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Abstract

“TRIGRS” is a commonly used physically based landslide model, considering transient precipitation, runoff, in-

filtration, pore pressures and slope stability. This thesis presents a comprehensive literature review, identifying

42 papers applying TRIGRS in the period 2008—2020. Research goals, locations, input data and methods of per-

formance evaluation vary substantially. In this thesis, TRIGRS is further applied to the case study of Jølster 2019,

an extreme, multiple landslide event in Western Norway. Model calibration, by systematic variation of sensitive

parameters, is conducted due to a data scarcity. First, back-calculation of landslides, in two sub-areas assumed

representative of specific soil types, is conducted to shed light on the spatial distribution of soil parameters. It is

found that estimation of both objective and relative parameters is challenging due to shortcomings of (i) TRIGRS,

(ii) the calibration procedure, (iii) input data, including assumptions on initial soil conditions and (iv) uncertain

landslide initiation mechanisms. Correlation (R2 = 30%) is found between slope angles and soil depths of field mea-

surements, improving modelling compared to uniform soil depth. Unsaturated soil analysis appears inapplicable

despite unusually dry initial conditions. Further, effects of chosen evaluation criteria, including ROC, AUC, D2PC,

CSI and MCC, on estimated performance are investigated. The difference between overall and threshold-specific

performance (e.g., AUC is not a good proxy for the latter), and the case-specificity of performance measures (e.g.,

AUC should not be compared across study areas), is stressed. Two parameter combinations, optimizing different

evaluation criteria, are presented. One parameter combination is subject to a novel approach, where predictions

and “error magnitudes” are assessed in relation to spatial data. Both combinations identify general unstable areas

(correctly predicting 25.5% – 26.6% of landslide cells) but are accompanied by numerous wrong predictions. As-

sumed soil property homogeneity leaves slope angle a strong predictor of estimated factor of safety, which in in

combination with varying slope angles for Jølster landslides ensures their prediction and simultaneous lack of false

positives are incombinable. It is indicated that alternative initiation mechanisms, not accounted for by TRIGRS, are

present for a proportion of Jølster landslides. TRIGRS’ practical utility is thereby limited in this and similar areas

and events.
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Sammendrag

"TRIGRS" er en mye brukt fysisk-basert jordskred-modell som tar hensyn til tidsvarierende nedbør, avrenning,

infiltrasjon, poretrykk og skråningsstabilitet. Denne oppgaven presenterer en omfattende litteraturundersøkelse,

som identifiserer 42 artikler angående TRIGRS i perioden 2008–2020. Mål, lokasjoner, inngangsdata og metoder

for evaluering av resultater varierer sterkt. Videre implementeres TRIGRS i case-studien Jølster 2019, en ekstrem

jordskredhendelse på Vestlandet. Kalibrering av modellen, ved systematisk variasjon av sensitive parametre, er

nødvendig grunnet mangel på data. Først utforskes effekter av valg av evalueringskriterier (ROC, AUC, D2PC,

CSI og MCC) på bedømmelse av modell-prestasjon. Det er viktig å skille mellom "generell" og "terskel-spesifikk"

prestasjon (f.eks., AUC er ingen god inikasjon på sistnevnte), samt å være klar over stedegenheten til prestasjon-

smål (f.eks., AUC bør ikke sammenlignes på tvers av studieområder). Videre tibakeregnes skred for å undersøke

romlig fordeling av jordparametre. Dette foregår i to delområder antatt å representere forskjellige jordarter. Det

viser seg at bestemmelse av både objektive or relative parametre er utfordrende grunnet mangler ved (i) TRIGRS,

(ii) kalibreringsprosedyren, (iii) inngangsdata, inkludert antakelser om innledende jordforhold og (iv) kunnskap

om skredenes utløsningsmekanismer. Korrelasjon (R2 = 30%) mellom skråningsvinkel og observert jordmektighet

forbedrer modellering sammenliknet med antakelser om konstant mektighet. Umettet analyse presterer dårlig selv

under usedvanlig tørre forhold. Det presenteres to resulterende kombinasjoner av parametre, som optimaliserer

forskjellige evalueringskriterier. En parameter-kombinasjon evalueres på en nyvinnende måte, hvor resultater og

"feil-størrelser" sammenliknes med romlig data. Begge kombinasjonene identifiserer generelt ustabile områder

(forutser 25,5% – 26,6% av utløsningsområder), men akkompagneres av mange feil. Antakelsen om homogene

jordparametre gjør at sikkerhetsfaktor i stor grad bestemmes av skråningsvinkel. Samtidig varierer utløsningsom-

rådenes skråningsvinkler stort, og de kan følgelig umulig identifiseres uten en stor andel falske positive. Variasjo-

nen indikerere at utløsningsmekanismer som ikke hensyntas av TRIGRS er til stede, og TRIGRS’ praktiske nytte

begrenses deretter.
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Chapter 1

Introduction

1.1 Context and research questions

Landsliding, or “the movement of rock, earth or debris down a slope” (Varnes, 1978), is a global hazard that has, as

of yet, affected more than 4.7 million people during the 21st century (Guha-Sapir, 2018). Blameworthy of consid-

erable economic losses, its frequency is expected to increase due to demographic (Froude & Petley, 2018) and cli-

matic (Gariano & Guzzetti, 2016) changes. Landslides are generally classified in terms of material and motion, and

those involving soil have brought the worst consequences (Dowling & Santi, 2014). The constituent term “rainfall-

induced shallow landslides” considers rapidly initiated, often devastating events (Hungr et al., 2001), of which one

method of risk mitigation is the application of physically based models (Corominas et al., 2014).

The “Transient Rainfall Infiltration and Grid-Based Slope Stability" model (TRIGRS, Baum et al., 2002; Baum

et al., 2008) considers such landslides, by evaluating surface infiltration, groundwater response, pore pressures,

“infinite slope stability” and runoff. The open source software has been applied in numerous case studies for

different purposes (Park et al., 2013), but an overview of its usage, common input data or performance does not

exist. As knowledge sharing may steer further research in a good direction, a comprehensive literature review — for

the period of 2008–2020 – was conducted to throw light on the following research questions:

1. How, and under what conditions has TRIGRS been applied?

2. More specifically: How “well” can TRIGRS predict the location and timing of landslides?

1
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Figure 1.1: Photography of the "Årnes" landslide of the Jølster event. Source: Jan Helge (SVV) (regObs.no).

The rainy, mountainous western coast of Norway is prone to rainfall-induced shallow landslides, but few at-

tempts at implementing physically based models exist (Melchiorre and Frattini, 2012; Schilirò et al., 2021). There-

fore, TRIGRS was applied in the extreme, 120-landslide case study event of Jølster, 2019. Scarcity of input data

necessitated an approach of soil parameter calibration, exploring the following research question:

1. Can TRIGRS “back-calculate” absolute or relative soil parameters for the Jølster case study? If so, the case

event may provide insights on the spatial distribution of soil properties which may be utilized in future risk

mitigation.

2. Is the Jølster case study suitable for the application of TRIGRS in terms of e.g., topographical features, land-

slide characteristics and reliability of input data? This question considers the model’s ability to separate

stable and unstable slopes, through exploration of model results by a novel approach.

Several sub-questions are nested within the above, such as:

• How reliable is available model input data?

• Does parameter calibration in separate areas, representing different soil types, improve model performance

compared to the assumption of uniform soil properties?

• Is soil depth predictable from topographical variables?

• Which approach is most suited for the Jølster case study: saturated or unsaturated soil analysis?

• What do we know about Jølster landslides’ characteristics?

An additional research question emerged during the course of work. As methods of evaluating physically based

model performance were found to vary greatly – which complicates comparisons and may hinder development –

it was asked:

• How does the choice of evaluation criteria affect model calibration and performance evaluation?

regObs.no
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1.2 Structure

This thesis begins (Chapter 2) by providing an overview of the phenomena of landsliding, both internationally and

in Norway. This includes consequences and the distribution of risk, as well as international and Norwegian classi-

fications. It further dives into the concept of rainfall-induced shallow landslides, examining their predisposing and

triggering factors along with susceptibility and risk assessments.

Chapter 3 is devoted to TRIGRS. Model background, theory and operation is presented, as well as method and

results from the literature review. Chapter 4 examines Jølster and its extreme landslide event. It then describes

available input data and related considerations, both in terms of basic necessities (e.g., digital topography) and

more uncertain inputs (e.g., soil properties). Lastly, the method of applying TRIGRS, which is mainly related to the

calibration procedure, is introduced.

Chapter 5 presents results from a statistical analysis of Jølster landslides, attempted prediction of soil depth

from topographical variables, an investigation into effects of differing evaluation criteria and soil parameter esti-

mation by model calibration for both saturated and unsaturated versions of TRIGRS. Chapter 6 discusses priorly

defined research questions by reflecting on theory and results, while chapter 7 summarizes findings in conclusions

and suggestions for further research.



Chapter 2

Background

This introductory theory begins with a bird’s eye view, exploring landsliding as a global hazard. Focus is then de-

voted to landsliding in Norway, examining their locations, types, frequencies and impacts. A closer look is given at

landslide classifications, and specifically shallow landslides and related triggering conditions. Finally, an introduc-

tion to the potentially risk-mitigating tool of physically based landslide models is given.

2.1 Landslides

2.1.1 Global occurrence and impacts

Nature enables human flourishing, but threats of sudden violence have always been present. Natural hazards, or

“any natural process that may cause social, economic or environmental disruption" (UNISDR, 2009, rewritten),

such as floods, droughts, and volcanic activity, have since at least the Genesis flood been a part of our experience.

Although the number has declined, natural disasters (causing serious disruption of societal functions), still cause

about 60 000 direct fatalities per year globally (Ritchie & Roser, 2014).

Landsliding, or “the movement of rock, earth or debris down a slope” (Section 2.2 is not the most lethal hazard.

Yet, in the 21st century, the phenomena affected more than of 4.7 million people and caused more than 16 000

fatalities (Guha-Sapir, 2018). These 1.2 percent of total natural hazard fatalities in the same period concentrate in

large catastrophes; only two events are responsible for 50% of fatalities associated with "debris flows" (Dowling &

Santi, 2014), while the most damaging event recorded, the 1920 Haiyuan landslides of China, killed 100 000 people

(Tianchi, 1994).

The distribution of landslide risk

Although subject to temporal variation due to e.g., climate anomalies (Froude & Petley, 2018), the number of

recorded, fatal landslide events has increased during the period 1950–2014 (Dowling & Santi, 2014; Haque et al.,

2019). However, this perceived increase may relate to demography rather than landsliding itself (e.g., Kjekstad

4
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& Highland, 2009). Vulnerability has increased due to population growth, urbanization and lacking slope man-

agement (Redshaw & Bottomley, 2020), especially in developing countries troubled with corruption and deficient

emergency preparation (Dowling & Santi, 2014). Consequently, landslides are increasingly induced by e.g., con-

struction, illegal mining or hill cutting, while under-reporting is gradually reduced due to technological advances

(Froude & Petley, 2018).

Landslides occur where topography, geology, climate and anthropology combine in unfavorable ways. Not

surprisingly, risk follows topographic relief on prior or current continental plate boundaries, with hot spots in the

Rocky Mountains, Andes, Alps, Middle East and large parts of Asia (Fig. 2.1).

Figure 2.1: Estimated world landslide hazard (Redshaw & Bottomley, 2020, modified). Results are based on modelling and
analysis of 15.5 million events for the period 1980–2018.
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Figure 2.2: Major trends in landslide activity driven by projected climate
change (Gariano & Guzzetti, 2016).

Risk is affected by anthropogenic and

natural climate change, although not as

strongly as by demographic changes (Froude

& Petley, 2018). However, as uncertainties

in emission scenarios and climate models

supersede those of landslide risk’s response

to climate, only large scale trends are es-

timable (Gariano & Guzzetti, 2016). In any

case, several areas may expect increased

activity (Fig. 2.2), with more extreme pre-

cipitation – showing a significant spatial

and temporal correlation to fatal landslides

(Haque et al., 2019) – being the main factor.

Economic costs of landsliding

Besides a treat to human life, landslides

cause a range of direct (e.g., loss of prop-

erty, immediate engineering works) and in-

direct (e.g., flooding, loss of productive land, reduced real estate values, adverse ecological effects or traffic delays)

losses (Kjekstad & Highland, 2009). Although Fleming and Taylor (1980) noted taxpayers’ and officials’ unaware-

ness to landslide costs, few attempts have been made to assess these on a large scale. Estimates are hampered by

variable methodologies, unreliable data and the common merging of landslides into larger disasters (Kjekstad &

Highland, 2009). Nevertheless, certain country-wise estimates exist including annual costs in excess of 1 billion

USD (3.16 billion USD converted to 2020-dollars) for both USA (Schuster, 1978) and Canada (Cruden et al., 1989)

– above costs of floods, earthquakes and hurricanes. Case-specific cost estimates (e.g., Perera et al., 2018; Winter

et al., 2016) also exist, both emphasizing the need for improved methodologies.
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2.1.2 Landsliding in Norway

Norway is not among the highest-risk areas globally (Fig. 2.1), but have yet experienced more than 4000 historical

landslide fatalities (Furseth, 2006). As is also the case globally, few but major events such as “Gauldalsraset” (year

1345: Rokoengen et al., 2001), “Verdalsraset (year 1893: Verdal Historielag, 2020), and “Loenulykkene” (year 1905,

1936 and 1950: Bryhni & Askheim, 2020) have contributed to large parts of losses.

Economic costs of landsliding in Norway

Economic aspects of landsliding in Norway is little discussed and the author knows of no national estimates. How-

ever, landslide-related insurance payments were valued at 77 million Nok (7.7 million Euro, April 2021) in 2019

alone (NNPP, 2020), reflecting costs to private property only. For casualties one may use the Norwegian Ministry

of Finance’s established value of statistic life (30.49 mill nok: Det Kongelige Finansdepartement, 2014) and calcu-

late oneself. For indirect costs one may consider a geological and climatological similar country, Scotland, where

Winter et al. (2016) showed how modest landslide events induced severe indirect costs due to closed transportation

networks. Simultaneously, 1500–2100 landslides hit Norwegian roads each year, of which about a third lead to full

or partial closure (Bjordal & Helle, 2011). The Norwegian Water Resources and Energy Directorate (NVE, responsi-

ble for landslide risk mitigation) presented a list of desirable mitigation measures valued at 2.7 billion nok in 2018

(Andersson et al., 2018).

Norway’s topography and climate

Understanding landsliding in Norway requires details on the conditions in which they occur. Norway’s 385 200

km2 area stretches from the North Sea, along the Norwegian Sea to the Barents Sea with Sweden, Finland and

Russia on its eastern border. During the last 60 million years, the initially uplifted and tilted Norwegian peneplain

(featureless, continental plain) has been eroded by rivers and glaciers through more than 40 ice ages (Bargel et al.,

2008). This created relatively gentle topography in eastern parts while fjords and mountains of more than 2000

m.a.s.l. characterize large parts of the western coast
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Figure 2.3: Average annual precipitation [mm] for the period
1971–2000 (http://www.senorge.no/?p=klima).

The coast is characterized by temperate climate,

with especially abundant precipitation in its south-

western areas (>3000 mm/year, Fig. 2.3) Orogenic up-

lift makes for less rain eastwards of mountains (con-

tinental climate), while high altitudes and the north-

ernmost parts experience a polar climate. As a con-

sequence of climatic variability, slopes in Norway’s in-

terior are more "initially unstable”, requiring less pre-

cipitation than their western companions for failure

(Krøgli et al., 2018; Meyer et al., 2012).

Bedrock and related landslides

Norway’s bedrock is mainly grouped in a Precambrian

basement, numerous overthrust sheets and local zones of special geology. The southern and western Precam-

brian basement includes gneiss, granites and certain metamorphosed rocks, while overthrust sheets of central and

northern Norway include e.g., gabbro, schist, phyllite, metamorphosed sandstone and greenstone.

Rock falls, Norway’s most widespread (but not particularly damaging) landslide type (Bjordal & Helle, 2011), un-

surprisingly concentrate in western, high-relief areas. C. 50% of rock falls on roads have been registered in former

Sogn of Fjordane county alone (Bjordal & Helle, 2011), and these have generally played a role in landscape develop-

ment creating steep slopes and underlying talus. Also concentrated in the west are rock slides, where several sites

are constantly monitored (e.g., Åkerneset, Harbitz et al., 2014).

Quaternary geology and landslides in soil

The distribution of Norway’s soil deposits (Quaternary geology) is at large scale a function of numerous glacial and

interglacial periods, while local-scale landforms are often attributed to the last glacial cycle ending about 12 000

years ago (Olsen et al., 2013). Glacial till of varying continuity, considered the dominant Quaternary sediment in

Norway, is visible along slopes and at altitudes (Haldorsen & Jenssen, 1983), and generally locates underneath fills

of glaciofluvial and fluvial origin in valley bottoms. Marine sediments cover large parts of lower-lying areas due

to isostatic uplift (Ramberg et al., 2013). Norwegian landslides in soil are separated in two main types. A majority

of "rainfall-induces shallow landslides and debris flows" occur in western areas (Bjordal & Helle, 2011), may take

place in extreme, multiple-landslide events (Rouault, 2020), and are expected to increase in frequency due to global

warming (Hanssen-Bauer & Hisdal, 2017). On the other hand, a peculiarity for Norway and Scandinavia, along with

Canada, Alaska and Japan (Geertsema, 2013) is the existence of quick clay. Marine clay may through circulation of

fresh water become unstable, and this extremely sensitive material (St.>50: Rankka et al., 2004) has caused some of

Norway’s most destructive landslides.

http://www.senorge.no/?p=klima
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2.2 Landslide classifications

2.2.1 International classifications

Several works ranging back to 1862 have grouped landslides (Cruden, 2003), but the most widely used today is that

of Varnes (1978). There, a landslide is defined as “the movement of a mass of rock, debris or earth down a slope”,

and is thereby not limited to "sliding" nor does there have to be "land" involved. The original system covers a range

of materials and modes of propagation, yielding 29 subtypes (Fig. 2.4). Rock refers to any solid material except ice,

debris refers to a mixture of material with (originally) less than 80% sand and finer, while earth refers to plastic and

cohesive material of more than 80% sand and finer (Varnes, 1978).

Figure 2.4: The original landslide classification of Varnes (1978), based on the combination of movement and material type.
Table from Hungr et al. (2014).

Cruden and Varnes (1996) updated the original classification by introducing rate of movement as an additional

criterion. Other suggested updates (e.g., Hungr et al., 2001; Hungr et al., 2014) have noted interesting issues - such

as the "artificial" separation between earth and debris - and have introduced now well-established terms such as

“debris-floods”. Finally, specialized classification systems exist for e.g., pure geotechnical engineering, subaqueous

conditions, permafrost and quick clay (Hungr et al., 2014).

2.2.2 The Norwegian classification

Although Varnes’ classification is well-established internationally, a different, simplified system is used in Norway.

Jensen et al. (2015) summarized terms, and emphasized a continuation of existing Norwegian terminology rather

than connection to international classifications. Importantly for this thesis, Norwegian landslides in soil (neglect-

ing quick clay) are described by two terms: flomskred (direct translation: flood-landslide) are defined as “rapid,

flood-like landslides of saturated soils in steep rivers”, and include international terms debris flows and debris

floods. A broader term, jordskred (direct translation: soil-landslide), is defined as “channelized or non-channelized
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downslope-moving masses of varying water contents”. It thereby includes international terms such as debris slides

and debris avalanches, but also debris flows if masses are in fact channelized.

2.2.3 Shallow vs. deep-seated landslides

Varnes (1978)’s dimensions for landslide classification are those easily observable at distance. However, one com-

monly encounters the term (rainfall-induced) shallow landslides, reflecting important differences in mechanisms

and impacts (Hungr et al., 2001).

Sometimes considered as failing less than three meters below ground level (WFPA, 2020), shallow landslides

refers to debris slides, debris avalanches and debris flows. Shallow depths and coarse material allow pore pressures

and slope stability to be rapidly and heavily affected by surface precipitation (Iverson, 2000), identifying intense,

acute rainfall as their common trigger. On the other hand, deep-seated landslides are typically large, slow-moving

and have the bulk of their failure plane well below root systems (WFPA, 2020). Respective shear surfaces are typi-

cally close-to circular in saturated, fine-grained clay and silt (Hungr et al., 2014), and low permeability makes failure

dependent on long-term changes in groundwater conditions (on the scale of weeks or months, (Zêzere et al., 2005)).
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2.3 Rainfall-induced shallow landslides

The occurrence of shallow landslides may be divided into a set of predisposing factors (e.g, slope angle, wetness,

soil types) and triggering factors (here: intense rainfall) (Corominas et al., 2014).

