
O
le Brynjar  H

. Paulsen
Routing m

odule in a discrete-event sim
ulation platform

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e 
Te

ch
no

lo
gy

M
as

te
r’s

 th
es

is

Ole Brynjar Helland Paulsen

Development of a routing module in a
discrete-event simulation platform for
ship design assessment

Master’s thesis in Marine Technology

Supervisor: Bjørn Egil Asbjørnslett

December 2020





Ole Brynjar Helland Paulsen

Development of a routing module in a
discrete-event simulation platform for
ship design assessment

Master’s thesis in Marine Technology
Supervisor: Bjørn Egil Asbjørnslett
December 2020

Norwegian University of Science and Technology
Faculty of Engineering
Department of Marine Technology





In memory of Hedvig Kathrine Helland Paulsen





Summary

In recent years, simulation had been investigated as a tool for evaluating ship performances
in a realistic environment. The objective of this thesis is creating an algorithm for gener-
ating routes between any two ports, and to implement the route-finding algorithm in a
simulation model for evaluating vessel performance. Route-finding algorithms that model
land areas as polygon obstacles usually depends on generating graphs between the nodes
of the obstacle polygons, before the shortest route can be found with a shortest path algo-
rithm. For long-distance routes, a challenge with this approach is the great number of steps
needed to both create the graphs and solve the shortest path algorithm. A new heuristic
route-finding algorithm is proposed, intended to limit the number of steps needed to find
an acceptable route. The algorithm relies on shoreline vector data of GSHHG-format
and sailing path polygons describing navigable paths around each shoreline polygon. The
heuristic approach involves creating routes around one land area at the time in an itera-
tive manner, while applying a smart selection of which land area to circumvent at each
iteration. MATLAB is used for the implementation of the algorithm.

Results are presented for routes between all combinations of the 20 predefined ports,
and for routes between a selection of custom defined port locations. The results were
evaluated by visual inspection with the objective of feasible approximate shortest path
routes. The majority of the routes between the predefined ports, 62.6 %, were evaluated
as acceptable. Of the remaining non-acceptable routes, at least 85.9 % are amended by
an option to modify the resulting routes. The results illustrate a trade-off between short
processing time and the probability of optimal results. A small sample of acceptable routes
compared to routes generated by an online service, shows a good match for between the
results.

A new simulation model for evaluating vessel performance incorporating the route-
finding algorithm, is presented. The simulation model is created with MATLAB and
Simulink and is based on a simulation model built for a previous masters thesis by NTNU
students. Hindcast met-ocean data is used directly to ensure more realistic rendering of
the environmental conditions in the new model, while a Markov chain approach was used
in the original model. The results presented confirms the new models ability to give a
more realistic representation of the met-ocean conditions. A more realistic model of the
met-ocean conditions seems to be gained at the cost of a significant increase in the com-
putational time demand for running a simulation. Reducing the met-ocean data loaded to
Simulink could be a beneficial pursuit in that regard. The methods for calculating resis-
tance and estimating speed loss in waves are kept from the original model. The results
indicate that the vessel performance parameters with the two models responds in a similar
manner, in similar conditions. Evaluating the results from three case studies give valu-
able information about the model behaviour, but the output performance of the simulation
model should ideally be validated against system output data.
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Sammendrag

De siste årene har simulering blitt undersøkt som et verktøy for å evaluere ytelsen til skip
i realistiske vær- og bølgeforhold. Målet med denne oppgaven er å lage en rute-algoritme
som kan implementeres i en simuleringsmodell for evaluering av fartøyets ytelse. Rute-
algoritmer som modellerer landområder som polygoner, er vanligvis avhengig av å lage
grafer mellom nodene til alle polygonene før standardalgoritmer for å finne korteste vei
i en graf kan benyttes. For langdistanseruter er det store antallet trinn som trengs ved å
bruke denne tilnærmingen en utfordring, både for å lage grafene og for å løse den korteste
rute-algoritmen. Det foreslås en ny heuristisk rute-algoritme som skal begrense antall
trinn som er nødvendig for å finne en akseptabel rute. Algoritmen bygger på vektordata av
GSHHG-format for å beskrive landområder, og rutepolygoner som beskriver navigerbare
ruter rundt hvert landområde. Den heuristiske tilnærmingen innebærer å lage ruter rundt
ett landområde av gangen på en iterativ måte, mens man bruker et smart valg av hvilket
landområde som skal omgås for hver iterasjon. Algoritmen er implementert i MATLAB.
Resultater presenteres for ruter mellom alle kombinasjoner av de 20 forhåndsdefinerte
havnene, og for ruter mellom et utvalg av egendefinerte havner. Resultatene ble evaluert
ved visuell inspeksjon med seilbare tilnærmet korteste ruter som mål. Flertallet av rutene
mellom de forhåndsdefinerte havnene, 62,6 %, ble vurdert som akseptable. Av de gjen-
værende ikke-akseptable rutene, kan minst 85,9 % av rutene utbedres ved å bruke det
inkluderte metoden for å utbedre resulterende ruter. Resultatene illustrerer en avveining
mellom kort beregningstid og sannsynligheten for gunstige resultater. Et lite utvalg av ak-
septable ruter, sammenlignet med ruter generert med en onlinetjeneste, viser godt samsvar
mellom resultatene.

En ny simuleringsmodell for evaluering av fartøyets ytelse, som inkluderer rutealgorit-
men, presenteres. Simuleringsmodellen er laget med MATLAB og Simulink, og er basert
på en simuleringsmodell bygget for en tidligere masteroppgave av NTNU-studenter. Hind-
cast værdata brukes direkte for å sikre mer realistisk gjengivelse av miljøforholdene i den
nye modellen, mens en Markov-kjede tilnærming ble brukt i den opprinnelige modellen.
Resultatene som presenteres bekrefter den nye modellens evne til å gi en mer realistisk
fremstilling av værforholdene. En mer realistisk modell av værforholdene ser ut til å bli
oppnådd på bekostning av en betydelig økning i beregningstiden for å kjøre en simulering.
Å redusere mengden værdata som er lastet til Simulink, kan være en gunstig forfølgelse i
den forbindelse. Metodene for å beregne motstand og estimere hastighetstap i bølger er be-
holdt fra den opprinnelige modellen. Resultatene indikerer at parametere for fartøyytelse
med de to modellene reagerer på samme måte under lignende værforhold. Evaluering av
resultatene fra tre casestudier gir verdifull informasjon om modellens atferd, men simuler-
ingsmodellen bør valideres mot systemdata.
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Preface
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Chapter 1
Introduction

In recent decades the world has seen an increased focus on climate and work on solutions
to restrict greenhouse gas emissions. The last decade has also revealed volatile fuel prices.
As a result of the demands for reduced emissions combined with motivation for reduced
operational costs, the maritime industry has now keen focus on fuel efficiency and low
emission technologies. This creates an opening for innovative and energy-efficient ship
designs. The traditional approach to this is however conservative, and new designs are
often based on existing vessels and proven technology. Ships are commonly built to com-
ply with the ship-owners requirements for attainable design speed and fuel consumption at
given speeds. Traditionally these requirements have been met by designing ships for calm
water conditions and then adding a sea margin of 15− 30 % (Arribas, 2007).

Simulation technology have been explored as an aide to ship design in recent years.
There are several reasons why simulation technology can prove to be a valuable tool in the
design process. A reliable and realistic simulation model would ideally allow for testing
different design solutions in an inexpensive way, and thus enable the comparison of a
wider array of feasible solutions at an early design stage. Furthermore, ship owners may
be more likely to implement novel technology in a new design, if the ship performance can
be validated by a trusted simulation model. This is relevant for the Norwegian maritime
industry, since many ships built in Norway are highly specialised and costly vessels with
many customised design solutions.

Simulation also allows for testing the performance of a ship design in a realistic envi-
ronment, by looking at the specific weather conditions for the area where a ship is intended
to operate. Potentially allowing for more precise calculations of attainable speed and nec-
essary power, compared with the traditional methods. In addition to have the ability to
test the performance of different designs in a given environment, it is also of interest to
be able to test the performance of a given design in different environments. In addition,
also possibly highlighting the strengths and weaknesses of the vessel design. Such capa-
bility could also enable finding the most likely optimal route between two ports for a given
vessel and season. An accurate simulation model, with the ability to simulate the sailing
along different routes and with a realistic representation of the environmental conditions
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along each route, could potentially allow companies to optimise both the route and vessel
design for maximum revenue.

For the mentioned purposes, a simulation model should have the capability to simulate
sailing along several different routes, ideally without having to alter the model. A simu-
lation model could therefore be enhanced by including a feature that allows for creating
routes automatically between any two ports, eliminating the need to process the route data
in advance.

1.1 Background
In the spring semester of 2017, two graduate students at NTNU created a simulation model
for their master‘s thesis. The purpose of the model was to analyse the performance of a
vessel at the early design stage, in a more precise manner than commonly done by design-
ers at the time(Bakke and Tenfjord, 2017). The thesis, named Simulation-Based Analysis
of Vessel Performance During Sailing, focused on getting an accurate calculation of the
added resistance due to waves and wind. Bakke and Tenfjord (2017) presents a case for a
route across the Pacific Ocean, where the route is given as manual input of the coordinates
of seven waypoints. Their model does not have the ability to set up or change routes, in or-
der to simulate and evaluate the vessel performance in different environments. Motivated
by the previously stated reasons, it is of interest to add such capability.

The shortest route between any two points on the globe is a great circle between the
two locations. For aviation purposes this could be a final route. For shipping purposes
however, the problem complexity is far greater, simply because ships are confined to sail
on water. A great circle route between two ports will commonly intersect several land
areas. The fundamental problem is thus to find the near shortest route between any two
ports, that is navigable, and that omits all land areas. Furthermore, to create a model to
automatically create such route, and to incorporate this functionality in a simulation model.
With the objective to enable simulating the performance of a vessel sailing along routes
between any two ports, while accounting for the specific weather conditions encountered
along the given route. This the problem addressed in this thesis.

1.2 Previous work
A review of literature relevant to the thesis objective is presented following. A brief pre-
sentation of relevant literature regarding general shortest path problems, and the specific
problem of route-finding algorithms in the maritime domain, is first described. This is
then followed by a brief summary of relevant literature regarding simulation applied to
ship design.

1.2.1 Route-finding algorithms
A multitude of papers have been published regarding finding the shortest or minimum cost
paths in a graph. Dijkstra (1959) propose an algorithm for finding the minimal distance
path from a given node to all other nodes in a graph. The algorithm presupposes at least
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one arc connecting each set of nodes, and that each arc have a fixed weight or distance. The
method can be used on both directed and undirected graphs. Several alternatives to, and
modifications of the algorithm has also been published. Bellman (1958), Johnson (1977),
Bovet (1986) and Hart et al. (1968) all presents algorithms for finding the shortest path in
an weighted graph. Möhring et al. (2006) presents four methods of partitioning a graph in
order to speed up Dijkstra’s algorithm. Partitioning involves dividing a graph into regions
in order to limit the search space. The partitioning methods are combined with a method
involving using pre-calculated variables indicating if an arc is a starting point for a shortest
path to a given region of the partitioned graph.

Rohnert (1986) and later Fagerholt et al. (2000) present methods for finding the short-
est path between two points in the presence of polygon obstacles by first establishing a
partial visibility graph, and then applying Dijkstras method. The method by Fagerholt
et al. (2000) is specifically for finding the shortest path from a ships position to a desti-
nation port in the presence of polygon obstacles, that are defined such that it is possible
to sail along the outer edges of the polygons. The ship node is not a part of the partial
visibility graph called an operating network, while the destination port is defined to be a
node in one of the obstacle polygons.

Chew (1986) presents a solution for finding an approximate shortest path between
to point in the presence of polygon obstacles, when the points of origin and destination
are vertices of the polygons. Dijkstras algorithm is solved for what is described as a
Delaunay-like graph, called an obstacle triangulation. It is to be constructed in less time
than the visibility graph. Beeker (2004) describes a method for finding the shortest path
that involves dividing the navigable waterways into areas in such a way that the next point
on the shortest path to a destination, is equal for all points within each area. The algorithm
utilises a Delaunay triangulation which connects the nearest neighbours in a set of points.

Tanaka and Kobayashi (2017) presents an algorithm for finding the optimal route for
minimum fuel consumption, when accounting for drift due to currents. The problem is
solved by combining an algorithm for optimal speed along a fixed path, with an algorithm
for finding the optimal route for a fixed sailing speed. The article presents the results of
experiments for an ocean area between Japan and Taiwan. The graph nodes are equally
spaced in a grid pattern. Since all nodes are in open water, the utility for generating routes
from port to port is not demonstrated.

Xu et al. (2012) describes an algorithm for providing the shortest path and the least
turning points. The method is based on generating raster data from vector electronic charts.
A buffer zone is added to the rasterised obstacles. Each obstacle is given a colour value
which is used to identify whether a route between two points intersects with an obstacle.
The method presented first creates a feasible route from origin to destination, then a rubber
band algorithm is implemented to improve the route to ensure the shortest path. Another
algorithm based on raster charts in presented by Chang et al. (2003), in a paper introducing
a maze routing algorithm for finding optimal routes with collision avoidance. The algo-
rithm can find the shortest path between a pair of cells on a rectangular grid of N cells in
N steps.
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1.2.2 Simulation applied in ship design

Chen et al. (2011) presents a model, utilising simulation for optimising vessel design pa-
rameters and number of vessels in a fleet, with the objective of minimising the logistics
cost per ton iron ore. Monte Carlo simulation is utilised, where voyage duration, waiting
time at port, and weekly iron ore demand are determined based on probability distribu-
tions. The simulation output is logistics cost per ton for given set of design parameters,
number of vessels, reorder level and initial inventory. The model does not give a detailed
evaluation of the performance of a given design in specific environmental conditions.

Kauczynski (2012) presents a method for evaluating vessel performance by means of
numerical simulation, applying hindcast weather data. The paper stated that applying com-
plete historical weather time series along a considered route, is the most reliable method
for studying reliability of the ship transportation. And that using long term statistics to
represent weather conditions by means probabilities, results in an incorrect representation
of the extreme value tail of the probability distributions of sailing time. The presented
methodology is first calculating the ship performance for sets of different wind, wave and
swell parameters. Then generate a set of matrices with coefficients expressing speed loss,
delivered power and fuel consumption based on the oceanic and weather conditions. The
matrices are used as input in the simulation model. Where the performance parameters at
each simulation update are calculated by interpolation based on the given environmental
conditions at the specific location. The simulation model is used to generate probability
distributions for voyage duration for different seasons. According to the paper, this method
results in a good quantitative estimation of the mean sailing time.

Fathi et al. (2013) presents a benchmarking methodology for evaluating ship designs
through simulation of the ship‘s operation over several years. The model incorporates
hind-cast weather data and a detailed mission profile in order to simulate realistic oper-
ation conditions for the vessel. The advantage of this methodology is that it provides
detailed operational profiles of ship designs, and thus enables a realistic comparison be-
tween different designs at the early design stage. The simulation model consists of a model
of the ship, a logistics model and met-ocean data. The methodology presented utilises the
software package ShipX for calculations of the hydrodynamic characteristics of a given
design. In the logistics model, the ships operation is defined by a set of routes. The sailing
legs between two ports are divided into waypoints in order to update the simulation model
with the corresponding conditions at each step. The model calculates the total resistance
in seaways at each waypoint, including wind resistance. The model also includes cargo
handling at port and adjust the ships displacement in accordance with the amount of cargo
unloaded or loaded.

Erikstad et al. (2015) presents a workbench for performing a “virtual sea trial”, in-
tended to aid in the ship design process and to verify and document vessel performance.
Capturing complex interactions of hydrodynamics, power production and service equip-
ment, would allow for benchmarking of energy efficiency and emissions to air of alter-
native designs. The model is presented as able to simulate both long-term performance
and specific short-term operations. The paper points out the challenge of comparing real
life performance of different designs, due to differences of operating conditions and mis-
sions, between two similar trips. And further, that simulations over the lifetime of a vessel
can yield detailed realistic operation profiles. A more realistic comparison of vessel de-

4



1.3 Scope

signs can then be achieved by long-term simulation of vessel performance in its intended
operation conditions.

1.3 Scope
The objective of this thesis is two-fold. The first part is to create a model for automati-
cally generating feasible routes for sailing between any two ports. The second part is to
implement the route-finding algorithm in a simulation model, with the end goal to enable
simulating a vessel sailing between any two ports in a simple manner.

The challenge addressed by the first aim, is not to find common routes between the
busiest ports worldwide. Such routes could be generated from available data, for instance
by tracking AIS data from websites offering such services. It would then be trivial to store
a given number of routes between a fixed set of ports. The problem this thesis intends
to solve, is to create an algorithm implementable in MATLAB that can set up feasible
and realistic routes between any two points on the globe. The route-finding model should
be versatile and be able to create routes between both pre-defined and customised ports.
An important aspect is to create a MATLAB program that ensures this feature, enabling
the model to easily be implemented in the simulation model. The route-generation model
should add value to the simulation model by ensuring the ability to compare ship perfor-
mance on several different routes, without having to manually establish the routes in ad-
vance. The final product should be a robust algorithm for automatic route-generation, able
to generate routes between any two ports worldwide, without the need for pre-processing
of any kind. A database of ports to be chosen from should be included as a supplement to
the ability of defining custom ports.

The second aim of this thesis is to present an updated simulation model, simulating a
vessel sailing between two ports, and evaluating the vessel performance and to incorporate
the algorithm for automatic route generation in the simulation model. The new simulation
model should be based on the simulation model presented by Bakke and Tenfjord (2017).
Specifically, the methods for evaluating vessel performance should be carried forward in
the new model. In the original model, the weather data for each sailing leg was loaded
from separate files. Having to create such files for each sailing leg defeats the purpose of
enabling simple and automatic route generation, since the goal is to minimise the need for
prepossessing. The new simulation model should use historic weather conditions directly,
instead of stochastic methods. The weather data should be loaded from a single file for
any route. Also, the original model only incorporates time as fixed time steps between
simulation updates. In order to use historical weather, time and date must be incorporated
as simulation variables. The final product should be a simulation model able to simulate
sailing between any two ports, without requirements of any manual processing of route or
weather data.

1.3.1 Limitations
In real life several considerations besides the shortest path, may determine the route a ship
will sail. Examples of reasons to deviate from the shortest path can be weather and climate
conditions, currents, limitations in canals and pirate activity. Determining the optimal
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route for a given vessel requires knowledge regarding specific environmental factors in the
current waters to be navigated. And such knowledge is likely best achieved from years
of experience sailing the same waters. Specific environmental knowledge is also hard to
incorporate in a versatile and generic model. For these reasons, the route-finding model
will only consider the shortest distance when determining the best route. The result should,
however, be a feasible route circumventing all land areas.

The custom ports are restricted to be located in coastal areas, with open access to deep
sea sailing. The route-finding model should be created in MATLAB, and existing software
for automatic route generation will therefore not be considered. Geographical vector data
for the complete globe is freely available online in a format easy to implement i MATLAB.
The algorithm for automatic route-finding shall therefore be based on geographical vector
data, and raster data methods will not be considered.

The purpose of the new simulation model is not to improve the methods of predicting
resistance, power consumption or speed loss that is incorporated in the original model. It is
rather to demonstrate that the route-finding capability can be implemented in a simulation
model. The methods for performance calculations are thus kept from original model. The
existing model have two modules that can be used for resistance calculation, one which
utilise ShipX, and one which use the empirical method of Hollenbach. Only the latter will
be included in the new model since it relies on fewer weather parameters.

For the purpose of evaluating the vessel performance in a realistic environment, the
important part of the ship operation is the sailing between harbours. The time spent in
harbour is of little value when evaluating the ship performance in different weather con-
ditions. Evaluating operational profiles are beyond the scope of this model and therefore
only one-way trips between two ports will be evaluated. Time spent in harbour is not incor-
porated. Reduced speeds near shore, time slots in canals, or reduces speed or alternative
power sources in emission control areas, are all aspects that could be included to create
a more realistic simulation model. New aspects are not considered, besides incorporating
hindcast weather data, time and date, and the ability to generate new routes.

1.4 Thesis structure
The remainder of this thesis is organised as described in the following. Some relevant
background theory for the route-finding algorithm, including motivation for the chosen
methodology, is presented in chapter 2. While the details of the model for automatic route
generation is described in chapter 3. Chapter 4 presents a brief introduction to simulation
theory, and some relevant background for the simulation model. Which itself is detailed
in chapter 5. Results for both the route-generator and the simulation model is revealed in
chapter 6, followed by a discussion in chapter 7. Lastly, chapter 8 presents some conclu-
sions and recommendations for further work.
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Chapter 2
Background for the route-finding
algorithm

This chapter presents theory and concepts relevant for creating a route finding algorithm,
and lays out the methodology for the route-finding model presented in chapter 3.

2.1 Background theory

Some relevant concepts and a few shortest path algorithms are briefly presented in the
following.

2.1.1 Relevant concepts

Great circles and rhumb lines

The shortest distance between two points on a sphere is found by a great circle. More
precisely defined, a great circle is the line of intersection between a sphere and a plane
passing through the centre of the sphere(MathWorks, 2019a). The equator and the merid-
ians are great circles that follow a constant course. All other great circles will intersect
the meridians at different angles. Lines intersecting the meridians at a constant angle, are
called rhumb lines(MathWorks, 2019a). Both a rhumb line and a great circle between two
point on a globe, is illustrated in figure 2.1. The rhumb line is displayed in blue colour and
the great circle in black.

Sailing along a great circle requires constantly changing the heading. It is thus much
easier to navigable along a rhumb line path. An approach for sailing an approximate great
circle route without frequently adjusting the heading, is to divide a great circle route into
waypoints and sail along rhumb lines between each waypoint. An approximate great circle
route is displayed by the dotted red in in figure 2.1.
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(a) Orthogonal projected map (b) Mercator projected map

Figure 2.1: Great circle and rhumb line between two points on a globe.

Convex hull

In two dimensions, a subset S is convex iff all line segments between any points p and q
are fully contained in S. The convex hull CH(S) of a subset S, is the smallest convex set
that contains S(Li and Klette, 2011). A convex hull around a set of nodes N , is thus a
polygon made up of line segments between the outer nodes N , in such a way that none of
the nodes are located outside the convex hull. An example of a convex hull is illustrated
in figure 2.2.

Figure 2.2: Example of a convex hull

Visibility

The concept of visibility can be defined in different ways for different problems. Two
nodes can be said to be visible to each other if it is possible to travel along an arc from one
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node to the other without intersecting an obstacle. For the work in this thesis, polygons
are considered as obstacles, and visibility is mostly investigated by means of great circle
routes. Visibility by rhumb lines are however also considered in some cases. Figure 2.3a
illustrates the concept of visibility, where the green lines depict arcs between nodes that
are visible to each other and the red lines show arc between nodes that are not visible to
each other.

(a) Visible and non-visible pair of nodes (b) Visibility graph

Figure 2.3: Visibility between the nodes of polygons.

Graphs

Graphs are typically made up of a set of nodes and a set of arcs connecting at least one
pair of nodes each. Commonly arcs have a cost associated with including it in a path. For
real world problems such cost is a representation of the distance travelled. Some graphs
are bidirectional, which mean that the cost of traversing an arc can depend on the direction
travelled. A visibility graph is graph where arcs are made only between nodes that are
visible to each other. An example of a visibility graph for the nodes of three polygons is
illustrated in figure 2.3b.

2.1.2 Shortest path on a graph
According to Möhring et al. (2006), Dijkstra’s algorithm has become the standard for
solving the shortest path problem on a graph. Time complexity is a term used for describ-
ing how many steps it takes to solve a problem, while space complexity is a description
of the amount of memory needed to solve the problem. If the shortest path in a graph
with n vertices can be solved in n2 steps, it is common to describe the time complexity
as O(n2)(Chang et al., 2003). The shortest path between two points in a graph with V
vertices can be solved in O(V 2) time by applying Dijkstra’s algorithm(Chew, 1986). Sev-
eral heuristics for speeding up the solution process has since been presented. Two such
methods are described below.

The A-star algorithm by Hart et al. (1968) incorporates a heuristic cost function, esti-
mating the cost of an optimal path from a given node to the goal node. The heuristic cost
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function depends on special knowledge regarding the specific problem and is used as a
lower bound for the minimal cost solution. In maritime domain such lower bound could
equal the great circle distance, since the length of any route between two locations cannot
be less than length of great circle route. An evaluation function sums up the estimated
cost of an optimal path from the start node to the current node, and the estimated optimal
path cost from the current node to the end node. Where the former is estimated by the
shortest path to the given node found thus far, and the latter is the value of the heuristic
cost function for the given node. The evaluation function is used to select which node to
investigate next. Unlike Dijkstra’s algorithm, where all nodes are investigated, the A-star
algorithm seeks to investigate as few nodes as possible. The success depends on the fit-
ness of the heuristic cost function. If the heuristic cost function has a value of zero for
all nodes, the algorithm becomes equal to Dijkstra’s. If heuristic cost function does not
represent a proper lower bound for the cost of the optimal path from a node to the goal
node, an optimal path may not be found.

The focus of many developed shortest paths algorithms has been to achieve a low the-
oretical time bound, which does not necessarily correspond to low computational time.
According to Möhring et al. (2006), such algorithms are often too slow for application in
large networks that requires many shortest path computations. The partitioning methods
presented by Möhring et al. (2006) use arc-flags, logical variables indicating if a given arc
is a starting point for a shortest path to a given region of the partitioned graph. The arc-
flags are stored in one vector for each arc, with one entry for each region of the partitioned
graph. Each entry represents a specific region. Both unidirectional and bidirectional search
with Dijkstra’s algorithm is combined with the different methods of partitioning. In a bidi-
rectional search, two Dijkstra’s algorithms run simultaneously from both the start node
towards the target, and in the opposite direction with the reversed graph. The search alter-
nate between the two directions until the two paths meet. Combinations of bidirectional
search with two of the partitioning methods yielded speeds over 500 times faster than the
ordinary application of Dijkstra’s algorithm, when applied on a German road networks.

Shortest path in presence of polygon obstacles

A challenge when using shortest path algorithm for maritime applications, is that there is
not a pre-defined fixed network for shipping routes. The oceans are wide and the possible
routes a ship can sail across the open sea cannot be easily quantified. A substantial part of
the problem is therefore to define a graph prior to applying a shortest path algorithm. The
methods by Rohnert (1986) and Fagerholt et al. (2000) offers possible solutions, as both
present methods of creating partial visibility graphs between polygon obstacles.

In the method presented by Rohnert (1986), the partial visibility graph is made up of
the line segments of the polygons and supporting segments, where the latter is defined
as lines between vertices of two polygons that are common tangents to both polygons.
The author states that a line segment between two nodes of two polygons cannot be part
of the shortest path if it is not a supporting segment, and that there exists at most four
supporting segments between two disjoint convex polygons. Supporting segments between
two polygons that intersect other polygons are not a part of the solution. For a problem
with f disjoint convex polygons with n vertices in total, the partial visibility graph consists
of the n line segments of the polygons plus at most 4f supporting segments from the
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endpoints to the polygons, plus at most 4f2 supporting segments between the polygons.
The partial visibility graph can be computed with a time complexity of O(n + f2 log n).
An the shortest path can be found by Dijkstras algorithm in O(f2 + n log n) time.

The method presented by Fagerholt et al. (2000) generates an operating network, which
partially corresponds to the visibility graph from the line segments of the obstacle poly-
gons. The method defines outer nodes, and port entrance nodes, where the latter are
thought to be connected to internal ports through local networks. The operating network
consist of arcs between all mutual outer nodes, and between port entrance nodes and outer
nodes. Great circle lines are approximated by straight lines, justified by the limited dis-
tances. In the article two shortest path algorithms are applied, both based on Dijkstra’s
algorithm, as the method is stated to be suitable for short sea voyages with sailing times
up to a few days. The efficiency of the algorithm is highlighted by comparing the results
to an algorithm that utilises the complete visibility graph.

2.2 Model background and methodology
The problem in question is to present a route-finding algorithm capable of creating routes
between any two ports worldwide. The proposed solution utilise the idea of obstacle poly-
gon defined in such a way that it is possible to sail along the arcs of the polygon. A total
of 5863 polygons are used, with the number of nodes in each polygon ranging from 3 to
168. In order to use a shortest path algorithm, it is necessary to create a partial or complete
visibility graph with all the relevant polygon obstacles. The number of polygons involved
in a problem depends on the span between the port locations. For ports located on opposite
parts of the globe, a great number of polygons and total amount of nodes will be included
in the problem. Creating a partial visibility graph in such cases will require a tremendous
number of steps to compute. The same is true for running Dijkstra’s algorithm on such
network. Even if the time complexity can be improved by the presented method for speed-
ing up the algorithm, they both requires a fair degree of prepossessing. Möhring et al.
(2006) notes that there seems to be a trade-off between memory usage and the speedup
factor achieved.

A heuristic algorithm is proposed in order to reduce the number of steps needed to
create a route. To achieve this, the algorithm intersects one land area at the time and
incorporates a smart selection of the order of land area to circumvent. This heuristic is
inspired by the cost heuristic of the A-star algorithm inn the way that one wishes to expand
as few as possible nodes, and only those which is likely to be included in the minimum cost
path. It is desirable to inspect and possibly circumventing as few land areas as necessary.
Routes around each polygon is created by first finding suitable nodes to connect a port
or node of previous polygon to the intersected polygon. The idea is to expand as few
arcs as possible. A fundamental part is to utilise convex hull in this task. A convex hull
around the two endpoints and the nodes of the polygon obstacle, gives the shortest way
circumvent all the included nodes, in a plane. It can thus also be used to find the two
shortest paths between the endpoints, around the polygon obstacle. While giving an exact
solution for a problem in the plane, it is assumed that using convex hulls for the presented
problem, gives a good approximation for problems involving geographical coordinates.
The proposed solution is partly selected based on functionality available in MATLAB.
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2.2.1 Software

The code for the route-finding algorithm is written in MATLAB, a programming platform
and programming language used by many engineers and scientists. The MATLAB pro-
gramming language relies on libraries for matrix manipulation, and a multitude of MAT-
LAB functions. Several toolboxes can be added to expand the programming capabilities.

MATLAB code can be written and stored in scripts and functions. When scripts are
executed, the variables defined within the code is written to the MATLAB workspace. A
function can read declared input variables, and only return variables as specified.

A MATLAB structure array is a useful variable for storing and handling data. Each
element of a structure array can contain several fields of information of different data types.
A given element of a structure array can thus describe a variable by attributes of different
format, such as character strings, vectors, matrices or scalar numbersMathWorks (2019b).

Mapping toolbox

The Mapping Toolbox is a toolbox added to MATLAB, used for analysing, manipulating
and displaying geographic data. Both vector and raster data can be imported, and a wide
range of file formats are supportedMathWorks (2019a). The toolbox enables working with
geographical data structures. These are structure arrays containing one element for each
geographical structure.

2.2.2 GSHHG data

The Global Self-consistent, Hierarchical, High-resolution Geography (GSHHG) Database
is used to model the world geography. The freely available GSHHG dataset describes
geographical boundaries as polygons, whose nodes are described by latitude and longitude
vectors. The data is divided in six levels describing different geographical boundaries,
listed in table 2.1(Wessel and Smith, 2019).

Table 2.1: Geographical boundaries described by each level of the GSHHG data(Wessel and Smith,
2019)

Level Geographical boundary type

1 Between land and ocean, except Antarctica
2 Between lake and land
3 Between island-in-lake and lake
4 Between pond-in-island and island
5 Between Antarctica ice and ocean
6 Between Antarctica grounding-line and ocean

When read in MATLAB, the data is loaded to a geographic data structure variable,
containing one element for each polygon. Each element contains 21 fields of information
about each geographical shape. The latitude and longitude data are two such fields. Other
fields describe extreme coordinates of the polygon, the level type, a unique polygon ID,
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and if the polygon goes across the international date line(MathWorks, 2019c). A list of all
fields is included in appendix B.

(a) Polygons of crude resolution (b) Polygons of intermediate resolution

Figure 2.4: Map of the west coast of Norway from shoreline polygons of different resolution

The GSHHG data is available in full, high, intermediate, low and crude resolution.
Each step down from the full resolution yields a reduction in size and quality of about
80 percent(Wessel and Smith, 2019). Table 2.2 gives an indication of the amount of data
included in the different resolutions. The difference is further illustrated in figure 2.4, with
a juxtaposition of a map from crude resolution data, with one from intermediate resolution
data.

Table 2.2: Data included in the different resolutions of the GSHHG data

Resoution Polygons included Level 1 polygons Nodes in Eurasia polygon

Full 188612 179832 1181110
High 153462 144744 141705
Intermediate 41230 32825 34832
Low 10717 5701 6851
Crude 1781 731 1028
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Chapter 3
Model for automatic
route-generation

The basic idea behind the model for automatic route generation, is to have predefined sail-
ing paths around all land areas. The paths are described by polygons divided in straight
legs of variable lengths, separated by nodes, henceforth called shoreline sailing path poly-
gons. When a great circle route intersects a land area, a suitable route is found by identify-
ing optimal connection nodes, where an open seas route is connected to a shoreline sailing
path polygon. The concept is illustrated in figure 3.1. The open seas parts of the route is
shown as a blue line, while the shoreline path is coloured green.

When several land areas are intersected, the method is used in an iterative process
until a route omitting all land areas is found. A near shortest path can be found by smart
selection of the sequence of land areas to omit.

Figure 3.1: Basic concept of finding a route circumventing a land area.
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The remainder of this chapter is devoted to describing the model for automatically
generating routes between two ports. First the input data is described, then an overview
from a user perspective is presented. The route-finding algorithm is then described in two
steps. First the method of creating a route circumventing a single land area is detailed in
section 3.3, then the process of circumventing several land areas are described in section
3.4.

3.1 Input data
The model relies on two types of input data, loaded from three pre-stored files. Two files
with GSHHG data and one file with data describing shoreline sailing path polygons. An
example of the latter is illustrated in figure 3.2. Both types of input data is described in the
following.

(a) Convex hull (b) Sailing path polygon

(c) Hull intersect another shoreline polygon (d) Modified sailing path polygon

Figure 3.2: Shoreline sailing path polygons describe navigable paths along the shorelines of land
areas.
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3.1.1 Shoreline vector data
Two sets of shoreline data are used, one for visual display of routes on maps, and another
for use in the route-finding algorithm. A customised dataset is used for the latter pur-
pose, while intermediate resolution GSHHG data is used for the former. The intermediate
resolution data is stored in MATLAB-file format.

The custom GSHHG data is used to check if a route between two points intersects any
land areas. For this use, it is not reasonable to include other levels such as lakes, and rivers.
Also, the ice sheet, rather than the Antarctic continent seems more fitting as a boundary
for maritime traffic. Thus, only the land areas and the Antarctic ice sheet, described by
level one and five polygons, are included.

Intermediate resolution data is used for the custom data set as well. But for the level-
one polygons, the data set only includes the polygons included in the low-resolution data.
This is done to limit the processing time, by restricting the number of polygons to search
through for intersections. 5862 polygons are included in total. The data is stored in shape-
file format and loaded to MATLAB as a geographical structure array.

3.1.2 Shoreline sailing paths
The model utilises pre-defined shoreline sailing paths around land areas, in order to find
the shortest path circumventing a land area. The sailing paths are polygons made from
convex hulls, created around all the shoreline polygons in the custom GSHHG dataset. A
convex hull is made up from straight lines connecting the outer nodes of a set of nodes, in
such a way that no other nodes lies outside the convex hull. Figure 3.2a shows a convex
hull around the Australian coastline.

The convex hulls are in turn altered to make the paths feasible sailing routes. This can
be done for several reasons. In some cases, the distance between two nodes is so great
that the straight line between the nodes of the convex hull is a poor approximation of a
great circle route between the nodes. In such cases nodes are added, so that the route
between the two nodes are divided in sailing legs, approximating a great circle route. This
is illustrated in figure 3.2b, where the sailing path south of Australia is altered compared
to the convex hull of figure 3.2a. The sailing path is also altered along the north east coast
between nodes 19 and 36 in figure 3.2b. Here the path is set to a navigable route inside the
Great Barrier Reef. Underwater reefs is not described in the shoreline data, and must be
accounted for manually to ensure a feasible route.

Parts of some convex hulls will intersect other land areas. A fictive example of this
is shown in figure 3.2c, where an island has been inserted between nodes 1 and 4. In
such cases the hulls are modified such that the path between the two nodes is the shortest
path around the intersecting land area. This is illustrated in figure 3.2d. Canals are a
final example of areas where the shoreline hulls must be modified extensively in order to
describe a navigable route. The hulls have been modified to follow the great canals in an
approximate manner.

The data set of shoreline sailing routes is stored in shapefile format, and loaded to
MATLAB as a structure array, containing 5862 element. Each element is described by ten
fields of information. A custom field is added to indicate if a given element is a convex hull
or if has been modified. Given that the convex hulls must be modified by visual inspection
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to ensure navigable routes, it would be an overwhelmingly demanding task to modify
all polygons in the data set. Convex hulls have been generated around all the included
shoreline polygons, but only 28 of the convex hulls have been modified to ensure feasible
sailing paths. The largest land areas, and areas located in important shipping lanes have
been prioritised. A list of which shoreline sailing path have been modified is included in
appendix C.

Figure 3.3: The overarching model as experienced by the user
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3.2 Model overview
The route-finding algorithm is executed by running a MATLAB script named RouteCre-
ator. Within the script is an overarching algorithm whose purpose is to read user defined
input, run the route-finding algorithm, and then let the user verify the resulting route. An
option to modify the route is also included. A flow chart of the overarching algorithm can
be seen in figure 3.3.

When the script is executed, the user is fist prompted to define the origin and destina-
tion ports. This can be done by choosing one of the ports included in the prompted list or
by manual input. The geographical coordinates as well as a name for each port, is stored
as variables in the MATLAB workspace. Next, the user is asked to set a desired maximum
length of the sailing legs, and a preference for either allowing or restricting routes going
through polar waters. The function containing the route-finding algorithm then generates
a route between ports omitting all land areas based on the given input. A figure showing
the resulting route on a map is created, and the user is asked to visually inspect and verify
the route. Three options are then given. If the route is suitable for use it can be saved for
later use as input in the simulation model. If the resulting route is not suitable for use, the
user can choose one of two methods to modify the route.

The fist method of modification is to manually add a single waypoint or a path of
waypoint, which the new route is forced to include. If this option is selected, the map of
the route is displayed, and the user is prompted to click on desired locations for the new
waypoints. Then two routes are created, one from the origin port to the first waypoint,
and one from the last waypoint to the destination port. The two routes and the waypoints
are then merged to form the new proposed route. The other alternative is to change the
maximum length of the sailing legs. If this option is chosen, a new maximum length must
be set by the user. A new route is then generated by running the route-finding algorithm
again with the new input value.

For either method the modified route is displayed on a map. At this point the route can
be saved or discarded. If the latter is chosen, no route is saved, and the script is terminated.

3.2.1 User defined input
The process of defining model input is illustrated in figure 3.4. In order to set up a route,
the coordinates of the desired origin and destination ports are needed. A list containing
a selection of 20 large ports have been generated. The user is first prompted to select
origin port and thereafter the destination port. Alternatively, a custom port can be defined
manually by clicking the button ”manual input”. The latter option requires latitude and
longitude coordinates, together with a name for the port. Either method can be used for
either port.

When selecting a port from the included list, a pre-defined path of waypoints from the
port to open waters is also loaded in most cases. The route-finding algorithm will then
generate a route between the end points of each path. Defining a path towards open waters
is not an option when choosing a custom port. It is therefore important that the latitude and
longitude coordinates used for custom ports, describe a location with access to the open
seas. This means that it must be possible to sail from the given location to the open sea
along a rhumb line without intersecting land. Furthermore, the set of possible rhumb line
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Figure 3.4: User defined input

paths towards the open sea should span an area as large as possible. The model might not
work correctly if the port locations are set slightly inland. Due to time-constraints great
focus has not been devoted to creating a large database of ports. The included ports are
selected so that all continents are represented, with the intention to test the route-finding
algorithm with a diverse set of routes.

The dialogue boxes used to set a desired maximum length of the sailing legs, and then
select an option for restricting routes in polar environments, are seen in the lower part of
figure 3.4. The maximum length of the distance between waypoints, will determine the
discretisation of the routes between two land areas and between ports and land areas. The
value should be given in nautical miles. Distances between waypoints along the shorelines
will not be affected, since these are described by sailing paths predefined by the input data.
The option for whether to consider routes in polar waters, is set by clicking either ”yes”
or ”no” in the dialogue box. If such limitation is chosen, the routes will not go beyond
latitudes of 70 degrees north and 60 degrees south. In all cases the routes are restricted
from going beyond 82 degrees north.

3.3 The basic route-finding algorithm: creating a route
around one land area

The algorithm for creating a route while circumventing a single land area is described in
the following. First an overview is presented, then details of each step of the algorithm is
highlighted. Figure 3.6 illustrates the process of finding a route circumventing land when
the point of origin and destination lie on opposite sides of the land area. A flow chart of
the algorithm is shown figure 3.5.
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Figure 3.5: Flow chart of the route-finding algorithm for circumventing one land area.

Initially the algorithm sets up a great circle route, divided in a given number n of
waypoints, resulting in n − 1 sailing legs of constant heading. The number of legs is
calculated according to the desired maximum length of each leg. The algorithm then
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checks if the resulting route intersects with any of the land areas described by the shoreline
polygons. If an intersection is detected, a specific ID for the land area to be omitted
returned. When the desired shoreline polygon is identified, the corresponding shoreline
sailing path polygon is retrieved. The next step locates the initial connection nodes. These
are nodes of the shoreline sailing path polygon suitable for connecting the paths from each
port, to the shoreline sailing path.

(a) Great circle route intersect land area (b) Convex hull that includes port nodes

(c) Identify connection nodes (d) Find visible connection nodes

(e) Two paths around land area (f) Identify shortest path

Figure 3.6: Basic model for route generation, when great circle route intersects one land area

The algorithm will create either one or two routes around the land area, depending on
the location of the ports relative to each other and to the land area. All routes are made up
of three parts. One part from the origin port to the coast of the land area, one part along
the coast of the land area, and a final part from the land area to the destination point. The
paths between the ports and the respective connection nodes are created as rhumb lines
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between the waypoints of a great circle route. While the path along the land area is given
from the related shoreline sailing path polygon.

With the initial connection nodes established, the algorithm next ensures that the con-
nection nodes are visible from each port. In this context, visible means that the great circle
route from the connection nodes to the ports does not intersect the current shoreline poly-
gon. If the connection nodes are not visible, they are adjusted until they are. When the
visibility has been ensured, one or two paths are created by merging the three parts of the
route. If two paths are created, the shortest path is selected as the desired route.

Figure 3.7: Number of connection nodes established in different circumstances

3.3.1 Finding initial connection nodes
When a route intersects a land area, one or several connection nodes must be identified
in order to connect the open seas part of the route to the shoreline sailing path. The

23



Chapter 3. Model for automatic route-generation

number of paths generated is decided by the number of connection nodes established.
Four connection nods are found if two routes are to be created, and two otherwise. The
shoreline sailing path can be a single node of the sailing path polygon. In such cases the
initial connection nodes for that path, will be equal for both ports.

