between 0 and 1, andλ is expan-

sion factor, we have an iterate xk ∈Rn and a step length control parameter ∆k > 0. It is assumed

that at the end of iteration k, all the processors know the best point xk , where f (xk ) is the best

known value of function f.

For PPS, each of p processors oversee a single search direction in the set D. In PPS, the only

communication among processors is the reduction of next step, where all the processors partic-

ipating in compaction contribute their value for objective function and optimization variable.

In short, reduction operation is synchronization point for PPS as it returns minimum value of
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objective function and corresponding value of optimization variable. In contrast to PPS that re-

lies on a global reduction operation to synchronize all critical values, APPS relies on non block-

ing broadcasts to exchange information between processors and in APPS, every process decides

what to do next based only on its current local information (Hough et al., 2001).

Asynchrony is useful as number of available processors may not be an integer of batch size,

and/or execution time for function evaluation may not be the same for all the processors (Bau-

mann, 2015).

2.3 Smart Proxy Model

Proxy models are "cheaper" and efficient alongside or alternative to commercial reservoir simu-

lators. Proxy models can be developed based on statistical methods or based on artificial intelli-

gence. SPMs are the proxy models based on artificial intelligence. The terms "surrogate model",

"response surface model", and "meta-model" are also used alternatively for smart proxy model.

The author uses proxy model and SPM terms interchangeably in this study.

Figure 2.5 shows a general workflow to construct SPMs. SPM is objective specific; therefore, it

is important to identify the objective and accordingly design and develop SPM that can achieve

that goal. In this project, the author develops SPMs capable of predicting field oil production

rate (FOPR), field water production rate (FWPR) and field water injection rate (FWIR) at any

given time. These SPMs are to be used for well control optimization study. Chapter 3 provides

detailed description of steps for constructing SPM.

Figure 2.5: General Workflow of developing SPM for Optimization Study.

2.3.1 Methods of Developing Proxy Models

Proxy models are used in many fields of science to approximate numerical models. In reser-

voir engineering, it is most widely used in reservoir simulation for probabilistic forecasting, risk
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analysis, sensitivity analysis, assisted history match, and production optimization (Jaber et al.,

2019). The two main methods for constructing proxy models are discussed below:

Based on Statistical Methods

Numerous studies developed statistical proxy models as the approximations of the existing sim-

ulation models. The foundation of this approach was achieved by utilizing the design of exper-

iments (DOEs) with response surface methodologies (RSMs) (Jaber et al., 2019). Denney (2010)

applied polynomial regression model, multivariate kriging model and thin-plate splines model

for history matching, production optimization and probabilistic forecast of oil recovery, and also

commented on performances of these models for the tasks mentioned above. Table 2 in (Jaber

et al., 2019) summarizes history of application of proxy models based on statistical methods

from various studies conducted from the year 1990 to 2018.

Based on Artificial Intelligence

Artificial intelligence-based modeling approaches in reservoir engineering aim to find the com-

plex relationship between input-output parameters involved in fluid flow in porous media. These

approaches have the flexibility to be used in various problems in petroleum and reservoir en-

gineering disciplines such as field development planning, uncertainty analysis, optimization

study, history matching, to mention a few. Although, for some cases, there might exist mathe-

matical representation of physical phenomena to be considered for analysis purposes, the re-

quired computational efforts to carry out such analysis may make these mathematical formula-

tions impractical (Amini, 2015).

Surrogate Reservoir Model (SRM) was introduced and developed in 2006 (Mohaghegh et al.,

2006). One of the major advantages of SRMs, compared to conventional geostatistical tech-

niques, is the small number of simulations required for their development. SRM can be devel-

oped by a certain set of realizations and be validated by another set of independent realizations

(Mohaghegh et al., 2006). One key issue in the development of SRM is to realize that it is im-

practical to develop a global SRM that is capable of replicating all the functionalities of a reser-

voir simulation model (Mohaghegh et al., 2009). Figure 2.6 presents the history of proxy mod-

els based on artificial intelligence in the petroleum industry, developed by many researchers.

Such models have been developed for the prediction of reservoir performance, assisted history

matching, and optimization workflow.

This study uses ANN for constructing SPMs. Therefore, next section covers the basic principles
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of Artificial Intelligence and practical aspects of building Artificial Neural Network from scratch.

Figure 2.6: History of proxy models based on artificial intelligence (Jaber et al., 2019).
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2.4 Artificial Intelligence

AI, first introduced by McCarthy in 1955, is a universal field which encompasses a vast variety

of subfields (Russell and Norvig, 2003). AI is a broad topic that consists of different fields, from

machine learning to expert systems with a combination of computer science, physiology, and

philosophy (Mohaghegh, 2017). AI also enables machines to adjust their "knowledge" based on

new information that was not used to train these machines.

There are several definitions to explain AI; one may define AI as the ability that can be conferred

to computers which enable these machines to understand data, learn from data, and make de-

cisions based on the patterns hidden in the data that could be otherwise difficult or almost

impossible for humans to identify manually. Artificial intelligence and machine learning (ML)

are often used interchangeably, which is not correct.

Machine learning is a subfield of AI that focuses on developing computer systems that can ac-

cess data and use it to learn themselves. ML can be defined as the use and development of com-

puter systems that can learn and adapt without following explicit instructions using algorithms

and statistical models to analyze and draw inferences from patterns in data.

Machine learning algorithms can be divided into supervised and unsupervised based on learn-

ing methods, that are explained below.

Supervised Learning

Supervised learning is the learning in which human teaches machines with well-labeled data

(or data that is tagged with the correct answer). After the training process, machine produces

correct outcome from the labeled data. Supervised learning algorithms are divided into two

parts based upon their outputs:

1. Classification: It means to group the output inside a class, or when output is a categorical

variable. If the algorithm tries to label input into two distinct classes, it is called binary

classification. Selecting between more than two classes is referred to as multi-class classi-

fication. Classification is used in voice recognition and image classification. Few popular

classification algorithms are Logistic Regression, Neural Network, and Decision tree.

2. Regression: It predicts a single output that is a real value from the trained data. Regres-

sion technique is used in prediction of quantities, size, and value, to mention a few. Most

common regression algorithms are linear, support vector and Poisson.
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Unsupervised learning

As the name suggests, unsupervised learning is when no supervisor is provided; instead, the

machine learns on its own to discover the information hidden in the data. It mainly deals with

unlabeled data. Followings are two categories of unsupervised learning algorithms:

1. Clustering: It deals with finding a structure, pattern, or groupings in a collection of uncat-

egorized or unlabeled data.

2. Association: Association rules allow one to discover and establish associations amongst

data objects inside large databases. This deals with discovering relationships between

variables in the databases, such as people who buy a new house most likely buy new fur-

niture.

2.4.1 Artificial Neural Network (ANN)

An artificial neural network is an information processing system inspired by the biological ner-

vous system, such as how brain processes information. It is composed of highly interconnected

processing units (also called neurons) working together to solve a specific problem. As pre-

sented in Fig. 2.7, biological neurons or simply neurons are the fundamental units of the brain

and nervous system.

Figure 2.7: Schematic diagram of two bipolar neurons (Mohaghegh, 2017).

To better understand working procedure of the neural network, be it biological or artificial, it is

vital to discuss units that make it up.
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Cell body: A typical neuron contains a cell body where nucleus is located. It carries out bio-

chemical transformation necessary to the life of neurons. It processes incoming signals over

time and provides output to be sent out further.

Dendrites: Dendrites are fine, hair-like tubular structures branching out into a tree around the

cell body. Input signals enter the cell body through dendrites, whereas dendrites receive input

signals from other neurons’ synapses.

Axon: It is a long, thin, tubular structure that transmits outgoing signals from the cell body.

Synapse: Neurons are connected in a complex structure. The point between two neurons, where

termination of axon of one neuron comes into proximity of dendrites of another neuron, is

called synapse (Mohaghegh, 2017).

Figure 2.8 represents a single neuron with inputs, connections, bias and output. For one single

observation, x0, x1, x2,...,xn represents n independent input variables. Each of these input vari-

ables are multiplied by their respective weights given by w0, w1, w2,...,wn . Weights are almost

always learned from the data. The inputs are summed, and a bias value is added that allows the

activation function to shift up or down. Neuron takes this weighted sum and puts it through a

so-called activation function to generate output.

Figure 2.8: Schematic diagram of a single neuron which receives inputs with weights and bias, sums all
inputs and utilises an activation function to calculate a scalar value which is sent as output from the
neuron.

A complete neural network will have many layers and neurons. Figure 2.9 illustrates a three-

layer neural network. A input layer does not count as a layer because it only receives inputs

fed to neurons present in hidden layers. Neurons are illustrated by circles, input layer by inputs
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x, hidden layers by neurons in the two middle columns and output layer is final neuron on

the right. Neurons in the first hidden layer receive inputs and calculate output based on each

input variable’s weights, bias, and activation function. This output is input for neurons in the

second layer. Hence, for this ANN, the first layer of neurons is making three simple decisions

by weighing the input variable. While each of the neurons present in the second layer makes a

decision by weighing up the results from the first layer of decision-making. This allows neurons

in the second layer to make a decision at a more complex and abstract level than neurons in the

first layer (Nielsen, 2019).