2.3.1 Predisposing factors

Slope angle and topography

Landsliding converts potential to kinetic energy, and some slope gradient is necessary for overcoming frictional

resisting forces (see Eq. 2.5). Typical debris slide failure angles are 30°–60°, while steeper slopes tend not to support

soil (Hungr et al., 2014). Slope angle may also be the triggering factor if subject to sudden anthropogenic or natural

modification. Additional topographical factors include sufficient total relief for sustained motion, slope aspect

(reflecting variations in vegetation and/or soil moisture), and geometrical hollows or gully floors accumulating

seepage (Hungr et al., 2014).

Strength properties of soil

Figure 2.5: The Mohr-Coulomb stress space. The
line, intersecting the vertical axis at C and which
slope is equal to φ, represents the failure criterion.
τ = shear stress, σ = normal stress while subscript 1
and 3 denotes maximum and minimum principal
normal stress respectively. Figure from Zhang et al.
(2015).

Soil strength resists failure, and other factors kept equal, slopes

of low strength are more susceptible to failure than their high-

strength counterparts. The failure state is commonly (although

simplified, several models exist) described by the Mohr-Coulomb

failure criterion (Yu, 2002), where strength is represented by an

angle of internal friction (φ) and cohesion (C). The former, which

value depends on size, shape and friction of grains, describes how

shear strength increases with effective normal stress (slope of the

line in Fig. 2.5). The latter is independent of particle friction and

represents electrostatic attraction, cementation and primary va-

lence bonding and adhesion in fine grained soils (Mitchell & Soga,

2005). Apparent cohesion may also arise due to e.g., negative pore

pressures.
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Hydraulic properties of soil

Infiltration and groundwater flow is largely controlled by soil hydraulic properties. Hydraulic conductivity (k) is

defined through Darcy’s law (Mitchell & Soga, 2005), describing the relationship between apparent water velocity

(v) and hydraulic gradient (i) (Eq. 2.1). It is assumed constant in saturated soils (although affected by the viscosity

and density of water to some degree), but becomes a function of water content for unsaturated soils. Its magnitude

is important in determining pore pressure response, where low values favor slow, deep-seated landslides.

k = v

i
(2.1)

Soil thickness

Both driving and stabilizing forces increase with depth, while pore pressure response is delayed and reduced in

magnitude (Iverson, 2000). Failure planes therefore occur at the depth of the most unfavorable conditions, de-

pending on e.g., material properties, rainfall intensities and slope angles. Failure may also occur on bedrock sliding

planes, where local high water pressure may develop (Hungr et al., 2014).

Layering

Pre-defined failure planes are not requirements, but may enable shallow landslides either through weak layers

or low-friction sliding surfaces (Hungr et al., 2014). For the former, various chemical and physical processes are

responsible (e.g., pre-shearing to residual friction, weathering), while the latter may occur where blankets of loose,

poorly sorted soil overly bedrock (Hungr et al., 2014) or movable soil overlies frozen zones. Such permeability

contrasts between layers may enable recharge of perched water tables and locally high pore pressures (Hungr et al.,

2014), which is assumed a common feature in Norway.

Initial hydrological conditions

An area’s initial state affects magnitudes of possible and failure-inducing pore pressure change in response to in-

tense precipitation. The ground water table, defined as the surface where pore pressure is equal to atmospheric

pressure, varies temporally and spatially depending on e.g., long-term precipitation, soil properties, topography,

geology and river networks (Dingman, 2015). As a subdued replica of topography, it follows sloping terrain more

closely at higher ratios of infiltration to hydraulic conductivity.

Depending on timescale, the water table as well as water content, pore pressures and flow reaches a quasi-

equilibrium (Iverson, 2000). This long-term state, governing triggering of deep-seated landslides, acts as a bound-

ary condition upon which disturbance from intense rainfall is applied. Wet antecedent conditions generally favors

shallow landsliding (see e.g., the construction of most rainfall thresholds, Segoni et al., 2018). On the other hand,

dry initial conditions may still facilitate landsliding through local pore pressure increase at shallow depths (Iverson,

2000).
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Vegetation and land use

Vegetation in slopes may have considerable and opposite effects on stability, of which magnitudes depend on e.g.,

vegetation types, densities, root networks, ages, climate and season (Kalsnes & Capobianco, 2019). Stability may in-

crease due to root strength and the binding of soil layers, as well interception which reduces infiltration, runoff, and

erosion. Interception losses may be considerable (e.g., 22% for needleleaf forests, Miralles et al., 2010), although

most occurs during long-term, low-intensity events rather than those typical of shallow landsliding. Contrarily,

stability may decrease due to increased slope-parallel forces (tree surcharge), increased capacity for infiltration in

soil and during strong winds. Nevertheless, deforestation generally increases both the frequency and magnitude

of shallow landslides , depending on the specific practice applied (e.g., Lehmann et al., 2019). For the same rea-

son, most nature-based landslide mitigation practices involve some form of vegetation (Kalsnes & Capobianco,

2019). Purely anthropogenic factors may also increase susceptibility; infrastructure development may alter slope

geometries, buildings may increase sub-surface stresses, flooding of reservoirs may increase pore pressures and

river interventions may increase erosion (Froude & Petley, 2018).



CHAPTER 2. BACKGROUND 14

2.3.2 The triggering process

Shallow landslides are triggered when shear stresses exceed shear strength (Fig. 2.5), and common triggering fac-

tors include river erosion, seismic activity, volcanic eruptions, construction and mining (Froude & Petley, 2018).

However, the action of rainfall infiltration and subsequent rise in pore pressures is the most frequent trigger (Hungr

et al., 2014), and the only process considered in this section.

Infiltration and pore pressure redistribution

Pore pressure response to rainfall is a complex interaction between soil properties, topography, initial conditions

and water input characteristics (Dingman, 2015). For dry, idealized soils, initial infiltration rates are high due to

significant contribution from a negative vertical pressure gradient. The gradient decreases with increasing water

content, and infiltration rates soon cease approximating hydraulic conductivity (Dingman, 2015). The process is

commonly described by the non-linear differential Richard’s equation (Richards, 1931), although approximations

and simplified solutions valid for certain boundary conditions are usually necessary (e.g., Green & Ampt, 1911;

Iverson, 2000). In practice, surface infiltration may vary widely from idealized equations; root growth and decay,

burrowing, desiccation cracks and frost action commonly produce macropores and “preferential flow” which in-

creases infiltration. Other factors decrease infiltration rates such as swelling or hydrophobic materials, compaction

and frost (Dingman, 2015).

For saturated soils (K = Ks a t u r a t e d = constant), pore pressure redistribution may be described by a simplified,

linear diffusion equation (Iverson, 2000):

δψ

δt
= D0cos2α

δ2ψ

δZ 2 (2.2)

D = Kδψ

δθ
(2.3)
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Figure 2.6: A soil water characteristic curve denotes the relationship
between volumetric water content and matrix suction (negative pore
pressures) in unsaturated soils, identifying zones of differing proper-
ties. Figure from Paniagua (2020).

In Eq. 2.2, ψ is pressure head, t is time, α

is slope angle and Z is depth. Diffusivity (D) is

a material parameter proportional to the slope

of a material’s "soil water characteristic curve"

(Fig. 2.6), of which higher values increase the

speed of pressure redistribution. Its maximum

value (D0) occurs in saturated conditions and en-

sures linearity of Eq. 2.2. For intense precipi-

tation, the largest and most rapid pore pressure

responses occur near surface level, while low-

intensity rainfall increases pore pressures at low

and high depths simultaneously (Iverson, 2000).

Effective stresses and slope stability

Pore pressure (u) is the difference between total

(σ) and effective (σ′) stresses (Terzaghi, 1931; Eq.

2.4), and consequently, the latter is reduced through rainfall infiltration. This is equivalent of shifting the Mohr’s

circle of Fig. 2.5 leftwards, enabling failure if shear stresses supersede shear strength.

σ′ =σ−u (2.4)

A simple, commonly used model for evaluating resulting slope stability is the infinite slope model (Taylor, 1948).

It estimates factor of safety (FS) as the ratio of resisting to driving forces (Eq. 2.5), where δ is slope angle, γw is unit

weight of water, γs is saturated unit weight of soil and Z is depth of failure.

FS = t anφ

t anδ
+ C −ψγw t anφ

γs Z si nδcosδ
(2.5)
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2.3.3 Risk and susceptibility

The presence of predisposing and possible triggering factors may call for mitigation measures, for which knowing

the distribution and magnitude of risk is necessary. The term includes information on the probability and sever-

ity of an adverse threat (UNISDR, 2009); probability is represented by an area’s susceptibility, while severity is a

measure of likely consequences (Corominas et al., 2014).

Susceptibility, evaluated by assessing the types, frequencies and magnitudes of landslides potentially occurring

in an area (Flentje et al., 2007), is static and considers inherent propensity to landsliding. As an end in itself or

an initial step of risk assessment (Corominas et al., 2014), it identifies likely triggering areas and rank-orders these

qualitatively or quantitatively. One may differentiate between knowledge-driven, data-driven and physically based

methods, whereas choice of method depends on e.g., importance, data availability, scale of analysis, landslide types

and the existence and quality of a landslide inventory (Corominas et al., 2014). Knowledge-driven methods rely on

expert judgement, prior landslide activity and weighted terrain factors, but do not include extensive modelling

and are often considered too subjective. Data-driven methods obtain, through empirical and statistical techniques

such as multiple regression (e.g., Kumar et al., 2019) or neural networks (e.g., Kanungo et al., 2006), relationships

between terrain factors and undesirable events. Shortcomings include lack of expert opinion, the assumption of

prior failure being indicative of future failure, and the fact that effects of spatial factors may vary widely across

complex terrain (Corominas et al., 2014). Rainfall thresholds in landslide early warning systems (e.g., Guzzetti et al.,

2020), which magnitudes vary across different areas, may be considered a special case of data-driven assessment.

Finally, physically based methods – through the application of physically based models – are described in depth

throughout the next section.
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2.4 Physically based models

Physically based models (henceforth, PBMs), are commonly used for assessing landslide susceptibility (Carrara et

al., 2008). Unlike other methods, these explicitly consider dynamic, spatially variable factors (e.g., soil properties,

precipitation) that control triggering (Crosta & Frattini, 2003), and can theoretically, by solving sets of equations

representing physical processes, predict both location, magnitude and timing of landslide occurrence (Corominas

et al., 2014). A "white box" approach forgoes the need of complete landslide inventories, and outputs are typically

failure probabilities, factors of safety and time-development of various state-variables (Corominas et al., 2014).

Commonly applied in GIS-environments, PBMs require the coupling of:

1. A hydrological model, describing groundwater conditions

2. A slope stability model, predicting the location and magnitude of failure

History, examples and challenges

Among the first PBMs applied were "LISA" (Hammond et al., 1992), "SHALSTAB" (Montgomery & Dietrich, 1994)

and "SINMAP” (Pack & Goodwin, 2001). In essence, early hydrological models computed steady state groundwater

conditions in equilibrium with recharge from long-term rainfall, and could therefore not take time-varying (tran-

sient) pore pressure responses into account. Slope stability calculations, by the infinite slope model (Section 2.3.2),

could i.e., provide time-invariant susceptibility only. Iverson (2000) provided a necessary framework for transient

analysis; various approximations of the Richards equation enabled modelling of greatly improved prediction accu-

racy (e.g., Crosta & Frattini, 2003), overcoming the impossibility of defining steady states representative of entire

storms. This framework is also the basis for TRIGRS (Section 3.1, Baum et al., 2002).

Above models are one-dimensional, but three-dimensional models have also been developed (e.g., An et al.,

2016; Simoni et al., 2008). These provides increased prediction abilities through better representation of real prob-

lems, but the non-linearity of Richard’s equations and required use of numerical methods demands computational

resources not necessarily viable for large scale applications (An et al., 2016).

Typical challenges for PBMs include prediction of different landslide types (Mergili et al., 2014) and uncertain

performance outside calibrated case studies (Montrasio et al., 2011). Further, data acquisition over large areas is

costly due to the spatial variation of soil parameters (Carrara et al., 2008), and relatively homogenous areas are

required unless crude simplifications are conducted (Corominas et al., 2014). In a broader sense, as is the case for

all earth-system models, an important challenge is to apply results in a manner that helps stakeholders make good

decisions (Erickson et al., 2008).

Performance Evaluation

Quantifying the performance of PBMs is a difficult, but crucial task for decision-making (Corominas & Mavrouli,

2011). Evaluation may consist of verification (whether implementation is correct in terms of the conceptual frame-
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work) and validation (agreement between predicted and observed results), but hereafter, the term evaluation is

used synonymous with the latter.

Qualitative evaluation includes visualizing, comparing and classifying results (e.g., Tang et al., 2017; Al-Umar

et al., 2020). The method provides an overview of spatial model performance, but does not quantify performance

in a reproducible manner.

Figure 2.7: Performance indexes are calculated from the 2*2
contingency matrix. figure from Vihinen (2012).

Contingency matrices and performance indexes

are common quantitative evaluation methods for bi-

nary predictors in many fields (Vihinen, 2012), includ-

ing landslide modelling of which output is failure/no

failure. If considering landsliding a positive instance,

each model prediction may be classified as either a true

positive (TP), false positive (FP), true negative (TN) or

false negative (FN), of which row-wise, column-wise

and combinatory performance indexes are calculated

(Fig. 2.7). Common indexes such as sensitivity (true

positive rate) and specificity (true negative rate) mea-

sure different aspects of performance, and combining

several indexes is therefore necessary (Vihinen, 2012).

Certain indexes combine many or all contingency ma-

trix categories, such as Matthews’ correlation coefficient:

(2.6)

Receiver operating characteristics (ROC) is another common method of evaluating physically based models (e.g.,

Godt et al., 2008; Melchiorre & Frattini, 2012; Seefelder et al., 2017) as well as predictors in e.g., medicine, signal pro-

cessing and machine learning. Providing a richer measure of performance compared to scalar indexes (Fawcett,

2006), ROC evaluates the trade-off between true and false positives across the full range of threshold values (in

landslide modelling: the value of FS indicating failure/no failure (usually FS=1) is henceforth denoted T f s ). True

positive rates and false positive rate (FPR, 1-specificity) are plotted on the x- and y-axis respectively (Fig. 2.8), while

performance is plotted as either points (discrete classifiers) or curves (continuous classifiers, varying thresholds).

Curves bending towards the upper left corner (or points located there) indicate good performance, while curves

close to the diagonal represent classification no better than by chance (Fawcett, 2006). However, ROC-curves sim-

ply indicates a classifier’s potential for rank-ordering instances, but not directly its real-world performance (Vihi-

nen, 2012).
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Figure 2.8: ROC-curves, of which "cSU-DIS" is generally consid-
ered the best predictor. Figure from Carrara et al. (2008).

The area under the curve (AUC) is derived from ROC

and considered the probability that a random positive

instance will be classified as more positive than a ran-

dom negative instance. Although imperfect as some

classifiers may perform better at certain locations of

the ROC-space only (Fawcett, 2006), it reduces curves

to scalar values and is often reported and compared

(e.g., Schilirò et al., 2018; Ciurleo et al., 2019).

Also derived from ROC is the distance to perfect

classification (D2PC, Eq. 2.7), which evaluates perfor-

mance at a specific threshold value. One may iden-

tify optimal threshold values by means of a minimum

D2PC, and it has been used used to compare performance of distinct physically based landslide simulations (e.g.,

Zieher et al., 2017).

D2PC =
√

(1−T PR)2 + (F PR)2 (2.7)

Other methods, such as the landslide ratio of each predicted FS-class (LRc l a s s ) (Park et al., 2013) are applied to

varying degree, but are not described further. Two performance indexes applied in this thesis’ case study, CSI and

MCC, are presented in Section 4.4.1.
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TRIGRS: Theory, usage and literature review

3.1 Theory and usage

TRIGRS, or the Transient Rainfall Infiltration and Grid Based Slope Stability model (Baum et al., 2002, 2008), is

a commonly used, open source, one-dimensional and spatially distributed model for estimating slope stability

conditions in terms of factor of safety. It combines transient hydrological modelling with the infinite slope stability

model, supporting both saturated and unsaturated soil conditions. For detailed descriptions of functionalities, the

reader is referred to (Baum et al., 2008)

For saturated initial conditions, Iverson (2000)’s suggested approach is applied to obtain general solutions for

permeable and impermeable basal layers. Pressure head is computed at various depths and times, involving both a

steady and transient part. The former depends on initial water table depth, a steady infiltration rate (IZ ), saturated

hydraulic conductivity (KS ) and slope angle, while for the transient part, time-varying precipitation is introduced

resulting in vertical downward seepage and pressure diffusion.

For unsaturated conditions, functions describing the relationship between hydraulic conductivity, volumetric

water content (θ) and matrix suction (ψ) are applied in the same framework as for the saturated solution. Estimated

excess seepage volume accumulating at the base of the unsaturated zone is compared to fillable volume for esti-

mating the water table rise. This volume is also applied as load on top of the water table, and pressure head below

is computed by means of diffusion equations. In practice, the unsaturated zone smooths and delays the surface

infiltration “signal” at depth, while negative pore pressures increase effective stresses.

The amount of precipitation exceeding soil infiltrability, which is variable for unsaturated but approximately

equal to Ks for saturated conditions, is treated as surface runoff. This amount is transferred to adjacent cells by a

simple, GIS-based runoff-routing scheme, and may infiltrate at a later stage.

The infinite slope stability model (Section 2.3.2) uses computed pressure heads to estimate factor of safety cell

by cell at several depths, and the first location of FS < 1 is considered the depth of failure. For the unsaturated zone,

the stabilizing effect related to matrix suction is accounted for by multiplying pressure head by the effective stress

20
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parameter (Vanapalli & Fredlund, 2000).

TRIGRS uses an initialization text file listing input data, controlling analysis options and specifying which out-

put is saved (Table 3.1). Output is computed for chosen timesteps, and various options are available (e.g., a specific

number of iterations, the potential presence of a capillary fringe or the addition of a steady background flux to

prevent drying).

Table 3.1: Soil properties, spatial data and output files from TRIGRS. θs , θr and αG are required for unsaturated analysis only.
With the exception of slope angle, spatial data can assume a unique value for the entire analysis area. The production several
output files must be specified by the user.

3.2 Literature review

Aims and scope

TRIGRS is commonly utilized in physically based landslide modelling, but to my knowing, an overview of its usage

does not exist. Although summaries have been provided (e.g., Park et al. 2013), these have covered only a fraction

of applications. Therefore, a literature review is conducted with the following aims:

• To provide a qualitative and semi-quantitative summary of TRIGRS applications, and

• To serve as a guide for further reading - both for this thesis and for others interested in applying the model

The review examines all scientific papers concerning TRIGRS applications that have been published between

2008 (i.e. the year when the unsaturated version was introduced) and early autumn 2020. All applications are

considered: from local case studies to incorporation in a large-scale warning system.

Following common practice in review articles (e.g., Segoni et al., 2018, Reichenbach et al., 2018), only En-

glish, peer-reviewed papers from journals indexed in the SCOPUS database are included. SCOPUS is ELSEVIER’s

(https://www.elsevier.com/) abstract and citation database, and contains a comprehensive list of independently

reviewed journals (SCOPUS, 2019) whose prestige is evaluated by the Scimago Journal and Country Rank (SJR,

Guerrero-Bote and Moya-Anegón, 2012). Consequently, non-indexed journals, book sections , discussions, confer-

ence proceedings, technical notes and publications part of the "grey literature" are neglected.
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Information retrieval and storage

Relevant papers are registered in an excel workbook, where specific fields of information are grouped in four cate-

gories:

• Basic information considers identification and context, and includes year of publishing, author(s), paper title

and name of journal.

• Study area describes where and under what conditions applications were performed. Study area sizes were

registered, but climatic and geological conditions were not due to considerable variation in methods of re-

porting. The type(s) of investigated landslides was also indicated, together with potential considerations of

snowmelt and vegetation effects.

• Input data includes information on type and quality of various model requirements. Landslide data was

registered in terms of point features, polygon features or a combination of both, while methods for estimat-

ing soil depth were noted. DEM-resolutions were registered, along with sources of rainfall data (e.g., rain

gauges, remote sensing). Estimations of initial hydraulic soil conditions were registered in terms of engineer-

ing judgement, monitoring, modelling etc., while choices of geotechnical and hydraulic parameters were

registered in terms of method (e.g., field tests or literature) and spatial heterogeneity (e.g., uniform values or

property zones).

• Evaluation considers if and how evaluation was performed, and, to some extent, the obtained results. Con-

sidering that several methods have been used simultaneously, only those with most complexity or signif-

icance were registered (simpler methods were therefore disregarded). Registration of results was difficult;

only reported AUC-values and short notes describing authors’ subjective opinions were stored.
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Table 3.2: Papers included in this thesis’ literature review.

Paper Title
Godt et al., 2008 Transient deterministic shallow landslide modeling: Requirements for..
Kim et al., 2010 Predicting the rainfall-triggered landslides in a forested mountain region..

Sorbino et al., 2010 Susceptibility analysis of shallow landslides source areas..
Liao et al., 2011 Evaluation of TRIGRS (transient rainfall infiltration and grid-based..

