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Abstract

In this report, in the continuity of B.de Renty’s Master’s thesis de Renty
(2020), a linear framework for the analysis and the optimization of float-
ing wind turbines with automated diffraction/radiation computations, is pro-
posed. A trial example is built for a simple spar floater with two design
variables. Then, a linearized model of a semi-submersible floating wind tur-
bine based on the geometry of the floater OO-Star – for which most technical
documents are availabe thanks to the project LIFES 50+ – and mounted
by the DTU 10 MW turbine is being studied. The implementation is made
within the framework OpenMDAO. A modal approach is set up, relying on the
first three non-orthogonal modes of the stucture, namely surge, pitch and the
first bending mode of the tower. The agreement between the eigenfrequencies
obtained from this formulation and those computed in a more classical way
is good. The aerodynamics is modelled through BEM method and effective
wind speeds to account for rotor frequency and blade passing effects. A first
order PI controller is used for monitoring the blade pitch angle above rated
wind speed. Response spectra are compared to those computed by SIMA
from one-hour time domain simulations, for three different geometries of the
floater and three environmental conditions. Good trends are observed but the
lack of aerodynamic damping due to the simple controller, the overestimation
of the 3P excitation associated with effective wind speed formulation and the
too simple mooring model lead to overestimations in surge, pitch and tower
bending stress. Two design variables are selected and are used to perform
an exploration of the design space, where good trends are captured with the
same overestimations as for the response spectra. Some elements to improve
the model are proposed in the end. In the future, such a tool could help in
the first design phase of any new floater.
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1 Introduction

1 Introduction

In our modern world threatened by resource depletion and climate change and which
has been relying on fossil fuels for the last centuries, the need for carbon-neutral
energy production systems is indisputable. Two subcategories of energies stand out
at that point: nuclear power and renewable energies. For the latter, these energies
– which are all subproducts of solar energy– are available at different rates; their
distribution is shown in figure 2.

The development of large scale wind energy extractors, most commonly called wind
turbines, started some years ago on land. Offshore wind turbines have then started
to emerge, first as bottom fixed systems. But the will to harness even better winds –
that is to say stronger and more regular– has led to a great enthusiasm towards float-
ing solutions. A few designs are under development across the world and so far only
two commercial or pre-commercial floating wind farms have been installed: namely
Hywind Scotland from Equinor and WindFloat Atlantic from Principle Power.

This technology being still in its maturation phase, it requires efforts to become a
competitive alternative to carbon intensive energy production systems, and therefore
to find its developpers. A first way to reduce the share of the installation cost in
the total cost, and therefore to decrease the levelized cost of energy (LCoE), is to
scale up the turbines. The largest so far installed have a rated power of 8.3 MW
(WindFLoat), but larger turbines have already been designed, like Haliade-X, a
12 MW turbine from General Electrics, and some even larger ones are planned.
In order to support these huge converters, one needs larger substructures, which
will therefore be exposed to larger loads, and will lead to new challenges as for
the manufacturing and the installation. Knowing that the cost of the substructure
represents from 15% to 30% of the total CAPEX of a floating wind turbine (FWT)
(see Ashuri et al. Ashuri et al. (2016)), one can see the importance of designing
cheaper platforms without impairing their performance.

This is where optimization comes into play. Its use in numerical models offers a
powerful tool to design structures in a cost-efficient way.

A first approach to find an optimal design is to perform a parametric study, that
is to say an overview of the design space defined by a set of parameters initially
chosen. In this manner, Tracy Tracy (2007) explored a variety of FWT designs
by mean of frequency analyses. Bachynski and Moan Bachynski and Moan (2012)
also performed a parametric study of tension leg platforms (TLP), distinguishing
five different designs and featuring fully coupled time-domain simulations. One
of the early attempts to optimize large floating structures giving prominence to
actual computer-aided optimization techniques is due to Clauss and Birk G.F.Clauss
and L.Birk (1996), who made use of an adaptation of the so-called ”Direct Search
Method”, a gradient-free algorithm, to reduce the motions and the loads exerted on
three main types of offshore structures: TLPs, semisubmersibles and gravity base
structures. More recently but in the same field, Park et al. Park et al. (2015)
performed a multi-objective design optimization of a floating production unit using
simulated annealing method so as to reduce its motions. The objective is a weighted
function of the 3h heave most probable extreme value and the structural weight.

1



1 Introduction

Figure 2: Finite and renewable planet energy reserves as of 2015 (from Perez and Perez (2015),
rendered by freeingenergy.com)

Moving to wind turbines (WT), Karimi et al. Karimi et al. (2017) explored the three
stability classes of FWTs through the use of a spar, a TLP and a semisubmersible
platform parametrized by nine design variables. An objective function accounting
for respectively the cost of both the platform and the mooring system and the
fore-aft nacelle acceleration, is used. The optimization on this linearized model is
performed by a genetic algorithm and Pareto fronts are discussed. Häfele and Rolfes
Häfele and R.Rolfes (2016) used a particle swarm algorithm in order to reduce the
cost of a jacket substructure for the NREL 5 MW turbine, sumbmitted to some
equality constraints with regards to utilization factors. Despite promising results,
their methodolgy is computationally very expensive.

There are only a few attempts in the field of FWT optimization which have been
performed through gradient-based methods, which are known to be fast and efficient
when the number of design variables is large, as long as analytical derivatives are
provided and when the design space does not display too many local minima. One
attempt is from Chew et al. Chew et al. (2015). In their paper, a jacket substruc-
ture is optimized according to 22 design variables selected to be the diameters and
thicknesses of the jacket members. The optimization is performed by the Sequential
quadratic programming (SQP) method and both ULS and FLS criteria are checked,
with two different load cases. The gradients are computed analytically by mean of
the analytical direct differentiation method (DDM). Another use of a gradient-based
algorithm was made by Fylling and Berthelsen Fylling and Berthelsen (2011), who
optimized the shape, power cables and mooring lines of a spar buoy, with gradients
computed by finite differences. The objective function was the total price of these
three elements.

The previous studies which have been highlighted focused on the design of the
platform and/or its mooring lines, disregarding the behaviour of the tower, control
system and rotor. Now, to predict more accurately the global response of the system,
coupling effects between the floater, the tower, the controller and the blades (hydro-

2



1 Introduction

aero-servo-elastic models) have to be taken into account. Lemmer et al. Lemmer
et al. (2017) performed the optimization of the INNWIND.EU TripleSpar concept
floater by mean of the gradient-free Pattern Search method, including a self-tuning
controller. The objective was a combination of damage-equivalent loads and capital
expenditure (CAPEX). Sandner et al. Sandner et al. (2014) achieved an integrated
optimization of a set of spar-type FWTs featuring a PI-controller. The optimal
configuration was found throughout a stepwise narrowing of the design space. The
cost function is a linear combination of standard deviation of the rotor speed and
the standard deviation of the tower bending degree of freedom (dof), which accounts
for stress in the tower.

In Ashuri et al. (2014), Ashuri et al. made use of the OpenMDAO framework to
carry out the optimization of the 5 MW NREL wind turbine, accounting for the
aerodynamic and structural design of the rotor and tower simultaneously. Their
work led to a decrease by 2.3% of the LCoE for a turbine located in a representative
site in the Netherlands.

Even closer to our scope, Hegseth et al. Hegseth et al. (2020a) developed an aero-
hydro-servo-elastic model of a 10 MW spar FWT to perform an integrated design
optimization of the platform, tower, mooring system and blade pitch controller. The
importance of the integrated formulation is highlighted in the results for the tower
and the controller, affected by the design of the platform. This model is able to
capture reasonably well the trends compared to nonlinear time-domain analyses,
but it is restricted to this type of geometry, for which the hydrodynamic behaviour
is rather simple.

The aim of this peoject is to extrapolate this methodology to semi-submersibles,
which requires a more refined approach for the hydrodynamics. The floater OO-
Star from the company Dr.Techn.Olav Olsen AS will be the basis for the analyis. It
carry the DTU 10 MW reference wind turbine.

3



2 Theoretical aspects for the design of FWT

2 Theoretical aspects for the design of FWT

This section aims at giving an updated insight on the technology of floating offshore
wind turbines (FOWTs) and at developing on key theoretical aspects which will be
used as a base for this work.

In a first part, a literature review about the different concepts of FOWTs will be
addressed.

Then, some theoretical hydrodynamic elements will be explained in details. A special
focus will be made on potential flow theory and dynamic modelling.

Later, some aspects of multidisciplinary design optimization (MDO) will be reviewed
and explained.

2.1 A review of FOWT concepts

The main feature of FOWTs – which makes them a big center of interest nowadays
– is their ability to be installed in deeper water than their bottom fixed counterparts
which cannot be installed in some coasts, such as US west coast are also Japan coast.
Besides, larger water depth is often associated with larger distance from the shore,
and therefore increased wind quality.

This technology borrows a lot from oil&gas engineering, which started designing
offshore oil rigs in the beginning of 20th century (first offshore oil rig, Ferry Lake
No.1, built in 1911), and has therefore accumulated knowledge on offshore structures.
Logically, as mentioned by Butterfield et al. Butterfield et al. (2005) these two
industries face a lot of common challenges, but their respective priorites and drivers
are different however.

The reason why the design of these structures is challenging is their exposition to
a large variety of loads, as presented in figure 3, most of which are nonlinear and
feature very disparate probabilities of occurence.

It is however still possible to analyze such structures globally first, in order to
categorize different classes of designs. The most common criteria used to distinguish
subcategories of floaters is the way they achieve static stability to overcome the
thrust force being applied on the rotor. From conventional static analysis of marine
structures, one knows that a requirement for static stability around a given x axis
is that the metacentric height GM of the floating structure is positive. It is given
by the following equation:

GM = KB +BM −KG, with BM =
Ixx
∇ , (2.1)

where Ixx is the second moment of area along x axis and ∇ is the displacement of
the structure.

Butterfiel et al. Butterfield et al. (2005) proposed three means by which offshore

4



2 Theoretical aspects for the design of FWT 2.1 A review of FOWT concepts

Figure 3: Loads on a FOW (Credits: J.Jonkman, NREL)

platforms perform static stability; you can refer to figure 4 to get an illustration of
these concepts.

• Ballasts: heavy weight placed at the bottom of the structure such that its
center of gravity is located under its center of buoyancy, conferring of righting
moment that ensures high inertia for pitch and roll motions. In addition, the
draft of these structures is large enough to reduce wave excitation in heave. A
typical example for such platforms is the spar concept.

• Mooring lines: platforms featuring this technology rely on the tension of moor-
ing lines, which provide them with increased stiffness for their motions. The
leading concept for this type of platforms is called ”Tension Leg Platforms”
(TLP). Equation 2.1 does not apply in this case because of the new location
of the center buoyancy

• Buoyancy: This concept relies on a large, or at least distributed, waterplane
area which confers large restoring forces to the platform.

Jonkman and Matha compared the fully-coupled dynamic responses of a barge, a
TLP and a spar with a land-based NREL 5 MW in J.M.Jonkman and D.Matha
(2011). The study highlights the increased ultimate and fatigue loads undergone
by the floating concepts compared to their land-based counterparts due to dynamic
coupling between the platform motions and the turbine. Some instable behaviours
were also reported and need to be addressed. Consequently, FWT have to be de-

5



2 Theoretical aspects for the design of FWT 2.1 A review of FOWT concepts

Ballast

Buoyancy Mooring

Boats

Spar

TLP

Semisubmersible

Barge

(a) The stability triangle (Credits: Thi-

agarajan and Dagher (2014)) (b) FOWT main concepts (Credits: J.Bauer, NREL)

Figure 4: Design parameters for FOWT

signed in a stronger way than land-based ones; one then needs to know which parts
to modify and to what extent so as to deliver safe and cost-efficient technologies.

6



2 Theoretical aspects for the design of FWT 2.2 Design guidelines/practices

2.2 Design guidelines/practices

Figure 5: Description of the 9 steps of the
TRL indicator (Credits: TWI)

LIFES50+ was a collaborative program
initiated by SINTEF Ocean and funded
by European Union throughout the
project ”Horizon 2020”. Its aims was
to select two concepts of platform with
a technology readiness level (TRL) of 5
(see figure 5) mounted with a 10 MW
turbine to reduce production, installa-
tion and operational and maintenance
(O&M) costs. The focus was made
on turbines installed at water depths
ranged from 50 m to 200 m. It resulted
in a large number of deliverables which
provide design drivers for FWT con-
cepts and therefore an increased scien-
tific and industrial knowledge on numer-
ical and experimental design methodolo-
gies.

In particular, an extensive use of deliverable D4.5 A.Pegalajar-Jurado et al. (2018)
will be made, as it provides key elements for the present study.

Most commonly, the driving parameter for the design of FWT is the so-called Lev-
elized Cost of Energy (LCoE). The details to compute this parameter, which charac-
terizes the economic efficiency of a power system, can be found in deliverable D2.2
Benveniste et al. (2016). For a given lifetime n in years, the LCoE is computed
according to:

LCoE =
Life cycle cost

Electrical energy provided
=

C0 +
n∑
t=1

O&Mt

(1 + r)t
+

D

(1 + r)n

n∑
t=1

Et − Lt
(1 + r)t

, (2.2)

where C0 is the initial investment in the power plant (capital cost), t is the time in
years, O&Mt represents the O& M cost at year t, D is the decommissioning cost,
Et is the total energy generated during year t, Lt the energy loss during generation,
collection and transmission at year t. Due to economic inflation, the value of money
decreases with time, which is represented by the discount rate r such that Vt = V0

(1+r)t

where we denote the value Vt at year t.

