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Summary

The work presented in this thesis outlines two approaches for the training of a faster region-
based convolutional neural network (Faster R-CNN) object detection model. This model
can be used for automatic detection of both CCA and non-CCA core plugs in optical core
images, by fine-tuning the parameters of a pre-trained model using the Tensorflow
object detection API. The first approach consisted of training an initial model on images
from the two wells, 6406/3-2 and 6406/8-1, which are chosen based on low and high
variance in the visual appearance of the core plugs, respectively. Finally, the initial model
is tested on two different test sets. The first test set consists of images from only two
wells, and the second test set is randomly sampled from 25 wells. The second approach
deals with further fine-tuning of the parameters of the initial model to increase the model
performance on a specific data set. In this second approach, the initial model was fine-
tuned using a small subset of the images from the first test set and tested on the remaining
images in this set. Also, in both approaches, the input images are converted to grayscale
before training, which resulted in a slight increase in the model performance based on the
benchmarking of different preprocessing techniques conducted in this thesis.

The result from the first approach showed that the model was able to achieve high
performance with respect to the evaluation metrics on the validation set. A significant per-
formance loss was observed on both test sets, indicating that the inter-well variance in the
visual appearance of the core plugs is too large to be learned from only two wells. How-
ever, the results from the second approach showed that if the variance in visual appearance
is kept relatively low, the performance can be significantly increased by fine-tuning the
initial model using a small number of plug locations and with minimal training time. Em-
ploying the second approach, the precision of the model increased to an acceptable level
for the considered task. Additionally, the fine-tuning approach can be used as a semi-
automatic labelling tool, which can significantly reduce the amount of time required for
labelling data for further training of the model and other related object detection tasks.




Sammendrag

Denne oppgaven presenterer to fremgangsmater for a trene en Faster Region-based Con-
volutional Neural Network (Faster R-CNN) objektgjenkjenningsmodell. Denne modellen
kan brukes til automatisk gjenkjenning av bade CCA og ikke-CCA kjerneplugger i op-
tiske kjernebilder, ved & finjustere parameterne til en ferdig trent modell ved bruke av
Tensorflows objektgjenkjennings-APIL. Den fgrste fremgangsmaten besto av & trene
en opprinnelig modell pa bilder fra to brgnner, 6406/3-2 og 6406/8-1, som er valgt pa
grunnlag av sin henholdsvis lave og hgye varians i det visuelle utseendet til kjerne-
pluggene. Til slutt testes den opprinnelige modellen pa to forskjellige testsett. Det fgrste
testsettet bestar av bilder fra kun to brgnner, og det andre testsettet bestar av tilfeldig utval-
gte bilder fra 25 brgnner. Den andre fremgangsmaten omhandler ytterligere finjustering
av parametrene til den opprinnelige modellen der malet var & gke ytelsen til modellen pa
et spesifikt datasett. I den andre fremgangsmaten ble den opprinnelige modellen finjustert
ved hjelp av en liten delmengde av bildene fra det fgrste testsettet, og testet pa de gjen-
vaerende bildene i dette datasettet. I begge fremgangsmatene ble input-bildene konvertert
til gratoner fgr de ble brukt til & trene modellen, noe som resulterte i en liten gkning i
ytelsen til modellen basert pa en referanseméling av forskjellige preprosesseringsmetoder
utfgrt i denne oppaven.

Resultatet fra den fgrste fremgangsmaten viste at modellen var i stand til & oppna en
hgy ytelse med hensyn til vurderingskriteriene pa valideringssettet. Et betydelig ytelsestap
ble observert pa begge testsettene, noe som indikerer at variansen i det visuelle utseen-
det til kjernepluggene for brgnnene i testsettene er for stor til & kunne leres fra kun to
brgnner. Resultatene fra den andre fremgangsmaten viste imidlertid at hvis variansen i det
visuelle utseendet er begrenset, si kan ytelsen gkes betraktelig ved & finjustere den op-
prinnelige modellen med en liten delmengde av kjernepluggene, med minimal treningstid.
Ved a bruke denne fremgangsmaten ble modellens presisjon gkt til et akseptabelt niva for
den tiltenkte oppgaven. I tillegg kan finjusteringsmetoden brukes som et halvautomatisk
verktgy til & generere treningsdata, noe som kan redusere tiden som kreves for & merke
data for videre opplering av modellen og til andre relaterte objektgjenkjenningsoppgaver.
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trained checkpoints used for evaluation are saved(—checkpoint_dir) and
where to save the output form the evaluation (-model dir). . . ... ...
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3.10

3.11

3.12

Logging both the training evaluation in tensorboard by specifying the path
of their respective directories. . . . . . . . . . ... ...
Running model_main.py from the terminal specifying where to log any
error messages from the evaluation process (—alsologtostderr) the path
to the configuration file (—pipeline_config_path) the directory where the
training checkpoints used for evaluation are saved (—checkpoint_dir) and
where to save the output form the evaluation (—model_dir). The —run_once
option specifies that the model is only evaluated once using the latest
checkpoint and not continuously logging the checkpoint directory. . . . .
Running export_inference_graph.py from terminal specifying the in-
put data type (—input_type) path to config file (—pipeline_config_path)
path to the desired fine-tuned checkpoint (—trained_checkpoint_prefix) and
where to save the frozen inference graph (—output_directory). The 0000 in
model.ckpt-0000 checkpoint refers to the step the model was saved and in
this case would be before training. . . . . . . ... ...
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Chapter

Introduction

Optical core images and core plugs are important data sources within the petroleum in-
dustry and are utilized across several disciplines within the field of petroleum engineering
and geoscience. These data sources are often used together to enhance the information
of the subsurface since they provide the closest to ground truth representation of differ-
ent aspects of the subsurface (McPhee et al., 2015). From optical core images, the visual
characteristics of the subsurface can be inferred, e.g. the lithology, the bedding frequency,
orientation, and the texture of the rock. These characteristics are important for placing the
rocks in a geological context, such as determining the depositional environment. The core
plugs allow for the measurement of the petrophysical properties of the rock, which can not
be obtained from simply viewing the core. These properties include but are not limited to
porosity, permeability, fluid saturation, wettability, and capillary pressure (McPhee et al.,
2015). The petrophysical properties of the rock provide the engineer with valuable insight
into the subsurface, which can be used in both identifying and characterizing possible
Ireservoir zones.

the core analysis workflow. This analysis includes extracting core plugs from the whole
core, on which the physical measurements will be performed. The extracted core segments
are slabbed along the length and photographed to display the visual characteristics of the
core (McPhee et al., 2015). This practice has lead to the accumulation of a large num-
ber of wells with optical core image data and core plug measurements, which are stored
in databases. One such database is maintained by the Norwegian Petroleum Directorate
(NPD), which contains both core images and core sampling reports for many public wells
on the Norwegian continental shelf (NCS).

However, since the core sampling reports and the optical core images are stored sep-
arately, with the optical core images stored in an especially unfavorable format, the task
of manually correlating these data sources can be time-consuming. The original core im-
age contains several approximately one-meter core segments photographed side by side.
These core images need to be manually cropped into individual segments to be used in
combination with other data sources such as the core analysis and well log data. Once the
core images have been cropped they can be correlated with the core analysis data by read-
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ing through the core sampling reports, manually identifying which core plug measurement
identified by measured depth corresponds to which core plug location in the optical core
image in pixels. This establishes a mapping between the well depth of the measurement
and the pixels in the optical core image, which can be used to connect the physical mea-
surement and the visual characteristics of the rock. This allows the optical core images
to be used in conjunction with the physical core plugs measurements, and other well re-
lated depth data such as petrophysical logs, linking core analysis, well logs and reservoir
geology (McPhee et al., 2015).

In recent years, several authors have successfully applied various machine learning
techniques to automate workflows associated with classifying and extracting information
from core images (Gonzalez et al., 2019; Thomas et al., 2011; Prince and Shafer, 2002)
and predicting petrophysical rock properties such as permeability and porosity from core
analysis data (Erofeev et al., 2019). This can mainly be attributed to the significant ad-
vancements within the field of machine learning and deep learning, with respect to the
algorithmic advances, the availability of data, and cheaper hardware (Chollet, 2018). Ad-
ditionally open-source platforms such as Tensorf1low have made the building and train-
ing of the machine learning models accessible for researchers within fields besides com-
puter science. However, in most cases, the data used in these machine learning techniques
needs to be manually labelled and prepared in a standard format, which can be highly
time-consuming.

1.1 The Scope

The goal of this thesis is to train an object detection model, which can be used for locating
and classifying both conventional core analysis (CCA) and non-CCA plugs in optical core
images. The objective of such a model is to facilitate the workflow of correlating optical
core images, core analysis data and petrophysical well logs. This can be done by estab-
lishing an estimated depth locations of the core plugs within optical core images, based
on their pixel locations, which in turn can be used to map the geological information in
the core images to the core analysis data and well logs. Further, by combining this model
with the automatic core cropping model developed in the specialization project of this the-
sis, the two models can be integrated into a fully automatic tool to improve the existing
approaches of core analysis and core image data storage. The end-goal of such a tool is
that it can be used as part of a digitization workflow, where the core segments are first
extracted from the optical core images. The extracted core segments are then used as input
to the core plug detection model, which locates and classifies the core plugs and returns
an estimated pixel-depth map of the identified cores. This pixel-depth map can then be
used in correlation with other data sources, which will allow for easy querying between
the different data sources.

The main objective of this thesis is the training and optimization of the machine learn-
ing model that is concerned with locating and classifying the core plugs within the optical
core images. Thus, the integration of the two models to a fully automatic tool is considered
outside the scope of this thesis.

The training of the object detection model is performed by fine-tuning the weights
of a pre-trained model, using the Tensorflow object detection APIL. This is done us-
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ing the data from two wells 6406/3 — 2 and 6406/8 — 1. The reason for fine-tuning a
pre-trained model, rather than training a model from scratch, is that it will significantly
reduce the amount of time and data needed to reach an acceptable performance. The neu-
ral network architecture used in this thesis is the Faster Region-based Neural Network
(Faster R-CNN) architecture, with an Inception Resnet (v2) feature extractor (Szegedy
et al., 2016). This model choice is based on its reported performance, achieving the high-
est mean average precision (mAP) in a comparison between modern convolution object
detectors (Huang et al., 2017a).

First, an initial model is trained and evaluated on the original core images from a single
well (6406/3-2). This well is chosen based on the low variance in the visual appearance
of the core plugs. Further, four additional models are trained on the same data, applying a
different preprocessing technique to the input of each model with the goal of increasing the
performance. Secondly, the best of these five models are chosen and trained on data which
includes core images from a well with greater variance in visual appearance of the core
plugs (6406/3-2 and 6406/8-1). This model is then used to test different model configura-
tions until an acceptable performance is reached. The model is tested on two data sets; A
data set consisting of images from only two wells, and a data set of randomly sampled core
images from the public wells from the Norwegian continental shelf. Finally, a workflow
for increasing the performance of the model within specific wells will be outlined. This
involves fine-tuning the trained model, using a small subset of labelled images from a test
set containing images from only two wells. The model will be uploaded to the GitHub
repository (Adelved, 2020) of this thesis, which can be downloaded and used for further
training.

1.2 Outline

Chapter 2 will provide the general background for the core analysis workflow and ma-
chine learning (ML). Some sections in this chapter touches on similar concepts to that of
the specialization project preceding and associated to this masters thesis. Apart from some
minor adjustments, these sections remain mainly unchanged. The machine learning back-
ground will give a brief introduction to the wider field of artificial intelligence (AI), before
introducing the fundamental concepts used when the training and evaluation of neural net-
works. Section 2.4 will outline the general background for object detection and specific
theory related to the model architecture used in this thesis. Finally, a brief summary of the
object detection task and the main findings of the preceding specialization project will be
outlined.

Chapter 3 outlines the introduced workflow of the thesis and the methodology for fine-
tuning a pre-trained model with the Tensorflow object detection API and labelling the
data. Furthermore, the background and configuration of the preprocessing techniques used
in this thesis will also be included.

In chapter 4 the results from the various models will be presented and discussed ac-
cording to the workflow defined in chapter 3. In addition, both the setup and results for the
fine-tuning approach mentioned in the previous section will be presented and discussed.

The conclusion and suggestions for further work are presented in chapter 5.
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Background

The following sections will cover the background on the core analysis workflow, the back-
ground for machine learning and the different types of methods commonly used when
working with image data for classification and object detection tasks. The core analysis
sections are mainly based on McPhee et al. (2015) and will be para-phrased throughout
the relevant sections. Therefore, the citation will be reserved for direct or close to direct
quotations.

2.1 Core Analysis

Core analysis is the only direct and quantitative measurement of the subsurface and pro-
vides the best estimation of the ground truth, which any subsurface evaluation should rest
(McPhee et al., 2015). Core analysis provides information about the important rock and
reservoir properties such as porosity, permeability, fluid saturation, lithology and sedimen-
tary structures. Conventional core analysis (CCA) is the most direct way of determining
reservoir properties, which are used to characterise the reservoir and establishing a rela-
tionship between well log and core data (McPhee et al., 2015). CCA is performed on the
dry core samples at surface conditions and will not be fully representative of the actual
reservoir. The most common reservoir properties measured in CCA is the porosity and
the permeability. Special core analysis (SCAL) provides the measurements for the relative
permeability. The following sections will briefly outline the fundamentals of core analysis,
from the extraction of the core from the well to imaging and storage.

2.1.1 Coring Process

The most common source for the cores used in the core analysis workflow are extracted
from the full diameter of the core during drilling of a well. When the designated interval
is reached, drilling is halted and the drill string is pulled out of the hole. The drill bit is
removed and replaced with a coring bit. The rotary coring bit consists of solid metal with
diamonds or tungsten for cutting, but unlike a drill bit, a rotary coring bit has a hollow
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centre. This is used to extract 9 — 10m of full-diameter core from the target formation,
depending on the length of the core barrel. The core barrel consists of an inner tube
and an outer tube, separated by a ball bearing. This allows the inner tube, which stores
the extracted core, to stay stationary while the rotating outer tube cuts the core from the
formation. The core is usually stored within a liner, which is a third tube within the inner
tube. The liner allows for easy extraction of the core at the surface. After coring is finished,
the outer tube and the drill string is pulled up. This exerts a force on the inner tube which
stays in place, thus breaking the core from the formation. The core is then retrieved, either
by pumping up the inner tube, or hoisting it up by inserting a retrieval tool from the surface
(McPhee et al., 2015). At the surface, the liner and the inner tube are separated and the
core can be retrieved.

Another common coring technique is the extraction of sidewall cores. Sidewall cores
are taken to minimize coring costs or to obtain reservoir rock samples in an interval which
has either been cored and core recovery lost, or in an interval which has not been cored
conventionally (McPhee et al., 2015). Sidewall cores are considered outside the scope of
this text, and therefore will not be mentioned further.

2.1.2 Core Plugging

Most of the CCA and SCAL measurements are performed on plug samples that are cut
from the full diameter core. The core plugs used in CCA range from 2.5-3.8 cm in di-
ameter and are 2.5-7.5 cm long, depending on the what tests will be performed (McPhee
et al., 2015). However, the CCA plugs are usually 2.5 cm in diameter. The SCAL plugs
are usually larger with a standard diameter of 3.8 cm (McPhee et al., 2015). Core plugs
are usually extracted in either the horizontal and vertical direction with respect to the bed-
ding, with the exception of dean stark plugs. These are taken from the middle of the core
along the long axis of the full diameter core. In figure 2.1 the different orientations of the
plugs are shown with respect to bedding and the axes of the core. Both the dean stark and

‘ Dean Stark I

Short axis
(Diameter)

Long axis

Figure 2.1: The orientations of the different types of core plugs with respect to bedding.

horizontal plugs, used to measures fluid saturation and permeability, respectively, should
be taken from the centre of the core. This is done in order to minimize the effect of mud
particles and filtrate on the measurements. The vertical plugs are mainly used for rock
mechanics and conventional core analysis test. They are taken perpendicular to the max-
imum dip of the bedding. Since these plugs measure the minimum permeability, they
are often cut close to the horizontal plugs so that maximum and minimum permeability
can be compared (McPhee et al., 2015). The spacing of the plugs depends on the type
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of plug. Horizontal routine porosity-permeability measurement plugs taken in reservoir
quality intervals are extracted approximately every 25 cm along the length of the core.
This may vary based on lithology, where thick homogeneous intervals require fewer plugs
compared to thinly bedded heterogeneous intervals (McPhee et al., 2015). SCAL plugs
are taken from the preserved sections of the core. Sections that have been protected from
evaporation, drying and exposure to oxygen. Thus the frequency of SCAL plugs depends
on the sampling frequency of preserved sections, but are typically sampled at 1-2 m inter-
vals. Dean stark plugs are sampled in an interval of 1 m, vertically along the long axis of
the core.

2.1.3 Core Slabbing

Core slabbing is done in order to expose the sedimentological and lithological, as well as
the bedding features of the core. These features are not visible on the mud invaded exterior
of a core, fresh from the well. This allows for further geological examination of the core,
as well as providing a clean and detailed surface for core photography (McPhee et al.,
2015). The core is slabbed into three segments: A, B and C as seen in figure 2.2. First,

Diameter
. i B

~

Long axis

P

Figure 2.2: Illustration of how the cores are slabbed. The A,B and C segments are cut parallel to
the maximum dip of the bedding. The maximum dip (true dip) - green. Apparent dip - red

the core is divided into A and B, with 1/3d and 2/3d of the diameter d, respectively. The
core is always cut parallel to the maximum apparent dip that is visible from the outside
of the core. The C segment is approximately 25 mm thick and is cut from the B segment.
This is usually done by placing the B segment face-down, concave down, into a tray with
transparent resin. After the resin has hardened, the top section of the core is removed by
slabbing the core parallel to the resin tray (McPhee et al., 2015). This provides an easy
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way of displaying and preserving the information in the core, and is a particularly useful
format for core photography and detailed geological examination.

2.1.4 Core Photography

Core photography is an important step in the core analysis workflow. Creating a digital
record of the core allows for remote viewing of the core when the physical core is not
available. Conventional imaging is the most common way of creating a digital represen-
tation of the external features of the core. In figure 2.3 a typical core image record can be
seen, showing 5 C-segments from well 25/8-9. Note that in addition to the cores, the im-
age contains information on the top and base depth of each segment in the well, a ruler for
scale and a colour bar showing the intensity range of the image. Cores are normally pho-

Amerada Hess 25/8-9 - o I
Core 3 .
BT 2483.00 T.2484.00 T.2485.00 T.2486.00 T.2487.00
B.2484.00 B.2485.00 B.2486.00 B.2487.00 B.2488.00

B v ~ U °® ‘“
d ‘f

-_L

Z

-

<]

9

:
wh
-

NPD

Figure 2.3: An optical core image from well 25/8-9.

tographed under both natural light, as seen in figure 2.3, and ultraviolet light. The natural
light shows the lithology and sedimentary structures. The UV-light shows the presence of
hydrocarbons (HCs) since most HCs become fluorescent when exposed to UV-light, while
water-saturated rocks do not.
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2.2 Deep Learning

This section will give a brief introduction to the history of artificial intelligence (Al), as
outlined by Russell and Norvig (2009). Then a short introduction to the general field of
deep learning, as well as more specialized deep learning methods which are widely used
in computer vision tasks such as image classification and object detection.

The field of artificial intelligence has been around since the 1950s and was in its early
years, met with great enthusiasm and expectations (Russell and Norvig, 2009). Computers
were programmed to solve well-defined problems that could be described by a list of
formal, mathematical rules. It was believed that given a sufficiently large set of rules, a
machine could achieve a human-like intelligence and solve any problem it was presented.
Although, complex mathematical tasks and logic-based problems such as playing chess,
could be solved by computers using this approach. The real challenge to Al proved to be
solving the problems, that can not be fully described by a set of handcrafted, predetermined
rules. Consider the task of recognizing an object in a picture. A task that may seem
trivial to humans, and is solved intuitively without much effort but requires an immense
knowledge of the world. Knowledge that can not be articulated as a finite set of formal
rules, due to the limited understanding of how humans solve such intuitive tasks and the
intractability of creating such a large and general set of rules.

One approach to solving these types of problems is with the use of machine learning
(ML). Machine learning is a sub-field within Al which consists of a set of algorithms
that allows computers to solve problems by learning statistical patterns from data it is
presented to (Chollet, 2018). A sub-field of ML that has gained a lot of traction the last
few years is deep learning (DL). This technique involves learning increasingly complex
patterns from the input data (Chollet, 2018). Deep learning has shown great results in
computer vision tasks such as image classification and object detection, and with recent
Al and deep learning advances have allowed machines to surpass humans visual abilities
in many image classification and object detection applications (Elgendy, 2020).

Deep learning is a sub-field of machine learning which is almost entirely based on
artificial neural networks(ANN ) (Chollet, 2018), which will be outlined in the following
sections. Additionally, the following section will outline the fundamental concepts of deep
learning such as the motivation of machine learning, the architecture, training, testing and
how these models are evaluated.

2.2.1 Artificial Neural Networks (ANNs) and Feedforward Neural
Network (FNN)

Artificial neural networks are a set of machine learning algorithms that are inspired by
the structure of the human brain, with respect to both its architecture and how it learns
(Elgendy, 2020). An ANN consist of a set of neurons, which are arranged into layers. The
neurons are the core processing unit of the network and are inspired by the neurons in the
human brain. The neurons take a numerical input, applies some function to it and passes
it to the next neuron. Each neuron in a layer is only connected to neurons in the previous
and/or subsequent layers by a set of edges. Each edge has an associated weight which
determines the importance of that specific connection. The value in a neuron is determined
by the weighted sum of the values in the neurons that connects to it. Additionally, a
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bias term is added which is a constant with the value 1. The bias is added to allow the
output from a neuron to be something else than 0, in cases when all the neurons that
connect to it should be 0. The weighted sum and the bias are then passed through an
activation function, to introduce non-linearity to the model. The non-linearity is added by
determining which neurons should activate and pass it’s output to the next layer (Elgendy,
2020). There are many types of activation function, however the default recommendation
is to use the rectified linear unit (ReL.U) (Goodfellow et al., 2016), given by equation 2.1:

9(z) = maz{0, z} 2.1

where z is the weighted sum of the activations of the neurons in the previous layer and
the weights connecting them and the current neuron plus the bias. This is illustrated in
figure 2.4, where the activation a of a neuron is calculated by passing the weighted sum of
the activations in the previous neurons, z, through the activation function g (Russell and
Norvig, 2009). The weights and biases are referred to as the parameters of the network
and usually denoted with 6.

The ReLU activation function activates a node, if and only if the input is above zero
(positive). If the input is negative, the output is always set to zero. When the input greater
than zero, it has a linear relationship with the output (Elgendy, 2020). This relationship
can be seen in figure 2.5.

gz) > ap

a(r-1,n)

Figure 2.4: The activation for a single neuron in layer L is based on the weighted sum of the
activations in the previous layer L — 1 and the bias passed through the activation function g.

The goal of an ANN is to approximate some function f* (Goodfellow et al., 2016).
For example, a classifier y = f*(x) maps an input to a category, which could be a model
that is tasked to classify cats and dogs from an input image x into the correct class y.

There are several types of neural network architectures, each with its own set of rules
for how information is communicated across the layers and with varying degrees of com-
plexity. One of the most basic ANN architectures is the fully connected feedforward
neural network (FNN), as seen in figure 2.6. A feedforward network defines a map-
ping y = f(x;0) and learns the value of the parameters 6 that result in the best function
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Figure 2.5: The rectified linear unit (ReLU).

approximation of fx* (Goodfellow et al., 2016). The information in one layer is only com-
municated forward to the subsequent layer in the network. Additionally, each neuron in a
given layer is connected to all the neurons in the subsequent layer, hence the name fully
connected feedforward (Goodfellow et al., 2016). The network consists of 3 types of lay-
ers; input layer, one or several hidden layers and an output layer as seen in figure 2.6. The

Layer: hy Layer: h,

| | .
nput layer, x Hiddenlayers Output layer, y
Figure 2.6: A forward feeding fully connected neural network with one input layer two hidden layers

and an output layer containing both the neurons and biases. The hidden layers can be regarded as a
function f that increase in complexity for every hidden layer added.

input layer is given the input data x, which is evaluated by the intermediate computations
defined by the hidden layers h, before being classified as y in the output layer. The func-
tion f can be regarded as a combination of several smaller functions, one for each hidden
layer in the model. Consider the network in figure 2.6, with the two hidden layers h; and
ho. If £ and £ corresponds to the function expression in h; and hs, respectively, then
f can be written as: f(z) = £ (fM)(z)) (Goodfellow et al., 2016). Hence, each hidden
layer adds a level of complexity to the calculations performed by the model. The number
of layers in the network is referred to as the depth, giving rise to the name “deep” in deep

11



Chapter 2. Background

learning (Chollet, 2018).

2.2.2 Training

The goal of the training process is to find the parameters 6 of the network that best explains
the relationship between the input x and the desired output y in the mapping y=f(x;0).
Provided enough examples (training data) this parameter configuration can be learned by
minimizing the difference between the prediction from the network and the labelled train-
ing data. This difference is referred to as the loss of the model and is measured by a loss
function (Goodfellow et al., 2016). Several functions can be used to calculate the loss,
one such function is the mean-squared error (MSE). The loss function is often denoted
by J(0) (Goodfellow et al., 2016) and using the MSE it can be written as:

n

_ L SRRy
J(@)—MSE—HZ(yJ Y;) (2.2)

J

where ¢; is the predicted output from the model, y is the labelled training example from
the labelled data and n is the size of the training data set. As the prediction approaches
the true value y, J(0) — 0, the network is said to improve its performance. Thus, the
objective is to minimize the error between prediction and actual value. This is equivalent
to wanting to have the highest possible activation for the neuron in the output layer that
corresponds to the target y. Using the cat and dog classification example, if the input z is a
cat, then it is desirable to have the highest activation in the output neuron that corresponds
to the cat class. Since the activation of the neurons in the output layer is the weighted
response of the activation in the previous layer, these need to be adjusted in order to get a
prediction closer to the target value. This is essentially an optimization problem and can
be solved using a gradient-based algorithm, such as gradient descent (GD) (Goodfellow
et al., 2016).

01‘4_1 = 02 - OZVQJ(OZ) (23)

The GD algorithm is given in equation 2.3, where the new value of the function parameters
0, i.e the weights, are calculated at each iteration using its current value, the gradient
of the loss function with respect to the weights VyJ(6) and the step-size or learning
rate «. It can be understood as; for every new value 8,1, consider its current value
0; and take a step of size « in the direction of the steepest gradient of the loss function
V.J(0;), and repeat until the minimum value is reached. The magnitude of each update
is determined by the learning rate «, which is a positive scalar (Goodfellow et al., 2016).
The learning rate should be chosen with care. A small o will take longer to converge to the
minimum, and a large o might over-shoot the minimum and diverge. A popular approach
for choosing the learning rate is to set « to small constant value (Goodfellow et al., 2016).
In GD the loss, J(@), is calculated based on the entire training set as seen in equation
2.3 . Therefore, it is commonly referred to as batch gradient descent. The drawback
with this method is that every update to the weights, determined by V.J(0), requires one
pass over the entire training set. Thus, the larger the data set, the slower the algorithm
updates the model weights (Elgendy, 2020). Therefore, a commonly used optimization
algorithm when working with large data sets is the Stochastic gradient descent (SDG).
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Instead of updating the parameters based on all training examples, a subset or mini-batch,
of the training data is randomly selected for each iterative update. This mini-batch is then
an approximation of the true gradient. This leads to faster iterations at a slight cost of
convergence rate (Suvrit Sra, 2011).

The topic of optimization methods and algorithms is an extensive and complicated
mathematical field and is mostly beyond the scope of this thesis. However, some basic
concepts such as local and global minima will be touched upon to clarify some of the
challenges encountered by optimization algorithms and how they can be mitigated. Con-
sider a real-valued function f, which is defined in the domain S. A point z* is the global
minimum if f(z*) < f(z) for all values of z € S. Similarly, the local minimum is
defined as the point z* if f(z*) < f(x) for all values |x — z*| < €. For the function f
seen in figure 2.7, there is only one global minimum and every iteration of the gradient
descent, according to equation 2.3, will converge towards the global minimum regardless
of the initialization of x. Granted an appropriate choice for the learning rate « that will not
overshoot the minimum and oscillate. The equation 2.3 is a greedy algorithm. A greedy
algorithm makes locally optimal decisions in the search for the global optimal solution
(Black, 2005). Such algorithms work well if every local update of the gradient moves the
solution towards the global minimum. This is rarely the case in practice and an example

Figure 2.7: A function f(x) containing one global minimum.

of this can be seen in figure 2.8. This function contains several minima that the algorithm
may converge to (A, B and C), but only one global minimum (C). The solution depends
on the starting position of the algorithm and can be illustrated by examining the “peak”
between A and B in figure 2.8. If the initial position is chosen slightly to the right of the
peak, the algorithm will start traversing along the negative gradient and converge at A,
which is a local minimum and a poor solution compared to B and C. Similarly if start-
ing slightly left of the peak, the algorithm will converge towards B and stop before ever
reaching C. Although non of these scenarios converge to the global minimum in C, the
latter one is preferred since it provides an acceptable minimum compared to A. Generally
there is no easy way to find the global minimum or confirm that the found minimum is the
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Figure 2.8: A function f(x) containing 2 local minima (A and B) and one global minimum (C).

global minimum.

Although, the general field of optimization is considered outside the scope of this text
it is worth mentioning that several optimization techniques have been developed to address
the global-local minima problem. One popular technique is moment optimization, which
utilizes the concept of momentum from physics to adaptively adjust the learning rate .. In
the standard gradient descent in equation 2.3, the modification to the weights at each step
is determined by a the learning rate o and the gradient of the loss function with respect to
the weights V. J(6). At each step, the momentum optimizer updates the weights similar to
standard gradient descent but adds a fraction of the update from the previous step. That is,
the modification of the weights at the current step depends on both the current gradient and
the weight change of the previous step (Qian, 1999), and the modification to the weights
at each step is given as:

AG; = —anJ(Hi) + ’}/Agi_l 2.4

where -y is a constant value, determining the fraction of the update to the weights in the
previous step to calculate the update in the current step. The value of the weight ~ is
usually in the range 0.5 — 0.9 (Rumelhart et al., 1986). The last term of equation 2.4 is
referred to as the momentum. As long as the gradients of the current step and the previous
step points in the same direction the update to the weights increases i.e. builds momentum.
This allows for faster convergence when the gradient is strictly decreasing. The momentum
also makes the loss function less sensitive to small changes to the direction of the gradient.
This is the most important aspect of the momentum optimizer, which reduces the risk of
getting stuck in a local minimum. A commonly used analogy for illustrating the effect
of adding momentum is that of a ball rolling down a hill as seen in figure 2.9. The left
figure shows the standard gradient descent optimizer, which only moves the weights in
the opposite direction of the gradient at the current step. In this case, the chosen learning
rate « is too small, and the ball gets stuck in a local minimum. When using the same «
and adding momentum, the ball is accelerating on the downhill slope since the gradients
are pointing in the same direction. When the gradient changes direction, the momentum
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Gradient Descent Gradient Descent
with momentum

Figure 2.9: Illustrating the effect of momentum in GD, using the ball and hill analogy. (left) GD
without momentum. (right) GD with momentum.

built in the downhill slope is large enough to push the ball out of the local minima. This
is the essence of including the momentum and is found to increase the convergence rate
significantly (Rumelhart et al., 1986).

