
Recreating Locke-Saw
yer Curves w

ith N
um

erical Reservoir Sim
ulation

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f G

eo
sc

ie
nc

e
an

d
Pe

tr
ol

eu
m

M
as

te
r’s

 th
es

is

Madelene Skintveit

Recreating Locke-Sawyer Curves with
Numerical Reservoir Simulation

Master’s thesis in Petroluem Engineering, MTPETR

Supervisor: Curtis Hays Whitson

June 2020

Madelene Skintveit

Recreating Locke-Sawyer Curves with
Numerical Reservoir Simulation

Master’s thesis in Petroluem Engineering, MTPETR
Supervisor: Curtis Hays Whitson
June 2020

Norwegian University of Science and Technology
Faculty of Engineering
Department of Geoscience and Petroleum

Abstract
This thesis is representing the work done in the course ”TPG4920 Petroleum Engineering,
Master’s Thesis”, and is a continuation of the course ”TPG4560 Petroleum Engineering,
Specialization Project”. The thesis is a requirement for the study program MTPETR at the
Norwegian University of Science and Technology (NTNU), to qualify the author for an
M.Sc in petroleum engineering.

A widely used tool for reservoir forecasting, reserve estimation, and behavior prediction
of the flow of fluids through a porous media, is reservoir simulation. With numerical anal-
ysis, the aim is to model the type curves developed by Locke-Sawyer for a well producing
single-phase oil with a vertical hydraulic infinite conductivity fracture. Due to the original
data used by Locke and Sawyer was not accounted for in their paper, the missing data is
generated by Kappa Engineering. Therefore, the purpose of this research is to remake the
Locke-Sawyer curves with numerical analysis and compare them to the curves generated
by Kappa.

To create a numerical model for the presented problem, it is necessary to know the dimen-
sions of the grid. This has led to challenges as the simulator was limited by a maximum
number of total grid blocks and the optimum combination of grids providing the best-
estimated results were unknown. Nevertheless, this challenge led to the development of a
new approach to grid refinement.

Presented herein is a probabilistic approach to grid refinement. The procedure involves as-
signing weight factors to the estimated results by examining the value of their derivatives,
which makes it possible to separate the good results from the poor ones. The presented
methodology is fully automated for estimating rates and cumulative volumes (the results)
for a number of time steps, and to determine the optimum gird block combination.

The methodology is tested by comparing the estimated results from the resulting grid
block combination with the most accurate numerical solution using the maximum number
of grid blocks available. The result from this comparison was an exact match for the sim-
plest fracture penetration ratio of 1, and an adequate match after the 10 first days for the
ratio of 1.5. However, this confirms the potential of the presented methodology.

The modeled Locke-Sawyer curves for the fracture ratio of 1 and 1.5 presents a better set
of curves than the curves developed by Kappa Engineering. Due to errors in the late rate-
time data from Kappa, the part of the curves in the boundary-dominated flow region are
unreliable. Consequently, a new set of modeled Locke-Sawyer curves that is perhaps more
accurate for unconventional performance forecasting has been developed by the presented
methodology.

i

Sammendrag
Denne masteroppgaven representerer arbeidet gjort i kurset ”TPG4920 Petroleumsteknologi,
Masteroppgave”, og er fortsettelsen på kurset ”TPG4560 Petroleumsteknologi, Fordypn-
ingsporsjekt”. Masteroppgaven er et krav for studieprogrammet MTPETR ved Norges
Teknisk Naturvitenskapelige Universitet (NTNU) for å kunne kvalifisere forfatteren med
en mastergrad i petroleumsteknologi.

Reservoarsimulering er et mye brukt verktøy for å forstå reservoar prognoser, estimere
gjenværende reserver og forutse strømningen av fluider gjennom et porøst media. Målet
med oppgaven er å gjenskape kurvene utviklet av Locke and Sawyer for en brønn som
produserer enfaset olje ved hydraulisk fakturering, der bruddet har uendelig konduktivitet.
Locke og Sawyer utelatte de originale dataene som ble brukt for å skape kurvene. Data
som kunne representere kurvene ble derfor generert av Kappa Engineering. Meningen
med dette arbeidet er derfor å gjenskape kurvene til Locke-Sawyer med numerisk analyse
og sammenligne dem med kurvene fra Kappa.

Det er nødvendig å vite dimensjonene på gitteret for å kunne lage en numerisk modell.
Dette har ført til utfordringer ettersom simulatoren er begrenset av et maksimalt antall
gitterblokker og den optimale gitter-kombinasjonen som gir det beste estimerte resultatet
ikke har vært kjent. Dette har derimot bidra til en ny måte å gjennomføre gitter oppdeling
på.

Presentert i oppgaven er en sannsynlig tilnærming til gitter oppdeling. Denne metoden
innebærer å tildele vekt-faktorer til de estimerte resultatene ved å undersøke den deriverte
for alle mulige gitter kombinasjoner, noe som gjør det mulig å skille de gode og dårlige
resultatene fra hverandre. Metoden er fullstendig automatisert, og kan estimere rater og
kumulative volumer for et gitt antall tids steg, i tillegg til å bestemme den gitter kombi-
nasjonen som gir det best estimert resultat.

Metoden er testet ved å sammenligne de estimerte resultatene fra den optimale gitter kom-
binasjonen med den mest nøyaktige numeriske løsningen gitt ved bruk av maksimalt antall
tilgjengelige gitterblokker. Resultatene fra denne sammenligningen er en eksakt overlap-
ping for et bruddpenetreringsforhold lik 1, og en tilstrekkelig overlapping etter de 10 første
dagene når bruddpenetreringsforholdet er 1.5. Dette resultatet bekrefter derimot poten-
sialet til den presenterte metoden.

De nye modellerte Locke-Sawyer kurvene er angivelig mer nøyaktig en kurvene generert
fra Kappa Engineering. Dette skyldes funn av upålitelige data for lave produksjonsrater
i datasettet fra Kappa. Med andre ord så er de nye kurvene utviklet fra den presenterte
metoden mer nøyaktig for produksjonsprognoser for et ukonvensjonelt reservoar med en
vertikal bruddgeometri.

ii

Acknowledgements
I would like to thank Dr. Curtis H. Whitson for his mentorship throughout this spring.
I am thankful that I have spent my final year at NTNU working with such a recognized
professor who is truly remarkable in his field.

To my co-student Markus Hays Nielsen, I would like to thank you for being my savior
countless times, especially with Python. With your help, my programming skills went
from non-existing to doable. I am also beyond thankful for the guidance that you have
provided me, even though you have your own projects and a thesis to write. I am truly
impressed by what you know and what you manage to do.

Thanks to Stian Mydland for helping me to get started with Sensor and to make sure that I
understand the tasks at hand. Your technical capabilities within reservoir simulation have
been highly appreciated, and thank you for taking the time to run necessary simulations.

Related to my work, I would also like to thank Coates Engineering Inc. for providing
me with the license for Sensor6k. The work done in this thesis could not have been done
without it.

Special thanks to my family, for their love and support throughout my years of study-
ing Petroleum Engineering at NTNU. To my twin sister Karoline, who also finishes her
master’s degree this spring, thank you for always listening and providing me the mental
support needed.

Last but not least, I want to thank all of my wonderful girlfriends here at NTNU - espe-
cially Kristin and Vilde, for sharing my interest in petroleum engineering, and also Hanna,
for always brightening up my day at PTS. I am so grateful for looking back at 4 fantastic
years here in Trondheim thanks to Gjengen Allianse and all of the guys.

Madelene Skintveit
Trondheim,
June 2020

iii

iv

Software
Sensor
Sensor- System for Efficient Numerical Simulation of Oil Recovery is developed by Coats
Engineering Inc. and is a pre-processor simulator. Sensor processes the input data given
and produces output data for Excel. Sensor has been a simple and powerful asset for pro-
viding the information needed.

TecPlot RS
Techplot RS is developed by Tecplot Inc, which provides visualization and analysis soft-
ware for plotting purposes. Techplot RS helps to manage and analyze large amounts of
reservoir simulation data and to understand the reservoir model behavior. The software
has been necessary to analyze the output fort61. files from Sensor.

Python
Python is a high level, interpreted, and general-purpose programming language. The use
of Python is necessary to create communication between Excel and Sensor in a fast and
simple way. It is important to highlight the amount of time saved by introducing Python
for data handling and analysis than transferring data between Excel and Sensor manually.

Microsoft Excel
Microsoft Excel is a powerful data visualization and analysis tool. Excel has been partic-
ularly valuable for data retrieval using Python and to visualize the generated output files
from Python. In addition, many of the tables and figures presented in this work has been
created using the software.

v

vi

Table of Contents

Abstract i

Sammendrag ii

Acknowledgements iii

Software v

Table of Contents viii

List of Tables ix

List of Figures xii

1 Introduction 1
1.1 Scope of Study . 1
1.2 Available Data . 2

2 Background: Locke-Sawyer Type Curves 3

3 Basic Theory 7
3.1 Unconventional Reservoirs . 7
3.2 Infinite Conductivity Hydraulic Fracture 7
3.3 Finite-Difference Simulator . 8
3.4 Grid Refinement Study . 9
3.5 Statistical Distributions . 9

4 Grid Description 11
4.1 The Reservoir Model . 11
4.2 1D Grid Description . 12

4.2.1 Well Positioned in One Grid Block Along Fracture 12
4.2.2 Well Positioned in All Grid Blocks Along Fracture 13

vii

4.3 2D Grid Description . 14

5 Data Initialization 17
5.1 Condition for Grid Case Generation . 17
5.2 Required Input Parameters . 17
5.3 Description of Python Processes . 18
5.4 Input Datafile to Sensor . 18
5.5 Python Code Constraints . 20

6 Analysis of 1D Grid Refinement Study 21
6.1 Determination of Minimum Ny . 21

7 Probabilistic Approach To 2D Grid Refinement 25
7.1 Representation of A Distribution Through Histograms 25
7.2 The Methodology of Weighting Factors 26

7.2.1 Manual Procedure . 27
7.2.2 Automated Procedure . 28

7.3 Normalization of Derivatives . 34
7.4 Threshold Sensitivity Analysis . 35
7.5 Weighted Histograms for xe/xf = 1 . 37

7.5.1 Weighted Histogram on Day 1 37
7.5.2 Weighted Histogram on Day 10 39
7.5.3 Weighted Histogram on Day 100 40

8 Application of Weight Factor Methodology to xe/xf = 1.5 43

9 Recreation of Locke-Sawyer Curves with Numerical Reservoir Simulation 47
9.1 Recreation of xe/xf = 1 . 49
9.2 Recreation of xe/xf = 1.5 . 50

10 Discussion of Results 53

11 Final Comments and Conclusion 55

Nomenclature 57

Bibliography 59

Appendices 61
A Figures . 63
B Python Codes . 78
C Templates . 97

viii

List of Tables

4.1 The fracture penetration ratios and the respective fracture lengths 11

5.1 The value of porosity and permeability in the fracture and matrix 19

6.1 Estimated oil rate and number of Ny for relative change in rate of 1, 0.1
and 0.001 % . 22

7.1 General frequency and relative frequency of weighted and un-weighted
data when using method 1 . 30

9.1 Variables used in Locke-Sawyer dimensionless equations 48
9.2 Undersaturated black oil table and oil compressibility calculation 49

ix

x

List of Figures

2.1 Decline curves for well producing single-phase oil with vertical infinite
conductivity fracture developed by Locke-Sawyer 5

4.1 The reservoir model consisting of 4 symmetric squares 12
4.2 Hydraulic fracture with a centered well in only one grid block along the

fracture . 13
4.3 Well connected to all grid blocks along fracture 14
4.4 Example design of a hydraulic fracture for 2D grid 14

6.1 Estimated oil rate vs. Ny on day 1 . 22
6.2 Logarithmic plot of relative change in estimated rate vs. Ny 23

7.1 Original oil rate histogram for Nmax = 2000 on day 10, when xe/xf = 1 . 26
7.2 Possible combinations of Nx and Nx that do not exceed Nmax = 20 27
7.3 Original oil rate histogram for Nmax = 20 on day 10 27
7.4 The estimated oil rates given for all possible cases of Nmax = 20 28
7.5 The value of the derivatives (∆di,j), after utilizing Eq.7.1 on the estimated

rates . 29
7.6 The continuous weight factors calculated by Eq.7.2 29
7.7 Weighted oil rate histogram for Nmax = 20 with method 1 on day 10 . . . 31
7.8 The binary weight factors assigned to the estimated rates when ε = 0.332 32
7.9 Weighted oil rate histogram for Nmax = 20 with method 2 on day 10 . . . 33
7.10 Estimated oil rate vs. time for different threshold values 35
7.11 Estimated oil rate and number of cases used to get the estimated rate for

different threshold values on day 1 . 36
7.12 Original oil rate histogram for Nmax = 2000 on day 38
7.13 Weighted oil rate histogram for Nmax = 2000 on day 1 with ε = 10–6 . . . 38
7.14 Weighted oil rate histogram for Nmax = 2000 on day 10 with ε = 10–6 . . 39
7.15 Original oil rate histogram for Nmax = 2000 on day 100 40
7.16 Weighted oil rate histogram for Nmax = 2000 on day 100 with ε = 10–6 . 41

xi

8.1 Estimated oil rate vs. time from different combinations of Nx and Ny that
sums up to 6000 grid blocks . 44

8.2 The accurate numerical solution with 6000 grid cells and best estimated
result for Nmax = 1000 with Nx = 9 and Nx = 46 45

9.1 The xe/xf = 1 curve generated by Kappa and model 50
9.2 The xe/xf = 1.5 curve generated by Kappa and model 51

A.1 Flowchart of Python code process in main.py 63
A.2 Flowcharts of codes used in main.py . 64
A.3 Flowchart of Python code process in main extracter.py 65
A.4 Flowcharts of codes used in main extract.py 65
A.5 Flowchart of Python code process in main extracter.py 66
A.6 Flowchart of codes used in main extracter.py 67
A.7 Estimated oil rate and cumulative oil volume for PI=1 STB/d/psi 68
A.8 Estimated oil rate and cumulative oil volume for PI=10 STB/d/psi 69
A.9 Estimated oil rate and cumulative oil volume for PI=100 STB/d/psi 70
A.10 Estimated oil rate and cumulative oil volume from 1D grid refinement study 71
A.11 Estimated oil rate vs. Ny for Nx = 1 and Ny = 6000 72
A.12 Estimated cumulative oil volume vs. Ny for Nx = 1 and Ny = 6000 73
A.13 Estimated oil rate vs. time for different threshold for the first 10 days . . . 74
A.14 Estimated oil rate vs. time for different threshold values from day 70 to 100 75
A.15 Estimated oil rate and number of cases used to get the estimated rate for

different threshold values on day 10 . 76
A.16 Estimated oil rate and number of cases used to get the estimated rate for

different threshold values on day 100 . 77

xii

Chapter 1
Introduction

1.1 Scope of Study

A reservoir engineering task of significant importance is production performance forecast-
ing or well performance analysis. To be able to forecast future production of a well or a
field is crucial throughout its lifetime, and the reasons are many. Production forecasting
is the basis for any development decision and helps to decide among several development
concepts. It is a valuable tool for determining the stage of a field’s life, defining the best
recovery mechanism when the production needs to be enhanced, estimating remaining re-
serves and estimate ultimate recovery (EUR). Well performance analysis can roughly be
diagnosed from 3 angles; decline curve analysis (DCA), analytical modeling/ rate transient
analysis (RTA) and numerical reservoir simulation (NRS).

In the specialization project, the aim was to recreate the Locke-Sawyer type curves for a
vertical infinite-conductivity fracture without including the transition period from infinite-
acting to boundary dominated flow. To achieve this goal, DCA/RTA was utilized by ap-
plying the methodology of Fetkovich type curves (see description in Chapter 2). Despite
being fast and simple to use, the concepts of DCA and RTA are not as robust as numerical
analysis. Therefore, the main objective of this study is to remake the Locke-Sawyer curves
with numerical reservoir simulation. Even though NRS is a far more time-consuming and
requires significantly more computational work, it is a general method that is going to pro-
vide the best solution when there is no exact analytical solution to compare with.

The main challenge when implementing this problem to a reservoir simulator is to deter-
mine the appropriate grid. A probabilistic approach to grid refinement is presented, which
is a methodology for estimating a ”true” solution for a reservoir model with an unknown
behavior using a limited number of grid blocks. The underlying idea is based on the statis-
tical behavior of all possible combinations of grid blocks that do not exceed the maximum
number of total grid blocks. The ideal solution is an automated procedure for estimating
rates and cumulative volumes over the production lifetime. This is done by applying a

1

weight factor for the results, that is either continuous between 0 and 1, or a binary of 0
and 1. Both of these methods are described in Chapter 7 and the best choice of method
for further analysis is explained also. These weighting factors should isolate the “true”
results, however, seeing as this information is unknown, a method is proposed to estimate
these values by using the derivatives of the possible results. This derivative is expressing
the change in rate with respect to the x-and y-direction for a specific grid block, and is an
important term that plays a significant role when estimating the rates needed to recreate
the Locke-Sawyer curves.

Two analysis is going to take place in this study, which is one-dimensional (1D) and two-
dimensional (2D) grid refinement. What determines if the grid refinement is 1D or 2D,
is if the hydraulic fracture is extending to the reservoir boundary or not. If the fracture
does extend to the reservoir boundary, the main flow direction towards the fracture is in
the y-direction, or in other words, not along the fracture in the x-direction. Hence, from
1D grid refinement, the minimum number of grid blocks away from the fracture is to be
determined. This determines the necessary number of grid blocks needed for the 2D grid
refinement analysis, where the method of weighting factor is applied. To do so, a thresh-
old value that narrows down the possible grid block combinations is introduced, which
consequently requires a threshold sensitivity analysis to decide the optimum value. The
optimum threshold value is then going to be used to provide the best-estimated results.

After acquiring the estimated rates given by the probabilistic grid refinement study, it is
necessary to transform the rates to dimensionless rates (qD) and time to dimensionless
time (tD), to be able to compare with the Locke-Sawyer curves developed by Kappa Engi-
neering.

The work presented is divided into 4 main parts. The first part consists of an introduction
to the problem by including the background of the specialization project and other essen-
tial theory concepts. The second part is about describing the grid for different fracture
penetration ratios and a description of the data initialization by combining Sensor, Python,
and Excel. The third part provides the introduction and the result of applying the method-
ology of weighted factors, and the recreation of the Locke-Sawyer curves. Finally, the last
and fourth part contains the key results and discussion of these findings.

1.2 Available Data
The Locke-Sawyer curves used in this work are generated by Leif Larsen in Kappa engi-
neering [1]. The reason for this is because the original data used to create the curves was
not presented in the 1975 paper by C.D Locke and W.K Sawyer, and the data has not been
found in other research work or presented papers.