2.3 Numerical modelling of FWT

To avoid expensive infrastructures to perform analyses of a FWT concept, any
designer needs appropriate numerical tools thanks to which a numerical model will

7



2 Theoretical aspects for the design of FWT 2.3 Numerical modelling of FWT

be built and extensively used (even though for the last stage of the design process,
experimental validations are required).

2.3.1 Hydrodynamic modelling

Most commonly, a first approach to model the hydrodynamics of a given floater
is by mean of first order potential flow theory for large structures such as semi-
submersibles and barges, or using MacCamy&Fuchs formula for simple cylindrical
geometries such as spars (see Hegseth et al. (2020a) as an example). For slender
structures such as mooring lines, Morison equation is widely used.

To check the importance of higher order effects on the design, higher order for-
mulations of potential flow theories are available; the second order formulation is
the most common application of hydrodynamic nonlinearities and causes additional
excitations of the structure due to sum and difference frequency effects.

Ultimately, viscous effects are mostly accounted for by Morison’s drag term.

2.3.2 Aerodynamic modelling

The standard procedure for aerodynamic modelling is to use Blade Element Mo-
mentum (BEM) method which is based, on the one hand, on the conservations of
mass, momentum and mechanical energy of the steady-state, homogeneous and in-
compressible air flow crossing a rigid actuator disk corresponding to the rotor of the
turbine, and on the other hand on the local study of a strip of the same disk. The
iterative combination of the two enables one to update the induced velocity, angle
of attack and force coefficients on the blades. Four main corrections are applied
to account for the 3D effects at the tip of the blades, du to the finite number of
blades (Prandtl’s correction), the compressibility of air (Glauert’s correction), vor-
tex shedding causinga a time lag in the change of the induced velocity (dynamic
wake) and finally transient dynamic behaviours for fast-pitching blades (dynamic
stall). Generalized dynamic wake, which relies on Euler’s equations and a potential
modellization of the pressure field can be an alternative. Finally, tower shadow ef-
fects should preferably be incorporated in the model to account for the velocity loss
in the inlet velocity field close to the tower.

BEM theory This section is described in details in Hansen (2015).

BEM considers an homogeneous, incompressible flow in a steady-state. No frictional
drag is taken into account and the rotor is assimilated to a disk (which is to say
that it features an infinite number of blades, as displayed in figure 6). Two factors
are used, which are mentioned as ”induction factors” (respectively axial (or normal)
and angular (or tangential)):

an =
v0 − vA
v0

, at =
ω

2Ω
(2.3)
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Figure 6: Description of the rotor in BEM

where vA is the horizontal velocity of the air flow at an infinitesimal distance in front
of the rotor, ω is the angular velocity of the wake behind the turbine, and Ω is the
rotor angular velocity.

They define together with the wind velocity v0 and the velocity of the strip dr the
induced velocity W and the angle φ, sum of the local angle of attack, blade pitch
angle and local twist angle, as defined in figure 7:

φ = arctan
(1− an)v0

(1 + at)rω
. (2.4)

Then, combining a global analysis of the rotor based on the conservations of mass,
momentum and mechanical energy with a local analysis of a blade strip, two new
expressions are found for the two induction factors:

an =
1

4 sin2 φ

σCn
+ 1

, at =
1

4 cosφ sinφ

σCt
+ 1

, (2.5)

where σ = Bc/2πr the solidity ratio (B the number of blades, c the local chord),
Cn = CL cosφ + CD sinφ and Ct = CL sinφ − CD sinφ (CL and CD being the lift
and drag coefficients).

The BEM iterative process is then described by:

• Guess an and at;

• find φ with 2.4 and the associated α;

• look for CL(α) and CD(α) in look-up tables;
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Figure 7: Velocity triangle for BEM (adapted from Hansen (2015))

• recompute an and at based on 2.5;

• compare them with the initial value and repeat until convergence.

Then, lift and drag forces (per unit span length) on the rotor can be accessed by

L =
1

2
ρcv2

relCL(α), D =
1

2
ρcv2

relCD(α), (2.6)

and the normal and tangential forces on the rotor are found through

Fn = L cosφ+D sinφ, Ft = L sinφ−D cosφ. (2.7)

2.3.3 Structure modelling

Very commonly, the floater is assumed to be a rigid body.

However, for an extensive analysis, finite element models –based on equilibrium be-
tween internal and external loads – are applied. The accuracy of the study notably
depends on the type of elements used to describe the structure (truss, beams, shells),
their order (linear, quadratic, higher orders), their density and whether or not non-
linear effects are accounted for (geometry dependent stiffness, plastic deformations,
nonlinear boundary conditions).

10



2 Theoretical aspects for the design of FWT 2.4 Potential flow theory

2.4 Potential flow theory

In this study, the hydrodynamic loads and the wave kinematics will be computed by
mean of potential flow theory (PFT), very well documented in Molin (2002). This
theory defines a linear framework for the hydrodynamics and relies on two main
assumptions:

• The fluid is incompressible, therefore with zero divergence:
−→∇ .~v = 0

• The flow is irrotational:
−→∇ ∧ ~v = ~0

The immediate consequence of these assumptions, under the relation ∆ =
−→∇ ·−→∇ , is

the disregard of the viscosity of the fluid, intervening in the term η
−→
∆~v in the equation

of conservation of momentum. This framework therefore leads in particular to not
considering the effects of recirculations in the flow.

The Helmholtz-Hodge Theorem, which states that for any vector field ~A – fulfilling

certain hypotheses tested here – there is a vector field
−→
ψ and a scalar field φ such

that ~A =
−→∇ ∧−→ψ −−→∇φ, leads to the fact that the velocity ~v of the flow derives from

a scalar potential φ: ~v = −−→∇φ.

This theory being applied to water in the present case, which is assumed incom-

pressible and homogeneous, the continuity equation
∂ρ

∂t
+
−→∇ · (ρ~v) = 0 becomes

−→∇ ·~v = 0. Using the potential introduced previously, we get the governing equation
of potential flow theory:

∆φ = 0. (2.8)

The present study focuses on a structure of such dimensions that the Keulegan-

Carpenter number (KC =
UT

D
= 2π

A

D
at the free surface) is small enough to keep

the flow attached and justifies the use of the potential theory.

2.4.1 Diffraction-radiation problem

The objective here is to get analytical expressions for the free surface elevation, the
pressure field and the velocity field, and in a second time, the loads on the floating
structure. In order to achieve it, the problem is posed as illustrated by figure 8.

Boundary conditions Two conditions need to be fulfilled at the free surface:

• A fluid particle on the free surface remains on the free surface (kinematic free
surface boundary condition (KFSBC)).
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Figure 8: Definition of the environment

• Assuming negligible surface tension effects, the pressure is continuous across
the free surface (dynamic free surface boundary condition (DFSBC)).

On the body surface, the normal velocity of the fluid should equal the one of the
body. At the sea bed, the vertical velocity is required to be null.

Boundary value problem Then, the following set of equations is obtained:



∆φ = 0 ∀(x, z) ∈ Ω Laplace’s equation

∂φ

∂t
= −gζ − 1

2
|−→∇φ|2 + c(t) at z = η(x, t), DFSBC

∂φ

∂z
=
∂ζ

∂t
+
−→∇φ · −→∇ζ at z = ζ(x, t), KFSBC

∂φ

∂z
+
−→∇φ · −→∇d = 0 at z = −d(x) bottom boundary condition

−→∇φ · ~n = vn on SB(t) body boundary condition

(2.9)

where vn is the body along its local normal direction.

Linearization of the system of equations For linearization to be valid some
new assumptions are added and presented below:

• The waves are periodic in space (wave number k) and in time (frequency ω); in
this precise case for which we focus on the plane (x, z), the spatial periodicity
is a periodicity along x;
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• the waves are propagating in the positive x-direction;

• the water depth is constant;

• the steepness is small (ε = kA � 1) and the depth is sufficiently large (dis-
persion parameter µ = kd ≥ O(1));

• the motions of the body are small compared to the wave length.

After Taylor-expanding the free surface operators and the body boundary conditions
respetively at the mean water level z = 0 and on the mean body position SB0 , using
perturbation series with regard to the steepness ε of the potential φ and the wave
elevation ζ, and only keeping the first order terms (∝ ε), these assumptions lead to
the following linearized boundary value problem:



∆φ = 0 ∀(x, z) ∈ Ω

∂2φ

∂t2
+ g

∂φ

∂z
= 0 at z = 0

∂φ

∂z
=
∂ζ

∂t
at z = 0

∂φ

∂z
= 0 at z = −d

−→∇φ · ~n0 = vn on SB0

(2.10)

Now, taking advantage of the linearity of the problem, the potential is dicomposed
as a sum of an incident, a scattered and a radiated potentials (see figure 9 from
Faltinsen):

φ = φ0 + φS + φR. (2.11)

The radiated potential is, in turn, broken down into six components corresponding
to the six degrees of freedom of the floating rigid body:

φR =
6∑
i=1

φi. (2.12)

This way, the last equation of our system, only applied to φS and φR reads:

−→∇φp · ~n0 = vn,p p = S, {1, ..., 6} (2.13)

where vn,D = 0 and vn,i = η̇iN0,i, defining ~N0 as the generalized normal for one point
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Figure 9: Illustration of the diffraction-radiation problem (Credits: Faltinsen (1993))

(x,y,z) of the structure in the reference frame Oxyz and ηi its ith degree of freedom.1

Solving this system for the incident flow, analytical expressions for the velocity and
pressure fields can be found, in addition to the free surface elevation:

φI(x, z, t) =
Ag

ω
.
cosh k(z + d)

cosh kd
sin(kx− ωt) (2.14)

ζ(x, t) = A cos(kx− ωt) (2.15)

p(x, z, t) = −ρgz + Aρg
cosh k(z + d)

cosh kd
cos(kx− ωt) (2.16)

with k = 2π/λ the wave number.

2.4.2 Wave loads

In this section, developments regarding the computation of the loads within potential
flow theory will be made.

In linear theory, loads are computed by integrating the pressure field surrounding
the body on its initial surface SB0 (as opposed to the instantaneous surface SB(t)
which would result in higher order loads):

~Fhydro =

∫∫
SB0

−ρ
(
gz +

∂φ

∂t

)
~ndS (2.17)

Practically, to perform the calculation for a structure with an arbitrary shape, one
needs to develop a computational procedure, the most famous of which is called
BEM.

1 ~N0 =



n0x

n0y

n0z

yn0z − zn0y
zn0x − xn0z
xn0y − yn0x
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Panel method/Boundary element method (BEM) The principle behind this
method is the modelization of the flow by a distribution of elementary potentials
(so-called ”singularities”) which satisfy Laplace’s equation; the most classical ones
are sources, sinks and dipoles. For the sake of simplicity, only sources will be used to
illustrate the method. The geometry of the body is split into a given number N of
triangles or quadrilaterals, defining the aforementioned panels. Over each of them,
the potential of the flow is assumed constant and satisfies a set of integral equations
based on Green’s theorem, that are discretized and presented below. Because of
the harmonic time-dependence of the velocity potential φ, it will be treated as a
complex valued time-independent potential ϕ such that:

φ(t) = <
(
ϕeiωt

)
(2.18)

with ω the frequency of the incident wave, i2 = −1 and t the current time.

For the radiation potential, the discretized integral equation reads:

2πϕ (~xi) +
N∑
k=1

Dikϕk =
N∑
k=1

Sik

(
∂ϕ

∂n

)
k

(2.19)

while for the total diffraction potential ϕD = ϕ0 + ϕS:

2πϕ (~xi) +
N∑
k=1

Dikϕk = 4πϕ0 (~xi) (2.20)

where i ∈ {1, ..., N}, ~xi is the collocation point for quadrilateral i, i.e. the point at
which the integral equations are enforced, taken as the centroid of the panel.

The two matrices Dik and Sik are defined by:

Dik =

∫∫
sk

∂G(~ξ, ~xi)

∂nξ
d~ξ

Sik =

∫∫
sk

G
(
~ξ, ~xi

)
d~ξ

(2.21)

where sk is the surface of panel k and G(~x, ~ξ) is the Green function, referred to as
the wave source potential. It is the velocity potential at point ~x = (x, y, z) due

to a point source of strength −4π located at point ~ξ = (ξ1, ξ2, ξ3). It meets the
free-surface and radiation conditions, and it is expressed by:

G(~x, ~ξ) =
1

r
+

1

r′′
+ 2

∫ ∞
0

(k +K) cosh k(z + d) cosh k(ξ3 + d)

k sinh kd−K cosh kd
e−kdJ0(kR)dk (2.22)

with r = ‖~x − ~ξ‖2, (r′′)2 = (x − ξ1)2 + (y − ξ2)2 + (z + ξ3 + 2d)2, K = ω2/g the
infinite water depth value of k, and J0 the Bessel function of zeroth order.

Ultimately, equations 2.19 and 2.20 are solved for ϕ.
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2.5 Optimization

From purely geometry to finance through engineering and even sport or daily life,
optimization has been in human’s mind for centuries. First tackled by Euclid in his
”Elements”, its formalization was performed later, from the 17th century with the
emergence of modern differential calculus thanks to Newton and Leibniz.