Montrasio et al., 2011 Towards a real-time susceptibility assessment of rainfall-induced..
Kim et al., 2013 Modeling the contribution of trees to shallow landslide development..
Park et al., 2013 Landslide and debris flow susceptibility zonation using TRIGRS for the..

Grelle et al., 2014 Space-time prediction of rainfall-induced shallow landslides through..
Raia et al., 2014 (USA) Improving predictive power of physically based rainfall-induced..
Raia et al., 2014 (Italy) Improving predictive power of physically based rainfall-induced..

Alvioli et al., 2014 Scaling properties of rainfall induced landslides predicted by a..
Bordoni et al., 2015 Site-specific to local-scale shallow landslides triggering zones..

Saadatkhah et al., 2015 Hulu Kelang, Malaysia regional mapping of rainfall-induced landslides..
Chien et al., 2015 Warning model for shallow landslides induced by extreme rainfall

Schilirò et al., 2015 Evaluation of shallow landslide-triggering scenarios through..
Alvioli and Baum, 2016 Parallelization of the TRIGRS model for rainfall-induced..

Lee and Park, 2016 Assessment of shallow landslide susceptibility using the transient..
Seefelder et al., 2017 Does parameterization influence the performance of slope stability..

Saadatkhah et al., 2016 Regional modeling of rainfall-induced landslides using TRIGRS..
Peres and Cancelliere, 2016 Estimating return period of landslide triggering by Monte Carlo..

Gioia et al., 2016 Application of a process-based shallow landslide hazard model over..
Viet et al., 2017 Effect of Digital Elevation Model Resolution on Shallow Landslide..

Zhuang et al., 2017 Prediction of rainfall-induced shallow landslides in the Loess..
Tang et al., 2017 Dynamic assessment of rainfall-induced shallow landslide hazard
Wu et al., 2017 A probabilistic model for evaluating the reliability of rainfall thresholds..

Tran et al., 2017 Comparing the performance of TRIGRS and TiVaSS in spatial and..
Stancanelli et al., 2017 A combined triggering-propagation modeling approach for the..

Zieher et al. (2017) Sensitivity analysis and calibration of a dynamic physically based..
Tran et al., 2018 Three-dimensional, time-dependent modeling of rainfall-induced..

Vieira et al., 2018 Assessing shallow landslide hazards using the TRIGRS and SHALSTAB..
Weidner et al., 2018 Regional-scale back-analysis using TRIGRS: an approach to..

Alvioli et al., 2018 Implications of climate change on landslide hazard in Central
Schilirò et al., 2018 Shallow landslide initiation on terraced slopes: Inferences from..
Ciurleo et al., 2019 Landslide susceptibility assessment by TRIGRS in a frequently..
Hsu and Liu, 2019 Combining TRIGRS and DEBRIS-2D models for the simulation of a rainfall..
Dikshit et al., 2019 Estimation of Rainfall-Induced Landslides Using the TRIGRS Model
Chen et al., 2019 Precipitation data and their uncertainty as input for..

Hidayat et al., 2019 Development of a landslide early warning system in Indonesia
Marin and Velásquez, 2020 Influence of hydraulic properties on physically modelling slope..

Al-Umar et al., 2020 GIS-based modeling of snowmelt-induced landslide susceptibility of..
Sarma et al., 2020 Influence of digital elevation models on the simulation of..

Marin and Mattos, 2020 Physically-based landslide susceptibility analysis using Monte..
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Results: basic information

Table 3.3: Journal titles, corresponding Scientific Journal Scores (SJR) and the
number of papers associated with each journal.

A total of 42 papers are identified (Ta-

ble 3.2), published in 23 different scien-

tific journals (Table 3.3). Journals represent

various sub-fields within "Earth and Plan-

etary Sciences" and "Environmental Sci-

ences". Papers are published every year ex-

cept for 2009, with the maximum (7 papers)

in 2017 (Fig. 3.2b). An increasing activity

is observed; in fact, 50% of papers are pub-

lished in the last four years (neglecting pa-

pers published during late 2020).

TRIGRS is applied in a number of loca-

tions (Fig. 3.1). Studies are reported in all

inhabited continents except Africa, while

clusters are found in Italy (13 studies) and

South Korea (7 studies) with USA, Taiwan,

China and India as the following most rep-

resented countries (Fig. 3.2a). Fig. 3.2b

also shows the cumulative number of coun-

tries applying TRIGRS throughout the re-

view period. After a longer period of USA,

Italy and South Korea only, a large addition

of new countries has occurred from 2015 onwards.
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Figure 3.1: Global spatial distribution of TRIGRS applications.

(a)
(b)

Figure 3.2: (a) Number of papers published for each country. (b) Temporal distribution of applications, along with the cumula-
tive number of identified countries.

Results: study areas and input data

Study area extents range from the 0.014 km2 Bongwha catchment in Korea (Kim et al., 2013) to the 4098 km2

Upper Tiber River Basin of Central Italy (Alvioli et al., 2014; Alvioli et al., 2018). While median area size is 5 km2, the

average size 362 km2 due to large-scale outliers. The most common study area extent within 1–10 km2 (Fig. 3.3a),

while areas at slope scale are not represented except from papers focused in ground water monitoring (Bordoni

et al., 2015). For 10 papers, areal extent was not specifically mentioned but could be estimated from scaled figures.

Unfortunately, for 4 papers areal extent was neither mentioned nor estimable. One paper considered a range of un-

described area extents due to TRIGRS being incorporated in a large-scale landslide early warning system (Hidayat

et al., 2019).
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(a) Scales of study areas
(b) Landslide data

(c) Rainfall data
(d) DEM resolutions

Figure 3.3: Identified spatial data for TRIGRS applications.

All papers consider prediction of shallow landslides (Section 2.3), either directly or through empirical correla-

tions between unstable cells and expected frequency of debris flows (e.g., Stancanelli et al., 2017). In fact, 9 papers

evaluate debris flow susceptibility only, assuming triggering by pore pressure increase. Landslide data is typically

compiled from field studies, remote sensing or a combinations of both (e.g., Park et al., 2013; Zieher et al., 2017).

Most papers (19) utilize landslide scars (source area polygons) for comparative evaluations (Fig. 3.3b: among these,

one paper estimates scars as the upper third of total paths (Seefelder et al., 2017). Several papers (15) instead rely

on landslide point data, while one paper (Montrasio et al., 2011) uses buffers around points as an approximation

of scars. For a number of papers (7) landslide data is irrelevant, as issues such as climate change implications on

slope stability (Alvioli et al., 2018) and model parameterization (e.g., Marin and Velásquez, 2020) are explored.

Rainfall data is gathered from various sources (Fig. 3.3c), but the majority of papers (26) rely on one or more

rain gauges. Single gauges are used in the absence of other rainfall data or if considered representable for the entire

study area, but data from several gauges is also combined through some interpolation technique (e.g., Tran et al.,

2017; Zieher et al., 2017; Alvioli et al., 2018). Data from remote sensing (typically radar) is applied in 5 papers,

although commonly verified by rain gauge measurements. Finally, rainfall data is not always employed; empirical
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rainfall thresholds known to induce slope failure are used to e.g., evaluate a probabilistic version of TRIGRS (Raia

et al., 2014), while "synthetic" (hypothetical) rainfall scenarios are used to investigate area response to a range of

situations (e.g., Peres and Cancelliere, 2016).

Different digital elevation model (DEM)-resolutions are applied (Fig. 3.3d), of which the most used area 10m*10m

(9 papers) and 2m*2m (7 papers). Maximum reported resolution is 1m*1m (Tran et al., 2018), while the lowest is

40m*40m (Chien et al., 2015). 3 papers consider different resolutions to evaluate corresponding effects on predic-

tion accuracy, while two papers leave resolution unmentioned.

Fig. 3.4a shows the most common methods employed for estimating geotechnical and hydraulic parameters.

A majority (26 papers) rely on field tests, 2 papers use literature values only while 11 papers utilize a combina-

tion of field tests, literature and calibration. Representativeness of tests is variable, but the number of field tests

or test types were not registered. Unfortunately, 3 papers do not mention how parameters were obtained. Note

that a number of papers placed in the “field tests”-category for soil properties used literature values for hydraulic

diffusivity (D0) and background infiltration rate (Iz ).

Most papers 19 papers apply homogenous soil properties, while the most common method for defining soil

property zones relies on soil maps (15 papers) (Fig. 3.4b). Map accuracy and resolution is seldom addressed,

but typical resolutions are 1:10 000 (Montrasio et al., 2011) and 1:100 000 (Saadatkhah et al., 2016). The “others”-

category includes differentiation based on vegetation-land use (Schilirò et al., 2018) or more or less loosely defined

areas (e.g., Hidayat et al., 2019), while only one paper makes use of interpolation techniques (Lee & Park, 2016).
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(a) Soil properties (b) Spatial heterogeneity of soil properties

(c) Initial water tables (d) Soil depth estimations

Figure 3.4: Identified methods for obtaining geoetechnical and hydraulic data for TRIGRS applications.

Different approaches are identified for estimating initial hydrological conditions (Fig. 3.4c). A number of papers

(12) assume the water table is located at the soil’s lower boundary; either due to distinctly dry conditions or a lack

of data. Field tests (3 papers) - or in more extended form, field monitoring - (6 papers) provide increased detail.

Ground water levels are also mathematically modelled (3 papers), varied through sensitivity analyses or calibration

procedures (8 papers) or not mentioned at all (9 papers).

Approaches for estimating soil depth range from uniform values to identification of complex relationships with

topographical factors (Fig. 5.2). The former (18 papers) is generally the case when required level of detail is low or

uniform/almost uniform soil depth can reasonably be assumed (e.g., Sorbino et al., 2010; Ciurleo et al., 2019; Park

et al., 2013). On the other hand, 21 papers model spatially distributed soil depth, while among these, 16 papers

utilize either a linear or exponential relationship to slope angle. The "others"-category of Fig. 5.2 includes 5 papers

utilizing additional explanatory variables such as contributing area (Alvioli & Baum, 2016), curvature (Tang et al.,

2017) and relative position on slope (Schilirò et al., 2018). Also, it is worth noting that Kim et al. (2013) perform

interpolation based 109 individual tests, although their study area was barely 100m across.

Vegetation effects are rarely considered. Only 5 papers apply root cohesion and tree surcharge (e.g. Park et al.,

2013), while generally, the issue is not discussed at all.
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(a)

(b)

Figure 3.5: (a) Main identified evaluation methods. (b) Maxi-
mum reported AUC-values.

Results: evaluation

Main identified evaluation methods are shown in Fig.

3.5a. "Qualitative/simple quantitative" methods are used

in 5 papers, and include e.g., purely qualitative map

comparisons, simple reporting of FS-values, and per-

centages of cells unstable at various times. The most

common approach is ROC, both as curves (e.g., Zieher

et al., 2017) and one or more point-values (e.g., Lee and

Park, 2016). A subset of papers evaluated performance

in terms of AUC, whose values are reported in Fig. 3.5b).

Since its introduction (Park et al., 2013), LRc l a s s has

been used by 6 papers, although interestingly, only in

Asia. A few papers (3) use various other performance

indexes. Finally, evaluation is neither performed nor

desirable for 9 papers, while for 2 papers only the for-

mer is true.



Chapter 4

Case study: Jølster, Western Norway

4.1 The case study

4.1.1 Jølster, Western Norway

Jølster of Indre Sunnfjord municipality is located in Vestland County, western Norway (Fig. 4.1b). About 3000

inhabitants (SSB, 2016) live relatively spread across rural 620 km2, with main villages being Skei, Vassenden and

Langhaugane. Main sectors are agriculture, tourism, public administrations and service, while limited industry is

present except hydropower (Thorsnæs & Askheim, 2020).

This thesis’ study area (Fig. 4.1A, 235.356 km2) is centered around Vassenden at the western shore of lake Jøl-

stravatnet. It covers the area subject to landsliding during the case event (Section 4.2.1) and precipitation analysis

by Sandvoll (2020).

30
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Figure 4.1: (A) The study area, centered around the western shore of lake Jølstravatnet. (B) Jølster’s location in western Norway.
(C) Eastwards view from the northern shore of lake Jølstravatnet. From Google Street View (https://www.google.no/maps/).

(a) (b)

Figure 4.2: The study area’s topography: (a) slope angles (1m*1m DEM) and (b) elevation (1*1m DEM).

Jølstravatnet (206.1–207.5 m.a.s.l.) and the river Jølstra are facilitated by a main, east–west, glacially eroded

U-valley. To the north is another significant northeast—-southwest valley, while numerous, typically north–south

sub-valleys are also present. Steep slopes (Figs. 4.1C 4.2a) rise from the lake in alpine fashion, reaching peaks of

more than 1400 m.a.s.l. (Fig. 4.2b). Glacial erosion has created bands of steep cliffs on west-facing slopes, while

https://www.google.no/maps/
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topography is more rounded in the opposite direction.

Figure 4.3: Soil types for the study area. Soil maps are described in Section 4.2.3.

Quaternary geology is dominated by glacial basal till of decreasing depth and continuity with altitude (Fig. 4.3).

Landslide material is deposited proximal to cliffs, while little or no soil is found above 600-800 m.a.s.l. Limited

zones of other types of terminal and ablation till, peat, bog, fluvial and marine sediments are also present. Bedrock

mainly consists of gneiss, with sparse regions of quartz-monzonite / monzonite, meta-sandstone and amphibolite.

Climate is maritime, although affected by topography. Precipitation, which is typically above 2000 mm annually

(Hefre et al., 2019), decreases eastwards and shows considerable seasonal variation (Fig. 4.4).
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Figure 4.4: Average precipitation for rain gauges in / close to Jølster. Figure from Hefre et al. (2019.

Figure 4.5: Historical (purple) and case event (blue) landslides registered in
the national landslide database (Section 4.2.1).

Historically, Jølster has been severely

prone to landsliding (Fig. 4.5). Detailed

hazard mapping has been performed in

certain prioritized Norwegian areas (NVE,

2011), and Hefre et al. (2019) mapped parts

Jølster not long before the case event. De-

bris flows and slush flows were identi-

fied as dominating landslide types, while

avalanches and rockfalls also posed risk.

Additionally, after the event, Sandersen and

Høydal (2019) performed supplementary

mapping and gave suggestions for mitiga-

tion measures for one affected area.
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4.1.2 The event: July 30, 2019

July of 2019 was unusually dry (Fig. 4.6). On Monday July 29, an east-moving low-pressure front mixed with warm

air and created cumulonimbus-clouds through convection (Sandvoll, 2020). Weather forecasts for the following day

indicated 50–90mm total rainfall and peak intensities of 15-20mm/h (Sandvoll, 2020), and corresponding warn-

ing level issued from MET (The Norwegian Meteorological Institute) and NVE (The Norwegian Water Resources

and Energy Directorate) read “yellow” or “severe thunderstorms with relatively low consequences” (Agersten et al.,

2019). No landslide warning was issued due to dry initial conditions and relatively unextreme forecasts.

Figure 4.6: Daily precipitation for July, 2019 from rain gauges within or close to the study area (MET, 2021). Note that the closest
rain gauge, "E39 Vassenden", did not record at the day of the event due to technical issues.

An additional low-pressure front joined the mix (Agersten et al., 2019), and the combination of two high- and

low-pressure fronts led to a stationary weather situation with unexpectedly high levels of precipitation (Sandvoll,

2020). Locality of rainfall is reflected in (Fig. 4.6).
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(a) 12:00–13:00 (b) 14:00–15:00

(c) 15:00–16:00 (d) 16:00–17:00

(e) 18:00–19::00 (f) 20:00–21:00

Figure 4.7: Precipitation radar estimates for July 30, 2019, local time. The legend, enlarged in (a), is similar for all sub-figures.
Radar data is described in Section 4.2.2.
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First rainfall occurred at 12 AM in eastern parts of the area (Fig. 4.7a). Although precipitation intensities and

storm extent increased during the following hours (Fig. 4.7b), authorities evaluated the situation as safe based

on prior experience (Sandvoll, 2020). Intensities increased at about 3 PM as the storm moved westwards, while

between 15 and 16 PM, 20–30 mm/h poured down at central parts of the study area (Fig. 4.7c). Then, towards 5PM,

extreme intensities of up to 85 mm/h were in central and western parts (Fig. 4.7).

Extreme precipitation resulted in numerous landslides, first reported at 16:26. Roads on both lake sides closed,

power supply and communication lines were cut and evacuation began. County road 5690 (country road 451 ear-

lier), at the south side of the lake, was opened for traffic after 7 PM due to calming decreasing intensities (Figs. 4.7e,

f). However, well after maximum precipitation, two additional landslides, of which one had fatal consequences, hit

the road at approximately 8:45 PM.

In total, 120 landslides initiated within the study area, 150 people were evacuated, one person lost its life and

severe damage occurred on private property and infrastructure. The scale of consequences was due to limited

warning and the sheer number of landslides (Rouault, 2020), and the event is regarded among Norway’s most severe

shallow landslide catastrophes.
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4.2 Input data

4.2.1 Landslides

The compiled landslide inventory of July 30, 2019 is unusually rich, originating from several sources. Following is a

description of data sources, selection of relevant landslides and method of preparation.

Data sources

A national landslide database (henceforth, NLDB) is available in Norway (https://temakart.nve.no/tema/SkredHendelser),

including more than 3000 landslides of various subtypes. Although duplicates, spatial bias towards road net-

works and inaccuracies in classification, location and time of occurrence are present (Rouault, 2020), it provides

an overview of landslide activity and is used in e.g., hazard mapping. NLDB lists 16 landslides for the case event

(Fig. 4.8), typically in close proximity to people and thereby reported in the news. Landslide polygons represent

full landslide areas (sources, tracks and deposits), while types are registered as either “flomskred” or “jordskred”. Of

importance are initiation times with accuracies of ±15–30 minutes, but other information is limited.

Landslides are also mapped as part of a PhD-project (Rouault, 2020; Lindsay et al., in prep.). "Change in Nor-

malized Difference Vegetation Index” (δNDVI) from satellite Sentinel-2 was utilized, and 104 additional landslides

(full landslide scars) where identified and classified as either debris flows, debris avalanches or debris slides. Re-

liability was verified by GPS, helicopter, drones and field surveys, and the method was found valuable in reducing

shortcomings of landslide databases (Lindsay et al., in prep.). As opposed to the NLDB, the δNDVI dataset contains

small, remote soil slips barely visible one year after the event, which would typically go unnoticed with conventional

mapping. However, the dataset lacks information on e.g., occurrence times, initiation mechanisms and geology.

https://temakart.nve.no/tema/SkredHendelser
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Figure 4.8: All identified landslides for July 30, 2019. Note that considerable overlap between datasets is present.

A subset (51) of landslides already mentioned have been subject to detailed field investigations (Rüther et al.,

in prep.). These (henceforth, field data) provide increased spatial accuracy by delineating source areas, tracks and

deposits and classifying landslides in terms of "jordskred" and "flomskred", and include qualitative information

on geological conditions and vegetation, as well as selected source area geometries, slope angles and soil depths.

Unfortunately, geotechnical and geological parameters are not accounted for.

In summary, a total of 120 landslides of high spatial accuracy are identified for an extensive study area. Some

include spatial data only, while others have been subject to field studies and are delineated in source area, track

and deposit. Time of occurrence is largely unknown, except for landslides registered in the NLDB.

Data preparation

TRIGRS considers source areas initiated by pore pressure increase only. To utilize landslide data in calibration and

performance evaluation, the following preparation was performed:

1. Selection of relevant landslides (29 landslides excluded from δNDVI and field data)

2. Manual delineation of source areas (δNDVI)
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3. Preparation of failure grids

The δNDVI dataset contains various landslide types, classified based on whether propagation continued for a short

or long distance, within or outside preexisting channels (Erin Lindsay, personal communication). Therefore, land-

slides described as “river erosion” were excluded, along with "debris flow" source areas located within distinct

rivers. Also excluded were landslides overlapping field data, as the latter was considered more reliable.

Similarly, field data includes various landslide types (Denise Rüther, personal communication). Excluded were

debris floods (recognized by no specific source area) and landslides which source areas were described as “eroded",

"washed away" etc. A number of landslide tracks follow streams and were described as having “transformed from

“jordskred” into “flomskred”, but these were generally included.

Figure 4.9: An example of manual source area delineation for the δNDVI
dataset.

Further, for the δNDVI dataset, man-

ual delineation of source areas (Fig. 4.9)

was performed under the assumption that

source area extents were similar in size and

geometry to those identified by Rüther et

al. (in prep.). The latter generally showed

quadratic or rectangular (longer than wide)

shapes, with typical lengths of 10-30m.