2

Chapter 2
Background: Locke-Sawyer Type
Curves

The information provided in this chapter is taken directly from TPG4560 specialization
project [2]. The reason for including this information is to provide a quick summary of the
project, and to introduce the concepts discussed herein.

Decline curve analysis (DCA) is an old, yet fast and simple technique for predicting future
performance of a well or a field. The reason for being one of the most preferred methods
is due to requiring only the production data, which is the most available characteristic of
a well during depletion. The future production is forecasted by simply extrapolating the
production rates with time, a concept introduced by J.J Arps [3]. He recognized that two
main fluid flow regimes could occur during the depletion process of a reservoir. The first
regime is occurring immediately after the start of production when no outer boundary has
yet been felt by the pressure distribution. In this period, the reservoir seems infinite in size,
and the period is therefore called infinite acting (IA). This period is characterized by very
high decline rates. Once the pressure transient reaches one of the outer boundaries, the
flow regime changes into boundary dominated (BD) flow, and the reservoir pressure starts
to decline.

Arps came up with three types of decline curves; hyperbolic, exponential, and harmonic:

Hyperbolic : q(t) =
qi[

1 + bDit]
1
b

, 0 < b < 1 (2.1)

Exponential : q(t) =
qi

eDit
, b = 0 (2.2)

Harmonic : q(t) =
qi[

1 + Dit]
, b = 1 (2.3)

3

where qi is the initial rate, D is the decline constant, and b is the hyperbolic decline con-
stant. These empirical equations are only valid for constant flowing bottom hole pressure,
i.e when the reservoir boundaries have been felt. The type of decline is dependent on
the value of the hyperbolic decline exponent, which indicates the recovery efficiency of
the field. Exponential decline, denoted by b → 0, indicates a low recovery and fluid ex-
pansion as the recovery mechanism. This means that either single-phase gas flow at high
pressures or single-phase oil flow is represented when b = 0. It is the latter case that ap-
plies to the work done in the specialization project. Further details about the other possible
values of b are described in the specialization project.

The challenge with low-permeability reservoirs (unconventionals) is that the period from
reaching one boundary to all of the outer boundaries, so-called the transition period, could
last for months to decades! This result is a b value much greater than 1 when the Arps
method is applied, which consequently leads to significant overestimation of the estimated
ultimate recovery (EUR) and of the remaining reserves in the reservoir. In other words, the
major limitation of Arps empirical equations is that they only take into account production
during constant bottom hole flowing pressure, which is a highly unrealistic operating con-
dition for unconventional reservoirs.

M.J Fetkovich introduced a significant improvement in the field of DCA. Fetkovich com-
bined the analytical solutions for the IA period with Arps empirical equations for BD flow,
which made it possible to describe the production performance over the lifetime of the
well [4]. The new curves were plotted with dimensionless decline rate and time on the
axes, qDd, and tDd respectively. By introducing these new dimensionless terms, Fetkovich
gave Arps’ constants b, D, and qi physical meaning in terms of reservoir properties and
depletion performance. Regarding the challenge of maintaining constant flowing pressure
conditions for low-permeability reservoirs, the Fetkovich type curves do indeed provide a
solution. Changes in operating conditions have been taking into account by utilizing the
concepts of rate normalization and the principle of superposition. To be able to deal with
varying pressures and rates marks the start of modernizing the traditional DCA towards
rate transient analysis (RTA). In other words, Fetkovich type curves are applicable for the
whole depletion process for a low-permeability reservoir.

C.D Locke and W.K.Sawyer presented decline type curves for a well producing at con-
stant bottomhole pressure; single-phase oil with a vertical infinite conductivity hydraulic
fracture [5]. How these curves were created is provided in the specialization project, and
the original curves are shown below in Fig.2.1.

The length of the distance from the well to the external boundary (xe) compared to the
length of the hydraulic fracture (xf), is expressed in the fracture penetration ratio xe/xf.
The line denoted with a∞ - symbol is representing an infinitely large reservoir compared
to its hydraulic fracture. All the other lines deviate from the IA line, and it happens at ear-
lier times for smaller fracture penetration ratios. The reason for this is because the pressure
transient uses a shorter amount of time to reach the outer boundaries for a smaller reser-
voir. In Fig.2.1 it is noticeable that the curves change shape sometime after the deviation,

4

Figure 2.1: Decline curves for well producing single-phase oil with vertical infinite conductivity
fracture developed by Locke-Sawyer

from a straight line to a concave downward shape. The latter is the shape of an exponential
decline which indicates that the outer boundaries have been reached by the pressure tran-
sient. However, how long the transition period lasts before an exponential decline occurs
is not possible to determine by the eye. As mentioned in the specialization project, it is the
transition period that is of the highest interest as the period has many uncertainties related
to it, especially when estimating EUR and remaining reserves of a field. In the paper by
Locke and Sawyer, the original data was not included, which makes the accuracy of the
curves doubtful.

In the specialization project, by applying the methodology of Fetkovich dimensionless
qD(tD) plot, the uncertain transition period was removed from the Locke-Sawyer type
curve. Consequently, the Locke-Sawyer curve was transformed into a type curve for a
fractured well geometry that could be more accurate for shale performance forecasting. In
this study, however, the idea is to recreate the original curves in Fig.2.1, which was not
possible to do in the specialization project without a reservoir simulator.

5

6

Chapter 3
Basic Theory

Description of theory and/or analytical concepts in this work. Some of the information in
Section 3.1 and 3.2 is discussed in the specialization project

3.1 Unconventional Reservoirs
The term ”unconventional reservoir” is a general term for reservoirs characterized by very
low permeability (10–5 – 10–2 mD) and porosity(< 10%), as tight-and shale reservoirs,
[6]. As a consequence of these reservoir properties, achieving economical production is
not possible without special recovery operations. In other words, production from un-
conventionals requires more specialized technologies that are more complex and far more
expansive than utilizing common methods for conventional reservoirs. The most popular
recovery technique for shale oil, shale gas, and tight gas is hydraulic fracturing which cre-
ates cracks in the reservoir that the reservoir fluid can flow through. Another challenging
aspect with unconventional reservoirs is to predict the well performance, which is signif-
icantly more difficult because of the reservoir properties already mentioned and because
of the fluid flow behavior described in Chapter 2. Therefore, to reduce the uncertainty in
production forecasting by a reservoir simulator, it is necessary to create a numerical model
with an accurate hydraulic fracture.

3.2 Infinite Conductivity Hydraulic Fracture
The determinants of the productivity of a low-permeability reservoir are the properties
of the hydraulic fractures [7]. Especially the conductivity of the hydraulic fracture has a
significant impact on productivity. In this work, infinite conductivity fracture (ICF) is the
fracture type being used. Infinite conductivity means that there exists no pressure drop in
the fracture during production, and the fluid flow into the fracture is the same everywhere
along the fracture. To achieve this in real life is unrealistic, however, it is possible to satisfy
this condition in reservoir simulation, which is explained in Chapter 4.

7

3.3 Finite-Difference Simulator
The fundamental equation in well testing is the hydraulic diffusivity equation, which de-
termines how fast pressure signals moves through the reservoir [8]. The starting point of
deriving the diffusivity equation is with the continuity equation for single phase flow:

∂p
∂t

+∇(ρq) = 0 (3.1)

The continuity equation is an expression for conservation of mass in a volume element.
By combining the continuity equation with Darcy’s law which describes the flow of fluids
through a porous media:

q = –
k
µ
∇p (3.2)

then the outcome is the diffusivity equation, assuming one dimensional and incompressible
flow:

k
µφct

∇2p =
∂p
∂t

(3.3)

The quantity k
µφct

= η is called the hydraulic diffusivity. This equation is a partial differen-
tial equation (PDE), and PDEs are used to describe a variety of phenomena by formulating
problems that involve functions of several variables. These equations cannot be solved an-
alytically, they must be solved with numerical analysis. The main approach of solving
PDEs in numerical reservoir simulation is by the use of finite-difference methods, which
are a set of algebraic schemes that one can derive to approximate the PDE. It is necessary
to convert the system of PDE into a system of algebraic equations, which is done by ap-
plying the Taylor series expansion for approximating the derivatives. The discretization
error that occurs by using Taylor series expansion is the error that occurs when a continu-
ous function is discretized, moreover, it is the difference between the real solution of the
PDE and the solution of the discrete problem. This discretization error is proportional to
the grid block size, which means that a smaller the grid block size results in a smaller error!

When performing the analysis of the finite-difference method for the numerical solution of
the PDE, Lax-Richtmyer Equivalence Theorem is often used. This theorem is often called
the fundamental theorem of numerical analysis, and links together the terms consistency,
stability, and convergence of a finite-difference approximation:

Convergence ⇐⇒ Consistency + Stability

”A finite-difference approximation that is consistent and stable is also convergent”[9]. Sta-
bility of a finite-difference approximation is achieved when inherent and round-off errors
are not amplified for larger time steps. This is ensured in the numerical model by using
the fully implicit scheme. This scheme requires significantly more computational work
(larger CPU time and storage requirement) as an iterative procedure but enables a larger
time step. A finite-difference approximation is consistent if by reducing the time step and
the derivative in x-and y-direction (∆di,j), the discretization error approaches zero. There-
fore, if a finite-difference approximation for a properly posed PDE is both consistent and
stable, then it satisfies the necessary conditions for convergence.

8

3.4 Grid Refinement Study
”The aim of gridding in reservoir simulation is to turn the geological model of the field
into a discrete system on which the fluid flow equation can be solved”, [10]. These dis-
crete systems are referred to as grid blocks. To determine the minimum number of grid
blocks needed in a reservoir model is an important task for a reservoir engineer because
the wrong number of grid blocks might lead to inaccurate results or longer CPU time,[11].
A smaller grid block size should result in a smaller discretization error for a consistent
method. However, this does not mean that multiple grid blocks should be used, as CPU
time increases drastically with an increasing number of grid blocks!

In other words, deciding the grid for a reservoir simulation model is not a straightforward
procedure. There exist two related problems when deciding the grid for a reservoir sim-
ulation model; first is that the accuracy of the numerical simulation is directly related to
the number of grid blocks used, and second is the discretization error. The finer the grid
(reducing the size of the grid blocks), the better accuracy and smaller is the discretization
error! A grid refinement study must be conducted to determine the minimum number of
grid blocks required to achieve a converged solution in both x-and y-direction (Nx, Ny).
To reach a converged solution means that little change is seen in reservoir model perfor-
mance when increasing the number of grid blocks. For Sensor6k, the maximum number
of grid cells available is 6000, and to use all grid cells would result in the most accurate
numerical solution. However, the aim is to decrease the number of grid blocks to a number
that provides an estimated solution that is within line-thickness of the true solution with
6000 grid cells.

3.5 Statistical Distributions
The distribution of a statistical data set is a function showing all the values or intervals
of data and how often they occur. When organizing a numerical data set, they are often
ordered from smallest to largest and divided into appropriate sized groups before being
put into charts and graphs to examine, for example, the center, shape and the variability
in the distribution. Histograms are a way of graphically representing a distribution, and
histograms are used extensively throughout this study. The distributions can have several
different shapes other than a normal distribution. In this study, most of the distributions
are skewed and not unimodal, which means that the distribution is non-symmetric. The
challenge with a skewed distribution is when deciding the ”typical” value of distribution,
or identifying the central location in the data set. There are especially two metrics used for
when measuring the central tendency, which is the mean and the median.

In asymmetric distribution, these terms would be identical, but for skewed distributions,
they could be fairly different. Moreover, it is important to point out that both the mean
and the median are valid measures of central tendencies, but they are appropriate under
different conditions. The mean is probably the most common method of central tendency,
where the sum of all the data in the dataset is divided by the number of values in the data
set. However, the mean has two disadvantages; it is highly susceptible to the influence

9

of outliers, values being particularly small or large compared to the rest of the data set.
The second disadvantage is that it loses its ability to measure the central location when the
data is skewed. In this case, the median could be a better measure, as it is less affected
by skewed data and outliers. The median is defined as the number in the center of a given
data set ranged from the lowest to the highest value. Therefore, the median is used when
estimating the typical value of a distribution.

10

Chapter 4
Grid Description

4.1 The Reservoir Model
The reservoir model is a square, which is the same representation of the reservoir used
by Locke-Sawyer. The square, (xe = ye), has been divided into 4 equal parts as seen in
Fig.4.1. Only 1 part is modeled in the simulator for simplicity, however, it is important
to scale up the rates by 4 when recreating the Locke-Sawyer curves in Chapter 9. The
reservoir half-length (xe) is set to be 400 ft to keep the model dimensions constant, while
the fracture length (xf) is changed accordingly to the xe/xf - ratio, see Table 4.1.

Table 4.1: The fracture penetration ratios and the respective fracture lengths

xe/xf xf
1 400

1.5 266.67
3 133.33
5 80

The model consists of a fracture cell, where the hydraulic fracture is applied, and matrix
cells. This means that 2 is the minimum number of grid cells required in the y-direction.
The fracture cell width, wf, is set to be 0.1 ft, and consequently, the reservoir length in the
y-direction is 401 ft. Fig. 4.2, Fig.4.3 and Fig.4.4 displayed in this chapter includes the
fracture cell displayed in blue color.

11

Figure 4.1: The reservoir model consisting of 4 symmetric squares

4.2 1D Grid Description

4.2.1 Well Positioned in One Grid Block Along Fracture
The simplest case is when the hydraulic fracture fully penetrates the reservoir, i.e when
xe/xf = 1. When the hydraulic fracture reaches the reservoir boundary, the flow into the
fracture is one-dimensional (1D), hence flow is only from the y-direction. This means that
only the number of grid blocks in the y-direction has an impact on the result, as the same
amount of fluid is flowing into the fracture regardless of 1 or 100 grid blocks used in the
x-direction.

The following has been decided for the one-dimensional grid case:

• The reservoir half-length in the x-direction (xe) is constant throughout the study.
This value is set to be 400 ft.

• The fracture half-length (xf) is equal to xe

Sensor is compatible with any grid type or combination of grid types. For simplicity,
regarding the numerical dispersion that occurs in reservoir simulation, uniform cartesian
gridding is used. This means that all grid blocks have the same size. In addition, Sensor
operates with block-centered grids, which means the grid points are in the center of their
grid blocks. Therefore, when examining only one square, the well in Fig.4.1 is not placed

12

in the bottom-left corner of the upper right square, but as seen in Fig.4.2, where the grey
circle illustrates the well. In Fig 4.2, the grid consists of Nx = 3 and Ny = 5.

Figure 4.2: Hydraulic fracture with a centered well in only one grid block along the fracture

The hydraulic fracture modeled in this work is an infinite-conductivity fracture (ICF).
However, as long as the well is present in only one of the grid blocks along the fracture,
there exists a pressure drop inside the fracture. To avoid this pressure drop and keep the
pressure constant throughout the fracture, which is the case for an ICF, the well is con-
nected to all grid blocks along the fracture in the x-direction. This is further described in
the next section.

The formula for uniform gridding, or the size of each grid block, in x and y-direction is:

∆x =
xf
Nx

=
xe

Nx
(4.1)

∆y =
ye
Ny

(4.2)

and the total amount of grid blocks is given by:

Ntot = Nx · Ny (4.3)

4.2.2 Well Positioned in All Grid Blocks Along Fracture
By using the ”connected well argument”, Fig.4.2 is changed to Fig.4.3. Consequently, the
same amount of fluid is flowing into the fracture grid blocks. The major simplification of
applying the connected well argument is that the permeability is left unchanged and there
is no need to start tweaking the permeability in order to assure zero pressure drop in the
hydraulic fracture!

13

Figure 4.3: Well connected to all grid blocks along fracture

4.3 2D Grid Description
For the case of xe > xf, the following is taken into consideration:

• The fracture half-length (xf) is calculated from the relation of xe/xf = 1.5, since
xf = f(xe/xf)

• Connected well argument is used for all grid blocks along the fracture.

Figure 4.4: Example design of a hydraulic fracture for 2D grid

When the hydraulic fracture does not extend all the way to the reservoir boundary, the
flow into the fracture is two-dimensional (2D) with a flow from the end of fracture in the
x-direction, in addition to the flow from the y-direction. In Fig.4.4, cartesian gridding is
used for the grid blocks along the hydraulic fracture (xf) and for the remaining length until
reservoir boundary in x-direction (xg). In Fig. 4.4, Nxf = 1 and Nxg = 3.

14

The following relations must be taken into account:

xe = xf + xg (4.4)

Nx = Nxf + Nxg (4.5)

Ntot = (Nxf + Nxg) · Ny (4.6)

The goal is to determine the minimum number of grid blocks required (Nx and Ny) for
xe/xf = 1 and 1.5. However, to determine the grid block combination for the fracture
penetration ratio of 1.5 is more complex compared to the fracture penetration ratio of 1,
since it is necessary to determine the optimum number of Nxf and Nxg, in addition to Ny.
The following is considered:

• Ny is the most important variable as flow from the y-direction into the fracture is
always present.

• Nxg is the second most important variable as it becomes stronger with increasing
xe/xf- ratio (contributes with more flow into fracture).

• Nxf is the least important variable as the fracture length becomes smaller with in-
creasing xe/xf- ratio.

In other words, it is considered that the most accurate numerical solution is achieved when
Ny > Nxf > Nxg.

With Sensor6k, the maximum amount of grid blocks is 6000. Consequently, endless com-
binations of grid blocks are possible! However, to run all these combinations cannot be
done manually by changing the grid properties in the Sensor input data file. To automate
procedures and to be time-efficient are key factors for any engineer, and therefore, Python
is utilized to generate the possible grid case combinations, to write the corresponding input
data files, and to save required information to Excel. This is elaborated further in the next
chapter.

15

16

Chapter 5
Data Initialization

5.1 Condition for Grid Case Generation
Before conducting the 1D and 2D grid refinement study, it is necessary to generate the grid
cases the refinement study will be applied to. As a part of the problem description, there
exists a fixed limit of the maximum number of grid blocks in the model, Nmax. Assuming
a box-model reservoir, the total number of grid blocks is given by:

Ntot = Nx · Ny (5.1)

where
Ny ≤ Ntot (5.2)

and

Nx ≤
∣∣∣∣Ntot

Ny

∣∣∣∣ (5.3)

Only the combinations of Nx and Ny that do not exceed the condition: Ntot ≤ Nmax is
considered.

5.2 Required Input Parameters
The code Read Parameters in Appendix B.2, is used to extract the values of the following
parameters, from the excel sheet ”Parameters”:

1. Nmax - maximum number of grid blocks in model (6000 grids is the absolute maxi-
mum with Sensor6k license)

2. xe - reservoir length in x-direction, constant to 400 ft

3. xf - fracture length, dependent on:

4. xe/xf - fracture penetration ratio

17

5. ye - reservoir length in y-direction, constant to 400 ft

6. nmax - maximum number of combinations of Nxf and Nxg for a given value of Nx,
when xe/xf 6= 1.