2.2.3 Backpropagation

As outlined in the previous section, the goal of the training process is to minimize the
loss function in equation 2.2 in order to bring the network prediction g, the output neuron
with the largest activation, closer to the desired output y. This is achieved by adjusting the
weights in the network in such a manner that the loss is minimized, i.e. taking a step in the
opposite direction of the steepest gradient of the loss function VJ(0) with respect to 6.
However, since the loss only may be calculated for the output layer, the adjustment needed
for the weights earlier in the network can not be calculated directly. Therefore, the loss in
the output layer must be translated backwards, and this is done by using backpropagation.
The backpropagation algorithm computes the gradient of the loss function by applying the
chain rule of calculus (Goodfellow et al., 2016) from the output to the input to identify
how much each weight contributes to the error. The goal of this section is not to derive the
backpropagation algorithm, but to illustrate the concept of how it works.

Consider the simple neural network consisting of the three neurons arranged in three
layers L, L — 1, L — 2 connected by the weight # and #%~! and with the activations a”,
a1 a¥~2 as seen in figure 2.10. Since the activation in the output neuron a” corresponds

a2 ol = g1 412 al = gLgl-1

Figure 2.10: A simple network showing one output layer (L) and two hidden layers (L-1 and L-2),
with their respective activation.

L
6 J= (0"~ y)

L-2 L
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to the network prediction g. The loss function from equation 2.2 can be written as:
J = (al —y)? (2.5)

The activation in a” is determined by the activation in the previous neuron a”~! and the
weight §% that connects them. Then a’ can be written as:

at = 0Fal (2.6)

The goal is to find the adjustment to the activation in the output a” that will minimize the
error in the loss function. However, since it is not possible to control the activation directly,
it is necessary to find the adjustment to the weight A~ that will change the activation a”
in such a manner that the loss function is minimized. This where the chain rule is applied,
and can be written as:

oJ  dal 0J
— = 2.7
0L 96L dal @7
Using equation 2.5 and 2.6, equation 2.7 can be written as:
oJ _
= 2a" —y)at 2.8)

Thus, the adjustment needed in the weight #* to minimize the error in the loss function
can be calculated by using the activation in the last neuron ¢’ and and a“~'. Further,
the adjustment needed to a”~! to minimize error in the loss function can be found by just
applying the chain rule as earlier.

oJ dar=1 9ar OJ

daL=1 ~ 9T daL=1 dal )
Thus, the adjustment needed to #7~! can be calculated:
oJ
50, " 2(al — y)0tal =2 (2.10)

This is the essence of the backpropagation algorithm. Apply the chain-rule to the calcu-
lated scalar loss, J (@), from the output layer to calculate the gradient of the loss function
Vi J(0) (Goodfellow et al., 2016), which is used to update an optimization function. E.g.
the GD function in equation 2.3 or the momentum optimizer in equation 2.4.

2.2.4 Training, Testing and Validation Set

When the training of the ANN is finished and the parameters, the weights, are adjusted to
perform well on the data it was trained on. The model has learned to map the input data
to the correct targets y. The goal is to produce a model that is able to generalize well,
i.e. a model that performs well on both the training data and new data it has not been
previously exposed to (Chollet, 2018). This data is called the test data. In order to confirm
the model’s ability to generalize, it is important to never expose the model to the test set
until the final evaluation of the network. It is therefore good practice to split the available
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data into a training set, a test set and a validation set prior to training. The purpose of the
validation set is to keep track of the model’s performance during training. The validation
data is never directly used in the training of the model. However, the information provided
by evaluating the model on the validation set is used to change the configuration of the
model with the goal of increasing the performance on the validation set. Some examples
of the configurations that can be adjusted are the number of layers in the network, the
number of neurons in each layer, the learning rate or the type of optimization function.
These concepts have already been outlined in the previous sections, and are often referred
to as the hyperparamters of the model (Chollet, 2018). Since these hyperparameters are
adjusted based on the performance on the validation set, the validation set is implicitly
exposed to the model, which is often referred to as peeking (Russell and Norvig, 2009).
Therefore, the test set, which is not used in either training or validation is required to
provide an unbiased measurement of the model performance.

One method of splitting the data is the simple hold-out validation, where a random
fraction of the data is split into the test set and withheld from training (Chollet, 2018).
The remaining data is further split into the training set, which will be saved for the final
evaluation and the validation set that will be used during training. An example of such a
split can be seen in figure 2.11. The simple hold-out validation is often used if a lot of data

‘ Total data ‘

‘ Training Validation Test ‘

Figure 2.11: The resulting training,validation and test data using simple hold-out validation.

is available. However, in most machine learning cases, data is a limited resource. If the
data set is small, such a fractional split creates a small validation and test set that may not
be statistically representative of the initial data at hand. Another approach for splitting the
data, that is often used when working with smaller data sets, is the K-fold cross-validation
method. The available labelled data is split into K equal partitions, and for each partition
1, train a model on the K — 1 remaining partitions (Chollet, 2018). The final score is the
average of the K evaluations, allowing for more of the data to be used in training. Figure
2.12 illustrates an example of the K-fold cross-validation method with K = 3. In addition

Total data
Test | | Taine- | | Taine- | vaiuate |
T || est | | T | [t |l ROPOT 2VOr2gE
Teining- || T | est |-o[ evauate |_|

Figure 2.12: A schematic overview of K-fold cross-validation, with K = 3.
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to increasing the amount of data that can be used in the training and validation of the
model. It also reduces the risk of creating a test set that is not representative of the total
data set. Consider a data set consisting of 30 images, which will be used in a classification
task. Using simple hold-out validation, the data set could split into 20 images that will
be used for training and validation, leaving 10 images for testing. If the 10 images in the
test set, by chance, should be the easiest to classify. The model performance on the test
set will be overestimated, compared to using a different split, i.e. the model performance
is dependent on how the data is split. This stochastic effect of the split can be reduced
by using K-fold cross-validation with K = 3, as seen in figure 2.12. By reserving 10
different images for testing for each run, every image can be used to evaluate the model.
This will give a better estimate of the model’s performance since the average of the three
training-validation-testing runs is reported.

2.2.5 Evaluation Metric

There are several ways to evaluate the network performance, and this is done by choosing
an appropriate evaluation metric to the task at hand. Some of the common evaluation
metrics for classification tasks are accuracy, precision, recall and Fl-score. In order to
define these it is helpful to study the confusion matrix in table 2.1, which is a visual
representation of a classification models performance (Elgendy, 2020). The accuracy, A,

Prediction
Ground Truth Positive Negative
Positive True Positive (T},) | False Negative (F},)
Negative False Positive (F},) | True Negative (T3,)

Table 2.1: A confusion matrix showing the four possible outcomes for a prediction with respect to
the ground truth.

of the model is the number of correct predictions over the total number of predictions and
and can be written as:
T, + 7T,

A:
Ty+Tp+F,+ F,

@2.11)

Although, accuracy can be a useful evaluation metric, it may be quite misleading for the
model’s performance. Consider a data set with a large class imbalance, where the model is
only able to correctly classify the majority class. This will lead to high accuracy, without
being able to solve the problem. Thus, in the case of class imbalance, precision is a
more suitable metric. The precision, P, is the fraction of positive predictions that are true
positives, i.e. how correct are the positive predictions. Precision is given as (Elgendy,
2020):

Ty

pP=_"P
T, + F,

(2.12)
As seen in equation 2.12, the precision metric does not account for false negatives. Thus,
it is possible to achieve a high precision score, without actually identifying all the relevant
ground truth positives in the data set. The model’s ability to identify the relevant ground

18



2.2 Deep Learning

truth positives is called the recall, R, and given as (Elgendy, 2020):

Ty

R:n+m

2.13)

Recall and precision are therefore often used in conjunction to evaluate the network per-
formance. There is a constant trade-off between the recall and precision scores since a
high recall leads to low precision and vice versa. It is important to identify whether the
task requires a high recall or precision score. The importance of these concepts can be
illustrated with a practical example, slightly modified after Elgendy (2020). Consider a
ML model that is tasked with classifying a tumour as malignant or benign in 100 patients,
where 10 are malignant. According to equation 2.12, classifying only one of the malignant
tumors as malignant will yield a high precision score P = ﬁ = 1, although only being
able to identify 1 out of 10. This is reflected in the recall score which will be low, since
the 9 malignant tumors are wrongly classified R = ﬁ = 0.1. In this case, a higher
recall score is desired. Although, this will compromise the precision score, it is better to
wrongly classify a benign tumour as malignant (F},) than the other way around (£7,). In
other scenarios where the consequence of a F), is less serious, a higher precision score
may be desirable.

Although, there are some scenarios where there is a preference for either precision or
recall. It is always desirable to maximize both, i.e. have both high precision and high recall
scores. Therefore, both metrics are needed to fully describe the model’s performance.
Consider the case with two models M7 and Ms. The precision/recall score M and M
are 0.5/1 and 1/0.5, respectively. Without a clear preference for either precision or recall,
as in the tumour example, it is hard to compare the performance of the two models. In
these cases, the precision and recall score are combined into a single metric called the
F1-score (Elgendy, 2020):

PR
P+R

The F1-score is a value between 0 — 1. Using equation 2.14, model M; and M achieves
the same F1-score F'1 = 0.667, even if they have perfect recall and precision, respectively.
Since the numerator of the Fl-score is the product of the two metrics, both precision and
recall must be 1 in order to achieve a perfect F1-score.

F1=2

(2.14)

2.2.6 Opverfitting and Underfitting

The overall goal of machine learning is to optimize the parameters of the model on the
training data in order to generalize well on the test data. By examining how the training
loss and the validation loss correlate during training, the generalization power of the model
can be inferred. In the early stages of training, both the training loss and validation loss
will be decreasing. As long as both are decreasing, the model is said to be underfitting
(Chollet, 2018). This implies that the model is still learning from the input and configure
its parameters accordingly, i.e. both the optimization and generalization of the model is
still improving. After a certain time, the validation loss will stagnate or even increase,
while the training loss keeps improving. If the training loss decreases and the validation
loss increase, the model is said to be overfitting (Chollet, 2018), as shown in figure 2.13.

19



Chapter 2. Background

That is, the model is starting to learn patterns from the training data, which are irrelevant
for solving the task on the validation data (Chollet, 2018). Thus, the model optimizes
its parameters on the training data, at the cost of its ability to generalize on new data.
Overfitting and underfitting are undesired with respect to model performance since both

—— training loss
validation loss

Loss

Iterations

Figure 2.13: A typical sign of overfitting. Validation loss increases as training loss decreases.

lead to less accurate predictions. In the case of underfitting, where the validation loss
is still decreasing, the solution is simply to continue to train the network. If the model
is underfitting and the validation loss shows no further improvements the chosen model
might be too simple, thus fails to capture the relevant patterns in the data. A commonly
used example to illustrate the lack of complexity in the model is the fitting of a non-linear
data set with a linear function. If the model is unable to learn non-linear relationships
between input and output, no amount of training will increase the model’s performance.
In this case, the solution can be to increase the complexity of the model by adding more
layers/increase layer size, i.e. increasing the number of learnable parameters (Chollet,
2018).

In the case of overfitting, the best solution is to expose the model to more training
data, if available (Chollet, 2018). Otherwise, there are several techniques available to
avoid overfitting, and these are often referred to as regularization techniques. One such
technique is called early stopping, where the training process is terminated as soon as the
model starts overfitting, as seen in figure 2.14. Other common regularization techniques
include:

* Reduce network size, which in turn reduces the number of learnable parameters.
This limits the model’s ability to memorize a dictionary-like mapping from input to
output in the training data (Chollet, 2018).

¢ Adding a penalty term, A, to the cost function in equation 2.2. This penalty term
scales with the complexity of the model, hence favouring less complex models with
greater generalization power.
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—— training loss
B validation loss
—--- early stopping

Loss

Iterations

Figure 2.14: (A) The training and validation loss is still decreasing, the model is underfitting. (B)
Training loss stagnates or decreases while validation loss increases, the model is overfitting. Early
stopping terminates the training process as soon as the model crosses over from A to B.

» Dropping out a random fraction, usually 0.2 — 0.5, of the output from a layer. This
is done in order to break up coincidental patterns in the training data which are not
significant for a general solution (Chollet, 2018).

2.3 Convolutional Neural Networks (CNN)

Convolutional neural networks (CNN5s) are a type of deep neural network, which are spe-
cialized at handling data with a grid-like structure. The input data could be a 2D grid
such as an image with a certain height and width or 3D grid, such as a video with the
added dimension of time (Goodfellow et al., 2016). CNNs are therefore widely applied
within the field of computer vision. As the name implies, the convolution operation plays
a major role in how these types of networks operate. A convolutional neural network is
a neural network, containing at least one convolutional layer. Each convolutional layer
consists of three stages: The convolution stage, the detector stage and the pooling stage
(Goodfellow et al., 2016), which can be seen in figure 2.15.

Each stage in the convolutional layer receives the input from the previous stage and
applies an operation to said input. The first stage is the convolution stage, the input is
transformed using a kernel convolution. The Detector stage adds the non-linearity, by
calculating the activations using the ReLLU activation function. Finally, the activations are
summarized in the pooling stage, which is passed to the next convolutional layer. These
three stages will be further elaborated on in the subsequent sections.
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I Next layer l

A

I Pooling stage l
[ )
Detector stage:
non-linearity, ReLU

[}

Convolution stage:
transform input

Convolutional layer

Input layer

Figure 2.15: A schematic illustration of the three stages in a convolutional layer.

2.3.1 The Convolutional Operation

A convolution is a mathematical operation on two real-valued and continuous functions, f
and g. Its mathematical definition is given as:

(o= [ s@gt-nir= [ gft-nar  @1s)
— o0 — 00
When working with CNNs, equation 2.15 needs to be rewritten to its discrete form:
(fra)t)= > fla)g(t—a) (2.16)

where f(t) is the input, g(t) is the kernel and (f * g)(t) is the output, often referred to
as the feature map (Goodfellow et al., 2016). In practice, both the input and the kernel
are usually, finite, multidimensional arrays and are often referred to as tensors. Consider
a finite 2D image tensor I, with m X n pixels and a kernel K, then equation 2.16 can be
rewritten as a sum over a finite number of array elements (Goodfellow et al., 2016):

S(i,j) = (I K)(i,5) = > > I(m,n)K(i—m,j—n) (2.17)

where S(i,j) denotes the output from the convolution between image I(m,n) and the
kernel K. The (¢, j) term shows the positions within the m X n image the convolution is
preformed.

This process is illustrated in figure 2.16, where the input image is convolved with
a kernel of width 3 centred at position f and g. The dashed red line shows the initial
position of the kernel centred at position f in the input. Convolving the kernel with the
input at this image location will output the weighted sum of neighbouring pixels. The
number of pixels included and the weights are determined by the size and the values of
the kernel, respectively. For the 3 x 3 kernel to fit within the 4 x 4 image, it can only be
centred at the pixel locations f, g, j or k. Thus, the number of possible outputs from this
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Figure 2.16: An example of a two-dimensional convolution, showing the outputs when the kernel is
centred at f and g. The dashed red square shows the extent of the kernel centred at f.

convolution is four, i.e. the 16 pixels in the input are reduced to 4 values in the output.
This causes a reduction of 2 in both dimension, and is referred to as the border effect of
convolution (Chollet, 2018). Hence, each convolution applied will reduce the dimensions
of the feature. There are methods that can be applied to either increase or reduce this loss
of dimensionality when performing the convolutional operation and are called stride and
padding, respectively.

The stride determines the step size between each time the convolution is performed.
If the convolution should be performed at every possible pixel location f,g,j and k in
figure 2.16 the stride is said to be s = 1 x 1, i.e. the spacing in spatial location, both
in the horizontal and vertical direction of the image, where the convolution operation is
performed is one. As the stride increases, the distance between the locations where the
convolution is performed increases. This, in turn, reduces the number of outputs and
increases the reduction in dimensionality.

Padding, on the other hand, is a technique used to preserve the dimensionality of the
input. This is done by padding the border of the input with zeros, allowing for the con-
volution operation to be performed at every pixel location of the input. Padding the 4 x 4
input in figure 2.16 will result in a 5 x 5 image, which allows the kernel to be placed in
every pixel location, e.g. a, which would result in the following output: 5a + 6b+ 8¢+ 9f.

Each layer in the network may apply several convolutions in parallel to the same input
by using different kernels, which will result in different outputs. This can be seen as

23



Chapter 2. Background

applying different filters or transformations to the same input to highlight different features
in the input. For example, convolving the input with one kernel can result in the horizontal
edges in the image are highlighted, while another kernel highlights the vertical edges. One
of the most important aspects of using convolutions in neural networks are the concepts of
parameter sharing and sparse connectivity (Goodfellow et al., 2016). These concepts
are illustrated with a one-dimensional example in figure 2.17, with one input layer x, one
output layer s and a kernel with a width of 3. When applying the convolution with the
kernel centred at xo (kernel position 1), the output in s, will be the weighted sum of
the inputs covered by the kernel. In this case ss is the weighted sum of x1,z2 and x3,
resulting in only three ingoing edges from the input to s,. Similarly, several outputs are
affected by the same input values. This can seen in figure 2.17, where x5 affects ss, s3
and s4 from the convolution performed at kernel positions 1,2 and 3, respectively. This
gives rise to the name sparse connectivity and is the result of using a kernel that is smaller
than the input (Goodfellow et al., 2016). Contrasting this to the fully connected feed-
forward neural network in section 2.2.1, where every output has an ingoing edge from
every input. The benefit of sparse connectivity is that the input can be represented with
significantly fewer parameters, which both reduces the memory requirements of the model
and improves its statistical efficiency (Goodfellow et al., 2016), compared to FNNs. This
reduction in memory requirement and increase in efficiency by reducing the number of
parameters are especially useful when working with images, which can contain several
thousands of pixels.

Parameter sharing refers to using the same parameter for more than one function in a
model (Goodfellow et al., 2016). Since the parameters (weights) in a CNN is defined by
the values of the kernel, and the kernel is used at every position of the input (if padding
is used). A change in e.g. the centre value of the kernel will affect every output. This
can be illustrated with figure 2.16, where a change in the middle value of the kernel will
affect the weighted sum of both outputs. This allows for the learning of only one set
of parameters (Goodfellow et al., 2016), i.e. the values of the kernel. Comparing this
to a FNN, where every input node has its own set of parameters, i.e. the weights of the
connections from the input node to every output node in the subsequent layer. This requires
that a set of parameters (weights) needs to be learned for every input (Goodfellow et al.,
2016). An additional property of parameter sharing is that it makes the convolutional
layer equivariant to translation, i.e. if the input changes, the output changes in the same
way (Goodfellow et al., 2016). The mathematical definition of equivariance is given in
equation 2.18 (Goodfellow et al., 2016):

fg(@)) = g(f(x)) (2.18)

where f(z) and g(x) are equivariant functions. In the context of convolution, consider
an input image I(x,y) where the pixels are moved a couple of units to the right using
some sort of transformation function. The result after the transformation is I'(x,y) =
I(x + k,y), where k describes the amount of movement. Since the convolution is equiv-
ariant to translation, applying the convolution to I then transforming the output from
the convolution will give the same result as applying the convolution directly to I'(z, y)
(Goodfellow et al., 2016). This is an important aspect of the convolution operation, which
allows for the learning of local patterns in the input. This implies that the spatial location
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of a certain feature in the image does not affect the networks ability to detect it. For exam-
ple, some local patterns in an input image, such as edges (the contrast between dark and
bright pixel values), will be present almost everywhere in the image (Goodfellow et al.,
2016). Therefore, it is desirable to apply the same local transformation that detects edges
across the whole input, which is made possible by parameter sharing. Contrast this to
densely connected layers (FNN), which are not equivariant to translation, where each pat-
tern learned involves the whole feature space, limiting them to only learn global patterns

) |@| @| &)

Kernel position 1 |

Kernel position 2 | | | |

Kernel position 3 | | I |

Figure 2.17: One-dimensional example illustrating the sparse connectivity of convolutional neural
networks, as a result of using a smaller kernel than the input. The input neuron and the output
neurons affected by it are highlighted in blue. The kernel positions illustrates the position of kernel
when x3 is included the weighted sum of sz, s3 and s4.

The next stage in the convolutional layer is the detector stage. Similar to the traditional
neural networks (e.g. FNNs), the output from the convolution is a linear weighted sum of
the input and the kernel. In order to introduce non-linearity, the activations are calculated
by passing the values in each output node through an activation function, e.g. the ReLU
defined in equation 2.1. Once the activations have been calculated, they are passed as input
to the final stage in the convolutional layer, the pooling stage.

2.3.2 Pooling

The pooling stage is the final stage of a convolutional layer, where a pooling function is
applied. A pooling function is fed the activations from the detection stage at a certain point
in the network and replaces it with a summary statistic of the nearby outputs (Goodfellow
et al., 2016). There are several types of pooling functions, with the most common being
the max pooling function. In max pooling, the activations from the detector stage are
summarized by the maximum value in a rectangular neighbourhood (Goodfellow et al.,
2016). In all cases the pooling helps the to make the representation approximately trans-
lation invariant, this means that if the input is translated by a small amount, most pooled
outputs will stay the same (Goodfellow et al., 2016). An important property of translation
invariance is that the will be less concerned with the specific pixel location of a certain
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feature in the image. Since the location of a feature that describes the same thing may vary
between inputs. For example for the task of determining if an image contains a face, it
is more important to know that there is an eye on the left side of the face, rather than the
exact pixel location of said eye (Goodfellow et al., 2016). This property of max pooling is
illustrated in the one-dimensional example in figure 2.18, where a max pooling kernel of
width 3 is run over two similar activations from the detector stage. The activations in the
right figure are shifted one step to the right. Although, all values in the input are changed
due to the shift, only two values changes after max pooling (Goodfellow et al., 2016). An

Pooling stage Pooling stage

Detection stage@ @ @ @ @ Detection stage
L [ ]

Figure 2.18: The translation invariance from pooling. The bottom row shows the activations from
the ReLU in the detection stage. (left) The top row shows the output from max pooling with a kernel
of width three and stride 1. (right) The result of max pooling when the input is shifted to the right
by one.

additional property of the pooling operation is the downsampling of the input. Similar to
the convolution operation, this downsampling is determined by the size and stride of the
kernel used in the pooling. Since the number of parameters in a layer is a function of the
input size, pooling will also result in improved statistical efficiency and reduced memory
requirements for storing the parameters (Goodfellow et al., 2016).

2.3.3 CNN architecture

As outlined in the introduction to this section, the convolutional layer consists of the three
stages: minimum one convolution stage, a detector stage and a pooling stage. A CNN
usually consists of several convolutional layers with a flattened layer which is fully con-
nected to the final output. Figure 2.19 shows a simple CNN with two convolutional layers,
containing one convolution stage and one pooling stage each. The ability to detect local,
translation invariant patterns allows CNNs to learn spatial hierarchies of the input data
(Chollet, 2018). For example, the first convolutional layer in the network may learn small
local features such as edges. The second layer will learn larger patterns based on the small
ones found in the first layer and so on. Hence, the network will learn increasingly more
complex and abstract concepts with increasing network depth (Chollet, 2018).

2.3.4 Data Augmentation

One of the main challenges with deep learning algorithms such as CNNs, is that they
require a lot of training data in order to perform well. They are said to be data hungry
(Elgendy, 2020). This is due to the inherent complexity of the problem space they often
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Figure 2.19: The architectural elements of a CNN. A - Convolution 5x5 kernel + Detection with
activation function. B - Pooling 2x2 kernel. C-fully connected layers between flattened layer and the
output. C'L, - Convolutional layer. The photography used in this and subsequent figures is licensed
under the Unsplash license (Co, 2018).

are applied to. Training data often is a limited resource and the task of acquiring and
labelling data is both tedious and time-consuming. Data augmentation is an approach for
generating more training data from the existing data set, by augmenting the images with
a certain number of random transformations (Chollet, 2018). Figure 2.20 shows the result
of applying rotation, zooming and lateral translation at four various degrees to the original
image.

Figure 2.20: The effect of three different data augmentation techniques at 4 random degrees. A -
original image, B - rotation, C - zooming and D - lateral translation.

2.3.5 Transfer Learning and Fine-Tuning

The main idea behind transfer learning is that a network that has learned to solve a prob-
lem in a certain domain can be transferred and applied to a different, but related problem
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(Elgendy, 2020). Since training a network with good performance from scratch requires
large amounts of data, transfer learning may be a highly effective approach if there is some
fundamental similarity between the two problems. A common transfer learning technique
is fine-tuning, where only the last layers of the convolutional network are retrained. Con-
sider a network with good performance and that has been trained on a large data set such as
ImageNet, a database with 1,4 million labelled images in 1000 different categories (Chol-
let, 2018). The idea is that a network that has been trained on such a large and diverse
data set has learned to extract general features such as edges, curves and circles in its early
layers. Since these types of features are general, they should to some extent be applied to
any image classification task. Due to the hierarchical structure of CNNs, the last layers
are specialized to capture abstract concepts, which are highly task specific (Chollet, 2018).
By retraining the last layers of the network, they can be used to capture new abstract rep-
resentations that are specific to the task at hand, while preserving the general layers early
in the network.

2.4 CNN for Object Detection

Apart from image classification, one of the major sub-fields of computer vision is object
detection. In contrast to image classification, the task of object detection involves both
localizing and classifying an unknown number of objects of varying size within an image.
Another difference between classification and object detection is the labelled input data
used in training. The input data for object detection tasks are usually images with labelled
bounding boxes around the task objects. The bounding boxes are usually rectangles and
defined by the = and y coordinates for the upper-left and lower-right corner of the box.
Region-based convolutional neural networks (R-CNN) is a family of algorithms that
have been developed to solve object detection tasks, and includes R-CNN, Fast R-CNN
and Faster R-CNN (Elgendy, 2020). Additionally, there are other object detection models
that are commonly used, such as YOLO and SSD. However, these are considered outside
the scope of this text and will not be discussed any further. For more details regarding
YOLO and SSD object detection models, the reader is encouraged to consult Redmon
et al. (2015) and Liu et al. (2015), respectively. Thus, the following sections will outline
the basics of R-CNN based methods and some fundamental metrics commonly used in
object detection tasks.

2.4.1 Evaluation Metric for Object Detection

The goal of an object detection model is to be able to both classify and localize the object
within an image. The model takes an image with ground truth bounding boxes and their
associated labels as input. Then outputs a classification and spatial locations of the targets
defined by bounding boxes, as seen in figure 2.21. Thus, the model needs to optimize a
loss function that combines the localization and classification losses. In order to choose
a evaluation metric for the model, two fundamental concepts are defined: the confidence
score and the intersection over union (IoU). The confidence score also referred to the
objectness loss, is a probability score in the range [0, 1] describes how certain the network
is that this bounding box contains an object (Elgendy, 2020). The IoU is used to determine
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Output

CNN

== Network bounding box prediction
Ground truth bounding box

Figure 2.21: Illustration of the object detection task. Input - labelled ground truth bounding box
(yellow). Output - A prediction for the class and the location of the object in the image, marked by
a bounding box (red).

how well the network predicts the bounding boxes around the targets, with respect to the
ground truth. The ToU is a score in the range [0, 1] that expresses the amount of overlap
between ground truth and prediction. This can be seen in figure 2.22 using the bounding
boxes from figure 2.21. The mathematical expression for IoU is given as (Elgendy, 2020):

_|AnB]

IOU(A,B) = m

(2.19)

Both the confidence score and the IoU is usually set at some threshold t¢/ 7, € [0, 1],

loU =

Figure 2.22: The definition of IoU

which determines what the network defines as a true positive. Predictions with a confi-
dence score lower than ¢ are rejected as false positives. The remaining predictions with
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an IoU higher than ¢;,;7, are kept as true positives, whilst the rest are rejected as false posi-
tives. The t¢, 1,7 specifies the strictness of the policy enforced by the model for defining a
true positive. The IoU and confidence score are the foundation for most evaluation metrics
used for R-CNN models.

A common way of evaluating an object detection model is by studying the precision-
recall curve where the precision and recall scores are calculated, as outlined in section
2.2.5, and plotted for each detection. The model is said to perform well if the precision
value stays high as the recall increases. Poor object detection models will need to detect
more false positives in order to retrieve all the true positives in the data set. This is shown
in figure 2.23, where the good model (blue) has detected fewer false positives when all
the true positives in the data set have been retrieved. Another popular evaluation metrics
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Figure 2.23: The precision-recall curve for two models. The good model (blue) detects fewer false
positives and ends up with a higher precision than the poor model (orange) when all true positives
have been retrieved.

for object detection tasks is the average precision (AP). The AP is often preferred to the
precision-recall curve, since this a numeric value that describes the model performance
rather than a graphical representation. The AP is calculated by first interpolating the
currently highest precision value backwards until a higher precision value is encountered
as seen in figure 2.24. Using this interpolated precision, P;,; the AP can be calculated as
follows:

n—1
AP = "(rig1 — 1) Pin, (2.20)

where r1, s, ..., 7, denotes n equally spaced recall levels. The AP is commonly calcu-
lated over 11 recall levels, n = 11. This evaluation metric is also referred to as 11-point
recall (Zhang and Zhang, 2009).

Finally, when dealing with several classes in an object detection task the mean average
precision (mAP) is the preferred evaluation metric. The m AP is simply the AP averaged
over the number of classes in the data set and is given by:

SE AP,

AP =
m 7

2.21)
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Figure 2.24: The calculated precision-recall curve and the interpolated precision using the current
max precision value. The interpolation starts at the end (recall = 1) and interpolates the currently
largest encountered precision value backwards.

where K is the number of classes in the data set and AP, given by equation 2.20, is the
average precision for class ¢ (Elgendy, 2020).

24.2 R-CNN

Consider a naive approach to solve the object detection task using a conventional CNN. In
this case, several regions could be extracted from the input image and classified individu-
ally. However, since the objects in the input image may appear in varying sizes and spatial
locations, a huge amount of regions needs to be extracted, rendering such a method compu-
tationally intractable. The region convolutional neural network (R-CNN) proposed by
Girshick et al. (2014) provides a solution to this problem, by proposing a limited amount
of regions, referred to as proposal, the CNN needs to classify. This is achieved by using
a fixed search algorithm, such as selective search (Uijlings et al., 2013), to extract around
2000 proposals from the input. Each proposal is warped to the networks required input size
and passed through the CNN. The output is used to train a linear support vector machine
(SVM) classifier for each class, where each SVM is used to determine which class a pro-
posal belongs to. Finally, the features and labelled bounding box of each proposed region
are combined to train a linear regression model for improving the localization accuracy
for bounding box predictions (Girshick et al., 2014). Although R-CNN achieves excellent
object detection accuracy (Girshick, 2015), it suffers from several major drawbacks:

» Slow speed with respect to both training and prediction: R-CNN requires a forward
pass through the network for each proposals. Around 2000 proposals per image.

* Overlapping proposals: Causes a high volume of repetitive computations.

* There is no learning involved when extracting the proposals, since selective search
is a fixed algorithm.
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2.4.3 Fast R-CNN

These issues are addressed in Girshick (2015) with the use of the Fast R-CNN algorithm.
The input for the Fast R-CNN is an image and several region proposals of various sizes
from a fixed search algorithm. The whole image is passed through the CNN as input to
calculate the feature map and the region proposals are transformed to that feature map.
Then for each proposal a region of interest (Rol) pooling layer extracts a fixed-sized
feature map, which is mapped through two fully connected layers to a feature vector. This
feature vector is fed into two sibling layers, one outputs the prediction for the classes using
a softmax classifier and one outputs the predictions for the coordinate of the bounding box
using bounding box regression (Girshick, 2015). A softmax classifier uses the activations
to calculate the probabilities of the categorical distribution of the classes in the output
(Goodfellow et al., 2016):

softmax(z); = _oxln) (2.22)

S exp(z))

where z are the numerical activation values in the fully connected layer associated with
the softmax output.

