
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f G

eo
sc

ie
nc

e
an

d
Pe

tr
ol

eu
m

M
as

te
r’s

 th
es

is

Muhammad Gibran Alfarizi

Well Control Optimization in
Waterflooding Using Genetic Algorithm
Coupled with Machine Learning Models

Master’s thesis in Petroleum Engineering

Supervisor: Professor Milan Stanko

June 2020

Muhammad Gibran Alfarizi

Well Control Optimization in
Waterflooding Using Genetic Algorithm
Coupled with Machine Learning
Models

Master’s thesis in Petroleum Engineering
Supervisor: Professor Milan Stanko
June 2020

Norwegian University of Science and Technology
Faculty of Engineering
Department of Geoscience and Petroleum

”Essentially, all models are wrong, but some are useful.” - George Box.

Summary

Generally, optimum well controls to maximize net present value (NPV) in a waterflood-
ing operation are obtained from a numerical reservoir simulation in combination with
an optimization algorithm. This procedure is often computationally expensive and time-
consuming to run because of the complexity in numerical reservoir simulation. This com-
plexity also poses a challenge to implement gradient-based optimization algorithms, as
there are multiple variables involved and numerous simulations are needed for model eval-
uations.

This thesis proposes using a machine learning model, specifically an Artificial Neural Net-
work (ANN), to replicate the numerical reservoir simulator outputs. The ANN model is
used to predict cumulative oil production, cumulative water injection, and cumulative wa-
ter production based on sets of well control values, i.e., flowing bottom-hole pressure.
Then, the ANN model will be combined with a genetic algorithm (GA) optimization (a
derivative-free optimization) to find the optimum well controls that maximize the NPV of
a synthetic reservoir model. The optimization results of this model were compared against
the results using the open-source FieldOpt software, that optimizes well control values us-
ing the genetic algorithm and the reservoir model.

The data generated from reservoir simulation was used as the building blocks to the ma-
chine learning model. Hyperparameters optimization was done to create the best machine
learning architecture. Several variables were also tested to find the best configuration for
the genetic algorithm optimization. The developed ANN model was capable of reproduc-
ing the results of the original reservoir model within an acceptable accuracy (1.89%). The
genetic algorithm improved the project NPV successfully from the base case and achieved
similar results to FieldOpt but 43 hours faster.

i

Preface

This thesis is submitted in partial fulfilment of the requirements for the MSc degree in
Reservoir Engineering & Petrophysics at Departement of Geoscience and Petroleum -
Norwegian University of Science and Technology (NTNU).

I would like to express my gratitude to PhD candidate Timur Bikmukhametov for intro-
ducing me to machine learning and guiding me as a friend during the summer intern at
SUBPRO up until now. I also would like to thank my supervisor, Professor Milan Edvard
Wolf Stanko, for his meaningful insight and guidance during my final year as a master’s
student in NTNU. Moreover, I thank my colleagues and the academic community at the
Department of Geoscience and Petroleum for providing a supportive and excellent work-
ing environment.

I am deeply grateful to my family in Indonesia for their unconditional support during my
study in Trondheim. I finally want to thank my girlfriend, Dea Lana Asri, for her support,
attention, love, and happiness that she brings into my life.

Trondheim, June 2020
Muhammad Gibran Alfarizi

ii

Table of Contents

Summary i

Preface ii

Table of Contents iv

List of Tables v

List of Figures viii

Abbreviations ix

1 Introduction 1
1.1 Background . 1
1.2 Objective . 2
1.3 Outline . 3

2 Theory 5
2.1 Reservoir Simulation . 5

2.1.1 Black-oil Model . 7
2.1.2 Standard Well Model . 8
2.1.3 Solving the System of Equations 9
2.1.4 A Paradigm Shift Towards Data-Driven Reservoir Model 9

2.2 Artificial Intelligence . 11
2.2.1 Artificial Neural Networks . 12
2.2.2 Practical Aspects of Neural Networks 24

2.3 Genetic Algorithm . 30

3 Methodology 35
3.1 Workflow . 35
3.2 Software . 36
3.3 Reservoir Model . 37

iii

3.4 Generating the Dataset and Data Splitting 39
3.5 Building the ANN Model . 40
3.6 Buiding the Genetic Algorithm Optimization 42

4 Results and Discussion 45
4.1 The ANN Model . 45

4.1.1 The Cumulative Oil Production Prediction Model 45
4.1.2 The Cumulative Water Injection Prediction 47
4.1.3 The Cumulative Water Production Prediction 48
4.1.4 NPV Difference Between Model Prediction and Actual Data . . . 50

4.2 The Genetic Algorithm Optimization . 50
4.2.1 The Base Case . 50
4.2.2 Population Size . 50
4.2.3 Crossover and Mutation Probability 52
4.2.4 The Best Case . 54

4.3 Sensitivity Analysis . 57
4.4 Limitations . 58

5 Conclusion and Recommendation 59
5.1 Conclusion . 59
5.2 Recommendation . 60

Bibliography 61

List of Symbols 65

Appendix 69

iv

List of Tables

3.1 Initial reservoir fluid properties . 37
3.2 Reservoir rock properties . 37
3.3 Example of one simulation case (Np = cumulative oil production, Wi =

cumulative water injection, Wp = cumulative water production). 39

4.1 Optimum hyperparameters configuration for Np model. 45
4.2 Optimum hyperparameters configuration for Wi model. 47
4.3 Optimum hyperparameters configuration for Wp prediction model. 49
4.4 The base case (Np = cumulative oil production, Wi = cumulative water

injection, Wp = cumulative water production). 51
4.5 The average maximum NPV and elapsed time for every population size. . 51
4.6 The average maximum NPV for every crossover and mutation probability

ranked from highest to lowest. 53
4.7 The best case (Np = cumulative oil production, Wi = cumulative water

injection, Wp = cumulative water production). 55

v

vi

List of Figures

2.1 The Venn diagram of artificial intelligence, machine learning, and deep
learning. 12

2.2 A biological neuron. Modified from (Chauhan, 2019). 13
2.3 A perceptron. 14
2.4 A linear function. 15
2.5 A sigmoid function. 16
2.6 A hyperbolic tangent function. 16
2.7 A ReLU function. 17
2.8 A Leaky ReLU function. 17
2.9 A simple neural network. 18
2.10 A neural network with a hidden layer. 19
2.11 ”Learning” process in neural networks. 20
2.12 Gradient descent illustration. 21
2.13 Local minimum problem. 22
2.14 The difference of SGD with and without momentum. Modified from

(Ruder, 2016). 23
2.15 Underfitting, appropriate fitting, and overfitting. Modified from (Ng, 2013a). 25
2.16 Early stopping. 26
2.17 Surrogate function after 2 evaluations. Modified from (Snoek et al., 2012). 28
2.18 Surrogate function after 8 evaluations. Modified from (Snoek et al., 2012). 28
2.19 The flowchart of the genetic algorithm optimization scheme. Modified

from (Chuang et al., 2015). 31
2.20 Population, gene, and chromosome in genetic algorithm. 31
2.21 Single-point crossover and k-point crossover. 32
2.22 Arithmetic-mean and geometric-mean crossover. 33
2.23 Before and after mutation for binary data. 33
2.24 Before and after mutation for real numbers. 34

3.1 The main workflow of the master’s thesis. 35
3.2 The relative permeability curve. 38

vii

3.3 Visualization of the reservoir model. 38
3.4 The Bayesian optimization process. 41

4.1 The convergence plot of the surrogate function in Bayesian optimization
for cumulative oil production prediction model. 46

4.2 The comparison of Np prediction and actual Np in test dataset. 46
4.3 The convergence plot of the surrogate function in Bayesian optimization

for cumulative water injection prediction model. 47
4.4 The comparison of Wi prediction and actual Wi in the test dataset. 48
4.5 The convergence plot of the surrogate function in Bayesian optimization

for cumulative water production prediction model. 49
4.6 The comparison of Wp prediction and actual Wp in the test dataset. 49
4.7 One of the optimization runs with different population sizes. 52
4.8 One of the optimization runs with various crossover and mutation proba-

bility (C for crossover probability and M for mutation probability). 53
4.9 The optimization run with a population size of 36, crossover probability

of 25%, mutation probability of 15%, and 3000 maximum generation. . . 54
4.10 NPV sensitivity study for the oil price, water injection price, water pro-

duction price, and discount rate. 57

viii

Abbreviations

AI = Artificial Intelligence
ANN = Artificial Neural Network
BHP = Bottom Hole Pressure
GA = Genetic Algorithm
ML = Machine Learning
MSE = Mean Squared Error
NPV = Net Present Value
NRMSE = Normalized Root Mean Squared Error
OPM = Open Porous Media
PVT = Pressure-Volume-Temperature
ReLU = Rectified Linear Units
SGD = Stochastic Gradient Descent
TPE = Tree-structured Parzen Estimator

ix

x

Chapter 1
Introduction

This opening chapter presents a brief explanation of the motivation behind this master’s
thesis and its objective.

1.1 Background

Primary recovery is the first step in oil and gas production. Crude oil extraction from a
new well relies on the natural rise of the oil due to the differences in pressure between
the separator and the reservoir. As the pressure at the reservoir decreases because of the
oil extraction over time, the primary recovery eventually cannot provide an economically
attractive oil recovery. Thus, a secondary recovery method is needed.

Secondary recovery is the oil recovery technique where gas or water is injected to maintain
the reservoir pressure (Khan and Islam, 2007). The most common method of secondary re-
covery in oil fields is waterflooding. This method involves injecting water from injection
wells. The water then physically sweeps the displaced oil to adjacent production wells.
This process pushes more residual oil into the production tubing.

In order to maximize total oil production, or more importantly, the net present value (NPV)
of the oil field, one needs to determine the optimum well control values in waterflooding
(liquid rate or bottom-hole pressure of injection and producer wells). Generally, these opti-
mum well control values are obtained from a numerical reservoir simulator in combination
with an optimizer. This procedure is often computationally expensive and time-consuming
to run because a numerical reservoir simulation is a complex process of solving fluid flow
equations and consider lots of information, including geological information, rock and
fluid properties, and well completion. This complexity also presents a challenge to imple-
ment gradient-based optimization algorithms, as the estimation of the objective function
with respect to well control values involves multiple variables and multiple simulations for
model evaluations. A single model evaluation may take many hours for a grid with a vast

1

Chapter 1. Introduction

number of cells (Sarma et al., 2005).

This thesis proposes the use of a machine learning model, specifically the Artificial Neural
Networks (ANN), to describe the nonlinear behavior of the reservoir instead of the numer-
ical reservoir simulator. The ANN was built upon a synthetic reservoir simulation model.
The proposed model, combined with a derivative-free optimization algorithm called ge-
netic algorithm, will determine the optimum well control values. The run time of the
proposed model will also be compared with the run time of FieldOpt, a software which
could optimize the well control values using genetic algorithm in combination with nu-
merical reservoir simulator.

This thesis also presented a broad literature review of the machine learning model used in
this study. This with the intention that a person without a proper background in machine
learning, can still understand the study that has been performed.

1.2 Objective
The master’s thesis’s main objective is to develop an ANN model that replicates the numer-
ical reservoir simulator outputs. This model has to be robust enough to predict cumulative
oil production, cumulative water injection, and cumulative water production based on sets
of well control values. This model will be combined with a genetic optimization algorithm
to find the optimum well control values that maximize the NPV of a synthetic reservoir
model.

These tasks are performed to approach the main objective:

1. Create a synthetic field with a complete reservoir and well models.

2. Build a dataset consisting of the necessary information extracted from the reservoir
simulator and then divide it into training, validation, and test dataset.

3. Build the ANN model to predict cumulative oil production, cumulative water pro-
duction, and cumulative water injection based on sets of well control values.

4. Evaluate the ANN model’s performance with an appropriate metric.

5. Set base-case well control values for the reservoir model and calculate its NPV.

6. Find the optimum well control values that maximize NPV of the synthetic reservoir
field with the combination of genetic optimization algorithm and the ANN model.

7. Simulate the optimum well control values obtained from the optimizer in the numer-
ical reservoir simulator and calculate its NPV.

8. Compare the optimum NPV with the base case NPV. Analyze the result.

9. Compare the run time between the ANN-GA combination and the FieldOpt opera-
tion. Analyze the result.

2

1.3 Outline

1.3 Outline
This thesis is presented in five chapters. Introduction, as the first chapter, gives the mo-
tivation upon the thesis and its objective. The second chapter is Theory, which explains
the underlying theories involved in the thesis. The third chapter is Methodology, which
tells more in detail on how the tasks mentioned before are performed to reach the main
objective. Then, the results from the thesis are presented and discussed in chapter four,
Results and Discussion. Finally, in the fifth chapter, Conclusion and Recommendation,
the results are concluded, and ideas for future researches are provided.

3

Chapter 1. Introduction

4

Chapter 2
Theory

This chapter covers the theory in reservoir simulation, artificial intelligence, and genetic
algorithm.

2.1 Reservoir Simulation1

Reservoir simulation is the use of computers to numerically solve the fluid flow equations
in a reservoir model (Aziz and Settari, 1979). The purpose of reservoir simulation is to
mimic the behavior of the considered reservoir. Therefore, a good characterization of the
reservoir is essential to achieve accurate results.

Many of the reservoir modeling disciplines, such as geologists, geophysicists, petrophysi-
cists, and reservoir engineers, are involved in reservoir simulation. It is the product of
the acquisition and interpretation of data from these disciplines. Expertise in mathemat-
ics, physics, and computer programming is also required to build a reservoir simulation
model. The need for broad knowledge in the development of reservoir simulation can be
seen as both a challenge and a reward. The challenge comes from getting these disciplines
together, and as for the reward, it gives a thorough overview of the workflows toward reser-
voir management decisions (Berg, 2019).

Based on how the reservoir simulators handle fluid composition, it can be classified into
two main categories. Black-oil simulators assume a constant composition of all phases,
but it still allows for dropout of condensate from oil or gas dissolved in oil. Compositional
simulators allow changes in the composition of the fluid phases based on an underlying
equation of state.

Reservoir simulation software, often called reservoir simulator, usually employ finite dif-
ference methods for solving fluid flow equations. Those equations are conservation of

1This section has been presented in the author’s specialization project.

5

Chapter 2. Theory

mass Eq. (2.1), the extended Darcy theory for fluid flow through porous media Eq. (2.2),
and fluid phase behavior (PVT). Below ρ is the fluid density, φ is the porosity, q is the
volumetric fluid flux, k is the permeability, µ is the viscosity, and p is the pressure.

”mass in”− ”mass out” = ”change in mass”

−∇ · (ρq) =
∂

∂t
(φρ) , (2.1)

q = −k
µ
∇p . (2.2)

Inserting Eq. (2.2) into Eq. (2.1) and asusuming constant permeability, k, and pressure
independent viscosity, µ, one can get

k

µ
∇ · (ρ∇p) =

∂

∂t
(φρ) . (2.3)

Compressibility, c, is a measure of the relative volume change as a response to a pressure
change. Liquid compressibility, cl, formation compressibility, cφ, and total compressibility
can be expressed as

c = −1

ρ

∂ρ

∂p
, (2.4)

cφ =
1

φ

∂φ

∂p
, (2.5)

ct = cl + cφ . (2.6)

Inserting Eq. (2.4), Eq. (2.5), and Eq. (2.6) into Eq. (2.3) and applying the chain rule, the
equation derived into

k

µφct
∇2p =

∂

∂t
p . (2.7)

If one only consider x-direction, the Eq. (2.7) becomes

η
∂2p

∂x2
=
∂p

∂t
, (2.8)

where
η =

k

µφct
.

To solve the two derivative terms ∂2p
∂x2 and ∂p

∂t in Eq. (2.8), the finite difference method is
used to replace the partial derivatives by finite difference quotients and solve the resulting
linear algebraic system. Our system needs to be discretized both spatially and in time.
First, the x-coordinate must be subdivided into several discrete grid blocks, and the time
coordinate must be divided into discrete time steps. Then, the pressure in each block can
be solved numerically for each time step.

OPM Flow (Rasmussen et al., 2019), a black-oil simulator, is used for this study. The
underlying principles from this simulator are explained in the subsequent subsection.

6

2.1 Reservoir Simulation

2.1.1 Black-oil Model
The black-oil model has three different fluid phases (aqueous, oleic, and gaseous) and three
different components (water, oil, and gas). This model allows the mixing of oil and gas,
i.e., both oil and gas can be found in the oleic phase, in the gaseous phase, or both. The
quantities of dissolved gas in the oleic phase and vaporized oil in the gaseous phase must
be tracked. The subscripts w, o, g will be used to indicate each component’s quantities.

Model Equations

The black-oil model equations are deduced from conservation of mass for each compo-
nent coupled with Darcy’s Law and initial and boundary conditions. The equations are
discretized in space and in time using an implicit Euler scheme. The resulting equations
are then solved simultaneously in a fully implicit fashion.

Continuous equations. The conservation of mass for each component α, forms a system
of partial differential equations:

∂

∂t
(φrefAα) +∇ · uα + qα = 0 , (2.9)

where the accumulation terms and fluxes are given by

Aw = mφbwsw , uw = bwvw , (2.10a)
Ao = mφ(boso + rogbgsg) , uo = bovo + rogbgvg , (2.10b)
Ag = mφ(bgsg + rgoboso) , ug = bgvg + rgobovo . (2.10c)

The phase fluxes, vα, given by Darcy’s law:

vα = −λαK(∇pα − ραg) . (2.11)

Furthermore, these relations should hold:

sw + so + sg = 1 , (2.12)
pc,ow = po − pw , (2.13)
pc,og = po − pg . (2.14)

See List of Symbols for the definition of the symbols.

Discrete equations. Let subscript i represent a discrete quantity defined in cell i and sub-
script ij represent a discrete quantity defined at the connection between cell i and j. Every
quantity is taken at the end of the time step, expect the one with superscript 0, which
means it’s taken at the start of the time step. For each component α and cell i, the dis-
cretized equations and residuals are:

Rα,i =
φref,iVi

∆t
(Aα,i −A0

α,i) +
∑
j∈C(i)

uα,ij + qα,i = 0 , (2.15)

7

Chapter 2. Theory

where Aα are as in Eq. (2.10) and uα given by:

uw = bwvw , (2.16a)
uo = bovo + rogbgvg , (2.16b)
ug = bgvg + rgobovo . (2.16c)

The relations in Eq. (2.12), (2.13), and (2.14) are also hold for every cell i. For each
connection ij, the fluxes are:

(bαvα)ij = (bαλαmT)U(α,ij)Tij∆Φα,ij , (2.17)
(rβαbαvα)ij = (rβαbαλαmT)U(α,ij)Tij∆Φα,ij , (2.18)

∆Φα,ij = pα,i − pα,j − gρα,ij(zi − zj) , (2.19)
ρα,ij = (ρα,i + ρα,j)/2 , (2.20)

U(α, ij) =

{
i, ∆Φα,ij ≥ 0 ,

j, ∆Φα,ij < 0 .
(2.21)

See List of Symbols for the definition of the symbols.

2.1.2 Standard Well Model
The flow condition for each well in the standard model is expressed with a single set
of primary variables (Holmes, 1983). In a three-phase black oil system, four primary
variables are introduced: Qt is the weighted total flow rate, Fw is the weighted fractions
of water, Fg is the fluid composition within the wellbore, and pbhp is the bottom-hole
pressure, i.e., the pressure in the wellbore at the datum depth. Eq. (2.22) below shows the
relation between the primary variable with the flow rates:

Qt =
∑

α∈{o,g,w}

gαQα , (2.22a)

Fw =
gwQw
Qt

, (2.22b)

Fg =
ggQg
Qt

. (2.22c)

Qα is the flow rate of component α under surface conditions and gα is a weighting factor.
A small value of factor is typically chosen for gas, e.g. 0.01, to avoid gas fractions close
to unity (Holmes, 1983).

Volumetric inflow rates at reservoir conditions are expressed as:

qrα,j = Tw,jMα,j [pj − (pbhp,w + hw,j)] , (2.23)

where qrα,j is the flow rate of phase α through connection j. For other symbols explana-
tion, see List of Symbols.

8

2.1 Reservoir Simulation

Conservation equations for each component are introduced to keep the system closed,

Rα,w =
Aα,w −A0

α,w

∆t
+Qα −

∑
j∈C(w)

qα,j = 0 , (2.24)

and solved in a fully implicit and coupled fashion with the black-oil equations (2.15).
C(w) is the set of connections of the well w, qα,j is the flow rate of phase α through con-
nection j under surface condition, Aα,w, the storage term, is the amount of component α
in the wellbore.