When changing the fracture penetration ratio, the fracture length changes automatically.
Furthermore, it is only necessary to determine the value of Nmax, xe/xf and nmax, as xe
and ye are constant. These are the only input parameters that are required for further work
in this study, the rest of the variables can be generated from those above. The meaning of
the variable nmax is to avoid over-representation of some larger Nx-values that could have
many combinations of Nxf and Nxg. For example, if Nx = 10 and nmax = 2, then only 2
combinations of Nxf and Nxg that gives Nx = 10 is given.

5.3 Description of Python Processes
All codes are presented in Appendix B, while flowcharts of how the codes correlate to each
other and the process overview are displayed in Appendix A.1. There are main 3 processes,
main.py given in Appendix B.1, main extract.py in Appendix B.6 and main functions.py
in Appendix B.9. Following is a short description of these processes:

• main.py - the process of generating the possible cases that do not exceed the con-
dition: Ntot = Nx · Ny ≤ Nmax. For each possible case, include files containing
the dimension vectors, which give the step length of each grid block in x-and y-
direction, and an input data file is created. This makes it possible to run simulations
in Sensor for all possible cases and to extract information about rates, cumulative
rates, and pressures at different time steps as a result of that specific combination of
Nx and Ny.

• main exctracter.py - the process of extracting required information from the simu-
lation runs mentioned above and to save the information to Excel files for further
analyzing. The Python code for applying weighting factors to xe/xf = 1 is displayed
in Appendix B.8, and this methodology is further explained in Section 7.2.2.

• main functions.py - the process of creating 3D tensor containing the possible com-
binations of Nxf, Nxg and Ny, and to apply the weighting factors methodology to
xe/xf = 1.5 presented in Appendix B.11.

5.4 Input Datafile to Sensor
To run simulations in Sensor, it is necessary to generate the input datafile, which is given
the name run simulation.dat. The information provided in this datafile can be divided into
two parts:

1. Information that is constant regardless of case number (grid combination)

2. Information that is dependent on the case number

18

The constant information is saved as templates, which are presented in Appendix C. To
ensure single phase flow, the bottom hole pressure (BHP) must be higher than the satura-
tion pressure, which is 1984.96 psia. Therefore, BHP = 2500 psia in Template C.5. The
target rate is set to be 100 000 STB/d to reassure that the well produce under constant bot-
tomhole pressure condition, the same condition used by Locke-Sawyer. The time range
is set to be 100 days, where day 1, 10 and 100 are used frequently when analysing and
comparing results. When running simulations for the whole production period, the time
must be significantly larger than 100 days. This is further described in Chapter 9.

The information that changes with grid combination is coded manually in Python, see
Appendix B.4. This applies to:

• Grid properties - combination of Nx and Nx.

• Model properties - the include files DELX.inc and DELY.inc containing the grid
block dimensions in x- and y-direction.

• Reservoir properties like porosity and permeability

• Well properties like well placement and well productivity index (PI)

The MOD keyword in the code Write Datafile in Appendix B.4 is used to regionally alter
the properties mentioned above. These properties are fracture dependent, which means
that the value given for these properties are only applicable in the fracture grid blocks. The
six integers I1 - K2, define a portion of the grid that can be altered, where I symbolizes
the x-direction, J the y-direction, and K the z-direction, and index 1 means start and 2
means end. The only integer that is to be changed is I2, which is the number of Nxf, as the
properties should only be applicable for fracture grid blocks. All the other integers should
be 1, since the fracture is located in the first grid block in the y-direction (J1, J2), and the
model consists of 1 layer in the z-direction (K1, K2). The matrix and fracture properties
are summed up in Table 5.1:

Table 5.1: The value of porosity and permeability in the fracture and matrix

Property Matrix Fracture
Permeability (mD) 200E-06 100

Porosity (-) 0.05 0.1

In the presented table, the matrix properties and especially permeability is significantly
smaller than for the fracture. This is because the matrix is representing shale, with proper-
ties explained in Section 3.1.

19

Another property that needs to be determined is the well productivity index, which ex-
presses the well’s ability to produce fluid from the reservoir. When running simulations
for Nmax = 1000 for xe/xf = 1 at day 10, where both Nx and Ny vary to 1000 grid blocks,
huge oscillations were present in the oil rate and cumulative oil volume for PI = 100
STB/d/psi. Therefore, a PI-sensitivity analysis was performed, where the PI was lowered
from 100 to 10 and 1 STB/d/psi. The PI is defined as:

PI =
q

∆P
(5.4)

where q is the oil rate in STB/d and the pressure difference in psi is between the grid cells
and the wellbore: ∆P = PGRID – PBH. The behavior of the oil rate and the cumulative oil
volume when changing Nx and Ny, and decreasing the PI is presented in Appendix A.2.
It is observed that oscillations occur in the oil rate and cumulative oil volume when the
productivity index is high and this results in instability issues in the model. Therefore, the
PI is set equal to 1 STB/d/psi in further work to avoid this.

5.5 Python Code Constraints
Some constraints are applied to the Python codes in Appendix B:

• If xe/xf 6= 1, then Nx 6= 1 since Nx = Nxf + Nxg

• If xe/xf = 1, then Nxg = 0 since the fracture reaches the reservoir boundary

• If xe/xf = 1, then Nxg = 0 and consequently the step length outside fracture is zero,
dxg = 0

20

Chapter 6
Analysis of 1D Grid Refinement
Study

6.1 Determination of Minimum Ny

For xe/xf = 1, the number of grid blocks in x-direction should have no impact on a con-
verged solution with a sufficient number of grid blocks in the y-direction, as mentioned in
Section 4.2.1. When the hydraulic fracture is reaching the reservoir boundary, to use 1 or
100 grid blocks for Nx is insignificant. Therefore, to decide the optimum number of Ny is
to be determined. The following has been decided:

• Set Nmax = 6000

• Keep Nx = 1

• Let Ny vary between 2 and 6000 grid blocks.

The most accurate numerical solution or the ”true” solution to the 1D grid refinement study
is when the maximum number of available grid blocks are used in the y-direction, i.e when
Ny = 6000. The behavior of the oil rate and the cumulative oil with time for Nx = 1 and
Ny = 6000 is presented in Fig.A.10 in Appendix A.3. It is desired to determine the min-
imum Ny that provides an estimated solution within line-thickness of the true solution in
Fig.A.10(a)

Fig.A.11 and Fig.A.12 in Appendix A.3, display the oil rate and the cumulative oil volume
on day 10 and 100 for varying Ny. It is observed that both the oil rate and the cumulative
oil volume stabilize at some value of Ny and further increasing of Ny has no effect. The
peak in the figures is occurring for an unknown reason, however, the oil rate stabilizes
at around 10.74 STB/d on day 10 and for 3.29 STB/d on day 100. An important aspect
to point out is the stabilization happens earlier for later times, which is represented by a
more narrow peak on day 100. In other words, this means that the number of grid blocks

21

needed to achieve a stabilized rate is lower on day 100 then on day 10. This behavior sets
the restriction that day 1 determines the minimum number of Ny required in the numerical
model.

0

1000

2000

3000

4000

5000

6000

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

0 1000 2000 3000 4000 5000 6000

N
u

m
b

e
r

o
f

G
ri

d
 B

lo
c

k
s

O
il
 R

a
te

 (
S

T
B

/d
)

Case Number

Oil Rate (Nx=1,Ny=6000) Ny

Figure 6.1: Estimated oil rate vs. Ny on day 1

In Fig.6.1, the rate increases significantly until Ny = 500, then the rate increases slightly
until stabilizing at Ny = 5998 with the rate of 65.0147 STB/d. Besides, the true rate from
Fig.A.10(a) is 65.0147 STB/d on day 1. To further examine the change in estimated rate
when increasing the number of Ny, a logarithmic plot of the relative change in rate is made,
as displayed in Fig.6.2. The relative change in rate is between the estimated rate given for
a specific Ny and the reference rate (qref) given by Ny = 6000, to determine how close the
estimated rate is from the true rate on day 1 of production:

Relative change =
∣∣∣∣q – qref

qref

∣∣∣∣ · 100 (%) (6.1)

Table 6.1: Estimated oil rate and number of Ny for relative change in rate of 1, 0.1 and 0.001 %

Rel.change (%) Ny q (STB/d)

< 1 1728 64.3644

< 0.1 4767 64.94

< 0.01 5859 65.005

22

In Table 6.1, the estimated oil rate and the number of Ny are presented for some relative
changes in rate. The relative change in rate is less than 1% from Ny = 1728, less than
0.1% from Ny = 4767 and less than 0.01% from Ny = 5859. Consequently, by reducing
the number Ny from 6000 to 1728, which is 4272 fewer grid blocks, the rate is only 1%
from the true rate of 65.0147 STB/d! This significant grid block reduction results in lower
CPU time and determines the requirement for the maximum number of grid blocks needed
in the 2D grid refinement study.

0

1000

2000

3000

4000

5000

6000

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1 10 100 1000

N
u

m
b

e
r

o
f

G
ri

d
 B

lo
c

k
s

R
e

la
ti

v
e

 C
h

a
n

g
e

 i
n

 R
a

te

Case Number

Oil Rate (Nx=1,Ny=6000) Ny

Figure 6.2: Logarithmic plot of relative change in estimated rate vs. Ny

23

24

Chapter 7
Probabilistic Approach To 2D Grid
Refinement

7.1 Representation of A Distribution Through Histograms
The rates and cumulative volumes are generated for all possible cases at every time step
for 100 days. To graphically represent the distribution of data (rates, cumulative volumes)
at a specific time step, histograms are utilized. The advantage of a histogram is the sim-
plicity of observing where the majority of the data falls into the measurement scale, and to
observe how much variation there is. To construct a histogram, the data must be divided
into a series of class intervals called ”bins” or ”buckets”, which covers the range of data
from minimum to the maximum value. Then for each bin, the number of values in the data
set that falls into each bin is counted. Frequency is the count of each bin, which is on the
y-axis in the histogram. Fig.7.1 represents the estimated oil rate on day 10 for possible
combinations of Nx ·Ny ≤ Nmax = 2000 for xe/xf = 1. The bins are the estimated oil rates
(STB/d), and the data range has been divided into 22 equal-sized bins.

In Fig.7.1, the most prominent column is bin 10.89 STB/d. Consequently, it is reasonable
to assume that the best estimated rate for xe/xf = 1 on day 10 is given by this bin. However,
a modification to the data must be made to automatically extract the correct bin and the
best estimated rate within. It is highly inefficient for the engineer to make histograms for
all time steps, where the number of time steps can vary significantly depending on the
model, and pick out manually the bin with the highest frequency! Therefore, a method
of doing this automatically is presented. The idea is to weight the “correct” results given
by a grid block combination with a weight factor, which is either a continuous or a binary
weight factor. The approach is elaborated in Section 7.2.2, but first, a manual procedure
based on analyzing the estimated rates is described in Section 7.2.1.

25

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

0
.6

0
5

1
.2

1

1
.8

1
5

2
.4

2

3
.0

2
5

3
.6

3

4
.2

3
5

4
.8

4

5
.4

4
5

6
.0

5

6
.6

5
5

7
.2

6

7
.8

6
5

8
.4

7

9
.0

7
5

9
.6

8

1
0

.2
8
5

1
0

.8
9

1
1

.4
9
5

1
2

.1

M
o

re

F
re

q
u

e
n

c
y

Oil Rate (STB/d)

Oil Rate Histogram @ Time = 10 days

Figure 7.1: Original oil rate histogram for Nmax = 2000 on day 10, when xe/xf = 1

7.2 The Methodology of Weighting Factors
The explanation of the methodology of weighting factors is conducted on a simpler exam-
ple of Nmax = 20 for xe/xf = 1. It is important to note that both Nx and Ny can vary to 20,
because xe/xf = 1 is treated like a 2D problem. The reason for applying the methodology
to xe/xf = 1 is because the true solution to the 1D problem is known! Furthermore, if the
results after applying the proposed methodology is within line-thickness of the true solu-
tion determined in Chapter 6, then the methodology is considered successful for xe/xf = 1,
and the methodology is most likely applicable to xe/xf = 1.5.

In Fig.7.2 below, the combinations of Nx and Ny that do not exceed Nmax is given in
green, while the rest are in red. It is only 46 combinations that provide a green color that is
further analyzed. Row Ny = 1 does not contain any values because this is the fracture cell,
as mentioned in Section 4.1. In Fig.7.3, a histogram of the estimated oil rates on day 10 is
presented. The frequencies of the different bins are displayed, and counting the frequency
of each bin, it adds up to 46. The highest frequency is given for the bin 0.88 STB/d.

26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 34 36 38 40

3 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 51 54 57 60

4 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 68 72 76 80

5 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 85 90 95 100

6 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 102 108 114 120

7 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 119 126 133 140

8 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 136 144 152 160

9 9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 153 162 171 180

10 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 170 180 190 200

11 11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 187 198 209 220

12 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 204 216 228 240

13 13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 221 234 247 260

14 14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 238 252 266 280

15 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 255 270 285 300

16 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 272 288 304 320

17 17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 289 306 323 340

18 18 36 54 72 90 108 126 144 162 180 198 216 234 252 270 306 324 342 360

19 19 38 57 76 95 114 133 152 171 190 209 228 247 266 285 323 342 361 380

20 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 340 360 380 400

G
R

ID
 B

LO
C

K
S

IN
 Y

-D
IR

EC
TI

O
N

 (
N

y)

GRID BLOCKS IN X-DIRECTION (Nx)

Figure 7.2: Possible combinations of Nx and Nx that do not exceed Nmax = 20

0

2

4

6

8

10

12

14

16

18

0.3 0.88 1.46 2.04 2.62 3.2 3.78 4.36 4.94 5.52 6.1 More

F
re

q
u

e
n

c
y

Oil Rate (STB/d)

Oil Rate Histogram @ Time = 10 days

Figure 7.3: Original oil rate histogram for Nmax = 20 on day 10

7.2.1 Manual Procedure
The green combinations in Fig.7.2 is replaced with the respective estimated rates in Fig.7.4.
By analyzing the change in estimated rate in x- and y-direction, it is observed that the rates
are not changing when increasing the number of Nx for a specific Ny. This indicates that
only increasing the grid blocks in the y-direction affects the value of the estimated rate, not
the number of grid blocks in the x-direction. In Fig.7.3, the bin 0.88 STB/d has the highest
frequency of 16 and this bin is given by Ny = 2–3. The rate and the corresponding number

27

of Ny increases to the right in the histogram, and the highest estimated rate is presented
by the bin 6.1 STB/d given by Ny = 20. In Section 3.4 about grid refinement study, it
was mentioned that the more grid blocks used in a numerical model, the more accurate is
the numerical solution. This suggests that the best numerical solution for xe/xf = 1 is in
the direction of increased Ny, even though the histogram gives the highest frequencies for
lower Ny!

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0

2 0.337 0.337 0.337 0.337 0.337 0.337 0.337 0.337 0.337 0.337

3 0.675 0.675 0.675 0.675 0.675 0.675

4 1.011 1.011 1.011 1.011 1.011

5 1.347 1.347 1.347 1.347

6 1.681 1.681 1.681

7 2.013 2.013

8 2.344 2.344

9 2.672 2.672

10 2.998 2.998

11 3.321

12 3.640

13 3.956

14 4.269

15 4.577

16 4.880

17 5.179

18 5.472

19 5.760

20 6.042

GRID BLOCKS IN X-DIRECTION (Nx)

G
R

ID
 B

LO
C

K
S

IN
 Y

-D
IR

EC
TI

O
N

 (
N

y)

Figure 7.4: The estimated oil rates given for all possible cases of Nmax = 20

7.2.2 Automated Procedure

To isolate the ”true” results (estimated rates in this example) in a fully automated pro-
cedure, weight factors are assigned to the results. However, seeing as this information
is unknown, a method is proposed to estimate these values by using the derivatives of the
possible results. Eq.7.1 is the forward-difference approximation that is applied to each rate
in Fig.7.4. The index ”i” symbolizes the x-direction and ”j” the y-direction, which means
∆di,j is the derivative with respect to the change in rate in both the x- and y-direction. The
value of the derivatives for each rate is presented in Fig.7.5. An important thing to note is
when using the numeric derivatives, the data is reduced along all directions where i + 1 or
j + 1 is not defined! However, as the total number of grid blocks is increased, the number
of data points removed is far less than the total number of data points!

Nevertheless, this limitation has a greater impact on this ”small” example of Nmax = 20.
It is noticed after applying the forward difference approximation, the maximum number
of Ny is reduced from 20 to 10 grid blocks. Consequently, the estimated rates given by
Ny = 11 – 20 are not included when determining the correct bin.

∆di,j = |di+1,j – di,j| + |di,j+1 – di,j| (7.1)

28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0

2 0.337 0.337 0.337 0.337 0.337 0.337

3 0.337 0.337 0.337 0.337 0.337

4 0.336 0.336 0.336 0.336

5 0.334 0.334 0.334

6 0.333 0.333

7 0.331

8 0.329

9 0.326

10 0.323

11

12

13

14

15

16

17

18

19

20

GRID BLOCKS IN X-DIRECTION (Nx)

G
R

ID
 B

LO
C

K
S

IN
 Y

-D
IR

EC
TI

O
N

 (
N

y)

Figure 7.5: The value of the derivatives (∆di,j), after utilizing Eq.7.1 on the estimated rates

Method 1: Continuous Weight Factor

In method 1, a continuous weight factor is determined by using the weight factor equation
given in Eq.7.2, and the weight factors are presented in Fig.7.6. The equation yields a
weight factor which tends to 1 when the derivative in both the x- and y-direction tends to
0 and tends to 0 as the derivative term tends to the largest value. In Fig.7.6, the largest
derivative has a value of 0.337 for Ny = 2 – 3 which results in a weight factor of 0, while
the smallest derivative of 0.323 for Ny = 10 results in a weight factor of 0.041.

wi = 1 –
∆di,j

max(∆di,j)
(7.2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0

2 0 0 0 0 0 0

3 0 0 0 0 0

4 0.005 0.005 0.005 0.005

5 0.009 0.009 0.009

6 0.013 0.013

7 0.019

8 0.025

9 0.032

10 0.041

11

12

13

14

15

16

17

18

19

20

GRID BLOCKS IN X-DIRECTION (Nx)

G
R

ID
 B

LO
C

K
S

IN
 Y

-D
IR

EC
TI

O
N

 (
N

y)

Figure 7.6: The continuous weight factors calculated by Eq.7.2

29

In Table 7.1, there are 3 columns present; where the first column contains the bins in
STB/d. The second column is the frequency of the weighted rates calculated with method
1 and the original un-weighted rates. The last column is the relative frequency of the
weighted and un-weighted rates, which makes up the y-axis in Fig.7.7. In the presented
histogram, the height of all columns for weighted and un-weighted rates adds up to 1, and
it expresses the probability of each bin occurring. The effect of normalizing the y-axis has
a greater impact as the number of cases could be thousands when increasing Nmax, and
the could be a considerable difference in frequency between weighted and un-weighted
data. Therefore, by adjusting the values measured on different scales to a common scale
through normalization, it is easier to interpret the histogram. To get relative frequency, the
frequency of a bin is divided by the total number of observations (sum of all frequencies
for all bins).