Figure 2.9: Schematic diagram of a Neural Network with two hidden layers, input layer and output layer.
The fully-connected Neural Network shows how all neurons in each layer are connected to both the neu-
rons in the previous layer and the next layer.

Activation Function

An activation function is vital for an ANN model to learn and convert an input signal of a neuron

to an output signal. Once neuron calculates the weighted sum, an activation function (g as

shown in Fig. 2.8) is used to decide if the neuron is activated or not. If neuron is activated, then it

fires output to next neurons; otherwise, it does not. There are several options when choosing an

activation function. However, it is wise to choose a non-linear activation function as it can make

even a two-layer neural network approximate any given function provided sufficient number of

neurons in the hidden layer (Ketkar, 2017a). In linear activation function, input is multiplied by

1, therefore it ranges in [−∞,∞]. This is since the linear activation function does not alter the

weighted sum of the input and instead returns the result straight. Therefore, in case of a linear

function, hidden layers lose their advantage, and in turn, network performs like a single-layer

network. Figure 2.10 displays three commonly used non-linear activation functions.
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Figure 2.10: Representation of three commonly utilized activation functions in neural network: Tangent
Hyperbolic, Sigmoid, and ReLU.

Sigmoid and Hyperbolic tangent functions are continuous, have a finite range and are symmet-

ric around the origin. These functions transform the input (z) as defined by Eqs. 2.5 and 2.6,

respectively. The main difference between the two functions is the range, with sigmoid output

ranging in [0,1], and hyperbolic tangent output ranging in [-1,1]. Both functions activate neu-

rons almost always except for the 0 input value. Thus, a large neural network with many layers

and neurons will lead to a high computation time. To overcome this problem, a rectified linear

unit (ReLU) function can be utilized which is defined by Eq. 2.7; zero output for all the negative

input implying that it won’t activate neurons if the input is negative value (Nielsen, 2019). ReLU

is also non-linear with output ranging in [0,∞].

f (z) = 1

1+e−z
(2.5)

f (z) = t anh(z) (2.6)

f (z) = max(0,1) (2.7)

Loss function

Loss function computes disagreement between expected output and predicted output (Ketkar,

2017a), it is also known as cost function. It is used to optimize the weights, and the process of
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optimization is also called loss minimization. There are several ways to find loss function; one

is mean squared error (MSE). MSE is given by Eq. 2.8 and is recommend to use for regression

problems (Ketkar, 2017a).

J (y, ŷ) = 1

n

n∑
i=1

(yi − ŷ i )2 (2.8)

Here, J is the loss function, n is the number of trained data, y is a vector of actual output, and ŷ

is a vector of predicted output. It is worth noting that cost function is a single value, not a vector

This study also uses MSE as loss function. Optimization algorithms use loss function to find

optimum weights in the neural network corresponding to minimum loss function. In this study,

the author uses the Adam optimizer (explained further down).

Adam Optimizer

Adam, introduced by (Kingma and Ba, 2017), is an optimization algorithm that can be used to

update network weights iterative based in training data. Adam is derived from Adaptive Moment

Estimation and is not an acronym. "Adam" is not the same as traditional stochastic gradient

descent. For all weight updates, stochastic gradient descent maintains a single learning rate

(called alpha), which does not fluctuate during training. Kingma and Ba (2017) described Adam

as combining the advantages of two other extensions of stochastic gradient descent, Adaptive

Gradient Algorithm (AdaGrad) and Root Mean Square Propagation (RMSProp). Adam is a widely

used optimizer for neural network nowadays.

2.4.2 Practical Aspects of Artificial Neural Network

This section covers practical aspects of building neural networks and common problems faced

in the process. Several Python libraries are utilized to build the Neural Network, such as Keras,

Scikit-Learn, Numpy and Pandas. In the following sections, the key concepts used for code

implementations are explained.

Data Splitting

Before feeding data to neural network, dataset is usually split into following categories defined

below:
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1. Training Dataset: The dataset that is used to train the model. Model sees and learns from

this data. The desired output in the training set is used to adjust weights between its neu-

rons in the networks (Mohaghegh, 2017).

2. Validation Dataset: To avoid overtraining or memorization of the neural network, it is

a common practice to stop the training process and apply the network to the validation

dataset. The validation dataset is, in turn, used to fine-tune the hyperparameters. Values

of hyperparameters are set before the learning process begins, and optimum hyperpa-

rameters are found by minimizing error on the validation dataset. Thus, model occasion-

ally sees this data, but never learns from it. Output of this dataset is not presented to the

network during training; therefore, one can comment on network’s performance by pre-

dicting output for validation dataset (Mohaghegh, 2017).6.

3. Test Dataset: This dataset plays no role during training or validation. It is set aside from

the beginning and only used once a model is completely trained. However, these datasets

help to validate the robustness of the predictive capabilities of the neural network (Mo-

haghegh, 2017). Hence, model never sees and learns from this data in the training process.

4. Blind Test: Similar to the test dataset, this dataset plays no role in the training or validation

process. It is used to evaluate the performance of a model. In contrast to the previous

three datasets generated together and then split into three, it is generated separately as a

final performance check of prediction models.

Data Scaling or Feature Scaling

Inputs to the neural network are also known as features. A dataset can consist of features highly

varying in magnitudes, units, and range. Data scaling involves transforming features in a stan-

dard range to avoid dominance of features with larger numeric values over features with smaller

numeric values (Singh and Singh, 2020). Ng (2021) commented that highly varying features in

scaling slow down the optimization of the prediction. Therefore it is an essential data prepos-

sessing step. Two common methods to scale the data are explained below:

• Min-Max Normalization (MMN): MMN is a common way of normalization. Features can

be normalized by rescaling values into a range of [0,1], or [-1,1]-if feature contains negative

6(Mohaghegh, 2017) discussed that database should be divided into training, calibration, and validation. In this
study, to avoid confusion, the calibration set is termed as the validations sets, whereas validation set is referred to
as testing set.
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values. This method rescales raw data to a predefined upper and lower bound linearly. The

formula of MMN is given by Eq. 2.9. This study uses MMN method to scale the data.

x ′
i =

xi −mi n(xi )

max(xi )−mi n(xi )
(2.9)

where min and max are minimum and maximum values of i th feature, respectively.

• Standardization: Standardization is another common way of rescaling features such that

the distribution is centered around 0 with standard deviation of 1. This technique uses

statistical mean and standard deviation of raw data for data scaling. The formula is ex-

pressed in Eq. 2.10.

x ′
i =

xi −µ

σ
(2.10)

where µ and σ denote mean and standard deviation of i th feature, respectively.

Underfitting and Overfitting

Underfitting, also called high bias, is caused by a model that fits poorly with the data trend.

This problem usually arises from a function that is too simple. On the contrary, overfitting,

also known as high variance, is when the model fits the training data but fails to generalize well

to predict new data. Overfitting problem arises with too many features, and the model tries

too hard to fit the training set that results in a complicated function. Overfitting issues can be

handled in many ways; some approaches are listed below:

• Reducing number of features: ANN becomes complicated with the increase in the number

of features. This, in turn, causes the problem of overfitting. One possible way to overcome

this problem is by selecting only the valuable features. The choice should be made care-

fully, as discarded features might contain some helpful information.

• Early stopping: One can evaluate the performance of the model at each iteration in train-

ing process. Models continue to improve up to a certain number of iterations. Early stop-

ping strategy is used to avoid phenomenon "learning speed slow-down", which means

that accuracy of algorithms stops improving after some point.

• Regularization: Finding valuable features is not always easy, so one can limit them all by

minimizing cost function of the neural network. Regularization can be realized as a mod-
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ification to the model that aims to improve the error on validation set by systematically

limiting complexity of the model (Ketkar, 2017b).

Hyperparameter Optimization

Hyperparameter is a parameter whose value is determined before the learning process starts,

such as the learning rate, and which cannot be learned by training. Other parameters (typically

node weights) are, on the other hand, learned by training. The problem of selecting a set of

suitable hyperparameters for a learning algorithm is known as hyperparameter optimization

(HPO) or hyperparameter tuning in machine learning.

Some examples of possible hyperparameters are given below (Ying, 2019)

• Activation function: defines how a neuron or a group of neurons activates based on inputs

and biases, recall section 2.4.1.

• Neuron counts: the number of neurons in a layer.

• Number of epochs: The number of times all the training samples have been passed through

the network during the training process.

• Number of layers: also called hidden layers.

• Mini-batch size: number of training dataset in each gradient descent.

• Learning rate: step-length for gradient descent update.

• Learning rate decay: incrementally decaying learning rate parameter throughout the train-

ing to prevent overfitting.

• Dropout (Srivastava et al., 2014): dropping out some input connections to some neurons

by a probability to make the ANN represent features more evenly.

• Early stopping: stopping ANN training when training and validation error starts to diverge

from each other to prevent over-fitting.

Once user selected which hyperparameters to include to optimize performance of ANN or refine

ANN model, user defines range of each parameter to create a solution space. Then, based on the

optimization function and optimization algorithm, hyperparameters are fine tuned. There are

several approaches for HPO, some are described below:
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1. Grid Search: Grid search, which is an exhaustive search over a manually chosen subset

of a learning algorithm’s hyperparameter space, has been the conventional method of ac-

complishing HPO. The loss is recorded after testing every conceivable combination of pa-

rameters in the defined subset of hyperparameters. The hyperparameter combination

that produces the smallest loss function is then chosen. The need to evaluate every pos-

sible configuration slows down the entire grid search process. As a result, a subset of con-

figurations can be chosen manually by intuition before or during the grid search process.