The definition of correct predictions was

necessary to prepare failure grids (raster-

ized maps of source areas). As mismatches

in resolution between model output and

source areas are unavoidable, these were,

following the approach of Zieher et al.,

(2017), defined as if "any part of a source area intersected a model cell of FS<1". Consequently, due to require-

ments of ArcGIS Pro’s "polygon to raster"-tool, source area polygons were expanded in order to overlap raster cell

midpoints (Fig. 4.10).
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(a) (b)

Figure 4.10: The definition of of correct predictions in 50*50m resolution: (a) original source areas and (b) the resulting failure
grid. Source areas increase in size; the uppermost area, originally ca. 20m across, is effectively treated as 100*100m.

Finally, to provide an overview of landslide characteristics, a simple statistical analysis was performed on the 91

source areas identified as relevant.

4.2.2 Precipitation and hydraulic conditions

Precipitation

Precipitation estimates from weather radar (mm/5min, 250 meters spatial resolution) were originally prepared for

Sandvoll (2020) by Christoffer Elo at The Norwegian Meteorological Institute (MET). In that thesis the dataset was,

through comparisons to nearby rain gauges, landslide locations and occurrence times, as well as interviews with

local residents, considered superior to other data sources in capturing local intensities and is therefore also used in

this thesis.

Intensities were summarized over each storm storm hour, resulting in 14 separate data files ranging from 12:00

to 02:00 the day after the event (Table 4.1 ). For compatibility, a factor of 2.778e-7 was applied to convert intensities

from mm/h to m/s. Additional daily rain gauge measurements, used for evaluating antecedent conditions, were

downloaded from "SeKlima" (MET, 2021).
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Table 4.1: Precipitation periods and hourly intensities for sub-areas Årnes and Slåtten. Note the different storm behaviours.

Initial hydraulic conditions

Initial hydraulic conditions include depth of groundwater table, background infiltration rate and a general assess-

ment of whether saturated or unsaturated analysis is most suitable. Groundwater levels from measuring station

“Førde/Moskog rør 3” were downloaded from "SeNorge" (http://www.senorge.no/index.html?p=senorgeny&st=

water), while distributed groundwater levels leading up to the event, estimated by NVE through a series of HBV-

models (Sælthun, 1996), were downloaded from "Xgeo" (http://www.xgeo.no/index.html?p=fag).

http://www.senorge.no/index.html?p=senorgeny&st=water
http://www.senorge.no/index.html?p=senorgeny&st=water
http://www.xgeo.no/index.html?p=fag
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4.2.3 Soil

Types and properties

The spatial distribution of soil types (Fig. 4.3) was represented through Quaternary geology maps, prepared by the

Geological Survey of Norway (NGU, 2017). Considering landslide-prone areas, three soil types were identified as

relevant: till (both continuous and discontinuous), landslide material and “bare rock”. Only brief comments on soil

depth were included in maps, such as "more than 0.5m soil depth". Soil properties, including geotechnical and

hydraulic parameters, were estimated in part from literature (Section 4.3) and in part through calibration (Section

4.4.2).

Soil depth

The spatial pattern of soil depth is a function of several interplaying factors, such as lithology, climate, slope, terrain

curvature, upslope contributing area, and vegetation cover (Catani et al., 2010). To reduce uncertainties, various

approaches for estimating soil depth have been suggested and applied (Fig. 5.2, both within landslide modelling

and other disciplines. Linear (e.g., Saulnier et al., 1997) and exponential (e.g., Delmonaco et al., 2003) relationships

to slope are commonly applied, while other explanatory variables (e.g., curvature and relative location on slope)

have also been successfully used (Godt et al., 2008).

For this thesis, 27 in situ source area soil depth observations were available (Rüther et al., in prep.). Plausible

explanatory variables (altitude and slope angle) were tested for correlation with soil depth, using statistical software

"Minitab"’s (Minitab) linear and exponential regression. Additionally, observations were grouped on the basis of

soil type and sub-area affiliation for possibly increased correlation. Finally, as DEM elevation errors propagate

through each subsequent map (Haneberg, 2006), effects of DEM inaccuracies on final soil depth predictions were

assessed. All predictions were evaluated using the coefficient of determination (R2).

Additional soil depth data was downloaded from the National Groundwater Database (GRANADA, https://

www.ngu.no/prosjekter/granada). Slope gradients at well locations from 1m and 10m resolution DEMs were tested

as explanatory variables similarly to field measurements, and soil depths for soil types "continuous till" and "thin

or discontinuous till" were evaluated separately. Numerous wells had either zero or no number in their soil depth

attribute field; these were excluded, as it was uncertain whether these represented "no soil" or “no measurements”.

4.2.4 Vegetation

Vegetation maps were obtained through NIBIO’s (Norwegian Institute of Bioeconomy Researc)’ "AR50" (NIBIO,

2016) and "Sat-Skog" (Gjertsen & Nilsen, 2012). The former is a simplification of the more detailed areal resources

maps “AR5”, which due to low resolution (1:50 000) is unsuited for quantitative analysis but suitable for visual-

ization. The latter is generated through a combination of satellite data and reference points, providing increase

resolution.

https://www.ngu.no/prosjekter/granada
https://www.ngu.no/prosjekter/granada


CHAPTER 4. CASE STUDY: JØLSTER, WESTERN NORWAY 43

4.2.5 Digital topography

Digital elevation models (DEMs) of 1m, 10m and 50m resolution were downloaded from Høydedata (https://hoydedata.no/LaserInnsyn/),

a governmental public platform with data from various cooperators. DEMs form the basis for other data, and slope

angles, flow directions and hillshade maps were created for each resolution in ArcGis Pro (Esri Inc., 2021)). Air-

borne laser data (2 points per m2) was also available (Terratec, 2016), but remained unused due to computational

requirements.
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4.3 Model parameterization

Model input parameters not subject to calibration were estimated on the basis of available data, and were assumed

as spatially uniform across the study area.

4.3.1 Unit weight of soil

Unit weight of soil was set equal to 20 kN/m3, similar to the value used by Melchiorre and Frattini (2012) in their

application of a physically based model in Otta, Norway.

4.3.2 Unsaturated parameters

Figure 4.11: The Jølster till sample (grain size curve no. 16) from Opsal and
Langeland (2019). (A) Location. (B) Field picture. (C) Grain sizes. The rele-
vant sample is no. 16, while "province G" refers to a particular source rock
province. The upper table denotes reported properties.

Parameters relevant for unsaturated anal-

ysis only, i.e., saturated volumetric wa-

ter content (θs ), residual volumetric water

content (θs ) and Gardner’s alpha (αg ), were

estimated following the approach from

Schilirò et al. (2015). Although unsatu-

rated parameters are optimally obtained

through field tests (Godt et al., 2008), it was

instead relied on pedotransfer functions;

these are empirical relationships between

easily (e.g., grain size distribution) and less

easily (e.g., α) measured soil properties.

Bulk density (1.62g /cm3), grain size dis-

tribution and certain soil mechanical pa-

rameters for one sample of Jølster till were

available (Fig. 4.11; Opsal, 2017; Opsal and Langeland, 2019). Although fine material (silt and clay, 4.2% of total

sample) was not separated, it was assumed that the majority was silt. Quantities 1.65% clay, 8.24% silt and 90.1%

sand (percentages of clay, silt and sand excluding coarser material) were therefore along with bulk density used

as input in the “Rosetta Lite” pedotransfer module (Schaap et al., 2001), encoded in the Hydrus 1-D hydrologi-

cal model (Simunek et al., 2008). The module consists of a hierarchical, increasingly complex set of functions,

which based on neural networks estimate Van Genuchten-Mualem hydraulic parameters (Mualem, 1976; M. T. van

Genuchten, 1980) with “reasonable” performance. To convert Rosetta Lites’s alpha (αv g ) to αg , formulas suggested

by Ghezzehei et al. (2007) were applied. The “capillary drive” (1) and “capillary-length” (2) approaches yielded

different results (Table 4.2), both of which were later tested in simulations. Rosetta Lite also estimates saturated

hydraulic conductivity, but this value was applied only in unsaturated analysis.
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Table 4.2: Unsaturated parameters, their abbreviation, estimation method and predicted values. N is an intermediate parameter
used in the conversion of α-values.

4.3.3 Initial groundwater table

The initial groundwater table was assumed uniformly located at the intersection between soil and bedrock. This

is a common assumption in literature (Fig. 3.4c), and if we compare recorded precipitation for July 2019 (Fig. 4.6)

to average precipitation for July (Fig. 4.12b), the month emerges unusually dry after July 4th . Further, observed

groundwater level in the valley bottom was more than 1.5m below the 25th percentile (Fig. 4.12a, while modelled

(Figs. 4.12c, d) levels indicate low or very low levels depending on location.
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(a)
(b)

(c) (d)

Figure 4.12: Basis for assuming initial groundwater levels. (a) Monthly precipitation normals for a subset of rain gauges in close
proximity to the study area. Figure from Hefre et al. (2019). (b) Monthly precipitation normals for a subset of rain gauges in close
proximity to the study area. Figure from Hefre et al. (2019). (c) and (d) Modeled, distributed groundwater conditions for Jølster
at July, 30 (before the event) and July 31 (after the event), in correspondence to the study area extent. Legend in Norwegian; red
= very low/deep, blue = very high/shallow.

4.3.4 Background infiltration rate

Table 4.3: Average two-week precipi-
tation rates antecedent to July 30, 2019
for rain gauges close to the study area.

Various methods for estimating background infiltration rate (Iz ) are iden-

tified in literature. The approach used by e.g., Baum et al. (2008), which

simply utilizes average precipitation for two antecedent weeks, yields values

of Iz according to Table 4.3 for Jølster. However, simpler methods such as

Iz = 0.01∗Ks (e.g., Liu & Wu, 2008) also exist, which would result in Iz = 6.29e-

7 m/s if using Ks estimated by Rosetta Lite (Table 4.2). Due to uncertainties in

the theoretical basis and desired conservativity, a rather high value if IZ = 1e-7

m/s was applied throughout all simulations.
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4.4 Modelling procedure

4.4.1 Performance evaluation

Evaluation criteria are necessary for evaluating performance and identifying optimal parameter combinations, but

a platitude of methods are identified in literature (Fig. 3.5a). For this thesis, four criteria were applied:

• D2PC (Eq. 2.7), which evaluates performance at T f s = 1, is applied due to its relationship with ROC and usage

in calibration by Zieher et al. (2017).

• As an attempt to avoid the adverse effects induced by unconditionally stable cells, I introduce the term “crit-

ical cells”. These are cells that may potentially fail; these are here defined by upper and lower slope angle

limits of 50° and 20° respectively, but should be specifically evaluated for each independent case. Cells of

slope angles above or below these limits are considered unconditionally stable due to little soil and too low

slope angles for initiation respectively. “Critical negatives” (N*), defined as the number of critical cells minus

the number of positives, may thus be notably fewer than initially considered. Now, a modified false positive

rate (FPR*), defined as FP/N*, may be plotted in the ROC-space and yield the second evaluation criterion,

D2PC*.

• Critical success index (CSI), initially applied in evaluation of a landslide early warning system (Cheung et al.,

2006), is applied due to its neglection of true negative cells. Defined as TP/(TP+FP+FN), it may (almost) be

thought of as “the number of correctly predicted landslides per wrong prediction".

• As an alternative measure, MCC (Eq. 2.6) considers performance in all four contingency matrix categories

(Eq. 2.6). Regarded as more robust than many other measures (Chicco & Jurman, 2020; Vihinen, 2012), it is

not commonly used in landslide modelling.

For investigation of criterion effects, a similar calibration procedure was applied as for parameter back-calculation

(Section 4.4.2), although a 50*50m DEM was used across the entire study area for computational speed. Attention

was given to performance differences, and relationships between true positives, false positives and various criteria

across a range of parameters were explored. The negative to positive rate (N/P) was considered to explain true

positive bias in ROC, while N* was considered in relation to differences between D2PC and D2PC*. I distinguish

between overall performance (the amalgamated performance through a range of cut-off values/TF S , e.g., AUC)

vs. threshold-specific performance (at one specific TF S , e.g., D2PC, CSI). The former indicates a general ability

to rank-order cells, while the latter considers actual results at one instance. I also distinguish between objective

performance (absolute results) and relative performance (to other results).
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4.4.2 Calibration procedure

Table 4.4: Summary of Python scripts utilized in calibra-
tion. See Appendix A for full scripts.

Calibration for parameter back-calculation was performed,

with 10*10m DEM-resolution, for both saturated and unsat-

urated analysis. To automatize and improve the procedure,

scripts were written in Python with the ability to generate

TRIGRS initiation files, repeatedly execute TRIGRS and eval-

uate model performance through a desired set of measures

(Table 4.4, full scripts in Appendix A).

Two distinct sub-areas were chosen for independent cal-

ibration, in such way that parameters would later be applied

over the entire study are. This significantly reduced com-

putation time and provided the ability to explore whether

local-scale calibration was sufficient for setting up a large-

scale model. “Årnes” and “Slåtten” (see areas of Fig. 4.8)

were chosen on the basis of data availability (field studies,

known landslide occurrence times), representativeness (rel-

evant soil types covered) and importance (damages, media

coverage).
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Table 4.5: Parameters varied in saturated and unsaturated cali-
bration. N refers to the number of simulations.

Non-calibrated model input was set according to

Section 4.3. Then, for each sub-area, four sensitive pa-

rameters (cohesion, friction angle, diffusivity and satu-

rated hydraulic conductivity) were systematically var-

ied in simulations within ranges given in Table 4.5.

Sensitive parameters were chosen according to rele-

vant literature on sensitivity and back-calculation (e.g.,

Melchiorre and Frattini, 2012; Bordoni et al., 2015;

Zieher et al., 2017), while ranges were chosen partly

from literature (e.g., values reported by Melchiorre and

Frattini, 2012) and partly by "try and fail" in order to

cover both stability end-members.

Results were first evaluated in terms of correct and

wrong predictions, with all landslides except Årnes

assumed to occur at some point between 16:00 and

17:00. Parameter sets not adhering to basic require-

ments were neglected; such requirements were, follow-

ing the approach of Zieher et al., (2017): 1) All cells are stable at 13:00 (before intense rainfall), and 2) most failure

is predicted during and after the most intense rainfall (significant decrease in stability between 15:00 and 17:00).

Table 4.6: Names, abbreviations and definitions of "error
magnitudes".

Parameter combinations were further rank-ordered by

evaluation criterion, and optimal parameters were identi-

fied. As argued in Section 6.3, different criteria measure dif-

ferent aspects of performance, and as the choice of one sin-

gle criterion was challenging, two very different measures

(D2PC and CSI) were applied. Parameters for Årnes and Slåt-

ten were assumed representative for till and landslide material respectively, and exported to the entire study area

where a limited number of simulations were performed due to computational limitations. Performance of the opti-

mal, full-area simulation was finally subject to assessment through a novel approach; error magnitudes (Table 4.6),

which considers non-binary performance, were spatially plotted in charts and maps along with contingencies



Chapter 5

Results

This chapter is organized in the following order: first, results from the statistical analysis of source areas are pre-

sented. Results from soil depth modelling come next next, forming an important basis for further simulations.

Then, effects of evaluation criteria are investigated, with saturated and unsaturated results presented separately at

the end.

5.1 Statistical analysis of landslide source areas

The majority of landslides initiated at some altitude, with only 11 source areas located below 400 m.a.s.l. (Fig. 5.1a).

Typical slope angles are 25°–−45°, although ranging from 18.9° to 53.5° (Fig. 5.1b). Though variance may slightly

decrease, no significant relationship between slope angle and elevation is present (Fig. 5.1c). Areas classified as "no

or limited vegetation" contain the majority of landslides (Fig. 5.1d); the majority occurred in deciduous and pine-

dominated forests, while interestingly, only 3 of 91 landslides initiated in spruce-dominated areas. Landslides are

mostly distributed between till, landslide deposits and "bare mountain" (Fig. 5.1e). Slope angles vary significantly

within soil types, although landslide deposits and bare mountain generally facilitate failure at higher slope angles

than till (Fig. 5.1f).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Results from the statistical analysis of source areas. Frequencies refer to the number of source area cells, not source
areas per se. (a) Elevation distribution. (b) Slope angle distribution. (c) Relationship between slope angles and elevation. (d)
Vegetation distribution. "Mixture" refers to varying quantities of pine, spruce and deciduous forest. (e) Soil type distribution.
(f) Slope angles for source areas of different soil types.
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5.2 Soil depth modelling

(a) (b)

Figure 5.2: Average source area soil depths from field studies. Observations are plotted vs. (a) altitudes and (b) average source
area slope angles. Colors indicate sub-areas of Fig. 4.8 (TF = Tindefjellet, N, E and S = north, east and south respectively).

Figure 5.3: Regression model examples for correlating soil depth
to slope angle.

Soil depth appears uncorrelated with altitude, but

slightly correlated with slope angle (Figs. 5.2a, b).

Grouping observations in sub-areas indicates differ-

ences: large variations in soil depth (0.1m–0.9m

for equal slope angles) occur in “Tindefjellet East”,

while landslides initiate at steep angles in “Tindefjellet

North”. A similar grouping on soil types was also tested,

but no meaningful results were obtained.

Examples of regression models based on 21 rel-

evant observations (low statistical robustness) are

shown in Fig. 5.3, while corresponding equations and

coefficients of determination are shown in Table 5.1.

Regression was performed to maximize R2 and minimize total absolute errors, but only linear and exponential

regression was considered in light of conventional approaches reported in literature
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Table 5.1: Coefficients of determination for soil depth regression models (calculated vs. observed thickness), digital elevation
models (DEM slope angles of source area cells vs. observed slope angles) and combinations of both (predicted thickness from
using DEM slope angles vs. observed thickness). θ is the slope angle.

Figure 5.4: Soil depths from energy- and groundwater wells for
two soil types vs. slope angles (1m DEM).

Digital elevation models are increasingly accurate

with resolution (Table 5.1), although errors of more

than 10° are present even at 1*1m resolution. The com-

bination of two error sources (soil depths and slope an-

gles) results in decreased values of R2 (14-17%) com-

pared to regression models alone.

Finally, neither altitude nor slope angle shows cor-

relation with well soil depths. But, "thin or discontinu-

ous till" consistently yields shallower soil than "contin-

uous till" (Fig. 5.4).
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5.3 Evaluation criteria effects

The full area (50*50m DEM) contains 94 605 cells, of

which 156 cells represent landslide source areas. The ratio N/P (stable/negative cells divided by unstable/positive

cells is thereby 605.4, while only 34 152 cells (36%) are identified as critical (Fig. 5.5).

Figure 5.5: Critical cells (20°< slope < 50°, not shaded) for the 50*50m DEM.

Optimal parameter sets vary by evalu-

ation criteria defined in Section 4.4.1 (Ta-

ble 5.2). This is especially evident for rela-

tive rankings (among 240 simulations per-

formed for criteria effect investigation), as

e.g., set “cv6” ranks 64t h in terms of CSI. In

fact, “Cv6” obtains the best D2PC, predicts

the highest number of positives, but also

has the highest FP/TP-ratio. On the other

hand, “cv5” predicts less than half the true

positives of cv6, performs worse at D2PC

but maximizes CSI. D2PC* and MCC are

optimized by equal parameter sets, while

the difference between D2PC and D2PC* is

modest. A visual representation of evaluation criteria effects on factor of safety is given in Fig. 5.6.

Identified parameters vary; decreased Ks and/or D0 apparently decreases stability, but no differences are found

within geotechnical parameters.

Table 5.2: Key results from investigating evaluation criteria effects: performance, relative rankings and identified parameters for
example parameter sets. "Criteria" refers to each set’s optimized criteria. φ and C did not vary between presented sets. TN and
FN are not included, but can be calculated knowing the area’s total number of negative (94 605 - 156) and positive (156) cells.
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(a) (b)

Figure 5.6: Comparison of factor of safety estimated by chosen parameter sets. (a) "cv5" and (b) "cv6", optimizing CSI and D2PC
respectively.

Figure 5.7: Unstable areas when applying an "optimal threshold" of TF S = 2,
which maximizes D2PC.

Adjusting T f s makes for identifica-

tion of an “optimal threshold” minimizing

D2PC. As an example, optimal threshold for

the parameter set with the lowest minimum

D2PC is FS=2.1. When applied, this thresh-

old results in 139 true positives, 24 319 false

positives and D2PC=0.281 (Fig. 5.7).

Fig. 5.8a shows the relationship be-

tween true positives, false positives and

selected evaluation criteria. Interestingly,

D2PC is almost a linear function of true

positives. D2PC and D2PC* differ only

slightly, although the difference increases

with numbers of true and false positives.

Other measures show more variation by

taking false positives into account; CSI maximizes at approximately the maximum TP/FP-ratio, while MCC is more

biased towards true positives and maximizes at a less stable parameter set.

Fig. 5.8b shows the relationship between selected criteria and AUC. Increased AUC indicates decreased D2PC

(and a slight decrease in minD2PC), but variation is considerable. AUC is also slightly related to true positive rate,

while its strongest relationship is apparently that to CSI.