In this section, some important optimization techniques will be addressed.

2.5.1 Formalism

The formalism will be such that an optimization problem for the objective function
f of the variable x ∈ Rn, submitted to the equality constraints ĉ(x) = 0m̂ and the
inequality constraints c(x) > 0m will be formulated as:

minimize f

with respect to x ∈ Rn

subject to ĉj(x) = 0, j ∈ J1, m̂K
ck(x) > 0, k ∈ J1,mK

(2.23)

The objective function is a measure of the performance of a system with regards to
some parameters that are chosen by the designer. In most engineering fields, the
several objectives are at stake – good performance and low costs most commonly.
The objective function will then be a trade-off between these sub-objectives.

2.5.2 Optimization methods

Two major types of methods should be distinguished: gradient-free versus gradient-
based ones.

The former are easier to use and have for that reason been the most employed
in offshore engineering. They have the ability to explore widely the design space,
defined by the set of design variables at use and are therefore likely to find the
global minimum of f in this region. Among these methods, one could mention
particle swarm, genetic algorithms or Nelder-Mead method.

The latter, as their self-explanatory name suggests, rely on the computation of
the gradient of f to converge towards a minimum. They consequently require dif-
ferentiable objective and constraint functions and they need to be provided their
respective derivatives with regards to the design variables. In spite of these addi-
tional efforts which could dissuade one to use them, they perform way better than
their gradient-free counterparts as the number of design variables increases. One
drawback is that they are likely to converge towards a local minimum rather than
the global one for functions displaying a significantly erratic behaviour.
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This study aims at imlementing one of the state-of-the-art gradient-based method,
namely Sequential Quadratic Programming (SQP) algorithm.

2.5.3 Sequential Quadratic Programming (SQP)

SQP has been developed in the second half of 20th century first by Robert Wilson,
followed by Shih–Ping Han and Michael Powell in 1976. It essentially consists in
applying Newton method to solve the Karush, Kuhn and Tucker (KKT) conditions.
Some elements will be addressed before actually tackling this method.

KKT conditions The Lagrangian of an optimization problem is defined as

L : (x, λ̂, λ, s) 7→ f(x)− λ̂> · ĉ(x)− λ> ·
(
c(x)− s2

)
(2.24)

where the vectors λ̂ and λ are the so-called Lagrangian multipliers for the equality
and inequality constraints, and s is the vector of slack variables. It is such that its
stationary points are good candidates for being minima of the problem, and it turns
the original constrained problem into an unconstrained problem with new variables.

Necessary conditions on for the minimum of f under the equality and inequality
constraints form the so-called first order KKT conditions; they require L to be
stationary at that point according to:

∇xL = 0⇒ ∂L
∂xi

=
∂f

∂xi
−

m̂∑
j=1

λ̂j
∂ĉj
∂xi
−

m∑
k=1

λk
∂ck
∂xi

= 0, i ∈ J1, nK (2.25)

∇λ̂L = 0⇒ ∂L
∂λ̂j

= ĉj = 0, j ∈ J1, m̂K (2.26)

∇λL = 0⇒ ∂L
∂λk

= ck − s2
k, k ∈ J1,mK (2.27)

∇sL = 0⇒ ∂L
∂sk

= λksk = 0, k ∈ J1,mK (2.28)

λk > 0, k ∈ J1,mK (2.29)

Newton’s method Newton’s method relies on a quadratic approximation of the
objective function at the current point xk from iteration k, resulting from a Taylor
series expansion of it with a step dk:

f(xk + dk) = f(xk) + t∇f(xk) · dk +
1

2
tdk · ∇2 · f(xk)dk + o(‖dk‖2) (2.30)

Choosing dk such that xk+1 = xk + dk is located at the minimum of this quadratic
function (i.e. the derivative w.r.t dk of 2.30 is null), an expression of it is found by
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solving

∇2f (xk) dk = −∇f (xk) . (2.31)

Newton’s method is efficient for some functions but can perform very badly in some
situations; quasi-Newton’s methods were developed to overcome these issues and
improve the costly computation of the Hessian.

SQP For a problem with equality constraints only, equation 2.31 applied to the
Lagrangian rewrites

∇2L (xk, λk) dk = −∇L (xk, λk) . (2.32)

The detailed equation is found as:

[
∇2f(xk) −t∇c(xk)
∇c(xk) 0

]
·
[
pxk
pλk

]
=

[
∇f(xk)− t∇c(xk) · λ

c(xk)

]
(2.33)

Inequality constraints can be handled considering only active constraints at each
iteration, and treating them as equality constraints.

2.5.4 Computation of the derivatives

As illustrated by the previous theoretical developments, the role of the derivatives
is crucial in gradient-based methods. It is therefore necessary to compute them
accurately.

Different techniques to provide numerical derivatives exist, among which can be cited
- ranked by increasing order of precision - first order finite differences (FD), complex
step (CS), algorithmic differentiation and analytic methods (the two latter being of
the same order). While the first two ones are based on Taylor expansions and are
relatively easy to implement, they only approximate the value of the derivatives and
can be computationally demanding: they should mostly be used when the function
to differentiate acts as a black box for which only the inputs and are outputs are
accessible. Algorithmic differentiation is accurate but very tedious to implement;
however, it can be a great improvements to FD or CS when the source code of
a software is provided. Ultimately, analytic methods are the preferred techniques
to deliver analytic derivatives. They are commonly split into two variants: direct
method and adjoint method.

In OpenMDAO, each component is defined by its inputs and outputs. In order
for the optimization process to be performed correctly, all the derivatives of the
outputs with regards to the input variables on which they depend must be specified
(”variable” here should be understood litterally as ”which varies”; some inputs can
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also be constants, and in that case, the code does not expect the user to provide it
with the corresponding derivatives).

The following is detailed in Ang (2019). For a given function f : X 7−→ Y = f(X)
which transforms a m × n matrix X into a p × q matrix Y = f(X), the derivative
of f with regards to X is defined as

∇Xf =
∂f

∂X
=
∂ vec(f)

∂ vec(X)
(2.34)

where the vec operator expands any matrix X columnwise:

vec(X) = [X11, X21, . . . Xm1, X12, X22, . . . Xm2, . . . , X1n, X2n, . . . Xmn]> .

The differential-derivative equation is then

vec(df) = (∇Xf)> vec(dX) =

(
∂f

∂X

)>
vec(dX). (2.35)

One has to recall that the derivative of a function g : u 7−→ v = g(u) which
transforms a m× 1 vector u into a n× 1 vector v is defined as

∇ug =



∂g1

∂u1

∂g2

∂u1

· · · ∂gn
∂u1

∂g1

∂u2

∂g2

∂u2

· · · ∂gn
∂u2

...
...

. . .
...

∂g1

∂um

∂g2

∂um
· · · ∂gn

∂um


(2.36)

In OpenMDAO, the term (∇Xf)> is provided to the code. However, matrix deriva-
tives are defined rowwsise instead, according to

∇Xf =



∂f11

∂X11

∂f12

∂X11

· · · ∂f1q

∂X11

∂f21

∂X11

· · · ∂fpq
∂X11

∂f11

∂X12

∂f12

∂X12

· · · ∂f1q

∂X12

∂f21

∂X12

· · · ∂fpq
∂X12

...
...

. . .
...

...
...

∂f11

∂X1n

∂f12

∂X1n

· · · · · · ∂fpq
∂X1n

∂f11

∂X21

∂f12

∂X21

· · · · · · ∂fpq
∂X21

...
...

...
...

. . .
...

∂f11

∂Xmn

∂f12

∂Xmn

· · · ∂f1q

∂Xmn

∂f21

∂Xmn

· · · ∂fpq
∂Xmn



=
∂ vech(f)

∂ vech(X)
, (2.37)
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where vech defines the horizontal vectorization

vech(X) = [X11, X12, . . . X1n, X21, X22, . . . X2n, . . . , Xm1, Xm2, . . . Xmn]> .

The link between the two vectorizing operators is expressed as

vech(X) = vec(X>) = C · vec(X), (2.38)

with C the commutation matrix for X.

2.5.5 Sparsity

In most cases, the jacobian matrix is mostly sparse; for large jacobians, it is neces-
sary to reduce the computation time by taking this sparsity into account. SNOPT
optimizer has been developed with this aim in mind (Gill et al. (2002)); it is based
on SQP method.
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3 Optimization of a spar

In this section, a model of a spar platform will be built and a trial optimization
problem with OpenMDAO will be set up and run. It was originally made by de Renty
(2020). The purpose of it is to get used to the methodology and to take in hand
OpenMDAO, its logic and formalism, plus to run an optimization problem including
hydrodynamic computations and see if the main physical trends are being captured.
However, this problem being really simplified, its results should not be taken a
references: the main purpose is to illustrate the process which will be explored
further for another floater.

3.1 Problem description

A classical circular cylinder shaped spar with catenary mooring lines is under study
here. The geometric parameters are defined in figure 10. The focus is made on the
floater, independent from any effects due to the turbine mounted on it, which will
be represented as a dead weight corresponding to the DTU 10 MW turbine.

The thickness tw of the steel plates constituting the walls is taken as constant equal
to 10 cm over the depth of the spar. The water depth is chosen as 320 m.

Waves in the plane (x, z) are the only source of excitation and only surge and pitch
motions are under study. Therefore, the problem is reduced to a 2D problem.

The hydrodynamic loads are computed by HydroD using first order diffraction-
radiation theory. Aerodynamics is reduced to a constant force equal to the rated
thrust being applied at the hub height and the control system is not implemented.
The floater is considered as a rigid body. The restoring coming from the mooring
lines is linearized around the mean position of the spar. It is provided by de Renty
(2020) as a 2× 2 stiffness matrix most probably computed from the optimized spar
from Hegseth et al. (2020b) under rated conditions.

Then, due to the linearity of the problem, the analysis is performed in the frequency
domain.

The hydrodynamic environment is defined by a JONSWAP spectrum with parame-
ters (Hs, Tp, γ) = (6.2 m, 12.5 s, 3.3).

3.1.1 Detailed presentation

The geometry is built and meshed by GeniE. Then, the added mass and damping
matrices A, B plus the excitation force per unit amplitude Fexc = <(F̄exce

iωt) are
obtained by HydroD based on the mesh file from GeniE. A guess for the viscous
damping matrix Bvisc is made, so that the equation of motion

(M + A)η̈ + (B +Bvisc)η̇ + (K +Kmoor)η = Fexc (3.1)
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d
D

x

z

Figure 10: Description of the spar
(The location of the fairleads is purely illustrative.)

can be solved for η = [η1, η5]> = <(η̄eiωt) in frequency domain, where ω is the
frequency of the incident wave, and t the current time.

Then, the mechanical transfer function H(ω) = [Hη1(ω), Hη5(ω)]>, which gives the
motions from the amplitude of the incident wave, is obtained as

H(ω) =
[
(K +Kmoor)− ω2(M + A) + iω(B +Bvisc)

]−1 · F̄exc(ω). (3.2)

Consequently, the transfer function for the combined motion of a strip dz located
at a distance z from the origin, s = η1 + zη5 is Hs = Hη1 + zHη5 and the transfer
function for the combined velocity is obtained as Hṡ = iωHs.

The next step is to find response spectrum for the combined velocity Sṡ(ω) =
|Hṡ(ω)|2Sw(ω) where the wave spectrum Sw is chosen to be a JONSWAP spec-
trum with parameters (Hs, Tp). Eventually, the standard deviation for ṡ is accessed

by mean of σṡ =

√∫ +∞

0

Sṡ(ω)dw.

This now provides one with the new viscous damping coefficient which stems from
the linearization of the drag force on the strip dz due to the motion of the spar only,
dFD = −1

2
ρwCDDṡ|ṡ| according to:

dFD ' −
1

2
ρwCDD

√
π

8
σṡṡ = −Bviscṡ. (3.3)

This new expression for Bvisc will be compared to the previous one and iterations
will be performed until sufficient convergence.
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3 Optimization of a spar 3.1 Problem description

3.1.2 Objective function

In this report, the objective function to minimize will always be the LCoE. For the
sake of simplicity, the mass of steel will be deemed to be the driving parameter of
the LCoE and will therefore be the objective to minimize.

One can express it by:

msteel =

[
π(D − t)t(d+ fb) +

1

2
πD2t

]
ρsteel (3.4)

3.1.3 Design variables

Since the purpose of this first optimization is not to reach an accurate and exhaustive
model of a spar, but instead to perform a simple optimization, only two design
variables have been selected: the diameter D and the draft d of the floater.

3.1.4 Constraints

Six constraints are being applied:

• The mass of the ballast must be obviously positive mballast > 0.

• It must be located under the free surface d−hballast ≥ 0; it is again a straight-
forward condition.

• The mean pitch angle η5 of the spar under loading conditions should be lower
than 5°. Indeed, for high pitch angles, the turbine’s efficiency decreases.

• The hydrostatic stiffness in pitch K55 has to be greater than 0 in order to
actually get restoring and to ensure the system to be stable.

• The standard deviations for surge and pitch motions, ση1 and ση5 should be
respectively under 5 m and 0.075°. These criteria deal with the quality of the
production of electricity as well as with the loads on the turbine and tower.

Then, to stick to the formalism defined in section 2.5, the problem writes

minimize msteel

with respect to x = (D, d)

subject to mballast > 0

K55 > 0

η5 6 0 under Trated = 1.5 MN

ση1 6 5 m

ση5 6 0.075°.

