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Summary

Accurate fluid modeling has been a goal of reservoir engineers since the 1940’s. Based on
the advances in computing power since the 1970’s, cubic equation of state (EOS) models
have been used to accurately describe a wide range of complex reservoir fluid systems,
including gas condensates, volatile oils, compositional grading fluids with saturated and
critical gas-oil phase transitions, and miscibility that is often controlled by near-critical
vaporization and condensation.

Without an accurate fluid model, the engineering of petroleum reservoirs would bear sig-
nificant and unnecessary uncertainties in the estimation of recoveries and production fore-
casts. This thesis is intended to study one specific method for improving the modeling of
petroleum fluids - the use of binary interaction parameters (BIPs) in a cubic EOS.

Very little literature addresses the quantitative impact of BIPs on calculated phase behav-
ior. This thesis therefore studies and quantifies the cause-and-effect of BIPs on phase
behavior of binary, ternary and multi-component hydrocarbon fluid systems. Specifically,
the phase behavior quantified includes (1) dependence of equilibrium ratios (K-values) on
pressure, temperature and composition, and (2) critical phase boundaries that include crit-
ical p-T loci and the negative flash equivalent of critical pressure, convergence pressure. A
seemingly general relationship was found between the sign of BIPs and the shift in critical
locus, as well as the shift in low pressure K-values.

The second part of the thesis deals with tuning an EOS model using the BIPs as primary
regression variables. Synthetic data sets were generated with a known set of BIPs, with
K-values being the only data used in the tuning process. An EOS with zero BIPs was
used as starting values and the non-linear regression algorithm of PhazeComp was used to
determine a BIPs matrix that gave a best fit of the exact synthetic K-values. The regression
algorithm of PhazeComp was successful in finding the correct set of BIPs used to create
the synthetic data, but only if the number of components was less than about 15. Further-
more, it was established that the run-time of regression for components > 30 would be
prohibitive, even if the regression algorithm succeeded.

This led to a search for algorithms that would select and optimize a subset of the entire
BIPs matrix, yielding an adequate best-fit of the phase behavior data (i.e. K-values). Three
methods for ranking the importance of the BIPs were tried: a gradient based method, a
Pearson’s correlation coefficient (PCC) based method and a random forest based method.
Heuristic logic was introduced during the studies presented in this thesis, and successful
results were achieved with the gradient and PCC based methods.
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I was introduced to the topic of Binary Interaction Parameters some 3 years ago in the
form of a regression problem for a similar topic. This lead me down a path to learning
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Throughout my thesis I have had to learn how to use some of the many features of Phaze-
Comp, a PVT software by Zick Technologies. This has been an amazing experience and
I am thankful for the incredible tool that Aaron Zick has created PhazeComp. This work
could truly not have been achieved without the hard work and expertise he has put into
making the software, and for that I am thankful.

I have also had the pleasure of working with the software team at Whitson AS and have
been able to use modules of their work for my thesis. This has been a great learning ex-
perience and I can truly say that without their assistance I could not have produced the
results here. I would especially like to thank Sebastian Roll and Arnaud Hoffmann for
their assistance and inputs.
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thank you for your patience and allowing me to follow my own path with the thesis work.
This has been a great learning experience for me, and I look forward to working together
in the future.

I would also like to thank the person who introduced me to the problem that resulted
in this work. That person is Curtis Hays Whitson (dad). Your guidance and thoughtful
discussions have been a pleasure that I cannot explain in words. When the topic was intro-
duced, you stated that if someone was able to solve this task you would be happy to retire.
I am therefore glad that I was not able to finish the task, but rather get a foot in the door.
Throughout the process of my thesis work, you have guided me and contributed more than
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I would also like to thank several fellow students and colleagues. First, Stian Mydland
has been essential in the development of the PhazeComp files that are able to consistently
and automatically bound the search used to estimate critical points of fluid mixtures. He
has also helped with insightful discussion and reminded me clearly when I was heading too
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A special thanks is also due to Mathias Lia Carlsen and Mohamad (Moe) Majzoub Da-
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riched my way of approaching research in general, yet you always have a positive attitude
and you support my technical indulgences in topics that may not be directly useful in the
short term. I would like to thank Bilal Younus for teaching an internal course at Whitson
AS on equation of state modeling and for countless great discussions, both technical and
personal. To all of my friends, colleagues, mentors and loved ones; thank you all so much
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Chapter 1
Introduction

1.1 Short History of Equations of State Modeling
Various models for describing petroleum fluid systems have been used historically. Early
methods for describing simple fluid models, e.g. the real gas law, like the Standing-Katz
[37] graphical description of the gas deviation factor, were developed in the 1940’s. From
the Standing-Katz chart, mathematical models were developed to describe similar behav-
ior, using equations instead of charts. These models used Benedict-Webb-Rubin (BWR)
equation of state (EOS), referring to the original work by Benedict, Webb and Rubin in
1940 [3]. The Hall-Yarborough [8] equation is one of the most applied BWR methods for
real gases. Early attempts to develop a BWR model that was able to describe two-phase
systems was presented by Starling in 1966 [38]. However, the early BWR EOS models
used to describe phase behaviour was complex and therefore replaced by the cubic EOS
models developed in the 1970’s.

The introduction of the first cubic equation of state (EOS) models in the petroleum litera-
ture were developed by Redlich and Kwong (RK)[34] and by Peng and Robinson (PR)[29].
The general two-parameter cubic EOS model structure was not new, in fact the first two-
parameter cubic EOS model was developed in 1873 by van der Waals [42] in his PhD
dissertation. Even though the PR and RK were not the first cubic EOS models, the mod-
ifications that were made to the equations significantly improved the ability that they had
to predict the phase behavior of petroleum systems. Modifications of both the PR and RK
were made shortly after their initial development which further increased their ability to
predict phase behavior of petroleum systems. Introductions of several other modifications,
like the volume shifts by Peneloux [28] and BIPs by Chueh and Prausnitz [6], were essen-
tial to applying cubic EOS models in the petroleum industry. The introduction of the BIPs
had a major impact on the ability of two parameter cubic EOS models (e.g. PR and SRK)
to predict the behaviour of complex fluids, especially near critical fluids.
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More complicated non-polynomial EOS models have also been developed like the Di-
eterici EOS as well as higher order polynomial EOS models have been developed referred
to as virial expansions or Kamerligh Onnes EOS models. There are also a range of exotic
EOS models for relativistic fluids used in the modeling of stars and high speed gasses like
the stiffened EOS or the Bose EOS. However, these more exotic EOS models are rarely,
if ever, used in the petroleum industry. One branch of EOS modeling that is used in the
petroleum industry that is outside the scope of the cubic EOS models are fluid-solids mod-
els that predict the behavior of solids dropping out of the fluid.

1.2 Binary Interaction Parameters
BIPs were introduced as empirical correlation parameters to initial the mixing rule from
van der Waals and were shown to have a significant impact on the prediction of cubic EOS
models.

Traditional estimation of BIPs was based on tuning (regression) of the BIPs between spe-
cific combinations of components determined by empirical data or previous knowledge.
Katz and Firoozabadi [18] show that introducing a BIP between C1 (lightest hydrocarbon
component) and the Cn+ (heaviest component) can have a significant impact on the EOS
model’s ability to predict complex fluid phase behavior (K-values). Using the C1-Cn+

BIP is a common approach. Other traditional methods for estimating the BIPs include em-
pirical correlations like the one proposed by Chueh and Prausnitz [6] or the temperature
dependent BIP correlations like [39]. However, these correlations are purely empirical
methods.

More recent attempts to define a first-principles correlation have shown some success at
correlating temperature dependent BIPs. Jaubert et al. published a group contribution
method (GCM) based correlation for BIPs for normal alkanes in 2004 [13]. The semi-
analytic correlation is derived from several thermodynamic first principles and is tuned
to phase behavior data (making it semi-analytical). Following the initial publication in
2004, a series of additional papers were published, expanding the GCM to paraffins, naph-
tanes , aromats, non-hydrocarbon and psuedoized components (i.e. lumped components)
[16, 40, 41, 31, 32, 15, 14, 45]. These methods do not appear to have gained general usage.

Machine learning methods have been applied to estimate the BIPs for a range of fluid sys-
tems [1]. Much like the initial regression methods in the early implementation of BIPs,
modern approaches are highly empirical and act somewhat like a black-box.

A pragmatic approach of engineers who work with EOS modeling in the petroleum in-
dustry was described by Younus et al. in 2020 [46]. The paper explains that even experts
working with EOS tuning have only limited tools for tuning the BIPs. A common approach
for estimating BIPs is either by applying the Chueh-Prausnitz correlation, tuning individ-
ual BIPs based on experience or a combination of the two. The approach is combined with
a set of physical consistency checks of the tuned EOS model.
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1.3 Flash Calculations
The flash calculation is an essential part of any phase behavior calculation. Based on the
long history of the flash calculation in the petroleum and chemical engineering industry,
most details of how to best calculate the results of the flash have been thoroughly worked
out. Michelsen, who is a key figure in the development of computational thermodynam-
ics, summarizes the details of different procedures needed to calculate phase equilibria in
his book [22]. The flash calculation is, simply put, a combination of a component material
balance defined by the Rachford-Rice equation [33] together with the constraint of thermo-
dynamic equilibrium. A summary of the flash calculation is given in the following chapter.

In 1986 Michelsen developed a methodology for solving the flash calculation using a sim-
plified flash approach based on the assumption that the EOS model has no BIPs [21]. The
simplified flash solves the flash calculation without the need for iteration, which allows for
a direct relationship between the EOS and the equilibrium ratios (equilibrium ratios are
defined in the following chapter). The aim of Michelsen’s simplified flash was to speed up
programs which need to calculate the flash calculations multiple times.

Following Michelsen’s publication of the simplified flash, several tried to expand the
method to allow for EOS models containing a limited number of BIPs. The first paper
to expand on Michelsen’s simplified flash calculation was Jensen in 1987 [17] who in-
troduced a single BIP to the EOS. Another formal description on the methodology was
described as a theorem by Hendriks in 1988 [11] followed by a long list of further publi-
cations [10, 7, 19, 12, 25].

A critique of the applicability of the simplified flash method by Haugen in 2012 [9], fol-
lowed by a comprehensive summary was given by Michelsen in 2013 [20]. The general
conclusion can be summarized by the fact that BIPs are important and that most of the
benefit of Michelsen’s initial approach disappear as the number of BIPs increases.

1.4 Reduction Optimization
The structure of the BIPs introduce a unique challenge when trying to do EOS tuning be-
cause of the quadratic increase in the number of BIPs with the number of components (see
section 2.1 for more details). As an example, a 50-component fluid system will yield 1225
different BIPs which is much more than traditional regression techniques can effectively
handle. Another field of study has similar issues, namely machine learning (ML) and arti-
ficial intelligence (AI).

One specific method that tries to deal with the vast number of parameters is called principle
component analysis (PCA). PCA is one of several methods that tries to reduce the number
of parameters in the parameters space to achieve a reduced optimization scheme. Other,
more traditional optimization schemes also try to reduce the parameter space, like the
singular valued decomposition (SVD) where so-called null-effect variables are neglected.
Other methods that avoid the issue of a large number of parameters are methods like Pow-
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ell’s method that heuristically choose subset of the parameter space to search as a means
to reduce the size of the parameter space.

1.5 Layout of This Work
The main objective of this work is to investigate the topic of BIPs and its connection to
hydrocarbon fluid phase behavior. The two goals that this work tries to achieve this is by
(1) an advanced study into the effect of BIPs on binary and ternary phase behavior and (2)
describe a methodology that allows for modifications of the BIPs to enhance the predic-
tive power of an EOS fluid model. The secondary goal of this work is to emphasise the
potential problems and complications that arise when modifying the BIPs of an EOS and
show how these potential complications become apparent in the phase behavior. Pressure
dependent equilibrium ratio behavior is the main source of describing the ”phase behav-
ior”.

The two main advantages from this work are as follows. First, increased knowledge of a
topic with little previous in-depth publications is obviously good, especially as it is shown
to have a major impact on the fluid modeling. The second part is that the proposed method-
ology gives an approach to consistently approach BIP tuning. The work presented here acts
as a starting point for further investigation into the topic of BIP tuning for EOS modeling
that has, to the authors knowledge, not yet been utilized to its full potential.

In chapter 2 a review of the basic theory relevant to this work is given. The topics covered
in this chapter is two-fold. First, a section on the methods used for EOS modeling, i.e.
the specifics of different EOS models, the flash calculation and basic phase behavior are
presented. The second half details the generic principles of the numerical methods used in
this work. The methods in this section include Newton’s method, gradient descent method,
Powell’s method, Pearson’s correlation coefficient and the random forest algorithm.

Chapter 3 presents the results of an extensive study on the effects of BIPs on binary and
ternary phase behavior. The proposed methodology aims to describe generalized trends of
the effect by introducing positive and negative BIPs with a range of magnitudes. Methods
for describing the effects of BIPs on the phase behavior are also detailed.

Chapter 4 presents the selective tuning approach implemented to preform BIP tuning on
two fluid systems. Three methods were used to in the proposed solution for the BIP tuning;
a gradient based method, a PCC based method and a random forest based method. The
three proposed solutions were also compared to a base case generated by simultaneous
regression on all the BIPs.

Chapters 5 and 6 present a discussion and conclusion respectively followed by a descrip-
tion of further work in chapter 7. Finally, an Appendix is given containing 6 parts (A
through F). Appendix A, B and C catalog additional data for the results given in chapters
3 and 4. Appendix D example calculations are detailed for more complex procedures used
in this thesis followed by Appendix E which contains a link to all the relevant Python code
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and PhazeComp files used in this thesis. Finally, Appendix F contains a study of Phaze-
Comp’s regression tool for BIP tuning and contains an interesting example of unexpected
K-value behavior when positive and negative BIPs are introduced to a multi-component
fluid systems.
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Chapter 2
Basic Theory

”Thus, I conceived the ideas that there is no essential difference between the gaseous and
the liquid state of matter... And so the idea of continuity occurred to me”

- van der Waals

In the following sections the relevant theory for this thesis will be described. First a review
of the equation of state will be described in section 2.1 followed by a description of the
flash algorithm in section 2.2. Finally, a description of relevant regression techniques will
be described in section 2.3.

2.1 Equation of State (EOS)

2.1.1 What is an EOS?

In general, an equation of state is any functional relationship that describes how a fluid
behaves with relationship to the conditions of the system in terms of p, V , T and molalr
amounts. One of the simplest examples of an equation of state is the ideal gas law

pV = nRT (2.1)

The ideal gas law gives a simple relationship between pressure (p), volume (V ), temper-
ature (T ) and the molar amount (n) of a gas. The topic associated with describing such
systems is consequently called PVT (pressure-volume-temperature). As the name implies,
the ideal gas law is only valid for gases at a specific and limited range of pressures and
temperatures. Namely, the range is defined for low pressures and ambient or high temper-
atures where the main assumptions of the model hold. For the purposes of this work it is
more convenient to rewrite equation (2.1) as follows.
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pv

RT
= 1 (2.2)

where v is the molar volume defined by V/n.

A more general definition of equation of state models was introduced to increase the range
of validity and allow for descriptions of both vapor and liquid phases by introducing the
Z-factor as an independent variable. The definition of the Z-factor is given by

Z ≡ pv

RT
(2.3)

where the ideal gas law becomes a special case of the more general description when
Z = 1.

Early attempts of defining graphical correlations for the Z-factor of hydrocarbon gases
was made by Standing and Katz [37] based on van der Waals law of corresponding states.
Using experimental data, look-up charts were developed to estimate the value of the Z-
factor as a function of reduced temperature (Tr = T/Tc) and reduced pressure (pr =
p/pc). These types of EOS models were further developed in the following years by
introducing equations instead of the charts by Standing and Katz, called BWR EOS models
after the initial work by Benedict, Webb and Rubin [3]. One of the most common BWR
models used equations for describing the real gas deviation factor is the Hall-Yarborough
correlation [8]. The first attempt to describe a two-phase fluid system by a BWR model
was proposed by Starling in 1966 [38]. However, the BWR EOS models were superseded
by the cubic equation of state models that were able to more easily predict the phase
behavior with less complexity than its BWR counterpart.

2.1.2 Cubic Equation of State
The first cubic equation of state (CEOS) was developed by van der Waals in 1873 as part
of his Ph.D dissertation

p =
RT

v − b
− a

v2
(2.4)

where a can be thought of as a molecular ”attraction” parameter and b can be thought of
as a molecular ”repulsion” parameter. The reason for the name cubic equation of state
becomes apparent if equation (2.4) is re-written with the Z-factor as the main variable1.

1The more common description of why these EOS models are called cubic is because a similar cubic expres-
sion can be derived by exchanging the Z-factor with the molar volume. However, it is the authors opinion that
the form given in equation (2.5) is more practical and natural because this is the variable that is solved in the
flash calculation.
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Z3 − (B + 1)Z2 +A · Z −A ·B = 0 (2.5)

In equation (2.5) the coefficients A and B are defined in equation (2.6) and Z is defined in
equation (2.3). Given the formulation of the Z-factor from equation (2.3), the equation is
also cubic in volume.

A = a
p

(RT )2
(2.6a)

B = b
p

RT
(2.6b)

In general, any two-parameter CEOS can be written as

Z3 +A2 · Z2 +A1 · Z +A0 = 0 (2.7)

where A0, A1 and A2 are constants defined by the two parameters a and b. For a CEOS to
be accurate it is also assumed that the system satisfies the condition of chemical equilib-
rium (i.e. the chemical potential µi for each component for both phases are equal) [43]

µV i = µLi (2.8)

which can be shown to be satisfied for the equal-fugacity constraint, fV i = fLi, where the
chemical potential is defined by

µi = RT · ln(fi) + λi(T ) (2.9)

and the fugacity coefficient (φi) is defined by

ln (φi) = ln (
fi
uip

) =
1

RT

∫ ∞
V

(
∂p

∂ni
− RT

V
)dV − ln (Z) (2.10)

From the fugacity and the composition, the Gibbs free energy can be defined by

gL =

N∑
i=1

xi ln (fLi) (2.11a)
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gV =

N∑
i=1

yi ln (fV i) (2.11b)

and a mixture Gibbs free energy defined by

gmix = FV gV + (1− FV )gL (2.12)

where FV is the molar vapor fraction defined in section 2.2.

Several CEOS models were developed for modeling petroleum systems in the 1970’s and
1980’s. The most recognized among these are the Peng-Robinson (PR) [29] which was
modified in 1978 [35] and Soaves modification (SRK) [36] to the Redlich-Kwong (RK)
EOS [34]. The 1978 PR EOS and the SRK EOS will be discussed in detail in following
sections, but before that the method used for determining the two parameters a and b for a
given mixtures are described in section 2.1.3.

The PR and the SRK models are similar for the coefficients A, B, a and b

a = Ωa
R2T 2

c

pc
α(T ) (2.13a)

b = Ωb
RTc
pc

α(T ) (2.13b)

α(T ) = [1 +m(ω)(1−
√
T

Tc
)]2 (2.13c)

where Tc and pc are the critical properties of the pure components and ω is the acentirc
factor and the equations for Ωa, Ωb, α and m are different for PR and SRK. From this
point forward, any EOS will be assumed to be a CEOS unless it is specified differently.

2.1.3 Mixing Rules
van der Waals described a method for determining the two parameters of his EOS for a
mixture of pure components by a set of mixing rules. These preliminary mixing rules are

a =

N∑
i=1

N∑
i=1

uiuj
√
aiaj (2.14)

b =

N∑
i=1

uibi (2.15)
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where ui can be the liquid phase composition (xi), vapor phase composition (yi) or total
composition (zi), and ai & bi are the pure component EOS parameters for component i.

A significant improvement to the prediction of the phase behavior was shown to occur
by introducing an empirical correction factor between each binary pair in the mixing rule
for the a parameter,

a =

N∑
i=1

N∑
i=1

uiuj
√
aiaj(1− kij) (2.16)

where kij is the correction factor referred to as the binary interaction parameter (BIP) or
sometimes referred to as the binary interaction coefficient (BIC). In this work, kij will be
referred to as the binary interaction parameter, or BIP.

2.1.4 Peng Robinson EOS
One common type of two-parameter cubic EOS is the modified 1978 Peng-Robinson
model (PR78) and is determined by how the pure component parameters a and b are cal-
culated from Ωa, Ωb and m(ω). The method for calculating these properties are given
by

Ωa =
8(5X + 1)

49− 37X
= 0.45724... (2.17a)

Ωb =
X

X + 3
= 0.07780... (2.17b)

X =
−1 + (6

√
2 + 8)1/3 − (6

√
2− 8)1/3

3
(2.17c)

m(ω) = 0.37464 + 1.54226ω − 0.26992ω2, ω ≤ 0.49 (2.17d)

m(ω) = 0.3796 + 1.485ω − 0.1644ω2 + 0.01667ω3, ω > 0.49 (2.17e)

2.1.5 Soave Redlich Kwong EOS
Another common EOS used in the petroleum industry is Soave’s modification to the
Redlich-Kwong EOS (SRK) which has the same structure as the PR78, but with differ-
ing values for Ωa, Ωb and m(ω). These relationships are by
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Ωa =
1

9(21/3 − 1)
= 0.42748... (2.18a)

Ωb =
21/3 − 1

3
= 0.08664... (2.18b)

m(ω) = 0.480 + 1.574ω − 0.176ω2 (2.18c)

2.1.6 Volume Shift
Even though the more advanced EOS models were able to more accurately describe com-
plex fluid systems, there were still some major drawbacks with the models. The primary
problem with both the PR78 and SRK models was that they were not predicting the va-
por pressure curve correctly while still being able to correctly predict the phase densities.
Attempts were made in the late 1970’s [26] to solve this problem by introducing vol-
ume translations to the molar volume, however the problem was not solved until 1989 by
Peneloux et al. [28]. The concept of the volume shift was to take the molar volume cal-
culated by the original EOS (vEOSL ) and subtract it by some constant shift (c) to yield the
new molar volume (vnewL ) as described by

vnewL = vEOSL − c (2.19)

The effect of the volume translation was simply to shift the entire pressure-volume curve
along the molar volume axis, subsequently shifting the vapor pressure curve. The sim-
plicity and effectiveness of the method had a significant impact on EOS modeling. A
dimensionless variation of the volume shift (s) was also introduced as

s = c/b (2.20)

2.1.7 What Does an EOS Look Like?
In the sections above, the formal definition of the most common equations of states for
petroleum systems are given, but what does an equation of state actually look like as a
product? Typically, an EOS is used in some PVT software, process simulator, pipe-flow
simulator or a compositional reservoir simulator. In this case the thing that is referred to as
the EOS is a set of two lists of properties. First, the component properties that are needed
for any internal calculations of PVT calculations (EOS and other correlations like the LBC
viscosity correlation) have to be listed. A simple example of some component properties
is given in Table 2.1 containing molecular weights (MW), critical pressures (pc), critical
temperatures (Tc), acentric factors (ω) and volume shifts (s).
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Table 2.1: An example of component properties molecular weight, critical temperature, critical
pressure, acentric factor and dimensionless volume shift.

Component
Name MW Tc pc ω s

(oF) (psia)

C1 16.04 -116.66 667.0 0.011 -0.150
C2 30.07 89.91 706.6 0.099 -0.063
C3 44.10 206.02 616.1 0.152 -0.064
i-C4 58.12 274.5 527.9 0.186 -0.062
n-C4 58.12 305.5 550.6 0.200 -0.054
i-C5 72.15 369.0 490.4 0.229 -0.056
n-C5 72.15 385.8 488.8 0.252 -0.029
C6 82.42 464.4 490.0 0.240 -0.003
C7 95.63 529.0 455.3 0.274 0.013
C8 109.2 585.2 420.4 0.312 0.028

Component Properties

The component properties shown above are only a few of the different types that can be
given in a typical PVT software, but are the required properties.

The second list of properties are the BIPs. Because each binary pair has a specific value for
the BIP, the number of BIPs for a large number of components will be significantly higher
than the number of component properties. The BIP matrix, as it is sometimes referred to,
has certain properties that must be satisfied. The diagonal elements of the matrix are all
equal to zero (kii = 0) because it is assumed there is no interaction between a component
and itself. The second criteria is that the matrix is symmetric (i.e. kij = kji). An example
of a BIP matrix is given in Table 2.2 for the same system as Table 2.1.

Table 2.2: An example of a BIP matrix using the Chueh-Prausnitz correlation.

C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8
C1 0 0.0021 0.007 0.013 0.012 0.018 0.018 0.021 0.025 0.030
C2 0.002 0 0.001 0.005 0.004 0.008 0.008 0.010 0.013 0.016
C3 0.007 0.001 0 0.001 0.001 0.003 0.003 0.004 0.006 0.008

i-C4 0.013 0.005 0.001 0 0.000 0.000 0.000 0.001 0.002 0.004
n-C4 0.012 0.004 0.001 0.000 0 0.001 0.001 0.001 0.002 0.004
i-C5 0.018 0.008 0.003 0.000 0.001 0 0.000 0.000 0.001 0.002
n-C5 0.018 0.008 0.003 0.000 0.001 0.000 0 0.000 0.001 0.002
C6 0.021 0.010 0.004 0.001 0.001 0.000 0.000 0 0.000 0.001
C7 0.025 0.013 0.006 0.002 0.002 0.001 0.001 0.000 0 0.000
C8 0.030 0.016 0.008 0.004 0.004 0.002 0.002 0.001 0.000 0

Binary Interaction Parameters (BIPs)
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Chapter 2. Basic Theory

Tables 2.1 and 2.2 constitute an EOS model along with the equations given in the previous
sections.

2.1.8 EOS Tuning
A simple explanation of EOS tuning, is that some of the properties in the two EOS tables
are changed to match measured PVT data. Mostly the Cn+ properties and BIPs including
Cn+ are modified in the EOS modeling. However, this explanation is somewhat oversim-
plified as there are a whole list of internal consistency checks that must be held because of
physical restrictions. One paper that goes into the details of the entire process of tuning an
EOS for a basin or field was published by Younus et al. [46]. To summarize, the objective
of EOS tuning is to minimize some objective or cost function (as described in equation
(2.21)) by changing some sub-set of the component properties in the EOS.

C(d; θ) =

√√√√ 1

N

N∑
i=1

(
di(θ)− dexp,i

dref,i
)2 (2.21)

In equation (2.21) di(θ) is the value calculated by the EOS, θ are the properties of the
EOS, dexp are the experimental values from PVT experiments, dref is some reference
value dependent on the type of objective function and N is the total number of datapoints
in all experiments.

This explanation is also somewhat oversimplified because it does not cover in detail the
complexities of the EOS tuning process (e.g. does not describe the process of fitting a
gamma model to the fluid nor describe the tuning of the viscosity model). However, for
this work the full description of EOS tuning is not necessary and is therefore left out. For
a more detailed review, the reader is advised to read the paper by Younus et al.

2.2 Flash Calculation
Let n be the total amount of moles in an overall composition (zi) then it is possible to
derive equations (2.22) and (2.23) from the component material balance.

zi = FV yi + (1− FV )xi (2.22)

and

0 =

N∑
i=1

(yi − xi) (2.23)

where FV is the vapor fraction defined by the ratio of the molar amount in the vapor phase
with the total molar amount in the system (FV = nV /n).
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2.2 Flash Calculation

The material balance equations given in equations (2.22) and (2.23) yield an objective
function (h(FV )) that, when solved for the vapor fraction (FV ), yields a material balance.
This method was first developed by Muskat and McDowell in 1949 [24], but the more well
known equation was rediscovered by Rachford and Rice in 1952 [33] given by

h(FV ) =

N∑
i=1

zi(Ki − 1)

1 + FV (Ki − 1)
(2.24)

where Ki is the equilibrium ratio (K-value) defined by

Ki =
yi
xi

(2.25)

The minimum and maximum values of the vapor fraction (FV ) that yield positive compo-
sitions are defined by

Fv,min =
1

1−Kmax
(2.26a)

Fv,max =
1

1−Kmin
(2.26b)

With the equations above it is possible to calculate the composition of each phase (xi and
yi) from

xi =
zi

FV (Ki − 1) + 1
(2.27a)

yi =
ziKi

FV (Ki − 1) + 1
= xiKi (2.27b)

As mentioned in the previous section 2.1, for the EOS to be applied correctly, the system
has to be in chemical equilibrium. The criterion for equilibrium is given in equation (2.8)
and can be shown to be equivalent to equal fugacities for each component of both phases.
In equation (2.10) the expression for the fugacity is given, and is a function of the Z-factor
(Z) and the phase composition. This means that an outer iteration loop must be solved
for the K-values of the system. A procedure for solving the entire flash calculation can be
found in the SPE monograph Phase Behavior by Whitson and Brulé [43] and is summa-
rized below.
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Chapter 2. Basic Theory

1. Estimate K-value

2. Calculate Kmin and Kmax

3. Solve for the vapor fraction (FV ) in the Rachford-Rice equation (2.24) within the
range of FV,min and FV,max.

4. Calculate the compositions of both phases (xi and yi) using equation (2.27).

5. Calculate the Z-factor from the EOS for each phase.

6. Calculate the component fugacities for each phase (fLi and fV i).

7. Calculate the Gibbs free energy for each phase (gLi and gV i) from equation (2.11)
and calculate the correct root for the Z-factor if multiple roots exists, then calculate
the mixture Gibbs free energy from equation (2.12).