CHAPTER 5. RESULTS 56

(a) (b)

Figure 5.8: Relationship between selected performance indicators. (a) Selected criteria vs. the number of true positives. (b)
Selected criteria vs. AUC. CSI, MCC and the number of false positives are scaled for comparison.

Criteria effects vary with study area (10*10m DEM). Årnes includes 2 positive and 7126 negative cells (N/P =

3563), while 75% of cells are critical. Slåtten includes 66 positive and 25 218 negative cells (N/P = 382) of which

54% of cells are critical, with higher complexity in source area properties. Statistics for both sub-areas are shown in

Table 5.3. One single parameter set optimizes all criteria for Årnes, while for Slåtten, two sets are identified. Here,

D2PC, D2PC* and MCC are maximized by the same set, while again, CSI is optimized by less predicted landslides

and higher ratio of TP/FP.

Table 5.3: Evaluation criteria effects in sub-areas. Relative rankings and performance for selected sets in Årnes ("ar") and Slåtten
("sl").
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5.4 Parameter back-calculation

5.4.1 Saturated analysis

Årnes

The Årnes sub-area includes two failure cells whose predicted soil depths (36cm) are lower than observed (50cm).

Considerable differences in performance can be observed between parameter sets; e.g., false positive rates required

for identifying both failure cells range from 2% to 65% (Fig. 5.9a). AUC ranges from 87.6% to 93.6%. Of 240 simu-

lations (at 21:00), 20 identify both failure cells, 4 identify 1 cell and 216 identify no cells. Of the above-mentioned

24 sets identifying failure, 23 do so prematurely (at 20:00) yielding “ar29" as optimal (results by various criteria in

Table 5.3). Corresponding estimated parameters are shown in Table 5.4, which also includes identified optimal

parameters when soil depths at failure cells are adjusted according to field studies.

(a) (b)

Figure 5.9: (a) ROC-curves and points for sub-area Årnes at 21:00 local time. Curves indicate overall performance, while points
represent performance at TF S = 1 (b) Precipitation, factor of safety and pore pressures for Årnes failure cell (47,35). Note that
the left vertical axis denotes both factor of safety and pore pressures.
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Table 5.4: Estimated parameters and
statistics in time for sets "Ar29" (pre-
dicted soil depths) and "Aro b s " (ob-
served soil depths). Units: C = Pa, Phi
(φ) = degrees, D0 = m/s2 and KS =
m/s.

Table 5.4 also shows selected statistics in time for "ar29". All cells are ini-

tially stable, until 16 false positives occur at 20:00 after modest, continuous

rainfall (Fig. 5.9b). Factor of safety declines as pore pressures increase, drop-

ping below 1 at 20:30 when pore pressures reach 0.2m. The correct predic-

tion of both failure cells induces 138 false positives, all located within simi-

lar slope ranges. AUC increases with time indicating infiltration, groundwater

and runoff computations improve the model’s ability to rank-order cells.

Slåtten

The Slåtten sub-area includes 10 landslides represented by 66 failure cells.

These are mainly located in landslide material close to a steep wall, with ob-

served and predicted soil depths as depicted in Fig. 5.10b.

(a) (b)

Figure 5.10: (a) ROC-curves and points for the Slåtten sub-area at 17:00 local time. (b) Observed soil depths and corresponding
errors in soil depth predictions for Slåtten source areas subject to field studies.

Compared to Årnes, less variation between parameter sets is observed (Fig.

5.10a). AUC at 17:00 ranges from 71.6% to 91.6%, and both increases and de-

creases for different parameter sets throughout the modeled period (average change in AUC = 0.14%). General

performance is poor; FPR required for TPR=1 ranges from 30% to >40% (Fig. 5.10a). Of 240 parameter sets, no sets

obtain TPR=1. Specifically, 5 sets identify 48 true positives (TPR=72.7%), 5 sets identify 47 true positives while a

total of 33 sets identify a minimum of one landslide cell. All sets are stable at 13:00; however, many identify insta-

bility prematurely (at 16:00) but are not neglected from evaluation due to heavy rainfall occurring in that period.

Performance in terms of criteria generally decreases from 16:00 to 17:00, due to a faster increase in #FP compared

to #TP.
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Table 5.5: Identified parameters and performance at various
times for sets SL12 and SL5. Landslides are assumed to occur
between 16:00 and 17:00. Units: C = Pa, Phi (φ) = degrees, D0 =
m/s2 and KS = m/s.

Two optimal parameter sets are, depending on

evaluation criterion, identified for Slåtten at 17:00 (Ta-

ble 5.5). These are similar in terms of C and φ, while

the higher stability of SL5 is attributed to increased

D0 and KS . Interestingly, parameters identified for for

Årnes ("ar29", Table 5.4) provide more stability; when

these are applied for the Slåtten area, 28 true positives

and 1637 false positives are identified yielding a slightly

higher TP/FP-ratio than "SL12" and "SL5".

Table 5.5 also shows key statistics over time for both

parameter sets. Both estimate complete stability until

16:00, when a large drop in FS is observed in response

to intense precipitation of 24.2mm and 20.5mm (Table 4.1). Minimum factor of safety is equal for both sets, indi-

cating that parameter differences affect FS not in the most unstable cells. Maximum AUC is reached at 16:00 for

"sl12", but constantly decreases for "sl5".
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Study area

Table 5.6: Performance in time for full study area parameter sets
"f-d" and "f-c".

The full study area, which contains 91 landslides, 605

failure cells and 933425 cells in total, is modeled with

parameter sets "f-d" (ar29+SL12) and "f-c" (ar29+SL5),

optimizing D2PC and CSI in sub-areas respectively.

Due to the source area soil type distribution of Fig.

5.1e, "bare rock" was, as for Årnes, treated as till

throughout the study area.. Key statistics over time are

shown in Table 5.6. Again, no failure is identified at

13:00, but for both sets, a number of false positives are

identified at 16:00 followed by a further decline in sta-

bility towards 17:00. Instability develops gradually to-

wards 21:00 and the occurrence of the Årnes landslide. AUC increases with time, but is relatively high already at

13:00.

Parameter set “f-d”, optimizing D2PC in Slåtten, is most unstable throughout the modeled time period. At 20:00,

“f-d” and “f-c” identifies 161 and 154 true positives (of 605 in total), and 47681 and 35648 false positives respectively.

Thus, for obtaining 7 additional true positives, 12033 false positives are required, but “f-d” still outperforms "f-c"

in terms of D2PC. However, “f-c” performs better on other measures of Table 5.6. Differences between parameters,

which is mainly that of more false positives for "f-d", are visualized in Figs. 5.11 & 5.12. It is also worth noting that

the application of "ar29"-parameters for the entire study area yields 133 true positives and 32 019 false positives at

17:00, and 169 true positives and 65 028 false positives at 21:00.
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(a) (b)

(c) (d)

Figure 5.11: Factor of safety development in time for parameter set "f-c"
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(a) (b)

(c) (d)

Figure 5.12: Factor of safety development in time for parameter set "f-d".
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5.4.2 Unsaturated analysis

Årnes

No parameter set from the saturated analysis identifies instability when applied in unsaturated analysis, but ad-

justed ranges given in Table 4.5 result in ROC-curves of Fig. 5.13a. Identification of both failure cells, which is

achieved by 33% of sets for both values of αG , requires large false positive rates compared to the saturated analysis.

However, no set fulfills the requirement of stability before rainfall. In fact, pore pressures and FS remain nearly

constant throughout the event for all sets (Fig. 5.13b). Decrease in average factor of safety is in the range of 0.005

– 0.0025; decreased KS induces more change, while variations in D0 remain negligible. Cohesion in the range

of 600–800 Pa is required for instability at 21:00, resulting in unconditional instability at most slope angles > 41°

throughout the modeled period.

(a) (b)

Figure 5.13: (a) ROC-curves and points for unsaturated analysis, Årnes, 21:00 local time. (b) Applied diffusivity and cohesion vs.
decrease in factor of safety between 13:00 and 21:00.

Slåtten

High false false positive rates are required also for Slåtten (Fig. 5.14a). 324 sets identify failure at 17:00, of which 36

are stable at 13:00. All sets are unstable at 16:00, but still considered for evaluation. The decrease in FS over time

is larger compared to Årnes, but small compared to the saturated analysis. True positives range from 0—49, while

false positives range from 1310—4140. AUC-values – still decreasing as rainfall proceeds – range from 0.81-–0.88.
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(a)
(b)

Figure 5.14: (a) ROC-curves and points for unsaturated analysis, Slåtten, 17:00 local time. (b) Precipitation, factor of safety and
pore pressures for correctly predicted cell (81,85) of the Slåtten sub-area.

Table 5.7: Estimated parameters and performance in time for
Slåtten parameter set "sd332". Units: C = Pa, Phi (φ) = degrees,
D0 = m/s2 and KS = m/s.

Among the sets characterized as stable before the

beginning of rainfall, "sd332" obtains 20 true posi-

tives, 2877 false positives and optimal scores in terms

of D2PC and CSI at 17:00 (Table 5.7). Minimum FS is

well below one, identifying 1484 false positives prema-

turely at 16:00. Lower soil strength parameters and dif-

ferent hydraulic parameters are estimated compared to

saturated analysis, while failure occurs at considerably

lower pore pressures (Fig. 5.14b).

Saturated vs. unsaturated analysis

Model performance across all applied measures is superior for saturated analysis, especially for the Årnes sub-

area. Generally, little change in factor of safety is observed in unsaturated analysis; this requires low estimated

soil strength and identifies few true positives and numerous false positives if basic requirements are satisfied. AUC

decreases over time for unsaturated analysis, compared to a consistent increase in saturated analysis. As a conse-

quence, the unsaturated analysis is not applied in the full study area.

.
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5.4.3 Spatial and non-binary assessment of model performance

In the following section, the best-performing (subjectively, by D2PC and CSI) parameter combination "f-c" is fur-

ther evaluated. The section is primarily an example of how results may be plotted and analyzed..

Examining the distribution of all modeled cells, a strong relationship between slope angle and estimated FS is

evident (Fig. 5.15a). Variation in slope angle is largest at ca. 1 > FS > 1.37 (Fig. 5.15b), while both increasing and

decreasing slope angles outside od this range increases FS. Instability is predicted between ca. 30° and 45°. False

negatives locate at a range of slope angles, with specifically large critical error magnitudes (Table 4.6) at low angles.

(a) (b)

Figure 5.15: An overview of all modeled cells with the parameter combination "f-c". In the case of perfect prediction, real
positives (landslide cells) and real negatives would locate on each side of the line representing FS=1. Cells of slope angle below
15° are given FS=1 due to chosen settings in TRIGRS. (a) Full overview and (b) zoomed-in overview exploring behaviour close to
TF S .
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Both true and false negatives are generally predicted on low slope angles (Fig. 5.16a). The majority of true

positives occur in landslide material, while most false positives and false negatives locate in till (Fig. 5.16b). Few

true negatives occur in landslide material.

(a) (b)

Figure 5.16: Predictions by parameter combination "f-c" (TP=true positives, FP=false positives etc.) vs. (a) slope angles and (b)
property zones (1=till, 2=landslide material, 3=bare rock properties as till).

Fig 5.17 shows error magnitudes in relation to spatial data. Confidence and false confidence quickly reduces

away from its maximum at slope angles of ca. 35°, while critical error magnitude increases with decreased slope

angle. The former two are considerably higher in landslide material than till.

(a) (b)

Figure 5.17: Scatter plots of error magnitudes obtained by parameter combination "f-c" vs. (a) slope angles and (b) property
zones (1=till, 2=landslide material, 3=bare rock with properties as till)
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Error magnitudes may also be visualized on maps. An example is shown Fig. 5.18, providing the distribution

of "false confidence" for the parameter combination "f-c". Areas of under-prediction of stability are identifiable –

specifically in relation to landslide material below steep cliffs.

Figure 5.18: False confidence (1−F SF P ) in the Tindefjellet area for the parameter combination "f-c".
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Discussion

6.1 Where, how and to what degree has TRIGRS been applied?

The literature review provided interesting results; some are discussed in this section, while others are referred to

throughout other parts of Chapter 6 when appropriate.

An impressive number of papers were identified, especially during the last 3-5 years. TRIGRS’ simplicity, avail-

ability and recognition, makes it among the most commonly used physically based model, and following the trend,

numerous applications in new areas are expected in the near future. Practical usage appears challenging, limited

to one paper.

Different methods of reporting geological and climatic conditions are represented. Standardization would be

appreciated, but would likely obscure each area’s specific features too severely. Applications also show notable

variation in sources, reliability and diligence of input data. The estimation of soil properties ranges from crude

assumptions to detailed field studies. Many applications devote surprisingly little effort to the matter, and a de-

tailed review of e.g., test densities or qualities would be interesting. Soil depth is often assumed uniform, while

approaches to distributed soil modelling appear rather arbitrary; the number of measurements is typically limited,

and relationships to explanatory variables are sometimes assumed because other’s have before. Nonetheless, it

might be argued that even uncertain distributed soil modelling is superior to uniform depth in most cases. Stabi-

lizing effects of vegetation is largely neglected, while surprising is its lack of discussion in most papers. Although

Godt et al. (2008) argued that applying e.g., uniform root cohesion is physically incorrect, avoidance of the issue

is strange compared to the rigorousness in other areas. A number of papers leave crucial and less crucial inputs

unmentioned.

The second research questions considered TRIGRS’ performance, and the underlying question “under which

conditions does TRIGRS perform well?”. Unfortunately, any concise answer was unattainable due to a remarkable

variation in evaluation practices. Comparing results from different evaluation criteria and correlating these to e.g.,

the reliability of soil properties would be a major task, while as argued in Section 6.3, comparing results even from

68
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similar criteria may be unachievable without specific considerations. Still, some standardization (e.g., as recently

for landslide early warning systems, see Piciullo et al., 2020) may increase model understanding and help guide

best practices.
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6.2 Back-calculation of soil parameters for the Jølster case study

Soil parameter back-calculation may be separated in two: objective back-calculation identifies actual physical

properties (e.g., angle of internal friction) while relative back-calculation identifies model-specific properties not

necessarily with any physical meaning. As little is known about the spatial distribution of soil properties in Jølster

and more generally, Norway, both were of interest for this thesis.

6.2.1 What limits soil parameter back-calculation?

However, several issues limit both objective and relative back-calculation. Assumptions that must be satisfied in-

clude:

• TRIGRS is sufficiently physically correct and consistent.

• Parameter calibration is well executed.

• Un-calibrated input data (e.g., topography, soil depth) is accurate.

• Landslides are represented with good spatial and temporal accuracy, and initiated through modellable mech-

anisms.

Limitations of the TRIGRS model

TRIGRS is a model – not an accurate representation of reality. Simplifications in procedures for computing runoff,

infiltration, pore pressures and slope stability are discussed elsewhere (Baum et al., 2008; Iverson, 2000), but se-

lected issues encountered in application to the Jølster case study are also discussed here.

For infiltration, assumptions regarding landslide thickness being less than the square root of the upslope con-

tributing area and rainfall duration being much shorter than the steady state groundwater response time (Iverson,

2000) are considered appropriate for the Jølster case study. By contrast, no lateral groundwater flow is unrealistic,

but according to Baum et al. (2008), this produces only minor adverse effects for intense, short-duration storms.

Runoff computations do not include rate of overland flow, preventing modelling of landslide initiation through

surface erosion.

The infinite slope stability model (Equation 2.5) includes, as the name suggests, assumptions on the length of

slopes. Milledge et al. (2012) found that low length/depth (L/D)–ratios for source areas would usually yield too high

estimate factor of safety, and that ratios >25 were appropriate. L/D ratios for Jølster landslides are typically 15–50,

but certain outliers are present. The infinite slope stability model also neglects cell-to-cell forces, contributing to

conservativeness as resisting forces are usually larger than driving forces (Stancanelli et al., 2017). On the other

hand, less conservativeness would be obtained in the unlikely case of Jølster landslides being non-planar failures

(Baum et al., 2008).

Overall effects from model simplifications on parameter back-calculations within the model are difficult to

quantify, but doubtless, accurate input data does not guarantee accurate results and vice versa.
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Limitations of the calibration procedure

Only four parameters, assumed the most sensitive based on analyses in literature (e.g., Melchiorre and Frattini,

2012, Zieher et al., 2017) were varied during saturated calibration in this thesis. The choice of keeping all other

parameters constant was made mainly due to computational requirements, and their inclusion may have altered

both estimated parameters and model performance. The potential for equifinality (see e.g., Foulon and Rousseau,

2018), in which e.g., high C may compensate for low φ or vice versa, is present both among calibrated parameters

and due to ill-assumed, un-calibrated parameters.

Parameter ranges were loosely set based on values reported by Melchiorre and Frattini (2012) and Opsal (2017),

although the use of any reference table would in hindsight be sufficient. The appropriateness of ranges is uncertain,

as is whether certain combinations (e.g., high KS , low D0) are physically possible. Ranges did not cover the desired

stability conditions, with e.g., D2PC being far from maximized for parameter combination "f-d" (Table 5.6).

Sampling intervals within parameter ranges, chosen partly to abide certain script limitations, were larger than

desired. Optimal parameter combinations were therefore likely missed, and smaller intervals would have improved

"fine-tuning". Spatial intervals of model output (1h) were also large (landslides may have occurred at e.g., 16:30),

but considered acceptable due to unknown landslide initiation times.

The choice of which evaluation criteria would govern back-calculation is an important issue. As discussed in

Section 6.3, different criteria consider different aspects of performance, while in theory, back-calculation of one

landslide requires only one criterion (does factor of safety drop below 1 at the time of initiation?). For Årnes, the

latter was approximately fulfilled (Fig. 5.9b), but for Slåtten, the attempted calibration of the entire sub-area simul-

taneously means estimated parameters represent unaccounted trade-offs between true and false positives decided

by the criteria applied. The association between landslide material and soil parameters of Fig. 5.5 is therefore ques-

tionable. Optimally, each source area would be back-calculated separately, but largely due to the variation in slope

angles discussed in Section 6.4.1, this would have resulted in vastly different estimated parameter combinations of

which usefulness is dubious.

Limitations of the digital topography

Slope angles are crucial in slope stability modelling; these are relevant in hydrological and stability calculations as

well as soil depth predictions, and their uncertainties may affect factor of safety comparably to those of pore water

pressure and friction angle (Haneberg, 2006).

The accuracy of DEMs typically increases with resolution (Sarma et al., 2020; Fig. 5.1), while a wide range of res-

olutions are applied in literature (Fig. 3.3d). Therefore, maximum resolution (1*1m) – especially in areas adjacent

to steep slopes such as Slåtten – would have been preferential for parameter back-calculation. This was impractical

due to computational requirements, and the less accurate 10*10m DEM was considered an adequate substitute. In

fact, for the ability to predict landslides per se, even 50*50m may have been satisfactory; too "localized” topography

does not always best represents landslide-initiating factors (Catani et al., 2010), and instances are reported where

lowering resolution to e.g., 30*30m improves modelling performance (e.g., Cama et al., 2016)). Evidently, no "per-
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fect" resolution exists (Claessens et al., 2005), but certainly, the relatively crude resolution applied in this thesis’

back-calculation induces errors due to its inability to capture local, important features.

Soil depth predictions by a simple approach

Soil depth strongly influences the computation of factor of safety even at small ranges of variation (Melchiorre &

Frattini, 2012). Generally, increased soil depth yields decreased factor of safety, but the opposite may also occur

depending on interactions with other parameters (Melchiorre & Frattini, 2012).

Negative exponential or linear relationships between slope angle and soil depth lack considerations of specific

processes within geomorphological units (Catani et al., 2010), but are common in literature (Fig. 5.2). For the re-

gression analysis in Section 5.2, R2 = 30% indicates a weak, negative relationship is present also for Jølster source

areas. The strength of correlation is unimpressive, but its comparison to others is uncertain; relationships are often

assumed without basis in field tests, while those that are, are seldom reported in terms of R2. Significantly im-

proved performance may have been obtained using e.g., the "Geomorphologically Indexed Soil Thickness" (GIST)

model (Catani et al., 2010) or a more deliberate empirical approach (e.g., Tesfa et al., 2009), although this would

likely require more data than currently available. In any case, the identified empirical relationship predicts unre-

alistically low soil depths at low slope angles (largely irrelevant for modelling), but succeeds in predicting little or

no soil on steep slopes not prone to failure. Errors are inevitable, and e.g., too high predicted soil depth likely over-

estimates soil strength during back-calculation. The relationship is statistically weak due to an insufficient sample

size, as well as measurements being source area averages. Also, measurements may represent unfortunate com-

binations of soil depth, slope angle and other factors leading to failure, rather than the actual distribution of soil

depth. The spatial distribution of soil depth in Norway is a topic for further research, and may include field tests,

various (combinations of) explanatory variables and perhaps a process-based approach considering e.g., glacial

propagation and different sedimentation regimes.

What about vegetation?