Bbox
Softmax regression

o I
Region proposal transformed
to feature map

Rol pooling
layer

Mapping from
feature map to
vector

Rol feature
Region proposal from vector
fixed search algorithm

Figure 2.25: The architecture of the Fast R-CNN model. FC - fully connected layers.

Figure 2.25 shows the architecture of the Fast R-CNN as described in (Girshick, 2015).
The Rol pooling is a necessary step since the fully connected layers downstream expect
input of a certain size (Elgendy, 2020). The Rol pooling is essentially a max pooling
operation performed on the region of interest in order to reshape them into the correct
size. Consider the Rol pooling operation in figure 2.26, with an input RGB-image, an
output feature map of and a region proposal with the respective dimensions: (Hj, Wi, 3),
(Hy¢, Wy, d) and h x w. The input image is passed through the CNN, which generates an
output feature map. The region proposal is then transformed from the input to the feature
map. In this case, one pixel in the height and width of the feature map corresponds to
H;/Hy and W;/W; pixels on the input image. The transformation is parameterized as
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Rol pooling layer (A/k, B/k, d)
Output from Rol
(Hyp, W;,3) (Hy, W,d) pooling layer
Input Feature map

A= h/(H;/H,)
B = w/(W; /W)

Figure 2.26: Schematic illustration of how the Rol pooling operation. The input image, feature
map and region proposal with their respective dimensions (H;, Wi, 3), (Hy, Wy, d) and h x w.
The transformed region proposal is parameterized by A and B, which is in turn is divided into
A/k x B/k according to the fixed k X k kernel and max pooled to produce an output of the desired
size.

A=h/(H;/Hyf) and B = w/(W; /W) for the height and width of the region proposal.
The transformed region proposal is divided into A/k x B/k regions, where k denotes
the size of the kernel. The kernel is of a fixed size, k& x k, in order to produce an output
with the correct dimensions, expected by the fully connected layers downstream. Finally,
max pooling is performed on each of the regions resulting in an output with the desired
dimensions of (A/k, B/k, d), which is mapped to the feature vector.

The loss function in Fast R-CNN is a multi-task loss, and relates to the prediction
from the softmax classifier and the bounding box regression in figure 2.25. The softmax
classifier outputs the normalized probability p = p(po, ..., px) over the K + 1 classes,
where the pg is used to classy the background. The bounding box regression outputs the
bounding box prediction for each class t* = [tk ¢¥ ¥ F], where x,y, w, h represents the
centre coordinates and width and height of the bounding box (Girshick, 2015).

The multi-task loss function for Fast R-CNN given a Rol with a ground truth class g
and ground truth bounding box r can be written as follows (Girshick, 2015):

L(p,g,tg, T) = Lcls(p7 g) + A[g > I]Lloc(tgyr) (2.23)

Here, L.s(p, g) = —log(py) denotes the classification loss, with py denoting the probabil-
ity of class g. The negative logarithm results in smaller loss as the probability p, increases.
The localization loss, Li,.(t9, ), is given in equation 2.24.

Lioe(t9,7) = Z smoothr (t] — ;) (2.24)

i€x,y,w,h

where
0.5z2 if |z] <1

2.25
|z| — 0.5 otherwise @25)

Smoothr(x) = {
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The Smoothp loss is quadratic for small values and linear for large values, making the
loss function less sensitive to large outliers values (Girshick, 2015). The A[g > 1] term in
equation 2.23 is a regularization term. The hyperparameter A determines balance between
the Lj,. and L;s. This is usually set to A = 1 (Girshick, 2015). Finally [¢g > 1] expresses
that L;,. is not defined for the background class. Using this multi-task loss function the
Fast R-CNN model is trained using SGD and back-propagation Girshick (2015).

2.4.4 Faster R-CNN

Although, Fast R-CNN significantly improves on the simple R-CNN model, the main
bottleneck is still the test-time speed. This is attributed to the use of a fixed algorithm
for region proposals, such as selective search (Ren et al., 2017). This issue is addressed
by Ren et al. (2017) with the Faster R-CNN model. The Faster R-CNN model consists
of two modules: A region proposal network (RPN) used to generate region proposals,
called anchors, and a Fast R-CNN classifier as outlined in the previous section (Ren et al.,
2017). The task of the RPN is to generate good proposals for the location of the objects in
the image, which will be classified by the Fast-RCNN. The input to these modules comes
from a shared convolutional base that is used for feature extraction on the original input
image. Figure 2.27 shows the general architecture of the model.

Region proposals

Bbox
Softmax regression

Output:
Feature extractor P

Shared feature

Rol pooling

Rol feature
vector

Figure 2.27: The architecture of the Faster R-CNN object detection model. Consisting of a region
proposal network (RPN) and a Fast R-CNN classifier. FC - fully connected layers.

The RPN generates the anchors by taking in the feature map output from the last shared
convolutional layer in the convolutional base. This feature map is passed through a small
CNN by sliding a n x n window over the feature map to generate the input to the net-
work (Ren et al., 2017). Each n x n window is mapped to a lower-dimensional feature
map and the network proposes a maximum of k anchors for each input. Finally, the
lower-dimensional feature map is passed to two separate fully connected layers. One
box-regression layer with 4k outputs for the coordinates of the k anchors and a box-
classification layer with 2k outputs determining whether or not the k£ anchor contains an
object (Ren et al., 2017). Figure 2.28 shows the first n x n input to the RPN from the
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H x W output from the base convolutional network. The RPN proposed in Ren et al.

k bounding boxes centred Share feature map
in the sliding window from Base CNN

- Lower dimensional "
feature map 2k classifier
EK (cls)
. ﬂ 4k regressor
CNN sliding over the

base feature map

Figure 2.28: The architecture of the RPN illustrating how the anchors are generated.

(2017) uses anchors of 3 different scales and aspect ratios (1:1/2:1/1:2) yielding k = 9
anchors for each position of the sliding window. Hence, using the I x W feature map in
figure 2.28 will yield H x W x k anchors in total.

When training the RPN, each proposed anchor is assigned a binary class label based
on containing an object or not. The label for each anchor proposal is determined by an
IoU condition from equation 2.19 using the anchor A and the ground truth bounding box
Gt:

ToU (A, Gy) = [AN Gy {0.7 Positive label / Object

|AUG;| | < 0.3 Negative label / Not object

These proposals are used to optimize a loss function. The loss function that needs to be
optimized is a multi-task loss function based on the output from the box-classification
layer (cls) and the bounding box-regression layer (reg) given as (Ren et al., 2017):

Z Lcls pmpz
%

where ¢ is the index of a bounding box, p; is the predicted probability of bounding box
¢ containing an object and the ground truth label p; = 1 if bounding box i is labelled
positive. Otherwise, p; = 0.

The parameterized coordinates for the predicted bounding box ¢ are denoted as t;, and
t7 is the ground truth coordinates associated with ¢; (Ren et al., 2017). The classification
loss, L.s, is the logarithmic classification loss over the two cases: object vs not object.
The regression 108s Lyeq(t;,t}) = Smoothri(t; — tf) is given in equation 2.25. The
regression 1oss L;.4(t;,t}) is only activated if the bounding box contains an object, as
can be seen from the term p} L,,(t;,t}) in equation 2.26. The bounding box regression

L(piti) = Zpl reg(ti ) (2.26)

cls
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adopts the follow parametrizations for the predicted bounding box t = [ts, ty, t., t5] and
the ground truth bounding box t* = [t;,;, %, t;] (Ren et al., 2017):

te = (2 = xa)/Was ty = (Y = Ya)/has tw = log(w/wa), tn = log(h/ha) 2.27)

ty = (@" =), ty = (" = Ya)/ha, 1y, = log(w* /wa), tj, = log(h" /ha) '
where x,y, w, h denotes the centre, height and width of the bounding box. the z, z, and
x* corresponds to the x-values for the centre of the predicted bounding box, anchor and
ground truth box, respectively. The y,w and h values for the bounding box, anchor and
ground truth adopts the same notation as the x values.

Finally the terms N5 and N4 and A are the regularization terms, where N, is the
number of training samples used for computing the loss function. Ny..q = H x W x k,
which are the number of anchor locations and A is a constant regularization term (Ren
etal., 2017).

Since both the RPN and the Fast-RCNN classifier share convolutional layers in the
Faster R-CNN model, as seen in figure 2.27. In order to work as a unified network they
must configure these convolutional layers in a similar manner (Ren et al., 2017). Both
the RPN and Fast R-CNN, trained independently, will modify their convolutional layers in
different ways (Ren et al., 2017). To avoid this, the method used to train the Faster R-CNN
model outlined in Ren et al. (2017) is as follows: Use a pre-trained CNN base network to
train the RPN and Fast-RCNN independently. Use the RPN to generate region proposals
to fine-tune the Faster R-CNN. At this the two networks do not share convolutional layers.
Use the now fine-tuned Faster R-CNN detection model to initialize the RPN training, but
only fine-tuning the layers unique to the RPN. This results in a unified model where the
RPN and Fast-RCNN share convolutional layers.

2.5 Brief Summary of Specialization Project

This section will give a brief summary of the work conducted in the specialization project.
Since some of the same machine learning concepts that will be used in this thesis, were
also used in the specialization project, this summary will also act as a practical example
for some of the previously outlined machine learning concepts.

The work in the specialization project conducted in the fall of 2019 consisted of train-
ing an object detection model for detecting and extracting the core segments from the
optical core images. The model was trained by fine-tuning a pre-trained Faster R-CNN
using 80 randomly sampled core images from NPD, which were manually labelled using
a software. In the labelling process, the bounding boxes were drawn in such a manner that
the maximum number of pixels that constituted the core was included. The data was split
using a simple hold-out split, where 10% of the images were split into the validation set
and the remaining images were used for training. Finally, the model was tested on a new
data set consisting of core images, randomly sampled from wells that were not represented
in the training or validation set.

The resulting object detection model proved to be able to achieve both high precision
and recall scores on the test set, and was able to accurately locate the cores in the optical
core images, i.e. high IoU with the ground truth. One of the main findings was that the
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performance of the model with respect to the metrics used to evaluate the model could
be significantly improved by increasing the weight of the localization loss, A, in the Fast
R-CNN classifier from equation 2.23. Figure 2.29 shows the predicted bounding boxes
from the model on an optical core image.
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Figure 2.29: Predicted bounding boxes from the model developed in the specialization project,
showing a high IoU with the ground truth. Original image (NPD).

Although, the model’s ability to locate the cores is not perfect, which can be seen near
the top of some of the cores in figure 2.29. In most cases, this problem could be reme-
died by using a naive post-processing approach, where the tops of the bounding boxes are
shifted up to the bounding box with lowest y-coordinate that defines the top of the bound-
ing box. Furthermore, in cases where the cores are defined by multiple bounding boxes,
as seen in the fourth core from the left in figure 2.29, were merged into a single bound-
ing box. In addition to automatic cropping, the model predictions can also be used for
automatic label generation, which can be inspected and adjusted in the labelling software
that was used and be used in further training of the model. Both the automatic labelling
and cropping scripts can be found in the Git Hub repository of the specialization project
(Adelved, 2019).
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Chapter

Methodology

The following sections will outline the methodology of fine-tuning a Faster R-CNN, with
the goal of detecting and classify horizontal and vertical CCA plugs, as well as non-CCA
plugs. Additionally, the background and implementation for several image preprocessing
techniques applied to the data prior to training will be outlined. The methodology of this
thesis can be summarized as a set of steps, which are illustrated in figure 3.1. The first steps

Download and
label data

¥

Preprocessing
of data

v

Environment Choose Training -
setup model validation

L4

Export
model

Figure 3.1: Overview of the main steps performed in the methodology of this thesis.

include setting up the environment containing the necessary structure to train the model
and choosing an object detection model to train. Secondly, the data used in the training
needs to be downloaded and labelled, before applying any preprocessing technique to said
data. When these steps are in place, the model can be trained on the labelled data set.
The final steps include testing the model on a previously unseen data set, and export the
model so that it can be used outside the training environment set up at the start of the
methodology.
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To present these steps in a structured manner, the files and folders mentioned in this
section and the data used in this thesis will be uploaded to a GitHub repository (Adelved,
2020), which can be consulted for more details. When referring to a file or a folder that
can be found in this repository, they will be styled in ifalic. However, larger files will be
stored in a Google Cloud Storage Bucket, which can be accessed through links
in the GitHub repository. Further, any software, general file description, python library
or GitHub repository will be styled using texttt. The environment setup has been con-
ducted according to the official Tensorflow object detection application programming
interface (API) documentation (Tensorflow, 2020c). Here a step by step guide for setting
up the environment can be found, which can be consulted for further detail regarding the
environment set up.

3.1 Environment Setup

In order to fine-tune an object detection model, it is necessary to establish a training en-
vironment, which contains the necessary dependencies and has the correct framework in
accordance with the object detection API that will be used. Setting up the Faster R-CNN
object detection pipeline was done in Python using the Tensorflow object detec-
tion API. Prior to data collection and training, it was necessary to establish a Tensor-
flow object detection environment with the required Python dependencies. This was
done in accordance with the official Tensorflow object detection API documentation
(Tensorflow, 2020c). This includes installing the necessary Python dependencies, in-
stalling Protocol Buffers (protobuf) and downloading the official Tensorflow
models repository (Tensorflow, 2020b). This repository contains the necessary frame-
work for running the object detection model and verifying that the environment has been
set up correctly. Further, the desired object detection model was downloaded from the
Tensorflow detection model zoo (Tensorflow, 2020a). This is a GitHub
repository containing various pre-trained models for object detection. The model was
trained locally on a Ubunut 18.04 operating system with a GeForce RTX 2070
SUPER® graphic card, using Tensorflow-1.15.0 with GPU support.

3.2 The Model

As outlined in the previous section, the Tensorflow detection model zoo
repository contains several pre-trained object detection models that can be down-
loaded and fine-tuned to purpose. One of these models is the Faster
R-CNN-Inception-Resnet-V2 model. This is a Faster R-CNN, which uses
the same architecture and loss functions as described in section 2.4.4. The fea-
ture extractor used in the model, i.e. the base network in figure 2.27, is the
Inception Resnet-V2 network, proposed by Szegedy et al. (2016). In this thesis,
the Faster_RCNN _Inception_Resnet_V2_atrous_COCO_2018_01_28 implementation of the
Faster R-CNN-Inception-Resnet-V2 model was used. The reason for choos-
ing this model is due to its performance, achieving the highest accuracy in a comparison
between modern state of the art object detection models (Huang et al., 2017b).
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The model has been implemented in Tensorflow and trained on the Common
Objects in Context (COCO) data set (Consortium). The files provided with the
pre-trained model are:

* frozen_inference_graph.pb
* checkpoint.txt

* model.ckpt.index

* model.ckpt.data

* model.ckpt.meta

The frozen_inference_graph.pb describes the data flow, the computations performed during
inference and the parameters of the model (weights and biases). The frozen part implies
that the trained parameters (weights and biases) in the model have been converted to con-
stants. Thus, the graph can only be used for inference, i.e. the model can no longer learn
from new input (adjust its weights and biases), only produce a prediction based on the
frozen weights. In addition to the inference graph itself, Tensorflow also saves the
parameters and the structure of inference the graph separately. This is saved as check-
point files in model.ckpt.data and model.ckpt.meta respectively. This means that an in-
ference graph can be constructed using model.ckpt.data and model.ckpt.meta. In contrast
to the frozen_inference_graph.pb the checkpoints can be fine-tuned using the new train-
ing data. During training, as the model is updated, new checkpoints will be saved. This
is kept track of in the checkpoint.txt. Finally, the model.ckpt.index contains an internal
mapping between model.ckpt.data and model.ckpt.meta used when constructing the new
fine-tuned inference graph after training. Due to the size of these files, they will be stored
ina Google Cloud Storage Bucket, which can be accessed through a link in the
GitHub repository of this thesis.

3.3 Data and Labeling

The data set used in this thesis consists of RGB core images from 27 wells from the NCS,
which was prepared by GeoProvider (GeoProvider, 2019) in connection with the 2019
Force Hackaton, and made publicly available under the CC-BY 4.0 license. An overview
of the wells in this data set can be seen in appendix A. The core images have been cropped
into segments defined by the top and base of each core segment present in the original
images. This process is illustrated for the 3931 — 3933m interval in well 6406/3-2 in
figure 3.2. The filename of each cropped core segment is labelled with the well name,
together with the top and base of the interval the core represents in the well.

In the labelling process, for the sake of simplicity, the core plugs were divided into
two categories: CCA plugs and SCAL. Here, the CCA category includes all plugs that
are part of the routine core analysis such as horizontal and vertical plugs used to measure
porosity and permeability, and dean-stark plugs used for saturation measurements. The
SCAL category includes core plugs that are not part of the routine core analysis. These
are often referred to as 1.5 inch plugs in the core sampling reports that can be found for
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Figure 3.2: A side by side comparison of the original image from NPD (/eft) and the same image
cropped by GeoProvider® (right). Original image NPD.

the public wells on the NPD factpages (NPD). The reason for this simplified division is
due to the visual appearance of the plugs in the optical core images. Based on these two
categories, the plugs are divided into three classes. In the CCA category, the plugs are
divided into two classes: horizontal CCA plugs and vertical CCA plugs. Based on the
orientation of the dean-stark plugs, they will be assigned to either the horizontal CCA
class or the vertical CCA plug class. In the SCAL category, every 1.5 inch plug is treated
as the same class: SCAL.

As outlined in chapter 2, the various plugs have several features that contribute to the
classification of a core plug into one of the mentioned classes. The main distinctional
feature between a horizontal and vertical plug is the plug orientation with respect to the
bedding of the core. The horizontal and vertical plugs are extracted parallel and perpendic-
ular to the bedding, respectively. Since the core is usually slabbed parallel to the maximum
dip of the bedding (McPhee et al., 2015), the horizontal and vertical plugs express a dis-
tinct visual characteristic in image view, as seen in figure 3.3. Thus, both the orientation
with respect to bedding and the difference in visual appearance is used when classifying
the cores plugs. The SCAL and horizontal plugs display a similar visual appearance since
both plugs are extracted parallel to the bedding plane. However, they can be distinguished
by two main features: plug frequency and diameter. As outlined in section 3.3, horizon-
tal and vertical CCA plugs are often extracted pairwise at the same depth point. This is
done in order to measure the maximum and minimum permeability at each sampling point
(McPhee et al., 2015). Using these features, summarized in table 3.1, the core plugs were
categorized into the appropriate plug classes. In addition to visual appearance, the core
sampling report for both the CCA and non-CCA are provided for some wells on NPD
factpages. These reports were used when the class of a core could not be determined from
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Figure 3.3: The 3391 — 3392m interval from well 6406 /3 — 2 showing four horizontal and vertical
CCA plug pairs and two SCAL plugs. In this view the vertical CCA plugs are rectangular, and both
the horizontal CCA and SCAL plugs are circular. The axes are displayed in pixels

Plug type Diamter Orientation w.r.t bedding | Samp. frequency
Horizontal CCA | 2.5-3.81 cm | parallel 25 cm
Vertical CCA 2.5-3.81 cm | perpendicular 25 cm
SCAL >3.81 cm parallel 1-2m

Table 3.1: Summary of the classification criteria for the core plugs.

the visual appearance alone, e.g. where no clear bedding is present.

Although, horizontal and SCAL plugs usually have a circular appearance in image
view, it is not always the case. Since they are extracted parallel to bedding, they may
have any number of orientation parallel to the xy-plane as seen in figure 3.4. Recall from

C[ ]C’
C c
z
C c

X

Figure 3.4: The resulting shape in image view when extracting bedding parallel cores strictly paral-
lel to the x (circular shape) and y-axis (rectangular shape)

43



Chapter 3. Methodology

section 2.1.3, the core is slabbed into three segments: A, B and C, where the C segment
is preserved and photographed, as seen in figure 2.2. In figure 3.4 the C' — C” cross-
section represents the image view of the cores after slabbing. Extracting the core parallel
to the x-axis will give a circular shape in image view and extracting parallel to the y-axis
will give a rectangular shape. Additionally, any direction in between will give rise to a
slightly different visual appearance in image view. It is believed that this will introduce
a significant amount of variance to the classes where the plugs are extracted parallel to
bedding. Similarly, the appearance of the vertical plugs may be affected by the direction
of extraction. However, bedding is rarely parallel to the z-axis, the variation in visual
appearance is often less than for the bedding parallel plugs with respect to the direction of
extraction.

The main visual variance in the vertical plugs relates to the degree they penetrate the
yz-plane parallel to the C' — C’ cross-section. The degree and angle of penetration will
affect both the shape and relief of the core plug in image view on the C' — C’ cross-section.
For example, if a vertical plug does not penetrate the C' — C” cross-section, it will not be
visible in the optical core image. This causes some discrepancy between the number of
plugs seen on the core and the number of plugs in the core sample report. However, the
variance of the visual appearance of the vertical plugs is expected to be less than that of
the bedding parallel plugs.

The most important features used in the labelling process when classifying the core
plugs were their visual appearance and their orientation with respect to bedding. However,
as outlined above, there can be large variations in the visual appearance of the core plugs,
especially in the bedding parallel core plugs. In order to account for the variance in bed-
ding parallel core plugs, two data sets were made. The first data set from well 4606/3-2,
where the horizontal plugs have mainly been extracted parallel to the x-axis. Here, the
horizontal and SCAL plugs will mainly appear circular in image view. The second data
set is from well 4606/8-1 where the extracted plugs have a more arbitrary orientation on
the xy-plane, where the bedding parallel plugs have a variety of shapes. Well 4606/3-2
and 4606/8-1 can be regarded as the low variance and high variance data set, respectively.
The two data sets are summarized in table 3.2.

Data set Well Bedding parallel plug shape Samples
Low Variance | 4606/3-2 | mainly circular to sub-circular | 289
High Variance | 4606/8-1 | rectangular to circular 136

Table 3.2: Summary of the low and high variance data set, with respect to the shape of the bedding
parallel core plugs in image view.

The labelling process consists of drawing bounding boxes around each core plug
present in the images processed by GeoProvider® (GeoProvider, 2019). This was done
using LabelImg, which is is a open-source Python application for labelling data for
object detection tasks (Tzutalin, 2015). Each image can contain several bounding boxes,
and each image has a corresponding .xm1l file in which this information is stored. The
.xml file describes the path to the corresponding image, the dimensions of said image
and the coordinates of the bounding boxes that enclose the various types of core plugs that
are present in the image. When drawing the bounding boxes, in addition to enclose the
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core plug itself, a small part of the surrounding core was included. The motivation was to
include the context of the plug orientation with respect to bedding. This is illustrated in
figure 3.5 for the three plug classes in the data set.
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Figure 3.5: The three plug types in the data set, a small region of the surrounding core is included
in the bounding box to include the bedding, if present. Here the horizontal CCA, vertical CCA and
SCAL plugs are displayed in red, blue and cyan, respectively.

As outlined in the previous section, the images used for training and validation of the
model have already been cropped by GeoProvider® (GeoProvider, 2019). The two
main reasons for using the preprocessed core images are to reduce the size and complexity
of the input data. The images have been cropped as follows: If the number of cores in
the image is described by n, and each core has a width and height denoted by w and h,
respectively. Further, the original image has the width and height denoted by W and H,
respectively. After cropping, the original image of size W x H is reduced to n images of
size w X h. In this case, as seen in figure 3.2, the original input with the dimension 1538 x
2410 x 3 is reduced to 3 RGB images with the approximate dimensions of 220 x 1900 x 3.
This significant reduction in size will greatly decrease the training and validation time of
the model. Further, this will reduce the complexity of the input by removing the part of
the image that does not contain any core plugs. These areas can be regarded as noise in
relation to this specific task, and are excluded in order to prevent them from influencing
the model.

3.4 Data Preprocessing

In this thesis, several image processing techniques were tested on the cropped images in
the original data set. This was done in an effort to counteract undesirable model behaviour,
which was discovered during the course of the training. The main issues were related to
overfitting, i.e. decreasing training loss and increasing validation loss. An image prepro-
cessing technique is defined as a transformation that is applied to the pixels of the data,
prior to training the model (Prince, 2012). As outlined in chapter 2, overfitting may arise
from the model learning features in the training data that are not relevant to solve the task
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in a general manner and may be a sign of redundant complexity in the input or the model
architecture (Chollet, 2018). A common way to reduce the complexity of the input is to
convert the RGB images to grayscale. Since many objects do not require the colour in-
formation to be recognized in an image (Elgendy, 2020). Thus, reducing the complexity
from RGB to grayscale as a preprocessing step for the input would make the model less
sensitive to the colour of the input images, which depends on several factors such as the
lighting conditions or the camera model used to take the image, and possibly lead to a
model with a greater ability to generalize. However, a preprocessing technique may also
remove some features in the image that are important to solving the task. If this is the case,
applying the preprocessing step may reduce the performance of the network.

This prompted the training of several models, applying a different preprocessing tech-
nique to the input of each model. The goal of the preprocessing was to investigate if the
overfitting was related to the input, rather than the model itself and if it could be mitigated
by applying some transformations to the pixel data prior to training. These models will be
referred to as the candidate models, one model for each preprocessing technique. These
models will be further elaborated on in section 3.5. The preprocessing technique applied to
the input of these candidate models is summarized in table 3.3. The following subsections

Model name | Preprocessing technique

RGB No preprocessing
gray RGB to Grayscale conversion
sobel Edge detection with Sobel filter

Edge detection with the Canny edge
detection algorithm

Convolving input images with the
Ricker wavelet

canny

wavelet

Table 3.3: Summary of the candidate models, with their name and the preprocessing technique
applied to the input.

will outline the background and methodology for the image preprocessing techniques used
in this thesis.

3.4.1 Grayscale

In the RGB colour model, each colour appears in its primary spectral components of red,
green and blue, which is based in the Cartesian coordinate system where the colour sub-
space is defined by a cube (Gonzalez and Woods, 2018), as seen in figure 3.6. The coor-
dinate system has its origin (0, 0, 0) and denotes the colour black, with the red, green and
blue (R, G, and B) colours defined along the axes of the coordinate system. The colour
white can be found at (1,1, 1), the point where every colour component holds its maxi-
mum value. Using this cube, every colour can be represented using a certain combination
of the colour components. The grayscale is the vector extending from the origin to the
point (1,1, 1), as seen in figure 3.6. This line extends through all the points in the cube
where the three colour components hold the same value and represent the various shades
of gray between black and white (Gonzalez and Woods, 2018). Since the grayscale is a
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Figure 3.6: The RGB color model illustrated as a cube on the Cartesian coordinate system. Each
axis is assigned a primary colour R - red, G - green and B - blue. The dashed vector from the origin
(0,0,0) to (1,1, 1) shows the grayscale from black to white.

one-dimensional vector, a grayscale image only requires one value to describe each pixel
in the image.

The images in the data set were converted to grayscale using the Python Image
Library (PIL) package according to the following equation:

L =0.299R + 0.587G + 0.114B (3.1)

Here, L denotes the grayscale pixel value, and R, G and B the three colour component
values in the original image. Each converted grayscale pixel is the weighted sum of the
RGB channels, using the standardized weights established by the international telecom-
munication union (International Telecommunication Union, 2001) for converting RGB to
grayscale.

3.4.2 Edge Detection

As outlined in section 3.3, due to the way the length of the core is slabbed, the most ap-
plicable feature for classifying the core plugs was their visual appearance in the images.
Both the horizontal CCA plugs and the SCAL usually appear as circles, which can be dif-
ferentiated based on diameter and the vertical plugs appear as rectangles. Thus, using a
preprocessing technique which enhances this structural information could be beneficial to
the performance of the model. This has already been successfully attempted by Abdillah
et al. (2018), where both Canny edge detection and the Sobel filter was employed as a
preprocessing step prior to training a model for vehicle classification on images from a
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traffic camera. A similar approach was employed in this thesis for extracting the edges
from the images, using both Canny and Sobel edge detection, which are classical edge de-
tection algorithms. Additionally, an experimental processing technique was tested, which
is inspired by the method used to generate synthetic seismic.

3.4.2.1 The Edge and Digital Images

An edge is characterized by a transition between two intensity levels between neighbouring
pixels (Gonzalez and Woods, 2018). This could be either an abrupt change across one
pixel or a gradual change that spans multiple pixels. Commonly occurring edges in digital
images are the step, roof and ramp edge (Gonzalez and Woods, 2018). These are illustrated
in figure 3.7, with their corresponding intensity level curves and gradients shown in blue
and red, respectively.

Step Ramp Roof
0 5 10 15 0 5 10 15 0 5 10 15
200 200 200 A
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0 5 10 15 0 5 10 15 0 5 10 15
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0 04 i
0 5 10 15 0 5 10 15 0 5 10 15

Figure 3.7: A set of commonly occurring edges in digital images. The two-dimensional representa-
tion of the intensity values (fop), the intensity values (middle) and the gradient (bottom).

The ideal edge occurs over the distance of one pixel, as seen in the step edge in figure
3.7, where the edge location is marked by the abrupt increase in the magnitude of the
gradient. However, due to the limitations of the focusing mechanism of the lens in a
camera (Gonzalez and Woods, 2018), it is rare that an edge can be imaged across a single
pixel. In practice digital images have blurred edges (Gonzalez and Woods, 2018), meaning
the edge is marked by a gradual change in intensity values. This can be seen in the ramp
edge in figure 3.7, where the resulting gradient produces a wider edge than in the step
edge. Consequently, the edge is no longer determined by a single point. Instead, an edge
point is any point contained within the ramp of the intensity profile (Gonzalez and Woods,
2018).
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Digital images often contain noise, which will further impact the gradients of the im-
age. Signal and noise analysis is an extensive scientific field. Thus, the various types of
image noise and their causes are considered outside the scope of this thesis. However, it is
worth mentioning the presence of noise may adversely impact the quality of the gradient-
based edge detection algorithms. A common source of noise is random additive noise
generated by the electronics in the camera (Gonzalez and Woods, 2018). This type of
noise manifests itself as randomly increased or decreased intensity values in the digital
image, which may be interpreted as edges when using the gradient. Figure 3.8 shows the
intensity profile and gradient when adding random Gaussian noise to the edges in figure
3.7. In addition to the signal of the edge of interest, several noise generated edges will be
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Figure 3.8: The intensity values and the gradient with the addition of additive Gaussian noise.

detected. Notice the gradients sensitivity to noise compared to the intensity profile, even
in cases of moderate noise. By further increasing the signal to noise ratio in the image, the
actual edge of interest might be obscured by the noise generated edges, rendering the use
of the gradient futile for edge detection. Thus, it is common practice to suppress this noise
with a smoothing algorithm, such as a Gaussian filter, prior to edge detection, increasing
the signal to noise ratio (Gonzalez and Woods, 2018).

3.4.2.2 The Sobel Filter

This section will outline the fundamental background for calculating the gradients of an
image and one of the basic edge detection algorithms, the Sobel filter. The Sobel filter will
be used as one of the preprocessing techniques. The following will outline the derivation
of the Sobel kernel as outlined by Sobel and Feldman (1973).