8. Check the equal-fugacity constraint (
∑N
i=1( fLifV i

− 1)2 < ε) where ε is some thresh-
old value.

9. (a) If convergence is reached, then stop. (b) If convergence is not reached, update
the K-value by some method.

10. Check if the converged solution is a trivial solution (
∑N
i=1(lnKi)

2 < ε).

11. If the solution is trivial, return to step 2. Otherwise, optionally confirm the trivial
solution with a stability test2.

2.2.1 Equilibrium Ratios

The equilibrium ratio (K-value), defined in equation (2.25), is one of the most important
thermodynamic quantities for petroleum systems. The reason for this is the direct connec-
tion it has on the flash calculation, which is a key phase behavior calculation. Furthermore,
the K-values have an intuitive and simple physical meaning. Given a K-value for a specific
component at certain conditions, the magnitude will determine the affinity the component
has to be in the vapor phase (K-value greater than 1) or the liquid phase (K-value smaller
than 1). Theoretically, the K-values can be measured in the lab and an argument can be
made that accurate K-value measurements is the best source of PVT data used in EOS
modeling.

The shape of the K-value is typically divided into the low-pressure region and the high-
pressure region. For the low pressure region the K-values tend to be inversely proportional
to the pressure (Ki ∝ 1/p) yielding a -1 slope on a log-log plot and is said to follow Raoult
and Dalton’s Law

2The stability test is an algorithm similar to a flash calculation with the purpose of establishing whether an
equilibrium at a pressure and temperature is single phase or multi-phase, and if multi-phase it gives a set of
K-value estimates
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Figure 2.1: An example of pressure dependent K-values at a given temperature and composition.

Ki ≈
pvi(T )

p
(2.28)

where pvi(T ) is the vapor pressure of component i. In the high-pressure region, all the
K-values appear to converge to unity at the convergence pressure (described in detail in
the following section). An example of a K-value plot for is shown in Figure 2.1.

2.2.2 Phase Envelope
The definition of a phase envelope can be described by; a closed curve in a pressure-
volume-temperature-composition (PVT-z) space defined by the saturation pressures. For
this work the pressure-temperature (PT) phase envelope will be used, assuming constant
composition. The saturation pressures can either be bubble-points (typically marked by a
green points) or dew-points (typically marked by a red points). An example of the phase
envelope with some additional properties that will be described in the following sections
is given in Figure 2.2. This figure was calculated using PhazeComp for uniform mixture
with the EOS shown in Table 2.1 and 2.2.
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Figure 2.2: An example of a PT phase envelope (bubble point in green and dew point in red) for a
uniform mixture with the EOS given in Table 2.1 and 2.2 as well as the convergence pressure as a
function of temperature (grey dashed line).

2.2.3 Positive Flash
Conventionally, the accepted region of feasible vapor fraction values (FV ) was assumed
to be 0 ≤ FV ≤ 1. At first glance, this seems like an intuitive assumption as any vapor
fraction outside this range would return a negative molar amount of either the vapor phase
(FV < 0) or the liquid phase (FV > 1). The region where the vapor fraction is within
this range will be referred to as the positive flash region and can be associated with the
two-phase region of the specific mixture composition. An example of the positive flash
region is shown in Figure 2.3 for a temperature of 100 ◦F for a uniform mixture with
the EOS given in Table 2.1 and 2.2. A special case of the positive flash where the vapor
fraction (FV ) can be any value in the positive flash range is the critical point. The critical
point is the point where the bubble-point and dew-point lines meet and all the component
properties tend to the same value.
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Figure 2.3: An example of a PT phase envelope (bubble point in green and dew point in red) for a
uniform mixture with the EOS given in Table 2.1 and 2.2 as well as the convergence pressure as a
function of temperature (grey dashed line) indicating the positive flash region for a temperature of
100◦F.

2.2.4 Negative Flash
In 1989 Whitson and Michelsen3 published a paper describing the region of the flash cal-
culation where the vapor fraction (FV ) was outside the range between 0 and 1, but within
the calculated minimum and maximum vapor fractions from equation (2.26) [44]. This re-
gion of the flash calculation was defined as the negative flash. It was shown that the region
gave thermodynamically consistent results. Furthermore, applications of the negative flash
have resulted in practical methods like the fluid sampling methods proposed by Carlsen et
al. [5]. An example of the negative flash region is shown in Figure 2.4 for a temperature
of 100 ◦F for a uniform mixture with the EOS given in Table 2.1 and 2.2.

A special case of the negative flash is the transition from trivial solutions (Ki = 1) to the
negative flash region. This pressure is called the convergence pressure and traces a line for
different temperatures where the K-values tend to 1, while still yielding a negative flash
solution. The convergence pressure line must go through the critical point of the given

3The authors note in the acknowledgements that: ”The first author thanks Dr. Aaron Zick (ARC0 Oil and
Gas Company) for introducing the idea of the ”negative flash” in November 1985, and for many interesting
discussions about the topic since then.”
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mixture and can considered a special case of the convergence pressure line where the flash
calculation yields a positive flash solution. The convergence pressure line is shown as a
grey dashed line in Figures 2.2 to 2.4.
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Figure 2.4: An example of a PT phase envelope (bubble point in green and dew point in red) for a
uniform mixture with the EOS given in Table 2.1 and 2.2 as well as the convergence pressure as a
function of temperature (grey dashed line) indicating the negative flash region for a temperature of
100◦F.

2.2.5 Ternary Diagram & Tie-Lines
For three component systems (ternary systems), visualizing the compositional space is
made using a ternary diagram. The ternary diagram displays the quantity of each com-
positions along the three sides of an equilateral triangle. This type of plot is particularly
useful for plotting the results of the flash calculation. An equivalent to the phase envelope,
as discussed in section 2.2.2, can be drawn for a range of compositions zi. The resulting
liquid (xi) and vapor (yi) compositions for the two-phase flash can now be plotted on the
ternary diagram with either a green color (representing liquid phase) or a red color (repre-
senting vapor phase). An example of this type of plot is shown in Figure 2.5.
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Figure 2.5: An example of the resulting phase compositions after a flash for a ternary system con-
sisting of C1, C3 and n-C6 at a temperature of 200◦F and pressure of 2000 psia using a PR EOS.
The dew-point line is shown in red and the bubble-point line is shown in green with the critical point
is shown as a black circle.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.01.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0.00.10.20.30.40.50.60.70.80.91.0n-C6

Pressure = 2000 psia, Temperature = 200 °F
xi yi CP

C1

C3
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The line between the composition from the flash calculation (xi and yi) is referred to as the
tie-line for the specific total composition (zi). Examples of different tie-lines for different
compositions are shown in Figure 2.6. The tie-line for the critical point (shown with a
black circle) is tangent to the phase envelope at the critical point and is often referred to as
the critical tie-line extension. An example of the critical tie-line extension is shown by a
black line through the critical point in Figure 2.6.

2.3 Regression Methods

2.3.1 Newton’s Method
The method commonly referred to as Newton’s method, also known as the Newton-Raphson
method, is a root finding algorithm that utilizes the slope (either analytical or approxi-
mated) of a root function h(x) to determine the direction of the search. Traditional appli-
cations of Newton’s method estimate the next step (xn+1) by calculating the intercept of
the slope at the current step (xn) with the x-axis. Formally, the method can be described
by equation (2.29) for a single variable root function.

xn+1 = xn −
h(xn)

h′(xn)
(2.29)

where h′(xn) is the derivative (i.e. the slope) of the root function at the current step (xn).
A visual example of the method is shown in Figure 2.7.
One significant drawback of Newton’s method are cases where the derivative does not di-
rect the search in the correct direction. As an example, in Figure 2.7, if the starting point is
to the left of the local minima, the derivative would move the away from the true solution.
For this reason, bounds are typically enforced such that if the solution leaves the relevant
solution space, then the root finding algorithm should add a heuristic approach to converge
notifying the user of the fact that the method has hit one of the bounds.

An equivalent approach to Newton’s method is also available for multivariate objective
functions. The formal definition of the multivariate version of Newton’s method is given
by

xn+1 = xn − J(xn)−1 · h(xn) (2.30)

where J is the Jacobian matrix defined by:

J =


∂h1

∂x1
. . . ∂h1

∂xN
...

. . .
...

∂hM
∂x1

. . . ∂hM
∂xN

 (2.31)

and M >= N is assumed for the system of linear equations to be solvable, and h(x)
being the set of root functions.
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Figure 2.7: An example a step in the Newton method. The top-left figure shows the current position
and value of the root function. The top-right figure shows the slope at the current position (black
dashed line). The bottom-left figure shows the intercept between the slope and the x-axis. The
bottom-right figure shows the new root function value at the new step.

2.3.2 Gradient Descent Method
Similar to Newton’s method described in section 2.3.1, the gradient descent method uti-
lizes the derivative (analytic or estimated) direct the search in the right direction and try
to minimize its objective function. However, unlike Newton’s method, gradient descent
is not a root finding algorithm, but rather a minimization algorithm. Nevertheless, for the
special case of sum of square (SSQ) minimization problems, the result of a global mini-
mization and a root finding algorithm will coincide.

The basis of the gradient descent method is to calculate the gradient at a specific point
(x) which will point in the direction of the greatest accent of objective function in ques-
tion at the specified point. By multiplying the gradient by -1, the product will by definition
point in the direction of the steepest descent. A definition of the direction vector (~u) is
given by

~u = −∇h(x) (2.32)

Normalizing the direction vector (~u) such that its 2-norm (magnitude) is unity yields a
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(a) Calculate gradient at current step (b) Calculate location of next step

(c) Calculate gradient at next step (d) Calculate location of next step

Figure 2.8: An example with two new estimated steps using the gradient descent method.

normalized direction vector (û)

û = − ∇h(x)

||∇h(x)||2
(2.33)

Utilizing the normalized direction vector (û), a single variable (β) line search can be car-
ried out

β∗ = argmin
β≥0

{h(x + βû)} (2.34)
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where β is a positive scalar value and β∗ is the solution to the line search. The iterative
method carried out the above methodology N times or until the distance between current
and the previous step or the magnitude of the gradient vector is less than some threshold.
The gradient descent method can be described by

xn+1 = xn − β∗
∇h(x)

||∇h(x)||2
(2.35)

An illustration of the methodology is shown in Figure 2.8.

2.3.3 Powell’s Method
Powell’s method was described in [30] as a restart procedure for the conjugate gradient
method. The method is a local search procedure with implications as a module in wide
range of search algorithms. A simplified version of Powell’s method, referred to as coor-
dinate descent, is described below.

Let h(x) be the multivariate objective function and x be the set ofN variables that make up
the solution space. The essence of Powell’s method is simply a combination of a heuristic
for which variable in x to be used in a line search. The simplest heuristic is simply to
choose each variable in x by turn until (a) the calculated value of of a sum of squares
problem is less than a specific threshold, (b) some metric to determine that the distance
traveled from the current step to the next is less than some threshold or (c) the maximum
number of iterations is exceeded.

2.3.4 Pearson Correlation Coefficient
In statistics the concept of covariance is described by the measure of the joint variability
of two stochastic variables. In other words, if the variability of the two stochastic variables
tend to increase or decrease in union then the method is said to be positively covariant and
if the sign of the change is different for the two variables then they are said to be negatively
covariant. The definition of the covariance, σ, is given in equation (2.36).

σ(X,Y ) = E[(X − E[X]) · (Y − E[Y ])] (2.36)

where E[◦] is the expected value of some variable. For discrete variables, the covariance
can be expressed as a function of measured data Xi and Yi as in equation (2.37).

σ(X,Y ) =
1

N

N∑
i=1

(Xi − µx)(Yi − µy) (2.37a)

σ(X,Y ) =
1

N2

N∑
i=1

N∑
i=j

(Xi −Xj)(Yi − Yj) (2.37b)
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where µ is the mean value for the X or Y denoted by the subscript.

For two parameters that exhibit a linear relationship, the magnitude of the covariance will
determine how strong the relationship between the two variables are. The idea of this
method is to, by calculating the covariance of all parameters with the model function out-
put, estimate the effect of the relationship between the parameters and the result. However,
one major drawback to this method is that it only predicts linear, or at least a monotonic,
relationship between the parameter and the solution of the model function.

As an example, take the covariance of a variable x and the function f(x) = x2. If the
range of x is strictly greater or less than 0 then the covariance will be non-zero. However
if the range is between -1 and 1 then the covariance will, for a large number of measure-
ments, show a covariance of ∼ 0 (see Figure 2.9). The reason for this is that there is as
much positive covariance as negative and the ability of this method to estimate the im-
portance is lost. Nonetheless, if the range is “small” and the relationship is somewhat
monotonic, then the calculated covariance can be a good estimate for the importance of a
parameter.
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Figure 2.9: Plot of x2 vs x and the calculated covariance with intervals of 0 ≤ x ≤ 1 (left) and
−1 ≤ x ≤ 1 (right).

A useful method to normalize the covariance with respect to units and be able to compare
the results of different types of data is by calculating Pearson’s product-moment correla-
tion coefficient (PCC) [27]. This is shown in equation (2.38).

ρ(X,Y ) =
σ(X,Y )

σ(X) · σ(Y )
(2.38)

In equation (2.38) σ(◦) is the standard deviation for some variable (e.g. X). One of
the major features of the PCC method is that the magnitude will be normalized such that
|ρ| ≤ 1.
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2.3.5 Random Forest Method

To be able to comprehend the random forest method, the underlying principles must be
described in some detail. This will be described in the following paragraphs.

Decision Tree Method

The random forest algorithm is built of a range of different decision trees and it is there-
fore favorable to describe the mechanisms of these. The traditional discrete decision tree is
composed of a set of features (F ) which contain a set of attributes (A). For all the features,
some combination of the attributes is collected with the output value of the specific case.

When generating the decision tree, the goal is to predict the outcome with as shallow a tree
as possible to avoid over-fitting. This can be implemented by defining the Gain-function
as in equation (2.39)

Gain(S, F ) = Entropy(S)−
∑

v∈V alues(F )

|Sv|
|S|

Entropy(Sv) (2.39)

where S is the system and F is the feature, Sv = {s ∈ S|F (s) = v} is the system with
attribute v and | ◦ | is the number of elements in the system. The entropy can be calculated
as shown in equation (2.40)

Entropy(S) =

c∑
i=1

−pi · log2(pi) (2.40)

where pi is the probability of feature F of having attribute A and c is the total number of
attributes.

A decision tree takes a dataset S and branches from a base node by the principle of max-
imum gain at each step. The termination of decision tree is based on the sub-dividing of
the dataset until the gain of the final node of the decision tree (i.e. the terminal node) is
equal to unity. This is equivalent to having a completely certain result. This description of
the decision tree method was adapted from Michell [23] and a specific example of how a
decision tree is built is shown in appendix D.

The final product of a decision tree is a function h(x) that takes in a dataset x and trains
the function such that a trained function ĥ(x) that predicts the type output with a specific
type of data. The main sets of user defined parameters in the decision tree method are
the maximum depth of the tree and the number of branches per node (i.e. the width of
the tree). The hyper-parameters depend on the problem at hand and need to be described
based on the problem at hand.
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Bagging Method

First described by Breiman in 1996 [4] the method of bagging tackles one of the main
issues of the decision tree, namely overfitting of the data. The method for counteracting
overfitting is simply by averaging over a number of decision trees with their own, smaller,
set of training data. The averaging, also called voting, is shown in equation (2.41).

f(x) =
1

J

J∑
j=1

hj(x) (2.41)

In the above equation, f(x) (typically referred to as voting) is the bagging method pre-
diction function and J is the total number of trees used (i.e. the number of trees in the
forest). Equation (2.41) assumes that the output is continuous, but this is not necessary
and a discrete version can be found in the book by Zhang [47]. The topic of transferring
from discrete to continuous problems is also described in detail, however this level of de-
tail is not relevant for this work. There is also an additional hyper-parameter that comes
with the bagging method and that is the number of decision trees.

Random Forest Method

Similar to the bagging method, the random forest also tries to predict the outcome of a
system based on a set of decision trees. However, the traditional random forest methods
deviate from the traditional bagging methods as described by Breiman [4] is that the ran-
dom forest method utilizes only a random subset of the input variables to build the decision
trees. This additional randomness aids in reducing overfitting and also has the added ben-
efit of more accurately prediction a large set of systems. One concise description of the
random forest method is given in equation (2.42)

f(x) =
1

J

J∑
j=1

hj(xj) (2.42)

where xj is a subset of of the entire input set x. Similar to the bagging method, this extra
degree of freedom introduces another hyper-parameter which is the size of the subset of
input parameters.

Feature Importance

Based on the description of the random forest method and some dataset, it is possible to
train the random forest function to the given data. Based on the trained random forest, an
estimate of the feature importance can be made. The algorithm for calculating one such
metric is detailed by Zhang [47].
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Pro’s and Con’s of the Random Forest Method

Below is a list of some of the relevant pro’s of the random forest method:

• The primary reason why the random forest method is useful is the fact that there
is little to no risk of over-fitting the dataset, unlike other prominent methods like
neural networks.

• It has been shown that the random forest algorithm can perform well with systems
containing a large number of parameters [2].

• They have been shown to accurately predict irrelevant or null-effect variables [47]

However, there are some drawbacks to the method as described by Zhang et al.:

• They are not good at capturing relationships involving linear combinations of pre-
dictor variables;

• They are known to be unstable in the sense that if the data are perturbed slightly, the
tree can change substantially;

• They are not as accurate as some of the more recently developed methods.

Example - Play Tennis Decision Tree

An example case from the book by Mitchell [23] is given in appendix D section D.2. This
example goes through the details of how to build a decision tree for whether or not you are
going to play tennis based on some data about the weather from previous days.

2.4 Software

The main software that have been utilized to generate the data for this work are summa-
rized below.

2.4.1 PhazeComp

PhazeComp is a text-based PVT software developed by Zick Technologies that allows for
a wide range of PVT calculations like vapor-liquid equilibrium calculations, standard PVT
experiments like CCE, CVD, MSS and more. Another key feature of the software is the
ability to do regression on the fluid model. The flexibility and accuracy of the text based
software allows for a wide range of phase behavior computations and has been instrumen-
tal to the calculations used in this work, where data sets are automatically generated by
Python code.
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2.4.2 Python 3.7
Python is an object-oriented open source programming language. Python is one of the
largest open source high-level programming languages and has a vast catalog of user de-
veloped libraries. The key libraries used in this work are summarized below:

• numpy v. 1.17.4: Numpy is a mathematics-based package which allows for easy
handling of arrays and mathematical operations.

• pandas v. 0.25.3: Pandas is a data-structure library with a wide range of data man-
agement tools like making DataFrames (pandas specific object) which can easily be
transported to and from Excel, numpy etc.

• matplotlib v. 3.1.2: Matplotlib is a plotting library which is designed to work in
unison with pandas and numpy.

• scikit-learn v. 0.22.2: Scikit-learn or sklearn is a machine learning library with a
wide range of different machine learning and artificial intelligence tools and meth-
ods.

• python-ternary v. 1.0.6: Plot-ternary is a plotting library which allows for plotting
of data in ternary plots. A unique feature, which was utilized in this work, is the
ability to plot ternary data as a heat-map or contour plot.

Another library that was used, but is not a public library is phasecomp-utils. This library
was provided by Whitson AS and is a PhazeComp specific parser which has been an
integral part of the supporting code for the data generation of this thesis.

2.4.3 PyCharm Community 2019.1.3
PyCharm Community is a free-to use Python environment. With options for running,
writing and debugging Python code PyCharm allows for ease of use when developing
Python code. There are also features like Git, which allows for more complex projects.
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Chapter 3
The Effect of Binary Interaction
Parameters on Phase Behavior

”What is the use of a book without pictures or conversations?”

- Alice in Wonderland

In this chapter a study is made on how BIPs affect EOS phase behavior calculations, and
particularly K-values, compositions and phase boundaries. First, binary systems are inves-
tigated, followed by a study of ternary systems. The aim is to first understand the simplest
systems (binaries), and then the next simplest systems (ternaries). Understanding the sim-
pler systems will hopefully help in understanding multi-component systems which can
give significant insight to the effect on real petroleum systems. The study will investigate
how the p-T-z relationship changes with BIPs ranging from negative to positive. A study
on the effect of BIPs on the pressure dependence of equilibrium ratios (K-values) is also
given for a range of temperatures and compositions. The study will also show the effect
of BIPs on the phase envelope for a range of compositions as well as describe the shift in
critical pressure and temperature and the expansion or contraction of the area of the PT
phase envelope.

3.1 Binary System

In this section a range of values for the BIP between C2 and C7 will be applied. The
effect on the critical pressure is given in section 3.1.1, and the effect on equilibrium ratios
in section 3.1.2. The range of the BIP span from negative to positive values of various
magnitudes (±0.15).

31



Chapter 3. The Effect of Binary Interaction Parameters on Phase Behavior

3.1.1 Effect of BIP on the Critical Locus of a Binary
As described in section 2.2.2, any mixture’s phase behavior can be described by the
phase envelope for the specific mixture and given composition. Specifically, the pressure-
temperature phase envelope can give a good indication of how the mixture will behave
with respect to pressure and temperature. An example of the critical locus is shown in
Figure 3.1 for a binary system consisting of a C2 and C7 mixture with the EOS from Table
4.4 and 4.6.
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Figure 3.1: Example of critical locus for the binary system of with the EOS from Table 4.4 and 4.6.
The solid lines are the vapor pressure lines for C2 (left) and C7 (right) and the dashed line is the
critical locus for all mixtures ranging from 100% C2 (left) to 100% C7 (right).

The phase envelope shown in Figure 3.1 used PhazeComp to calculate the results of a con-
stant composition expansion (CCE) test with injection at each stage. At the first stage of
the CCE test the mixture is set to contain 100-ε % amount of C2 and ε % amount of C7.
In this case ε is some small amount (e.g. 0.01%) followed by an increase of relative moles
injected (RMI). The critical point was found for each composition yielding the tempera-
ture dependent critical locus. Based on the thermodynamics of binaries, the convergence
pressure line for any binary composition is equal to the critical locus. This fact was used
to more easily generate the critical locus as, for each stage of the CCE, the convergence
pressure was calculated at the specific temperature instead of having to find the critical
point. The convergence pressure algorithm in PhazeComp can also calculate the compo-
sition of the mixture at the convergence pressure by the negative flash. This convergence
composition will be the same as the composition with its critical point at the convergence
pressure.
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3.1 Binary System

This fact allows for a rigid bound on the possible temperature range for the convergence
pressure based on the critical properties of the components in the binary system. As
the composition approaches 100% of a single component, the limiting critical pressure
must tend to the critical pressure of the specific component. This limits the temperature
range that will yield a critical point (convergence pressures) to a temperature range of
Tc,L ≤ T ≤ Tc,H where Tc,L is the light component critical temperature and Tc,H is the
heavy component critical temperature.

Including a non-zero BIP to the binary system and re-calculating the critical locus was
the following step. This was done for a positive BIP with a magnitude ranging between 0
up to 0.145. Above this the critical locus either doesn’t close or closes at a pressure higher
than the maximum allowed pressure constraint in PhazeComp. The results for the BIPs of
magnitudes 0, 0.05, 0.1 and 0.145 are shown in Figure 3.2.
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Figure 3.2: Effect of positive BIP on critical locus for C2-C7 mixture where BIP=0 (black),
BIP=0.05 (orange), BIP=0.1 (red) and BIP=0.145 (dark red).
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Figure 3.3: Effect of positive BIP on critical locus for C2-C7 mixture where BIP=0 (black),
BIP=0.05 (yellow), BIP=0.1 (red) and BIP=0.145 (dark red) zoomed in near the light component
critical point.

Zooming into the region near the critical temperature of the light component (C2 in this
case) shows that the behavior of the critical pressure tends to be divided into two parts. (1)
For the mid- to high-temperature range the effect of the positive BIP is that the critical pres-
sure is increased, and (2) for temperatures near the light component critical temperature,
the convergence pressure tends to decrease with respect to the zero BIP case. This effect is
also seen in a range of other binary pairs (see Appendix A) and seems to be a general trend.

On the other hand, negative BIP values ranging from 0 to -0.15 were also tested with
results for the specific values of 0, -0.05, -0.1 and -0.15 shown in Figure 3.4.
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Figure 3.4: Effect of negative BIP on critical locus for C2-C7 mixture where BIP=0 (black), BIP=-
0.05 (green), BIP=-0.1 (light blue) and BIP=0.15 (dark blue).

The general behavior of the negative BIP seems to also be divided into two regions: (1)
for mid to high temperatures the critical pressure tends to decrease and (2) for low tem-
peratures near the critical temperature of the light component the critical pressure tends to
increase.

The overall effect of the BIP on the critical locus seems to depend on three main fac-
tors. (1) The sign of the BIP, (2) the magnitude of the BIP and (3) the components of the
binary system. Figure 3.2 shows that the trend for positive BIPs increases the critical pres-
sure above a certain temperature and decreases below that temperature. Similarly, Figure
3.4 shows that for negative BIPs the critical pressure decreases above a certain temper-
ature and increases below that temperature. The magnitude amplifies the change in the
critical pressure for both signs (e.g. larger magnitude results in larger deviation in critical
pressure). In Appendix A, more binary pairs are shown and the relative magnitude of the
effect for a given BIP tends to relate to the size of the molecule (e.g. the molecular weight).

Figure 3.5 shows the extremes of the positive BIP (value of 0.145) and negative BIP (value
of -0.15), that were tested in this study, with respect to the zero BIP case. The figure shows
the general trend of the effect of BIPs on the critical locus for binary pairs.
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Figure 3.5: Comparison of positive and negative BIP on critical locus for C2-C7 mixture where
BIP=0 (black), BIP=0.145 (dark red) and BIP=-0.15 (dark blue).

3.1.2 Effect of BIP on the K-values for Binary Systems

As previously mentioned, the critical and convergence pressures are uniquely connected
for binary systems which allows the relationship between the critical locus and the shape
of the pressure dependent equilibrium ratios (K-values). The relationship between a shift
in critical pressure and the shape of the K-value plot is based on the fact that for any mix-
ture with the convergence pressure equal to the critical pressure, the positive flash K-value
plot will yield the entire shape (i.e. continuous positive flash K-values to the convergence
pressure). This fact defines the relationship between the shift in critical pressure as one-
to-one with the convergence pressure shift and equivalently the tip of the K-value curve.

The K-value plot was generated for the specific mixtures of C2 and C7 corresponding
to two separate temperatures. The temperatures were chosen to display the effect of the
BIPs in the two regions described in section 3.1.1. The two temperatures that are shown
in the figures below are at 110◦F and 300◦F. The figures below show the full positive flash
K-value plots with a zoomed plot of the high-pressure region for the low and intermediate
pressures.

From Figure 3.6 the same relationship as described in the previous section is found. The
convergence pressure is decreased for the positive BIP in region 1 and increased for the
negative BIP in region 1. The low pressure region shows an expansion of the K-value plot
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Figure 3.6: Comparison of the K-value plots for C2-C7 binary pair with BIP=0.1 (red), zero BIP
(black) and BIP=-0.1 (blue) at a temperature of 110◦F.

for the positive BIP and a contraction for the negative BIP. This effect is true for both the
light and heavy component, yet the relative magnitude is larger for the lighter component.
One note for the negative BIP K-value plot in Figure 3.6 is that the lower pressure at which
the fluid form a single phase is increasing for the negative BIP and decreasing for the pos-
itive.