The port locations relative to each other and to the land area, determines if it is sensible
to create one or two paths. The port locations are evaluated by determining if any of the
ports lie inside a convex hull around the given shoreline polygon, and if the ports are visible
to each other by a rhumb line. Figure 3.7 illustrates the different conditions resulting in
two or four connection nodes.

Two connection nodes are generally found when the ports are visible to each other. The
two exceptions are when the land area in question is the Antarctic Continent, and when the
ports are sufficiently distant from the land area. Four connection nodes are established in
those cases. When the ports are not visible to each other, there are two instances resulting
in two connection nodes. The first is when both ports are located inside the convex hull,
and the ports share a nearest node, or nodes adjacent to the nearest node to each port. The
other instance is when only one port is located inside the convex hull, but the ports still lie
on the same side of the land area. Otherwise four connection nodes are established.

Combining port locations and port visibility results in six main conditions for deter-
mining the connection nodes, in addition to the separate event of circumventing the Antarc-
tic continent. For each of the seven possibilities there are further considerations determin-
ing the approach. A comprehensive flow chart of the process of determining connection
nodes and generating routes around land areas, is included in electronic appendix. The
algorithms for finding connection nodes are coded in six different MATLAB functions,
and is described in the following sections.

Both ports are outside of the convex hull and not visible to each other

The most basic case is when the ports lie on opposite sides of the land area, and both are
located outside a convex hull around the land area. In this situation the connection nodes
are found by generating a convex hull around the origin port, the sailing path polygon and
the destination port, as demonstrated in figure 3.6b. The desired nodes are then simply the
nodes adjacent to each port node. The connection nodes are given as the index of the same
nodes in the sailing path polygon.

Both ports are outside of the convex hull and visible to each other

A slightly more complex situation is encountered when the ports are visible to each other
by a rhumb line, while a great circle route between them intersects a land area. Figure 3.8a
illustrates one such case. Following the same procedure in this case will not yield feasible
connection nodes, as one of the adjacent nodes to each port node will be the other port
node. Connection nodes would thus only be found for one route omitting the land area on
the opposite side of the two ports. While a shorter path might be found on the same side
of the land area where the ports lie. Sailing along a rhumb line between the ports is not a
desired solution either, since the objective is to find the near shortest route between ports.
The problem is solved by finding connection nodes for a second path, omitting the land
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area on the side where the ports are located. The two connection nodes for the path along
the opposite side of the land area, are kept as found from the initial convex hull.

(a) Single convex hull yields connection nodes for one path only

(b) Potential connection nodes for second path from two convex hulls and points of intersection

(c) Resulting connection nodes. Path 2 has identical connection nodes for both ports

(d) Two connection nodes, from point of intersection, when one port lie near shore

Figure 3.8: Both ports lie outside sailing path polygon. Ports are visible to each other, while a great
circle route between them intersects a land area
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Three options for connection nodes are considered for the other path. First the points
of intersection between the great circle route and the sailing path polygon is determined,
indicated by the red crosses in figure 3.8a. Then the nearest node to each point of inter-
section is located as possible connection nodes. Two additional possible connection nodes
are established by generating convex hulls around the sailing path polygon, and each port
separately as illustrated in figure 3.8b. Each convex hull results in one candidate as con-
nection node, identical for both ports. The connection nodes yielding the shortest path are
selected. The resulting connection nodes are illustrated in figure 3.8c.

A special case can arise if one port is located near shore, as illustrated in figure 3.8d.
Here one port is located within the convex hull created from the sailing path polygon and
the other port. In such cases it is clearly longer to sail around the land area, and only the
two connection nodes found from the points of intersection are used.

Both ports located inside the convex hull and are not visible to each other

When both ports are located inside the convex hull, the connection nodes are found from
inspecting the node of the sailing path polygon nearest to each port, and the nodes adjacent
to each nearest node. One adjacent node in each direction is inspected for polygons with
less than ten nodes, while two adjacent nodes are included for polygons with ten or more
nodes. For large polygons with more than 50 nodes, three adjacent nodes in each direction
is investigated. If the ports share a common nearest node, or have any of the adjacent
nodes in common, two connection nodes are found. Otherwise four connection nodes are
established.

(a) (b) (c)

Figure 3.9: Connection nodes when both ports are located inside a convex hull, and the ports are
not visible to each other

Figure 3.9a illustrates a case when the ports does not have a nearest node or any of its
adjacent nodes in common. The furthest adjacent node in each direction, for each port, is
then set as connection nodes.
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If the nearest node is same node for both ports, that node is set as connection node for
both ports. Similarly, if the ports share one of the adjacent nodes. In some cases, the ports
can have several of the adjacent nodes in common. An example can be seen in figure 3.9b.
Then for each common node, the distance of a route from the origin port to the given node
and onward to the destination port is calculated. The node yielding the shortest distance
route is set as connection node for both ports. The shared nearest nodes, and the chosen
connection node, is displayed in figure 3.9c.

One ports lie inside the convex hull and are not visible to each other

When one port is located inside and the other outside the convex hull, the connection
nodes for the inside port is again found by finding the nodes adjacent to the sailing path
node nearest the port in question. The connection nodes for the other port is found by
generating a convex hull with the port and the sailing path polygon. The connection nodes
are found as the nodes of the sailing path polygon equal to the two nodes adjacent to the
port node in the convex hull. Figure 3.10a demonstrates this process.

A challenge occurs when the ports lie on the same side of a land polygon but are not
visible to each other, as illustrated in figure 3.10b. When this occurs, a rhumb line route
between the ports typically intersects a small part of the land area. One path is suitable in
such cases and two identical connection nodes are returned. This situation is checked for
by inspecting the indices of the connection nodes. If the ports outside and inside the convex
hull share a common node, that node is chosen as connection node for both ports. And
when the connection nodes for the port outside the convex hull lie beyond the connection
nodes for the inside port, the nearest or adjacent node yielding the shortest distance path
is chosen as connection node.

(a) Ports located on opposite sides a land area. (b) Ports located on the same side of a land area.

Figure 3.10: Connection nodes when one port lie inside the convex hull, and the ports are not visible
to each other
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(a) Nearest node to point of intersection, and adjacent nodes in each direction.

(b) Resulting connection node among the possible candidate nodes.

Figure 3.11: Connection nodes when one port is located inside the sailing path polygon, and the
ports are visible to each other by a rhumb line.

One or both ports lie inside convex hull, and are visible to each other

In some cases, the ports can be visible to each other by a rhumb line, while one or both
ports lie inside a convex hull around a land area. The algorithm accounts for five such
possibilities, which are briefly described below. In all cases a path around the land area
will clearly not be the shortest path, and only two connection nodes are thus established.
In some of the instances a rhumb line route could be a better option than a route via the
shoreline sailing path polygon, but connection nodes are still found in order to comply
with the overall algorithm.

A special case can arise when both ports are located on the border or the sailing path
polygon. In such cases the connection nodes are set as the node of the sailing path polygon
nearest each port, but in the direction of the other port.

Another possibility is that both ports either lie inside the sailing path polygon, or that
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both lie inside the convex hull while outside the sailing path polygon. The connection
nodes are then established by inspecting the nearest node to each port and its adjacent
nodes. The process is like that previously described for two ports located inside the convex
hull while not being visible to each other. If the ports do not share the same nearest node
or any adjacent nodes, two different nodes are assigned. Otherwise the connection nodes
are equal for both ports.

When one port is located on the border of the shoreline sailing path polygon with the
other port outside, the two nodes nearest the former port are identified. And the node
yielding the shortest distance path is set as the connection node for both ports.

A fourth possible scenario is when only one port is located inside the sailing path
polygon with the other port located outside. The latter can be either inside or outside
the convex hull around the land area. In such instances, the node nearest the point of
intersection between the sailing path polygon and a rhumb line between the ports is found.
In figure 3.11a, the point is marked by the red ”x”, and the nearest node is shown as a blue
cross. The connection node is then found by searching the nearest node and its adjacent
nodes for the shortest total distance. Figure 3.11b illustrated how the connection node
resulting in the shortest distance route, is selected as connection node for both ports.

A final special case is when one port is located inside the convex hull while being
outside the sailing path polygon, and the other port is located outside the convex hull. In
such instances the algorithm first identifies the point of intersection between the sailing
path polygon and the initial route between the two ports. The connection nodes are then
set as the nodes of the sailing path polygon nearest each point of intersection.

Connection nodes for Antarctica

A special case arises when the route is crossing the Antarctic Continent. The two ports will
be visible to each other in most cases, and in any case where both ports are located outside
a convex hull around the land polygon. The ports can lie on opposite sides of the continent
on a globe, but still be visible to each other by a rhumb line. Generating a convex hull with
the ports as nodes would not be a fruitful approach, since the continent is spanning the
complete longitude range. Generating two convex hulls would result in connection nodes
around the−180° and the 180° meridian, for all sets of ports located outside the continent.

This conundrum is solved by finding two identical connection nodes for both ports,
and for two paths around the continent. First the two nodes of the sailing path polygon
nearest the two points of intersection between the shoreline polygon and the great circle
route is identified. Thereafter the middle node in between the two nodes, is located. This
is done in both directions such that two middle nodes, on in each direction, are then set as
the connection nodes for each path. The process is illustrated in figure 3.12a.

If polar sailing is restricted while the route intersects the Antarctic Continent, the sail-
ing path polygon around Antarctica is altered to follow a path of constant latitude of 60
degrees south. The connection nodes are also modified in such cases, to minimise the risk
of great circle routes from the connection node to the ports going below the set latitude
limit. The two connection nodes adjacent the previously found middle nodes, as set as the
connection nodes for each path. Figure 3.12b shows how four unique connection nodes
are found when sailing in polar water is restricted.
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(a) Polar sailing allowed (b) Polar sailing restricted

Figure 3.12: Connection nodes for circumventing the Antarctic Continent.

3.3.2 Visibility test of the connection nodes

All routes in open water are generated as great circle routes divided in waypoints, resulting
in an approximate great circle route divided in legs of constant heading. It is possible that
the ports and corresponding initial connection nodes are visible to each other by a rhumb
line, but not visible by the approximate great circle route. An example of this is illustrated
in 3.13a. The initial connection nodes are therefore subjected to a visibility test, to see if
the route between a port and the connection nodes intersects the land area to be omitted.
When an intersection is detected the given connection node is moved to the adjacent node
towards the related port. The process is continued until the connection node is visible to the
relevant port, as illustrated in figure 3.13b. The resulting nodes are set as final connection
nodes, when all nodes have been tested, and adjusted if needed.

When two paths are created, path one will always have a clockwise direction, while the
opposite is true for path two. The node index of path one will therefore increase along the
direction of travel, while the opposite is true for path two. If only on path is created, the
direction of travel along the sailing path polygon must be identified prior to the visibility
check, to ensure correct results.

3.3.3 Constructing paths around land areas

After the final connection nodes are determined, one or two paths around the land area will
be created. The basic method for constructing the paths is equal in both cases. The route
is made up of three parts: a path from the origin port to the coast of the intersected land
area, a path along the sailing path polygon surrounding the land area, and a final part from
the coast of land area to the destination port. The task to be performed is thus to extract
the path along the land area in a correct manner in respect to the indices of the nodes of the
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sailing path polygon and the direction of the route. Thereafter it is quite simple to combine
the three parts to a complete route.

Sometimes a port can be a node in the sailing path polygon around the intersected land
area. In such cases, the connection node is set as the port node. Also, a path from the port
to the connection node is not necessary and is thus set to be void.

The model includes an option for restricting routes in polar waters. For routes cross-
ing the Antarctic continent the restrictions are implemented in the process of finding the
connection nodes. Since there is no Arctic continent, a separate solution has been imple-
mented for routes involving the Arctic. A route in the Arctic will only be generated as one
of two paths around a land area, unless one or both ports are located in the Arctic. When
polar sailing is restricted, the algorithm for generating two paths multiplies the distance of
any route going further north than 60 degrees latitude by a factor of 100. This is a simple
way to ensure that the other path is selected as the shorter path.

(a) Initial connection nodes from convex hull

(b) Final connection nodes after visibility check

Figure 3.13: Initial connection nodes are subjected to a visibility test
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Figure 3.14: Flow chart of the complete route-finding algorithm, starting with an initial route cir-
cumventing one land area
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3.4 The complete route-finding algorithm
The complete route-finding algorithm creates a route between two ports, circumventing
all land areas. This is done by an iterative process of checking if an already established
route around one land area intersects other land areas, and if so alter one part of the route
at the time, until there is no more intersections between the final route and the shoreline
polygons. The complete algorithm is an expansion of the algorithm for finding a route
circumventing one land area described in the previous section.

The algorithm starts by establishing an approximate great circle route between the
ports, divided in waypoints and rhumb lines. The route is described by the waypoint
coordinates and the course and distance of each rhumb line. Shoreline data is loaded for
an area covering the initial route, including a 10° buffer in each direction. If a shoreline
polygon has any nodes with coordinates within the defined area, the complete polygon is
included in the shoreline data.

The initial route is checked against all the included shoreline polygons for intersec-
tions. In the case of several intersection land areas, a choice is made of which land area
to first circumvent. The chosen land area is identified by a specific ID for the relevant
shoreline polygon. A route is created between the ports omitting the selected land area in
the manner described in section 3.3. The resulting route is stored as a candidate for the
final path.

A flow chart of the extended algorithm, starting with the initial route omitting one land
area, is displayed in figure 3.14. After the first candidate route has been established, the
shoreline data is loaded anew to potentially cover a larger area than was spanned by the
initial great circle route. Then a list of dummy ports is created, and the iterative process
begins.

The dummy ports are nodes of the previously found candidate route. These nodes rep-
resent endpoints for the parts of the route crossing open waters and are used as points of
origin and destination in the basic route-finding algorithm. The list of dummy port con-
tains latitude and longitude coordinates for two nodes per entry and is initialised with two
entries. These represent the coordinates of the origin port and the first connection node,
and the coordinates of the second connection node and the destination port. The dummy
port list is updated when parts of the route are modified to omit additional intersecting land
areas.

Next, the algorithm selects a set of dummy ports from the list. Starting with the first
entry, the first dummy ports are the origin port and its adjacent connection node, from
the initial route. The basic route-finding algorithm is then repeated for the current set of
dummy port. Thus, a great circle route between the dummy ports is established, and the
route is checked for intersections with any shoreline polygons. If one or several polygons
are intersected, the ID of a specific chosen shoreline polygon is retrieved. A new route be-
tween the dummy ports, circumventing the identified land area is found. And the relevant
part of the initial route, the distance between the two dummy ports, is updated. At this
point there are two new connection nodes in the updated route and the list of dummy ports
is updated to include those. Then a new iteration starts by choosing a new set of dummy
ports from the updated list.

If the established route between the current dummy ports does not intersect any land
area, the route is kept as is. The process will advance to a new iteration as long as there
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are more dummy ports in the list. If so, a new set of dummy ports are chosen from the
list of dummy ports, and the process repeats until the routes between all sets of dummy
ports have been inspected. At this point a final route circumventing all areas have been
established. The route is described by the coordinates of all waypoints, and the distance
and course of each leg.

3.4.1 Selection of shoreline polygon
There are several considerations that concerns the choice of shoreline polygon to first be
circumvented. The algorithm is intended to select land areas in a manner that avoids gen-
erating a longer route than necessary, by including a route segment around a land area
that would not be intersected by a route around the lager area. To this intent, the algo-
rithm checking for intersections between the route and the shoreline polygons specifically
register if an intersected polygon is a continent. If none of the intersected polygons are
continents, the polygon representing the largest land area is selected. Should one of the
intersected polygons be a continent, that polygon is selected.

In the case when several of the intersected areas are continents, the algorithm checks
if the continents also are intersected by a rhumb line between the ports. This is done to
avoid generating routes around a continent only intersected by a great circle route when
the ports are located on opposite sides of another continent. When none of the intersected
continents are also intersected by a rhumb line, the polygon representing the largest area
continent is chosen. If one of the intersected continents are also intersected by a rhumb
line route, that polygon is selected.

A special consideration arises when several continents are intersected by a rhumb line
route between the ports. In such cases the rhumb line distance spanning each continent is
calculated, and two polygons with the greatest span are inspected. If the polygon with the
largest span also represent the largest area, that polygon is selected. Also, if rhumb line
distance spanning one polygon is twice or more the distance spanning the other polygon,
the former is chosen. Otherwise the largest area polygon is selected.
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Chapter 4
Simulation theory and model
background

This chapter presents a brief introduction to simulation theory, followed by some back-
ground information relevant to the simulation model.

4.1 Simulation theory basics

The motivation for applying simulation is usually a desire to study a system and to gather
information about how a specific system works. A system can be defined as a collection
of entities that interact with each other to accomplish a logical end(Law, 2007). Examples
of systems can be anything from a production line in a factory to the luggage handling at
an airport, or a fleet of vessels transporting goods.

Besides studying a system by gathering information from the system running in its
normal mode of operation, additional knowledge can be gained by studying how a system
responds to alternative configurations. In other words, by experimenting with the system
configuration. Experimenting with a system itself is a certain way to gather information
valid for the specific system. Practical or ethical restriction, or cost and time demand
often make this option unfeasible. An alternative in such instances, is to make a model of
the system and to rather study the model. The model can be either a physical model or
a mathematical model. A mathematical model can be solved analytically if it is not too
complex. Gosavi (2015) defines a simulation model as a computer program mimicking a
systems behaviour. And further states that simulation models can be used to model large,
complex stochastic systems, for which constructing mathematical model can be difficult.

A simulation model will always be an ideal representation of the real system and will
therefore never be quite exact. A good simulation model can nevertheless reveal useful
information about how a system works, as well as predictions to how a system will respond
to altered conditions.
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Figure 4.1: General steps of a discrete-event simulation

4.1.1 Discrete-event simulation

There are several possible ways to make a simulation model. In a discrete-event simula-
tion model, changes to the state of the system is represented by a collection of discrete
events(Fishman, 2001). Law (2007) defines the state of system as the collection of state
variables necessary to describe the system. A discrete-event simulation is thus a simula-
tion, in which the state variables changes values instantaneously at separate points in time.
An obvious advantage of using discrete-event simulation is that the simulation skips the
time between events, greatly reducing the time needed to run a simulation, as compared to
the real-life process.

Each change in state variables is called an event(Fishman, 2001). The simulation clock
is a state variable which is equal to the current value of the simulated time. The simulation
clock jumps in time from the time of one event to the time of the following event, and
the system state remains constant between events. At each event the state of the system is
updated corresponding to the given event. Using an event-scheduling approach involves
planning the next event at each current event. When the state variables have been updated,
the simulation clock is advanced to the time of the next event, and that event is executed.
The system state is again updated, and the next event is scheduled. A simulation keeps
advancing from one event to the next, until a stop condition is met. The stop condition can
be a time limit, a specific criterion for some simulation variable, or the occurrence of some
special event. The general steps of a discrete-event simulation are summarised in figure
4.1.

4.1.2 Verification and validation of simulation models

The following is based on an article by Sargent (2005), wherein he presents and discuss
the topic of verification and validation of simulation models. According to the article, ver-
ification is related to the correct functioning and implementation of the computer model,
while validation of the model is related to the accuracy of the output of the simulation
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model. To validate a model is thus to ensure that the result have an acceptable accuracy,
and that the model therefore gives valuable information in accordance with its indented
purpose. The required accuracy of the output variables will normally have to be specified
in order to validate the model. According to Sargent (2005) this should be done at an early
stage of development.

Sargent (2005) presents a simplified version of the modelling process, where a con-
ceptual model of the system is first created, before a computer model can be built based on
the conceptual model. Four types of validation and verification is discussed. These should
be performed at each step of the modelling process.

Conceptual model validation involves validating that the conceptual model is a rea-
sonable representation of the system, for the intended purpose of the model. This includes
testing the underlying theories and assumptions used to create the model, to ensure they
are appropriate. Mathematical analysis and statistical methods should be used on the sys-
tem data utilised to create the model. Processes are often described by stochastic variables
and statistical distributions. In conceptual model validation, such statistical assumptions
regarding the characteristics of the system processes, should be validated by analysing the
system data. A crucial part of conceptual model validation is to ensure that the model’s
structure and logical relationships echoes those of the system, or is a reasonable represen-
tation for the purpose of the model.

“Computerised model verification is defined as assuring that the computer program-
ming and implementation of the conceptual model is correct.”(Sargent, 2005). Techniques
for this purpose include structured walk-throughs of the computer model, tracing entities
through a model to ensure correct model logic, inspecting input-output relationships and
internal consistency checks.

A large part of the evaluation of a simulation model takes place as operational vali-
dation. Sargent (2005) defines operational validation as ensuring that the model’s output
behaviour has sufficient accuracy for the model’s intended purpose. To that end the models
output behaviour should be compared to that of the system. Preferably for several different
sets of experimental conditions, in order to obtain a high degree of confidence in the model
and its results. It is therefore not possible to achieve high confidence if it is not possible to
collect operational behaviour system data. In such instances Sargent (2005) recommends
a thorough evaluation of the models output behaviour, and if possible, comparison to other
valid simulation models.

System data is needed in all stages of modelling and experimenting. Therefore data va-
lidity is essential for validation and verification throughout the modelling process. Sargent
(2005) defines data validity as “ensuring that the data necessary for the model building,
model evaluation and testing, and conducting the model experiments to solve the problem
are adequate and correct”. It is not possible to obtain high model confidence, as a rule,
without sufficient valid system data.

4.2 Simulation model background
Some background information relevant to the simulation model is presented in the follow-
ing. First a short presentation of the original simulation model is given. Then follows a
description of the data used to model weather conditions or sea states in the simulation
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model, and a description of the software used.

4.2.1 The original simulation model
A detailed description of the original simulation model is presented in the thesis of Bakke
and Tenfjord (2017) and will not be restated here. Rather some relevant aspects of the
model are discussed in the following paragraphs.

The original simulation model requires a fixed route, with weather data covering each
leg of the route, organised in separate spread sheets. The simulation model thus requires
some degree of cumbersome pre-processing. In order to set up a new simulation in the
existing model, the user must create a route divided in legs, and then download weather
information covering each area and store it as input in the correct format. The simulation
model could be significantly more flexible if the required weather data could be stored in
a single file. As an example, global historic weather data spanning several years could be
included as input. Then the relevant data for an area covering the current route, and for the
time period to be simulated could be extracted prior to the simulation.

In the simulation model, the weather conditions are modelled in a stochastic manner.
A method that requires creating transition probability matrices to determine the next state
of the system based on the current state. When running a simulation, transition probability
matrices for each leg of the journey are created. These are based on weather data of an
area covering each leg, for a certain time period.

There are several arguments for why such method fails to model the weather conditions
in a realistic manner. Local variations in weather conditions will be poorly reflected, since
the transition probabilities are equal for a rather large area, and since they do not vary
over time. Using Markov chains can also result in abrupt changes in the different variables
describing the wind and wave conditions. While such conditions can change rapidly in
nature, purely probabilistic determination does not reflect natural variations over time in a
good way. Another issue is that the different variables can vary independently in a not so
realistic manner.

Finally, with the Markov chain approach, the weather variables can only take a discrete
set of values. This can result in some of the simulated performance parameters varying
in a discrete manner, which would not be reflective of real-life behaviour. For the above-
mentioned reasons, it seems like better approach to apply historic weather data directly in
the simulation model.

4.2.2 Met-ocean data
Met-ocean is a term used to described the combined effect of meteorology and oceanog-
raphy(Chakrabarti, 2005). Met-ocean data is thus data describing the meteorological and
oceanographic conditions. The simulation model applies hindcast weather data to emu-
late realistic conditions. Hindcast weather data is produced by a reanalysis of numeri-
cal weather prediction models constrained by observational datasets. The result of such
reanalysis is weather data in gridded meteorological fields, consistent over the span of
decades(Black and Henson, 2014).

The data used for creating the simulation model is obtained from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF), and is of Network Common Data
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Form(netCDF) format. More details regarding the data is found on the ECMWF web-
site(ECMWF, 2019).

4.2.3 Software
MATLAB and Simulink is the software used for creating the simulation model. While
itself being created in Simulink, the simulation model is executed by running a MATLAB
script. This allows for configuration of the simulation and loading of the prerequisite data
into variables and parameters used by the simulation model.

Simulink and SimEvents

Simulink is a software environment, integrated with MATLAB, for creating models and
performing simulations. The software provides a graphical interface for creating simula-
tion models. The modelling is done by selecting from a library of blocks with different
properties and functions. The blocks can be configured, and the relationship between dif-
ferent blocks can be set by connecting them in a desired order(MathWorks, 2019e).

SimEvents is a discrete-event simulation engine within Simulink, with a library of
blocks for creating models of event-driven systems. Common blocks are sources and sinks
for entities, queues, servers and switches. The entities can haven custom data attributes,
that can be modified by blocks such as entity servers, according to the block configura-
tion(MathWorks, 2019d).

An important feature of Simulink is the possibility to run MATLAB algorithms by
applying MATLAB function blocks. The Simulink function block is another block of great
utility. This block, which can be called from an entity server, can process input and return
the resulting output. The two blocks can be combined to execute MATLAB algorithms
with input variables given from an entity server, and can thus be used to perform complex
operations on entity attributes.

NC-toolbox

Nctoolbox is MATLAB toolbox for reading common data model datasets. It can access
files of several file formats, including netCDF files. Met-ocean data files can be quite
large if the data covers a large area, a large time span or if the file has high resolution.
Nctoolbox makes it possible to extract a subset of a variable from the met-ocean data file
without loading the complete variable into MATLAB, thus reducing the time it takes to
load the met-ocean data.
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Chapter 5
Simulation model

In this chapter the simulation model is described. The idea behind the model is to simulate
the sailing of a vessel along a fixed route, using discrete event simulation. Each event of
the simulation represents a unique point along the route, with unique weather conditions
for the current time and position. The first event represents the vessel at the origin port
at the given start date. The simulation is performed by calculating the distance and time
used to reach the next event, in the weather condition present at the current event. This
is done by estimating the speed reduction resulting from the given wave conditions. The
simulated journey is then advanced from point to point along the route until the destination
is reached. At each event several vessel performance parameters are calculated based on
the attainable speed and the current weather conditions. These are stored to be used for
evaluating the performance of the simulated vessel.

5.1 Overall algorithm

The overall algorithm for running a simulation is coded in a MATLAB script named
run sim, included in appendix E.1.1. A flow chart of the process is shown in figure 5.1.

When script is executed, the first sub-process reads the user defined input. Thereafter
a choice is given to either load a predefined route stored in a MATLAB file, or to generate
a new route. When the latter is chosen a new route will be generated as to specifications.
The user will then be prompted to inspect and verify the fitness of the resulting route,
and if to proceed with the simulation. If the new route is deemed acceptable or when a
predefined route is chosen, met-ocean data covering the given route is loaded as the next
step of the process. Loading the met-ocean data can be resource demanding task, given the
large amount of data needed to cover the given area of a route for a specific time period.
Therefore, this data is only loaded if a simulation is to proceed.

With the relevant met-ocean data loaded, all prerequisite preparations for running the
simulation is performed, and the next step is to run the Simulink model to perform the
simulation. The Simulink model is described in section 5.2. When the simulation is done,
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output data is processed and stored, before some output is plotted, and a map of the route
is displayed. Finally, the user is given an option to save the results in a MATLAB file.

In the instances where a new route is created, and the route is deemed not suitable by
the user, a warning will be displayed before the process will terminate without running
a simulation. In such cases the user is advised to create a desirable route by running the
RouteCreator script, and thereafter execute a new simulation with the resulting route given
as input.

Figure 5.1: Algorithm for running the simulation model

5.1.1 Input
The model requires four types of input data. These are: manual input to configure the sim-
ulation, data describing the vessel whose performance is to be simulated, data describing
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the ship engines, and met-ocean data. The latter is detailed in section 5.1.3, while other
types of input is described in the following.

Manual input

The simulation model is configured by editing preferences in the MATLAB script for
running a simulation. The configuration variables are listed in table 5.1. The start date
of the simulation is given as year, month, day, hour, minute and second, and must be set
within the time range covered by the given met-ocean data. The desired time step between
simulation updates will in most cases equal the time between events in the simulation.
This value should be given in hours.

Table 5.1: Configuration variables

Variable name Description Format

start date Starting date of the simulated journey [yr,month,day,h,m,s]
time step Desired time step between simulation updates [h]
speed sailing Desired sailing speed [kts]
file name vessel Name of file containing the vessel data [Text string]
file wind Name of file containing wind data [Text string]
file wave Name of file containing wave data [Text string]

Vessel data

The vessel data is loaded to the MATLAB workspace from a spread sheet containing 54
parameters. All parameters are loaded to one variable accessible to the Simulink model.
The parameters describe the main particulars and machinery data for the vessel in a given
loading condition. In addition, 32 coefficients are included for use in Hollenbachs method
for resistance prediction. The MATLAB code for loading vessel data is kept from the
original simulation model by Bakke and Tenfjord (2017).

Engine data

Engine data is loaded by running a MATLAB function called engine pre.m, which returns
three parameters for each engine. The parameters must be configured manually in the
mentioned function, which also is kept from the original simulation model. The following
engine parameters are needed for running the simulation:

• Maximum continuous rating, MCR [kW]

• Brake-specific fuel consumption, BSFC [g/kWh]

• Optimal engine load [% of MCR]
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5.1.2 Creating a new route
The ability to generate new routes is ensured by implementing the main functions from the
RouteCreator script directly into the run sim script. When creating a new route, the user
will be asked to either select ports from the list of predefined alternatives, or to manually
input coordinates for the desired ports. Alternatively, one can combine a port from the list
and one of custom choice. The user must also define preferences for the maximum length
for the sailing legs, and whether to include routes in polar waters. The process for setting
up routes is similar as described in chapter 3.

After a route is generated, a function named check route is run to validate the resulting
route, and to determine if the process is to proceed to load weather data and run a simula-
tion. This is done by visual inspection of the route on a map by the user. The function for
checking the route only gives two options, either to keep the route and run a simulation,
or to discard the route and terminate the process. There are thus no options to modify the
resulting route or create a new route, as is present in the RouteCreator script. Such features
are not included in the simulation algorithm in order to keep the code simple, and to keep
focus on the main objective of running a simulation.

5.1.3 Met-ocean data
The wind and wave conditions can be described by several different parameters. Those
used in the simulation model are listed in table 5.2. Wind speeds at 10 metre vertical
height, are given as a northward(v10) and eastward(u10) component of the total wind
speed. The mean wave direction denotes the direction the waves are propagating towards
(oceanographic convention) and is given in degrees clockwise from true North. The sig-
nificant wave height is the height of combined wind waves and swell.

The algorithm is made for wave and wind data stored in separate files, and two dif-
ferent MATLAB functions are therefore responsible for loading the met-ocean data. The
functions have similar algorithms and differs only in the types of data loaded in each func-
tion. In addition to the parameters themselves, the latitude, longitude, and time of each
data point is loaded to separate input variables. This is done for each file, allowing for
differently defined data points for the wind and wave data file.

Prior to loading the data, both functions first check to verify that the met-ocean data
covers the area of the given route and the given time span. If the area or time span is not
covered by the supplied data, a warning will be displayed before an error will occur. The
included met-ocean data covers latitudes from 70.20 to 3.10 degrees north, and longitudes
from−180 degrees west to 179.70 degrees east, with a grid resolution of 0.3 degrees. The
data covers dates from 1 January 2016 at 00:00, to 31 December 2017 at 23:00, with time
intervals of one hour.

If the met-ocean data covers the given route and date, a proper subset of the data is
extracted. This is done to reduce the size of the data loaded into MATLAB to be used as
input parameters in Simulink. The different data parameters are loaded for an area cov-
ering the latitudes and longitudes spanned by the route, and for a time period constrained
by the given start date and an estimated end date. The latter is calculated from time spent
when sailing at 60 % of the set speed. It is necessary to load only the relevant data, not just
to reduce the time used to run a simulation, but also since it impossible to load complete
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met-ocean datasets of a certain size. Routes crossing the international date line in either
direction, is accounted for when finding a suitable subset to extract. Including routes that
first cross the date line in one direction and later in the opposite direction, when circum-
venting a land area.

In order to be able to load the met-ocean data for the route used in the presentation of
the original simulation model, it necessary to reduce the size of the data. This is achieved
by excluding some of the data points. The algorithm fist checks the resolution of the time
intervals, as well as the resolution of the latitude and longitude grid, for which the data is
given. If the data is given with time intervals of one hour or less, every other point in time
is excluded from the dataset that is loaded. The same is done for latitudes and longitudes,
if the grid resolution is less than 0.4 degrees and the number of entries needed to cover the
route is above 400. The grid resolution of latitudes and longitudes are inspected separately,
and data point can be excluded in any dimension independent of the other.

In order to handle dates efficiently in MATLAB, all dates are converted to a serial
date number. In MATLAB this number is defined as the number of days from January 0
0000. The dates in the included met-ocean dataset is however given in hours from January
1, 1900. The times for each data point are therefore converted to comply with the format
used by MATLAB. The met-ocean data files should be of netCDF format and must contain
the variables listed in table 5.2. The longitudes for the data points need be organised in
an ascending order. Furthermore, the parameter names in the dataset need to match those
used in the code for the described functions. The code is included in appendices E.1.2 and
E.1.2.

Table 5.2: Met-ocean data used in simulation model

Parameter Unit

10 metre U wind component, u10 [m/s]
10 metre V wind component, v10 [m/s]
Significant wave height, Hs [m]
Mean wave direction, mwd [degrees]
Peak wave period, Tp [s]

5.1.4 Output
The last part of the overall algorithm deals with processing of output data recorded during
the simulation and generating plots. Several parameters are stored for each time step of the
simulation. These include voyage data, wave and wind conditions, engine performance,
and total resistance and resistance components during the voyage. Also, total time spent
on the journey and total fuel consumption is calculated, along with average resistance and
average load on main engine. All the output data is stored in a structure array variable,
that can be saved in a MATLAB file with a preferred file name.

A separate script is executed to plot some of the results. And finally, a function gen-
erates two maps. One with an orthogonal projection, displaying the route. And one with
Mercator projection, showing an animation of the simulated voyage.
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Missing data

The met-ocean data can have entries where data is missing. At each time-step of the
simulation, met-ocean data is gathered for the four entries nearest the current location,
and the two closest points in time. A variable indication if data is missing, for all four
locations and both points in time, is stored as a part of the simulation output. This is done
for the wave and wind data separately. If the variable is equal to 1 for any time-step, the
parameters stored as results for that time step is calculated with missing met-ocean data
and is thus not reliable. Entries with missing data generally represent locations close to
shore in the wave dataset.

Results calculated for points where met-ocean data is missing, is corrected for in the
processing of the results. A specialised function is executed in such instances. The correc-
tion is performed by replacing the values of any time-step with missing met-ocean data,
with the values of the previous time-step. This is done for all parameters, for all such time-
steps. If the first time-step is based on missing data, the first entry of all stored parameter
is replaced by the value of the next reliable entry. Is assumed that this is a reasonable
correction given that few, if any, time-steps is expected to have missing met-ocean data.
Also, small variations in weather conditions is expected from one timestep to the next, if
relatively small time-steps is chosen in the simulation configuration. Not adjusting faulty
entries could lead to misleading results.

5.2 The Simulink model
A description of the simulation model is given in the following. An overview of the
Simulink model is shown in figure5.2. The model consists of an entity generator, an entity
terminator, four entity servers, two entity switches, and a stop simulation block. The entity
generator creates an entity representing the vessel, which flows through the other blocks
of the model. Only one entity is used for the complete simulation. The input and output
switches direct the flow of the vessel entity and enables the entity to loop through three en-
tity servers. The loop with the three servers represents the iterative process of sailing from
one point to the next along the route. The model also consists of seven Simulink functions,
seen in the lower part of figure 5.2. These are called from different entity servers during a
simulation run.

5.2.1 The simulation process

A flow chart of a simulation run is illustrated in figure 5.3. The different simulation sub-
processes are shown in the rounded rectangles, while the simulation variables updated
during a process are shown in the adjacent yellow parallelograms. The blue parallelograms
display parameters stored as output during the connected process.

The simulation starts by generating a vessel entity, created with the 15 attributes listed
in table 5.3. These are used to track and update the simulation variables as the simulated
journey advances. Those listed with an initial value of 111, have initial values that are
specific for a given simulation, and get their real initial value in later simulation processes.
The value of 111, is mainly chosen to discern those attributes, from those whose values
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Figure 5.2: Simulink model

are universal, i.e. independent of the specific vessel and route to be simulated. The latter
group keep their initial values set in the entity generator.

The next process assigns initial values to the simulation variables whose value must
be set in order to start the simulated journey. This is done by assigning values to the
corresponding entity attributes. In the Simulink model this task is performed by the first
entity server, seen outside the sailing loop in figure 5.2. The simulation date is set to the
given start date of the journey, while the latitude and longitude is set as the coordinates of
the first waypoint of the route, representing the port of origin. The course and distance of
the first leg is read from the route data.

The next step of the process retrieves met-ocean data for the current place and time.
The variables returned are significant wave height, mean wave direction, wave period,
wind direction and wind speed. The weather conditions, course, and coordinates of the
current event is stored to the MATLAB workspace. The following sub-process then use
the significant wave height and mean wave direction to estimate the speed loss due to
waves. The attainable speed in the current conditions is estimated by applying a formula
presented by Kwon (2008), later modified by Lu et al. (2015).

Thereafter the vessel performance parameters are calculated. The attainable speed and
the significant wave height are used to calculate the calm water resistance and the added
resistance due to waves. The resistance due to air and wind is found by using the attainable
speed, the wind speed and the relative wind direction as input. The total resistance and
attainable speed are used to calculate the brake power, fuel consumption and the engines
operating point. The resistance, engine data and attainable speed at the current event are
stored to the MATLAB workspace. The processes of fetching met-ocean data, estimating
attainable speed, and calculating vessel performance parameters, are all performed by one
entity server in the Simulink model.

After the vessel performance is calculated, a sub-process responsible for planning the
next event, is executed. The distance to, and time until the next event is set, along with
the coordinates of the next event. And the relevant simulation variables are updated. A
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Table 5.3: Attributes of the ship entity

Attribute name Description Initial value

Sim date Simulation date [days from Jan. 0, 0000] 111
Lat Current latitude [degrees North] 111
Lon Current longitude [degrees East] 111
Leg Current leg number 1
Course Heading [degrees off North] 111
Att speed Estimated attainable speed [kn] 111
Distance leg Length of current leg [nm] 111
Distance sailed leg Distance sailed of current leg [nm] 0
Distance sailed tot Total distance sailed [nm] 0
Distance next event Distance to position of the next event [nm] 0
Time next event Time until next event at current speed [h] 0
Lat next Latitude of next event [degrees North] 111
Lon next Longitude of next event [degrees East] 111
Output port Output port for termination switch 2
Leg completed Indicator showing if leg is completed or not 0

preferred time step between simulation updates is defined in the simulation configuration,
and the time between events is generally equal to this value. The distance to the next event
is then set as the distance it is possible to sail in the given time step, given the attainable
speed in the current conditions. The route is divided in sailing legs with a fixed distance.
At the end of each leg, the distance it is possible to sail in the preferred time step, will
therefore be longer than the remaining distance off the leg. In such instances the distance
to the next event is set to the remaining distance of the leg. The time to next event is then
calculated from the remaining distance and the attainable speed. The simulation variable
indicating if a leg is completed is given a value of 1, if the next event marks the completion
of a leg.

When the next event has been planned, the simulation is advanced to the next event.
A task performed by the last entity server in the sailing loop in the Simulink model. The
simulation date, latitude and longitude are updated to that of the next event. In addition,
the distance sailed of the current leg and in total is updated. In the cases when the new
event is not the end of a sailing leg, the simulation starts a new iteration of sailing by going
back to the process of retrieving weather conditions for the current event. This iteration
continues until a leg is completed.

When a leg is completed, the algorithm checks if the journey is also completed, by
comparing the coordinates of the current event with those of the destination. If the des-
tination has not yet been reached, the simulation starts a new leg by updating relevant
simulation variables. The leg number is incremented, the course and distance are updated
from the route data, and the simulation variable tracking the distance sailed of the current
leg, is reset. Thereafter the simulation goes back to the process of retrieving weather con-
ditions for the current event, and a new iterative process of sailing along the new leg has
started.
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Figure 5.3: Flow chart of simulation model

The simulation continues until a leg of the route has been completed, and the coor-
dinates of the new event corresponds to those of the destination port. At this point the
simulated journey has reach its destination, and the simulation is terminated.
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The Simulink blocks

The tasks performed by the different blocks of the model are summarised in the following.
Most of the calculations are performed by MATLAB functions located in the different
Simulink functions, which in turn are called from different entity servers to execute the
desired calculations.

The first entity server assigns initial values to those attributes that must have set value
prior to the entity entering the simulated sailing process. This is done by calling on
two Simulink functions. The stating date and initial latitude and longitude, is set by the
Simulink function specialised for the task, named initial values. The initial course and
distance of the leg is retrieved from the function called update leg. A function utilised
throughout the simulation when the simulated journey starts a new leg of the given route.

The first of the three entity servers in the sailing loop is responsible for calculating
the vessel performance at the current event. The server calls on three different Simulink
functions. First the relevant weather conditions are retrieved from the function named
get ocean data. Thereafter the attainable speed in the current conditions is retrieved by
calling the function named speedloss. The entity attribute for the attainable speed is up-
dated at this point. When the weather conditions and the attainable speed have been deter-
mined, the ship performance is calculated by calling the function ship model.

The planning of the next event is done when the ship entity enters the second entity
server in the sailing loop. This block calls on the function named next event, which is
responsible for performing the necessary calculations, before the relevant attributes are
updated.

The final entity server is responsible for advancing the simulation by updating the rel-
evant simulation variables to that of the next event. This is the only entity server with a set
service time. The simulation clock is correlated to the simulated time of sailing, by setting
the service time equal to the time till the next event. The Leg completed attribute indicates
if the current update marks the completion of a sailing leg. When a leg is completed, a
Simulink function called outport is called, to check if the update also means the comple-
tion of the journey. The attribute Output port is then updated with the value returned from
this function. If the destination is not yet reached, a new leg is started by updating the
relevant simulation variables. This includes calling on the update leg function, to get the
course and distance of the new leg.

After all relevant attributes have been updated, the entity moves to the output switch.
Here the next step of the entity is determined by the Output port port attribute. The entity
is then either directed back to the first entity server in the sailing loop, or to the entity
terminator if the journey is completed. The stop simulation block ends the simulation
when an entity is registered to have arrived at the entity terminator.

5.2.2 Retrieving met-ocean data
The met-ocean data is given in a gridded format, meaning that the data is available for
coordinates given by a grid of latitudes and longitudes with a fixed resolution. The data
is also given for a certain time span, with a certain time interval between the data points.
A specific latitude, longitude, time and date is thus needed to read the values of a given
met-ocean data parameter. Barring random chance, the coordinates of the vessel at any
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given event will not match the coordinates of the met-ocean data. The same is true for
the time and date at any event. The met-ocean data at each event is therefore determined
by interpolating data from several data points. Generally, eighth data points are used,
representing the four point in space nearest the current position, and two points in time
nearest the current simulation date. The interpolation is performed by summarising the
parameter values from the different data points, while applying a relative weighting to
each of the four sets of coordinates, and the two points in time. Values are determined for
the parameters listed in table 5.2.