Table 7.1: General frequency and relative frequency of weighted and un-weighted data when using
method 1

Bin Weighted Un-Weighted Weighted Un-Weighted

0.3 0 0 0.000 0.000

0.88 0 16 0.000 0.348

1.46 0.047 9 0.247 0.196

2.04 0.045 5 0.237 0.109

2.62 0.025 2 0.132 0.043

3.2 0.073 4 0.384 0.087

3.78 0 2 0.000 0.043

4.36 0 2 0.000 0.043

4.94 0 2 0.000 0.043

5.52 0 2 0.000 0.043

6.1 0 2 0.000 0.043

Frequency Relative Frequency

30

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.3 0.88 1.46 2.04 2.62 3.2 3.78 4.36 4.94 5.52 6.1

R
e

la
ti

v
e

 F
re

q
u

e
n

c
y

Oil Rate (STB/d)

Weighted Oil Rate Histogram @ Time = 10 days

Weighted Un-Weighted

Figure 7.7: Weighted oil rate histogram for Nmax = 20 with method 1 on day 10

The main observation in Fig.7.7 is the effect of using forward difference approximation
on a small Nmax, as the oil rates given by Ny ≥ 11 have not been weighted. However,
method 1 assigns the highest relative frequency to the bin 3.2 STB/d given by Ny = 10.
Besides, the bin 0.88 STB/d given by Ny ≤ 3 is assigned a weight factor of 0, which means
the method neglects the results in the leftmost bin that are known to be ”incorrect”. De-
spite wanting the 6.1 STB/d bin to have the highest probability of occurring, this method
manages to select the bin given by the highest number of Ny included in the weighting
procedure.

However, there exists one major drawback regarding the continuous weight factor method.
The method is heavily influenced by a large ∆di,j, which is caused by a great change in
the estimated rate in the x-and y-direction. A large ∆di,j, which is the value of max(∆di,j)
in Eq.7.2, is going to weight the other estimated rates with a lower derivative closer to 1.
The estimated rates are then assigned a too high weight factor, and consequently, too low
weight factors are assigned to the estimated rates with derivatives closer to max(∆di,j). In
the presented example for Nmax = 20, this is not a problem because of little change in rate
in the y-direction, hence, a small change in the derivatives. However, this is not granted
when Nmax � 20, which makes it necessary for a method that is not heavily influenced
by large changes in rate.

31

Method 2: Binary Weight Factor

To solve the problem with method 1, the continuous weight factor is replaced by a binary
weight factor of either 0 or 1. A threshold value, ε, is introduced, which determines for
what values the derivative is set equal to zero:

|∆di,j| ≤ ε (7.3)

which consequently assigns a weight factor of 1 to the respective estimated rates. The idea
with the threshold value is to remove the estimated rates given by a low Ny, which are
represented by larger derivatives for xe/xf = 1. By continuing with the example of Nmax =
20 with method 2, the threshold value is set to be, for example, 0.332. All estimated
rates with a derivative larger than 0.332 are removed from the weighting process, in other
words, assigned a weight factor of 0. Fig.7.6 is then transformed into Fig.7.8, where only
the estimated rates given by Ny = 7 – 10 are assigned a weight factor of 1. This results in
the new histogram presented in Fig.7.9.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0

2 0 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0

5 0 0 0

6 0 0

7 1

8 1

9 1

10 1

11

12

13

14

15

16

17

18

19

20

GRID BLOCKS IN X-DIRECTION (Nx)

G
R

ID
 B

LO
C

K
S

IN
 Y

-D
IR

EC
TI

O
N

 (
N

y)

Figure 7.8: The binary weight factors assigned to the estimated rates when ε = 0.332

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.3 0.88 1.46 2.04 2.62 3.2 3.78 4.36 4.94 5.52 6.1

R
e

la
ti

v
e

 F
re

q
u

e
n

c
y

Oil Rate (STB/d)

Weighted Oil Rate Histogram @ Time = 10 days

Weighted Un-Weighted

Figure 7.9: Weighted oil rate histogram for Nmax = 20 with method 2 on day 10

For the weighted histogram made by method 2, there are several common features with
the weighted histogram made by method 1. Both methods appoint the bin of 3.2 STB/d
the highest relative frequency. In other words, method 2 manages to select the bin given
by Ny = 10, which is the largest number of Ny the forward difference approximation for
Nmax = 20 is successfully applied to. Besides, method 2 removes at least one set of ”non-
correct” results, which are the rates given by Ny ≤ 6 for the bins 0.88 STB/d and 1.46
STB/d. This is a valuable result, since it is known that the best-estimated solution is in the
direction of increased Ny! It is important to remember when Nmax increases, the number
of data points removed by Eq.7.1 is far less than the total number of data points! Hence,
it is easier to select the bin given by the largest number of Ny when more data points are
included.

In further work, method 2 is used due to the following reasons:

• Method is not heavily influenced by large changes in rate

• Method only weights the results that fulfills the threshold requirement ∆di,j ≤ ε -
assures that the possible cases given by a low Ny are neglected.

• It requires less computational work to assign a binary weight factor than a continu-
ous weight factor as Nmax and the number of possible cases generated increases.

33

7.3 Normalization of Derivatives
A problem that arises when Nmax is increasing and thousands of possible cases are gener-
ated, is the order of magnitude of the rates may vary greatly, which consequently affects
the derivatives. Therefore, it is necessary to scale the derivatives to make sure that the
order of magnitude of the rate has no impact on the weighting procedure. Following is the
approach to normalizing the derivatives:

1. Create a square that is Nmax-long in both x- and y-direction and determine possible
cases from the condition Ntot ≤ Nmax

2. Calculate the derivatives (∆dij) for each possible case with the forward difference
equation (Eq.7.1).

3. Find the combination of (Nx, Ny) that gives the lowest ∆dij

4. With this combination it is possible to find the corresponding rate that gives the
lowest ∆dij - this is the reference rate (qref) that all derivatives is to be scaled by

5. Scale original derivatives (∆dij) by the reference rate to get the normalized deriva-
tives:

∆d̂ij =
∆dij

qref
(7.4)

6. Apply the restriction: ∆d̂ij ≤ ε.

The next step is to determine the optimum threshold value that is providing the best esti-
mated rate on each time step. To determine this, a threshold sensitivity sensitivity analysis
is performed in the next section.

34

7.4 Threshold Sensitivity Analysis
As a result of the 1D grid refinement study, to use Ny = 1728, the estimated rate for day
1 was only 1% from the true rate. Therefore, it is sufficient to set Nmax = 2000 for the
following threshold sensitivity analysis, which results in 13 516 possible combinations of
Nx and Nx.

Fig.7.10 presents the estimated oil rates determined for different threshold values com-
pared to the true solution given by Nx = 1 and Ny = 6000. The threshold value varies
from ε = 10–6 – 1, and all the estimated rates are within line thickness of the true rate
on day 10 to 100. However, it is noticeable that not all threshold values are providing
the wanted result before day 10. Fig.A.13(a) in Appendix A.4 is providing a closer view
on the estimated rates for the 10 first days, and it is observed that ε = 1, 0.1, 0.01 (un-
derneath 0.1) and 0.05 do not match the true solution. Therefore, estimated rates given
by these thresholds are removed, and only the most accurate thresholds are presented in
Fig.A.13(b). These are ε = 10–6 – 10–3, however, only the estimated rate for ε = 10–3

is noticed because the rest are underneath. By examining for later times in Fig.A.14, the
match between the best threshold values and the true solution is exact! Consequently, one
of these threshold values can be selected as the optimum.

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100

O
il
 R

a
te

 (
S

T
B

/d
)

Time (days)

Nx=1, Ny=6000 eps=1E-6 eps=1E-5 eps=1E-4 eps=5E-3

eps=1E-3 eps=1E-2 eps=1E-1 eps=1

Figure 7.10: Estimated oil rate vs. time for different threshold values

It is valuable to know how many cases were used to provide the estimated rate at a specific
time step when deciding the optimum threshold value. Fig.7.11 presents for day 1 how the
estimated oil rate and the number of cases that fulfilled the threshold requirement changes
with threshold value. When the threshold value is 1, which is the maximum value, all 13
516 cases are included when estimating the rate on day 1. This is indeed the case for the

35

threshold values of 0.1 and 0.01, because all the derivatives are smaller than these thresh-
olds. When the threshold value is too high, this affects the estimation of the rate badly, as
the center of the data set shifts towards a lower value! As mentioned in Section 3.5 about
statistical distributions, the median is the measure of the central location and is used for
estimating the rate of the weighted data on each day. Therefore, the fewer cases included,
the closer the estimated rate is to the true rate. From the 1D grid refinement study, the true
rate on day 1 is 65.0147 STB/d.

With a threshold value in the range 10–4 to 10–6, the estimated rate is 62.058 STB/d. More
specifically, this is the best estimated rate determined by taking the median of all the rates
given by 2912 cases. Fig.A.15 and Fig.A.16 in Appendix A.5 present the same plot for
day 10 and 100. The true rate on day 10 is 10.7457 STB/d and the estimated rate with
a threshold value in the range 10–4 to 10–6 is 10.7346 STB/d. This estimated rate was
calculated from 2952 cases for the lowest threshold value compared to 4327 cases when
the threshold value is 10–4. On day 100, the true rate is 3.2971 STB/d and the estimated
rate for threshold value of 10–5 and 10–6 is 3.2964 STB/d. 4493 cases were used when
estimating this rate for both threshold values. In both figures, a supplementary figure with
larger scale on the primary vertical axis is included to illustrate the small variation in rate
when reducing the threshold value on day 10 and 100.

0

2000

4000

6000

8000

10000

12000

14000

0

10

20

30

40

50

60

70

1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00

N
u

m
b

e
r

o
f

C
a

s
e

s

O
il
 R

a
te

 (
S

T
B

/d
)

@
 T

im
e

 =
 1

 d
a

y

Threshold Value (ε)

Oil Rate Num. Cases

Figure 7.11: Estimated oil rate and number of cases used to get the estimated rate for different
threshold values on day 1

Even if the threshold value is lowered to 0, the number of cases does not become zero
and the estimated rate does not increase. The reason for this is because the maximum
limit of significant digits has been reached for the value of ∆dij. By examining the figures
mentioned in this section, the choice of the threshold value for xe/xf = 1 is ε = 10–6

36

because of the following reasons:

• Satisfying match with the true rate at early times

• Exact match with the true at late times

• The estimated rates on day 1 to 100 for this threshold value are determined from the
lowest number of possible cases.

7.5 Weighted Histograms for xe/xf = 1

In this section, weighted oil histograms on day 1, 10 and 100 for xe/xf = 1 and Nmax =
2000 is created. This is included to demonstrate that the presented methodology automat-
ically selects the correct bin on these days. As emphasized earlier, both Nx and Ny can
vary up to Nmax, since the fracture penetration ratio is illustrating a 2D problem.

7.5.1 Weighted Histogram on Day 1
In the 1D grid refinement study, it was decided that day 1 determines the minimum num-
ber of Ny in the numerical model. The original oil rate histogram (with un-weighted rates)
on day 1 is presented in Fig.7.12. Two prominent peaks are noticed at each end of the
histogram. The leftmost peak is bin 3.225 STB/d given by Ny ≤ 10. The rightmost peak
is bin 64.5 STB/d given by Ny ≥ 500. The desired outcome of applying the methodology
of weighting factors is that the rightmost bin is appointed the highest relative frequency -
meaning that these rates have the highest probability of occurring on day 1.

The weighted oil histogram for day 1 is displayed in Fig.7.13 and it is noticeable that the
relative frequency of the rightmost bin is 0.53, while for the leftmost bin the relative fre-
quency is only 0.16! In Section 7.4, the estimated rate on day 1 is 62.058 STB/d. This
estimated rate is 4.54% from the true rate of 65.0147 STB/d. By examining Fig.7.13, the
true rate is not included in the range of the rightmost bin because the highest rate provided
by all 13 516 cases is 64.4964 STB/d. However, this is most likely a consequence of Ny
varying to 2000, and not 6000 as it did in the 1D grid refinement study, which affects the
accuracy of the numerical solution on day 1.

To determine the optimum grid for xe/xf = 1, all the rates from the 2912 possible cases
that fulfilled the threshold requirement is evaluated. The objective is to find grid combina-
tion that provides the closest estimated rate to 62.058 STB/d. Furthermore, the optimum
combination for xe/xf = 1 is given by Nx = 1 and Ny = 590.

37

0

500

1000

1500

2000

2500

3000

0

3
.2

2
5

6
.4

5

9
.6

7
5

1
2

.9

1
6

.1
2
5

1
9

.3
5

2
2

.5
7
5

2
5

.8

2
9

.0
2
5

3
2

.2
5

3
5

.4
7
5

3
8

.7

4
1

.9
2
5

4
5

.1
5

4
8

.3
7
5

5
1

.6

5
4

.8
2
5

5
8

.0
5

6
1

.2
7
5

6
4

.5

M
o

re

F
re

q
u

e
n

c
y

Oil Rate (STB/d)

Oil Rate Histogram @ Time = 1 day

Figure 7.12: Original oil rate histogram for Nmax = 2000 on day

0

0.1

0.2

0.3

0.4

0.5

0.6

0

3
.2

2
5

6
.4

5

9
.6

7
5

1
2

.9

1
6

.1
2
5

1
9

.3
5

2
2

.5
7
5

2
5

.8

2
9

.0
2
5

3
2

.2
5

3
5

.4
7
5

3
8

.7

4
1

.9
2
5

4
5

.1
5

4
8

.3
7
5

5
1

.6

5
4

.8
2
5

5
8

.0
5

6
1

.2
7
5

6
4

.5

R
e

la
ti

v
e

 F
re

q
u

e
n

c
y

Oil Rate (STB/d)

Weighted Oil Rate Histogram @ Time = 1 day

Weighted Un-weighted

Figure 7.13: Weighted oil rate histogram for Nmax = 2000 on day 1 with ε = 10–6

38

7.5.2 Weighted Histogram on Day 10
The original oil rate histogram on day 10 was presented in Section 7.1 when describing
the representation of a distribution through histograms, see Fig.7.1. By applying the pro-
posed methodology, Fig.7.1 is transformed into Fig.7.14. The bin appointed the highest
frequency in Fig.7.1 is also appointed the highest relative frequency in the weighted his-
togram. From the 1D grid refinement study, the true rate on day 10 is 10.7457 STB/d. This
expresses that the true rate is in the range of the bin with the highest relative frequency! In
other words, the proposed methodology managed to select the correct bin and provide an
estimated rate of 10.7346 STB/d that is only 0.1 % from the true rate.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0
.6

0
5

1
.2

1

1
.8

1
5

2
.4

2

3
.0

2
5

3
.6

3

4
.2

3
5

4
.8

4

5
.4

4
5

6
.0

5

6
.6

5
5

7
.2

6

7
.8

6
5

8
.4

7

9
.0

7
5

9
.6

8

1
0

.2
8
5

1
0

.8
9

1
1

.4
9
5

1
2

.1

R
e

la
ti

v
e

 F
re

q
u

e
n

c
y

Oil Rate (STB/d)

Weighted Oil Rate Histogram @ Time = 10 days

Weighted Un-Weighted

Figure 7.14: Weighted oil rate histogram for Nmax = 2000 on day 10 with ε = 10–6

39

7.5.3 Weighted Histogram on Day 100
On day 100, the original oil rate histogram is presented in Fig.7.15. There is only one
prominent peak for bin 3.42 STB/d. When comparing with the weighted oil rate histogram
in Fig.7.14, the same bin is appointed the highest relative frequency. Moreover, the correct
bin was again selected by the methodology of weighting factors! Besides, the estimated
rate on day 100 is 3.2964 STB/d that is only 0.02% from the true rate of 3.2971 STB/d.
By comparing the results for day 1, 10 and 100, it is observed that the difference between
the estimated rate and the true rate decreases for later times.

0

1000

2000

3000

4000

5000

6000

7000

8000

0

0
.1

9

0
.3

8

0
.5

7

0
.7

6

0
.9

5

1
.1

4

1
.3

3

1
.5

2

1
.7

1

1
.9

2
.0

9

2
.2

8

2
.4

7

2
.6

6

2
.8

5

3
.0

4

3
.2

3

3
.4

2

3
.6

1

3
.8

M
o

re

F
re

q
u

e
n

c
y

Oil Rate (STB/d)

Oil Rate Histogram @ Time = 100 days

Figure 7.15: Original oil rate histogram for Nmax = 2000 on day 100

40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0
.1

9

0
.3

8

0
.5

7

0
.7

6

0
.9

5

1
.1

4

1
.3

3

1
.5

2

1
.7

1

1
.9

2
.0

9

2
.2

8

2
.4

7

2
.6

6

2
.8

5

3
.0

4

3
.2

3

3
.4

2

3
.6

1

3
.8

R
e

la
ti

v
e

 F
re

q
u

e
n

c
y

Oil Rate (STB/d)

Weighted Oil Rate Histogram @ Time = 100 days

Weighted Un-weighted

Figure 7.16: Weighted oil rate histogram for Nmax = 2000 on day 100 with ε = 10–6

41

42

Chapter 8
Application of Weight Factor
Methodology to xe/xf = 1.5

Previously, it was expected that the 1D and 2D grid refinement study would provide the
same results for xe/xf = 1 as the number of Nx has no impact on the result. This was
confirmed when the methodology selected the correct bin containing the true rate and pro-
vided an estimated rate significantly close to the true rate on day 1, 10 and 100.

Regarding xe/xf = 1.5, there exists no true solution to compare with. The most accurate
solution for xe/xf = 1 was given by Nx = 1 and Ny = 6000 in the 1D grid refinement study.
However, for xe/xf = 1.5, the combination of Nxf, Nxg and Ny that provides the most ac-
curate solution is unknown. Therefore, the estimated rates determined by the proposed
methodology must be compared to an assumed ”best case” of 6000 grid cells.