From Figure 3.7 the same relationship as in the previous section is also found for the
intermediate temperature (i.e. region 2). The convergence pressure is increased for the
positive BIP and decreased for the negative BIP. However, the low-pressure region shows
an expansion of the K-value plot for the positive BIP and a contraction for the negative
BIP. The low-pressure behavior therefore seems to be independent of temperature and
only depends on the sign and magnitude of the BIP. This effect is true for both the light
and heavy component, yet the relative magnitude of K-value change is larger for the lighter
component.
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Figure 3.7: Comparison of the K-value plots for C2-C7 binary pair with BIP=0.1 (red), zero BIP
(black) and BIP=-0.1 (blue) at a temperature of 300◦F.

3.2 Ternary System BIPs
In this section a range of values for BIPs between single carbon number (SCN) compo-
nents C2, C5 and C7 will be applied and the effects are presented in the form of the shift in
the critical point and the impact on the pressure dependent equilibrium ratios. The range
of the BIPs will span from negative to positive values with magnitudes ranging from 0 to
0.1.

3.2.1 Phase Envelope and Convergence Pressure
Similar to the binary system, it is possible to calculate the binary critical locus between
each pair of binaries in the ternary system. The reason for making these calculations is that
they are the limiting values for the critical point as the ternary compositions approaches
any of the possible binary mixtures or a single component mixture. An example of such a
plot given in Figure 3.8a for C2, C5 and C7.

For any ternary mixture, it is possible to calculate the phase envelope and the correspond-
ing temperature dependent convergence pressure line (shown by a light grey dashed line),
as shown in Figure 3.8b for a mixture containing 50% C2 and 25% of both C5 and C7. The
range of the temperatures where the convergence pressure is calculated is limited by the
software used (PhazeComp) and its ability to find a saturation pressure before a conver-
gence pressure can be calculated. If a saturation pressure is not found, then the software
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3.2 Ternary System BIPs

does not find the convergence pressure (which actually exists). Based on this limitation,
the upper limit of the temperature range is the cricondenterm of the mixture.
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Figure 3.8: An example of a ternary system (C2, C5 and C7) with the critical loci between all
binaries (dashed lines). In (a) only the binary boundaries are shown while (b) gives an example of a
phase envelope containing 50% C2 and 25% C5 and C7.

Similar to section 3.1.1 the BIPs between the separate binaries ranges from positive to
negative values. The corresponding shift in the phase envelope of the specific mixture for
a positive BIP with the value of 0.1 for each binary is shown in Figure 3.9. The top left
figure shows the shift of the phase envelope based on a BIP of 0.1 between C2 and C5,
the top right figure shows the shift in the phase envelope based on a BIP of 0.1 between
C2 and C7 and, finally, the bottom figure shows the shift of the phase envelope based on a
BIP of 0.1 between C5 and C7. The original zero BIPs case is shown by a light grey plot
behind the non-zero BIPs case in each sub-plot. The zero BIPs critical loci are shown with
a black dashed line, whereas the new critical loci between the binaries with non-zero BIPs
is shown in a dark red dashed line.
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(a) BIP=0.1 between C2 and C5
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(b) BIP=0.1 between C2 and C7
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(c) BIP=0.1 between C5 and C7

Figure 3.9: An example of a ternary system (C2, C5 and C7) with the critical loci between all
binaries as well as the phase envelope of a mixture containing 50% C2 and 25% C5 and C7. The
plot also contains the temperature dependent convergence pressure line (dashed grey).

One issue with the method of showing the shift in the phase envelope shown in Figure
3.9 is that it is dependent on the mixture composition used in the calculation. A method
for describing the shift in shape and location of the phase envelope with respect to a zero
BIPs case for all compositions with a constant set of BIPs was generated by calculating
the following quantities:

∆PE = [∆pc,∆Tc,∆A] (3.1)

∆pc = pc(kij 6= 0)− pc(kij = 0) (3.2a)

∆Tc = Tc(kij 6= 0)− Tc(kij = 0) (3.2b)

∆A = A(kij 6= 0)−A(kij = 0) (3.2c)
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3.2 Ternary System BIPs

Table 3.1: Full list of cases run for ternary plots showing the shift in the critical pressure as well as
the change in area of the phase envelope. For results see Appendix B.

Case Name BIP C2-C5 BIP C2-C7 BIP C5-C7
A-1 0.1 0 0
A-2 0 0.1 0
A-3 0 0 0.1
B-1 -0.1 0 0
B-2 0 -0.1 0
B-3 0 0 -0.1
C-1 0.1 0.1 0
C-2 0.1 0 0.1
C-3 0 0.1 0.1
D-1 -0.1 -0.1 0
D-2 -0.1 0 -0.1
D-3 0 -0.1 -0.1
E-1 0.1 -0.1 0
E-2 -0.1 0.1 0
F-1 0.1 0 -0.1
F-2 -0.1 0 0.1
G-1 0 0.1 -0.1
G-2 0 -0.1 0.1
H-1 0.1 0.1 0.1
H-2 -0.1 0.1 0.1
H-3 0.1 -0.1 0.1
H-4 0.1 0.1 -0.1
H-5 -0.1 -0.1 0.1
H-6 -0.1 0.1 -0.1
H-7 0.1 -0.1 -0.1
H-8 -0.1 -0.1 -0.1

where A is the enclosed area of the phase envelope for temperatures greater than 0◦F.
This method was applied to mixtures containing C2, C5 and C7 for values of the BIPs
described in Table 3.1. An example of the ternary plots of the properties in equation (3.1)
shown in Figure 3.10 for the case where the BIP between C2 and C5 is equal to 0.1, while
the remaining set of BIPs are set to zero. The full set of different combinations of BIPs
are given in Appendix B.
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Figure 3.10: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of 0.1 between C2 and C5 and zero BIPs for the C2-C7 and C5-C7 binaries. (a) shift in critical
temperature, (b) shift in critical pressure and (c) difference between area of phase envelope with
non-zero BIPs and with zero BIPs as defined in equation (3.2)

One important note for the difference in area (∆A) is that the arbitrary cut-off point for the
lower bound temperature will have an effect on the value for the difference in area. This is
due to the fact that a shift in the of the phase envelope might result in the same area, yet due
to the arbitrary cut of point at 0◦F the shift will exclude or add some of the shape, resulting
in a reduction or increase in the estimated area. Therefore, the area difference plot is most
useful for cases where the critical point is approximately constant, and the shape of the
phase envelope is different (resulting in a change in the area). However, from the values
of the ∆A for temperatures ranging from 0◦F to about 50◦F the difference between the
saturation pressure (upper pressure) and the lower dew point pressure (lower pressure) is
relatively small compared to the higher temperatures, which results in a small artificial
shift because of the exclusion of the low temperature area.
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3.2 Ternary System BIPs

3.2.2 Effect of BIPs on K-values for Ternary Systems
Similar to section 3.1.2 a mixture has to be used which has its saturation point at the critical
point to calculate positive flash K-values for all pressures up to the point of convergence.
However, unlike the case of binary systems, ternary and other multi-component systems
don’t have a single composition with this property, rather they have an infinite set of com-
binations along a critical tie-line or surface extension (as shown in Figure 2.5). Given this
infinite range of compositions to choose from, the question becomes which composition
should be used. The following section will describe a method that ties the initial feed
composition (z∗i ) directly to a unique critical composition (zKi). The proposed procedure
applies the negative flash calculation at the convergence pressure of the initial composition
(i.e. pk(z∗i )) to yield the critical composition (zKi). K-value data are calculated for a range
of temperatures with a variation of BIPs and compared to a zero BIPs case.
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Figure 3.11: An example of convergence composition method for an initial equal molar amount
(uniform) mixture with the EOS given in Tables 2.1 and 2.2 with a temperature of 100◦F.

As described briefly above, the goal of this method is to find a unique composition with the
property of having its critical point at the same value as its convergence pressure based on
some initial feed composition. First, let z∗i be the initial feed composition. Using the initial
composition at some temperature T ∗, it is possible to calculate the convergence pressure of
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the mixture at the specific temperature as pK(z∗i , T
∗). By solving the flash calculation at

(pK(z∗i , T
∗), T ∗) an equilibrium mixture for liquid (xeqi) and vapor (yeqi) is found by the

negative flash. Because the pressure is calculated at the convergence pressure of the initial
mixture, the theoretical equilibrium compositions will be equal (i.e. xeqi = yeqi). By
defining a new composition zKi equal to the flashed composition (i.e. zKi = xeqi = yeqi)
it is assured that the saturation pressure of the mixture will be equal to the critical pres-
sure of the initial composition and because the composition of liquid and vapor are equal
the saturation pressure point is also at the convergence (i.e. Ki = 1 for all components).
Therefore, the proposed method retains the property of having a saturation pressure equal
to its critical pressure which in turn defines the saturation pressure as the convergence
pressure.

An added feature of the proposed method is that the new composition, which will from
now on be referred to as the convergence composition (zKi), is defined by the initial com-
position (z∗i ). In fact, the convergence composition will be connected to the initial compo-
sition by the critical tie-line extension of the convergence composition at the convergence
pressure of the initial fluid (z∗i ). An example is shown in Figure 3.11 where the top left
figure shows the phase envelope of the initial composition (z∗i ) followed by the top right
figure where a temperature (T ∗) is chosen and a convergence pressure is calculated for
the initial composition (pK(z∗i , T

∗)). The bottom left figure shows the phase envelope of
the new composition (i.e. the convergence composition zKi) with the old phase envelope
shaded in a light grey color. Finally, the bottom right figure shows that the critical point
of the convergence composition (pc(zKi, T ∗)) is equal to the initial convergence pressure
(pK(z∗i , T

∗)). See Appendix D for a ternary mixture example.

Table 3.2: Full list of cases run for ternary K-value plots showing the shift K-values for C2, C5 and
C7 for a range of initial compositions (z∗i ). For results see Appendix B.

Case Description
(1) - Iso-line starting at binary point [0.9,0.1,0]

(1.1) - Comp = [0.855,0.095,0.05]
(1.2) - Comp = [0.81,0.09,0.1]
(2) - Iso-line starting at binary point [0.55,0.45,0]

(2.1) - Comp = [0.5225,0.4275,0.05]
(2.2) - Comp = [0.495,0.405,0.1]
(3) - Comp = [0.2,0.6,0.2]

K-value Results

K-value plots for C2-C5-C7 mixture were calculated at two temperatures (T=100◦F and
T=150◦F) using the convergence composition method described in the previous section.
One example is shown in Figure 3.12 where the mixture is composed of 85.5% C2, 9.5%
C5 and 5% C7 at 100◦F. A list of all the cases that were calculated is given in Table 3.2.
The results, similar to Figure 3.12, are given in appendix B for all cases in shown in Table
3.2.
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3.2 Ternary System BIPs
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Figure 3.12: Example of K-value plot for a positive BIP = 0.1 between C2 and C5 for a ternary
system containing C2 (red), C5 (orange) and C7 (green) with the EOS described in Table 4.4 and
4.6 as the zero-BIP case (black lines). (a) Full pressure range plot, (b) intermediate zoom at high
pressure and (c) enhanced zoom near the convergence pressure.

As the composition is near the boundary binary composition of C2-C5, and based on the
temperature and the results shown in Figure 3.9 the critical locus is reduced for a positive
BIP between C2-C7. This is also seen in Figure 3.12 as the three component K-values
tend to the convergence point at a lower pressure than the zero BIP case. It is also worth
noting that the two lighter components (C2 and C5) both yield higher K-value results for
low pressures while the heaviest component K-values are decreased.
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Chapter 3. The Effect of Binary Interaction Parameters on Phase Behavior

There are also some additional complexities associated with ternary mixtures compared
with binary systems. First, it should be noted that when applying the convergence com-
position methodology with and without non-zero BIPs the associated compositions at the
convergence pressure will differ. This might lead to a somewhat inconsistent comparison
when describing the phase behavior (i.e. the K-value plots). Second, as more BIPs are
introduced with more components, the combinations of different effects from the separate
BIPs make a detailed analysis harder to perform. An indication of this added complexity
can be seen in Figure B.20 in Appendix B where three BIPs of different different signs are
used.

In general, this type of K-value plot is useful for two main reasons. First and foremost,
the data used in the regression approach in the following chapter is based on the K-value
data. The reason for this is that it can be argued that the K-value data is the best metric
for the fluid system phase behavior. Second, the K-value data is used for a specific type of
consistency check, namely K-value crossing. K-value crossing is simply whether or not
the K-values of two neighboring components cross at any point with the exception of the
convergence pressure. This is believed to be non-physical behavior for hydrocarbons, but
is not uncommon for non-hydrocarbon and hydrocarbon components (e.g. CO2).
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Chapter 4
Local Regression of BIPs and
Selective Tuning Methodology

”First you guess. Don’t laugh, this is the most important step. Then you compute the con-
sequences. Compare the consequences to experience. If it disagrees with experience, the
guess is wrong.”

- Richard Feynman

In the following chapter, methods for regression of BIPs will be discussed and compared.
First, in section 4.1, the regression problem at hand will be defined. In section 4.2, a
simultaneous regression approach on all the BIPs using PhazeComp’s solver is used to
develop a base case description of a possible solution. Section 4.3 introduces a frame-
work for a reduced regression problem, selective tuning, used to rank the importance of
the model parameters. Sections 4.4.1 and 4.5 describe the methods for estimating ”im-
portance”. The methods described in 4.5.1 and 4.5.2 are implemented for estimating the
feature importance defined in section 4.3. Finally, in section 4.6, the results for two fluid
systems different numbers of components are tested with the three proposed approaches.

4.1 Problem Statement
For this work it will be assumed that an EOS is to be tuned perfectly to some synthetic true
solution with the exception of the BIPs. The task at hand is to find a BIP matrix (K) that
accurately predicts some set of experimental data from a synthetic EOS BIPs (K∗). Given
that there areNe sets of PVT experiments, where each experiment has a set of data-points,
then the set of observable data (Ω) can be defined by

Ω = { ~ω1, ~ω2, ..., ~ωNe} (4.1)
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Chapter 4. Local Regression of BIPs and Selective Tuning Methodology

where ~ωi is a set of measurements in a given experiment. As an example, let Ω be defined
by a constant composition expansion (CCE), constant volume depletion (CVD) and multi-
stage separator (MMS) test. Then ~ω1 would be, for example, the volume of the PVT cell
versus pressure used to estimate the saturation pressure of the fluid at a given temperature.

For the scope of this work, the only type of experiment used to describe the phase behav-
ior will be the K-values at different pressures. However, the general problem description
holds for any experiment type (e.g. CCE, CVD, DLE). For the specific type of conditions
of the experiment(s) in Ω a supplementary set (D) is calculated using the provided EOS
and an initial set of BIPs (K◦) as follows:

D = { ~d1, ~d2, ..., ~dNe} (4.2)

Given an EOS with a specific set of BIPs, it is preferable to have a cost function (C) that
can minimize the difference between the calculated (D) and measured (Ω) data. In general,
the objective of the regression approach can be described as

K∗ = argmin
K
{C(Ω; K)} (4.3)

where K∗ is the set of solution BIPs that is able to accurately model the measured data.

One specific type of cost function, called the root mean squared (RMS), will be used
in this work and is defined by

CRMS(Ω,K) =

√√√√ 1

N

Ne∑
i=1

〈~ri, ~ri〉 (4.4)

where 〈◦, ◦〉 is the inner product1 and ~ri is the residual vector for experiment i defined by:

~ri =
~di(K)− ~ωi(Ω)

dref
(4.5)

and N is the total number of measurements (data-points). The reference value (dref,i) de-
pends on the type of RMS model. Two examples are (1) a relative RMS where dref,i = ωi
which weights small changes in the magnitude as much as large changes in the magnitude
based on the observed value, and (2) a constant weighted RMS where dref,i is constant, for
example dref,i = max{~ωi} which weights large changes in magnitude more than small
changes in magnitude. In this work the constant type RMS with the maximum experiment
value will be used as the reference as this is used in PhazeComp.

1For an example of how to calculate an inner product and the cost function, see appendix D
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4.2 Simultaneous Tuning - Reference Case

4.2 Simultaneous Tuning - Reference Case
Traditional solutions to the problem described in the previous section tend to be simul-
taneous tuning methods like multi-variate Newton’s method described in section 2.3.1 or
the gradient descent approach described in section 2.3.2. However, because of the O(n2)
increase in number of BIPs with respect to the number of components, the computational
time of simultaneous methods are not computationally feasible for systems with a large
number of components, like real oil and gas reservoirs.

As an example, the PhazeComp solver shows, in section 4.6.2, that the computational
time increases exponentially with respect to increasing number of components in the fluid
model. This creates a constraint on the possible number of components that it is possible to
use in the regression. Katz-Firoozabadi [18] and Yonous et al. [46] describe an approach
where a subset of the BIPs have been found to have a good effect on specific fluid models.
An approach that automatically determines which subset is relevant for the specific fluid
model in question doesn’t seem to exist.

This further expands the problem in the previous section to; finding a set of BIPs that de-
scribe the fluid system within computationally feasible time. This additional consideration
of computational time is the basis for the proposed approach described in the following
section.

4.3 Selective Tuning
The main objective of selective tuning is to reduce the problem given in equation (4.3) to
a simplified system

K∗opt = argmin
Kopt∈K

{C(Ω; K)} (4.6)

where Kopt is the subset of BIPs that yield the simplest possible solution based on the
importance of each BIP. The definitions of simplicity and importance are given as follows:

A parameter solution (K∗opt) is simple if the number of parameters that deviate from some
reference value is as small as possible while still yielding a valid solution to the system
values, i.e. ~dj = ~ωj . The reference parameters (K0) are arbitrary, yet the solution may be
dependent on the reference values. It is therefore assumed that the reference parameters
are valid and near the true solution or in the case of this work approach the correct solution.
The validity of the solution is described by the physical constraints of the system while
the nearness of the parameters ensures the solution will converge if a numerical scheme is
applied to the deviating parameters (i.e. regression parameters).

The importance of a parameter is somewhat harder to describe as this is specific to the
algorithm used to find the solution. However, a general description can be defined by the
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Chapter 4. Local Regression of BIPs and Selective Tuning Methodology

ability of a single parameter to simplify the solution. As an example, if a parameter has
little effect towards bringing the regression to a sufficient description of the system, then
the parameter is said to be of little importance.

The general idea of selective tuning is rather straightforward; find some subset of the
model parameters that yield a sufficient solution while minimizing the number of parame-
ters that need to be tuned. The proposed method for estimating which parameters yield the
simplest possible solution is by defining a metric for the parameter importance. Examples
of possible metrics have been defined in sections 4.4.1, 4.5.1 and 4.5.2.

An iterative method is considered in tis work, where (1) the local importance of each BIP
is found, then (2) a regression is applied to the n parameters with the highest importance,
followed by (3) estimating the fit of the current set of parameters. If the fit of the regres-
sion made in step (3) is within the threshold, then the selective tuning process is finished.
If the fit of the regression in step (3) is not within some threshold then revert back to step
(1). This iterative version of the selective tuning approach is applied in this work. The
methods used for estimating the local importance are the same as mentioned in the previ-
ous paragraph; the gradient methods, the PCC method and the random forest method. The
relationship between this local version of the selective tuning process and the more general
selective tuning, described in the beginning of this section, is based on the assumption that
the local search tends to move the reference value (K0) closer to the true solution in an
iterative manner.

4.4 Derivative Based Methods
In the following section a derivative based method is given that aims to describe the local
importance of the BIPs based on the methodology stated in section 4.3. Specifically, the
following section describes a methodology based on the gradient of the cost function to
estimate the local parameter importance.

4.4.1 Gradient Method Approach
Similar to the method described in section 2.3.2, an estimate of the gradient of the cost
function with respect to the BIPs can be calculated using a finite difference approximation
with respect to an initial BIP matrix (K) and a small perturbation for BIP shown by

∇C(K) = { ∂C
∂kij
}i6=j ≈ {

C(kij + ∆k)− C(kij −∆k)

2∆k
}i 6=j (4.7)

In addition to the gradient, a partial derivative matrix (∂C) is defined by

∂C =


0 ∂12C ∂13C . . .

∂21C 0 ∂23C . . .
∂31C ∂32C 0 . . .

...
...

...
. . .

 (4.8)
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4.5 Perturbation Approach

where ∂ijC is the partial derivative of the cost function with respect to kij as shown by

∂ijC =
∂C

∂kij
(4.9)

As described in section 4.5 equation (4.17), one possible method for estimating the impor-
tance (ρij) of BIP kij can be calculated by the partial derivative of the cost function with
respect to kij divided by the 2-norm2 of the cost function shown by

ρGDij =
∂ijC

||∇C||2
(4.10)

It is therefore possible to show that ∂C is proportional to the importance matrix (i.e. Σ ∝
∂C).

4.5 Perturbation Approach
Unlike the gradient method of section 4.4.1, the perturbation methods described below
are non-derivative based and belongs to the field of statistics. The aim of the following
perturbation methods is to rank the importance of the current set of BIPs and extract the
simplest set of parameters for the selective tuning process defined in section 4.3.

The main idea of the perturbation method is that, given a current set of BIPs (K), an
additional perturbation matrix (∆) is added, and then the cost function (Cλ) is calculated
at the perturbated set of BIPs as shown by

Cλ = C(K + ∆λ) (4.11)

where

∆λ =


0 δ

(λ)
12 δ

(λ)
13 . . .

δ
(λ)
21 0 δ

(λ)
23 . . .

δ
(λ)
31 δ

(λ)
32 0 . . .

...
...

...
. . .

 (4.12)

and δ(λ)
ij is some small perturbation with a given distribution (e.g. δ(λ)

ij ∼ N (0, σ)). Differ-
ent sampling approaches may also be applied for the perturbations (e.g. latin hypercube),
however these approaches were not implemented in this work. In equations (4.11) and
(4.12) λ is the counting variable for each perturbation in the range λ ∈ {1, 2, ..., Nλ}
where Nλ is the total number of perturbations. In this work the perturbation deviation
(δ(λ)) will be a uniform distribution within some range (±|∆k|)

2For an example of how to calculate the 2-norm see appendix D section D.5
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Estimating the magnitude of the difference in cost function between the initial BIP ma-
trix (K) and the perturbed BIP matrix (K + ∆λ) for the total number of perturbations
(Nλ) builds the database of change in cost as shown by

|∆~C| = {|∆C1|, |∆C2|, ..., |∆CNλ |} (4.13)

where

|∆Cλ| = |C(K + ∆λ)− C(K)| (4.14)

For convenience the set of perturbations (~δij) between components i and j is also stored
in the following way

~kij = {kij + δ
(1)
ij , kij + δ

(2)
ij , ..., kij + δ

(Nλ)
ij } (4.15)

~δij = {δ(1)
ij , δ

(2)
ij , ..., δ

(Nλ)
ij } (4.16)

Based on the change in magnitude of the cost function value for each perturbation (|∆~C|)
as well as the size and magnitude of the perturbation (~δij) an importance matrix (Σ) can
be defined as

Σ =


0 ρ12 ρ13 . . .
ρ21 0 ρ23 . . .
ρ31 ρ32 0 . . .

...
...

...
. . .

 (4.17)

where ρij is the local importance for the BIP kij .

4.5.1 Perturbation Methodology Using PCC
One method for estimating the local importance (ρij) for BIP kij is by calculating the
Pearson correlation coefficients as shown by

ρPCCij = ρPCC(~kij ,∆~C) =
σ(~kij ,∆~C)

σ(~kij) · σ(∆~C))
(4.18)

as described in section 2.3.4. Because the perturbation is local, it is possible to approxi-
mate the relationship between the two values of the PCC calculation as linear. This makes
the effect of the PCC methodology useful to estimate the local importance of each BIP.
Having defined the change in the cost function based only on the magnitude, the sign of
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the PCC calculation yields a ranking of the most important set of BIPs and the direction
which a regression technique should search similar to the gradient method. In general, for
ρPCCij > 0 then the value of the BIP kij should decrease to yield a reduced cost function.
Similarly, for ρPCCij < 0 then the value of the BIP kij should increase to yield a reduced
cost function. An example of the PCC method is shown in section 2.3.4.

4.5.2 Perturbation Methodology Using Trained Random Forest
Another potential method to estimate the importance (ρij) for kij is by using the set of
perturbations (~δij) and the change in cost function (∆~C) to train a random forest as de-
scribed in section 2.3.5. One feature of the random forest method is that it allows for an
estimate of the feature importance for each parameter (see section 2.3.5 for more details).
Having a trained random forest (ĥ(δ)) will therefore be able to estimate the importance of
each BIP shown by

ρRFij = ρRF (~kij ,∆~C) = FI(ĥ(δ)) (4.19)

where FI is the feature importance of the trained random forest ĥ(δ) for the set of pertur-
bations (δ) defined by

δ = {~δ12, ~δ13, ..., ~δ21, ~δ23, ...} (4.20)

4.6 Results
In this section the selective tuning approach is applied to two sets of fluid mixtures. First,
a description of the fluid systems will be given, followed by the specific approaches of
the selective tuning method used in this work. A base case is defined using PhazeComp’s
solver on the entire set of BIPs. Following the base case results, the results for the three
proposed approaches to the importance ranking are described for the first iteration, fol-
lowed by the results of the regression scheme.

4.6.1 Case Description
In the following sections, the iterative selective tuning process was carried out for two
cases. The first case (case 1) is defined by a mixture containing SCN components C2, C5,
C7 and C10. The EOS used for case 1 is given in Table 4.1 and 4.2. The initial composition
used was uniform and the temperature at which the experiments were carried out at 100
◦F. The initial BIP matrix is given in Table 4.3 and contains zero BIPs with a bound on the
regression variables between 0 and 0.2.
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Table 4.1: Synthetic component properties, molecular weights and acentric factors for simple system
(case 1).

Name MW Tc Pc AF Vc

(oF) (psia) (m3/kmol)
C2 30.07 89.91 706.6 0.099 0.146
C5 70.91 386.6 503.2 0.231 0.306
C7 95.63 529.0 455.3 0.274 0.387
C10 135.1 678.9 359.9 0.392 0.537

Synthetic Component Properties

Table 4.2: Synthetic BIP matrix for simple system (case 1).

C2 C5 C7 C10
C2 0 0.0076 0.0131 0.0232
C5 0.0076 0 0.0008 0.0044
C7 0.0131 0.0008 0 0.0015

C10 0.0232 0.0044 0.0015 0

Synthetic BIP Matrix

The initial values for the BIP matrix was set to zero BIPs as shown in Table 4.3 and the
bounds on the PhazeComp regression was set to 0 and 0.5 for all BIPs.

Table 4.3: Initial BIP matrix for simple system (case 1).

C2 C5 C7 C10
C2 0 0.0000 0.0000 0.0000
C5 0.0000 0 0.0000 0.0000
C7 0.0000 0.0000 0 0.0000

C10 0.0000 0.0000 0.0000 0

Initial BIP Matrix

The second case (case 2) is defined by a mixture containing SCN components C1 to C10.
The EOS used for case 2 is given in Table 4.4 and 4.5. A uniform molar composition
(equal molar amount) was used, and the experiments were carried out at a fixed tempera-
ture of 100 ◦F. The initial BIP matrix is given in Table 4.6 and contains zero BIPs with a
bound on the regression variables between 0 and 0.2.
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Table 4.4: Synthetic component properties, molecular weights and acentric factors for intermediate
system (case 2).

Name MW Tc Pc AF Vc
(oF) (psia) (m3/kmol)

C1 16.04 -116.7 667.0 0.011 0.099
C2 30.07 89.91 706.6 0.099 0.146
C3 44.10 206.0 616.1 0.152 0.200
C4 58.12 305.0 544.9 0.203 0.258
C5 70.91 386.6 503.2 0.231 0.306
C6 82.42 464.4 490.0 0.240 0.341
C7 95.63 529.0 455.3 0.274 0.387
C8 109.2 585.2 420.4 0.312 0.435
C9 122.2 634.5 388.1 0.352 0.485
C10 135.1 678.9 359.9 0.392 0.537

Component Properties

Table 4.5: Synthetic BIP matrix for complex system (case 2).