(a) The four met-ocean data points with closest
coordinates to the vessel position

(b) Distances to each data point, used in weight-
ing the individual parameter values

Figure 5.4: Locations of met-ocean data points used in interpolation

The first step for retrieving met-ocean data is to identify the two points in time in the
dataset, t1 and t2, closest to the simulation date, tsim. The next step is to identify the two
latitudes and the two longitudes, in the dataset, closest to the position of the vessel at the
current time-step. This gives four data points, n1 - n4, located at the nearest distance to
the position of the vessel, as illustrated in figure 5.4a. Now the parameter values at each
location and time can be read. As an example, Hs(t1, n3) is the value of the significant
wave height at time t1 and location n3, with coordinates (lat2, lon1).

A weighting of each of the two points in time is found based on the linear distance in
time between tsim and t1 and t2, respectively. The weighting is calculated as shown in
equation 5.1, where the relative weighting time point t1 is found by letting i = 1.

wti = 1− |tsim − ti|
|t2 − t1|

, i = 1, 2 (5.1)

The distances from the nearest locations to the position of the vessel can be seen in
figure 5.4b. A relative weighting of each point is calculated as the inverse ratio between
the distance, dj , from the vessel to each point, and the total distance D. A normalised
weighting is obtained by dividing the result by the sum of the inverse ratio for all distances.
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The formula is displayed in equation 5.2, where N is the number of nodes used in the
interpolation, and the total distance is given as D =

∑
dj .

wnj
=

D
dj∑N

k=1
D
dk

, j ≤ N, j,N = 1, 2, 3, 4 (5.2)

When the relevant data points and their relative weighting have been found, the interpo-
lation of the parameter value is performed as shown in equation 5.3, where the significant
wave height Hs is used as an example.

Hs(tsim, lat, lon) =

2∑
i=1

N∑
j=1

Hs(ti, nj)wnj
wti , N = 1, 2, 3, 4 (5.3)

Missing data

Data points where met-ocean data is missing are excluded from the interpolation, in order
to avoid erroneous parameter values. At locations where data is missing, the parameter
values are given as NaN, meaning “Not a Number”. Missing data is thus found by search-
ing the relevant data points for NaN values. It is assumed that all parameters are missing
if one is missing for a given data point. Therefore, only one variable is checked for each
dataset. Arbitrarily chosen, Tp and U10 is used for this purpose.

Each point in time is checked for missing data separately. If both points in time have
valid data from at least one node, the parameter values are found as described above.
Should one point in time have missing data for all the nearest data points, only data from
the other point in time is used. The parameter values are then found by interpolating the
values at nodes with valid data for the one point in time.

There is a possibility that all four the nearest data points have missing data for both
points in time. As previously described, such instances are dealt with in the processing of
the simulation results. For this purpose, a variable indication if data is missing for each
event is stored and sent to the MATLAB workspace. This is done for each dataset.

Met-ocean parameters

The task of the get ocean data function is to establish suitable values for met-ocean pa-
rameters used to evaluate the vessel performance. The parameters returned from the func-
tion are listed in table 5.4. The peak wave period and the significant wave height are
returned with the values found from the interpolation of the met-ocean data. The peak
wave period is however not in use in the current version of the model. It is included since
the original model had it included, for performing resistance calculations with ShipX.

The resultant wind speed is calculated from the eastward and northward components,
u10 and v10, as shown in equations 5.4. The direction of the resultant wind speed can
be found from equation 5.5. The wind direction, θ, as calculated with equation 5.5, is the
direction the wind is blowing towards in degrees from the North meridian. Furthermore,
the wind direction relative to the ship heading, β, is calculated according to equation5.6.
The relative wind direction, θrel, is then the direction the wind is coming from, in degrees
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clockwise from the centre line. Thus, head wind gives θrel = 0°, and side wind from port
side yields θrel = 270°.

The relative wave direction is calculated as the angle of the incoming waves relative
to the ship heading. Equation 5.7 yields the relative wave direction in degrees between
0 and 180. Head waves is then given as mwdrel = 0°, and waves from the stern as
mwdrel = 180°.

Ures =
√
u102 + v102 (5.4)

θ = 90
(
2− u10

|u10|

)
− arctan

( v10
u10

)(180
π

)
(5.5)

θrel = θ − β + 180c, c =

−1, if (θ −H) > 180
3, if (θ −H) < −180
1, otherwise

(5.6)

mwdrel =

{
|mwd− β| − 180, if |mwd− β| > 180
180− |mwd− β|, otherwise (5.7)

Table 5.4: Met-ocean returned from get ocean data function

Parameter Unit

Resultant wind speed (Ures) [m/s]
Wind direction relative to heading (θrel) [degrees]
Significant wave height (Hs) [m]
Relative mean wave direction (mwdrel) [degrees]
Peak wave period (Tp) [s]

5.2.3 Vessel performance calculations
A brief presentation of the vessel performance calculations in the Simulink model is given
in the following.

Speed loss estimate

The method and code for estimating the speed loss in different weather conditions are
kept as described for the original simulation model by Bakke and Tenfjord (2017). The
method used is a formulae for speed loss approximation by Kwon (2008), as modified
and presented by Lu et al. (2015). The estimate is based on the parameters listed in table
5.5. In addition to the listed parameters, the speed loss formula also depends on loading
condition and type of vessel(Lu et al., 2015). The algorithm must therefore be customised
for each specific vessel design and loading condition.

The Beaufort Scale categorises wind speeds and sea states, so that sea conditions can
be describes by the Beaufort Number(Garrison, 2005). In the model, the Beaufort Number
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is determined from the significant wave height. Interestingly, the Beaufort Number is set
equal to seven for all significant wave heights greater than four metre, even though the
scale continues. The model also use volume displacement in the speed loss estimate,
where displacement tonnage is used in the paper by Lu et al. (2015).

Table 5.5: Parameters used to estimate speed loss

Description Unit

Design speed (V ) [m/s]
Beaufort Number (BN ) [-]
Froude Number (Fn) [-]
Block coefficient (CB) [-]
Relative mean wave direction (mwdrel) [degrees]
Volume displacement (∇) [m3]

The ship model

The ship model is tasked with calculating the vessel performance, and is made up of four
blocks, as can be seen in figure 5.5. All blocks are kept from the original simulation model,
as described by Bakke and Tenfjord (2017). Only the code for calculating the air and wind
resistance, has been modified.

Figure 5.5: The ship model in Simulink

When the Simulink function is executed, two different blocks first calculates the hy-
drodynamic resistance, and air resistance, respectively. The hydrodynamic resistance is
estimated based on Hollenbach’s method, modified to include added resistance in waves,
with the significant wave height and attainable speed as input variables. The air resistance
is calculated to account for resistance due to wind, according to equation 5.8, where Cair
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is the air resistance coefficient for the superstructure, and Ap is the transverse projected
area of the superstructure(Steen and Minsaas, 2014).

RAA = Cair ·
ρair
2
· Urel|Urel| ·Ap (5.8)

Urel is the wind velocity relative to the vessel speed, V , and is calculated according to
equation 5.9. The latter part of equation 5.9 express the component of the wind velocity in
the direction of the ship heading, such that the velocity of head wind component is positive
and tail wind component is negative.

Urel = V + Ures · cos (θrel)
(180
π

)
(5.9)

After the resistance components have been determines, a third block calculates the
towing power needed, from the total resistance and the attainable speed. Finally, a block
representing the engine room, calculates the brake power, the relative engine load and the
specific fuel consumption. The engine room block included in the current model represents
a single engine. It can however be replaced by other blocks, also supplied by the original
model, representing different engine configurations.

5.2.4 Comparison to the original model
The code and functions for vessel performance calculations are mostly kept from the orig-
inal simulation model by Bakke and Tenfjord (2017). It is therefore useful to compare
the current simulation model with the original. The following highlights some differences
between the models.

The greatest difference lies in how the models incorporate the met-ocean data. The
original model use Markov chains to model the wind and wave conditions, with several
states defined for each met-ocean parameter. Markov chains include using transition prob-
abilities to determine the next state of a system based on the current state, in a stochastic
manner. The original model also depends on a predetermined route with a fixed number of
legs, and with met-ocean data as input for each leg. This requires the met-ocean data to be
pre-processed for each route to be simulated. The current model uses hindcast met-ocean
data directly, removing the need to pre-process the data according to each route. By doing
so, time must be included as a simulation variable. In the original model, time was only
included by setting a fixed time step between updates.

Another difference regarding the met-ocean data is that the current model uses wave
data for combined swell and wind waves, while the original model uses separate wave data
for the two. This change is merely based on the available data, and not intended to improve
the model. In the original model, the added resistance in waves is calculated separately for
swell and wind waves, when using the ShipX module for resistance calculations. But when
using Hollenbach’s method, the wave data is combined prior to resistance calculations.
The current model is created for using Hollenbach’s method and must be modified in
order to enable using the ShipX module.

A less important difference between the models lies in the conventions used for some
of the met-ocean data input. In the original model, the wind is described by a wind di-
rection in nautical conventions, and resultant wind speed at 10 metre height. In nautical

55



Chapter 5. Simulation model

convention, the direction describes the angle where the wind is blowing from, such that
0° denotes wind from North and 90° denotes wind from the East. The current model use
wind vectors as input. Also, the original model use mwd in nautical convention, while the
current model use mwd given in oceanographic conventions.

(a) The original model

(b) The current model

Figure 5.6: A comparison of the two Simulink models

The ship model is the Simulink block responsible for calculating the vessel perfor-
mance parameters at each step of the simulation. In the original model this block is acti-
vated when the Simulink function, responsible for determining the values of the met-ocean
parameters, is called from the entity server named Run simulink. The ship model of the
original simulation model can be seen in the top right corner of figure 5.6a. The chosen
configuration of the original model included replicating the function for calculating the at-
tainable speed, and the function for finding the coordinates of the next step of the journey.
Both functions are executed twice for each step of the simulation.

The speed loss is first calculated in the ship model, by using Hs, from combined
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waves, andmwd for wind waves only. The value calculated here is stored to the MATLAB
workspace. It is also used to calculate coordinates of the next step, also stored to the
workspace. When the met-ocean data parameters are returned to the entity server, another
Simulink function is used to calculate the attainable speed once more. This time both Hs
and mwd for wind waves only is used as input. The value calculated at this point is used
as a simulation variable for the attainable speed and is also used to calculate coordinates
for the next step of the simulation. These coordinates are used as simulation variables for
the current latitude and longitude and is thus used for calculation met-ocean parameters at
the next simulation update.

Creating a new function for reading met-ocean data yielded an opportunity for creating
a more intuitive flow of the simulation model, dividing the simulation of sailing into three
processes and removing the redundant functions. In the current model the ship model
is made as a Simulink function executed from the first entity server in the sailing loop.
Furthermore, the attainable speed, and the coordinates of the next event, is only calculated
once each time step. Both Hs and mwd for combined swell and wind waves, are used in
the calculations.

Figure 5.7: Ship module from the original model

The blocks used in the new ship model is kept from the original ship model, but the
redundant blocks have been removed in the current version. This can be seen by compar-
ing figures 5.5 and 5.7. The original model uses attainable speed as input for Hollenbach’s
method, but design speed when calculating the wind resistance, while the current model
use attainable speed as input for both. Otherwise, only the code for air resistance calcu-
lations have been is altered. In the original model the air resistance is calculated as the
change in air resistance due to wind (Steen and Minsaas, 2014). In the current version this
is corrected to calculate the resistance from air and wind combined, as described in the last
section.
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Chapter 6
Results

Results produced from the algorithm for automatic route-finding and results produced by
the simulation model, is presented in this chapter. All results have been produced using
MATLAB version R2017b on a Widows 10 laptop, with a 2 GHz AMD processor, an in-
tegrated AMD Radeon R5 Graphics processor and 12 GB RAM. First some results from
running the RouteCreator script is presented in section 6.1. Then three cases are described
in section 6.2, along with the results from running the simulation model for the case stud-
ies.

6.1 Results from the RouteCreator script
The RouteCreator script have been executed for all combinations of the 20 predefined
ports in the included port database. The results, first when restricting access to polar
waters, then without restrictions, are presented in section 6.1.1. The feature for setting up
routes between manually defined ports has also been tested, and the results are presented
in section 6.1.2. Finally the ability to to improve routes with the modification option is
demonstrated in section 6.1.3.

The model creates identical routes between two ports, irrespective of which port is
designated origin and destination port. To avoid redundancy, the results therefore only
includes one route for each combination of ports. The RouteCreator script ran repeatedly
without any execution errors. A selection of the results is presented in the following, while
all results are included in the electronic appendix.

Special knowledge is required to assess the feasibility and optimally of a given route.
Lacking such expertise, the resulting routes are assessed based on a shortest path per-
spective, where an approximate shortest path route is deemed acceptable. Any clearly
non shortest path routes, and routes with unnatural sharp turning points, are assessed as
non-acceptable.
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(a) Route between Dubai and Valencia (b) Route between Durban and Los Angeles

(c) Route between Callao (Lima) and Rotterdam (d) Route between Colón and Singapore

(e) Route between Felixstowe and Sydney (f) Route between Singapore and Vancouver

Figure 6.1: Examples of routes deemed acceptable, generated with the RouteCreator script. Maxi-
mum length of sailing legs set at 800 nm

6.1.1 Routes between the pre-defined ports

Creating routes between all the included ports resulted in 190 unique routes, for each set-
ting of maximum length of sailing legs and preference for polar sailing. Three different
leg lengths have been used, 400 nm, 800 nm and 1200 nm. The results show 217 unique
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routes for each sailing leg length, when excluding identical routes from each preference
for polar sailing. In total 651 different routes have been created and inspected. The results
presented in the following are for a maximum leg length of 800 nm. Similar results were
achieved for the two other length choices. For the 190 routes created when restricting ac-
cess to polar waters, it took on average 12.5 seconds to generate a route without displaying
maps. The minimum and maximum time used were 1.8 seconds and 73 seconds.

Routes restricted from polar waters

Table 6.1 presents an overview of the results with sailing leg length of 800 nm and polar
water access restricted. 71 of the 190 unique routes created, was deemed non-optimal. Of
the non-optimal routes, ten routes had two issues making the route non-optimal, while 61
were made non-optimal by a single error. This is of importance since the script has an
option to modify the resulting routes to make them acceptable. Any route deemed non-
acceptable due to a single error can be fixed by the modification option, whilst this cannot
be guaranteed for routes made non-acceptable from two or more errors. Thus ten of the
190 routes may not be sufficiently improved by the modification options.

A selection of the acceptable routes are displayed figure 6.1. The routes between
Singapore and Sydney, Busan and Sydney, and all routes between New York and any of the
ports on the American continents, were all strictly speaking non-feasible. The mentioned
routes intersect one or several tiny islands near the shore of a larger island. These routes are
still deemed acceptable, due to the small deviation needed to avoid the intersected islands.
The described errors occur from shoreline sailing path polygons not being modified to
describe navigable paths, and when the shoreline polygons for the intersected island are
missing from the set of shoreline polygons used in the route-finding algorithm. As an
example, the route between New York and Colón, Panama is shown in figure 6.2.

Figure 6.2: Route between Colon, Panama and New York intersects a small island in the
Caribbean ocean
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Table 6.1: Results when generating routes between all ports included in the port list, for max leg
length of 800 nm and with polar sailing restricted.

Routes between the included ports

Unique routes 190
Acceptable routes 119
Non-acceptable routes 71

Single error routes 61
Double error routes 10

Total number of error 81
Type-1 errors 61
Type-2 errors 11
Other errors 9

Figure 6.3 presents some non-optimal routes. The majority of the non-optimal routes
are due to a non-optimal connection node being set for one or both ports. In table 6.1 and
henceforth, this is referred to as a type-1 error. Examples are illustrated in figures 6.3a
and 6.3b. The first figure shows a route with an abrupt and unfeasible turning point, and
the second figure displays a route with two type-1 errors. In most cases type-1 error are
caused by an unfortunate location of the best available connection node, relative to the port
location. Usually for connecting to the shoreline sailing path, around the land area where
the port in question is located.

The second most prevalent error contributing to non-optimal routes, are sub-optimal
selections of the order in which the land areas are being circumvented. Such type-2 errors
make up 11 of the total 81 errors behind the non-optimal routes. Examples are shown in
figures 6.3c and 6.3d. The remaining nine errors are of varying nature. All issues resulting
in non-optimal routes are listed below.

• Type 1 errors:

– Routes from Valencia through the Strait of Gibraltar are non-optimal due to
location of nearest visible connection node in relationship to the port.

– Routes from Lagos to or through the Panama Canal have non-optimal
connection-node for Lagos.

– Routes from Hamburg towards or through the English canal have non-optimal
connection node for Hamburg.

– All routes from Tokyo, southwards to ports on the Eurasian continent have
non-optimal connection nodes for Tokyo.

– Routes southward from Shanghai have non-optimal connection nodes, due to
the location of the nearest visible connection node in relationship to the pre-
defined port path.

– Route between New York and to or through the English canal have non-optimal
connection nodes for New York.
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• Type 2 errors:

– Routes from Busan to Lagos, Santos and Durban goes through the Strait of
Malacca, when a shorter route is through the Sunda Strait.

– Routes from Durban to ports in Northern Europe goes through the Suez Canal.

– Routes between Shanghai and Tokyo goes through the Kanmon Straits, when
it is shorter to sail south of the Japanese island of Kyushu.

• Other errors:

– Routes from Marseilles eastwards through the Suez Canal toward ports on the
Eurasian continent, yields an unfeasible route in the Mediterranean Ocean,
due to non-optimal choice of connection node and then further disturbed by
the visibility check

– Route between Dubai and Los Angeles goes westwards from Dubai through
both Suez and Panama, due to the nature of the great circle route between
them. An eastward route is shorter

– Routes between Mumbai and Dubai are longer than necessary due to the pre-
defined ports paths

– Route between Dubai and Lagos goes through the Suez Canal, when it is
shorter to sail south of Africa

Comparison to online service

A comparison has been made between six acceptable routes made with the route-finding
algorithm, and six routes between the same ports created with an online route-generating
tool. The website searoutes.com offers a service for creating routes between ports based
on routes extracted from AIS data (Searoutes.com, 2020). A comparison of the distances
on the selected routes are presented in table 6.2. There is a good match of the distances in
the small sample of routes, with differences in route distance varying between 0.08 % and
0.5 %. A visual comparison also confirmed a good match for the selected routes.

Table 6.2: Distance of six acceptable routes compared to distance of routes from searoutes.com

Route searoutes.com RouteCreator Deviation

Mumbai - Valencia 4723 nm 4727 nm 0.08 %
Valencia - New York 3590 nm 3584 nm 0.17 %
Felixstowe - Sydney 11635 nm 11608 nm 0.23 %
Singapore - Vancouver 7102 nm 7111 nm 0.13 %
Callao - Rotterdam 6203 nm 6172 nm 0.5 %
Durban - Los Angeles 11178 nm 10170 nm 0.08 %
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(a) Route between Los Angeles and Valencia
(b) Route between Hamburg and Tokyo

(c) Route between Durban and Rotterdam

(d) Route between Busan and Lagos

Figure 6.3: Examples of non-optimal routes. Polar sailing restricted, and maximum length of sailing
legs set at 800 nm

Routes in polar waters

Running the RouteCreator script for 190 unique port combinations while allowing for
routes in polar waters, resulted in 27 new routes. The reaming 163 routes were identical to
the routes created when restricting access to polar waters. The results for routes in polar
waters are summarised in table 6.3.

12 of the 27 routes were deemed acceptable. Figures 6.4a and 6.4b illustrates two such
routes, through the North East Passage and North West Passage respectively. The two
routes circumventing Antarctica were both evaluated as acceptable. Figure 6.5 displays
juxtapositions of the restricted and non-restricted routes through antarctic waters.

15 routes were made non-optimal by a total of 17 errors. Two routes, those between
New York and Tokyo and between Tokyo and Valencia, suffered two errors for each route.
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The remaining 13 routes were made non-optimal by a single error and are thus redeemable
by the modification option, and 11 of the 14 errors were of type 1. Examples are shown in
figures 6.6a and 6.6b. The type-1 errors resulting in non-optimal routes are listed below.

• Type 1 errors:

– Routes from New York to Busan, Shanghai and Tokyo has non-optimal con-
nection node for New York, due to location of nearest connection node in
relationship to the port/ port path.

– All six routes to or from Tokyo has non-optimal connection node for Tokyo,
due to the nature of the algorithm selecting connection nodes when the port is
located inside the shoreline sailing path polygon.

– Routes from Valencia through the Strait of Gibraltar are non-optimal due to
location of nearest visible connection node in relationship to the port / port
path

Routes from Hamburg, Rotterdam and Felixstowe to Los-Angeles all suffers a type-2
error yielding a route through the North-west passage, when a route through the Panama
Canal is both shorter, and not to mention more feasible. The route between Los Angeles
and Rotterdam is illustrated in figure 6.6c.

The remaining three errors occurred on the routes between Sydney and Felixstowe,
Hamburg and Rotterdam. These routes were both non-optimal and non-feasible from in-
tersecting land areas in the Solomon Islands. The error occurs due to missing shoreline
polygons and shoreline sailing path polygons not being properly defined in the region. The
route between Felixstowe and Sydney is displayed in figure 6.6d.

(a) Route between Busan and Rotterdam (b) Route between Felixstowe and Vancouver

Figure 6.4: Two of the resulting routes going through arctic waters, deemed acceptable
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(a) Routes between Callao and Singapore (b) Routes between Callao and Singapore, or-
thogonal projection

(c) Routes between Santos and Sydney (d) Routes between Santos and Sydney, orthogo-
nal projection

Figure 6.5: The two resulting routes through Antarctic waters. The blue line shows the routes with
polar access restricted, and the red line show the resulting routes without restrictions.
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(a) Route between Hamburg and Tokyo (b) Route between Valencia and Vancouver

(c) Route between Los Angeles and Rotterdam (d) Route between Felixstowe and Sydney

Figure 6.6: Some of the non acceptable routes through arctic waters
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(a) Route between Kaohsiung, Taiwan and
Le Havre, France

(b) Route between Le Havre, France and
Sines, Portugal

(c) Route between Kaohsiung, Taiwan and
Sines, Portugal (d) Route between Le Havre, France and

Mombasa, Kenya

(e) Route between Kaohsiung, Taiwan and
Mombasa, Kenya

(f) Route between Mombasa, Kenya and
Sines, Portugal

Figure 6.7: Routes between custom ports, from using the manual input option
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(a) Route between Marseille and Singapore
(b) Routes between New York and Valencia

(c) Routes between Durban and Tokyo (d) Routes between Mombasa and Sines

(e) Routes between Dubai and Lagos
(f) Routes between Santos and Tokyo

Figure 6.8: Original and modified routes, shown in blue and red respectively.

6.1.2 Routes between custom ports

The ability to generate routes between custom ports have been tested by running the Route-
Creator script, while using the manual input option for defining the ports. Six routes have
been created between the four following ports.
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• Kaohsiung, Taiwan

• Le Havre, France

• Mombasa, Kenya

• Sines, Portugal

The results displayed in figure 6.7, are from using a maximum leg length of 750 nm.
The routes from Mombasa to Le Havre and Sines are shown in figures 6.7d and 6.7f. Both
routes are non-optimal when rounding the Horn of Africa, seen from a shortest path per-
spective. Other considerations like potential pirate activity is not considered, as previously
mentioned. The remaining four routes were all acceptable.

Table 6.3: Results when generating routes between all ports included in the port list, when allowing
for routes in polar waters and excluding identical routes. Max leg length of 800 nm.

Routes in polar waters

Unique routes 27
Acceptable routes 12
Non-acceptable routes 15

Single error routes 13
Double error routes 2

Total number of errors 17
Type-1 errors 11
Type-2 errors 3
Other errors 3

6.1.3 Modifying routes

Figure 6.8 displays six routes where the modification option have been used to improve
the original results. The original routes are shown in blue while the modified routes are
shown in red. Only single error routes were modified.

The route between Santos and Tokyo, as seen in figure 6.8f, was modified by altering
the maximum length of the sailing legs from 800 nm to 1200 nm. The original route goes
through the Panama Canal and has a total distance of 12171 nm. The modified route goes
through the Strait of Magellan, in the southern path of Chile, and has a total distance of
11369 nm.

The five other routes were modified by defining either a single waypoint or a path
of waypoints, that the route must include. All routes were improved by the modification
option, resulting in both shorter distances and eliminating strange paths and unnatural
turning points. The distances of the original and modified results are listed in table 6.4.
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Table 6.4: Distances of the original resulting routes and the modified routes.

Route Original result Modified result

Dubai - Lagos 8211 nm 7486 nm
Durban - Tokyo 7919 nm 7611 nm
Marseille - Singapore 6645 nm 6559 nm
Mombasa - Sines 5539 nm 5183 nm
New York - Valencia 3712 nm 3584 nm
Santos - Tokyo 12171 nm 11369 nm

6.2 Simulation results
A good approach to validate the simulation model would be to compare the results of
a simulated voyage, with real world test data for the same vessel on an identical route.
Lacking such test data, three case studies have been performed to gain insight on how
the model responds in various conditions. In addition to the presented cases, the ability
for setting up routes when running the simulation model has been validated with routes
between several of the included ports.

First a case that looks at how the model reflects seasonal variations in weather con-
ditions throughout a year, is presented. The second case is a simulated crossing between
Rotterdam and New York, intended to shed light on the impact of the weather conditions
on the vessel performance. A crossing in the opposite direction is also included, to specifi-
cally detail the impact of the relative mean wave directions and the relative wind direction.
The third and final case is a simulation of the case presented by Bakke and Tenfjord (2017)
for the original model. A comparison to the results of the original model is included to see
if the model behaves in a similar manner, and thus give an estimate as to the validity of the
simulation model.

All simulations were performed with the vessel presented for the original model, an
open hatch general cargo vessel named Start Lysefjord(Bakke and Tenfjord, 2017; Grieg
Star, 2013). The results of the different cases are presented in the following sections.

6.2.1 Case I: Seasonal weather variations
Case I is a set of simulations performed with varying start date of one-month intervals
throughout 2017, with the configurations as shown below. The simulations were per-
formed on a route between Aalesund, Norway and Reykjavik, Iceland. A route created by
the RouteCreator script, with manual input of the port coordinates. A map of the route can
be seen in figure 6.9.

Start date: 1. of each month through 2017, 06:00
Time step: 1 hour
Set speed: 14 knots

Figure 6.10 shows the average and maximum significant wave height encountered on
each trip, and the significant wave heights encountered during four trips, each with a start

71



Chapter 6. Results

Figure 6.9: Case I - Route between Aalesund, Norway and Reykjavik, Iceland

date separated by three months. In figure 6.10a, both the average and maximum wave
height is greatest in January and smallest in July, which in these latitudes equates to mid-
winter and mid-summer respectively. The general trend is smaller average wave height
during the spring and summer months, and greater average wave heights from October
and through the winter months. Furthermore, the variations are greater during the winter
months, with the extreme value in January being over three times the extreme value in July.
The same trend is also reflected in figure 6.10b, where the variations in wave heights are
clearly greater during the January and October trip, while being lowest for the July trip.

Similar plots for the resultant wind speeds are presented in figure 6.11. Both the av-
erage and maximum wind speeds are lowest in July and greatest in January, as shown
figure 6.11a. The trends thus reflect that shown for the significant wave heights. The dif-
ference between the average and the extreme value is also grater for the months October
through February, and also for April. Figure 6.11b shows the resultant wind speeds en-
countered during the same four trips as before. Not surprisingly, the experienced wind
speed generally fluctuates more than the encountered wave height for any trip. Of the four
trips included, the July trip experience the clearly lowest variation, and a maximum wind
speed of about nine metres per second. The other trips experience great variations in wind
speeds, with maximum values around 15-18 m/s, and minimum values around 2-3 m/s.

Figure 6.12a show the average and minimum values of the attainable speeds for each
trip, while figure 6.12b displays the same data as average and maximum speed loss due
to waves. The average attainable speeds show slight variations, with a maximum of about
13.8 knots for the September trip, and a minimum of about 12.9 knots for the March
voyage. The greatest speed loss occurred during the trip in February and March, while the
lowest speed loss was experienced in September. The blue bars in figure 6.12b show that
the greatest maximum speed loss was experienced for the trips during October through
April, with the exception of the trip in December. The latter trip experienced average and
maximum speed loss on par with that of the July and August trips. There is no obvious
correlations between the average wave height, and wind speeds shown in figures 6.10 and
6.11, and the average speed loss in figure 6.12b.

A plot showing the percentage distributions of relative wave directions, combined with
the average significant wave height and average speed loss experienced during each trip,
is displayed with figure 6.14. The wave directions are divided in the four categories used
in the algorithm for speed loss estimation. The February voyage experience the grates
amount of head sea, with about 16.5 % of the time, while the trips in April and September
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experienced no head sea. The amount of following sea experienced was clearly greatest
during the December voyage, at almost 70 % of the time.

Figure 6.14 illustrates the combined effects wave height and wave direction on the
average speed loss due to waves. The trips in October, November and December expe-
rienced similar average wave heights of about three meters. Comparing the trips during
October and November shows that the greater amount of head and bow sea experienced
during the October trip correlates with a greater average speed loss. Also, the December
voyage experienced a lower average speed loss experienced compared to the November
trip, while encountering an equal amount of head waves. The difference in speed loss
correlates with a substantial difference in the amount of following sea experienced, which
is about twice the amount in December compared to the trip in November. Comparing
the months January and February, also shows that almost one metre lower average wave
height for the February trip is offset by the more favourable wave directions during the
January trip, resulting in a slightly lower speed-loss for the latter.

(a) Average and maximum wave height for
each trip

(b) Wave heights encountered during four
different trip

Figure 6.10: Case I - Significant wave heights encountered

(a) Average and maximum wind speed for
each trip

(b) Wind speeds encountered during four
different trip

Figure 6.11: Case I - Resultant wind speeds encountered
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(a) Average and minimum attainable speed (b) Average and maximum speed loss

Figure 6.12: Case I - Attainable speed and speed loss for each trip

(a) Average and maximum brake power (b) Fuel consumption

Figure 6.13: Case I - Brake power and fuel consumption for each trip

Figure 6.14: Distribution of relative wave directions compared to average Hs and average speed
loss due to waves, for 12 trips during one year.

A juxtaposition of the average and maximum brake power, and the total fuel consump-
tion for each trip, is presented in figure 6.13. There is naturally a correlation between the
average brake power and the fuel consumption, as the latter is a function of the former.
There are also similar trends between the average attainable speed and the average brake
power, but not an absolute correlation. There is no clear correlation between either the
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average and maximum brake power and the wind speeds in figure 6.11a, or with the wave
heights in figure 6.10a.

6.2.2 Case II: Rotterdam - New York

The second case study is a simulated crossing of the Atlantic ocean, with a route from
Rotterdam to New York, as shown in figure 6.15. The route was created by a previous iter-
ation of the RouteCreator script, with ports chosen from the list of pre-defined ports, and
the maximum length of the sailing legs set to 700 nm. Several simulations was performed
in both directions for the same route, and with equal start date. Loading met-ocean data
and running the simulation took on average 5 and 32 seconds, respectively. The simulation
configurations used are shown below.

Start date: 01.01.16, 06:00
Time step: 1 hour
Set speed: 14.5 knots

Figure 6.16 displays the attainable speed, the significant wave height and the mean
wave direction, encountered during both trips. The upper plots show the attainable speed
varying in a distinctly discrete manner, and is not changing with each event, or simulation
update. Rather being constant for up to approximately 24 hours. The lower plots show
the mean wave direction relative to the vessel heading. The direction is given in absolute
values such that it equates the angle of incoming waves on either side of the centre line.

From the middle plot in figure 6.16a it can be seen that significant wave heights of
up to ten metres are encountered at one point during the voyage. The attainable speed is
not visibly affected by such wave heights, when sailing in following sea. The return trip
encounters manly head seas as seen in the lower plot of figure 6.16b. In this case there is
a clear reduction in the attainable speed when the wave heights increase above a certain
threshold.

Figure 6.15: Case II - Route between Rotterdam and New York
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(a) Rotterdam - New York (b) New York - Rotterdam

Figure 6.16: Case II - Attainable speed, significant wave height and mean wave direction

(a) Rotterdam - New York (b) New York - Rotterdam

Figure 6.17: Case II - Total resistance and resistance components

(a) Rotterdam - New York (b) New York - Rotterdam

Figure 6.18: Case II - Air and wind resistance, wind velocities and relative wind direction

A significant wave height above four metres is experienced for significant parts of each
trip, as indicated by the constant line in the middle plot of each figure. Four metres wave
height is the most likely encountered wave height at Beaufort number seven, which is the
maximum Beaufort number at which Kwon’s speed loss formula is valid.

Figure 6.17 displays the total resistance and the resistance components for each time
step of the two simulated journeys. The purple line shows the resistance due to air and
wind; the yellow line shows the added resistance due to waves. The calm water resistance
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is displayed by the red line, and the total resistance by the blue line. The resistance due to
air and wind is the greatest contributor to the variations in the total resistance, on the trip
from Rotterdam to New York. While the calm water resistance accounts for most of the
variations during the return trip. This is illustrated in figures 6.17a and 6.17b respectively.

Figure 6.17a also show the added resistance in waves appearing approximately con-
stant, around 100 kN from around ten hours onward, during the trip between Rotterdam
and New York. On the return trip the added resistance shows greater variability, while
remaining constant during large portions of the trip.

The impact of wind speeds and wind direction, on the resistance due to air and wind,
is illustrated in figure 6.18. The upper plot displays the air and wind resistance during the
journeys. In the middle plot the resultant wind speeds are shown. The total wind speed
is displayed by the blue line, while the wind speed component in the direction of the ship
heading is shown by the red line. Positive values indicate head wind, and tail wind have
negative values. Combining the wind speed and the attainable speed of the vessel yields
the relative wind speed in the direction of the ship heading, shown by the yellow line in
each middle plot. The relative wind directions experienced during each trip is illustrated
in the lower plots of figure 6.18. The direction is given relative to the ship heading in
absolute values, such that head wind equates zero degrees, and beam wind on either side
is given as 90 degrees.

Figure 6.19: Case II - brake power, total and calm water resistance, and attainable speed during trip
between Rotterdam - New York

Figure 6.20: Case II - Calm water resistance, added resistance and significant wave height during
trip between New York and Rotterdam
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The trip from New York to Rotterdam experienced mostly tail wind, as seen in figure
6.18b. The result is little air and wind resistance and even negative resistance for some
parts of the journey. The relative wind direction varies more during the trip from Rotter-
dam to New York. Figure 6.18a shows great increases in the air and wind resistance when
the relative wind direction turns towards mostly head winds. It should be noted both trips
encounter wind speeds up to around 20 metres per second. Conditions equating to a fresh
gale and a number eight on the Beaufort scale.

Figure 6.19 displays the brake power, total resistance, calm water resistance and the
attainable speed during the voyage between Rotterdam and New York. Not surprisingly, it
can be verified that the calm water resistance is a function of the attainable speed, and that
the brake power is a function of the total resistance.

Lastly, figure 6.20 displays a juxtaposition of calm water resistance, added resistance
in waves and the significant wave heights. The results are for the trip from Rotterdam to
New York. For wave heights above two metres the added resistance in waves is estimated
as 20 percent of the calm water resistance. This is clearly illustrated in the figure, as the
added resistance correlate with the calm water resistance for most of the trip. There is not a
clear relationship between the significant wave heights and the added resistance in waves.
The added resistance is lower for wave heights around eight meters than for wave heights
around two meter, even at points where the relative wave direction is approximately the
same, for instance at around the 75 hour timestep.

6.2.3 Case III: Comparison to original model
The final case study is a simulation of the voyage presented as a case for the original
simulation model. The route between Yancheng, China and Panama, as seen in figure
6.21, is identical to that used by Bakke and Tenfjord (2017). The average time for loading
met-ocean data and running the simulation with the new model was 2 minutes and 14
seconds and 6 minutes and 23 seconds, respectively. The time used to load met-ocean data
varied greatly, with a median value of 25 seconds. The original model used on average 1
minute and 59 seconds for setting up the probability matrices used in the met-ocean data
modelling, and 15 seconds for running the simulation. A comparison of the results from
the two models is presented in the following.

Table 6.5: Performance and weather parameters for simulated journey with the old and new model.

Parameter Original model New model

Duration [h] 598 644
Average PB [kW] 6096.5 5493
Max PB [kW] 8257.5 7955.2
Fuel consumption [t] 645.3 626.3
Average speed [kts] 13.9 13.2
Average HS [m] 2 2.8
Max HS [m] 5.7 8.7
Average U10 [m/s] 6.1 7.9
Max U10 [m/s] 17 20.2
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Figure 6.21: Case III - Route between Yancheng and Panama

The original model does not incorporate time, besides having a fixed time step be-
tween simulation updates. The matrices used to determine the weather parameters, are
however based on met-ocean data for a given time period. For the original case study this
time period is December 2016 and January 2017. The configurations used for the current
simulation model is listed below.

Start date: 15.12.16, 06:00
Time step: 1 hour
Set speed: 14.5 knots

A comparison of the results from the two simulation models is presented in table 6.5.
The simulated journey with the new model experience both higher average wave height
and maximum encountered wave heights than the simulation with the original model. The
same is true for average and maximum wind speeds. The simulation with the new model
has a lower average speed of 13.2 knots, compared to 13.7 knots for the original model,
leading to an increase in voyage duration of 46 hours. The simulation with new model also
results in lower average and maximum brake power, as well as lower fuel consumption,
compared to the results of the original model.

Figure 6.22 displays the distribution of the significant wave heights encountered during
the simulated journey, with each model. The figure confirms that the new model experience
both a wider range of wave heights as well as a greater average wave height.

The distribution of the wind speeds experienced for each simulation is presented in
figure 6.27. Almost half of the wind speeds experienced with the original model is between
4-5 m/s and between 6-7 m/s. While the wind speeds experienced with new model is more
evenly distributed and takes a wider range of values.

Figure 6.24 presents a comparison of the attainable speed, significant wave heights
and mean wave directions, experienced during the two simulations. The wave direction
is again given in absolute values relative to the ship heading. From the middle plot the
significant wave height varies more frequently and more abruptly for the original model
than for the new model. The same holds true for the relative wave direction, with some
exceptions. In the lower part of figure 6.24, abrupt changes in the relative wave direction
experienced with the new model, can be seen at around 400 hours and also towards the
end of the trip. The attainable speeds for both models seem to vary in a similar and
discrete manner. Greater wave heights in mostly head seas seems to correspond with
greater speed reductions. The simulation with the new model experience both a greater
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span of significant wave heights and a greater variation in the attainable speeds, compared
to the simulation with the old model. The wave heights experienced with the new model
are above four meters for significant parts of the journey which corresponds to the periods
of the lowest attainable speeds.

A comparison of the attainable speed and the calm water resistance, resulting from both
models, is presented in figure 6.25. The calm water resistance is a function of the speed,
and the figure confirms that the parameters correlate in a similar manner for both models.
The calm water resistance for the new model shows a greater overall variation, compared
to the new model. Figure 6.25 illustrates this as a result of a greater overall variation in
attainable speed for the new model compared as compared to the original model.

A juxtaposition of the calculated resistance for the simulations with each model is
presented in figure 6.26, with the resistance components displayed in similar colours as
before. Reflecting the stochastic modelling of the weather parameters, all resistance com-
ponents for the original model, seen in figure 6.26a varies more frequently than those for
the new model in figure 6.26b. A greater variation in the overall resistance can be seen in
the latter, correlating mainly with a greater variation in the calm water resistance for the
new model, as presented in figure 6.25. The added resistance in waves is calculated as a
fraction of the calm water resistance for most of the journey simulated by the new model,
and also for substantial parts of the simulation with the old model. This can be seen by
comparing the yellow and red lines in figure 6.26.

(a) Original model (b) New model

Figure 6.22: Case III - Significant wave heights encountered during voyage with old and new model.

(a) Original model (b) New model

Figure 6.23: Case III - Wind speeds encountered during voyage with old and new model.
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Figure 6.24: Case III - Attainable speed, significant wave height and mean wave direction during
simulated journey.

Figure 6.25: Case III - Calm water resistance and attainable speed during simulated journey.

(a) Original model (b) New model

Figure 6.26: Case III - Resistance during voyage with old and new model.

Besides the differences in the incorporation of met-ocean data, there is only one dif-
ference in how the two models calculates the performance parameters. Namely in the
calculation of resistance due to air and wind, as explained in section 5.2.4. Figure 6.27
illustrates how the calculated air and wind resistance corresponds to the experienced wind
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speed and relative wind direction. The stochastic nature of the met-ocean parameter mod-
elling for the original model, can again be seen in figure 6.27a. Resulting in more frequent
variations in both resultant wind speeds and wind directions as compared to the results
with the new model, seen in figure 6.27b. The lower plot of figure 6.27a illustrates how
the relative wind direction fluctuates quite a lot between head wind and tail wind, during
the simulation with the original model.

The upper plot of each figure shows the calculated resistance due to air and wind,
during the two simulations. The air and wind resistance calculated with the original model
is only the difference in air resistance due to wind, not including the air resistance due
to the vessel velocity. As a result the calculated air and wind resistance is negative for
all parts of the voyage where the wind speed component in the direction of the ship is
negative, as illustrated by the blue line in the upper plot of figure 6.27a. The red line
shows the wind and air resistance corrected to include the air resistance resulting from the
vessel velocity.

The simulated journeys with the original and the new model, experience maximum
resultant wind speeds of 17 m/s and 20.2 m/s respectively. The maximum wind speed in
the direction of the ship, relative to the ship position, is however greater for the simulation
with the original model. With a maximum of 22.8 m/s for the original model, compared
to 19.2 m/s with the new model. Resulting in a significantly greater maximum air and
wind resistance for the simulation with the old model. The minimum experienced relative
wind speed in direction of the vessel, is also lower for simulation with the new model.
Corresponding to a lower minimum resistance due to air and wind, with the results from
the new model compared to the original model.

(a) Original model (b) New model

Figure 6.27: Case III - Air resistance, wind speeds and wind direction during simulated voyage.

Figure 6.28 illustrates the significant wave heights present at the time of four locations
along the simulated journey with the new model. Given a fixed route there is no way of
avoiding rough conditions. In figure 6.28b the vessel is display at the timestep of maximum
significant wave height, corresponding to the peak seen in the middle plot of figure 6.24.
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(a) Vessel location at timestep 215 (b) Vessel location at timestep 227

(c) Vessel location at timestep 239 (d) Vessel location at timestep 251

Figure 6.28: Surface plots showing HS at four timesteps approximately 12 hours apart.
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Chapter 7
Discussion

This chapter is devoted to a discussion of the results presented in chapter 6.