For the sake of simplicity consider the 3 x 3 two-dimensional grayscale image in figure
3.9. The gradient at (z,y), can be expressed as (Gonzalez and Woods, 2018):

of (@,y)
Vf(wy) = Bygigﬂ - [afg;;w] : (32)

where V f is the gradient, and g, and g,, are the gradient operators in the = and y direction,
respectively. Since V f is a vector, the direction of V f points in the direction of the greatest
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Figure 3.9: A 3 x 3 image, showing the gradient vector, V f, normal to the edge with its directional
derivatives g, and g,. The direction of V f is given by the angle a.

rate of change of V f at (x, y) (Gonzalez and Woods, 2018). The direction of the gradient

is given by the angle, a:
a=tan"! <gy> 3.3)
9z

Further, the magnitude, M (z,y), of Vf is defined by its directional components (Gonza-
lez and Woods, 2018):

M(z,y) = IV £(@,9)l| = /92(.y) + g3 (w.y) (3:4)

Using these definitions, the gradient can be calculated for each (x,y) position in the
image. It is common to refer to M (x,y) or ||V f(z,y)|| as the gradient image, or simply
the gradient (Gonzalez and Woods, 2018). Since an image consists of a set of distinct
pixels, the outlined equations must be implemented as a discrete approximations of their
analytical counterparts, i.e. the gradients need to be calculated at each pixel point. In
practice, this is performed as a kernel convolution between the source image and a kernel.
There are several kernels that can be used to compute the gradient. One of the more
popular is the Sobel filter. The Sobel filter utilizes a kernel that is symmetric about its
centre (Sobel and Feldman, 1973). Thus, the smallest kernel size is a 3 x 3 kernel, where
the gradient at any location within the image is calculated based onits n =3 %3 —1 =38
neighbouring pixels.

Consider the 3 x 3 image in figure 3.10 defined on a Cartesian coordinate system, with
its centre pixel as the origin. The letters a — ¢ denotes the intensity value of the given
pixel. The gradient, G, in e is determined by the average of the sum of the magnitudes
of the eight directional derivatives, multiplied with their direction. The eight directional
derivatives are shown in figure 3.10 as red vectors. Each vector shows the direction of
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Figure 3.10: A 3 x 3 image with the intensity values a — ¢. The gradient of e is determined by
averaged sum of the magnitudes of the directional derivatives to its neighbouring pixels.

the derivative, and they are defined by the eight possible pixel pairs e can make with its
neighbours. The magnitude of each directional derivative is given as the difference in
intensity value between the pixel pairs, divided by the distance between them (Sobel and
Feldman, 1973). Summing the directional derives pairwise, where the head of the vectors
in the pair are antipodal points, will result in the cancelling of the e terms (Sobel and
Feldman, 1973). This has been shown for the antipodal pair ((b, ), (h, €)) in equation 3.5.

b—e. h—e . b—h-

=Tl T A L d b G

Here, I,j denotes the direction of the unit vector and d. denotes the euclidean distance
between the pixel pairs. The euclidean distance between two arbitrary points, p = (p1, p2)
and ¢ = (q1, ¢2), can be expressed as the following equation:

de(p,q) = V(@1 = p1)? + (02 — p2)? (3.6)
Using the euclidean distance the expressions in equation 3.5 be written as:

b—e. h-—e

4+ 1= = (b= w] 37)

db,n =

In the work outlined by Sobel and Feldman (1973) the average of the sum of the vectors,
defined by the antipodal pixel pairs, is used to calculate the gradient. Thus, the gy, , is the
average sum of the two vertical gradients (b-e and h-e) and gy g is the average sum of the
two horizontal gradients (f-e and d-e):

1 s
Jo,n = 5(5 —h)j (3.8a)

1 »
gﬁd = i(f - d)i (38b)

The four diagonal vectors which originates in e, can be decomposed into a horizontal and
jus

vertical direction. Using (c, e) as an example, and that cos(%) = sin(}) = %, Je,e can
be rewritten as:

Jee = %[(C — e)cos(%)i + (c— e)sm(g)j] = %(c — e)[ij] (3.9)
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Using equation 3.9, the averaged sum of the antipodal diagonal pairs ((c,e), (g,€)) and
((a,€), (i,€)) can be written as:

Jeg = i(c —e)i,j] + (g — e)[—i, ] (3.10a)
Yai = i(a —e)[—1,j] + (i — e)[i, —J] (3.10b)

Finally, the gradient in e can be obtained by summing the gradients of the antipodal pairs
from equations 3.8a, 3.8b, 3.10a and 3.10b:

~
0

G=gy+gy= ;(f—d)—kéll(—a—kc—g—b-i)] i+ B(b—h)—l—i(a—i—c—g—i)]_]

(3.11)
where g, and g, are the components of the gradient in the = and y direction in the image.
To make equation 3.11 an expression for the average of gradients in e, it should be divided
by four. However, for the sake of convenience, the expression in equation 3.11 is scaled
by a factor of four (Sobel and Feldman, 1973). This results in an estimate for the gradient
that is 16 times larger than the actual average of the gradients in e and is given as:

G=gotgy=2(f —d)+(—a+c—g+)]i+[2b—h)+ (a+c—g—1)]j (3.12)

In equation 3.13a and 3.13b, g, and g, from equation 3.12 are implemented as kernels.

01 1 -2 -1
0 2 (3.13a) =10 0 0 (3.13b)
0 1 1 2 1

In this thesis the data set was preprocessed with the 3 x 3 Sobel kernels in equation
3.13a and 3.13b, using the OpenCV python library implementation. First, the gradients
in the x and y directions were separately extracted and squared to obtain the magnitudes.
These were then added together to represent both the horizontal and vertical edges in the
image. Figure 3.11 illustrates the steps used for the Sobel edge detection preprocessing
technique, where the bottom right image (||g.(z,y)|| + ||gy(z, v)||) is used as input for
training the model.

3.4.2.3 Canny Edge Detection

The Sobel filter provides a good representation of the main structures in the image. How-
ever, as seen in figure 3.11. In addition to the main structural features, the texture of the
rock is modelled as edges. Thus, it is desirable to investigate if further refinement of the
image, using a more sophisticated edge detection model, will yield a better model perfor-
mance.

The Canny edge detection algorithm is a multi-stage algorithm which strives to further
improve edge detection with respect to the following criteria, as outlined by Canny (1986):
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Figure 3.11: The magnitude of the Sobel filter applied in the x-direction (||g=(z,y)||), y-direction
(|lgy(x,y)||), and the sum of both directional components (||gz(z, v)|| + ||gy(z, y)|])-

1. Good detection, i.e. low probability of not detecting the edge (false negative) and
low probability of detecting a non-edge as an edge (false positive). Both these prob-
abilities are monotonically decreasing functions of the output signal-to-noise ratio,
this criterion corresponds to maximizing signal-to-noise ratio (Canny, 1986).

2. Good localization. The points marked as edge points by the operator should be as
close as possible to the centre of the true edge (Canny, 1986).

3. Only one response to a single edge. This is implicitly captured in the first criterion
since when there are two responses to the same edge, one of them must be consid-
ered false (Canny, 1986).

These points are directly addressing the issues that arise in the simpler first-derivative
based edge detection methods when introducing Gaussian noise. Recall that the location of
the edges on the gradients in figure 3.7, became increasingly ambiguous with the addition
of noise. The work outlined in Canny (1986) starts with mathematically expressing the
three mentioned criteria, before deriving an optimal solution to these expressions through
numerical optimization on a one-dimensional series, similar to the ones presented in figure
3.8. This is done in order to find an optimal operator for detecting a step edge.

The expressions and the full derivation of the numerical optimized operator are con-
sidered outside the scope of this thesis, and the curious reader is encouraged to consult
the original paper for more information. However, the fact that the derived operator can
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be approximated as the first derivative of the Gaussian function (Canny, 1986), will be
discussed.
The derivative of the one-dimensional Gaussian can be written as:

2 — 22

a%G(x) - 8%@ 2 = a—fe 202 (3.14)
where G(z) denotes the one-dimensional Gaussian function and o denotes the standard
deviation. Figure 3.12 shows the Gaussian, G(x) and the derivative, G’(z) with three dif-
ferent standard deviations. The Gaussian is symmetric about the origin and the amplitude
of G'(x) is inversely proportional with the standard deviation, o, and proportional with the
width of the impulse. The main reason for choosing the Gaussian approximation rather
than the optimal one-dimensional operator derived by Canny (1986) is due to the effective-
ness of calculating the two-dimensional extension of an operator if it can be represented as
some derivative of the Gaussian (Canny, 1986). Further, the Gaussian approximation only
performed 20% worse than the optimal numerical operator. A difference in magnitude that
is visually hard to detect (Canny, 1986).

Consider a convolution between a series,t(x), and the Gaussian. Every point in the
output will be the weighted sum the n nearest points in ¢(x), where n is determined by
the width of the Gaussian. The weight assigned to each neighbouring point is determined
by the amplitude of the Gaussian at the given distance from the point being evaluated. By
increasing o, the number of points used to calculate the centre value will be increased.
However, the weight assigned to the neighbours closer to the centre will be reduced. IL.e.
using a larger o will reduce the significance of the points closer to the point that is currently
being evaluated, in order to include a larger portion of the surrounding points in said
evaluation. Using a Gaussian with a large o will have a greater smoothing effect on the
output.

-1.01

=15

Figure 3.12: The Gaussian G(z), with its first derivatives, G’ (z) with o = {0.6, 1,2, 3}. The value
of o controls the width of the Gaussian.

The smoothing effect is a desirable attribute, since the main problems related to the
image gradient is its sensitivity to noise, as outlined in the previous section. The Gaussian
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Figure 3.13: The effect of smoothing on a step edge with additive Gaussian noise convolved with the
first derivative of the Gaussian, with o = 1 (left) and o = 10 (right). The amount of smoothing,
i.e. noise suppression, is proportional with o, and gives rise to the ridge profile seen in the right
figure.

operator has the added benefit of increasing the signal to noise ratio, which is controlled
by o. This is illustrated in figure 3.13, where the convolution between a noisy step edge,
t(x), located at z = 50, and G'(z) using ¢ = 1 and ¢ = 10. Using 0 = 1 will yield
a more accurate localization of the edge of interest at x = 50, but not enough noise
suppression. This can be seen as the numerous noise generated edges that occur at x < 50
and = > 50. Increasing o increases the smoothing. The numerous noise generated edges
are suppressed, whilst still being able to reasonably locate the edge of interest at z = 50.

Notice that the edge is defined by the ridge created by the smoothed gradient. The
removal of noise may come at the cost of accurate localization of the edge of interest. An
additional risk of noise suppression is the removal of the signal itself. Choosing a o that is
too large will limit the magnitude of the intensity contrast that can be detected. Consider
that some of the intensity contrasts in ¢(x) in figure 3.13 were part of the actual signal.
Then using 0 = 10 would suppress these edges, losing valuable information. Smoothing
can be regarded as a trade-off between noise suppression, localization accuracy, and de-
tection accuracy. Notice that this trade-off echoes the points 1) and 2) from earlier in this
section, as outlined by Canny (1986). Thus, the choice of ¢ is determined by the contents
of the input image.

The two-dimensional Gaussian can be written as:

_ x24y?

G(z,y) =e 2 (3.15)

Recall that the magnitude of the edge is greatest perpendicular to the edge. In a two-
dimensional image, I(x,y), there is no prior knowledge of the direction of the edges.
Contrast this to the one-dimensional series in figure 3.13, where only one orientation of the
edge is possible. Namely, normal to . A convolution between the series ¢(z) and G’ (),
G’'(z) is guaranteed to align perpendicular to the edge. Generalizing this approach in two-
dimensions would require the one-dimensional gradient to be calculated in all possible
directions in the image. In order to make this process less computational exhaustive, this
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operation can be approximated by convolving the source image with the two-dimensional
Gaussian from equation 3.15 to form a smoothed image, I5(x,y), then differentiating
perpendicular to the edge normal (Canny, 1986):

I(z,y) = G(z,y) * [(2,y) (3.16)

Then both the direction and magnitude of the gradient can be calculated, applying the
equation 3.4 and 3.3, (Gonzalez and Woods, 2018):

M(,) = VL@, 9)l| = /g2 (2,9) + g3(2, ) (3.17)
and (2.9)
S G

a(z,y) = tan [gz($7 yJ (3.13)

where the directional derivatives g, and g, can be calculated using e.g. the Sobel kernel
from the previous section. Due to the smoothing effect of the Gaussian, as illustrated
in figure 3.13. The smoothed image ||V Is(z,y)|| will contain ridges around the local
maxima. To improve the localization of the edge, these ridges are often thinned using non-
maximum suppression (NMS) (Gonzalez and Woods, 2018). This is done by specifying
the number of orientations the gradient vector is allowed to have.

In this thesis, the OpenCV implementation is used, where the gradient vector is only

allowed to oriented horizontally ([i,0] V [—i, 0]), vertically ([0, ] V [0, —j]) or along the
two diagonals ([‘[ i, ‘2[.]] vV [== V2§ f A [_ff, g 1Y [‘[ f J]) in the image.

Any « in between is rounded to the closest pre-defined orientation (OpenCV). When the
directions of the gradient vectors have been determined, each point (z,y) in ||V Is(z,y)||
is evaluated with respect to its two neighbours along the gradient vector. If the magnitude
of the gradient of one or both the neighbours are greater than the point currently being
evaluated, the point is discarded.

This ensures that the edges in the output will be a local maxima. The effect of the
NMS is illustrated in figure 3.14, using the one-dimensional series ¢(x) with o = 10 from
figure 3.13. The edges have been effectively thinned by removing edges within the ridge,
with gradient magnitudes smaller than the local maxima. This yields a lower localization
error. This example can be viewed as the vector gradient of a sub-vertical edge that has
been rounded to the horizontal ([i, 0] V [—i, 0]), before performing NMS.

The last step in the Canny edge detection algorithm is a thresholding step. The essence
of this step is to separate the noise generated gradients from the signal. Since the ampli-
tudes of the additive noise can be modelled as a Gaussian distribution, while the step edge
response will be composed of large values occurring very infrequently (Canny, 1986). In
a histogram representation, the noise energy is expected to be confined to the lower per-
centiles of the histogram (e.g. less than 80 percent) (Canny, 1986) and the signal to the
upper. However, simply applying this threshold may introduce unwanted effects on the
gradient image ||I;(x, y)||. If only one threshold, T, is chosen, any pixel below this value
will be removed. The weakness of any thresholding algorithm is that the value of 7" needs
to be set correctly. Setting it too high increases the chance of removing the weaker part
of the signal - false positive. Setting it too low will preserve the stronger part of the noise
- false negative (Gonzalez and Woods, 2018). Thus, the threshold value must be close to
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Figure 3.14: The effect of NMS applied along the direction of the gradient vector. The ridge profile
in the original image after smoothing (top) and the output after NMS (bottom).

optimal to be effective. For the edge to be preserved when using a single threshold, every
single point that constitutes an edge needs to be greater than 7', which is usually not the
case. Applying the threshold 7" may lead to breaking up of the edge where the values of
the points along the edge fall below 7.

The Canny edge algorithm attempts to account for this by defining two thresholds,
Ty and T7,, which defines an upper and lower threshold value. Any value above Ty >
[|Is(z,y)|| is kept as an edge and any value below Ty, > ||Is(x,y)|| is discarded as a
non-edge. To determine if the values in between, Ty, < ||I5(x,y)|| < Ty, constitutes an
edge are classified based on connectivity. Consider a point (pg, qo), where pg.;., € = and
Qo:jin € Y. If || Is(po, qo)|| is such that T, < ||Is(po,qo)|| < Ty and is connected to a
point (p;, ¢;) with a gradient value Ty < ||Is(pi, g;)||- Then ||Is(po, qo)|| is regarded as
part of the edge, although it having a lower value than 77;. If there is no connection to a
point with a gradient value larger than Ty, (po, qo) is classified as a non-edge. This method
is called hysteresis thresholding, and significantly reduces the probability of keeping a
false negative or discarding a false positive (Canny, 1986).

To summarize the Canny edge detection algorithm improves both the detection and
localization of the gradients that constitute the edges in the image. This is achieved by:

* Reducing noise by smoothing, using the first derivative of the two-dimensional
Gaussian.

» Extracting the directional gradients

* Thinning the gradients along a finite set of discrete directions, using non-maximum
suppression

* Thresholding based on connectivity, using hysteresis thresholding

In this thesis, the OpenCV implementation of the Canny edge detection algorithm is used.
The input is first smoothed using a 5 x 5 Gaussian filter, before the directional gradient,
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g, and g, are calculated using the Sobel kernels from equation 3.13a and 3.13b. Then
the edges are thinned using NMS with the four pre-defined directions, as outlined earlier,
and thresholded according to a user-defined 7y and T',. Due to the variety of images in
both the training and test set, it is desirable to choose these threshold values adaptively.
As outlined, the noise energy is expected to be confined to the lower percentiles of the
gradient image. Further, the ratio of the high to the low threshold in the implementation
is in the range two or three to one (Canny, 1986). Figure 3.15 shows the output from the
Canny edge detection algorithm using three different percentiles, P, = {80, 85,90}, of the
intensity values of the input as 7y;. The lower threshold is given as 17, = %TU, in order
to achieve the 1 : 2 ratio between Ty : Tp. Using the upper percentiles seems to be a

o =1Poo|Ty =Poo

ES

Figure 3.15: The output from the Canny edge detection algorithm using the P, = {80,85,90}
percentile of the intensity values as the upper threshold, 777, and the lower threshold, 77, = %TU in
the hysteresis thresholding.

reasonable choice of 77, and Ty; for preserving the main structural features of the input. In
the implementation for generating training data, for each image, P; = {80V 85V 90V 95}
is randomly chosen as 7.

3.4.2.4 Wavelet Convolution

The final preprocessing technique applied to the data is inspired by the convolutional
model used for creating synthetic seismic in wells. The idea behind the convolutional
model is that the seismic trace can be modelled as the convolution between the seismic
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pulse, the wavelet, and the reflection coefficient of a boundary between two rock layers in
the well (Simm and Bacon, 2014). The wavelet describes how the amplitude of the seis-
mic pulse changes with time, and the reflection coefficient can be regarded as the contrast
between two layers. The idea is to apply the same concept to the image data to identify
the contrasts between the pixel values to better visualize the structural information of the
core images. Note that both seismic modelling and the subject of the reflection coefficient
are extensive topics, outside the scope of this thesis. The goal of this section is not to out-
line these, but rather draw inspiration from the processes used when modelling synthetic
seismic.
The reflection coefficient is given as (Simm and Bacon, 2014):

_ V2P —Uip1 _ Al, — AL
vapa +v1p1 Al + Al

(3.19)

where Al and Al are the product of the bulk density p and the velocity of the medium v.
Further, AI; denotes the acoustic impedance on the incident side and A/ is the acoustic
impedance of the transmitted side of the boundary. Equation 3.19 is the simplest form
of the reflection coefficient, and it only holds if the wave is propagated perpendicular to
the boundary. Using equation 3.19, the reflection coefficient of the rock boundaries can
be calculated to form a reflection series. The synthetic seismogram is then created by
convolving the reflection series with a the seismic pulse (Simm and Bacon, 2014). As
mentioned, the wavelet describes how the amplitude of a seismic pulse, w(t), changes
with time. There are a number of types of idealized wavelets that are in common use, for
example, to make well synthetics when the exact wavelet is not known (Simm and Bacon,
2014). One of the most popular, due to its simplicity, is the Ricker wavelet. The amplitude,
w(t), of the Ricker wavelet at time ¢ is given as (Ryan, 1994):

w(t) = (1 — 272 f22)e ™ 171 (3.20)

where f denotes the peak frequency in the frequency spectrum of the wavelet, i.e. the
dominant frequency. The wavelet is symmetric around its centre, defined by the peak fre-
quency with two side-lobes. Further, the width of the wavelet,w,, is inversely proportional
with the peak frequency, given as (Ryan, 1994):

_ Ve
-2

Figure 3.16 shows the characteristic shape of the Ricker wavelet, with plotted with the
peak frequencies f = [100H z,50H z,25H z]. Convolving the reflection series with the
wavelet, generates the synthetic seismic.

Treating each intensity values (x,y) of the input image as the reflection coefficient, a
set of reflection series can be created along the height and width of the image. Consider a
two-dimensional image array where the height and width are represented by the number of
rows and columns in the array, R x C'. Since each intensity value represents the reflection
coefficient at that point, a reflection series can be made from each column, using the row
values associated with that column. Similarly, each row can be a reflection series, using the
column values associated with the row. Convolving each reflection series with the Ricker

(3.21)

Wy
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Figure 3.16: The Ricker wavelet, with three different values for the peak frequency.

wavelet will generate a “synthetic seismogram” representation of the image. Figure 3.17
shows the resulting images after convolving along the width (lower row) and height (upper
row) of the image, using the Ricker wavelet with the peak frequencies defined in figure
3.16. Comparing these images to the previous edge detection techniques in figure 3.11
and 3.15, each edge is marked by a transition from a positive value (blue) to a negative
value (red), or vice versa. The edge itself is marked by the zero-crossing between the
positive and negative value. Thus, the convolved images show both the location and the
sign of the contrast, i.e. the change in the gradient of the intensity values.

Due to the inverse proportionality of wavelet width and peak frequency, the lower fre-
quencies increases the amount of smoothing of the reflection series. This can be seen in
figure 3.17, where the visibility of the internal texture of the core is drastically affected by
the use of a wider wavelet. In order to make an unbiased choice of the wavelet width, for
each image, the frequency randomly selected to be f = [30 : 10 : 100]H z. The assump-
tion is that there are benefits of using both a wide and narrow wavelet, and frequencies
between 30 and 100 seemed to yield a good balance between smoothing and resolution.
The narrow wavelet increases the number of small features that can be imaged (resolution),
while the wide wavelet increases the smoothing and reduces the noise and complexity of
the image. In the preprocessing step each image was convolved with a Ricker wavelet
of random frequency from f, along its horizontal and vertical axis, creating two output
images per input.

3.5 Training-Validation Pipeline

Before training the object detection model, the labelled RGB images were split into a
training set and a validation set. The images in the low variance set consists of 289 images
from well 6406/3 - 2 and the images in the high variance set from well 6406/8 - 1 consists
of 136 images. As outlined in section 3.3, this is done to account for the variance in the
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Figure 3.17: The output from convolving the Ricker wavelet, with three values for the peak fre-
quency vertically (top) and horizontally (bottom).
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Figure 3.18: Showing the process where each image is convolved in the horizontal and vertical
direction using a random frequency drawn from f = [30 : 10 : 100]H z.

visual appearance of bedding parallel plugs have on the model.

The training-validation split was the same for both data sets and was created using
a simple-holdout split, where 20% of the images were randomly split into the validation
set. The testing of the preprocessing techniques was only performed on the low variance
data set from well 6406/3-2. The assumption is that if a preprocessing technique does
not increase the performance in the low variance set, it would fare no better in the high
variance set. Therefore, the preprocessing techniques were tested on the low variance
data set first. Figure 3.19 shows the setup for the experiment, and can be summarized as
follows:

1. Two data sets: high variance and low variance data set from well 4606/8-1 and
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6406/8-1 6406/3-2

train

—0| High variance Low variance |<— train

Preprocessing

Increased
performance?

Apply to both data sets

Combine data sets
and
train final model

Figure 3.19: The setup for the experiment. The preprocessing techniques are tested on the low
variance data set to verify their effectiveness with respect to model performance on the evaluation
metrics. If performance is increased on the low variance data set, the preprocessing technique is
applied to the high variance data set as well. Otherwise it is discarded. The final model is trained
using both data sets, with the best performing preprocessing technique.

4606/3-2, respectively.

2. Test the 4 preprocessing techniques outlined in section 3.4 on the low variance data
set.

3. Choose the best performing preprocessing technique and apply to both data sets.

4. Combine the data sets, with the applied preprocessing technique, and train a final
model.

The first preprocessing technique applied to the training and validation set was the conver-
sion to grayscale and any further preprocessing steps were applied to this new grayscale
version of the training and validation set. The python functions for each preprocessing
technique can be found in appendix H.

The setup for the input and preprocessing pipeline for the model is illustrated in figure
3.20. The result of preprocessing are 5 different training-validation set pairs, summarized
in table 3.4. Each training-evaluation pair is then fed to the network for training. The result
of this training will be 5 models, trained on the same data, using a different preprocessing
step. These will be referred to as the candidate models. Based on the training results, one
of these models will be chosen for further training according to figure 3.19. These models
will be further discussed and elaborated on in chapter 4. From this point on, the training-
validation pipeline will be described in a general manner. This is done to avoid repetition
when describing the methodology. Thus, unless otherwise specified, any operation from
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Preprocessing

RGB Input Sobel
\ Grayscale < Canny Training
Wavelet\

Figure 3.20: The set up for the preprocessing in the training-evaluation pipeline. Effectively training
5 models with 5 training-validation set, where a unique preprocessing task has been applied.

Name Type of augmentation # samples (train/valid)
RGB Original RGB images 232/57

grayscale Converted to grayscale 232/57

Sobel Sobel filter 232/57

Canny Canny edge detection algorithm 232/57

Wavelet Convolution | Wavelet convolution horizontal + vertical | 464/114

Table 3.4: Overview of the 5 training-validation sets with their name, type of augmentation and the
number of samples in the training and validation set for the low variance data set.

this point on that relates to the training-validation pipeline will apply to the candidate
models in table 3.4, as well as any other model that will be presented in the chapter 4.
Further, some of the subsequent sections will only relate to the final model. This will be
made clear in the introduction of these sections.

As outlined in section 3.3, each image is saved with its corresponding .xml file,
which denotes the location of each plug type and their location within the image. In
order to read the data in an efficient manner the data is converted to a Tensorflow
Record(tfrecord), which is a Tensorflow binary storage format. This allows the
model to parse both the images and the annotated bounding boxes in a serialized manner.
One t frecord is generated for the training data and one for the validation data, by run-
ning generate_tfrecords.py as seen in listing 3.1. However, since generate_tfrecords.py
expects the image and labels in a .csv format, the .xml files are converted using
xml_to_csv.py.

$ python path/to/generate_tfrecord.py —csv_input=path/to/csv/file —
output_path=path/to/save/directory/train.record

Listing 3.1: Running the generate_tfrecords.py in terminal for the training data. Specifying the path
to the . csv file containing the training data and the output path for the tfrecord file.

The two t frecord files, train.record and valid.record contains the image data and the
bounding box coordinates for the training set and the validation set respectively. As can
be seen in generate_tfrecords.py, each label is converted to a numeric value. In this case
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the core plugs class to numeric value mapping is as follows: horizontal plug (hplug) = 1,
vertical plug (vplug) = 2, special core analysis plug (scal) = 3. This relationship between
label name and numeric value is saved in the file labelmap.pbtxt.

As mentioned in the environment setup in section 3.1, the Tensorflow object de-
tection APl uses Protocol Buffer (Protobuf) to configure the training-evaluation.
Protobuf is a language and platform-neutral way of storing and serializing structured
data and is therefore needed when setting up a Tensorflow object detection environ-
ment. The protobuf files are called from a configuration file that defines the training-
evaluation pipeline. The configuration file can be divided into the following segments:

* model: Defines the meta-architecture and hyperparameters of the model.

e training_config: Defines training hyperparameters such as batch size, optimizer
function, learning rate and type of data augmentation.

e train_input_reader: Provides the model with the training data

* eval_config: Determines the evaluation metrics that are reported and how they are
reported

* eval_input_reader: Provides the model with the evaluation data

The initial hyperparameters chosen were based on the hyperparameter provided in the
default configuration file faster_rcnn_inception_resnet_v2.config, provided with the pre-
trained model. This configuration describes the implementation of the Faster R-CNN
model, which is based on the implementation of the Faster R-CNN with an Inception
Resnet feature extractor as outlined in Huang et al. (2017a). This default configuration file
can be found in appendix B and for the sake of simplicity, this will be the configuration
file that will be presented in this section. However, changes to the hyperparameters may
occur in between training of the various models. These changes and which models they
relate to will be made clear when presenting and discussing the results of the models in
chapter 4

The model-segment of the configuration file defines the object detection model that
is used. In this case a Faster R-CNN network as outlined in section 2.4.4, with an
Inception_resnet_v2 CNN (Szegedy et al., 2016) as the feature extractor. Addition-
ally, the number of classes in the data set and the dimensions the input is reshaped to before
it is fed to the network, as seen in listing 3.2. The original input is reshaped into a shape of
min_dimension X max_dimension, where min_dimension and max_dimension cor-
responds to the short and long dimension of the input, respectively (Huang et al., 2017a).
Furthermore, the model-segment is divided into two stages which are marked with the fol-
lowing prefixes: first_stage and second_stage. These correspond to the region proposal
network (RPN) and the Fast R-CNN classifier module in the Faster R-CNN in figure 2.27,
respectively. Under each stage in the configuration file, the hyperparameters of the RPN
and the classifier can be modified. For the first_stage (RPN) the hyperparameters for the
anchor scales, aspect ratios and stride can be modified changing the values for the scales
and aspect_ratios and height/width_stride under the first_stage_anchor_generator
as seen line 1013-1020 in listing 3.2. From these settings, there will be generated 12 an-
chors at ever anchor location in the image. These anchor locations have a spacing of 8
pixels along the height and width of the image.
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model {
faster_rcnn {
num_classes: 3
image_resizer {
keep_-aspect_ratio_resizer {
min_dimension: 600
max_dimension: 1200

feature_extractor {
type: “faster_rcnn_inception_resnet_v2”
first_stage_features_stride: 8

first_stage_anchor_generator {
grid_anchor_generator {
height_stride: 8
width_stride: 8
scales: 0.25
scales: 0.5
scales: 1.0
scales: 2.0
aspect_ratios: 0.5
aspect_ratios: 1.0
aspect_ratios: 2.0
}
}

Listing 3.2: A Faster R-CNN model with 3 classes ("hplug’—’vplug’—’scal’) and the dimensions
the input is resized to. The feature extractor is set to the *faster_rcnn_inception_resnet_v2’.

The IoU and the confidence score thresholds in the RPN can be modified as seen in
line 1000-1001 of listing 3.3. Recall the IoU concept in figure 2.22, which is a mea-
sure of the overlap between the ground truth bounding box and the prediction from the
network according to equation 2.19. The confidence score is a probability score in the
range [0, 1], which describes how certain the network is that a predicted bounding box
contains an object. These values define the thresholds for what region proposals that will
be retained (positive anchors). This is determined by using an algorithm called non-max
suppression (NMS). The NMS algorithm takes all the proposals with their corresponding
confidence scores as input and discards any anchor with a confidence score lower than
the nms_score_threshold. The remaining anchors are then sorted by the confidence score.
The anchor with the highest confidence score, A4, is removed and placed in a separate
list, Lyetained. The Apign is then used to calculate the IoU with the anchors in the orig-
inal list A;. Any anchor with an ToU (Apign, Ai) > nms_iou_threshold are discarded.
This process is repeated until L;¢tqineq cOntains no two anchors with an IoU score greater
than nms_iou_score. Additionally, the maximum number of anchors retained in L, ctqined
after applying the NMS algorithm can also be specified in line 1002.

The two last lines of listing 3.3 specifies the weight of the terms used to balance the
multi-task loss function of the RPN. This Faster R-CNN model uses a slight variation of
the loss function from equation 2.26. This implementation uses two constant values to bal-
ance the localization and classification loss, compared to the loss function in 2.26. Here the
first_stage_localization_loss_weight and first_stage_objectness_loss_weight corre-
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sponds to the weight placed on the localization loss and classification loss, respectively.

first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.699999988079
first_stage_max_proposals: 300
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0

Listing 3.3: The thresholds for the IoU and confidence score used by the RPN and the maximum
number of proposals output after applying these thresholds.

For the second module (Fast R-CNN classifier) the IoU and confidence thresh-
olds, as well as the maximum number of proposals retained after NMS can
be specified as in the first stage. Similarly, this implementation of the Faster
R-CNN uses two weights to balance the classification and localization loss in
the multi-task for the Fast R-CNN classifier in equation 2.23. The A in
equation 2.23 corresponds to the second_stage_localization_loss_weight and the
second_stage_classi fication_loss_weight can be used to increase the weight of the clas-
sification loss. Additionally, a constraint for the maximum number of predictions per class
and the type of classifier used is also specified as seen in listing 3.4.

second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.300000011921
iou_threshold: 0.600000023842
max_detections_per_class: 100
max_total_detections: 100

}

score_converter: SOFTMAX

second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0

}

Listing 3.4: The thresholds for the IoU and confidence score and maximum number of anchors
retained per class and in total used by the NMS in the Fast R-CNN classifier. Additionally, the type
of classifier and the relative weights of the multi-class loss can be specified.