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.0021 0.0069 0.0127 0.0175 0.0211 0.0254 0.0298 0.0343 0.0386
C2 0.0021 0 0.0014 0.0045 0.0076 0.0100 0.0131 0.0164 0.0198 0.0232
C3 0.0069 0.0014 0 0.0009 0.0025 0.0040 0.0060 0.0083 0.0108 0.0134
C4 0.0127 0.0045 0.0009 0 0.0004 0.0011 0.0023 0.0038 0.0056 0.0074
C5 0.0175 0.0076 0.0025 0.0004 0 0.0002 0.0008 0.0017 0.0030 0.0044
C6 0.0211 0.0100 0.0040 0.0011 0.0002 0 0.0002 0.0008 0.0017 0.0028
C7 0.0254 0.0131 0.0060 0.0023 0.0008 0.0002 0 0.0002 0.0007 0.0015
C8 0.0298 0.0164 0.0083 0.0038 0.0017 0.0008 0.0002 0 0.0002 0.0006
C9 0.0343 0.0198 0.0108 0.0056 0.0030 0.0017 0.0007 0.0002 0 0.0001

C10 0.0386 0.0232 0.0134 0.0074 0.0044 0.0028 0.0015 0.0006 0.0001 0

Synthetic BIP Matrix

The initial values for the BIP matrix was set to zero BIPs as shown in Table 4.6 and the
bounds on the PhazeComp regression was set to 0 and 0.5 for all BIPs.
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Table 4.6: Initial BIP matrix for complex system (case 2).

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
C2 0.0000 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
C3 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
C4 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
C5 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 0.0000
C6 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000
C7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000
C8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000
C9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.0000

C10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0

Initial BIP Matrix

The methodology of selective tuning is similar for both cases and is given below:

1. Define the number of regression parameters (n), and maximum number of iterations
(Nmax).

2. Define the current BIP matrix.

3. Calculate the importance matrix for the current BIP matrix based on the specific
method for estimation compared to the experimental data (Ω).

4. Determine the n most important BIPs from the importance matrix.

5. Regress the n most important BIPs based on the observed data and the cost function
(RMS).

6. Calculate the total RMS after regression based on the observed data and the calcu-
lated data.

7. Either (a) the error is less than the threshold error (error≤ ε), then the process is fin-
ished or (b) the number of iterations is equal to the maximum number of iterations,
then the process is finished or (c) extract the regressed BIP matrix, set the current
BIP matrix equal to BIP matrix after regression and continue to step 3.

To avoid getting stuck in a loop if the same subset of BIPs are chosen twice in a row, an
additional heuristic was implemented. If this situation occurs, the number of BIPs in the
subset (n) will be increased by one but restricted to be within some upper bound. The BIPs
chosen for the subset are chosen from the ranking of importance from the selective tuning
approach. As an example, take a mixture containing SCN components C1 to C15. The
selective tuning approach might find that the BIP between C1-C15 and C1-C14 are ranked
to the two most important BIPs. If this is the case for two iterations in a row, the third most
important BIP will also be included in the subset of BIPs used in the regression (given that
three BIPs are under the upper limit of allowed BIPs).
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The basis for the proposed methodology was developed based on the traditional structure
of EOS tuning described by Yonous et al. in [46]. There is also some precedence in the
field of numerical methods to the proposed methodology. From the point of view of nu-
merical methods, the proposed approach resembles a combination of the gradient descent
method (see section 2.3.2) and a modified Powell’s method (see section 2.3.3). However,
the proposed method in its current form is, to the current knowledge of the author, a novel
approach in the field of hydrocarbon fluid modeling.

For all the cases described in the following sections, the maximum number of iterations
was set to 14 (starting at 0, 1, ... where step zero is the initial guess). The number of
parameters that were tuned varies based on the case number (i.e. case 1 or 2) and is
specified in the relevant sections.

4.6.2 Results - Base Case

The PVT software used in this work (PhazeComp) has an advanced regression solver. This
solver will be used as a base case solution to the problem of BIP tuning. For both fluid
model cases the result of a regression scheme where all the BIPs is used in the regression
are given in Table 4.7 and 4.8. For reference, the time used by PhazeComp to solve the
regression was recorded to be 0.31 s (case 1) and 3.05 s (case 2) respectively.

Table 4.7: BIP matrix solution for simple system (case 1) using Newton’s method.

C2 C5 C7 C10
C2 0 0.0076 0.0131 0.0232
C5 0.0076 0 0.0008 0.0044
C7 0.0131 0.0008 0 0.0015

C10 0.0232 0.0044 0.0015 0

Final BIP Matrix

Table 4.8: BIP matrix solution for complex system (case 1) using Newtons method.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.0021 0.0069 0.0127 0.0175 0.0211 0.0254 0.0298 0.0343 0.0386
C2 0.0021 0 0.0014 0.0045 0.0076 0.0100 0.0131 0.0164 0.0198 0.0232
C3 0.0069 0.0014 0 0.0009 0.0025 0.0040 0.0060 0.0083 0.0108 0.0134
C4 0.0127 0.0045 0.0009 0 0.0004 0.0011 0.0023 0.0038 0.0056 0.0074
C5 0.0175 0.0076 0.0025 0.0004 0 0.0002 0.0008 0.0017 0.0030 0.0044
C6 0.0211 0.0100 0.0040 0.0011 0.0002 0 0.0002 0.0008 0.0017 0.0028
C7 0.0254 0.0131 0.0060 0.0023 0.0008 0.0002 0 0.0002 0.0007 0.0015
C8 0.0298 0.0164 0.0083 0.0038 0.0017 0.0008 0.0002 0 0.0002 0.0006
C9 0.0343 0.0198 0.0108 0.0056 0.0030 0.0017 0.0007 0.0002 0 0.0001

C10 0.0386 0.0232 0.0134 0.0074 0.0044 0.0028 0.0015 0.0006 0.0001 0

Final BIP Matrix
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To estimate the increase in computational time for PhazeComp’s regression algorithm with
respect to increased number of components, a range of mixtures were tested containing
SCN components ranging from C1 to C20. Starting from a mixture containing 5 SCN
components ranging from C1 to C5 in an increasing manner (i.e. C1, C2, C3, C4 and
C5) represented by n=5, the average time for five runs was recorded versus the number of
components. Adding a heavier component for each step (e.g. first C1 to C5 as n=5 then
C1 to C6 as n=6 etc.) the same procedure was carried out for mixtures containing SCN
components up to C1 to C20 (n = 20). The plot of regression time versus the number
of SCN components is shown in Figure 4.1 together with an exponential trend-line. By
extrapolating the trend-line to a 40 and 50 component system, the time needed to solve
the regression scheme with PhazeComp is estimated to take roughly 13 and 846 days
respectively. The computational time for this size system is unfeasible for any regression
scheme.
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Figure 4.1: Plot displaying the average time for PhazeComp regression scheme for increasing num-
ber of SCN mixtures starting from a mixture of SCN compositions containing C1 to C5 (n=5) up
towards C1-C20 (n=20) as well as an exponential trend-line.

The reason for the exponential behavior can be attributed to a combination of the regres-
sion method used by PhazeComp, which is assumed to be a variation of a multivariate
Newton’s method, and the squared increase in the number of parameters in the regression
scheme given by 3

Nbips =
Ncomps · (Ncomps − 1)

2
(4.21)

3A simple and visual derivation of this equation is given in Appendix D section D.4.
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where Ncomps is the number of components and Nbips is the number of BIPs.

4.6.3 Results - Gradient Method
Following the methodology described in section 4.6.1, application of the gradient method
to estimate the local importance of every BIP for each iteration of the selective tuning was
calculated. Examples of the importance matrix for the first iteration of the selective tuning
process is shown for case 1 and 2 in Table 4.9 and 4.10.

Table 4.9: BIP importance matrix for the simple system (case 1) using gradient method for the first
iteration.

C2 C5 C7 C10
C2 0 -0.0010 -0.0011 -0.8126
C5 -0.0010 0 -0.0014 -0.5424
C7 -0.0011 -0.0014 0 -0.2133

C10 -0.8126 -0.5424 -0.2133 0

Importance Matrix

Table 4.10: BIP importance matrix for the intermediate system (case 2) using the gradient method.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 -0.1179 -0.1344 -0.1370 -0.1370 -0.1447 -0.2244 -0.2114 -0.3130 -0.2955
C2 -0.1179 0 0.0000 0.0000 -0.0126 -0.0347 -0.0484 -0.0494 -0.1372 -0.1508
C3 -0.1344 0.0000 0 -0.0030 -0.0036 -0.0098 -0.0716 -0.0317 -0.0271 -0.1257
C4 -0.1370 0.0000 -0.0030 0 0.0312 0.0300 -0.0174 0.0253 -0.0569 -0.0743
C5 -0.1370 -0.0126 -0.0036 0.0312 0 0.0224 0.0168 0.0464 0.0702 0.0397
C6 -0.1447 -0.0347 -0.0098 0.0300 0.0224 0 0.0028 0.0858 0.1124 0.0767
C7 -0.2244 -0.0484 -0.0716 -0.0174 0.0168 0.0028 0 0.1310 0.1722 0.1732
C8 -0.2114 -0.0494 -0.0317 0.0253 0.0464 0.0858 0.1310 0 0.3248 0.3621
C9 -0.3130 -0.1372 -0.0271 -0.0569 0.0702 0.1124 0.1722 0.3248 0 0.4453

C10 -0.2955 -0.1508 -0.1257 -0.0743 0.0397 0.0767 0.1732 0.3621 0.4453 0

Importance Matrix

Based of the importance matrix, the BIPs with the largest magnitude of estimated impor-
tance were used in a PhazeComp regression run. The number of BIPs chosen for regression
is specified beforehand and in the result shown in this work the range of important param-
eters is set to 2-4 for case 1 and 10-20 for case 2. The result of 14 iterations of the selective
tuning approach is shown in Table 4.11 and 4.12.
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Table 4.11: Final BIP matrix for the simple system (case 1) using the gradient method for the first
iteration.

C2 C5 C7 C10
C2 0 0.0075 0.0132 0.0232
C5 0.0075 0 0.0008 0.0044
C7 0.0132 0.0008 0 0.0015

C10 0.0232 0.0044 0.0015 0

Final BIP Matrix

Table 4.12: Final BIP matrix for the intermediate system (case 2) using the gradient method.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.0160 0.0000 0.0041 0.0163 0.0169 0.0267 0.0368 0.0389 0.0310
C2 0.0160 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0628 0.0176 0.0016
C3 0.0000 0.0000 0 0.0000 0.0000 0.0011 0.0006 0.0001 0.0353 0.0000
C4 0.0041 0.0000 0.0000 0 0.0000 0.0008 0.0022 0.0015 0.0004 0.0133
C5 0.0163 0.0000 0.0000 0.0000 0 0.0000 0.0056 0.0021 0.0000 0.0044
C6 0.0169 0.0000 0.0011 0.0008 0.0000 0 0.0012 0.0017 0.0011 0.0020
C7 0.0267 0.0000 0.0006 0.0022 0.0056 0.0012 0 0.0001 0.0005 0.0007
C8 0.0368 0.0628 0.0001 0.0015 0.0021 0.0017 0.0001 0 0.0001 0.0000
C9 0.0389 0.0176 0.0353 0.0004 0.0000 0.0011 0.0005 0.0001 0 4.3E-05

C10 0.0310 0.0016 0.0000 0.0133 0.0044 0.0020 0.0007 0.0000 4.3E-05 0

Final BIP Matrix

A summary plot of the RMS versus the selective tuning iteration number is given (black
solid line) in Figure 4.2 for case 1 and 2 respectively together with a random selection of
important parameters (black dashed line) given as a reference.
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(a) Case 1 RMS results (n = 100).
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(b) Case 2 RMS results (n = 100).

Figure 4.2: Results for RMS versus selective tuning iteration number for case 1 (left) and 2 (right)
for the gradient method (solid black line) and a random choice of important BIPs (dashed black line).
(a) Case 1 mixture with 2 to 4 important BIPs while (b) case 2 mixture with 10 to 20 important BIPs.

60



4.6 Results

As the simultaneous regression approach was shown not to be feasible with respect to run-
time, an estimate of the run-time for the gradient based method with respect to the number
of components of the system should also be performed. The results of SCN components
ranging from C1-C5 to C1-C24 for estimating the importance matrix of a single iteration
are shown in Figure 4.3.
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Figure 4.3: Plot displaying the average time for PhazeComp regression scheme (black points) and
time to estimate importance using the gradient method (red points) for increasing number of SCN
mixtures starting from C1 to C5 (n=5) up toward C1-C20 (n=20) as well as trend-lines for both cases.

Assuming that the data will follow the power-law trendline displayed in Figure 4.3 the
estimated time to calculate the importance matrix for a 40 and 50 component system for
a single iteration of the selective tuning method is roughly 42.5 and 80.9 seconds respec-
tively. This is significantly less than running the full regression scheme, however the
number of iterations are assumed to range between 10 and 100, so the total regression
time will range from 400 to 8000 seconds. Because the number of parameters used in the
regression is relatively small, the time used for the regression can be neglected (e.g. 100
parameter regression takes between 10 to 100 seconds which is the most sub-parameters
to be used). Furthermore, each iteration in the selective tuning method is possible to run
in parallel in the sense that the 40-80 second range of each iteration can be run in parallel,
reducing the time per iteration by a factor equal to the number of cores used to run in
parallel. Assuming a range of cores between 5 (e.g. a personal computer) and 100 (e.g. a
cluster) then it is estimated that the total regression time will range between 4 and 1600
seconds.

However, if the trendline does not hold for more complex systems and the method turn
exponential assuming the same slope at n = 24, then the time per iteration will increase

61



Chapter 4. Local Regression of BIPs and Selective Tuning Methodology

significantly. An estimate using the slope at n = 24 yields a run-time of 1000 seconds
for a single iteration for a 50-component system. With the number of iterations ranging
from 10 to 100 the range of time for the entire selective tuning process will be between
1E4 and 1E5 seconds. Assuming that the process is run in parallel with a range of cores
between 5 and 100 then the estimated total time is between 100 and 20,000 seconds or
about 2 minutes to 5 and a half hours. This time range is still far below the simultaneous
approach and is also within the realm of reasonable time spent on EOS fluid modeling.

4.6.4 Results - PCC Method

Following the methodology described in section 4.6.1, application of the PCC method to
estimate the local importance of every BIP for each iteration of the selective tuning was
calculated. Examples of the importance matrix for the first iteration of the selective tuning
procedure is shown for case 1 and 2 in Table 4.13 and 4.14.

Table 4.13: BIP importance matrix for the simple system (case 1) using the PCC method.

C2 C5 C7 C10
C2 0 0.1079 -0.0347 -0.7872
C5 0.1079 0 0.1485 -0.5671
C7 -0.0347 0.1485 0 -0.2574

C10 -0.7872 -0.5671 -0.2574 0

Importance Matrix

Table 4.14: BIP importance matrix for the intermediate system (case 2) using the PCC method for
the first iteration.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 -0.1160 -0.1015 -0.2409 -0.1338 -0.3565 -0.1537 -0.2268 -0.2193 -0.3968
C2 -0.1160 0 0.0280 -0.0062 -0.0917 0.0276 -0.1539 -0.1219 -0.0157 -0.2636
C3 -0.1015 0.0280 0 -0.0273 0.0290 -0.2215 0.0621 0.0668 0.2037 -0.0880
C4 -0.2409 -0.0062 -0.0273 0 0.0111 0.0178 -0.0859 -0.0351 -0.2807 -0.0402
C5 -0.1338 -0.0917 0.0290 0.0111 0 0.1358 0.0919 0.1637 0.0209 0.1006
C6 -0.3565 0.0276 -0.2215 0.0178 0.1358 0 0.0347 0.0983 0.2158 -0.0058
C7 -0.1537 -0.1539 0.0621 -0.0859 0.0919 0.0347 0 0.1864 0.3138 0.1655
C8 -0.2268 -0.1219 0.0668 -0.0351 0.1637 0.0983 0.1864 0 0.2442 0.2122
C9 -0.2193 -0.0157 0.2037 -0.2807 0.0209 0.2158 0.3138 0.2442 0 0.4525

C10 -0.3968 -0.2636 -0.0880 -0.0402 0.1006 -0.0058 0.1655 0.2122 0.4525 0

Importance Matrix

Based of the importance matrix, the BIPs with the largest magnitude of the estimated
importance were used in a PhazeComp regression run. The number of BIPs chosen for
regression is specified beforehand and in the result shown in this work the range of impor-
tant parameters is set to 2-4 for case 1 and 10-20 for case 2. The result of 14 iterations of
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the selective tuning approach is shown in Table 4.15 and 4.16.

Table 4.15: Final BIP matrix for simple system (case 1) using the PCC method for the first iteration.

C2 C5 C7 C10
C2 0 0.0062 0.0135 0.0232
C5 0.0062 0 0.0000 0.0044
C7 0.0135 0.0000 0 0.0015

C10 0.0232 0.0044 0.0015 0

Final BIP Matrix

Table 4.16: Final BIP matrix for complex system (case 2) using the PCC method.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.0000 0.0000 0.0272 0.0378 0.0000 0.0374 0.0290 0.0263 0.0390
C2 0.0000 0 0.0000 0.0000 0.0000 0.0000 0.0144 0.0721 0.0066 0.0000
C3 0.0000 0.0000 0 0.0000 0.0193 0.0000 0.0060 0.0001 0.0000 0.0286
C4 0.0272 0.0000 0.0000 0 0.0000 0.0000 0.0083 0.0000 0.0135 0.0015
C5 0.0378 0.0000 0.0193 0.0000 0 0.0000 0.0065 0.0000 0.0000 0.0063
C6 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.0008 0.0004 0.0000 0.0050
C7 0.0374 0.0144 0.0060 0.0083 0.0065 0.0008 0 0.0001 0.0002 0.0020
C8 0.0290 0.0721 0.0001 0.0000 0.0000 0.0004 0.0001 0 0.0012 0.0008
C9 0.0263 0.0066 0.0000 0.0135 0.0000 0.0000 0.0002 0.0012 0 0.0009

C10 0.0390 0.0000 0.0286 0.0015 0.0063 0.0050 0.0020 0.0008 0.0009 0

Final BIP Matrix

A summary plot of the RMS versus the selective tuning iteration number is given (black
solid line) in Figure 4.4 for case 1 and 2 respectively together with a random selection of
important parameters (black dashed line) given as a reference.

However, unlike the gradient method for estimating the importance matrix, the PCC method
uses a dataset with n datapoints to estimate the importance. These datapoints were gener-
ated by perturbing around the current BIP matrix with a uniform distribution and a bound
in the range kij − dk < kij + δij < kij + dk. For all cases in this work, the optimum
value of dk was found to be 0.00001. The reasoning for the choice of dk was based on the
assumption that as dk → 0 then the correlation found by PCC will be linear. The lower
bound for dk was found by trial and error where at smaller values the machine accuracy
had a significant effect on the results.

A convergence study was also made for the number of perturbations (n) needed to yield
representative solution for case 2. The results are given in appendix C in section C.2. The
value used in the results above were calculated using n = 100 which, from the conver-
gence study, is within the range of convergence. However, it is important to note that the
number of datapoints needed increases with the iteration number and for larger iteration
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(a) Case 1 RMS results (n=100).

1.E-02

1.E-01

1.E+00

1.E+01
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

RM
S,

 (%
)

Iteration Number

(b) Case 2 RMS results (n=100).

Figure 4.4: Results for RMS versus selective tuning iteration number for case 1 (left) and 2 (right)
for the PCC method (solid black line) and a random choice of important BIPs (dashed black line).
(a) Case 1 mixture with 2 to 4 important BIPs while (b) case 2 mixture with 10 to 20 important BIPs.

numbers, the deviation is more scattered for all cases in the convergence study (e.g. a bad
choice in an early iteration will lead to a significant deviation at the later iterations).

4.6.5 Results - Random Forest Method
Following the methodology described in section 4.6.1, application of the random forest
method to estimate the local importance of every BIP for each iteration of the selective
tuning. Examples of the importance matrix for the first iteration of the selective tuning
procedure is shown for case 1 and 2 in Table 4.17 and 4.18.

Table 4.17: BIP importance matrix for the simple system (case 1) using random forest method.

C2 C5 C7 C10
C2 0 0.0019 0.0016 0.0024
C5 0.0019 0 0.0021 0.3153
C7 0.0016 0.0021 0 0.6766

C10 0.0024 0.3153 0.6766 0

Importance Matrix

Based on the importance matrix, the BIPs with the largest magnitude of the estimated
importance were used in a PhazeComp regression run. The number of BIPs chosen for
regression is specified beforehand and in the result shown in this work the range of impor-
tant parameters are set to 2-4 for case 1 and 10-20 for case 2. The result of 14 iterations of
the selective tuning approach is shown in Table 4.19 and 4.20.
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Table 4.18: BIP importance matrix for the intermediate system (case 2) using random forest method
for the first iteration.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.0095 0.0085 0.0105 0.0081 0.0195 0.0104 0.0109 0.0265 0.0258
C2 0.0095 0 0.0094 0.0078 0.0077 0.0091 0.0084 0.0098 0.0060 0.0074
C3 0.0085 0.0094 0 0.0120 0.0090 0.0090 0.0096 0.0087 0.0086 0.0178
C4 0.0105 0.0078 0.0120 0 0.0073 0.0076 0.0100 0.0123 0.0109 0.0149
C5 0.0081 0.0077 0.0090 0.0073 0 0.0128 0.0155 0.0253 0.0507 0.0881
C6 0.0195 0.0091 0.0090 0.0076 0.0128 0 0.0423 0.0349 0.0482 0.0689
C7 0.0104 0.0084 0.0096 0.0100 0.0155 0.0423 0 0.0748 0.0408 0.0345
C8 0.0109 0.0098 0.0087 0.0123 0.0253 0.0349 0.0748 0 0.0726 0.0492
C9 0.0265 0.0060 0.0086 0.0109 0.0507 0.0482 0.0408 0.0726 0 0.0086

C10 0.0258 0.0074 0.0178 0.0149 0.0881 0.0689 0.0345 0.0492 0.0086 0

Importance Matrix

Table 4.19: Final BIP matrix for simple system (case 1) using the random forest method for the first
iteration.

C2 C5 C7 C10
C2 0 0.0060 0.0141 0.0232
C5 0.0060 0 0.0011 0.0044
C7 0.0141 0.0011 0 0.0015

C10 0.0232 0.0044 0.0015 0

Final BIP Matrix

Table 4.20: Final BIP matrix for complex system (case 2) using the random forest method.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0989
C2 0.0000 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
C3 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
C4 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 0.0063 0.0000
C5 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 0.0099
C6 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0052
C7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0004
C8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000
C9 0.0000 0.0000 0.0000 0.0063 0.0000 0.0000 0.0000 0.0000 0 0.0000

C10 0.0989 0.0000 0.0000 0.0000 0.0099 0.0052 0.0004 0.0000 0.0000 0

Final BIP Matrix

A summary plot of the RMS versus the selective tuning iteration number is given (black
solid line) in Figure 4.5 for case 1 and 2 respectively together with a random selection of
important parameters (black dashed line) given as a reference.
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(a) Case 1 RMS results (n=100).
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(b) Case 2 RMS results (n=100).

Figure 4.5: Results for RMS versus selective tuning iteration number for case 1 (left) and 2 (right)
for the random forest method (solid black line) and a random choice of important BIPs (dashed black
line). (a) Case 1 mixture with 2 to 4 important BIPs while (b) case 2 mixture with 10 to 20 important
BIPs.

Similar to the PCC method, the random forest approach uses a dataset with n datapoints to
estimate the importance. These datapoints were generated by perturbing around the cur-
rent BIP matrix with a uniform distribution and a bound in the range kij−dk < kij+δij <
kij + dk. For all cases in this work, the value of dk was set to 0.05 as one of the draw-
backs of the random forest routine is that it does not correlate linear relationships well.
This method is therefore the only approach which generates a more global than local esti-
mation for the importance.

4.6.6 More Results
The results for each iteration of the gradient method and the first several iterations for the
PCC and RF methods are summarized in appendix C section C.1. These results contain
the following information for each iteration:

• Importance matrix

• BIP Matrix

• Final K-value data
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Discussion

”Unforeseen surprises are the rule in science, not the exception. Remember: Stuff hap-
pens.”

- Leonard Susskind

5.1 Discussion - Effects of BIPs on Phase Behavior
The results for the binary phase behavior given in section 3.1.1 and appendix A shows a
similar trend in all cases. The difference in the phase behavior by introducing BIPs is di-
vided into two regions. Region 1 is the temperature range near the light component critical
temperature. There is a shift in the mixture’s critical pressure depending (a) the sign of the
BIP and (b) the magnitude of the BIP. The results for region 1 show a decrease in critical
pressure for a positive BIP with a more dramatic shift for an increased magnitude of the
BIP. Conversely, an increase in the mixture critical pressure is shown to be related to a
negative BIP with an increased shift correlated to an increased magnitude of the BIP.

The second temperature region yields the opposite behavior of region 1, but is constrained
to the same two variables as region 1 (i.e. BIP sign and magnitude). For a positive BIP
in region 2 the critical pressure is increased, where the magnitude of the shift is related
to the magnitude of the BIP. A negative BIP will have the opposite effect of a positive
BIP, resulting in a decrease in the mixture critical pressure. The magnitude of the critical
pressure shift is dependent on the magnitude of the BIP.

Given behavior of changing critical locus near the light (TcL) and heavy (TcH ) component
critical temperature, the non-zero BIP critical locus will cross the zero-BIP critical locus
at some temperature in the range TcL < T < TcH . The magnitude of the maximum shift
in critical pressure depends on the components in the binary as can be seen in the figures
in Appendix A where, in the mixture with C5-C10, the negative BIP of -0.1 has a larger
shift in the critical pressure than the positive BIP of 0.1. On the other hand, for the mix-
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ture containing C5-C15, the effect is opposite. The apparent dependency is that for binary
pair with increasing difference in molecular weight or true boiling point, the effect of the
positive BIP shifts the critical pressure more.

Appendix A shows two cases where the critical locus does not follow the trends described
in this work. However, the K-value data shows that for these two cases the results of the
critical locus results yield trivial solutions (Ki = 1) in the flash calculation. Therefore,
the difference in behavior can be neglected. The approach of using the K-value data to
indicate trivial solutions in the results has shown to be useful in multiple situations and is
a recommended diagnostic tool for all calculations where this is possible.

The effect of introducing a BIP on the pressure dependent equilibrium ratio plots can also
be related to the shift in the critical locus. As described in section 3.2.2, the convergence
pressure and the critical pressure are closely related for all compositions, but for binary
pairs the relationship is even more coupled. In fact, the two properties, convergence pres-
sure and critical pressure, are the same for all binary systems. The effect of the shift of
the mixture critical pressure can therefore be directly correlated with the shift in the con-
vergence pressure. This means that the relationships described above between the critical
pressure and BIP sign, magnitude and binary compositions directly apply to the equilib-
rium ratio plots. The effect of a shift in the convergence pressure can be thought of shifting
where the K-value plot converges to a point at high-pressures.

There is a second effect that a BIP has on the K-values for low pressures. The effect of
the BIP on the low-pressure region is somewhat simpler to describe than the high-pressure
region. The effect for binary mixtures is simply (1) for a positive BIP the K-value plot is
expanded (i.e. the light K-value is increased and the heavy component is decreased) and
(2) for a negative BIP the K-value plot is contracted (i.e. the light K-value is decreased and
the heavy component is increased). The effect of the expansion or contraction is dependent
on (a) the components in the binary system, (b) the sign of the BIP, (c) the magnitude of
the BIP and (d) whether the component is the light or heavy component of the system. A
general tendency of the low-pressure K-value shift is that the heavier component shift is
significantly less than the lighter component. This can be seen in Figure 3.6, 3.7 and 3.12.

An important point to note is that the vapor pressure line is independent of the introduction
of the BIP. This contradicts the common relation given in equation (2.28) for low-pressures
(based on Raoult and Dalton’s Law). The introduction of an apparent vapor pressure (p̂v)
can be used by extrapolating the low-pressure K-value data to where the extrapolation in-
tersects atmospheric pressure. The effect of introducing a BIP then becomes two-fold. (1)
The apparent vapor pressure is increased / decreased dependent on the sign of the BIP and
(2) the critical pressure is increased / decreased dependent on the sign of the BIP while
maintaining the slope of the apparent vapor pressure line.