7.1 Route-finding algorithm
Creating a universal algorithm for setting up routes between any two ports is an extensive
problem, given the all considerations that must go into creating a feasible and near opti-
mal route. When only looking at the shortest distance, the problem is still challenging. It
is difficult to create a universal algorithm that incorporate all special cases that can arise
when considering possible port locations relative to each other and to the surrounding land
areas, the possible combinations of the shapes of intersected land areas, and the possible
discretisation of the shoreline sailing path polygons. The presented algorithm and results
should be evaluated in context of expected scope of the master thesis. The results indicate
that the algorithm can be significantly improved by the means discussed in the follow-
ing sections. Nevertheless, the main principals of the algorithm have been demonstrated,
and the acceptable routes compared to routes created by an online tool showed a good
match. Only a small sample of routes were however included in the comparison due to
time constraints. A more comprehensive comparison would be valuable for evaluating the
results.

7.1.1 Route fitness
When restricting access to polar waters, 62.6 % of the unique routes created between the
included ports were deemed acceptable. Leaving a high number of 37.4 % of the routes as
non-acceptable. 5.3 % of all routes had two issues making them non-acceptable. For the
27 routes through polar waters, between the included ports, 44 % were acceptable and 66
% non-acceptable. The routes with two errors made up 7.4 % of all routes.

The acceptability of the resulting routes is based on visual inspection and a subjective
evaluation of the fitness of the route. Routes are deemed acceptable if corresponding to
a near shortest path, while having no unnatural sharp turning-points. In real life, routes
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are based on several other factors besides being the shortest path. Meteorological and
oceanographic conditions, political factors, wars and pirate activity, must all be considered
when determining the best route for a given vessel and cargo. Without special knowledge
and experience it is difficult to make a judgement on if a specific route is feasible or
acceptable, and certainly if it is optimal. Incorporating the mentioned considerations into
a universal algorithm is also a non-trivial task, given all the special cases that must be
accounted for. It would be possible to avoid generating routes through problematic areas,
such as war zones and areas of pirate activity, by incorporating known issues when defining
the shoreline sailing path polygons. Should the presented method be further developed,
it would be of value to have persons experienced in setting up routes involved in defining
the shoreline sailing path polygons. Incorporating political or cultural conditions in the
definitions would however trigger a need for regular updates as conditions change.

Given the dynamic nature of the meteorological and oceanographic conditions, the
optimal route for a given vessel will vary with changing conditions. Tanaka and Kobayashi
(2017) highlights the fact that the optimal route in the presents of ocean currents can
deviate from the great circle route. The optimal route will thus change with seasonal
changes of ocean currents and will also change depending on the direction when sailing
between two ports. When incorporating the effect of wind, waves and currents, the process
becomes a weather routing problem. Finding an optimal route for a given vessel in specific
conditions is a different problem than evaluating vessel design performance on a given
route with the given conditions. Although an interesting problem, it is not within the
scope of this thesis.

Another aspect of evaluating routes, is that a route may be acceptable for one vessel
while being non-feasible for another vessel. If for instance the draught of vessel is too
great for a canal or the machinery prohibits a vessel from sailing through emission con-
trol areas (ECAs). Customised routes could be achieved by adding vessel dimensions as a
limiting factor for canals to the algorithm, and by including an option for allowing sailing
through ECAs. Another non-trivial task, but a possible solution is to add alternative sailing
path polygons in the case of restrictions, in a similar manner as it is done for the Antarc-
tic continent when restricting sailing in polar waters. For instance if vessel dimensions
prohibit sailing through the Panama Canal, the sailing path polygons around the Americas
could be merge to a single polygon to force a route around South America.

Fitness of a route also depends on the objective for creating the routes. It may not be of
great importance that a route has unnatural sharp turning point near a port when simulating
vessel performance. If the route is used to compare the performance of two different
designs, small deviations from an optimal route are unlikely to have great impact on the
comparison, when using an identical route. It can be argued that it is mostly important
to get the offshore part of a route correct when evaluating the impact of environmental
conditions on the vessel performance since the impact of wind and waves generally are
greater further from shore.

7.1.2 Erroneous results as related to the algorithms
Most non-optimal routes are caused by two common types of errors. Type-1 errors are
most prevalent and occur when sub-optimal connection nodes are chosen for connecting a
port to a shoreline sailing path polygon. Type-2 errors occurs from a sub-optimal choice of
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which land area to first circumvent, resulting in a route of greater distance than necessary.
There are additional errors that repeatedly produce non-optimal routes. It is logical to
suspect that repeating errors are produced as a consequence of the applied algorithm. A
discussion of different repeating errors in relation to the algorithms used, is presented
below.

Sub-optimal connection nodes

Connection nodes are determined from a set of different algorithms. A specific algorithm
is chosen based on the locations of the ports relative to each other, and whether the ports
are visible to each other. All the algorithms choose connection nodes from the nodes of
the shoreline sailing path polygons. Erroneous routes from sub-optimal connection nodes
can therefore both be a result of the chosen algorithms for establishing connection nodes,
as well as poorly defined shoreline sailing path polygons.

The location of nodes in the sailing path polygon in relation to the port location has
great influence when generating a path omitting the land area where the port is located.
A poor match will yield sub-optimal paths at the start or end of a route. If the sailing
path polygons are not properly defined for an intersected land area, it is likely that the
connection node found are sub-optimal, irrespective of the method for establishing the
connection nodes. It is a challenge to define the sailing path polygons in such a manner it
is possible to establish suitable connection nodes for routes between an origin ports inside
the polygon towards all possible destination ports.

When the ports are removed from the land area and not visible to each other, the convex
hull approach is an efficient method to reduce the possible number of paths around the land
area. The method is however only exact for nodes on a plane and there can be instances
where using the convex hull approach results in sub-optimal connection nodes. If this
occur, it is likely that an adjacent node is the optimal fit, and the problem is thus not likely
to result in great differences in the overall distance. For all other cases, the algorithms for
determining connection nodes are less precise. The heuristics used are intended to ensure
near shortest paths, suitable in most instances. Poor choices will however occur, and few
of possible issues are discussed in the following.

When a port lies inside the sailing path polygon while not visible to the other port,
the number of nodes evaluated as candidates for connection nodes might not be sufficient.
The nearest nodes plus one, two or three adjacent nodes in each direction are chosen based
on the number of nodes in the sailing path polygon. Unless both ports are located inside
the ailing path polygon and have candidate node in common, the furthest adjacent nodes
in each direction is chosen as the connection nodes. There are cases when an even further
adjacent node would be a better fit for connection nodes. This is illustrated in figure 7.1,
where the node marked by the red cross would be the optimal choice for a path in the
clockwise direction from the inside port. In most such instances the route direction from
the port will be approximately correct, while not being optimal. A more prevalent source
of routes with unnatural turning points are when the location of nodes of the sailing path
polygon is a poor fit for the port location. Figure 6.3a illustrates this issue for routes from
Valencia through the Strait of Gibraltar. The same problem can also occur when both ports
lie inside the sailing path polygon and share a candidate node in common.

Another issue occurs when both ports lie inside a sailing path polygon around a land
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area intersected by a great circle route between the ports, while the ports are visible to
each other by a rhumb line. In such cases it is not logical that the route should go by the
shoreline sailing path polygon if a rhumb line route is shorter. The method is chosen to
comply with the overall algorithm. It is not known if the described case occurs often. The
ports will likely be located in close proximity to each other, and the difference in distance
may thus be negligible.

Figure 7.1: Non-optimal choice of connection node for port inside sailing path polygon, when ports
are not visible to each other.

Non-optimal order in which to circumvent land areas

Type-2 errors usually occurs when the route intersects several land areas, and a poor choice
is made for which land area to first circumvent. The chance of substantial type-2 errors
increases if the initial route intersects one or more continents, since omitting a greater land
area implies increased likelihood for a greater deviation from the shortest path, compared
to when omitting a smaller land area. A clear example is the route between Durban and
Rotterdam shown in figure 6.3c, where the African continent is chosen as the land area
to first circumvent, then the European continent. The resulting route thus goes thought
the Suez Canal and the Strait of Gibraltar, which is a longer, more time consuming and
costly route. Deviations in the shortest path route can also occur in later iterations, since
the connection nodes for a shortest path between two land areas might not be an optimal
solution when circumventing an intersected land area between the two first land areas.

The vulnerability for type-2 errors is clearly a result of the chosen methodology of
circumventing one land area at the time in an iterative manner, as compared to a holistic
approach. The algorithm for selecting which land area to circumvent is based on heuristics,
partly developed by trial and error, with the objective to maximise the chance of a good
selection. Type-2 errors made up about 14 % of the errors for results presented for routes
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between the included ports when restricting access to polar waters. A possible solution
to the problem of type-2 errors could be creating several routes, varying the order of the
land areas to be circumvented, and then selecting the shortest route. This solution will
however increase the processing time, since the route-finding process will be multiplied.
An alternative is making the problem negligible by only altering the order of the first and
second land area to omit, to limit the increased processing time.

Shoreline sailing path polygons

The ability of the sailing path polygons to model a suitable routes along the coastlines
is essential to the algorithm. Good results depend on the definitions of the sailing path
polygons being a good fit for the specific problem. This is especially important if a port
is located inside a sailing path polygon. A challenge with using predefined sailing path
polygons, is that it is not possible to define a sailing path polygon in a manner that ensures
suitable routes in all directions for a port located inside the sailing path polygon. The
routes from Valencia through the Strait of Gibraltar exemplify the problem. The shorelines
sailing path around the Eurasian continent cannot be defined, in the Mediterranean ocean,
in a way that ensures both suitable routes from the Gulf of Valencia through the Strait
of Gibraltar, and suitable routes from Gibraltar to the Suez Canal. This is a fundamental
challenge of the chosen methodology. The issue of defining universally suitable sailing
path polygons is especially challenging for the large continents, which is where most large
ports are located. Again, a possible solution is to define several sailing path polygons, and
select a suitable polygon based on the port locations. With the current method of using
one shoreline sailing path polygon per land area, the best one can do is perhaps to optimise
polygons for routes between the largest ports on each continent.

Besides errors resulting from a poor fit of port locations and the definitions of sailing
path polygons, additional errors can occur based on the shoreline sailing path polygons.
Only 28 of the sailing path polygons have been modified from the initial convex hulls made
around each shoreline polygon. Most of the sailing path polygons is thus still defined as
convex hulls, which means that they are not inspected as feasible sailing paths. Overlap-
ping convex hulls are a potential risk of errors, since a route along one land area then is
likely to intersect another land area. Since most major land areas has modified sailing path
polygons, the mentioned errors are not likely to cause a great deviation in the overall dis-
tance, compared to a feasible route omitting the intersected island. The precision level of
the sailing path polygons beyond a certain point, is not crucial for demonstrating principle
behind the route generation algorithm, or for presenting valid results. Still it is obvious of
great importance to avoid all land areas when defining shipping routes. Ideally all convex
hulls with more than a few nodes should therefore be modified to model feasible sailing
paths.

Shoreline polygons

The shoreline polygons used in the route-finding algorithm is based on GSHHG data of
intermediate resolution. The intermediate resolution polygons have far fewer nodes than
the polygons from the full resolution dataset, and polygons used are therefore not precise.
The resolution of the intermediate data is arguably high enough to avoid great errors when
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Figure 7.2: Unfeasible route due to missing shoreline polygons, an unmodified convex hulls as
sailing path polygons.

circumventing land areas, since higher resolution will not greatly alter the outline of the
land areas. Furthermore, the modified shoreline sailing path polygons have been generated
to comply with the full resolution shoreline data.

Of greater concern is the number of polygons included in the dataset used in the route-
finding algorithm. Only the 5701 level one polygons from the low-resolution data is in-
cluded, while the full resolution data includes 179832 level one polygons. A tremendous
number of islands are missing, mostly small island near shore of other lager land areas.
Problems can arise even if the sailing path polygons comply with the full resolution map
data, by small islands missing when checking for the route for intersections. The route
between Coln and New York, presented in chapter 6, is an example such error. Another
example of missing shoreline polygons leading to error is included the presented results,
on a route between Sydney to Felixstowe via the Northeast Passage. Figure 7.2 illustrates
the issue, where the red shoreline polygons are from the high resolution data set and the
green shoreline polygons are those used in the route-finding algorithm. Also, the convex
hulls around the included land areas has not been modified to ensure feasible sailing paths.

Both the resolution of each shoreline polygons and the number of polygons to include
is a question of necessary route precision versus computational demand and time con-
sumption. There is a clear trade-off between precision of the results and computational
demand.

Other errors

Port paths are included in the algorithm to allow for route between ports at locations with-
out access to the open seas. It is difficult to define the port paths to be a good fit for routes
in any direction. As a result, the pre-defined port paths can be source of sub-optimal routes.
An example is the route between Mumbai and Dubai illustrated in figure 7.3. A possible
solution to the problem is to let the user define custom paths for each port. This would
have the additional advantage to allow for a wider range of customised port locations.
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Figure 7.3: Non-optimal route due to the pre-defined port paths.

The route presented between Dubai and Los Angeles reveals an algorithmic weakness
that can produce non-optimal routes between ports located on nearly opposite longitudes
of the globe. The direction of the great circle route between the ports, determines the
east-west direction of the final route. In some cases, it is shorter to circumvent the globe
in the opposite direction of the great circle route. This can occur for routes with great
longitudinal span where a route in the same direction as the great circle route, involves
circumventing several large land areas. Since the error seems to be rare, the best solution
might be to modify the route by adding a suitable waypoint in the opposite direction of
great circle route.

7.1.3 Modifying resulting routes

The purpose of the route-generating algorithm is to enable setting up routes for use in the
simulation model. Having the algorithm produce non-satisfactory routes more than a third
of the time is arguably not a great result. To amend this problem, the RouteCreator script
includes an option to modify the initial resulting routes. All routes made non-acceptable
by a single issue can be satisfactory modified by either altering the maximum leg length or
defining a path of waypoints to be included in the route. The routes made non-acceptable
by two issues may however not be amendable by the modification process. By looking at
the results for the routes between the predefined ports, 5 to 8 % of created routes may be
left as non-satisfactory by the chosen standard. Expanding the list of predefined ports and
testing the script for all combinations, would yield a more precise number of the percent
of non-amendable routes.

The ability to modify routes have been demonstrated by modifying six non-acceptable
routes as presented in section 6.1.3. Five of the routes had single errors, while the route be-
tween Durban and Tokyo suffered from both a type-1 and type-2 error. Interestingly, both
errors were fixed by adding waypoints forcing the route to go through the Sunda Strait.
Double-error routes can thus be made acceptable in some cases by adding waypoints.
Routes with two type-1 errors can never be properly amended with the current modifica-
tion option. Adding the ability to modify routes by defining two paths of waypoints and
forcing the final route to include both in proper order, should allow for amending most
erroneous routes.
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7.1.4 Methodology
The algorithm for automatic route-generation has been developed from solving a basic
case of establishing a route around one land area, when the ports are removed from land
and not visible to each other. The final method is the result of a stepwise expansion from
the basic case to a more versatile model, circumventing several land areas and accounting
for several different port locations. The work methodology is reflected in structure of
the final overall algorithm, especially in the process of determining connection nodes for
connecting the open sea parts of a route to the shoreline path. The process of choosing
the order to circumvent the land areas, has also partly been developed in a trial and error
approach.

The methodology for determining connection nodes is somewhat complex and consist
of several different algorithms, all based on heuristics. A fundamental idea behind the pre-
sented method is to reduce the shortest path problem by limiting the possible number of
arcs to generate by first finding suitable connection nodes. Using a convex hull around the
ports and the shoreline sailing path polygon to identify connection nodes seems like a pos-
itive contribution to finding shortest path around a land area when both ports are removed
from the land area and are not visible to each other. The connection nodes found from the
convex hull approach seems to be suitable in most cases. For all other cases, the heuristics
are less likely to yield optimal connection nodes, and the methods for establishing connec-
tion nodes are less intuitive, more complex and at some points somewhat arbitrary. The
algorithm would benefit from a more generalised approach to finding connection nodes.

A holistic approach investigating all land areas in a region between ports, and all pos-
sible paths between the shoreline polygons, and between each port and all shoreline poly-
gons, should in theory guarantee a shortest path solution. Besides being the result of the
work methodology, the present heuristic approach is chosen with the intention of reducing
the number of computations needed to find a suitable route. This is the justification both
for first establishing connection nodes, and for circumventing one land area at the time.
The problem of establishing a route by accounting for all possible land areas to omit is
a far more complex problem than to circumvent one land area at the time. The number
of computations needed for generating a route with each approach will vary from case to
case, depending on the number of land areas and the number of nodes in the sailing path
polygons. For the route between Colon and Singapore, 4667 sailing path polygons with a
total of 32056 unique nodes were included in the dataset used to find the route. Creating
a partial visibility graph and applying Dijkstra’s algorithm would require a tremendous
number of steps to compute. While the presented method inspected routes between 25
pairs of endpoints for intersections, only included 12 polygons to circumvent.

There is a trade-off between probability of optimal result and problem complexity. If
this trad-off is justified, is a question of both the necessity for route accuracy and resource
demand of solving the problem in a holistic manner with a shortest path algorithm. The
level of route accuracy needed depends on the use case of the route. For use in a simulation
model, it can be argued that the proposed algorithm with the modification option, is able
to produce satisfactory routes in most cases.
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7.2 Simulation model
The main motivation behind creating a new simulation model has been to ensure the ability
of running simulations with routes created by the route-finding algorithm. The ability of
the new model to create routes and simulate vessel performance along those routes is
demonstrated by the results from case I and II. A discussion of the model behaviour is
presented in the following, and then some thoughts on the model validity is given.

7.2.1 Met-ocean data modelling
To ensure the capability of simulating sailing along any given route divided into any num-
ber of sailing legs of different lengths, the need to pre-process the met-ocean data accord-
ing to each route, which was the case for the original model, had to be eliminated. This is
achieved by using hindcast met-ocean data directly.

The results from case III illustrates the differences in the two methods of modelling
the met-ocean conditions. The distributions of wind speeds experienced during the simu-
lations of the two models, as was presented in figure 6.22, shows a substantial difference.
The more even distribution of wind speeds for the new model is likely a better reflection
of a natural process. The wind speeds along each simulated journey, seen in the lower
plots of figure 6.27, reflects the same notion. Where the wind speed during the simulation
with the original model varies quite abruptly, compared to the more gradual development
of the wind speeds during the simulation with the new model. The same holds true for the
significant wave height and relative wave direction displayed in figure 6.24

Abrupt changes in weather parameter values, as seen for the original model, is to be
expected from a stochastic approach. Even if the state of a Markov chain depends on the
previous state, the state is ultimately decided by probabilities. Furthermore, there is a finite
number of possible states a system can have. The met-ocean parameters are also assumed
to be completely independent with the Markov chain approach used by the original model.
This assumption is questionable. At least the wind generated waves should relate to the
wind speed and wind direction. It is therefore the authors opinion that using hindcast
met-ocean data directly reflects a more natural development of the weather conditions,
and hence result in a more realistic model. Kauczynski (2012) argues in the same manner
when he concludes that applying complete historical weather time series along a route, is
the most reliable approach for studying the reliability of ship transportation.

7.2.2 Attainable speed
The attainable speeds obtained during all journeys presented from case II and III clearly
variate in a discrete manner. This is a direct function of the formulae used for estimating
speed loss due to waves. The algorithm yields discrete values for the estimated speed loss,
as can be seen in figure 7.4, where the attainable speed is presented as a function of the
significant wave height and mean wave direction. The values shown are calculated with
the algorithm from the original model.

The results presented for case II in figure 6.16, shows relative small variations in the
attainable speed for varying wave height, when the vessel sails in mostly following sea
from Rotterdam to New York. In fact, wave heights up to ten metres in following sea has
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no visible effect on the attainable speed. For the trip in the opposite direction, experiencing
mostly head sea, there is a significant speed loss due to waves when the significant wave
height goes above four metres. There is however no difference in the attainable speed
in head waves of four and eight meters wave height, as seen in the middle plot of 6.16b
between 150 hours and 200 hours. The reason for this is that the calculated attainable
speed is partly based on the Beaufort Number, which in the algorithm is set equal to seven
for all significant wave heights above four metres. The result is that for any given relative
wave direction, the attainable speed is equal for all waves of significant wave height above
four metres.

Bakke and Tenfjord (2017) states that the speed loss estimate will not be accurate for
Beaufort numbers above six. According to the Beaufort scale, the probable wave height
is four metres av Beaufort number seven(metoffice.gov.uk, 2020). Presumably this is the
reason why the Beaufort number is set at seven for any significant wave height above the
four-meter threshold. Though it is difficult to see how this would make the estimate more
reliable. Results should therefore be viewed with caution for any simulation where the
significant wave heights are above four meters for a significant part of the voyage.

Figure 7.4: Attainable speed in different wave heights and relative wave directions

Effects of combined wave data

The significant wave heights and relative wave directions are for combined swell and wind
waves in the present model. The original model loads wave data separately for swell
and wind waves and uses combined values for the resistance calculations, calculating the
attainable speed stored to the MATLAB workspace. The significant wave heights and
relative wave directions used to calculate the attainable speed as a simulation variable
are however for wind waves only. The Beaufort scale relates to well-developed wind
waves (metoffice.gov.uk, 2020), and since the speed loss estimate depends on the Beaufort
number, it may be appropriate to use wave heights for wind waves only when estimating
the attainable speed. The effect of using wave data for combined wind and swell in the
speed loss estimate should be further investigated. The simulation model would in any
case be improved by allowing for wind generated waves and swell loaded separately, such
that the ShipX module from the original model can be used.
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7.2.3 Resistance calculations

At significant wave heights above two meters, the added resistance in waves is estimated
as 20 % of the calm water resistance. Since the calm water resistance is a function of
the speed, the total resistance and brake power is dominated by the estimated attainable
speed. This is illustrated in figure 6.20. The model thus behaves such that increasing wave
heights in head and bow seas result in reduced attainable speeds, where significant speed
reductions occurs for wave height above about 2-3 meters. At such wave heights the added
resistance in waves is taken as a fraction of the calm water resistance. The reduced speed
thus leads to a reduction in both calm water resistance and added resistance due to waves
and a reduction in brake power.

The methods for evaluating the ship performance are kept from the original simulation
model, and it is beyond the scope of this thesis to evaluate the validity of the methods
used for speed loss and resistance calculations given by Bakke and Tenfjord (2017). It will
however be noted that it seems counter-intuitive to get reduced added resistance in waves
with increasing wave heights. From the authors perspective it would make more sense to
calculate the resistance with a fixed speed, where increased wave heights would yield an
increased added resistance. A reduction in the attainable speed would only occur when the
power needed to maintain the fixed speed surpass the available power. Alternatively, to
have a fixed power output and calculate a variable attainable speed based on the resistance
it is possible to overcome with the available power. A caveat must be added; resistance
calculations has not been a topic of the thesis and the presented notions can therefore be
based on an incorrect understanding of the subject.

7.2.4 Time consumption

Both the average time used to load the met-ocean data and to run a simulation varied
significantly between the simulations in case II and III. Loading the met-ocean data to
MATLAB and then to Simulink seems to dominate the time consumption. The length of
the route determines the amount of met-ocean data loaded and is thus a determining factor
for the time consumption. Met-ocean data is loaded for a rectangular area covering the
extreme coordinates of the route. Since the route is fixed, this means that a great amount
of unused met-ocean data is loaded. Reducing the amount of such data loaded to both
MATLAB and Simulink, should be fruitful avenue to follow in the pursuit to reduce the
time consumption. A possible solution is to load data for several smaller rectangular areas
covering the route, as long as there is no need to pre-process the data before running the
script executing a simulation.

The simulation model as it is now, with independent calculations of the attainable
speed and resistance, could be simplified by performing the simulation only with the speed
loss calculations. The performance parameters could then be calculated post simulation
since these do not influence the location and date at each simulation update. With such
an approach, the met-ocean data loaded to Simulink could be reduced to only include the
significant wave height and the mean wave direction, likely to contribute to a lower time
consumption. This would however make model less intuitive. Also, the goal of original
model to have drag and drop functionality, to easily alter configurations, would be lost.
The former solution is therefore rather recommended should the model be improved in the
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future.
The average time used to load met-ocean data was similar for the original and the

new model, while the median time used was about 1 minute and 30 seconds less with
the new model. However it takes almost six minutes longer to run the simulation for the
new model compared to the original. Since the main contributor to the difference likely is
loading and processing hindcast met-ocean data in the Simulink model, it seems to be a
trade-off between accuracy of the data and processing time. Even though six minutes can
be a long time when running several simulations, it can be argued that the value added with
a more realistic simulation model outweighs the downside of increased time consumption.

7.2.5 Validation
Validation of the simulation model will be discussed according to the principles by Sargent
(2005), as presented in chapter 4.

Conceptual model validation

Conceptual model validation deals with the underlying theories and assumptions for the
conceptual model, and if these are appropriate to represent the system. In this regard
it seems poignant to emphasise that the method used for speed loss estimation is deemed
inaccurate for Beaufort Numbers seven and above. Such wave height are experiences in all
three cases presented in chapter 6. The method for estimating speed loss can therefore not
be said to be valid over the domain of possible wave heights encountered. If the mentioned
objections regarding calculating resistance and brake power based on a speed loss estimate
are reasonable, the conceptual model should also be evaluated further in this regard.

Another issue regarding the conceptual model of speed loss is that voluntary speed
reduction is not included in the model. It is safe to assume that voluntary speed reduc-
tion will take place in extreme wave height, depending on wave direction and vessel type.
The conceptual model in this regard is thus not an accurate model of the system it repre-
sents. Besides reducing the speed in extreme conditions, it is reasonable to assume that a
shipmaster in some cases will avoid extreme conditions when possible. In the simulation
model the vessel will follow a fixed route independent of the weather conditions arising.
An illustration of this can be seen with the surface plots presented in figure 6.28. Inde-
pendent of the criteria used, the lack of ability to alter course along the journey in severe
weather conditions does not accurately represent the real-world system.

There are several additional ways the conceptual model is an unrealistic representation
of a ship sailing between ports. Waiting for time slots in canals and reduced speed in
canals and ECAs are examples of aspects not included in the conceptual model. The
conceptual model validation must however be evaluated considering the intended purpose
of the model. And it can be argued that the latter aspects are of little significance for the
purpose of evaluating the performance of a ship design at sea.

Computerised model verification

Walk-troughs of the MATLAB code and Simulink model have been performed to ensure
correct functioning of the simulation model. The models ability to extract correct met-
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ocean data for a given location and data have specifically been tested and verified. The
simulation model executes without errors and produces the desired output variables. Based
on testing, the model logic can be assumed to be in order, even if minor errors can have
been missed.

System data validation

The model mainly relies on three types of system data. The route data is generated by
the route-finding algorithm, while the vessel data used in all three cases is kept from the
original model, and the met-ocean data is obtained from ECMWF. Besides the previously
discussed issues with the validity of the route data, there is no reason to question the
validity of the system data. A validation of the vessel data and the met-ocean data has
therefore not been attempted.

Operational validation

The output behaviour of the model should ideally be compared to that of the system it
represents. The accuracy of the output data is hard to evaluate without the operational
behaviour system data, which in this case is lacking. The judgement of the operational
validity must therefore be done based on the simulations performed for the three cases
presented in chapter 6, discussed above. The results presented for case I illustrates that
the encountered wave heights and wind speeds varies through the season in an expected
manner, which implies that the model reflects the seasonal variations in the met-ocean
conditions in an accurate way.

The comparison with the original model is limited by the fact that results are only
available for one route for the original model. Also, the results presented for case I are
based on one simulated journey per month, while the results for case two are based on
simulation of one round-trip between two ports, and for case III one trip in one direction
only. Running simulation repeatedly for longer time periods could yield more reliable
information regarding the model output behaviour. This especially important should the
model be used to evaluate a vessel design, since one design can perform better in the
specific conditions present on one trip, while another can be better overall through a year.
The results from case III does imply that output behaviour of the current model works
in accordance with the original model. The vessel performance parameters, except for
the air and wind resistance, responds in a similar way in similar met-ocean conditions.
It is an expected result, since the methods for calculating attainable speed, calm water
resistance and added resistance, are identical. The original model was evaluated against
system data, with some deviating results. Since no such data has been made available for
this thesis, the current model cannot be said to have not been validated with a high degree
of confidence. Should the model be further developed, it would therefore be essential to
validate the model behaviour against operational behaviour system data.
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Chapter 8
Conclusions and Recommendations
for Further Work

A new heuristic algorithm for generating routes between two ports has been presented.
The ability to generate routes between a wide selection of port combinations has been
demonstrated. Routes are produced in a short time in limited number of computational
steps, compared to traditional shortest path algorithms which requires first constructing
partial visibility graphs. The drawback of a heuristic approach is that optimal results are
not guaranteed. Optimal in this regard, is feasible approximate shortest path routes. The
results show that about 37 % of the resulting routes between the 20 included ports were
non-acceptable, when restricting access to polar waters. About 86 % of the non-optimal
had one error making them non-optimal, which means they can be redeemed by the option
to modify the resulting routes. The majority of the non-optimal routes are a result of non-
optimal connection nodes, and improving the algorithms for selecting connection nodes
should improve the overall performance. A comparison to routes generated with an online
tool and a selection of acceptable resulting routes, showed a good match.

The route-finding algorithm has been implemented in a simulation model for evalu-
ating vessel performance in realistic conditions, and the ability to generate routes when
running the simulation model has been demonstrated. Results from the three case studies
have been presented. The results show that the output performance of the new simula-
tion model is comparable to the original model for similar met-ocean conditions, with
the exception of the air and wind resistance which has been corrected in the new model.
Applying hindcast met-ocean data directly resulted in a more realistic modelling of the
met-ocean conditions in the new model, when compared to the original. A drawback of
applying hindcast met-ocean data is a significantly increased computational time demand,
depending on the distance of the route used in the simulation. The method for estimating
speed loss due to waves, does not seem to reflect variations in wave heights in waves of
significant wave heights above four metres. The results for simulated journeys in such
condition can therefore not be said to be reliable. Finally, the model has not been validated
against system data.
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8.1 Recommendations for Further Work
Several avenues for improving the route-finding algorithm has previously been discussed.
Recommendations for improvement is listed below.

• Suggestions to improve the functionality and results:

– Adding functionality to let the user define port paths in a desired direction to
minimise problem of poorly defined connection nodes, and to avoid a poor fit
between route direction and the predefined port paths.

– Adding the capability to modify the generated routes by adding two paths of
waypoints to ensure acceptable routes. Such feature would to a large extent
eliminate non-acceptable routes.

– Modifying the sailing path polygons defined as convex hulls to ensure feasible
sailing paths around all land areas.

– Expanding the database of included ports.

• Suggestions for expanding capabilities:

– Adding capability of generating routes avoiding canals and ECAs based on
user preference.

– Adding the ability to define custom ports on a map or possibly to load port
definitions from a file.

– Expanding the algorithm to include the option of creating routes between sev-
eral ports.

For the simulation model, the most essential missing work is perhaps an evaluation
of the result against system data. Beyond that, there are several means for improving
the presented model. The method for speed loss estimation seems to be inaccurate for
significant wave heights above four metres, and an alternative method for calculating the
attainable speed would therefore be of interest. The following is suggested to improve the
functionality of the simulation model:

• Calculating the attainable speed based on the resistance and available power to over-
come the resistance.

• Importing wave data from swell and wind waves separately to allow for resistance
calculations with the ShipX module made for the original model.

• Finding a method for importing less met-ocean data to the Simulink model to reduce
the computational time demand. One possibility is to load data for several smaller
areas covering different legs of the route.

• Adding conditions for voluntary speed loss to make the model more realistic.
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Appendix A
Electronic appendix

This thesis is submitted with an electronic appendix containing of the MATLAB files
for the route-finding algorithm, and the MATLAB and Simulink files for the simulation
model.
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Appendix B
GSHHG data
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Table B.1: Fields describing each element of the structure array containing the GSHHG data, (Math-
Works, 2019c; Wessel and Smith, 2019)

Field name Description

Geometry Either ”polygon” or ”line”

BoundingBox
[minimum longitude, minimum latitude;
maximum longitude, maximum latitude]

Lat Vector with latitude coordinates for the polygon nodes
Lon Vector with longitude coordinates for the polygon nodes
South Southern extreme latitude
North Northern extreme latitude
West Western extreme longitude
East Eastern extreme latitude
Area Area of polygon in square kilometers
Level Level 1-6 describes different geographical entities

LevelString
Description of geography describes by polygon. Empty for
levels five and six

NumPoints Number of nodes in polygon
FormatVersion Version of file format

Source
Source of data. Either ”WVS” (World Vector Shorelines) or
”WDBII” (CIA World DataBank II)

CrossesGreenwich Logical variable, 0 or 1 if false or true.
CrossesDateline Logical variable, 0 or 1 if false or true.
GSHHS ID Unique polygon id number

RiverLake
Logical indicator, true only if level 2 polygon is the fat part
of a major river.

AreaFull Area of full-resolution polygon []

Container
ID of polygon enclosing the current polygon. If not relevant
the value is -1

Ancestor
ID of polygon in the full resolution data that was the source
of the current polygon. Equals -1 if none.
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Appendix C
Modified shoreline sailing path
polygons

Table C.1 lists the shoreline polygons with ID 0-30, and the third column indicates if the
corresponding shoreline sailing path polygon has been modified. The additional shoreline
polygons that have modified sailing path polygons are also included. When the shoreline
sailing path polygons have not been modified the shoreline sailing paths are defined as
convex hulls around the shoreline polygon.
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Table C.1: List showing the shoreline sailing path polygons that have been modified.

ID Index Modified Land area name

0 1 Yes Eurasia
1 2 Yes Africa
2 3 Yes North America
3 4 Yes South America
4 5702 Yes Antarctic ice sheet
5 [] Not included Antarctic land mass
6 5 Yes Australia
7 6 Yes Greenland
8 7 Yes New Guinea
9 8 Yes Borneo

10 9 No Madagascar
11 10 No Baffin Island (Arctic Archipelago)
12 11 Yes Sumatra
13 12 Yes Honshu (Yespan)
14 13 No Victoria Island (Arctic Archipelago)
15 14 Yes Great Britain
16 15 No Ellesmere Island (Arctic Archipelago)
17 16 No Sulawesi (Indonesia)
18 17 Yes South Island (New Zealand)
19 18 No Yesva
20 19 No North Island (New Zealand)
21 20 No Newfoundland
22 21 No Cuba
23 22 Yes Luzon (Philippines)
24 23 No Iceland
25 24 No Mindanao (Philippines)
26 25 No Ireland
27 26 Yes Hokkaido (Yespan)
28 27 No Sakhalin (Russia)
29 28 Yes Hispaniola
30 29 No Banks Island (Arctic Archipelago)
35 33 Yes Isla Grande de Tierra del Fuego
43 40 Yes Kuamoto (Yespan)
70 67 Yes Bangka (Indonesia)
71 68 Yes Palawan (Philippines)
148 138 Yes Santa Ins Island (Chile)
274 254 Yes Aracena Island (Chile)
280 259 Yes Clarence Island (Chile)
417 382 Yes Londonderry Island (Chile)
618 566 Yes Geojedo (South Korea)
736 674 Yes Middle Caicos (Turks and Caicos Islands)
927 850 Yes East Caicos (Turks and Caicos Islands)

4419 3938 Yes Baisha Main Island (Taiwan)
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Appendix D
MATLAB code for the route
generating algorithm

D.1 Main script and main functions

D.1.1 RouteGenerator.m

1 %% RouteGenerator
2 % Script for automatic route generation between two ports
3

4 % Author: Ole Brynjar Helland Paulsen
5 % Date: 08.02.2020
6

7 clear variables
8 close all
9 addpath(genpath('Functions')) % Path for functions used in this ...

script
10 addpath('Input') % Path for shoreline data
11

12 % Coordinates of the origin and destination ports
13 [ports, port_path, origin, destination] = select_ports();
14

15 % Get max length of each leg (nm), and option for sailing in polar ...
waters.

16 % Polar = 1, when polar sailing is allowed
17 [max_length, polar] = user_input();
18

19 % Generate route
20 path = GetRoute(ports, port_path, origin, destination, max_length, ...

polar);
21

22 % Create maps
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23 disp('Generating maps..')
24 [f1, f2, H1, H2] = draw_maps(path);
25

26 % User verification. Gives the option to alter the route by adding a
27 % waypoint, or by changing the maximum length of the sailing legs. ...

In any
28 % case a option to save the route is given.
29 f = msgbox({'Please inspeckt the route, then press OK to proceed', ...
30 'Verify route'});
31 waitfor(f)
32 answer = questdlg('If the route is not satifactory, try adding a ...

waypoint or alter the length of the sailing legs',...
33 'Keep route?', 'Save current route','Alter leg length', ...
34 'Add waypoints', 'Save current route');
35 switch answer
36 case 'Save current route'
37 % Save route
38 uisave('path','route');
39 case 'Alter leg length'
40 % Gather new max leg length
41 prompt = {'Enter desired maximum lenght of sailing legs [nm]'};
42 title = 'Length sailing legs';
43 in = inputdlg(prompt,title,[1 40]);
44 max_length = str2double(in{1});
45

46 % Generate new route
47 path = GetRoute(ports, port_path, origin, destination, ...

max_length, polar);
48

49 % Remove old route from maps and display the new
50 figure(f1)
51 delete(H1)
52 geoshow([path.Lat],[path.Lon],'color','red')
53

54 figure(f2)
55 delete(H2)
56 geoshow([path.Lat],[path.Lon],'color','red')
57

58 % Save route
59 answer2 = questdlg('Save route?',...
60 'Save', ...
61 'Save','Cancel', 'Save');
62 if strcmp(answer2,'Save')
63 uisave('path','route')
64 end
65 case 'Add waypoints'
66 % Add waypoint on map
67 an = questdlg('Please click on one or several suitable ...

wayopints, and then press return.', ...
68 'Add waypoints','Ok','Ok');
69 % Input
70 [lat, lon] = inputm();
71

72 % Define new set of ports with waypoint coordinates
73 ports1 = [ports(1,:); [lat(1), lon(1)]];
74 dest1 = 'the first waypoint';
75 ports2 = [[lat(end), lon(end)]; ports(2,:)];
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76 orig2 = 'the last waypoint';
77

78 % Port paths
79 port_path1(1) = port_path(1);
80 port_path1(2).Lat = [];
81 port_path1(2).Lon = [];
82 port_path2(1).Lat = [];
83 port_path2(1).Lon = [];
84 port_path2(2) = port_path(2);
85

86 % Generate two seperate routes
87 path1 = GetRoute(ports1, port_path1, origin, dest1, ...

max_length, polar);
88 path2 = GetRoute(ports2, port_path2, orig2, destination, ...

max_length, polar);
89

90 % Merge paths
91 Latpts = [path1.Lat(1:end-1), transpose(lat), ...

path2.Lat(2:end)];
92 Lonpts = [path1.Lon(1:end-1), transpose(lon), ...

path2.Lon(2:end)];
93

94 % Update route data
95 [course, distnm] = legs(Latpts,Lonpts,'rh');
96

97 path.Lat = Latpts;
98 path.Lon = Lonpts;
99 path.Course = course;

100 path.Distnm = distnm;
101 path.Tot_dist = sum(path.Distnm);
102

103 % Longitude coordinates
104 lons = path.Lon;
105

106 % Find if route has positive and negative longitude coordinates
107 a = find(diff(lons>0)6=0);
108 % Sum of absoulute value of coordinates before and after ...

sign change.
109 b = abs(lons(a)) + abs(lons(a+1));
110 % If the sum two coordinates are above 180 dregress, the ...

route goes
111 % across the international date line.
112 if max(b) > 180
113 path.Cross_date = 1;
114 % Indecies of cross date coordinates in sign change ...

index vector
115 c = find(b>180);
116 % Index of node prior to fist crossing of date line
117 d = a(c);
118 path.Cross_ind = d;
119 else
120 path.Cross_date = 0;
121 path.Cross_ind = [];
122 end
123

124 % Remove old route from maps and display the new
125 figure(f1)
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126 delete(H1)
127 geoshow([path.Lat],[path.Lon],'color','red')
128

129 figure(f2)
130 delete(H2)
131 geoshow([path.Lat],[path.Lon],'color','red')
132

133 % Save route
134 answer3 = questdlg('Save route?',...
135 'Save', ...
136 'Save','Cancel', 'Save');
137 if strcmp(answer3,'Save')
138 uisave('path','route')
139 end
140 end

D.1.2 select ports.m

1 function [ports, port_path, origin, destination] = select_ports()
2 %% Function for defining origin and destination port. Ports are either
3 % selected from a list of included ports, or defined manually by
4 % coordinates. The included ports can have a "port path" from the ...

port to
5 % open waters. This is not an option when manually defining ports.
6

7 % Author: Ole Brynjar Helland Paulsen
8 % Date: 01.03.2020
9 load ports_db.mat ports_db

10

11 % Preallocate variables
12 ports= zeros(2,2);
13 port_path(2).Lon = 9;
14 %% Define origin port
15

16 % List of port names
17 list = [ports_db.Name];
18 % Index list
19 list_ind = 1:length(ports_db);
20

21 % Prompt user input
22 [indx1,tf1] = listdlg('PromptString','Select origin port:',...
23 'SelectionMode','single','ListSize',[150,170],'ListString',list,...
24 'CancelString','Manual input');
25

26 if tf1 == 1
27 % Port choosen from list
28 % Port coordinates for the route-finding algorithm
29 ports(1,:) = [ports_db(indx1).Lat(end), ports_db(indx1).Lon(end)];
30 % Paths from port to open seas
31 port_path(1).Lat = ports_db(indx1).Lat;
32 port_path(1).Lon = ports_db(indx1).Lon;
33 % Port name
34 name = ports_db(indx1).Name;
35 origin = name{1};
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36 % Exclude origin port from list
37 list(indx1) = [];
38 list_ind(indx1) = [];
39 else
40 % Custom port. Ports must have open acess to the seas
41 % Read input
42 prompt = {'Latitude:','Longitude:', 'Name:'};
43 title = 'Origin port';
44 dims = [1 12; 1 12; 1 45];
45 x = inputdlg(prompt,title,dims);
46 lat = x(1);
47 Lat = str2double(lat{1});
48 lon = x(2);
49 Lon = str2double(lon{1});
50 % Port coordinates
51 ports(1,:) =[Lat, Lon];
52 % Path from port to open seas not supported, set to void
53 port_path(1).Lat = [];
54 port_path(1).Lon = [];
55 % Port name
56 name = x(3);
57 origin = name{1};
58 end
59

60 %% Define destination port
61

62 % Prompt user input
63 [indx,tf2] = listdlg('PromptString','Select destination port:',...
64 'SelectionMode','single','ListSize',[150,170],'ListString',list,...
65 'CancelString','Manual input');
66

67 if tf2 == 1
68 % Port from list
69 indx2 = list_ind(indx);
70 ports(2,:) = [ports_db(indx2).Lat(end), ports_db(indx2).Lon(end)];
71 port_path(2).Lat = fliplr(ports_db(indx2).Lat);
72 port_path(2).Lon = fliplr(ports_db(indx2).Lon);
73 name = ports_db(indx2).Name;
74 destination = name{1};
75 else
76 % Custom port
77 prompt = {'Latitude:','Longitude:', 'Name:'};
78 title = 'Destination port';
79 dims = [1 12; 1 12; 1 45];
80 x = inputdlg(prompt,title,dims);
81 lat = x(1);
82 Lat = str2double(lat{1});
83 lon = x(2);
84 Lon = str2double(lon{1});
85 ports(2,:) =[Lat, Lon];
86 port_path(2).Lat = [];
87 port_path(2).Lon = [];
88 name = x(3);
89 destination = name{1};
90 end
91 end
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D.1.3 user input.m

1 function [max_length, polar] = user_input()
2 %% Function for setting user prefeances.
3

4 % Author: Ole Brynjar Helland Paulsen
5 % Date: 17.06.2018
6

7 prompt = {'Enter desired maximum lenght of sailing legs [nm]'};
8 title = 'Length sailing legs';
9 in = inputdlg(prompt,title,[1 40]);

10 max_length = str2double(in{1});
11

12 answer = questdlg('Include routes in polar waters?', ...
13 'Polar sailing', ...
14 'Yes','No', 'Not relevant','No');
15

16 % Handle response
17 switch answer
18 case 'Yes'
19 polar = 1;
20 case 'No'
21 polar = 0;
22 case 'Not relevant'
23 polar = 0;
24 end
25

26 end

D.1.4 GetRoute.m

1 function final_path = GetRoute(ports, port_path, startport, ...
nextport, max_length_legs, polar)

2 %% Function for generating routes between two ports
3 % Author: Ole Brynjar Helland Paulsen
4 % Date: 01.05.2020
5

6 % Max lenght of sailing legs
7 global max_length;
8 max_length = max_length_legs;
9

10 % Store origin and destination port as part of result
11 final_path.Origin = startport;
12 final_path.Destination = nextport;
13

14 % Variable indicating if route circumvent Antarctica
15 antarctic_path = 0;
16

17 %% Inital route
18

19 % Compute waypoints for route divided in n legs of the given ...
maximum length
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20 [lat_org, lon_org] = ...
waypoints(ports(1,1),ports(1,2),ports(2,1),ports(2,2));

21

22 %% Limits for maps and shoreline polygons
23

24 % Find min and max longitude coordinates
25 min_lon = min(ports(2,2),ports(1,2));
26 max_lon = max(ports(2,2),ports(1,2));
27

28 % Min and max latitude of initial route
29 min_lat = min(lat_org);
30 max_lat = max(lat_org);
31

32 if abs(max_lon - min_lon) > 180
33 %Ports lie on opposite side of the date line
34 cross_date = 1;
35 % The shapefile boundingbox demands that min < max. Must therefore
36 % load the complete longitudinal span
37 blon_min = -180;
38 blon_max = 180;
39 else
40 % Ports are located on the same side of the date line
41 cross_date = 0;
42 %Longitude limits for shoreline polygons to be loaded
43 blon_min = (min_lon-10);
44 blon_max = (max_lon+10);
45 end
46

47 %% Shoreline data
48 % Loading shorelines within the area set by the bounding box
49 % Path for input data must have been added to the directory of Matlab
50

51 %Bounding box
52 bbox =[blon_min, (min_lat-10);
53 blon_max, (max_lat+10)];
54

55 % Low resoulution shorelines
56 shorelines = shaperead('shorelines.shp','BoundingBox',bbox);
57

58 % Modified hulls as shoreline sailing path polygons
59 hull = shaperead('sailing_paths.shp','BoundingBox',bbox);
60

61 %% Intersection test
62 % Check if the initial route intersects any land area polygons, and ...

if so
63 % return the correct ID.
64 [ID] = polycheck(shorelines, lat_org, lon_org, startport, nextport,...
65 hull, ports, cross_date);
66

67 %% Generate route
68 if isempty(ID) == 1
69 % If route does not intersect land areas, the great cirlce ...

route is the
70 % final path.
71 final_path.Lat = transpose(lat_org);
72 final_path.Lon = transpose(lon_org);
73 else
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74 %% Fetch shorline polygon and sailing path polygon for the ...
first land

75 % area to circumvent
76

77 % Find index of hull struct that correspond to the correct ID
78 index_h = find([hull.ID] == ID);
79

80 %Latitude and longitude coordinates of the given convex hull
81 hull_lat = hull(index_h).Y;
82 hull_lon = hull(index_h).X;
83

84 %Remove NaN entries
85 hull_lat(isnan(hull_lat)) = [];
86 hull_lon(isnan(hull_lon)) = [];
87

88 %Number of different nodes in the hull polygon. First node is ...
repeated

89 %in the end
90 num_nodes = length(hull_lat)-1;
91

92 %Index of shoreline polygon with the desired ID. In some cases
93 %not equal to the index of the same hull polygon
94 index = find([shorelines.GSHHS_ID] == ID);
95

96 %Find latitude and longitude of the shoreline polygons
97 shore_lat = shorelines(index).Y;
98 shore_lon = shorelines(index).X;
99

100 % Latitudes and longitudes of ports
101 port_lats = [ports(1,1), ports(2,1)];
102 port_lons = [ports(1,2), ports(2,2)];
103

104 %% Find suitable connection nodes for the predefined sailing path
105 % polygon
106

107 if ID == 4 % Connection nodes for Antartic continent
108

109 if polar == 0
110 % Alter coordinates of antatica hull(ID = 4, index = ...