Finally, the equations below describe how the wells are controlled. For a well controlled
by a predefined BHP target,

Rc,w = pbhp,w − ptarget
bhp,w = 0 , (2.25)

while for a well controlled by a predefined rate target,

Rc,w = Qα −Qtarget
α = 0 , (2.26)

where Qtarget
α is the desired surface-volume rate of component α, usually oil rate for a

production well.

2.1.3 Solving the System of Equations
The reservoir and the well equations mentioned so far are a large set of fully implicit
nonlinear equations that can be rewritten into a compact residual form ofR(y) = 0, where
y is the vector of primary variables. This system is then solved using the Newton-Raphson
method. Let yn = (po, sw, x) be the primary variables after n Newton iterations. With an
initial state y0, the solution of R(y) = 0 can be found with iterative solving of

J(yn)(yn+1 − yn) = −R(yn) , (2.27)

until R(yn) < ε, where ε is the error tolerance. The central computational function of the
simulator is to construct the Jacobian matrix J(yn) and to solve this linearized problem,
and how this part is programmed will dictate its performance. As the number of cells
increases in a reservoir model, so does its equations, which will also increase the time
needed to solve the equations.

2.1.4 A Paradigm Shift Towards Data-Driven Reservoir Model
History of science and technology can be divided into several eras (Hey, 2009). It all
started with experimental science at the early age of science. After that, scientific theories
began to emerge, such as Newton’s law, Maxwell’s law, Kepler’s law, etc. Coming into
the 21st century, computational science is the norm where fast computers have provided
the means for simulation and modeling in areas such as computational fluid dynamics,
meteorological and climatological, and hydrocarbon reservoir simulation. Now, humanity
has entered the age of data-intensive science or data science, according to Jim Gray, a
renowned computer scientist. In this era, massive amounts of data are collected from
physical phenomena and simulations, and new models can then be built based on these
data.

9

Chapter 2. Theory

Assumption Differences between Numerical Reservoir Simulation and AI-based Reser-
voir Simulation

The functional relationships used in numerical simulation and modeling are the law of
mass conservation, Darcy’s Law, and fluid phase behavior. These functional relationships
are believed to be true, deterministic, and unchangeable. Thus, if the simulation results do
not match our measurements from the field, the conclusion is that the input for reservoir
characteristics (the static model) may not be accurately measured and interpreted; hence
it must be modified in order to achieve this match. The assumption is that physics holds
true for every instance, even though it’s extremely hard to model physical phenomena be-
cause of its nature of having so many variables and complex relationships between those
variables. As discussed in the previous subsection, the equations to model the physics phe-
nomena in the porous media involve numerous variables, and the solutions are strenuous
to find. Therefore, engineers often concentrate on altering the reservoir characterization
parameters such as permeability, instead of questioning the possibility of inappropriate
physics model for that particular reservoir model, in order to achieve a match between
simulation results and measurement results. This approach has been the standard for a
long time and it often achieves excellent results; therefore, it is not disputed. This ap-
proach merely explained in order to emphasize the differences between these two methods.

AI-based reservoir modeling has different assumptions from numerical modeling. Instead
of holding the functional relationships constant, AI-based reservoir modeling allows these
relationships to change in addition to the possibility of modifying the reservoir characteris-
tics (Mohaghegh, 2011). The functional relationships are generated through the AI-based
pattern recognition technology. Moreover, one set of reservoir characteristics can also be
modified by another set if it is believed to be better by the geoscientists. Once the geosci-
entists are confident with the data set, they are not modified during the history matching
process. Instead, the functional relationships are modified until a match is attained.

Numerical simulation is built based on the first principle physics of the phenomena that
occur in the reservoir. On the other hand, AI-based reservoir modeling builds the model
through observation and pattern recognition. Instead of using physics in its first principle
and explicit form, physics is used as inspiration for creating a database.

This database is used to train a model that can predict the outcomes of the reservoir sim-
ulation by modifying the weights that connecting the parameters in the database. The
model will eventually converge to a state where it can mimic the reservoir’s behavior as
the training process continues. This model built using a generalization from a portion
of the database. The generalization is validated and tested using another portion of the
database that kept hidden from the model, i.e., the model has not seen the data before.
Using this technique, the model is not explicitly formulating physics. Instead, the physics
is deduced from the observations in an implicit fashion.

10

2.2 Artificial Intelligence

2.2 Artificial Intelligence2

There are lots of definitions of artificial intelligence. One of them defined artificial intelli-
gence (AI) as the ability that can be imparted to computers which enables these machines
to understand data, learn from the data, and make decisions based on patterns hidden in the
data, or inferences that could otherwise be very difficult (to almost impossible) for humans
to create manually. AI also enables machines to adjust their ”knowledge” based on new
inputs that were not part of the data used for training these machines. When talking about
artificial intelligence, people sometimes also talking about machine learning. These two
words often used interchangeably.

Machine Learning (ML) is the learning in which machines can learn on their own with-
out being explicitly programmed. But, what does learning mean for a machine? (Mitchell,
1997) provides a succinct definition: ”A computer program is said to learn from experience
E with respect to some class of tasks T and performance measure P , if its performance
at tasks in T , as measured by P , improves with experience E.” Experience E is often
referred to as the dataset fed into the ML. Tasks T are the problems that the machine is
expected to solve, e.g., classifying emails as not spam and spam. Performance measure P
is the metrics used to quantitatively evaluate the ML performance, e.g., accuracy and error
rate. ML is considered a subset of AI. After knowing about ML, the discussion now can
continue to deep learning.

Deep learning is a specific kind of machine learning. It is a subset of machine learning
and is called deep learning because it makes use of deep neural networks. The machine
uses different layers to learn from the data. The depth of the model is represented by the
number of layers in the model. Deep learning is the new state of the art in terms of AI.
In deep learning, the learning phase is done through an artificial neural network (ANN),
which will be discussed in the next section. In short, ANN is an architecture where the
layers are stacked on top of each other. To summarize, Fig. 2.1 shows the Venn diagram
of artificial intelligence, machine learning, and deep learning.

Based on the learning methods, machine learning algorithms can be classified into super-
vised learning and unsupervised learning.

Supervised Learning

Supervised learning as the name indicates the presence of a supervisor as a teacher. Ba-
sically, supervised learning is a learning in which human teach or train the machine using
data which is well labeled, that means some data is already tagged with the correct answer.
After that, the machine is provided with a new set of examples (data). The supervised
learning algorithm analyzes the training data (set of training examples) and produces a
correct outcome from labeled data. Supervised learning classified into two categories of
algorithms:

2This section has been presented in the author’s specialization project.

11

Chapter 2. Theory

Artificial Intelligence

Machine Learning

Deep Learning

Figure 2.1: The Venn diagram of artificial intelligence, machine learning, and deep learning.

• Classification or Logistic Regression: A classification problem is when the output
variable is a category, such as ”red” or ”blue” or ”disease” and ”no disease.”

• Linear Regression: A regression problem is when the output variable is a real value,
such as ”dollars” or ”weight.”

Unsupervised Learning

Unsupervised learning is the training of machine using information that is neither classi-
fied nor labeled and allowing the algorithm to act on that information without guidance.
Here the task of machine is to group unsorted information according to similarities, pat-
terns, and differences without any prior training of data.

Unlike supervised learning, no teacher is provided, which means no training will be given
to the machine. Therefore the machine is restricted to find the hidden structure in unlabeled
data by itself. Unsupervised learning classified into two categories of algorithms:

• Clustering: A clustering problem is where someone wants to discover the inherent
groupings in the data, such as grouping customers by purchasing behavior.

• Association: An association rule learning problem is where someone wants to dis-
cover rules that describe large portions of your data, such as people that buy X also
tend to buy Y .

2.2.1 Artificial Neural Networks
Artificial Neural Networks or ANN is an information processing paradigm that is inspired
by the way the biological nervous system such as brain process information. It is composed
of many highly interconnected processing elements (neurons) working in unison to solve

12

2.2 Artificial Intelligence

a specific problem. Biological neurons (Fig. 2.2) or simply neurons are the fundamental
units of the brain and nervous system. The cells are responsible for receiving sensory input
from the external world via dendrites, process it, and gives the output through Axons.

Dendrite

Cell body

Axon terminal

Myelin sheat

Myelinated axon

Inputs

Outputs

x0

x1

xn

y0

y1

yn

Figure 2.2: A biological neuron. Modified from (Chauhan, 2019).

Cell body (Soma): The body of the neuron cell contains the nucleus and carries out bio-
chemical transformation necessary to the life of neurons.

Dendrites: Each neuron has fine, hair-like tubular structures (extensions) around it. They
branch out into a tree around the cell body. They accept incoming signals.

Axon: It is a long, thin, tubular structure that works like a transmission line.

Synapse: Neurons are connected in a complex spatial arrangement. When axon reaches
its final destination, it branches again called terminal arborization. At the end of the axon
are highly complex and specialized structures called synapses. The connection between
two neurons takes place at these synapses.

Dendrites receive input through the synapses of other neurons. The soma processes these
incoming signals over time and converts that processed value into an output sent out to
other neurons through the axon and the synapses. A single neuron is also often called a
node. The following Fig. 2.3 represents the general model of ANN, which is inspired by
a biological neuron. It is also called Perceptron (Rosenblatt, 1958). Perceptron is a single
layer of neural networks. It gives a single output.

In Fig. 2.3, for one single observation, x0, x1, x2, . . . , xn represents various inputs (in-
dependent variables) to the network. Each of these inputs is multiplied by a connection
weight or synapse. The weights are represented as w0, w1, w2, . . . , wn. Weight shows
the strength of a particular node. These weights are need to be initialized. The common
practice is to randomly initialize the weights to prevent each neuron doing the same cal-
culation. Then, b is a bias value. A bias value allows the activation function to shift up or
down, just like a constant c does in y = mx + c. In the simplest case, these products are
summed, fed to a transfer function (activation function) to generate a result, and this result

13

Chapter 2. Theory

b

X0

X1

X2

w0

w1

w2
Input

Xn

wn

Output

𝑔 𝑏 +෍

𝑖=0

𝑛

𝑥𝑖 ∙ 𝑤𝑖

𝑏 +෍

𝑖=0

𝑛

𝑥𝑖 ∙ 𝑤𝑖

Figure 2.3: A perceptron.

is sent as output. This can be expressed mathematically as,

b+ x0 · w0 + x1 · w1 + x2 · w2 + . . .+ xn · wn = b+

n∑
i=0

xi · wi . (2.28)

After that, an activation function is applied, expressed as g
(
b+

n∑
i=0

xi · wi
)

, where g(•)

is the activation function.

Activation Function

The Activation function is vital for an ANN to learn and make sense of something compli-
cated. Their main purpose is to convert an input signal of a node in an ANN to an output
signal. This output signal is used as input to the next layer in the stack.

Activation function decides whether a neuron should be activated or not by calculating the
weighted sum and further adding bias to it. The motive is to introduce non-linearity into
the output of a neuron.

If the activation function is not applied, then the output signal would be a simple linear
function (one-degree polynomial). A linear function is easy to solve, but it is limited in
its complexity and has less power. Without the activation function, the model cannot learn
and model complex data such as images, videos, audio, speech, etc. Now, the question
arises, why is non-linearity needed?

Non-linear functions are those which have a degree more than one and they have a cur-
vature. A neural network needs to learn and represent almost anything and any arbitrary
complex function that maps an input to output. Neural Network is considered “Universal
Function Approximators”. It means they can learn and compute any function at all. There
are several types of activation functions:

14

2.2 Artificial Intelligence

1. Linear Activation Function
A linear function takes the form:

f(x) = Cx . (2.29)

6 4 2 0 2 4 6
x

6

4

2

0

2

4

6

y
Linear function

Figure 2.4: A linear function.

The linear function, Eq. (2.29), takes the inputs, multiplied by the weights for each
neuron, and creates an output signal proportional to the input. This activation func-
tion is only used in the output layer of regression problem, because it returns the
same value as the previous layer, which is the prediction value. Fig. 2.4 shows the
plot of linear function.

2. Sigmoid Activation Function — (Logistic function)
A sigmoid function (Fig. 2.5) is a mathematical function having a characteristic
“S”-shaped curve or sigmoid curve which ranges between 0 and 1, therefore it is
used for models where someone need to predict the probability as an output. The
sigmoid function, Eq. (2.30), is differentiable, means one can find the slope of the
curve at any two points.

f(x) =
1

1 + e−x
. (2.30)

The drawback of the sigmoid activation function is that it can cause the neural net-
work to get stuck at training time if strong negative input is provided.

3. Hyperbolic Tangent Function — (tanh)
Hyperbolic tangent function, Eq. (2.31), is similar to sigmoid but better in perfor-
mance. It is nonlinear in nature, so it’s great to use in stacked layers. It can be seen
from Fig. 2.6 the function ranges between (-1,1).

15

Chapter 2. Theory

4 2 0 2 4
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Sigmoid function

Figure 2.5: A sigmoid function.

4 2 0 2 4
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Hyperbolic tangent function

Figure 2.6: A hyperbolic tangent function.

f(x) = tanhx . (2.31)

The main advantage of this function is that strong negative inputs will be mapped
to negative output and only zero-valued inputs are mapped to near-zero outputs. So,
it’s less likely to get stuck during training.

4. Rectified Linear Units — (ReLU)
ReLU, Eq. (2.32), is the most used activation function in ANN which ranges [0,∞).
Fig. 2.7 below shows the plot of ReLU function.

16

2.2 Artificial Intelligence

4 2 0 2 4
x

0

1

2

3

4

5

y

Rectified linear unit

Figure 2.7: A ReLU function.

f(x) =

{
0 for x < 0 ,

x for x ≥ 0 .
(2.32)

4 2 0 2 4
x

0

1

2

3

4

y

Leak

Leaky ReLU activation function

Figure 2.8: A Leaky ReLU function.

f(x) =

{
0.01 for x < 0 ,

x for x ≥ 0 .
(2.33)

17

Chapter 2. Theory

It gives an output ‘x’ if x is positive and 0 otherwise. ReLU is non-linear in nature
and a combination of ReLU is also non-linear. In fact, it is a good approximator and
any function can be approximated with a combination of ReLU. However, it should
only be applied to hidden layers of a neural network (Goodfellow et al., 2016).

One problem with ReLU is some gradients are fragile during training and can die.
It causes a weight update, which will make it never activate on any data point again.
Basically, ReLU could result in dead neurons.

To fix the problem of dying neurons, Leaky ReLU was introduced (Fig. 2.8). So,
Leaky ReLU introduces a small slope to keep the updates alive. Leaky ReLU, Eq.
(2.33), ranges (−∞,∞). Leak helps to increase the range of the ReLu function.

How do Neural Networks work?

To better understand how neural networks work, consider an example of the price of a
property. In this example, four different factors affect the price of a property, which are
area, bedrooms, distance to the city, and age. Fig. 2.9 illustrates this problem in a simple
neural network.

X1

X2

X3

X4

y

w1

w2

w3

w4

Price = X1w1 + X2w2 + X3w3 + X4w4

Area

Bedrooms

Distance

to the city

Age

Input Layer Output Layer

Figure 2.9: A simple neural network.

The input values go through the weighted synapses straight over to the output layer. All
four will be analyzed, an activation function will be applied, and the results will be pro-
duced.

This is simple enough, but there is a way to amplify the Neural Network’s power and in-
crease its accuracy by the addition of a hidden layer that sits between the input and output
layers. Illustration provided in Fig. 2.10.

In Fig. 2.10, all four variables are connected to neurons via a synapse. However, not all of
the synapses are weighted. They will either have a zero value or non-zero value. Here, the
non-zero weight value means that the input neuron is important to consider. Otherwise,
the zero weight value is not considered. Fig. 2.10 illustrates only the non-zero weight

18

2.2 Artificial Intelligence

X1

X2

X3

X4

Area

Bedrooms

Distance

to the city

Age

Input Layer Hidden Layer

y

Output Layer

Figure 2.10: A neural network with a hidden layer.

values, and the zero weight values are not. For example, ”Area” and ”Distance to the city”
are non-zero for the first neuron in the hidden layer, which means they are weighted and
matter to the first neuron. The other two variables, ”Bedrooms” and ”Age” aren’t weighted
and so are not considered by the first neuron.

One may wonder why that first neuron is only considering two of the four variables. In this
case, it is common on the property market that larger homes become cheaper; the further
they are from the city. That’s a basic fact. So, what this neuron may be doing is looking
specifically for properties that are large but are not so far from the city.

Now, this is where the power of neural networks comes from. There are many of these
neurons, each doing similar calculations with different combinations of these variables.
Once this criterion has been met, the neuron applies the activation function and do its
calculations. The next neuron down may have weighted synapses of ”Distance to the city”
and ”Bedrooms.” This way, the neurons work and interact flexibly, allowing it to look for
specific things and therefore do a comprehensive search for whatever it is trained for. This
procedure is also known as forward propagation.

How Neural Networks learn?

Looking at an analogy may be useful in understanding the mechanisms of a neural net-
work. Learning in a neural network is closely related to how people learn in our regular
lives and activities — people perform an action and are either accepted or corrected by a
trainer or coach to understand how to get better at a certain task. Similarly, neural networks
require a trainer in order to describe what should have been produced as a response to the
input. Based on the difference between the actual value and the predicted value, an error
value, also called cost function is computed and sent back through the system. There are
several ways to find a cost function; one of them is the mean squared error (MSE). MSE
simply squares the difference between every network output and its true label, then takes

19

Chapter 2. Theory

the average. Mathematically, this cost function can be expressed as:

J(y, ŷ) =
1

N

N∑
i=1

(yi − ŷi)
2

, (2.34)

where J is the cost function (also known as the loss function), N is the number of trained
data, y is a vector of true labels, and ŷ is a vector of network predictions.

For each layer of the network, the cost function is analyzed and used to adjust the thresh-
old and weights for the next input. The goal is to minimize the cost function. Lower cost
function means the predicted value is closer to the actual value. In this way, the error keeps
becoming marginally lesser in each run as the network learns how to analyze values.

The resulting data are fed back through the entire neural network. The weighted synapses
connecting input variables to the neuron are the only thing that can be controlled. As long
as there exists a disparity between the actual value and the predicted value, those weights
have to be adjusted. Once the weights are tweaked, and the neural network is trained
again, a new cost function will be produced, hopefully, smaller than the last. This process
is repeated until the cost function down to as small as possible.

Forward Propagation

Backward Propagation

Loss

Figure 2.11: ”Learning” process in neural networks.

The procedure described above is known as backpropagation (Fig. 2.11) and is applied
continuously through a network until the error value is kept at a minimum. Backpropaga-
tion takes the error associated with a wrong guess by a neural network and uses it to adjust
the neural network’s parameters in the direction of less error. But now, a question may
arise, how does it know the direction of less error? The problem is usually tackled with
optimization methods to find minima. One method frequently used is gradient descent.

20

2.2 Artificial Intelligence

Gradient Descent

Generally, to find the minimum of a function, the derivative is set to zero and solve for
the parameters. However, it is almost impossible to obtain a closed-form solution for a
cost function because it involves so many parameters. Instead, the minimum is iteratively
searched using a method called gradient descent.

As a visual analogy, imagine a man standing on a mountain and trying to find the way
down. At every step, he will walk into the steepest direction, since this direction is the
most promising to lead him towards the bottom.

Gradient descent operates similarly when trying to find the minimum of a function: It
starts at a random location in parameter space and then iteratively reduces the error J
until it reaches a local minimum. At each step of the iteration, it determines the direction
of steepest descent and takes a step along that direction. This process is depicted in the
one-dimensional case in Fig. 2.12.

J(w)

w

Initial

weight Gradient

Global cost minimum

Jmin(w)

Figure 2.12: Gradient descent illustration.

As seen in Fig. 2.12, there exists a value of parameters w, which has a minimum value of
Jmin. The gradient of the cost function is calculated as a partial derivative of cost function
J with respect to each model parameter wi. One should also define the learning rate, α,
which determines how quickly it moves toward the minimum. If α is too large, it can over-
shoot and not moving toward the minimum. If α is too small, i.e., small steps of learning,
the overall time is taken by the model to find the minimum can be too long.

There are three ways of using gradient descent; they are batch gradient descent, stochastic
gradient descent, and mini-batch gradient descent.

In batch gradient descent, all of the training instances are used to update the model pa-
rameters in each iteration. In this way, a vast number of incorrect weights are eliminated.
For example, if there are 3 million samples, the gradient descent has to loop through 3 mil-
lion times. So basically, 3 million calculation per iteration has to be made. The calculation

21

Chapter 2. Theory

could take high computational power and long running time.