Under train_con fig the hyperparameters for the training process are specified. Hyper-
parameters such as the batch size, the optimizer function, the learning rate, number of
training steps, and the type of data augmentations to apply. A compressed version of the
training configurations can be seen in listing 3.5, which shows the settings for the de-
fault model. Since model uses the momentum optimizer, the value of the weight - from
equation 2.4 can be specified under momentum_optimizer_value.

train_config {
batch_size: 1
data_augmentation_options {
random_horizontal_flip {
}
}
optimizer {
momentum_optimizer {
learning_rate {
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manual_step_learning_rate
initial_learning_rate: 0.000300000014249

schedule {
step: O
learning_rate: 0.000300000014249
}
momentum_optimizer_value: 0.899999976158

}

use_moving_average: false
}
gradient_clipping_-by_-norm: 10.0
fine_tune_checkpoint: ”/path/to/pre/trained/model/checkpoints”
from_detection_checkpoint: true
num_steps: 200000

Listing 3.5: The train_config where batch size, type of data augmentation, optimizer function,
learning rate and the number of steps to train the model can be specified. Further, a learning schedule
and any parameters related to the chosen optimizer function can be specified. Additionally, the path
to the checkpoints that will be fine-tuned can be provided.

Additionally, the path to the checkpoints that will be fine-tuned in the train-
ing process must be specified. This path is set to the pre-trained model’s
checkpoints. In this case, this path is directed to the checkpoints in the
Faster _RCNN _Inception_resnet 'V2_COCO_2018_01_28 directory as seen in listing 3.6.

fine_tune_checkpoint:”/path/to/
faster_rcnn_inception_resnet_v2_atrous_coco_-2018_01_28/model.ckpt”

Listing 3.6: The specified path to the pre-trained models checkpoint. This absolute path needs to be
changed according to the file structure of the project.

The modifications train_input_reader and eval_input_reader segments relates to
specifying the path to the train.record and valid.record, respectively. Additionally, the
path to the label map, labelmap.pbtxt, needs to be provided for both segments. The
eval_config segments is shown in listing 3.7 and specifies the type of metric used to
evaluate the model.

eval_config: {
num_examples: 8000
metrics_set: “coco_detection_metrics”

}

Listing 3.7: The evaluation metric used is the COCO detection metrics. The num_examples refers
to the number of examples to process during evaluation.

The models are evaluated using the COCO evaluation metrics, which will be further ex-
plained in section 3.5.1.

After the configuration file has been modified to the desired configuration, the training
can be initialized by running t rain. py from the terminal as seen in listing 3.8.

$ python path/to/train.py —logtostderr —train_dir=training/directory
—pipeline_config_path=path/to/configuration/file

Listing 3.8: Running train.py from the terminal specifying where to log any error messages from the
training process (—logtostderr) the directory where the training checkpoints will be saved (—train_dir)
and the path to the configuration file (—pipeline_config_path).
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Additionally, as seen in listing 3.9, the model _main.py is ran in order to keep track of
the models performance on the validation set with respect to the COCO evaluation metrics
during the training process.

$ python path/to/model_main.py —alsologtostderr —pipeline_config_path=
path/to/configuration/file —checkpoint_dir=training/directory —
model_dir=evaluation/directory

Listing 3.9: Running model main.py from the terminal specifying where to log any error
messages from the evaluation process (—alsologtostderr) the path to the configuration file (-
pipeline_config_path) the directory where the trained checkpoints used for evaluation are saved(—
checkpoint_dir) and where to save the output form the evaluation (—model_dir).

Finally, both the training and evaluation processes are monitored using tensorboard by
specifying the directories where the output from the training and evaluation are saved as
defined in listing 3.8 and 3.9, as seen in listing 3.10.

$ tensorboard —logdir=training/directory
$ tensorboard —logdir=evalutaion/directory

Listing 3.10: Logging both the training evaluation in tensorboard by specifying the path of their
respective directories.

3.5.1 COCO evaluation metric

The metrics used to evaluate the model performance are the COCO evaluation metrics as
specified in listing 3.7. The COCO evaluation metric consists of 12 metrics that character-
ize the performance of the object detector with respect to the IoU between the predicted
bounding box and the ground truth. The IoU, as outlined in section 2.4.4, is used to de-
fine whether the detected object is counted as a true positive or false negative by using a
threshold. A higher IoU threshold represents a stricter metric since the overlap between
prediction and ground truth must be higher to be counted.

There are 6 metrics that relates to average precision (AP) and 6 relates to average
recall (AR). The COCO evaluation metric makes no distinction between AP and the mAP
outlined in section 2.4.1 (Consortium, 2019). The mAP in equation 2.21 is equivalent
with the AP in the COCO evaluation metric. Additionally, both the AP and AR are
averaged over 10 IoU thresholds in the range [0.5 : 0.05 : 0.95] unless otherwise specified
(Consortium, 2019). The AR is calculated in a similar manner to m AP in equation 2.21.
However, equation 2.20 is summed over the y-axis of the precision-recall curve instead of
the x-axis. In order to avoid confusion, the following notation for the AP and AR metrics
are adopted:

o APToU=0.5:0.05:0.95 — 4y A P: The precision is calculated at 10 IoU threshold from

0.5 to 0.95 with a step size of 0.05. The reported metric is the averaged precision
across the different thresholds and classes in the data set. This is the main evaluation
metric and will be denoted as m AP from this point on.

o API°U=0-5: This is the most lenient threshold evaluation metric, where predicted
bounding boxes with an IoU > 0.5 are counted as true positives. This reported
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precision is averaged precision across the classes in the data set at a fixed ToU
thresholds, ¢, = 0.5 (not averaged across the 10 IoU thresholds).

o APToU=0.75: Thijs is the strict threshold evaluation metric, where predicted bound-
ing boxes with an IoU > (.75 are counted as true positives. The reported precision
is averaged precision across the classes in the data set at a fixed IoU thresholds,
trouv = 0.75(not averaged across the 10 IoU thresholds).

Figure 3.21 shows a visual representation of the IoU thresholds outlined above. The AP

loU: 0.5 loU: 0.75 loU: 0.95
[ Groundtruth [ Groundtruth [ Groundtruth
[ Prediction [ Prediction [ Prediction

Figure 3.21: A visual representation of the IoU thresholds used to define a true postive.

for the scales are summarized below and are used to evaluate how accurately the model
detects objects of various sizes in the image.

o APsmall: The average precision of the bounding boxes that have an area < 362
pixels.

o Apmedivm: The average precision of the bounding boxes that have an area > 362
and < 96 pixels.

o AP'ar9¢; The average precision of the bounding boxes that have an area > 962
pixels.

The AR is calculated by averaging the recall values, for each class separately, over a range
of IoU thresholds [0.5 : 1]. The AR metric is also reported for the 3 area-scales mentioned
above. The 3 last AR metrics reports the maximum AR given a fixed number of detections,
and give as follows:

* AR': The maximum AR given 1 detection per image
e AR'"0: The maximum AR given 10 detections per image

* AR'9%: The maximum AR given 100 detections per image
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3.6 Testing

Since the training and validation set is split from a set of core images from the same wells,
it is important to evaluate the model performance on a data set that the model has not
been exposed to. This is done to verify if the model can generalize on previously unseen
data. This step is only performed for the final model, once the desired performance has
been achieved on the validation set. Since the test set is supposed to provide an unbiased
evaluation of the model’s performance, it can only be used once. In this thesis, two test
sets were created. One test set from the two wells 6406/3 — 3 and 6406/1 — 3, which are
relatively similar to the training and validation data, with respect to the visual appearance
of the core plugs. The second test set is randomly sampled from the remaining 25 wells
when 6406/3 — 2 and 6406,/8 — 1 are excluded. These test sets will be elaborated further
on in the results. The following describes the general methodology for making a test set,
which applies to both test sets made in this thesis.

A new set of core images are selected from a set of wells that are not present in the
original data from well 6406/3 — 2 and 6406/8 — 1. These are labelled and converted to
atfrecord, test.record, as previously outlined. A copy of the configuration file is made
and named faster_rcnn_inception_v2 _testing.config, where the eval _input_reader path is
changed from valid.record to test.record. Finally the model main.py is ran from the
terminal as seen in listing 3.11, using the new configuration file and saving the output in a
new directory testing directory.

$ python path/to/model_main.py —alsologtostderr —run_once —
pipeline_config_path=path/to/configuration/file —checkpoint_dir=
training /directory —model_dir=testing/directory

Listing 3.11: Running model_main.py from the terminal specifying where to log any error
messages from the evaluation process (—alsologtostderr) the path to the configuration file (—
pipeline_config_path) the directory where the training checkpoints used for evaluation are saved (—
checkpoint_dir) and where to save the output form the evaluation (-model_dir). The —run_once option
specifies that the model is only evaluated once using the latest checkpoint and not continuously
logging the checkpoint directory.

3.7 Export Inference Graph

This step is only performed for the final model. After the training-validation process is
finished. The latest fine-tuned checkpoints are exported as a frozen inference graph using
export_inference_graph.py. This allows the model to be used for inference of
cores in new images, without further updating the weights. This is a necessary step in
order to use the model to generate predictions outside the training-evaluation pipeline.
The inference graph can be exported according to listing 3.12

$ python export_inference_graph.py —input_type image_tensor —
pipeline_config_path path/to/configuration/file —
trained_checkpoint_prefix path/to/model.ckpt—0000 —output_directory
path/to/output/directory .

70




3.7 Export Inference Graph

Listing 3.12: Running export_in ference_graph.py from terminal specifying the input data type
(—input_type) path to config file (—pipeline_config_path) path to the desired fine-tuned checkpoint
(—trained_checkpoint_prefix) and where to save the frozen inference graph (—output_directory). The
0000 in model.ckpt-0000 checkpoint refers to the step the model was saved and in this case would
be before training.
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Chapter

Results and Discussion

In the following sections, the achieved results following the training-validation process,
outlined in chapter 3, will be presented and discussed. Based on the results and discus-
sion, the decision of which candidate model that will be chosen as the nominee will be
made, as shown in figure 3.19. The preprocessing technique used in the nominee model
will be applied to both the high and low variance data set which will be used to train the fi-
nal model. Several hyperparameter configurations will be proposed and tested, to increase
the performance of the model. The hyperparameter configuration that yields the best per-
forming model will be used in the training of the final model. Lastly, the final model is
tested on two test sets of different difficulty, followed by a discussion of the results and a
proposed workflow for increasing the performance of the model.

First, the candidate models will be presented, which were trained and validated on
the low variance data set consisting of 289 core images from well 6406/3 — 2. As out-
lined in section 3.5 the data set was split into a training and validation set using an 80,/20
simple hold-out validation split. These models will be used to verify if the preprocessing
techniques, outlined in chapter 3, can improve the performance of the model. The prepro-
cessing technique used in the best performing model, the nominee, was applied to the high
variance data from well 4606/8 — 1 as well. This data set consists of 136 images and was
split using the same simple hold-out validation split. A new model will be trained using
the data from both well preprocessed with the preprocessing technique from the nominee
model. A learning rate analysis will be performed on this new model, to find an optimal
learning rate, which will be used to train the final model.

The results from the training and the performance of the final model with respect to
two different test sets will be presented and discussed, before presenting a workflow that
involves the fine-tuning of the final model using a small subset of one of the test sets.
Lastly, this chapter will be concluded with a summary of the results and a proposed use
case involving both the model developed in this thesis and the model from the specializa-
tion project presented in section 2.5.
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4.1 The Candidate Models

In this section, the results from the 5 candidate models and the hyperparameters used will
be presented. First, the results from the training and validation of the RGB model and its
performance on the COCO evaluation metrics will be presented. These results will act as
a benchmark, which the remaining candidate models will be compared to. As outlined in
section 3.5, several hyperparameters can be adjusted to improve the model performance
with respect to the task at hand. Here, in the initial benchmarking of the preprocessing
techniques, the hyperparameters are kept as they were provided with the pre-trained model,
which is based on the configuration used in Huang et al. (2017a). However, the localization
term in the second stage of the Faster R-CNN is changed to A = 100. The reason for
setting Ao = 100 is to reward better localization of the core plugs, i.e. increase the IoU
of the detected core plugs. As mentioned in section 2.5 increasing the localization loss
weight of the Fast R-CNN classifier showed to increase the performance with respect
to the COCO-evaluation metrics. In the specialization project the most notable increase
occurred in the mean average precision, m AP as defined in section 3.5.1, which increased
from mAP = 0.77 to mAP = 0.86. Therefore, it is desirable to investigate if similar
results can be achieved for detecting and classifying the different core plug types.

For the models to be comparable, the hyperparameters are kept constant across the 5
candidate models. The hyperparameter configuration can be found in the configuration
file of each model, which will be included in the Github repository of this thesis. The
main hyperparameters for the models are summarized in table 4.1. Figure 4.1 shows the

Optimization function Momentum optimizer
Momentum optimizer value 0.9

Learning rate (constant), « 0.0003

Second stage localization loss weight Ao | 100

Second stage classification loss weight 1

Data augmentation random horizontal flip

Table 4.1: Summary of the main hyperparameters used in the training of the 5 candidate models.

setup for this initial testing of the preprocessing techniques outlined in chapter 3. The
candidate models are trained and evaluated on the same 289 images, randomly sampled
from well 6406/3-2, using an 80/20 simple hold-out validation split. Based on the model
performance, from these candidate models, one nominee will be chosen.

In order to present the models in a structured manner, each model will be named ac-
cording to the notation adopted in table 3.3 and styled in ifalic. Further, for the core plugs
in the three classes from table 3.1, the following notation will be adopted:

* Horizontal CCA - hplug
e Vertical CCA - vplug

e SCAL - scal
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6406/3-2
©

train
Compare

} validation

Chose
Nominee

Figure 4.1: The set up for the initial benchmarking of the candidate models. The input to each
candidate model is preprocessed using a different technique, from which one will be chosen as the
nominee. The input to each candidate model comes from a 80/20 simple hold-out validation split of
289 images from well 6406/3-2.

4.1.1 RGB Model Evaluation

The first model is the RGB model, which was trained using the original RGB images. The
RGB model was trained for 150k steps, and the training-validation loss can be seen in
figure 4.2. Here, the training and validation loss refers to the total loss. The total loss
is the sum of the losses in the RPN and Faster R-CNN classifier. The figure shows that

RGB
10

—— validation loss
training loss

loss

D 20000 40000 0000 E000D 100000 120000 140000
step

Figure 4.2: The training-validation loss for the RGB model.

the training loss is steadily decreasing until around step 60k. Past step 60k, the training
loss shows little to no improvement. Evaluating the validation on the same interval, shows
almost an immediate increase in the validation loss on the [0,20k] interval, before plateau-
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ing and converging towards a stable value, past step 60k. This is a clear sign of the model
overfitting, where the loss on the training set is decreasing, while the loss on the validation
set is increasing, i.e. the model has learned to map the core plugs in the training set, with-
out the ability to generalize on the validation set. The training-validation loss for the RGB
model shows that the model is initially moving towards a good fit, start overfitting almost
immediately, and converges towards a stable high loss value.

The performance of the RGB model with respect to the 12 COCO evaluation metrics
are summarized in figure 4.3. This figure shows the AP and the AR of the RGB model
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Figure 4.3: The COCO evaluation metrics for the RGB model.

on the validation set, according to the COCO evaluation metrics outlined in section 3.5.1.
The AP IoU thresholds plot shows the average precision over the interval IoU = [0.5 :
0.05 : 0.95], denoted m AP, and the average precision for the APToU=50 gnq A pIoU=75
The AR predictions plot shows the maximum average recall value given a fixed number of
predictions. The AP and AR over the object size areas are given in the AP scales and AR
scales plots, respectively. From the plots in figure 4.3, it is evident that there is a significant
improvement occurring in the first 25k training steps with respect to the evaluation metrics.
The evaluation metrics increases rapidly around [0,25k] interval, before reaching a value
close to its maximum value on the entire training interval. This can be seen as the curves
of the evaluation metrics flatten after step 25k, showing little to no improvement past this
step.

The AP1°U=50 is the highest scoring AP metric, followed by APT°U=75 and m AP in
descending order with respect to their score. These scores at end of training (step 150k) are
summarized in table 4.2. Since AP7°U=50 has the most lenient IoU threshold for defining
a true positive, any IoU > 0.5 is included in this metric. When the definition of a true
positive is set at ToU=50, the model reaches an average precision APT°U=50 = (0,958,
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Metric AP @ end of training
mAP 0.747
APTU=TS 0.920
ApToU=50 0.961

Table 4.2: The AP scores for the 2 IoU thresholds and the m AP for the RGB model at end of
training.

This indicates that at this threshold, there are very few false positives being detected.
As the threshold increases, a larger part of the detected core plugs will be defined as
false positives, which is reflected in the lower AP score for APT°U="% and mAP. This
indicates that, of the detected core plugs, only a small portion of the false positives can not
be accounted for in the evaluation metrics.

The average recall AR metrics for a set of a fixed number of detections are summarized
in table 4.3 The average recall is a measurement of how well the model can detect the

Metric | AR @ end of training
AR? 0.319
AR™ 0.808
AR 0.808

Table 4.3: The AR scores given a fixed number of predictions for the RGB model at end of training.

core plugs in the data set, i.e. the portion of the relevant objects in the data set that are
identified as a true positive. The AR'® and AR'° values are identical, which indicates
that the number of core plugs that can be detected in an image is not limited by the number
of predictions the network makes, past AR, Further, AR' shows that allowing only
a single detection is not sufficient to identify the core plugs in the image. This is to be
expected since it is known that most of the core images contain more than 1 core plug.
Allowing only one detection will leave out a significant portion of the relevant objects.
Thus, AR' and AR'° represent the model’s average recall better and show that 80.8%
of the core plug objects in the data set can be identified by the model.

The AP-scales and AR-scales plots in figure 4.3 show that the size of the objects in
the data set falls into the medium and large object category according to the area sizes
outlined in section 3.5.1. The metrics AP (small) and AR(small) have a score of —1
(not visible in the plots), which implies that no object in the data set falls into this size
category. Since the variance of the size of the core plugs in a certain class is not expected
to be large. These 6 object size metrics, AP scales, and AR scales in figure 4.3, are not as
relevant to the task at hand. Therefore, they will only be introduced here and not be further
elaborated on.

The COCO-evaluation metrics only show the model performance for precision and re-
call averaged across all classes in the data set. To better understand the model performance
on the data set it is useful to also look at the performance in each class. The confusion ma-
trices in figure 4.4 shows the class by class breakdown of the RGB model’s predictions on
the validation set for two IoU thresholds, ToU = 0.5 and IoU = 0.95, at confidence score
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= 0.5. These matrices are called IoU50 and IoU95. The results build on the concept of
IoU and confidence score as defined in section 2.4.1. The values in the confusion matrices
have been generated by first accepting any predictions from the network with a confidence
score > 0.5. From these accepted predictions, if they have an IoU with the ground truth
IoU > 0.5 they are counted as a true positive in both matrices. If the ToU < 0.95 they
are counted as a false positive in IoU95, and as a true positive in IoU50. Any predictions
with JoU < 0.5 will be regarded as a false positive in both matrices. The three first rows
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Figure 4.4: The confusion matrices for the RGB model at IoU50 and IoU95

and columns (solid line) show the number of predictions per class, where the number of
correct predictions per class lies along the diagonal. The last column shows the number
of plugs that were not detected in each class (false negatives) and the last row shows the
number of detections that were not part of any class (false positives). The main difference
between the matrices for IToU50 and IoU95 occurs in the vplug class. This shows that the
vplugs are the most challenging class. This can be seen in the FP row in the [oU50 matrix.
Here, 14 detections have been classified as false positives. This is to some degree related
to the detected plugs having an JoU < 0.5, and are rejected as false positives. Further,
some of the detected vplugs have an 0.5 > ToU < 0.95 with the ground truth. This can
be seen as the difference in false positives between IoU50 and IoU95, where 12 additional
vplugs are counted as false positives in IoU95. The FN column shows the number of plugs
in each class that was not detected by the model, i.e. the number of plugs that are defined
as ground truth but not detected by the model. Similarly, the vplug class has the highest
amount of false negatives, which is to be expected. If a plug in the ground truth is rejected
and counted as a false positive due to low IoU, it will also be counted as a false negative.
Using this information, it is clear that the false positives in the vplug class are not solely
related to low IoU score, since some of the false positives can not be accounted for as
detection in the other classes or as false negatives. This shows that the model detects 6
“vplugs”, which are not in the ground truth. This could be related to either mislabeling,
where some vertical plugs have been overlooked in the labelling process or that there are
some natural features in the core, e.g. fractures or broken segments that are visually similar
to the vertical core plugs in the data set.
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From the values in the confusion matrices the precision and recall at both IoU thresh-
olds are calculated according to equation 2.12 and 2.13 and are summarized in table 4.4.
As indicated by the confusion matrices, the precision and recall values shows that the

ToU50 IoU95
P R P R
hplug | 0.967 | 0.986 | 0.943 | 0.986
vplug | 0.910 | 0.947 | 0.833 | 0.867
scal 0.943 | 0.990 | 0.943 | 0.990

Table 4.4: Summary of the precision-recall scores of the RGB model at end of training for each plug
class at IoU50 and IoU95.

model seems to perform best on the scal and hplugs, where 99% of the scal plugs in the
data set are identified with 94.3% precision at both IoU thresholds. The confusion matri-
ces show that only two scal plugs in the data set have a [oU < 0.5 with the ground truth,
and that all scal plugs are recalled. However, one of the scal plugs are misclassified as a
hplug and three hplugs are classified as scal at both IoU thresholds.

In the Aplug class, the model’s precision/recall values are 96.7/98.6% and 94.3/98.6%
at the low and high IoU thresholds, respectively. Note that this class, similar to the vplug
class, also has a number of false positives that can not be accounted for as misclassifica-
tions or in the false negatives. This indicates that the hplug class may suffer from the same
symptoms as the ones in the vplug class. However, due to the low variance with respect
to the shape of the hplugs in the data set, this is not very likely. It is believed that the
false positives in this category can mainly be attributed to cropping issues, similar to the
case seen in figure 4.5. Since some cores are not aligned parallel to the height and width

Prediction Ground truth

I
Current core

Figure 4.5: The prediction and ground truth from the RGB model for a segment of core in the
validation set. The red lines show the boundaries of the current core, which contains no core plugs.
The detected core plug (green) in the image belongs to the previous core.
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of the image, there is an offset between the top and base of the core. In order to include
the whole image within the crop, some of the neighbouring core might be included in the
image of the current core. Since the core plugs of the neighbour core are not labelled, they
are counted as false positives when detected by the model. Thus, the model might perform
better on the hplugs than the precision score suggests, i.e. fewer false positives. The same
concept could also apply to the vplugs, where the offset of the core brings the plugs of the
neighbouring cores into the frame. However, due to the larger amount of variance in the
vplug class in this data set, as outlined in 3.3. Some of the false positives may be attributed
to both mislabeling and resemblance in visual appearance to non-plug features in the core
as well.

In summary, the RGB model has the worst performance on the vplug class. This can
be seen in the larger drop in precision and recall between the IoU50 and IoU95, relative
to the other classes. As outlined in section 3.3, there is some variance to be expected
in the visual appearance of the vertical core plugs, but this variance was expected to be
lower than the variance in the Aplug and scal class. However, since the variance in the
hplug and scal class is low in this data set, it is believed that variance in the vplug class
becomes more visible”. Thus, the performance on the vplugs will be worse, relative to
the two other classes. These results show that the model is able to almost perfectly detect
both the scal and hplugs in the low variance data set, and performs only slightly worse on
the vplugs. However, from figure 4.2 it is evident that the model is overfitting, and it is
believed that the performance will be significantly reduced as more variance is introduced,
and the model is exposed to previously unseen data. This assumption is based on the low
variance both in and between the visual appearance of the hplug and scal plugs in the
training and validation data. And the low variance in the visual appearance between the
hplugs in the training and validation data. The similarity between the core plugs in the
training and validation set is attributed to the fact that the model is trained and validated
on core images from the same well.

4.1.2 Comparing Candidates

Since the RGB model is overfitting, the performance is expected to drop significantly when
introducing more variance in the data, and exposing it to previously unseen data (test set).
Therefore, it was desirable to investigate if the overfitting behaviour could be counter-
acted by reducing the complexity of the input by applying the preprocessing techniques
discussed in chapter 3 which gives rise to the four remaining candidate models.

The training-validation loss for these candidate models are shown in figure 4.6. Similar
to the RGB model, after the initial steps, the four candidate models start overfitting before
converging towards a stable high loss value. As seen in figure 4.6 the canny, sobel and
wavelet model have been trained for fewer steps than the both the gray and RGB model.
Due to the higher degree of overfitting, the training of these models was terminated earlier.
This indicates that the preprocessing technique used in these models adversely affects the
model’s ability to generalize on the validation set, i.e. removed some important features
in the data. The validation loss of the gray and RGB models are essentially similar, and
fluctuate about each other, before the gray model achieves a slightly lower loss than the
RGB model. This could indicate that the conversion to grayscale may have successfully
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Figure 4.6: Training-validation loss for the canny, wavelet, sobel and gray candidate models.

removed some redundant complexity in the input, which has lead to increased generaliza-

tion.

The 5 candidate models performance with respect to the COCO evaluation metrics
plotted in figure 4.7. Here, only the main precision metric, m AP, and the recall metric
AR are shown. Both the m AP and the AR'%C shows that the canny, sobel and wavelet
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Figure 4.7: The m AP and AR for the 5 candidate models
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models are performing significantly worse than the RGB model. The gray and RGB mod-
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els seems to perform equally good on most of the interval. However, the RGB model has a
slightly better performance with respect to AR'°C on the entire interval and on the [0,50k]
interval with respect to m A P. However, as the validation loss of the gray model becomes
lower than the validation loss of the RGB model, the m AP of these models become simi-
lar.

The class by class breakdown of the 5 candidate models at IoU50 and IoU95 have been
summarized in the scatter plot in figure 4.8. The confusion matrices for each model and
the full numerical precision and recall scores for each model can be found in appendix C.
The precision-recall plots show that the five candidate models performs relatively well in
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Figure 4.8: Precision-recall plot for the 5 candidate models.

both the hplug and scal category. This can be seen as the clustering of the hplug and scal
categories for each model in the upper right corner. In some cases, models with a lower
mAP even outperforms the RGB model, with respect to precision, recall or both. The
canny, sobel and wavelet model achieve a higher precision, i.e. fewer false positives, in
the scal class at IToU50. However, the precision score of the canny and wavelet models can
not be directly compared to the RGB model due to their lower recall score. This reason is
that the precision scores for these two models have been calculated over fewer detections.

The gray model is the only model that out-performs the RGB model with respect to
both precision and recall at loU=50 for the Aplug class, and achieves a higher precision
for the scal class at identical recall scores. At IoU95, the gray model achieves both a
higher precision and recall score than the RGB model. This shows that the gray model is
able to predict the hplugs with a better IoU with respect to the ground truth. Since fewer
predictions in the gray model are discarded as false positives due to having an ToU <
0.95. For the vplug class it is clear that the canny, sobel and wavelet models are under-
performing compared to the gray and RGB model. The difference in performance between
the gray and RGB model, with respect to the vplug class is less obvious. At IoU50 the
gray model has a lower precision score, but at a higher recall. However, at IloU95 the RGB
model has a higher precision score than the gray model, at the same recall. This shows
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that the gray model may have a better performance at IoU50, but the additional vplugs
detected at this threshold have an ToU < 0.95 with the ground truth and are not included
at IoU95.

In order to better compare the performance of the models for each class at different
precision-recall levels, the Fl-score is calculated, at both IoU thresholds, according to
equation 2.14 and plotted in figure 4.9. From these plots, the candidate models perfor-
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Figure 4.9: The calculated F1-score for the 5 candidate models.

mance on the plug classes are much clearer. As expected from the precision-recall plots
in figure 4.8, the gray model performs better than the four other models with respect to
the hplug and scal class. Further, the gray model performs slightly better than the RGB
model in the vplug category at IoU50, and slightly worse at IoU95. Although, the canny,
sobel and wavelet model achieves a higher precision score in the scal category than the
RGB model at both IoU thresholds, as seen in figure 4.8. The F1 score shows that only the
canny and sobel model performs better at loU50, and that the RGB model performs better
than all three at IoU95.

From these results, it is evident that the canny, sobel and wavelet model significantly
under-performs with respect to AR'%? and mAP. Although, some of these models achieve
a higher or similar F1 score compared to the RGB model in the hplug and scal class.
The under-performance of these models in the vplug class is so large, that it significantly
reduces both the AR and m AP of the models. This can be seen in figure 4.8, where
the recall values show that a larger portion of the vplugs in the validation set can not be
identified, i.e. more false negatives, even at IoU50. This under-performance could be
attributed to several factors, but the most evident factor are the low relief core plugs.

If vertical core plugs do not sufficiently penetrate the C' — C” cross-section, as out-
lined in section 3.3, the relief of the vertical core plug in image view will be low. Low
relief vertical core plugs are problematic in all 5 candidate models. However, both the
gradient-based edge detection preprocessing techniques and the Ricker wavelet convolu-
tion struggled the most with the low relief plugs. Figure 4.10 shows a false negative vplug
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due to low relief in both the RGB and gray model. The red bounding box represents the

Figure 4.10: False negative due to a low relief vertical core plug in the RGB and gray model.
Additionally, the hplug is classified as both the scal and hplug class in the RGB model, leading to a
false positive as well. Bounding box colours: red - ground truth, green - hplug, turquoise - scal.

ground truth bounding box, i.e. the label. The turquoise and green bounding box corre-
sponds to the models prediction of the scal and hplug class, respectively. In addition to not
being able to classify the vplug (false negative), the RGB model classifies the horizontal
core plug into both the hplug and scal class. This generates both a true positive for the
hplug class and a false positive for the scal class, as can be seen in the confusion matrix
in figure 4.4. However, this is an extreme case of a low relief vertical core plug, which
can be easily missed even during the labelling process, unless the CCA report is consulted.
Furthermore, in these extreme cases when the RGB and gray model failed, the canny, so-
bel and wavelet model would usually fail to detect the plug as well. Although, there were
some rare cases where either the canny, sobel or wavelet model was able to detect a low
relief vertical core plug that the gray and RGB model could not detect. The more common
case was that the other way around.

Figure 4.11 shows a false negative in the vplug class for the canny, sobel and wavelet
model from three different cores where the gray model have successfully detected said
vplug. These examples are taken from different cores since there were no observed cases
where all three edge-based preprocessing techniques would fail unless the RGB and gray
would fail as well. However, the examples in figure 4.11 suggests that the false negatives
could be related to the preprocessing technique removing or blurring of the vertical edge
of the vertical core plug. In the canny example, the vertical edge is masked by the edges
generated by the coarse grains within the core, which indicates lack of smoothing by the
5 x b Gaussian kernel and bad choice of thresholds in the hysteresis thresholding. The so-
bel example suggests that the pixel contrast between the interior of the vertical core plug
and the outside is too low to generate an edge with large enough magnitude. Lastly, the
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Figure 4.11: False negatives for the vplug class in the edge based preprocessing models that are not
present in the gray model due to removal of horizontal edge. Bounding box colours: red - ground
truth, hplug - green, scal - turquoise, cyan - vplug.

vertical edge is not visible in the wavelet example, since convolution has been applied in
the vertical image direction using a low-frequency wavelet which blurs the slanted part of
the core plug. As outlined in section 3.4, the output from these preprocessing techniques
relies, to some extent, on some predetermined user-defined parameters. e.g. in the Canny
edge detection algorithm, both the kernel size and the hysteresis thresholds are defined by
the user. These parameters control the degree of smoothing applied to the image and the
separation between the real edges and noise generated edges in the image, respectively.
The number of false negative in these models suggest that these predetermined parame-
ters are not general enough to have the desired effect across all training and validation
examples.