5584) in
111 % order to restrict acess.
112 hull_lon = [-179.999, -165:15:165, 179.999];
113 num_nodes = length(hull_lon)-1;
114 hull_lat =1:(num_nodes+1);
115 hull_lat(:) = -60;
116 antarctic_path = 1;
117 end
118 [connect_nodes] = antarctic(hull_lat, hull_lon, lat_org, ...

lon_org, polar, cross_date);
119

120 % Check if ports lie on border of modified hull
121 [¬, on] = inpolygon(port_lats, port_lons, hull_lat, hull_lon);
122 else
123 if cross_date == 1
124 %When the route is crossing the dateline,the port on the
125 %opposite side from the obstacle polygon must be ...

modified to
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126 %have equal sign as the longitude coordinates of the ...
obstacle

127 %polygon. This is in order to create the correct convex ...
hull

128 %and thus get the correct connection nodes.
129 ports_adj = adjust_ports(ports, hull_lon);
130

131 disp('The port coordinates are adjusted to:')
132 disp(ports_adj)
133

134 % Latitudes and longitudes of ports
135 port_lats = [ports_adj(1,1), ports_adj(2,1)];
136 port_lons = [ports_adj(1,2), ports_adj(2,2)];
137 else
138 ports_adj = ports;
139 end
140

141 %Convex hull around current land polygon
142 conv = convhull(hull_lat, hull_lon);
143 conv_lat = hull_lat(conv);
144 conv_lon = hull_lon(conv);
145

146 % Check if any of the ports are located inside a convex hull
147 % around the land polygon
148 in_conv = inpolygon(port_lats, port_lons, conv_lat, conv_lon);
149

150 if sum(in_conv) == 0
151 % None of the ports are nodes in the current sailing path
152 % polygon
153 on = [0,0];
154 % Check if ports are visible to each other with respect ...

to the
155 % sailing path polygon
156 [¬, ¬, inter_points] = inter_coords(port_lats, ...

port_lons, hull_lat,...
157 hull_lon, cross_date);
158

159 if inter_points > 0
160 % Both port are outside the convex hull and not ...

visible to each
161 % other. 4 connection nodes returned
162 [connect_nodes] = ...

connecting_outside_non_visi(hull_lat, ...
hull_lon, ports_adj);

163 else
164 % Both ports lie outside the convex hull, but are ...

visible to
165 % each other. Either 2 or 4 connection nodes returned.
166 [connect_nodes, dir, inport] = ...

connecting_outside_visi(hull_lat, hull_lon, ...
ports_adj, lat_org, lon_org, cross_date);

167 end
168 else
169 % Check if ports are visible from each other, by a ...

straight line, with
170 % regards to the given shoreline polygon
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171 [¬, ¬, inter_points] = inter_coords(port_lats, ...
port_lons, shore_lat,...

172 shore_lon, cross_date);
173

174 % Check if ports lie inside modified hull
175 [in, on] = inpolygon(port_lats, port_lons, hull_lat, ...

hull_lon);
176

177 if inter_points > 0 && sum(in_conv) == 2
178 % Both ports are inside the convex hull and not ...

visible to each
179 % other. Either 2 or 4 connection nodes returned.
180 [connect_nodes, dir, inport] = ...

connecting_non_visi_inside(hull_lat, hull_lon, ...
port_lats, port_lons, num_nodes);

181 elseif inter_points > 0
182 % One port is inside the convex hull and the ports ...

are not
183 % visible to each other. Either 2 or 4 connection ...

nodes returned.
184 [connect_nodes, dir, inport] = ...

connecting_non_visi_in_out(hull_lat, hull_lon, ...
port_lats, port_lons, num_nodes, in_conv);

185 else
186 %Ports are visible to each other by a straight line.
187 [connect_nodes, dir, inport] = ...

connecting_visi(hull_lat, hull_lon, port_lats, ...
port_lons, num_nodes, lat_org, lon_org, ...
cross_date, in_conv, in, on);

188 end
189 end
190 end
191

192 %% Check if port is node in the sailing path polygon
193

194 % Variable indicating if port is a hull node
195 port_node = [0, 0];
196

197 if sum(on) ≥ 1
198 % At least on port lie on border of modified hull
199 for port = 1:2
200 % Check if port is a node in the current modified hull
201 lat_diff = abs(hull_lat - port_lats(port));
202 [min_lat, i_lat] = min(lat_diff);
203 lon_diff = abs(hull_lon - port_lons(port));
204 [min_lon, i_lon] = min(lon_diff);
205

206 if min_lat == 0 && min_lon == 0 && i_lat == i_lon
207 %Port is a node of the modified hull
208 port_node(port) = 1;
209 end
210 end
211 end
212

213 %% Generate route route circumventing the intersected land area
214

215 % Path around initial intersecting land area
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216 if size(connect_nodes,1) == 1
217 fprintf('One path omitting land polygon ID %d is ...

generated.\n\n',ID);
218 [path, min_path, ¬, connect_nodes] = one_path(ports, ...

hull_lat, hull_lon, shore_lat, shore_lon, ...
connect_nodes, num_nodes, inport, port_node, dir);

219 else
220 fprintf('Two paths omitting land polygon ID %d is ...

generated.\n\n',ID);
221 [path, min_path, ¬, connect_nodes] = two_paths(ports, ...

hull_lat, hull_lon, shore_lat, shore_lon, ...
connect_nodes, num_nodes, polar, port_node);

222 end
223

224 % Struct for storing the coordinates of the final path
225 final_path.Lat = path(min_path).Lat;
226 final_path.Lon = path(min_path).Lon;
227

228 %% Check if it is necessary to load shoreline data anew, to ...
cover a

229 % larger area
230

231 % New bounding limits
232 lons = final_path.Lon;
233 [cross_date, ¬] = cross_date_line(lons);
234

235 if cross_date == 1
236 blon_min = -180;
237 blon_max = 180;
238 else
239 blon_min = min(lons) - 10;
240 blon_max = max(lons) + 10;
241 end
242

243 blat_min = min([bbox(1,2), min(final_path.Lat)]);
244 blat_max = max([bbox(2,2), max(final_path.Lat)]);
245

246 %New bounding box
247 bbox_new = [blon_min, blat_min;
248 blon_max, blat_max];
249

250 % Check if equal
251 if isequal(bbox_new, bbox) == 0
252 clear shorelines hull
253 % Low resoulution shorelines
254 shorelines = ...

shaperead('shorelines.shp','BoundingBox',bbox_new);
255

256 % Modified hulls
257 hull = shaperead('sailing_paths.shp','BoundingBox',bbox_new);
258 end
259

260

261 %% Initialise list of dummy ports
262 % The dummy ports corresponds to the connection nodes of the
263 % the previous path
264
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265 dummy_port_list = zeros(50,4);
266

267 % The inital entries of the list of dummy ports, are the ports ...
and the

268 % connect nodes of the inital obstacle polygon.
269 dummy_port_list(1,:) = ...
270 [ports(1,1), ports(1,2), ...

hull_lat(connect_nodes(min_path,1)), ...
271 hull_lon(connect_nodes(min_path,1))];
272

273 dummy_port_list(2,:) = [hull_lat(connect_nodes(min_path,2)),...
274 hull_lon(connect_nodes(min_path,2)), ports(2,1), ports(2,2)];
275

276 %% Initialize iterations
277 num_rows = 2; % Number of rows of dummy ports
278 startport = 0;
279 nextport = 1;
280 dummy_orig = 1:2:100;
281 dummy_dest = 2:2:100;
282 i = 1;
283

284 % The following routine runs through the list of dummy ports to ...
check

285 % each distance for new intersections:
286

287 % Break loop if it uses more than 120 seconds
288 time0 = tic;
289 timeLimit = 120;
290 while i ≤ num_rows && toc(time0)<timeLimit
291 startport = startport + 1;
292 nextport = nextport + 1;
293

294 % Dummy ports of the current distance
295 dummy_ports = [dummy_port_list(i,1),dummy_port_list(i,2);
296 dummy_port_list(i,3),dummy_port_list(i,4)];
297

298 dummy_ports(:,2) = wrapTo180(dummy_ports(:,2));
299

300 % Great circle route divided in waypoints
301 [latpts,lonpts] = ...

waypoints(dummy_ports(1,1),dummy_ports(1,2),...
302 dummy_ports(2,1),dummy_ports(2,2));
303

304 % Adjust longitudes to between [-180, 180]
305 lonpts = wrapTo180(lonpts);
306

307 % Find if route is crossing the date line
308 [cross_date, ¬] = cross_date_line(lonpts);
309

310 % Check if route intersects land areas
311 origin = ['dummy port ', num2str(dummy_orig(i))];
312 destination = ['dummy port ', num2str(dummy_dest(i))];
313

314 [ID] = polycheck(shorelines, latpts, lonpts, origin, ...
destination, hull, dummy_ports, cross_date);

315

316 if isempty(ID) == 0
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317 %% Fetch the shorline polygon and sailing path polygon ...
for the

318 % current land area
319

320 % If path between dummy ports intersect land, find ...
shortes path

321 % around land area, and update the dummy port matrix ...
with new

322 % coordinates
323

324 % Find index of hull struct that correspond to the ...
correct ID

325 index_h = find([hull.ID] == ID);
326

327 %Latitude and longitude coordinates of the given convex ...
hull

328 hull_lat = hull(index_h).Y;
329 hull_lon = hull(index_h).X;
330

331 %Remove NaN entries
332 hull_lat(isnan(hull_lat)) = [];
333 hull_lon(isnan(hull_lon)) = [];
334

335 %Number of different nodes in the hull polygon. First ...
node is

336 %repeated in the end
337 num_nodes = length(hull_lat)-1;
338

339 %Index of shoreline polygon with the desired ID. In ...
some cases

340 %not equal to the index of the same hull polygon
341 index = find([shorelines.GSHHS_ID] == ID);
342

343 %Find latitude and longitude of the shoreline polygons
344 shore_lat = shorelines(index).Y;
345 shore_lon = shorelines(index).X;
346

347 % Latitudes and longitudes of dummy ports
348 port_lats = [dummy_ports(1,1), dummy_ports(2,1)];
349 port_lons = [dummy_ports(1,2), dummy_ports(2,2)];
350

351 %% Establish suitable connection nodes
352 if ID == 4
353 if polar == 0
354 % Alter coordinates of antatica hull(ID = 4,
355 % index = 5702) in order to restrict acess.
356 hull_lon = [-179.999, -165:15:165, 179.999];
357 num_nodes = length(hull_lon)-1;
358 hull_lat =1:(num_nodes + 1);
359 hull_lat(:) = -60;
360 antarctic_path = 1;
361 end
362 [connect_nodes] = antarctic(hull_lat, hull_lon, ...

latpts, lonpts, polar, cross_date);
363

364 % Check if ports lie on border of modified hull
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365 [¬, on] = inpolygon(port_lats, port_lons, hull_lat, ...
hull_lon);

366

367 else
368 if cross_date == 1
369 %When the route is crossing the dateline,the ...

port on
370 %the opposite side from the obstacle polygon ...

must be
371 %modified to have equal sign as the longitude
372 %coordinates of the obstacle polygon. This is ...

in order
373 %to create the correct convex hull and thus get the
374 %correct connection nodes.
375

376 ports_adj = adjust_ports(dummy_ports, hull_lon);
377

378 disp('The port coordinates are adjusted to:')
379 disp(ports_adj)
380

381 % Latitudes and longitudes of ports
382 port_lats = [ports_adj(1,1), ports_adj(2,1)];
383 port_lons = [ports_adj(1,2), ports_adj(2,2)];
384

385 else
386 ports_adj = dummy_ports;
387 end
388

389 %Convex hull around the current land polygon
390 conv = convhull(hull_lat, hull_lon);
391 conv_lat = hull_lat(conv);
392 conv_lon = hull_lon(conv);
393

394 % Check if any of the ports are located inside a convex
395 % hull around the land polygon
396 in_conv = inpolygon(port_lats, port_lons, conv_lat, ...

conv_lon);
397

398 if sum(in_conv) == 0
399 % None of the ports are nodes in the current ...

sailing path
400 % polygon
401 on = [0,0];
402 % Check if ports are visible to each other with ...

respect to the
403 % sailing path polygon
404 [¬, ¬, inter_points] = inter_coords(port_lats, ...

port_lons, hull_lat,...
405 hull_lon, cross_date);
406

407 if inter_points > 0
408 % Both port are outside the convex hull and ...

not visible to each
409 % other. 4 connection nodes returned
410 [connect_nodes] = ...

connecting_outside_non_visi(hull_lat, ...
hull_lon, ports_adj);
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411 else
412 % Both ports lie outside the convex hull, ...

but are visible to
413 % each other. Either 2 or 4 connection ...

nodes returned.
414 [connect_nodes, dir, inport] = ...

connecting_outside_visi(hull_lat, ...
hull_lon, ports_adj, latpts, lonpts, ...
cross_date);

415 end
416 else
417 %Check if ports are visible from each other, by ...

a straight line, with
418 %regards to the given shoreline polygon
419 [¬, ¬, inter_points] = inter_coords(port_lats, ...

port_lons, shore_lat,...
420 shore_lon, cross_date);
421

422 % Check if ports lie inside modified hull
423 [in, on] = inpolygon(port_lats, port_lons, ...

hull_lat, hull_lon);
424

425 if inter_points > 0 && sum(in_conv) == 2
426 % Both ports are inside the convex hull and ...

not visible to each
427 % other. Either 2 or 4 connection nodes ...

returned.
428 [connect_nodes, dir, inport] = ...

connecting_non_visi_inside(hull_lat, ...
hull_lon, port_lats, port_lons, ...
num_nodes);

429 elseif inter_points > 0
430 % One port is inside the convex hull and ...

the ports are not
431 % visible to each other.
432 [connect_nodes, dir, inport] = ...

connecting_non_visi_in_out(hull_lat, ...
hull_lon, port_lats, port_lons, ...
num_nodes, in_conv);

433 else
434 %Ports are visible to each other by a ...

straight line.
435 [connect_nodes, dir, inport] = ...

connecting_visi(hull_lat, hull_lon, ...
port_lats, port_lons, num_nodes, ...
latpts, lonpts, cross_date, in_conv, ...
in, on);

436 end
437 end
438 end
439

440 %% Check if port is node in modified hull
441

442 % Variable indicating if port is a hull node
443 port_node = [0, 0];
444

445 if sum(on) ≥ 1
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446 % At least on port lie on border of modified hull
447

448 for port = 1:2
449 % Check if port is a node in the current ...

modified hull
450 lat_diff = abs(hull_lat - port_lats(port));
451 [min_lat, i_lat] = min(lat_diff);
452 lon_diff = abs(hull_lon - port_lons(port));
453 [min_lon, i_lon] = min(lon_diff);
454

455 if min_lat == 0 && min_lon == 0 && i_lat == i_lon
456 %Port is a node of the modified hull
457 port_node(port) = 1;
458 end
459 end
460 end
461

462 %% Find path circumventing the land area
463 if size(connect_nodes,1) == 1
464 fprintf('One path omitting land polygon ID %d is ...

generated.\n\n',ID);
465 [path, min_path, ¬, connect_nodes] = ...

one_path(dummy_ports, hull_lat, hull_lon, ...
shore_lat, shore_lon, connect_nodes, ...
num_nodes, inport, port_node, dir);

466 else
467 fprintf('Two paths omitting land polygon ID %d is ...

generated.\n\n',ID);
468 [path, min_path, ¬, connect_nodes] = ...

two_paths(dummy_ports, hull_lat, hull_lon, ...
shore_lat, shore_lon, connect_nodes, ...
num_nodes, polar, port_node);

469 end
470

471 %% Update final path and dummy port list
472

473 ind_start = find(final_path.Lon == dummy_ports(1,2));
474 ind_end = find(final_path.Lon == dummy_ports(2,2));
475 if isempty(ind_start) == 1 || isempty(ind_end) == 1
476 disp(i)
477 end
478

479 path_end = size(path(min_path).Lat,2);
480 final_path_end = size(final_path.Lat,2);
481

482 % Update final path
483 final_path.Lat = [final_path.Lat(1:(ind_start)),...
484 path(min_path).Lat(2:(path_end-1)),...
485 final_path.Lat(ind_end:final_path_end)];
486

487 final_path.Lon = [final_path.Lon(1:(ind_start)),...
488 path(min_path).Lon(2:(path_end-1)),...
489 final_path.Lon(ind_end:final_path_end)];
490

491 % Update dummy port list
492 rows = num_rows-i;
493

126



494 if num_rows 6= i
495 dummy_port_list(i+3:i+rows+2,:)...
496 = dummy_port_list(i+1:num_rows,:);
497 end
498 dummy_port_list(i+1,:) = [dummy_ports(1,1), ...

dummy_ports(1,2)...
499 , hull_lat(connect_nodes(min_path,1)),...
500 hull_lon(connect_nodes(min_path,1))];
501

502 dummy_port_list(i+2,:) = ...
503 [hull_lat(connect_nodes(min_path,2))...
504 hull_lon(connect_nodes(min_path,2)), ...
505 dummy_ports(2,1), dummy_ports(2,2)];
506

507 num_rows = num_rows + 2;
508 end
509 % Update counter
510 i=i+1;
511 end
512 end
513

514 %% Assemble complete route
515

516 % Include predefined paths to anf from ports if applicable
517 if length(port_path(1).Lat) > 1
518 final_path.Lat = [port_path(1).Lat(1:end-1), final_path.Lat];
519 final_path.Lon = [port_path(1).Lon(1:end-1), final_path.Lon];
520 end
521 if length(port_path(2).Lat) > 1
522 final_path.Lat = [final_path.Lat, port_path(2).Lat(2:end)];
523 final_path.Lon = [final_path.Lon, port_path(2).Lon(2:end)];
524 end
525

526 % Check the final route goes across the international date line.
527 [cross_date, ind] = cross_date_line(final_path.Lon);
528

529 % Compute headings and distances for the waypoint legs
530 [course, distnm] = legs(final_path.Lat,final_path.Lon,'rh');
531

532 if polar == 0
533 % Polar sailing is not allowed, check if route violate restriction
534 artic = find(final_path.Lat > 70, 1);
535 antarc_ind = find(final_path.Lat < -60);
536 if isempty(artic) == 0
537 % Final route includes artic latitudes, display warning
538 disp('Warning: Route includes latitudes above 70 degrees ...

North');
539 elseif isempty(antarc_ind) == 0 && antarctic_path == 0
540 % Route includes antarctic latitudes. Adjust path to keep ...

above -60
541 % degrees south.
542 % Path coordinates
543 lats = transpose(final_path.Lat);
544 lons = transpose(final_path.Lon);
545

546 % Rhumb line at -60 latitude
547 line_lat = [-60, -60];

127



548 line_lon = [-180, 180];
549

550 % Points of intersection
551 [lat, lon, ¬] = inter_coords(lats, lons, line_lat, ...

line_lon, cross_date);
552

553 % Limit latitudes to -60 degrees
554 final_path.Lat(antarc_ind) = -60;
555

556 % New path includes points of intersection
557 ind_start = antarc_ind(1);
558 ind_end = antarc_ind(end);
559 final_path.Lat = [final_path.Lat(1:ind_start-1),lat(1), ...

final_path.Lat(ind_start:ind_end), lat(2), ...
final_path.Lat(ind_end+1:end)];

560 final_path.Lon = [final_path.Lon(1:ind_start-1),lon(1), ...
final_path.Lon(ind_start:ind_end), lon(2), ...
final_path.Lon(ind_end+1:end)];

561

562 % Update date line info
563 [cross_date, ind] = cross_date_line(final_path.Lon);
564 end
565 end
566

567 % Store route information in path struct:
568 % Course and distance
569 final_path.Course = course;
570 final_path.Distnm = distnm;
571

572 % Total distance
573 final_path.Tot_dist = sum(distnm);
574

575 % Crossing date line info
576 final_path.Cross_date = cross_date;
577 final_path.Cross_ind = ind;
578 end

D.1.5 draw maps.m

1 function [f1, f2, H1, H2] = draw_maps(path)
2 %% This function draws two maps, of mercantor projection and one ...

orthogonal
3 % projection, of the route desribed by the "path" variable given as ...

input.
4 % Author: Ole Brynjar Helland Paulsen
5 % Date: 17.02.2020
6

7 % Load shoreline data
8 load map_data.mat map_data
9

10 % Define leves
11 levels = [map_data.Level];
12

13 L1 = (levels == 1);

128



14 land = map_data(L1);
15 L2 = (levels == 2);
16 lake=map_data(L2);
17 L3 = (levels == 3);
18 island = map_data(L3);
19 L4 = (levels == 4);
20 pond=map_data(L4);
21 L5 = (levels == 5);
22 ice=map_data(L5);
23 L6 = (levels == 6);
24 antartic=map_data(L6);
25

26 % Latitude coordinates
27 lats = path.Lat;
28 % Longitude coordinates
29 lons = path.Lon;
30

31 % Port coordinates
32 ports = [lats(1), lons(1);
33 lats(end), lons(end)];
34

35 %% Setting latitude and longitude limits for the maps
36 %Minimum and maximum latitude of paths
37 min_lat = min(lats);
38 max_lat = max(lats);
39

40 %Calculate latitude midpoint
41 lat_origo = min_lat + (max_lat - min_lat)/2;
42

43 if path.Cross_date == 0
44 % The route is not crossing the date line
45 min_lon = min(lons);
46 max_lon = max(lons);
47

48 % Longitudinal span
49 lon_span = max_lon - min_lon;
50

51 % Origo of orthogonal map
52 lon_origo = min_lon + lon_span/2;
53

54 else
55 % The route goes across the international date line
56 % Index of node(s) prior to crossing
57 ind = path.Cross_ind;
58

59 if length(ind) == 1 && lons(ind) > 0 % route goes from west to east
60 lon_west = lons(1:ind);
61 lon_east = lons((ind+1):end);
62 elseif length(ind) == 1
63 %Route goes from east to west
64 lon_west = lons((ind+1):end);
65 lon_east = lons(1:ind);
66 elseif lons(ind(1)) > 0 % Route crossing from west to east ...

initially
67 lon_west = [lons(1:ind(1)), lons((ind(2)+1):end)];
68 lon_east = lons((ind(1)+1):ind(2));
69 else
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70 %Route crossing from east to west initially
71 lon_west = lons((ind(1)+1):ind(2));
72 lon_east = [lons(1:ind(1)), lons((ind(2)+1):end)];
73 end
74 min_lon = min(lon_west);
75 max_lon = max(lon_east);
76

77 %Longitudinal span
78 lon_span = (max_lon+360) - min_lon;
79

80 % Origo of orthogonal map
81 if abs(max_lon)>abs(min_lon)
82 lon_origo = min_lon + lon_span/2;
83 else
84 lon_origo = max_lon - lon_span/2;
85 end
86 end
87

88 % Add buffer to map limits
89 lon_buffer = 24;
90 mlon_min = min_lon - lon_buffer/2;
91 mlon_max = max_lon + lon_buffer/2;
92

93 % Set latitude limits for mercantor map
94

95 % Minimum latitude span for visual purposes
96 lat_span_min = (9/16) * (lon_span+lon_buffer);
97 lat_diff = max_lat - min_lat;
98 if lat_diff < lat_span_min
99 extend = max([((lat_span_min - lat_diff)*0.5), 4]);

100 else
101 extend = 4;
102 end
103 mlat_min = max([min_lat - extend, -85]);
104 mlat_max = min([max_lat + extend, 85]);
105

106

107 % Label spacing for mercantor map
108 if lon_span > 300
109 label_space = 45;
110 elseif lon_span > 100
111 label_space = 30;
112 else
113 label_space =15;
114 end
115

116 %% Generate ortholgonal map
117 f1 = figure('color','w');
118 ha_o = axesm('mapproj', 'ortho', 'origin',[lat_origo lon_origo]);
119 axis off, gridm on, framem on;
120 setm(ha_o,'MLineLocation',15,'PLineLocation',15);
121 mlabel on, plabel on;
122 mlabel('equator')
123 plabel(lon_origo-45);
124 plabel('fontweight','bold')
125 setm(gca,'MLabelLocation',30, 'PLabelLocation',15)
126
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127 % Display geography
128 geoshow([land.Lat],[land.Lon], 'color', [0 .26 .15])
129 geoshow([lake.Lat],[lake.Lon],'color',[.24 .41 .99])
130 geoshow([island.Lat],[island.Lon], 'color', [0 .26 .15])
131 geoshow([pond.Lat],[pond.Lon],'color',[.24 .41 .91])
132 geoshow([ice.Lat],[ice.Lon], 'color', [.19 .33 .81])
133 geoshow([antartic.Lat],[antartic.Lon], 'color', [.1 .1 .1])
134

135 % Display cities
136 geoshow( 'worldcities.shp' , 'Marker' , '.' , 'Color' , 'red' )
137

138 %Display ports
139 geoshow(ports(1,1),ports(1,2),'DisplayType','point',...
140 'markeredgecolor','k','markerfacecolor','k','marker','o')
141 textm(ports(1,1),ports(1,2), ' Origin')
142 geoshow(ports(2,1),ports(2,2),'DisplayType','point',...
143 'markeredgecolor','k','markerfacecolor','k','marker','o')
144 textm(ports(2,1),ports(2,2), ' Destination')
145

146 % Compute points for great circle route.
147 gcpts = track2('gc',ports(1,1),ports(1,2),ports(2,1), ports(2,2));
148 % %Compute waypoints for route divided in n legs of the given ...

maximum length.
149 % [latpts, lonpts] = ...

waypoints(ports(1,1),ports(1,2),ports(2,1),ports(2,2));
150

151 % Display great circle route
152 geoshow(gcpts(:,1),gcpts(:,2),'DisplayType','line',...
153 'color','blue','linestyle','--')
154 % geoshow(latpts,lonpts,'DisplayType','line',...
155 % 'color',[.4 .2 0],'linestyle','-')
156

157 % Display actual route
158 H1 = geoshow(lats, lons,...
159 'DisplayType','line','color','green','linestyle','-');
160

161 %% Generate Mercantor map
162

163 f2 = figure('color','w');
164 ha = axesm('mapproj','mercator',...
165 'maplatlim',[mlat_min mlat_max],'maplonlim',[mlon_min ...

mlon_max]);
166 axis off, gridm on, framem on;
167 setm(ha,'MLineLocation',15,'PLineLocation',15);
168 mlabel on, plabel on;
169 setm(gca,'MLabelLocation',label_space)
170

171 % Display geography
172 geoshow([land.Lat],[land.Lon], 'color', [0 .26 .15])
173 geoshow([lake.Lat],[lake.Lon],'color',[.24 .41 .99])
174 geoshow([island.Lat],[island.Lon], 'color', [0 .26 .15])
175 geoshow([pond.Lat],[pond.Lon],'color',[.24 .41 .91])
176 geoshow([ice.Lat],[ice.Lon], 'color', [.19 .33 .81])
177 geoshow([antartic.Lat],[antartic.Lon], 'color', [.1 .1 .1])
178

179 % Display cities
180 geoshow( 'worldcities.shp' , 'Marker' , '.' , 'Color' , 'red' )

131



181

182 %Display ports
183 geoshow(ports(1,1),ports(1,2),'DisplayType','point',...
184 'markeredgecolor','k','markerfacecolor','k','marker','o')
185 textm(ports(1,1),ports(1,2), ' Origin')
186 geoshow(ports(2,1),ports(2,2),'DisplayType','point',...
187 'markeredgecolor','k','markerfacecolor','k','marker','o')
188 textm(ports(2,1),ports(2,2), ' Destination')
189

190 % Display great circle route
191 geoshow(gcpts(:,1),gcpts(:,2),'DisplayType','line',...
192 'color','green','linestyle','--')
193 % geoshow(latpts,lonpts,'DisplayType','line',...
194 % 'color',[.4 .2 0],'linestyle','-')
195

196 % Display paths
197 H2 = geoshow(lats, lons,'DisplayType','line', ...

'color','blue','linestyle','-');

D.2 Second level functions

The following functions are called in the function GetRoute.m.

D.2.1 waypoints.m

1 function [latpts,lonpts] = waypoints(lat1, lon1, lat2, lon2)
2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 08.06.2018
4

5 % Function that returns coordinates for the waypoints of a great circle
6 % route divided in n legs, of lenght smaller or equal to the given ...

maximum
7 % length.
8

9 global max_length;
10

11 % Get gt. circle dist (deg)
12 dgc = distance('gc',lat1, lon1, lat2, lon2);
13

14 % Nautical mi along great circle
15 distgcnm = deg2nm(dgc);
16

17 % Number of sailing legs based on maximum length
18 nlegs = ceil(distgcnm/max_length);
19

20 %Compute waypoints
21 [latpts,lonpts] = gcwaypts(lat1, lon1, lat2, lon2,nlegs);
22 end
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D.2.2 polycheck.m

1 function [ID] = polycheck(shorelines, latpts, lonpts, startport, ...
nextport, hull, ports, cross_date)

2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 08.04.2020
4

5 % Function for checking if the given route intersects any land ...
polygons. If

6 % so, the function returns the specific ID for the land polygon.
7 % When the route intersect the date line, the route must be split ...

at the
8 % date line in order the polyxpoly function to work properly. ...

Continents
9 % are selected prior to other polygons. If several continent, the ...

one also
10 % intersected by a straight line is chosen. Else the lagerst land areas
11 % continent or other polygon is chosen.
12

13 % Number of shorline polygons
14 nmax = length(shorelines);
15 % Variable for counting intersection with land polygons
16 num_poly = 0;
17 % Variable for counting intersection with a continent
18 num_continents = 0;
19 % Variable for counting number of intersected continents also ...

intersected
20 % by a straight line.
21 num_straight = 0;
22

23 % Variables
24 poly_id = zeros(nmax,1);
25 poly_area = zeros(nmax,1);
26 continent_ID = zeros(6,1);
27 continent_area = zeros(6,1);
28 straight_ID = zeros(6,1);
29 straight_span = zeros(6,1);
30 straight_area = zeros(6,1);
31

32 if nmax < 100
33 n = 1;
34 else
35 n = min([round(nmax/100), 5]);
36 end
37

38 split = round(nmax/n);
39

40 for parts = 1:n
41 if n == 1
42 lmt_1 = 1;
43 lmt_2 = nmax;
44 else
45 lmt_1 = (parts-1)*split + 1;
46 if parts == n
47 lmt_2 = nmax;
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48 else
49 lmt_2 = (parts*split);
50 end
51 end
52

53 shore_lats = [shorelines(lmt_1:lmt_2).Y,];
54 shore_lons = [shorelines(lmt_1:lmt_2).X,];
55 [¬, ¬, num_points] = inter_coords(latpts, lonpts, shore_lats,...
56 shore_lons, cross_date);
57

58 if num_points > 0
59 for i = lmt_1:lmt_2
60 %Run through all shorline polygons to check for ...

intersections
61

62 %Coordinates and number of unique points of intersection
63 [¬, ¬, num] = inter_coords(latpts, lonpts, ...

shorelines(i).Y,...
64 shorelines(i).X, cross_date);
65

66 % Check if route intersects polygon in more than one point
67 if num > 1
68 index = find([hull.ID]==shorelines(i).GSHHS_ID);
69 num_poly = num_poly +1;
70

71 if shorelines(i).GSHHS_ID > 6
72 % If polygon is not a continent, the polygon ...

area and
73 % the corresponding ID is stored.
74 poly_id(num_poly) = shorelines(i).GSHHS_ID;
75 poly_area(num_poly) = hull(index).Area;
76 else
77 num_continents = num_continents + 1;
78

79 % Check if straight line between the ports also
80 % intersect the continent.
81 [inter_y, inter_x, ns] = ...

inter_coords(ports(:,1), ...
82 ports(:,2), shorelines(i).Y, ...

shorelines(i).X, ...
83 cross_date);
84 if ns > 1
85 num_straight = num_straight + 1;
86

87 %Distance between first and last point of
88 %intersection
89 [arclen,¬] = distance(inter_y(1),inter_x(1),...
90 inter_y(end),inter_x(end));
91

92 straight_ID(num_straight) = ...
shorelines(i).GSHHS_ID;

93 straight_span(num_straight) = deg2nm(arclen);
94 straight_area(num_straight) = hull(index).Area;
95 end
96

97 continent_ID(num_continents) = ...
shorelines(i).GSHHS_ID;
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98 continent_area(num_continents) = hull(index).Area;
99 end

100 end
101 end
102 end
103 end
104

105 if num_poly == 0
106 fprintf('Route between %s and %s does not intersect land.\n\n',...
107 startport,nextport);
108 ID = [];
109 elseif num_continents == 0
110 %When no continents are intersected, the land polygon with the ...

largest
111 %area is chosen for creating the first path
112 area = poly_area(1:num_poly);
113 [¬, ind] = max(area);
114 ID = poly_id(ind);
115 fprintf('Route between %s and %s intersects %d land polygon.\n',...
116 startport,nextport, num_poly);
117 elseif num_continents == 1
118 % When one continent is intersected, that polygon is selected.
119 ID = continent_ID(1);
120 fprintf('Route between %s and %s intersects 1 continent.\n',...
121 startport,nextport);
122 elseif num_straight == 1
123 % When several continents are intersected, select the continen ...

that is
124 % also intersected by a straight line, if apliccable.
125 ID = straight_ID(1);
126 fprintf('Route between %s and %s intersects %d continents.\n',...
127 startport,nextport, num_continents)
128 elseif num_straight > 1
129 % Largest area continents
130 area = straight_area(1:num_straight);
131 straight_ID(1:num_straight);
132

133 % Largest span continents
134 span = straight_span(1:num_straight);
135

136 % Index of largest span
137 [¬, ind1] = max(span);
138

139 % Sorted span
140 span_sort = sort(span);
141

142 % Index of second largest span
143 ind2 = find(span == span_sort(end-1));
144

145 % Two gratest spans
146 span = [span(ind1), span(ind2)];
147

148 % Area of the same continents
149 area = [area(ind1), area(ind2)];
150

151 % Max area continent
152 [¬, ind_A] = max(area);
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153

154 % Max span continent
155 [¬, ind_S] = max(span);
156

157 if ind_A == ind_S
158 ID = straight_ID(ind1);
159 elseif span(1) > 2*span(2)
160 ID = straight_ID(ind1);
161 else
162 ID = straight_ID(ind2);
163 end
164 fprintf('Route between %s and %s intersects %d continents.\n',...
165 startport,nextport, num_continents)
166 else
167 % Else select the continent with largest area.
168 area = continent_area(1:num_continents);
169 [¬, ind] = max(area);
170 ID = continent_ID(ind);
171 fprintf('Route between %s and %s intersects %d continents.\n ...

The largest continent is chosen.\n',startport,nextport, ...
num_continents)

172 end
173 if num_poly > 0
174 fprintf('Route between %s and %s intersects %d land polygon in ...

total.\n',startport,nextport, num_poly);
175 end
176 end

D.2.3 antarctic.m

1 function [connect_nodes] = antarctic(hull_lat, hull_lon, latpts, ...
lonpts, polar, cross_date)

2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 01.05.2020
4

5 % This function calculates connection nodes for route crossing the
6 % antarctic continent. The connection nodes are deterimned from the ...

points
7 % of intersection. One connection node is given for each path, one ...

on each
8 % side of the polygon. The connection node is given as the middle node
9 % between the two nodes nearest the points of intersection.