These two points describe the behavior discussed above. The shift in the low-pressure K-
values shows that the apparent vapor pressure is increased for a positive BIP and decreased
for a negative BIP. However, the component critical properties (solid circles on binary PT
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diagrams) dictate the apparent vapor pressure must go through these points. This forces
the apparent vapor pressure curve to change slope resulting in a change in the critical locus
near the light component critical temperature. This also explains why there is little to no
effect near the heavy component critical temperature, as the effect of the low-pressure K-
values is significantly less for the heavy component. The relationship between the apparent
vapor pressure and the critical locus is therefore key for describing the driving effects of
the BIP on the phase behavior of the binary system.

Increasing the complexity of the analysis by the introduction of a third component to the
mixture makes any generalized description difficult. However, as the ternary system tends
to a reduced binary system it is possible to extrapolate some of the findings from the bi-
nary systems for the phase behavior of a ternary system based on the three binaries. There
are two key aspects of the effect of BIPs on ternary systems that yield useful results; (1)
critical point shifts and (2) K-value effects.

First, for the shift in the critical point there is a clear relationship between the ”boundary
condition” effects (i.e. the binary critical pressure shift behavior) and the ternary mixture
critical pressure shift. The effects of the binary shift propagate into the ternary system as
can be seen clearly in Figure 3.10. The decreased shift from the boundary condition is
dependent on the compositional distance from the other boundaries as well as the sign and
magnitude of the other boundary mixture BIPs. The data shown in Appendix B section B.1
has not yet been fully analyzed more utilized to its full potential. However, the approach
of displaying the critical point shift with the two-phase area difference may help further
study on the topic.

For the K-value plots of the ternary system, the same basic observations hold as for the
binary systems. However, for the ternary mixtures, the fact that there are two BIPs ef-
fecting each component allows for a combination of effects on the high and low-pressure
region of the K-value data. The increased flexibility is great for model tuning, but makes
simple trends less likely. It is clear that the two regions (low- and high-pressure) behave
in a specific manner, that allows for flexible shapes of the K-value plot. Because both high
and low-pressure regions are affected by BIPs, both low and high-pressure K-value data
are needed when tuning an EOS to fully describe the entire phase behavior.
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Chapter 5. Discussion

5.2 Discussion - BIP Tuning
Systematic, consistent, and effective BIP tuning is a problem without a clear and prag-
matic solution. Even a set of reasonable guidelines is not available for how to tune BIPs.
This is partially due to the complexity of the problem at hand, but also because of the
lack of understanding on the effect that BIPs have on phase behavior. In the previous sec-
tion, the results of simple binary and ternary systems were discussed, and even for these
simple systems the underlying cause-and-effect is hard to describe. There were several
important observations made, such as the key shifts in the K-value data: (1) Change in the
convergence pressure and (2) change in the apparent vapor pressure. With this information
available, the task of tuning the BIPs to fit K-value data now has some basic guidelines.

From Figure 4.1 it is clear that the computational time of global BIP tuning is not feasi-
ble. This work tries to develop a more pragmatic approach by bringing the computational
time down significantly, but also attaining a solution that is within the possible accuracy of
laboratory data. From the K-value results given in appendix C section C.1 it is clear that
the numerical values are within a pragmatic range of what is needed to describe the phase
behavior for both the gradient and PCC methods.

The two methods that performed best in this work were the gradient based method and the
PCC based method. The gradient based method needs more computational time to give
any results, while the PCC approach performs decently with far shorter computational
time. This is seen in the sensitivity study performed in appendix C section C.2. However,
the gradient based method always tends to perform better (RMS vs iteration number) than
the PCC approach for the same computational time. The gradient based method is slower
but more accurate, while the PCC based method is faster but less accurate.

The random forest based method did not seem to accurately predict the importance of the
different BIPs as the method is set up in this work. The fact that the random forest method
is not a local search algorithm means that it is outside of its scope in this application.
There are a wide range of possibilities for applying the random forest differently to yield
possible solutions for the problem of BIP tuning, but these approaches tend to differ from
the general approach described in this work (i.e. selective tuning).

The overall results of the selective tuning procedure for the specific fluid systems described
in this work seem to have provided a reasonable approach. However, this is only one type
of fluid model where the BIPs are positive and monotonic. Further complexities will arise
as the synthetic fluid model BIPs become less structured.
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Chapter 6
Conclusion

”To a great mind, nothing is little.” remarked Holmes, sententiously.

- Sherlock Holmes

6.1 Conclusions - Effects of BIPs on Phase Behavior

1. A consistent trend was found for the critical-point locus between two components
with increasing temperature (a) a positive BIP will decrease the critical point line
with respect to the zero-BIP curve followed by a sharp increase to a higher critical
pressure than the zero-BIP curve; (b) a negative BIP will increase the critical point
followed by a decrease in the critical point line to a lower pressure than the zero-BIP
case.

2. For binary mixtures at all temperatures, (a) a positive BIP will increase the low
pressure K-value data for the light component and will decrease the low pressure
K-value data for the heavy component; (b) a negative BIP will decrease the low
pressure K-value data for the light component and will increase the low pressure
K-value data for the heavy component.

3. The apparent vapor pressure was found to be related to the shift in the critical pres-
sure and is described.

4. For binary systems, large positive BIPs have a tendency to, at certain temperatures,
increase the convergence pressure of the mixture in a seemingly non-physical man-
ner.

5. A framework for displaying the shift and change in shape of the phase envelope
of ternary systems was developed using a ternary plot heatmap for the shift in the
critical point and difference in the phase envelope area.
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Chapter 6. Conclusion

6. For ternary mixtures the phase envelope shape and location is directly affected by
the binary system critical locus boundaries.

6.2 Conclusions - BIP Tuning
1. Extrapolated values for the computational time to solve the regression problem of 40

to 50 component systems were shown to be infeasible using traditional regression
techniques (e.g. PhazeComp’s internal solver).

2. A novel approach to BIP regression was developed to significantly reduce the com-
putational time of traditional (simultaneous) regression by selective tuning only a
subset of BIPs to use as regression variables - selective tuning.

3. The gradient based method for selective tuning was found to handle 40 to 50 com-
ponent mixtures in reasonable computational times.

4. A convergence study was carried out for the PCC based method used in the selective
tuning process. The results shows that the PCC method can yield useful results for
a sample size that is significantly smaller than the convergence sample size (see
Appendix C section C.2).

5. The PCC based method for selective tuning was found to handle 40 to 50 component
mixtures in reasonable computational times.

6. The random forest method for selective tuning, as implemented, did not work.
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Chapter 7
Further Work

”The measure of greatness1 in a scientific idea is the extent to which it stimulates thought
and opens up new lines of research.”

- Paul Dirac

Based on the results of this thesis, the following points describe the proposed further work
on the topics (a) the effects of BIPs on phase behavior and (b) the selective tuning approach
for BIPs.

1. Develop a methodology for extrapolating the trends found in this work to quaternary
systems.

2. Build a larger database of tested examples to confirm that the trends described in the
discussion hold for a wider range of cases.

3. Using all types of PVT equilibrium data, instead of or together with K-value data.

4. Understanding the observed low pressure K-value behavior based on theoretical
analysis.

5. Apply selective tuning of BIPs to any existing EOS.

6. Identify non-physical phase behavior caused by BIPs (e.g. crossing K-values).

1This quote is not meant to imply that this work is greatness, but rather that all research should strive to work
on topics that will open new paths in science.
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Appendix A
Effect of BIPs on Binary Systems

”I am a brain, Watson. The rest of me is a mere appendix.”

- Sherlock Holmes

The following figures show the PT diagrams for all combinations of SCN components C5,
C10, C15 and C20 with a the critical pressure locus with a zero BIP as well as a positive
BIP with magnitude 0.1 and finally a negative BIP with the same magnitude (i.e. BIP =
-0.1). A general note is that the lighter component vapor pressure line (solid black line)
tends to be further towards the left compared to the heavier component.
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Figure A.1: Binary mixture containing C5 and C10 critical pressure locus with zero BIP (black
dashed line), BIP = 0.1 (red dashed line) and BIP = -0.1 (blue dashed line).
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Figure A.2: Binary mixture containing C5 and C15 critical pressure locus with zero BIP (black
dashed line), BIP = 0.1 (red dashed line) and BIP = -0.1 (blue dashed line).
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Figure A.3: Binary mixture containing C5 and C20 critical pressure locus with zero BIP (black
dashed line), BIP = 0.1 (red dashed line) and BIP = -0.1 (blue dashed line).
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Figure A.4: Binary mixture containing C10 and C15 critical pressure locus with zero BIP (black
dashed line), BIP = 0.1 (red dashed line) and BIP = -0.1 (blue dashed line).

81



0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200

Pr
es

su
re

, (
ps

ia
)

Temperature, (oF)

Figure A.5: Binary mixture containing C10 and C20 critical pressure locus with zero BIP (black
dashed line), BIP = 0.1 (red dashed line) and BIP = -0.1 (blue dashed line).
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Figure A.6: Binary mixture containing C15 and C20 critical pressure locus with zero BIP (black
dashed line), BIP = 0.1 (red dashed line) and BIP = -0.1 (blue dashed line).
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Appendix B
Effect of BIPs on Ternary Systems

In the following sections (a) the PT shift (i.e. the critical point and phase envelope area)
of the phase envelope for all cases in Table 3.1 are given and (b) the K-value plots from
Table 3.2 are given.

It should be stated that when generating the results for section B.1 each set of three figures
required a simulation time of roughly 1 hour. The range of results is not discussed in a
great deal of detail in the discussion section, but is gathered in this appendix for potential
further analysis for anyone to use.
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B.1 PT Phase Behavior Shift
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Figure B.1: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of 0.1 between C2-C7 and zero BIPs for the C2-C5 and C5-C7 binaries. (a) shift in critical
temperature, (b) shift in critical pressure and (c) difference between area of phase envelope with
non-zero BIPs and with zero BIPs as defined in equation (3.2)
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Figure B.2: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of 0.1 between C5-C7 and zero BIPs for the C2-C5 and C2-C7 binaries. (a) shift in critical
temperature, (b) shift in critical pressure and (c) difference between area of phase envelope with
non-zero BIPs and with zero BIPs as defined in equation (3.2)
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Figure B.3: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of -0.1 between C2-C5 and zero BIPs for the C2-C7 and C5-C7 binaries. (a) shift in critical
temperature, (b) shift in critical pressure and (c) difference between area of phase envelope with
non-zero BIPs and with zero BIPs as defined in equation (3.2)
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(c)

Figure B.4: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of -0.1 between C2-C7 and zero BIPs for the C2-C5 and C5-C7 binaries. (a) shift in critical
temperature, (b) shift in critical pressure and (c) difference between area of phase envelope with
non-zero BIPs and with zero BIPs as defined in equation (3.2)
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Figure B.5: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of -0.1 between C5-C7 and zero BIPs for the C2-C5 and C2-C7 binaries. (a) shift in critical
temperature, (b) shift in critical pressure and (c) difference between area of phase envelope with
non-zero BIPs and with zero BIPs as defined in equation (3.2)
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Figure B.6: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of 0.1 between C2-C5 and C2-C7 and zero BIPs for the C5-C7 binaries. (a) shift in critical
temperature, (b) shift in critical pressure and (c) difference between area of phase envelope with
non-zero BIPs and with zero BIPs as defined in equation (3.2)
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Figure B.7: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of 0.1 between C2-C5 and C5-C7 and zero BIPs for the C2-C7 binaries. (a) shift in critical
temperature, (b) shift in critical pressure and (c) difference between area of phase envelope with
non-zero BIPs and with zero BIPs as defined in equation (3.2)
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Figure B.8: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of 0.1 between C2-C7 and C5-C7 and zero BIPs for the C2-C5 binaries. (a) shift in critical
temperature, (b) shift in critical pressure and (c) difference between area of phase envelope with
non-zero BIPs and with zero BIPs as defined in equation (3.2)
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Figure B.9: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of -0.1 between C2-C5 and C2-C7 and zero BIPs for the C5-C7 binaries. (a) shift in critical
temperature, (b) shift in critical pressure and (c) difference between area of phase envelope with
non-zero BIPs and with zero BIPs as defined in equation (3.2)
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(c)

Figure B.10: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of -0.1 between C2-C5 and C5-C7 and zero BIPs for the C2-C7 binaries. (a) shift in critical
temperature, (b) shift in critical pressure and (c) difference between area of phase envelope with
non-zero BIPs and with zero BIPs as defined in equation (3.2)
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(c)

Figure B.11: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of -0.1 between C2-C7 and C5-C7 and zero BIPs for the C2-C5 binaries. (a) shift in critical
temperature, (b) shift in critical pressure and (c) difference between area of phase envelope with
non-zero BIPs and with zero BIPs as defined in equation (3.2)

94



0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

100

100
95

90
85

80
75

70
65

60
55

50
45

40
35

30
25

20
15

10
5

0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Co
nt

en
t o

f C
7, 

(%
) Content of C5, (%)

Content of C2, (%)

Shift in Critical Pressure

0.861

0.541

0.222

0.098

0.418

0.737

1.0571e2

(a)

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

100

100
95

90
85

80
75

70
65

60
55

50
45

40
35

30
25

20
15

10
5

0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Co
nt

en
t o

f C
7, 

(%
) Content of C5, (%)

Content of C2, (%)

Shift in Critical Temperature

2.222

1.429

0.635

0.158

0.951

1.745

2.5381e1

(b)

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

100

100
95

90
85

80
75

70
65

60
55

50
45

40
35

30
25

20
15

10
5

0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Co
nt

en
t o

f C
7, 

(%
) Content of C5, (%)

Content of C2, (%)

Difference in Area

4.502

3.255

2.008

0.762

0.485

1.732

2.9781e4

(c)

Figure B.12: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of 0.1 between C2-C5 and a BIP of -0.1 C2-C7 and zero BIPs for the C5-C7 binaries. (a) shift
in critical temperature, (b) shift in critical pressure and (c) difference between area of phase envelope
with non-zero BIPs and with zero BIPs as defined in equation (3.2)
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Figure B.13: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of -0.1 between C2-C5 and a BIP of 0.1 C2-C7 and zero BIPs for the C5-C7 binaries. (a) shift
in critical temperature, (b) shift in critical pressure and (c) difference between area of phase envelope
with non-zero BIPs and with zero BIPs as defined in equation (3.2)
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Figure B.14: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of 0.1 between C2-C5 and a BIP of -0.1 C5-C7 and zero BIPs for the C2-C7 binaries. (a) shift
in critical temperature, (b) shift in critical pressure and (c) difference between area of phase envelope
with non-zero BIPs and with zero BIPs as defined in equation (3.2)
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Figure B.15: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of -0.1 between C2-C5 and a BIP of 0.1 C5-C7 and zero BIPs for the C2-C7 binaries. (a) shift
in critical temperature, (b) shift in critical pressure and (c) difference between area of phase envelope
with non-zero BIPs and with zero BIPs as defined in equation (3.2)
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Figure B.16: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of 0.1 between C2-C7 and a BIP of -0.1 C5-C7 and zero BIPs for the C2-C5 binaries. (a) shift
in critical temperature, (b) shift in critical pressure and (c) difference between area of phase envelope
with non-zero BIPs and with zero BIPs as defined in equation (3.2)
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Figure B.17: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of -0.1 between C2-C7 and a BIP of 0.1 C5-C7 and zero BIPs for the C2-C5 binaries. (a) shift
in critical temperature, (b) shift in critical pressure and (c) difference between area of phase envelope
with non-zero BIPs and with zero BIPs as defined in equation (3.2)
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Figure B.18: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of 0.1 between C2-C5, a BIP of 0.1 C2-C7 and a BIPs of 0.1 for the C5-C7 binaries. (a) shift in
critical temperature, (b) shift in critical pressure and (c) difference between area of phase envelope
with non-zero BIPs and with zero BIPs as defined in equation (3.2)
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Figure B.19: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of -0.1 between C2-C5, a BIP of 0.1 C2-C7 and a BIPs of 0.1 for the C5-C7 binaries. (a) shift
in critical temperature, (b) shift in critical pressure and (c) difference between area of phase envelope
with non-zero BIPs and with zero BIPs as defined in equation (3.2)
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Figure B.20: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of 0.1 between C2-C5, a BIP of -0.1 C2-C7 and a BIPs of 0.1 for the C5-C7 binaries. (a) shift
in critical temperature, (b) shift in critical pressure and (c) difference between area of phase envelope
with non-zero BIPs and with zero BIPs as defined in equation (3.2)
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(c)

Figure B.21: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of 0.1 between C2-C5, a BIP of 0.1 C2-C7 and a BIPs of -0.1 for the C5-C7 binaries. (a) shift
in critical temperature, (b) shift in critical pressure and (c) difference between area of phase envelope
with non-zero BIPs and with zero BIPs as defined in equation (3.2)
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(c)

Figure B.22: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of -0.1 between C2-C5, a BIP of -0.1 C2-C7 and a BIPs of 0.1 for the C5-C7 binaries. (a) shift
in critical temperature, (b) shift in critical pressure and (c) difference between area of phase envelope
with non-zero BIPs and with zero BIPs as defined in equation (3.2)
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Figure B.23: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of -0.1 between C2-C5, a BIP of 0.1 C2-C7 and a BIPs of -0.1 for the C5-C7 binaries. (a) shift
in critical temperature, (b) shift in critical pressure and (c) difference between area of phase envelope
with non-zero BIPs and with zero BIPs as defined in equation (3.2)
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Figure B.24: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of 0.1 between C2-C5, a BIP of -0.1 C2-C7 and a BIPs of -0.1 for the C5-C7 binaries. (a) shift
in critical temperature, (b) shift in critical pressure and (c) difference between area of phase envelope
with non-zero BIPs and with zero BIPs as defined in equation (3.2)
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Figure B.25: Shift in critical point and difference in phase envelope area for C2-C5-C7 mixture with
a BIP of -0.1 between C2-C5, a BIP of -0.1 C2-C7 and a BIPs of -0.1 for the C5-C7 binaries. (a)
shift in critical temperature, (b) shift in critical pressure and (c) difference between area of phase
envelope with non-zero BIPs and with zero BIPs as defined in equation (3.2)
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B.2 Ternary K-value Plots
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Case 1.1 – T=100oF
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Figure B.26: K-value plot for case 1.1 described in Table 3.2 at 100◦F for a ternary system con-
taining C2 (red), C5 (orange) and C7 (green) with the EOS described in Table 4.4 and 4.6 as the
zero-BIP case (black lines). (a) Full pressure range plot, (b) intermediate zoom at high pressure and
(c) enhanced zoom near the convergence pressure.
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Case 1.1 – T=150oF

0.01

0.1

1

10

100

100 1000

K-
va

lu
e,

 K
i=

 y
i/

 x
i

Pressure, (psia)

Zero-BIP-K-C2

Zero-BIP-K-C5

Zero-BIP-K-C7

K-C2

K-C5

K-C7

(a)

Case 1.1 – T=150oF

0.01

0.1

1

10

400

K-
va

lu
e,

 K
i=

 y
i/

 x
i

Pressure, (psia)

Zero-BIP-K-C2

Zero-BIP-K-C5

Zero-BIP-K-C7

K-C2

K-C5

K-C7

1000

(b)

Case 1.1 – T=150oF
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Figure B.27: K-value plot for case 1.1 described in Table 3.2 at 150◦F for a ternary system con-
taining C2 (red), C5 (orange) and C7 (green) with the EOS described in Table 4.4 and 4.6 as the
zero-BIP case (black lines). (a) Full pressure range plot, (b) intermediate zoom at high pressure and
(c) enhanced zoom near the convergence pressure.
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Figure B.28: K-value plot for case 1.2 described in Table 3.2 at 100◦F for a ternary system con-
taining C2 (red), C5 (orange) and C7 (green) with the EOS described in Table 4.4 and 4.6 as the
zero-BIP case (black lines). (a) Full pressure range plot, (b) intermediate zoom at high pressure and
(c) enhanced zoom near the convergence pressure.
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Case 1.2 – T=150oF
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Figure B.29: K-value plot for case 1.2 described in Table 3.2 at 150◦F for a ternary system con-
taining C2 (red), C5 (orange) and C7 (green) with the EOS described in Table 4.4 and 4.6 as the
zero-BIP case (black lines). (a) Full pressure range plot, (b) intermediate zoom at high pressure and
(c) enhanced zoom near the convergence pressure.
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Case 2.1 – T=150oF

0.01

0.1

1

10

100

100 1000

K-
va

lu
e,

 K
i=

 y
i/

 x
i

Pressure, (psia)

Zero-BIP-K-C2

Zero-BIP-K-C5

Zero-BIP-K-C7

K-C2

K-C5

K-C7

(a)

Case 2.1 – T=150oF

1000

0.01

0.1

1

10

400

K-
va

lu
e,

 K
i=

 y
i/

 x
i

Pressure, (psia)

Zero-BIP-K-C2

Zero-BIP-K-C5

Zero-BIP-K-C7

K-C2

K-C5

K-C7

(b)

Case 2.1 – T=150oF

1000

0.1

1

600

K-
va

lu
e,

 K
i=

 y
i/

 x
i

Pressure, (psia)

Zero-BIP-K-C2

Zero-BIP-K-C5

Zero-BIP-K-C7

K-C2

K-C5

K-C7

(c)

Figure B.30: K-value plot for case 2.1 described in Table 3.2 at 150◦F for a ternary system con-
taining C2 (red), C5 (orange) and C7 (green) with the EOS described in Table 4.4 and 4.6 as the
zero-BIP case (black lines). (a) Full pressure range plot, (b) intermediate zoom at high pressure and
(c) enhanced zoom near the convergence pressure.
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Case 2.2 – T=100oF
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Figure B.31: K-value plot for case 2.2 described in Table 3.2 at 100◦F for a ternary system con-
taining C2 (red), C5 (orange) and C7 (green) with the EOS described in Table 4.4 and 4.6 as the
zero-BIP case (black lines). (a) Full pressure range plot, (b) intermediate zoom at high pressure and
(c) enhanced zoom near the convergence pressure.
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Case 2.2 – T=150oF
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Figure B.32: K-value plot for case 2.2 described in Table 3.2 at 150◦F for a ternary system con-
taining C2 (red), C5 (orange) and C7 (green) with the EOS described in Table 4.4 and 4.6 as the
zero-BIP case (black lines). (a) Full pressure range plot, (b) intermediate zoom at high pressure and
(c) enhanced zoom near the convergence pressure.
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Case 3 – T=100oF
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Case 3 – T=100oF
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Figure B.33: K-value plot for case 3 described in Table 3.2 at 100◦F for a ternary system containing
C2 (red), C5 (orange) and C7 (green) with the EOS described in Table 4.4 and 4.6 as the zero-
BIP case (black lines). (a) Full pressure range plot, (b) intermediate zoom at high pressure and (c)
enhanced zoom near the convergence pressure.
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Case 3 – T=150oF
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Figure B.34: K-value plot for case 3 described in Table 3.2 at 150◦F for a ternary system containing
C2 (red), C5 (orange) and C7 (green) with the EOS described in Table 4.4 and 4.6 as the zero-
BIP case (black lines). (a) Full pressure range plot, (b) intermediate zoom at high pressure and (c)
enhanced zoom near the convergence pressure.
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Appendix C
Detailed Results for Regression

C.1 Selective Tuning Results

C.1.1 Gradient Method
Case 1 Fluid System
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Figure C.1: K-value data after 14 iterations of the selective tuning approach with the gradient based
method. The resulting K-value estimates of the selective tuning method are shown as red circles
while the detailed synthetic K-value results are given as a solid black line.
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C2 C5 C7 C10
C2 0 0.000 0.000 0.000
C5 0.000 0 0.000 0.000
C7 0.000 0.000 0 0.000

C10 0.000 0.000 0.000 0

C2 C5 C7 C10
C2 0 -0.001 0.000 -0.733
C5 -0.001 0 -0.002 -0.625
C7 0.000 -0.002 0 -0.269

C10 -0.733 -0.625 -0.269 0

Importance Matrix

Current BIP Matrix

Table C.1: Current BIP matrix and importance matrix for iteration 0 of the gradient based method
with fluid system 1.

C2 C5 C7 C10
C2 0 0.000 0.000 0.023
C5 0.000 0 0.000 0.004
C7 0.000 0.000 0 0.000

C10 0.023 0.004 0.000 0

C2 C5 C7 C10
C2 0 -0.022 -0.023 -0.025
C5 -0.022 0 -0.001 -0.012
C7 -0.023 -0.001 0 -0.999

C10 -0.025 -0.012 -0.999 0

Current BIP Matrix

Importance Matrix

Table C.2: Current BIP matrix and importance matrix for iteration 1 of the gradient based method
with fluid system 1.
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C2 C5 C7 C10
C2 0 0.000 0.000 0.023
C5 0.000 0 0.000 0.004
C7 0.000 0.000 0 0.002

C10 0.023 0.004 0.002 0

C2 C5 C7 C10
C2 0 0.000 -0.752 -0.368
C5 0.000 0 -0.009 -0.469
C7 -0.752 -0.009 0 -0.281

C10 -0.368 -0.469 -0.281 0

Current BIP Matrix

Importance Matrix

Table C.3: Current BIP matrix and importance matrix for iteration 2 of the gradient based method
with fluid system 1.

C2 C5 C7 C10
C2 0 0.000 0.015 0.023
C5 0.000 0 0.000 0.004
C7 0.015 0.000 0 0.002

C10 0.023 0.004 0.002 0

C2 C5 C7 C10
C2 0 -0.078 -0.004 0.149
C5 -0.078 0 -0.040 0.008
C7 -0.004 -0.040 0 0.985

C10 0.149 0.008 0.985 0

Current BIP Matrix

Importance Matrix

Table C.4: Current BIP matrix and importance matrix for iteration 3 of the gradient based method
with fluid system 1.
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C2 C5 C7 C10
C2 0 0.000 0.015 0.023
C5 0.000 0 0.000 0.004
C7 0.015 0.000 0 0.001

C10 0.023 0.004 0.001 0

C2 C5 C7 C10
C2 0 -0.197 -0.367 -0.011
C5 -0.197 0 -0.240 0.721
C7 -0.367 -0.240 0 -0.499

C10 -0.011 0.721 -0.499 0

Current BIP Matrix

Importance Matrix

Table C.5: Current BIP matrix and importance matrix for iteration 4 of the gradient based method
with fluid system 1.

C2 C5 C7 C10
C2 0 0.000 0.015 0.023
C5 0.000 0 0.000 0.004
C7 0.015 0.000 0 0.001

C10 0.023 0.004 0.001 0

C2 C5 C7 C10
C2 0 -0.735 -0.305 0.335
C5 -0.735 0 -0.150 0.125
C7 -0.305 -0.150 0 -0.464

C10 0.335 0.125 -0.464 0

Current BIP Matrix

Importance Matrix

Table C.6: Current BIP matrix and importance matrix for iteration 5 of the gradient based method
with fluid system 1.
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C2 C5 C7 C10
C2 0 0.006 0.015 0.023
C5 0.006 0 0.000 0.004
C7 0.015 0.000 0 0.001

C10 0.023 0.004 0.001 0

C2 C5 C7 C10
C2 0 0.039 0.111 0.051
C5 0.039 0 -0.014 0.991
C7 0.111 -0.014 0 -0.045

C10 0.051 0.991 -0.045 0

Current BIP Matrix

Importance Matrix

Table C.7: Current BIP matrix and importance matrix for iteration 6 of the gradient based method
with fluid system 1.

C2 C5 C7 C10
C2 0 0.006 0.014 0.023
C5 0.006 0 0.000 0.004
C7 0.014 0.000 0 0.001

C10 0.023 0.004 0.001 0

C2 C5 C7 C10
C2 0 -0.358 0.425 -0.616
C5 -0.358 0 -0.078 0.059
C7 0.425 -0.078 0 -0.550

C10 -0.616 0.059 -0.550 0

Current BIP Matrix

Importance Matrix

Table C.8: Current BIP matrix and importance matrix for iteration 7 of the gradient based method
with fluid system 1.
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C2 C5 C7 C10
C2 0 0.006 0.014 0.023
C5 0.006 0 0.000 0.004
C7 0.014 0.000 0 0.001

C10 0.023 0.004 0.001 0

C2 C5 C7 C10
C2 0 -0.080 0.508 -0.601
C5 -0.080 0 -0.091 0.126
C7 0.508 -0.091 0 0.592

C10 -0.601 0.126 0.592 0

Current BIP Matrix

Importance Matrix

Table C.9: Current BIP matrix and importance matrix for iteration 8 of the gradient based method
with fluid system 1.