Gradient descent works fine when there is a convex curve just like in Fig. 2.12. But, if the
curve has local minimum and global minimum, the gradient descent can be trapped in the
local minimum (Fig. 2.13).

J(w)

w

Global

minimum

Local

minimum

Figure 2.13: Local minimum problem.

The word ‘stochastic‘ means a system or a process that is linked with a random proba-
bility. Hence, in stochastic gradient descent (SGD), a row of data is selected randomly
instead of the whole data set for each iteration.

SGD helps avoid the problem of the local minimum. It is much faster than batch gradient
descent because it is running each row of data at a time, and it doesn’t have to load the
whole data in memory for doing computation. One thing to be noted is that, as SGD is
generally noisier than typical gradient descent, it usually took a higher number of iterations
to reach the minimum, because of its randomness in its descent. Even though it requires a
higher number of iterations to reach the minimum than typical gradient descent, it is still
computationally much less expensive than typical gradient descent.

Another way is with the mini-batch gradient descent. Instead of using all examples,
mini-batch gradient descent divides the training set into a smaller size called batch de-
noted bym. Thus a mini-batchm is used to update the model parameters in each iteration.
Mini-batch gradient descent is typically the algorithm of choice when training a neural
network, and the term SGD usually is also employed when mini-batches are used. SGD is
technically a mini-batch gradient descent with a mini-batch size m of 1.

The gradient descent can be further optimized with several algorithms to speed up its
running time and increase its accuracy.

22

2.2 Artificial Intelligence

Gradient Descent Optimization Algorithms

In this section, there will be a discussion about some algorithms that are widely used by
the deep learning community.

1. Momentum
SGD has trouble navigating ravines, i.e., areas where the surface curves much more
steeply in one dimension than in another (Sutton, 1986), which are common around
local optima. In these scenarios, SGD oscillates across the slopes of the ravine
while only making hesitant progress along the bottom towards the local optimum,
as in Fig. 2.14.

SGD – no momentum SGD – with momentum

Figure 2.14: The difference of SGD with and without momentum. Modified from (Ruder, 2016).

Momentum (Qian, 1999) is a method that helps accelerate SGD in the relevant di-
rection and dampens oscillations, as can be seen in Fig. 2.14. Momentum, γ, is
an added term in the objective function, which is a value between 0 and 1 that in-
creases the size of the steps taken towards the minimum by trying to jump from a
local minimum.

Essentially, when using momentum, a ball is pushed down a hill. The ball accumu-
lates momentum as it rolls downhill, becoming faster and faster on the way (until it
reaches its terminal velocity if there is air resistance, i.e. (γ < 1). The same thing
happens to the parameter updates: The momentum term increases for dimensions
whose gradients point in the same directions and reduces updates for dimensions
whose gradients change directions. The results are faster convergence and reduced
oscillation.

2. RMSprop
RMSprop is an unpublished, adaptive learning rate method proposed by Geoff Hin-
ton in Lecture 6e of his Coursera Class. Retrieved from (Ng, 2013b).

RMSprop is one of the algorithms that adaptively adjusts the learning rate. It adapts
the learning rate to the parameters, performing smaller updates (i.e., low learning
rates) for parameters associated with frequently occurring features, and larger up-
dates (i.e., high learning rates) for parameters related to infrequent features. For this
reason, it is well-suited for dealing with sparse data. RMSprop divides the learning
rate by an exponentially decaying average of squared gradients.

3. Adam
Adaptive Moment Estimation (Adam) (Kingma and Ba, 2014) is another method

23

Chapter 2. Theory

that combines RMSprop and momentum. It computes adaptive learning rates for
each parameter and keeps an exponentially decaying average of past gradients, sim-
ilar to momentum. While momentum can be seen as a ball running down a slope,
Adam behaves like a heavy ball with friction, which prefers flat minima in the error
surface (Heusel et al., 2017).

Adam works well in practice and compares favorably to other adaptive learning-
method algorithms as it converges very fast. The learning speed of the model is
quite fast and efficient. It also rectifies every problem faced in other optimization
techniques such as vanishing learning rate, slow convergence, or high variance in
the parameter updates, leading to the fluctuating loss function. Adam is the most
popular optimizer used for neural networks nowadays.

2.2.2 Practical Aspects of Neural Networks
In this section, the practical aspects of building neural networks architecture and common
problems faced in the process are discussed.

Data Splitting

Before feeding the data into neural networks, the dataset is usually split into three cate-
gories, training dataset, validation dataset, and test dataset.

• Training Dataset: The actual dataset that is used to train the model. The model
sees and learns from this data.

• Validation Dataset: The validation set is used to evaluate a given model regularly.
The purpose of the validation dataset is to fine-tune the model hyperparameters.
Hyperparameters are parameters whose values are set before the learning process
begins, e.g., the learning rate α. Machine learning engineers evaluate the validation
set results and then update the hyperparameters. Hence, the model occasionally sees
this data, but never does it learn from this. So, the validation set in a way affects a
model, but indirectly.

• Test Dataset: The test dataset provides the gold standard used to evaluate the model.
It is only used once a model is completely trained (using the train and validation
sets). The model never sees and learns from this data.

Data Scaling

Data scaling is a technique to standardize the independent features present in the data in a
fixed range. It is performed during the data pre-processing to handle highly varying mag-
nitudes or values or units. If data scaling is not done, then a machine learning algorithm
tends to weigh greater values, higher and consider smaller values as the lower values, re-
gardless of the unit of the values.

There are many methods to scale data, but these two methods are the most important:

24

2.2 Artificial Intelligence

• Standardization: This technique removes the mean and scales the data to unit vari-
ance. It will scale the data such that the distribution is now centered around 0, with
a standard deviation of 1. The formula of Standardization is expressed in Eq. (2.35).

xnew =
xi − µ
σ

, (2.35)

where µ is the mean (average) and σ is the standard deviation from the mean.

• Min-Max Normalization: This technique re-scales an observation value with dis-
tribution value between 0 and 1 (or -1 to 1 if there are negative values). The formula
of Min-Max Normalization is expressed in Eq. (2.36).

xnew =
xi −min(x)

max(x)−min(x)
. (2.36)

Underfitting and Overfitting

Underfitting, or high bias, is when the model maps poorly to the trend of the data. It is usu-
ally caused by a function that is too simple or uses too few features. At the other extreme,
overfitting, or high variance, is caused by a model that fits the available data but does not
generalize well to predict new data. It is usually caused by a complicated function that
creates a lot of unnecessary curves and angles unrelated to the data.

Consider the problem of predicting y from x ∈ R. The leftmost figure in Fig. 2.15 shows
the result of fitting a line to a dataset. Since the data doesn’t lie in a straight line, the fit is
not very good.

Figure 2.15: Underfitting, appropriate fitting, and overfitting. Modified from (Ng, 2013a).

Instead, if an extra feature x2 is added, then a slightly better fit to the data is obtained (mid-
dle figure in Fig. 2.15). Naively, it might seem that the more features added, the better.
However, there is also a danger in adding too many features: The rightmost figure in Fig.
2.15 is the result of fitting a 5th order polynomial (x5). It can be seen that even though the
fitted curve passes through the data perfectly, it will not generalize well for new data. To
conclude, the figure on the left in Fig. 2.15 shows an instance of underfitting—in which
the data clearly shows structure not captured by the model—and the figure on the right in
Fig. 2.15 is an example of overfitting.

25

Chapter 2. Theory

This terminology is applied to both linear and logistic regression. There are two options
to address the issue of underfitting:

1. Increase the number of features: Find other data that might help the model to
predict better results.

2. Add polynomial features: Adding higher order polynomial can address the under-
fitting problem.

There are four options to address the overfitting issue:

1. Reduce the number of features: Manually select which features to keep. Remem-
ber that the discarded features may have some important information, so the choice
has to be made carefully.

2. Regularization: Keep all the features, but reduce the magnitude of weights w. Reg-
ularization works well when there exists a lot of slightly useful features. This is a
form of regression that constrains/regularizes or shrinks the coefficient estimates to-
wards zero. In other words, this technique discourages learning a more complex or
flexible model to avoid overfitting.

3. Early stopping: When training a learning algorithm using gradient descent, how
well the model performs on each iteration can be measured. Up to a certain num-
ber of iterations, each iteration improves the model. After that point, however, the
model’s ability to generalize can weaken as it begins to over-fit the training data.
Fig. 2.16 below illustrates how early stopping works.

Error

Iterations

Validation set

Training set

Early stopping

point

Figure 2.16: Early stopping.

4. Dropout: Dropout is a technique that randomly drops the nodes (along with their
connections) from the neural network during training (Srivastava et al., 2014). Be-
cause the outputs of a layer under dropout are randomly subsampled, it reduces the
capacity or thinning the network during training. As such, a wider network, e.g.,
more nodes, may be required when using dropout.

26

2.2 Artificial Intelligence

Hyperparameter Optimization

In machine learning, hyperparameter optimization or tuning is the problem of choosing a
set of optimal hyperparameters for a learning algorithm. Recall that a hyperparameter is a
parameter whose value is set before the learning process begins, e.g., the learning rate α,
and cannot be learned by the training process. By contrast, the values of other parameters
(typically node weights) are learned.

Hyperparameter optimization finds a tuple of hyperparameters that yields an optimal model
that minimizes a predefined loss function on given independent data (Claesen and Moor,
2015). There are several approaches to optimize the hyperparameter:

1. Grid Search
The traditional way of performing hyperparameter optimization has been grid search,
or a parameter sweep, which is simply an exhaustive searching through a manually
specified subset of the hyperparameters space of a learning algorithm. Every possi-
ble combination of hyperparameters in the specified subset of the hyperparameters
is then tested, and the loss is recorded. The combination of hyperparameters that
gives the minimum loss function is then picked.

2. Random Search
Random Search replaces the exhaustive enumeration of all combinations by select-
ing them randomly. This can be simply applied to the discrete setting described
above, but also generalizes to continuous and mixed spaces. It can outperform Grid
search, especially when only a small number of hyperparameters affect the final
performance of the machine learning algorithm (Bergstra and Bengio, 2012).

However, these two methods are relatively inefficient because they do not choose
the next hyperparameters to evaluate based on previous results. Grid and random
searches are utterly uninformed by past evaluations, and as a result, often spend a
significant amount of time evaluating ”bad” hyperparameters.

3. Bayesian Optimization
Bayesian optimization is a global optimization method for noisy black-box functions
(Mockus, 2009). Applied to hyperparameter optimization, Bayesian optimization
builds a probabilistic model of the function mapping from hyperparameter values to
the objective evaluated on a validation set.

Bayesian approaches, in contrast to random or grid search, keep track of past evalu-
ation results which they use to form a probabilistic model mapping hyperparameters
to a probability of a score on the objective function:

P (score | hyperparameters) . (2.37)

This model is called a ”surrogate” for the objective function and is represented as
p(y | x) (Shahriari et al., 2016). The surrogate is much easier to optimize than
the objective function. Bayesian methods find the next set of hyperparameters to
evaluate the actual objective function by selecting hyperparameters that perform
best on the surrogate function. In other words:

27

Chapter 2. Theory

(a) Build a surrogate probability model of the objective function.
(b) Find the hyperparameters that perform best on the surrogate.
(c) Apply these hyperparameters to the true objective function.
(d) Update the surrogate model incorporating the new results.
(e) Repeat steps (b)–(d) until max iterations or time is reached.

At a high-level, Bayesian optimization methods are efficient because they choose
the next hyperparameters in an informed manner. The basic idea is to spend a little
more time selecting the next hyperparameters to make fewer calls to the objective
function. In practice, the time spent selecting the next hyperparameters is incon-
sequential compared to the time spent in the objective function. By evaluating hy-
perparameters that appear more promising from past results, Bayesian methods can
find better model configurations than random search in fewer iterations.
A good visual description of what is occurring in Bayesian optimization is shown
in the figures below. Fig. 2.17 shows an initial estimate of the surrogate model —
in black with associated uncertainty in gray — after two evaluations. Clearly, the
surrogate model is a poor approximation of the actual objective function in red.

f(x)

pred var

pred mean

truth

evaluations

Figure 2.17: Surrogate function after 2 evaluations. Modified from (Snoek et al., 2012).

Fig. 2.18 shows the surrogate function after 8 evaluations. Now the surrogate almost
exactly matches the true function. Therefore, if the algorithm selects the hyperpa-
rameters that maximize the surrogate, they will likely yield very good results on the
true evaluation function.

f(x)

pred var

pred mean

truth

evaluations

Figure 2.18: Surrogate function after 8 evaluations. Modified from (Snoek et al., 2012).

28

2.2 Artificial Intelligence

There are five aspects of Bayesian hyperparameter optimization:

(a) A domain of hyperparameters for the search space.
(b) An objective function that inputs the hyperparameters and outputs a score that

is to be minimized or maximized.
(c) The surrogate function.
(d) A selection function for evaluating the next hyperparameters from the surro-

gate model.
(e) A history of score and hyperparameters pairs to update the surrogate model.

A domain consists of probability distributions. The probability distributions place
greater probability in regions where the expected true best hyperparameters lie.
These are informed by prior practice/knowledge, e.g., the learning rate domain is
usually a log-normal distribution over several orders of magnitude.

The objective function that hyperparameters usually want to minimize is the mean
squared error, like Eq. (2.34). It is expensive to compute this objective function,
even though it looks simple. If it can be quickly calculated, every possible combina-
tion of hyperparameters could be calculated (like in grid search). However, it may
take hours or even days to evaluate the objective function. Therefore, a surrogate
model of the objective function is needed.

The surrogate function, also called the response surface, is the probability repre-
sentation of the objective function built using previous evaluations. Sometimes, it is
called a response surface because it is a high-dimensional mapping of hyperparame-
ters to the probability of a score on the objective function. One form of the surrogate
function is the Tree-structured Parzen Estimator or TPE (Bergstra et al., 2011). The
selection function has to be discussed first to construct the TPE.

The selection function is the criteria to select the next hyperparameters from the
surrogate function. The most common selection function is Expected Improvement,

EIy∗(x) =

∫ y∗

−∞
(y∗ − y)p(y|x)dy , (2.38)

where y∗ is a threshold value of the objective function, x is proposed set of hyper-
parameters, y is the objective function value using hyperparameters x, and p(y|x) is
the surrogate probability model expressing the probability of y given x. The aim is
to maximize the Expected Improvement with respect to x.

The Tree-structured Parzen Estimator builds a model by applying Bayes rule of

p(y|x) =
p(x|y) ∗ p(y)

p(x)
, (2.39)

where p(x|y) is the probability of the hyperparameters given the score on the objec-
tive function, also expressed as:

p(x|y) =

{
l(x) if y < y∗ ,

g(x) if y ≥ y∗ ,
(2.40)

29

Chapter 2. Theory

where y < y∗ represents a lower value of the objective function than the threshold.
The explanation of this equation is that two different distributions for the hyperpa-
rameters are made: one where the value of the objective function is less than the
threshold, l(x), and one where the value of the objective function is greater than the
threshold, g(x).

Draw values of x from l(x) are better because this distribution is based only on x
that produced lower scores than the threshold. It is also corroborated with Bayes
rule, as the Expected Improvement equation becomes

EIy∗(x) =
γy∗l(x)− l(x)

∫ y∗
−∞ p(y)dy

γl(x) + (1− γ)g(x)
∝
(
γ +

g(x)

l(x)
(1− γ)

)−1
, (2.41)

which says that the Expected Improvement is proportional to the ratio l(x)
g(x) . There-

fore, drawing values of x from l(x) will maximize this ratio, consequently maximize
the Expected Improvement.

Every time the algorithm proposes a new set of hyperparameters, it evaluates them
with the actual objective function and records the result in a pair of scores and hy-
perparameters. A history consists of these records. The algorithm makes l(x) and
g(x) using the history to develop a probability model of the objective function that
improves every iteration.

In summary, an initial estimate is made for the surrogate function and updated as
more evidence is gathered. Eventually, enough evaluations of the surrogate function
will accurately reflect the objective function. The hyperparameters that maximize
the Expected Improvement would also maximize the objective function.

2.3 Genetic Algorithm
A genetic algorithm (GA) is a type of population-based stochastic searching approach that
mimics the natural selection and survival of the fittest in the biological world (Holland,
1975). This algorithm first introduced by John Holland in 1960 based on the concept of
Darwin’s theory of evolution. The genetic algorithm does not use derivative information
to find the optimal solutions, and there it falls in the category of derivative-free optimiza-
tion. This algorithm is better suited if the objective function f might be non-smooth, or
time-consuming to evaluate, or in some way noisy, so that methods that rely on derivatives
or approximate them via finite differences are of little use.

The evolution usually starts from a population of randomly generated individuals. They
then produce offspring which inherit the characteristics of the parents and will be added to
the next generation. The better the fitness of the parents, the better fitness of their offspring,
the better chance of surviving. This process keeps repeating until the fittest individual is
found. This notion is then applied for an optimization or search problem.

The genetic algorithm generally operates in a series of framework as shown in Fig. 2.19.

30

2.3 Genetic Algorithm

Initialize

population

Selection

operation

Crossover

operation

Mutation

operation

Stop

criteria

met?

Stop

𝑘 = 𝑘 + 1
No

Yes

Figure 2.19: The flowchart of the genetic algorithm optimization scheme. Modified from (Chuang
et al., 2015).

Initial Population

The process begins with a set of individuals, which is called a population. Each individ-
ual is the proposed solution to the defined problem. Every individual is a set of unique
parameters or variables known as gene. These genes are then joined into a string to form
an individual, or also called chromosome. Fig. 2.20 illustrates the terms for better under-
standing.

0 0 0 0 0

1 1 1 1 1

1 0 1 0 1

1 1 0 1 1

0

0

1

1

A1

A2

A3

A4

Gene

Chromosome

Population

Figure 2.20: Population, gene, and chromosome in genetic algorithm.

The size of the population varies for every problem but usually includes several hundred or
thousands of possible solutions. The initial population is often generated randomly, allow-
ing for a wide range of possible solutions (the search space). Occasionally, the solutions
can also be initialized in areas where optimal solutions are likely to be found.

Selection Operation

Some parts of the existing population are selected to breed a new generation. The selection
is based on the fitness of the individual. A fitness function will determine the fitness of
every individual, and the fitter individuals are more likely to be selected. In an optimiza-
tion problem, the objective function is the fitness function. For example, if the optimization
problem is to maximize NPV, then the objective function is NPV. The individual (solution)
that yields higher NPV has higher fitness. After knowing the fitness of every individual, a
particular selection method is then used. Two of the selection methods are roulette wheel
selection and elitism selection.

In the roulette wheel selection, better fitness is more likely to be selected for the breeding
of the next generation. Imagine this process as spinning a roulette with the same amount

31

Chapter 2. Theory

of pockets as the number of individuals in the existing population, with fitness determining
its pocket size. The probability of choosing individual i, pi, is equal to the fitness of i, fi,
divided by the total fitness of that population, mathematically expressed as

pi =
fi∑N
j=1 fj

, (2.42)

where N is the size of the current population.

In the elitism selection, a small portion of the best individuals from the current population
is carried over to the next generation without any changes. This often performed to keep
the best individuals alive over the generations instead of breeding them.

Crossover Operation

Crossover (also called recombination or breeding) is the next step to generate the next pop-
ulation from the selected individuals. A pair of ”parent” individuals are chosen from the
pool of chosen individuals previously to produce a new individual. A crossover operation
is performed afterward. This operation can be performed for bit arrays or vector of real
numbers. For a bit array, single-point or k-point crossover can be implemented.

In a single-point crossover, a crossover point is chosen at a random point on both par-
ents’ chromosomes. New offspring are created by exchanging the genes of parents among
themselves until the crossover point is reached. This strategy can be generalized to k-
point crossover for any positive integer k by picking k crossover points. This process is
illustrated in Fig. 2.21.

0 0 0 0 0

1 1 1 1 1

0

1

A1

A2

1 1 1 0 0

0 0 0 1 1

0

1

A5

A6

0 0 0 0 0

1 1 1 1 1

0

1

A1

A2

1 1 1 1 0

0 0 0 0 1

0

1

A5

A6

Single-point crossover k-point crossover (k=2)

Crossover point Crossover pointCrossover point

Parents Parents

New offspring New offspring

Figure 2.21: Single-point crossover and k-point crossover.