This, however, introduces reproducibility issues and requires the HPO to be performed

sequentially.

2. Bayesian Optimization: Bayesian Optimization is a systematic methodology based on the

Bayes Theorem for directing an efficient and successful search of a global optimization

problem. It works by first creating a probabilistic model of the objective function, known

as the "surrogate function", which is then effectively searched with an acquisition func-

tion before selecting suitable samples for assessing the real objective function. Surrogate

function is sometimes referred to as a response surface because it is a high-dimensional

mapping of hyperparameters to the probability of a score on the objective function. This

study uses Bayesian optimization by importing Gaussian-based function gp_minimize

from Skopt library (Louppe et al., 2016).

2.4.3 Model Fitting and Evaluation

Assessing the reliability of the proxy model is regarded as one of the most important steps toward

developing a reliable model. Inaccurate proxy models can result in poor quality optimization

analysis. Metric functions are used to evaluate the efficiency of the model. It is identical to the

loss function, except the results from metrics evaluations are not used in training the model

(Keras, 2021). In addition to trained ANN validation during HPO, performance measures are

often used to evaluate accuracy of the trained models and application of these models. Most

researchers, for the sake of simplicity, present only one performance measure to indicate the

"goodness" of a particular network’s performance. However, there is no agreement on which

measure should be reported and comparing techniques and results from different researchers

is nearly impossible. Some popular performance metrics are descried below with the formulas

required for calculation.
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R2 Score

The coefficient of determination, R2, is used to examine how differences in one variable can

be explained by differences in another. The R2 score varies between 0 and 1. It is given by the

formula in Eq. 2.11.

R2 = 1−
∑n

i=1(yi − ȳ)2∑n
i=1(yi − ŷi )2

(2.11)

Here, n is the number of trained data, y is a vector of actual output, and ŷ is a vector of predicted

output, and ȳi is mean of actual data.

So, a R2 score of 1 implies that y and ŷ are perfectly correlated, i.e., there is no variance. Low R2

score indicates a low level of correlation, suggesting that the regression model is invalid, but not

in all cases.

MAPE

Mean absolute percentage error (MAPE) is calculated by Eq. 2.12. It measures how accurate a

prediction model is. It measures in percentage; high numbers are bad, and low numbers are

good. As shown in the formula, MAPE divides each error by expected value individually, so it

is skewed: high errors for low-expected values significantly impact MAPE. As a result, optimiz-

ing MAPE will produce an odd forecast that will almost certainly undershoot expected value.

Therefore, MAPE is not used for hyper-parameter optimization.

M APE = 1

n

n∑
i=1

|yi − ŷi |
yi

×100 (2.12)

NRMSE

The Root Mean Squared Error (RMSE) is a common way of measuring the quality of the model’s

fitting in statistical modeling, particularly regression analyses. By squaring the errors when cal-

culating the RMSE, a larger penalty is applied to large errors (clearly incorrect responses), even

if they are few (Twomey and Smith, 1995). Normalizing the RMSE facilitates comparing datasets

or models with different scales. Therefore, NRMSE (Normalized Root Mean Squared Error) is
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used to evaluate SPM performance. NRMSE is calculated using Eq. 2.13 by dividing RMSE by ȳ .

N RMSE =
√

1
n

∑n
i=1(yi − ŷi )2

ȳ
×100% (2.13)

In percentage terms, this metric shows how close the model prediction is to the actual value. The

model’s performance improves as the NRMSE decreases. Each error influences NRMSE that is

proportional to the square of the error; thus, larger errors have a disproportionately large effect

on NRMSE. As a result, NRMSE is sensitive to outliers, implying that it should be more useful

when large errors are especially undesirable. This metric is well-suited for this study because

large errors can result in NPV differences worth millions of dollars.

MAE

MAE calculates the arithmetic average of absolute errors as shown in Eq. 2.14, also considers

large errors but does not weight them more heavily unlike RMSE. This metric is considered ap-

propriate for this study as errors on each data point are distributed evenly, hence, MAE can be

considered a good indicator of prediction errors.

M AE = 1

n

n∑
i=1

|yi − ŷi |×100 (2.14)
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Chapter 3
Methodology

This chapter presents how the different technologies described in the previous chapter are used

to perform well control optimization using methods from the AI field.

3.1 Workflow

Figure 3.1 shows the main workflow of this master’s thesis.

Figure 3.1: The main workflow of master’s thesis.
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The first step is to define the optimization problem. Following that, necessary information is

extracted from the simulation runs on reservoir model to create a dataset. This dataset is then

partitioned into three subsets as discussed in section 2.4.2: training, validation, and test. The

following step is to develop an ANN model capable of forecasting oil production rates, water

production rates, and water injection rates based on sets of well control values (BHPs). After

that, the predictive capability of each proxy model is evaluated using performance metrics. If

the quality is insufficient, additional training data is fed into the neural network. After deter-

mining that the proxy model’s performance is acceptable, a base case is defined, and the proxy

model’s NPV is calculated. Next, the SPMs and GA are coupled to determine the optimal well

control values. SPM-GA coupling is then used for sensitivity analysis of GA configuration param-

eters. After that, the optimal BHP configuration cases from each sensitivity run are simulated

using the reservoir simulator, and NPV is calculated based on simulator outputs. Subsequently,

a second quality check on proxies is done by comparing NPV from simulator’s predictions with

NPV from proxy models’ predictions. If quality is good, then optimization is run again with GA

best configuration settings and the optimal BHPs are found. Otherwise, proxies are retrained

by including new information from sensitivity runs on simulator into training dataset. Finally,

the NPV from the optimizer result is compared to the NPV from the base case, and the result is

analyzed and discussed.

Following section presents and discusses the details of the reservoir model used for this study.

3.2 Reservoir Model 1

Based on the requirements from PhD candidate, Olympus model is selected to implement the

workflow described in previous section and achieve the objective of this study. Olympus is a

synthetic reservoir model, inspired by virgin oilfield in the North Sea, has been developed for

the purpose of a benchmark study on field development optimization under geological uncer-

tainty (Fonseca et al., 2017). The reservoir is 50 m thick and divided into 16 layers. The field is

9 km by 3 km and is bounded on one side by a fault. The reservoir contains two zones that are

separated by an impermeable shale layer. The top reservoir zone contains fluvial channel sands

embedded in floodplain shales, and the bottom reservoir zone consists of alternating layers of

coarse, medium and fine sands that are inclined with respect to the general structural dip of

the field, so-called clinoforms (Fonseca et al., 2018). There are in total 50 model realizations to

incorporate geological uncertainty. Model consists of grid cells of approximately 50m × 50m ×
3m each. The model has 341,728 cells out of which 192,750 are active. Reservoir consists of four

1This section is adapted and modified from author’s specialization project (Chaturvedi, 2020).
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3.2 Reservoir Model

Table 3.1: Facies types and range of uncertain properties distribution for the OLYMPUS reservoir models
(Fonseca et al., 2018).

Facies Type Zone Present Net-To-Gross Porosity Range Permeability Range [mD]

Channel Sand Upper 0.8-1 0.2-0.35 400-1000
Shale Upper and Barrier 0 0.03 1
Coarse Sand Lower 0.7-0.9 0.2-0.3 150-400
Medium Sand Lower 0.75-0.95 0.1-0.2 75-150
Fine Sand Lower 0.9-1 0.05-0.1 10-50

different facies that have been modeled in different layers as shown in Table 3.1: channel sand,

coarse sand, medium sand and fine sand.

The reference strategy consists of 10 producers and 6 injectors also shown in Fig. 3.2 that op-

erates on a pressure constraint. The placement of wells in reference strategy is result of a man-

ual trial and error exercise based on engineering judgement for a chosen realization, thus well

placement is probably not optimal over all the realizations (Fonseca et al., 2017). The author

works with Olympus_49 realization in this study. However, the author has built proxy models

for two more realizations as required for the PhD research project. Figure 3.3 represents visual-

ization of Olympus_49 model.

Figure 3.2: Well configuration for Olympus_49 realization.

Depth of OWC was determined to be at 2090m, with an in-situ hydrostatic pressure of 206 bara

from the available exploration well logs (Fonseca et al., 2017).

Table 3.2 shows operational constraints for wells in Olympus model defined by developers of

Olympus challenge. This project deals with BHP constraint that is discussed in detail in section
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(a) Initial oil saturation distribution.

(b) Initial pressure distribution.

(c) Porosity distribution.

Figure 3.3: Visualizations of the Olympus_49 model at start time.
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3.3.

Table 3.2: Operation constraints for wells in Olympus models.