Vegetation generally increases slope stability, but as sown in the literature review, only a few authors mention this

issue in relation to TRIGRS (Fig. 5.1d). Therefore, although detailed spatial data was available (Section 4.2.5), the

lack of examples discouraged considerations of vegetation in this thesis as well. However, Jølster’s slopes below

600–700 m.a.s.l. are largely vegetated, and Fig. 5.1d indicates vegetation may have contributed to stability in the

2019 event; few landslides occurred in e.g., spruce, but as this may be a result of the spatial distribution of spruce

in relation to e.g., soil types and slope angles, conclusions cannot be drawn. Also telling is the fact that a majority

of landslides occurred in "no tress or limited vegetation (Fig. 5.1d).

Jølster slopes are, regardless, treated as completely unvegetated by TRIGRS; applying e.g., root cohesion at spe-

cific areas may, although discouraged by Godt et al. (2008), have reduced the number of false positives (e.g., Park

et al., 2013)) and prevented the likely estimation of too high soil strength. As a side-note, quantitative information

on the stabilizing effects of typical Norwegian vegetation appears scarce, and may be a topic for further research.
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Saturated vs. unsaturated analysis and assumptions on initial conditions

The choice of analysis method is based on assumed initial conditions, and may alter estimated parameters and

TRIGRS’ ability to identify stable and unstable areas. The unsaturated version performed much poorer in sub-areas

compared to the saturated version (Table 5.7), and was therefore not pursued for modelling the full study area.

Especially for Årnes (Section 5.4.2), the combination of stabilizing suction and low effective KS in unsaturated soil

resulted in almost constant FS with time (Fig. 5.13b). As a consequence, low cohesion (600– 800 Pa) was required for

identifying any landslides, causing failure at nearly all steep slopes even before rainfall. The unsaturated version

performed better for Slåtten, but still worse than the saturated version across all measures. A testimony to poor

performance was the generally decreasing AUC in time for both study areas; transient rainfall infiltration reduced

TRIGRS’ ability to rank-order cells and although neglecting timing, better performance may have been obtained

with nothing but adjustment of TF S . Acceptable unsaturated performance has been obtained by others (e.g, Baum

et al., 2008; Schilirò et al., 2015), but no instances comparing both versions have been identified.

Why did the saturated analysis yield superior results? Unsaturated analysis is not unconditionally better (Luca

Schilirò, personal communication, March 10, 2021), requiring suitable input data and case studies. As emphasized

by Baum et al. (2008):

"Successful use of the unsaturated model requires initial testing on single-cell grids to learn model

behaviour. Results of these tests will guide selection of program control parameters, such as nmax, nzs,

and tx, as well as ranges of physical properties to achieve accurate results with efficient computation.”

(Rephrased).

Extensive testing was beyond the scope of this thesis, and applied unsaturated parameters (Table 4.2) are of

uncertain validity due to unrepresentability of the till sample and uncertainties in Rosetta Lite. In fact, the com-

plexity increase caused by addition of unsaturated parameters may have been undesirable considering the scarce

knowledge of soil properties.

TRIGRS is sensitive to initial conditions (Baum et al., 2008), and the dry initial conditions assumed by unsat-

urated analysis appear valid according to Sections 4.3.3 and 4.3.4. However, completely unsaturated conditions

are rarely achieved in Norway, and partial saturation in combination with modest rainfall may explain the lack of

change in pore pressures and FS observed for Årnes. Locating the groundwater level at the lower soil boundary may

also be too un-conservative. Conversely, the relatively high applied background infiltration rate is conservative, but

its effect on model behavior remains uncertain.

In any case, TRIGRS’ unsaturated version appears – despite unusually dry conditions – unsuited for this the-

sis’ specific study area, precipitation regime and data availability. whether applicability is better for other Nor-

wegian events is a topic for further research that should include single cell testing, in situ soil data and a small,

well-understood study area.
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Other sources of error

Unmodellable landslide initiation mechanisms may be an important factor limiting the accuracy of property back-

calculation (see discussion in Section 6.4.2). Moreover, the applied radar-estimated precipitation (discussed by

Sandvoll, 2020) may contain inaccuracies due to low spatial (250*250m) and temporal (1h) resolution.

6.2.2 Can objective soil parameters be estimated?

For reasons discussed in the previous section, estimated parameters from saturated analysis are not given much

physical meaning. Although estimated parameters (Tables 5.4, 5.5) are within expected ranges for the assumed

material types (e.g., M. van Genuchten et al., 1991), this may be a result of luck. Comparisons should accordingly

be made to calibrated (e.g., Melchiorre and Frattini, 2012) rather than reported (e.g., Opsal, 2017) soil properties.

In essence, accurate modelling results do not guarantee accurate inputs, which conversely questions meticulous

efforts in obtaining accurate input data.

6.2.3 Can relative soil parameters be estimated?

Although objective parameters appear inestimable, TRIGRS may still be useful in identifying relative differences in

properties between soil types. These differences may refer to specific parameters, or a general "soil stability" (the

combined interaction of soil parameters, soil depth etc.). In the case of their existence, associating parameters to

soil types (Årnes = till, Slåtten = landslide material) and transferring these to the full study area was expected to

improve modelling compared to single sub-area of full study-area calibration.

Different soil properties were estimated for sub-areas (Tables 5.4 & 5.5). This may indicate soil type differences,

but may also be caused by a sub-optimal calibration procedure for Slåtten’s multiple landslides (Section 6.2.1). In

fact, parameter variability within landslide material may be larger than between landslide material and till, and the

definition of one set of parameters for each soil type may be too crude of an arrangement.

Årnes-parameters applied for the full study area gave a model more unstable at 17:00, more stable at 21:00 and

with generally lower TP/FP-ratios compared to "f-d" and "f-c"; i.e., depending on evaluation criteria, using only the

Årnes area for calibration may have been both "better" and "worse" compared to the proposed two-area approach.

Hypothetical results of calibration in other single sub-areas (e.g., Slåtten or Tindefjellet) are unknown, and would

again depend on evaluation criteria. Calibration using the full study area was unachievable due to computational

requirements, and whether this would improve performance and optimize TRIGRS for e.g., warning purposes is

uncertain.

Despite being unidentifiable by calibration, indications of parameter differences between soil types may still

be present. High slope angles for landslide material source areas indicate higher "stability" than till, adhering

to the assumption of coarse-grained material originating from rockfall. High false confidence in distinct zones

of landslide material below cliffs (Fig. 5.18) and "half-circles" of Fig. 5.17a representing different soil types may

indicate likewise, but may as well be a function of "f-c"-parameters providing too little stability.
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6.3 On the choice of evaluation criteria

Assessing "quality" and performance of physically based models is important (Corominas & Mavrouli, 2011). The

choice of one or more criteria decides which model feature receives attention and which parameters are back-

calculated; e.g., should one maximize the number of landslides identified, or minimize the number of false pos-

itives? As this thesis’ literature review identified a number of differing practices (Fig. 3.5a), a discussion on the

matter was considered necessary before and during application of TRIGRS. The following section is not at all con-

clusive, but based on relevant theory and results obtained in Section 5.3. It considers performance measurement

of PBMs in general, selected criteria tested or applied in this thesis, and argues in favor of a more careful selection

of relevant measures.

6.3.1 Performance in general

What, in a general sense, does one wish to measure in physically based landslide modelling? An important distinc-

tion lies between what was named overall and threshold-specific performance (Section 4.4.1). “Objective” back-

calculation of soil properties (discussion in Section 6.2.2) requires threshold-specific (TF S = 1) evaluation, while its

“relative” counterpart (discussion in Section 6.2.3) may do with any TF S . Likewise, in calibration for e.g., warning

purposes, TF S may simply be adjusted in order to suit specific needs. Although the overall performance of a pre-

dictor may be important in some circumstances and may indicate good threshold-specific performance, the latter

is not necessarily true as clearly shown in Section 6.3.2. Similarly, the distinction between objective performance

(absolute results) and relative performance (to other results) is important. The former is the sole part that should

be reported and e.g., compared between study areas, while the latter is suitable only for performance of models

or parameter sets within similar study areas, input data qualities etc. However, as discussed below, “objective”

evaluation in physically based modelling is no easy task.

6.3.2 On ROC and related performance measures

ROC, with related measures AUC and D2PC (Section 2.4), is the commonest evaluation approach identified in lit-

erature (Fig. 3.5a). Nevertheless, one of its fundamental properties deserves extra consideration:

• False positive rate (FPR) is dependent on the number of true negatives. This number is again dependent on

the area under consideration, so that inclusion of valley floors or altitude plains in analysis – which correctly

predicted stability is trivial – reduces FPR and increases apparent performance.

In physically based landslide modelling, the number of true negatives is typically large, with limited numbers

of landslides and susceptible slopes (e.g. Schilirò et al., 2021). Consequently, as for this thesis (e.g., Table 5.5), im-

pressive but disproportionate values of AUC are reported (Table 3.5b). Although an ROC-graph considers fractions

and is insensitive to changes in the proportion of positives to negatives (P/N) (Fawcett, 2006), it is to changes in

proportions FP/N. With reference described in Section 6.3.1, AUC is not "objective"; it should not be reported or

compared across study areas unless care is taken to explain the basis upon which it is used.



CHAPTER 6. DISCUSSION 76

Also, AUC considers overall, not threshold-specific performance. As noted by Fawcett (2006), visually analyz-

ing ROC-curves is important as performance may vary across the threshold range. For this case study, threshold-

specific measures CSI and D2PC were found to generally improve with AUC (Fig. 5.8b), but considerable variation

was present (e.g., AUC = 0.85 yields CSI between 0.0011 and 0.0086). Accordingly, although commonly reported as

if, AUC should not be treated as indicative of threshold-specific performance and was, for the above reasons, not

applied as an evaluation criterion for calibration in this thesis (Section 4.4.1).

D2PC is derived from the ROC-curve and is similarly not an objective measure. The high number of true neg-

atives induces a bias; true positive are over-valued in performance estimation, and the strength of bias depends

on the factor N/P. High N/P (which is typically the case) makes false positives largely irrelevant, while a lower N/P

increasingly relates good performance to good TP/FP-ratio. In fact, D2PC increases as long as less than N/P (equal

to 605 for the full study area of Section 5.3) false positives are required for each additional true positive. Implica-

tions were evident in Fig. 5.8a; D2PC effectively measured the number of true positives, unaffected by the number

of false positives. Correspondingly, maximizing D2PC by up-adjusting TF S correctly predicts the majority of land-

slides but also a remarkable number of false positives (Fig. 5.7). I.e., the relationship between marginal costs and

benefits of false and true positives respectively is case-dependent, and this should be clearly accounted for when

the measure is applied.

Despite shortcomings, D2PC was chosen as one of two evaluation criteria for this thesis’ back-calculation. As

an attempt to reduce the effect of true negatives, the term critical cells (N*) was defined. The difference between

D2PC* and D2PC depends on N*/N, and as accordingly, slightly worse performance was indicated using the former

(Fig. 5.8a, Table 5.2). The magnitude of reduction in estimated performance increased as TPR approached its

maximum, as certain source areas were outliers requiring excessive false positives in order to be identified. The

removal of unconditionally stable cells – which definition should be performed with greater care than here – may

be considered an improvement, but only through increasing the desired/optimal TP/FP-ratios and without solving

the underlying problem.

6.3.3 On other, selected criteria

CSI, which contrary to ROC is not influenced by true negatives, was chosen as the other, threshold-specific evalu-

ation criterion. Within landslide modelling, where false positives by far outnumber true positives and false nega-

tives, it practically measures the TP/FP-ratio (using CSI in favor of TP/FP was, in hindsight, unnecessary). CSI is a

counterweight to D2PC, evident in terms of identified parameter sets and their relative rankings (Table 5.2).

MCC was also applied as an alternative measure, and may be considered a moderate tradeoff between true and

false positives (Fig. 5.8a). It will not be further discussed, but may have interesting potential in this context and

readers are referred to Matthews (1975) and e.g., Chicco and Jurman (2020).
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6.4 Is the Jølster case study suitable for the application of TRIGRS?

TRIGRS’ ability to separate stable and unstable areas, at correct times, governs the accuracy of (relative) parameter

back-calculation and the model’s potential for practical utility in e.g., susceptibility assessments and warning. On a

large scale, parameter combinations presented in this study perform reasonably well in identifying unstable areas

(Figs. 5.11 & 5.12). However, on a cell-by-cell basis, performance is limited by two, interrelated challenges:

• High false positive rates are inevitable when aiming for an acceptable number of correctly predicted land-

slides

• Numerous false negatives, of high “critical error magnitude”, occur unless extreme conservativeness is ap-

plied

A high false positive rate (FPR = FP/P) is, in other words, the price paid to minimize false negative rate (FNR

= FN/P). This is commonly observed in literature: as an example, Zieher et al., (2017) predicted 73% and 95% of

landslides in two separate events, accompanied by FPRs of ca. 30–40%. For comparison, this study’s parameter

combination “f-c” identified 32% of landslides (which may or may not be acceptable depending on goal), requiring

an FPR of 7.6%. Importantly, this was the combination yielding optimal performance in terms of TP/FP - most

modeled parameter sets performed much worse. The phenomena is mainly explained by two features:

• Nearly uniform soil properties and the prediction of soil depth makes slope angle a too strong predictor of

factor of safety.

• Jølster landslides do not show a similar relationship to slope angle as encoded in TRIGRS, likely due to initi-

ation mechanisms not accounted for.

6.4.1 Nearly uniform soil properties and dependency on slope angles

NGU soil maps were the only basis for spatially varying soil properties in the Jølster case study. Soil maps are com-

monly utilized in literature (Fig. 3.4b), and their application is considered an improvement compared to uniform

properties. Also, the applied soil maps are largely intended for land use planning and show dominating types in

upper layers only (NGU, 2017), making reliability uncertain. In fact, Rouault (2020) showed how source areas often

locate within the “bare rock” zone due to the existence of soil pockets above bedrock; ths was also the case for

Jølster, leading to all mountainous areas being treated as till and effectively reducing the number of relevant soil

types to only two. Assumed homogeneity within soil types, the neglection of vegetation and the same assumed

relationship between soil depth and slope angle for the entire study meant nearly uniform soil properties were ap-

plied. However, these are inherently variable even over small areas, and as typically in physically based landslide

modelling (Stancanelli et al., 2017), limited knowledge of their distribution impair modelling performance also

here.
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Nearly uniform soil properties eliminate much variance in estimated stability between slopes. Fig. 5.15a clearly

demonstrates how factor of safety is almost entirely dependent on slope angle. This is not surprising, and con-

sistent with findings in parameter sensitivity analyses (e.g., Melchiorre and Frattini, 2012; Zieher et al., 2017). In

practice, although spatially distributed precipitation and topography/drainage effects provide some variation, only

a fraction of slopes (ca. 30°−−45°) have the potential to be modeled as unstable. Source areas that fall outside this

“instability range”, of which shape, size and location is altered by assumptions on soil properties, soil depth and the

chosen TF S , are accordingly left unidentifiable. Implications were evident in Årnes’ unsaturated analysis (Section

5.4.2), where in order to correctly predict two source area cells, cohesion (and the instability range’s lower slope

angle limit) was brought down until most slopes angles higher than the source areas’ were given FS<1.

6.4.2 Are Jølster landslides modellable?

If slope angles of source areas were within the aforementioned "instability range", fewer incorrect predictions

would occur. But, this is not the case; they vary widely in (although generally within ranges reported in literature

for shallow landslides) (Section 5.1). Are mechanisms not accounted for in TRIGRS responsible for such variation?

TRIGRS considers initiation by ideal infiltration and pore pressure increase only. Although it is assumed that no

extreme landslide event in Norway has been spatially mapped in similar detail (Section 4.2.1), little is known about

Jølster landslides’ initiation mechanisms. They have been classified by others (Lindsay et al., in prep.; Rüther et al.,

in prep.), but as both the Norwegian and international classification are based on motion rather than initiation, lit-

tle relevant information can be inferred. In fact, assessing initiation mechanisms may be impossible even through

field studies, and the type of landslide may change as propagation proceeds; e.g., debris flows may initiate by either

slope-toe erosion, gradual material entrainment (Welcker, 2011) or debris slides (Hungr et al., 2014). Further, terms

"jordskred" and "flomskred" overlap (Jensen et al., 2015), and in practice this thesis’ case study includes unknown

proportions of debris slides, debris avalanches, debris flows and "debris floods" (Hungr et al., 2001). Accordingly,

Sandvoll (2020) and Rüther et al. (in prep.) found mechanisms such as surface erosion, cracking and locally high

pore pressures likely initiators for a proportion of landslides, and although neither the statistical analysis of source

areas (Section 5.1) nor results from modelling (Section 5.4) can validate this, they indicate the presence of some

alternative mechanisms. These may explain impressive error magnitudes (Fig. 5.15, several source areas are given

FS>2) and accordingly, the attempted back-calculation of such outliers results in soil properties of little relation to

reality along with high false positive rates.

Outliers exist despite that to limit adverse effects of variable initiation, “unsuitable” source areas were manually

removed (Section 4.2.1). Some were with confidence (exclusion of "river erosion" and “washed-away grass mats”),

while others were not (locations within existing channels do not guarantee initiation by erosion). The neglection

of relevant source areas and vice versa is therefore likely, but the approach is still considered an improvement

compared to modelling all available landslides.
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6.4.3 TRIGRS practical utility in Jølster and similar events

Issues discussed in previous sections limit TRIGRS’ potential for practical utility. Identified model parameters

should not be applied elsewhere without extensive testing. Calibration of a physically based model is highly case

specific; geotechnical and hydraulic parameters have uncertain physical validity, and the relationship between

slope angle and soil depth is not tested elsewhere in Norway.

For assessing susceptibility in the Jølster study area, the estimated parameter combinations identify generally

exposed slopes - although this is mostly a range of slope angles. However, numerous landslides are unidentified

(only identified by extreme conservativeness) and there is little or no relationship between a given factor of safety

and probability of failure. Interesting insights may have been obtained through the application of rainfall events

of varying statistically estimated return periods (e.g., Peres & Cancelliere, 2016), but whether usefulness of results

would be more than those of simpler statistical methods (data-driven methods, Section 2.3.3), is uncertain and a

topic for further research.

Detailed warning is not desirable due to similar issues. More potential may be found in large-scale, area-wise

warning where performance in terms of typical evaluation criteria comes second to the prediction of any occur-

rence of landslides. It may be speculated that an extensively tested and calibrated TRIGRS model – which e.g.,

indicates landslide activity when a certain number of cells are given FS < 1 – could be a better alternative than to-

day’s warning systems (typically combinations of antecedent and acute precipitation), but such an approach being

worth the added effort is unlikely.
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Conclusions

A comprehensive literature review for the period 2008—2020 was conducted, identifying 42 papers applying TRI-

GRS in 12 countries. The frequency of applications has increased in recent years, and the model is applied on a

range of study area extents and qualities of input data. A concise assessment of TRIGRS’ performance is at the

moment unachievable; results are case-specific, while effort in and approaches to evaluation vary considerably.

Soil parameter back-calculation through calibration was performed in two separate sub-areas assumed repre-

sentative of specific soil types. Back-calculation of “objective” soil parameters is unachievable due to limitations in

TRIGRS, the chosen calibration procedure, inaccuracies in input data, the neglection of unsaturated soil mechanics

and uncertain landslide characteristics. Estimated parameters are therefore not given much physical meaning.

Back-calculation of “relative” soil parameters is challenging due to similar limitations. Especially, the attempted

back-calculation of Slåtten’s numerous landslides and consequent definition of a single, representative parameter

combination – adhering to a specific evaluation criterion– was in hindsight not ideal. Estimated parameter differ-

ences between soil types are therefore attributed to issues in data and calibration more than actual physical condi-

tions – although, higher slope angles of landslide material source areas do indicate increased “strength” compared

to till. Even though calibration in two, soil type-representative sub-areas is subject to limitations, and did not im-

prove full study area modeling performance compared to e.g., calibration in one sub-area only, the approach may

be viable in cases of more reliable data.

Soil depth is crucial in physically based modeling, but often assumed uniform across large areas. For the Jøl-

ster case study, a weak correlation between soil depths and slope angles of source areas was indicated. Identified

negative linear and exponential relationships (R2 = ca. 30%) are consistent with findings in literature, but only 21

measurements limit statistical power. Using distributed soil depth modeling in the application of TRIGRS likely im-

proves results, especially on steep slopes where soil depth is limited. Soil depth prediction by various approaches

and explanatory variables is a topic of further research.

TRIGRS’ unsaturated version appears, despite unusually dry initial conditions, unsuitable for the Jølster case

study. Considerably poorer performance was obtained compared to the saturated analysis, with little change in

factor of safety, a gradual decrease in AUC and under-estimation of stability on steep slopes. This is attributed

80
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to an inappropriate precipitation regime (for one sub-area), a lack of testing for optimal combinations of model

parameters, wrongly assumed initial conditions and knowledge of soil properties not fit for the added complexity

involved in unsaturated analysis.