C2 C5 C7 C10
C2 0 0.006 0.014 0.023
C5 0.006 0 0.000 0.004
C7 0.014 0.000 0 0.001

C10 0.023 0.004 0.001 0

C2 C5 C7 C10
C2 0 -0.087 0.513 -0.627
C5 -0.087 0 -0.167 -0.050
C7 0.513 -0.167 0 0.553

C10 -0.627 -0.050 0.553 0

Current BIP Matrix

Importance Matrix

Table C.10: Current BIP matrix and importance matrix for iteration 9 of the gradient based method
with fluid system 1.

124



C2 C5 C7 C10
C2 0 0.006 0.014 0.023
C5 0.006 0 0.000 0.004
C7 0.014 0.000 0 0.001

C10 0.023 0.004 0.001 0

C2 C5 C7 C10
C2 0 -0.087 0.513 -0.627
C5 -0.087 0 -0.167 -0.050
C7 0.513 -0.167 0 0.553

C10 -0.627 -0.050 0.553 0

Current BIP Matrix

Importance Matrix

Table C.11: Current BIP matrix and importance matrix for iteration 10 of the gradient based method
with fluid system 1.

C2 C5 C7 C10
C2 0 0.006 0.013 0.023
C5 0.006 0 0.001 0.004
C7 0.013 0.001 0 0.001

C10 0.023 0.004 0.001 0

C2 C5 C7 C10
C2 0 -0.099 0.003 0.089
C5 -0.099 0 -0.053 0.983
C7 0.003 -0.053 0 -0.117

C10 0.089 0.983 -0.117 0

Current BIP Matrix

Importance Matrix

Table C.12: Current BIP matrix and importance matrix for iteration 11 of the gradient based method
with fluid system 1.
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C2 C5 C7 C10
C2 0 0.007 0.013 0.023
C5 0.007 0 0.001 0.004
C7 0.013 0.001 0 0.001

C10 0.023 0.004 0.001 0

C2 C5 C7 C10
C2 0 -0.076 0.888 -0.446
C5 -0.076 0 -0.022 0.023
C7 0.888 -0.022 0 0.079

C10 -0.446 0.023 0.079 0

Current BIP Matrix

Importance Matrix

Table C.13: Current BIP matrix and importance matrix for iteration 12 of the gradient based method
with fluid system 1.

C2 C5 C7 C10
C2 0 0.008 0.013 0.023
C5 0.008 0 0.001 0.004
C7 0.013 0.001 0 0.001

C10 0.023 0.004 0.001 0

C2 C5 C7 C10
C2 0 0.001 0.076 -0.106
C5 0.001 0 0.050 0.937
C7 0.076 0.050 0 -0.320

C10 -0.106 0.937 -0.320 0

Current BIP Matrix

Importance Matrix

Table C.14: Current BIP matrix and importance matrix for iteration 13 of the gradient based method
with fluid system 1.
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C2 C5 C7 C10
C2 0 0.008 0.013 0.023
C5 0.008 0 0.001 0.004
C7 0.013 0.001 0 0.001

C10 0.023 0.004 0.001 0

C2 C5 C7 C10
C2 0 0.174 0.437 -0.399
C5 0.174 0 0.583 -0.326
C7 0.437 0.583 0 -0.416

C10 -0.399 -0.326 -0.416 0

Current BIP Matrix

Importance Matrix

Table C.15: Current BIP matrix and importance matrix for iteration 14 of the gradient based method
with fluid system 1.

Case 2 Fluid System
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Figure C.2: K-value data after 14 iterations of the selective tuning approach with the gradient based
method. The resulting K-value estimates of the selective tuning method are shown as red circles
while the detailed synthetic K-value results are given as a solid black line.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C2 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C3 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C4 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000
C5 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000
C6 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000
C7 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000
C8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000
C9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000

C10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 -0.136 -0.157 -0.159 -0.159 -0.164 -0.221 -0.203 -0.332 -0.313
C2 -0.136 0 0.000 0.000 -0.006 -0.022 -0.025 0.006 -0.082 -0.078
C3 -0.157 0.000 0 -0.002 0.000 -0.005 -0.044 0.012 0.044 -0.049
C4 -0.159 0.000 -0.002 0 0.034 0.033 -0.003 0.048 0.017 -0.002
C5 -0.159 -0.006 0.000 0.034 0 0.027 0.023 0.066 0.110 0.077
C6 -0.164 -0.022 -0.005 0.033 0.027 0 0.006 0.094 0.140 0.111
C7 -0.221 -0.025 -0.044 -0.003 0.023 0.006 0 0.133 0.191 0.189
C8 -0.203 0.006 0.012 0.048 0.066 0.094 0.133 0 0.316 0.348
C9 -0.332 -0.082 0.044 0.017 0.110 0.140 0.191 0.316 0 0.425

C10 -0.313 -0.078 -0.049 -0.002 0.077 0.111 0.189 0.348 0.425 0

Current BIP Matrix

Importance Matrix

Table C.16: Current BIP matrix and importance matrix for iteration 0 of the gradient based method
with fluid system 2.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.000 0.000 0.000 0.017 0.031 0.034 0.034 0.031
C2 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C3 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C4 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000
C5 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000
C6 0.017 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000
C7 0.031 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000
C8 0.034 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000
C9 0.034 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000

C10 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.002 0.005 0.003 0.003 0.003 0.003 0.003 -0.004 0.001
C2 0.002 0 -0.001 -0.025 -0.028 -0.069 -0.128 -0.205 -0.259 -0.310
C3 0.005 -0.001 0 -0.023 -0.123 -0.123 -0.123 -0.247 -0.251 -0.251
C4 0.003 -0.025 -0.023 0 -0.042 -0.041 -0.041 -0.175 -0.179 -0.180
C5 0.003 -0.028 -0.123 -0.042 0 -0.037 -0.047 -0.086 -0.126 -0.129
C6 0.003 -0.069 -0.123 -0.041 -0.037 0 -0.011 0.097 0.037 0.014
C7 0.003 -0.128 -0.123 -0.041 -0.047 -0.011 0 0.124 0.154 0.146
C8 0.003 -0.205 -0.247 -0.175 -0.086 0.097 0.124 0 0.303 0.321
C9 -0.004 -0.259 -0.251 -0.179 -0.126 0.037 0.154 0.303 0 0.359

C10 0.001 -0.310 -0.251 -0.180 -0.129 0.014 0.146 0.321 0.359 0

Current BIP Matrix

Importance Matrix

Table C.17: Current BIP matrix and importance matrix for iteration 1 of the gradient based method
with fluid system 2.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.000 0.000 0.000 0.017 0.031 0.034 0.034 0.031
C2 0.000 0 0.000 0.000 0.000 0.000 0.000 0.063 0.018 0.000
C3 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.022 0.010
C4 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.013
C5 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000
C6 0.017 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000
C7 0.031 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000
C8 0.034 0.063 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000
C9 0.034 0.018 0.022 0.000 0.000 0.000 0.000 0.000 0 0.000

C10 0.031 0.000 0.010 0.013 0.000 0.000 0.000 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 -0.030 -0.042 -0.042 -0.041 -0.047 -0.046 -0.148 -0.143 -0.147
C2 -0.030 0 0.000 0.000 -0.001 -0.003 -0.004 -0.007 -0.012 0.003
C3 -0.042 0.000 0 0.000 -0.007 -0.004 -0.022 -0.027 -0.038 0.006
C4 -0.042 0.000 0.000 0 -0.054 -0.042 -0.054 -0.005 0.028 0.005
C5 -0.041 -0.001 -0.007 -0.054 0 -0.179 -0.169 -0.141 -0.222 -0.228
C6 -0.047 -0.003 -0.004 -0.042 -0.179 0 -0.151 -0.069 -0.075 -0.115
C7 -0.046 -0.004 -0.022 -0.054 -0.169 -0.151 0 0.192 0.215 0.210
C8 -0.148 -0.007 -0.027 -0.005 -0.141 -0.069 0.192 0 0.413 0.413
C9 -0.143 -0.012 -0.038 0.028 -0.222 -0.075 0.215 0.413 0 0.466

C10 -0.147 0.003 0.006 0.005 -0.228 -0.115 0.210 0.413 0.466 0

Current BIP Matrix

Importance Matrix

Table C.18: Current BIP matrix and importance matrix for iteration 2 of the gradient based method
with fluid system 2.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.000 0.000 0.000 0.017 0.031 0.034 0.034 0.031
C2 0.000 0 0.000 0.000 0.000 0.000 0.000 0.063 0.018 0.000
C3 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.022 0.010
C4 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.013
C5 0.000 0.000 0.000 0.000 0 0.009 0.008 0.000 0.000 0.000
C6 0.017 0.000 0.000 0.000 0.009 0 0.000 0.000 0.000 0.000
C7 0.031 0.000 0.000 0.000 0.008 0.000 0 0.000 0.000 0.000
C8 0.034 0.063 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000
C9 0.034 0.018 0.022 0.000 0.000 0.000 0.000 0.000 0 0.000

C10 0.031 0.000 0.010 0.013 0.000 0.000 0.000 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 -0.168 -0.226 -0.265 -0.270 -0.266 -0.280 -0.276 -0.282 -0.364
C2 -0.168 0 -0.001 0.000 0.002 -0.002 -0.005 -0.010 -0.015 0.004
C3 -0.226 -0.001 0 -0.009 -0.013 -0.024 -0.028 0.017 0.078 0.013
C4 -0.265 0.000 -0.009 0 0.025 0.017 0.020 0.048 0.098 0.012
C5 -0.270 0.002 -0.013 0.025 0 0.040 -0.005 0.005 0.087 -0.003
C6 -0.266 -0.002 -0.024 0.017 0.040 0 -0.040 -0.054 -0.044 -0.065
C7 -0.280 -0.005 -0.028 0.020 -0.005 -0.040 0 0.046 0.109 0.066
C8 -0.276 -0.010 0.017 0.048 0.005 -0.054 0.046 0 0.209 0.242
C9 -0.282 -0.015 0.078 0.098 0.087 -0.044 0.109 0.209 0 0.423

C10 -0.364 0.004 0.013 0.012 -0.003 -0.065 0.066 0.242 0.423 0

Current BIP Matrix

Importance Matrix

Table C.19: Current BIP matrix and importance matrix for iteration 3 of the gradient based method
with fluid system 2.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.000 0.000 0.026 0.020 0.027 0.035 0.035 0.032
C2 0.000 0 0.000 0.000 0.000 0.000 0.000 0.063 0.018 0.000
C3 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.022 0.010
C4 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.013
C5 0.026 0.000 0.000 0.000 0 0.009 0.008 0.000 0.000 0.000
C6 0.020 0.000 0.000 0.000 0.009 0 0.000 0.000 0.000 0.000
C7 0.027 0.000 0.000 0.000 0.008 0.000 0 0.000 0.000 0.000
C8 0.035 0.063 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000
C9 0.035 0.018 0.022 0.000 0.000 0.000 0.000 0.000 0 0.000

C10 0.032 0.000 0.010 0.013 0.000 0.000 0.000 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.004 0.001 0.002 -0.010 -0.001 0.002 -0.001 -0.003
C2 0.000 0 -0.001 0.000 -0.003 -0.007 -0.013 -0.021 -0.027 -0.038
C3 0.004 -0.001 0 -0.001 -0.001 -0.029 -0.060 -0.094 -0.108 -0.127
C4 0.001 0.000 -0.001 0 -0.001 -0.033 0.002 -0.001 -0.172 -0.178
C5 0.002 -0.003 -0.001 -0.001 0 -0.062 -0.095 -0.207 -0.239 -0.300
C6 -0.010 -0.007 -0.029 -0.033 -0.062 0 -0.210 -0.298 -0.419 -0.425
C7 -0.001 -0.013 -0.060 0.002 -0.095 -0.210 0 -0.091 -0.061 -0.052
C8 0.002 -0.021 -0.094 -0.001 -0.207 -0.298 -0.091 0 0.081 0.223
C9 -0.001 -0.027 -0.108 -0.172 -0.239 -0.419 -0.061 0.081 0 0.361

C10 -0.003 -0.038 -0.127 -0.178 -0.300 -0.425 -0.052 0.223 0.361 0

Current BIP Matrix

Importance Matrix

Table C.20: Current BIP matrix and importance matrix for iteration 4 of the gradient based method
with fluid system 2.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.000 0.000 0.026 0.020 0.027 0.035 0.035 0.032
C2 0.000 0 0.000 0.000 0.000 0.000 0.000 0.063 0.018 0.000
C3 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.022 0.010
C4 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.015
C5 0.026 0.000 0.000 0.000 0 0.009 0.008 0.000 0.002 0.001
C6 0.020 0.000 0.000 0.000 0.009 0 0.003 0.003 0.000 0.000
C7 0.027 0.000 0.000 0.000 0.008 0.003 0 0.000 0.000 0.000
C8 0.035 0.063 0.000 0.000 0.000 0.003 0.000 0 0.000 0.000
C9 0.035 0.018 0.022 0.000 0.002 0.000 0.000 0.000 0 0.000

C10 0.032 0.000 0.010 0.015 0.001 0.000 0.000 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 -0.018 -0.111 -0.132 -0.132 -0.156 -0.148 -0.132 -0.218 -0.201
C2 -0.018 0 -0.017 -0.019 -0.021 -0.037 -0.054 -0.069 -0.087 -0.071
C3 -0.111 -0.017 0 0.016 -0.059 -0.096 -0.079 -0.101 -0.195 -0.271
C4 -0.132 -0.019 0.016 0 0.019 -0.059 -0.096 -0.063 -0.026 -0.083
C5 -0.132 -0.021 -0.059 0.019 0 -0.058 -0.009 0.043 0.043 -0.031
C6 -0.156 -0.037 -0.096 -0.059 -0.058 0 0.030 0.031 0.070 -0.174
C7 -0.148 -0.054 -0.079 -0.096 -0.009 0.030 0 0.113 0.196 0.172
C8 -0.132 -0.069 -0.101 -0.063 0.043 0.031 0.113 0 0.348 0.371
C9 -0.218 -0.087 -0.195 -0.026 0.043 0.070 0.196 0.348 0 0.478

C10 -0.201 -0.071 -0.271 -0.083 -0.031 -0.174 0.172 0.371 0.478 0

Current BIP Matrix

Importance Matrix

Table C.21: Current BIP matrix and importance matrix for iteration 5 of the gradient based method
with fluid system 2.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.000 0.000 0.026 0.020 0.027 0.035 0.042 0.030
C2 0.000 0 0.000 0.000 0.000 0.000 0.000 0.063 0.018 0.000
C3 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.036 0.000
C4 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.015
C5 0.026 0.000 0.000 0.000 0 0.009 0.008 0.000 0.002 0.001
C6 0.020 0.000 0.000 0.000 0.009 0 0.003 0.003 0.000 0.001
C7 0.027 0.000 0.000 0.000 0.008 0.003 0 0.000 0.000 0.001
C8 0.035 0.063 0.000 0.000 0.000 0.003 0.000 0 0.000 0.000
C9 0.042 0.018 0.036 0.000 0.002 0.000 0.000 0.000 0 0.000

C10 0.030 0.000 0.000 0.015 0.001 0.001 0.001 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 -0.006 -0.012 -0.016 -0.026 -0.147 -0.010 -0.070 0.050 0.060
C2 -0.006 0 -0.006 -0.003 -0.021 -0.037 -0.070 -0.105 -0.144 -0.174
C3 -0.012 -0.006 0 -0.007 0.013 0.013 0.032 0.028 0.028 0.019
C4 -0.016 -0.003 -0.007 0 -0.187 -0.244 -0.204 -0.353 -0.343 -0.352
C5 -0.026 -0.021 0.013 -0.187 0 0.006 0.033 -0.052 -0.107 -0.294
C6 -0.147 -0.037 0.013 -0.244 0.006 0 0.348 0.283 0.165 0.087
C7 -0.010 -0.070 0.032 -0.204 0.033 0.348 0 0.093 0.074 -0.060
C8 -0.070 -0.105 0.028 -0.353 -0.052 0.283 0.093 0 0.099 0.020
C9 0.050 -0.144 0.028 -0.343 -0.107 0.165 0.074 0.099 0 0.160

C10 0.060 -0.174 0.019 -0.352 -0.294 0.087 -0.060 0.020 0.160 0

Current BIP Matrix

Importance Matrix

Table C.22: Current BIP matrix and importance matrix for iteration 6 of the gradient based method
with fluid system 2.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.000 0.000 0.026 0.020 0.027 0.035 0.042 0.030
C2 0.000 0 0.000 0.000 0.000 0.000 0.000 0.063 0.018 0.002
C3 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.036 0.000
C4 0.000 0.000 0.000 0 0.000 0.000 0.001 0.000 0.000 0.015
C5 0.026 0.000 0.000 0.000 0 0.009 0.008 0.000 0.002 0.001
C6 0.020 0.000 0.000 0.000 0.009 0 0.001 0.003 0.000 0.001
C7 0.027 0.000 0.000 0.001 0.008 0.001 0 0.000 0.000 0.001
C8 0.035 0.063 0.000 0.000 0.000 0.003 0.000 0 0.000 0.000
C9 0.042 0.018 0.036 0.000 0.002 0.000 0.000 0.000 0 0.000

C10 0.030 0.002 0.000 0.015 0.001 0.001 0.001 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 -0.129 -0.134 -0.132 -0.111 -0.321 -0.089 -0.333 0.025 -0.036
C2 -0.129 0 -0.003 -0.010 -0.009 0.018 -0.001 0.005 0.004 0.039
C3 -0.134 -0.003 0 -0.048 -0.110 -0.101 -0.047 -0.060 0.013 -0.018
C4 -0.132 -0.010 -0.048 0 0.026 0.079 0.085 0.258 0.139 0.132
C5 -0.111 -0.009 -0.110 0.026 0 0.276 0.209 0.174 0.073 0.000
C6 -0.321 0.018 -0.101 0.079 0.276 0 0.049 -0.122 -0.144 -0.203
C7 -0.089 -0.001 -0.047 0.085 0.209 0.049 0 -0.129 -0.280 -0.434
C8 -0.333 0.005 -0.060 0.258 0.174 -0.122 -0.129 0 -0.092 -0.130
C9 0.025 0.004 0.013 0.139 0.073 -0.144 -0.280 -0.092 0 -0.134

C10 -0.036 0.039 -0.018 0.132 0.000 -0.203 -0.434 -0.130 -0.134 0

Current BIP Matrix

Importance Matrix

Table C.23: Current BIP matrix and importance matrix for iteration 7 of the gradient based method
with fluid system 2.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.000 0.000 0.026 0.020 0.027 0.037 0.042 0.030
C2 0.000 0 0.000 0.000 0.000 0.000 0.000 0.063 0.018 0.002
C3 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.036 0.000
C4 0.000 0.000 0.000 0 0.000 0.000 0.001 0.000 0.000 0.015
C5 0.026 0.000 0.000 0.000 0 0.000 0.007 0.003 0.002 0.001
C6 0.020 0.000 0.000 0.000 0.000 0 0.001 0.003 0.001 0.001
C7 0.027 0.000 0.000 0.001 0.007 0.001 0 0.000 0.000 0.001
C8 0.037 0.063 0.000 0.000 0.003 0.003 0.000 0 0.000 0.000
C9 0.042 0.018 0.036 0.000 0.002 0.001 0.000 0.000 0 0.000

C10 0.030 0.002 0.000 0.015 0.001 0.001 0.001 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 -0.028 -0.028 -0.117 -0.019 -0.059 0.004 -0.044 0.202 0.147
C2 -0.028 0 0.000 -0.012 -0.007 0.012 0.025 -0.026 -0.045 -0.020
C3 -0.028 0.000 0 0.000 -0.028 -0.092 -0.131 -0.008 -0.131 -0.077
C4 -0.117 -0.012 0.000 0 -0.004 -0.004 0.041 0.269 0.088 0.140
C5 -0.019 -0.007 -0.028 -0.004 0 -0.069 0.049 0.055 -0.328 -0.331
C6 -0.059 0.012 -0.092 -0.004 -0.069 0 0.099 0.190 -0.066 -0.039
C7 0.004 0.025 -0.131 0.041 0.049 0.099 0 0.342 -0.103 -0.152
C8 -0.044 -0.026 -0.008 0.269 0.055 0.190 0.342 0 0.156 0.063
C9 0.202 -0.045 -0.131 0.088 -0.328 -0.066 -0.103 0.156 0 -0.550

C10 0.147 -0.020 -0.077 0.140 -0.331 -0.039 -0.152 0.063 -0.550 0

Current BIP Matrix

Importance Matrix

Table C.24: Current BIP matrix and importance matrix for iteration 8 of the gradient based method
with fluid system 2.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.000 0.000 0.026 0.020 0.027 0.037 0.040 0.031
C2 0.000 0 0.000 0.000 0.000 0.000 0.000 0.063 0.018 0.002
C3 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.036 0.000
C4 0.000 0.000 0.000 0 0.000 0.000 0.001 0.000 0.000 0.015
C5 0.026 0.000 0.000 0.000 0 0.000 0.007 0.003 0.000 0.003
C6 0.020 0.000 0.000 0.000 0.000 0 0.001 0.003 0.001 0.001
C7 0.027 0.000 0.000 0.001 0.007 0.001 0 0.000 0.000 0.001
C8 0.037 0.063 0.000 0.000 0.003 0.003 0.000 0 0.000 0.000
C9 0.040 0.018 0.036 0.000 0.000 0.001 0.000 0.000 0 0.000

C10 0.031 0.002 0.000 0.015 0.003 0.001 0.001 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 -0.064 -0.084 -0.084 -0.020 -0.016 0.129 -0.110 -0.035 0.020
C2 -0.064 0 -0.020 -0.005 -0.009 0.000 0.018 -0.033 -0.048 -0.006
C3 -0.084 -0.020 0 -0.129 -0.075 -0.075 -0.174 -0.065 -0.065 -0.042
C4 -0.084 -0.005 -0.129 0 0.002 0.000 0.199 0.143 0.171 0.230
C5 -0.020 -0.009 -0.075 0.002 0 0.090 0.025 0.109 -0.057 -0.146
C6 -0.016 0.000 -0.075 0.000 0.090 0 0.103 0.005 -0.174 -0.246
C7 0.129 0.018 -0.174 0.199 0.025 0.103 0 0.465 0.192 0.248
C8 -0.110 -0.033 -0.065 0.143 0.109 0.005 0.465 0 0.351 0.379
C9 -0.035 -0.048 -0.065 0.171 -0.057 -0.174 0.192 0.351 0 -0.085

C10 0.020 -0.006 -0.042 0.230 -0.146 -0.246 0.248 0.379 -0.085 0

Current BIP Matrix

Importance Matrix

Table C.25: Current BIP matrix and importance matrix for iteration 9 of the gradient based method
with fluid system 2.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.000 0.000 0.026 0.020 0.027 0.037 0.040 0.031
C2 0.000 0 0.000 0.000 0.000 0.000 0.000 0.063 0.018 0.002
C3 0.000 0.000 0 0.000 0.000 0.000 0.001 0.000 0.036 0.000
C4 0.000 0.000 0.000 0 0.000 0.000 0.002 0.000 0.000 0.014
C5 0.026 0.000 0.000 0.000 0 0.000 0.007 0.003 0.000 0.003
C6 0.020 0.000 0.000 0.000 0.000 0 0.001 0.003 0.000 0.002
C7 0.027 0.000 0.001 0.002 0.007 0.001 0 0.000 0.001 0.000
C8 0.037 0.063 0.000 0.000 0.003 0.003 0.000 0 0.000 0.000
C9 0.040 0.018 0.036 0.000 0.000 0.000 0.001 0.000 0 0.000

C10 0.031 0.002 0.000 0.014 0.003 0.002 0.000 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 -0.050 -0.082 -0.099 -0.107 -0.093 -0.044 0.129 -0.011 -0.072
C2 -0.050 0 -0.014 -0.034 -0.040 0.011 0.005 -0.006 -0.068 -0.093
C3 -0.082 -0.014 0 -0.089 -0.102 -0.225 -0.058 0.007 0.034 0.032
C4 -0.099 -0.034 -0.089 0 0.291 0.181 0.092 0.215 0.063 0.028
C5 -0.107 -0.040 -0.102 0.291 0 0.104 0.344 0.260 0.310 -0.112
C6 -0.093 0.011 -0.225 0.181 0.104 0 0.077 0.163 0.083 -0.196
C7 -0.044 0.005 -0.058 0.092 0.344 0.077 0 0.439 -0.070 0.014
C8 0.129 -0.006 0.007 0.215 0.260 0.163 0.439 0 -0.096 -0.052
C9 -0.011 -0.068 0.034 0.063 0.310 0.083 -0.070 -0.096 0 -0.276

C10 -0.072 -0.093 0.032 0.028 -0.112 -0.196 0.014 -0.052 -0.276 0

Current BIP Matrix

Importance Matrix

Table C.26: Current BIP matrix and importance matrix for iteration 10 of the gradient based method
with fluid system 2.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.000 0.000 0.026 0.020 0.027 0.037 0.040 0.031
C2 0.000 0 0.000 0.000 0.000 0.000 0.000 0.063 0.018 0.002
C3 0.000 0.000 0 0.000 0.000 0.001 0.001 0.000 0.036 0.000
C4 0.000 0.000 0.000 0 0.000 0.001 0.002 0.000 0.000 0.014
C5 0.026 0.000 0.000 0.000 0 0.000 0.006 0.003 0.001 0.003
C6 0.020 0.000 0.001 0.001 0.000 0 0.001 0.003 0.000 0.002
C7 0.027 0.000 0.001 0.002 0.006 0.001 0 0.000 0.001 0.000
C8 0.037 0.063 0.000 0.000 0.003 0.003 0.000 0 0.000 0.000
C9 0.040 0.018 0.036 0.000 0.001 0.000 0.001 0.000 0 0.000

C10 0.031 0.002 0.000 0.014 0.003 0.002 0.000 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 -0.057 -0.139 -0.110 0.002 0.007 0.029 -0.075 -0.398 -0.012
C2 -0.057 0 0.000 -0.006 -0.009 0.005 -0.021 0.067 -0.041 -0.070
C3 -0.139 0.000 0 0.000 -0.126 -0.055 -0.068 0.192 0.063 0.147
C4 -0.110 -0.006 0.000 0 -0.051 -0.097 -0.081 0.175 0.041 0.213
C5 0.002 -0.009 -0.126 -0.051 0 -0.090 -0.037 0.083 -0.177 -0.158
C6 0.007 0.005 -0.055 -0.097 -0.090 0 0.134 0.186 -0.154 -0.032
C7 0.029 -0.021 -0.068 -0.081 -0.037 0.134 0 0.079 -0.438 -0.482
C8 -0.075 0.067 0.192 0.175 0.083 0.186 0.079 0 -0.065 0.032
C9 -0.398 -0.041 0.063 0.041 -0.177 -0.154 -0.438 -0.065 0 -0.142

C10 -0.012 -0.070 0.147 0.213 -0.158 -0.032 -0.482 0.032 -0.142 0

Current BIP Matrix

Importance Matrix

Table C.27: Current BIP matrix and importance matrix for iteration 11 of the gradient based method
with fluid system 2.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.000 0.000 0.026 0.020 0.027 0.037 0.040 0.031
C2 0.000 0 0.000 0.000 0.000 0.000 0.000 0.063 0.018 0.002
C3 0.000 0.000 0 0.000 0.000 0.001 0.001 0.000 0.036 0.000
C4 0.000 0.000 0.000 0 0.000 0.001 0.002 0.002 0.000 0.013
C5 0.026 0.000 0.000 0.000 0 0.000 0.006 0.003 0.000 0.004
C6 0.020 0.000 0.001 0.001 0.000 0 0.001 0.002 0.001 0.002
C7 0.027 0.000 0.001 0.002 0.006 0.001 0 0.000 0.001 0.001
C8 0.037 0.063 0.000 0.002 0.003 0.002 0.000 0 0.000 0.000
C9 0.040 0.018 0.036 0.000 0.000 0.001 0.001 0.000 0 0.000