Type Value

Maximum platform liquid production rate (Sm3/day) 14000
Maximum well oil production rate (Sm3/day) 900
Maximum well water injection rate (Sm3/day) 1600
Maximum Injector BHP (bar) 235
Minimum Producer BHP (bar) 150
Maximum dogleg severity (◦/m) 10/30
End of the production life (years) 20

3.3 Optimization Problem

The primary goal of a field development optimization problem is often to find a set of param-

eters represented by a vector of variable values, x, that yields the optimal (here maximum) ob-

jective function value. The number of control variables (xi , i = 1,2, ...Nw ) together with number

of wells defines number of dimensions of search space (Nx), Nx = ∑Nw
i=1 xi . In this work, op-

timization variable is BHP for producers and injectors, and the objective function that we are

optimizing is the net present value (NPV). Equation 2.1 discussed in section 2.2.1 is used to cal-

culate NPV from simulator’s outputs and proxy model’s predictions. Table 3.3 presents some

important parameters used in the NPV computation. The oil price chosen here is representa-

tive of current market. To solve well control optimization problem, the author divides 20 years

of production period into twenty time intervals and controls the BHP for all producers and in-

jectors for every year, so considering base case scenario with ten producers and six injectors, the

total number of optimization variables are 320. The constraints for the optimization problem

are presented in Table 3.4. BHPs range is chosen to avoid instances that lead to shut down of

injector due to higher reservoir pressure than injector’s BHP and shut down of producer due to

lower reservoir pressure compared to producer’s BHP.

Table 3.3: This table represents NPV Computation Parameters.

Type Value

Oil price ($/bbl) 60
Cost produced water ($/bbl) 6
Cost injected water ($/bbl) 2
Annual discount factor 0.08
End of life cycle period (years) 20
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Table 3.4: Optimization constraints (the pressure unit is bara).

Base case Min Max

Injector BHP 235 200 280

Producer BHP 175 80 175

3.4 Building Smart Proxy Model

This section describes the procedure used to construct the SPMs in this study (refer to Fig. 2.5

for general workflow for proxy model development).

3.4.1 Defining input and output for SPM

Optimization problem discussed in section 3.3 forms the foundation for input and output se-

lection of SPM. Therefore, BHPs and timesteps are fed as input into proxies, and outputs are

variables required for NPV calculation (i.e., FOPR, FWPR, and FWIR). Timestep is considered as

input to assist the proxy models in learning the dynamic flow behavior. Three proxies are con-

structed for each output variable. Figure 3.4 illustrates inputs given and output obtained from

each proxy, and ANN architecture used for constructing proxies discussed already in section

2.4.1.

Figure 3.4: Representation of inputs and output of each SPM.
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3.4.2 Generating the Dataset and Data Splitting

As proxy models need to learn from multiple scenarios to make a good prediction, lots of differ-

ent scenarios are generated using Latin Hypercube Sampling (LHS) method and are simulated

in Eclipse, a commercial reservoir simulator developed and maintained by Schlumberger Infor-

mation Solutions (SIS).

In the reservoir simulator, BHP of producers and injectors are input by the user, and simulator

calculates FOPR, FWPR and FWPR. As in one simulation case, 20 years of production life of

reservoir results into 20 BHP values for each well, thus 320 different BHP values in total for 16

wells ( 10 producers and 6 injectors), also discussed in section 3.3. One timestep, ∆t is defined

for 1 year, thus one simulation case generates 20 data points for Olympus model. The limits

of the BHPs are as stated in Table 3.4, i.e. within a range of [80,175] bara for producers and

[200,280] bara for injectors. BHPs are sampled using Latin Hypercube Sampling (LHS) method

to generate samples for training, validation and testing the proxy models.

Table 3.5 shows the data collected by simulating the base case (which is defined by 175 bara

producer’s BHP and 235 bara injector’s BHP at all the timesteps). Unlike the base case, samples

generated using LHS method consists of varying BHP across timesteps. Established Dataset is

divided into training, validation and testing data, recall section 2.4.2 for definition of each data

type.

Table 3.5: Information gathered from one simulation case (base case) run on Eclipse.

Timestep
BHPs [bara] Rates [Sm3/day]

[year] I1 I2 ... I6 P1 P2 ... P10 FOPR FWIR FWPR
1 235 235 ... 235 175 175 .. 175 1703 0.4024 1857
2 235 235 ... 235 175 175 .. 175 1714 70.83 1979
. . . ... . . . .. . . . .
. . . ... . . . .. . . . .
. . . ... . . . .. . . . .
19 235 235 ... 235 175 175 .. 175 558 1748 2312
20 235 235 ... 235 175 175 .. 175 532 1748 2351

The proxy models are designed such that the correlation of various BHPs with FOPR, FWPR, and

FWIR at various timesteps are expected to be learned during the training process. Recall from

section 2.4.2, the training phase consists of three distinct processes: training or learning, vali-

dation, and testing. The best network architectures are achieved after a series of optimization

processes involving network performance monitoring. The last step in developing the proxy

models is testing using completely blind runs (that are not used during training). Therefore, five

extra cases are designed for this purpose. This dataset confirms if the model can be generalized
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to other data or not.

The simulation results are stored in .csv files and later loaded into Jupyter Notebook as DataFrame

using Pandas module. Study begins with 30 samples and the number of samples are increased

subsequently until desired quality of proxy models are achieved. Following is a short description

of Keras as the ANN models are built using keras. All the scripts used to achieve the objective of

this study are uploaded on GitHub (link in Appendix) (Chaturvedi, 2021).

Keras

It is a python library built for making deep learning models as fast and easy for research and

practical applications. It can run on top of TensorFlow, powerful Python libraries for fast nu-

merical computing. TensorFlow is a python-friendly end-to-end open-source platform for ma-

chine learning. Keras provides functional application programming interfaces (APIs) to define

complex models, such as multi-output models.

3.4.3 Defining Architecture and Practical Aspects of the Neural Network

Three separate proxy models are built using ANN to predict FOPR, FWIR, and FWPR. Concepts

explained in section 2.4.2 of chapter 2 are used to define the architecture of neural networks.

The ANN models are built based upon the following steps:

• Data Scaling: Min-Max normalization technique is used to scale the data, recall from sec-

tion 2.4.2.

• Activation Function: The hidden layers use ReLU activation function (explained in section

2.4.1). The output layer uses linear activation function as model will predict real value

output, that is a linear regression problem.

• Loss Function and Metrics: MSE is used to calculate loss function during the training pro-

cess and used as performance metrics on validation data during HPO.

• Gradient descent and optimizer: Mini-batch gradient descent algorithm with a batch size

of 32 is used for HPO. Adam is chosen as the gradient descent optimizer.

• Overfitting prevention: Early stopping is used to prevent the model from becoming too

close to the data. "Patience” parameter of 20 is included in the code. This indicates that

if the validation error does not decrease after 20 consecutive iterations, the algorithm will
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terminate training. Additionally, the dropout technique is used to prevent overfitting. For

instance, a dropout value of 0.1 indicates that 10 % of the nodes in each cell state will be

randomly dropped out.

• HPO: Four hyperparameters, including learning rate, dropout, layer count, and neuron

count, are used in this study. These four hyperparameters are optimized using Bayesian

Optimization to determine the combination that produces the slightest error in the val-

idation dataset. Default parameters are fed to the Bayesian optimizer as initial inputs,

with total evaluations set to 80. This is accomplished using Python’s skopt module. Each

hyperparameter’s starting point and search range used for HPO study are as tabulated in

Table 3.6. Ranges of hyperparameters are selected based on empirical analysis. The au-

thor started by arbitrarily selecting a range and making changes based on trial-and-error

analysis.

Table 3.6: Hyperparameters’ starting points and their search space

Parameter Starting point Search Space
Learning rate 0.001 Real Values in [0.0001, 0.01]

Dropout 0.1 Real value in [0.01,0.1]
Layer count 1 Integers in [1,5]

Neuron count 30 Integers in [20,100]

3.5 Evaluating Accuracy of SPMs

MSE, amongst the available regression metrics in Keras, is used to monitor the performance of

proxies on validation in HPO study. Besides minimizing the loss function during training and

optimizing validation loss to find the best hyperparameters configuration, two more approaches

are used to evaluate ”goodness" of the proxy models. The first approach evaluates accuracy of

individual SPM, by analyzing MAE, R2 score, MAPE and NRMSE on training, validation, test

samples and blind test data for each proxy. R2 score, MAE and NRMSE are calculated using

formulas presented in section 2.4.3. The second approach analyzes NPV crossplot and relative

difference in NPV to comment on the combined accuracy of the proxy, and therefore to answer

if proxies are accurate enough for optimization study.

After blind test, NPVEclipse and NPVSPM are computed for all the simulation cases used in proxy

development process. NPV crossplot is generated, and R2 score for the trend line is used to

comment on combined accuracy of SPMs for optimization study. A good match will indicate

that proxies can replicate Eclipse simulator outputs. A strong correlation between the NPVEclipse
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and NPVSPM can be a good indicator for proxies’ applicability and performance for optimization

study. A weak correlation will suggest a need for improvement in proxy development by retrain-

ing proxy models with more samples. Author expects improvement in R2 score when retraining

proxies with more cases.

Relative difference in NPV is computed from Eq. 3.1. A positive relative difference in NPV will

indicate that proxies underpredict NPV and vice versa.

Relative Difference (%) = N PV Eclipse −N PV SPM

N PV Eclipse
×100 (3.1)

In addition to the above two approaches,in second QC, the author observes increment in R2

score of the NPV crosssplot comparing previously trained proxies with the retrained proxies.

3.6 Building Genetic Algorithm Optimization

This section explains the steps involved in building the genetic algorithm optimizer. Python

code for GA is written in the Jupyter Notebook.

3.6.1 Objective Function

In this work, BHPs of producers and injectors are chosen as optimization variable, and NPV as

objective function. Detailed discussion on objective function and optimization problem can be

found in section 2.2.1. The author have written python code for calculation of NPVEclipse and

NPVSPM for one case and group of cases.