There are also several crossover techniques for a vector of real numbers. Instead of swap-
ping the genes, the geometric mean, or the arithmetic mean is calculated from both par-
ent’s chromosomes. The resulting offspring is now made of the chosen mean. Illustration

32

2.3 Genetic Algorithm

of these techniques can be seen in Fig. 2.22. Other popular crossover techniques are Blend
crossover, or BLX-α (Takahashi and Kita, 2001), and Simulated Binary Crossover, or SBX
(Deb and Beyer, 2001).

223 245 238 278 134

242 258 251 263 140

95

114

A1

A2

232.5 251.5 244.5 270.5 137 104.5A5

A1

A2

A5

Arithmetic mean crossover Geometric mean crossover

Parents Parents

New offspring New offspring

223 245 238 278 134 95

242 258 251 263 140 114

232.3 251.4 244.4 270.4 136.9 104.1

Figure 2.22: Arithmetic-mean and geometric-mean crossover.

Mutation Operation

The mutation alters one or more genes in a chromosome from its initial value. A mutation
is added to maintain diversity within the population, prevent premature convergence, and
anticipate being trapped in the local optima, if it ever trapped. The chromosome may also
be entirely different than the previous chromosome; hence GA may come to a better solu-
tion by mutating. This mutation happens according to a predefined probability. However,
this probability should be set low; otherwise, it will turn into a traditional random search.

For a bit array, mutation can flip the bit from 1 to 0 and vice versa. User can define how
many genes are going to be flipped and how likely will it happen. An illustration of this
process can be seen in Fig. 2.23.

1 1 1 0 0 0A5

Before mutation

1 1 0 1 1 0A5

After mutation

Figure 2.23: Before and after mutation for binary data.

For a vector of real numbers, there are also plenty of options. It depends on the search
problem. For instance, one could sum or subtract a random number between a fixed inter-
val for some of the genes, as can be seen in Fig. 2.24. For larger search spaces, one could
also choose a larger interval and diminish it from generation to generation.

33

Chapter 2. Theory

A5

Before mutation

A5

After mutation

223 245 238 278 134 95

223 245 258 262 139 95

Figure 2.24: Before and after mutation for real numbers.

Termination Operation

This generational process will be repeated until the termination condition has been reached.
These are, but not limited to, the termination condition of the genetic algorithm:

• a solution is found within the minimum criteria;

• allocated resources (money/computational time) reached;

• maximum number of generations reached;

• the best solution (the highest fitness) of every generation approaching or reaching a
plateau such that successive iteration only produce diminishing results or no longer
produce better results;

• manual termination;

• combinations of the above.

34

Chapter 3
Methodology

This chapter describes the workflow of this study and discusses the technical details in-
volved in building the ANN model and genetic algorithm optimization.

3.1 Workflow

No

Create a synthetic

reservoir model.

Extract necessary

information from

the reservoir

model to build a

dataset.

Divide the

dataset into

training,

validation, and

test dataset.

Build the ANN

model to predict

necessary

information for

NPV calculation.

Evaluate

model’s

performance.

Is it good?

Yes

Set the base case

and calculate its

NPV.

Find the optimum

solution with GA

and ANN model

combination.

Compare the

solution’s NPV

with base case

NPV.

Compare the run

time between the

ANN-GA

combination and

the FieldOpt

operation.

Simulate the

solution in

reservoir

simulator and

calculate its NPV.

Figure 3.1: The main workflow of the master’s thesis.

The main workflow of the master’s thesis is shown in Fig. 3.1. The first step was to create
a synthetic reservoir model using OPM Flow. After that, the necessary information was
extracted from the reservoir model to build a dataset. This dataset was then divided into
training, validation, and test dataset. The next step was to build the ANN model to predict
cumulative oil production, cumulative water production, and cumulative water injection
based on sets of well control values. This model’s capability to predict was then evaluated
with a performance metric. If it were not good, additional training data would be fed into
the neural network. After the model’s performance was considered good, a base case was

35

Chapter 3. Methodology

set, and its NPV was calculated. Afterward, the ANN model and GA worked together
to find the optimum well control values. Next, the optimum well control values obtained
from the optimizer were simulated in the reservoir simulator, and its NPV was calculated.
Subsequently, the NPV from the optimizer result and the base case NPV were compared,
and the result was analyzed and discussed. Finally, the ANN-GA run time was compared
with the FieldOpt operation run time. The following sections will explain the details of
each step.

3.2 Software
OPM Flow

The Open Porous Media (OPM) Flow is a reservoir simulator that aims to represent reser-
voir geology, fluid behavior, and description of wells and production facilities as in com-
mercial simulator (Rasmussen et al., 2019). This simulator supports industry-standard
input and output formats. In this project, the OPM Flow was used to simulate the case of
production and injection. The results generated from the simulation were then used as the
datasets for the ANN model.

Python

Python is an interpreted, high-level, general-purpose programming language (Python, 2019).
Created by Guido van Rossum and first released in 1991, Python’s design philosophy em-
phasizes code readability with its notable use of significant whitespace. Python’s inter-
preters are available for many operating systems. Python is also an open-source program
and has a global community of programmers that discuss their code and implementations.
Python was used as the compiler and programming language to set up the ANN model in
this project. The python version used in this project is Python 3.7.1. The Pandas module
is used to load the dataset, keras module is used to build the ANN model, and skopt
module is used to optimize the hyperparameters with Bayesian optimization.

Jupyter Notebook

According to Jupyter website, ”The Jupyter Notebook is an open-source web application
that allows people to create and share documents that contain live code, equations, vi-
sualizations, and narrative text” (Project Jupyter, 2019). Fernando Pérez announced the
Jupyter Notebook in 2014 as a spin-off project from IPython called Project Jupyter. Uses
include data cleaning and transformation, numerical simulation, statistical modeling, data
visualization, machine learning, and much more. This software allows the user to code
in the browser and runs the code section by section. Jupyter Notebook was used as the
platform for coding the ANN model and the genetic algorithm optimizer.

FieldOpt

FieldOpt is software for field development optimization. FieldOpt is an open-source, ex-
tensible, and tailor-made programming framework (Baumann et al., 2020). Its primary

36

3.3 Reservoir Model

purpose is quick prototyping and testing of optimization strategy to solve defined field
development problems. FieldOpt is written in C++ and presents an efficient integration
of reservoir simulation with mathematical optimization procedures. This software can be
used to optimize well control, well completion design, and well placement parameters.
Currently, there are five optimization algorithms implemented in FieldOpt: asynchronous
parallel pattern search (Kolda, 2005), compass search (Kolda et al., 2003), efficient global
optimization (Jones et al., 1998), genetic algorithm (Chuang et al., 2015), and particle
swarm optimization (Nwankwor et al., 2013).

3.3 Reservoir Model

The reservoir model is a simple-hypothetical reservoir with 60 x 60 x 2 grid cells. There are
only dead-oil and water phase present in this reservoir. This reservoir has heterogeneous
porosity and permeability, ranging from 0.97% until 42.47% for the porosity and from 1
mD to 1000 mD for the permeability. There are four vertical injector wells (I1, I2, I3,
I4) and two deviated producer wells (P2 and P3). Water is injected from the injection
wells, and oil is produced from the producer wells. The reservoir is producing for 4198
days (12 years) starting from 2 August 2015 until 29 January 2027. The visualization
of the reservoir model is presented in Fig. 3.3. Fluid properties and rock properties are
summarized in Table 3.1 and Table 3.2, respectively. In addition, the inputted relative
permeability curve is also shown in Fig. 3.2.

Table 3.1: Initial reservoir fluid properties

Parameters Value Unit
Oil Density 786.50 kg/m3

Water Density 1037.84 kg/m3

Reservoir pressure 170 bara
STOOIP 5.19 MM sm3

Aquifer volume 1.04 MM sm3

Table 3.2: Reservoir rock properties

Parameters Value Unit
Average permeability 247.7 mD

Average porosity 21.53 %
Reservoir thickness 48 m

Rock compressibility 4.4 · 10−5 1/bar
Initial water saturation 0.1 -

Irreducible water saturation 0.1 -
Residual oil saturation 0.2 -

37

Chapter 3. Methodology

0.0 0.2 0.4 0.6 0.8 1.0
Sw

0.0

0.2

0.4

0.6

0.8

1.0

Kr

Kr vs. Sw

Krw
Kro

Figure 3.2: The relative permeability curve.

(a) Well configuration. (b) Permeability distribution.

(c) Initial oil saturation distribution. (d) Porosity distribution.

Figure 3.3: Visualization of the reservoir model.

38

3.4 Generating the Dataset and Data Splitting

3.4 Generating the Dataset and Data Splitting

The well control value for this reservoir simulation is well bottom-hole pressure (BHP).
As BHP’s value is set to constant for some time, the affected rates will be calculated from
the reservoir simulator. In this reservoir simulation, BHP of injector and producer wells
are input by the user, and the reservoir simulator calculates water injection rates, water
production rates, and oil production rates.

In one simulation case, BHP of injector and producer wells are varied every 2 years. The
reservoir is producing for almost 12 years, which means BHPs are changing 6 times during
the production. As there are 4 producer wells and 2 injector wells, there will be a total of
36 different values of BHP. BHP is defined by randomly choosing a pressure value within
a range of [220,280] bara for injector wells and [90,140] bara for producer wells. The
cumulative oil production, cumulative water injection, and cumulative water production
data are then generated by the simulator and used for building the dataset. One timestep,
∆t, is defined for every 4 months. As a result, one simulation case generates 47 data
points. Example of one simulation case is tabulated in Table 3.3.

Table 3.3: Example of one simulation case (Np = cumulative oil production, Wi = cumulative water
injection, Wp = cumulative water production).

Timestep BHP (bara) x 106 (sm3)
I1 I2 I3 I4 P2 P3 Np Wi Wp

1
...
8

224 270 257 241 116 97

0.30
...

1.35

0.432
...

2.49

0
...

0.12
9
...

16

259 261 240 250 124 98

1.47
...

2.16

2.81
...

5.06

0.2
...

1.18
17
...

24

234 220 270 249 118 108

2.23
...

2.64

5.36
...

7.55

1.36
...

2.83
25
...

32

226 264 277 220 101 111

2.69
...

2.97

7.87
...

10.2

3.08
...

4.88
33
...

40

273 263 274 266 112 114

3.01
...

3.21

10.6
...

13.3

5.2
...

7.56
41
...

47

230 229 231 231 147 144

3.22
...

3.29

13.6
...

14.9

7.74
...

8.94

39

Chapter 3. Methodology

The ANN model took the inputs (BHP data) to predict the outputs (cumulative oil pro-
duction, cumulative water injection, and cumulative water production). To make a good
prediction, the model needs to learn for multiple scenarios. Thus, lots of different cases
were simulated. There are 45 different cases simulated in this dataset, with 43 of them
used as the training dataset, 1 of them for the validation dataset, and 1 of them for the test
dataset. Recall section 2.2.2 for the definition of each dataset. In total, there are 2115 data
points in all dataset.

The model is expected to learn the correlation of various BHP with cumulative oil produc-
tion, cumulative water injection, and cumulative water production in the training dataset.
The model will be improved continuously based on its performance in the validation
dataset. Finally, the model will be tested in the test dataset. This dataset will dictate
whether the model can generalize to other data or not.

3.5 Building the ANN Model
This section describes the steps needed to build the ANN model.

Load the Dataset

The simulation results are tabulated in .csv file and then loaded into Jupyter Notebook.
The Pandas module is used to load the dataset.

Define the Architecture and Practical Aspects of the Neural Networks

The ANN model is built using the keras module and based on these following setup:

• Data Scaling: Min-Max normalization technique is used to scale the data.

• Activation function: The hidden layer uses ReLU activation function. The output
layer uses a linear activation function because the model will predict a real value,
which classified as a linear regression problem.

• Loss function: In this model, the MSE is used to calculate the loss function.

• Gradient descent and its optimization algorithm: Mini-batch gradient descent
with a batch size of 32 is used. For the gradient descent optimizer, Adam optimizer
is chosen.

• Overfitting prevention: Early stopping technique is used to prevent the model over-
fits to the data. A ”patience” of 20 is set in the code, which means that if the vali-
dation error is not decreasing after 20 consecutive iterations, the algorithm will stop
training. In addition, the dropout technique is also used to prevent overfitting. For
example, if a dropout value of 0.1 is chosen, then 10% of the nodes in every cell
state will be dropped out randomly.

40

3.5 Building the ANN Model

• Hyperparameters and its optimization algorithm: There are four hyperparame-
ters in this ANN model: learning rate α, number of layers, number of neurons, and
dropout.

These four hyperparameters will be optimized with Bayesian optimization to find
the best combination of hyperparameters that gives the minimum error in validation
dataset. The Bayesian optimizer will iterate until 80 evaluations. This was done
with the help of skopt module in Python. The starting point and the search range
of each hyperparameter is defined as follows:

– Learning rate α. Starting point: 0.01. Search space: Real values between
0.0001 until 0.01.

– Number of layers. Starting point: 1. Search space: Integer values between 1
until 5.

– Number of neurons. Starting point: 60. Search space: Integer values between
50 until 500.

– Dropout. Starting point: 0.1. Search space: Real values between 0.01 until
0.1.

The process of Bayesian optimization is illustrated in Fig. 3.4.

Update

Bayesian

Model

Sample the Model to

Maximize Expected

Improvement

Hyperparameters:

• Learning rate, α

• Number of layers

• Number of neurons

• Dropout

Create ANN using

Hyperparameters
Train the ANN

Evaluate Performance

of the ANN

RMSE on the Validation

Dataset

Bayesian Hyperparameters Optimization

Neural Network

Figure 3.4: The Bayesian optimization process.

41

Chapter 3. Methodology

Evaluate the Model Performance in the Test Dataset

The NRMSE (Normalized Root Mean Squared Error) metric is used to evaluate the model
performance. NRMSE is expressed mathematically as

NRMSE =

√
1
N

N∑
i=1

(yi − ŷi)
2

ȳi
· 100% , (3.1)

where y is the actual data, ŷ is the model prediction, ȳi is the actual data mean, and N
is the amount of data points. This metric shows how close is the model prediction to the
real value in percentage. The lesser the NRMSE is, the better the model performance. The
effect of each error on NRMSE is proportional to the squared error; thus, larger errors
have a disproportionately large effect on NRMSE. Consequently, NRMSE is sensitive to
outliers, which means the NRMSE should be more useful when large errors are particularly
undesirable. This metric is well-suited for this study, as large errors can be translated into
millions of dollars of NPV difference.

3.6 Buiding the Genetic Algorithm Optimization
This section describes the steps involved in building the genetic algorithm optimization.

Objective Function

The main goal of field development optimization problem is often finding a set of reservoir
parameters that represented by a vector of variable values x that yields the optimal (here:
maximum) objective function value f(x) :

arg max
x
f(x) = x . (3.2)

The objective function f(x) defined in this study is the net present value (NPV). This
function is formulated as

f(x) = NPV(x) = CNp − CWi − CWp . (3.3a)

CNp =

Nj∑
j=1

6.29 Poil (Np,j − Np,j−1)

(1 + d)j−1
, where Np,0 = 0 . (3.3b)

CWi =

Nj∑
j=1

6.29 Pwater,inj (Wi,j −Wi,j−1)

(1 + d)j−1
, where Wi,0 = 0 . (3.3c)

CWp =

Nj∑
j=1

6.29 Pwater,prod (Wp,j −Wp,j−1)

(1 + d)j−1
, where Wp,0 = 0 . (3.3d)

See List of Symbols for the explanation of the symbols. Poil, Pwater,inj, and Pwater,prod are
set constant to 50 $/bbl, 2 $/bbl, and 6 $/bbl respectively. The discount rate d is set to

42

3.6 Buiding the Genetic Algorithm Optimization

2% (quarterly). The BHPs in x are constrained to [220,280] bara for injector wells and
[90,140] bara for producer wells.

The NPV is calculated by using the prediction from the ANN model. Keeping the NPV
equation out of the ANN model is, in a way, sort of a hybrid modelling scheme. This is
attractive because it reduces the complexity of the ANN.

Population Size

Population size is the number of chromosomes in one population. In this study, different
population sizes are tested in a range of [nvars, 2 · nvars]. There are 36 variables in one
chromosome (36 values of BHP), thus making the range to [36, 72]. The population size
of 36, 48, and 72 are chosen to be tested in this study.

Selection, Crossover, and Mutation Operation

Both roulette wheel selection and elitism selection are used in the selection operation. One
chromosome with the highest fitness is carried over (elitism selection), and the remaining
chromosomes are selected with roulette wheel selection to produce the next generation.
Then, the chosen chromosomes with roulette wheel selection have a chance of doing a
crossover, and after that, have a chance of mutating. In this study, three different probabil-
ities of crossover and three different probabilities of mutation are tested: 25%, 50%, and
75% chance of doing crossover and 5%, 10%, and 15% chance of mutating.

Crossover technique used in this algorithm is by calculating the arithmetic mean of both
parent’s chromosomes. The mutation technique used in this algorithm is by adding a
random number in a range of [-30,30] in every gene. The mutation still honors the pro-
ducer constraint of [220,280] bara, and injector constraint of [90,140] bara, i.e., the lower
boundary is chosen if the new gene is below, the lower boundary and the upper boundary
is selected if the new gene is over the upper boundary.

Termination Operation

This generational process will be repeated until the maximum number of generations
reached. There is no maximum NPV criteria to be met and no maximum allocated time.
However, maximum NPV reached and elapsed time will be taken into consideration when
choosing the best genetic algorithm setup.

43

Chapter 3. Methodology

44

Chapter 4
Results and Discussion

This chapter presents the results of building the ANN model and genetic algorithm opti-
mization. Those results are also analyzed and discussed in this chapter.

4.1 The ANN Model
A specific ANN model was developed to predict a specific output. There were three out-
puts that this model intended to predict, which were cumulative oil production (Np), cu-
mulative water injection (Wi), and cumulative water production (Wp). In total, there were
three different ANN models developed.

4.1.1 The Cumulative Oil Production Prediction Model
The convergence plot in Fig. 4.1 shows that the surrogate function already reached its
minimum value for 80 evaluations at the twelfth evaluation. It seems that the maximum
evaluation needed can be reduced to save more time. However, this fast convergence may
only be applied to this model. Therefore, the maximum evaluation of 80 will still be used
for the next prediction model. Table 4.1 shows the combination of hyperparameters that
minimize the validation loss after 80 evaluations of Bayesian optimization.

Table 4.1: Optimum hyperparameters configuration for Np model.

Hyperparameters Optimum Value
Learning rate α 0.0001

Number of layers 5
Number of neurons 477

Dropout 0.01

As seen from Table 4.1, a high number of layers, number of neurons, and low dropout

45

Chapter 4. Results and Discussion

0 10 20 30 40 50 60 70 80
Number of calls n

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

m
in

f(x
) a

fte
r n

 c
al

ls

Convergence plot

Figure 4.1: The convergence plot of the surrogate function in Bayesian optimization for cumulative
oil production prediction model.

were needed to minimize the validation error. The validation NRMSE of this model is
0.56%. The addition of hidden layers and neurons increase the model complexity, and low
dropout kept the complexity high. Low validation error means that there is only a small
difference between the actual data and the predicted data; hence the model can generalize
to data that it never learns. So, this ANN model is a complex model that able to predict
data it never learns satisfactorily. However, this claim has to be proven in the test dataset.
The model’s prediction in the test dataset is shown in Fig. 4.2.

0 10 20 30 40
Timestep

0.5

1.0

1.5

2.0

2.5

3.0

Np
 (s

m
3)

1e6 Model vs Data Comparison

Data
Model

Figure 4.2: The comparison of Np prediction and actual Np in test dataset.

46

4.1 The ANN Model

It can be seen visually from Fig. 4.2 that the model’s prediction is very close to the
actual data. Quantitatively, this model has an NRMSE of 1.35%, which means that this
model’s prediction is very close to the actual value. The value of NRMSE in the test dataset
corresponds well with the value of NRMSE in the validation dataset. Small NRMSE in
the validation dataset translates to small NMRSE in the test dataset. In conclusion, this
model can accurately predict the cumulative oil production.

4.1.2 The Cumulative Water Injection Prediction
The convergence plot in Fig. 4.3 shows that the surrogate function already reached its
minimum value for 80 evaluations at the seventeenth evaluation. For the second time, the
optimization converges faster than expected. The maximum evaluation of 80 seems exces-
sive for this model. But again, this fast convergence may not be applied to another model.
Thus, the maximum evaluation of 80 will still be used for the next prediction model. The
optimum combination of hyperparameters in this model is summarized in Table 4.2.