In Fig.8.1, simulations have been run for several combinations of Nx and Ny that provide a
total of 6000 grid blocks. The rates given by Nx = 2, 4, 6 and 10 overlap and the resulting
estimated rate is around 42 STB/d on day 1, which is a major increase in rate compared to
the rates given by Nx = 50 and Nx = 100. However, this indicates that the most accurate
solution for early times is provided when Nx is small and Ny is large. Since the rates
given by Nx = 2, 4, 6 and 10 are almost identical, one of these grid block combinations
are suitable for representing the best case. Therefore, chosen randomly, the combination
of Nx = 6 and Ny = 1000 is used in further work.

It is important to point out that the combination of Nxf and Nxg for a specific Nx has no
significant impact on the estimated rates. For example, the rate given by Nx = 100, to use
Nxf = 20 and Nxg = 80, Nxf = 80 and Nxg = 20, or Nxf = 50 and Nxg = 50 is irrelevant
as nearly the exact same rate is provided by all three combinations! This observation con-
tradicts the statement that Nxg is more important than Nxf for providing a better numerical
solution, as mentioned in Section 4.3. However, for the chosen combination of Nx = 6 and
Ny = 1000, Nxf = 1 and Nxg = 5.

43

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90 100

O
il
 R

a
te

 (
S

T
B

/d
)

Time (days)

Nx=2,Ny=3000 Nx=4, Ny=1500 Nx=6,Ny=1000 Nx=10, Ny=600 Nx=50,Ny=120 Nx=100,Ny=60

Figure 8.1: Estimated oil rate vs. time from different combinations of Nx and Ny that sums up to
6000 grid blocks

To apply the methodology of weighting factors to xe/xf = 1.5, a necessary requirement is
that nmax = Nmax. As defined in Section 5.2, nmax is the maximum number of combina-
tions of Nxf and Nxg for a given value of Nx, and the combinations are randomly selected.
Because of using the forward difference approximation on the estimated rates, it is neces-
sary to know the value of Nxf + 1 and Nxg + 1 (and also Ny + 1) to be able to calculate the
derivative of the rate given by (Nxf, Nxg, Ny). This means that all possible combinations
of Nxf and Nxg for a given value of Nx must be known.

For xe/xf = 1, both Nx and Ny could vary up to the value of Nmax = 2000. However, taking
into consideration the requirement above, the amount of data generated for all possible
combinations of Nxf, Nxg and Ny is going to be significantly large. Due to limitations in
data storage, some restrictions must be set. The following has been decided for xe/xf = 1.5:

• Nmax = nmax = 1000

• Nx can vary up 20

• Ny can vary up to Nmax

which results in 15 190 possible grid block combination.

After applying the methodology of weighting factors and conducting a threshold sensitiv-
ity analysis, the best-estimated rates compared to the rates given by Nx = 6 and Ny = 1000

44

is presented in Fig.8.2. The match between the curves from day 10 to 100 is highly accept-
able, however, the same cannot be said before day 10. The estimated rate on day 1 is only
14.9209 STB/d, which is a lot less compared to the accurate numerical solution. However,
this is a direct consequence of having a limited number of maximum grid blocks. Ny can-
not be greater than 500 since the minimum number of Nx is 2 grid blocks (Nx = Nxf +Nxg).
Therefore, the lack of accuracy in the estimated rates before day 10 is a result of not using
enough grid blocks in the y-direction.

As discussed in the previous chapters, day 1 determines the minimum number of grid
blocks needed in the model. Furthermore, to determine the grid for xe/xf = 1.5, it is
necessary to find the combination of (Nxf, Nxg, Ny) that provides the estimated rate closest
to 14.9209 STB/d. The result is the combination of Nxf = 6, Nxg = 3 (Nx = 9) and
Ny = 46, and this is the grid combination used when recreating the Locke-Sawyer curve
of xe/xf = 1.5 in the next chapter.

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90 100

O
il

R
at

e
 (

ST
B

/d
)

Time(days)

Nx=6, Ny=1000 Best estimated rate for Nmax=1000

Figure 8.2: The accurate numerical solution with 6000 grid cells and best estimated result for
Nmax = 1000 with Nx = 9 and Nx = 46

45

46

Chapter 9
Recreation of Locke-Sawyer
Curves with Numerical Reservoir
Simulation

In the original Locke-Sawyer figure presented in Fig.2.1, the axis are expressed in dimen-
sionless variables. Consequently, to recreate the curves for xe/xf = 1 and 1.5, the rate and
elapsed time must be transformed into dimensionless variables, where the dimensionless
rate is expressed by the equation:

qD =
141.2µB0

kh∆P
· q (9.1)

and dimensionless time by:

tD =
0.000264km

φmµctx2
f
· t (9.2)

The variables in the above equations are listed in Table 9.1. Reservoir thickness, matrix
permeability, porosity, and drawdown pressure have been used as input data to Sensor.
Initial drawdown pressure is the pressure difference between the initial reservoir pressure
(7500 psi) and flowing bottom-hole pressure (2500 psi). The value of xf, the fracture
length, is 400 ft for xe/xf = 1 and 266.67 ft for xe/xf = 1.5.

Oil formation volume factor (Bo) and oil viscosity (µo) were determined from the gen-
erated Black Oil table seen in Table 9.2. Since the modeled flow is single-phase and
saturation pressure for the oil is 1984.6 psi, only the undersaturated part of the BO-table
belonging to PSAT = 1985 psi is needed. In the presented equations, only one value of µo
and Bo is required. However, in reality, these are pressure functions that change with time!
The oil compressibility (co) calculation is added into Table 9.2, and the formula used for
determining this property is:

47

co = –
1

Bo
·
(

dBo

dP

)
(9.3)

The total compressibility is given by the rock (matrix) and the oil compressibility added
together, as there is no water or gas present;

ct = cr + co (9.4)

where the value is presented in Table 9.1. The value of Bo,µo and co (and consequently the
value of ct) that provide the closets modeled curves to the Locke-Sawyer curves generated
by Kappa, are the values marked in a light blue color and bold font in Table 9.2. It is
important to take into account the following;

1. The data from Kappa express elapsed time in hours, which means that elapsed time
in days used in the model must be changed to hours when determining tD.

2. The estimated production rates must be scaled up by 4 to represent the reservoir, as
mentioned in Section 4.1.

3. The model must be run long enough to get several orders of magnitude drop in the
qD value to include the BDF period. For practical purposes, 2 orders of magnitude
drop are enough.

Table 9.1: Variables used in Locke-Sawyer dimensionless equations

Definition Variable Value Unit

Reservoir thickness h 150 ft

Matrix permeability k 2.00E-04 md

Oil viscosity 0.746 cp

Matrix porosity ɸ 0.05

Oil formation volume factor 1.1742

Total compressibility 1.74E-05 1/psi

Initial drawdown pressure ∆P 5000 psi

48

Table 9.2: Undersaturated black oil table and oil compressibility calculation

----- ------ -------- -------- -------- --------

PSAT P BO VISO BG VISG dBo/dP co

psia psia rb/stb cp rb/scf cp 1/psi 1/psi

-------- ------ ----------- ---------- --------- --------- --------- ---------

1985 1985 1.2503 0.421 0.001728 0.0162

2500.3 1.2365 0.462 0.00138 0.0174 -2.52E-05 2.04E-05

3000.3 1.2247 0.502 0.001164 0.0187 -2.23E-05 1.82E-05

3500.3 1.2142 0.543 0.001015 0.0201 -2.01E-05 1.66E-05

4000.3 1.2046 0.583 0.000907 0.0215 -1.82E-05 1.51E-05

4500.1 1.196 0.624 0.000826 0.023 -1.65E-05 1.38E-05

5000.1 1.1881 0.664 0.000762 0.0244 -1.51E-05 1.27E-05

5500.5 1.1809 0.705 0.000712 0.0259 -1.39E-05 1.18E-05

6000.4 1.1742 0.746 0.000671 0.0273 -1.29E-05 1.10E-05

6500.1 1.168 0.786 0.000637 0.0286 -1.19E-05 1.02E-05

7000.1 1.1623 0.826 0.000608 0.0299 -1.10E-05 9.46E-06

7500.2 1.157 0.866 0.000584 0.0312 -1.03E-05 8.90E-06

8000.1 1.152 0.906 0.000562 0.0324

Oil compressibility calc.

9.1 Recreation of xe/xf = 1

In Section 7.5.1 it was decided that the grid block combination of Nx = 1 and Ny = 590
was sufficient for providing the best estimated rate for xe/xf = 1 on day 1. In other words,
this grid combination should be acceptable for modeling the whole production life. To get
a 2 order magnitude drop in qD, the simulation must be run for 1.5 million days.

In Fig.9.1, two modeled curves are present in addition to the Kappa curve. The curve de-
noted by Nx = 1 and Ny = 6000 is the most accurate numerical solution, which is added to
demonstrate the accuracy of the curve modeled with the grid combination of Nx = 1 and
Ny = 590. By examining the figure, it is observed that the curves match perfectly, which
consequently means that the same accuracy of the numerical solution is achieved when
using solely 590 grid blocks!

By comparing the curves to the Kappa curve, it is noticeable that the match is highly ac-
ceptable during the infinite acting flow period. The end of the IA period (tDeia) for all
xe/xf-curves generated by Kappa was determined in the specialization project, and for
xe/xf = 1 it is at tDeia = 1.19E – 01. From this time onward, the rate is in the boundary
dominated region and the curves separate.

In the specialization project, there was detected a strange behavior in the Kappa data at
late-time rates. Validation of the data in the boundary dominated region had to be con-
ducted. The following paragraph explains the reason for unreliable data from Kappa and
is quoted directly from the project:

”Kappa uses Laplace transform to transform ordinary differential equations (ODEs) to al-
gebraic equations. The purpose of this is to make it easier to solve ODEs. Laplace inverse
transform, however, is performing the opposite function to do numerical modeling. The

49

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01

D
im

e
n

s
io

n
le

s
s

 R
a

te
 (

q
D

)

Dimensionless Time (tD)

KAPPA Nx=1, Ny=6000 Nx=1, Ny=590

Figure 9.1: The xe/xf = 1 curve generated by Kappa and model

Kappa software utilizes the Gaver-Stehfest inversion algorithm. This is a popular inversion
method in reservoir engineering due to being highly accurate and stable for most pressure
solutions. However, the errors in the data from Kappa is grounded in the limitations of this
inversion method. It is difficult to obtain accurate data from late-time exponential decline
data [12]. The reason is, according to Leif Larsen, due to standard round-off issues that
are inherent in the Gaver-Stehfest inversion method. When this inversion method is used
with Laplace transform for small rates, qD ends up oscillating around 0 and therefore data
from this method becomes unreliable at late-time rates.” [2].

In other words, this means that the lack of matching between the modeled curves and the
Kappa curve in the BDF region is not a result of the errors in the numerical model, but a
result of the errors in the data from Kappa!

9.2 Recreation of xe/xf = 1.5

In Chapter 8, the grid block combination for xe/xf = 1.5 was determined to be Nx = 9 and
Ny = 46. However, this is not the ”optimum” grid combination since the estimated rate
was badly affected by the low number of Ny used when generating the possible cases. To
include the BDF period, the simulation was run for 554 000 days.

In Fig.9.2, the Kappa curve, and two modeled curves are presented. It is observed that
the match between the two modeled curves is quite sufficient except at early tD, or more
specifically, before tD = 1.3E – 04. Before this time the (Nx = 9,Ny = 46) curve deviates
slightly to a lower value of qD. However, this was expected because of the low number of

50

grid blocks used in the numerical model. Nevertheless, the match as tD increases towards
tD = 1.0E + 01 is much better than anticipated! This observation confirms that a low grid
block combination mostly affect the accuracy of the numerical solution in the early times
of the IA period compared to the rest of the production life.

The lack of matching between the Kappa curve and the modeled curves from the start of
the BDF region at tDeia = 3.76E – 01 is due to the mentioned errors with the Kappa data in
the previous section. However, for the IA flow period, all three curves provide acceptable
matching.

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02

D
im

e
n

s
io

n
le

s
s

 R
a

te
 (

q
D

)

Dimensionless Time (tD)

KAPPA Nx=6, Ny=1000 Nx=9, Ny=46

Figure 9.2: The xe/xf = 1.5 curve generated by Kappa and model

51

52

Chapter 10
Discussion of Results

The presented study describes the recreation of the Locke-Sawyer curves of xe/xf = 1
and 1.5 by implementing a probabilistic approach to grid refinement. If presented with a
limited maximum number of grids to use in the reservoir simulator and without knowing
the optimum grid combination to model the reservoir flow accurately, the methodology of
weight factors presents a fully automated procedure to determine the optimum grid block
combination. The results from the 2D grid refinement study conducted on the simplest
fracture penetration ratio of 1, indicates that the presented methodology provides the same
results as the 1D grid refinement study. This confirms the applicability of the methodology
for the simplest case, and the result is a Locke-Sawyer curve that completely matches the
curve made by 6000 grid cells.

The results presented for xe/xf = 1.5 demonstrates that the methodology is applicable for
determining a grid block combination that provides an adequate recreation of the Locke-
Sawyer curve. However, the study suggests that a curve with better accuracy in the early
IA period could have been created if the analysis was not limited by a too-small Nmax
value, and consequently limiting the optimum grid block combination. Moreover, the
study expresses that not using enough grid cells, especially in the y-direction, affects the
accuracy of simulating the well’s early time production.

Kappa Engineering provided the missing data to represent the original Locke-Sawyer
curves. By crating numerical models with the grid block combinations acquired from
the 2D grid refinement study, the objective was to analyze how much these curves deviate
from the Kappa curves. The result from this comparison is that Kappa and the modeled
curves provide a sufficient match for the IA period, however, the underlying errors in the
Kappa data are revealed in the BDF period. This suggests that the modeled curves are
better suited than the ones from Kappa when performing production forecasting for a well
with a vertical hydraulic ICF, which was the overall aim of this research.

53

The probabilistic approach to grid refinement made it possible to decide the optimum
combination of Nx and Ny for the fracture penetration ratio of 1, and the combination of
Nxf, Nxg and Ny for fracture penetration ratio of 1.5, simply and systematically, an in a
automated fashion. At the beginning of the study, it was considered that more grid blocks
were needed in the x-direction outside the fracture than along the fracture to achieve the
best numerical solution. However, this statement was contradicted, and the study empha-
sizes that to use enough grid blocks in the y-direction is of highest importance when trying
to achieve the best numerical solution and to remake the Locke-Sawyer curves with suffi-
cient accuracy.

The advantage of the probabilistic approach to grid refinement compared to traditional
grid refinement study is the manual labor saved by running many simulations to check
for the best grid block combination. If this was to be conducted for the fracture penetra-
tion ratio of 1.5, where the three variables; Nxf, Nxg and Ny had to be changed until little
change was observed the reservoir model performance, this could potentially have been an
extensive process. With the presented methodology that is fully automated, minimal input
parameters are required to initialize the process of determining the optimum grid block
combination, a process that is highly time efficient.

Due to the limitation in data storage and the requirement of Nmax = nmax for xe/xf = 1.5,
this resulted in a Ny that was not large enough to provide the best estimated rate for the
first 10 days. Consequently, this affected the determination of the optimum grid block
combination, as this is a result of the grid block combination that gives the closest rate to
the estimated rate on day 1. Besides, when recreating the xe/xf = 1.5 curve, the conse-
quence of using a small number of Ny (because of too-small Nmax) in the model manifests
itself in the early time of the IA period. However, this does not indicate that the methodol-
ogy does not work for fracture penetration ratio of 1.5, it just emphasizes the requirement
about having enough data storage.

54

Chapter 11
Final Comments and Conclusion

Throughout this work, a methodology has been developed that estimates rates for a given
number of time steps in an automated procedure. This procedure consists of using the
derivatives of the rates from possible grid block combinations that do not exceed the max-
imum number of total grid blocks and assigning the estimated rates that satisfy the thresh-
old requirement a binary weight factor of 1. This makes it possible to separate the grid
block combinations that provide an accurate estimated rate from grid combinations that
contribute to inaccurate rates.

To test the methodology, it was demonstrated on the simplest fracture penetration ratio of
1, because the true solution was known. Histograms were used to display the distribution
of rates for all possible cases at a given time step, and the methodology managed to select
the bin containing the true rate. Besides, the optimum grid block combination consisting
of solely 590 total grid blocks provided an excellent match with the most accurate numer-
ical solution obtained from 6000 grid cells.

As there was no true solution presented for the fracture penetration ratio of 1.5, the author
had to select the best grid block combination given by 6000 grid cells. The requirement
of generating all the possible combinations of Nxf and Nxg for a given number of Nx to
be able to use the finite difference approximation, lead to restrictions in the choice of
Nmax because of limited data storage. Consequently, this resulted in a Ny that was not
large enough to provide accurate estimated rates for the 10 first days. Nevertheless, for
the remaining 90 days, the match was satisfactory despite methodology not selecting the
optimum grid block combination.

The Locke-Sawyer curves for xe/xf = 1 and 1.5 were modeled using the grid combination
determined from the methodology, and both modeled curves provided an exact match with
the Kappa curve in the IA region, except for xe/xf = 1.5 in the earliest moments. As the
late rate-time data in Kappa data was unreliable, this study has presented a set of curves
that is more accurate to unconventional performance forecasting for a well with a vertical

55

ICF for the whole production period.

For future work, it is possible to conduct the methodology on other geometries, i.e rectan-
gles, by adjusting the length of the reservoir in the y-direction.

For the remaining fracture penetration ratios of 3 and 5, it is just to follow the same pro-
cedure conducted for fracture penetration ratio of 1.5. However, unless the user has more
data storage, it is important to take into account that the resulting grid block combination
is most likely not large enough to model the respective Locke-Sawyer curves accurately in
the early time of the IA period.

The Python codes presented herein are written in the best possible way by the author with
limited programming skills, therefore, some flaws may be present. However, it is possible
to optimize the codes by writing them in a more simple and efficient way.

56

Nomenclature

Symbol = Definition
qi = Initial rate (STB/d)
D = Decline constant
b = Hyperbolic decline constant
xe = Reservoir half-length in x-direction (ft)
xf = Fracture half-length (ft)
xe/xf = Fracture penetration ratio
ye = reservoir half-height in y-direction (ft)
Nx = Grid blocks along x-direction
Ny = Grid blocks along y-direction
Nz = Grid blocks along z-direction
Nxf = Grid blocks along fracture in x-direction
Nxg = Grid blocks along the end of fracture in x-direction
DELX = Grid block dimension in x-direction (ft)
DELX = Grid block dimension in y-direction (ft)
dxf = fracture step length in x-direction (ft)
dxg = step length outside fracture in x-direction (ft)
dy = step length in y-direction (ft)
qoil = Oil rate (STB/d)
qgas = Gas rate (MSCF/d)
PI = Productivity index (STB/d/psi)
PGRID = Pressure in the grid cells (psi)
PBH = Bottom hole pressure (psi)
φ = Porosity
µ = Viscosity (cp)
Bo = Oil formation volume factor (rb/stb)
ct = Total compressibility (1/psi)
co = Oil compressibility (1/psi)
cr = Rock compressibility (1/psi)
tD = Dimensionless time
qD = Dimensionless rate
tDeia = End of infinite acting period

57

58

Bibliography

[1] KAPPA Engineering. “Curriculum Vitae Leif Larsen”. In: (2019). URL: https:
//www.kappaeng.com/KAPPA/CV/Leif\%20Larsen.pdf1.