3.6.2 Population Size

Population size is the number of individuals in one population. As a rule of thumb, smaller pop-

ulation size is considered to give quicker convergence but with possibility of algorithm getting

trapped in local optima. As the total number of control variables is 320 one might expect to

require a population size ranging [320,2×320]. But convergence will then be slow, as in GA, it

is easy to go through thousands of function evaluations without seeing any improvement and

then suddenly see one. Considering adaptive nature of proxy, the author tried with small pop-

ulation sizes ranging [20,50] and observed that smaller number results in faster convergence.
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Therefore, four population sizes (20, 30, 36 and 50) are selected to be tested in the sensitivity

study.

3.6.3 Selection, Crossover, Mutation, and Termination Operations

In the selection operation, both roulette wheel selection and elitism selection, detailed descrip-

tion available in section 2.2.2, are used. One chromosome with the highest fitness is carried

over (elitism selection) to produce the next generation, and the remaining chromosomes are

selected using a roulette wheel. Crossover technique calculates the arithmetic mean of both

parent’s chromosomes. Mutation technique adds a random number in a range of [-20,20] in ev-

ery gene provided BHP constraints are satisfied. The chosen chromosomes with roulette wheel

selection have a chance of doing a crossover and then mutating. In this study, three different

probabilities of crossover and three different probabilities of mutation are tested: 25%, 50%,

and 75% chance of doing crossover and 25%, 50%, and 75% chance of mutating as stated in

Table 3.7. The process is terminated once maximum number of generations are reached. This

study uses only 30 generations for sensitivity analysis on GA parameters and 100 generations for

final GA run.

Table 3.7: GA parameters for Sensitivity Study

population size 20, 30, 36, 50
mutation probability 25%, 50%, 75%
crossover probability 25%, 50%, 75%

3.7 SPM-GA Optimization

SPMs are coupled with GA optimizer instead of Eclipse simulator, to achieve the main objec-

tive of this thesis. Proxy models are loaded outside the optimization loop and used to predict

outputs required for NPV calculation for each individual in the population generated during

the optimization process. Population is initialized by picking BHPs randomly within the range

defined for producer and injector in Table 3.4. After specifying GA control parameters for base

run, several combinations of GA parameters presented in Table 3.8 are studied. For each com-

bination, SPM-GA is run five times. Values defined in Table 3.7 result in total of 4× 3× 3 = 36

combinations, and 36×5 = 180 GA runs. To reduce the number of SPM-GA runs, the author first

studies effect of population sizes by making in total 5× 4 = 20 runs for four population sizes.

Based on the sensitivity study on population size, one cost-efficient population size is chosen
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for testing combinations of crossover and mutation, hence making 3×3×5 = 45 more SPM-GA

runs. Thus, overall SPM-GA runs are reduced to 65 compared to 180 if all the combinations are

to be tested.

NPVEclipse is computed by running the optimal BHP configurations found from 65 optimization

runs in Eclipse. The author studies relative difference in NPV from Eq. 3.1 to comment on qual-

ity of proxies for optimization study. To comment on the efficiency of the optimizer, increment

in NPV is quantified using Eq. 3.2, where NPVbasecase (i.e., without optimization for base case

run presented in Table 3.5 ) is used as a basis to keep consistency throughout the comparison.

Once the desired quality of optimization is achieved, final SPM-GA run is made and NPV in-

crement from Eq. 3.2 is calculated by running optimal BHP settings in Eclipse and obtaining

desired outputs for NPV calculation. Higher increment in NPV can be considered outcome of

an efficient optimizer.

Table 3.8: Control parameters specified and used for GA algorithm in this work for the first GA run.

Parameter Value

Max Generations 30
Population Size 36
Crossover Probability 0.25
Mutation Strength 0.25
Lower Bound -20
Upper Bound 20

NPV Increment (%) = N PV Eclipse −N PV base case

N PV base case
×100 (3.2)
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This chapter presents the results of well-control optimization study carried out on proxy models

coupled with genetic algorithm. It starts by evaluating the performance of each proxy model,

then moves on to the sensitivity study of GA parameters, and finally, presents the results of the

SPM-GA model.

4.1 SPM Results

This section presents the results for three proxy models, each developed for one output param-

eter (i.e., FOPR, FWIR, and FWPR). It includes convergence plots, optimal hyperparameters and

comparison plots for each proxy.

4.1.1 Convergence Plots

Figures 4.1(a)-(c) show convergence plots for three proxy models. The convergence plot for

FOPR proxy model in Fig. 4.1(a) shows the surrogate function converged to its minimum in the

third evaluation among 80 evaluations. It seems that maximum evaluations can be reduced to

save more time. This fast convergence, however, can be limited to this model.

The convergence plot for FWIR proxy model in Fig. 4.1(b) shows that the surrogate function al-

ready reached its minimum value at the twelfth evaluation among 80 evaluations. Once again,

the HPO converges faster than expected, and total evaluations of 80 appear to be excessive for

this task. However, because this faster convergence cannot be applied to another model, there-
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(a) FOPR proxy model

(b) FWIR proxy model

(c) FWPR proxy model

Figure 4.1: The convergence plot of the surrogate function in Bayesian optimization for proxy models.

fore, the total evaluation of 80 are retained for the FWPR proxy model. Similar to FWIR proxy

model, the convergence plot for FWPR proxy model in Fig. 4.1(c) shows that surrogate function
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converged to its minimum value in twelfth evaluation among 80 evaluations performed. The

Bayesian optimization converges before 15 evaluations for the third time.

Based on these three SPMs, it is possible to conclude that 15 evaluations are sufficient to obtain

an optimal combination of hyperparameters. This discovery can be used in the future during

retraining proxy models to find the best hyperparameters.

4.1.2 Optimal Hyperparameters

Table 4.1 states the best networks structures that minimize the validation loss for FOPR, FWIR

and FWPR proxy models, accomplished after a series of Bayesian optimization on hyperparam-

eters. Variation in the best hyperparameters among three proxies can be an indication of differ-

ences in complexity to predict each output.

Table 4.1: The optimum hyperparameters configuration used for training the proxies.

SPM
Optimum values of Hyperparameters

Learning Number Neuron Dropout
rate of layers count rate

FOPR 3.88e-04 3 35 1.17e-02
FWIR 8.5e-04 5 68 0.01
FWPR 3.88e-04 2 98 1.16e-02

A similar learning rate of 3.88e − 04 is observed for FOPR and FWPR proxy, while FWIR proxy

works best with the learning rate of 8.5e −04. FWIR proxy consists of five hidden layers, highest

among the three proxies, while FWPR and FOPR proxy have only 2 and 3 hidden layers, respec-

tively. In contrast to hidden layers, neurons count per layer is highest (98 nodes) for FWPR proxy,

followed by 68 for FWIR proxy and lowest neuron counts of 35 for FOPR proxy. This could mean

that it is relatively easier to predict FOPR since the model needs fewer neurons. Overall, from

hyperparameter combinations obtained for the three proxies, it can be concluded that FWIR

and FWPR behavior is more complicated to learn and, therefore, requires heavy architecture.

4.1.3 Performance Metrics

Table 4.2 presents values of three performance metrics calculated for training, validation and

test samples. Best R2 of 0.99, obtained for all the samples for FOPR and FWPR proxy, shows

a strong correlation between predictions of proxy models and targeted outputs. In contrast,

variation in R2 is observed among different samples for FWIR proxy, 0.98 on training, 0.94 on
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validation and 0.97 on test data. This variation implies that good correlation is observed on

training and test samples, while relatively lower R2 score on validation data is result of some

deviations in FWIR predictions for validation data.

Table 4.2: Three performance metrics for each proxy.

SPM
R2 MAE [Sm3/day] NRMSE [%]

Training Validation Test Training Validation Test Training Validation Test

FOPR 0.99 0.99 0.99 7.3 7.7 8 5.7 6.7 6.8
FWIR 0.98 0.94 0.97 9.4 9.0 8.9 3.1 2.9 2.5
FWPR 0.99 0.99 0.99 8.9 8.8 9.3 4.7 4.4 4.3

Overall, all the proxies show acceptable mean absolute errors, ranging from 7.3 to 9.3 Sm3/day,

across different datasets. Considering difference in numerical ranges of FOPR, FWIR, and FWPR,

NRMSE is calculated to draw comparison among three proxies. FOPR yields highest, followed by

FWPR, and FWIR yields lowest NRMSE among the three proxies across all the samples. Possible

reasoning for lowest NRMSE for FWIR model could be a larger mean of targeted FWIR.

Acceptable ranges of R2, MAE and NRMSE for all the proxy models indicate that proxies are

deemed fit to predict the desired outputs. Results of blind test will further confirm this.

4.1.4 Blind Test

The trained proxy models are validated against completely blind samples, refer to section 2.4.2

for definition. Figures 4.2-4.4 display blind test results for the three proxy models, comparing

proxy responses with the simulation outputs. In the plots, results generated by SPMs are shown

by dashed lines, while results from Eclipse simulator are shown by solid lines.

As demonstrated in the results, the time-dependent proxy models have a reliable ability to pre-

dict different desired outputs, as very close match between the proxy emulated outputs and

those of the Eclipse simulator are noticed. In addition, Table 4.3 tabulates different performance

metrics calculated for blind test.