C10 0.031 0.002 0.000 0.013 0.004 0.002 0.001 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 -0.046 -0.101 -0.149 -0.149 -0.149 0.025 -0.129 0.060 0.089
C2 -0.046 0 -0.055 -0.046 -0.001 0.000 0.007 -0.062 -0.099 -0.018
C3 -0.101 -0.055 0 0.050 0.139 0.012 -0.062 0.230 0.161 0.241
C4 -0.149 -0.046 0.050 0 0.116 0.055 0.165 0.113 0.140 0.029
C5 -0.149 -0.001 0.139 0.116 0 0.120 0.166 -0.008 0.150 0.021
C6 -0.149 0.000 0.012 0.055 0.120 0 0.079 0.004 0.002 0.046
C7 0.025 0.007 -0.062 0.165 0.166 0.079 0 -0.121 0.188 -0.154
C8 -0.129 -0.062 0.230 0.113 -0.008 0.004 -0.121 0 -0.495 -0.421
C9 0.060 -0.099 0.161 0.140 0.150 0.002 0.188 -0.495 0 -0.253

C10 0.089 -0.018 0.241 0.029 0.021 0.046 -0.154 -0.421 -0.253 0

Current BIP Matrix

Importance Matrix

Table C.28: Current BIP matrix and importance matrix for iteration 12 of the gradient based method
with fluid system 2.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.000 0.000 0.026 0.020 0.027 0.037 0.040 0.031
C2 0.000 0 0.000 0.000 0.000 0.000 0.000 0.063 0.018 0.002
C3 0.000 0.000 0 0.000 0.000 0.001 0.001 0.000 0.035 0.000
C4 0.000 0.000 0.000 0 0.000 0.001 0.002 0.002 0.000 0.013
C5 0.026 0.000 0.000 0.000 0 0.000 0.006 0.003 0.000 0.004
C6 0.020 0.000 0.001 0.001 0.000 0 0.001 0.002 0.001 0.002
C7 0.027 0.000 0.001 0.002 0.006 0.001 0 0.000 0.001 0.001
C8 0.037 0.063 0.000 0.002 0.003 0.002 0.000 0 0.000 0.000
C9 0.040 0.018 0.035 0.000 0.000 0.001 0.001 0.000 0 0.000

C10 0.031 0.002 0.000 0.013 0.004 0.002 0.001 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 -0.190 -0.248 -0.306 -0.252 -0.252 -0.046 0.045 -0.342 0.054
C2 -0.190 0 -0.058 -0.024 -0.003 0.024 0.009 0.077 -0.128 -0.012
C3 -0.248 -0.058 0 0.058 0.058 -0.091 -0.066 0.064 -0.012 0.104
C4 -0.306 -0.024 0.058 0 -0.111 -0.111 -0.106 0.124 0.186 0.059
C5 -0.252 -0.003 0.058 -0.111 0 -0.029 0.047 -0.244 -0.078 -0.252
C6 -0.252 0.024 -0.091 -0.111 -0.029 0 0.021 0.001 0.101 0.126
C7 -0.046 0.009 -0.066 -0.106 0.047 0.021 0 0.071 0.043 0.133
C8 0.045 0.077 0.064 0.124 -0.244 0.001 0.071 0 -0.117 -0.015
C9 -0.342 -0.128 -0.012 0.186 -0.078 0.101 0.043 -0.117 0 0.457

C10 0.054 -0.012 0.104 0.059 -0.252 0.126 0.133 -0.015 0.457 0

Current BIP Matrix

Importance Matrix

Table C.29: Current BIP matrix and importance matrix for iteration 13 of the gradient based method
with fluid system 2.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.016 0.000 0.004 0.016 0.017 0.027 0.037 0.039 0.031
C2 0.016 0 0.000 0.000 0.000 0.000 0.000 0.063 0.018 0.002
C3 0.000 0.000 0 0.000 0.000 0.001 0.001 0.000 0.035 0.000
C4 0.004 0.000 0.000 0 0.000 0.001 0.002 0.002 0.000 0.013
C5 0.016 0.000 0.000 0.000 0 0.000 0.006 0.002 0.000 0.004
C6 0.017 0.000 0.001 0.001 0.000 0 0.001 0.002 0.001 0.002
C7 0.027 0.000 0.001 0.002 0.006 0.001 0 0.000 0.001 0.001
C8 0.037 0.063 0.000 0.002 0.002 0.002 0.000 0 0.000 0.000
C9 0.039 0.018 0.035 0.000 0.000 0.001 0.001 0.000 0 0.000

C10 0.031 0.002 0.000 0.013 0.004 0.002 0.001 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.043 0.043 -0.079 -0.110 -0.207 -0.027 0.048 -0.034 -0.016
C2 0.043 0 0.017 0.017 0.021 -0.035 0.031 -0.059 -0.074 -0.141
C3 0.043 0.017 0 0.015 0.015 -0.036 -0.046 -0.119 0.010 -0.206
C4 -0.079 0.017 0.015 0 -0.015 -0.015 0.119 -0.026 0.155 -0.015
C5 -0.110 0.021 0.015 -0.015 0 0.056 0.125 0.035 0.120 -0.021
C6 -0.207 -0.035 -0.036 -0.015 0.056 0 0.153 -0.108 0.158 -0.173
C7 -0.027 0.031 -0.046 0.119 0.125 0.153 0 -0.344 -0.004 -0.166
C8 0.048 -0.059 -0.119 -0.026 0.035 -0.108 -0.344 0 -0.404 -0.576
C9 -0.034 -0.074 0.010 0.155 0.120 0.158 -0.004 -0.404 0 -0.180

C10 -0.016 -0.141 -0.206 -0.015 -0.021 -0.173 -0.166 -0.576 -0.180 0

Current BIP Matrix

Importance Matrix

Table C.30: Current BIP matrix and importance matrix for iteration 14 of the gradient based method
with fluid system 2.
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C.1.2 PCC Method
Case 1 Fluid System
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Figure C.3: K-value data after 14 iterations of the selective tuning approach with the PCC based
method. The resulting K-value estimates of the selective tuning method are shown as red circles
while the detailed synthetic K-value results are given as a solid black line.

C2 C5 C7 C10
C2 0 0.000 0.000 0.000
C5 0.000 0 0.000 0.000
C7 0.000 0.000 0 0.000

C10 0.000 0.000 0.000 0

C2 C5 C7 C10
C2 0 -0.059 -0.011 -0.671
C5 -0.059 0 0.220 -0.637
C7 -0.011 0.220 0 -0.434

C10 -0.671 -0.637 -0.434 0

Importance Matrix

Current BIP Matrix

Table C.31: Current BIP matrix and importance matrix for iteration 0 of the PCC method with fluid
system 1.
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C2 C5 C7 C10
C2 0 0.000 0.000 0.023
C5 0.000 0 0.000 0.004
C7 0.000 0.000 0 0.000

C10 0.023 0.004 0.000 0

C2 C5 C7 C10
C2 0 -0.009 -0.155 0.065
C5 -0.009 0 -0.186 0.009
C7 -0.155 -0.186 0 -0.997

C10 0.065 0.009 -0.997 0

Current BIP Matrix

Importance Matrix

Table C.32: Current BIP matrix and importance matrix for iteration 1 of the PCC method with fluid
system 1.

C2 C5 C7 C10
C2 0 0.000 0.000 0.023
C5 0.000 0 0.010 0.004
C7 0.000 0.010 0 0.002

C10 0.023 0.004 0.002 0

C2 C5 C7 C10
C2 0 -0.081 -0.436 -0.093
C5 -0.081 0 0.072 0.894
C7 -0.436 0.072 0 0.071

C10 -0.093 0.894 0.071 0

Current BIP Matrix

Importance Matrix

Table C.33: Current BIP matrix and importance matrix for iteration 2 of the PCC method with fluid
system 1.
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C2 C5 C7 C10
C2 0 0.000 0.014 0.023
C5 0.000 0 0.010 0.004
C7 0.014 0.010 0 0.002

C10 0.023 0.004 0.002 0

C2 C5 C7 C10
C2 0 -0.029 0.066 -0.060
C5 -0.029 0 -0.033 0.234
C7 0.066 -0.033 0 0.971

C10 -0.060 0.234 0.971 0

Current BIP Matrix

Importance Matrix

Table C.34: Current BIP matrix and importance matrix for iteration 3 of the PCC method with fluid
system 1.

C2 C5 C7 C10
C2 0 0.000 0.014 0.023
C5 0.000 0 0.010 0.004
C7 0.014 0.010 0 0.001

C10 0.023 0.004 0.001 0

C2 C5 C7 C10
C2 0 0.120 -0.109 -0.228
C5 0.120 0 -0.076 0.494
C7 -0.109 -0.076 0 0.816

C10 -0.228 0.494 0.816 0

Current BIP Matrix

Importance Matrix

Table C.35: Current BIP matrix and importance matrix for iteration 4 of the PCC method with fluid
system 1.
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C2 C5 C7 C10
C2 0 0.000 0.014 0.023
C5 0.000 0 0.010 0.004
C7 0.014 0.010 0 0.001

C10 0.023 0.004 0.001 0

C2 C5 C7 C10
C2 0 -0.073 -0.010 -0.298
C5 -0.073 0 0.076 0.442
C7 -0.010 0.076 0 0.787

C10 -0.298 0.442 0.787 0

Current BIP Matrix

Importance Matrix

Table C.36: Current BIP matrix and importance matrix for iteration 5 of the PCC method with fluid
system 1.

Case 2 Fluid Model
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Figure C.4: K-value data after 14 iterations of the selective tuning approach with the PCC based
method. The resulting K-value estimates of the selective tuning method are shown as red circles
while the detailed synthetic K-value results are given as a solid black line.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C2 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C3 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C4 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000
C5 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000
C6 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000
C7 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000
C8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000
C9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000

C10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.009 -0.031 -0.199 -0.078 -0.333 -0.203 -0.188 -0.385 -0.407
C2 0.009 0 -0.009 -0.123 0.039 -0.125 -0.180 -0.091 0.049 -0.254
C3 -0.031 -0.009 0 0.040 -0.014 0.070 0.201 -0.123 0.012 0.021
C4 -0.199 -0.123 0.040 0 -0.057 0.140 -0.024 -0.069 -0.058 0.135
C5 -0.078 0.039 -0.014 -0.057 0 0.003 -0.097 0.035 0.125 0.121
C6 -0.333 -0.125 0.070 0.140 0.003 0 -0.011 -0.061 0.125 -0.005
C7 -0.203 -0.180 0.201 -0.024 -0.097 -0.011 0 0.278 0.169 0.310
C8 -0.188 -0.091 -0.123 -0.069 0.035 -0.061 0.278 0 0.385 0.429
C9 -0.385 0.049 0.012 -0.058 0.125 0.125 0.169 0.385 0 0.385

C10 -0.407 -0.254 0.021 0.135 0.121 -0.005 0.310 0.429 0.385 0

Current BIP Matrix

Importance Matrix

Table C.37: Current BIP matrix and importance matrix for iteration 0 of the PCC method with fluid
system 2.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.000 0.000 0.000 0.051 0.036 0.000 0.031 0.041
C2 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.060
C3 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C4 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000
C5 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000
C6 0.051 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000
C7 0.036 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000
C8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000
C9 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000

C10 0.041 0.060 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.131 -0.024 0.007 -0.116 -0.035 -0.016 -0.248 0.089 -0.007
C2 0.131 0 0.021 0.018 -0.072 -0.104 -0.196 0.116 -0.003 -0.032
C3 -0.024 0.021 0 -0.032 -0.105 0.025 -0.216 -0.189 -0.467 -0.549
C4 0.007 0.018 -0.032 0 -0.213 -0.204 -0.103 -0.060 -0.291 -0.422
C5 -0.116 -0.072 -0.105 -0.213 0 -0.115 -0.036 -0.026 0.016 -0.217
C6 -0.035 -0.104 0.025 -0.204 -0.115 0 0.034 -0.151 0.096 -0.071
C7 -0.016 -0.196 -0.216 -0.103 -0.036 0.034 0 0.060 0.037 0.065
C8 -0.248 0.116 -0.189 -0.060 -0.026 -0.151 0.060 0 0.216 0.434
C9 0.089 -0.003 -0.467 -0.291 0.016 0.096 0.037 0.216 0 0.160

C10 -0.007 -0.032 -0.549 -0.422 -0.217 -0.071 0.065 0.434 0.160 0

Current BIP Matrix

Importance Matrix

Table C.38: Current BIP matrix and importance matrix for iteration 1 of the PCC method with fluid
system 2.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.000 0.000 0.000 0.051 0.036 0.019 0.031 0.041
C2 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.060
C3 0.000 0.000 0 0.000 0.000 0.000 0.034 0.000 0.002 0.014
C4 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.017 0.000
C5 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.007
C6 0.051 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000
C7 0.036 0.000 0.034 0.000 0.000 0.000 0 0.000 0.000 0.000
C8 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000
C9 0.031 0.000 0.002 0.017 0.000 0.000 0.000 0.000 0 0.000

C10 0.041 0.060 0.014 0.000 0.007 0.000 0.000 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 -0.111 0.069 -0.135 0.028 0.011 0.229 0.091 -0.047 0.073
C2 -0.111 0 0.008 -0.115 -0.340 0.189 0.139 -0.073 0.104 0.206
C3 0.069 0.008 0 -0.017 -0.065 -0.015 -0.109 0.152 0.245 -0.139
C4 -0.135 -0.115 -0.017 0 -0.162 -0.137 -0.038 -0.079 -0.103 0.117
C5 0.028 -0.340 -0.065 -0.162 0 -0.120 0.105 0.169 -0.049 0.170
C6 0.011 0.189 -0.015 -0.137 -0.120 0 -0.461 -0.317 -0.503 -0.445
C7 0.229 0.139 -0.109 -0.038 0.105 -0.461 0 -0.228 0.079 -0.056
C8 0.091 -0.073 0.152 -0.079 0.169 -0.317 -0.228 0 0.140 0.122
C9 -0.047 0.104 0.245 -0.103 -0.049 -0.503 0.079 0.140 0 0.309

C10 0.073 0.206 -0.139 0.117 0.170 -0.445 -0.056 0.122 0.309 0

Current BIP Matrix

Importance Matrix

Table C.39: Current BIP matrix and importance matrix for iteration 2 of the PCC method with fluid
system 2.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.000 0.000 0.000 0.051 0.038 0.019 0.031 0.041
C2 0.000 0 0.000 0.000 0.058 0.000 0.000 0.000 0.000 0.054
C3 0.000 0.000 0 0.000 0.000 0.000 0.034 0.000 0.003 0.014
C4 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.017 0.000
C5 0.000 0.058 0.000 0.000 0 0.000 0.000 0.000 0.000 0.007
C6 0.051 0.000 0.000 0.000 0.000 0 0.005 0.002 0.000 0.002
C7 0.038 0.000 0.034 0.000 0.000 0.005 0 0.001 0.000 0.000
C8 0.019 0.000 0.000 0.000 0.000 0.002 0.001 0 0.000 0.000
C9 0.031 0.000 0.003 0.017 0.000 0.000 0.000 0.000 0 0.000

C10 0.041 0.054 0.014 0.000 0.007 0.002 0.000 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 -0.119 -0.095 -0.118 -0.125 0.170 0.233 -0.353 -0.140 0.068
C2 -0.119 0 -0.114 0.089 0.150 -0.099 0.002 0.043 -0.136 -0.061
C3 -0.095 -0.114 0 0.223 0.227 -0.048 0.135 0.137 0.070 -0.104
C4 -0.118 0.089 0.223 0 -0.078 -0.179 -0.179 -0.274 -0.205 -0.241
C5 -0.125 0.150 0.227 -0.078 0 -0.216 0.030 -0.257 -0.317 -0.395
C6 0.170 -0.099 -0.048 -0.179 -0.216 0 0.031 0.224 0.155 0.161
C7 0.233 0.002 0.135 -0.179 0.030 0.031 0 0.066 0.011 -0.019
C8 -0.353 0.043 0.137 -0.274 -0.257 0.224 0.066 0 0.087 0.172
C9 -0.140 -0.136 0.070 -0.205 -0.317 0.155 0.011 0.087 0 0.042

C10 0.068 -0.061 -0.104 -0.241 -0.395 0.161 -0.019 0.172 0.042 0

Current BIP Matrix

Importance Matrix

Table C.40: Current BIP matrix and importance matrix for iteration 3 of the PCC method with fluid
system 2.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.000 0.000 0.000 0.051 0.036 0.021 0.031 0.041
C2 0.000 0 0.000 0.000 0.058 0.000 0.000 0.000 0.000 0.054
C3 0.000 0.000 0 0.000 0.000 0.000 0.034 0.000 0.003 0.014
C4 0.000 0.000 0.000 0 0.000 0.000 0.000 0.001 0.017 0.000
C5 0.000 0.058 0.000 0.000 0 0.000 0.000 0.000 0.000 0.007
C6 0.051 0.000 0.000 0.000 0.000 0 0.005 0.002 0.000 0.002
C7 0.036 0.000 0.034 0.000 0.000 0.005 0 0.001 0.000 0.000
C8 0.021 0.000 0.000 0.001 0.000 0.002 0.001 0 0.000 0.000
C9 0.031 0.000 0.003 0.017 0.000 0.000 0.000 0.000 0 0.000

C10 0.041 0.054 0.014 0.000 0.007 0.002 0.000 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 -0.200 -0.054 -0.014 -0.026 0.202 0.070 0.067 0.085 0.066
C2 -0.200 0 0.099 0.093 0.145 -0.041 -0.091 -0.053 -0.157 0.070
C3 -0.054 0.099 0 0.060 0.052 0.106 0.281 0.130 0.112 -0.155
C4 -0.014 0.093 0.060 0 0.246 -0.148 0.102 0.118 0.184 0.249
C5 -0.026 0.145 0.052 0.246 0 -0.031 0.318 0.261 -0.022 0.056
C6 0.202 -0.041 0.106 -0.148 -0.031 0 0.070 0.138 0.231 0.433
C7 0.070 -0.091 0.281 0.102 0.318 0.070 0 0.158 -0.153 -0.241
C8 0.067 -0.053 0.130 0.118 0.261 0.138 0.158 0 -0.328 -0.339
C9 0.085 -0.157 0.112 0.184 -0.022 0.231 -0.153 -0.328 0 -0.388

C10 0.066 0.070 -0.155 0.249 0.056 0.433 -0.241 -0.339 -0.388 0

Current BIP Matrix

Importance Matrix

Table C.41: Current BIP matrix and importance matrix for iteration 4 of the PCC method with fluid
system 2.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.000 0.000 0.000 0.051 0.036 0.021 0.031 0.041
C2 0.000 0 0.000 0.000 0.058 0.000 0.000 0.000 0.000 0.054
C3 0.000 0.000 0 0.000 0.000 0.000 0.033 0.000 0.003 0.014
C4 0.000 0.000 0.000 0 0.000 0.000 0.000 0.001 0.017 0.000
C5 0.000 0.058 0.000 0.000 0 0.000 0.000 0.000 0.000 0.007
C6 0.051 0.000 0.000 0.000 0.000 0 0.005 0.002 0.000 0.002
C7 0.036 0.000 0.033 0.000 0.000 0.005 0 0.001 0.000 0.000
C8 0.021 0.000 0.000 0.001 0.000 0.002 0.001 0 0.000 0.000
C9 0.031 0.000 0.003 0.017 0.000 0.000 0.000 0.000 0 0.000

C10 0.041 0.054 0.014 0.000 0.007 0.002 0.000 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.064 -0.125 0.004 -0.055 0.385 0.001 -0.177 -0.231 -0.075
C2 0.064 0 -0.031 0.141 -0.078 -0.076 -0.232 0.032 -0.016 0.009
C3 -0.125 -0.031 0 0.102 0.056 -0.023 -0.166 -0.187 -0.205 -0.374
C4 0.004 0.141 0.102 0 0.203 -0.279 0.182 0.009 0.204 -0.013
C5 -0.055 -0.078 0.056 0.203 0 -0.251 0.434 -0.192 0.041 0.048
C6 0.385 -0.076 -0.023 -0.279 -0.251 0 0.252 0.130 0.089 0.190
C7 0.001 -0.232 -0.166 0.182 0.434 0.252 0 0.315 0.121 0.232
C8 -0.177 0.032 -0.187 0.009 -0.192 0.130 0.315 0 -0.069 -0.044
C9 -0.231 -0.016 -0.205 0.204 0.041 0.089 0.121 -0.069 0 -0.100

C10 -0.075 0.009 -0.374 -0.013 0.048 0.190 0.232 -0.044 -0.100 0

Current BIP Matrix

Importance Matrix

Table C.42: Current BIP matrix and importance matrix for iteration 5 of the PCC method with fluid
system 2.
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C.1.3 Random Forest Method
Case 1 Fluid Model
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Figure C.5: K-value data after 14 iterations of the selective tuning approach with the RF based
method. The resulting K-value estimates of the selective tuning method are shown as red circles
while the detailed synthetic K-value results are given as a solid black line.

C2 C5 C7 C10
C2 0 0.000 0.000 0.000
C5 0.000 0 0.000 0.000
C7 0.000 0.000 0 0.000

C10 0.000 0.000 0.000 0

C2 C5 C7 C10
C2 0 0.001 0.001 0.001
C5 0.001 0 0.001 0.195
C7 0.001 0.001 0 0.801

C10 0.001 0.195 0.801 0

Importance Matrix

Current BIP Matrix

Table C.43: Current BIP matrix and importance matrix for iteration 0 of the RF method with fluid
system 1.
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C2 C5 C7 C10
C2 0 0.000 0.000 0.000
C5 0.000 0 0.000 0.004
C7 0.000 0.000 0 0.001

C10 0.000 0.004 0.001 0

C2 C5 C7 C10
C2 0 0.001 0.001 0.001
C5 0.001 0 0.001 0.212
C7 0.001 0.001 0 0.784

C10 0.001 0.212 0.784 0

Current BIP Matrix

Importance Matrix

Table C.44: Current BIP matrix and importance matrix for iteration 1 of the RF method with fluid
system 1.

C2 C5 C7 C10
C2 0 0.000 0.000 0.000
C5 0.000 0 0.000 0.004
C7 0.000 0.000 0 0.001

C10 0.000 0.004 0.001 0

C2 C5 C7 C10
C2 0 0.001 0.001 0.001
C5 0.001 0 0.001 0.256
C7 0.001 0.001 0 0.740

C10 0.001 0.256 0.740 0

Current BIP Matrix

Importance Matrix

Table C.45: Current BIP matrix and importance matrix for iteration 2 of the RF method with fluid
system 1.
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C2 C5 C7 C10
C2 0 0.000 0.012 0.000
C5 0.000 0 0.000 0.004
C7 0.012 0.000 0 0.001

C10 0.000 0.004 0.001 0

C2 C5 C7 C10
C2 0 0.001 0.001 0.001
C5 0.001 0 0.001 0.218
C7 0.001 0.001 0 0.778

C10 0.001 0.218 0.778 0

Current BIP Matrix

Importance Matrix

Table C.46: Current BIP matrix and importance matrix for iteration 3 of the RF method with fluid
system 1.

Case 2 Fluid Model
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Figure C.6: K-value data after 14 iterations of the selective tuning approach with the RF based
method. The resulting K-value estimates of the selective tuning method are shown as red circles
while the detailed synthetic K-value results are given as a solid black line.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C2 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C3 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C4 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000
C5 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000
C6 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000
C7 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000
C8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000
C9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000

C10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.016 0.012 0.009 0.012 0.008 0.019 0.016 0.031 0.018
C2 0.016 0 0.010 0.007 0.010 0.008 0.009 0.012 0.010 0.008
C3 0.012 0.010 0 0.006 0.010 0.009 0.011 0.008 0.008 0.016
C4 0.009 0.007 0.006 0 0.010 0.009 0.011 0.017 0.013 0.014
C5 0.012 0.010 0.010 0.010 0 0.015 0.014 0.022 0.023 0.040
C6 0.008 0.008 0.009 0.009 0.015 0 0.014 0.043 0.056 0.070
C7 0.019 0.009 0.011 0.011 0.014 0.014 0 0.081 0.093 0.080
C8 0.016 0.012 0.008 0.017 0.022 0.043 0.081 0 0.037 0.045
C9 0.031 0.010 0.008 0.013 0.023 0.056 0.093 0.037 0 0.008

C10 0.018 0.008 0.016 0.014 0.040 0.070 0.080 0.045 0.008 0

Current BIP Matrix

Importance Matrix

Table C.47: Current BIP matrix and importance matrix for iteration 0 of the RF method with fluid
system 2.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.103 0.000
C2 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C3 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C4 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000
C5 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000
C6 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.005 0.000
C7 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000
C8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000
C9 0.103 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0 0.000

C10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.011 0.007 0.008 0.009 0.008 0.010 0.010 0.009 0.012
C2 0.011 0 0.009 0.009 0.009 0.006 0.009 0.008 0.008 0.008
C3 0.007 0.009 0 0.010 0.011 0.008 0.009 0.012 0.007 0.006
C4 0.008 0.009 0.010 0 0.007 0.008 0.009 0.009 0.008 0.015
C5 0.009 0.009 0.011 0.007 0 0.009 0.018 0.030 0.046 0.038
C6 0.008 0.006 0.008 0.008 0.009 0 0.022 0.065 0.086 0.061
C7 0.010 0.009 0.009 0.009 0.018 0.022 0 0.120 0.100 0.062
C8 0.010 0.008 0.012 0.009 0.030 0.065 0.120 0 0.021 0.035
C9 0.009 0.008 0.007 0.008 0.046 0.086 0.100 0.021 0 0.018

C10 0.012 0.008 0.006 0.015 0.038 0.061 0.062 0.035 0.018 0

Current BIP Matrix

Importance Matrix

Table C.48: Current BIP matrix and importance matrix for iteration 1 of the RF method with fluid
system 2.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.103 0.000
C2 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C3 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C4 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000
C5 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.011 0.000
C6 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.005 0.000
C7 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000
C8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000
C9 0.103 0.000 0.000 0.000 0.011 0.005 0.000 0.000 0 0.000

C10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.015 0.007 0.011 0.015 0.009 0.012 0.008 0.007 0.011
C2 0.015 0 0.007 0.008 0.008 0.008 0.008 0.009 0.007 0.010
C3 0.007 0.007 0 0.007 0.009 0.008 0.008 0.009 0.007 0.008
C4 0.011 0.008 0.007 0 0.008 0.008 0.009 0.008 0.012 0.025
C5 0.015 0.008 0.009 0.008 0 0.009 0.018 0.019 0.037 0.083
C6 0.009 0.008 0.008 0.008 0.009 0 0.039 0.071 0.030 0.099
C7 0.012 0.008 0.008 0.009 0.018 0.039 0 0.078 0.034 0.122
C8 0.008 0.009 0.009 0.008 0.019 0.071 0.078 0 0.025 0.017
C9 0.007 0.007 0.007 0.012 0.037 0.030 0.034 0.025 0 0.035

C10 0.011 0.010 0.008 0.025 0.083 0.099 0.122 0.017 0.035 0

Current BIP Matrix

Importance Matrix

Table C.49: Current BIP matrix and importance matrix for iteration 2 of the RF method with fluid
system 2.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.103 0.000
C2 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C3 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C4 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000
C5 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.011 0.000
C6 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.005 0.000
C7 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000
C8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000
C9 0.103 0.000 0.000 0.000 0.011 0.005 0.000 0.000 0 0.000

C10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C1 0 0.013 0.008 0.009 0.008 0.008 0.010 0.010 0.011 0.014
C2 0.013 0 0.008 0.008 0.011 0.007 0.008 0.007 0.006 0.007
C3 0.008 0.008 0 0.009 0.009 0.007 0.007 0.011 0.008 0.008
C4 0.009 0.008 0.009 0 0.012 0.008 0.010 0.010 0.011 0.045
C5 0.008 0.011 0.009 0.012 0 0.011 0.014 0.035 0.035 0.079
C6 0.008 0.007 0.007 0.008 0.011 0 0.016 0.034 0.044 0.065
C7 0.010 0.008 0.007 0.010 0.014 0.016 0 0.131 0.047 0.111
C8 0.010 0.007 0.011 0.010 0.035 0.034 0.131 0 0.022 0.029
C9 0.011 0.006 0.008 0.011 0.035 0.044 0.047 0.022 0 0.019

C10 0.014 0.007 0.008 0.045 0.079 0.065 0.111 0.029 0.019 0

Current BIP Matrix

Importance Matrix

Table C.50: Current BIP matrix and importance matrix for iteration 3 of the RF method with fluid
system 2.
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C.2 PCC Convergence Study Results
In the following figures, the results for 14 iteration of the selective tuning regression for a
mixture of SCN C1 to C10. The initial composition used is uniform and the temperature is
set to 100◦F with a synthetic model with Chueh-Prausnitz BIPs. The observed data used K-
value data for each component at 10 pressure points which are logarithmically distributed.
Each iteration (i.e. each figure) also displays the RMS for the gradient method (solid red
line) as described in section 4.4.1 as well as an average RMS for for 20 cases with random
choice of most important BIPs used in the regression. The number of important BIPs in
all cases in this section was set to 10.
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Figure C.7: The 1st iteration of the selective tuning for the number of cases used to estimate the
PCC ranging from 5 to 900. Also, the RMS value for the gradient method (red solid line) and an
average random choice of important BIPs (solid black line).
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Figure C.8: The 2nd iteration of the selective tuning for the number of cases used to estimate the
PCC ranging from 5 to 900. Also, the RMS value for the gradient method (red solid line) and an
average random choice of important BIPs (solid black line).
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Figure C.9: The 3rd iteration of the selective tuning for the number of cases used to estimate the
PCC ranging from 5 to 900. Also, the RMS value for the gradient method (red solid line) and an
average random choice of important BIPs (solid black line).
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Figure C.10: The 4th iteration of the selective tuning for the number of cases used to estimate the
PCC ranging from 5 to 900. Also, the RMS value for the gradient method (red solid line) and an
average random choice of important BIPs (solid black line).