Further, the vertical core plugs that can be identified in these models have a lower IoU
with the ground truth than both the gray and RGB model. This can be seen by the larger
difference in the precision-recall scores at the two IoU thresholds. Since a significant
portion of the predictions have an JoU < 0.95, and are rejected as false positives. These
models are now classifying true positives as false positives due to their poor overlap with
the ground truth and are counted as false negatives. Thus, the number of false positives
and false negatives increase, which in turn reduces the precision and recall, respectively.
This is believed to be related to the importance assigned to an edge when determining
the top and base of the vertical core plugs in these models. Figure 4.12 illustrates a very
specific case where the edge based methods detects the vertical core plug with a lower IoU
than the gray model. The elongated black clast below the core generates a large magnitude
edge which is confused with the base of vertical core plug in the edge-based models. This
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convolve

Figure 4.12: The effect of strong edges close to the base of the vertical core plugs on the edge based
preprocessing techniques. Resulting in a poorer IoU with ground truth. Bounding box colours: red
- ground truth, Aplug - green, cyan - vplug.

leads to a lower IoU with the ground truth, and expect for in the gray model, the detected
vertical core plugs in figure 4.12 will be rejected at [oU9S5. This is a very specific example,
but it illustrates the presence of a stronger edge near the base of the vertical core plug will
reduce the precision of the edge based models at higher IoU thresholds.

Additionally, these edge-based methods have lead to the detection of some false posi-
tives that are not present in either the gray or RGB model. Figure 4.13 shows an example
for each preprocessing technique where a large grain or a clast has been misclassified as a
horizontal core plug. This shows that an overemphasis on the shape, without consideration

gray

wavelet

i I_’-I;

Figure 4.13: False positives in the hplug class related to the edge based preprocessing techniques.
Clasts are misclassified as core plugs. Bounding box colours: red - ground truth, Aplug - green.

for the context of its surroundings, can be a source of false positives in these models. In
the canny and sobel examples the false positives are generated due to dark clasts that sets
up a circular gradient. In this data set, the plywood background the core is placed on is
often visible for the horizontal core plugs, which often has a higher pixel value than the
core. Thus, the ingoing gradient will be positive and the outgoing gradient will be neg-
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ative. The Sobel filter and the Canny edge detection algorithm does not account for the
sign of the gradient, which could increase the risk of false positives when encountering
circular shapes. The false positives generated by the sobel and canny model in figure 4.13
is not present in the wavelet model, which can be seen in appendix D. This is most likely
related to that the waveler model takes into account the sign of the gradient. However,
false positives occur in this model as well as seen in the lower right image in figure 4.13,
where a light clast generates a circular gradient with the same signs as the horizontal core

plugs.

In summary, the edge-based preprocessing techniques show that there could some
slight benefits in extracting the structural patterns in the core images, as can be seen in the
slight increase in F1-score for the scal class in both the canny and sobel model at IoU50.
However, it is clear from the results and the discussion above that this overemphasis on
the edges of the core plugs, can be misleading and increases the risk of generating both
false negatives and false positives. If the edges are too weak to be clearly imaged, or the
noise generated edges can not be removed by the preprocessing technique with the current
pre-defined parameters, they will not be detected by the model (false negatives), leading
to lower recall as seen in figure 4.11. If the preprocessing techniques generate a core like
shape as seen in figure 4.13, it may be misclassified as a plug (false positive) and reduce
the precision. Further, this over-reliance on the edges to locate the core plugs causes strong
edges close to the core plugs to be misinterpreted as the boundaries of the cores, as seen in
figure 4.12, leading to a lower IoU with the ground truth. A combination of these effects is
believed to be the reason why the increase in performance seen in (Abdillah et al., 2018),
is not observed in this thesis. Since the images of the vehicles used in the classification
task were taken from above by a traffic camera, resulting in a consistent background of
black tarmac, making it easier to choose the pre-defined parameters for the preprocessing
techniques which are general. Further, work outlined in Abdillah et al. (2018) is a classi-
fication task, which is not concerned with locating the objects. Thus, the performance is
not affected by the noise generated edges being mistaken as object boundaries, leading to
poorer IoU with the ground truth (figure 4.12) and false positives (figure 4.13). Based on
these results the preprocessing techniques used in the canny, sobel and wavelet models are
discarded.

The gray model out-performs the RGB model in both the hplug and scal class with re-
spect to the precision-recall and F1 score at both IoU thresholds. Further, the performance
on the vplug class is comparable between the two models, where the RGB model performs
slightly better at IoU95. However, these effects seem to balance each other, since both
models achieve almost identical m AP scores. Although, the RGB model has a slightly
higher AR score it might, to some degree, be attributed to the overfitting. This can be
seen in the confusion matrices for the RGB model in figure 4.4, where the three hplugs
have been misclassified as scal plugs. Thus, the recall score will be higher due to the lack
of false negatives, but at the cost of precision since three false positives are introduced.
One of these false positives can be seen in figure 4.10. This does not occur in the gray
model, which can be seen in the confusion matrices of the gray model in in appendix C.
Here, two of the three hplugs are correctly classified and the third is not misclassified and
kept as false negatives. This will lead to a lower recall, but not at the cost of precision.
Since the AP is calculated at each IoU threshold in ToU = [0.5 : 0.05 : 0.95] it is
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reasonable to assume that this occurs to some extent at each IoU threshold, leading to the
higher AR = 100 for the RGB model. Further, the number of false positives that can not
be accounted for in the ground truth increases by two for the vplug class in the gray model.
This can explain the difference between the precision scores at [oU95.

The obtained results show that the conversion to grayscale may have removed some
redundant complexity in the input, which could allow for better generalization, i.e. lower
validation loss as seen in figure 4.6. This in turn may be the cause of the increased per-
formance on the Aplug and scal class in the validation set, and a comparable performance
on the vplug class on this data set. Although, the gray model performs slightly better on
this data set, the difference in performance between the gray model and RGB model is
marginal. As seen in figure 4.7, the m AP for the gray and RGB models are almost identi-
cal, and are fluctuating about each other past step 100k. Since the class by class breakdown
of the two models are based on their respective performance at the end of training, at step
150k. It is possible that the increase in performance in the gray model could be attributed
to luck, i.e. if the gray model is evaluated at an upswing in m AP and the RGB is evaluated
at a downswing. Further, the increase in performance in the gray model could be specific
to this data set.

In order to verify this, the two models should be trained and evaluated on several
data sets before any conclusions can be drawn. This test is not conducted in this thesis
since both the manual labelling of new data and the training of several models are time-
consuming tasks. This decision is based on the marginal improvement to the performance
the conversion to grayscale showed on this data set, and the time it would take to prove
if the increase to performance is in fact general. Therefore, it can not be concluded with
any certainty that the conversion to grayscale improves the model’s ability to detect core
plugs in optical core images. However, the similarity between the RGB and gray model
suggests either can be chosen as the nominee, without compromising the performance of
the final model. Since the results suggest that the gray model may have removed some
redundant complexity in the input, which allows for a lower validation loss, it is chosen as
the nominee.

4.2 Hyperparameters Optimization

As outlined, the gray model showed to have the best performance with respect to the
training-validation loss and the evaluation metrics of the 5 candidate models on the low
variance data set, therefore it is chosen as the nominee. However, the gray model only per-
forms better relative to the other models. The training-validation loss in figure 4.6 shows
that the model is still severely overfitting early in the training interval, before converging
towards a high validation loss. This shows that the model is still not able to generalize
on the validation set. In this section, the results from the hyperparameter adjustments that
were tried to reduce the overfitting will be presented. The considered hyperparameters
are the second stage localization loss, Ao, and the learning rate . The experimentation
with localization loss, A2, was performed on the RGB model, using the low variance data
set. Of the two mentioned hyperparameters, it is believed that the A, is the main cause of
the overfitting. This assumption is based on the significant increase made to this weight,
resulting in a (classification:localization)-loss ratio of (1:100). This is 50 times that of the
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ratio used by Huang et al. (2017a) (1:2), on which the default configuration file is based
on.

Since the same overfitting pattern is present in all of the candidate models, and the 5
models were trained using the same Ao, it is assumed that any improvement to the vali-
dation loss gained by adjusting this hyperparameter in one model can be translated to the
other models. If successful, this hyperparameter will be changed in the nominee model
(gray) as well.

The experimentation with the learning rate was performed on the gray model trained
on both the high and low variance data sets combined.

4.2.1 Localization Loss

This section will investigate the effect of the localization loss weight on the model per-
formance, which showed to increase the performance of the model developed in the spe-
cialization project, with respect to the COCO-evaluation metrics. Therefore, this section
will mention some of these results from the specialization project, which can be found in
appendix L.

As outlined in section 4.1, the candidate models were trained using a large weight in
the second stage localization loss, A2, due to the performance gain with respect to the
mAP and AR'%0 it showed to have in the specialization project. Figure 4.14 shows the
training-validation loss, m AP and AR, for the initial RGB model presented in section
4.1 and a model trained on the same data set using the same hyperparameter setup from
table 4.1, except in the latter model the weight of the localization loss is set to its default
configuration Ao = 2. In order to distinguish between these models, the following notation
will be adopted in this section:

* RGBj,100 : the original RGB model trained using the hyperparameter configuration
in table 4.1.

e item RGB),2 : the original RGB model trained using the hyperparameter configu-
ration in table 4.1, with Ay = 2.

From these results, as seen in figure 4.14, it is evident that the main cause of the
overfitting behaviour in the RG Bj,100 model can be attributed to the high localization
loss weight. In the RGB),2 model, the severe overfitting occurring in the initial steps
of the training interval have been resolved. The validation loss of this model is steadily
decreasing on the [0,20k], before slightly increasing, and converging towards a much lower
loss value. This shows that the RG B),2 model have a higher generalization capability.
As seen in the mAP and AR plots in figure 4.14, both the mAP and AR scores
suggest that the RGB),100 model is performing better across the entire training interval.
However, it reaches the highest m AP on the [20k,60k] interval, which coincides with the
highest validation loss. As the validation loss decreases, on the [60K,80K] interval, the
mAP decreases as well. This indicates that the increase in the evaluation metrics in the
RGB)y,100 model is mainly related to overfitting with respect to the localization of the
core plugs. This can be seen in figure 4.15, where the AP°V=50 and AP°Y=75 for both
models are plotted for the [0,80k] interval.
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Figure 4.14: Training-validation loss, m AP and AR score for the RGB o100 and RGBy,2

models.
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Figure 4.15: The AP7°U=50 and APT°U"® for the RG B, 100 and RG Bj,2 models.

The AP°U=%0 ghows that the RG B),100 model is performing worse with respect
to average precision across the three plug classes at IoU50, compared to the RGB),2
model with a lower localization loss weight. This indicates that the model with the lower
localization loss weight detects fewer false positives at IoU50, which leads to a higher
average precision across the plug classes. As the IoU threshold for defining a true positive
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increases to APT°U=75_poth scores decrease and the difference between the two decreases
as well. Past step 40k, the APT°U=75 scores can be regarded as equal. The RG B, model
have a greater drop in precision compared to the RG B}, 100 model, when the IoU threshold
increases. This suggests that the RGB,,2 model detects more true positives and fewer
false positives than the RG B),100 model, but the detected plugs have a lower IoU with
the ground truth. Due to the high localization loss weight, the RG Bj,100 model highly
favours better localization, thus a larger portion of the detected core plugs have a higher
IoU with the ground truth. This can be viewed as the model with the high localization
loss weight increases its performance by refining the precision of the already detected
core plugs in order to count them as true positives at higher IoU thresholds, while the
model with low localization loss increases its performance by increasing the number of
core plugs that can be correctly classified and located in the data set, but at a lower IoU
with the ground truth.

The performance of the RGB),100 model improves as the IoU thresholds increase,
while the performance of the RG B, ,2 model deteriorates by increasing the IoU thresh-
olds. Thus, the calculated m AP will be slightly higher for the RG B),100 model on the
validation set. However, this emphasis for the RG Bj,100 on localization comes at the
cost of classification, as seen in the confusion matrix in figure 4.4, where three hplugs
are misclassified as scal plugs, and eight vplugs are not identified (false negative). In this
case, the number of false positives detected by the initial RGB)y,100 is relatively small
and has not affected the m AP to a great extent. This can be attributed to the low variance
present within each plug class in this data set. As the variance increases, the number of
false positives are expected to increase as well, which is expected to be detrimental to the
mAP of the RGBj,100. Thus, it is preferable with a model that is less prone to detecting
false positives when including the high variance data set in the training set and expanding
to previously unseen data. As seen in figure 4.16, the confusion matrix for the RG B2
model, no false positives are generated due to misclassification of the core plugs at both
IoU thresholds, i.e. every detected core plug is correctly classified. Further, the number of
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Figure 4.16: The confusion matrices at IoU50 and IoU95 for the RG B,2 model
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false negatives in the vplug class at IoU50 are fewer.

Since the detected core plugs in the RG B),2 model have a lower IoU with the ground
truth, a greater number of these plugs will be regarded as false positives as the IoU thresh-
old increases. This will affect the AR0 as well, since this metric is also averaged across
the ToU thresholds IoU=[0.5 : 0.05 : 0.95].

These results show that the choice of the localization loss weight must be based on the
object detection task at hand. As outlined in section 2.5, in the specialization project of
this thesis, object detection was used to locate and automatically crop the cores from the
optical core images. Thus, it was important to locate the cores with a high IoU with the
ground truth, so that the entire core would be included in the crop. Although, a similar
overfitting behaviour was present in the specialization project the increase to the mAP
was significant (+9% ), as mentioned in section 4.1, when compared to the performance
increase observed in the results in figure 4.14. This is mainly related to the object detection
task in the specialization project was a single-class object detection task, i.e. the objects
were classified as either a core or nothing. Therefore, there were few opportunities for
the model to generate false positives as a result of misclassifications. Since the risk of
generating false positives was low, the localization weight could be increased in order to
push a larger amount of the detections towards being valid at higher IoU thresholds without
compromising the model performance at the lower IoU thresholds.

The results in figure 4.14 show that increasing Ao can not be applied with the same
success as in the specialization project. Since this is a multi-class task, the risk of gen-
erating false positives due to misclassification is much higher. Additionally, due to the
similarity in visual appearance between some of the core plug classes, this risk is further
increased. Although, locating the objects are important in this task, it is not as essential as
it was in the specialization project. This task requires a better balance between localiza-
tion and classification. Therefore, the localization loss for the final model is set to Ay = 2,
since it allows for detecting and correctly classifying a larger portion of the core plugs at
an acceptable IoU, rather than fewer at an excellent IoU.

4.2.2 Further Discussion on Localization

The results presented in section 4.2.1 showed that the over-emphasis on locating the core
plugs, i.e. higher weighting of the localization loss term, resulted in the detection of
fewer plugs, albeit at a higher IoU with the ground truth. From the discussion in the
previous section, it is concluded that localization of the objects in this task is important,
i.e. accurately locating the core plugs. However, it is not as important as it was in the
specialization project. In addition to the previously outlined points, the definition of the
boundary of the objects plays an important role when deciding on which evaluation metric
best represents the model’s ability to locate the core plugs.

When labelling the core plugs in the data set, the boundary between the objects (core
plugs) and non-objects (background) needs to be defined, i.e. which pixels constitute
the core plugs and which do not. In this task, the definition of this boundary is not clearly
defined. This can be attributed to low relief features or damaged core plugs, which requires
a decision to be made for where the boundary is drawn. This can be regarded as the bias
of the person labelling the data. Figure 4.17 shows predictions with lower IoU scores that
are the results of the labelling bias.

92



4.2 Hyperparameters Optimization

Figure 4.17: Low IoU predictions that are regarded as true positives at lower loU thresholds. The
low IoU scores can be attributed to the labelling bias. Bounding box colors: hplug - green, ground
truth - red, scal - turquoise.

The left and right images show the difference between what has been labelled as the
core plugs (ground truth - red) and what the model predicts as the core plugs. Although,
these predictions yield lower IoU scores, they are still able to locate the core plugs with
sufficient accuracy for the task of giving an estimated depth location of the core plug. In
the left image, the low IoU score is the result of poor labelling, where the ground truth
has been drawn slightly too small and not included the low relief part of the core plug.
Similarly, there may be cases where the opposite occurs. Where the ground truth includes
the low relief part, while the prediction does not. The right image shows an example of a
damaged core plug, where there is a difference in where the upper boundary of the core
plug is defined in the ground truth and the model’s prediction. Since the definition of the
boundary of the core plugs (objects) are not as clear, i.e. where the object starts and ends,
examples like these will be present throughout the data set. This, in turn, will result in a
larger portion of the core plugs having a low IoU with the ground truth, although they are
able to locate and classify the core plugs.

These examples illustrate that having the highest IoU score is not necessarily a pre-
requisite for solving the task at hand. Thus, the strictest COCO-evaluation metric, mAP,
might not fully describe the model’s ability to solve the task. The examples in figure 4.17
would be regarded as false positives at higher IoU thresholds, although they can both locate
and classify the core plugs. This suggests that AP7°V=50 and AP1°U=75 might be better
metrics to evaluate the model’s ability to solve the task at hand, or at least be regarded as
equally significant to the mAP.

4.2.3 Learning rate

The initial model used in this section was trained and validated using the data from both the
low and high variance data sets from well 6406/3 — 2 and 6406/8 — 1. The input data was
converted to grayscale according to the findings in 4.1.2 and the model was initialized with
the hyperparameters in the default configuration file, as outlined in Huang et al. (2017a).
A summary of the main hyperparameters and the learning rate used to initialize the model
are given in table 4.5. The model initialized with the default hyperparameters in table 4.5
was trained over 20k steps, recording the validation loss.

The learning rate analysis was conducted by training several version of this default
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Optimization function Momentum optimizer
Moment optimization value 0.9

Learning rate (constant), ;¢ 0.0003

Second stage localization loss weight Ay | 2

Second stage classification loss weight 1

Data augmentation random horizontal flip

Table 4.5: Summary of the hyperparameters used in the learning rate analysis.

model with varying learning rates, with the goal of finding an optimal learning rate. The
learning rates were chosen by multiplying the initial learning rate, o, by a factor of
3 until no further improvement could be recognized in the validation loss. The learning
rates in the initial analysis are summarized in table 4.6 The validation losses using these

Learning rate Cinit Value
a_1 3*1amit 0.0001

(7)) 30 Ainit = Qinit 0.0003

(&3] 31041'7”',5 0.0009

(65) 3204””‘,5 0.0027

Qs 33041'7”'15 0.0081

Table 4.6: Summary of the learning rates used in the learning rate analysis.

learning rates can be seen in figure 4.18 Since the validation loss is only calculated at a
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Figure 4.18: The smoothed validation losses for the different learning rates from table 4.6, using
exponential smoothing with a smoothing factor of 0.6.

fixed time interval, approximately at every 1000 steps. The number of samples for the
validation losses are few, i.e. approximately 20 samples per validation curve in figure
4.18. Since the model is trained with stochastic gradient descent with a batch size of one,
both the training and validation loss curves will appear spiky, from which it is difficult
to extrapolate any trends on a short training interval. In order to make the plot easier to
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read without increasing the training time, the validation losses have been smoothed using
an exponential moving average. The validation losses show that ag,a; and ay are all
acceptable choices for the learning rate. They are steadily decreasing at an acceptable
rate, and stabilize around a reasonably low loss value. Both a; and a5 achieves lower loss
values at faster rates than g, which suggests that the initial learning rate might be too
low. This could lead to both longer convergence time and getting stuck at a local minima.
Further, as reaches the lowest loss value, at the fastest rate, which suggests that it closer
to the optimal learning rate.

It is clear that learning rate «v—; is too low, which can be seen by the slower decline
in loss value. Using this learning rate increases the risk of the model getting stuck at a
sub-optimal solution, i.e. a local minima. Even if this should not occur, the time needed to
reach the same loss as the larger learning rates is not optimal. Thus, this training-validation
run was terminated after 12000 steps. The training-validation run using a3 shows the
opposite case, where the learning rate is too large. Further, the slope of the validation loss
in o starts to decrease faster and stabilizes at a higher loss value than the validation loss
in o3 and «g, which indicates that the learning rate is overshooting the minima, causing
the model to stabilize at a higher loss value.

From this initial analysis the optimal learning rate, c,,; could be in the range a; <
opt < 3. However, the significant increase in validation loss from as to a3 suggests
that the optimal learning rate is closer to ais. Since the difference between «; and aq
is small, and they are intersecting towards the end of the training interval. These were
trained for an additional 30k steps until their respective validation losses stabilized and
no significant improvement in the validation losses were observed. Figure 4.19 shows the
unsmoothed validation losses using a; and o and a box plot for the loss values. Both
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Figure 4.19: The validation loss for the model with o1 and a2 on the [5k,50k] interval. The spread
of the validation losses achieved on the interval for the two learning rates are shown in the box plot.
The circles marks the outlier values for acs.

the validation loss plot and the box plot illustrate the similarity between the two learning
rates. However, there is a slight preference for a, since the median of the validation loss
is lower. Further, over 75% of the calculated validation losses on the [5k,50k] interval for
ag is lower than the median of «;. Expect, for the outlier value at 0.66, the range between
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the upper quartile and the maximum value is slightly smaller for as. These results suggest
that ao is a slightly better choice of learning rate. Since it converges towards a minimum
with a lower median value at a faster rate. From the validation losses, it can be inferred
that there is no significant improvement in the validation loss by increasing the training
past 10k steps.

4.3 Final Model

The final model is trained on the combined data set (high variance + low variance), which
has been converted to grayscale, using a constant learning rate, oo from table 4.6 with a
second stage localization loss, Ay = 2. The hyperparameters for the training-validation are
summarized in table 4.7. The training-validation was initialized with the hyperparameters

Optimization function Momentum optimizer
Moment optimization value 0.9

Learning rate (constant), as 0.0027

Second stage localization loss weight Ay | 2

Second stage classification loss weight 1

Data augmentation random horizontal flip

Table 4.7: Summary of the hyperparameters used in the training of the final model.

in table 4.7 and trained for 20k steps. The training-validation losses are summarized in
figure 4.20. Since the lowest validation loss occurs at step 10k, these weights are saved
and will be used for testing. The full evaluation of the performance on the validation set
for this initial run can be found in appendix E. The performance with respect to the AP
metrics and the AR'0 are summarized in table 4.8. Additionally, the model is initialized 4

Metric | @ step 10k
mAP 0.707
AP 0.866
AP 0.953
AR 0.758

Table 4.8: Summary of the most important COCO-evaluation metrics for the initial run of the final
model.

more times and trained for 10k steps, saving the weights and the end of training, which will
be used to evaluate the model’s performance on the test set as well. These runs are used
to calculate the mean, standard deviation and the standard deviation of the mean (standard
error), where the standard error is given as (Walpole et al., 2012):

Op

NG

where n is the number of samples in the population and & is the standard deviation.

5= “.1)
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4.3 Final Model

The score for the COCO-evaluation metrics for each run on the validation set can be
found in appendix E. The mean, standard deviation and the standard error of the model’s
performance with respect to the COCO-evaluation metrics for the five runs are summarized
in table 4.9. This shows there is some variance between each individual run, which can

Training-validation loss
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Figure 4.20: The training and validation loss which the early stopping criteria was based on.

Precision metrics | [1 o on Recall metrics | [ Ga on

1 1
mAP 0.669 | 0.0097 0.00434 | ARTO0 0.719 | 0.0086 | 0.00385
APTU=T5 0.840 | 0.02043 | 0.00914 | AR™ 0.719 | 0.0086 | 0.00385
APpToU=50 0.956 | 0.0038 0.0017 AR?Y 0.318 | 0.0055 | 0.00248

Table 4.9: The mean (f), standard deviation (&) and the standard deviation of the mean (d 1)
(standard error) for the COCO-evaluation metrics for the final model.

be attributed to the stochastic nature of the training neural networks, i.e. the order the
model reads the training-validation data and the random initialization of the weights that
are fine-tuned (starting point of the momentum optimization GD). However, comparing
the average performance in table 4.9 with the performance of the initial run in table 4.8.
The differences are marginal, which can be seen in the difference in both the numeric
value of the metrics and the standard error. Since the results are not normally distributed
the standard deviation and the standard error of the results in the following sections should
be regarded as a quantitative description of the uncertainty, and not as a symmetric (4)
range about the mean (Brown, 1982).

As expected, there is a drop in performance when the high variance data set is included.
This is reflected in all evaluation metrics in table 4.9. Some metrics are affected to a greater
extent. The most evident drop occur in the m AP, AP and the two average recall metrics,
AR and AR'%Y. These metrics indicate that there are a larger portion of the plugs in this
combined data set that are not detected, and those that are detected have a lower IoU score
with respect to the ground truth. However, as outlined in section 4.2.1, the more important
metric with respect to the task at hand, is the APToU=50 ince it is preferable to detect a
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larger portion of the core plugs at an acceptable IoU, rather than fewer plugs at an excellent
IoU. From table 4.9, the model performance with respect to the AP7°V=50 is still high and
95.6 of the core plugs in the data set are identified at this IoU threshold. This shows that
the model is still able to perform well for the intended purpose. Due to the small difference
between the average performance of the model and the single initial run, the class by class
breakdown of the precision-recall scores are conducted using the weights of the initial
model. The confusion matrices for the two IoU thresholds can be seen in figure 4.21. As
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Figure 4.21: The confusion matrices at [oU95 and IoU50 for the initial run of the final model at step
10k.

indicated by the AP metrics, it is clear that the model is unable to identify a large number
of the core plugs at higher IoU thresholds, as indicated by the increase in false positives
and false negatives in the confusion matrices from IoU50 to IoU95. Further, there is an
increase in the number of false positives that are attributed to misclassifications. Similar
to the low variance data set, plugs in the hAplug class are misclassified as the scal class
and vice versa. Additionally, the introduction of bedding parallel core plugs that are non-
circular causes false positives to arise between the hplug and vplug classes as well. Further,
there are 12 false negatives that can not be accounted for as misclassifications (2 hplugs +
10 vplugs) at IoUS0, which shows that there are some core plugs that the model is unable
to identify. However, the performance of the model is still acceptable at IoU95 and close
to perfect at IoU50, which can be seen in the precision-recall score in table 4.10.

The precision-recall scores shows that more than 93% of the core plugs in each class
in the data set can be identified, and the precision score is greater than 94% at IoU50. This
high performance at IoU50 is also reflected in the AP°Y=50 score for the model in table
4.8. Similarly, at IoU95 at least 83.5% of the core plugs in each class can be identified
with a precision score greater than 87.2%. The largest drop in performance between the
IoU thresholds occur in the hplug and vplug classes. The drop in performance in the
vplug class is mainly related to the same causes as outlined earlier in this chapter, e.g.
low relief vertical core plugs. Since the size of the data set is increased, the likelihood of
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IoU50 IoU95
P R P R
hplug | 0.946 | 0.965 | 0.878 | 0.896
vplug | 0.975 | 0.934 | 0.872 | 0.835
scal 0.953 | 0.992 | 0.929 | 0.967

Table 4.10: Summary of the precision-recall scores of each plug class at IoU50 and IoU95, for the
initial run of the final model at step 10k.

encountering these problematic vertical core plugs increases, which in turn increases the
number of false negatives. Therefore, the main cause of the drop in performance in the
COCO-evaluation metrics is mainly believed to be related to the hplug class, due to having
higher variance in visual appearance. There is a small decrease in precision-recall for the
scal class as well. This is also believed to be attributed to the higher variance for the core
plugs that are extracted parallel to the bedding. However, this decrease is less pronounced
and can be related to the fact that there are fewer 1.5 inch plugs in the data set, compared
to the horizontal CCA plugs. This reduces the influence of the poorly predicted plugs,
of the scal class, on the average precision scores. Further, the amount of false positives
in the scal class at both IoU thresholds suggests that the variance within this class is less
compared to the hplug class.

These obtained results show that the model is able to reasonably detect the core
plugs in the validation set with respect to the strictest evaluation metrics, achieving a
mAP = 66.9% at AR'®" = 71.9%. At the more lenient metrics the model performance
is significantly better, and almost perfect at the most lenient metric AP7°V=59_ Achieving
an APTOU=T75 = 84.0% and an APT°U=%0 = 95.6%. From the class by class breakdown
with respect to the recall metric, it is clear that the model is able to identify almost every
core plug in each class at IoU50. As outlined in section 4.2.2, it is argued that that an
IoU = 50 and IoU = 75 with the ground truth might be sufficient to solve the task at
hand. Judging the models ability to solve the task by these metrics, will result in a model
with close to perfect performance at JoU = 50 when evaluated on the validation set.

4.3.1 Testing

Finally, the model is tested on the test sets. This is done to provide an unbiased estimate
of the model’s performance. Two data sets have been prepared by labelling core images
from wells that were not present in either the training or validation data. The first data set
consists of 63 labelled images from the wells 6406/3-3 (32) and 6407/1-3 (31). The second
data set consists of 67 images that are randomly sampled from the remaining 25 wells in
the data set, i.e. from the wells that are not part of the wells used in the training-validation
set. These data sets can be regarded as having two different levels of difficulty. The first
data set consists of images from only two wells, chosen based on the visual appearances
of the core plugs in these well, which are relatively similar to some of the core plugs in the
core images used in the training and validation of the model. This was done to measure the
model’s performance when the variance in visual appearance between training-validation
data and test data is kept relatively low. Since it is attempted to keep the visual appearance
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low, this test set can be regarded as less challenging, and will be referred to as the easy test
set.

The second test set is randomly sampled from the remaining 25 wells, putting no con-
straint on the variance in the visual appearance of the core plugs, which will make this test
set more challenging. This test set will be referred to as the hard test set. In the testing,
the weights of each run of the final model at step 10k are used to evaluate the model per-
formance on both the easy and hard test set. The performance with respect to the most
important evaluation metrics for each run with the calculated mean, standard deviation and
standard error for both the easy and hard test set are summarized in table 4.11 and 4.12,
respectively. The performance with respect to the full COCO-evaluation metric for each
run, with the calculated statistics can be found in appendix F.

From the large drop in the evaluation metrics, it is evident that the mapping of the
relationship between input to output learned on the training-validation set is not fully able
to capture the same relationship in the test sets. As expected, the decrease in performance
is greatest in the hard test set, due to the higher variance in visual appearance, where the
model achieves a mAP = 36.4% at an AR'° = 41.5%. Although, the performance on
the easy test set is slightly better, there is a significant decrease in performance on this data
set as well. On this data set the model achieves amAP = 41.4% atan AR = 46.6%. A
similar trend can be seen in the more lenient evaluation metrics, where the performance on
the easy set is slightly better than the hard set. However, the decrease in performance on
both sets at the most lenient metric is significant as well, where only 68.22% and 58.6%
of the located core plugs have an IoU = 50 with the ground truth. This shows that a
significant portion of the core plugs in both data sets are not detected, or detected with
an IoU score lower than the most lenient IoU threshold.  The difference between the

~

Metric runl | run2 | run3 | rund4 | rund [ Op on

mAP 0.414 | 0.404 | 0.377 | 0.419 | 0.378 | 0.3984 | 0.01774 | 0.00355

APTU=30"1"0,696 | 0.696 | 0.654 | 0.699 | 0.666 | 0.6822 | 0.01855 | 0.00371

APTOU=T5 170465 | 0.453 | 0.403 | 0.462 | 0.382 | 0.433 | 0.03396 | 0.00679

ART00 0466 | 0.46 | 0.429 | 0.471 | 0.438 | 0.4528 | 0.01639 | 0.00328

Table 4.11: Condensed COCO-evaluation metrics for the 5 runs on the easy test set, with the mean,
standard deviation and the standard deviation of the mean (standard error).