(3.5)

23



3 Optimization of a spar 3.2 Results

Figure 11: Design space for the optimization of the spar buoy

The feasible space, defined as the intersection of the constraint sets and the objective
set, is represented in figure 11. One should notice that the mass of steel varies little
along the static pitch constraint.

3.1.5 Computation of the derivatives

In this first example, finite differences across the whole model will be used for the
sake of simplicity.

3.2 Results

Since this model is meant to be a training to take hand the procedure, only a few
runs will be performed and trends will be analysed and compared to those obtained
by de Renty who used McCamy&Fuchs equation to compute the hydrodynamic
loads.

The model was run for two different cases, for which the results of the optimization
are presented in table 1. Figure 12 provides a graphical representation for the
optimization process in Run 1.

The statistics of the two runs are fairly similar, even though the two starting points
are different. The optimal values of the objective function (the mass of steel) only
differ by 0.7 % taking Run 1 as the reference, but a more significant shift is observed
for the values of the optimal draft. This is explained by the fact that the most active
constraint is the one on the static pitch, along which boundary the mass of steel
varies very little in comparison to the variation in draft. To improve the agreement
between the two runs, one could decrease the tolerance of the SLSQP solver, set to
ε = 1× 10−2.
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3 Optimization of a spar 3.2 Results

Run 1 2

Starting point (m) (17, 130) (25, 140)

iterations 7 8

function evaluations 13 10

gradient evaluations 7 8

x∗ (m) (12, 72, 132.50) (12, 26, 137.40)

f(x∗) (t) 4668.93 4636.52

Static pitch angle (°) 4.76 5.00

ση1(m) 4.93 4.94

ση5(°) 0.074 0.071

Table 1: Statistics of the optimization of the spar

In his Master’s thesis, de Renty found a different optimal point x∗ = (15.41 m, 102.10 m)
using McCamy&Fuchs equation, valid for fixed vertical circular cylinders, for the ex-
citation loads and the analytic value of the added mass for an infinite cylinder (see
equation 3.6). The calculations are then performed much faster than in the current
case, but should not be as accurate.

A = ρwπ
D2

4

[
d d2/2

d2/2 d3/3

]
. (3.6)

It could also be mentioned that even though Run 2 started outside of the feasible
space, the optimization was performed correctly.

(a) Evolution of the diameter, draft, mass of
steel and static pitch angle during Run 1

(b) Iteration paths for Runs 1 (yellow)
and 2 (purple)

Figure 12: Graphical representation of the runs
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4 Modelling of the floater OO-Star

4 Modelling of the floater OO-Star

The floater OO-Star is developed by the Norwegian company Dr.Techn.Olav Olsen
AS. It is one of the two floaters finally selected by the program LIFES50+ and it
was designed to support the DTU 10 MW turbine. The geometry on which the
present study is based is slightly modified compared to the original one to make it
more easy to modify it: the skirt under the pontoons has been removed and the
pontoons are no longer tapered, which means they keep a constant width equal to
the bottom diameter of the outer columns. A scheme of the updated geometry is
proposed in figure 13a and its complete parametrization is given in report D4.2 Yu
et al. (2018).

(a) Top view of the floater OO-Star
(b) 3D view of OO-Star, mounted by a
turbine (Credits: Dr.techn.Olav Olsen AS)

Figure 13: Description of the geometry of OO-Star

4.1 Model components

Figure 14 gives the parametrization and physical components used to model the
structure. The reference frame is such that the origin O lies at the intersection
of the mean water level and the main axis of the tower, with the z axis pointing
upwards.

The hull is a rigid body submitted to wave excitation, with added mass A(ω),
and which motion is restrained in translation and rotation due to hydrodynamic
restoring, frequency dependent mooring stiffness and radiation damping, and viscous
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4 Modelling of the floater OO-Star 4.1 Model components

Figure 14: Modelling of the problem
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4 Modelling of the floater OO-Star 4.2 Hydrodynamics

damping (referred as Kt(ω), Kr, Bt(ω) and Br(ω)). Surge and pitch motions η1, η5

are the two degrees of freedom (dofs) of the hull, with regards to O.

The tower of the turbine is a flexible body, broken down into a set of n beam
elements, with one translation dof ui and one rotation dof θi at each node. No
structural damping is considered here.

The nacelle and the rotor are reduced to a point mass MRNA with inertia IRNA,
on which a thrust force T (ω) obtained from a spectrum is applied. Aerodynamic
damping is also added, with a linear damper Baero.

In the following sections, each aspect of the model will be tackled in details.

4.2 Hydrodynamics

The dimensions of the platform being large compared to the incoming wave lengths,
the effects of diffraction and radiation will be significant. Furhtermore, a stochastic
linearization of drag forces is performed.

4.2.1 Potential loads

One key aspect of this model is the implementation of diffraction-raditation loads
on the structure, in order to get a more accurate estimation of the hydrodynamic
loads, compared to the classical use of Morison formula. These are found thanks to
HydroD (which in turn uses WAMIT), which requires primarily to define properly
the meshing of the floater.

The hydrodynamic coefficients are compared to those found in deliverable D4.5
A.Pegalajar-Jurado et al. (2018). The added mass and damping matrices of the
structure are plotted in figure 15; they follow the same path as the reference ones.

The counterpart to this choice is that successive calls to WAMIT are time-consuming.
Therefore, a surrogate model of the hydrodynamic coefficients is used. To do so, the
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Figure 15: Hydrodynamic coefficients for OO-Star
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Figure 16: Interpolation of A55 over the design space

design space was sampled, and at each sampled point, a call to WAMIT has been
realised. The result is a hydrodynamic database on which a linear interpolation is
performed for any new point in the design space. Figure 16 gives an overview of the
result of the procedure for the pitch-pitch added mass coefficient.

4.2.2 Viscous effects

Here, the structure is deemed to be brand new, which is to say that no marine
growth is taken into account. The procedure for implementing viscous loads on the
floater is strictly identical to the one from (de Renty de Renty, 2020). That is to say
that the quadratic drag force on a cylinder strip moving with the combined velocity
ṡ submitted to the similarly oriented inflow velocity u, expressed as

dFD =
1

2
ρCDD(u− ṙ)|u− ṡ| (4.1)

according to the classical Morison equation, now becomes

dFD,l = −1

2
ρCDD

√
8

π
σṡṡ (4.2)

by mean of stochastic linearization. In the latter expression, the excitation term has
been deleted since it is assumed negligible in front of the potential excitation loads.
Furthermore, the velocity of the strips is computed as a combination of the surge
and pitch rigid body motions weighted by the geometrical parameters.

Figure 17 displays the elements of the structure which are given drag properties
in this analysis. There are five distinct groups: the pontoons (blue), the heave
plates (red), the conical part of the central column (green), the conical part of the
outer columns (purple) and their circular edge (yellow). With this definition, the
triangular surface in the center of the floater is not given any viscous properties;
however, the heave plates and the ends of the pontoons slightly overlap in such a
way that the overlapping surface is almost equal to the triangular one (see greyed
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4 Modelling of the floater OO-Star 4.2 Hydrodynamics

Figure 17: The different drag elements considered

Member Notation Drag coefficient

Pontoons CD,pont 2.05

Heave plates CD,hp 10.

Center column, conical part* CD,CC 0.716

Outer column, top part CD,OC,top 0.720

Outer column, conical part* CD,OC,con 0.713

Outer column, circular edge CD,OC,edge 0.706

Table 2: Drag coefficients for each member 2

zones), which should then not affect heave motion. It is nonetheless not the case for
pitch, which will be a little overdamped.

The different drag coefficient are provided in A.Pegalajar-Jurado et al. (2018) and
re-written in table 2.

Even though equation 4.2 is made linear, it is a priori not easy to implement since the
strip velocities are obtained solving the equations of motion, which in turn requires
the knowledge of the damping coefficient, function of the standard deviations of
the strip velocities. This behaviour is typically solved by implementing an iterative
scheme, as displayed in figure 18. In OpenMDAO, a nonlinear block Gauss-Seidel
solver is performing the iterative procedure.

2*refers to the elements for which the drag coefficient is averaged over the length of the conical
element.
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4 Modelling of the floater OO-Star 4.3 Aerodynamics

Figure 18: Iterative scheme
for the viscous damping

The details of the equations are provided in de Renty
(2020), section 2.2.2.

4.3 Aerodynamics

4.3.1 First implementation

Initially, the aerodynamics was made very simple: a
point thrust force was applied at hub height, which
amplitude was provided through a thrust force spec-
trum obtained from simulations for different turbulent
wind conditions in SIMA. No rotor was added at that
point, and therefore no controller either. Aerodynamic
damping was modelled by mean of a linear damper.
Figure 19 illustrates this simplified model. Some first
optimization results based on this model will be at the
end of the report.

Figure 19: Simplified aerodynamic model (viewed at hub height)

4.3.2 More advanced model

The aerodynamic model relies on the BEM procedure combined with Glauert cor-
rection to account for compressibility effects for large values of the normal induction
factor an (ı.e. an ≥ 0.2− 0.4), Prandtl’s tip loss factor, which stands for 3D effects
at the blade tips, and hub loss correction factor. Tower shadow and wind shear are
not included. The implementation is detailed in Ning et al. (2015).

The resultant loads of interest are the flapwise shear force Fy, the flapwise bending
moment Mz and the edgewise bending moment My. They are found by integrating
the normal and tangential loads from 2.7 over one blade:

Fy =

∫ R

0

Fndr, Mz =

∫ R

0

rFndr, My =

∫ R

0

rFtdr. (4.3)

Then, the aerodynamic torque, thrust force and tilting moment for the rotor (made
of three blades) are found by:

QA = 3My, T = 3Fy, Mt =
3

2
Mz, (4.4)
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4 Modelling of the floater OO-Star 4.3 Aerodynamics

where the factor 1/2 in the computation of Mt is explained in chapter 5.6 of Half-
penny (1998).

In addition to BEM, a rotor effective wind speed is used to describe the incoming
wind field, which varies over the rotor area, by a single scalar parameter. This
effective wind speed is dependent on the mean wind speed as well as on the type of
resultant load (either thrust T , tilting moment Mt or aerodynamic torque QA).

The procedure to compute these wind speeds is described in Hegseth (2020) and
rewritten here for clarity. It relies on a formula from Halfpenny (1998) which desribes
the single-sided (ı.e. given for positive frequencies) cross spectral density of the wind
speed – which is sampled following the instantaneous position of the blade (known
as rotational sampling) – seen by two blade elements j and k:

S(j,k)
v (ω) =

+∞∑
n=−∞

einψK(j,k)
n (|ω − nϕ̇|)SU (|ω − nϕ̇|) . (4.5)

This spectrum gives the distribution of energy for the local incoming wind speed
seen by one blade element and affected by another one.

In the previous expression, SU denotes the incoming wind speed spectrum, ψ the
azimuth angle between the elements (ı.e. ψ = 2π/3 for a three bladed rotor), and
Kn is the nth real coefficient of the Fourier transform of the coherence function γ:

K(j,k)
n (ω) =

1

π

∫ π

0

γ(ω, dj,k) cos(nθ)dθ (4.6)

where γ gives the degree of correlation between the wind speed seen by two points in
space separated by a distance d, for a given frequency of interest f . The coherence
function is chosen according to IEC standards (IEC), and is displayed below:

γ(f, d) = exp

−12

[(
fd

U

)2

+

(
0.12d

Lc

)2
]1/2

 , (4.7)

with U the mean wind speed at hub height and Lc a coherence length parameter.

The incoming wind spectrum is also chosen based on IEC standards; it is a Kaimal
spectrum for a class B wind turbine (ı.e. with a turbulence intensity I = σU/U =
0.14):

SU(ω) =
1

2π

4σ2
UL/U(

1 + 6
(
ω
2π

)
L/U

)5/3
, (4.8)

with L = 8.1Λ the velocity component integral scale parameter and Λ = 42 m for
the current turbine, the longitudinal turbulence scale parameter.
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Based on the local incoming wind speed spectrum provided by 4.5 and on the results
from BEM, one can access the spectra of the loads on the rotor. When computing
the sum 4.5, only harmonics multiples of three times the rotor speed remain: only
the ones up to 6P were kept. Then, the transfer functions from incoming wind speed
to rotor effective wind speed are found by:

vT (ω) =

√
ST (ω)

(3Fy,v)2Swind(ω)
(4.9)

vMt(ω) =

√
SMt(ω)

(3
2
Mz,v)2Swind(ω)

(4.10)

vQA
(ω) =

√
SQA

(ω)

(3My,v)2Swind(ω)
. (4.11)

In this latter expression, one should notice that the quantities X,v can be accessed

by X,v = −X,λ
Rϕ̇

U2
.

Furthermore, the drag effects due to the wind flow on the tower are taken into
account by one mean quadratic term due to the mean wind speed, and one stochas-
tically linearized dynamic term corresponding to the turbulent variations of the wind
speed. A wind shear with α = 0.14 and a normal turbulent model (NTM) for a class
B turbine are assumed – ı.e. a turbulence intensity I = 0.14 – according to (IEC).
The expressions of these two forces are given below:

fD,0(z) =
1

2
ρairD(z)CDu

2(z) (4.12)

fD(z) =
1

2
ρairD(z)CD

√
8

π
σu(z)u(z) (4.13)

where u(z) = U

(
z

zG,RNA

)α
and σ(z) = (0.75u(z) + 5.6)I.