0 10 20 30 40 50 60 70 80
Number of calls n

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

m
in

f(x
) a

fte
r n

 c
al

ls

Convergence plot

Figure 4.3: The convergence plot of the surrogate function in Bayesian optimization for cumulative
water injection prediction model.

Table 4.2: Optimum hyperparameters configuration for Wi model.

Hyperparameters Optimum Value
Learning rate α 0.009

Number of layers 5
Number of neurons 85

Dropout 0.01

Table 4.2 shows that the model to predict Wi has similar hyperparameters with the model
to predict Np except the number of neurons. The Wi prediction model has a smaller

47

Chapter 4. Results and Discussion

number of neurons than the Np prediction model. This could mean that it is relatively
easier to predict Wi; thus, the model needs a lesser amount of neurons. This model yields
an NRMSE of 4.03% in the validation dataset. Fig. 4.4 shows the model’s prediction in
the test dataset.

0 10 20 30 40
Timestep

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

W
i (

sm
3)

1e7 Model vs Data Comparison

Data
Model

Figure 4.4: The comparison of Wi prediction and actual Wi in the test dataset.

Fig. 4.4 shows some mismatches between the data and the model. This model is not
as good as the Np prediction model. However, this model yields an NRMSE of 5.68%,
which is still a low error. Thus, this model is also deemed fit to predict the cumulative
water injection.

4.1.3 The Cumulative Water Production Prediction

Here, the convergence plot in Fig. 4.5 shows that the surrogate function already reached
its minimum value for 80 evaluations at the nineteenth evaluation. For the third time, the
optimization converges before 20 evaluations. Based on these three models, it can be con-
cluded that 20 evaluations are enough to get an optimum combination of hyperparameters.
This finding can be used for future consideration for choosing the maximum evaluation.
Table 4.3 shows the optimum hyperparameters combination from Bayesian optimization.

It can be inferred from Table 4.3 that this model has 4 hidden layers and 384 neurons. This
means that this model is less complex than theNp prediction model but more complex than
the Wi prediction model. This model’s NRMSE in the validation dataset is 8.19%, which
is higher than the Np and Wi prediction model. High NRMSE in the validation dataset
would generally mean high NRMSE in the test dataset. Fig. 4.6 shows the comparison
between the Wp prediction model and the actual Wp in the test dataset.

48

4.1 The ANN Model

0 10 20 30 40 50 60 70 80
Number of calls n

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

m
in

f(x
) a

fte
r n

 c
al

ls

Convergence plot

Figure 4.5: The convergence plot of the surrogate function in Bayesian optimization for cumulative
water production prediction model.

Table 4.3: Optimum hyperparameters configuration for Wp prediction model.

Hyperparameters Optimum Value
Learning rate α 0.003

Number of layers 4
Number of neurons 384

Dropout 0.01

0 10 20 30 40
Timestep

0

2

4

6

8

W
p

(s
m

3)

1e6 Model vs Data Comparison

Data
Model

Figure 4.6: The comparison of Wp prediction and actual Wp in the test dataset.

49

Chapter 4. Results and Discussion

It can be seen from Fig. 4.6 that this model performs worse than the Np and Wi prediction
model. The model predicts very well most of the time but suffers in timestep 20 until 34.
This might be because the BHP variation in this range of timestep differs greatly from the
BHPs in the training dataset; thus, the model did not learn/know what the right outcome
is. The NRMSE for this model in the test dataset is 9.63%, which is also higher than
the NRMSE of Np and Wi prediction model in the test dataset. However, the NRMSE
tolerance for this study is 10%, hence this model is used to predict the cumulative water
production.

4.1.4 NPV Difference Between Model Prediction and Actual Data
To find the accuracy of those three model combined, one could calculate the NPV from
the model prediction and then compare them to the NPV from the actual data using Eq.
(3.3). The results are

• actual data’s NPV: 5.057 x 108 USD;

• model prediction’s NPV: 4.962 x 108 USD.

The NRMSE between the two NPVs is

NRMSE =

√
1
1

1∑
i=1

(5.057 · 108 − 4.962 · 108)
2

(5.057·108−4.962·108)
2

· 100% = 1.89% .

This small difference gives a strong confidence in the model’s prediction.

4.2 The Genetic Algorithm Optimization
The ANN model was applied in the genetic algorithm optimization to predict the Np,
Wi, and Wp instead of using the reservoir simulator. Before doing the optimization, the
base case was set, and several sensitivity studies were performed to find the optimum
configuration for the genetic algorithm optimization.

4.2.1 The Base Case
In the base case, BHP was picked randomly within a range of [220,280] bara for producer
wells and [90,140] bara for injector wells (see Table 4.4) because there was no available
information about the possible optimal solution. The base case was also used as the initial
population for the optimization run. The base case NPV was then calculated using Eq.
(3.3), resulting in an NPV of 5.118 x 108 USD.

4.2.2 Population Size
The population size of 36, 48, and 72 were tested to determine which population size is
cost-efficient for the optimization run. Generally, increasing the population size will in-
crease the chance of getting a better solution in the next generation. However, this will

50

4.2 The Genetic Algorithm Optimization

Table 4.4: The base case (Np = cumulative oil production, Wi = cumulative water injection, Wp =
cumulative water production).

Timestep BHP (bara) x 106 (sm3)
I1 I2 I3 I4 P2 P3 Np Wi Wp

1
...
8

258 220 222 224 113 140

0.27
...

1.18

0.39
...

2.32

0
...

0.27
9
...

16

241 244 255 241 90 103

1.32
...

2.06

2.66
...

5.12

0.38
...

1.46
17
...

24

251 273 235 280 133 135

2.13
...

2.56

5.46
...

7.73

1.62
...

3.09
25
...

32

241 280 240 280 125 142

2.61
...

2.90

8.05
...

10.4

3.33
...

5.12
33
...

40

257 266 266 237 130 145

2.93
...

3.12

10.7
...

12.8

5.36
...

7.2
41
...

47

249 271 254 263 101 142

3.14
...

3.28

13.2
...

15.5

7.54
...

9.6

also increase its computational time. Hence, the optimization results and the elapsed time
of each population size were recorded.

The base case was used as the initial population. Then, each case was running until 200
generations. The crossover probability and mutation probability are set to 50% and 15%,
respectively. Finally, because GA is a stochastic searching approach, there were five opti-
mization runs performed and the mean of these runs was reported.

For the three population sizes, Fig. 4.7 shows one of the optimization runs and Table 4.5
summarizes the average elapsed time and the average maximum NPV achieved.

Table 4.5: The average maximum NPV and elapsed time for every population size.

Population Size Average Maximum NPV Average Elapsed Time
36 6.064 x 108 USD 36 minutes and 46 seconds
48 6.072 x 108 USD 1 hours 3 minutes and 18 seconds
72 6.312 x 108 USD 2 hours 17 minutes and 19 seconds

51

Chapter 4. Results and Discussion

0 25 50 75 100 125 150 175 200
Generation

5.2

5.4

5.6

5.8

6.0

6.2

NP
V

($
)

1e8 NPV with Various Population Size

Population Size = 36
Population Size = 48
Population Size = 72

Figure 4.7: One of the optimization runs with different population sizes.

From Fig. 4.7, it can be noticed that population size of 72 yields a better NPV at the very
first generation. This is the benefit of having a large population size, which will increase
the likelihood of getting a better solution. However, in the end, the percentage increase
of maximum NPV from population size of 36 to 72 is only 4% (from 6.064 x 108 USD
to 6.312 x 108 USD), certainly not enough to outweigh its 273% increase of elapsed time
(from 36 minutes and 46 seconds to 2 hours 17 minutes and 19 seconds). This is also the
case for comparison between population size of 36 and 48, with an increase of only 0.13%
in NPV (from 6.064 x 108 USD to 6.072 x 108 USD) but a 72% increase of elapsed time
(from 36 minutes and 46 seconds to 1 hours 3 minutes and 18 seconds).

The BHP solutions of the optimization run were also similar. It seems that optimizations
are converging to the same solution. Therefore, by assessing the NPV, elapsed time, and
the BHP solution, the most cost-efficient population size is 36.

4.2.3 Crossover and Mutation Probability

To determine the efficient configuration of crossover and mutation probability, various
configurations were tested. Crossover probability of 25%, 50%, 75% and mutation prob-
ability of 5%, 10%, 15% were tested, a total of 9 possible combination of crossover and
mutation probability. Each case was running with the same initial population and the same
maximum generation (200), just different crossover and mutation probability. Five opti-
mization runs were performed for each case and the mean of these runs were reported. One
of the optimization runs is shown in Fig. 4.8 and Table 4.6 tabulates the average maximum
NPV achieved ranked from highest to lowest.

52

4.2 The Genetic Algorithm Optimization

0 25 50 75 100 125 150 175 200
Generation

5.2

5.4

5.6

5.8

6.0

NP
V

($
)

1e8 NPV with Various Crossover and Mutation Probability

C 25 M 5
C 25 M 10
C 25 M 15
C 50 M 5
C 50 M 10

C 50 M 15
C 75 M 5
C 75 M 10
C 75 M 15

Figure 4.8: One of the optimization runs with various crossover and mutation probability (C for
crossover probability and M for mutation probability).

Table 4.6: The average maximum NPV for every crossover and mutation probability ranked from
highest to lowest.

Crossover
Probability (%)

Mutation
Probability (%)

Avg. Max. NPV
x 108 (USD)

25 15 6.245
50 10 6.132
75 15 6.099
25 10 6.064
50 15 6.053
75 10 6.045
75 5 5.965
25 5 5.611
50 5 5.558

The elapsed time of every configuration is similar, about 36 minutes. This is because of
the same population size in every case. The BHP solutions are also similar, indicating that
they are converging to the same solution. From Table 4.6, it can be seen that generally
lower mutation probability performs worse than higher mutation probability. However,
it might not be the case for even higher mutation probability (>20%), because it can be
destructive to the whole population, just like in nature. An optimum chance is needed in
mutation, not too low to cause uniformity in the population, but not too high to disrupt the
population.

53

Chapter 4. Results and Discussion

By contrast, lower crossover probability generally performs better than higher crossover
probability. Again, high crossover probability may introduce too many new variables into
the population, which may divert the search to a longer or worse direction. A crossover
probability and mutation probability of 25% and 15% seem to be the ”sweet spot” for this
optimization run.

4.2.4 The Best Case

After deciding upon the best optimization configuration, which was the population size
of 36, crossover probability of 25%, and mutation probability of 15%, the optimization
was run until 3000 generations to find the maximum NPV. Only one optimization run was
performed instead of the usual five because the time needed to run 5 x 3000 generations
would be very long. Besides, the goal is to find the maximum NPV, which more likely
to be achieved by increasing the maximum generation, not by doing the same simulation
over again. Fig. 4.9 depicts the objective function development over 3000 generations.

0 500 1000 1500 2000 2500 3000
Generation

5.2

5.4

5.6

5.8

6.0

6.2

6.4

NP
V

($
)

1e8 Best NPV

Best NPV

Figure 4.9: The optimization run with a population size of 36, crossover probability of 25%, muta-
tion probability of 15%, and 3000 maximum generation.

The time elapsed to run this optimization was 9 hours 30 minutes and 31 seconds. Fig.
4.9 shows that approximately after 500 generations, producing more generations only
gives a little addition to the NPV, as the law of diminishing returns comes into play. The
optimization stops finding a better solution after 1658 generations. One would probably
only need 500 generations to produce satisfactory results. Nevertheless, after 3000 gener-
ations, the maximum NPV achieved from model prediction is 6.411 x 108 USD.

54

4.2 The Genetic Algorithm Optimization

However, this result should be confirmed in the reservoir simulation. The BHPs configura-
tion that yields the maximum NPV was simulated and the results are tabulated in Table 4.7.

Table 4.7: The best case (Np = cumulative oil production, Wi = cumulative water injection, Wp =
cumulative water production).

Timestep BHP (bara) x 106 (sm3)
I1 I2 I3 I4 P2 P3 Np Wi Wp

1
...
8

220.0 280.0 279.6 223.2 140.0 140.0

0.19
...

1.00

0.33
...

1.84

0
...

0.02
9
...

16

220.0 279.4 279.9 220.0 140.0 140.0

1.11
...

1.76

2.05
...

3.56

0.03
...

0.37
17
...

24

220.0 280.0 279.9 220.0 140.0 140.0

1.84
...

2.29

3.78
...

5.33

0.45
...

1.18
25
...

32

220.0 280.0 279.4 220.0 140.0 140.0

2.34
...

2.68

5.56
...

7.16

1.31
...

2.31
33
...

40

220.0 279.9 259.6 220.0 140.0 140.0

2.72
...

2.95

7.38
...

8.96

2.46
...

3.63
41
...

47

220.0 220.0 220.1 220.0 140.0 139.9

2.97
...

3.09

9.16
...

10.4

3.79
...

4.8

The BHPs in Table. 4.7 are at the bounds for most wells. It seems that all producers are
operating at the maximum allowed BHP to minimize the water production and avoid early
water breakthrough. It means that higher water production will severely impact the NPV.
Then, for most of the time, injector I2 and I3 inject water at the maximum allowed BHP
while injector I1 and I4 inject water at the minimum allowed BHP. This phenomenon may
be explained by the location of the injector (see Fig. 3.3). I2 and I3 are relatively far-
ther to the producers than I1 and I4, thus can inject more water to push more oil into the
producers while also avoid early water breakthrough. The permeability near I2 and I3 is
also lower than I1 and I4, so it needs to pump more water to sweep the oil and reach the
producers. At the final stage of the production, all injector’s BHPs are at the minimum
allowed BHP. This might suggest that lots of oil are already swept and produced near the
end of production, thus eliminating the need for injecting more water into the reservoir.

The Np, Wi, and Wp data in Table 4.7 were then used to calculate the NPV, resulting in an

55

Chapter 4. Results and Discussion

NPV of 6.255 x 108 USD, or a 0.156 x 108 USD difference from the model prediction’s
NPV. The NRMSE between the model prediction’s NPV and actual data’s NPV is only
2.46%, which is a small error. This error is not far from the error in test dataset (1.89%),
indicating that a small error in test dataset may correspond well with other multiple pre-
dictions in the optimization run.

The optimum NPV of 6.255 x 108 USD is a 22.2% increase from the base case’s NPV,
or a 1.137 x 108 USD increase in absolute value. This NPV increase proves the genetic
algorithm’s ability as a useful optimization algorithm for field development optimization
problems. This NPV increase was also helped by a reliable ANN model to evaluate the
objective function.

After comparing the NPV results, one could also compare the elapsed time. Here, Fiel-
dOpt software was used as a benchmark for this study. FieldOpt is a software capable
of optimizing the well control values using a genetic algorithm but using the reservoir
simulator for every model evaluation.

FieldOpt Optimization Run

For a fair comparison, the same optimization configuration was used in the FieldOpt op-
timization run (population size: 36, crossover probability: 25%, mutation probability:
15%). However, the maximum generation was only set to 500, as significantly longer run-
ning time was expected.

The time elapsed for the FieldOpt optimization run was 1 day 20 hours and 48 minutes
for a maximum generation of 500. On the other hand, an ANN-GA optimization run only
took 1 hour 35 minutes for a maximum generation of 500. It’s about 43 hours difference
or 96% decrease in running time. The significantly longer running time is because one
reservoir simulation run is needed to make every population in a generation. One sim-
ulation run would need about 7 seconds to complete. For a population size of 36 and a
maximum generation of 500, FieldOpt would need 36 x 500 x 7 seconds = 126.000 sec-
onds or 35 hours just for the objective function evaluation. It is not the case if the ANN
model is used. One model prediction only needs about 0.12 seconds to complete. Thus, for
a 36 x 500 = 18.000 evaluations, the model only needs about 2160 seconds or 36 minutes
for the objective function evaluation.

The FieldOpt optimization run achieved a maximum NPV of 6.255 x 108 USD with the
same solution (BHPs) as the ANN-GA optimization run, hence also the same NPV. Here,
FieldOpt was able to achieve the same result as the ANN-GA model with a lesser max-
imum generation. It might be caused by the diminishing returns seen in the ANN-GA
optimization run after 500 generations, which means later generations after the 500th gen-
eration didn’t find a meaningfully better solution. Another reason is that FieldOpt tied
directly to the reservoir simulator, which didn’t introduce any error in NPV calculation as
the model predictions did. However, given the same results achieved in significantly faster
running time, this ANN-GA model seems to be an attractive method for field development
optimization problems.

56

4.3 Sensitivity Analysis

4.3 Sensitivity Analysis
The best case that yields an NPV of 6.255 x 108 USD was calculated using Eq. (3.3) with
oil price, water injection cost, water production/treatment cost, and the discount rate are
set constant to 50 $/bbl, 2 $/bbl, 6 $/bbl, and 2% (quarterly) respectively. A sensitivity
analysis was performed to study the influence of those four components mentioned earlier.
The sensitivity analysis was conducted by increasing and decreasing the component values
by 20%. It is realistic to assume actual components will vary between these values. Fig.
4.10 shows the spider plot and tornado chart to visualize the sensitivity results.

20 15 10 5 0 5 10 15 20
Change (%)

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

NP
V

($
)

1e8

Oil Price
Water Inj.

Water Prod.
Disc. Rate

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

NPV ($) 1e8

Oil Price

Water Inj.

Water Prod.

Disc. Rate

Decrease in value
Increase in value

NPV Sensitivity

Figure 4.10: NPV sensitivity study for the oil price, water injection price, water production price,
and discount rate.

As seen in Fig. 4.10, oil price changes are the most dominant factor in NPV changes.
NPV will increase substantially with a 20% increase in oil price and vice versa. Oil price
is also the only component that is proportional to the NPV, i.e., an increase in oil price
will increase the NPV, vice versa. The other three components are inversely proportional
to the NPV. These relationships are plausible because an increase in oil price will in-
crease the revenue, thus increase the NPV, and an increase in cost will decrease the profit,
thus decrease the NPV. Moreover, the least dominant factor in NPV changes is the dis-
count rate. The lower discount rate will appreciate the present value and vice versa, albeit
rather marginally. In conclusion, changes in oil prices will substantially change NPV, and
changes in the discount rate will marginally change NPV.

57

Chapter 4. Results and Discussion

4.4 Limitations
Even though this proposed model of ANN-GA combination seems promising, there are
some limitations to keep in mind for both the ANN model and GA optimization.

Limitations of the ANN Model

• The model is only trained for a specific reservoir condition. If a change is introduced
to the reservoir, e.g., the addition of a new well, different well placement, different
fluid properties, adding an EOR, etc., the model should be trained all over again,
rendering the previous model useless.

• Generating the dataset take some preparations and time. One simulation case only
took about 7 seconds in this simple reservoir model. Therefore, it was relatively
quick to make a dataset containing tens of simulation results. However, it might
take hours or days for a field with hundreds of thousands or millions of grids to
generate the dataset.

• Training the model may also take some considerable computational power and time.
In this simple reservoir model, it only took about 30 minutes to train one ANN
model. Again, it might take hours or days for a field with hundreds of thousands or
millions of grids to train. Fortunately, this model only needs to be trained once if it
already considered good enough.

• Currently, a reservoir simulation model is the closest thing one could make to esti-
mate the real reservoir behavior. A reservoir simulation result may not reflect in the
real field application. Consequently, an ANN model that built upon an inaccurate
reservoir model would also produce inaccurate results.

Limitations of the Genetic Algorithm

• Finding an optimal solution to complex, high-dimensional, multimodal problems
often requires a very costly fitness function evaluations. For instance, a structural
optimization problem may require several hours or several days for one function
evaluation. In this case, it may be a wiser decision to forgo the exact evaluation and
use approximated fitness instead.

• GA, in many problems, actually appears to converge towards local optima or even
arbitrary points rather than the global optimum of the problem. As the drawback of
not using a gradient to direct its search, GA does not ”know how” to sacrifice short-
term fitness for longer-term fitness. This problem may be mitigated by increasing
the rate of mutation, using a different fitness function, or using a selection technique
that ensures diversity in the population. This problem also proves the No Free Lunch
theorem (Wolpert and Macready, 1997) which states that no model that works best
for every problem.

• In any problem, the stop criterion is not clear, since the ”better” solution is only in
comparison to other solutions.

58

Chapter 5
Conclusion and Recommendation

5.1 Conclusion
1. The developed ANN model was proven able to reliably predict cumulative oil pro-

duction, cumulative water injection, and cumulative water production based on sets
of well control values with an NRMSE between the model prediction’s NPV and
actual data’s NPV of 1.89% in the test dataset.