Metric runl | run2 | run3 | run4 | run5 1} Lo op

mAP 0.364 | 0.387 | 0.372 | 034 | 0.352 | 0.363 | 0.01617 | 0.00323

APTU=30 10572 | 0.63 | 0.597 | 0.562 | 0.569 | 0.586 | 0.02497 | 0.00499

APTU=T 10428 | 0.472 | 0.424 | 0.378 | 0.388 | 0.418 | 0.03332 | 0.00666

AR 0.415 | 0.437 | 0423 | 0.39 | 0.403 | 0.4136 | 0.01617 | 0.00323

Table 4.12: Condensed COCO-evaluation metrics for the 5 runs on the hard test set, with the mean,
standard deviation and the standard deviation of the mean (standard error).

APTU=T5 and AP1°U=50 shows that a larger number of the detected core plugs are in
the IoU range 75 > IoU > 50 compared to in the validation set. Further, the low mAP
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scores indicate that the plugs in this range are closer to JoU = 50 than IoU = 75.

Although, the model has the ability to learn from the training set and generalize that
learning on the validation set, indicated by the low validation loss and the high perfor-
mance as seen in table 4.9. The results in this section show that this is not the case for the
test sets. This indicates that the core plugs in the data set used to train the model are not
representative of core plugs in general. This can be attributed to the high variance in the
visual appearance of core plugs in optical core images and the variance in the visual ap-
pearance of the core plugs between the wells. This is illustrated by the significantly higher
performance on the validation set. Since the core images used in training and validation
are from the same well, the visual appearance of the core plugs will be similar. Thus,
almost every core plug can be identified in the validation set by learning from the training
set. This is also reflected in the easy test set where the performance is slightly higher than
for the hard test set, due to some similarities in core plug appearance with the training and
validation set.

From the class by class breakdown for runl, as seen in both the confusion matrices
in figure 4.22 and from the precision-recall scores in table 4.13 it is clear that the main
source of the performance loss is related to the bedding parallel core plugs, especially the
scal class.
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Figure 4.22: The confusion matrices for runl for each class in the easy test set at [oU50 and IoU95.

IoU50 IoU95
P R P R
hplug | 0.871 | 0.745 | 0.669 | 0.565
vplug | 0.846 | 0.811 | 0.733 | 0.695
scal 0.860 | 0.533 | 0.732 | 0.446

Table 4.13: The precision-recall scores for runi for each class on the easy test set at IloU50 and
IoU95.
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At both IoU thresholds it is clear that the recall score for the scal class is significantly
lower than for the hplug and vplug classes. This show that a large portion of the core plugs
in the scal class are significantly different than the ones in well 6406/3 — 2 and 6406,/8 — 1
since they are not recognized at IoU50. Similarly, the recall score of the hplug class sees
a performance loss as the IoU threshold increases. This shows that the detected plugs in
this class have a lower IoU than the vplug class, which can be seen in the increase in false
positives between the two IoU thresholds. However, the core plugs that are recognized
have a reasonably high precision at both IoU thresholds, which shows that the core plugs
that are detected can be classified with reasonably good precision.

In summary, the results on both test sets show that the object detection model trained
on core plugs from the wells 6406/3 — 2 and 6406/8 — 1 is not able to generalize and
predict the core plugs in other wells, without a significant loss in performance with respect
to the COCO-evaluation metrics, as seen in table 4.11 and 4.12. This indicates that the
training-validation data is not representative of the task data. However, the precision-
recall scores for the vplug class at IoU50 in table 4.13 show that the model is able to
perform reasonably well on this class (P = 84.6% and R = 81.1%). This furthers the
point that there is less variance related to the visual appearance of the vertical core plugs.
As outlined in section 3.3, the variance in visual appearance of the bedding parallel core
plugs was expected to be high, which was the motivation for including the high variance
data from well 6406/8 — 1. However, the results on the test sets show that this was not
sufficient, reflected in the performance loss on the bedding parallel core plug classes (hplug
and scal), with a significant loss in the scal class.

4.4 Fine-tuning the Final Model

The final test performed on the model involves fine-tuning of the weights of the final model
from section 4.3. This was done in order to verify if the performance of the model could
be increased on the core images from specific wells, by fine-tuning the existing model
weights with a small number of examples from these wells. This test was conducted by
fine-tuning the weights of the final model, using a small subset of the core images from
the easy test set. The easy test set is chosen for this experiment to limit the variance in
visual appearance of the core plugs in the data set. This is done to increase the chance of
picking a small subset of images that are representative of the entire data set. Since the
easy test set only contains images from two wells, and the intra-well variance is expected
to be small, the chance of a representative subset is increased.

Since the number of images in the easy test set are limited (63 images), the model
was trained and evaluated using the K-fold cross-validation approach, as outlined in sec-
tion 2.2.4. Here, the goal is to verify that the result of the fine-tuning of the model is not
dependent on the subset of images that are used. From the easy test set, 15 images were
randomly selected of which 10 were used to train the model and 5 were used for valida-
tion. The model was trained and validated on the 15 images and tested on the remaining
48 images. This was done 5 times, reporting the average performance of these runs. The
minimum validation loss was achieved after training the model for 1264 steps, which cor-
responds to approximately 10 minutes of training on a GeForce RTX 2070 SUPER®
graphics card. The full COCO-evaluation metric scores for the five runs can be found in
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appendix G, with the most important metrics summarized in table 4.14.

~

Metric runl | run2 | run3 | run4 | runS o Op o

mAP 0.456 | 0.446 | 0.464 | 0.503 | 0.486 | 0.471 | 0.02073 | 0.00415

APToU=501"0802 | 0.766 | 0.803 | 0.831 | 0.798 0.8 0.02066 | 0.00413

APTOU=T5 170456 | 0.493 | 0.474 | 0.605 | 0.556 | 0.5168 | 0.05552 | 0.01110

ART00 0.508 | 0.507 | 0.525 | 0.572 | 0.539 | 0.5302 | 0.02401 | 0.00480

Table 4.14: Condensed COCO-evaluation metrics for the cross validation, with the mean,standard
deviation and the standard deviation of the mean (standard error).

Comparing these results to the performance on the easy test set in table 4.11, show
that the performance on a data set with limited variance can be improved by fine-tuning
the object detection model developed in this thesis using a few examples from the data
set. In this case, the performance on the optical core images in the wells 6406/3 — 3 and
6407/1 — 3 was increased across all COCO-evaluation metrics by fine-tuning the model
with approximately 20% of the images in the data set. This increase is most evident at the
lowest IoU threshold where the achieved average precision, APT°V=50 = 80.0%, is sig-
nificantly better than the score of AP7°UV=5 = 68.22% achieved before fine-tuning. Also
mAP, APT°U=75 and AR scores shows a performance gain after fine-tuning, achiev-
ing a score of 47.1%, 51.68% and 53.02%, respectively. However, the standard deviation
shows that the improvement in performance, to some degree, is dependent on the images
used in training and validation. This is especially notable in the AP7°V="5 metric, which
has the highest standard deviation. Further, the AP7°V="5 score for each run suggests that
the distribution of this metric is slightly skewed towards values closer to the AP7°U=75
achieved by the model without fine-tuning. Similarly, the standard deviation of the m AP
and AR'0 is relatively large with respect to the increase in performance between this test
and the test in the previous section. However, the distributions for these metrics are nar-
rower and seems to be skewed towards higher values, which can be seen in the individual
score for each run. This suggests that there is an overall increase in model performance
with respect to these metrics.

Although, there is some increase to the performance with respect to all COCO-
evaluation metrics in table 4.14. The most significant increase is related to the AP7°UV=50
metric. The class by class breakdown of the precision-recall scores is based on the per-
formance of the model in runl. Since the APT°U=5Y score is relatively similar for each
run, they are all expected to give a reasonably similar indication of the cause of the perfor-
mance increase. From the calculated precision-recall scores for runl in table 4.14, which
can be seen in table 4.15, it is clear that the improved performance in AP7°U=50 is related
to better precision scores, but more importantly better recall scores for the bedding parallel
core plugs. The increase in precision and recall for the core plugs in the scal and hplug
classes at both IoU thresholds show that the model is able to identify a larger portion of
the bedding parallel core plugs with higher precision (fewer false positives). The largest
increase in recall occurs in the scal class, where the recall score is significantly better at
IoUS50 after fine-tuning. Similarly, a moderate increase in the recall score for the hplug
class can be observed as well. This furthers the point that the initial training-validation set
was not representative of the variations in visual appearance of the core plugs that exists
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IoU50 IoU95
P R P R
hplug | 0931 | 0.829 | 0.752 | 0.664
vplug | 0.896 | 0.833 | 0.697 | 0.639
scal 0.944 | 0.785 | 0.667 | 0.554

Table 4.15: The precision-recall scores for runl for each class at IloU50 and IoU95.

in the task data. Moreover, the performance of the model in a relatively low variance data
set with, with respect to AP7°U=59 can be significantly improved by exposing the model
to only a few examples from the data set, with relatively short training time.

4.5 Further Discussion and Use Case

The results presented in this thesis indicate that the task of locating and classifying core
plugs in optical core images can be achieved with both high precision and recall if the data
used to train the model is representative of the task data. However, from the evaluation of
the model performance on the test sets, it is clear that the variance in visual appearance
of the core plugs in the 27 wells used in this thesis can not be learned from the two wells
chosen to train the model. Despite including the high variance data from well 6406/8 — 1.
As outlined in section 4.2.2, the lowest IoU threshold, IoU=50, is sufficient to solve the
object detection task. Although, the model is able to identify some of the core plugs in the
test sets at this IoU threshold, the loss in performance is significant. This is below what
can be regarded as acceptable for solving the task, dropping from a mean performance in
APToU=50 — 95 6% on the validation set, to APT°U=50 of 68.22% and 58.6% on the
easy and hard test set, respectively.

Since performance loss is believed to be mainly related to the training data not being
representative of the task data. It is expected that the best approach for increasing the
performance would be to expose the model to a greater variety of core plugs, by including
training data from more wells. Since the task of labelling a new training, validation and test
set is both labour intensive and time-consuming, this was not done in this thesis. However,
the fine-tuning approach presented in section 4.4 shows that the model’s performance can
be significantly increased by training the weights of the base model with a small subset of
the data set. Achieving a mean performance in the average precision APT°U=50 — 80%,
resulting in an acceptable performance for solving the object detection task.

Since the variance in the visual appearance of the core plugs within a well, i.e. the
intra-well variance, is expected to be low. It is fair to assume that the likelihood of ex-
tracting a small subset of the images from a well that is representative of the remaining
images in that well as a whole is relatively high. This is demonstrated by the relatively low
standard deviation in table 4.14, indicating that a similar APToU=50 gcore can be achieved
by training on five different subsets of the easy test set. If the same fine-tuning approach
should be applied to the hard test set, the likelihood of extracting a representative subset of
the data is expected to be significantly lower, due to the higher variance in visual appear-
ance of the core plugs between wells, which would result in a higher standard deviation.
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Since the prerequisite for this approach to succeed is that the extracted subset can be used
to learn the variance in the remaining data, it is desirable to maximize the likelihood of a
representative subset. Therefore, it is expected that this approach can be used to both solve
the object detection task and be used to generate labelled training data for further training
of the model if the data set used in the fine-tuning process is obtained from a single well.

As a proof of concept, a demo script for automatic generation of both labelled data
and pixel-depth maps have been written and uploaded to the GitHub repository of this
thesis (Adelved, 2020), which can be downloaded and used. Both scripts uses the exported
inference graph of the fine-tuned weights from run4 in table 4.14 and predicts the cores
plugs in core images from the easy test set.

The automatic labelling script uses the predictions to generate the . xm1 files and saves
them in the same directory as the images, which can be inspected and edited using the
labelImage application. This provides a semi-automatic workflow for labelling core
plugs in optical core image data. This approach can significantly reduce the time required
for manual labelling of wells with a moderate to large amount of core images. The auto-
matic pixel-depth mapping uses the model predictions to classify the core plugs and locate
the centre pixel of the predicted bounding box. Using the top depth of the core (defined in
the file name), the pixel values are converted to an estimated depth in meters and outputs
a . csv file containing the mapping. A sample of the output of the pixel-depth mapping
script and a summarized representation of both scripts can be found in appendix J.

As outlined in section 3.3, the data set available for this thesis consisted of 27 wells
from the Norwegian continental shelf made available by the courtesy of GeoProvider®
(GeoProvider, 2019). This data set is already cropped, therefore it did not require a pre-
processing step for cropping the core images. Introducing unprocessed data from other
wells might need a preprocessing step before training and/or prediction. In such a case,
the introduced workflow in this thesis and the specialization project can be regarded as
two separate modules, which can be employed to reduce the time needed for generating
training data. Using the model from the specialization project as the first module, a large
number of core images from a well can be cropped into the desired format with reasonable
accuracy. A small subset of these images can be randomly chosen and manually labelled
to fine-tune the final model developed in this thesis using the workflow outlined in sec-
tion 4.4 (second module). Finally, a variation of the scripts mentioned above can be used
to predict the core plug labels for the remaining data set to create training data and the
pixel-depth mapping.
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Chapter

Conclusion

This thesis presents the workflow for fine-tuning a pre-trained object detection model, to
detect both CCA and non-CCA core plugs in optical core images, using the Tensorflow
object detection API. The employed pre-trained model is the Faster R-CNN ResNet In-
ception V2, trained on the Common Objects in Context (COCO) data set and evaluated
using the COCO-evaluation metrics. The object detection task was performed by fine-
tuning the pre-trained model on images from two wells from the Norwegian continental
shelf (6406/3 — 2 and 6406/8 — 1). The training and validation data were converted to
grayscale, which suggested to increase the generalization capability of the model, indi-
cated by the lower validation loss. This model was tested on two different sets of images,
where the first test set, considered the easy set, was sampled from the wells 6406/3 — 3
(32) and 6407/1—3 (31) and the second set was randomly sampled from 25 wells from the
NCS and considered the hard set. After training and testing of the model, the parameters
(weights) of the model were further fine-tuned using a small subset of the images from
the wells 6406/3 — 3 and 6407/1 — 3. Later on, this fine-tuned model was tested on the
remaining images of the easy set.

The resulting object detection model was able to reach high performance with respect
to the COCO-evaluation metrics on the validation set. However, evaluating the model on
the two test sets resulted in a significant loss in performance. The most significant loss
occurs in the randomly sampled set from the 25 wells. These results imply that the chosen
training and validation sets are not representative of the existing variance associated with
the high inter-well variance in visual appearance of the bedding parallel core plugs. In
order to account for variance in the bedding parallel plugs, the data from well 4606/8 — 1
(high variance data set), was included in the training of the model. However, this proved to
be insufficient, since the amount of variance in visual appearance was greater than initially
anticipated. Although, the model was not able to reach an acceptable performance for
the intended task on the test sets, it is clear that the model has learned some fundamental
features, allowing for a fair amount of the core plugs to be detected in both test sets.
The model performance on the images in the easy test set was significantly improved at
IoU50, from APT°U=50 — 66.6% to APT°U=50 — 80.0%, by fine-tuning the model
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weights by incorporating a small subset of the images from easy test set, raising the model
performance to an acceptable level on the remaining images in the easy test set. This
illustrates that the model can be fine-tuned with few examples in a short amount of time to
perform reasonably well on the data set where the variance in visual appearance within the
data set can be represented by the few examples. Since this is expected to be the case for
data sets that are obtained from a single well, this fine-tuning approach can be employed
for generating both the pixel-depth mapping and labelled training data in individual wells.

5.1 Further work

The model trained in this thesis, in its current state, does not reach a high enough mAP or
APToU=50 gcore on the unseen core images. Thus, the model can not be directly utilized
for an automatic core plug detection algorithm for correlating core analysis and optical
core image data. As previously mentioned, this is mainly related to the training data not
being representative of the variance that exists in the visual appearance of the core plugs in
optical core images. This is especially evident in the bedding parallel core plugs. In order
to improve the generalization capability of the model on unseen data, more variance needs
to be included. As previously mentioned, this can be achieved by increasing the size of
the training set, including core images from a greater number of wells from the available
data set. This could be done by randomly selecting the majority of the available wells as
training-validation wells, saving the remaining wells for testing. It is highly recommended
to train several models using the K-fold cross-validation approach with a new training-
validation and testing split approach for each model. In order to reduce the time needed
for labelling, the fine-tuning approach from section 4.4 can be used for the wells with
a large number of core images to generate label proposals that can be efficiently quality
controlled.

As outlined in section 4.5, when new unprocessed data are included the model from
the specialization project can be used for cropping the core images to the desired format
prior to using the fine-tuning approach to generate label proposals. Currently, these models
exist as separate modules which can be used to automate certain aspects of the labelling
workflow. Further, the quality control of the labels needs to be performed in a separate
software (labelImg). In order to make the auto-labelling process more stream-lined,
these modules and the quality control step should be combined. Therefore, an alternate
suggestion for further work is the development of a pipeline/software that integrates the
model from the specialization project (core cropping) and the fine-tuning workflow in this
thesis (generate labels/pixel-depth mapping) and allows for quality control and adjustment
of the predicted labels in the same environment. An example of such a pipeline can be
summarized with the following steps:

* Input optical core images in the standard format from NPD.
* Crop into the desired format using the module from the specialization project.

* Automatically select a random subset to be manually labelled by the user through a
graphical user interface (GUI).
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* Once labelling is finished, automatically export the data to the correct format and
initiate the training-validation pipeline for fine-tuning the weights of the model de-
veloped in this thesis.

» Terminate the training with early stopping, export inference graph and predict the
labels.

* Allow the user to interact with the predicted core plug labels through a GUI for
quality control purposes.

* Save the quality controlled data for further training and as a pixel-depth mapping.
* Select a new well and reiterate.

Such a pipeline would allow the model to be used in its current state and it will reduce the
amount of time and effort required to label new data. Once a sufficiently large amount of
data have been accumulated, it can be used in the training of a better model or other object
detection models that require similar data.
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1000

100:

1006

A  Wells

Well name Number of images
6407/2-3 176
6407/7-2 178
6407/6-1 19
6507/8-1 170
6507/11-3 140
6407/2-1 69
6407/10-1 140
6407/9-2 44
6506/12-4 60
6507/11-1 32
6407/1-3 108 (31 used in easy)
6406/3-2 | 293 (289 used training-validation)
6406/8-1 142 (136 used training-validation)
6507/11-2 48
6507/7-4 514
6407/9-4 43
6506/12-7 78
6406/3-3 32 (32 used in easy)
6407/9-1 50
6506/12-1 289
6407/2-2 99
6407/7-4 190
6407/4-1 237
6506/12-3 315
6407/1-2 59
6407/7-1 322
6407/6-3 118

The wells in the data set prepared by GeoProvider®. Not all available images from the training-

validation wells are used due to core segments without any core plugs (GeoProvider, 2019)

B Default Configuration File

model {
faster_-rcnn {
num_classes:

1

image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 600
max_dimension: 1200

}
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1012

1014

1016

1018

1020

1022

1028

1030

1032

1034

1036

1042

1044

1046

1048

1050

1056

1058

1060

1062

1064

}

feature_extractor {
type: “faster_rcnn_inception_resnet_v2”
first_stage_features_stride: 8
}
first_stage_anchor_generator {
grid_anchor_generator {
height_stride: 8
width_stride: 8
scales: 0.25
scales: 0.5
scales: 1.0
scales: 2.0
aspect_ratios:
aspect_ratios:
aspect_ratios:

N = O
S O W

}
}

first_stage_atrous_rate: 2
first_stage_box_predictor_conv_hyperparams {
op: CONV
regularizer {
12_regularizer {
weight: 0.0
}

initializer {
truncated_normal_initializer {
stddev: 0.00999999977648

}
}
}

first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.699999988079
first_stage_max_proposals: 300
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial_crop-size: 17
maxpool_kernel_size: 1
maxpool_stride: 1
second_stage_box_predictor {
mask_rcnn_box_predictor {
fc_hyperparams {
op: FC
regularizer {
12_regularizer {
weight: 0.0
}

initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN_AVG

}
}
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1066

1068

1070

1076

1078

1080

1082

1084

1086

1090

1092

1094

1096

1098

1100

1102

1104

1106

1108

1110

1112

1116

1118

1120

use_dropout: false
dropout_keep_probability: 1.0
}
}
second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.300000011921
iou_threshold: 0.600000023842
max_detections_per_class: 100
max_total_detections: 100

}
score_converter : SOFTMAX

}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
}
}
train_config {
batch_size: 1
data_augmentation_options {
random_horizontal _flip {
}
}
optimizer {
momentum_optimizer {
learning_rate {
manual_step_learning_rate {
initial_learning_rate: 0.000300000014249
schedule {
step: 0
learning_rate: 0.000300000014249

schedule {
step: 900000
learning_rate: 2.99999992421e—-05

schedule {
step: 1200000
learning_rate: 3.00000010611e—06

}
}
}
momentum_optimizer_value: 0.899999976158
}
use_moving_average: false
}
gradient_clipping_by_norm: 10.0
fine_tune_checkpoint: "path/to/finetuned/checkpoints/
faster_rcnn_inception_resnet_v2_atrous_-coco-2018_01_28 /model.ckpt”
from_detection_checkpoint: true
num_steps: 200000
}
train_input_reader {
label_map_path: 77
tf_record_input_reader {
input_path: ”/path/to/train.record”

}
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1124

1126

1128

eval_config {
num_examples: 8000
max-_evals: 10
use_moving_averages: false

}

eval_input_reader {
label_map_path: ”/path/to/labelmap.pbtxt”

shuffle :

false

num_readers: |1
tf_record_input_reader {
input_path: ”path/to/valid.record”

Listing 1: Default configuration file

C Precision - Recall Candidate Models

vplug hplug

scal

Confidence Score: 50 | loU : 95

12

hplug

-150 o
3
o
3
- 120
o
3
o
-90 >
©
-60 3
1 1 1 1 1 1
1 1 1 1 1 1
: ! ! -30 : : :
P31 ! 5 10 o 6 ! 12 1 2
1 1 1 1 1 1
1 1 1 I 1 1 1
1 1 1 I 1 1 1
vplug scal FN -0 hplug vplug scal

Confusion matrices at [oU=0.95 and IoU=0.5 for the canny model

Confidence Score: 50 | loU : 50

160

120

- 80

-40

118




vplug hplug

scal

vplug hplug

scal

Confidence Score: 50 | loU : 95

Confidence Score: 50 | loU : 50

160 o 160
a
=
- 120
o 120
3
=
>
- 80 - 80
©
b
E i i m0 i i i -40
7 Foz2e ] 3 0 0 | 4 P15 f 2 0 0
1 1 1 I 1 1 1
1 1 1 I 1 1 1
1 1 1 1 1 1 1
hplug vplug scal FN -0 hplug vplug scal FN -0
Confusion matrix at IloU=0.95 and IoU=0.5 for the gray model
Confidence Score: 50 | loU : 95 Confidence Score: 50 | loU : 50
-150 2 160
=S
<
120 120
o
3
s
-90 ~
80
©
- 60 9
] i i i i i - 40
| ! ! -30 o | : ! !
11 30 | 4 f 0 e | 8 o all ] 2 ! 0
1 1 1 I 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
hplug vplug scal FN -0 hplug vplug scal FN -0

Confusion matrices at IToU=0.95 and IoU=0.5 for the sobel model
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Confidence Score: 50 | loU : 95 Confidence Score: 50 | loU : 50

- 300
2 14 = 300
=3 o
< =
- 240
240
3 88 El
o Qo
> ey -180 > 180
o 3 ©
3 -120 g -120
T 1 oot 1 | 1
i i i i -60 i i i i
P21 1 67 1 2 10 14 1 23 0t 2 10 - 60
I 1 1 1 I 1 1 1
I 1 1 1 I 1 1 1
1 1 1 1 1 1 1 1
hplug vplug scal FN -0 hplug vplug scal FN -0

Confusion matrices at IToU=0.95 and IoU=0.5 for the wavelet model
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hplug vplug scal
R P R P R
Model | IoUS50 | IoU95 | IoUS0 | IoU95 | IoUS0 | IoU95 | IoUS0 | IoU95 | IoUS0 | IoU95 | IoUS0 | IoU95
RGB 0.967 | 0943 | 0986 | 0.961 | 0.910 | 0.833 | 0.947 | 0.867 | 0.943 | 0.943 | 0.990 | 0.990
gray 0976 | 0962 | 0.995 | 0981 | 0.905 | 0.823 | 0.953 | 0.867 | 0.980 | 0.971 | 0.990 | 0.980
canny 0.962 | 0939 | 0986 | 0.961 | 0.918 | 0.788 | 0.893 | 0.767 | 0.971 | 0.951 | 0.980 | 0.960
sobel 0.958 | 0.943 | 0.981 | 0966 | 0925 | 0.795 | 0.900 | 0.773 | 0.952 | 0.943 | 0.990 | 0.980
wavelet | 0.961 | 0.947 | 0.959 | 0944 | 0918 | 0.760 | 0.853 | 0.707 | 0.947 | 0.947 | 0.980 | 0.980

Precision-recall values for the candidate models at IoU50 and IoU95.




D Detections Candidate Models

RGB convolve canny sobel

False positive in the canny model due to clast.

convolve

!" N ,.le.‘\ll

LTS PRI —_—

-

False positive in the sobel model due to clast.

E COCO Evaluation Final Model

0| Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] =
0.707
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1002

1004

1006

1008

1010

1000

1002

1004

1006

1008

1010

1000

Average Precision
0.953

Average Precision
0.866

Average Precision
—1.000

Average Precision
0.637

Average Precision
0.668

Average Recall
0.335

Average Recall
0.758

Average Recall
0.758

Average Recall
—1.000

Average Recall
0.672

Average Recall
0.713

(AP) ToU=0.

(AP) IoU=0.75

(AP) IoU=0.

(AP) IoU=0.

(AP) IoU=0.

(AR) IoU=0.

(AR) IoU=0.

(AR) IoU=0.

(AR) IoU=0.

(AR) IoU=0.

(AR) @[ IoU=0.

50:

50:

50:

50:

50:

50:

50:

50:

50:

0.

0.

.95

.95

.95

.95

.95

.95

.95

95

95

area= all

area= all
area= small

area=medium

area= large

area= all
area= all
area= all

area= small
area=medium

area= large

maxDets=100

maxDets=100

maxDets=100

maxDets=100

maxDets=100

maxDets= 1

maxDets= 10

maxDets=100

maxDets=100

maxDets=100

maxDets=100

Listing 2: COCO-evaluation metrics for the initial run of the final model.

Average Precision
0.698

Average Precision
0.943

Average Precision
0.859

Average Precision
—1.000

Average Precision
0.649

Average Precision
0.655

Average Recall
0.339

Average Recall
0.758

Average Recall
0.758

Average Recall
—1.000

Average Recall
0.682

Average Recall
0.711

(AP) @[ IoU=0.50:0.95

(AP) @[ IoU=0.50

(AP) @[ IoU=0.75

(AP) ToU=0.
(AP) ToU=0.
(AP) ToU=0.
(AR) ToU=0.
(AR) ToU=0.
(AR) ToU=0.
(AR) ToU=0.
(AR) ToU=0.

(AR) IoU=0.

50:

50:

50:

50:

50:

50:

50:

50:

50:

.95

.95

.95

.95

.95

.95

.95

.95

.95

area= all
area= all
area= all

area= small
area=medium

area= large

area= all
area= all
area= all

area= small
area=medium

area= large

maxDets=100

maxDets=100

maxDets=100

maxDets=100

maxDets=100

maxDets=100

maxDets= 1

maxDets= 10

maxDets=100

maxDets=100

maxDets=100

maxDets=100

Listing 3: COCO-evaluation metrics, repeated run

Average Precision
0.681

Average Precision
0.946

(AP) @[ 1o0U=0.50:0.95

(AP) @[ IoU=0.50

area= all

all

area=

maxDets=100

maxDets=100
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1002

1004

1006

1008

1010

1000

1002

1006

1008

1010

1000

1002

Average Precision
0.858

Average Precision
—1.000

Average Precision
0.644

Average Precision
0.648

Average Recall
0.327

Average Recall
0.742

Average Recall
0.742

Average Recall
—1.000

Average Recall
0.671

Average Recall
0.717

(AP)
(AP)
(AP)
(AP)
(AR)
(AR)
(AR)
(AR)
(AR)

(AR)

IoU=0.75

IoU=0.50:0.95

IoU=0.50:0.95

IoU=0.50:0.95

IoU=0.50:0.95

IoU=0.50:0.95

IoU=0.50:0.95

IoU=0.50:0.95

IoU=0.50:0.95

IoU=0.50:0.95

area= all
area= small

area=medium

area= large

area= all
area= all
area= all

area= small
area=medium

area= large

maxDets=100

maxDets=100

maxDets=100

maxDets=100

maxDets= 1

maxDets= 10

maxDets=100

maxDets=100

maxDets=100

maxDets=100

Listing 4: COCO-evaluation metrics, repeated run

Average Precision
0.705

Average Precision
0.948

Average Precision
0.871

Average Precision
—1.000

Average Precision
0.549

Average Precision
0.653

Average Recall
0.340

Average Recall
0.759

Average Recall
0.759

Average Recall
—1.000

Average Recall
0.596

Average Recall
0.700

(AP)
(AP)
(AP)
(AP)
(AP)
(AP)
(AR)
(AR)
(AR)
(AR)
(AR)

(AR)

@[ IoU=0.50:0.95

@[ IoU=0.50

@[ IoU=0.75

@[ IoU=0.50:0.95

IoU=0.50:0.95

IoU=0.50:0.95

IoU=0.50:0.95

IoU=0.50:0.95

IoU=0.50:0.95

IoU=0.50:0.95

IoU=0.50:0.95

@[ IoU=0.50:0.95

area= all
area= all
area= all

area= small
area=medium

area= large

area= all
area= all
area= all

area= small
area=medium

area= large

maxDets=100

maxDets=100

maxDets=100

maxDets=100

maxDets=100

maxDets=100

maxDets= 1

maxDets= 10

maxDets=100

maxDets=100

maxDets=100

maxDets=100

Listing 5: COCO-evaluation metrics, repeated run

Average Precision
0.701

Average Precision
0.950

Average Precision
0.852

(AP)
(AP)

(AP)

@[ IoU=0.50:0.95
@[ IoU=0.50

@[ IoU=0.75

area= all

area= all

area= all

maxDets=100

maxDets=100

maxDets=100
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1004

1006

1008

1010

Average Precision
—1.000

Average Precision
0.655

Average Precision
0.652

Average Recall
0.337

Average Recall
0.752

Average Recall
0.752

Average Recall
—1.000

Average Recall
0.690

Average Recall
0.700

(AP)
(AP)
(AP)
(AR)
(AR)
(AR)
(AR)
(AR)

(AR)

IoU=0.

IoU=0.

IoU=0.

IoU=0.

ToU=0.

ToU=0.

ToU=0.

IoU=0.

IoU=0.