10 % If polar sailing is restricted, an alternate modified
11 % hull is used in order to keep the route from going below a given
12 % latitude. Also the shortest path is given two connection nodes in ...

order
13 % to keep route on path along the latitude limit given.
14

15 %% Find points of intersection
16 [y, x, ¬] = inter_coords(latpts, lonpts, hull_lat, hull_lon, ...

cross_date);
17

18 %% Find node nearest to the two points of intersection
19 node = zeros(length(x),1);
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20 num_nodes = size(hull_lat,2)-1;
21

22 %Searching for the hull node nearest the point of intersection. The ...
search

23 %is limited by only searching the half of the hull nodes nearest in
24 %longitude.
25

26 for i =1:length(x)
27 node(i) = nearest_node(hull_lat, hull_lon, y(i), x(i));
28 end
29

30 % Assign connection nodes for each path
31 if length(unique(node)) == 1
32 % Nearest node is identical for both intersection points, set ...

node as
33 % coneection node for path 1
34 connect_1 = node(1);
35 else
36 node_lons = hull_lon(unique(node));
37 % Identify westward and eastward node
38 if max(node_lons)- min(node_lons) > 180
39 % Nodes closest to the point of intersection are on the oposite
40 % side of the date line
41 west_node = find(hull_lon == max(node_lons));
42 east_node = find(hull_lon == min(node_lons));
43 else
44 west_node = find(hull_lon == min(node_lons));
45 east_node = find(hull_lon == max(node_lons));
46 end
47

48 % Set connection node 1 as middle node between the two hull nodes
49 % nearest the two points of intersection
50 if west_node > east_node
51 %Index of western node is greater than index of eastern node
52 mid_node = round(((num_nodes - west_node) + east_node) / 2);
53 if (num_nodes - west_node) == east_node
54 connect_1 = num_nodes;
55 elseif (num_nodes - west_node) > east_node
56 connect_1 = west_node + mid_node;
57 else
58 connect_1 = mid_node - (num_nodes - west_node);
59 end
60 else
61 mid_node = round((east_node - west_node) / 2);
62 connect_1 = west_node + mid_node;
63 end
64 end
65 % Set connect_node 2 as the node oppisite to the first node, as ...

related to
66 % node indices, not coordinates.
67 if connect_1 ≤ num_nodes/2
68 connect_2 = connect_1 + round(num_nodes/2);
69 else
70 connect_2 = (connect_1 + round(num_nodes/2))-num_nodes;
71 end
72

73 % Identify the westward port
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74 if cross_date == 1
75 [¬, westport] = max([lonpts(1), lonpts(end)]);
76 else
77 [¬, westport] = min([lonpts(1), lonpts(end)]);
78 end
79

80 %% Assign connection nodes in accordance with the direction of each ...
path,

81 % and polar sailing option
82 if polar == 1
83 % Sailing in polar waters is allowed. One connection node is ...

assigned
84 % for each path
85 if westport == 1
86 connect_nodes = [connect_1, connect_1;
87 connect_2, connect_2];
88 else
89 connect_nodes = [connect_2, connect_2;
90 connect_1, connect_1];
91 end
92 else
93 % If polar access is resticted, two connect nodes are assigned ...

for the
94 % shortes path.
95 connect_11 = connect_1 - 1;
96 connect_12 = connect_1 + 1;
97 connect_21 = connect_2 + 1;
98 connect_22 = connect_2 - 1;
99 if connect_1 == 1

100 connect_11 = num_nodes;
101 elseif connect_1 == num_nodes
102 connect_12 = 1;
103 elseif connect_2 == 1
104 connect_22 = num_nodes;
105 elseif connect_2 == num_nodes
106 connect_21 = 1;
107 end
108

109 if westport == 1
110 connect_nodes = [connect_11, connect_12;
111 connect_21, connect_22];
112 else
113 connect_nodes = [connect_22, connect_21;
114 connect_12, connect_11];
115 end
116 end
117 end

D.2.4 adjust ports.m

1 function ports_adj = adjust_ports(ports, hull_lon)
2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 17.06.2018
4
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5 % This fuction adjusts the sign of the port longitudes, in cases ...
where the

6 % ports lie on oppisite side of the international date line, such that
7 % the logitude coordiates of the ports and the obstacle polygon ...

have equal
8 % sign.
9

10 % Find the westward and eastward ports.
11 west_port = find(ports(:,2)>0);
12 east_port = find(ports(:,2)<0);
13 fprintf('western port %d\n', west_port)
14 fprintf('eastern port %d\n', east_port)
15

16 % Matrix for the adjusted ports
17 ports_adj = ports;
18

19 %Find the eastward node of the polygon in order to identify if the ...
polygon

20 %has positive or negative longitude coordinates.
21 east_node = max(hull_lon);
22 % disp(east_node)
23 if east_node > 0
24 disp('Sailing path polygon have positive longitudes')
25 % Polygon is located west of the date line, or goes across the date
26 % line with longitude coordinates above +180 degrees
27 ports_adj(east_port,2) = ports(east_port,2) + 360;
28 else
29 disp('Sailing path polygon have negative longitudes')
30 % Polygon is located east of the date line, or it goes across ...

the date
31 % line with longitude coordinates below -180 degrees
32 ports_adj(west_port,2) = ports(west_port,2) - 360;
33 end
34 end

D.2.5 inter coords.m

1 function [lat, lon, num_points] = inter_coords(latpts, lonpts, ...
poly_lat, poly_lon, cross_date)

2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 17.06.2018
4

5 % This function returns the coordinates of points of intersection ...
between

6 % a polygon and a route given by waypoint coordinates.
7

8 % The split variable indicates if the ports of the given route has been
9 % adjusted to equal sign or not. split == 0 indicates that port ...

coordinates
10 % have been adjusted so it is not necessary to split the route.
11 if (max([lonpts(1), lonpts(end)]) > 180 || min([lonpts(1), ...

lonpts(end)]) < -180)
12 split = 0;
13 else
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14 split = 1;
15 end
16

17 if cross_date == 1 && split == 1
18 % Split route to check for intersection. If this is not done the
19 % polyxpoly function examines a route spanning the globe in opisite
20 % direction of the shortest distance across the date line.
21 [latpts1, lonpts1, latpts2, lonpts2] = split_route(latpts, lonpts);
22

23 %Points of intersection, if they exists
24 [yi1, xi1] = polyxpoly(latpts1, lonpts1, poly_lat, ...

poly_lon,'unique');
25 [yi2, xi2] = polyxpoly(latpts2, lonpts2, poly_lat, ...

poly_lon,'unique');
26

27 % Coordinates of all points of intersection
28 xi = [xi1;xi2];
29 yi = [yi1;yi2];
30

31 % Number of intersecting points
32 x1 = unique(round(xi1,2),'stable');
33 y1 = unique(round(yi1,2),'stable');
34 x2 = unique(round(xi2,2),'stable');
35 y2 = unique(round(yi2,2),'stable');
36

37 % Coordinates of all points of intersection
38 x = [x1;x2];
39 y = [y1;y2];
40 else
41 % Points where gc path intersect the shoreline polygon
42 [yi, xi] = polyxpoly(latpts, lonpts, poly_lat, poly_lon,'unique');
43

44 %Unique coordinates of point of intersecton
45 x = unique(round(xi,2),'stable');
46 y = unique(round(yi,2),'stable');
47 end
48 % If the number of unique latitude coordinates does not equal the ...

number of
49 % unique longitude coordinates, the original intersection ...

coordinates are
50 % keept
51 if length(x) 6= length(y)
52 lat = yi;
53 lon = xi;
54 else
55 lat = y;
56 lon = x;
57 end
58 % Number of unique intersection points
59 num_points = max([size(x,1),size(y,1)]);
60

61 end

D.2.6 connecting outside non visi.m

140



1 function [connect_nodes] = connecting_outside_non_visi(hull_lat, ...
hull_lon, ports)

2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 19.03.2020
4

5 % This function calculates connection nodes for route beteween ...
ports that

6 % are both located outside the convex hull, whne the ports are not ...
visible

7 % to each other
8 fprintf('Connection nodes are found from a convex hull\n');
9

10 % Create convex hull around nodes made up from the given hull and the
11 % origin and destination ports. The resulting polygon will go in a
12 % clockwise maner from port 1 towards port 2, around the modified ...

hull, and
13 % back again. All in a clockwise manner.
14 hlat = [ports(1,1), hull_lat, ports(2,1)];
15 hlon = [ports(1,2), hull_lon, ports(2,2)];
16 K = convhull(hlat,hlon);
17 conv_hull_lat = hlat(K);
18 conv_hull_lon = hlon(K);
19

20 % Divide the convex hull into two seperate paths by finding the element
21 % number of the destination port. The paths are defined from port 1 to
22 % port 2. Path 1 goes clockwise around the hull, and path 2 goes ...

counter
23 % clockwise. In the case of the two ports having the same latitude,
24 % the longitude is instead used to identify the correct element.
25

26 % Index of destination port
27 if ports(1,1)==ports(2,1)
28 ind = find(conv_hull_lon == ports(2,2));
29 else
30 ind = find(conv_hull_lat == ports(2,1));
31 end
32 max_ind = size(conv_hull_lat,2);
33

34 % The nodes adjacent to each port is given as connetion nodes
35 connect_nodes = ...
36 [node_index(hull_lat, hull_lon, conv_hull_lat(2), ...

conv_hull_lon(2)),...
37 node_index(hull_lat, hull_lon, conv_hull_lat(ind-1), ...

conv_hull_lon(ind-1));...
38 node_index(hull_lat, hull_lon, conv_hull_lat(max_ind-1), ...

conv_hull_lon(max_ind-1)),...
39 node_index(hull_lat, hull_lon, conv_hull_lat(ind+1), ...

conv_hull_lon(ind+1))];
40 end

D.2.7 connecting outside visi.m
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1 function [connect_nodes, dir, inport] = ...
connecting_outside_visi(hull_lat, hull_lon, ports, latpts, ...
lonpts, cross_date)

2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 19.03.2020
4

5 % This function calculates connection nodes for route beteween ...
ports that

6 % are both located outside the convex hull, when the ports are ...
visible to

7 % each other. Connection nodes are initally found from points of
8 % intersection between a great circle route and the sailing path ...

polygon.
9 % In som cases this can yeild unfeasible results. Therefore single

10 % connection nodes from separate convex hulls with each port, are
11 % investigated. The nodes yeilding shortest path is selected.
12 fprintf('Both ports are located outside a convex hull around the ...

current shorline polygon.\n')
13 fprintf('The ports are visible to each other.\n')
14

15 %Pre-allocate variables
16 shoreline_path(2).Lat = [];
17 shoreline_path(2).Lon = [];
18 conv_hull(2).Lat = [];
19 inside = zeros(1,2);
20

21 % Intersection point between shoreline sailing path and creat circle
22 % route
23 [yi, xi, ¬] = inter_coords(latpts, lonpts, hull_lat, hull_lon, ...

cross_date);
24

25 % Nearest node to first and last point of intersection
26 p1 = nearest_node(hull_lat, hull_lon, yi(1), xi(1));
27 p2 = nearest_node(hull_lat, hull_lon, yi(end), xi(end));
28

29 nodes = [p1, p2];
30

31 % Great circle distances from port of origin
32 arclen1 = distance('gc',[ports(1,1), ports(1,2)],[hull_lat(p1),...
33 hull_lon(p1)]);
34 arclen2 = distance('gc',[ports(1,1), ports(1,2)],[hull_lat(p2),...
35 hull_lon(p2)]);
36

37 % Find which of the two nodes is nearest the origin port. This node
38 % will be connection node for origin port. The other node will be
39 % connection node for the destination port
40 [¬,ind1] = min([arclen1, arclen2]);
41

42 % The other node
43 A=[1,2];
44 ind2 = A(A6=ind1);
45

46 % Inital connection node for path from intersection points
47 cn1 = nodes(ind1);
48 cn2 = nodes(ind2);
49

50 p = [1,2];
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51

52 for port = 1:2
53 % Generating convex hull with one port at the time.
54 hlat1 = [ports(port,1), hull_lat];
55 hlon1 = [ports(port,2), hull_lon];
56 K1 = convhull(hlat1,hlon1);
57 conv_hull(port).Lat = hlat1(K1);
58 conv_hull(port).Lon = hlon1(K1);
59

60 % Check if other ports lie inside convex hull
61 other = p(p6=port);
62 [in, on] = inpolygon(ports(other,1), ports(other,2), ...
63 conv_hull(port).Lat, conv_hull(port).Lon);
64 if in == 1 && on == 0
65 inside(other) = 1;
66 end
67

68 end
69

70 if sum(inside) > 0
71 % One of the ports are located within a convex hull made from the
72 % shoreline sailing path and the other port.
73 fprintf('Connection nodes for single path is found.\n')
74 % Identify port inside
75 inport = p(inside == 1);
76

77 connect_nodes = [cn1, cn2];
78

79 dir = 0;
80 else
81 hlat = [ports(1,1), hull_lat, ports(2,1)];
82 hlon = [ports(1,2), hull_lon, ports(2,2)];
83 K = convhull(hlat,hlon);
84 conv_hull_lat = hlat(K);
85 conv_hull_lon = hlon(K);
86

87 % Index of destination port
88 if ports(1,1)==ports(2,1)
89 ind = find(conv_hull_lon == ports(2,2));
90 else
91 ind = find(conv_hull_lat == ports(2,1));
92 end
93 max_ind = size(conv_hull_lat,2);
94

95 % If port 2(ind) is the second node in the convex hull, path 1 ...
is a

96 % straight line between the ports. If port 2 is the node before the
97 % max node, path 2 is a straight line.
98 path = find([2, (max_ind-1)] == ind);
99

100 %Index of the path that is along the other side of the hull
101 other = find([1,2]6=path);
102

103 node(path).Lat = conv_hull(path).Lat(2);
104 node(path).Lon = conv_hull(path).Lon(2);
105 node(other).Lat = conv_hull(other).Lat(end-1);
106 node(other).Lon = conv_hull(other).Lon(end-1);
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107

108 % Single connection nodes found from seperate convex hulls
109 n3 = node_index(hull_lat, hull_lon, node(1).Lat, node(1).Lon);
110 n4 = node_index(hull_lat, hull_lon, node(2).Lat, node(2).Lon);
111

112 %% Find connection nodes from shortest distance route
113

114 % Find shoreline sailing path
115 if cn1 == cn2
116 shoreline_path(path).Lat = hull_lat(cn1);
117 shoreline_path(path).Lon = hull_lon(cn1);
118 elseif path == 1 && (cn1 < cn2)
119 shoreline_path(path).Lat = hull_lat(cn1:cn2);
120 shoreline_path(path).Lon = hull_lon(cn1:cn2);
121 elseif path == 1
122 shoreline_path(path).Lat = [hull_lat(cn1:end-1), ...

hull_lat(1:cn2)];
123 shoreline_path(path).Lon = [hull_lon(cn1:end-1), ...

hull_lon(1:cn2)];
124 elseif path == 2 && (cn1 > cn2)
125 shoreline_path(path).Lat = fliplr(hull_lat(cn2:cn1));
126 shoreline_path(path).Lon = fliplr(hull_lon(cn2:cn1));
127 else
128 shoreline_path(path).Lat = fliplr([hull_lat(cn2:end-1),...
129 hull_lat(1:cn1)]);
130 shoreline_path(path).Lon = fliplr([hull_lon(cn2:end-1),...
131 hull_lon(1:cn1)]);
132 end
133

134 % Distance along shoreline
135 if length(shoreline_path(path).Lat) > 1
136 [¬, shore_dist] = legs(shoreline_path(path).Lat,...
137 shoreline_path(path).Lon,'rh');
138 else
139 shore_dist = 0;
140 end
141

142 % Total distance for route with connection nodes from great circle
143 % intersection
144 dist1 = sum(shore_dist) + deg2nm(distance('gc',ports(1,1),...
145 ports(1,2), hull_lat(cn1), hull_lon(cn1))) + ...
146 deg2nm(distance('gc',hull_lat(cn2), hull_lon(cn2), ...
147 ports(2,1), ports(2,2)));
148

149 % Distance great circle route betweeen ports via nodes found ...
from convex hull

150 dist2 = deg2nm(distance('gc',ports(1,1), ports(1,2), ...
hull_lat(n3),...

151 hull_lon(n3))) + deg2nm(distance('gc',hull_lat(n3),...
152 hull_lon(n3), ports(2,1), ports(2,2)));
153 dist3 = deg2nm(distance('gc',ports(1,1), ports(1,2), ...

hull_lat(n4),...
154 hull_lon(n4))) + deg2nm(distance('gc',hull_lat(n4),...
155 hull_lon(n4), ports(2,1), ports(2,2)));
156

157 % Shorest distance
158 [¬, i_min] = min([dist1, dist2, dist3]);
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159

160 % Possible connection nodes
161 c_nodes = [cn1, cn2;
162 n3, n3;
163 n4, n4];
164

165 % Connection nodes from shortest paths
166 connect_nodes(path,:) = c_nodes(i_min,:);
167

168 % For the other path the indices are kept
169 if other == 1
170 connect_nodes(other,:) = ...
171 [node_index(hull_lat, hull_lon, conv_hull_lat(2),...
172 conv_hull_lon(2)),...
173 node_index(hull_lat, hull_lon, conv_hull_lat(ind-1),...
174 conv_hull_lon(ind-1))];
175 else
176 connect_nodes(other,:) = ...
177 [node_index(hull_lat, hull_lon, ...

conv_hull_lat(max_ind-1), ...
conv_hull_lon(max_ind-1)),...

178 node_index(hull_lat, hull_lon, conv_hull_lat(ind+1), ...
conv_hull_lon(ind+1))];

179 end
180 dir=[];
181 inport=[];
182 end
183 end

D.2.8 connecting non visi inside.m

1 function [connect_nodes, dir, inport] = ...
connecting_non_visi_inside(hull_lat, hull_lon, port_lats, ...
port_lons, num_nodes)

2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 31.03.2020
4

5 % This function calculates connection nodes for route beteween ...
ports, when

6 % both port are located inside of the convex hull, and the ports are
7 % not visible to each other
8

9 %Both ports are located inside the convex hull
10 fprintf('Both ports are inside the convex hull around the current ...

land polygon.\n');
11

12 % Variable indicating if port is inside convex hull or sailing path ...
polygon

13 inport = 1;
14

15 %Find nearest node to the each port
16 nearest = [nearest_node(hull_lat, hull_lon, port_lats(1), ...

port_lons(1));
17 nearest_node(hull_lat, hull_lon, port_lats(2), port_lons(2))];
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18 if nearest(1) == nearest(2)
19 % The ports share nearest node
20 fprintf('The ports have common nearest node. Single connection ...

node found.\n');
21 % Nearest node set as connection node for both ports
22 connect_nodes(1,1:2) = nearest(1);
23

24 % Find second nearest node for the origin port
25 nearest2 = nearest_node2(nearest(1), hull_lat, hull_lon, ...
26 port_lats(1), port_lons(1), num_nodes);
27

28 % Set directions for visibility check from indices of two nearest
29 % nodes
30 if (nearest2 == num_nodes && nearest(1) == 1) || nearest(1) > ...

nearest2
31 dir = [-1, 1];
32 else
33 dir = [1, -1];
34 end
35

36 else
37 % The ports does not share nearest node. Check if the ports have
38 % adjacent nodes in common
39

40 % Find adjacent nodes for each nearest node
41 nodes1 = adjacent_nodes(nearest(1), num_nodes);
42 nodes2 = adjacent_nodes(nearest(2), num_nodes);
43

44 nodes = [nodes1; nodes2];
45

46 if num_nodes > 50
47

48 % For large polygons add two adjacent nodes for each nearest node
49 new_nodes = zeros(2,7);
50 for port = 1:2
51 if nodes(port,end) == num_nodes
52 n2 = 1;
53 else
54 n2 = nodes(port,end) + 1;
55 end
56 if nodes(port,1) == 1
57 n1 = num_nodes;
58 else
59 n1 = nodes(port,1)-1;
60 end
61 new_nodes(port,:) = [n1, nodes(port,:), n2];
62 end
63 nodes = new_nodes;
64 end
65

66 % Check if ports share adjacent nodes
67 [ind1, ¬] = find(nodes1(:) == nodes2);
68 if length(ind1) == 1
69 % Ports have one adjacent node in common, the node is set as
70 % single connection node for both ports
71 connect_nodes(1,1:2) = nodes1(ind1);
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72 fprintf('The ports are located near each other. One ...
connection node found.\n');

73 % Directions for visibility check
74 if ind1 == 1
75 dir = [1, -1];
76 else
77 dir = [-1, 1];
78 end
79

80 elseif length(ind1) > 1
81 % Ports share several adjacent nodes. Search through common ...

nodes
82 % to find shortest distance.
83 common_nodes = nodes1(ind1);
84 dist_n = zeros(length(ind1),1);
85 for n = 1:length(ind1)
86 lati = hull_lat(common_nodes(n));
87 long = hull_lon(common_nodes(n));
88 dist_n(n) = ...
89 distance('gc',port_lats(1), port_lons(1), lati, long) ...
90 + distance('gc',lati, long, port_lats(2), port_lons(2));
91 end
92 [¬, min_n] = sort(dist_n);
93 % Common node yielding shortest distance set as single ...

connection
94 % node
95 connect_nodes(1,1:2) = common_nodes(min_n(1));
96 fprintf('The ports are located near each other. One ...

connection node found.\n');
97

98 % Directions for visibility check.
99 if ind1(1) == 1

100 dir = [1, -1];
101 else
102 dir = [-1, 1];
103 end
104

105 else
106 % The ports does not share adjacent nodes the furthest adjacent
107 % nodes are set as connection nodes for each port
108 adj_nodes = zeros(2,2);
109

110 if abs(nearest(1) - nearest(2)) > 20 && num_nodes > 50
111

112 % Expand adjacent nodes when nearest nodes are far ...
apart and

113 % the sailing path polygon is large
114 new_nodes = zeros(2,15);
115 for p = 1:2
116 n1 = adjacent_nodes(nodes(p,1), num_nodes);
117 n11 = adjacent_nodes(n1(1), num_nodes);
118 n2 = adjacent_nodes(nodes(p,end), num_nodes);
119 n22 = adjacent_nodes(n2(end), num_nodes);
120

121 new_nodes(p,:) = [n11(1:4),nodes(p,:), n22(2:5)];
122 end
123
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124 nodes = new_nodes;
125 end
126

127 for port = 1:2
128 adj_nodes(:,port) = [nodes(port,end);
129 nodes(port,1)];
130 end
131 connect_nodes = [adj_nodes(1,1), adj_nodes(2,2);
132 adj_nodes(2,1), adj_nodes(1,2)];
133 fprintf('Four connection nodes are found.\n');
134 dir =[];
135 inport =[];
136 end
137 end
138 end

D.2.9 connecting non visi in out.m

1 function [connect_nodes, dir, inport] = ...
connecting_non_visi_in_out(hull_lat, hull_lon, port_lats, ...
port_lons, num_nodes, in)

2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 31.03.2020
4

5 % This function calculates connection nodes for route beteween ...
ports, when

6 % one port is located inside of the convex hull, and the ports are
7 % not visible to each other
8

9 % Indentify port inside convex hull
10 [¬,inport] = max(in);
11 [¬,outport] = min(in);
12

13 fprintf('Port %d is inside the convex hull of the given land ...
polygon.\n',inport);

14

15 % Ports are not visible to each other. The ports can still be on
16 % the same side of the land polygon with a small area intersected by
17 % the route. In such cases the connection node from a convex hull
18 % will be beyond the nodes nearest the inport.
19

20 % Generating convex hull with the outside port to find the proper
21 % connection nodes
22 hlat1 = [port_lats(outport), hull_lat];
23 hlon1 = [port_lons(outport), hull_lon];
24 K1 = convhull(hlat1,hlon1);
25 conv_h_lat = hlat1(K1);
26 conv_h_lon = hlon1(K1);
27 ind_max = size(conv_h_lat,2);
28

29 % Connection nodes for the outside port
30 A = node_index(hull_lat, hull_lon, conv_h_lat(2), conv_h_lon(2));
31 C = node_index(hull_lat, hull_lon, conv_h_lat(ind_max-1), ...
32 conv_h_lon(ind_max-1));

148



33 % disp('connection nodes for outport:A,C')
34 % disp(A)
35 % disp(C)
36

37

38 %Find hull node nearest the port located inside the convex hull
39 nearest = nearest_node(hull_lat, hull_lon, port_lats(inport), ...
40 port_lons(inport));
41 % Find the adjacent nodes
42 nodes = adjacent_nodes(nearest, num_nodes);
43

44 % Set the adjacent node in each direction as connect node for the
45 % port inside the convex hull
46 % disp('nearest node to inport')
47 % disp(nearest)
48 if num_nodes < 50
49 B = nodes(1);
50 D = nodes(end);
51 else
52 if nodes(end) == num_nodes
53 D = 1;
54 else
55 D = nodes(end) + 1;
56 end
57 if nodes(1) == 1
58 B = num_nodes;
59 else
60 B = nodes(1) - 1;
61 end
62 % disp('connection nodes for inport:B,D')
63 % disp(B)
64 % disp(D)
65 end
66

67 % Check if connection node from convex hull is located beyond the
68 % connection nodes for the port inside the hull.
69 if A == D
70 fprintf('The ports are located on the same side of land area. ...

One connection node found.\n');
71 connect_nodes(1,1:2) = B;
72 dir = 0;
73 elseif B == C
74 fprintf('The ports are located on the same side of land area. ...

One connection node found.\n');
75 connect_nodes(1,1:2) = D;
76 dir = 0;
77 elseif (B>C && A>B) || (C>A && A>B) || (C>A && B>C) || (D>C && B>D) ...

|| (C>B && D>C) || (C>B && B>D)
78 fprintf('The ports are located on the same side of land area. ...

One connection node found.\n');
79 % Only 5 nearest nodes
80 if length(nodes) == 7
81 nodes(end) = [];
82 nodes(1) = [];
83 end
84 % Find node yeilding shortest distance
85 dist_n = zeros(length(nodes),1);
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86

87 for n = 1:length(nodes)
88 lati = hull_lat(nodes(n));
89 long = hull_lon(nodes(n));
90 dist_n(n) = ...
91 distance('gc',port_lats(inport), port_lons(inport), lati, ...

long)...
92 + distance('gc',lati, long, port_lats(outport), ...
93 port_lons(outport));
94 end
95 [¬, min_n] = sort(dist_n);
96 connect_nodes(1,1:2) = nodes(min_n(1));
97 dir = 0;
98 else
99 fprintf('The ports lie on opposite sides of the land area.\n');

100 % Ports lie on oppisite side of land area. Set connection nodes
101 % from the establised values
102 connect_nodes = zeros(2,2);
103 connect_nodes(outport,outport) = A;
104 connect_nodes(outport,inport) = B;
105 connect_nodes(inport,outport) = C;
106 connect_nodes(inport,inport) = D;
107 dir = [];
108 end
109 end

D.2.10 connecting visi.m

1 function [connect_nodes, dir, inport] = connecting_visi(hull_lat, ...
hull_lon, port_lats, port_lons, num_nodes, latpts, lonpts, ...
cross_date, in_conv, in, on)

2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 31.03.2020
4

5 % This function calculates connection nodes for route beteween ...
ports, where

6 % one or both ports lie inside a convex hull around a land area, ...
and the

7 % ports are visible to each other
8 fprintf('The ports are visible to each other.\n');
9

10 % Index of ports
11 port_ind = [1,2];
12

13 % Varible indication direction for adjusting ports during if not ...
visible

14 % to each other. If both ports are inside the convex hull, or both ...
inside

15 % the modified hull, the direction is established here. If not the
16 % direction is established in a seperate function.
17 dir = 0;
18

19 % Variable indication which port is inside a convex hull or sailing ...
path
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20 % polygon. Randomly set origin port as inport
21 inport = 1;
22

23 % Number of ports inside or on border of modified hull.
24 in_mod = sum(in);
25

26 % Number of ports on border of modified hull
27 on_mod = sum(on);
28

29 if on_mod == 2
30 %Both ports are located on border of modified hull
31 fprintf('Both ports are on border of modified hull, 2 ...

connection nodes found.\n');
32 connect_nodes = zeros(2);
33

34 for port = 1:2
35 Lat = port_lats(port);
36 Lon = port_lons(port);
37

38 % Hull node nearest port
39 nearest1 = nearest_node(hull_lat, hull_lon, Lat, Lon);
40

41 % Second nearest node
42 nearest2 = nearest_node2(nearest1, hull_lat, hull_lon, Lat,...
43 Lon, num_nodes);
44

45 %Indices of two nearest nodes
46 nodes = [nearest1, nearest2];
47

48 % Other port than current
49 other_port = port_ind(port_ind6=port);
50

51 % Coordinares of other port
52 Lat2 = port_lats(other_port);
53 Lon2 = port_lons(other_port);
54

55 % Distance from other port to the two nodes nearest current ...
port

56 d3 = distance('rh',[Lat2,Lon2],[hull_lat(nearest1),...
57 hull_lon(nearest1)]);
58 d4 = distance('rh',[Lat2,Lon2],[hull_lat(nearest2),...
59 hull_lon(nearest2)]);
60

61 % Choose nearest node yielding the shortest distance
62 [¬, n1] = min([d3, d4]);
63

64 % Adjacent node nearest to other port set as connection node;
65 connect_nodes(port) = nodes(n1);
66

67 end
68

69 % Since both ports are located on border of sailing path ...
polygon, and

70 % the nearest node is set as connection node, visibility is ...
ensured.

71 dir = [];
72
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73 elseif in_mod == 2 || (in_mod == 0 && sum(in_conv) == 2)
74 % Both ports either inside modified hull, or inside convex ...

hull, but
75 % outside modified hull
76

77 %Find nearest node to the each port
78 nearest = [nearest_node(hull_lat, hull_lon, port_lats(1), ...
79 port_lons(1));
80 nearest_node(hull_lat, hull_lon, port_lats(2), ...

port_lons(2))];
81

82 if nearest(1) == nearest(2)
83 % The ports share nearest node
84

85 % Nearest node set as connection node for both ports
86 connect_nodes(1,1:2) = nearest(1);
87

88 % Find second nearest node for the origin port
89 nearest2 = [nearest_node2(nearest(1), hull_lat, hull_lon, ...
90 port_lats(1), port_lons(1), num_nodes);
91 nearest_node2(nearest(1), hull_lat, hull_lon, ...
92 port_lats(2), port_lons(2), num_nodes)];
93 if nearest2(1) == nearest(2)
94 % Both nearest nodes in common, visibility is assumed ...

from near
95 % proximity
96 dir = [];
97 elseif (nearest2(1) == num_nodes && nearest(1) == 1) || ...

nearest(1) > nearest2(1)
98 % Set directions for visibility check from indices of two
99 % nearest nodes.

100 dir = [-1, 1];
101 else
102 dir = [1, -1];
103 end
104

105 else
106 % The ports does not share nearest node.
107

108 % Find adjacent nodes for each nearest node
109 nodes1 = adjacent_nodes(nearest(1), num_nodes);
110 nodes2 = adjacent_nodes(nearest(2), num_nodes);
111

112 % Check if the ports have adjacent nodes in common
113 [ind1, ¬] = find(nodes1(:) == nodes2);
114 if length(ind1) == 1
115 % Ports have one adjacent node in common, the node is ...

set as
116 % single connection node for both ports
117 connect_nodes(1,1:2) = nodes1(ind1);
118 fprintf('The ports are located near each other. One ...

connection node found.\n');
119 % Directions for visibility check
120 if ind1 == 1
121 dir = [1, -1];
122 else
123 dir = [-1, 1];
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124 end
125

126 elseif length(ind1) > 1
127 % Ports share several adjacent nodes. Search through common
128 % nodes to find shortest distance.
129 common_nodes = nodes1(ind1);
130 dist_n = zeros(length(ind1),1);
131 for n = 1:length(ind1)
132 lati = hull_lat(common_nodes(n));
133 long = hull_lon(common_nodes(n));
134 dist_n(n) = ...
135 distance('gc',port_lats(1), port_lons(1), lati, ...

long) ...
136 + distance('gc',lati, long, port_lats(2), ...

port_lons(2));
137 end
138 [¬, min_n] = sort(dist_n);
139 % Common node yielding shortest distance set as single
140 % connection node
141 connect_nodes(1,1:2) = common_nodes(min_n(1));
142 fprintf('The ports are located near each other. One ...

connection node found.\n');
143

144 % Directions for visibility check.
145 if ind1(1) == 1
146 dir = [1, -1];
147 else
148 dir = [-1, 1];
149 end
150 else
151 % If ports does not share adjacent nodes the furthest ...

adjacent
152 % nodes are set as inital connection nodes for each port
153

154 connect_init = [nodes1(end),nodes2(1);
155 nodes1(1),nodes2(end)];
156

157

158 % Distance between initial connection nodes for each path
159 d1 = distance('rh',[hull_lat(connect_init(1,1)), ...
160 hull_lon(connect_init(1,1))],...
161 [hull_lat(connect_init(1,2)), ...

hull_lon(connect_init(1,2))]);
162 d2 = distance('rh',[hull_lat(connect_init(2,1)), ...
163 hull_lon(connect_init(2,1))],...
164 [hull_lat(connect_init(2,2)), ...

hull_lon(connect_init(2,2))]);
165

166 % Find nodes yielding shortest path
167 [¬, n1] = min([d1, d2]);
168

169 connect_nodes =[connect_init(n1,1), connect_init(n1,2)];
170 fprintf('Two connection nodes are found.\n');
171

172 if n1 == 1
173 dir = [-1, 1];
174 else

153



175 dir = [1, -1];
176 end
177 end
178 end
179

180 elseif on_mod == 1
181 % One port on border of sailing path polygon and the other is ...

outside.
182

183 % Port on border
184 inport = port_ind(on);
185

186 fprintf('Port %d is located on the border of the modified ...
hull.\n Single connection node found from nearest ...
nodes\n',inport);

187

188 % Hull node nearest port
189 nearest1 = nearest_node(hull_lat, hull_lon, port_lats(inport), ...
190 port_lons(inport));
191

192 % Second nearest node
193 nearest2 = nearest_node2(nearest1, hull_lat, hull_lon, ...
194 port_lats(inport), port_lons(inport), num_nodes);
195

196 % Two nearest hull nodes to current port
197 nodes = [nearest1, nearest2];
198

199 % Ditance between ports with two different nodes as waypoints
200 dist_n = zeros(2,1);
201 for n = 1:2
202 lati = hull_lat(nodes(n));
203 long = hull_lon(nodes(n));
204 dist_n(n) = ...
205 distance('gc',port_lats(1), port_lons(1), lati, long) ...
206 + distance('gc',lati, long, port_lats(2), port_lons(2));
207 end
208

209 % Choose nearest node yielding the shortest distance
210 [¬, n1] = min(dist_n);
211

212 % Set single connection node
213 connect_nodes(1,1:2) = nodes(n1);
214

215 elseif in_mod == 1
216 % One port inside modified hull and one outside. The latter can be
217 % either inside or outside the convex hull
218

219 % Port inside modified hull
220 inport = port_ind(in);
221

222 fprintf('Port %d is located inside modified hull. Single ...
connection node found\n',inport);

223

224 % Point of intersection between straight line and modified hull
225 [lat1, lon1, ¬] = inter_coords(port_lats, port_lons, hull_lat, ...
226 hull_lon, cross_date);
227
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228 % Hull node nearest the point of intersection
229 nearest = nearest_node(hull_lat, hull_lon, lat1, lon1);
230 nodes = adjacent_nodes(nearest, num_nodes);
231 num_n = length(nodes);
232 dist_n = zeros(num_n,1);
233

234 for n = 1:num_n
235 lati = hull_lat(nodes(n));
236 long = hull_lon(nodes(n));
237 dist_n(n) = ...
238 distance('gc',port_lats(1), port_lons(1), lati, long) ...
239 + distance('gc',lati, long, port_lats(2), port_lons(2));
240 end
241 [¬, min_n] = sort(dist_n);
242

243 % Single connection node
244 connect_nodes(1, 1:2) = nodes(min_n(1));
245

246 elseif sum(in_conv) == 1
247 % One port is located inside a convex hull around the land ...

area, but
248 % outside the modified hull. The other port lies outside the convex
249 % hull
250

251 % Identify inside port and outside port
252 [¬,inport] = max(in_conv);
253

254 fprintf('Port %d is located inside a convex hull around the ...
shorline polygon.\n Single connection node found\n',inport);

255

256 % Find nearest point of intersetion between gc route and ...
modified hull

257 [yi, xi, ¬] = inter_coords(latpts, lonpts, hull_lat, hull_lon, ...
258 cross_date);
259

260 % Nearest node to first and last point of intersection. It is ...
assumed

261 % that the first and last intersection point are the two points
262 % nearest each port.
263 p1 = nearest_node(hull_lat, hull_lon, yi(1), xi(1));
264 p2 = nearest_node(hull_lat, hull_lon, yi(end), xi(end));
265

266 nodes = [p1, p2];
267

268 % Great circle distances from port of origin
269 arclen1 = distance('gc',[port_lats(1), port_lons(1)],...
270 [hull_lat(p1), hull_lon(p1)]);
271 arclen2 = distance('gc',[port_lats(2), port_lons(2)],...
272 [hull_lat(p2), hull_lon(p2)]);
273

274 % Find which of the two nodes is nearest the origin port. This node
275 % will be connection node for origin port. The other node will be
276 % connection node for the destination port
277 [¬,ind1] = min([arclen1, arclen2]);
278

279 % The orther node
280 A=[1,2];
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281 ind2 = A(A6=ind1);
282

283 % Connection nodes
284 connect_nodes(1, 1:2) = [nodes(ind1), nodes(ind2)];
285 end
286

287 end

D.2.11 one path.m

1 function [path, min_path, max_path, connect_nodes] = ...
one_path(ports, hull_lat, hull_lon, shore_lat, shore_lon, ...
connect_nodes, num_nodes, inport, port_node, dir)

2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 08.05.2020
4

5 % This function generates one path between two points around a modified
6 % hull(polygon used to describe navagable landes around a ...

shorline), for
7 % instances where a great circle route intersects a land area, but a
8 % straight line between the ports does not. The path consist of three
9 % parts; a route from port A to a connection node, a route along the

10 % hull, and a route from a connecion node to port B.
11

12 %Allocate variables for later use
13 path(2).Lat = [];
14 coord(2).Lat = [];
15

16 %% Find paths from ports to connection nodes
17 if dir == 0
18 dir = direction_visi_check(ports, connect_nodes, num_nodes, ...
19 hull_lat, hull_lon, inport);
20 end
21

22 %Find index of current connection node in the hull polygon
23 for port =1:2
24 % If inport , the port node is set as a
25 % connection node
26 if port_node(port) == 1
27 % Port node is a node in the modified hull
28

29 % Connection node set as the given hull node.
30 connect_nodes(port) = node_index(hull_lat, hull_lon, ...
31 ports(port,1),ports(port,2));
32

33 % Path from port to connection node is set as empty
34 coord(port).Lat = [];
35 coord(port).Lon = [];
36

37 else
38 %Find index of current connection node in the hull polygon
39 i = connect_nodes(port);
40

41 %Route from current point towards index node
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42 [latpts,lonpts] = waypoints(ports(port,1),ports(port,2), ...
43 hull_lat(i),hull_lon(i));
44

45 if isempty(dir) == 1
46 % Visibility is assumed
47 coord(port).Lat = transpose(latpts);
48 coord(port).Lon = transpose(lonpts);
49 dir = direction_visi_check(ports, connect_nodes, ...
50 num_nodes, hull_lat, hull_lon, inport);
51 else
52 %For each of the connection nodes, check for visibility.
53

54 % Check if route between connection node and port ...
crosses the

55 % date line. If longitudenal distance between the port and
56 % connection node spans more than 180 degrees, i.e. the ...

path
57 % crosses the dateline. The gcwaypts function will
58 % automatically change sign of the nodes when the path ...

crosses
59 % the date line, even when the longitude of the polygon ...

node
60 % has egual sign as the port, eg. +-180 degrees. The ...

polyxpoly
61 % function requires that both polygons have coordinates of
62 % equal sign.
63 a = find(diff(lonpts>0)6=0);
64 b = abs(lonpts(a)) + abs(lonpts(a+1));
65 num_lonpts = size(lonpts,1);
66

67 if b > 180
68 if lonpts(a) > 0 && hull_lon(i) > 0
69 % Route is crossing the date line from west to ...

east, as
70 % do the hull polygon (lon = +180)
71 lonpts(a+1:num_lonpts) = lonpts(a+1:num_lonpts) ...

+ 360;
72 elseif lonpts(a) > 0
73 % Route goes west to east, and hull longitude is
74 % negative
75 lonpts(1:a) = lonpts(1:a) - 360;
76 elseif lonpts(a) < 0 && hull_lon(i) < 0
77 % Route goes east to west and hull longitude is
78 % negative
79 lonpts(a+1:num_lonpts) = lonpts(a+1:num_lonpts) ...

- 360;
80 else
81 % Route goes east to west and hull longitude is
82 % positive
83 lonpts(1:a) = lonpts(1:a) + 360;
84 end
85 end
86

87 % If polyxpoly is empty the route will intersect a part ...
of the

88 %polygon. If there is intersection the algorithm will ...
check the
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89 %neighbouring node in direction towards the current port.
90 [x, y] = polyxpoly(latpts,lonpts,shore_lat,shore_lon);
91 x = unique(round(x,2));
92 y = unique(round(y,2));
93 inter_points = max([size(x,1),size(y,1)]);
94

95 while inter_points > 1
96 if dir(port) == 1 && i == num_nodes
97 i =1;
98 elseif dir(port) == -1 && i == 1
99 i = num_nodes;

100 else
101 i = i + 1*dir(port);
102 end
103

104 %Route from current point towards index node
105 [latpts,lonpts] = ...

waypoints(ports(port,1),ports(port,2),...
106 hull_lat(i),hull_lon(i));
107 a = find(diff(lonpts>0)6=0);
108 b = abs(lonpts(a)) + abs(lonpts(a+1));
109 num_lonpts = size(lonpts,1);
110 if b > 180
111 if lonpts(a) > 0 && hull_lon(i) > 0
112 % Route is crossing the date line from west to ...

east,
113 % as do the hull polygon (lon = +180)
114 lonpts(a+1:num_lonpts) = ...

lonpts(a+1:num_lonpts)...
115 + 360;
116 elseif lonpts(a) > 0
117 %Route goes west to east, negative hull ...

longitude
118 lonpts(1:a) = lonpts(1:a) - 360;
119 elseif lonpts(a) < 0 && hull_lon(i) < 0
120 %Route goes east to west, negative hull ...

longitude
121 lonpts(a+1:num_lonpts) = ...

lonpts(a+1:num_lonpts)...
122 - 360;
123 else
124 %Route goes east to west, positive hull ...

longitude
125 lonpts(1:a) = lonpts(1:a) + 360;
126 end
127 end
128 [x, y] = polyxpoly(latpts,lonpts,shore_lat,shore_lon);
129 x = unique(round(x,2));
130 y = unique(round(y,2));
131 inter_points = max([size(x,1),size(y,1)]);
132 end
133

134 connect_nodes(port) = i;
135

136 %Route from current point towards index node
137 [latpts,lonpts] = ...

waypoints(ports(port,1),ports(port,2), ...