4.4 Dynamics

4.4.1 Linearization procedure

The procedure to formalize the equations of motion is closely following the one
adopted by Hegseth et al. (2020b). The system is linearized around its operational
point and the equations are solved in the frequency domain. A state-state formu-
lation is used, both for the dynamics of the structure and for the control system.
The association of these two in a closed loop leads to the complete aero-hydro-servo-
elastic model.
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A perturbation in the state and input variables around the operational point, re-
spectively x and u, is considered:

x = x0 + ∆x, u = u0 + ∆u. (4.14)

Along with the state-space formalism, the dynamic equations of motion are ex-
pressed as

∆ẋ = A∆x + B∆u, (4.15)

where A and B denote respectively the state matrix and the input matrix.

4.4.2 Generalized coordinates

The analysis will be performed using generalized coordinates, that is to say a set
of predefined relevant modes Ψ to describe the displacement of the structure. At a
given point of the vertical axis located at a distance z from the origin, the displace-
ment at time t will be obtained by:

w(z, t) = Ψ>(z) · q(t) (4.16)

where q designates the corresponding time dependent wheight factors for each mode.

Here, the first three eigenmodes stemming from the eigenproblem seen before are
selected: two rigid body modes ψ1 and ψ5 standing for surge and pitch, and one
flexible mode ψ7 for the bending of the tower, which was chosen to also include some
pitch (see figure 20c). Consequently, the modal vector is expressed as:

Ψ =

ψ1

ψ5

ψ7

 (4.17)

Figure 20 describes these modes. In addition to them, the rotation of the rotor is
also taken into account. In the rest of the study, the rotor speed will be designated
by ϕ̇.

The mathematical expressions for the two rigid body modes are elementary:

ψ1 : z 7→ 1 (4.18)

ψ5 : z 7→ z

zhub
(4.19)
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(a) Surge (b) Pitch (c) Bending

Figure 20: The three modes for the structures

The expression for the bending mode is obtained by interpolating the bending mode
shape - found by solving the eigenvalue problem - with a fourth order polynomial by
mean of a least square formulation. Since the floater is deemed to be rigid and the
tower is considered as a cantilever beam linked to the floater, the fitting polynomial
and its first derivative need to be constrained at the junction between the floater
and the tower. Figure 21 displays the corresponding polynomial.

The uncommon aspect of the study comes from the non-orthogonality of the modes,
which will give rise to some coupling effects between them.

The dynamic variables of the system are then expressed according to:
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Figure 21: Fitted bending mode

M(ω) =

∫ zG,RNA

zbase

m(z)Ψ(z)Ψ>(z)dz +mplatΨ (zG,plat) Ψ> (zG,plat)

+mRNAΨ (zG,RNA) Ψ> (zG,RNA) + I55,platΨ,z(0)Ψ>,z(0)

+ A11(ω)Ψ(0)Ψ>(0) + A15(ω)Ψ(0)Ψ>,z(0)

+ A51(ω)Ψ,z(0)Ψ>(0) + A55(ω)Ψ,z(0)Ψ>,z(0)

(4.20)

B(ω) = (B11 +Bvisc,11)Ψ(0)Ψ>(0) + (B15 +Bvisc,15)Ψ(0)Ψ>,z(0)

+ (B51 +Bvisc,51)Ψ,z(0)Ψ>(0) + (B55 +Bvisc,55)Ψ,z(0)Ψ>,z(0)
(4.21)

K =

∫ zG,RNA

zbase

EI(z)Ψ,zz(z)Ψ>,zz(z)dz +

∫ zG,RNA

zbase

N(z)Ψ,z(z)Ψ>,z(z)dz

+ (Khydro,55 +Kmoor,55)Ψ,z(0)Ψ>,z(0) +Kmoor,11Ψ(0)Ψ>(0)

+Kmoor,15Ψ(0)Ψ>,z(0) +Kmoor,51Ψ,z(0)Ψ>(0),

(4.22)

where derivatives are denoted by mean of a subscript:

∂f

∂x∂y
= f,xy. (4.23)

In equations 4.20 to 4.22, m is the mass per unit length of the tower, mplat and
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mRNA are the masses of the platform and RNA respectively, I55,plat is the moment
of inertia of the platform around the global y axis, EI is the flexural rigidity of the
tower and N is the axial load in the tower stemming from the mass of the RNA and
the tower weight:

N(zi) = mRNAg +

∫ zG,RNA

zi

m(z)gdz. (4.24)

4.4.3 Equations of motion

All the the content from this section follows the developments from Hegseth et al.
(2020b), with some more details given for the description of the motion.

The driving dynamic equations of motion for the system under study are:

{
Id∆ϕ̈ = ∆QA −Ngear∆QG

M∆q̈ + B∆q̇ + K∆q = Fw + ∆T + ∆Mt + ∆FD,
(4.25)

where Id = Irotor + N2
gearIgenerator is the inertia of the drivetrain, seen from the low

speed shaft, Fw denotes the generalized hydrodynamic excitation loads, T stands for
the generalized thrust force, Mt corresponds to the generalized aerodynamic tilting
moment and FD is the generalized drag force on the tower. The ∆ symbol is used
in agreement with equation 4.14.

These latter variables are found with:

Fw =FexcΨ(0) +MexcΨ,z(0) (4.26)

T =TΨ(zG,RNA) (4.27)

Mt =MtΨ,z(zG,RNA) (4.28)

FD =

∫ zG,RNA

zbase

fD(z)Ψ(z)dz (4.29)

Using a first order Taylor expansion on the terms on the right-hand side of equation
4.25, one can obtain the new form:


Id∆ϕ̈ = QA,v

vQA
−

∑
i∈{1,5,7}

∆q̇i

+QA,ϕ̇∆ϕ̇+QA,θ∆θ −Ngear∆QG

M∆q̈ + B∆q̇ + K∆q = Fw +
∑

x∈{ϕ̇,θ,vT }
T,x∆x+ Mt,v∆vMt + FD,v∆vT

(4.30)

assuming that the effective wind speed for the thrust force can be used for the drag
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force on the tower, which is not exact for the bottom part of the tower which the
blades do not reach.

In the state-space framework and based on the degrees of freedom described previ-
ously, the state vector is defined by:

xs =

q

q̇

ϕ̇

 (4.31)

The inputs for the structural system are split into two parts: one from the environ-
mental loads - namely wind and waves - mentioned as disturbances and expressed by
us,d; the other ones correspond to the outputs of the control system - the generator
torque QG and the collective blade pitch angle θ - and are condensed in the vector
us,c.

The dynamics of the generator and pitch actuator are left for future improvements,
which means that no transient effects are captured when the blade pitch angle or
the generator torque evolve. This analysis makes use of rotor effective wind speeds,
as described in details in Appendix B of Hegseth (2020), in order to express the
spatially-varying wind speed with one single scalar. The rotor effective wind speeds,
which are dependent on the resultant load (either thrust FT , tilting moment MT

or aerodynamic torque QA), are the uniform wind speeds which leads to the same
resultant load as the full wind field. One could interprete them as weighted averages
of the wind speed perceived by each blade element. In the current implementation,
they are expressed as transfer functions which relate the actual wind speed to the
effective one.

Therefore, the control and disturbance input vectors write:

us,c =

[
QG

θ

]
(4.32)

us,d(ω) =

[
v(ω)

Fw(ω)

]
, (4.33)

where v = [vT vMt vQA
]>, the vector of effective wind speeds.

The rotor speed is the only output ys of the structural model, which is provided as
an input to the control system.

Now, equation 4.30 can be expressed in a dense form in the state-space formalism,
displayed thereafter:

{
∆ẋs =As∆xs + Bs,c∆us,c + Bs,dus,d

∆ys =Cs∆xs
(4.34)
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In this system, the state matrix is obtained with:

As =


03,3 I3 03,1

−M−1K −M−1B M−1T,ϕ̇

01,3 − 1

Id
QA,v11,3 QA,ϕ̇

 , (4.35)

the control and disturbance input matrices are computed according to:

Bs,c =


03,1 03,1

03,1 M−1T,θ

− 1

Id
Ngear

1

Id
QA,θ

 , Bs,d =


03,3 03,3[

T,v + FD,v,Mt,v,03,1

]
I3[

0, 0,
1

Id
QA,v

]
01,3

 , (4.36)

and finally the output matrix is simply expressed through:

Cs = [0, 0, 0, 0, 0, 0, 1] . (4.37)

4.5 Control

The procedure chosen for the controller is closely following the one from Hegseth
et al. (2020b). Two controllers are acting independently, depending on the wind
speed. For below rated wind speeds, a generator-torque controller is active; for
above rated ones, a blade-pitch controller takes over. Both controllers ensure the
classical behaviour of the turbine, described in figure 22.

Figure 22: Classical power curve for a wind turbine
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Figure 23: Mean values for θ and ϕ̇

The rotor frequency is first filtered by a first order low-pass filter with corner fre-
quency ωLP to avoid high-frequency excitations of the control system:

ϕ̈LP + ωLP ϕ̇LP = ωLP ϕ̇. (4.38)

The mean values for the rotor speed and the collective blade pitch angle were gen-
erated for the DTU 10 MW turbine by FAST v7, which notably does not account
for blade torsion deformation. They are represented in figure 23 and figure 25 gives
an overview of the control strategy.

4.5.1 Below rated wind speeds

As introduced above, for below rated wind speeds, the generator torque is set to
counterbalance the aerodynamic torque; it is then enforced to evolve quadratically
with the rotor speed so as to get a constant tip speed ratio λ = Rϕ̇0/U which
maximizes the power output:

QG = KGϕ̇
2
LP . (4.39)

KG is the generator torque constant, and it can be obtained by:

KG =
QG

ϕ̇2
LP

=
1

Ngear

P/ϕ̇0

ϕ̇2
LP

' 1

Ngear

1

2
ρairACpU

3/ϕ3
0

=
1

Ngear

1

2
ρairACpR

3/λ3 (4.40)
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Then, a change in the filtered rotor speed affects the generator torque according to:

∆QG =
∂QG

∂ϕ̇
(ϕ̇0)∆ϕ̇LP = 2KGϕ̇0∆ϕ̇LP (4.41)

In the meantime, the blade pitch angle is constant, equal to its optimum value.

4.5.2 Above rated wind speeds

Opposite the previous case, for below rated wind speeds, the generator torque is left
free while the blade pitch angle is controlled by a first order proportional-integral
(PI) controller:

∆θ = η(kp∆ϕ̇LP + ki∆ϕLP ), (4.42)

with kp and ki the proportional and integral gains of the controller, and η the gain
scheduling factor.

4.5.3 State-space formulation

The state-space framework here is such that the input vector is the output of the
structural part – ı.e. uc = ys = [ϕ̇] – and its outputs correspond to the inputs of
this same structural part – yc = us = [QG, θ]

>. The state vector is chosen to be
xc = [ϕLP , ˙ϕLP ]>. The control system is then described as:

{
∆ẋc =Ac∆xc + Bc∆uc

∆yc =Cc∆xc
(4.43)

According to the set of equations which has been described above, the state, input
and output matrices write:

Ac =

[
0 1

0 −ωLP

]
, Bc =

[
0

ωLP

]
, Cc =



[
0 2KGϕ̇0

0 0

]
(below rated)

η

[
0 0

ki kp

]
(above rated)

(4.44)

4.5.4 Tuning of the controller

This section is closely following the methodology from J.Jonkman et al. (2009).
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For above rated wind speeds, the generator torque is expressed as

QG(ϕ̇) =
P0

Ngearϕ̇
, (4.45)

and the aerodynamic torque, which variations with regards to rotor speed are as-
sumed to be negligible, writes

QA(θ) =
P (θ, ϕ̇0)

ϕ̇0

, (4.46)

where P and P0 denote respectively the mechanical power and its rated value.

A first order Taylor expansion of these two expressions leads to:

QG =
P0

Ngearϕ̇0

− P0

Ngearϕ̇2
0

∆ϕ̇, (4.47)

QA =
P0

ϕ̇0

+
1

ϕ̇0

∂P

∂θ
∆θ. (4.48)

Inserting these two expressions in 4.25 and using 4.42 with k̂ = η, the following
second order driving differential equation is derived:

Id︸︷︷︸
mc

∆ϕ̈LP +

[
1

ϕ̇0

(
−∂P
∂θ

)
Ngeark̂p −

P0

ϕ̇2
0

]
︸ ︷︷ ︸

cc

∆ϕ̇LP +

[
1

ϕ̇0

(
−∂P
∂θ

)
Ngeark̂i

]
︸ ︷︷ ︸

kc

∆ϕLP = 0.