1.E‐02

1.E‐01

1.E+00

1.E+01

1 10 100 1000

RM
S,
 (%

)

Number of Cases

Figure C.11: The 5th iteration of the selective tuning for the number of cases used to estimate the
PCC ranging from 5 to 900. Also, the RMS value for the gradient method (red solid line) and an
average random choice of important BIPs (solid black line).
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Figure C.12: The 6th iteration of the selective tuning for the number of cases used to estimate the
PCC ranging from 5 to 900. Also, the RMS value for the gradient method (red solid line) and an
average random choice of important BIPs (solid black line).
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Figure C.13: The 7th iteration of the selective tuning for the number of cases used to estimate the
PCC ranging from 5 to 900. Also, the RMS value for the gradient method (red solid line) and an
average random choice of important BIPs (solid black line).
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Figure C.14: The 8th iteration of the selective tuning for the number of cases used to estimate the
PCC ranging from 5 to 900. Also, the RMS value for the gradient method (red solid line) and an
average random choice of important BIPs (solid black line).
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Figure C.15: The 9th iteration of the selective tuning for the number of cases used to estimate the
PCC ranging from 5 to 900. Also, the RMS value for the gradient method (red solid line) and an
average random choice of important BIPs (solid black line).
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Appendix D
Example Calculations

In the following sections examples of the following topics are given: RMS calculations for
multiple experiments, building a decision tree, ternary convergence pressure composition,
proof between number of BIPs and number of components and how to calculate 2-norm.

D.1 RMS Calculation
In this section, an example will be given for how to calculate the RMS for multiple exper-
iments. The experiments that are used in this section are given in Table D.1. The main
equation used to calculate the RMS is given in equation (4.4) in chapter 4 section 4.1.

Case Experimental Calculated Experimental Calculated 
1 0.023 0.000 0.003 0.000
2 0.123 0.100 0.014 0.010
3 0.245 0.200 0.032 0.040
4 0.325 0.300 0.122 0.090
5 0.394 0.400 0.170 0.160
6 0.471 0.500 0.245 0.250
7 0.640 0.600
8 0.748 0.700
9 0.792 0.800
10 0.892 0.900

Experiment 1 Experiment 2

Experiment & Calculated Data

Table D.1: Example data for two sets of experiments with corresponding calculated data.

The first step of calculating the RMS of the multiple experiments is by calculating the
RMS of the individual RMS values of the individual experiments.
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Calculation for experiment 1:

dref = max
i
{ωi} = 0.892 (D.1a)

~rexp.1 = [
(0.023− 0.0)

dref
,

(0.123− 0.1)

dref
, ...,

(0.892− 0.9)

dref
] (D.1b)

〈~rexp.1, ~rexp.1〉 = (
0.023− 0.0

dref
)2 + (

0.123− 0.1

dref
)2 + ...+ (

0.892− 0.9

dref
)2 (D.1c)

N = Nexp.1 = 10 (D.1d)

RMSexp.1 =

√
1

N
〈~rexp.1, ~rexp.1〉 · 100 = 3.3% (D.1e)

Calculation for experiment 2:

dref = max
i
{ωi} = 0.245 (D.2a)

~rexp.2 = [
(0.003− 0.0)

dref
,

(0.014− 0.01)

dref
, ...,

(0.245− 0.25)

dref
] (D.2b)

〈~rexp.2, ~rexp.2〉 = (
0.003− 0.0

dref
)2 + (

0.014− 0.01

dref
)2 + ...+ (

0.245− 0.25

dref
)2 (D.2c)

N = Nexp.2 = 5 (D.2d)

RMSexp.2 =

√
1

N
〈~rexp.2, ~rexp.2〉 · 100 = 6.4% (D.2e)

The second step is to combine the RMS values of the individual experiments to yield the
total RMS.

N = Nexp.1 +Nexp.2 = 10 + 5 (D.3a)

RMStot =

√
1

N
(〈~rexp.1, ~rexp.1〉+ 〈~rexp.2, ~rexp.2〉) · 100 = 4.6% (D.3b)
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Experiment 1 Experiment 2 Experiment 1 & 2
(%) (%) (%)
3.3 6.4 4.6

Overview of RMS for Experiments

Table D.2: RMS values for experiment 1, 2 and the combination of experiments for the data given
in Table D.1.

D.2 Decision Tree Example
This section will describe an example of how to build a decision tree based on an adap-
tation from the book by Mitchell [23] based on estimating whether or not to play tennis
based on certain features. The features in this example is the outlook, temperature, hu-
midity and the wind. The attributes associated with, for example, the outlook is sunny,
overcast and rain. The dataset is given in Table D.3.

Table D.3: Dataset from Mitchell [23] for estimating if the conditions are acceptable to play tennis.

8 
 

Table 2.1: Dataset from Mitchell [12] for estimating if the conditions are acceptable to play tennis. 

 

When generating the decision tree, the goal is to predict the outcome with as shallow a tree as 
possible to avoid over-fitting. This can be implemented by defining the 𝐺𝑎𝑖𝑛-function as in equation 
(2.14). 

𝐺𝑎𝑖𝑛 𝑆, 𝐹 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑆 ∑ | |

| |
 

∈ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑆 …………………………………………...(2.14) 

Where 𝑆 is the system and 𝐹 is the feature, 𝑆 𝑠 ∈ 𝑆 | 𝐹 𝑠 𝑣  is the system with attribute 𝑣 and 
|•| is the number of elements in the system. The entropy can be calculated as shown in equation 
(2.15): 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑆 ∑ 𝑝 ⋅ 𝑙𝑜𝑔 𝑝 …………………………………………………………………….(2.15) 

Where 𝑝  is the probability of feature 𝐹 of having attribute 𝐴 and 𝑐 is the total number of attributes. 
As an example, let 𝑆 be the total system given in table 2.1 and the attribute be either yes or no. 
Based on this knowledge we define 𝑆 such that 𝑆 9 ,5  meaning that there are 9 results that 
yield yes and 5 values that yield no. The entropy of the system can then be calculated using equation 
(2.15) and yields: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑆 ⋅ log ⋅ log 0.940……………………………………………….(2.16) 

Similarly the entropy for the attributes “Weak” and “Strong” can be calculated by defining the attribute 
system 𝑆 6 ,2  which means that for the subset with the attribute “weak” there are 6 results 
that yield yes and 2 that yield no. Similarly, the attribute system 𝑆 3 ,3  can be defined, 

which means that for the subset with the attribute “strong” there are 3 results that yield yes and 3 
that yield no. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑆 ⋅ log ⋅ log 0.811……………………………………………...(2.17) 

Day Outlook Temperature Humidity Wind Play Tennis
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No

When generating the decision tree, the goal is to predict the outcome with as shallow a tree
as possible to avoid over-fitting. This can be implemented by defining the Gain-function
as in equation (2.39). The entropy can be calculated as shown in equation (2.40).

As an example, let S be the total system given in Table D.3 and the attribute be either yes
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or no. Based on this knowledge we define S such that S=[9+,5-] meaning that there are
9 results that yield yes and 5 values that yield no. The entropy of the system can then be
calculated using equation (2.40) and yields:

Entropy(S) = − 9

14
· log2(

9

14
)− 5

14
· log2(

5

14
) = 0.940 (D.4)

Similarly the entropy for the attributes “Weak” and “Strong” can be calculated by defin-
ing the attribute system SWeak=[6+,2-] which means that for the subset with the attribute
“weak” there are 6 results that yield yes and 2 that yield no. Similarly, the attribute system
SStrong=[3+,3-] can be defined, which means that for the subset with the attribute “strong”
there are 3 results that yield yes and 3 that yield no.

Entropy(Sweak) = −6

8
· log2(

6

8
)− 2

8
· log2(

2

8
) = 0.811 (D.5)

Entropy(Sstrong) = −3

6
· log2(

3

6
)− 3

6
· log2(

3

6
) = 1 (D.6)

By combining the results in (D.4), (D.5) and (D.6) together with equation (2.39) the gain
of the “wind” feature can be calculated to be:

Gain(S,wind) = 0.940− 8

14
· 0.811− 6

14
· 1 = 0.048 (D.7)

Similarly, it is possible to calculate the gain for all the features. The results for this are
given by

Table D.4: Gain for all features from the example by Mitchell [23].
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𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑆 ⋅ log ⋅ log 1………………………………………………….(2.18) 

By combining the results in (2.16) and (2.17) together with equation (2.14) the gain of the “wind” 
feature can be calculated to be: 

𝐺𝑎𝑖𝑛 𝑆, 𝑊𝑖𝑛𝑑 0.940 ⋅ 0.811 ⋅ 1 𝟎. 𝟎𝟒𝟖………………………………………………..(2.19) 

Similarly, it is possible to calculate the gain for all the features. The results for this are given in table 
2.2.  

Table 2.2: Gain for all features from the example by Mitchell [12]. 

 

From the results given in table 2.2 it is possible to determine the feature that yields the most 
knowledge from the highest valued gain. The methodology detailed above is relevant for the first 
node in the decision tree, and the same procedure can be applied recursively for each layer in the 
tree with a subset of the data [12] as shown in figure 2.2. One exception to this algorithm occurs 
when the results are all of one type (e.g. either all yes or no). This defines the terminal node of the 
decision tree. 

 

Figure 2.2: Schematic of first node in decision tree based on the data from Mitchell [12] showing the 
sub-dividing of the original dataset. 

When the decision tree is made, a new set of features is inserted into the tree and based on the 
values of the attributes, the resulting value yes or no is given by the tree by the terminating node. 
Based on this procedure it makes sense to describe the decision tree as a function that takes in 
some features (𝐱) and outputs some value, ℎ 𝐱 . 

Feature Gain
Outlook 0.246
Humidity 0.151

Wind 0.048
Tempearture 0.029

Outlook

Sunny Overcast Rain

Yes? ?

{D1,D2,…,D14}

{D4,D5,D6,D10,D14}{D1,D2,D8,D9,D11} {D3,D7,D12,D13}

[3+,2-][2+,3-] [4+,0-]

156



From the results given in Table D.4 it is possible to determine the feature that yields the
most knowledge from the highest valued gain. The methodology detailed above is relevant
for the first node in the decision tree, and the same procedure can be applied recursively for
each layer in the tree with a subset of the data [23] as shown in Table D.7. One exception
to this algorithm occurs when the results are all of one type (e.g. either all yes or no). This
defines the terminal node of the decision tree.

9 
 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑆 ⋅ log ⋅ log 1………………………………………………….(2.18) 

By combining the results in (2.16) and (2.17) together with equation (2.14) the gain of the “wind” 
feature can be calculated to be: 

𝐺𝑎𝑖𝑛 𝑆, 𝑊𝑖𝑛𝑑 0.940 ⋅ 0.811 ⋅ 1 𝟎. 𝟎𝟒𝟖………………………………………………..(2.19) 

Similarly, it is possible to calculate the gain for all the features. The results for this are given in table 
2.2.  

Table 2.2: Gain for all features from the example by Mitchell [12]. 

 

From the results given in table 2.2 it is possible to determine the feature that yields the most 
knowledge from the highest valued gain. The methodology detailed above is relevant for the first 
node in the decision tree, and the same procedure can be applied recursively for each layer in the 
tree with a subset of the data [12] as shown in figure 2.2. One exception to this algorithm occurs 
when the results are all of one type (e.g. either all yes or no). This defines the terminal node of the 
decision tree. 

 

Figure 2.2: Schematic of first node in decision tree based on the data from Mitchell [12] showing the 
sub-dividing of the original dataset. 

When the decision tree is made, a new set of features is inserted into the tree and based on the 
values of the attributes, the resulting value yes or no is given by the tree by the terminating node. 
Based on this procedure it makes sense to describe the decision tree as a function that takes in 
some features (𝐱) and outputs some value, ℎ 𝐱 . 

Feature Gain
Outlook 0.246
Humidity 0.151

Wind 0.048
Tempearture 0.029

Outlook

Sunny Overcast Rain

Yes? ?

{D1,D2,…,D14}

{D4,D5,D6,D10,D14}{D1,D2,D8,D9,D11} {D3,D7,D12,D13}

[3+,2-][2+,3-] [4+,0-]

Figure D.1: Schematic of first node in decision tree based on the data from Mitchell [23] showing
the sub-dividing of the original dataset.

D.3 Convergence Composition
The convergence pressure composition methodology is described in chapter 3 section
3.2.2, however, to make the approach more clear an example is given here for a ternary
system with SCN components C1, C3 and C6. The approach can be summarized by (1)
starting with an initial composition (z∗i ) at a pressure (p∗) and temperature (T ∗) then (2)
the convergence pressure of the initial composition is calculated (pK(z∗i , T

∗)) followed by
(3) applying the negative flash to yield equilibrium composition for the vapor (yeqi) and
liquid (xeqi) which are equal and finally (4) define the convergence pressure composition
(zKi = yeqi = xeqi) which will yield a critical point at the convergence pressure of the
initial composition (pc(zKi, T ∗) = pK(z∗i , T

∗)).

This procedure was carried out for the ternary mixture containing SCN C1, C3 and C6 and
the compositional phase envelope for a temperature of 100◦C at the convergence (1986.95
psia) and initial pressure (1000 psia) in Figure D.2. The critical tie-line extension at the
critical point for the convergence pressure is also shown in the figure. This shows, graph-
ically, the connection between initial composition and the convergence pressure composi-
tion as being connected via the critical tie-line extension.
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Figure D.2: Example of ternary compositional phase envelope for initial pressure (solid line) and
convergence pressure (dashed line) as well as the inital composition (square symbol) and the con-
vergence pressure composition (circle symbol).

D.4 Number of BIPs Derivation
A simple and visual proof of the equation for the number of BIPs with respect to the num-
ber of components is given below. First make a square with Ncomps boxes and we start
by filling all the boxes (Nfilled = Ncomps · Ncomps). Then, remove the diagonal, which
contains as many boxes as the number of components (Nfilled = Ncomps · Ncomps −
Ncomps). Then remove the symmetric upper triangle by dividing by two (Nfilled =
Ncomps·Ncomps−Ncomps

2 ) and finally factoring out the common factor of Ncomps resulting
in

Nfilled =
Ncomps(Ncomps − 1)

2
(D.8)

From the figure below it is clear that the number of filled boxes is equal to the number of
BIPs. This concludes the proof.
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1 2 3 4 5
1
2
3 5x5=25
4
5

(a) Fill square.

1 2 3 4 5
1
2
3 5x5-5=20
4
5

(b) Remove diagonal.

1 2 3 4 5
1
2
3 (5x5-5)/2=10
4
5

(c) Remove upper triangle

1 2 3 4 5
1
2
3 5x(5-1)/2=10
4
5

(d) Factor the 5.

Figure D.3: Example of filling proof for Ncomps = 5.

D.5 Two-Norm Example Calculation
Let ~u = [1, 4, 2,−2] be some arbitrary vector. A general description of how to calculate
the 2-norm of any vector ~v = [v1, v2, ..., vn] is given by

||~v||2 =

√√√√ n∑
i=1

v2
i (D.9)

Applying equation (D.9) to the specific vector ~u yields

||~u||2 =
√

(1)2 + (4)2 + (2)2 + (−2)2 =
√

25 = 5 (D.10)
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Appendix E
Code Reference

The code used to generate the data for chapters 3 and 4 can be found in a github repository
at: https://github.com/MarkusHays/Master-Thesis
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Appendix F
PhazeComp Solver K-value
Regression Study

This chapter of the appendix is a collection of work done on the ability of PhazeComp
to do regression of BIPs with synthetic K-value data. The range of results presented are
meant to show when PhazeComp is able to accurately solve for the K-values or not and
what information is needed (e.g. K-value data) to accurately predict the phase behavior

F.1 Gridding Structure
Withing this study three types of pressure point gridding was used to generate the K-value
data. The three types of pressure point gridding are (a) linear gridding (equal spacing),
(b) logarithmic gridding (equal spacing on a logarithmic axis) and (c) geometric gridding.
The equations used to generate the pressure data are given for (a) to (c) are given equations
(F.1) to (F.3).

xk = x0 + k∆x (F.1a)

∆k =
xN−1 − x0

N − 1
(F.1b)

xk = x0 · 10k∆x (F.2a)

∆k =
log(xN−1/x0)

N − 1
(F.2b)
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xk = x0 + (xN−1 − x0)(1− rk) (F.3)

Below is a range of different cases where (i) the number of pressure points are varying, (b)
the pressure gridding structure is different and (iii) for the case of geometric gridding the
placement of the pressure points (r-value) are changed. For the figures where there are five
components, the fluid system used is a C1-C8-C20-C30-C40 single carbon number mixture
at 100◦C.
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Figure F.1: Example of linear gridding.
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Figure F.2: Example of logarithmic gridding.

F.2 Geometric Gridding Sensitivity
Below are three figures containing a sensitivity study of geometric gridding the r-value
(i.e. the pressure range) and the number of pressure points.
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(a) r=0.05
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(b) r=0.25
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(c) r=0.50
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(d) r=0.75
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(e) r=0.85
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(f) r=0.95
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(g) r=0.995
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(h) r=0.9995

Figure F.3: One pressure point geometric gridding with varying r-value.
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(a) r=0.05
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(b) r=0.25
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(c) r=0.50
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(d) r=0.75
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(e) r=0.85
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(f) r=0.95
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(g) r=0.995
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(h) r=0.9995

Figure F.4: Two pressure points geometric gridding with varying r-value.
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(a) r=0.05
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(b) r=0.25
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(c) r=0.50
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(d) r=0.75
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(e) r=0.85
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(f) r=0.95
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(g) r=0.995
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(h) r=0.9995

Figure F.5: Three pressure points geometric gridding with varying r-value.
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F.3 Strange Case of Low-Pressure Crossing
A unforeseen result of the flexibility of the effect of BIPs on the phase behavior is given
below. The following two figures show a regression of 20 pressure points for a C1-C15

SCN mixture at 100 ◦C K-value data. The interesting effect of the two regression solutions
is shown in the low pressure region as both regression solutions fit a wide range of pressure
data. However, as the pressure tends to 1 psia the K-value data of several components
(specifically C5 and C6) starts deviating from the linear trend. The only difference in the
regression is the range of the search, where in Figure F.6 the range is strictly positive and
in Figure F.7 the lower range is set to -0.1.
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Figure F.6: Final results of BIP regression with 20 pressure points for a C1 to C15 SCN mixture at
100 ◦C with a BIP ranging from 0 to 0.5.
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Figure F.7: Final results of BIP regression with 20 pressure points for a C1 to C15 SCN mixture at
100 ◦C with a BIP ranging from -0.1 to 0.5.

The resulting equation of state models from the regression in Figure F.6 and F.7 are given
in Table F.3 and F.4. For the associated PhazeComp file and the respective output file, the
reader is able to retrieve the data at the GitHub website linked to in the previous chapter.
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Table F.1: Component properties for all components used in this section (i.e. SCN C1 to C15).

Component
Name MW Tc pc ω Vc

(oC) (psia)

C1 16.04 -82.59 667.0 0.011 0.099
C2 30.07 32.17 706.6 0.099 0.146
C3 44.10 96.68 616.1 0.152 0.200
C4 58.12 151.6 544.9 0.203 0.258
C5 70.91 197.0 503.2 0.231 0.306
C6 82.42 240.2 490.0 0.240 0.341
C7 95.63 276.1 455.3 0.274 0.387
C8 109.24 307.3 420.4 0.312 0.435
C9 122.22 334.7 388.1 0.352 0.485

C10 135.14 359.4 359.9 0.392 0.537
C11 147.98 381.7 335.3 0.432 0.588
C12 160.73 402.1 313.7 0.471 0.640
C13 173.38 420.8 294.7 0.506 0.691
C14 185.92 438.1 277.9 0.543 0.742
C15 198.36 454.1 263.0 0.579 0.792

Component Properties

Table F.2: Synthetic BIPs (Chueh-Prausnitz) for all components used in this section (i.e. SCN C1

to C15).

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
C1 0 0.002 0.007 0.013 0.018 0.021 0.025 0.030 0.034 0.039 0.043 0.047 0.050 0.054 0.057
C2 0.002 0 0.001 0.005 0.008 0.010 0.013 0.016 0.020 0.023 0.027 0.030 0.033 0.036 0.039
C3 0.007 0.001 0 0.001 0.002 0.004 0.006 0.008 0.011 0.013 0.016 0.018 0.021 0.023 0.026
C4 0.013 0.005 0.001 0 0.000 0.001 0.002 0.004 0.006 0.007 0.009 0.011 0.013 0.015 0.017
C5 0.018 0.008 0.002 0.000 0 0.000 0.001 0.002 0.003 0.004 0.006 0.008 0.009 0.011 0.012
C6 0.021 0.010 0.004 0.001 0.000 0 0.000 0.001 0.002 0.003 0.004 0.005 0.007 0.008 0.010
C7 0.025 0.013 0.006 0.002 0.001 0.000 0 0.000 0.001 0.001 0.002 0.004 0.005 0.006 0.007
C8 0.030 0.016 0.008 0.004 0.002 0.001 0.000 0 0.000 0.001 0.001 0.002 0.003 0.004 0.005
C9 0.034 0.020 0.011 0.006 0.003 0.002 0.001 0.000 0 0.000 0.001 0.001 0.002 0.003 0.003

C10 0.039 0.023 0.013 0.007 0.004 0.003 0.001 0.001 0.000 0 0.000 0.000 0.001 0.001 0.002
C11 0.043 0.027 0.016 0.009 0.006 0.004 0.002 0.001 0.001 0.000 0 0.000 0.000 0.001 0.001
C12 0.047 0.030 0.018 0.011 0.008 0.005 0.004 0.002 0.001 0.000 0.000 0 0.000 0.000 0.001
C13 0.050 0.033 0.021 0.013 0.009 0.007 0.005 0.003 0.002 0.001 0.000 0.000 0 0.000 0.000
C14 0.054 0.036 0.023 0.015 0.011 0.008 0.006 0.004 0.003 0.001 0.001 0.000 0.000 0 0.000
C15 0.057 0.039 0.026 0.017 0.012 0.010 0.007 0.005 0.003 0.002 0.001 0.001 0.000 0.000 0

Binary Interaction Parameters
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Table F.3: Final results of the regression BIPs with a range on the BIPs between 0 and 0.5 for all
components used in this section (i.e. SCN C1 to C15).

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
C1 0 0.002 0.006 0.013 0.018 0.020 0.026 0.029 0.035 0.039 0.042 0.047 0.052 0.053 0.058
C2 0.002 0 0.014 0.000 0.000 0.022 0.000 0.031 0.010 0.018 0.044 0.029 0.000 0.066 0.032
C3 0.006 0.014 0 0.000 0.000 0.004 0.012 0.000 0.014 0.021 0.000 0.023 0.041 0.000 0.033
C4 0.013 0.000 0.000 0 0.003 0.000 0.002 0.003 0.009 0.003 0.012 0.008 0.018 0.018 0.013
C5 0.018 0.000 0.000 0.003 0 0.000 0.001 0.004 0.000 0.004 0.011 0.007 0.000 0.019 0.011
C6 0.020 0.022 0.004 0.000 0.000 0 0.000 0.000 0.002 0.006 0.000 0.007 0.011 0.000 0.014
C7 0.026 0.000 0.012 0.002 0.001 0.000 0 0.000 0.001 0.000 0.004 0.004 0.000 0.012 0.005
C8 0.029 0.031 0.000 0.003 0.004 0.000 0.000 0 0.000 0.001 0.000 0.001 0.007 0.000 0.006
C9 0.035 0.010 0.014 0.009 0.000 0.002 0.001 0.000 0 0.000 0.000 0.002 0.001 0.004 0.002

C10 0.039 0.018 0.021 0.003 0.004 0.006 0.000 0.001 0.000 0 0.001 0.000 0.000 0.002 0.002
C11 0.042 0.044 0.000 0.012 0.011 0.000 0.004 0.000 0.000 0.001 0 0.000 0.000 0.000 0.002
C12 0.047 0.029 0.023 0.008 0.007 0.007 0.004 0.001 0.002 0.000 0.000 0 0.001 0.000 0.000
C13 0.052 0.000 0.041 0.018 0.000 0.011 0.000 0.007 0.001 0.000 0.000 0.001 0 0.000 0.000
C14 0.053 0.066 0.000 0.018 0.019 0.000 0.012 0.000 0.004 0.002 0.000 0.000 0.000 0 0.000
C15 0.058 0.032 0.033 0.013 0.011 0.014 0.005 0.006 0.002 0.002 0.002 0.000 0.000 0.000 0

Binary Interaction Parameters

Table F.4: Final results of the regression BIPs with a range on the BIPs between -0.1 and 0.5 for all
components used in this section (i.e. SCN C1 to C15).

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
C1 0 0.002 0.005 0.014 0.015 0.026 0.020 0.034 0.031 0.043 0.037 0.051 0.050 0.052 0.059
C2 0.002 0 0.026 -0.012 0.058 -0.092 0.121 -0.067 0.090 -0.065 0.138 -0.058 0.043 0.073 0.020
C3 0.005 0.026 0 0.000 -0.053 0.110 -0.100 0.089 -0.049 0.072 -0.051 0.080 -0.011 0.030 0.026
C4 0.014 -0.012 0.000 0 0.019 -0.033 0.040 -0.027 0.018 0.023 -0.034 0.046 0.047 -0.070 0.062
C5 0.015 0.058 -0.053 0.019 0 0.000 0.002 -0.006 0.028 -0.058 0.115 -0.100 0.001 0.142 -0.068
C6 0.026 -0.092 0.110 -0.033 0.000 0 -0.003 0.015 -0.029 0.064 -0.096 0.113 -0.007 -0.100 0.084
C7 0.020 0.121 -0.100 0.040 0.002 -0.003 0 -0.005 0.016 -0.031 0.057 -0.058 0.023 0.047 -0.024
C8 0.034 -0.067 0.089 -0.027 -0.006 0.015 -0.005 0 -0.003 0.011 -0.018 0.025 -0.019 0.023 -0.004
C9 0.031 0.090 -0.049 0.018 0.028 -0.029 0.016 -0.003 0 -0.002 0.002 -0.004 0.030 -0.049 0.031

C10 0.043 -0.065 0.072 0.023 -0.058 0.064 -0.031 0.011 -0.002 0 0.002 0.002 -0.026 0.055 -0.027
C11 0.037 0.138 -0.051 -0.034 0.115 -0.096 0.057 -0.018 0.002 0.002 0 -0.002 0.016 -0.034 0.022
C12 0.051 -0.058 0.080 0.046 -0.100 0.113 -0.058 0.025 -0.004 0.002 -0.002 0 -0.003 0.013 -0.008
C13 0.050 0.043 -0.011 0.047 0.001 -0.007 0.023 -0.019 0.030 -0.026 0.016 -0.003 0 -0.002 0.002
C14 0.052 0.073 0.030 -0.070 0.142 -0.100 0.047 0.023 -0.049 0.055 -0.034 0.013 -0.002 0 0.000
C15 0.059 0.020 0.026 0.062 -0.068 0.084 -0.024 -0.004 0.031 -0.027 0.022 -0.008 0.002 0.000 0

Binary Interaction Parameters
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