[2] M. Skintveit. “Describing Hydraulic Fractured Well Geometry by Fetkovich Method-
ology”. In: TPG4560 (2019).

[3] J. Arps. “Analysis of Decline Curves”. In: SPE 160.SPE-945228-G (01 1944). DOI:
https://doi.org/10.2118/945228-G.

[4] M. Fetkovich. “Decline Curve Analysis Using Type Curves”. In: SPE 32.SPE-4629-
PA (06 1980). DOI: https://doi.org/10.2118/4629-PA.

[5] C. Locke and W. Sawyer. “Constant Pressure Injection Test in a Fractured Reservoir-
History Match Using Numerical Simulation and Type Curve Analysis”. In: SPE
SPE-5594-MS (1975). DOI: https://doi.org/10.2118/5594-MS.

[6] M. H.Kazemi I.Eker and B.Kurtoglu. “Fundamentals of Gas Shale Reservoirs”. In:
(2015), pp. 277–294.

[7] Z. W. T. Hinkley R. Gu and D. Camilleri. “Multi-Porosity Simulation of Unconven-
tional Reservoirs”. In: SPE SPE-167146-MS (2013). DOI: https://doi.org/
10.2118/167146-MS.

[8] P. A. Slotte. “Lecture Notes in Well-Testing”. In: TPG4115 Reservoir Determina-
tion by Core Analysis and Well Testing (2017).

[9] D. N. Arnold. “Stability, consistency, and convergence of numerical discretiza-
tions”. In: School of Mathematics, University of Minnesota (2015).

[10] PetroWiki. “Gridding in Reservoir Simulation”. In: (2019). URL: https://petrowiki.
org/Gridding_in_reservoir_simulation#Grid_refinement.

[11] I. Yusra. “Gridding in Reservoir Simulation”. In: (2019). URL: https://whitson.
com/2019/11/10/gridding-in-reservoir-simulation/.

[12] B Josso and L Larsen. “Laplace Transform Numerical Inversion”. In: (2012). URL:
https://www.kappaeng.com/PDF/Laplace_transform_numerical_
inversion.pdf.

59

https://www.kappaeng.com/KAPPA/CV/Leif\%20Larsen.pdf1
https://www.kappaeng.com/KAPPA/CV/Leif\%20Larsen.pdf1
https://doi.org/https://doi.org/10.2118/945228-G
https://doi.org/https://doi.org/10.2118/4629-PA
https://doi.org/https://doi.org/10.2118/5594-MS
https://doi.org/https://doi.org/10.2118/167146-MS
https://doi.org/https://doi.org/10.2118/167146-MS
https://petrowiki.org/Gridding_in_reservoir_simulation#Grid_refinement
https://petrowiki.org/Gridding_in_reservoir_simulation#Grid_refinement
https://whitson.com/2019/11/10/gridding-in-reservoir-simulation/
https://whitson.com/2019/11/10/gridding-in-reservoir-simulation/
https://www.kappaeng.com/PDF/Laplace_transform_numerical_inversion.pdf
https://www.kappaeng.com/PDF/Laplace_transform_numerical_inversion.pdf

60

Appendices

61

62

A Figures

A.1 Flowcharts

Figure A.1: Flowchart of Python code process in main.py

63

(a) Extract required parameters
from Excel

(b) Generate basic cases (c) Generate advanced cases

(d) Write include files (e) Run simulations (f) Generate files for SensorPlot

Figure A.2: Flowcharts of codes used in main.py

64

Figure A.3: Flowchart of Python code process in main extracter.py

(a) Save required data (b) Save histogram data

Figure A.4: Flowcharts of codes used in main extract.py

65

Figure A.5: Flowchart of Python code process in main extracter.py

66

Figure A.6: Flowchart of codes used in main extracter.py

67

A.2 PI Sensitivity Analysis for Nmax = 1000 and xe/xf = 1

0

100

200

300

400

500

600

700

800

900

1000

0

2

4

6

8

10

12

0 1000 2000 3000 4000 5000 6000

N
u

m
b

e
r

o
f

G
ri

d
 B

lo
c

k
s

O
il
 R

a
te

 (
S

T
B

/d
)

Case Number

Oil Rate Nx Ny

(a) Estimated oil rate vs. Nx and Nx on day 10 for PI=1 STB/d/psi

0

100

200

300

400

500

600

700

800

900

1000

0

0.05

0.1

0.15

0.2

0.25

0 1000 2000 3000 4000 5000 6000

N
u

m
b

e
r

o
f

G
ri

d
 B

lo
c

k
s

C
u

m
.

O
il
 (

M
S

T
B

)

Case Number

Cum. Oil Nx Ny

(b) Cumulative oil volume vs. Nx and Nx on day 10 for PI=1 STB/d/psi

Figure A.7: Estimated oil rate and cumulative oil volume for PI=1 STB/d/psi

68

0

100

200

300

400

500

600

700

800

900

1000

0

2

4

6

8

10

12

0 1000 2000 3000 4000 5000 6000

N
u

m
b

e
r

o
f

G
ri

d
 B

lo
c

k
s

O
il
 R

a
te

 (
S

T
B

/d
)

Case Number

Oil Rate Nx Ny

(a) Estimated oil rate vs. Nx and Nx on day 10 for PI=10 STB/d/psi

0

100

200

300

400

500

600

700

800

900

1000

0

0.05

0.1

0.15

0.2

0.25

0 1000 2000 3000 4000 5000 6000

N
u

m
b

e
r

o
f

G
ri

d
 B

lo
c

k
s

C
u

m
.

O
il
 (

M
S

T
B

)

Case Number

Cum. Oil Nx Ny

(b) Cumulative oil volume vs. Nx and Nx on day 10 for PI=10 STB/d/psi

Figure A.8: Estimated oil rate and cumulative oil volume for PI=10 STB/d/psi

69

0

100

200

300

400

500

600

700

800

900

1000

0

2

4

6

8

10

12

0 1000 2000 3000 4000 5000 6000

N
u

m
b

e
r

o
f

G
ri

d
 B

lo
c

k
s

O
il
 R

a
te

 (
S

T
B

/d
)

Case Number

Oil Rate Nx Ny

(a) Estimated oil rate vs. Nx and Nx on day 10 for PI=100 STB/d/psi

0

100

200

300

400

500

600

700

800

900

1000

0

0.05

0.1

0.15

0.2

0.25

0 1000 2000 3000 4000 5000 6000

N
u

m
b

e
r

o
f

G
ri

d
 B

lo
c

k
s

C
u

m
.

O
il
 (

M
S

T
B

)

Case Number

Cum. Oil Nx Ny

(b) Cumulative oil volume vs. Nx and Nx on day 10 for PI=100 STB/d/psi

Figure A.9: Estimated oil rate and cumulative oil volume for PI=100 STB/d/psi

70

A.3 Results from 1D Grid Refinement Study

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100

O
il

 R
a
te

 (
S

T
B

/d
)

Time (days)

Oil Rate (Nx=1, Ny=6000)

(a) Estimated oil rate vs. time for Nx = 1 and Ny = 6000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80 90 100

C
u

m
.

O
il

 (
M

S
T

B
)

Time (days)

Cum.Oil (Nx=1, Ny=6000)

(b) Estimated cumulative oil volume vs. time for Nx = 1 and Ny = 6000

Figure A.10: Estimated oil rate and cumulative oil volume from 1D grid refinement study

71

0

1000

2000

3000

4000

5000

6000

0

2

4

6

8

10

12

0 1000 2000 3000 4000 5000 6000

N
u

m
b

e
r

o
f

G
ri

d
 B

lo
c

k
s

O
il
 R

a
te

 (
S

T
B

/d
)

Case Number

Oil Rate (Nx=1, Ny=6000) Ny

(a) On day 10

0

1000

2000

3000

4000

5000

6000

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1000 2000 3000 4000 5000 6000

N
u

m
b

e
r

o
f

G
ri

d
 B

lo
c

k
s

O
il
 R

a
te

 (
S

T
B

/d
)

Case Number

Oil Rate (Nx=1, Ny=6000) Ny

(b) On day 100

Figure A.11: Estimated oil rate vs. Ny for Nx = 1 and Ny = 6000

72

0

1000

2000

3000

4000

5000

6000

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1000 2000 3000 4000 5000 6000

N
u

m
b

e
r

o
f

G
ri

d
 B

lo
c

k
s

C
u

m
.

O
il
 (

M
S

T
B

)

Case Number

Cum. Oil Ny

(a) On day 10

0

1000

2000

3000

4000

5000

6000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1000 2000 3000 4000 5000 6000

N
u

m
b

e
r

o
f

G
ri

d
 B

lo
c

k
s

C
u

m
.

O
il
 (

M
S

T
B

)

Case Number

Cum. Oil Ny

(b) On day 100

Figure A.12: Estimated cumulative oil volume vs. Ny for Nx = 1 and Ny = 6000

73

A.4 Estimated Oil Rate vs. Time for Different Threshold Values

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

O
il
 R

a
te

 (
S

T
B

/d
)

Time (days)

Nx=1, Ny=6000 eps=1E-6 eps=1E-5 eps=1E-4 eps=5E-3

eps=1E-3 eps=1E-2 eps=1E-1 eps=1

(a) Estimated oil rate vs. time for all threshold values

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

O
il
 R

a
te

 (
S

T
B

/d
)

Time (days)

Nx=1, Ny=6000 eps=1E-6 eps=1E-5 eps=1E-4 eps=1E-3

(b) Estimated oil rate vs. time for the most accurate threshold values

Figure A.13: Estimated oil rate vs. time for different threshold for the first 10 days

74

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

70 75 80 85 90 95 100

O
il
 R

a
te

 (
S

T
B

/d
)

Time (days)

Nx=1, Ny=6000 eps=1E-6 eps=1E-5 eps=1E-4 eps=1E-3

Figure A.14: Estimated oil rate vs. time for different threshold values from day 70 to 100

75

A.5 Oil Rate and Number of Cases vs. Threshold Value

0

2000

4000

6000

8000

10000

12000

14000

10.715

10.72

10.725

10.73

10.735

10.74

10.745

1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00

N
u

m
b

e
r

o
f

C
a

s
e

s

O
il
 R

a
te

 (
S

T
B

/d
)

@
 T

im
e

 =
 1

0
 d

a
y
s

Threshold Value (ε)

Oil Rate Num. Cases

(a) Time = 10 Days

0

2000

4000

6000

8000

10000

12000

14000

10.7

10.72

10.74

10.76

10.78

10.8

1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00

N
u

m
b

e
r

o
f

C
a

s
e

s

O
il
 R

a
te

 (
S

T
B

/d
)

@
 T

im
e

 =
 1

0
 d

a
y
s

Threshold Value (ε)

Oil Rate Num. Cases

(b) Time = 10 Days, larger scale on primary vertical axis

Figure A.15: Estimated oil rate and number of cases used to get the estimated rate for different
threshold values on day 10

76

0

2000

4000

6000

8000

10000

12000

14000

3.2962

3.2963

3.2964

3.2965

3.2966

3.2967

3.2968

3.2969

1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00

N
u

m
b

e
r

o
f

C
a

s
e

s

O
il
 R

a
te

 (
S

T
B

/d
)

@
 T

im
e

 =
 1

0
0

 d
a

y
s

Threshold Value (ε)

Oil Rate Num. Cases

(a) Time = 100 days

0

2000

4000

6000

8000

10000

12000

14000

3.29

3.291

3.292

3.293

3.294

3.295

3.296

3.297

3.298

3.299

3.3

1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00

N
u

m
b

e
r

o
f

C
a

s
e

s

O
il
 R

a
te

 (
S

T
B

/d
)

@
 T

im
e

 =
 1

0
0

 d
a

y
s

Threshold Value (ε)

Oil Rate Num. Cases

(b) Time = 100 Days, larger scale on primary vertical axis

Figure A.16: Estimated oil rate and number of cases used to get the estimated rate for different
threshold values on day 100

77

B Python Codes

B.1 main.py

1 # ============ Import FUNCTIONS ==================
2 from read import Read_Parameters
3 from Generation import Gen_Basic_Cases
4 from Generation import Gen_Advanced_Cases
5 from Generation import Gen_Step_Length
6 from write import Write_Includes
7 from runner import Run_Datafile, Run_Sensor_Plot
8 from saver import Save_possible_Cases
9 # ==

10

11 # ==== Extract Parameters ==============
12 [parameter, value] = Read_Parameters() # Nmax, xe, xf, xexf, ye, nmax
13 nmax = int(value[5])
14

15 # ===== STEP 1: Generate Basic Cases (Nx,Ny) ================
16 cases = Gen_Basic_Cases(value)
17

18 # ===== STEP 2: Generate Advanced Cases (Nxf,Nxg,Ny) =======
19 possible_cases = Gen_Advanced_Cases(cases, value, nmax)
20

21 # Save possible cases in Excel
22 Save_possible_Cases(possible_cases)
23

24 # ===== STEP 3: Generate dimension vectors (DX, DY) from step lengths
======

25 # grid = [case_1, case_2,....]
26 # case_i = [DXi,DYi]
27 # DXi = [dx1(i),dx2(i),...]
28 # DXi = [dxf1(i),dfx2(i),...,dxf_Nxf(i),dxg1(i),dxg2(i),...,dxg_Nxg(i)]
29 # DYi = [dy1(i),dy2(i),...]
30 grid = Gen_Step_Length(possible_cases, value)
31

32 # ==== STEP 4: write include files to Sensor (inc.)
========================

33 # DELX.inc and DELY.inc
34 Write_Includes(grid)
35

36 # === STEP 5: write Sensor.dat files for each case (.dat)
=================

37 # run_simulation.dat
38 Run_Datafile(possible_cases)
39

40 # == STEP 6: read fort.61 and convert to (.tab) and (.plt) files for
plotting purposes

41 Run_Sensor_Plot(possible_cases)

78

B.2 read.py

1 # ============ IMPORT MODULES ===========
2 import xlrd
3 import os
4 import numpy as np
5 import pandas as pd
6 # =======================================
7

8 def Read_Parameters():
9

10 loc_file = ’InputExcel/Parameters.xlsx’ # Nmax, xe, xf, xexf, ye
11

12 # Finding the right workbook and worksheet
13 wb = xlrd.open_workbook(loc_file)
14 ws = wb.sheet_by_name(’Info’)
15 # for extracting multiple rows at a time
16 parameter = [0]*6
17 value = [0]*6
18 for i in range(6):
19 parameter[i] = ws.cell(0, 0+i).value
20 value[i] = ws.cell(1, 0+i).value
21

22 return [parameter, value]
23

24 # ===== Read data from DATA.tab ===================
25 def Extract_Data():
26

27 cases = []
28

29 for d in os.listdir("Sensor-files/Output"):
30 check = 0
31 time = []
32 qoil = []
33 qgas = []
34 cumoil = []
35 cumgas = []
36 pbh = []
37 with open("Sensor-files/Output/" + d + "/DATA.tab", "r") as file:
38 for line in file.readlines():
39 if line.find("NAMES") >= 0 and line.find("TIME") >= 0:
40 sec = line.replace("\n", "").split("\t")
41 cnt = 0
42 for header in sec:
43 if header == "TIME":
44 line_nr_time = cnt
45 elif header == "QOIL":
46 line_nr_qoil = cnt
47 elif header == "QGAS":
48 line_nr_qgas = cnt
49 elif header == "CUMOIL":
50 line_nr_cumoil = cnt
51 elif header == "CUMGAS":
52 line_nr_cumgas = cnt
53 elif header == "PBH":
54 line_nr_pbh = cnt
55 cnt += 1

79

56 check = 3
57 if check == 1:
58 if line.find(".") >= 0:
59 sec = line.replace("\n", "").split("\t")
60 time.append(float(sec[line_nr_time]))
61 qoil.append(float(sec[line_nr_qoil]))
62 qgas.append(float(sec[line_nr_qgas]))
63 cumoil.append(float(sec[line_nr_cumoil]))
64 cumgas.append(float(sec[line_nr_cumgas]))
65 pbh.append(float(sec[line_nr_pbh]))
66 else:
67 break
68 elif check > 1:
69 check -= 1
70 data = np.zeros((len(time), 6))
71 for i in range(len(time)):
72 data[i, 0] = time[i]
73 data[i, 1] = qoil[i]
74 data[i, 2] = qgas[i]
75 data[i, 3] = cumoil[i]
76 data[i, 4] = cumgas[i]
77 data[i, 5] = pbh[i]
78 cols = ["TIME", "QOIL", "QGAS", "CUMOIL", "CUMGAS", "PBH"]
79 data = pd.DataFrame(data=data, columns=cols)
80 cases.append(pd.DataFrame.copy(data))
81

82 # extract grid combination
83 grid = pd.read_excel("Sensor-runs-figures/Possible_Cases.xlsx")
84 grid = grid.iloc[:,1:]
85

86

87 return cases, grid

80

B.3 generation.py

1 # ============ IMPORT MODULES ===========
2 import random
3 import numpy as np
4 # =======================================
5

6 # ==== step 1: Generate (Nx,Ny) cases ================
7 def Gen_Basic_Cases(value):
8 # Find xexf
9 xexf = value[3]

10

11 Nmax = int(value[0])
12 cases = []
13 # create a square that is Nmax*Nmax containing only zeros
14 square = np.zeros((Nmax, Nmax))
15 for i in range(1, 11, 1):
16 for j in range(2, 2000+1, 1):
17 if i * j <= Nmax:
18 square[i-1, j - 1] = 1
19 if xexf != 1 and i != 1:
20 cases.append([i, j])
21 elif xexf == 1:
22 cases.append([i, j])
23

24 return cases
25

26 # ==== Step 2: Generate (Nxf, Nxg ,Ny) cases ========
27 def Gen_Advanced_Cases(cases, value, nmax):
28