(4.49)

The natural frequency and the damping ratio of the controller are then found by:

ωn,c =

√
kc
mc

, (4.50)

ξc =
cc

2
√
kcmc

. (4.51)

Then, for fixed values of ωn,c and ξc, and neglecting the negative damping term as
in Hansen et al. (2005) one can express the two gains according to

k̂i =
Idϕ̇0ω

2
n,c

Ngear

(
−∂P
∂θ

) , (4.52)

k̂p =
2ξcIdωn,cϕ̇0

Ngear

(
−∂P
∂θ

) . (4.53)
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With this procedure, the choice of the appropriate combination of k̂p and k̂i will de-
pend on the sensitivity of aerodynamic power to rotor-collective blade pitch ∂P/∂θ,
which computation is not straightforward. A common strategy is to approximate
this term by a second order polynomial R function of the blade pitch angle:

∂P

∂θ
=
∂P

∂θ
(θ = 0)R(θ). (4.54)

Then, the two gains are expressed as:

k̂i =

ki︷ ︸︸ ︷
Idϕ̇0ω

2
n,c

Ngear

(
−∂P
∂θ

(θ = 0)

) η(θ) (4.55)

k̂p =
2Idξcωn,cϕ̇0

Ngear

(
−∂P
∂θ

(θ = 0)

)
︸ ︷︷ ︸

kp

η(θ), (4.56)

with η(θ) = 1/R(θ) the gain-scheduling factor.

Figure 24 displays the gain-scheduling factor as a function of θ, as fitted by Hansen
and Henriksen (2013). It is expressed as

η =
1

1 + θ/K1 + θ2/K2

, (4.57)

with K1 = 198.32888◦ and K1 = 693.22213◦
2
.
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Figure 24: Gain-sheduling factor as a function of the blade pitch angle

43



4 Modelling of the floater OO-Star 4.6 Global closed-loop system

0 2 4 6 8 10 12 14

λ

−5

0

5

10

15

20

25
θ

(◦
)

Propeller/brake
region

0.000

0.075

0.150

0.225

0.300

0.375

0.450

C
P

(λ
,θ)

Figure 25: Power coefficient and control strategy (red line) in the plane (λ, θ)

In order to avoid an unstable behaviour of the turbine characterized by negative
damping, T.J.Larsen and T.D.Hanson (2007) have proved that the controller needs
to be slower than the motions of the structure. Applied to the present case, the
controller natural frequency needs to be lower than the pitch and tower bending
natural frequencies.

Another approach to access the two gains, which accounts for the dependency over
the tip speed ratio as well, would be to compute ∂P/∂θ by derivating the function
Cp = f(λ, θ) plotted in figure 25 and generated by mean of BEM at the current
operating point.

4.6 Global closed-loop system

Since the inputs of the inputs of the control system are the outputs of the structural
one, and vice versa, a single closed-loop system can be obtained by building the

state vector x =
[
x>s , x>c

]>
:

{
∆ẋ =A∆x + B∆us,d

∆y =C∆x
(4.58)

where the following matrices are used:

A =

[
As Bs,cCc

BcCs Ac

]
, B =

[
Bs,d

0

]
, C = I9. (4.59)
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In the linear framework used here, a sinusoidal load with frequency ω (which can be
either waves or wind presently) will excite the structure and all its state variables
at the same frequency. Therefore, the small variations of the state vector over time
for a given excitation frequency ω can be written in the complex form

∆x(t) = <
(
∆x̃eiωt

)
. (4.60)

Consequently, based on equation 4.58, the transfer function which relates the dis-
turbance vector to the outputs of the system is expressed as:

H(ω) = C (iωI9 −A)−1 B. (4.61)

H is a 9 × 6 matrix which components of various types; the following subdivision
should make it a bit clearer:

H =



Hq,wind Hq,wave

Hq̇,wind Hq̇,wave

Hϕ̇,wind Hϕ̇,wave

HϕLP ,wind HϕLP ,wave

Hϕ̇LP ,wind Hϕ̇LP ,wave


(4.62)

The response spectral matrix is obtained according to:

Sy(ω) = H(ω) · Su(ω) ·H(ω)H (4.63)

where .H denotes the complex transpose or hermitian, and Su is the input spectral
matrix. This latter is expressed by:

Su =

[
Swind 03,3

03,3 Swave

]
(4.64)

where

Swind = SwindI3, Swave = SwaveI3. (4.65)

The input spectral matrix Su is given as a diagonal matrix here under the assumption
that wind and wave processes are uncorrelated.
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Ultimately the response spectra for each output are found on the diagonal of the
response spectral matrix.

The spectra for the blade pitch angle and the thrust force on the rotor can also be
deduced from the list of outputs. Using 4.42 and

∆T =
∑

x∈{ϕ̇,θ,vT }
T,x∆x, (4.66)

we define

Hθ,wind =ηk (kpHϕ̇LP ,wind + kiHϕLP ,wind) · v, U ∈ [Ucut−in, Ucut−out] (4.67)

Hθ,wave =ηk (kpHϕ̇LP ,wave + kiHϕLP ,wind) · Fw, U ∈ [Ucut−in, Ucut−out] (4.68)

HT,wind =T,vvT + T,θHθ,wind · v + T,ϕ̇Hϕ̇,wind · v (4.69)

HT,wind =T,vvT + T,θHθ,wave · Fw + T,ϕ̇Hϕ̇,wave · Fw. (4.70)

The corresponding spectra are then obtained according to

ST =|HT,wind|2Swind + |HT,wave|2Swave (4.71)

Sθ =|Hθ,wind|2Swind + |Hθ,wave|2Swave. (4.72)

4.7 Structural model

4.7.1 Tower

The base of the tower is rigidly connected to the floater, so the motion at node 1
can be deducted from the motion at node 0, origin of the coordinate system and
reference point for surge and pitch motions of the floater. Therefore, a master-slave
relationship is established between these two, according to

v1 =

[
u1

θ1

]
=

[
1 zbase

0 1

]
·
[
η1

η5

]
= B · v0, (4.73)

where the altitude of the base of the tower is denoted as zbase. This relationship sets
the tower as a cantilever beam connected to the floater.

One goal is to find the eigenfrequencie of the structure, and their corresponding
mode shapes. To do so, one needs to assess the total mass and stiffness matrices of
the system.
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Each beam element i of the tower, located at altitude z, features the following mass
and stiffness matrices:

Ki(z) = Kel(z) =
2EI(z)

l3


6 −3l −6 −3l

−3l 2l2 3l l2

−6 3l 6 3l

−3l l2 3l 2l2

 , (4.74)

Mi(z) =
ρsteelA(z)l

420


156 −22l 54 13l

−22l 4l2 −13l −3l2

54 −13l 156 22l

13l −3l2 22l 4l2

 , (4.75)

where E is steel’s Young’s modulus, I is the second moment of area of the cross
section, A is the cross section area and l is the length of one element l = Htower/n
(Htower = zhub − zbase)

To account for the compression load P due to the tower own weight, one could add
to the element stiffness the geometric stiffness defined as

Kg =
P

30l


36 −3l 36 −3l

−3l 4l2 3l −l2
36 3l 36 3l

−3l −l2 3l 4l2

 . (4.76)

Especially at the base of the tower, the compression load is P = (mRNA +mtower) g =
18.973 MN so the ratio between the first diagonal terms for instance, with n = 10,
is:

Kg,11

Kel,11

=
PH2

tower

10EIn2
' 2.4× 10−5. (4.77)

This quantity being very low compared to 1, it will be neglected.

The fore-aft bending moment at the tower base is accessed using Euler-Bernoulli
beam theory, based on the tower deflection due to the flexible mode only (the rigid
body modes do not contribute to any internal forces in the structure). Its expression
is found as

My(z = zbase, t) = −EIy(zbase)
d2w

dz2
(zbase, t)

= −EIy(zbase)
d2ψ7

dz2
(zbase)q7(t), (4.78)

where the coordinate system for a tower section is defined in figure 26.
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Figure 26: Global (filled lines) and local (dotted lines) coordinate systems in a tower
section

This latter expression defines a transfer function:

HMy = −EIy
d2ψ7

dz2
(zbase). (4.79)

Figure 27 gives an insight of it along the tower.

Its spectrum is then obtained as

SMy(ω) = H2
My
Sy,q7 , (4.80)

where Sy,q7 is the response spectrum of the bending degree of freedom.

Besides, the axial stress in a tower section is equal to

σx =
Nx

A
+
My

Iy

D

2
, (4.81)

where Nx is the normal load at the given cross section due to the tower and RNA
weights, and A = π/4 (D2 − (D − 2t)2) the tower cross section at altitude z.

Hence the corresponding transfer function

Hσx = −ED
2

d2ψ7

dz2
(zbase). (4.82)

4.7.2 Mooring system

Kmoor is found by linearization of the restoring forces around the mean position
of the platform for each environmental condition (see section 2.4 from de Renty
de Renty (2020)).
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Figure 27: Transfer function for the bending moment over the tower lenght

This formulation should be sufficient for the mean position of the platform but
will not be able to capture dynamic effects of the mooring lines, notably structural
damping.

No hydrodynamic loads are applied on the lines.

4.7.3 Floater

For the platform, the stiffness matrix is obtained as

Kplat = Kmoor + Khydro, (4.83)

with Khydro full of zeros except for the pitch restoring:

Khydro,55 = ρgIwp,y + ρg∇zB −mplatgzG,plat. (4.84)

However, in order to account not only for the mass of the platform only but also for
the destabilizing term due to the presence of the turbine on top of it, the restoring
coefficient in pitch is corrected according to:

Khydro,55 = ρgIwp,y + ρg∇zB − (mplat +mtower +mRNA)gzG,tot. (4.85)
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The mass matrix of the platform is expressed as

Mplat =

[
mplat mplatzG,plat

mplatzG,plat Iyy,plat

]
(4.86)

and all the quantities are again detailed in de Renty (2020).

Finally, one needs to include the added mass matrix A(ω) in the total mass matrix;
its asymptotic value at high frequency A∞ will be used.

4.7.4 Eigenvalue analysis

Now, the element matrices are assembled into global mass and stiffness matrices M
and K with respect to the numbering of the nodes in figure 14. The reduction of
the number of dofs, due to the master-slave connection between the floater and the
tower gives rise to the following update of the matrices:

M̃ = H> ·M ·H (4.87) K̃ = H> ·K ·H (4.88)

where the transformation matrix H is defined as

H =

 I2

B

In−4

 , (4.89)

with Ip the identity matrix of order p.

For a structure under free oscillation, the displacement pattern at the nodes can be
exressed as r(z, t) = Φ(z) cos(ωt+ α) where Φ is the amplitude of the motion, ω is
the oscillation frequency and α is a given phase angle Then, the mode shapes and
their corresponding eigenfrequencies are found solving the eigenproblem

(K̃− ω2M̃) ·Φ = 0. (4.90)

The eigenfrequencies for this problem are recorded in table 3. The first three fre-
quencies, sorted by increasing magnitude, correspond to surge motion, pitch motion
and bending of the tower. It should be noted that since the mooring stiffness varies
with the environmental conditions, the eigenfrequencies also vary according to these
conditions. However, only the surge motion is affected in a significant way, so the
third digit should be taken cautiously.

mode number 1 2 3

ω (rad s−1) 0.035 0.235 4.90

Table 3: First eigenfrequencies of the system, using a finite element model

These values should be compared to all the excitation frequencies applied on the
structure, stemming from the waves, the wind and the rotating blades. Figure 28
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Figure 28: Available frequency ranges for the motions of the turbine
(Adapted from C.L.Bakmar (2009))

displays the available regions of the frequency axis that are left free. The spectra
for the wind and the waves are respectively a Kaimal and a Jonswap spectra, with
parameters arbitrarily chosen, for illustration purposes only.

As one can observe, the pitch and tower bending frequencies are well located in the
regions almost free of any excitation. For the surge motion, the eigenfrequency will
inevitably lie in a region slightly excited by wind. For OO-Star, the design of the
tower is in the stiff-stiff region.

As a comparison, deliverable D4.5 A.Pegalajar-Jurado et al. (2018) provides the
following eigenfrequencies for the structure, which is however entirely made of con-
crete:

mode number 1 2 3

ω (rad s−1) 0.034 0.199 4.687

Table 4: First eigenfrequencies of the system from A.Pegalajar-Jurado et al. (2018)

As a verification of the agreement between the modal formulation and the more
classic one developed in section 4.7.4, the eigenvalues of the system are computed
again based on the generalized matrices; they are stored in table 5.

mode number 1 2 3

ω (rad s−1) 0.035 0.228 4.46

Table 5: Eigenfrequencies of the system from generalized matrices

The agreement between the two models is satisfying; the eigenvalues for surge motion
match very well; for pitch, the value from the generalized approach is 3% lower than
its classical counterpart while for the bending mode, really sensitive to its polynomial

51



4 Modelling of the floater OO-Star 4.8 Fatigue analysis

fit, a −9% decrease is observed (the reference being the classical approach). One
should keep in mind that the generalized formulation, which only accounts for the
first three modes, should be a bit less accurate than its classical counterpart which
considers additional modes. However, the former surpasses the latter in terms of
computational efficiency.

4.8 Fatigue analysis

Fatigue analysis is an essential aspect of the study of any structure to assess its
lifetime. Here, linear cumulative damage is assumed, which is to say that the damage
resulting from N stress cycles with p amplitudes ∆σi individually repeated ni times
is:

D =

p∑
i=1

ni
Ni

(4.91)

where Ni is the number of cycles of amplitude ∆σi until failure of the structure and∑p
i=1 ni = N .

The data Ni are provided by the S-N curves in air from DNV-GL (2014), displayed
in figure 29. The focus is made on axial stress only.