158



138 hull_lat(i),hull_lon(i));
139 coord(port).Lat = transpose(latpts);
140 coord(port).Lon = transpose(lonpts);
141 end
142 end
143 end
144

145 if isempty(coord(1)) == true
146 % Port1 is a connection node. Path from port to connection node ...

empty
147 lats1 = [];
148 lons1 = [];
149 else
150 n1 = size(coord(1).Lat,2);
151

152 if n1 > 1
153 lats1 = coord(1).Lat(1:n1-1);
154 lons1 = coord(1).Lon(1:n1-1);
155 else
156 lats1 = coord(1).Lat;
157 lons1 = coord(1).Lon;
158 end
159 end
160

161 if isempty(coord(2)) == true
162 % Port2 is a hull node. Empty path
163 lats2 = [];
164 lons2 = [];
165 else
166 n2 = size(coord(2).Lat,2);
167 lats_dest = fliplr(coord(2).Lat);
168 lons_dest = fliplr(coord(2).Lon);
169 if n2 > 1
170 lats2 = lats_dest(2:n2);
171 lons2 = lons_dest(2:n2);
172 else
173 lats2 = lats_dest;
174 lons2 = lons_dest;
175 end
176 end
177

178 %% Extact path along hull, according to the index number of the start
179 % and end nodes.
180 start_node = connect_nodes(1);
181 end_node = connect_nodes(2);
182

183 if start_node == end_node
184 hull_path_lat = hull_lat(start_node);
185 hull_path_lon = hull_lon(start_node);
186 elseif dir(inport) == 1 && inport == 2 && (start_node < end_node)
187 %The hull index number will increase along the path towards the ...

inport
188 %when dir(inport) == 1
189 hull_path_lat = hull_lat(start_node:end_node);
190 hull_path_lon = hull_lon(start_node:end_node);
191 elseif dir(inport) == 1 && inport == 2
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192 % If the index number of the end connection node is smaller ...
than the

193 % the index of the start connection node, the path will pass the
194 % max index node and the next node is node with index one.
195 hull_path_lat = [hull_lat(start_node:num_nodes), ...

hull_lat(1:end_node)];
196 hull_path_lon = [hull_lon(start_node:num_nodes), ...

hull_lon(1:end_node)];
197 elseif dir(inport) == 1 && inport == 1 && (start_node > end_node)
198 hull_path_lat = fliplr(hull_lat(end_node:start_node));
199 hull_path_lon = fliplr(hull_lon(end_node:start_node));
200 elseif dir(inport) == 1 && inport == 1
201 % If the index number of the end connection node is larger than the
202 % the index of the start connection node, the path will pass the
203 % max index node and the next node is node with index one.
204 hull_path_lat = fliplr([hull_lat(end_node:num_nodes), ...
205 hull_lat(1:start_node)]);
206 hull_path_lon = fliplr([hull_lon(end_node:num_nodes), ...
207 hull_lon(1:start_node)]);
208 elseif dir(inport) == -1 && inport == 1 && (start_node < end_node)
209 %The hull index number will decrease along the path towards the ...

inport
210 %when dir(inport) == -1
211 hull_path_lat = hull_lat(start_node:end_node);
212 hull_path_lon = hull_lon(start_node:end_node);
213 elseif dir(inport) == -1 && inport == 1
214 % If the index number of the end connection node is smaller ...

than the
215 % the index of the start connection node, the path will pass the
216 % max index node and the next node is node with index one.
217 hull_path_lat = [hull_lat(start_node:num_nodes), ...

hull_lat(1:end_node)];
218 hull_path_lon = [hull_lon(start_node:num_nodes), ...

hull_lon(1:end_node)];
219 elseif dir(inport) == -1 && inport == 2 && (start_node > end_node)
220 hull_path_lat = fliplr(hull_lat(end_node:start_node));
221 hull_path_lon = fliplr(hull_lon(end_node:start_node));
222 elseif dir(inport) == -1 && inport == 2
223 % If the index number of the end connection node is larger than the
224 % the index of the start connection node, the path will pass the
225 % max index node and the next node is node with index one.
226 hull_path_lat = fliplr([hull_lat(end_node:num_nodes), ...
227 hull_lat(1:start_node)]);
228 hull_path_lon = fliplr([hull_lon(end_node:num_nodes), ...
229 hull_lon(1:start_node)]);
230 end
231

232 %% Combine three parts to complete path
233

234 % The path is is made up from the path from the origin port to the
235 % first connection node, the path along the hull, and the path from the
236 % end connection node to the destination
237 path(1).Lat = [lats1, hull_path_lat, lats2];
238 path(1).Lon = [lons1, hull_path_lon, lons2];
239

240 %Generate consistency such that lognitudes are between [-180, 180]
241 %Find nodes with longitudes above 180 degrees, and convert to negative
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242 %values
243 above = find(path(1).Lon > 180);
244 path(1).Lon(above) = path(1).Lon(above) - 360;
245

246 below = find(path(1).Lon < -180);
247 path(1).Lon(below) = path(1).Lon(below) + 360;
248

249 path(2)= path(1);
250

251 min_path = 1;
252 max_path = 2;
253

254 end

D.2.12 two paths.m

1 function [path, min_path, max_path, connect_nodes] = ...
two_paths(ports, hull_lat, hull_lon, shore_lat, shore_lon, ...
connect_nodes, num_nodes, polar, port_node)

2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 08.06.2018
4

5 % This function generates two paths between two points around a ...
modified

6 % hull(polygon used to describe navagable landes around a ...
shorline). Each

7 % path consist of three parts; a route from port A to a connection ...
node, a

8 % route along the hull, and a route from a connecion node to port B.
9

10 %Allocate variables for later use
11 hull_path(2).Lat = [];
12 coord(2).Lat = [];
13 path(2).Lat =[];
14

15 for path_num = 1:2
16

17 for port =1:2
18 if port_node(port) == 1
19 % Port node is node in modified hull.
20

21 % Connection node set as the given hull node.
22 connect_nodes(path_num,port) = node_index(hull_lat, ...
23 hull_lon, ports(port,1),ports(port,2));
24

25 % Path from port to connection node is set as empty
26 coord(port).Lat = [];
27 coord(port).Lon = [];
28 else
29 %For each of the connection nodes, check for visibility.
30

31 %Find index of current connection node in the hull polygon
32 i = connect_nodes(path_num,port);
33
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34 %Route from current point towards index node
35 [latpts,lonpts] = ...

waypoints(ports(port,1),ports(port,2), ...
36 hull_lat(i),hull_lon(i));
37 % Check if route between connection node and port ...

crosses the
38 % date line. If longitudenal distance between the port and
39 % connection node spans more than 180 degrees, i.e. the ...

path
40 % crosses the dateline. The gcwaypts function will
41 % automatically change sign of the nodes when the path ...

crosses
42 % the date line, even when the longitude of the polygon ...

node
43 % has egual sign as the port, eg. +-180 degrees. The ...

polyxpoly
44 % function requires that both polygons have coordinates of
45 % equal sign.
46

47 a = find(diff(lonpts>0)6=0);
48 b = abs(lonpts(a)) + abs(lonpts(a+1));
49 num_lonpts = size(lonpts,1);
50 if b > 180
51 if lonpts(a) > 0 && hull_lon(i) > 0
52 % Route is crossing the date line from west to ...

east, as
53 % do the hull polygon (lon = +180)
54 lonpts(a+1:num_lonpts) = lonpts(a+1:num_lonpts) ...

+ 360;
55 elseif lonpts(a) > 0
56 % Route goes west to east, and hull longitude is
57 % negative
58 lonpts(1:a) = lonpts(1:a) - 360;
59 elseif lonpts(a) < 0 && hull_lon(i) < 0
60 % Route goes east to west and hull longitude is
61 % negative
62 lonpts(a+1:num_lonpts) = lonpts(a+1:num_lonpts) ...

- 360;
63 else
64 % Route goes east to west and hull longitude is
65 % positive
66 lonpts(1:a) = lonpts(1:a) + 360;
67 end
68 end
69

70 % If polyxpoly is empty the route will intersect a part ...
of the

71 % polygon. If there is intersection the algorithm will ...
check

72 % the neighbouring node in direction towards the ...
current port.

73 [x, y] = polyxpoly(latpts,lonpts,shore_lat,shore_lon);
74 x = unique(round(x,2));
75 y = unique(round(y,2));
76 inter_points = max([size(x,1),size(y,1)]);
77

78 % Time limit for while loop is set to 20 seconds
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79 time0 = tic;
80 timeLimit = 20;
81 while inter_points > 1 && toc(time0)<timeLimit
82

83 % Path 1 will always have a clockwise direction, ...
while the

84 % opposite is true for path 2. The node index of ...
path 1

85 % will therefore increase along the direction of ...
travel,

86 % while the opposite yields true for path 2.
87 if i == 1 && path_num == port
88 i = num_nodes;
89 elseif path_num == port
90 i=i-1;
91 elseif i == num_nodes && path_num 6= port
92 i = 1;
93 else
94 i=i+1;
95 end
96

97 %Route from current point towards index node
98 [latpts,lonpts] = waypoints(ports(port,1),...
99 ports(port,2), hull_lat(i),hull_lon(i));

100 a = find(diff(lonpts>0)6=0);
101 b = abs(lonpts(a)) + abs(lonpts(a+1));
102 num_lonpts = size(lonpts,1);
103 if b > 180
104 if lonpts(a) > 0 && hull_lon(i) > 0
105 % Route is crossing the date line from west to ...

east, as
106 % do the hull polygon (lon = +180)
107 lonpts(a+1:num_lonpts) = ...

lonpts(a+1:num_lonpts)...
108 + 360;
109 elseif lonpts(a) > 0
110 % Route goes west to east, and hull ...

longitude is
111 % negative
112 lonpts(1:a) = lonpts(1:a) - 360;
113 elseif lonpts(a) < 0 && hull_lon(i) < 0
114 % Route goes east to west and hull ...

longitude is
115 % negative
116 lonpts(a+1:num_lonpts) = ...

lonpts(a+1:num_lonpts)...
117 - 360;
118 else
119 % Route goes east to west and hull ...

longitude is
120 % positive
121 lonpts(1:a) = lonpts(1:a) + 360;
122 end
123 end
124 [x, y] = polyxpoly(latpts,lonpts,shore_lat,shore_lon);
125 x = unique(round(x,2));
126 y = unique(round(y,2));
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127 inter_points = max([size(x,1),size(y,1)]);
128 end
129

130 connect_nodes(path_num,port) = i;
131

132 %Route from current point towards index node
133 [latpts,lonpts] = waypoints(ports(port,1),ports(port,2),...
134 hull_lat(i),hull_lon(i));
135 coord(port).Lat = transpose(latpts);
136 coord(port).Lon = transpose(lonpts);
137 end
138 end
139

140

141 % Extact path along hull, according to the index number of the ...
start

142 % and end nodes.
143 start_node = connect_nodes(path_num,1);
144 end_node = connect_nodes(path_num,2);
145

146 if start_node == end_node
147 hull_path(path_num).Lat = hull_lat(start_node);
148 hull_path(path_num).Lon = hull_lon(start_node);
149 elseif path_num == 1 && (start_node < end_node)
150 %For path 1, the index number will increase along the path ...

towards
151 %the destination.
152 hull_path(path_num).Lat = hull_lat(start_node:end_node);
153 hull_path(path_num).Lon = hull_lon(start_node:end_node);
154 elseif path_num == 1
155 % If the index number of the end connection node is smaller ...

than
156 % the index of the start connection node, the path will ...

pass the
157 % max index node and the next node is node with index one.
158 hull_path(path_num).Lat = [hull_lat(start_node:num_nodes),...
159 hull_lat(1:end_node)];
160 hull_path(path_num).Lon = [hull_lon(start_node:num_nodes),...
161 hull_lon(1:end_node)];
162 elseif path_num == 2 && (end_node < start_node)
163 %For path 2, the index number will decrease along the path ...

towards
164 %the destination.
165 hull_path(path_num).Lat = ...

fliplr(hull_lat(end_node:start_node));
166 hull_path(path_num).Lon = ...

fliplr(hull_lon(end_node:start_node));
167 else
168 % If the index number of the end connection node is larger than
169 % the index of the start connection node, the path will ...

pass the
170 % max index node and the next node is node with index one.
171 hull_path(path_num).Lat = ...

fliplr([hull_lat(end_node:num_nodes),...
172 hull_lat(1:start_node)]);
173 hull_path(path_num).Lon = ...

fliplr([hull_lon(end_node:num_nodes),...
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174 hull_lon(1:start_node)]);
175 end
176

177 n1 = size(coord(1).Lat,2);
178 n2 = size(coord(2).Lat,2);
179 if n1 > 1
180 lats1 = coord(1).Lat(1:n1-1);
181 lons1 = coord(1).Lon(1:n1-1);
182 else
183 lats1 = coord(1).Lat;
184 lons1 = coord(1).Lon;
185 end
186

187 lats_dest = fliplr(coord(2).Lat);
188 lons_dest = fliplr(coord(2).Lon);
189 if n2 > 1
190 lats2 = lats_dest(2:n2);
191 lons2 = lons_dest(2:n2);
192 else
193 lats2 = lats_dest;
194 lons2 = lons_dest;
195 end
196

197 % The path is is made up from the path from the origin port to the
198 % first connection node, the path along the hull, and the path from
199 % the end connection node to the destination
200 path(path_num).Lat = [lats1, hull_path(path_num).Lat, lats2];
201 path(path_num).Lon = [lons1, hull_path(path_num).Lon, lons2];
202

203 % Generate consistency such that lognitudes are between [-180, 180]
204 % Find nodes with longitudes above 180 degrees, and convert to
205 % negative values
206 above = find(path(path_num).Lon > 180);
207 path(path_num).Lon(above) = path(path_num).Lon(above) - 360;
208

209 below = find(path(path_num).Lon < -180);
210 path(path_num).Lon(below) = path(path_num).Lon(below) + 360;
211

212 % Compute headings and distances for the waypoint legs
213 [¬, distnm] = legs(path(path_num).Lat,path(path_num).Lon,'rh');
214 path(path_num).distnm = distnm;
215 path(path_num).tot_dist = sum(distnm);
216

217 % If polar sailing is not allowed, this rutine multiplies the ...
length

218 % for such paths
219 if polar == 0
220 artic = find(path(path_num).Lat > 70, 1);
221 else
222 artic = find(path(path_num).Lat > 82, 1);
223 end
224 if isempty(artic) == 0
225 path(path_num).tot_dist = path(path_num).tot_dist*100;
226 end
227 end
228

229 distance = [path(1).tot_dist, path(2).tot_dist];
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230

231 [¬, min_path] = min(distance);
232 [¬, max_path] = max(distance);
233

234 end

D.2.13 cross date line.m

1 function [cross_date, cross_ind] = cross_date_line(lons)
2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 17.06.2018
4

5 % This function determines if a set of longitude coordinates ...
describes a

6 % route across the international date line. Returns a variable ...
indicating

7 % crossing or not, and the index of the node (waypoint) prior to ...
crossing

8 % if applicable
9

10 % Find if route has positive and negative longitude coordinates
11 a = find(diff(lons>0)6=0);
12 % Sum of absoulute value of coordinates before and after sign change.
13 b = abs(lons(a)) + abs(lons(a+1));
14

15 % If the sum two coordinates are above 180 dregress, the route goes ...
across

16 % the international date line.
17 if max(b) > 180
18 cross_date = 1;
19 % Indecies of cross date coordinates in sign change index vector
20 c = find(b>180);
21 % Index of node prior to fist crossing of date line
22 d = a(c);
23 cross_ind = d;
24 else
25 cross_date = 0;
26 cross_ind = [];
27 end
28 end

D.3 Third level functions

D.3.1 adjacent nodes.m

1 function nodes = adjacent_nodes(node_ID, num_nodes)
2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 08.06.2018
4
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5 % This function finds the index of the nearest nodes one each side ...
for a

6 % given node in a closed polygon. If the number of nodes is less ...
than ten,

7 % only two adjacent nodes are found. Otherwise the four nearest ...
nodes are

8 % returned.
9

10 if num_nodes < 3
11 error(sprintf('map:%s:inconsistentXY', function_name), ...

'Function %s requires that the modified hull have at leat ...
three nodes', upper(function_name));

12 elseif num_nodes < 10
13 if node_ID == 1
14 last = num_nodes;
15 next = node_ID + 1;
16 elseif node_ID == num_nodes
17 last = node_ID - 1;
18 next = 1;
19 else
20 last = node_ID - 1;
21 next = node_ID + 1;
22 end
23 nodes = [last, node_ID, next];
24 else
25 % Number of nodes are greater than 10
26 if node_ID == 1
27 last = num_nodes;
28 last_last = last - 1 ;
29 next = node_ID + 1;
30 next_next = next + 1;
31 elseif node_ID == num_nodes
32 last = node_ID - 1;
33 last_last = last - 1 ;
34 next = 1;
35 next_next = next + 1;
36 elseif node_ID == 2
37 last = node_ID - 1;
38 last_last = num_nodes;
39 next = node_ID + 1;
40 next_next = next + 1;
41 elseif node_ID == num_nodes - 1
42 last = node_ID - 1;
43 last_last = last - 1 ;
44 next = node_ID + 1;
45 next_next = 1;
46 else
47 last = node_ID - 1;
48 last_last = last - 1 ;
49 next = node_ID + 1;
50 next_next = next + 1;
51 end
52

53 nodes = [last_last, last, node_ID, next, next_next];
54 end
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D.3.2 direction visi check.m

1 function [dir] = direction_visi_check(ports, connect_nodes, ...
num_nodes, hull_lat, hull_lon, inport)

2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 12.03.2020
4

5 % Find the direction to travell along the hull path (node index +- ...
1 ) to

6 % ensure visibility when original connection node is not visible to the
7 % corresponding port, by an great circle route.
8

9 % Port indices
10 p = [1,2];
11

12 % Define outside port
13 outport = p(p6=inport);
14

15 % Indices of nodes from the two foregoing to the next two.
16 nodes = adjacent_nodes(connect_nodes(inport), num_nodes);
17

18 % Remove current node
19 midle = round(length(nodes)/2);
20 nodes(midle) = [];
21

22 % Distance from outport towards the nodes
23 num_n = length(nodes);
24 dist_n = zeros(num_n,1);
25 for n = 1:num_n
26 lati = hull_lat(nodes(n));
27 long = hull_lon(nodes(n));
28 dist_n(n) = distance('gc',lati, long, ports(outport,1), ...

ports(outport,2));
29 end
30

31 % Sorted index of distances
32 [¬, sort_dist] = sort(dist_n);
33

34 if sort_dist(1) < midle
35 % The shortest path from the outside port is towards the foregoing
36 % nodes. Therefore the hull index of the connection node of the ...

outside
37 % port should move in a "-1 direction" if the original node is not
38 % visible.
39 dir(inport) = 1;
40 dir(outport) = -1;
41 else
42 dir(inport) = -1;
43 dir(outport) = 1;
44 end
45 end

D.3.3 nearest node.m
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1 function [node] = nearest_node(hull_lat, hull_lon, y, x)
2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 17.06.2018
4

5 % This function returns the index of the polygon node nearest a point
6 % given by the coordinates [x,y]. The search is limited by only ...

searching
7 % the half, and at most ten, of the hull nodes nearest in longitude to
8 % the given point.
9

10 % Number of different nodes in polygon
11 num_nodes = length(hull_lat)-1;
12

13 % Difference in longitude between hull nodes and the point of
14 % intersection
15 diff = abs((hull_lon - x))+ abs((hull_lat-y));
16

17 % Original index of the sorted vector
18 [¬, ind_sort] = sort(diff);
19

20 % Search only half or, maximum 10 of the nodes nodes nearest in ...
longitude

21 middle = min([round(num_nodes/2), 30]);
22 ind_sort = ind_sort(1:middle);
23

24 % Seach through half of the nodes to find the nearest in distance
25 arclen = zeros(middle,1);
26 for j = 1:middle
27 n = ind_sort(j);
28 arclen(j) = distance('rh',[y,x],[hull_lat(n), hull_lon(n)]);
29 end
30 % Index of shortest distance
31 [¬, lengt_ind] = min(arclen);
32 % Hull index
33 node = ind_sort(lengt_ind);
34 end

D.3.4 nearest node2.m

1 function [node] = nearest_node(hull_lat, hull_lon, y, x)
2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 17.06.2018
4

5 % This function returns the index of the polygon node nearest a point
6 % given by the coordinates [x,y]. The search is limited by only ...

searching
7 % the half, and at most ten, of the hull nodes nearest in longitude to
8 % the given point.
9

10 % Number of different nodes in polygon
11 num_nodes = length(hull_lat)-1;
12

13 % Difference in longitude between hull nodes and the point of
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14 % intersection
15 diff = abs((hull_lon - x))+ abs((hull_lat-y));
16

17 % Original index of the sorted vector
18 [¬, ind_sort] = sort(diff);
19

20 % Search only half or, maximum 10 of the nodes nodes nearest in ...
longitude

21 middle = min([round(num_nodes/2), 30]);
22 ind_sort = ind_sort(1:middle);
23

24 % Seach through half of the nodes to find the nearest in distance
25 arclen = zeros(middle,1);
26 for j = 1:middle
27 n = ind_sort(j);
28 arclen(j) = distance('rh',[y,x],[hull_lat(n), hull_lon(n)]);
29 end
30 % Index of shortest distance
31 [¬, lengt_ind] = min(arclen);
32 % Hull index
33 node = ind_sort(lengt_ind);
34 end

D.3.5 node index.m

1 function [ind] = node_index(hull_lat, hull_lon, node_lat, node_lon)
2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 08.06.2018
4

5 % This function identifies the correct index of a given node in a ...
polygon.

6 % The polygon must be closed, such that it starts and ends with the ...
same

7 % node.
8

9 lat_ind = find(hull_lat == node_lat);
10 num_lat = length(lat_ind);
11 lon_ind = find(hull_lon == node_lon);
12 num_lon = length(lon_ind);
13 if num_lat > 1 && num_lon > 1
14 % node_lat & node _lon occurs several times in polygon. Check ...

if it is
15 % the same entries.
16 common = find(lat_ind(:) == lon_ind);
17 if length(common) >1
18 % node repeats and therefore is the start and end node
19 ind = 1;
20 else
21 % node index from common index of repeating entries
22 ind = lat_ind(common);
23 end
24 elseif num_lat > 1
25 % More than one node has equal latitude. Therfore the index of the
26 % connection node is determined from the longitude coordinates
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27 ind = lon_ind;
28 else
29 % Index of node is determined from latitude coordinates
30 ind = lat_ind;
31 end
32 end

D.3.6 split route.m

1 function [latpts1, lonpts1, latpts2, lonpts2] = split_route(latpts, ...
lonpts)

2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 08.06.2018
4

5 %This function splits a route going across the date line in two parts.
6 %Returning latitudes and longitudes for the two parts in seperate ...

vectors.
7

8 % Find element before sign change
9 i =find(diff(lonpts>0)6=0);

10 n = size(latpts,1);
11

12 if size(latpts,2)>1
13 latpts = transpose(latpts);
14 lonpts = transpose(lonpts);
15 end
16

17 if lonpts(i) > 0 % If track goes from west to east
18 nextlon = (lonpts(i+1) + 360);
19 lon1 = 179.9;
20 lon2 = 180.1;
21 else % If track goes from east to west
22 nextlon = (lonpts(i+1) - 360);
23 lon1 = -179.9;
24 lon2 = -180.1;
25 end
26

27 lat1 = ((latpts(i+1)-latpts(i)) * abs(lon1-lonpts(i)) /...
28 abs(nextlon-lonpts(i))) + latpts(i);
29 lat2 = ((latpts(i+1)-latpts(i)) * abs(lon2-lonpts(i)) /...
30 abs(nextlon-lonpts(i))) + latpts(i);
31

32 latpts1 = [latpts(1:i); lat1];
33 lonpts1 = [lonpts(1:i); lon1];
34 latpts2 = [lat2; latpts(i+1:n)];
35 lonpts2 = [-lon1; lonpts(i+1:n)];
36 end
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Appendix E
MATLAB code for the simulation
model

E.1 Overall algorithm

E.1.1 Main script

1 %% Script for running the Simulink simulation model with automatic ...
route generation

2

3 % Author: Ole Brynjar Helland Paulsen
4 % Date: 03.05.2020
5

6 clear variables
7 addpath(genpath('..\Simuleringsplatform'))
8

9 %% Simulation data. Must be configured by the user.
10

11 % Starting date and time. Must be a date within the range covered
12 % by the given weather data. [yyyy,mm,dd,hh,mm,ss]
13 start_date = datenum([2016,12,15,06,00,00]);
14

15 % Desired time between simluation updates (time between events)
16 time_step = 1; % [h]
17

18 % Sailing speed
19 speed_sailing = 14.5; %[kts]
20

21 %Name of file containing vessel data
22 file_name_vessel = 'Vessel_Info.xlsx';
23

24 %Wind data file
25 file_wind = 'Weather_data\Wind_northHem_20162017.nc';
26
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27 %Wave data file
28 file_wave = 'Weather_data\Waves_northHem_20162017.nc';
29

30 %% Preprocessing
31 % This section is from the run_master script by Peter Tenfjord and
32 % Martin Bakke. Read the vessel input file and make the parameters
33 % available for the Simulink model. All blocks that want to access
34 % these data: Data Editor-->Input-->Parameter.
35

36 % The numbers at the end specify rows in the file, set them according
37 % to what info you want to use.
38 xlRange = sprintf('B%d:BC%d',5,5);
39 [num,txt] = xlsread(file_name_vessel,xlRange);
40

41 % Read engine data into EngDat input file. Configure the engine_pre
42 % function according to your system (Functions folder).
43 EngDat=engine_pre();
44

45 %% Get route
46

47 from_file = questdlg('Select option for route data',...
48 'Define route input', ...
49 'Create new route','Load from file', 'Cancel',...
50 'Load from file');
51

52 switch from_file
53 case 'Load from file'
54 uiopen('load')
55 run_simulation = 1;
56 case 'Create new route'
57 % Create new route with the RouteGenerator
58

59 addpath(genpath('..\RouteCreator'))
60

61 % Define origin and destination ports
62 [ports, port_path, origin, destination] = select_ports();
63

64 % Get max length of each leg (nm), and option for sailing in
65 % polar waters. Polar = 1, when polar sailing is allowed.
66 [max_length, polar] = user_input();
67

68 % Generate route
69 path = GetRoute(ports, port_path, origin, destination,...
70 max_length, polar);
71

72 % Inspect route
73 run_simulation = check_route(path);
74 case 'Cancel'
75 run_simulation = 0;
76 end
77

78 if run_simulation == true
79 %% Format route parameters for use in the Simulink model
80

81 % Waypoint coordinates
82 wpts = transpose([path.Lat; path.Lon]);
83
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84 % Number of sailing legs
85 num_legs = size(wpts,1)-1;
86

87 % Courses for each leg
88 course_legs = path.Course;
89

90 % Distances for each leg
91 distnm_legs = path.Distnm;
92

93 % Total distance
94 Total_distance = path.Tot_dist;
95

96 %% Get weather data
97

98 % Add nctoolbox
99 setup_nctoolbox

100

101 % This code must be included to aviod logger warning
102 org.apache.log4j.BasicConfigurator.configure();
103 level = org.apache.log4j.Level.OFF;
104 logger = org.apache.log4j.Logger.getRootLogger();
105 logger.setLevel(level);
106

107 % Maximum time sailing [days], at 65 % of design speed
108 max_sail_time = (Total_distance/(speed_sailing*0.65))/24;
109

110 % End date for weather data subset
111 end_date = start_date + max_sail_time;
112

113 % Load wind and wave data
114 tic
115 [wind_lon, wind_lat, wind_t, wind_u10, wind_v10] ...
116 = wind_data_input(file_wind, path, start_date, end_date);
117

118 [wave_lon, wave_lat, wave_t, wave_mwd, wave_swh, wave_tp] ...
119 = wave_data_input(file_wave, path, start_date, end_date);
120 toc
121

122 %% Run simulation
123 disp('running simulation...')
124 tic
125 sim('Main.slx');
126 toc
127

128 %% Process the output from simulation
129 % This section is partially based on code from the run_master script
130 % by Peter Tenfjord and Martin Bakke. The simulation output is stored
131 % in a structural array, and saved as a matlab file. The time steps,
132 % longitudes and latitudes are updated at the end of each iteration
133 % of the simulation, and have thus one more entry than the other
134 % variables. The other variables have repeating entries at the end,
135 % and this value is therefore not included.
136

137 % Voyage data
138 result.Start = datestr(start_date); % Start ...

time and date

175



139 result.End = datestr(start_date + (tout(end)/24)); % End time ...
and date

140 result.t = tout; % ...
Simulation clock [h]

141 result.SailTime = tout(end); % Time ...
sailing[h]

142 result.Times = tout(2:end)-tout(1:end-1); % Time ...
steps [h]

143 result.LatPts = [LatLon.data(1:end-1,1); wpts(end,1)]; % The ...
Simulated Latitudes

144 result.LonPts = [LatLon.data(1:end-1,2); wpts(end,2)]; % The ...
Simulated Longitudes

145 result.Course = Course.data(1:end-1); % Course [deg]
146

147 % Met-ocean data
148 result.Hs = MetOcean.data((1:end-1),1); % ...

Significant wave height, Sea based [m]
149 result.Mwd = MetOcean.data((1:end-1),7); % Mean wave ...

direction [deg]
150 result.Mwd_rel = MetOcean.data((1:end-1),2); % Direction ...

of wave, Sea based [deg]
151 result.Tp = MetOcean.data((1:end-1),3); % Peak ...

period of wave, Sea based [s]
152 result.U10 = MetOcean.data((1:end-1),4); % Wind ...

Speed [m/s]
153 result.U10d = MetOcean.data((1:end-1),6); % Wind ...

direction [deg]
154 result.U10d_rel = MetOcean.data((1:end-1),5); % Relative ...

direction of wind [deg]
155

156 % Attainable speed
157 result.V_att = V_act.data(1:end-1); % The ...

actual attainable speed, from Kwon [kts]
158

159 % Resistance data
160 result.Raw = R.data((1:end-1),1); % Added ...

resistance [N]
161 result.Res = R.data((1:end-1),2); % Calm ...

water resistance [N]
162 result.Raa = R.data((1:end-1),3); % Air and ...

wind resistance [N]
163

164 % Engine data
165 result.ME1FC = engroom.data((1:end-1),1); % Main ...

Engine fuel consumption [kg/h]
166 result.ME1PB = engroom.data((1:end-1),2); % Main ...

Engine Break Power Production [W]
167 result.ME1X = engroom.data((1:end-1),3); % Main ...

Engine Loading degree [%]
168

169

170 % Missing met-ocean data/ NaN nodes
171 NaN_wave = MetOcean.data((1:end-1),8); % Number of ...

nodes used for wave data
172 NaN_wind = MetOcean.data((1:end-1),9); % Number of ...

nodes used for wind data
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173 NaN_wave_ind = find(NaN_wave == 1); % Index of ...
entries with missing wave data

174 NaN_wind_ind = find(NaN_wind == 1); % Index of ...
entries with missing wind data

175

176 %% Process results
177

178 % Correct for missing entries in met-ocean data
179 if isempty(NaN_wave_ind) == 0 || isempty(NaN_wind_ind) == 0
180 result = missing_data(result, NaN_wave, NaN_wave_ind,...
181 NaN_wind, NaN_wind_ind);
182 end
183 clear NaN_wave NaN_wind
184

185 % Derived results
186 result.Max_Hs = max(result.Hs); % Max Hs [m]
187 result.Avg_Hs = mean(result.Hs); % Average ...

Hs [m]
188 result.Max_U10 = max(result.U10); % Max U10 [m/s]
189 result.Avg_U10 = mean(result.U10); % Average ...

U10 [m/s]
190

191 result.Distance = sum(result.V_att .* result.Times); ...
% Distance sailed [nm]

192 result.Avg_V = result.Distance / result.SailTime; ...
% Average speed [kts]

193 result.V_set = speed_sailing; ...
% Desired speed [kts]

194

195 result.Rtot = result.Res + result.Raw + result.Raa; ...
% Total resistance [N]

196 result.Raw_Res = (result.Raw./result.Res)*100; ...
% Added resistance as a percentage of ...

calm water resistance [%]
197 result.Avg_Res = sum(result.Rtot.* result.Times) / result.SailTime; ...

% Average total resistance [N]
198 result.Avg_PB = sum(result.ME1PB.* result.Times) / result.SailTime; ...

% Average load on Main Engine [W]
199 result.Fuel_Cons_Total = sum(result.ME1FC .* result.Times)/1000; ...

% Total fuel consumption [t]
200

201 %% Present results and route
202

203 % Create summary table
204 table([
205 cellstr(result.Start);
206 cellstr(result.End);
207 result.SailTime;
208 result.V_set;
209 result.Avg_V;
210 result.Avg_Res/1000;
211 result.Avg_PB/1000;
212 result.Fuel_Cons_Total], 'RowNames', {'Start date', 'End date',...
213 'Time_sailing [h]', 'Set speed [kts]', 'Average speed [kts]', ...
214 'Average_resistance [kN]', 'Average_load_ME [kW]',...
215 'Fuel_consumption [tons]'})
216
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217 % Plot Simulation results
218 plot_results;
219

220 % Plot route
221 plot_route(path,result);
222

223 % Save result
224 answer = questdlg('Save results?',...
225 'Save', ...
226 'Save','Cancel', 'Save');
227 if strcmp(answer,'Save')
228 uisave('result','simulation_output')
229 end
230 snapnow;
231

232 else
233 % Display warning in the case of non-feasible route
234 f = msgbox({'The process will terminate without running a ...

simulation', ...
235 'Please try first creating a route, and then load route from ...

file.'}...
236 , 'Warning');
237 waitfor(f)
238 close all
239 end

E.1.2 MATLAB functions
The script for running simulations includes a function for establishing engine data kept
from the original model, which is not included here.

check route.m

1 function run_simulation = check_route(path)
2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 03.12.2018
4

5 % This function displays a route on a map, and asks the user to verify
6 % the fitness of the route for running a simulation. A variable
7 % indication whether or not to proceed with the simulation is returned.
8

9 % Intermediate resolution shorelines
10 load map_data.mat map_data
11

12 % Latitude coordinates
13 lats = path.Lat;
14 % Longitude coordinates
15 lons = path.Lon;
16

17 ports = [lats(1), lons(1);
18 lats(end), lons(end)];
19

20 %% Setting latitude and longitude limits for the maps
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21 %Minimum and maximum latitude of paths
22 min_lat = min(lats);
23 max_lat = max(lats);
24

25 if path.Cross_date == 0
26 % The route is not crossing the date line
27 min_lon = min(lons);
28 max_lon = max(lons);
29

30 % Longitudinal span
31 lon_span = max_lon - min_lon;
32

33 else
34 ind = path.Cross_ind;
35

36 % The route goes across the international date line
37 if length(ind) == 1 && lons(ind) > 0 % route goes from west to east
38 lon_west = lons(1:ind);
39 lon_east = lons((ind+1):end);
40 elseif length(ind) == 1
41 %Route goes from east to west
42 lon_west = lons((ind+1):end);
43 lon_east = lons(1:ind);
44 elseif lons(ind(1)) > 0 % Route crossing from west to east ...

initially
45 lon_west = [lons(1:ind(1)), lons((ind(2)+1):end)];
46 lon_east = lons((ind(1)+1):ind(2));
47 else
48 %Route crossing from east to west initially
49 lon_west = lons((ind(1)+1):ind(2));
50 lon_east = [lons(1:ind(1)), lons((ind(2)+1):end)];
51 end
52 min_lon = min(lon_west);
53 max_lon = max(lon_east);
54

55 %Longitudinal span
56 lon_span = (max_lon+360) - min_lon;
57 end
58

59 % Add buffer to map limits in case of route going in opposite direction
60 % of the destination ports for a section of the route
61 lon_buffer = 40;
62 mlon_min = min_lon - lon_buffer/2;
63 mlon_max = max_lon + lon_buffer/2;
64

65 % Set latitude limits for mercantor map
66

67 % Minimum latitude span for visual purposes
68 lat_span_min = (9/16) * (lon_span+lon_buffer);
69 lat_diff = max_lat - min_lat;
70 if lat_diff < lat_span_min
71 extend = max([((lat_span_min - lat_diff)*0.5), 4]);
72 else
73 extend = 4;
74 end
75 mlat_min = max([min_lat - extend, -85]);
76 mlat_max = min([max_lat + extend, 85]);
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77

78

79 % Label spacing for mercantor map
80 if lon_span > 300
81 label_space = 45;
82 elseif lon_span > 100
83 label_space = 30;
84 else
85 label_space =15;
86 end
87

88 %% Generate Marcantor map
89

90 figure('color','w');
91 ha = axesm('mapproj','mercator',...
92 'maplatlim',[mlat_min mlat_max],'maplonlim',...
93 [mlon_min mlon_max]);
94 axis off, gridm on, framem on;
95 setm(ha,'MLineLocation',15,'PLineLocation',15);
96 mlabel on, plabel on;
97 setm(gca,'MLabelLocation',label_space)
98 geoshow([map_data.Lat], [map_data.Lon])
99 geoshow( 'worldcities.shp' , 'Marker' , '.' , 'Color' , 'red' )

100

101 %Display ports
102 geoshow(ports(1,1),ports(1,2),'DisplayType','point',...
103 'markeredgecolor','k','markerfacecolor','k','marker','o')
104 textm(ports(1,1),ports(1,2), ' Origin')
105 geoshow(ports(2,1),ports(2,2),'DisplayType','point',...
106 'markeredgecolor','k','markerfacecolor','k','marker','o')
107 textm(ports(2,1),ports(2,2), ' Destination')
108

109 % Display paths
110 geoshow(lats, lons,'DisplayType','line',...
111 'color','green','linestyle','-')
112 % Verify route
113 f = msgbox('Please inspeckt the route, then press OK to proceed',...
114 'Verify route');
115 waitfor(f)
116 answer = questdlg('Proceed simulation with route as shown?', ...
117 'Verify route', ...
118 'Proceed','Cancel','Proceed');
119 if strcmp(answer, 'Proceed') == 1
120 run_simulation = 1;
121 else
122 run_simulation = 0;
123 end
124 end

wind data input.m

1 function [wind_lon, wind_lat, wind_t, wind_u10, wind_v10] ...
2 = wind_data_input(file_wind, path, start_date, end_date)
3 % Author: Ole Brynjar Helland Paulsen
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4 % Date: 17.06.2018
5

6 % This function reads wind data from a specified NetCDF file (.nc),
7 % containing the five vaiables loaded below. The variable names ...

used in
8 % the given file must correspond to the variables used here, i.e. 'u10'
9 % and 'v10'. The longitudes of the wind data must be ordered in

10 % acending order.
11 disp('loading wind data from file...')
12

13 % Read wind data from nc file
14 nc = ncgeodataset(file_wind);
15

16 %% Time data
17 % Read time variable. Time in the current weather data is given in
18 % hours since Jan. 1. 1900, 00:00.
19 t = nc.geovariable('time');
20 wind_t = double(t.data(:));
21 clear t
22

23 % Resolution of time data
24 time_res = wind_t(2) - wind_t(1);
25

26 % MATLAB functions such as datenum() denotes time as days since
27 % Jan. 1. 0000, 00:00. Therefore the weather data must be manipulated
28 % to correspond to the MATLAB format
29 weather_start = datenum([1900,1,1,00,00,00]);
30 wind_t = (wind_t / 24) + weather_start;
31

32 % Time range covered by weather data
33 min_time_data = wind_t(1);
34 max_time_data = wind_t(end);
35

36 % Check if data covers the desired time period for the simulation
37 if start_date < min_time_data || end_date > max_time_data
38 disp('The given weather data does not cover the given time ...

period of the simulation')
39 end
40

41 % Lower bound time range from the date closest to the start date
42 T1 = abs(wind_t - start_date);
43 [¬, t1] = min(T1);
44 clear T1
45

46 % Ensure start date is after lowest time bound
47 if start_date < wind_t(t1)
48 t1 = t1 - 1;
49 end
50

51 % Upper bound time range
52 T2 = abs(wind_t - end_date);
53 [¬, t2] = min(T2);
54 clear T2
55

56 if end_date > wind_t(t2)
57 t2 = t2 + 1;
58 end
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59

60 % If the wind data has time reolution of 1 hour, the data is collected
61 % for every other time step in order to reduce the size of the
62 if time_res ≤ 1
63 steps = 2;
64 if mod(t2-t1,2) == 0
65 % Number of entries covering the time range is even numbered.
66 % Must add an extra element to cover the end date.
67 t2=t2+1;
68 end
69 else
70 steps = 1;
71 end
72

73 wind_t = wind_t(t1:steps:t2);
74

75 %% Latitudes
76 % Read latitude data
77 wind_lat = nc.data('latitude');
78 wind_lat = double(wind_lat);
79

80 % Size of latidude grid
81 lat_grid_size = abs(wind_lat(2)-wind_lat(1));
82

83 % Check if wind data covers the latitude range of the route:
84

85 % Range of latitudes included in the route
86 min_lat_route = min(path.Lat);
87 max_lat_route = max(path.Lat);
88

89 % Latitudes covered by wind data
90 min_lat_data = min(wind_lat);
91 max_lat_data = max(wind_lat);
92

93 if min_lat_route < min_lat_data || max_lat_route > max_lat_data
94 disp('The given weather data does not cover the given route')
95 fprintf('The route covers latitudes from %d to %d, while the ...

wind data covers latitudes from %d to %d'...
96 , min_lat_route, max_lat_route, min_lat_data, max_lat_data)
97 end
98

99 % Find latitudes to include:
100

101 % Latitude range
102 % Index of nearest wind latitude for min latitude
103 L1 = abs(wind_lat - min_lat_route);
104 [¬, lat_min] = min(L1);
105 clear L1
106

107 % Index of nearest wind latitude for max latitude
108 L2 = abs(wind_lat - max_lat_route);
109 [¬, lat_max] = min(L2);
110 clear L2
111

112 if wind_lat(1) > wind_lat(2)
113 % Weather latitudes ordered in decending order.
114 lat1 = lat_max;
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115 lat2 = lat_min;
116 % Ensure extreme values of route latitude is included:
117 if max_lat_route > wind_lat(lat1)
118 lat1 = lat1 - 1;
119 end
120 if min_lat_route < wind_lat(lat2)
121 lat2 = lat2 + 1;
122 end
123 else
124 % Weather latitudes ordered in acending order.
125 lat1 = lat_min;
126 lat2 = lat_max;
127 % Ensure extreme values of route latitude is included:
128 if min_lat_route < wind_lat(lat1)
129 lat1 = lat1 - 1;
130 end
131 if max_lat_route > wind_lat(lat2)
132 lat2 = lat2 + 1;
133 end
134 end
135

136 % Check resolution of latitude grid and number of entries included
137 if lat_grid_size < 0.4 && (lat2-lat1) > 400
138 lat_step = 2; % Extract every other element
139 if mod((lat2-lat1),2) == 0 % Size is even number
140 lat2 = lat2 + 1; % Include an extra element
141 end
142 else
143 lat_step = 1;
144 end
145

146 % Extract relevant entries
147 wind_lat = wind_lat(lat1:lat_step:lat2);
148

149 %% Longitudes
150 % Read longitude data
151 wind_lon = nc.data('longitude');
152 wind_lon = double(wind_lon);
153

154 % Size of longitude grid
155 lon_grid_size = wind_lon(2)-wind_lon(1);
156

157 % Longitudes covered by wind data
158 min_lon_data = min(wind_lon);
159 max_lon_data = max(wind_lon);
160

161 if path.Cross_date == 0
162 % Route does not cross the date line
163

164 % Check if wind data covers the longitude range of the route
165 min_lon_route = min(path.Lon);
166 max_lon_route = max(path.Lon);
167 if min_lon_route < min_lon_data || max_lon_route > max_lon_data
168 disp('The given weather data does not cover the given route')
169 fprintf('The route covers longitudes from %d to %d, while the ...

wind data covers longitudes from %d to %d'...
170 , min_lon_route, max_lon_route, min_lon_data, max_lon_data)
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171 end
172

173 % Find relevant longitudes to include:
174

175 % Index of nearest wind lonitude for min longitude
176 Long1 = abs(wind_lon - min_lon_route);
177 [¬, lon1] = min(Long1);
178 clear Long1
179 % Ensure extreme values of route latitude is included
180 if min_lon_route < wind_lon(lon1)
181 lon1 = lon1 - 1;
182 end
183

184 % Index of nearest wind lonitude for max longitude
185 Long2 = abs(wind_lon - max_lon_route);
186 [¬, lon2] = min(Long2);
187 clear Long2
188 % Ensure extreme values of route latitude is included
189 if max_lon_route > wind_lon(lon2)
190 lon2 = lon2 + 1;
191 end
192

193 % Check for longitude grid size and number of entries.
194 if lon_grid_size < 0.4 && (lon2-lon1) > 400
195 lon_step = 2; % Extract only every other entry
196 if mod((lon2-lon1),2) == 0 % size is even number
197 lon2=lon2+1; % include an extra element
198 end
199 else
200 lon_step = 1;
201 end
202

203 % Extract relevant longitudes
204 wind_lon = wind_lon(lon1:lon_step:lon2);
205 else
206 % The route goes across the international date line
207

208 % Range of longitudes included in the route
209 lon_cell_size = abs(wind_lon(2) - wind_lon(1));
210 buffer = lon_cell_size + 0.3;
211 if (buffer - 180) < min_lon_data || (180 - buffer) > max_lon_data
212 disp('Please check if the given wind data covers the longitude ...

range og the desired route')
213 fprintf('The wind data covers longitudes from %d to %d',...
214 min_lon_data, max_lon_data)
215 end
216

217 % Find relevant longitudes to include. Find logitudes east and west
218 % of the date line seperatly, before joing them in one vector:
219