Two final parameter combinations for the full study area were presented, optimizing evaluation criteria “dis-

tance to perfect classification” (D2PC) and “critical success index” (CSI) respectively. Predictions from one combi-

nation were then subject to assessment through a – to my knowledge – novel approaches of spatial distributions and

calculation of error magnitudes. Both combinations perform reasonably well on a large scale, identifying general

areas where landslides of the case event occurred. Accordingly, TRIGRS may be calibrated to indicate landsliding

at certain levels of predicted instability, but if such approach would trump statistical methods for susceptibility

assessment and rainfall thresholds for warning is unknown. On a smaller scale, assumed homogeneity of soil type

properties, groundwater table locations and soil depth distributions leaves slope angle a strong influence on esti-

mated factor of safety. As slope angle varies considerably for Jølster source areas, a tradeoff is inevitable between a)

identification of landslide cells, along with high false positive rates or b) low false positive rates, at the cost of false

negatives of high “critical error magnitudes”. Slope angle variations of source areas and research by others indicate

a proportion of Jølster landslides were initiated by e.g., small-scale surface erosion, local cracking and preferential

flow – mechanisms not accounted for by TRIGRS.

Numerous approaches to performance evaluation were identified in literature, with the commonest being "re-

ceiver operating characteristics" (ROC) and related measures. To explore how the choice of evaluation criteria af-

fects the notion of "good" performance, parameter calibration using "area under the curve" (AUC), D2PC, CSI and

“Matthews’ correlation coefficient” (MCC) was conducted on the Jølster case study area with the following findings:

• Overall (through a range of cut-off values) and threshold-specific (e.g., at factor of safety = 1) performance

must be distinguished; although AUC indicates threshold-specific performance in terms of e.g., D2PC, CSI

and MCC, it cannot be considered a valid proxy as considerable variation occurs.

• Measured performance through evaluation criteria is not objective, but dependent on characteristics of the

study area, landslides and input data. They should accordingly not be reported or compared unless care is

taken to account for specific circumstances. AUC and D2PC involve a bias depending on the ratio of negative

to positive cells (N/P); this may effectively result in it measuring true positive rate only and induce artificially

high scores. The experimental definition of “critical cells” and the altered D2PC* reduces this bias but does

not solve the underlying problem.

• Evaluation criteria such as AUC, D2PC, CSI and MCC measure different aspects of performance, and may be

applied in conjunction (with other criteria as well) for a broad assessment of results.

In general, the importance of specific research goals and the deliberate choice of suitable evaluation criteria is

stressed. Improved practices – perhaps through standardization – would likely be a helpful step in further advanc-

ing the field of physically based landslide modelling.
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Appendix A: Python Scripts
Initialization-file-creator:

1 """

2 Created on January 7, 2021

3 @author: Harald B. Larsen

4

5 This script:

6 -creates a modified copy of an initial initiation file

7 -saves its parameter values and output nametag in an excel sheet

8 -repeat

9 """

10 import numpy as np

11 import shutil

12 import pandas as pd

13 import os

14

15 #Input: Import file

16 file_r = open(’faobs.txt’, ’r’) #Reads the initial initiation file

17 lines = file_r.readlines () #Creates a list of each line as strings

18

19 #Input: Rows and columns of values to change:

20 line1 = 10 #First property zones

21 line2 = 13 #Second property zone

22 ci = 0 #Starting index of cohesion

23 pi = 6 #Friction angle (phi)

24 di = 17 #Diffusivity (D0)

25 ki = 23 #K_sat

26 tag_line = 48 #Row of the nametag

27 tag_ind = 3 #Index of nametag

28 tag = 0 #Initial tag , makes first nametag = 1

29

30 #Input: Parameter range of values: (NB: CANNOT BE EQUAL at any point with current code (!)

31 c_range = [2100 , 2500, 3000, 3600]

32 p_range = [32, 35, 37]

33 d_range = [0.0009 , 0.0006 , 0.0003 , 0.00009]

34 k_range = [0.00001 , 0.00005 , 0.00008 , 0.0002 , 0.0005]

35 simulations = len(c_range)*len(p_range)*len(d_range)*len(k_range) #Number of simulations

36

37 #Empty parameter lists for saving in excel:

38 c_list = list()

39 p_list = list()

40 d_list = list()

41 k_list = list()

42 tag_list = list()

43
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44 #Iterate through all possible combinations of parameters:

45 #Replace 4-digit cohesion values [int]

46 for a in range(0, len(c_range)):

47 c = c_range[a]

48 lines[line1] = lines[line1]. replace(lines[line1][ci:ci+4], str(c))

49 lines[line2] = lines[line2]. replace(lines[line2][ci:ci+4], str(c))

50

51 #Replace 2-digit phi value [int]

52 for b in range(0, len(p_range)):

53 p = p_range[b]

54 lines[line1] = lines[line1]. replace(lines[line1][pi:pi+2], str(p))

55 lines[line2] = lines[line2]. replace(lines[line2][pi:pi+2], str(p))

56

57 #Replace "4-digit" D0-value (scientific number)

58 for e in range(0, len(d_range)):

59 d = d_range[e]

60 d_sci_str = np.format_float_scientific(d).replace(’.’, ’’)

61 lines[line1] = lines[line1]. replace(lines[line1][di:di+4], d_sci_str.replace(’0’

, ’’))

62 lines[line2] = lines[line2]. replace(lines[line2][di:di+4], d_sci_str.replace(’0’

, ’’))

63

64 #Replace "4-digit" k_sat value (scientific number)

65 for f in range(0, len(k_range)):

66 k = k_range[f]

67 k_sci_str = np.format_float_scientific(k).replace(’.’, ’’)

68 lines[line1] = lines[line1]. replace(lines[line1][ki:ki+4], k_sci_str.replace

(’0’, ’’))

69 lines[line2] = lines[line2]. replace(lines[line2][ki:ki+4], k_sci_str.replace

(’0’, ’’))

70

71

72 #For each resulting initiation file: resulting file:

73

74 #Save new parameter values to lists:

75 c_list.append(c), p_list.append(p), d_list.append(d), k_list.append(k)

76

77 #Change nametag (nb, max nr = 999)

78 tag = str(int(tag)+1) #Adds 1 to the nametag string

79 lines[tag_line] = lines[tag_line ]. replace(lines[tag_line ][ tag_ind:tag_ind

+4], tag+’\n’) #Replace nametag

80 tag_list.append(tag) #List of tags later stored in excel

81

82 #Write modified lines to initial init_file:

83 file_w = open(’sl0.txt’, ’w’) #Opens the file in writing mode

84 for eachline in lines:
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85 file_w.write(eachline) #Writes each line (including modified lines) to a

new version of the file

86 file_w.close () #Close the file

87

88 #Create a copy of the init_file with new , recognizable name:

89 shutil.copyfile(’sl0.txt’, ’sl’ + tag + ’.txt’)

90

91 #Prepare list and save in excel:

92 init_data = np.transpose(np.vstack ((c_list , p_list , d_list , k_list , tag_list))) #Stack and

transpose

93 colu = [’cohesion ’, ’phi’, ’D0’, ’k_sat’, ’nametag ’] #Column headings

94 init_data_df = pd.DataFrame(init_data , columns=colu) #DataFrames are easy to work with

95 init_data_df.to_excel(’initfiles_sl_run1.xlsx’) #Save documentation in excel
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TRIGRS-executor:

1 """

2 @author: Harald B. Larsen

3

4 This script:

5 1) Reads a list of initiation files , copied as paths

6 2 Changes the name of an initiation file for recognition by TRIGRS

7 3) Executes TRIGRS on the initiation file

8 4) Changes the init_file back to its original name

9 REPEAT

10 """

11

12 import numpy as np

13 import subprocess

14 import os

15

16 #Provide list of initialization file names:

17 initfiles = np.loadtxt(’init_files_list.txt’, dtype=str)

18

19 #Iterate through inititiation files and execute TRIGRS on each:

20 for x in range(0, len(initfiles)):

21 initfile = initfiles[x][1: -1] #Pick one init_file , strip unneccessary quotes

22

23 os.rename(initfile , ’tr_in.txt’) #Rename initialization file for recognition by TRIGRS

24

25 subprocess.run(’TRIGRS.exe’) #Execute TRIGRS:

26

27 os.rename(’tr_in.txt’, initfile) #Back to original initiaion file name:

28

29 #Input: Save log file:

30 os.rename(’trigrslog.txt’, ’log_’+ initfile [-9:]) #Check starting index of nametag (-9

here)
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Analysis-multifiles:

1 """

2 @author: Harald B. Larsen

3

4 This script:

5 -takes a list of FoS -files , along with a file representing real failuiire

6 -runs external tools for ROC -analysis and summary statistic

7 -plots all ROC -curves / points in one figure , and stores all results in an excel document.

8 """

9

10 import numpy as np

11 import matplotlib.pyplot as plt

12 import pandas as pd

13 from analysis_multiplefiles_funcs import ROC

14 from analysis_multiplefiles_funcs import stat

15 plt.rcParams[’axes.grid’] = True #Grids for plots

16

17 #Input: Import files and specify figure titles:

18 real = np.loadtxt(’failure_r10.txt’, skiprows =6) #Binary file representing failure

19 filenames = np.loadtxt(’fs_file_list.txt’, dtype=str) #List of FoS -files to evaluate , copied

as paths

20

21 roc_title = ’ROC on one test file , 17:00\n - J l s t e r ’ #Choose a title for ROC -plots

22 roc_figname = ’roc_analysis_test.png’ #Choose a name/path for saving ROC -fiure

23 excel_name = ’analysis_Jolster_test.xls’ #Spceify name/path of resulting excel data file

24

25 #Empty lists for storing results from multiple files:

26 minFS_L = list()

27 maxFS_L = list()

28 avgFS_L = list()

29

30 P_L = list() #Real positives

31 TP_L = list() #True positives

32 FP_L = list() #False positives

33 D2PC_1_L = list() #Distance to perfect classification

34 TPR_1_L = list() #True positive rate

35 FPR_1_L = list() #False positive rate

36

37 TPr_list_L = list() #List of lists

38 FPr_list_L = list() #List of lists

39 AUC_L = list() #Area under the curve

40 minD2PC_L = list() #Minimum distance to perfect classification

41 o_thresh_L = list() #Optmal threshold to minimize D2PC

42

43 #Create figure for ROC -plots
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44 fig , ax = plt.subplots (2,1, sharex=True)

45 fig.autolayout : True

46

47 for x in range(0, len(filenames)):#Iterate through filenames

48 fname = filenames[x][1: -1] #Pick one model -FoS filename

49 model = np.loadtxt(fname , skiprows =6) # Load to a numpy array and skip information rows

50

51 #Call summary statistics function

52 minFS , maxFS , avgFS = stat(model)

53

54 #Call ROC -curve tool

55 Ps , TPs , FPs , TPr_list , FPr_list , AUC , minD2PC , opt_threshold , D2PC_1 , TPr_1 , FPr_1 =

ROC(real , model)

56

57 #Append results to lists

58 minFS_L.append(minFS), maxFS_L.append(maxFS), avgFS_L.append(avgFS)

59 P_L.append(Ps)

60 TP_L.append(TPs),FP_L.append(FPs)

61 D2PC_1_L.append(D2PC_1)

62 TPR_1_L.append(TPr_1)

63 FPR_1_L.append(FPr_1)

64 TPr_list_L.append(TPr_list)

65 FPr_list_L.append(FPr_list)

66 AUC_L.append(AUC)

67 minD2PC_L.append(minD2PC)

68 o_thresh_L.append(opt_threshold)#Threshold with lowest D2PC

69

70 #Plot each ROC -curve and point

71 ax[0]. plot(FPr_list , TPr_list)

72

73 #Plot ROC -points:

74 ax[1]. scatter(FPr_1 , TPr_1 , label=fname)

75

76 #Fix ROC -figure

77 fig.suptitle(roc_title)

78 ax[0]. set_xlabel(’False positive rate’)

79 ax[0]. set_ylabel(’True positive rate’)

80 ax[1]. set_xlabel(’False positive rate’)

81 ax[1]. set_ylabel(’True positive rate’)

82 fig.legend ()

83 fig.savefig(roc_figname , dpi =300)

84

85 #Combine lists for storing data in excel:

86 all_data1 = np.vstack ((filenames , minFS_L , maxFS_L , avgFS_L , FP_L , TP_L))

87 all_data2 = np.vstack ((P_L ,D2PC_1_L , TPR_1_L , FPR_1_L , AUC_L , minD2PC_L , o_thresh_L))

88 all_data_all = np.vstack ((all_data1 , all_data2))
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89 all_data = np.transpose(all_data_all)

90

91 col = [’filename ’,’minFS’,’maxFS’,’avgFS’,’false positives ’, ’true positives ’, ’positives ’,’

D2PC_1 ’,’TP4_1’,’FPr_1’,’AUC’,’minD2PC ’,’opt_thresh ’]

92 data_df = pd.DataFrame(all_data , columns=col)

93

94 #Specify name of resulting excel file:

95 data_df.to_excel(excel_name)
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Analysis-multifiles-functions:

1 """

2 @author: Harald B. Larsen

3

4 Summary Statistics

5 """

6 def stat(model): #Takes a modeled FoS -file

7 import numpy as np

8

9

10 #Basic Statistics:

11 minFS = np.amin(model)

12 maxFS = np.amax(model)

13 avgFS = np.average(model)

14

15 return minFS , maxFS , avgFS

16

17 """

18 ROC -Analysis

19 This script

20 -Takes a model -FoS file and a real failure file , and , for each threshold -increment:

21 -Creates a contingency matrix (through addition) and counts TPs , FPs etc.

22 -Calculates various performance indexes

23 -Finds approximate AUC and related terms by calculating performance at each threshold

increments

24 -Saves results in an excel document

25 """

26 def ROC(real , model): #Real failure file and model FoS -file

27

28 import numpy as np

29

30 #Create empty lists for data storage

31 TP_list = list()

32 FP_list = list()

33 TPr_list = list()

34 FPr_list = list()

35 D2PC_list = list()

36 threshold_list = list()

37

38 #Iterate through a range of thresholds:

39 for x in range (3 ,120): #Threshold range: 0.3 -12 (more than enough)

40

41 #Create contingency matrix (TP = 1, FP = 2, FN = 3, TN = 4):

42 p = model <= 0.1*x #Booelan model positives

43 model_newvals = np.select ([p==1, p==0], [3,1]) #Replace values before addition on next
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line

44 cwv = model_newvals + real #Combine modeled and real positives , "contingency wrong

values"

45 contingency = np.select ([cwv==4, cwv==3, cwv==2, cwv==1], [1,2,3,4]) #Replace with

nicer values

46

47 #Count results

48 TP = np.count_nonzero(contingency == 1) #True positives

49 FP = np.count_nonzero(contingency == 2) #False positives

50 FN = np.count_nonzero(contingency == 3) #False negatives

51 TN = np.count_nonzero(contingency == 4) #True negatives

52 Ps = TP + FN #Total number of model positives

53 Ns = FP + TN #Total number of model negatives

54

55 #Calculate performance indexes (might add others):

56 TPr = TP/Ps #True positive rate

57 FPr = FP/Ns #False positive rate

58 FNr = 1-TPr #False negative rate

59 D2PC = np.sqrt(FPr**2 + FNr **2) #Distance to perfect classification

60

61 #Append results to lists:

62 TP_list.append(TP)

63 FP_list.append(FP)

64 TPr_list.append(TPr)

65 FPr_list.append(FPr)

66 D2PC_list.append(D2PC)

67 threshold_list.append (0.1*x)

68

69 #Calculate AUC;

70 AUC = 0 #Initial

71 for x in range (0,len(TPr_list) -1):

72 AUC = AUC + (( TPr_list[x+1]+ TPr_list[x])/2)*( FPr_list[x+1]- FPr_list[x]) #Approximate

integration

73

74 #Find minimum D2PC and corresponding threshold value:

75 minD2PC = min(D2PC_list) #Minimum value

76 minD2PCindex= D2PC_list.index(minD2PC) #Index of minimum value

77 opt_threshold = threshold_list[minD2PCindex] #Threshold value yielding minimum D2PC

78

79 #Results at threshold = 1 (Default):

80 index_1 = threshold_list.index (1) #The index (in all lists) at which threshold =1

81 TPs = TP_list[index_1] #Number of true positives

82 FPs = FP_list[index_1] #Number of false positives

83 TPr_1 = TPr_list[index_1] #True positive rate

84 FPr_1 = FPr_list[index_1] #False positive rate

85 D2PC_1 = D2PC_list[index_1] #Distance to perfect classification
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86

87 #Returning variables:

88 return Ps, TPs , FPs , TPr_list , FPr_list , AUC , minD2PC , opt_threshold , D2PC_1 , TPr_1 , FPr_1
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Analysis-magnitudes:

1 """

2 @author: Harald B. Larsen

3

4 This script:

5 -Takes ONE FoS -file , along with a real binary failure file and various other spatial data

6 -Calls external evaluation functions

7 -Plots data in numerous figures and saves these figures in the current working directory (or

as specified)

8 """

9 #Script needs work if there are noe false negatives!

10 import numpy as np

11 import pandas as pd

12 import matplotlib.pyplot as plt

13

14 from evaluation_funcs_HBL import contingency

15 from evaluation_funcs_HBL import spat_bin

16 from evaluation_funcs_HBL import non_spat_bin

17

18 plt.rcParams[’axes.grid’] = True #Auto -set grids for figures

19

20 """ Preferences """

21 #Input: Landslides

22 failure = np.loadtxt(’failure_r10.txt’, skiprows =6) #Binary real failure grid

23 fos_file_f = np.loadtxt("OutputTRfs_min_fa0_5.txt", skiprows =6) #FoS file at the time of

landslide occurence

24 #NB: If analyzing results BEFORE failure (FPs), the above files should be change

appropriately

25

26 #Input: Spatial data

27 slope = np.loadtxt("spat_data\slope_10.txt", skiprows =6) #Slope grid

28 alt = np.loadtxt("spat_data\dem_10.txt", skiprows =6) #Altitude grid

29 p_zones = np.loadtxt("spat_data\propzones_3class_10m_sa.txt", skiprows =6) #Property zone

grid

30 v_p_zones = np.loadtxt("spat_data\propzones_veg_2class.txt", skiprows =6) #Evt kun veg , men

g r for veg_propzones for yeblikket !

31

32 #Input: Plots

33 eval_tag = ’test’ #The nametag to be added to plot titles

34

35 #Input: Storage options - specify names/paths

36 cont_mat_store = ’cont_mat_test ’ #Contingency matrix

37

38 #Input: Percentile of positive cells at which to calculate UIL:

39 UIL_perc = 90
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40

41

42 """ Binary , Spatial Evaluation """

43 #Create contingency matrix:

44 cont_mat = contingency(failure , fos_file_f , cont_mat_store) #Also saves cont_mat as txt_file

!

45

46 #Call binary spatial analysis function:

47 binspat_df = spat_bin(cont_mat , slope , alt , p_zones , v_p_zones)

48

49 #Plot Binary Spatial Data:

50 #Create empty figures:

51 s_fig , s_ax = plt.subplots (2,2) #Slope distribution figure , 4 subplots

52 a_fig , a_ax = plt.subplots (2,2) #Altitude distribution figure

53 p_fig , p_ax = plt.subplots (2,2) #Property zone distribution figure

54 v_fig , v_ax = plt.subplots (2,2) #Vegetation zone distribution figure

55

56 #Plot histograms of contingency -matrix -divided spatial data in each subplot:

57 s_ax [0][0]. hist(binspat_df[’s_TP’], label=’TP’, color=’b’) #Slopes of True positives

58 s_ax [0][1]. hist(binspat_df[’s_FP’], label=’FP’, color=’y’) #Slopes of false positives

59 s_ax [1][0]. hist(binspat_df[’s_FN’], label=’FN’, color=’r’)

60 s_ax [1][1]. hist(binspat_df[’s_TN’], label=’TN’, color=’limegreen ’)

61 a_ax [0][0]. hist(binspat_df[’a_TP’], label=’TP’, color=’b’) #Altitudes

62 a_ax [0][1]. hist(binspat_df[’a_FP’], label=’FP’, color=’y’)

63 a_ax [1][0]. hist(binspat_df[’a_FN’], label=’FN’, color=’r’)

64 a_ax [1][1]. hist(binspat_df[’a_TN’], label=’TN’, color=’limegreen ’)

65 p_ax [0][0]. hist(binspat_df[’p_TP’], label=’TP’, color=’b’) #Property Zones

66 p_ax [0][1]. hist(binspat_df[’p_FP’], label=’FP’, color=’y’)

67 p_ax [1][0]. hist(binspat_df[’p_FN’], label=’FN’, color=’r’)

68 p_ax [1][1]. hist(binspat_df[’p_TN’], label=’TN’, color=’limegreen ’)

69 v_ax [0][0]. hist(binspat_df[’v_TP’], label=’TP’, color=’b’, bins=np.linspace (0 ,12 ,13)) #

Vegetation Property Zones

70 v_ax [0][1]. hist(binspat_df[’v_FP’], label=’FP’, color=’y’, bins=np.linspace (0 ,12 ,13))

71 v_ax [1][0]. hist(binspat_df[’v_FN’], label=’FN’, color=’r’, bins=np.linspace (0 ,12 ,13))

72 v_ax [1][1]. hist(binspat_df[’v_TN’], label=’TN’, color=’limegreen ’, bins=np.linspace (0 ,12 ,13)

)

73 #Set axis labels:

74 s_ax [1][0]. set_xlabel(’Degrees ’)

75 s_ax [1][1]. set_xlabel(’Degrees ’)

76 s_ax [1][0]. set_ylabel(’Freq.’)