The damage is computed by mean of Dirlik’s formula from Dirlik (1985). Based on
the stress response spectrum and some empirical factors, it fits to the power density
function of the stress cycles a combination of an exponential and two Rayleigh
distributions. The damage over a time period of T seconds, with a wall thickness t
is expressed as

Figure 29: S-N curves in air from DNV-GL (2014)
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DDK =
vpT

K
(2
√
m0)m(G1Q

mΓ (1 +m)

+ (
√

2)m (G2R
m +G3) Γ(1 +

m

2
))

(
t

tref

)mk
, (4.92)

where

G1 =
2 (xm − α2

2)

1 + α2
2

, G2 =
1− α2 −G1 +G2

1

1−R , G3 = 1−G1 −G2,

Q =
1.25 (α2 −G3 −G2R)

G1

, R =
α2 − xm −G2

1

1− α2 −G1 +G2
1

(4.93)

and

α2 =
m2√
m0m4

, xm =
m1

m0

√
m2

m4

, vp =
1

2π

√
m4

m2

. (4.94)

In equation 4.92, the parameters m and K = ā are defining the part of the S-N
curve below N = 107 cycles. tref and k are thickness reference parameters provided
in DNV-GL (2014).

In the previous equations, mn refers to the nth moment of the stress response spec-
trum, defined by

mn,X =

∫ ∞
0

ωnSX(ω)dω. (4.95)

Summing the contribution of the 21 sea states listed in table 18 from Krieger et al.
(2015a) (replicated in table 2 from de Renty (2020)) weighted by their correspond-
ing probability of occurrence, one can access the 25 year fatigue damage for the
structure.

4.9 SIMA model

A high-fidelity hydro-aero-servo-elastic numerical model of OO-Star has been pro-
vided and extended: it will be used to challenge the linear model developed here.
This model was built on SIMA (Advanced Analyses of Marine Operations and Float-
ing Systems), software developed notably at Marintek.

The hydrodynamic loads are based on the added mass, damping and hydrostatic
stiffness matrices computed by HydroD. Viscous effects are modelled with Morison’s
equation, with the same subdivision of the floater as in the model developped in this
report.
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Structural model External loads

Blades
Beam elements with 26 foil-
shaped cross sections

Turbulent wind with wind
shear; BEM with Glauert’s and
Prandtl’s corrections, dynamic
wake, dynamic stall, tower
shadow, skewed wake

Hub Rigid body No wind loads

Nacelle Beam elements No wind loads

Tower
Beam elements with 27 circular
cylinder cross sections

Drag forces due to turbulent
wind (in rotor region), or mean
wind (below lowest blade pass-
ing point)

Hull
Rigid body; master slave con-
nections to tower base and
mooring lines

Potential flow theory + drag
forces (same model as in figure
17)

Mooring lines
Beam elements made of a con-
stant circular cylinder cross sec-
tions

Morison equation

Anchors
Fixed along the 6 dofs; flat bot-
tom contact at the seabed

Table 6: Details of the model in SIMA

The blades and the tower are modelled with beam elements. The hull is a rigid body
connected to the tower by a master-slave link.

The wind conditions are given as a non-homogeneous three dimensional wind field
generated with TurbSim, with the Normal Turbulence Model (NTM) implemented
for a class B turbine. A Kaimal spectrum is used and a power law profile with
exponent 0.14 models the vertical wind shear.

The controller for the DTU 10 MW is included with some adjustments made to
account for the fact that the turbine is a floating one.

The model is detailed in figure 30 and in table 6. The black dots are supernodes
between which are drawn lines, made of beam elements. The dotted lines represent
master-slave connections between nodes. Three rigid bodies are added to the slender
system: the hub, the nacelle and the floater (connected to a dummy line in order
to include its properties in the force model). The shaft is split into two segments
separated by a flex joint replicating the generator torque: on the left side is the
rotating low speed shaft; on the right side, the high speed shaft is motionless. The
contacts with the seafloor at the anchor location are defined by normal stiffness
coefficient.
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Figure 30: SIMA environment
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4.10 Model validation

To check the validity of the previously defined model, the Response Amplitude
Operators (RAO) for surge and pitch motions were compared to those computed
by HydroD/WAMIT. These RAOs will be denoted as ’wave RAOs’ to highlight the
fact that they reflect the behaviour of the structure under wave loads only.

The geometry of the meshed structure, its total mass, radius of gyration ry around
the y-axis (defined such as Iyy = ρw∇ry|ry|) and center of gravity (CoG), including
the turbine, were provided to HydroD as well as the mooring stiffness matrix for
U = 0 m s−1. Moreover, since WAMIT does not take into account viscosity, the drag
coefficients were set to zero in SIMA and in the linear model to make the comparison
easier.

In SIMA, a set of monochromatic waves with frequencies in the wave frequency
range was provided as an input; the responses in surge and pitch were then Fourier
transformed and the corresponding amplitude was reported.

The RAOs are plotted in figure 31; as one can see the match is really good for for
both motions, with a slight shift on the pitch natural period. For surge, with natural
frequency at 0.035 rad s−1, a jump in the RAO is observed at roundabout 0.2 rad s−1

corresponding to pitch natural frequency. Symmetrically, a peak is observed in the
pitch RAO at surge natural frequency. These two behaviours are due to coupling ef-
fects between the two motions. They are however significantly damped once viscous
damping is accounted for.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

ω (rad/s)

0

1

2

3

4

5

|η 1
,a
/A
|(

m
/m

)

WAMIT

Generalized

SIMA

(a) Surge

0.0 0.2 0.4 0.6 0.8 1.0 1.2

ω (rad/s)

0

1

2

3

4

5

6

|η 5
,a
/A
|(

d
eg

/m
)

WAMIT

Generalized

SIMA

(b) Pitch

Figure 31: Comparison of the transfer functions from the linear model and WAMIT

56



5 Analysis and optimization of OO-Star

5 Analysis and optimization of OO-Star

In this section, the previously exposed set up will be used to perform the analysis
of the floater with variable geometries and environmental conditions. Ultimately,
some optimization runs will be performed.

5.1 Model architecture in OpenMDAO

The model layout is diplayed in figure 32 following the Extended Diagram Structure
Matrix (XDSM) developed in Lambe and Martins (2012). As the name suggests,
this layout is an extension of the diagram structure matrix, also known as ”n2

diagram”, widely used in engineering and project management in the second half of
20th century. This one is specifically aimed at describing an optimization framework.

The rounded blue box stands for the optimizer, green boxes on the diagonal are
the different analysis steps of the process, grey parallelograms are input and output
data for each step and white parallelograms are fixed input parameters. The lines
define the dependecies between the data. In the upper triangular part, the diagram
reads from the top to the bottom and from left to right. In the lower triangular
part, the direction of reading is the opposite to the previously exposed, meaning
from the bottom to the top and from right to left, in such a way that the diagram
defines a closed loop system. One should notably notice the presence of the iterative
evaluation of the linear viscous damping coefficient with a subdiagonal box.
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5.2 Study of three different designs

Here, three different floaters, with variable pontoon length Lpont and top diameter of
the outer columns DOC,top, will be analysed. The purpose of it is to check the ability
of this framework to capture some first trends in the behaviour of the structure.

Figure 33: Top view of the three floaters: D1 in black, D2 in red, D3 in green.

5.2.1 Presentation

The three floaters selected for this study are defined as follows: D1 is the original
design of the platform, D2 features an increase by 20% of Lpont and DOC,top, and D3
has Lpont increased by 20% and DOC,top decreased by 20%. The numerical values for
the geometry are presented in table 7 and figure 33 gives an insight of their aspect.

For each design, the linear model was run once, without optimization, under three
different environmental conditions defined in Krieger et al. (2015b) for the fatigue
analysis, and reported in table 8.

For the JONSWAP spectrum, the parameter γ = 3.3 was used.

In the meantime, 1-hour time-domain simulations for these three designs were run
in SIMA. The spectra were directly computed from the time series.

Design D1 D2 D3

Lpont (m) 37 44.4 44.4

DOC,top (m) 13.4 16.08 10.72

Table 7: Definition of the three designs for OO-Star
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Name U (m s−1) Hs (m) Tp (s) (ωp) (rad s−1)

EC1 8 1.67 8 0.785

EC2 12 2.2 11 0.571

EC3 20 8.31 14 0.449

Table 8: Definition of the three environmental conditions

Surge Pitch Bending

D1 0.0350 0.228 4.46

D2 0.0328 0.316 4.19

D3 0.0344 0.190 4.24

Table 9: Eigenfrequencies from generalized matrices for each design in rad s−1

The results to compare are the motion spectra of the system, along with the spectra
for the bending moment at the base of the tower, the rotor speed, the collective
blade pitch angle and the thrust force over the rotor

As an indicator, table 9 gives the values of the eigenfrequencies from the generalized
matrices for each design. It is interesting to notice how much the pitch motion varies
with the geometry.

5.2.2 Results

SIMA’s results are plotted with a solid line, while the ones from the linear model
are represented by a dashed line.

Surge The spectra for surge are displayed in figure 34. Each row stands for one
design D, specified on the left, and each column corresponds to one environmental
condition EC. For each combination (D,EC), two windows are used; the one on
the left displays the region of the spectrum with most energy; the window on the
right displays the whole region of interest in logarithmic scale so as to highlight the
different orders of magnitude of the peaks.

Wind is responsible for the excitation at low frequencies (ω ≤ 0.1 rad s−1) while
waves excite the structure around the peak frequency ωp which varies depending
on the sea-state, from 0.45 rad s−1 for EC3 to 0.79 rad s−1 for EC1 (see table 8).
In each configuration, three main peaks are observed: one located at surge natural
frequency, another one at pitch natural frequency and the last one located at wave
peak frequency.

For the first two environmental conditions, the first peak is overestimated compared
to SIMA’s analysis; for EC3, the trend is slightly reversed, even though the order of
magnitude between SIMA and the linear model is the same, but one should notice
that the height of the peak in this case is significantly smaller than for EC1 and
EC2.
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Figure 34: Spectra for surge motion
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Figure 36: Spectra for the bending moment at the base
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Figure 37: Spectra for the thrust force
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Figure 38: Spectra for the collective blade pitch angle
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Figure 39: Spectra for the rotor speed
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In that region region of the spectrum and for this specific motion (surge), the loca-
tion of the peak is very dependent on the value of the mooring stiffness, while its
magnitude mostly depend on viscous damping on the floater and on the dynamics of
the mooring system. Due to the linearization of the former parameter, mean hydro-
dynamic loads are not captured which affects the evaluation of the mean position
of the platform. Consequently the dynamics of the mooring lines, which relies a lot
on the the position of the floater, cannot be assessed correctly. Furthermore, the
mooring system in the present model does not feature any damping property.

In the wave frequency region, the agreement between SIMA and the linear model
is really good; this was however expected since the modelling process for the wave
excitation in both models are strictly the same.

The third corresponds to the displacement in surge induced by pitch motion (in other
word the coupling between the two motions). It is captured by the two models, with
an overestimation again for the linear model, due to a lack of aerodynamic damping
associated with a too simple controller.

Pitch Figure 35 displays the pitch spectra. As for surge, three peaks are recorded.
A first one close to 0.05 rad s−1, due to wind excitation and corresponding to the
pitch angle induced by surge motion (coupling pitch-surge); this time, it is almost
the largest peak. A second peak is present at pitch natural frequency, excited by
wind (the very eastern part of the wind spectrum). Finally, the third peak, due to
waves, is found around waves peak frequency.

Again, the agreement between SIMA and the linear model at wave frequency is very
well assessed. As for the coupling surge-pitch at pitch natural frequency observed in
the surge spectra, the peak at pitch natural frequency is overestimated by the linear
model; again, the amplitude of the peak depends mostly on the gains for the PI
controller of the collective blade pitch angle, associated with aerodynamic damping.
The amplitude of this peak varies significantly with the environmental conditions,
and more specifically the wind speed: indeed, the lower the wind speed, the narrower
the width of the wind spectrum (see 41). Thus, for EC1, the excitation is not as
important as for EC2 and EC3. It is interesting to notice that for D2, this peak –
located at 0.316 rad s−1 as seen in 9 – merges with the wave excitation, leading to
a trough in the spectrum at ωp = 0.47 rad s−1. The result is a sort of equivalent
excitation at a frequency located in-between pitch natural frequency and wave peak
frequency.

The first peak is acceptably evaluated by the linear model, with a little overestima-
tion however. One could notice that this peak almost does not exist with condition
EC3. The reason for it is that for these environmental conditions, the dynamic part
of surge is much lower that for the two other conditions, as seen in figure 34.

Bending moment The spectra for the bending moment at the tower base, avail-
able in figure 36 differ significantly from the first two ones (surge and pitch). They
feature a large number of peaks which will be interpreted and discussed. Most of
the energy content of the spectrum is located at wind frequencies.
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Figure 40: Wave excitation moment for design D1.

A first peak is observed at pitch natural frequency; for conditions EC2 and EC3, this
peak is one of the two largest. It is associated with the pitch motion of the platform,
which will generate acceleration in the tower and therefore a moment at its base.
Again, because of underestimated aerodynamic damping, this peak is larger for the
linear model than for SIMA.

In each case, a series of three peaks follows, corresponding to the contribution of
waves to the bending moment. This contribution is highlighted in figure 40 which
displays the excitation moment from diffraction-radiation. Their amplitude depend
on the combination (D,EC).