2. The most cost-efficient population size is 36. The highest average maximum NPV
was achieved with crossover probability of 25%, and mutation probability of 15%.

3. The genetic algorithm optimization was run for 3000 generations for 9 hours 30
minutes and 31 seconds but achieved convergence after 1658 generations. It found
successfully well control values that increase the value of NPV compared to the base
case.

4. The BHPs configuration that yields the maximum NPV was simulated and resulting
in an NPV of 6.255 x 108 USD, a 0.156 x 108 USD difference from the model
prediction’s NPV, or an NRMSE of 2.46%.

5. The optimum NPV of 6.255 x 108 USD is a 22.2% increase from the base case NPV
of 5.118 x 108 USD, or a 1.137 x 108 USD increase in absolute value.

6. The FieldOpt optimization was run until 500 generations for 1 day 20 hours and 48
minutes, compared to the ANN-GA run, which took only 1 hour and 35 minutes
for the same maximum generation. The ANN-GA run was 43 hours faster than the
FieldOpt run, or 96% decrease in running time.

7. The ANN-GA optimization run and the FieldOpt run achieved the same maximum
NPV of 6.255 x 108 USD with the same BHPs.

8. The sensitivity analysis revealed that oil prices are the most influential factor in NPV
changes, and the discount rates are the least influential factor in NPV changes.

59

Chapter 5. Conclusion and Recommendation

9. Even though the ANN-GA model seems promising, there are some limitations to be
remembered for both the ANN model and GA optimization.

5.2 Recommendation
1. Given the time constraint for this thesis, this proposed ANN-GA model was only

tested in a simple synthetic reservoir model. One can try to test the ANN-GA model
in a bigger and more complex reservoir model to test its applicability in the oil and
gas industry.

2. Given the limitations of the genetic algorithm, one may also try other optimization
algorithms such as particle swarm optimization and compass search to see if there
are any advantages than using a genetic algorithm.

3. In this thesis, the ANN-GA model is built in the python programming language,
while the FieldOpt software is built in the C++ programming language. One may
try to build both the ANN-GA model and FieldOpt in the same programming lan-
guage or build a compatible code in both languages. It can ease collaboration if
there are further advancements in the machine learning model and the optimization
techniques.

60

Bibliography

Aziz, K., Settari, A., 1979. Petroleum reservoir simulation. Applied Science Publishers.
URL: https://books.google.no/books?id=GJ5TAAAAMAAJ.

Baumann, E.J., Dale, S.I., Bellout, M.C., 2020. FieldOpt: A powerful
and effective programming framework tailored for field development op-
timization. Computers & Geosciences 135, 104379. URL: https:
//linkinghub.elsevier.com/retrieve/pii/S0098300419301013,
doi:10.1016/j.cageo.2019.104379.

Berg, C.F., 2019. Lecture Notes Reservoir Simulation. NTNU.

Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B., 2011. Algorithms for hyper-parameter op-
timization, in: Proceedings of the 24th International Conference on Neural Information
Processing Systems, Curran Associates Inc., Red Hook, NY, USA. p. 2546–2554.

Bergstra, J., Bengio, Y., 2012. Random search for hyper-parameter optimization. Journal
of Machine Learning Research 13, 281–305.

Chauhan, N.S., 2019. Introduction to Artificial Neural Networks (ANN). Towards Data
Science.

Chuang, Y.C., Chen, C.T., Hwang, C., 2015. A real-coded genetic algo-
rithm with a direction-based crossover operator. Information Sciences 305,
320–348. URL: https://linkinghub.elsevier.com/retrieve/pii/
S002002551500064X, doi:10.1016/j.ins.2015.01.026.

Claesen, M., Moor, B.D., 2015. Hyperparameter search in machine learn-
ing. CoRR abs/1502.02127. URL: http://arxiv.org/abs/1502.02127,
arXiv:1502.02127.

Deb, K., Beyer, H.G., 2001. Self-Adaptive Genetic Algorithms with Simulated Bi-
nary Crossover. Evolutionary Computation 9, 197–221. URL: http://www.
mitpressjournals.org/doi/10.1162/106365601750190406, doi:10.
1162/106365601750190406.

61

https://books.google.no/books?id=GJ5TAAAAMAAJ
https://linkinghub.elsevier.com/retrieve/pii/S0098300419301013
https://linkinghub.elsevier.com/retrieve/pii/S0098300419301013
http://dx.doi.org/10.1016/j.cageo.2019.104379
https://linkinghub.elsevier.com/retrieve/pii/S002002551500064X
https://linkinghub.elsevier.com/retrieve/pii/S002002551500064X
http://dx.doi.org/10.1016/j.ins.2015.01.026
http://arxiv.org/abs/1502.02127
http://arxiv.org/abs/1502.02127
http://www.mitpressjournals.org/doi/10.1162/106365601750190406
http://www.mitpressjournals.org/doi/10.1162/106365601750190406
http://dx.doi.org/10.1162/106365601750190406
http://dx.doi.org/10.1162/106365601750190406

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press. http:
//www.deeplearningbook.org.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S., 2017. Gans trained
by a two time-scale update rule converge to a local nash equilibrium., in: Guyon, I., von
Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R.
(Eds.), NIPS, pp. 6626–6637. URL: http://dblp.uni-trier.de/db/conf/
nips/nips2017.html#HeuselRUNH17.

Hey, A.J.G. (Ed.), 2009. The fourth paradigm: data-intensive scientific discovery. Mi-
crosoft Research, Redmond, Washington.

Holland, J.H., 1975. Adaptation in natural and artificial systems: an introductory analysis
with applications to biology, control, and artificial intelligence. University of Michigan
Press, Ann Arbor.

Holmes, J.A., 1983. Enhancements to the strongly coupled, fully implicit well model:
wellbore crossflow modeling and collective well control. Soc. Pet. Eng. AIME, Pap.;
(United States) SPE 11259.

Jones, D.R., Schonlau, M., Welch, W.J., 1998. Efficient global optimization
of expensive black-box functions. Journal of Global Optimization 13, 455–
492. URL: http://link.springer.com/10.1023/A:1008306431147,
doi:10.1023/A:1008306431147.

Khan, M.I., Islam, M., 2007. Chapter 6 - reservoir engineering and sec-
ondary recovery, in: Khan, M.I., Islam, M. (Eds.), The Petroleum Engineer-
ing Handbook: Sustainable Operations. Gulf Publishing Company, pp. 189 –
241. URL: http://www.sciencedirect.com/science/article/
pii/B9781933762128500131, doi:https://doi.org/10.1016/
B978-1-933762-12-8.50013-1.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. URL: http:
//arxiv.org/abs/1412.6980. cite arxiv:1412.6980Comment: Published as a
conference paper at the 3rd International Conference for Learning Representations, San
Diego, 2015.

Kolda, T.G., 2005. Revisiting Asynchronous Parallel Pattern Search for Nonlinear Op-
timization. SIAM Journal on Optimization 16, 563–586. URL: http://epubs.
siam.org/doi/10.1137/040603589, doi:10.1137/040603589.

Kolda, T.G., Lewis, R.M., Torczon, V., 2003. Optimization by Direct Search: New
Perspectives on Some Classical and Modern Methods. SIAM Review 45, 385–
482. URL: http://epubs.siam.org/doi/10.1137/S003614450242889,
doi:10.1137/S003614450242889.

Mitchell, T.M., 1997. Machine Learning. McGraw-Hill series in computer science,
McGraw-Hill, New York.

62

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dblp.uni-trier.de/db/conf/nips/nips2017.html#HeuselRUNH17
http://dblp.uni-trier.de/db/conf/nips/nips2017.html#HeuselRUNH17
http://link.springer.com/10.1023/A:1008306431147
http://dx.doi.org/10.1023/A:1008306431147
http://www.sciencedirect.com/science/article/pii/B9781933762128500131
http://www.sciencedirect.com/science/article/pii/B9781933762128500131
http://dx.doi.org/https://doi.org/10.1016/B978-1-933762-12-8.50013-1
http://dx.doi.org/https://doi.org/10.1016/B978-1-933762-12-8.50013-1
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://epubs.siam.org/doi/10.1137/040603589
http://epubs.siam.org/doi/10.1137/040603589
http://dx.doi.org/10.1137/040603589
http://epubs.siam.org/doi/10.1137/S003614450242889
http://dx.doi.org/10.1137/S003614450242889

Mockus, J., 2009. Bayesian global optimization., in: Floudas, C.A., Pardalos, P.M.
(Eds.), Encyclopedia of Optimization. Springer, pp. 183–187. URL: http://dblp.
uni-trier.de/db/reference/opt/opt2009.html#Mockus09.

Mohaghegh, S.D., 2011. Reservoir simulation and modeling based on artificial intelli-
gence and data mining (AI&DM). Journal of Natural Gas Science and Engineering
3, 697–705. URL: https://linkinghub.elsevier.com/retrieve/pii/
S1875510011001090, doi:10.1016/j.jngse.2011.08.003.

Ng, A., 2013a. The Problem of Overfitting. Coursera.

Ng, A., 2013b. RMSprop. Coursera.

Nwankwor, E., Nagar, A.K., Reid, D.C., 2013. Hybrid differential evolution and particle
swarm optimization for optimal well placement. Computational Geosciences 17, 249–
268. URL: http://link.springer.com/10.1007/s10596-012-9328-9,
doi:10.1007/s10596-012-9328-9.

Project Jupyter, 2019. Jupyter Notebook. URL: https://jupyter.org/.

Python, 2019. Python. URL: https://www.python.org/.

Qian, N., 1999. On the momentum term in gradient descent learning al-
gorithms. Neural Networks 12, 145 – 151. URL: http://www.
sciencedirect.com/science/article/pii/S0893608098001166,
doi:https://doi.org/10.1016/S0893-6080(98)00116-6.

Rasmussen, A.F., Sandve, T.H., Bao, K., Lauser, A., Hove, J., Skaflestad,
B., Klöfkorn, R., Blatt, M., Rustad, A.B., Sævareid, O., Lie, K.A., Thune,
A., 2019. The open porous media flow reservoir simulator. CoRR
abs/1910.06059. URL: http://dblp.uni-trier.de/db/journals/corr/
corr1910.html#abs-1910-06059.

Rosenblatt, F., 1958. The perceptron: A probabilistic model for informa-
tion storage and organization in the brain. Psychological Review 65, 386–
408. URL: http://doi.apa.org/getdoi.cfm?doi=10.1037/h0042519,
doi:10.1037/h0042519.

Ruder, S., 2016. An overview of gradient descent optimization algorithms. URL: http:
//arxiv.org/abs/1609.04747.

Sarma, P., Durlofsky, L., Aziz, K., 2005. Efficient closed-loop production optimization
under uncertainty. doi:10.2523/94241-MS.

Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N., 2016. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE
104, 148–175. URL: http://dblp.uni-trier.de/db/journals/pieee/
pieee104.html#ShahriariSWAF16.

63

http://dblp.uni-trier.de/db/reference/opt/opt2009.html#Mockus09
http://dblp.uni-trier.de/db/reference/opt/opt2009.html#Mockus09
https://linkinghub.elsevier.com/retrieve/pii/S1875510011001090
https://linkinghub.elsevier.com/retrieve/pii/S1875510011001090
http://dx.doi.org/10.1016/j.jngse.2011.08.003
http://link.springer.com/10.1007/s10596-012-9328-9
http://dx.doi.org/10.1007/s10596-012-9328-9
https://jupyter.org/
https://www.python.org/
http://www.sciencedirect.com/science/article/pii/S0893608098001166
http://www.sciencedirect.com/science/article/pii/S0893608098001166
http://dx.doi.org/https://doi.org/10.1016/S0893-6080(98)00116-6
http://dblp.uni-trier.de/db/journals/corr/corr1910.html#abs-1910-06059
http://dblp.uni-trier.de/db/journals/corr/corr1910.html#abs-1910-06059
http://doi.apa.org/getdoi.cfm?doi=10.1037/h0042519
http://dx.doi.org/10.1037/h0042519
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://dx.doi.org/10.2523/94241-MS
http://dblp.uni-trier.de/db/journals/pieee/pieee104.html#ShahriariSWAF16
http://dblp.uni-trier.de/db/journals/pieee/pieee104.html#ShahriariSWAF16

Snoek, J., Larochelle, H., Adams, R.P., 2012. Practical bayesian optimization of machine
learning algorithms., in: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Wein-
berger, K.Q. (Eds.), NIPS, pp. 2960–2968. URL: http://dblp.uni-trier.de/
db/conf/nips/nips2012.html#SnoekLA12.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Ma-
chine Learning Research 15, 1929–1958. URL: http://jmlr.org/papers/
v15/srivastava14a.html.

Sutton, R.S., 1986. Two problems with backpropagation and other steepest-descent learn-
ing procedures for networks, in: Proceedings of the Eighth Annual Conference of the
Cognitive Science Society, Hillsdale, NJ: Erlbaum.

Takahashi, M., Kita, H., 2001. A crossover operator using independent component anal-
ysis for real-coded genetic algorithms, in: Proceedings of the 2001 Congress on Evolu-
tionary Computation (IEEE Cat. No.01TH8546), pp. 643–649 vol. 1.

Wolpert, D., Macready, W., 1997. No free lunch theorems for optimization. IEEE Transac-
tions on Evolutionary Computation 1, 67–82. URL: http://ieeexplore.ieee.
org/document/585893/, doi:10.1109/4235.585893.

64

http://dblp.uni-trier.de/db/conf/nips/nips2012.html#SnoekLA12
http://dblp.uni-trier.de/db/conf/nips/nips2012.html#SnoekLA12
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://ieeexplore.ieee.org/document/585893/
http://ieeexplore.ieee.org/document/585893/
http://dx.doi.org/10.1109/4235.585893

List of Symbols

Symbols definitions for the continuous equations

λα mobility of phase α defined as λα = kr,α/µα.

µα viscosity of phase α.

φ porosity defined as the ratio of pore volume to bulk volume.

φref reference porosity, varying in space but constant in time

ρα density of phase α at the reservoir condition. For water phase, ρw = bwρS,w.
For oil phase, ρo = bo(ρS,o + rgoρS,g . For gas phase, ρg = bg(ρS,g + rogρS,o).

ρS,α surface density of phase α at 1 atm.

g gravitational acceleration vector.

uα component velocity of component α.

vα phase velocity of phase α.

bα shrinkage/expansion factor for phase α defined as the ratio of surface volume at
standard conditions to reservoir volume: bα = Vsurface,α/Vreservoir,α.

kr,α relative permeability for phase α.

mφ pore volume multiplier as function of pressure

pα phase pressure for phase α

pc,αβ capillary pressure between phases α and β.

qα well outflux density of pseudo component α.

rgo ratio of dissolved gas to oil in the oleic phase. Usually called rS in other litera-
ture.

65

rog ratio of vaporized oil to gas in the gaseous phase. Usually called rV in other
literature.

sα saturation of phase α defined as the ratio of phase α volume to pore volume.
The summation of the saturation of all phases equals to 1.

K permeability of the porous media.

Symbols definitions for the discrete equations

∆t time step length for the current Euler step.

∆Φα,ij potential difference for phase α for the connection between cells i and j.

C(i) connection from cell i.

g gravitational acceleration in the z-direction.

mT transmissibility multiplier as function of pressure.

Tij transmissibility factor for a connection.

U(α, ij) upwind cell for phase α for the connection between cells i and j.

uα surface volume flux of pseudo component α.

V cell volume.

vα volume flux of phase α.

zi depth of center of cell i.

Symbols definitions for the well models

hw,j pressure difference within the wellbore between connection j and the well’s
bottom-hole datum depth.

pj pressure of the grid block that contains the connection j.

pbhp,w bottom-hole pressure of well w.

Tα,j mobility for phase α at the connection j.

Tw,j connection transmissibility factor.

Symbols definitions for the NPV

6.29 conversion factor from sm3 to bbl.

x vector of BHP.

CNp NPV component of oil production.

CWi NPV component of water injection.

66

CWp NPV component of water production.

d discount factor.

j timestep, one timestep equals 4 months.

Nj number of timesteps.

Np,0 cumulative oil production at timestep 0 in sm3.

Np,j−1 cumulative oil production at timestep j − 1 in sm3.

Np,j cumulative oil production at timestep j in sm3.

Pwater,inj water injection price in $/bbl.

Pwater,prod water treatment price in $/bbl.

Poil oil price in $/bbl.

Wi,0 cumulative water injection at timestep 0 in sm3.

Wi,j−1 cumulative water injection at timestep j − 1 in sm3.

Wi,j cumulative water injection at timestep j in sm3.

Wp,0 cumulative water production at timestep 0 in sm3.

Wp,j−1 cumulative water production at timestep j − 1 in sm3.

Wp,j cumulative water production at timestep j in sm3.

NPV net present value in $.

67

68

Appendix

The code for building the ANN model and the genetic algorithm

1 import pandas as pd
2 import math
3 import tensorflow as tf
4 import numpy as np
5 from sklearn.preprocessing import MinMaxScaler
6 from sklearn.metrics import mean_squared_error as mse
7 import time
8

9 #Plotting
10 import matplotlib.pyplot as plt
11

12 # Bayesian optimizer
13 import skopt
14 from skopt import gp_minimize, forest_minimize
15 from skopt.space import Real, Categorical, Integer
16 from skopt.plots import plot_convergence
17 from skopt.plots import plot_objective, plot_evaluations
18 from skopt.plots import plot_histogram, plot_objective_2D
19 from skopt.utils import use_named_args
20

21 # ANN
22 from numpy import array
23 from keras.models import Sequential
24 from keras.models import load_model
25 from keras.layers import Dense
26 from keras.layers import LeakyReLU
27 from keras import backend as K
28 from keras.callbacks import History
29 from keras import optimizers
30 from keras.layers import Dropout
31 from keras.models import load_model
32 from keras.callbacks import EarlyStopping
33 from keras.callbacks import TensorBoard
34

35 # Random seed reproducibility
36 import os
37 os.environ[’PYTHONHASHSEED’] = ’0’
38 import random as rn
39

40 # Warnings
41 import warnings
42 warnings.filterwarnings("ignore")
43

44 # load dataset

69

45 dataframe = pd.read_csv("Data.csv", sep=’;’ , header=0)
46 dataset = dataframe.values
47 # split into input (X) and output (Y) variables
48 data = pd.DataFrame(dataset, columns=["timestep", "BHPI1", "BHPI2", "BHPI3

", "BHPI4", "BHPP2", "BHPP3",
49 "FOPT", "FWIT", "FWPT"])
50 data.head()
51

52 def ANN_model(X_train, y_train, learning_rate, dropout, n_units, n_layers)
:

53 """
54 Compiles an LSTM model given hyperparameters
55

56 Returns:
57 -------
58 model: obj
59 Keras LSTM model
60 """
61 # Reset the network graphs for results reproducability in Keras
62 N = 17 #Seed number
63 np.random.seed(N)
64 rn.seed(N)
65 session_conf = tf.ConfigProto(intra_op_parallelism_threads=1,
66 inter_op_parallelism_threads=1)
67 tf.set_random_seed(N)
68 K.clear_session()
69 sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
70 K.set_session(sess)
71

72 # Define model
73 model = Sequential()
74 if n_layers == 1:
75 # Input layer
76 model.add(Dense(n_units, activation=’relu’,
77 input_dim=X_train.shape[1]))
78 else:
79 model.add(Dense(n_units, activation=’relu’,
80 input_dim=X_train.shape[1]))
81 for i in range(n_layers-1):
82 model.add(Dense(n_units, activation=’relu’))
83 # Add dropout
84 model.add(Dropout(dropout))
85 # Add dense layer
86 model.add(Dense(y_train.shape[1], activation=’linear’))
87 #model.add(LeakyReLU(alpha=0.1))
88 adam = optimizers.Adam(lr=learning_rate)
89 model.compile(optimizer=adam, loss=’mse’)
90

91 return model
92

93 def data_split(data, feature_list, target):
94 """
95 Splits data into train, validation and test sets
96 Parameters
97 ----------
98 data : Dataframe, shape = [n_points, n_features]
99 All feature data

70

100 feature_list : list
101 List of features to include into training
102 target : list
103 List of target variables to include into training
104 Returns
105 -------
106 - Train, validation and test sets, array-like
107 - Scaling functions for X and y
108 """
109 X = data[feature_list]
110 y = data[target]
111

112 #train_size = int(0.6*X.shape[0])
113 #test_size = int(0.85*X.shape[0])
114 train_size = 2021
115 test_size = 2068
116 n_target = int(len(target)) # Number of target outputs
117