It should be noted that a high R2 score is achieved for all the proxies. NRMSE values are also

within the range as observed on training/validation/test samples, presented in Table 4.2. Ac-

cording to Table 4.3 and Figs. 4.2-4.4, the developed proxies are deemed satisfactory in approx-

imating Eclipse simulator outputs.
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Figure 4.2: The comparison between FOPRSPM and FOPREclipse for blind test dataset

Figure 4.3: The comparison between FWIRSPM and FWIREclipse for blind test dataset

Table 4.3: The blind testing results for each proxy.

SPM
Blind Test

R2 MAE [Sm3/day] NRMSE [%]

FOPR 0.98 9.7 8.1
FWIR 0.96 9.3 2.5
FWPR 0.98 10.6 5.8
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Figure 4.4: The comparison between FWPRSPM and FWPREclipse for blind test dataset

4.1.5 Combined Accuracy of SPMs

From the results discussed in previous two subsections, either in training/validation/test or in

blind test, individual prediction capabilities of the established proxy models are documented.

Before proxy models can be used for optimization study, the combined accuracy of these proxies

should be studied. Relative differences in NPV and NPV crossplot are used to check the com-

bined accuracy of proxy models.

Relative Difference in NPV

To comment on the combined accuracy of the three proxies, NPV is calculated from Eq. 2.1

using proxy emulated outputs and outputs from Eclipse. Relative difference in NPV is then cal-

culated for the base case and blind test. Table 4.4 shows small difference between NPVEclipse and

NPVSPM, that is also confirmed by low relative difference of 2.76% and 4.52% calculated using

Eq. 3.1. This small relative difference gives confidence in the deployment of proxy models for

optimization task.

Table 4.4: NPV for base case and blind test dataset.

Case NPVEclipse NPVSPM Relative Difference
[billion USD] [billion USD] [%]

Base case 1.60 1.53 4.52
Blind Test 2.09 2.03 2.76
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NPV Crossplot

To illustrate the combined performance of proxy models NPVEclipse and NPVSPM are calculated

for the existing 85 Eclipse runs used for proxy development process. Figure 4.5 shows correlation

between NPVEclipse and NPVSPM for these cases. R2 score of 0.96 shows a good correlation and

provides confidence in deployment of proxies for optimization studies.

Figure 4.5: Correlation between NPVSPM and NPVEclipse for 85 cases used for building proxies.

This R2 score for the NPV crossplot will be used later to check if retraining is required and to

compare different versions of each proxy model.

4.2 SPM-GA Optimization Results

In the last stage, to accomplish the objective of this study and solve well control optimization

problem formulated in section 3.3, the dynamic proxy models are coupled with GA. This section

presents the results obtained from SPM-GA coupling, starting from sensitivity analysis of GA

parameters and finding the best BHP configuration.
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4.2.1 Sensitivity Analyses

Population Size

Four population sizes as shown in Table 4.5 are tested to determine the cost-efficient population

size for the optimization run, other parameters kept as defined in Table 3.8. Figure 4.6 displays

that population size of 50 yields better NPV at very first generation, but experiences slow incre-

ment in the subsequent generations. It also displays that population size of 20 yields highest

NPV at 30th generation.

Table 4.5: Results for the best NPV (SPM-GA) obtained from five runs for four population sizes keeping
other configuration settings intact.

Population Max Mean Worst Standard Elapsed
Size NPVSPM NPVSPM NPVSPM Deviation Time
[-] [billion $] [billion $] [billion $] [billion $] [HH:MM:SS]

20 2.17 2.10 2.07 0.042 00:40:48
30 2.10 2.06 2.01 0.029 00:55:51
36 2.11 2.08 2.07 0.026 01:12:10
50 2.09 2.05 2.03 0.041 03:18:36

Figure 4.6: Comparison of NPV increase with generations for various population sizes for one of five
optimization runs performed

In general, increasing the population size increases the likelihood of finding a better solution in
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the next generation, but it also increases computational time. Therefore, both the optimization

results and elapsed time of each population size are recorded. Table 4.5 presents elapsed time

and optimized NPV for each setting. According to Fig. 4.6 and Table 4.5, it is observed that

population size of 20 performs best when maximum generations are set to 30, yields highest

NPV of 2.17 billion USD and takes least computational time to run. Therefore, population size

of 20 is the most cost-efficient one for this problem and is used for subsequent analysis.

Crossover Probability and Mutation

A total of 9 possible combinations of crossover and mutation probability (25%, 50%, and 75%)

are tested. Each combination consists of similar population size of 20, maximum generations

of 30, and remaining parameters as defined for base run in Table 3.8. Figure 4.7 illustrates NPV

increase with generations for one of optimization runs amongst the five runs performed for all

9 combinations.

Figure 4.7: Comparison of NPV increase with generations for one of five optimization runs performed for
combinations of mutation and crossover probability (C for Crossover and M for Mutation)

Table 4.6 shows the maximum, mean and minimum NPVSPM value among five runs for each

combination. Standard deviation among the five runs presented in Table 4.6 shows variation

among different combinations. As observed, crossover probability of 25% and mutation prob-

ability of 75%, yield highest value of max, min and mean of NPVSPM. The elapsed time is not
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Table 4.6: Average maximum NPV for every combination of crossover and mutation probability keeping
other configuration settings intact.

Crossover Mutation
NPVSPM [billion USD]

Probability [%] Probability [%] Max Mean Min Std Dev

25 25 2.04 2.02 1.98 2.78e-02
25 50 2.13 2.08 2.01 4.23e-02
25 75 2.19 2.14 2.11 2.85e-02
50 25 2.07 2.00 1.95 4.23e-02
50 50 2.07 2.04 1.98 3.67e-02
50 75 2.11 2.07 2.03 2.61e-02
75 25 2.00 1.97 1.91 3.61e-02
75 50 2.06 2.02 1.95 4.10e-02
75 75 2.16 2.11 2.07 3.43e-02

included in Table 4.6, as it was about 45 minutes for all the combinations. Reason for similar

elapsed time is the same population size for all the combinations.

From Table 4.6, it is noticed that higher mutation probability performs better than higher crossover

probability in all the cases. Possible reason could be that high mutation rate results in faster

convergence by introducing diversity in the population. In contrast, higher crossover probabil-

ity performs worse. The reason could be that a high crossover probability may introduce too

many new variables into the population, causing the search to become longer or worse. Accord-

ing to Fig 4.7 and Table 4.6, crossover and mutation probability of 25% and 75%, respectively,

prove to be the best combination for this optimization study.

Figure 4.10 shows R2 of 0.87 for NPV crossplot generated using 150 (85+65) runs for current

proxies (shown by blue circle). This decrease in R2 from previous value of 0.96 (refer to Fig. 4.5

which was generated for 85 cases), indicates the potential that the combined accuracy of proxy

models can be improved by retraining the proxy models.

4.2.2 Quality Checking the SPMs for Optimization Task

Optimal BHP settings obtained from 65 optimization runs for GA sensitivity analyses are run

with Eclipse. NPVSPM and NPVEclipse are calculated from Eq. 2.1 using proxy emulated outputs

and outputs from Eclipse, respectively. Relative difference in NPV is then calculated for whole

65 cases. Table 4.7 shows maximum, minimum, mean and standard deviation for absolute val-

ues of relative difference in NPV. The average absolute relative difference in NPV of 2.75% can

be considered satisfactory, which shows good performance of proxy models for the purpose of
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study. However, Fig. 4.8 displays higher variation in relative difference in NPV among 65 cases,

ranging from -8.15% to 9.36%. Hence, there is potential to improve the performance of proxy

models.

Table 4.7: Min, max, mean and standard deviation for absolute values of relative difference in NPV, based
on 65 runs.

Number
Relative Difference in NPV [%]

of samples Max Mean Min Std Dev

60 9.36 2.74 0.01 2.13

Figure 4.8: Relative difference in NPV observed for 65 runs from GA sensitivity analysis.

4.3 Retraining SPMs

Proxies are retrained by including data generated from 65 Eclipse runs performed on GA sensi-

tivity results. This is done to improve the quality of proxies and in a way making proxies adaptive.

This process took around 15 minutes for each proxy, and once all the proxies are trained, blind

validation is performed on blind runs and results are presented in Fig. 4.9 for all the proxies.

Table 4.8 states the best networks structures that minimize the validation loss for FOPR, FWIR

and FWPR proxy models, accomplished after a series of Bayesian optimization on hyperparam-

eters. ANNs architecture for the retained proxy models differs from those of the previous set of
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(a) Blind test performance of FOPR proxy (b) Convergence plot for FOPR proxy

(c) Blind test performance of FWIR proxy (d) Convergence plot for FWIR proxy

(e) Blind test performance of FWPR proxy (f ) Convergence plot for FWPR proxy

Figure 4.9: Visualizations of blind test results and convergence plots for three proxies
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proxy models presented in Table 4.1. It could be because the increasing number of samples also

increases complexity in the behavior to be learned by ANN. FOPR and FWPR proxy models have

similar best hyperparameters, indicating similar complexity to predict FOPR and FWPR. In con-

trast, a denser architecture for FWIR proxy indicates more complexity to learn FWIR behavior.

Table 4.8: The optimum hyperparameter configuration used for retraining the proxies.