50:

50:

50:

50:

50:

50:

50:

50:

50:

.95

.95

.95

.95

.95

.95

.95

.95

.95

area= small
area=medium

area= large

area= all
area= all
area= all

area= small
area=medium

area= large

maxDets=100

maxDets=100

maxDets=100

maxDets= 1

maxDets= 10

maxDets=100

maxDets=100

maxDets=100

maxDets=100

Listing 6: COCO-evaluation metrics, repeated run

F The Full COCO-Evaluation Metrics for Test Sets
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Metric runl | run2 | run3 | rund | rundS | & o oL

mAP 0.414 | 0.404 | 0.377 | 0.419 | 0.378 | 0.3984 | 0.01774 | 0.00355
ApToU=50 0.696 | 0.696 | 0.654 | 0.699 | 0.666 | 0.6822 | 0.01855 | 0.00371
APIU=TS 0.465 | 0.453 | 0.403 | 0.462 | 0.382 | 0.433 | 0.03396 | 0.00679
AP(small) -1 -1 -1 -1 -1 -1 0.00000 | 0.00000

AP(medium) | 0.262 | 0.241 | 0.235 | 0.293 | 0.235 | 0.2532 | 0.02224 | 0.00445
AP(large) 0.41 0.402 | 0.373 | 0.407 | 0.376 | 0.3936 | 0.01583 | 0.00317

AR! 0.278 | 0.271 | 0.265 | 0.278 | 0.263 | 0.271 0.00629 | 0.00126
AR 0466 | 046 | 0.429 | 0471 | 0.438 | 0.4528 | 0.01639 | 0.00328
ARIYO 0466 | 046 | 0429 | 0471 | 0.438 | 0.4528 | 0.01639 | 0.00328
AR(small) -1 -1 -1 -1 -1 -1 0.00000 | 0.00000

AR(medium) | 0.325 | 0.277 | 0.295 | 0.335 | 0.283 | 0.303 | 0.02301 | 0.00460
AR(large) 0.453 | 0.449 | 0415 | 0.457 | 0.428 | 0.4404 | 0.01617 | 0.00323

Full COCO-evaluation metric for the 5 runs on the easy test set, with the mean, standard deviation and the standard deviation of the mean.
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Metric runl | run2 | run3 | rund | rundS | & o oL

mAP 0.364 | 0.387 | 0.372 | 0.34 | 0.352 | 0.363 | 0.01617 | 0.00323
ApToU=50 0.572 | 0.63 | 0.597 | 0.562 | 0.569 | 0.586 | 0.02497 | 0.00499
APIU=TS 0.428 | 0472 | 0.424 | 0.378 | 0.388 | 0.418 | 0.03332 | 0.00666
AP(small) -1 -1 -1 -1 -1 -1 0.00000 | 0.00000

AP(medium) | 0.136 | 0.164 | 0.15 | 0.149 | 0.152 | 0.1502 | 0.00891 | 0.00178
AP(large) 0.391 | 0.413 | 0.387 | 0.363 | 0.369 | 0.3846 | 0.01768 | 0.00354

AR! 0.257 | 0.263 | 0.253 | 0.242 | 0.244 | 0.2518 | 0.00788 | 0.00158
AR 0.415 | 0437 | 0423 | 0.39 | 0.403 | 0.4136 | 0.01617 | 0.00323
ARIYO 0.415 | 0437 | 0423 | 0.39 | 0.403 | 0.4136 | 0.01617 | 0.00323
AR(small) -1 -1 -1 -1 -1 -1 0.00000 | 0.00000

AR(medium) | 0.168 | 0.195 | 0.183 | 0.192 | 0.188 | 0.1852 | 0.00950 | 0.00190
AR(large) 0.446 | 0.467 | 0.438 | 0.405 | 0.421 | 0.4354 | 0.02121 | 0.00424

Full COCO-evaluation metric for the 5 runs on the hard test set, with the mean, standard deviation and the standard deviation of the mean.




G The Full COCO-Evaluation Metrics, Cross-Validation
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Metric runl | run2 | run3 | rund | rundS | & o oL

mAP 0.456 | 0.446 | 0.464 | 0.503 | 0.486 | 0.471 | 0.02073 | 0.00415
ApToU=50 0.802 | 0.766 | 0.803 | 0.831 | 0.798 | 0.8 0.02066 | 0.00413
APIU=TS 0.456 | 0.493 | 0.474 | 0.605 | 0.556 | 0.5168 | 0.05552 | 0.01110
AP(small) -1 -1 -1 -1 -1 -1 0.00000 | 0.00000
AP(medium) | 0.393 | 0.269 | 0.256 | 0.421 | 0.26 | 0.3198 | 0.07187 | 0.01437
AP(large) 0452 | 045 | 0474 | 0.506 | 0.494 | 0.4752 | 0.02226 | 0.00445
AR! 0.296 | 0.275 | 0.281 | 0.309 | 0.308 | 0.2938 | 0.01382 | 0.00276
AR 0.508 | 0.507 | 0.525 | 0.572 | 0.539 | 0.5302 | 0.02401 | 0.00480
ARIYO 0.508 | 0.507 | 0.525 | 0.572 | 0.539 | 0.5302 | 0.02401 | 0.00480
AR(small) -1 -1 -1 -1 -1 -1 0.00000 | 0.00000
AR(medium) | 0475 | 0.293 | 0.271 | 0.466 | 0.273 | 0.3556 | 0.09417 | 0.01883
AR(large) 0.498 | 0.513 | 0.541 | 0.573 | 0.553 | 0.5356 | 0.02704 | 0.00541

The full COCO-evaluation metrics for the cross-validation.
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H Data Processing Functions

Copyright 2020 Dennis Adelved. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http ://www. apache.org/licenses /LICENSE—2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

H oM H H H W HHEHHHHEHH

H*

#Dependencies

import os

import numpy as np

import shutil

from PIL import Image

import glob

import matplotlib.pyplot as plt
import xml.etree.ElementTree as ET
import bruges

import random

import cv2

#Data augmentation functions

#function to save the relevant attributes (folder, file name and path) of
the xml’s outputted from Labellmg

def change_xml(xml_path ,new_folder ,new_fname ,new_path,channels=3):
tree = ET.parse(xml_path)

root = tree.getroot ()
root[0].text = new_folder
root[1].text = new_fname

root[2].text = new_path
if channels==1:
root [4][2].text = "1’

return tree

#convolve grayscale image with random frequency in range [min_freq:10:

max_freq]

def convolve_gray_image_random (im_path, min_freq ,max_freq, multiple_axes=
True):
image = Image.open(im_path).convert(’'L’")

image = np.asarray (image)
f =1l

f.append(random.randint (min_freq , max_freq))
f.append(random.randint (min_-freq , max_freq))

wavelet = []
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1054

1056

1060

1062

1064

1066

1068

1076

1078

1080

1082

1086

1090

1092

1094

1096

1100

1102

wavelet.append(bruges. filters .ricker(duration=0.100, dt=0.001, f=f[0])
) #wavelet

wavelet.append(bruges. filters .ricker(duration=0.100, dt=0.001, f=f[1])
)

if multiple_axes == True:

vert = np.apply-along_axis(lambda t: np.convolve(t,wavelet[0],mode
=’same’),axis=0,arr=image)

hor = np.apply_along_axis(lambda t: np.convolve(t,wavelet[1],mode=
‘same’),axis=1,arr=image)

return [vert, hor]
else:

hor = np.apply-along_axis(lambda t: np.convolve(t,wavelet[0],mode=
‘same’),axis=1,arr=image)

return [hor]

#augmentation gray
def convert_to_gray(image_path):
image = Image.open(image_path).convert(’'L")
image = np.asarray (image)
new_im = image.copy ()
return new_im

#augmentation sobel

| def augment_sobel (image_path):

image = Image.open(image_path)

im = np.asarray (image)

sobelx = cv2.Sobel(im,cv2.CV_64F,1,0,ksize=3)
sobely = cv2.Sobel(im,cv2.CV_64F,0,1, ksize=3)
grad = np.sqrt(sobelx*%2 + sobelyxx%2)

return grad

#augmentation canny
def augment_canny(image_path):
percentiles = np.array ([80, 85, 90, 95])

image = Image.open(image_path)
im = np.asarray (image)
perc = percentiles[random.randrange(len(percentiles))]

canny = cv2.Canny(im, perc/2,perc)
return canny

#import xml and jpg and returns a list of xml,jpg pairs
def import_img_xml_paths(data_dir):
used_cores = glob.glob(os.path.join(data_dir,’=.jpg’))
used_xml = glob.glob(os.path.join(data_dir , =.xml"))
return list(zip(sorted(used_-cores),sorted (used_-xml)))

#splits training and validation data, simple hold—out split
def simple_holdout_split(image_xml_pairs,split=0.2):

num_im = len(image_xml_pairs)
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1046

random . shuffle (image_xml_pairs)
val = image_xml_pairs [0: math. floor (num_im*split)]
train = image_xml_pairs[math. floor (num_im=split):]

return train ,val

Listing 7: Preprocesssing functions used for the data augmentation

#

# Copyright 2020 Dennis Adelved. AIll Rights Reserved.

#

# Licensed under the Apache License, Version 2.0 (the “License”);

# you may not use this file except in compliance with the License.

# You may obtain a copy of the License at

#

# http ://www. apache .org/licenses /LICENSE—2.0

#

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an “AS IS” BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#

#Dependencies

import os

import glob

import shutil

import random

import xml.etree.ElementTree as ET

#K—fold validation split
#splitting the easy test set into 5 folds (training ,validaiton and test

set)

#data directory containing the xml and jpg files
data_dir = ’“test_data’

samples = [ foldl ", fold2’, fold3’, fold4 ", fold5"]

samps = []
for s in samples:
splits =[]

splits .append(’train_ +s)
splits.append(’valid_’+s)
splits.append(’ test_ +s)
samps . append (splits)

for s in samps:

xmls = glob.glob(os.path.join(data_dir, *.xml"))
ims = glob.glob(os.path.join(data_dir, =.jpg’))
xmls=sorted (xmls)

ims = sorted (ims)

data = zip (ims,xmls)

data = list(data)

random . shuffle (data)

split = data[0:15]
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test = data[l15:]
random. shuffle (split)
train=split [0:10]
val = split[10:]
for f in s:
os . mkdir (f)
if “train’ in f:
for i in range(len(train)):
imin = os.path.join (os.getcwd() ,train[i][0])
xmlin = os.path.join(os.getcwd () ,train[i][1])
imout = os.path.join(os.getcwd() ,f,train[i][0].split(’/")
[—1])
xmlout = os.path.join(os.getewd () ,f,train[i]J[1].split(’ /")
[—1D)
shutil .copy(imin,imout)
shutil .copy(xmlin, xmlout)
if ’valid’ in f:
for i in range(len(val)):
imin = os.path.join (os.getcwd(),val[i][0])

xmlin = os.path.join(os.getcwd(),val[i][l])

imout = os.path.join(os.getcwd() ,f,val[i][O0].split(’ /")
[—1D

xmlout = os.path.join(os.getcwd () ,f,val[i][1].split(’ /")
[—1D

shutil .copy(imin ,imout)
shutil .copy (xmlin , xmlout)
if “test’ in f:
for i in range(len(test)):
imin = os.path.join(os.getcwd () ,test[i1][0])

xmlin = os.path.join(os.getcwd () ,test[i][1])

imout = os.path.join(os.getcwd () ,f,test[i][0].split( /")
[—1D)

xmlout = os.path.join(os.getewd () ,f,test[i][1].split(’/")
[=1D)

shutil .copy(imin,imout)
shutil .copy(xmlin, xmlout)

Listing 8: Splitting the total data in the easy test set in to 5 different training-validation-test set splits
(K-fold cross-validation split)

I COCO-Evaluation Metrics: Specialization Project

Metric AP X2 =100 | APy =2
APpTeU=05 0.9623 0.9703
APpToU=0.75 0.9238 0.8819

mAP 0.8655 0.7723

The COCO AP scores for the 2 IoU thresholds and the m AP at end of training for A2 = 100 and
A2 = 2 (specialization project).
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The total loss from training and validation A2 = 100 (specialization project).
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Max AR given a fixed number of predictions.

AR across the different scales.

The COCO evaluation metrics A2 = 100 (specialization project).
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J Pixel-Depth Mapping Script with OQutput and Auto-

Labeling Script
index | Plug Type Depth Pixel Location Source
0 vplug 3632.0269058296 66 images/6407_1_3_3632_3633.jpg
1 hplug 3632.0523848349 128.5 images/6407_1_3_3632_3633.jpg
2 vplug 3632.32409294741 795 images/6407_1_3_3632_3633.jpg
3 hplug 3632.32857725234 806 images/6407_1_3_3632_3633.jpg
4 hplug 3632.75743986955 1858 images/6407_1_3_3632_3633.jpg
5 vplug 3632.79841011007 1958.5 images/6407_1_3_3632_3633.jpg
6 vplug 3632.91765185487 2251 images/6407_1_3_3632_3633.jpg
7 hplug 3632.97472482674 2391 images/6407_1_3_3632_3633.jpg
8 vplug 3634.04197080292 103.5 images/6407_1_3_3634_3635.jpg
9 scal 3634.06184103812 152.5 images/6407_1_3_3634_3635.jpg
10 vplug 3634.2899432279 715 images/6407_1_3_3634_3635.jpg
11 scal 3634.35888077859 885 images/6407_1_3_3634_3635.jpg
12 hplug 3634.66180048662 1632 images/6407_1_3_3634_3635.jpg
13 vplug 3634.71593673966 1765.5 images/6407_1_3_3634_3635.jpg
14 scal 3634.91585563666 2258.5 images/6407_1_3_3634_3635.jpg
15 vplug 3638.02193708609 53 images/6407_1_3_.3638_3639.jpg
16 scal 3639.06597938144 160 images/6407_1_3_3639_3640.jpg
17 scal 3639.14969072165 363 images/6407_1_3_3639_3640.jpg
18 scal 3639.3612371134 876 images/6407_1_3_3639_3640.jpg
19 scal 3639.70927835052 1720 images/6407_1_3_3639_3640.jpg
20 vplug 3639.77051546392 1868.5 images/6407_1_3_3639_3640.jpg
21 hplug 3643.03112118714 75.5 images/6407_1_3_3643_3644.jpg
22 scal 3643.10449299258 253.5 images/6407_1_3_3643_3644.jpg
23 vplug 3643.27926628195 677.5 images/6407_1_3_3643_3644.jpg
24 hplug 3643.33429513603 811 images/6407_1_3_3643_3644.jpg
25 hplug 3643.65416323166 1587 images/6407_1_3_3643_3644.jpg
26 vplug 3643.67497938994 1637.5 images/6407_1_3_3643_3644.jpg
27 scal 3643.9451772465 2293 images/6407_1_3_3643_3644.jpg
28 vplug 3643.95692497939 2321.5 images/6407_1_3_3643_3644.jpg
29 hplug 3648.02703243893 67.5 images/6407_1_3_3648_3649.jpg
30 hplug 3648.31137364838 777.5 images/6407_1_3_3648_3649.jpg
31 vplug 3648.3454144974 862.5 images/6407_1_3_3648_3649.jpg

A subset of the output from the pixel-depth mapping script on the easy tes set

FH oH H W H O H H

Copyright 2017 The TensorFlow Authors. AIll Rights Reserved.
Modifications copyright 2020 Dennis Adelved.
Licensed under the Apache License, Version 2.0 (the “License”);

you may not use this file except in compliance with the License.
You may obtain a copy of the License at
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# http ://www. apache.org/licenses /LICENSE—2.0

#

# Unless required by applicable law or agreed to in writing, software

# distributed under the License is distributed on an “AS IS” BASIS,

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.

#

#Dependencies

import glob

import numpy as np

import os

import six.moves.urllib as urllib
import sys

import tarfile

import tensorflow as tf

import zipfile

from
from
from
from
from

distutils .version import StrictVersion
collections import defaultdict

io import StringlO

matplotlib import pyplot as plt

PIL import Image

import pandas as pd
import shutil

Sys.
from

#Run
def

path .append(”..")
object_detection.utils import ops as utils_ops

inference on image using the frozen inference graph
run_inference_for_single_image (image, graph):
if “detection_masks’ in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(tensor_dict[ detection_boxes’], [0])
detection_masks = tf.squeeze(tensor_dict[’ detection_masks’], [O])
# Reframe is required to translate mask from box coordinates to
image coordinates and fit the image size.

real_num_detection = tf.cast(tensor_dict[’ num_detections ][0], tf.
int32)

detection_boxes = tf.slice(detection_boxes, [0, 0], [
real_num_detection , —1])

detection_masks = tf.slice(detection_masks, [0, O, O], [
real_num_detection , —1, —1])

detection_masks_reframed = utils_ops.

reframe_box_masks_to_image_masks (
detection_masks , detection_boxes , image.shape[l], image.shape
(21
detection_masks_reframed = tf.cast(
tf . greater (detection_masks_reframed , 0.5), tf.uint8)
# Follow the convention by adding back the batch dimension
tensor_dict[ detection_masks’] = tf.expand_dims(
detection_masks_reframed , 0)

image_tensor = tf.get_default_graph().get_tensor_by_name(’image_tensor
:07)
# Run inference
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def

#

output_dict = sess.run(tensor_dict,
feed_dict={image_tensor: image})

# all outputs are float32 numpy arrays, so convert types as
appropriate
output_dict[ num_detections’] = int(output_dict[ num_detections ]J[0])
output_dict[ detection_classes’] = output_dict|[
"detection_classes " ]J[0]. astype(np.int64)

output_dict[ detection_boxes’] = output_dict[’ detection_boxes ][0]
output_dict[ detection_scores’] = output_dict[ detection_scores  ][0]
if “detection-masks’ in output_dict:

output_dict[ detection_masks’] = output_dict[’detection_masks’]J[0]
return output_dict

generate_predictions (model_name, path_to_frozen_inference_graph ,
path_to_labels ,path_to_images ,detection_graph):

This is needed since the notebook is stored in the object_detection
folder .

sys.path.append(”..”)
from object_detection.utils import ops as utils_ops

#if StrictVersion(tf.__version__) < StrictVersion(’1.12.0"):

#raise ImportError(’Please upgrade your TensorFlow installation to vl
12.0%07)

dicts = [] #to save detections
image_dims = [] #to save image dimentions

#Retrieve the detection data from the inference
with detection_graph.as_default():
with tf.Session() as sess:
# Get handles to input and output tensors
ops = tf.get_default_graph().get_operations ()
for op in ops:
op.._set_device(’/device:CPU:x ")
all_tensor_names = {output.name for op in ops for output in op
.outputs}
tensor_dict = {}
for key in [
num_detections’, ’detection_boxes’, ’detection_scores’,

5

*detection_classes’, “detection_masks’

tensor_-name = key + ':0°
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.get_default_graph ().
get_tensor_by_name (
tensor_name)

for image_path in path_to_images:

#Convert RGB image to grayscale
img = np.array (Image.open(image_path).convert('L"))

#Expand the number of channels to 3, i.e. expand the
grayscale channel.
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def

def

def

new_im = np.ndarray ((img.shape[0],img.shape[1],3))
for d in range(new_im.shape[—1]):
new_im[:,:,d] = img[:,:]

image_dims.append ((new_im.shape[0],new_im.shape[1]))

#Predict bounding boxes on grayscale image.
output_dict = run_inference_for_single_image (new_im[None
,i,:,:], detection_graph)

#append detection from image to the detection list
dicts .append(output_dict)

return dicts ,image_dims

sorted_boxes (denrom, classes ,sortby=0):

concat = np. hstack ((denorm, classes)).astype(int)

sort_-val = np.zeros_like(concat)

sortind = np.argsort(denorm|[:,0].argsort())

for i in range(sortind.shape[0]):
row = np.argwhere(sortind == i)
sort_val[i,:] = concat[row,:]

return sort_val

pixel_to_depth (top ,base, pixel_height):
return (base—top) / pixel_height

plug_to_depth (impath ,boxes):
im = np.asarray (Image.open(impath))

top_str ,base_str =impath.split( .’ )[0].split(’_-")[—2], (impath.split(’
)01 split (7)) [—11)

if 7,7 in top._str:
top-str = top-_str.split(’,’)[0] +

5

+ top-str.split(’,’)[—1]

if ’,” in base_str:
base_str = base_str.split(’,’)[0] + *.  + base_str.split(’,’)[—1]

top,base = float(top_str), float(base_str)
meter_per_pixel = pixel_-to_depth(top,base,im.shape[0])
mid_diff = ((boxes[:,2] — boxes[:,0]) / 2)

mid = mid_diff + boxes[:,0]

names = []
depth = []
pix = []

image = []

for i in range(len(mid)):

names . append (class_to_name (boxes[i,—1]))
depth.append(mid[i] = meter_per_pixel + top)
pix .append (mid[i])

image . append (impath)
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return names,depth,pix ,image

#Denormalize the bounding box coordinates generated by the model

s| def

def

def

def

denormalize (array ,image_dims):
if array.ndim==1:

array=array [None,:]
denorm = np.zeros_like (array)
h,w = image_dims

denorm[:,0] = array[:,0] = h
denorm[:,1] = array[:,1] = w
denorm[:,2] = array[:,2] = h
denorm [:,3] = array[:,3] = w

return denorm

name_from_path(image_path):

name_components = image_path.split(’/ )[—1].split( -")[0:3]
name = name-_components[0] + -’ + name_components[1] +
name_components [2]

top = (image_path.split(’-")[—2])

base = (image_path.split(’_")[—1].split(’.jpg’)I[0])
return name, float (top),float(base)

s s

+

class_to_name(c):
if ¢ == 1:
name = 'hplug’
return name
if ¢ ==
name = ‘vplug’
return name
if ¢ ==
name = ’'scal’
return name
else:
return ’Non—defined class’

main () :
#Set the path to the folder containing the exported inference graph
MODELNAME = ’inference —graph—demo’

#adding the frozen inference graph to the path
PATH.TO_FROZEN_.GRAPH = os.path.join (MODELNAME, ’frozen_inference_graph
.pb’)

#Path to the label map
PATH.TO_LABELS = ’labelmap_plugs.pbtxt’

#Path to the images that are used for inference.
PATH_.TO_TEST_IMAGES_DIR = ’images’

TEST_IMAGE_PATHS = glob.glob(os.path.join (TESTIMAGE_PATHS, **.jpg’))
detection_graph = tf.Graph()

with detection_graph.as_default():
od_graph_def = tf.GraphDef ()
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with tf.gfile.GFile (PATH.TO_.FROZEN.GRAPH, ’'rb’) as fid:
serialized_graph = fid.read ()
od_graph_def.ParseFromString (serialized_graph)

tf .import_graph_def(od_graph_def, name="")

predictions ,image_dims = generate_predictions (MODELNAME,
PATH_-TO_FROZEN_GRAPH , PATH_.TO_LABELS, TEST_IMAGE_PATHS , detection_graph)

Inames =[]

ldepth =[]

Ipix =[]

limage =[]

for ind,d in enumerate(predictions):
scores=np.argwhere(d[ " detection_scores’] > 0.5)

boxes = np.squeeze(d[’ detection_boxes’ ][scores])
classes = d[’ detection_classes ][ scores]

denorm = denormalize (boxes,image_dims[ind])
denorm = sorted_boxes(denorm, classes)

names , depth , pix ,image = plug_to_depth (TEST.IMAGE_PATHS[ind],denorm

Inames += names
ldepth += depth
Ipix += pix

limage += image

5

d = {"Plug Type’: lnames, ’Depth’: ldepth, ’Pixel Location’: Ipix,

Source’: limage}
dataframe = pd.DataFrame(d)
dataframe = dataframe.sort_values (’Depth’).reset_index (drop=True)

dataframe.to_csv (’pixel_depth_map.csv’)

if __name__ == ’__main__":
main ()

Listing 9: Show of work: summary of the pixel-depth mapping script. Dependent on local file
structure and requires setup of the Tensorflow environment in order to run. For working script
and setup guide please consult the GitHub repository of this thesis (Adelved, 2020)

Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Modifications copyright 2020 Dennis Adelved.

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http ://www. apache .org/licenses /LICENSE—2.0

Unless required by applicable law or agreed to in writing , software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

HoH H W HHHHHHEHEHHHHHH

140




1018

1020

1022

1024

1026

1030

1032

1036

1038

1040

1042

1046

1048

1050

1056

1058

1060

1062

1064

import numpy as np

import os

import six.moves.urllib as urllib
import sys

import tarfile

import tensorflow as tf

import zipfile

from distutils.version import StrictVersion
from collections import defaultdict
from io import StringlO

import matplotlib.pyplot as plt
from PIL import Image

import glob

# This is needed since the notebook is stored in the object_detection
folder.

sys.path.append(”.."7)

from object_detection.utils import ops as utils_ops

def run_inference_for_single_image (image, graph):

if “detection_masks’ in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(tensor_dict[ detection_boxes’], [0])
detection_masks = tf.squeeze(tensor_dict[ detection_masks’], [0])
# Reframe is required to translate mask from box coordinates to
image coordinates and fit the image size.

real_num_detection = tf.cast(tensor_dict[’ num_detections’ ][0], tf.
int32)

detection_boxes = tf.slice(detection_boxes, [0, O], [
real_num_detection , —1])

detection_masks = tf.slice (detection_masks, [0, O, O], [
real_num_detection , —1, —1])

detection_masks_reframed = utils_ops.

reframe_box_masks_to_image_masks (
detection_masks , detection_boxes , image.shape[l], image.shape
(21
detection_masks_reframed = tf.cast(
tf.greater(detection_masks_reframed, 0.5), tf.uint8)
# Follow the convention by adding back the batch dimension
tensor_dict[ detection_masks’] = tf.expand_dims (
detection_masks_reframed , 0)

image_tensor = tf.get_default_graph().get_tensor_by_name(’image_tensor
:07)

# Run inference

output_dict = sess.run(tensor_dict ,

feed_dict={image_tensor: image})

# all outputs are float32 numpy arrays, so convert types as
appropriate

output_dict[ num_detections’] = int(output_dict[ num_detections ]J[0])
output_dict[ detection_classes’] = output_dict|[
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"detection_classes " J[0]. astype(np.int64)

1066 output_dict[ detection_boxes’] = output_dict[ detection_boxes’ ][0]
output_dict[ detection_scores’] = output_dict[ detection_scores  ][0]
1068 if “detection-masks’ in output_dict:
output_dict[ detection_masks’] = output_dict[’ detection_masks’][0]

1070 return output_dict

2| def generate_predictions (model_-name, path_to_frozen_inference_graph ,
path_to_labels ,path_to_images ,detection_graph):

1074 dicts = []
1076 with detection_graph.as_default():
with tf.Session () as sess:
1078 # Get handles to input and output tensors
ops = tf.get_default_graph().get_operations ()
1080 for op in ops:
op.._-set_device(’/device:CPU:x ")
1082 all_tensor_names = {output.name for op in ops for output in op
.outputs}
tensor_dict = {}
1084 for key in [
"num_detections’, ’detection_boxes’, ’detection_scores’,
1086 “detection_classes’, ’“detection_masks’
1:
1088 tensor_name = key + ":0°

if tensor_name in all_tensor_names:
1090 tensor_dict[key] = tf.get_default_graph().
get_tensor_by_name (

tensor_name )
1092
for image_path in path_to_images:
1094
#Convert RGB image to grayscale
1096 image = Image.open(image_path).convert('L")
img = np.asarray (image)
1098

new_im = np.ndarray ((img.shape[0],img.shape[1].,3))

for d in range(new_im.shape[—1]):

1102 new_im[:,:,d] = img[:,:]

1104 image_np = np.copy(new_im)

1106

1108 # Expand dimensions since the model expects images to have

shape: [1, None, None, 3]

image_np_expanded = np.expand_dims(image_np, axis=0)
1110
# Actual detection.
112 output_dict = run_inference_for_single_image (
image_np_expanded , detection_graph)

114 #append detection from image to the detection list
dicts .append(output_dict)

1116 return dicts
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#Denormalize the bounding box coordinates generated by the model
def denormalize (array ,image):
denorm = array.copy ()
h,w = im.shape[0:2]
for i in range(array.shape[0]):
ymin = int(array[i][0][0]=*h);
xmin = int(array [i][O][1]=*w)
ymax = int(array[i][0][2]=*h)
xmax = int(array[i][0][3]*w)
#print (xmin, ’:’ ,ymin, ’:’ ,xmax, ’:’ ,ymax)
denorm[i] = xmin,ymin,xmax,ymax
return denorm

def auto_annotate_xml(im_path ,xml_template_path ,predicted_bounding_boxes
output_folder = OUTPUT.DIR) :

output_path = os.path.join(os.getcwd(),output_folder)
new_xml_path = im_path.split(’/’)[—1].split( . )[0] + ~.xml’
xml_copy_path = shutil.copy(xml_template_path, os.path.join(
output_path , new_xml_path))

tree ET. parse (xml_copy_path)
root = tree.getroot()

im = Image.open(im_path)
im = np.asarray (im)
h,w,d = im.shape

root.find ( folder’).text = output_path.split(’/’)[—1]

root.find (’filename’).text = im_path.split(’/’)[—1]
root.find(’path’).text = os.path.join(output_path ,im_path.split(’/")
[—1D

root.find (’size’).find (’width’).text = str(w)
root.find(’size’).find( height’).text = str(h)
root.find(’size’).find( depth’).text = str(d)

new_objects = match_objects(root. findall ( object’),
predicted_bounding_boxes)

for obj in root.findall( object’):
root.remove(obj)

for new_obj in new_objects:
root.append(new_obj)

for ind,obj in enumerate(root.findall( object’)):

obj.find(’name’).text = ‘core’

obj.find (’bndbox ). find ("ymin’).text = str ((
predicted_bounding_boxes[ind ,1]))

obj.find (’bndbox ). find ("xmin’).text = str ((
predicted_bounding_boxes[ind ,0]))

5
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def

obj.find (’bndbox ). find ("ymax’).text =str( (
predicted_bounding_boxes[ind ,3]))

obj.find (’bndbox ). find ("xmax’).text = str ((
predicted_bounding_boxes[ind ,2]))

shutil .copy(im_path ,os.path.join (output_path ,im_path.split(’/’)[—1]))
tree . write (xml_copy_path)

main () :

#Set the path to the folder containing the exported inference graph
MODELNAME = ’inference —graph—demo’

#adding the frozen inference graph to the path
PATH_.TOFROZEN_.GRAPH = os.path.join (MODELNAME, ’frozen_inference_graph
.pb )

#Path to the label map
PATH.TO_LABELS = ’labelmap_plugs.pbtxt’

#Path to the images that are used for inference. Here only three
sample images are given.

#However, more can be added to this directory
PATH_.TO_TEST_IMAGES_DIR = ’images’

#The output directory for the cropped core images. If no cropping is
desired set OUTPUT.DIR = None
OUTPUT.DIR = os.path.join( autolabel )

TEST.-IMAGE_PATHS = glob.glob(os.path.join (PATH_-TO_-TEST.IMAGES_DIR, "’ .
irg’))

detection_graph = tf.Graph()

with detection_graph.as_default():
od_graph_def = tf.GraphDef ()
with tf.gfile.GFile (PATH.TO_.FROZEN.GRAPH, ’'rb’) as fid:
serialized_graph = fid.read ()
od_graph_def.ParseFromString (serialized_graph)
tf .import_graph_def(od_graph_def, name="")

predictions = generate_predictions (MODEL NAME, PATH.TO_FROZEN_GRAPH,
PATH_-TO_LABELS, TEST_-IMAGE_PATHS, detection_graph)

#Make xml files from predictions and export to output directory
for ind,d in enumerate(predictions):

s= np.argwhere(d[ "detection_scores '] > 0.5)

boxes = np.squeeze(d[’ detection_boxes ][s])

classes = d[’ detection_classes  |[s]

image_np = Image.open(TEST.IMAGE_PATHS[ind])

image_np = np.asarray (image_np)

denorm = denormalize (boxes,image_np)
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1218 denorm = sorted_boxes(denorm, classes)

1220

auto_annotate_xml (TESTIMAGE_PATHS[ind ], template.xml’,denorm)

if __name__. == ’__main__":
1224 main ()

Listing 10: Show of work: summary of the auto-labeling script. Dependent on local file structure
and requires setup of the Tensor flow environment in order to run. For working script and setup
guide please consult the GitHub repository of this thesis (Adelved, 2020)
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