29 xexf = value[3]
30

31 # x = cases[vector][element in vector]
32 possible_cases = []
33

34 length_array = len(cases)
35 for i in range(0, length_array):
36 if xexf == 1:
37 Nxf = cases[i][0]
38 Nxg = 0
39 Ny = cases[i][1]
40 possible_cases.append([Nxf, Nxg, Ny])
41 else:
42 Nx = cases[i][0]
43 Ny = cases[i][1]
44 possible_cases = \
45 Find_Possible_Cases(Nx, Ny, nmax, possible_cases)
46

47 return possible_cases
48

49 # ==== Find possible cases of Nxf and Nxg if xexef != 1 ====
50 def Find_Possible_Cases(Nx, Ny, nmax, possible_cases):
51

52 vec = [0]*(Nx-1)
53 for ii in range(Nx-1):
54 Nxf = ii + 1
55 Nxg = Nx - Nxf

81

56 vec[ii] = [Nxf, Nxg, Ny]
57

58 if len(vec) > nmax:
59 limit_reached = 1
60 else:
61 limit_reached = 0
62

63 if limit_reached == 1:
64 # Pick nmax random numbers given that nmax limit is reached
65 r = random.sample(range(1, len(vec)+1), nmax)
66 for ii in range(nmax):
67 possible_cases.append([r[ii], Nx-r[ii], Ny])
68 else:
69 for ii in range(len(vec)):
70 possible_cases.append(vec[ii])
71

72 return possible_cases
73

74 # ===== Step 3: Generate DX and DY ==============
75 def Gen_Step_Length(possible_cases, value):
76

77 xe = value[1]
78 xf = value[2]
79 xg = xe-xf
80 xexf = value[3]
81 ye = value[4]
82 length_possible_cases = len(possible_cases)
83 grid = [0]*length_possible_cases
84

85 for i in range(length_possible_cases):
86 # pre allocation of DX and DY for case i
87 DX = [0]*(possible_cases[i][0]+possible_cases[i][1])
88 DY = [0]*possible_cases[i][2]
89

90 dxf = xf/possible_cases[i][0]
91 if possible_cases[i][1] == 0:
92 dxg = 0
93 else:
94 dxg = xg/possible_cases[i][1]
95

96 dy = ye/(possible_cases[i][2]-1)
97

98 # fill DX vector
99 for j in range(possible_cases[i][0]):

100 DX[j] = dxf
101 if dxg != 0:
102 for k in range(j+1, j+1 + possible_cases[i][1]):
103 DX[k] = dxg
104

105 # fill DY vector
106 for j in range(possible_cases[i][2]):
107 if j == 0:
108 DY[j] = 0.1
109 else:
110 DY[j] = dy
111 case = [DX, DY]
112 grid[i] = case

82

113

114 return grid

B.4 write.py

1

2 # Wite DELX.inc and DELY.inc
3 def Write_Includes(grid):
4

5 N = len(grid) # number of cases in grid
6 for i in range(N):
7 # write DELX.inc file
8 sx = ""
9 sx += "DELX XVAR \n"

10 NX = len(grid[i][0])
11 for j in range(NX):
12 sx += str(grid[i][0][j]) + " \n"
13

14 num = Get_Num_Str(i,6)
15 filename = num + "-DELX.inc"
16 with open("Sensor-files/Includes-DELX/" + filename, "w") as file:
17 file.write(sx)
18

19 # write DELY.inc file
20 sy = ""
21 sy += "DELY YVAR \n"
22 NY = len(grid[i][1])
23 for j in range(NY):
24 sy += str(grid[i][1][j]) + " \n"
25

26 filename = num + "-DELY.inc"
27 with open("Sensor-files/Includes-DELY/" + filename, "w") as file:
28 file.write(sy)
29

30 def Get_Num_Str(i,n):
31 # i - case number
32 # n - number of digits
33 # example: i = 145, n = 5 --> "00145"
34 if i >= 10**n:
35 print("case nr contains more digits than specified")
36 out = str(i)
37 else:
38 s_a = ["0"]*n
39 s_b = list(str(i))
40 for i in range(len(s_b)):
41 s_a[-1-i] = s_b[-1-i]
42 out = "".join(s_a)
43

44 return out
45

46 def Write_Title(i):
47 sg = ""
48 sg += "TITLE \n"
49 sg += "Case number" + " " + str(i) + "\n"
50 sg += "ENDTITLE \n \n"
51

52 return sg

83

53

54 # Write input datafile to Sensor
55 def Write_Datafile(possible_cases, case_nr):
56

57 case_nr_txt = Get_Num_Str(case_nr, 6)
58

59 # 1. Title and end-title
60 sg = Write_Title(case_nr)
61

62 # Initial data
63 with open("Templates/temp_00.txt", "r") as file:
64 sg += file.read()
65

66 # 2. Grid properties
67 sg += "\n \n"
68 sg += "C ****************************** \n"
69 sg += "C Gridding and keyword printout \n"
70 sg += "C ***************************** \n"
71 sg += "\n"
72 sg += "C NX NY NZ \n"
73 sg += "C -------- ------- -------- \n"
74 sg += "GRID "
75 sg += str(possible_cases[0]+possible_cases[1]) + "\t" \
76 + str(possible_cases[2]) + "\t" + str(1) + "\n"
77 sg += "C -------- ------- -------- \n"
78 sg += "\n"
79 sg += "KEYWORD \n"
80 sg += "\n"
81

82 # 3. Equation formulation and solver
83 with open("Templates/temp_01.txt", "r") as file:
84 sg += file.read()
85

86 # 4. Model properties
87 sg += "\n \n"
88 sg += "C ***************** \n" # C stands for comments
89 sg += "C Model properties \n"
90 sg += "C **************** \n"
91 sg += "\n"
92 sg += "C Delta x (ft) \n"
93 sg += "INCLUDE \n"
94 sg += "Includes-DELX\{}-DELX.inc \n".format(case_nr_txt)
95 sg += "\n"
96 sg += "C Delta y (ft) \n"
97 sg += "INCLUDE \n"
98 sg += "Includes-DELY\{}-DELY.inc \n".format(case_nr_txt)
99 sg += "\n"

100 sg += "C Layer thickness \n"
101 sg += "THICKNESS CON \n"
102 sg += "150 \n"
103 sg += "\n"
104

105 # 5. Reservoir properties
106 sg += "C ******************** \n"
107 sg += "C Reservoir properties \n"
108 sg += "C ******************** \n"
109 sg += "\n"

84

110 sg += "C Porosity (-) \n"
111 sg += "POROS CON \n"
112 sg += "0.05 \n"
113 sg += "MOD \n"
114 sg += "C I1 I2 J1 J2 K1 K2 \n" # where I2 is Nxf
115 I1 = (possible_cases[0])
116 sg += "1" + " " + str(I1) + " " + "1 1 1 1 = 0.1 \n"
117 sg += "\n"
118

119 sg += "C Permeability (md) \n"
120 sg += "KX CON \n"
121 sg += "200E-06 \n"
122 sg += "MOD \n"
123 I1 = (possible_cases[0])
124 sg += "1" + " " + str(I1) + " " + "1 1 1 1 = 100 \n"
125 sg += "\n"
126 sg += "KY EQUALS KX \n"
127 sg += "KZ EQUALS KX \n"
128 sg += "\n"
129 sg += "C Depth to middle of reservoir (ft) \n"
130 sg += "DEPTH CON CENTER \n"
131 sg += "9000 \n"
132 sg += "\n"
133

134 # 6. Water and rock properties
135 with open("Templates/temp_02.txt", "r") as file:
136 sg += file.read()
137

138 # Rock type
139 sg += "\n"
140 sg += "ROCKTYPE CON \n"
141 sg += "1 \n"
142 sg += "MOD \n"
143 I1 = (possible_cases[0])
144 sg += "1" + " " + str(I1) + " " + "1 1 1 1 = 2 \n"
145 sg += "\n"
146

147 # 7. Relative permeability curves, fluid model,
148 # model initialization & printout sequence
149 with open("Templates/temp_03.txt", "r") as file:
150 sg += file.read()
151

152 # 8. Well definitions
153 sg += "C **************** \n"
154 sg += "C Well definitions \n"
155 sg += "C **************** \n"
156 sg += "\n"
157 sg += "C WELL PLACEMENT \n"
158 sg += "WELL \n"
159 sg += "I1 I2 J1 J2 K1 K2 PI \n"
160 sg += "PRODUCER \n"
161 I1 = (possible_cases[0])
162 sg += "1" + " " + str(I1) + " " + "1 1 1 1 1 \n"
163 sg += "\n"
164 sg += "C Well type \n"
165 sg += "WELLTYPE \n"
166 sg += "PRODUCER STBOIL \n"

85

167 sg += "\n"
168

169 # 9. Time step control, well scheduling and END
170 with open("Templates/temp_04.txt", "r") as file:
171 sg += file.read()
172

173 filename = "run_simulation.dat"
174 with open("Sensor-files/" + filename, "w") as file:
175 file.write(sg)
176

177

178 def Write_Sensor_Plot(path):
179 # DATA is the output name for the file fort.61
180 # "path" goes into the Output folder (where all the case folders are)
181

182 abs_path = "Sensor-files"
183

184 file = open("Sensor-files/data_reader.dat", "w")
185 file.write("TITLE \n")
186 file.write("read output from Sensor \n")
187 file.write("ENDTITLE \n \n")
188

189 file.write("FILE \n")
190 file.write("{}\{} run \n \n".format(path, "fort.61"))
191 file.write("OUTPUTNAME \n")
192 file.write("{}\{} \n \n".format(path, "DATA"))
193

194 file.write("WELL PRODUCER \n")
195 file.write("QOIL PBH \n")
196 file.write("END")

86

B.5 runner.py

1

2 # ====== Import FUNCTIONS ======================================
3 from write import Write_Datafile, Get_Num_Str, Write_Sensor_Plot
4 # ===
5

6 # ========= Import MODULES # =============================
7 import subprocess
8 from os import system, remove
9 # ==

10

11

12 def Run_Datafile(possible_cases):
13

14 for i in range(len(possible_cases)):
15 # write and save .dat file
16 Write_Datafile(possible_cases[i], i)
17

18 # Run run_simulation.dat file and create a "Output" folder
containing folders for each case

19 abs_path = "Sensor-files"
20 filename = "run_simulation.dat"
21 output_filename = "output.out"
22

23 system("cd {} & sensor {} {}".format(abs_path, filename,
output_filename))

24 # cd - call directory and md - make new directory in the current
directory = Output

25 system("cd {} & cd Output & md {}".format(abs_path, Get_Num_Str(i,
6)))

26

27 system("cd {} & copy fort.61 Output\{}".format(abs_path,
Get_Num_Str(i, 6)))

28

29 print("=="
)

30 print("Case number: " + str(i) + " of " + str(len(possible_cases))
)

31 print("=="
)

32

33 def Run_Sensor_Plot(possible_cases):
34

35 for i in range(len(possible_cases)):
36 path = "Sensor-files\Output\{}".format(Get_Num_Str(i, 6))
37 abs_path = "Sensor-files\data_reader.dat\n"
38 Write_Sensor_Plot(path)
39 subprocess.run(["sensorplot"], stdout=subprocess.PIPE, text=True,

input=abs_path)
40 remove("Sensor-files\Output\{}\{}".format(Get_Num_Str(i, 6), "fort

.61"))

87

B.6 main extract.py

1

2 # === Import MODULES ==========================
3 from read import Extract_Data
4 from saver import Save_Raw_Data
5 from extracter import Extract_Correct_Result
6 from saver import Save_Hist
7 # ===
8

9 # Extract data from DATA.tab for all cases and return as list of pandas
dataframes

10

11 data, grid = Extract_Data()
12

13

14 # Save sorted data
15 qoil, qgas, cumoil, cumgas = Save_Raw_Data(data)
16

17 # Weigh and estimate "correct" solution
18 Nmax = grid.iloc[:, -1].max()
19 time = data[0].iloc[:, 0]
20 max_time = time.max()
21 time, correct_results, histograms = Extract_Correct_Result(qoil, Nmax,

time, max_time)
22

23 filename = "qoil-Nmax-" + str(int(Nmax)) + ".xlsx"
24 # Save histogram data and "correct" results
25 Save_Hist(filename, time, correct_results, histograms)

88

B.7 saver.py

1 # ==== Import MODULES =================
2 import pandas as pd
3 import numpy as np
4 import openpyxl
5 # =====================================
6

7 # Save QOIL, QGAS, CUMOIL, CUMGAS and PBH to Required_Data.xlsx
8 def Save_Raw_Data(data):
9 num_times = len(data[0]["TIME"])

10 num_cases = len(data)
11 qoil_data = np.zeros((num_times, num_cases + 1))
12 qgas_data = np.zeros((num_times, num_cases + 1))
13 cumoil_data = np.zeros((num_times, num_cases + 1))
14 cumgas_data = np.zeros((num_times, num_cases + 1))
15

16 headers = [0] * (num_cases + 1)
17 headers[0] = "TIME"
18

19 i = 0
20 qoil_data[:, 0] = data[0]["TIME"].to_numpy()
21 qgas_data[:, 0] = data[0]["TIME"].to_numpy()
22 cumoil_data[:, 0] = data[0]["TIME"].to_numpy()
23 cumgas_data[:, 0] = data[0]["TIME"].to_numpy()
24

25 for case in data:
26 i += 1
27 headers[i] = "case-" + str(i - 1)
28 qoil_data[:, i] = case["QOIL"].to_numpy()
29 qgas_data[:, i] = case["QGAS"].to_numpy()
30 cumoil_data[:, i] = case["CUMOIL"].to_numpy()
31 cumgas_data[:, i] = case["CUMGAS"].to_numpy()
32

33

34 # make pandas dataframes
35 qoil = pd.DataFrame(data=qoil_data, columns=headers)
36 qgas = pd.DataFrame(data=qgas_data, columns=headers)
37 cumoil = pd.DataFrame(data=cumoil_data, columns=headers)
38 cumgas = pd.DataFrame(data=cumgas_data, columns=headers)
39

40

41 # create a separate spreadsheet for each output variable
42 writer = pd.ExcelWriter(’OutputExcel/Required_Data.xlsx’)
43 qoil.to_excel(writer, sheet_name="QOIL", index=False)
44 qgas.to_excel(writer, sheet_name="QGAS",index=False)
45 cumoil.to_excel(writer, sheet_name="CUMOIL",index=False)
46 cumgas.to_excel(writer, sheet_name="CUMGAS",index=False)
47

48 writer.save()
49 print(’DataFrame is written successfully to Excel File.’)
50

51 return qoil,qgas,cumoil,cumgas
52

53 def Save_possible_Cases(possible_cases):
54

55 # length in x-direction: Nxf, Nxg, Ny

89

56 num_element = len(possible_cases[0])
57 # length in y-direction: the amount of cases
58 num_cases = len(possible_cases)
59 possible_cases_data = np.zeros((num_cases, num_element+1))
60 headers = [0]*(num_element+1)
61 headers[0] = "Case"
62 headers[1] = "Nxf"
63 headers[2] = "Nxg"
64 headers[3] = "Ny"
65

66 for i in range(num_cases):
67 possible_cases_data[i][0] = str(i)
68 possible_cases_data[i][1] = possible_cases[i][0]
69 possible_cases_data[i][2] = possible_cases[i][1]
70 possible_cases_data[i][3] = possible_cases[i][2]
71

72 possible_cases_excel = pd.DataFrame(data=possible_cases_data, columns=
headers)

73 writer = pd.ExcelWriter("Sensor-runs-figures/Possible_Cases.xlsx")
74 possible_cases_excel.to_excel(writer, sheet_name="Possible-cases",

index=False)
75 writer.save()
76

77 def Save_Hist(filename, time, correct_results, histograms):
78 num_time = len(time)
79

80 dx = 2
81 dy = 2
82 wb = openpyxl.Workbook()
83 sheet = wb.create_sheet("data")
84

85 for i in range(num_time):
86 sheet.cell(dy+i+1, dx, time[i])
87 sheet.cell(dy+i+1, dx+1, correct_results[i])
88 if len(histograms[i]) != 0:
89 for j in range(len(histograms[i])):
90 sheet.cell(dy+i+1, dx+2+j, histograms[i][j])
91

92 sheet.cell(dy, dx, "Time")
93 sheet.cell(dy, dx+1, "c_data")
94 sheet.cell(dy, dx+2, "hist_data")
95

96 wb.save(filename)

90

B.8 extracter.py

1

2 # ===== Import MODULES ===============
3 import numpy as np
4 import matplotlib.pyplot as plt
5 # ====================================
6

7 def Extract_Correct_Result(raw_results, Nmax, time, max_time):
8 result_matrix = np.zeros((Nmax, Nmax))
9 correct_rate = [0] * len(time)

10 time = []
11 q = []
12 histograms = []
13

14 # 1. Create a square (Nmax, Nmax) with 1’s for possible results when
Ntot <= Nmax

15 for t in range(1, len(correct_rate)+1):
16 print("

==
")

17 print("Time-step Number: " + str(t))
18 print("

==
")

19 possible_cases_matrix = np.zeros((Nmax, Nmax))
20 cnt = 0
21 for i in range(Nmax):
22 for j in range(1, Nmax):
23 if (i + 1) * (j + 1) <= Nmax:
24 possible_cases_matrix[j, i] = 1
25 result_matrix[j, i] = raw_results.iloc[t - 1, cnt + 1]
26 if raw_results.iloc[t - 1, cnt + 1] == 0:
27 possible_cases_matrix[j, i] = 0
28 cnt += 1
29

30 # 2. Creating the matrix with the derivatives, dij
31 dij = np.zeros((Nmax, Nmax))
32 check = 1
33 for i in range(Nmax):
34 for j in range(Nmax):
35 # Must remove Ny = 1 row, and the points where i+1 and j+1

is not defined (equal to zero)
36 if possible_cases_matrix[j, i] == 1 and i != Nmax-1 and j

!= Nmax-1:
37 if possible_cases_matrix[j, i+1] != 0 and

possible_cases_matrix[j + 1, i] != 0:
38 # Apply forward difference on the dij matrix:
39 dij[j, i] = abs(result_matrix[j + 1, i] -

result_matrix[j, i]) + abs(
40 result_matrix[j, i + 1] - result_matrix[j, i])
41

42 # The lowest dij value (of those who are NOT zero)
43 length_dij = len(dij)
44 dij_min = 1000
45

46 # 3. The position (Nx,Ny) that gives dij_min

91

47 for row in range(length_dij):
48 for col in range(length_dij):
49 if dij[row, col] < dij_min and dij[row, col] != 0:
50 dij_min = np.copy(dij[row, col])
51 ref_rate = np.copy(result_matrix[row, col])
52

53 # 5. Create weight_matrix that is scaled by multiplying dij with
the reference rate

54 norm_dij = np.zeros((Nmax, Nmax))
55 if ref_rate != 0:
56 norm_dij = dij*(1 / ref_rate)
57 else:
58 norm_dij = dij
59 print("Reference rate found was equal to zero")
60