77 a_ax [1][0]. set_xlabel(’m.a.s.l.’)

78 a_ax [1][1]. set_xlabel(’m.a.s.l.’)

79 a_ax [1][0]. set_ylabel(’Freq.’)

80 p_ax [1][0]. set_xlabel(’p-zone’)

81 p_ax [1][1]. set_xlabel(’p-zone’)

82 p_ax [1][0]. set_ylabel(’Freq.’)



106

83 v_ax [1][0]. set_xlabel(’v_p -zone’)

84 v_ax [1][1]. set_xlabel(’v_p -zone’)

85 v_ax [1][0]. set_ylabel(’Freq.’)

86 #Set titles and legends

87 s_fig.legend ()

88 s_fig.suptitle(’Slope Distributions\n’ + eval_tag)

89 a_fig.legend ()

90 a_fig.suptitle(’Altitude Distributions\n’ + eval_tag)

91 p_fig.legend ()

92 p_fig.suptitle(’Property Zone Dist.\n’ + eval_tag)

93 v_fig.legend ()

94 v_fig.suptitle(’Vegetation property zone Dist.\n’ + eval_tag)

95

96 s_fig.savefig(’s_fig_ ’ + eval_tag + ’.png’, dpi =300)

97 a_fig.savefig(’a_fig’ + eval_tag + ’.png’, dpi =300)

98 p_fig.savefig(’p_fig’ + eval_tag + ’.png’, dpi =300)

99 v_fig.savefig(’v_fig’ + eval_tag + ’.png’, dpi =300)

100

101

102 """Non -binary Spatial Evaluation """

103 #Call non -binary spatial evaluation function:

104 CR , FCR , CEMR , contspat_df , positives , negatives , pos_slopes , neg_slopes , UIL , CTN ,

crit_cells = non_spat_bin(fos_file_f , cont_mat , slope , alt , p_zones , v_p_zones , eval_tag

, UIL_perc)

105 #note that this function saves visualization txts of NoData = 0, which can be prepared and

visualized!

106

107 #Plot non -binary data:

108

109 #Major scatter plot representing all cells:

110 overview , ax = plt.subplots (1,1)

111 ax.scatter(negatives , neg_slopes , c=’g’, label=’Real negatives ’, alpha =0.5, s=10)

112 ax.scatter(positives , pos_slopes , c=’r’, label=’Real positives ’, s=10)

113 ax.axvline(x=1)

114 ax.set_xlabel(’Model Factor of Safety ’)

115 ax.set_ylabel(’Predicted slope (degrees)’)

116 overview.legend ()

117 overview.suptitle(’Overview of modeling results\n’ + eval_tag)

118 overview.savefig(’overview_ ’+eval_tag +’.png’, dpi =400)

119 ax.set_xlim (0,2)

120 overview.suptitle(’Focused overview\n’ +eval_tag)

121 overview.savefig(’overview_zoom_ ’+eval_tag+’.png’, dpi =400)

122

123 #Scatter plots (pairwise spatial value and corresponding error):

124 s_figm , s_axm = plt.subplots (3,1, sharex=True) #Slope figure

125 a_figm , a_axm = plt.subplots (3,1, sharex=True) #Altitude figure
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126 p_figm , p_axm = plt.subplots (3,1, sharex=True) #Property zone figure

127 v_figm , v_axm = plt.subplots (3,1, sharex=True) #Vegetation zone figure

128

129 s_axm [0]. scatter(contspat_df[’slopes_C ’], contspat_df[’C_slopes ’], label=’Confidence ’, color

=’b’)

130 a_axm [0]. scatter(contspat_df[’alts_C ’], contspat_df[’C_alts ’], label=’Confidence ’, color=’b’

)

131 p_axm [0]. scatter(contspat_df[’p_zones_C ’], contspat_df[’C_p_zones ’], label=’Confidence ’,

color=’b’)

132 v_axm [0]. scatter(contspat_df[’v_p_zones_C ’], contspat_df[’C_v_p_zones ’], label=’Confidence ’,

color=’b’)

133

134 s_axm [1]. scatter(contspat_df[’slopes_FC ’], contspat_df[’FC_slopes ’], label=’False confidence

’, color=’y’)

135 a_axm [1]. scatter(contspat_df[’alts_FC ’], contspat_df[’FC_alts ’], label=’False confidence ’,

color=’y’)

136 p_axm [1]. scatter(contspat_df[’p_zones_FC ’], contspat_df[’FC_p_zones ’], label=’False

confidence ’, color=’y’)

137 v_axm [1]. scatter(contspat_df[’v_p_zones_FC ’], contspat_df[’FC_v_p_zones ’], label=’False

confidence ’, color=’y’)

138

139 s_axm [2]. scatter(contspat_df[’slopes_CEM ’], contspat_df[’CEM_slopes ’], label=’Critical error

magnitude ’, color=’r’)

140 a_axm [2]. scatter(contspat_df[’alts_CEM ’], contspat_df[’CEM_alts ’], label=’Critical error

magnitude ’, color=’r’)

141 p_axm [2]. scatter(contspat_df[’p_zones_CEM ’], contspat_df[’CEM_p_zones ’], label=’Critical

error magnitude ’, color=’r’)

142 v_axm [2]. scatter(contspat_df[’v_p_zones_CEM ’], contspat_df[’CEM_v_p_zones ’], label=’Critical

error magnitude ’, color=’r’)

143

144 s_axm [2]. set_xlabel(’degrees ’)

145 a_axm [2]. set_xlabel(’m.a.s.l.’)

146 p_axm [2]. set_xlabel(’Property Zone’)

147 v_axm [2]. set_xlabel(’Vegetation Property Zone’)

148

149 s_figm.legend ()

150 s_figm.suptitle(’Error magnitudes\n vs. slope , ’+eval_tag)

151 a_figm.legend ()

152 a_figm.suptitle(’Error magnitudes\n vs. altitude , ’+eval_tag)

153 p_figm.legend ()

154 p_figm.suptitle(’Error magnitudes\n vs. property zones , ’+eval_tag)

155 v_figm.legend ()

156 v_figm.suptitle(’Error magnitudes\n vs. veg. property zones , ’+eval_tag)

157

158 s_figm.savefig(’s_figm_ ’+eval_tag +’.png’, dpi =300)

159 a_figm.savefig(’a_figm_ ’+eval_tag+’.png’, dpi =300)



108

160 p_figm.savefig(’p_figm_ ’+eval_tag+’.png’, dpi =300)

161 v_figm.savefig(’v_figm_ ’+eval_tag+’.png’, dpi =300)

162

163 #Some other calculations:

164 crit_cells_perc = (crit_cells/np.count_nonzero(fos_file_f))*100

165

166 CTNr = CTN / np.count_nonzero(cont_mat ==4) #Critical negative ratio (CTN/TN)

167

168 #Print results:

169 print(’Ci: ’, CR)

170 print(’FCi: ’, FCR)

171 print(’CEMi: ’, CEMR)

172 print(’For true negatives , a total of ’, CTN , ’ lies below ’, UIL , ’ (UIL), yielding a CTNr

of ’, CTNr , ’.’)

173 print(’A total of ’, crit_cells , ’ cells (CS), yielding ’, crit_cells_perc , ’% of total

cells (CSr), lie below UIL’)
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Analysis-magnitudes-functions:

1 """

2 Functions called by "Analysis_magnitudes"

3 """

4

5 def contingency(failure , fos_file_f , cont_mat_store):

6

7 import numpy as np

8

9 #Contingency Matrix (1=TP, 2=FP, 3=FN , 4=TN)

10 bol_pos = fos_file_f <=1 #Booelan model positives (b=model)

11 bol_pos_2 = np.select ([ bol_pos ==1, bol_pos ==0], [3,1]) #Replacing values before

addition

12 cont_1 = bol_pos_2 + failure #adding positives to real file

13 cont_mat = np.select ([ cont_1 ==4, cont_1 ==3, cont_1 ==2, cont_1 ==1], [1,2,3,4]) #Nicer

values

14 np.savetxt(cont_mat_store , cont_mat)

15 return cont_mat

16

17

18

19 """

20 Binary Spatial Analysis

21 This script:

22 -takes in a contingency matrix and various spatial data

23 -investigates WHERE contingengencies occur in relation to slope etc. by:

24 -saving e.g. slope values of TPs , FPs etc in separate lists in a DataFrame

25 """

26

27 def spat_bin(cont_mat , slope , alt , p_zones , v_p_zones):

28 import pandas as pd

29

30 #Create 4 lists (one for each contingency) per spatial grid and total lists

31 slopes_TP = list()

32 slopes_FP = list()

33 slopes_FN = list()

34 slopes_TN = list()

35 alts_TP = list()

36 alts_FP = list()

37 alts_FN = list()

38 alts_TN = list()

39 p_zones_TP = list()

40 p_zones_FP = list()

41 p_zones_FN = list()

42 p_zones_TN = list()
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43 v_p_zones_TP = list()

44 v_p_zones_FP = list()

45 v_p_zones_FN = list()

46 v_p_zones_TN = list()

47

48 slopes_total = list()

49 alts_total = list()

50 p_zones_total = list()

51 v_p_zones_total = list()

52

53 #Iterate through each cell in cont_mat , and store corresponding spatial data:

54 rows , cols = cont_mat.shape

55 for x in range(0, rows):

56 for y in range(0,cols):

57 if cont_mat[x][y] == 1: #True positives

58 slopes_TP.append(slope[x][y])

59 alts_TP.append(alt[x][y])

60 p_zones_TP.append(p_zones[x][y])

61 v_p_zones_TP.append(v_p_zones[x][y])

62 elif cont_mat[x][y] == 2: #False positives

63 slopes_FP.append(slope[x][y])

64 alts_FP.append(alt[x][y])

65 p_zones_FP.append(p_zones[x][y])

66 v_p_zones_FP.append(v_p_zones[x][y])

67 elif cont_mat[x][y] == 3: #False negatives

68 slopes_FN.append(slope[x][y])

69 alts_FN.append(alt[x][y])

70 p_zones_FN.append(p_zones[x][y])

71 v_p_zones_FN.append(v_p_zones[x][y])

72 elif cont_mat[x][y] == 4: #True negatives

73 slopes_TN.append(slope[x][y])

74 alts_TN.append(alt[x][y])

75 p_zones_TN.append(p_zones[x][y])

76 v_p_zones_TN.append(v_p_zones[x][y])

77

78 #Concatenate all data:

79 slopes_total.extend ((slopes_TP , slopes_FP , slopes_FN , slopes_TN)) #All slope values ,

each list on one row

80 slopes_df = pd.DataFrame(slopes_total).transpose () #Transpose to one list per column ,

values vertically

81 slopes_df.columns= [’s_TP’, ’s_FP’, ’s_FN’, ’s_TN’]

82

83 alts_total.extend ((alts_TP , alts_FP , alts_FN , alts_TN))

84 alts_df = pd.DataFrame(alts_total).transpose ()

85 alts_df.columns= [’a_TP’, ’a_FP’, ’a_FN’, ’a_TN’]

86
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87 p_zones_total.extend ((p_zones_TP , p_zones_FP , p_zones_FN , p_zones_TN))

88 p_zones_df = pd.DataFrame(p_zones_total).transpose ()

89 p_zones_df.columns= [’p_TP’, ’p_FP’, ’p_FN’, ’p_TN’]

90

91 v_p_zones_total.extend (( v_p_zones_TP , v_p_zones_FP , v_p_zones_FN , v_p_zones_TN))

92 v_p_zones_df = pd.DataFrame(v_p_zones_total).transpose ()

93 v_p_zones_df.columns= [’v_TP’, ’v_FP’, ’v_FN’, ’v_TN’]

94

95 binspat_df = pd.concat ([slopes_df , alts_df , p_zones_df , v_p_zones_df], axis =1) #

Concatenenate horizontally

96

97 return binspat_df

98

99

100

101 def non_spat_bin(fos_file_f , cont_mat , slope , alt , p_zones , v_p_zones , eval_tag , UIL_perc):

102 #NB: Script does not work if there are e.g. zero false negatives!

103 import numpy as np

104 import pandas as pd

105

106 #Create emtpy lists for data storage:

107 confidence_matrix = np.zeros(cont_mat.shape) #Confidence

108 false_conf_matrix = np.zeros(cont_mat.shape) #False confidence

109 CEM_matrix = np.zeros(cont_mat.shape) #Critical error magnitude

110

111 slopes_C = list() #Slope values of true positives

112 C_slopes = list() #Confidence values correspodning to slope values of true positives

113 slopes_FC = list() #Slope values for false negatives etc..

114 FC_slopes = list()

115 slopes_CEM = list()

116 CEM_slopes = list()

117 alts_C = list()

118 C_alts = list()

119 alts_FC = list()

120 FC_alts = list()

121 alts_CEM = list()

122 CEM_alts = list()

123 p_zones_C = list()

124 C_p_zones = list()

125 p_zones_FC = list()

126 FC_p_zones = list()

127 p_zones_CEM = list()

128 CEM_p_zones = list()

129 v_p_zones_C = list()

130 C_v_p_zones = list()

131 v_p_zones_FC = list()
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132 FC_v_p_zones = list()

133 v_p_zones_CEM = list()

134 CEM_v_p_zones = list()

135

136 TPs = list() #List of all TP-values etc.

137 FPs = list()

138 FNs = list()

139 TNs = list()

140 slopes_TP = list() #List of all slope values for TPs etc.

141 slopes_FP = list()

142 slopes_FN = list()

143 slopes_TN = list()

144

145 #Iterate through the contingency matrix and fill lists:

146 rows , cols = cont_mat.shape

147 for a in range(0,rows):

148 for b in range(0,cols):

149 if cont_mat[a][b] == 1: #A true positive

150 confidence_matrix[a][b] = 1-fos_file_f[a][b] #Calcualte confidence and fill

151 slopes_C.append(slope[a][b]) #Slope values for TPs

152 C_slopes.append(confidence_matrix[a][b]) #Corresponding C-values

153 alts_C.append(alt[a][b])

154 C_alts.append(confidence_matrix[a][b])

155 p_zones_C.append(p_zones[a][b])

156 C_p_zones.append(confidence_matrix[a][b])

157 v_p_zones_C.append(v_p_zones[a][b])

158 C_v_p_zones.append(confidence_matrix[a][b])

159 TPs.append(fos_file_f[a][b]) #List of all TP -values for the large scatter

plot

160 slopes_TP.append(slope[a][b]) #List of all slopes for TPs for the large

scatter plot

161 #The above can obviously be improved as e.g. all C-lists are effectively the

same! May consider improving later.

162 elif cont_mat[a][b] == 2: #FP

163 false_conf_matrix[a][b] = 1-fos_file_f[a][b]

164 slopes_FC.append(slope[a][b])

165 FC_slopes.append(false_conf_matrix[a][b])

166 alts_FC.append(alt[a][b])

167 FC_alts.append(false_conf_matrix[a][b])

168 p_zones_FC.append(p_zones[a][b])

169 FC_p_zones.append(false_conf_matrix[a][b])

170 v_p_zones_FC.append(v_p_zones[a][b])

171 FC_v_p_zones.append(false_conf_matrix[a][b])

172 FPs.append(fos_file_f[a][b])

173 slopes_FP.append(slope[a][b])

174 elif cont_mat[a][b] == 3: #FN
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175 CEM_matrix[a][b] = fos_file_f[a][b]-1

176 slopes_CEM.append(slope[a][b])

177 CEM_slopes.append(CEM_matrix[a][b])

178 alts_CEM.append(alt[a][b])

179 CEM_alts.append(CEM_matrix[a][b])

180 p_zones_CEM.append(p_zones[a][b])

181 CEM_p_zones.append(CEM_matrix[a][b])

182 v_p_zones_CEM.append(v_p_zones[a][b])

183 CEM_v_p_zones.append(CEM_matrix[a][b])

184 FNs.append(fos_file_f[a][b])

185 slopes_FN.append(slope[a][b])

186 elif cont_mat[a][b] == 4: #TN

187 TNs.append(fos_file_f[a][b])

188 slopes_TN.append(slope[a][b])

189

190 #Save files for visualization , zero as nodata!

191 np.savetxt(’confidence_matrix_ ’ + eval_tag +’.txt’, confidence_matrix)

192 np.savetxt(’false_conf_matrix_ ’ + eval_tag +’.txt’, false_conf_matrix)

193 np.savetxt(’CEM_matrix_ ’ + eval_tag + ’.txt’, CEM_matrix)

194

195 #Calculate Ratios

196 CR = confidence_matrix.sum()/np.count_nonzero(confidence_matrix) #Confidence Ratio

197 FCR = false_conf_matrix.sum()/np.count_nonzero(false_conf_matrix) #False confidence

ratio

198 CEMR = CEM_matrix.sum()/np.count_nonzero(CEM_matrix) #Critical error magnitude ratio

199

200 #Put together lists for large scatter plot:

201 positives = TPs + FNs

202 negatives = FPs + TNs

203 pos_slopes = slopes_TP + slopes_FN

204 neg_slopes = slopes_FP + slopes_TN

205

206 #Upper Instability Limit - Needs some more thinking , I like the idea.

207 pos_sort = positives

208 pos_sort.sort()

209 UIL = np.percentile(pos_sort , UIL_perc) #Upper Instability Limit (stable above)

210 CTN = np.count_nonzero(TNs <= UIL) #Critical True Negatives

211 Critical_Cells = np.count_nonzero(fos_file_f <= UIL) #Cells below UIL

212

213 #Save all spatial data in one DataFrame for plotting by main:

214 #Empty total lists:

215 slopes_tot = list()

216 alts_tot = list()

217 p_zones_tot = list()

218 v_p_zones_tot = list()

219 C_tot = list()
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220 FC_tot = list()

221 CEM_tot = list()

222

223 slopes_tot.extend ((slopes_C , slopes_FC , slopes_CEM))

224 alts_tot.extend ((alts_C , alts_FC , alts_CEM))

225 p_zones_tot.extend ((p_zones_C , p_zones_FC , p_zones_CEM))

226 v_p_zones_tot.extend (( v_p_zones_C , v_p_zones_FC , v_p_zones_CEM))

227 C_tot.extend ((C_slopes , C_alts , C_p_zones , C_v_p_zones))

228 FC_tot.extend ((FC_slopes , FC_alts , FC_p_zones , FC_v_p_zones))

229 CEM_tot.extend (( CEM_slopes , CEM_alts , CEM_p_zones , CEM_v_p_zones))

230

231 slopes_df = pd.DataFrame(slopes_tot).transpose ()

232 alts_df = pd.DataFrame(alts_tot).transpose ()

233 p_zones_df = pd.DataFrame(p_zones_tot).transpose ()

234 v_p_zones_df = pd.DataFrame(v_p_zones_tot).transpose ()

235 C_df = pd.DataFrame(C_tot).transpose ()

236 FC_df = pd.DataFrame(FC_tot).transpose ()

237 CEM_df = pd.DataFrame(CEM_tot).transpose ()

238

239 slopes_df.columns = [’slopes_C ’, ’slopes_FC ’, ’slopes_CEM ’]

240 alts_df.columns = [’alts_C ’, ’alts_FC ’, ’alts_CEM ’]

241 p_zones_df.columns = [’p_zones_C ’, ’p_zones_FC ’, ’p_zones_CEM ’]

242 v_p_zones_df.columns = [’v_p_zones_C ’, ’v_p_zones_FC ’, ’v_p_zones_CEM ’]

243 C_df.columns = [’C_slopes ’, ’C_alts ’, ’C_p_zones ’, ’C_v_p_zones ’]

244 FC_df.columns = [’FC_slopes ’, ’FC_alts ’, ’FC_p_zones ’, ’FC_v_p_zones ’]

245 CEM_df.columns = [’CEM_slopes ’, ’CEM_alts ’, ’CEM_p_zones ’, ’CEM_v_p_zones ’]

246

247 cont_spat_df = pd.concat ([slopes_df , alts_df , p_zones_df , v_p_zones_df , C_df , FC_df ,

CEM_df], axis =1)

248 #Spatial data to excel: Unneccessary , and supersedes maximum rows and columns when using

10x10m DEM.

249

250 return CR, FCR , CEMR , cont_spat_df , positives , negatives , pos_slopes , neg_slopes , UIL ,

CTN , Critical_Cells
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