SPM
Optimum values of hyperparameters

Learning Number Neuron Dropout
rate of layers count rate

FOPR 3.9e-02 3 35 1.17e-02
FWIR 1.0e-02 5 43 6.89e-02
FWPR 3.9e-02 3 35 1.16e-02

Table 4.9 tabulates the performance metrics of proxy models on training, validation, and test

samples to check predictability of proxies. Based on the results presented, it is observed that

proxy models show a strong correlation on different datasets, except for R2 of 0.93 observed for

FWIR proxy on validation dataset, in agreement with 0.94 observed for previous version (refer

to Table 4.2). According to Figs. 4.9 (a, c, e) and Tables 4.9 and 4.10, the updated proxy models

can predict satisfactory outputs.

Table 4.9: Performance metrics for the retrained SPMs.

SPM
R2 MAE [Sm3/day] NRMSE [%]

Training Validation Test Training Validation Test Training Validation Test

FOPR 0.99 0.99 0.98 7.9 8.5 8.7 6.6 7.8 8.9
FWIR 0.99 0.93 0.95 7.4 8.9 8.7 2.0 2.8 2.7
FWPR 0.99 0.99 0.99 10.5 9.5 10 6.1 5.0 5.6

Table 4.10: Blind testing results for the retained SPMs.

SPM
Blind Test

R2 MAE [Sm3/day] NRMSE [%]

FOPR 0.99 7.6 6.46
FWIR 0.93 7.5 1.83
FWPR 0.97 13.6 7.3
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Comparing Previous SPMs with Retrained SPMs

NPV crossplots are used to compare the combined accuracy of both versions of proxies before

deploying the retrained proxies for rest of the study. Figure 4.10 shows correlation between

NPVEclipse and NPVSPM for 150 cases, for both versions. Recall that retrained versions are built

using 150 cases, while the previous versions were built based on 85 cases. Improvement in cor-

relation coefficient is observed in Fig. 4.10, from 0.87 for previous proxies to 0.91 for retrained

proxies. This provides confidence in deployment of the retrained proxies for further optimiza-

tion studies.

Figure 4.10: Comparison of NPV crossplots on 150 cases for two versions of proxies

4.4 Best Case

After retraining the proxies and deciding upon the best optimization configuration settings for

GA, which are population size of 20, mutation probability of 75%, crossover probability of 25%

and keeping other parameters unchanged as shown in Table 3.8, GA optimization is run until

100 generations to find the maximum NPV. Figure 4.11 depicts NPVSPM development over 100

generations.

After 100 generations, the maximum NPV achieved is 2.188 billion USD. However, this result

should be confirmed with reservoir simulator. The BHP configuration that yields maximum
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Figure 4.11: NPV improvement for optimization run with population size of 20, mutation probability of
75% and crossover probability of 25% for 100 generations.

NPVSPM is run on Eclipse and results are presented in Appendix. The time elapsed to run this

optimization is 1 hour 42 minutes 50 seconds.

NPVEclipse resulted in 2.170 billion USD, or 17.5 million USD lower than NPVSPM. Relative dif-

ference between NPVEclipse and NPVSPM is only 0.81%, which represents a small error. This

difference is even smaller than that for blind test data and base case, discussed in Table 4.4. Op-

timum NPVEclipse of 2.17 billion USD is a 33% increase from the base case’s NPVEclipse of 1.60

billion USD. This increase in NPV demonstrates the genetic algorithm’s ability as a useful opti-

mization algorithm for field development optimization problems. This increase in NPV was also

achieved by using reliable proxies to evaluate the objective function.

The BHPs for best case are within the bounds for the majority of wells, as tabulated in Table A.1.

All producers and injectors experience variation in BHP throughout the production life of the

field. Figures A.2 compares FOPT, FWPT and FWIT profiles for base case and best case.

4.5 Computation Time and Resources

The author performed the same well control optimization on Maur cluster using Eclipse sim-

ulator and FieldOpt software framework in the specialization project (Chaturvedi, 2020). Maur
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cluster is a linux cluster mainly funded by the department of Geosciences and Petroleum (NTNU)

(21×Del lR730), with additional nodes (7×Del l R620) from EPT and later upgraded somewhat

by NTNU IT. The Dell R730 nodes also have 2× Nvidia Titan X graphics cards used for calcula-

tions. For one PSO run, with swarm size of 24 and maximum generations of 30, elapsed time for

one optimization run was around 15 hours 30 minutes (considering the situations with avail-

ability of all the required nodes) when 25 Eclipse licenses were used for parallel computing.

Moreover, 16.8 GB of storage space was required to save the outputs from each optimization

run.

In contrast to specialization project, this study was carried out on a Machine with Intel(R) Core(TM)

i5-8300H CPU 2.30GHz with 8 GB RAM and required only one Eclipse license for database

preparation. Produced Keras models take up 305 KB storage space, and around 160 Eclipse sim-

ulations take 4.24 GB of space. Time taken for one NPV calculation which requires predicting

three outputs from three proxy model, is 0.13 seconds. Overall, SPM-GA model takes around 43

minutes for one GA run with a population size of 20 and maximum generations of 30. Compu-

tational time has been reduced by 95%. Storage space requirement of the SPM-GA model and

Eclipse simulations for database preparation are insignificant compared to 16.8 GB of storage

space requirement for just one optimization run with FieldOpt and Eclipse.
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The results presented in previous chapter are discussed to provide insights required to achieve

the objectives of this study.

5.1 Interpretations and Implications of Results

Despite the high non-linearity of the optimization problem solved in this work, proxy models

proved to be effective in achieving the main objective of this study.

5.1.1 Constructed SPMs

1. Based on the increment obtained in NPV, field-based proxies, i.e. proxies to estimate

FOPR, FWIR, and FWPR, proved sufficient for the optimization study done in this project.

Furthermore, even though the influence of previous timesteps on current timestep out-

put was not considered when training the ANNs, this study discovered that ANNs do an

excellent job of building a black box to predict the dynamic reservoir behavior.

2. The proxy models are objective specific and can only be applied to the task for which they

were designed; therefore, a proxy can be considered reliable if it fulfils the objective it was

developed for. Hence, the established proxy models are reliable as they fulfill the main

objective of the study, i.e., finding BHP settings that maximize NPV.

3. The development of a proxy model for well control optimization necessitates knowledge

of both AI based technologies and Petroleum Engineering. Furthermore, deciding on in-
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put parameters for establishing these proxies necessitates a high level of understanding in

terms of possible optimization problem formulations.

4. The differences in optimal hyperparameters between the three proxies may reflect dif-

ferences in the complexity of FOPR, FWIR, and FWPR behavior. Overall, based on the

hyperparameter combinations obtained for the three proxies, it is possible to conclude

that FWIR and FWPR behavior is more challenging to learn and, as a result, requires heavy

architecture.

5. Lower NRMSE values in validation and test data compared to training data indicate that

FWIR and FWPR proxies predict satisfactorily for the data they never learned.

6. It is important to note that the complexity of the reservoir has no significant effect on

the time it takes to run proxy models. Methodology proposed in this study was tested on

a complex synthetic model (with 192,750 active grid cells and heterogeneous reservoir),

The minimum number of evaluations required for the Bayesian optimization study for

HPO experienced an increase with the number of data samples. Therefore, the number of

data samples used to construct the proxies influence the training time.

5.1.2 SPM-GA Optimization

The foundation for adaptive proxy modeling presented in this work can be a basis to develop

an automated workflow for proxy building. The idea is to retrain the proxies during the op-

timization process. Adaptive proxy models will improve the applicability of proxy models for

optimization. Automating the process will save time and improve efficiency. Other discussion

based on SPM-GA optimization are as follows:

1. Finding an optimal solution to complex, high-dimensional problems frequently necessi-

tate the use of very expensive objective function evaluations. For example, one objective

function evaluation problem may take several hours or several days. In this case, it may be

better to forego the exact evaluation and instead rely on approximated fitness. SPM-GA

coupling does an excellent job to achieve significant reduction in run time, computational

resources, and storage space, as presented in Chapter 4.

2. It can be noted that SPM needs not to be 100% accurate but accurate enough for optimiza-

tion purposes. Finding measures to quality check usefulness of the proxies is an impor-

tant task to consider. Three performance metrics used in this study showed consistency

among different samples.
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3. Crossplot between NPVSPM and NPVEclipse proved to be a reliable measure to comment on

combined accuracy of SPMs for optimization study. But the main question that need to

be answered is how accurate SPMs need to be for optimization process. If the problem

is complex and has erratic behavior or highly non-linear, accuracy is of utmost impor-

tance, but simpler smooth problem does not require highly accurate SPMs for optimiza-

tion work.

4. Data used for development of proxy development includes water breakthrough at initial

timesteps. Therefore, it resulted in the optimal solutions with water breakthrough ob-

served in the early life of the Field.

5. It is essential to note that BHP range is chosen in a way to avoid the cases when reservoir

pressure goes above injector BHPs or below the producer’s BHP and results in shut off the

well. Such behavior is not included in the proxy development. However, within specified

region, SPMs are extremely useful, based on the results presented in previous chapter.

5.2 Limitations

Although the established SPMs and proposed SPM-GA model appear promising, there are some

limitations to consider for application in decision making.