61 # 6. Logic if normalised dij is < eps, then WF = 1, if not 0
62 weight_matrix = np.zeros((Nmax, Nmax))
63

64 combinations = []
65 for i in range(length_dij):
66 for j in range(length_dij):
67 if possible_cases_matrix[j, i] == 1:
68 if norm_dij[j, i] <= 1E-6:
69 weight_matrix[j, i] = 1
70 combinations.append([i, j])
71

72 num_cases = len(combinations)
73 print("Number of datapoints: " + str(num_cases))
74 output = np.zeros((num_cases, 2))
75 X = [0] * num_cases
76 cnt = 0
77 for cmb in combinations:
78 output[cnt, 0] = result_matrix[cmb[1], cmb[0]]
79 output[cnt, 1] = weight_matrix[cmb[1], cmb[0]]
80 X[cnt] = cnt + 1
81 cnt += 1
82 # Estimate "correct" oil rate
83 if not np.isnan(np.average(output[:, 0])):
84 time.append(t)
85 # q.append(np.average(output[:, 0]))
86 q.append(np.median(output[:, 0]))
87 histograms.append(output[:, 0])
88 correct_rate[t - 1] = np.median(output[:, 0])
89 test =1
90 # plt.scatter(time,correct_rate)
91 # plt.plot(time, q)
92 plt.hist(output[:, 0])
93 plt.xlabel("Result Value")
94 plt.ylabel("Frequency")
95 plt.show()
96 correct_results = q
97

98 return time, correct_results, histograms

92

B.9 main functions.py

1 # This program reads grid data from Excel and estimates most probable "
correct" solution

2

3 from reader_data import Read_Excel_Data
4 from functions_tensor import Fill_Data_Tensor
5 import numpy as np
6 import pandas as pd
7 import matplotlib.pyplot as plt
8

9 # (1) Extract data from "data-1.5.xlsx"
10 data, Nxf, Nxg, Ny, time, Nt = Read_Excel_Data()
11

12 # (2) Pre-allocate grid tensor
13 data_tensor = np.zeros([Nxf, Nxg, Ny])
14

15 # (3) Fill data_tensor In(Grid_Structure,Case_Data,Allocated_Data_Tensor)
=> Out(Filled_Data_Tensor)

16

17 # TODO: Change derivative threshold here!!
18 err = 0.1
19 correct_results = np.zeros(Nt)
20 for i in range(Nt):
21 print("

==")
22 print("Time-step number: "+str(i))
23 print("

==")
24 weighted_results = Fill_Data_Tensor(Nxf, Nxg, Ny, data.iloc[:, 0:3],

data.iloc[:, 3+i], data_tensor, err,time)
25 if len(weighted_results) == 0:
26 print("None of the data met the criteria for the derivative at

time-step number: "+str(time[i]))
27 else:
28 correct_results[i] = weighted_results.iloc[:, 3].median()
29 plt.hist(weighted_results.iloc[:, 3])
30 plt.show()
31

32 s = ""
33 for c in correct_results:
34 s += str(c) + " \n"
35 with open("err-1-data.txt","w") as file:
36 file.write(s)
37

38 test = 1

93

B.10 reader data.py

1 import pandas as pd
2 import numpy as np
3

4 def Read_Excel_Data():
5

6 data = pd.read_excel("data-1.5.xlsx", sheet_name="Possible-cases")
7 data = data.iloc[:, 1:]
8

9 Nxf = max(data.iloc[:, 0])
10 Nxg = max(data.iloc[:, 1])
11 Ny = max(data.iloc[:, 2])
12

13 time = np.asarray(list(data.columns)[3:])
14 Nt = len(time)
15

16 return data, Nxf, Nxg, Ny, time, Nt

B.11 functions tensor.py

1 import numpy as np
2 import pandas as pd
3

4 def Fill_Data_Tensor(Nxf,Nxg,Ny,grid_structure,case_data,data_tensor,err,
time):

5 weighted_results = []
6 possible_cases = np.copy(data_tensor)
7 diff_tensor = np.copy(data_tensor)
8

9

10 # Fill matrix
11 cnt = 0
12 for case in case_data:
13 i = grid_structure.iloc[cnt, 0] - 1 # Position in Nxf
14 j = grid_structure.iloc[cnt, 1] - 1 # Position in Nxg
15 k = grid_structure.iloc[cnt, 2] - 1 # Position in Ny
16

17 data_tensor[i, j, k] = case
18 if case != 0:
19 possible_cases[i, j, k] = 1
20

21 cnt += 1
22

23 # Calculate weights and extract weighted results
24 cnt = 0
25 for case in case_data:
26 i = grid_structure.iloc[cnt, 0] - 1 # Position in Nxf
27 j = grid_structure.iloc[cnt, 1] - 1 # Position in Nxg
28 k = grid_structure.iloc[cnt, 2] - 1 # Position in Ny
29

30 if i < Nxf-1 and j < Nxg-1 and k < Ny-1:
31 test1 = possible_cases[i, j, k] != 0 # Is a possible

case
32 test2 = possible_cases[i + 1, j, k] != 0 # Next Nxf is a

possible case

94

33 test3 = possible_cases[i, j + 1, k] != 0 # Next Nxg is a
possible case

34 test4 = possible_cases[i, j, k + 1] != 0 # Next Ny is a
possible case

35

36 if test1 and test2 and test3 and test4:
37 # forward difference in i, j and k- direction (Nxf, Nxg

and Ny)
38 diff1 = abs(data_tensor[i + 1, j, k] - data_tensor[i, j, k

])
39 diff2 = abs(data_tensor[i, j + 1, k] - data_tensor[i, j, k

])
40 diff3 = abs(data_tensor[i, j, k + 1] - data_tensor[i, j, k

])
41

42 # The derivative in a point (Nxf, Nxg, Ny)
43 diff = diff1+diff2+diff3
44

45 diff_tensor[i, j, k] = diff
46

47 cnt += 1
48 diff_min = 1000
49 ref_rate = 1000
50

51 # 3. The position of (Nxf, Nxg, Ny) that gives diff_min
52 for row in range(Nxf):
53 for col in range(Nxg):
54 for elem in range(Ny):
55 if diff_tensor[row, col, elem] < diff_min and data_tensor[

row, col, elem] != 0:
56 diff_min = np.copy(diff_tensor[row, col, elem])
57 ref_rate = np.copy(data_tensor[row, col, elem])
58

59 norm_diff = np.zeros([Nxf, Nxg, Ny])
60 if ref_rate != 0:
61 norm_diff = diff_tensor * (1 / ref_rate)
62 else:
63 norm_diff = diff_tensor
64 print("Reference rate found was equal to zero")
65

66 cnt = 0
67 for case in case_data:
68 i = grid_structure.iloc[cnt, 0] - 1 # Position in Nxf
69 j = grid_structure.iloc[cnt, 1] - 1 # Position in Nxg
70 k = grid_structure.iloc[cnt, 2] - 1 # Position in Ny
71

72 if i < Nxf - 1 and j < Nxg - 1 and k < Ny - 1:
73 test1 = possible_cases[i, j, k] != 0 # Is a possible case
74 test2 = possible_cases[i + 1, j, k] != 0 # Next Nxf is a

possible case
75 test3 = possible_cases[i, j + 1, k] != 0 # Next Nxg is a

possible case
76 test4 = possible_cases[i, j, k + 1] != 0 # Next Ny is a

possible case
77

78 if test1 and test2 and test3 and test4:
79 if norm_diff[i, j, k] <= err:

95

80 weighted_results.append([i+1, j+1, k+1, case])
81

82 data = np.zeros((len(weighted_results), 4))
83 for i in range(len(weighted_results)):
84 data[i, 0] = weighted_results[i][0]
85 data[i, 1] = weighted_results[i][1]
86 data[i, 2] = weighted_results[i][2]
87 data[i, 3] = weighted_results[i][3]
88

89 output = pd.DataFrame(data=data, columns=["Nxf", "Nxg", "Ny", "Result"
])

90

91 return output

96

C Templates

C.1 Template 00 - Initial data frame

1 C ==
2 C INITIAL DATA
3 C ==

C.2 Template 01 - Equation and formulation solver

1

2 C **********************************
3 C Equation formulation and solver
4 C **********************************
5

6 IMPLICIT
7

8

9 C *************************
10 C Output printing
11 C *************************
12

13 C Saturation maps in fort.71 file
14 MAPSFILE P SO SG SW KX KY POROS PV VISO VISG
15

16 C Saturations maps in .out file
17 MAPSPRINT OFF
18

19 C Rel-perm. tables in .out file
20 PRINTKR

C.3 Template 02 - Fluid and rock properties

1

2 C ****************************
3 C Water- and Rock Properties
4 C ****************************
5

6 C B_w c_w rho_w mu_w c_r p_ref
7 C (-) (1/psi) (lbm/ft3) (cp) (1/psi) (psia)
8 C -------- -------- -------- -------- -------- --------
9 MISC 1.0 3E-6 62.40 0.5 4E-6 6000

10 C -------- -------- -------- -------- -------- --------

97

C.4 Template 03 - Rel.perm and capllary curves, EOS to BO table
conversion

1

2

3 KRANALYTICAL 1
4 C Swc Sorw Sorg Sgc
5 C ------- ------- ------- -------
6 0.0 0.0 0.4 0.1
7 C ------- ------- ------- -------
8

9 C krwro krgro krocw
10 C ------- ------- -------
11 1.0 1.0 1.0
12 C ------- ------- -------
13

14 C nw now ng nog
15 C ------- ------- ------- -------
16 2.5 2.5 2.5 2.5
17 C ------- ------- ------- -------
18

19

20 KRANALYTICAL 2
21 C Swc Sorw Sorg Sgc
22 C ------- ------- ------- -------
23 0.0 0.0 0.0 0.0
24 C ------- ------- ------- -------
25

26 C krwro krgro krocw
27 C ------- ------- -------
28 1.0 1.0 1.0
29 C ------- ------- -------
30

31 C nw now ng nog
32 C ------- ------- ------- -------
33 1.0 1.0 1.0 1.0
34 C ------- ------- ------- -------
35

36

37

38 C ******************************
39 C Fluid Model and Compositions
40 C ******************************
41

42 C EOS to Black-Oil Conversion
43 BLACKOIL 1 20 20 SRK
44 PRESSURES 100 200 400 600 800 1000 1500 2000 2500 3000 3500 4000 4500 5000

5500 6000 6500 7000 7500 8000
45 RESERVOIR FLUID
46 0.00340000 0.00020000 0.34620000 0.04110000 0.01010000 0.00760000

0.00490000 0.00430000 0.00210000 0.01610000
47 0.04513067 0.04700263 0.03810575 0.03312375 0.02940223 0.02641002

0.02390351 0.02174942 0.01986943 0.01821009
48 0.01673359 0.01541062 0.01421763 0.01314129 0.01216546 0.01127701

0.01046764 0.00972848 0.00905271 0.14889807
49 INJECTION GAS EQUILIBRIUM
50 SEPARATOR

98

51 14.69 60
52 ENDBLACKOIL
53

54 PVTEOS SRK
55 250
56 CPT MW TC PC ZCRIT SHIFT

AC OMEGA OMEGB
57 N2 28.014 227.16 492.84 0.29178

-0.00090 0.03700 0.42748 0.08664
58 CO2 44.010 547.42 1069.51 0.27433

0.21749 0.22500 0.42748 0.08664
59 C1 16.043 343.01 667.03 0.28620

-0.00247 0.01100 0.42748 0.08664
60 C2 30.070 549.58 706.62 0.27924

0.05894 0.09900 0.42748 0.08664
61 C3 44.097 665.69 616.12 0.27630

0.09075 0.15200 0.42748 0.08664
62 I-C4 58.123 734.13 527.94 0.28199

0.10952 0.18600 0.42748 0.08664
63 N-C4 58.123 765.22 550.56 0.27385

0.11028 0.20000 0.42748 0.08664
64 I-C5 72.150 828.70 490.37 0.27231

0.09773 0.22900 0.42748 0.08664
65 N-C5 72.150 845.46 488.78 0.26837

0.11947 0.25200 0.42748 0.08664
66 C6 83.567 921.77 475.01 0.26852

0.13427 0.25065 0.42748 0.08664
67 C7 96.713 983.88 439.72 0.26422

0.14520 0.28587 0.42748 0.08664
68 C8 110.382 1038.69 404.83 0.25982

0.15684 0.32558 0.42748 0.08664
69 C9 123.823 1087.90 372.49 0.25562

0.17443 0.36754 0.42748 0.08664
70 C10 137.092 1131.67 344.59 0.25181

0.19128 0.40884 0.42748 0.08664
71 C11 150.296 1171.36 320.28 0.24825

0.20739 0.44963 0.42748 0.08664
72 C12 163.425 1207.59 299.00 0.24488

0.22266 0.48979 0.42748 0.08664
73 C13 176.472 1240.85 280.28 0.24166

0.23703 0.52928 0.42748 0.08664
74 C14 189.431 1271.55 263.75 0.23854

0.25048 0.56809 0.42748 0.08664
75 C15 202.298 1300.00 249.07 0.23552

0.26300 0.60619 0.42748 0.08664
76 C16 215.068 1326.47 235.99 0.23258

0.27462 0.64359 0.42748 0.08664
77 C17 227.740 1351.20 224.29 0.22971

0.28537 0.68030 0.42748 0.08664
78 C18 240.310 1374.37 213.77 0.22691

0.29530 0.71630 0.42748 0.08664
79 C19 252.777 1396.15 204.28 0.22418

0.30445 0.75162 0.42748 0.08664
80 C20 265.139 1416.67 195.70 0.22152

0.31287 0.78627 0.42748 0.08664
81 C21 277.397 1436.07 187.91 0.21892

0.32061 0.82025 0.42748 0.08664

99

82 C22 289.551 1454.44 180.82 0.21640
0.32771 0.85358 0.42748 0.08664

83 C23 301.600 1471.87 174.34 0.21394
0.33423 0.88627 0.42748 0.08664

84 C24 313.546 1488.46 168.41 0.21155
0.34020 0.91834 0.42748 0.08664

85 C25 325.389 1504.26 162.96 0.20922
0.34568 0.94980 0.42748 0.08664

86 C26+ 381.515 1571.82 141.85 0.19885
0.36630 1.09433 0.42748 0.08664

87 BIN
88 0.00000 0.02000 0.06000 0.08000 0.08000 0.08000 0.08000

0.08000 0.08000 0.08000 0.08000 0.08000 0.08000 0.08000 0.08000
0.08000 0.08000 0.08000 0.08000 0.08000 0.08000 0.08000

0.08000 0.08000 0.08000 0.08000 0.08000 0.08000 0.08000
89 0.12000 0.12000 0.12000 0.12000 0.12000 0.12000 0.12000

0.12000 0.10000 0.10000 0.10000 0.10000 0.10000 0.10000 0.10000
0.10000 0.10000 0.10000 0.10000 0.10000 0.10000 0.10000

0.10000 0.10000 0.10000 0.10000 0.10000 0.10000
90 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.01490 0.01732 0.01971 0.02194 0.02403 0.02598 0.02781 0.02950
0.03108 0.03254 0.03390 0.03517 0.03635 0.03744 0.03846

0.03941 0.04030 0.04113 0.04190 0.04504
91 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000
92 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000
93 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000
94 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000
95 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

96 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
97 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000

98 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000
99 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000

100 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000

100

101 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000
102 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
103 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
104 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
105 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000
106 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000
107 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000
108 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000
109 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000
110 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
111 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
112 0.00000 0.00000 0.00000 0.00000 0.00000
113 0.00000 0.00000 0.00000 0.00000
114 0.00000 0.00000 0.00000
115 0.00000 0.00000
116 0.00000
117

118

119

120 C **********************
121 C Model Initialization
122 C **********************
123

124 C Reference depth, saturation pressure, and in-situ composition
125 INITIAL
126

127 C Reference depth (ft) and initial pressure (psia)
128 ZINIT 9000
129 PINIT 7500
130

131 DEPTH PSATBP
132 C (ft) (psia)
133 C ------ -------
134 9000 1984.96
135 C ------ -------
136

137 ENDINIT
138

139 C =======================================
140 C RECURRENT DATA
141 C =======================================
142

143 C ********************
144 C Printout frequence
145 C ********************
146

147 C Summary printing frequency to fort.61 file

101

148 SUMFREQ 1
149

150 C Map printing frequency to .out file
151 MAPSFREQ 1
152

153 C Map printing frequency to fort.71 file
154 MAPSFILEFREQ 1

C.5 Template 04 - Time step control and well schedule

1

2 C *******************
3 C Time step control
4 C *******************
5

6 C Maximum delta t (D)
7 DTMAX 1
8

9 C CFL 1
10

11

12 C *****************
13 C Well Scheduling
14 C *****************
15

16 C Bottomhole pressure constraint (psia)
17 BHP
18 PRODUCER 2500
19

20 C Target rate (STB/D)
21 RATE
22 PRODUCER 100000
23

24 C Time card (Total time | Delta t) (day)
25 TIME 100 1
26

27 END

102

Recreating Locke-Saw
yer Curves w

ith N
um

erical Reservoir Sim
ulation

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f G

eo
sc

ie
nc

e
an

d
Pe

tr
ol

eu
m

M
as

te
r’s

 th
es

is

Madelene Skintveit

Recreating Locke-Sawyer Curves with
Numerical Reservoir Simulation

Master’s thesis in Petroluem Engineering, MTPETR

Supervisor: Curtis Hays Whitson

June 2020

	Abstract
	Sammendrag
	Acknowledgements
	Software
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Scope of Study
	Available Data

	Background: Locke-Sawyer Type Curves
	Basic Theory
	Unconventional Reservoirs
	Infinite Conductivity Hydraulic Fracture
	Finite-Difference Simulator
	Grid Refinement Study
	Statistical Distributions

	Grid Description
	The Reservoir Model
	1D Grid Description
	2D Grid Description

	Data Initialization
	Condition for Grid Case Generation
	Required Input Parameters
	Description of Python Processes
	Input Datafile to Sensor
	Python Code Constraints

	Analysis of 1D Grid Refinement Study
	Determination of Minimum

	Probabilistic Approach To 2D Grid Refinement
	Representation of A Distribution Through Histograms
	The Methodology of Weighting Factors
	Normalization of Derivatives
	Threshold Sensitivity Analysis
	Weighted Histograms for

	Application of Weight Factor Methodology to
	Recreation of Locke-Sawyer Curves with Numerical Reservoir Simulation
	Recreation of
	Recreation of

	Discussion of Results
	Final Comments and Conclusion
	Nomenclature
	Bibliography
	Appendices
	Figures
	Python Codes
	Templates