118 # Splitting
119 (X_train,
120 y_train) = (np.array(X[:train_size]),
121 np.array(y[:train_size]).reshape(-1, n_target))
122 (X_val,
123 y_val) = (np.array(X[train_size : test_size]),
124 np.array(y[train_size : test_size]).reshape(-1, n_target))
125 (X_test,
126 y_test) = (np.array(X[test_size:]),
127 np.array(y[test_size:]).reshape(-1, n_target))
128 # Scaling
129 scalerX = MinMaxScaler().fit(X_train)
130 scalery = MinMaxScaler().fit(y_train)
131 X_train = scalerX.transform(X_train)
132 y_train = scalery.transform(y_train)
133 X_val = scalerX.transform(X_val)
134 y_val = scalery.transform(y_val)
135 X_test = scalerX.transform(X_test)
136 y_test = scalery.transform(y_test)
137

138 return X_train, y_train, X_val, y_val, X_test, y_test, scalerX,
scalery, train_size, test_size

139

140 [X_train, y_train, X_val,
141 y_val, X_test, y_test,
142 scalerX_fopt, scalery_fopt,
143 train_size, test_size] = data_split(data=data,
144 feature_list=["timestep", "BHPI1", "BHPI2"

, "BHPI3", "BHPI4", "BHPP2", "BHPP3"],
145 target=["FOPT"])
146

147 #default hyperparameters
148 default_parameters = [0.01, 1, 60, 0.1]
149 num_epochs = 100
150

151 dim_learning_rate = Real(low=1e-4, high=1e-2, prior=’log-uniform’, name=’
learning_rate’)

152 dim_n_layers = Integer(low=1, high=5, name=’n_layers’)
153 dim_n_units = Integer(low=50, high=500, name=’n_units’)

71

154 dim_dropout = Real(low=0.01, high=0.1, prior=’log-uniform’, name=’dropout’
)

155

156 dimensions = [dim_learning_rate, dim_n_layers, dim_n_units, dim_dropout]
157

158 path_best_model_fopt = ’best_model_fopt_v3edit_minmax.keras’
159

160 best_val_loss = 100.0
161

162 @use_named_args(dimensions=dimensions)
163 def fitness_fopt(learning_rate, n_layers, n_units, dropout):
164 """
165 Hyper-parameters:
166 learning_rate: Learning-rate for the optimizer.
167 n_layers: Number of dense layers.
168 n_units: Number of nodes in each dense layer.
169 dropout: Percentage of the nodes retained.
170 window: Number of window
171 """
172

173 # Print the hyper-parameters.
174 print(’learning rate: {0:.1e}’.format(learning_rate))
175 print(’num_dense_layers:’, n_layers)
176 print(’num_dense_nodes:’, n_units)
177 print(’dropout:’, dropout)
178

179 model = ANN_model(X_train=X_train,
180 y_train=y_train,
181 learning_rate=learning_rate,
182 dropout=dropout,
183 n_units=n_units,
184 n_layers=n_layers)
185

186 # Use Keras to train the model.
187 patience = 20
188 es = EarlyStopping(monitor=’val_loss’, mode=’min’, verbose=1, patience

=patience, restore_best_weights=True)
189 history = model.fit(X_train, y_train, verbose=1, epochs=num_epochs,
190 validation_data=(X_val, y_val), callbacks=[es])
191

192 # Get the classification accuracy on the validation-set
193 # after the last training-epoch.
194 if es.stopped_epoch == 0:
195 val_loss = history.history[’val_loss’][-1]
196 else:
197 val_loss = history.history[’val_loss’][es.stopped_epoch-patience]
198

199 # Print the classification accuracy.
200 print()
201 print(’val_loss:’, val_loss)
202 print()
203

204 # Save the model if it improves on the best-found performance.
205 # We use the global keyword so we update the variable outside
206 # of this function.
207 global best_val_loss
208

72

209 # If the classification accuracy of the saved model is improved ...
210 if val_loss < best_val_loss:
211 # Save the new model to harddisk.
212 model.save(path_best_model_fopt)
213

214 # Update the classification accuracy.
215 best_val_loss = val_loss
216

217 # Delete the Keras model with these hyper-parameters from memory.
218 del model
219

220 # Clear the Keras session, otherwise it will keep adding new
221 # models to the same TensorFlow graph each time we create
222 # a model with a different set of hyper-parameters.
223 K.clear_session()
224

225 # NOTE: Scikit-optimize does minimization so it tries to
226 # find a set of hyper-parameters with the LOWEST fitness-value.
227 # Because we are interested in the HIGHEST classification
228 # accuracy, we need to negate this number so it can be minimized.
229 return val_loss
230

231 search_result = gp_minimize(func=fitness_fopt,
232 dimensions=dimensions,
233 acq_func=’EI’, # Expected Improvement.
234 n_calls=80,
235 x0=default_parameters)
236

237 plot_convergence(search_result)
238 space = search_result.space
239 space.point_to_dict(search_result.x)
240 model_fopt = load_model(path_best_model_fopt)
241

242 test_preds_fopt = model_fopt.predict(X_test)
243 train_preds_fopt = model_fopt.predict(X_train)
244 val_preds_fopt = model_fopt.predict(X_val)
245 # invert predictions
246 train_preds_fopt = scalery_fopt.inverse_transform(train_preds_fopt)
247 y_train_fopt = scalery_fopt.inverse_transform(y_train)
248 val_preds_fopt = scalery_fopt.inverse_transform(val_preds_fopt)
249 y_val_fopt = scalery_fopt.inverse_transform(y_val)
250 test_preds_fopt = scalery_fopt.inverse_transform(test_preds_fopt)
251 y_test_fopt = scalery_fopt.inverse_transform(y_test)
252 X_test = scalerX_fopt.inverse_transform(X_test)
253 X_val = scalerX_fopt.inverse_transform(X_val)
254 X_train = scalerX_fopt.inverse_transform(X_train)
255

256 print ("Train RMSE is", np.sqrt(mse(y_train_fopt, train_preds_fopt))/np.
mean(y_train_fopt)*100)

257 print ("Val RMSE is", np.sqrt(mse(y_val_fopt, val_preds_fopt))/np.mean(
y_val_fopt)*100)

258 print ("Test RMSE is", np.sqrt(mse(y_test_fopt, test_preds_fopt))/np.mean(
y_test_fopt)*100)

259

260 xdata = np.arange(1,48,1)
261 plt.rcParams[’figure.figsize’] = (10,8)
262 plt.rc(’axes’, titlesize=22) # fontsize of the axes title

73

263 plt.rc(’axes’, labelsize=20) # fontsize of the x and y labels
264 plt.rc(’xtick’, labelsize=15) # fontsize of the tick labels
265 plt.rc(’ytick’, labelsize=15) # fontsize of the tick labels
266 plt.rc(’legend’, fontsize=20) # legend fontsize
267 plt.rc(’figure’, titlesize=20) # fontsize of the figure title
268 plt.figure(2)
269 plt.title(’Test Model vs Data Comparison’)
270 plt.xlabel(’Timestep’)
271 plt.ylabel(’Np (sm3)’)
272 plt.plot(xdata, y_test_fopt[:,0], label=’Data’, color=’black’, linewidth

=3)
273 plt.plot(xdata, test_preds_fopt[:,0], label=’Model’, linestyle=’:’, color=

’black’, linewidth=3)
274 plt.legend([’Data’, ’Model’], loc=’right’)
275 plt.ticklabel_format(axis="y", style="sci", scilimits=(0,0))
276 plt.savefig(’Test Model and Data Comparison (edit version).pdf’)
277 plt.show()
278

279 # Change the target output for Wi and Wp model and repeat above code
280 # Below is the GA code
281

282 #NPV Calculation
283 def NPV(Cum_Oil, Cum_Inj, Cum_Water, Oil_Price, Injection_Price,

Treatment_Price, Disc):
284 NPV_calc = 0
285 for i in range (0,Cum_Oil.shape[0]):
286 if i == 0:
287 FOPT = (Cum_Oil[i,0]*6.29*Oil_Price)/(np.power((1+Disc/4),((i

+1)/4)))
288 FWIT = (Cum_Inj[i,0]*6.29*Injection_Price)/(np.power((1+Disc

/4),((i+1)/4)))
289 FWPT = (Cum_Water[i,0]*6.29*Treatment_Price)/(np.power((1+Disc

/4),((i+1)/4)))
290 else:
291 FOPT = ((Cum_Oil[i,0]-Cum_Oil[i-1,0])*6.29*Oil_Price)/(np.

power((1+Disc/4),((i+1)/4)))
292 FWIT = ((Cum_Inj[i,0]-Cum_Inj[i-1,0])*6.29*Injection_Price)/(

np.power((1+Disc/4),((i+1)/4)))
293 FWPT = ((Cum_Water[i,0]-Cum_Water[i-1,0])*6.29*Treatment_Price

)/(np.power((1+Disc/4),((i+1)/4)))
294 NPV_calc = NPV_calc + FOPT + FWIT + FWPT
295 return NPV_calc
296

297 def generate_population(size, I_bound, P_bound):
298 lower_I_boundary, upper_I_boundary = I_bound
299 lower_P_boundary, upper_P_boundary = P_bound
300

301 population = []
302 for i in range(size):
303 individual = {
304 "I11": rn.uniform(lower_I_boundary, upper_I_boundary),
305 "I21": rn.uniform(lower_I_boundary, upper_I_boundary),
306 "I31": rn.uniform(lower_I_boundary, upper_I_boundary),
307 "I41": rn.uniform(lower_I_boundary, upper_I_boundary),
308 "P21": rn.uniform(lower_P_boundary, upper_P_boundary),
309 "P31": rn.uniform(lower_P_boundary, upper_P_boundary),
310 "I12": rn.uniform(lower_I_boundary, upper_I_boundary),

74

311 "I22": rn.uniform(lower_I_boundary, upper_I_boundary),
312 "I32": rn.uniform(lower_I_boundary, upper_I_boundary),
313 "I42": rn.uniform(lower_I_boundary, upper_I_boundary),
314 "P22": rn.uniform(lower_P_boundary, upper_P_boundary),
315 "P32": rn.uniform(lower_P_boundary, upper_P_boundary),
316 "I13": rn.uniform(lower_I_boundary, upper_I_boundary),
317 "I23": rn.uniform(lower_I_boundary, upper_I_boundary),
318 "I33": rn.uniform(lower_I_boundary, upper_I_boundary),
319 "I43": rn.uniform(lower_I_boundary, upper_I_boundary),
320 "P23": rn.uniform(lower_P_boundary, upper_P_boundary),
321 "P33": rn.uniform(lower_P_boundary, upper_P_boundary),
322 "I14": rn.uniform(lower_I_boundary, upper_I_boundary),
323 "I24": rn.uniform(lower_I_boundary, upper_I_boundary),
324 "I34": rn.uniform(lower_I_boundary, upper_I_boundary),
325 "I44": rn.uniform(lower_I_boundary, upper_I_boundary),
326 "P24": rn.uniform(lower_P_boundary, upper_P_boundary),
327 "P34": rn.uniform(lower_P_boundary, upper_P_boundary),
328 "I15": rn.uniform(lower_I_boundary, upper_I_boundary),
329 "I25": rn.uniform(lower_I_boundary, upper_I_boundary),
330 "I35": rn.uniform(lower_I_boundary, upper_I_boundary),
331 "I45": rn.uniform(lower_I_boundary, upper_I_boundary),
332 "P25": rn.uniform(lower_P_boundary, upper_P_boundary),
333 "P35": rn.uniform(lower_P_boundary, upper_P_boundary),
334 "I16": rn.uniform(lower_I_boundary, upper_I_boundary),
335 "I26": rn.uniform(lower_I_boundary, upper_I_boundary),
336 "I36": rn.uniform(lower_I_boundary, upper_I_boundary),
337 "I46": rn.uniform(lower_I_boundary, upper_I_boundary),
338 "P26": rn.uniform(lower_P_boundary, upper_P_boundary),
339 "P36": rn.uniform(lower_P_boundary, upper_P_boundary),
340 }
341 population.append(individual)
342

343 return population
344

345 def apply_function(individual):
346 I11 = individual["I11"]; I11 = np.full((8,), I11); X1 = np.arange

(1,9,1)
347 I21 = individual["I21"]; I21 = np.full((8,), I21)
348 I31 = individual["I31"]; I31 = np.full((8,), I31)
349 I41 = individual["I41"]; I41 = np.full((8,), I41)
350 P21 = individual["P21"]; P21 = np.full((8,), P21)
351 P31 = individual["P31"]; P31 = np.full((8,), P31)
352 I12 = individual["I12"]; I12 = np.full((8,), I12); X2 = np.arange

(9,17,1)
353 I22 = individual["I22"]; I22 = np.full((8,), I22)
354 I32 = individual["I32"]; I32 = np.full((8,), I32)
355 I42 = individual["I42"]; I42 = np.full((8,), I42)
356 P22 = individual["P22"]; P22 = np.full((8,), P22)
357 P32 = individual["P32"]; P32 = np.full((8,), P32)
358 I13 = individual["I13"]; I13 = np.full((8,), I13); X3 = np.arange

(17,25,1)
359 I23 = individual["I23"]; I23 = np.full((8,), I23)
360 I33 = individual["I33"]; I33 = np.full((8,), I33)
361 I43 = individual["I43"]; I43 = np.full((8,), I43)
362 P23 = individual["P23"]; P23 = np.full((8,), P23)
363 P33 = individual["P33"]; P33 = np.full((8,), P33)

75

364 I14 = individual["I14"]; I14 = np.full((8,), I14); X4 = np.arange
(25,33,1)

365 I24 = individual["I24"]; I24 = np.full((8,), I24)
366 I34 = individual["I34"]; I34 = np.full((8,), I34)
367 I44 = individual["I44"]; I44 = np.full((8,), I44)
368 P24 = individual["P24"]; P24 = np.full((8,), P24)
369 P34 = individual["P34"]; P34 = np.full((8,), P34)
370 I15 = individual["I15"]; I15 = np.full((8,), I15); X5 = np.arange

(33,41,1)
371 I25 = individual["I25"]; I25 = np.full((8,), I25)
372 I35 = individual["I35"]; I35 = np.full((8,), I35)
373 I45 = individual["I45"]; I45 = np.full((8,), I45)
374 P25 = individual["P25"]; P25 = np.full((8,), P25)
375 P35 = individual["P35"]; P35 = np.full((8,), P35)
376 I16 = individual["I16"]; I16 = np.full((7,), I16); X6 = np.arange

(41,48,1)
377 I26 = individual["I26"]; I26 = np.full((7,), I26)
378 I36 = individual["I36"]; I36 = np.full((7,), I36)
379 I46 = individual["I46"]; I46 = np.full((7,), I46)
380 P26 = individual["P26"]; P26 = np.full((7,), P26)
381 P36 = individual["P36"]; P36 = np.full((7,), P36)
382 X_new1 = np.vstack((X1,I11,I21,I31,I41,P21,P31)); X_new1 = X_new1.T
383 X_new2 = np.vstack((X2,I12,I22,I32,I42,P22,P32)); X_new2 = X_new2.T
384 X_new3 = np.vstack((X3,I13,I23,I33,I43,P23,P33)); X_new3 = X_new3.T
385 X_new4 = np.vstack((X4,I14,I24,I34,I44,P24,P34)); X_new4 = X_new4.T
386 X_new5 = np.vstack((X5,I15,I25,I35,I45,P25,P35)); X_new5 = X_new5.T
387 X_new6 = np.vstack((X6,I16,I26,I36,I46,P26,P36)); X_new6 = X_new6.T
388 X_test = np.vstack((X_new1,X_new2,X_new3,X_new4,X_new5,X_new6))
389 X_test_fwpt = scalerX_fwpt.transform(X_test)
390 X_test = scalerX_fopt.transform(X_test)
391

392 test_preds_fopt_ga = model_fopt.predict(X_test)
393 test_preds_fopt_ga = scalery_fopt.inverse_transform(test_preds_fopt_ga

)
394 test_preds_fwit_ga = model_fwit.predict(X_test)
395 test_preds_fwit_ga = scalery_fwit.inverse_transform(test_preds_fwit_ga

)
396 test_preds_fwpt_ga = model_fwpt.predict(X_test_fwpt)
397 test_preds_fwpt_ga = scalery_fwpt.inverse_transform(test_preds_fwpt_ga

)
398 NPV_test = NPV(test_preds_fopt_ga, test_preds_fwit_ga,

test_preds_fwpt_ga, 47, -2, -6, 0.08)
399 return NPV_test
400

401 def choice_by_roulette(sorted_population, fitness_sum):
402 offset = 0
403 normalized_fitness_sum = fitness_sum
404

405 lowest_fitness = apply_function(sorted_population[0])
406 if lowest_fitness < 0:
407 offset = -lowest_fitness
408 normalized_fitness_sum += offset * len(sorted_population)
409

410 draw = rn.uniform(0, 1)
411

412 accumulated = 0
413 for individual in sorted_population:

76

414 fitness = apply_function(individual) + offset
415 probability = fitness / normalized_fitness_sum
416 accumulated += probability
417

418 if draw <= accumulated:
419 return individual
420

421 def sort_population_by_fitness(population):
422 return sorted(population, key=apply_function)
423

424 def crossover(individual_a, individual_b):
425 I11a = individual_a["I11"]; I11b = individual_b["I11"]
426 I21a = individual_a["I21"]; I21b = individual_b["I21"]
427 I31a = individual_a["I31"]; I31b = individual_b["I31"]
428 I41a = individual_a["I41"]; I41b = individual_b["I41"]
429 P21a = individual_a["P21"]; P21b = individual_b["P21"]
430 P31a = individual_a["P31"]; P31b = individual_b["P31"]
431

432 I12a = individual_a["I12"]; I12b = individual_b["I12"]
433 I22a = individual_a["I22"]; I22b = individual_b["I22"]
434 I32a = individual_a["I32"]; I32b = individual_b["I32"]
435 I42a = individual_a["I42"]; I42b = individual_b["I42"]
436 P22a = individual_a["P22"]; P22b = individual_b["P22"]
437 P32a = individual_a["P32"]; P32b = individual_b["P32"]
438

439 I13a = individual_a["I13"]; I13b = individual_b["I13"]
440 I23a = individual_a["I23"]; I23b = individual_b["I23"]
441 I33a = individual_a["I33"]; I33b = individual_b["I33"]
442 I43a = individual_a["I43"]; I43b = individual_b["I43"]
443 P23a = individual_a["P23"]; P23b = individual_b["P23"]
444 P33a = individual_a["P33"]; P33b = individual_b["P33"]
445

446 I14a = individual_a["I14"]; I14b = individual_b["I14"]
447 I24a = individual_a["I24"]; I24b = individual_b["I24"]
448 I34a = individual_a["I34"]; I34b = individual_b["I34"]
449 I44a = individual_a["I44"]; I44b = individual_b["I44"]
450 P24a = individual_a["P24"]; P24b = individual_b["P24"]
451 P34a = individual_a["P34"]; P34b = individual_b["P34"]
452

453 I15a = individual_a["I15"]; I15b = individual_b["I15"]
454 I25a = individual_a["I25"]; I25b = individual_b["I25"]
455 I35a = individual_a["I35"]; I35b = individual_b["I35"]
456 I45a = individual_a["I45"]; I45b = individual_b["I45"]
457 P25a = individual_a["P25"]; P25b = individual_b["P25"]
458 P35a = individual_a["P35"]; P35b = individual_b["P35"]
459

460 I16a = individual_a["I16"]; I16b = individual_b["I16"]
461 I26a = individual_a["I26"]; I26b = individual_b["I26"]
462 I36a = individual_a["I36"]; I36b = individual_b["I36"]
463 I46a = individual_a["I46"]; I46b = individual_b["I46"]
464 P26a = individual_a["P26"]; P26b = individual_b["P26"]
465 P36a = individual_a["P36"]; P36b = individual_b["P36"]
466

467 return {"I11": (I11a + I11b) / 2, "I21": (I21a + I21b) / 2, "I31": (
I31a + I31b) / 2,

468 "I41": (I41a + I41b) / 2, "P21": (P21a + P21b) / 2, "P31": (
P31a + P31b) / 2,

77

469 "I12": (I12a + I12b) / 2, "I22": (I22a + I22b) / 2, "I32": (
I32a + I32b) / 2,

470 "I42": (I42a + I42b) / 2, "P22": (P22a + P22b) / 2, "P32": (
P32a + P32b) / 2,

471 "I13": (I13a + I13b) / 2, "I23": (I23a + I23b) / 2, "I33": (
I33a + I33b) / 2,