5.2.1 Constructed SPMs

1. The main limitation of the established proxy models is that they can only be applied to the

reservoir used for database preparation in developing the models. In addition, SPMs are

only trained for a single reservoir condition. Therefore, any changes made to the reservoir,

such as adding a new well, changing position of wells, production scheduling or addition

of EOR, would require redevelopment of SPMs, hence, making the existing SPMs useless.

2. Preparation of dataset requires some planning and time, in addition to simulation time.

For this model, one simulation took around 30 minutes to run on a simple machine.

Therefore, spending a considerable amount of time preparing a dataset by running hun-

dreds of simulation runs can be cumbersome if the quality of proxies is not good. There-

fore, this study used 30 samples initially and increased the number of samples to 85, which

is much less compared to total number of Eclipse simulations a traditional optimization

would need.
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3. Currently, the closest thing to estimating real reservoir behavior is a reservoir simulation

model. As the presented proxies are built based on reservoir simulator data, they can be

at most as accurate as the simulator. The outcome of a reservoir simulation may not be

replicated in a real-world application. Hence, proxies based on an inaccurate reservoir

model would produce inaccurate results.

4. Another observation is that training the SPM can take a significant amount of time. For

this project, it took around 10 to 15 minutes to train each SPM, and most of this time

was spent on hyperparameter optimization. Moreover, when adding more dataset into

training the proxies, hyperparameter tuning results in different settings, so it is wise to

run hyperparameter optimization whenever proxy is retrained.

5.2.2 SPM-GA Optimization

1. The optimization study is approached only using one optimization algorithm, i.e. Genetic

Algorithm. When doing optimization, especially with proxy models, it is better to work

with two or more optimization algorithms to confirm the obtained result and to check if

the obtained optimal solution is global or local optimum.

2. Well control optimization problem, which is the main objective of current study, can be

improved. Rather than optimizing BHPs of all the wells, rates of injectors and BHPs of pro-

ducers can be optimized. This will also influence the datasets required for proxy building

and other aspects of the study.

3. Randomness in GA algorithm makes it challenging to perform sensitivity analysis. Mak-

ing five runs for each GA configuration provides some confidence level, but variation in

results among five runs needs to be considered in decision making. In this study, an ac-

ceptable standard deviation among five GA runs is obtained. However, five SPM-GA runs

lead to different optimal BHP configurations, indicating that the optimal solution is not

converging to global optimum.

4. Goodwin (2018) discussed that the danger associated with any optimization algorithm is

that one explores only on a small dimensional hyperplane, and never explores orthogonal

to the hyperplane - moving around hyperplane one only get to explore a tiny fraction of

the total space. Here, population size of 20 is used, which is a small number compared to

the dimension of the optimization problem, i.e. 320.

5. This study uses relative difference in NPV to comment on the combined ability of the prox-

ies for optimization task. However, one should also consider other possible measures,
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5.2 Limitations

for example, testing the relationship "Eclipse predicted NPV increase" vs "SPM predicted

NPV increase" from one iteration to the next to get a sense about the current validity of

the proxies.

6. The oil price chosen here is representative of current market. Considering the dramatic

change to the oil industry and the world recently, sensitivity of oil price on NPV should be

considered.
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Chapter 6
Conclusions and Recommendations for

Further Work

6.1 Conclusions

This study has been done based on the objectives stated in section 1.2 to obtain the results pre-

sented in Chapter 4. The author applied a methodology to develop three ANNs to serve as dy-

namic proxy models for well control optimization in a synthetic field, named Olympus. Eighty-

five runs were designed to train these proxy models, and five extra blind runs were employed for

performance check and blind validation. After checking accuracy and robustness of each proxy

model, they were used as substitutes of numerical reservoir simulator in optimization process.

As anticipated, proxy modeling based on ANN proved to be a low-cost alternative to reservoir

simulation, particularly for well control optimization problem solved in this study.

To begin, SPM-GA coupling was used to study the sensitivity of GA parameters, and thirteen

combinations were tested, with five optimization runs for each combination. BHP configura-

tions from all GA sensitivity runs were run in numerical simulator and NPV calculated from sim-

ulator’s outputs were compared against NPV calculated from predictions of proxy models. Proxy

models were retrained with 85 (previously designed) plus 65 (new) cases, followed by blind val-

idation and comparing results for NPV crossplot. In comparison to previously trained proxy

models, the increase in R2 score of the NPV crossplot for 150 samples confirmed the applica-

bility and robustness of the retrained proxy models. Retrained proxies were integrated with GA

and then optimum well control conditions (including BHPs of ten producers and six injectors

for twenty timesteps) were obtained using SPM-GA coupling. Integration of proxy models with
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genetic algorithm proved to be successful as 35% increment in NPV was observed for the syn-

thetic model tested. Highest NPV obtained from SPM-GA was 2.19 billion USD and correspond-

ing NPVEclipse was 2.17 billion USD. Results presented in Chapter 4 prove a significant reduction

in running time and space, without sacrificing the accuracy in optimization process. The estab-

lished proxy models are adaptive. From the discussion, other conclusions of this study can be

drawn as:

• The author devised and tested a systematic workflow to develop adaptive proxy models

for well control optimization study in a synthetic field.

• Results show that three proxies are enough to learn the behavior of dynamic data required

for well control optimization study. ANN architecture for some proxies is not that com-

plex, in comparison with the complexity and non-linearity of the flow behavior proxy

models are trained to replicate. 5 layers and increasing number of nodes results in a better

model and does not need additional computational time to run these models.

• Eighty-five data samples proved to be enough for optimization problem solved in this

work, however, leveraging the new data generated from sensitivity analysis for retraining

the proxy models, has improved performance of SPM-GA coupling.

• As expected, maximum reduction of 95% in computation time was observed for one opti-

mization run.

6.2 Recommendations for Further Work

The thesis is focused on the author developing a methodology for building SPM-GA model for

well control optimization of a synthetic model, that can be applicable to fields on NCS. There

are some recommendations to consider for future work.

1. Given the time constraints for this thesis, the proposed workflow is only tested on one

realization of Olympus model. It would be interesting to test the established methodology

on a real field case to check its applicability in the oil and gas industry.

2. Given the limitation of genetic algorithm, such as slow convergence issues, one could

try other optimization algorithms such as particle swarm optimization and asynchronous

parallel pattern search to test if shortcomings of GA could be addressed and in addition,

check if this workflow could be generalized to any optimization algorithm.
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3. The SPM-GA model is developed and designed using only one programming framework,

and it should be interesting to compare performance with other Machine Learning li-

braries and toolboxes. The Matlab-based Machine Learning toolbox is worth consider-

ing and can be compared to the other approaches. Integration of proxies with existing

software framework (such as FieldOpt) for optimization could be another possibility to

investigate.

4. For further work it would be interesting to train a model that can predict NPV directly for

a wide range of BHPs. It would be challenging and interesting to train a model for a large

range of BHPs.
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Appendix

Github Link

All the python scripts used to achieve objective of this study are uploaded on Github and can be

accessed by clicking on the link below.

https://github.com/arpita-ch/TPG4920-Master-Thesis.git

If any issues encountered while accessing and using these scripts, the author can be contacted

at arpitachturvedi@gmail.com.

Best Case Results

Table A.1: Optimal BHP configuration from best GA run
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Figure A.2: Comparison of FOPT, FWIT and FWPT for base case and best case.

(a) Cumulative Oil Production

(b) Cumulative Water Injection

(c) Cumulative Water Production
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Table A.3: Proxy emulated outputs and Eclipse simulator outputs for optimal BHP setting

79



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f G

eo
sc

ie
nc

e 
an

d 
Pe

tr
ol

eu
m

Arpita Chaturvedi

Well Control Optimization by
Coupling Smart Proxy Models with
Genetic Algorithm

Master’s thesis in Petroleum Engineering
Supervisor: Ashkan Jahanbani Ghahfarokhi
Co-supervisor: Mathias Bellout

June 2021

M
as

te
r’s

 th
es

is


	Acknowledgement
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background
	Objectives
	Outline

	Theory
	Field Development Optimization
	Well Control Optimization
	Well Placement Optimization

	Optimization Theory
	Optimization Problem
	Optimization Algorithms

	Smart Proxy Model
	Methods of Developing Proxy Models

	Artificial Intelligence
	Artificial Neural Network (ANN)
	Practical Aspects of Artificial Neural Network
	Model Fitting and Evaluation


	Methodology
	Workflow
	Reservoir Model
	Optimization Problem
	Building Smart Proxy Model
	Defining input and output for SPM
	Generating the Dataset and Data Splitting
	Defining Architecture and Practical Aspects of the Neural Network

	Evaluating Accuracy of SPMs
	Building Genetic Algorithm Optimization
	Objective Function
	Population Size
	Selection, Crossover, Mutation, and Termination Operations

	SPM-GA Optimization 

	Results
	SPM Results
	Convergence Plots
	Optimal Hyperparameters
	Performance Metrics
	Blind Test
	Combined Accuracy of SPMs

	SPM-GA Optimization Results
	Sensitivity Analyses
	Quality Checking the SPMs for Optimization Task

	Retraining SPMs
	Best Case
	Computation Time and Resources

	Discussion
	Interpretations and Implications of Results
	Constructed SPMs
	SPM-GA Optimization 

	Limitations
	Constructed SPMs
	SPM-GA Optimization


	Conclusions
	Conclusions
	Recommendations for Further Work

	References
	Appendix