The variation of the pressure close to the tower due to the periodic rotation of the
blades is responsible for the excitation of the bending moment at ω3P = 3ω1P . This
one is overestimated by the linear model, as explained in Hegseth et al. (2020b). For
EC1, the peak at 6P is also visible, right before the largest peak at tower natural
frequency, excited by some residual energy from either the 3P or the 6P excitations
(see figure 37 at these frequencies). Even though this peak is captured by both
models, it is largely exagerated by the linear model. The reasons for it are:

• the excitation loads at 3P are overestimated;

• the controller does not feature any damper for the tower mode;

• the connection between the floater and the tower is assumed perfectly rigid
while for large values of the bending moment, deformations need to be ac-
counted for;

• no structural damping has been taken into account when modelling the tower.

One should notice that designs D2 and D3 feature a natural period for the tower
mode close to the 6P frequency for condition EC1, which gives rise to a larger
response than for EC2 and EC3.

Thrust force The thrust force (figure 37) has logically most of its energy in the
wind frequency region. The motions of the platform contribute to an increase in
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Figure 41: Effective wind spectra for the three environmental conditions

the thrust, hence the peaks at pitch natural frequency and waves peak frequency.
These peaks are mostly visible for EC3 since the excitation due to wind has a lower
order of magnitude: indeed, for U = 20 m s−1, in order to maintain a constant
power output (cf 22), thrust is significantly reduced compared to rated and close to
be rated conditions. The pressure variation due the rotation of the blades is also
responsible for an increase in the thrust at 3P. Again, because of an overestimation
of pitch motion at pitch natural frequency, the thust force at this frequency is not
well captured.

Blade pitch angle As implemented in the control part, for below rated wind
speeds, the blade pitch angle is kept constant (figure 38). For above rated ones, all
the energy is located at wind frequency. One can notice that the pitch actuators
are more used close rated power than significantly above by comparing the orders
of magnitude for EC2 and EC3. For EC2, the pitch controller is slightly affected by
the surge motion of the platform, which modifies the wind speed seen by the rotor.
This phenomenon is captured by both models. In total, the agreement between
SIMA and the linear model is good.

Rotor speed As for the blade pitch angle, the excitation for the rotor speed (figure
39) comes mostly from wind, with however a small contribution from waves for EC3.
Again, close to rated wind speed, the variations are larger than for U = 20 m s−1,
where the state is more steady.

5.3 Exploration of the design space

A prerequisite to any optimization attempt is the analysis of the system, its objective
function and constraints, in the space defined by the chosen design variables. In the
current model, this design space is the plane (DOC,top, Lpont). Figure 42 displays the
distribution of the mass of steel used in the floater over this space. Logically, the
larger the design the heavier, so the objective is to get good performances of the
floater while keeping its mass reasonably low.
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Apart from the objective function – the mass of steel – the main variables of interest
will be the expected three-hour maximum values for surge, pitch as well as for the
tower base bending stress. Assuming that these processes are stationary, normally
distributed and narrow-banded, their expected three-hour maximum amplitude are
accessed via:

X3h =
√
m0,X︸ ︷︷ ︸
X̂=σX

[√
2 logN3h +

0.5772√
2 logN3h

]
+ X0︸︷︷︸

X̄

, (5.1)

where X0 is the mean value of X and N3h the number of individual maxima in three
hours in the response for X. It is obtained with

N3h =
T3h

Tz
=

10800

2π
√
m0,X/m2,X

, (5.2)

mi,X defining the i-th moment of the response spectrum as defined in equation 4.95.

The mean values are accessed solving static equilibrium:

X0 = K−1
(
T0 + FD,0

)
(5.3)

where all the parameters were defined previously.

In the case of the axial stress in the tower, the normal stress component N/A – N
being defined in 4.24 and A being the local cross section of the tower – needs to be
added to the mean value from 5.3

As the properties of the system response vary with the excitation, the exploration
is performed for different environmental conditions, which are stored in table 8.
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Figure 43: Design space analysis for EC1. Mean values in the first column, standard
deviations in the central one, expected maximum three hour value on the right.

For each condition, the mean value, standard deviation and three-hour expected
maximum value for surge, pitch and tower base bending stress are represented. The
values obtained with SIMA are added to the graphs for the three designs reported
in table 9; for conveniency, the corresponding value from the linear model is added
in small characters. The areas for which linear theory is no longer valid due to
excessively large values (mostly for pitch) are hashed with ’x’ symbols; those out of
scope are hashed with ’/’ symbols.

First, in terms of mean values, the larger the design, the larger its displacement
in surge, the smaller its rotation in pitch and consequently the smaller the mean
stress at the tower base. These trends follow what one could expect. Furthermore,
comparing these trends between the three environmental conditions, the mean values
are largest for the close to be rated condition EC2 where the thrust on the rotor
reaches its maximum; then the results for EC1 are slightly larger than the ones for
EC3, which is in agreement with the magnitude of the thrust force on the rotor for
these wind speeds, as illustrated by figure 46.

The agreement between SIMA and the linear model is quite good for pitch and
bending stress where the trends between the three designs are pretty much cap-
tured; nonetheless, a mismatch between the trends for designs 1 and 3 is often
observed. For these two variables, the linear model tends to overpredict the mean
response. Small designs will logically feature a larger mean pitch angle, and there-
fore a larger absolute value of the tower base bending stress since the arm of the
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Figure 44: Design space analysis for EC2
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Figure 45: Design space analysis for EC3
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Figure 46: Thrust force on the rotor versus wind speed. The red dots are placed at
the three environmental conditions elected for this analysis.

moment associated with the nacelle weight is increased. For surge, a more significant
shift is observed between SIMA and the model which underestimates the response:
designs D1 and D3 are considered as equivalent by the latter, while SIMA predicts
an increased displacement for D3. This is probably connected to mean viscous loads,
not included in the model due to linearization of the drag force: for D3, the frontal
area of the floater is increased by 8.2% compared to D1, which would result in
larger mean loads. In addition to this, the formulation of the mooring stiffness only
accounts for the mean position due to wind, while for severe conditions like EC3,
the viscous term shall contribute significantly to the mean position. However, one
should keep it mind that surge is not the limiting motion in general (even though it
matters notably for the design of the mooring lines), compared to pitch.

The focus will now be on the standard deviations. For the first two environmental
conditions EC1 and EC2, the trends are comparable to the ones observed for the
mean values: large designs lead to large displacements in surge and smaller responses
for pitch and bending stress. The case of condition EC3 will be dealt with afterwards.

The evaluation of surge is again not really accurate; this time it is associated with the
simplified model for the mooeing system, which does not account for dynamic effects
linked to the floater frequency dependent position. For the first two environmental
conditions, the standard deviation is overestimated while it is slighty underestimated
for EC3: this is in agreement with figure 34, where large peaks are observed for EC1
and EC2 but smaller ones are displayed for EC3. Indeed, the inertia of design D2
is significantly larger than the ones from designs D1 and D3, which tends to reduce
the amplitude of the variations around the mean position.

The assessment of pitch standard deviation is in turn pretty good but still slightly
overestimated as the peaks in figure 35 suggest. The reasons for this were already
explained in section 5.2.2: they are mostly connected to aerodynamic damping,
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which is not sufficiently well modelled. The very large peak in the bottom right
corner in figure 35 is actually part of a whole area in the neighbourhood of (D =
11 m, L = 42 m) with larger values than the adjacent regions, as displayed in figure
45. This pattern has been shown to be correlated to the specific wind speed U =
20 m s−1 and appears to be very sensitive to variations of the PI gains. Under these
conditions, the controller properties are found to be

Tn,c = 2π/

√√√√ki
∂QA

∂θ
(U = 20)

Id
= 48.40 s

ξc =
kp
∂QA

∂θ
(U = 20)Tn,c

4πId
= 0.90.

Its natural period in the considered area is larger than the one for pitch (see figure
47), which excludes an instable behaviour resulting from a controller being too fast
compared to pitch motion.

In the case of condition EC3, one should notice that the pattern features large
values for large designs, which was not observed with the two other conditions. This
is connected to the wave period which matches the floater natural period for large
designs, as illustrated in figure 47.

As for the bending stress, the standard deviations are too large compared to SIMA,
mostly for conditions EC1 and EC3 where the tower response is overamplified by
the model as shown in figure 37. For condition EC2, this overestimation being less
stressed, the agreement is better. For condition EC3, the trends are correctly cap-
tured at least, and in connection with pitch motion, large designs lead to increased
values for stress. The same trend is given by the model for EC1 and EC2; this is
linked to the fact that large designs feature lower natural periods for the bending
mode, which are then more excited by the 3P peak of the wind spectrum. SIMA
however predicts lower values for design D2. Again, this mismatch stems from the
overestimation of the amplitude of the tower mode, associated with the too large
values for the 3P excitation mostly and the lack of built-in tower damping in the
controller.

The expected maximum three hour values are mostly driven by the standard de-
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Figure 48: Heave natural period over the design space

viations, with some adjustments due to the mean values, as expressed in equation
5.3.

Another important parameter for the design of the platform is its natural frequency
in heave, which needs to be pushed away from the wave frequency region. Even
though heave is not included in the model, its natural period can be easily accessed
by

T3 = 2π

√
ρwg∇+ A33(ω3)

K33

. (5.4)

Its computation is made iteratively so that the frequency at which the added mass in
heave A33 is evaluated is equal to the natural frequency in heave. Figure 48 shows
the value of T3 over the design space, with a hashed region corresponding to the
wave frequency range.

Due to the overestimation of the tower bending moment, the fatigue analysis has
not been performed since it was leading to unrealistic values.

5.4 Some optimization attempts

For the sake of illustrating the optimization process, some runs have been performed
with a simplified aerodynamic model, depicted in section 4.3.1. This has required to
provide every single derivative with regards to the variables which depend on either
DOC,top or Lpont.

The optimization was performed with environmental conditions EC1 and with two
inequality constraints, on the expected three hour maximum values for surge and
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Figure 49: Optimization paths for two sets of constraints. Hashed areas are the
forbidden zones for pitch; blue lines are the isolines for surge.

pitch. The results are shown in figure 49. The green dot is the starting point while
the orange one corresponds to the optimized design.

As one can see in this simple case and for this set of constraints, the constraint
on pitch is the most limiting one. In the first case (figure 49a), both constraints
are active, while in the second case (figure 49b) only the constraint on pitch is.
Case two leads to a lighter design but of course other parameters including the
mean positions, the bending stress and rotor speed standard deviation needs to
be assessed. Furthermore, a complete set of environmental conditions would be
required.

The ultimate developments in the linear model proposed in this report would allow
one to perform some optimization runs with the complete model. These were not
executed due to lack of time.
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6 Conclusion and recommendations for further

work

In this report, a few theoretical aspects and recommended practices relevant for the
design of FWTs were first reviewed. These aspects notably include a background to
perform design optimization. A first illustrative attempt was made on a simple spar
model, previously defined by de Renty (2020), with a good behaviour of the process
for two design variables only.

The floater OO-Star has been introduced and its linearized physical model inspired
by the work from Hegseth (2020) has been explained in details. It notably fea-
tures automated hydrodynamic computations, validated against WAMIT, and an
aerodynamic model relying on an effective wind speed formulation.

Validations on the response in surge, pitch and bending have been performed against
a high-fidelity model in SIMA. The models has shown a good potential in the as-
sessment of the motions of the system, with some inaccuracies to tackle however.

• The linearization of the hydrodynamic viscous effects results in a bad evalua-
tion of the surge mean value.

• The simplified controller is not able to provide enough aerodynamic damping,
leading to overestimations in the dynamic pitch angle.

• The mooring system , modelled with a stiffness matrix, function of the wind
speed, does not capture dynamic effects due to floater motions. This leads to
errors in the assessment of the dynamic variations of surge.

• The effective wind speed formulation overestimates the magnitude of the 3P
excitation, leading to an overwhelming response of the first tower bending
mode, which would also benefit from an implementation of a damping feature
in the controller as well as from accounting for structural damping.

The exploration of the design space which has followed, relying on two geometrical
design variables, has displayed good characteristics with the same limitations as
exposed above. It has notably helped identifying critical regions for the design,
where the pitch angle would go beyond the threshold for the validity of linear theory.

The stage of development of this tool is still to early to use it for actual design pur-
poses in an engineering office but a few improvements could make it really interesting
for the first conception steps of any new design.

As future work, one could try to solve the issues previously mentioned, with a
specific focus on the controller. An accurate fatigue analysis would be feasible once
the preditction of the tower bending stress is made more realistic. It would also
be interesting to add some design variables (the first one being the draft of the
platform), before actually performing optimization runs. Ultimately it would be a
great improvement to build a generic tool which would be able to process any floater
geometry, specified as an input.
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Häfele, J. and R.Rolfes (2016). Approaching the ideal design of jacket substructures
for offshore wind turbines with a particle swarm optimization algorithm.

(IEC), I. E. C. (2014). Iec 61400-1 wind turbines – part 1: Design requirements.
Technical report.

J.Jonkman, S.Butterfield, W.Musial, , and G.Scott (2009). Definition of a 5-mw
reference wind turbine for offshore system development. Technical report, NREL.

J.M.Jonkman and D.Matha (2011). Dynamics of offshore floating wind tur-
bines—analysis of three concepts. Wind Energy, 14(4):557–569.

Karimi, M., Hall, M., Buckham, B., and Crawford, C. (2017). A multi-objective
design optimization approach for floating offshore wind turbine support structures.
Journal of Ocean Engineering and Marine Energy, 3:69–87.

Krieger, A., Ramachandran, G. K. V., Vita, L., Alonso, P. G., Almeŕıa, G. G.,
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