472 "I43": (I43a + I43b) / 2, "P23": (P23a + P23b) / 2, "P33": (
P33a + P33b) / 2,

473 "I14": (I14a + I14b) / 2, "I24": (I24a + I24b) / 2, "I34": (
I34a + I34b) / 2,

474 "I44": (I44a + I44b) / 2, "P24": (P24a + P24b) / 2, "P34": (
P34a + P34b) / 2,

475 "I15": (I15a + I15b) / 2, "I25": (I25a + I25b) / 2, "I35": (
I35a + I35b) / 2,

476 "I45": (I45a + I45b) / 2, "P25": (P25a + P25b) / 2, "P35": (
P35a + P35b) / 2,

477 "I16": (I16a + I16b) / 2, "I26": (I26a + I26b) / 2, "I36": (
I36a + I36b) / 2,

478 "I46": (I46a + I46b) / 2, "P26": (P26a + P26b) / 2, "P36": (
P36a + P36b) / 2}

479

480 def mutate(individual):
481 lower_I_boundary, upper_I_boundary = (220, 280)
482 lower_P_boundary, upper_P_boundary = (90, 140)
483

484 a = -30
485 b = 30
486

487 next_I11 = individual["I11"] + rn.uniform(a, b)
488 next_I21 = individual["I21"] + rn.uniform(a, b)
489 next_I31 = individual["I31"] + rn.uniform(a, b)
490 next_I41 = individual["I41"] + rn.uniform(a, b)
491 next_P21 = individual["P21"] + rn.uniform(a, b)
492 next_P31 = individual["P31"] + rn.uniform(a, b)
493 next_I12 = individual["I12"] + rn.uniform(a, b)
494 next_I22 = individual["I22"] + rn.uniform(a, b)
495 next_I32 = individual["I32"] + rn.uniform(a, b)
496 next_I42 = individual["I42"] + rn.uniform(a, b)
497 next_P22 = individual["P22"] + rn.uniform(a, b)
498 next_P32 = individual["P32"] + rn.uniform(a, b)
499 next_I13 = individual["I13"] + rn.uniform(a, b)
500 next_I23 = individual["I23"] + rn.uniform(a, b)
501 next_I33 = individual["I33"] + rn.uniform(a, b)
502 next_I43 = individual["I43"] + rn.uniform(a, b)
503 next_P23 = individual["P23"] + rn.uniform(a, b)
504 next_P33 = individual["P33"] + rn.uniform(a, b)
505 next_I14 = individual["I14"] + rn.uniform(a, b)
506 next_I24 = individual["I24"] + rn.uniform(a, b)
507 next_I34 = individual["I34"] + rn.uniform(a, b)
508 next_I44 = individual["I44"] + rn.uniform(a, b)
509 next_P24 = individual["P24"] + rn.uniform(a, b)
510 next_P34 = individual["P34"] + rn.uniform(a, b)
511 next_I15 = individual["I15"] + rn.uniform(a, b)
512 next_I25 = individual["I25"] + rn.uniform(a, b)
513 next_I35 = individual["I35"] + rn.uniform(a, b)
514 next_I45 = individual["I45"] + rn.uniform(a, b)
515 next_P25 = individual["P25"] + rn.uniform(a, b)

78

516 next_P35 = individual["P35"] + rn.uniform(a, b)
517 next_I16 = individual["I16"] + rn.uniform(a, b)
518 next_I26 = individual["I26"] + rn.uniform(a, b)
519 next_I36 = individual["I36"] + rn.uniform(a, b)
520 next_I46 = individual["I46"] + rn.uniform(a, b)
521 next_P26 = individual["P26"] + rn.uniform(a, b)
522 next_P36 = individual["P36"] + rn.uniform(a, b)
523

524 # Guarantee we keep inside boundaries
525 next_I11 = min(max(next_I11, lower_I_boundary), upper_I_boundary)
526 next_I21 = min(max(next_I21, lower_I_boundary), upper_I_boundary)
527 next_I31 = min(max(next_I31, lower_I_boundary), upper_I_boundary)
528 next_I41 = min(max(next_I41, lower_I_boundary), upper_I_boundary)
529 next_P21 = min(max(next_P21, lower_P_boundary), upper_P_boundary)
530 next_P31 = min(max(next_P31, lower_P_boundary), upper_P_boundary)
531 next_I12 = min(max(next_I12, lower_I_boundary), upper_I_boundary)
532 next_I22 = min(max(next_I22, lower_I_boundary), upper_I_boundary)
533 next_I32 = min(max(next_I32, lower_I_boundary), upper_I_boundary)
534 next_I42 = min(max(next_I42, lower_I_boundary), upper_I_boundary)
535 next_P22 = min(max(next_P22, lower_P_boundary), upper_P_boundary)
536 next_P32 = min(max(next_P32, lower_P_boundary), upper_P_boundary)
537 next_I13 = min(max(next_I13, lower_I_boundary), upper_I_boundary)
538 next_I23 = min(max(next_I23, lower_I_boundary), upper_I_boundary)
539 next_I33 = min(max(next_I33, lower_I_boundary), upper_I_boundary)
540 next_I43 = min(max(next_I43, lower_I_boundary), upper_I_boundary)
541 next_P23 = min(max(next_P23, lower_P_boundary), upper_P_boundary)
542 next_P33 = min(max(next_P33, lower_P_boundary), upper_P_boundary)
543 next_I14 = min(max(next_I14, lower_I_boundary), upper_I_boundary)
544 next_I24 = min(max(next_I24, lower_I_boundary), upper_I_boundary)
545 next_I34 = min(max(next_I34, lower_I_boundary), upper_I_boundary)
546 next_I44 = min(max(next_I44, lower_I_boundary), upper_I_boundary)
547 next_P24 = min(max(next_P24, lower_P_boundary), upper_P_boundary)
548 next_P34 = min(max(next_P34, lower_P_boundary), upper_P_boundary)
549 next_I15 = min(max(next_I15, lower_I_boundary), upper_I_boundary)
550 next_I25 = min(max(next_I25, lower_I_boundary), upper_I_boundary)
551 next_I35 = min(max(next_I35, lower_I_boundary), upper_I_boundary)
552 next_I45 = min(max(next_I45, lower_I_boundary), upper_I_boundary)
553 next_P25 = min(max(next_P25, lower_P_boundary), upper_P_boundary)
554 next_P35 = min(max(next_P35, lower_P_boundary), upper_P_boundary)
555 next_I16 = min(max(next_I16, lower_I_boundary), upper_I_boundary)
556 next_I26 = min(max(next_I26, lower_I_boundary), upper_I_boundary)
557 next_I36 = min(max(next_I36, lower_I_boundary), upper_I_boundary)
558 next_I46 = min(max(next_I46, lower_I_boundary), upper_I_boundary)
559 next_P26 = min(max(next_P26, lower_P_boundary), upper_P_boundary)
560 next_P36 = min(max(next_P36, lower_P_boundary), upper_P_boundary)
561

562 return {"I11": next_I11, "I21": next_I21, "I31": next_I31, "I41":
next_I41, "P21": next_P21, "P31": next_P31,

563 "I12": next_I12, "I22": next_I22, "I32": next_I32, "I42":
next_I42, "P22": next_P22, "P32": next_P32,

564 "I13": next_I13, "I23": next_I23, "I33": next_I33, "I43":
next_I43, "P23": next_P23, "P33": next_P33,

565 "I14": next_I14, "I24": next_I24, "I34": next_I34, "I44":
next_I44, "P24": next_P24, "P34": next_P34,

566 "I15": next_I15, "I25": next_I25, "I35": next_I35, "I45":
next_I45, "P25": next_P25, "P35": next_P35,

79

567 "I16": next_I16, "I26": next_I26, "I36": next_I36, "I46":
next_I46, "P26": next_P26, "P36": next_P36}

568

569 def make_next_generation(previous_population):
570 next_generation = []
571 sorted_by_fitness_population = sort_population_by_fitness(

previous_population)
572 population_size = len(previous_population)
573 fitness_sum = sum(apply_function(individual) for individual in

population)
574

575 next_generation.append(sorted_by_fitness_population[-1])
576 for i in range(population_size-1):
577 first_choice = choice_by_roulette(sorted_by_fitness_population,

fitness_sum)
578 second_choice = choice_by_roulette(sorted_by_fitness_population,

fitness_sum)
579

580 if rn.randint(0,100) < 25:
581 individual = crossover(first_choice, second_choice)
582 else: individual = first_choice
583

584 if rn.randint(0,100) < 15:
585 individual = mutate(individual)
586 next_generation.append(individual)
587

588 return next_generation
589

590 model_fopt = load_model(path_best_model_fopt)
591 model_fwit = load_model(path_best_model_fwit)
592 model_fwpt = load_model(path_best_model_fwpt)
593

594 generations = 3000
595

596 population = generate_population(size=36, I_bound=(220, 280), P_bound=(90,
140))

597

598 start = time.time()
599 i = 1
600 NPV_step = []
601 while True:
602 print(f"GENERATION {i}")
603

604 best_individual = sort_population_by_fitness(population)[-1]
605 best_npv = apply_function(best_individual)
606 NPV_step.append(best_npv)
607 print("{:.3e}".format(best_npv))
608

609 if i == generations:
610 break
611

612 i += 1
613

614 population = make_next_generation(population)
615

616

617 print("\n BEST RESULT")

80

618 print(best_individual, "{:.3e}".format(best_npv))
619

620 end = time.time()
621 hours, rem = divmod(end-start, 3600)
622 minutes, seconds = divmod(rem, 60)
623 print("Time elapsed: ", int(hours) ,"hours", int(minutes) ,"minutes", int(

seconds) ,"seconds")
624 np.save(’NPV_step.npy’, NPV_step)
625

626 plt.figure()
627 plt.title(’Best NPV’)
628 plt.xlabel(’Generation’)
629 plt.ylabel(’NPV ($)’)
630 plt.plot(np.arange(1,generations+1,1), NPV_step[:], label=’Best NPV’,

color=’black’, linewidth=3)
631 plt.legend(loc=’lower right’)
632 plt.savefig(’Best NPV.pdf’)
633 plt.show()

The input file of the OPM model

1 RUNSPEC
2 TITLE
3 ECL 5-SPOT 60x60
4

5 PATHS
6 ’ECLINC’ ’./include/’ /
7 /
8

9 -- xx
10 DIMENS
11 60 60 2 /
12

13 -- __
14 OIL
15 WATER
16 -- IMPES: def. solution
17

18 -- __
19 METRIC
20 -- unit specification
21

22 -- __
23 TABDIMS
24 -- 1) 2) 3) 4) 5) 6)
25 1 1 20 50 1 20 /
26 -- Describes size of saturation and PVT tables,
27 -- also the # of fluids-in-place regions
28 -- 1) # of sat tables entered (def. 1)
29 -- 2) # of PVT tables entered (def. 1)
30 -- 3) max # of sat nodes in any sat table (def. 20)
31 -- 4) max # of pressure nodes in table (def. 20)
32 -- 5) max # of FIP regions (def. 1)
33 -- 6) max # of Rs nodes in live oil PVT table (def. 20)
34

35 -- __
36 WELLDIMS

81

37 -- 1) 2) 3) 4)
38 20 100 2 20 /
39 -- 1) max # of wells in model (def. 0)
40 -- 2) max # of connections per well (def. 0)
41 -- 3) max # of groups in model (def. 0)
42 -- 4) max # of wells in any one group (def. 0)
43

44 WSEGDIMS
45 5 200 50 5 /
46

47 -- xx
48 START
49 1 ’FEB’ 2015 /
50

51 NSTACK
52 25 /
53

54 -- __
55 UNIFOUT
56 UNIFIN
57

58 -- xx
59 GRID
60 INIT
61 GRIDFILE
62 2 /
63 -- Contains GRID, PROPS and REGIONS summary of data
64 -- Request init and grid file, necessary for
65 -- post processing of the simulation with floviz
66

67 -- __
68 -- RPTGRID orig
69 -- 0 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 /
70 -- RPTGRID -- commented out
71 -- 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 /
72 -- RPTGRID
73 -- DX DY DZ TRANX TRANY TRANZ NNC ALLNNC FAULTS /
74 -- Output of DX, DY, DZ, PERMX, PERMY, PERMZ,
75 -- MULTZ, PORO and TOPS data is requested, and
76 -- of the calculated pore volumes and X, Y and
77 -- Z transmissibilities
78

79 -- __
80 -- Size of cells in X direction
81 DX
82 3600*24
83 3600*24 /
84

85 -- Size of cells in Y direction
86 DY
87 3600*24
88 3600*24 /
89

90 -- Size of cells in Z direction
91 DZ
92 3600*12
93 3600*12/

82

94

95 TOPS
96 3600*1700/
97

98 -- __
99 -- PERMX

100 INCLUDE
101 ’$ECLINC/permx_01_lyr_21X.INC’ /
102 -- ’permporo_lyr21/permx_21_lyr.in’ /
103

104 -- __
105 -- PERMY
106 INCLUDE
107 ’$ECLINC/permy_01_lyr_21X.INC’ /
108 -- ’permporo_lyr21/permy_21_lyr.in’ /
109

110 -- __
111 -- PERMZ
112 INCLUDE
113 ’$ECLINC/permz_01_lyr_21X.INC’ /
114 --’permporo_lyr21/permz_21_lyr.in’ /
115

116 -- __
117 -- PORO
118 INCLUDE
119 ’$ECLINC/poro_01_lyr_21X.INC’ /
120 --’permporo_lyr21/poro_21_lyr.in’ /
121

122 -- xx
123 PROPS
124

125 -- __
126 -- PVT
127

128 INCLUDE
129 ’$ECLINC/ECL_5SPOT_PROPS_PVDO_MULT_MRST.INC’ /
130

131 INCLUDE
132 ’$ECLINC/ECL_5SPOT_PROPS_MRST.INC’ /
133

134 -- __
135 RPTPROPS
136 1 1 1 0 1 1 1 1 /
137 -- OUTPUT CONTROLS FOR PROPS DATA
138 -- Activated for SOF3, SWFN, SGFN,
139 -- PVTW, PVDG, DENSITY AND ROCK keywords
140

141 -- xx
142 REGIONS
143

144 SATNUM
145 3600*1
146 3600*1/
147

148 -- xx
149 SOLUTION
150 -- initial state of solution variables

83

151

152 -- __
153 EQUIL
154 -- Data for initialising fluids to potential equilibrium
155 -- DATUM DATUM OWC OWC GOC GOC RSVD RVVD SOLN
156 -- DEPTH PRESS DEPTH PCOW DEPTH PCOG TABLE TABLE METH
157 1700 170 2200 0 0 0 0 0 0
158 -- 1) 2) 3) 4) 5) 6) 7) 8) 9)
159 /
160 -- 1) Datum depth
161 -- 2) Pressure at datum depth
162 -- 3) Depth of water oil contact, if no water
163 -- initially present it can be below reservoir
164 -- 4) Oil-water capillary pressure at the water contact
165 -- 5) Depth of the gas-oil contact
166 -- 6) Gas-oil capillary pressure at the gas-oil contact
167 -- 7) Integer selecting the type of
168 -- initialization for live black oil
169 -- 8) Integer selecting the type of initialization
170 -- for black oil runs with wet gas
171 -- 9) Integer (N) defining the accuracy of
172 -- the initial fluids in place calculation.
173

174 -- __
175 RPTSOL
176 0 0 1 /
177

178 -- 1: PRESSURE: Output of initial oil pressures
179

180 -- xx
181 SUMMARY
182 SEPARATE
183 RUNSUM
184 --NARROW
185 RPTSMRY
186 1 /
187

188 SUMTHIN
189 50 /
190

191 --SKIP
192

193 -- __
194 -- PRESSURE
195 FPR Field pressure
196 FPRH Field reservoir pressure (hydrocarbon?)
197 FPRP Field pressure weighted by pore volume
198 ALL
199 -- __
200 -- PORE VOLUME
201 FRPV Pore Volume at Reservoir
202 FOPV Pore Volume containing Oil
203 FHPV Pore volume containing hydrocardon
204 FORMW Total stock tank oil produced by water influx
205

206 -- __
207 -- INIT VOLUME

84

208 -- FGIP Gas init in place
209 -- FGIPG Gas init in place (gas phase)
210 -- FGIPL Gas init in place (liquid phase)
211 FOIP Oil init in place
212 FOIPG Oil init in place (gas phase)
213 FOIPL Oil init in place (liquid phase)
214 FWIP Water initially in place
215

216 -- __
217 -- CURRENT CPU USAGE IN SECONDS
218

219 TCPU
220 PERFORMA
221

222

223 -- __
224 -- WELL CONNECTION FACTORS
225 -- INCLUDE
226 -- ECL_5SPOT_CTFAC.INC /
227 -- CTFAC
228 -- * /
229 -- /
230

231 -- xx
232 SCHEDULE
233 -- CONTROLS ON OUTPUT AT EACH REPORT TIME
234

235 -- __
236 RPTSCHED
237 RESTART=1
238 /
239

240 -- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
241 -- 0 0 1 1 0 0 2 2 2 0 0 2 0 1 0
242 -- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
243 -- 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 /
244

245 -- 1: PRESSURE: Output of grid block pressures
246 -- 14: WELSPECS
247

248 -- RPTSCHED
249 -- -- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
250 -- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
251 -- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
252 -- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 /
253

254 -- RPTSCHED
255 -- 1 1 1 1 1 0 0 0 1 0 0 2 0 1 2 0 0
256 -- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
257 -- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 /
258

259 -- __
260 -- REQUEST RESTART FILE
261 RPTRST
262 ’NORST=1’/
263

264 -- __

85

265 INCLUDE
266 ’include/ECL_5SPOT_SCH.INC’ /
267 -- __
268 TUNING
269 -- min/max timestep (3 sections)
270 -- 0.1 30 /
271 1* 1* /
272 -- (1,1) TSINIT Max lngth next time step
273 -- (1,2) TSMAXZ Max lngth time steps after the next
274 -- 5* 0.1 /
275 /
276 -- (2,1) TRGTTE Target time truncation error
277 -- (2,2) TRGCNV Target non-linear convergence error
278 -- (2,3) TRGMBE Target material balance error
279 -- (2,4) TRGLCV Target linear convergence error
280 -- (2,5) XXXTTE Maximum time truncation error
281 -- (2,6) XXXCNV Maximum non-linear convergence error
282 2* 100 /
283 -- (3,1) NEWTMX Max # of Newton iters in a time step
284 -- (3,2) NEWTMN Min # of Newton iters in a time step
285 -- (3,3) LITMAX Max # of linear iters in a Newton
286 -- iter (def. 25)
287

288 -- __
289 -- TSTEP
290

291 -- 160 years
292 -- 160*365 /
293

294 -- 60 years
295 -- 60*365 /
296

297 -- 48 years
298 -- 48*365 /
299 -- 240*73 /
300

301 -- 32 years
302 -- 32*365 /
303 -- 160*73 /
304

305 -- 16 years
306 -- 16*365 /
307 -- 80*73 /
308

309 -- 12 years
310 -- 60*73 /
311

312 -- 8 years
313 -- 40*73 /
314

315 -- 1 day
316 -- 1 /
317

318 -- __
319 END

86

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f G

eo
sc

ie
nc

e
an

d
Pe

tr
ol

eu
m

M
as

te
r’s

 th
es

is

Muhammad Gibran Alfarizi

Well Control Optimization in
Waterflooding Using Genetic Algorithm
Coupled with Machine Learning Models

Master’s thesis in Petroleum Engineering

Supervisor: Professor Milan Stanko

June 2020

	Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background
	Objective
	Outline

	Theory
	Reservoir Simulation
	Black-oil Model
	Standard Well Model
	Solving the System of Equations
	A Paradigm Shift Towards Data-Driven Reservoir Model

	Artificial Intelligence
	Artificial Neural Networks
	Practical Aspects of Neural Networks

	Genetic Algorithm

	Methodology
	Workflow
	Software
	Reservoir Model
	Generating the Dataset and Data Splitting
	Building the ANN Model
	Buiding the Genetic Algorithm Optimization

	Results and Discussion
	The ANN Model
	The Cumulative Oil Production Prediction Model
	The Cumulative Water Injection Prediction
	The Cumulative Water Production Prediction
	NPV Difference Between Model Prediction and Actual Data

	The Genetic Algorithm Optimization
	The Base Case
	Population Size
	Crossover and Mutation Probability
	The Best Case

	Sensitivity Analysis
	Limitations

	Conclusion and Recommendation
	Conclusion
	Recommendation

	Bibliography
	List of Symbols
	Appendix