220 % Longitude coordinates of route
221 lons = path.Lon;
222 % Index of node(s) before route goes across the date line
223 ind = path.Cross_ind;
224

225 % Seperate route longitudes in eastern and western part. East and
226 % west referes to direction of route, not east and west on a map.
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227 if length(ind) == 1 && lons(ind) > 0
228 % Route goes from west to east
229 lon_west = lons(1:ind);
230 lon_east = lons((ind+1):end);
231 elseif length(ind) == 1
232 % Route goes from east to west
233 lon_west = lons((ind+1):end);
234 lon_east = lons(1:ind);
235 elseif lons(ind(1)) > 0
236 % Route crossing from west to east initially
237 lon_west = [lons(1:ind(1)), lons((ind(2)+1):end)];
238 lon_east = lons((ind(1)+1):ind(2));
239 else
240 % Route crossing from east to west initially
241 lon_west = lons((ind(1)+1):ind(2));
242 lon_east = [lons(1:ind(1)), lons((ind(2)+1):end)];
243 end
244

245 % Longitude of eastern point of route
246 east_lon_route = max(lon_east);
247

248 % Index of nearest wind lonitude for the eastward point of the ...
route

249 Long1 = abs(wind_lon - east_lon_route);
250 [¬, lon1] = min(Long1);
251 clear Long1
252

253 % Check if nearest wind longitude is east of eastern point of route
254 if east_lon_route > wind_lon(lon1)
255 lon1 = lon1 + 1;
256 end
257

258 % Longitude of western point of route
259 west_lon_route = min(lon_west);
260

261 % Index of nearest wind lonitude for the westward point of the ...
route

262 Long2 = abs(wind_lon - west_lon_route);
263 [¬, lon2] = min(Long2);
264 clear Long2
265

266 % Check if nearest wind longitude is west of western point of route
267 if west_lon_route < wind_lon(lon2)
268 lon2 = lon2 - 1;
269 end
270

271 % Check for longitude grid size and number of entries.
272 if lon_grid_size < 0.4 && (lon1 + length(wind_lon(lon2:end)) > 400)
273 lon_step = 2; % Extract only every other entry
274 if mod(lon1,2) == 0
275 % Number of entries east of date line is even numbered
276 lon1=lon1+1; % Include an extra element
277 end
278 if mod(length(wind_lon(lon2:end)),2) == 0
279 % Number of entries west of date line is even numbered
280 lon2=lon2-1; % Include an extra element
281 end
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282 else
283 lon_step = 1;
284 end
285 % Extract relevant longitudes
286 wind_lons_east = wind_lon(1:lon_step:lon1);
287 wind_lons_west = wind_lon(lon2:lon_step:end);
288

289 % Combine longitues in one variable
290 wind_lon = [wind_lons_east; wind_lons_west];
291 clear wind_lons_east wind_lons_west
292 end
293

294 %% Wind data
295 % Dimesions are (time,lat,lon)
296

297 if path.Cross_date == 0
298 % 10 metre U wind component
299 wind_u10 = nc{'u10'}(t1:steps:t2, lat1:lat_step:lat2,...
300 lon1:lon_step:lon2);
301

302 % 10 metre V wind component
303 wind_v10 = nc{'v10'}(t1:steps:t2, lat1:lat_step:lat2,...
304 lon1:lon_step:lon2);
305 else
306 num_lons = nc.size('longitude');
307

308 % 10 metre U wind component
309 u1 = nc{'u10'}(t1:steps:t2, lat1:lat_step:lat2,...
310 1:lon_step:lon1);
311 u2 = nc{'u10'}(t1:steps:t2, lat1:lat_step:lat2,...
312 lon2:lon_step:num_lons);
313 wind_u10 = cat(3, u1, u2);
314 clear u1 u2
315

316 % 10 metre V wind component
317 v1 = nc{'v10'}(t1:steps:t2, lat1:lat_step:lat2,...
318 1:lon_step:lon1);
319 v2 = nc{'v10'}(t1:steps:t2, lat1:lat_step:lat2,...
320 lon2:lon_step:num_lons);
321 wind_v10 = cat(3, v1, v2);
322 end
323 disp('Wind data loaded')
324 end

wave data input.m

1 function [wave_lon, wave_lat, wave_t, wave_mwd, wave_swh, wave_tp] ...
2 = wave_data_input(file_wave, path, start_date, end_date)
3 % Author: Ole Brynjar Helland Paulsen
4 % Date: 17.06.2018
5

6 % This function reads wave data from a specified NetCDF file (.nc),
7 % containing the six vaiables loaded below. The variable names used in
8 % the given file must correspond to the variables used here, i.e.
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9 % 'mwd', 'swh' and 'pp1d'. The longitudes of the wave data must be
10 % ordered in ascending order.
11

12 disp('Loading wave data from file...')
13 % Read wave data from nc files
14 wave = ncgeodataset(file_wave);
15

16 %% Time data
17 % Read time variable. Time in the current weather data is given in
18 % hours since Jan. 1. 1900, 00:00.
19 t = wave.geovariable('time');
20 wave_t = double(t.data(:));
21 clear t
22

23 % Resolution of time data
24 time_res = wave_t(2) - wave_t(1);
25

26 % MATLAB functions such as datenum() denotes time as days since
27 % Jan. 1. 0000, 00:00. Therefore the weather data must be manipulated
28 % to correspond to the MATLAB format
29 weather_start = datenum([1900,1,1,00,00,00]);
30 wave_t = (wave_t / 24) + weather_start;
31

32 % Time range covered by weather data
33 min_time_data = wave_t(1);
34 max_time_data = wave_t(end);
35

36 % Check if data covers the desired time period for the simulation
37 if start_date < min_time_data || end_date > max_time_data
38 disp('The given weather data does not cover the given time ...

period of the simulation')
39 end
40

41 % Lower bound time range from the date closest to the start date
42 T1 = abs(wave_t - start_date);
43 [¬, t1] = min(T1);
44 clear T1
45

46 % Ensure start date is after lowest time bound
47 if start_date < wave_t(t1)
48 t1 = t1 - 1;
49 end
50

51 % Upper bound time range
52 T2 = abs(wave_t - end_date);
53 [¬, t2] = min(T2);
54 clear T2
55

56 if end_date > wave_t(t2)
57 t2 = t2 + 1;
58 end
59

60 % If the wind data has time reolution of 1 hour, the data is collected
61 % for every other time step in order to reduce the size of the
62 % variables
63 if time_res ≤ 1
64 steps = 2;
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65 if mod(t2-t1,2) == 0
66 % Number of entries covering the time range is even numbered.
67 % Must add an extra element to cover the end date.
68 t2=t2+1;
69 end
70 else
71 steps = 1;
72 end
73

74 wave_t = wave_t(t1:steps:t2);
75

76 %% Latitudes
77 % Read latitude data
78 wave_lat = wave.data('latitude');
79 wave_lat = double(wave_lat);
80

81 % Size of latidude grid
82 lat_grid_size = abs(wave_lat(2)-wave_lat(1));
83

84 %Check if wave data covers the latitude range of the route:
85

86 % Range of latitudes included in the route
87 min_lat_route = min(path.Lat);
88 max_lat_route = max(path.Lat);
89

90 % Latitudes covered by wave data
91 min_lat_data = min(wave_lat);
92 max_lat_data = max(wave_lat);
93

94 if min_lat_route < min_lat_data || max_lat_route > max_lat_data
95 disp('The given weather data does not cover the given route')
96 fprintf('The route covers latitudes from %d to %d, while the ...

wave data covers latitudes from %d to %d', min_lat_route, ...
max_lat_route, min_lat_data, max_lat_data)

97 end
98

99 % Find latitudes to include:
100

101 % Latitude range
102 % Index of nearest wave latitude for min latitude
103 L1 = abs(wave_lat - min_lat_route);
104 [¬, lat_min] = min(L1);
105 clear L1
106

107 % Index of nearest wave latitude for max latitude
108 L2 = abs(wave_lat - max_lat_route);
109 [¬, lat_max] = min(L2);
110 clear L2
111

112 if wave_lat(1) > wave_lat(2)
113 % Weather latitudes ordered in decending order.
114 lat1 = lat_max;
115 lat2 = lat_min;
116 % Ensure extreme values of route latitude is included:
117 if max_lat_route > wave_lat(lat1)
118 lat1 = lat1 - 1;
119 end
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120 if min_lat_route < wave_lat(lat2)
121 lat2 = lat2 + 1;
122 end
123 else
124 % Weather latitudes ordered in acending order.
125 lat1 = lat_min;
126 lat2 = lat_max;
127 % Ensure extreme values of route latitude is included:
128 if min_lat_route < wave_lat(lat1)
129 lat1 = lat1 - 1;
130 end
131 if max_lat_route > wave_lat(lat2)
132 lat2 = lat2 + 1;
133 end
134 end
135

136 % Check resolution of latitude grid and number of entries included
137 if lat_grid_size < 0.4 && (lat2-lat1) > 400
138 lat_step = 2; % Extract every other element
139 if mod((lat2-lat1),2) == 0 % Size is even number
140 lat2 = lat2 + 1; % Include an extra element
141 end
142 else
143 lat_step = 1;
144 end
145

146 wave_lat = wave_lat(lat1:lat_step:lat2);
147

148 %% Longitudes
149 % Read longitude data
150 wave_lon = wave.data('longitude');
151 wave_lon = double(wave_lon);
152

153 % Size of longitude grid
154 lon_grid_size = wave_lon(2)-wave_lon(1);
155

156 % Longitudes covered by wave data
157 min_lon_data = min(wave_lon);
158 max_lon_data = max(wave_lon);
159

160 if path.Cross_date == 0
161 % Route does not cross the date line
162

163 % Check if wave data covers the longitude range of the route
164 min_lon_route = min(path.Lon);
165 max_lon_route = max(path.Lon);
166 if min_lon_route < min_lon_data || max_lon_route > max_lon_data
167 disp('The given weather data does not cover the given route')
168 fprintf('The route covers longitudes from %d to %d, while the ...

wave data covers longitudes from %d to %d', min_lon_route, ...
max_lon_route, min_lon_data, max_lon_data)

169 end
170

171 % Find relevant longitudes to include:
172

173 %Index of nearest wave lonitude for min longitude
174 Long1 = abs(wave_lon - min_lon_route);
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175 [¬, lon1] = min(Long1);
176 clear Long1
177 %Ensure extreme values of route latitude is included
178 if min_lon_route < wave_lon(lon1)
179 lon1 = lon1 - 1;
180 end
181

182 %Index of nearest wave lonitude for max longitude
183 Long2 = abs(wave_lon - max_lon_route);
184 [¬, lon2] = min(Long2);
185 clear Long2
186 %Ensure extreme values of route latitude is included
187 if max_lon_route > wave_lon(lon2)
188 lon2 = lon2 + 1;
189 end
190

191 % Check for longitude grid size and number of entries.
192 if lon_grid_size < 0.4 && (lon2-lon1) > 400
193 lon_step = 2; % Extract only every other entry
194 if mod((lon2-lon1),2) == 0 % size is even number
195 lon2=lon2+1; % include an extra element
196 end
197 else
198 lon_step = 1;
199 end
200

201 % Extract relevant longitudes
202 wave_lon = wave_lon(lon1:lon_step:lon2);
203 else
204 % The route goes across the international date line
205

206 % Range of longitudes included in the route
207 lon_cell_size = abs(wave_lon(2) - wave_lon(1));
208 buffer = lon_cell_size + 0.3;
209 if (buffer - 180) < min_lon_data || (180 - buffer) > max_lon_data
210 disp('Please check if the given wave data covers the longitude ...

range og the desired route')
211 fprintf('The wave data covers longitudes from %d to %d',...
212 min_lon_data, max_lon_data)
213 end
214

215 % Find relevant longitudes to include. Find logitudes east and west
216 % of the date line seperatly, before joing them in one vector:
217

218 % Longitude coordinates of route
219 lons = path.Lon;
220 % Index of node(s) before route goes across the date line
221 ind = path.Cross_ind;
222

223 % Seperate route longitudes in eastern and western part. East and
224 % west referes to direction of route, not east and west on a map.
225 if length(ind) == 1 && lons(ind) > 0
226 % Route goes from west to east
227 lon_west = lons(1:ind);
228 lon_east = lons((ind+1):end);
229 elseif length(ind) == 1
230 % Route goes from east to west
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231 lon_west = lons((ind+1):end);
232 lon_east = lons(1:ind);
233 elseif lons(ind(1)) > 0
234 % Route crossing from west to east initially
235 lon_west = [lons(1:ind(1)), lons((ind(2)+1):end)];
236 lon_east = lons((ind(1)+1):ind(2));
237 else
238 % Route crossing from east to west initially
239 lon_west = lons((ind(1)+1):ind(2));
240 lon_east = [lons(1:ind(1)), lons((ind(2)+1):end)];
241 end
242

243 % Longitude of eastern point of route
244 east_lon_route = max(lon_east);
245

246 % Index of nearest wave lonitude for the eastward point of the ...
route

247 Long1 = abs(wave_lon - east_lon_route);
248 [¬, lon1] = min(Long1);
249 clear Long1
250

251 % Check if nearest wave longitude is east of eastern point of route
252 if east_lon_route > wave_lon(lon1)
253 lon1 = lon1 + 1;
254 end
255

256 % Longitude of western point of route
257 west_lon_route = min(lon_west);
258

259 % Index of nearest wave lonitude for the westward point of the ...
route

260 Long2 = abs(wave_lon - west_lon_route);
261 [¬, lon2] = min(Long2);
262 clear Long2
263

264 % Check if nearest wave longitude is west of western point of route
265 if west_lon_route < wave_lon(lon2)
266 lon2 = lon2 - 1;
267 end
268

269 % Check for longitude grid size and number of entries.
270 if lon_grid_size < 0.4 && (lon1 + length(wave_lon(lon2:end)) > 400)
271 lon_step = 2; % Extract only every other entry
272 if mod(lon1,2) == 0
273 % Number of entries east of date line is even numbered
274 lon1=lon1+1; % Include an extra element
275 end
276 if mod(length(wave_lon(lon2:end)),2) == 0
277 % Number of entries west of date line is even numbered
278 lon2=lon2-1; % Include an extra element
279 end
280 else
281 lon_step = 1;
282 end
283 % Extract relevant longitudes
284 wave_lons_east = wave_lon(1:lon_step:lon1);
285 wave_lons_west = wave_lon(lon2:lon_step:end);
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286

287 % Combine longitues in one variable
288 wave_lon = [wave_lons_east; wave_lons_west];
289 clear wind_lons_east wind_lons_west
290 end
291

292 %% Wave data
293 % Dimesions are (time,lat,lon)
294

295 if path.Cross_date == 0
296 % Mean wave direction
297 wave_mwd = wave{'mwd'}(t1:steps:t2, lat1:lat_step:lat2,...
298 lon1:lon_step:lon2);
299

300 % Significant wave height
301 wave_swh = wave{'swh'}(t1:steps:t2, lat1:lat_step:lat2,...
302 lon1:lon_step:lon2);
303

304 % Period
305 wave_tp = wave{'pp1d'}(t1:steps:t2, lat1:lat_step:lat2,...
306 lon1:lon_step:lon2);
307 else
308 num_lons = wave.size('longitude');
309

310 % Mean wave direction
311 mwd1 = wave{'mwd'}(t1:steps:t2, lat1:lat_step:lat2,...
312 1:lon_step:lon1);
313 mwd2 = wave{'mwd'}(t1:steps:t2, lat1:lat_step:lat2,...
314 lon2:lon_step:num_lons);
315 wave_mwd = cat(3, mwd1, mwd2);
316 clear mwd1 mwd2
317

318 % Significant wave height
319 swh1 = wave{'swh'}(t1:steps:t2, lat1:lat_step:lat2,...
320 1:lon_step:lon1);
321 swh2 = wave{'swh'}(t1:steps:t2, lat1:lat_step:lat2,...
322 lon2:lon_step:num_lons);
323 wave_swh = cat(3, swh1, swh2);
324 clear swh1 swh2
325

326 % Period
327 tp1 = wave{'pp1d'}(t1:steps:t2, lat1:lat_step:lat2,...
328 1:lon_step:lon1);
329 tp2 = wave{'pp1d'}(t1:steps:t2, lat1:lat_step:lat2,...
330 lon2:lon_step:num_lons);
331 wave_tp = cat(3, tp1, tp2);
332 end
333 disp('wave data loaded')
334 end

missing data.m

1 function result = missing_data(result, NaN_wave, NaN_wave_ind, ...
NaN_wind, NaN_wind_ind)
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2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 01.03.2019
4

5 % This function handles missing entries in the met-ocean data. If data
6 % is missing for an event, the data is replaced with the value of the
7 % previous event. If data is missing for the first event, the entry is
8 % replaced with the value of the first event containing data.
9

10 if isempty(NaN_wave_ind) == 0 && isempty(NaN_wind_ind) == 0
11 % Both wave and wind data have missing entries
12 % Index of simulation steps where either wind data, wave data ...

or both
13 % are missing.
14 NaN_ind = unique(sort([NaN_wave_ind;NaN_wind_ind]));
15 NotaN = NaN_wave;
16 NotaN(NaN_ind)=0;
17 elseif isempty(NaN_wave_ind) == 0
18 % Wave data has missing entries
19 NotaN = NaN_wave;
20 else
21 % Wind data has missing entries
22 NotaN = NaN_wind;
23 end
24

25 %% Adjust parameters that are dependent on both wave and wind data
26

27 % First entry containing data
28 first = find(NotaN 6= 0,1);
29

30 if first > 1
31 % First enty is missing data. Replace entry with value of next
32 % enrty containg data
33 result.ME1FC(1) = result.ME1FC(first);
34 result.ME1PB(1) = result.ME1PB(first);
35 result.ME1X(1) = result.ME1X(first);
36 NotaN(1) = 4;
37 end
38 % Index of remaining entries missing data
39 NaN_ind = find(NotaN==0);
40

41 while isempty(NaN_ind) == 0
42 % Replace entries with value of previous entry
43 result.ME1FC(NaN_ind) = result.ME1FC(NaN_ind-1);
44 result.ME1PB(NaN_ind) = result.ME1PB(NaN_ind-1);
45 result.ME1X(NaN_ind) = result.ME1X(NaN_ind-1);
46 NotaN(NaN_ind) = NotaN(NaN_ind-1);
47

48 NaN_ind = find(NotaN==0);
49 end
50

51 clear NaN
52 %% Wave data and dependent parameters
53 if isempty(NaN_wave_ind) == 0
54 disp('Wave data has missing entries')
55 if NaN_wave_ind(1) == 1
56 % The first entry is missing
57

193



58 first_wave = find(NaN_wave 6= 0,1);
59 % Replace first entry of wave data and wave dependent data with
60 % the value of the first entry containing data
61 result.Hs(1) = result.Hs(first_wave);
62 result.Mwd(1) = result.Mwd(first_wave);
63 result.Mwd_rel(1) = result.Mwd_rel(first_wave);
64 result.Tp(1) = result.Tp(first_wave);
65 result.Raw(1) = result.Raw(first_wave);
66 result.Res(1) = result.Res(first_wave);
67 NaN_wave(1) = 4;
68 end
69

70 NaN_wave_ind = find(NaN_wave == 0);
71

72 while isempty(NaN_wave_ind) == 0
73 % Replace missing entries with value of previous entry
74 result.Hs(NaN_wave_ind) = result.Hs(NaN_wave_ind-1);
75 result.Mwd(NaN_wave_ind) = result.Mwd(NaN_wave_ind-1);
76 result.Mwd_rel(NaN_wave_ind) = result.Mwd_rel(NaN_wave_ind-1);
77 result.Tp(NaN_wave_ind) = result.Tp(NaN_wave_ind-1);
78 result.Raw(NaN_wave_ind) = result.Raw(NaN_wave_ind-1);
79 result.Res(NaN_wave_ind) = result.Res(NaN_wave_ind-1);
80 NaN_wave(NaN_wave_ind) = NaN_wave(NaN_wave_ind-1);
81

82 NaN_wave_ind = find(NaN_wave == 0);
83 end
84 end
85 %% Wind data
86 if isempty(NaN_wind_ind) == 0
87 disp('Wind data has missing entries')
88 if NaN_wind_ind(1) == 1
89 % The first entry is missing
90

91 first_wind = find(NaN_wind 6= 0,1);
92 % Replace first entry of wind data and wind dependent data with
93 % the value of the first entry containing data
94 result.U10(1) = result.U10(first_wind);
95 result.U10d(1) = result.U10d(first_wind);
96 result.U10d_rel(1) = result.U10d_rel(first_wind);
97 result.Raa(1) = result.Raa(first_wind);
98 NaN_wind(1) = 4;
99 end

100

101 NaN_wind_ind = find(NaN_wind == 0);
102

103 while isempty(NaN_wind_ind) == 0
104 % Replace missing entries with value of previous entry
105 result.Hs(NaN_wind_ind) = result.Hs(NaN_wind_ind-1);
106 result.Mwd(NaN_wind_ind) = result.Mwd(NaN_wind_ind-1);
107 result.Mwd_rel(NaN_wind_ind) = result.Mwd_rel(NaN_wind_ind-1);
108 result.Tp(NaN_wind_ind) = result.Tp(NaN_wind_ind-1);
109 result.Raw(NaN_wind_ind) = result.Raw(NaN_wind_ind-1);
110 result.Res(NaN_wind_ind) = result.Res(NaN_wind_ind-1);
111 NaN_wind(NaN_wind_ind) = NaN_wind(NaN_wind_ind-1);
112

113 NaN_wind_ind = find(NaN_wind == 0);
114 end
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115 end
116 end

plot results.m

1 % Author: Ole Brynjar Helland Paulsen
2 % Date: 03.12.2018
3

4 % Script for plotting some simulation results
5

6 % Time steps
7 t = result.t(1:end-1);
8

9 %% Plot break power from main engine
10

11 % Break power for main engine in kW
12 PB = result.ME1PB / 1000;
13

14 x = length(t);
15 y_PB = max(PB) + 500;
16

17 figure
18 plot(t,(PB),'DisplayName','PBME1')
19 title('Break Power from Main Engine')
20 xlim([0 x]);
21 ylim([0 y_PB]);
22 legend('hide')
23 xlabel('Time Step [h]')
24 ylabel('Break Power [kW]')
25

26 clear PB
27

28 %% Plot attainable speed, wave height and direction.
29

30 % Attainable speeds
31 V_att = result.V_att;
32

33 % Hs
34 Hs = result.Hs;
35

36 % Relative wave direction
37 mwd = abs(wrapTo180(result.Mwd_rel));
38

39 figure
40 subplot(3,1,1)
41 plot(t,V_att,'DisplayName','V_att')
42 title('Attainable speed during voyage')
43 xlim([0 x]);
44 legend('hide')
45 xlabel('Time Step [h]')
46 ylabel('Attainable Speed [kts]')
47 dim = [0.7 0.63 0.1 0.2];
48 str = sprintf('Set Speed = %.2f',speed_sailing);
49 annotation('textbox',dim,'String',str,'FitBoxToText','on')
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50

51 subplot(3,1,2)
52 plot(t,Hs,'DisplayName', 'Hs')
53 title('Encountered Hs during voyage')
54 xlim([0 x]);
55 legend('hide')
56 xlabel('Time Step [h]')
57 ylabel('Significant Wave Height [m]')
58

59 subplot(3,1,3)
60 plot(t,mwd,'DisplayName','Mwd')
61 title('Mean wave direction relative to course during voyage (0-180)')
62 xlim([0 x]);
63 legend('hide')
64 xlabel('Time Step [h]')
65 ylabel('Relative Direction [deg]')
66

67 clear mwd
68

69 %% Plot total resistance and added resistance
70

71 % Resistance
72 Rtot = result.Rtot;
73 Res = result.Res;
74 Raw = result.Raw;
75 Raa = result.Raa;
76

77 figure
78 plot(t,Rtot/1000,'DisplayName','RTot')
79 hold on
80 plot(t,Res/1000,'DisplayName','Rcw')
81 plot(t,Raw/1000,'DisplayName','Raw')
82 plot(t,Raa/1000,'DisplayName','Raa')
83 title('Total Resistance and Resistance Components')
84 xlim([0 x]);
85 xlabel('Time Step [h]')
86 ylabel('Resistance [kN]')
87 legend('show')
88 dim = [0.7 0.35 0.1 0.2];
89 str = sprintf('Set Speed = %.2f \n Speed Loss: On',speed_sailing);
90 annotation('textbox',dim,'String',str,'FitBoxToText','on')
91 hold off
92

93 clear Rtot Res Raw
94

95 %% Plot wind data and resistance
96

97 % Wind direction
98 U10d_rel = result.U10d_rel;
99

100 %Wind speed in direction of ship
101 Ux = result.U10.*(cosd(U10d_rel));
102

103 % Wind speed relative to ship (positive = head wind)
104 U = Ux + V_att*1852/3600;
105

106 figure
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107 subplot(3,1,1)
108 plot(t,Raa/1000,'DisplayName','Raa')
109

110 title('Resistance due to air and wind')
111 xlim([0 x]);
112 xlabel('Time Step [h]')
113 ylabel('Resistance [kN]')
114 legend('hide')
115 hold off
116

117 subplot(3,1,2)
118 plot(t,V_att*1852/3600,'DisplayName', 'Attainable speed')
119 hold on
120 plot(t,Ux,'DisplayName','Wind speed component in direction of ship')
121 plot(t,U,'DisplayName','Wind speed relative to ship')
122 title('Attainable ship speed and wind velocity in direction of ship')
123 xlim([0 x]);
124 legend('show')
125 xlabel('Time Step [h]')
126 ylabel('Velocity [m/s]')
127 hold off
128

129 subplot(3,1,3)
130 plot(t, abs(wrapTo180(U10d_rel)), 'DisplayName',...
131 'Relative wind direction')
132 title('Wind direction relative to course (0 = head wind)')
133 xlim([0 x]);
134 legend('hide')
135 xlabel('Time Step [h]')
136 ylabel('Direction off ship course [deg]')
137

138 clear Raa V_att U10d_rel Ux U
139

140 %% Plot wave data
141

142 % Plot Hs
143 figure
144 h = histogram(Hs,'DisplayName','Hs');
145 title('Distribution of encountered wave heights')
146 legend('hide')
147 xlabel('Hs [m]')
148 ylabel('Percent')
149 h.Normalization= 'probability';
150 h.BinWidth=1;
151 ytix = get(gca, 'YTick');
152 set(gca, 'YTick',ytix, 'YTickLabel',ytix*100)
153 clear Hs
154

155 % Wave period
156 Tp = result.Tp;
157

158 % Plot histogram of wave periods encountered
159 figure
160 h2=histogram(Tp,'DisplayName','Tp Sea');
161 title('Distribution of encountered wave periods')
162 legend('hide')
163 xlabel('Tp [s]')
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164 ylabel('Percent')
165 ylim([0 0.2])
166 h2.Normalization= 'probability';
167 h2.BinWidth=1;
168 ytix = get(gca, 'YTick');
169 set(gca, 'YTick',ytix, 'YTickLabel',ytix*100)
170 clear Tp

plot route.m

1 function plot_route(path,result)
2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 10.06.2020
4

5 % This function draws an orthogonal projection map of the route
6 % described by the "path" variable. Also an animation of the simulated
7 % voyage is created, from the result variable given as input.
8

9 addpath('..\RouteCreator\Input')
10

11 % Intermediate resolution shorelines
12 load map_data.mat map_data
13

14 % Latitude coordinates
15 lats = path.Lat;
16 % Longitude coordinates
17 lons = path.Lon;
18

19 % Port coordinates
20 ports = [lats(1), lons(1);
21 lats(end), lons(end)];
22

23 % Latidues and longitudes for simulated voyage
24 LatPts = result.LatPts;
25 LonPts = result.LonPts;
26

27 %% Setting latitude and longitude limits for the maps
28 %Minimum and maximum latitude of paths
29 min_lat = min(lats);
30 max_lat = max(lats);
31

32 %Calculate latitude midpoint
33 lat_origo = min_lat + (max_lat - min_lat)/2;
34

35 if path.Cross_date == 0
36 % The route is not crossing the date line
37 min_lon = min(lons);
38 max_lon = max(lons);
39

40 % Longitudinal span
41 lon_span = max_lon - min_lon;
42

43 % Origo of orthogonal map
44 lon_origo = min_lon + lon_span/2;
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45

46 else
47 % The route goes across the international date line
48 % Index of node(s) prior to crossing
49 ind = path.Cross_ind;
50

51 if length(ind) == 1 && lons(ind) > 0 % route goes from west to east
52 lon_west = lons(1:ind);
53 lon_east = lons((ind+1):end);
54 elseif length(ind) == 1
55 %Route goes from east to west
56 lon_west = lons((ind+1):end);
57 lon_east = lons(1:ind);
58 elseif lons(ind(1)) > 0 % Route crossing from west to east ...

initially
59 lon_west = [lons(1:ind(1)), lons((ind(2)+1):end)];
60 lon_east = lons((ind(1)+1):ind(2));
61 else
62 %Route crossing from east to west initially
63 lon_west = lons((ind(1)+1):ind(2));
64 lon_east = [lons(1:ind(1)), lons((ind(2)+1):end)];
65 end
66 min_lon = min(lon_west);
67 max_lon = max(lon_east);
68

69 %Longitudinal span
70 lon_span = (max_lon+360) - min_lon;
71

72 % Origo of orthogonal map
73 if abs(max_lon)>abs(min_lon)
74 lon_origo = min_lon + lon_span/2;
75 else
76 lon_origo = max_lon - lon_span/2;
77 end
78 end
79

80 % Add buffer to map limits
81 lon_buffer = 24;
82 mlon_min = min_lon - lon_buffer/2;
83 mlon_max = max_lon + lon_buffer/2;
84

85 % Set latitude limits for mercantor map
86

87 % Minimum latitude span for visual purposes
88 lat_span_min = (9/16) * (lon_span+lon_buffer);
89 lat_diff = max_lat - min_lat;
90 if lat_diff < lat_span_min
91 extend = max([((lat_span_min - lat_diff)*0.5), 4]);
92 else
93 extend = 4;
94 end
95 mlat_min = max([min_lat - extend, -85]);
96 mlat_max = min([max_lat + extend, 85]);
97

98

99 % Label spacing for mercantor map
100 if lon_span > 300
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101 label_space = 45;
102 elseif lon_span > 100
103 label_space = 30;
104 else
105 label_space =15;
106 end
107

108 %% Generate ortholgonal map
109 figure('color','w');
110 ha_o = axesm('mapproj', 'ortho', 'origin',[lat_origo lon_origo]);
111 axis off, gridm on, framem on;
112 setm(ha_o,'MLineLocation',15,'PLineLocation',15);
113 mlabel on, plabel on;
114 mlabel('equator')
115 plabel(lon_origo-45);
116 plabel('fontweight','bold')
117 setm(gca,'MLabelLocation',30, 'PLabelLocation',15)
118 geoshow([map_data.Lat], [map_data.Lon],'color','black')
119 geoshow('landareas.shp', 'FaceColor', [0.15 0.5 0.15])
120 geoshow( 'worldcities.shp' , 'Marker' , '.' , 'Color' , 'red')
121

122 %Display ports
123 geoshow(ports(1,1),ports(1,2),'DisplayType','point',...
124 'markeredgecolor','k','markerfacecolor','k','marker','o')
125 textm(ports(1,1),ports(1,2), ' Origin')
126 geoshow(ports(2,1),ports(2,2),'DisplayType','point',...
127 'markeredgecolor','k','markerfacecolor','k','marker','o')
128 textm(ports(2,1),ports(2,2), ' Destination')
129

130 % Compute points for great circle route.
131 gcpts = track2('gc',ports(1,1),ports(1,2),ports(2,1), ports(2,2));
132

133 % Display great circle route
134 geoshow(gcpts(:,1),gcpts(:,2),'DisplayType','line',...
135 'color','cyan','linestyle','--')
136

137 % Display path
138 geoshow(lats, lons,'DisplayType','line',...
139 'color','b','linestyle','-')
140

141 %% Generate Mercantor map and show animation
142

143 figure('color','w');
144 ha = axesm('mapproj','mercator','maplatlim',...
145 [mlat_min mlat_max],'maplonlim',[mlon_min mlon_max]);
146 axis off, gridm on, framem on;
147 setm(ha,'MLineLocation',15,'PLineLocation',15);
148 mlabel on, plabel on;
149 setm(gca,'MLabelLocation',label_space)
150 geoshow([map_data.Lat], [map_data.Lon],'color','black')
151 geoshow('landareas.shp', 'FaceColor', [0.15 0.5 0.15])
152 geoshow( 'worldcities.shp' , 'Marker' , '.' , 'Color' , 'red' )
153

154 %Display ports
155 geoshow(ports(1,1),ports(1,2),'DisplayType','point',...
156 'markeredgecolor','k','markerfacecolor','k','marker','o')
157 textm(ports(1,1),ports(1,2), ' Origin')
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158 geoshow(ports(2,1),ports(2,2),'DisplayType','point',...
159 'markeredgecolor','k','markerfacecolor','k','marker','o')
160 textm(ports(2,1),ports(2,2), ' Destination')
161

162 % Display great circle route
163 geoshow(gcpts(:,1),gcpts(:,2),'DisplayType','line',...
164 'color','cyan','linestyle','--')
165

166 %Show animation of Voyage
167 [x,y] = mfwdtran(LatPts,LonPts);
168 comet(x,y);
169

170 end

E.2 Simulink functions

The simulation model includes five additional Simulink functions that were kept from the
original model. These are not included here.

Initial value of simulation variables

1 function [sim_date, lat, lon] = initialize(start_date, wpts)
2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 03.12.2018
4

5 % Setting the simulation date as the given start date
6 sim_date = start_date;
7

8 % Setting latitude and longitude from the first waypoint
9 lat = wpts(1,1);

10 lon = wpts(1,2);
11 end

Course and distance of new leg

1 function [course, dist_leg] = new_leg(leg, course_legs, distnm_legs)
2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 03.12.2018
4

5 course = course_legs(leg);
6 dist_leg = distnm_legs(leg);
7 end

Met-ocean data for current event
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1 function [tp, hs, rel_mwd, wind_speed, rel_wind_dir, wind_dir, mwd, ...
missing_wave_data, missing_wind_data] = ocean_data(lat, lon, ...
sim_date, course, wave_lon, wave_lat, wave_t, wind_lon, ...
wind_lat, wind_t, wave_swh, wave_mwd, wave_tp, wind_u10, wind_v10)

2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 03.12.2018
4

5 % Function for setting values of met-ocaen data variables from
6 % provided data set. Values are interpolated from the up to four
7 % nearest locations and two closest time entries.
8 coder.extrinsic('deg2nm')
9 coder.extrinsic('distance')

10 coder.extrinsic('intersect')
11 coder.extrinsic('find')
12 coder.extrinsic('length')
13 coder.extrinsic('wrapTo180')
14

15 % Pre allocate variables
16 num_nodes_waves = [0,0];
17 num_nodes_wind = [0,0];
18 num_lons_wave = 0;
19 num_lons_wind = 0;
20 missing_wave_data = 0;
21 missing_wind_data = 0;
22

23 tp_t = [0,0];
24 hs_t = [0,0];
25 mwd_t = [0,0];
26 u10_t = [0,0];
27 v10_t = [0,0];
28 rel_mwd = 0;
29 rel_wind_dir = 0;
30

31 %% Time coordinates
32 % Wave data time coordinate closest to the current time:
33 [¬,wave_t1] = min(abs(wave_t - sim_date));
34

35 % Second closest time coordinate:
36 if sim_date < wave_t(wave_t1)
37 wave_t2 = wave_t1 - 1;
38 else
39 wave_t2 = wave_t1 + 1;
40 end
41

42 wave_t_ind = [wave_t1, wave_t2];
43

44 % Wind data time coordinate closest to the current time:
45 [¬, wind_t1] = min(abs(wind_t - sim_date));
46

47 % Next closest time coordinate:
48 if sim_date < wind_t(wind_t1)
49 wind_t2 = wind_t1 - 1;
50 else
51 wind_t2 = wind_t1 + 1;
52 end
53

54 wind_t_ind = [wind_t1, wind_t2];
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55

56 %% Longitudes
57 % Identify the two wave data longitude coordinates nearest the
58 % longitude of the current waypoint
59

60 % Index of nearest longitude
61 [¬, ind_lon_wave1] = min(abs(wave_lon-lon));
62

63 % Index of the next to nearest longitude. The longitudes in the weather
64 % data spans from [-180, 179.7], but the code accounts for the ...

possibility
65 % that the first longitude is larger than -180 deg.
66

67 lon_nearest_wave = wave_lon(ind_lon_wave1);
68 num_lons_wave = length(wave_lon);
69

70 if ind_lon_wave1 == 1 && lon < lon_nearest_wave
71 ind_lon_wave2 = num_lons_wave;
72 elseif ind_lon_wave1 == num_lons_wave && lon > lon_nearest_wave
73 ind_lon_wave2 = 1;
74 elseif lon < lon_nearest_wave
75 ind_lon_wave2 = ind_lon_wave1 - 1;
76 else
77 ind_lon_wave2 = ind_lon_wave1 + 1;
78 end
79

80 % Index of nearest wind longitude
81 [¬, ind_lon_wind1] = min(abs(wind_lon-lon));
82

83 % Index of the next to nearest wind longitude
84 lon_nearest_wind = wind_lon(ind_lon_wind1);
85 num_lons_wind = length(wind_lon);
86

87 if ind_lon_wind1 == 1 && lon < lon_nearest_wind
88 ind_lon_wind2 = num_lons_wind;
89 elseif ind_lon_wind1 == num_lons_wind && lon > lon_nearest_wind
90 ind_lon_wind2 = 1;
91 elseif lon < lon_nearest_wind
92 ind_lon_wind2 = ind_lon_wind1 - 1;
93 else
94 ind_lon_wind2 = ind_lon_wind1 + 1;
95 end
96

97 %% Latitudes
98

99 %Index of nearest wave latitude
100 [¬, ind_lat_wave1] = min(abs(wave_lat - lat));
101

102 %Index of next to nearest wave latitude
103 lat_nearest_wave = wave_lat(ind_lat_wave1);
104 if lat < lat_nearest_wave
105 ind_lat_wave2 = ind_lat_wave1 + 1;
106 else
107 ind_lat_wave2 = ind_lat_wave1 - 1;
108 end
109

110 %Index of nearest wind latitude
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111 [¬, ind_lat_wind1] = min(abs(wind_lat - lat));
112

113 %Index of next to nearest wind latitude
114 lat_nearest_wind = wind_lat(ind_lat_wind1);
115 if lat < lat_nearest_wind
116 ind_lat_wind2 = ind_lat_wind1 + 1;
117 else
118 ind_lat_wind2 = ind_lat_wind1 - 1;
119 end
120

121 %% Wave data
122

123 % Coordinates of the 4 nearest nodes of wave data
124 nodes_wave = [wave_lat(ind_lat_wave1), wave_lon(ind_lon_wave1);
125 wave_lat(ind_lat_wave1), wave_lon(ind_lon_wave2);
126 wave_lat(ind_lat_wave2), wave_lon(ind_lon_wave1);
127 wave_lat(ind_lat_wave2), wave_lon(ind_lon_wave2)];
128 % Indices of the wave data nodes stored in matrix
129 node_ind_wave = [ind_lat_wave1, ind_lon_wave1;
130 ind_lat_wave1, ind_lon_wave2;
131 ind_lat_wave2, ind_lon_wave1;
132 ind_lat_wave2, ind_lon_wave2];
133

134 for t = 1:2
135 % Check if the data is NaN at any of the 4 nodes, for each ...

points in time.
136 % It is assumed that if data is missing for one variable, all ...

variables are
137 % missing. Therfore only one variable is checked for each data set.
138 TP = [1000;1000;1000;1000];
139 for p=1:4
140 % Value of Tp data at each coordinate
141 tp_i = wave_tp(wave_t_ind(t), node_ind_wave(p,1), ...

node_ind_wave(p,2));
142 % Store the data value in the varable vector if data value ...

is a
143 % number
144 if isnan(tp_i) == 0
145 TP(p) = tp_i;
146 end
147 end
148

149 %Indices of non-NaN enties for each time step. NaN entries will ...
have the

150 %inital defined value of 1000.
151 non_NaN_TP = find(TP6=1000);
152

153 % Number of nodes kept
154 num_nodes_waves(t) = length(non_NaN_TP);
155

156 % Indices of the non-NaN entries/nodes
157 num_NaN_TP = zeros(num_nodes_waves(t),1);
158 num_NaN_TP = non_NaN_TP;
159

160 % New variables for storing wave nodes.
161 if num_nodes_waves(t) < 4
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162 % It is neccessary to pre allocate variables in order to ...
not get a

163 % dimension mismatch error.
164 wave_nodes = zeros(num_nodes_waves(t),2);
165 wave_nodes_ind = zeros(num_nodes_waves(t),2);
166 wave_nodes = nodes_wave(num_NaN_TP,:);
167 wave_nodes_ind = node_ind_wave(num_NaN_TP,:);
168 else
169 wave_nodes = nodes_wave;
170 wave_nodes_ind = node_ind_wave;
171 end
172

173 % Distance from the current waypoint to each of the adjacent nodes
174 arclen_waves = zeros(num_nodes_waves(t),1);
175 for i = 1:num_nodes_waves(t)
176 dist = distance('gc',lat, lon,wave_nodes(i,1), wave_nodes(i,2));
177 arclen_waves(i) = deg2nm(dist);
178 end
179

180 % Normalised weighting of each of the nearest nodes based on ...
nearest

181 % distace
182 weight_coord = (sum(arclen_waves) ./arclen_waves) / ...

sum((sum(arclen_waves) ./arclen_waves) );
183

184 % Interpolated values of wave period, mean wave direction and ...
significant

185 % wave height
186 for p=1:num_nodes_waves(t)
187 tp_t(t) = tp_t(t)+ wave_tp(wave_t_ind(t), ...

wave_nodes_ind(p,1), wave_nodes_ind(p,2))* ...
weight_coord(p);

188 hs_t(t) = hs_t(t) + wave_swh(wave_t_ind(t), ...
wave_nodes_ind(p,1), wave_nodes_ind(p,2))* ...
weight_coord(p);

189 mwd_t(t) = mwd_t(t) + wave_mwd(wave_t_ind(t), ...
wave_nodes_ind(p,1), wave_nodes_ind(p,2))* ...
weight_coord(p);

190 end
191 end
192

193 if num_nodes_waves(1) > 0 && num_nodes_waves(2) > 0 %isnan(tp_t(1)) ...
== 0 && isnan(tp_t(2)) == 0

194 % Both point in time have available data from at least one node.
195

196 % Relative weighting of the two time indices:
197 t_dist_wave = abs(sim_date - [wave_t(wave_t1), wave_t(wave_t2)]);
198 weight_time_wave = 1 - (t_dist_wave / sum(t_dist_wave));
199

200 % Parameters interpolated between two closest time points
201 tp = tp_t(1)* weight_time_wave(1) + tp_t(2)* weight_time_wave(2);
202 hs = hs_t(1)* weight_time_wave(1) + hs_t(2)* weight_time_wave(2);
203 mwd = mwd_t(1)* weight_time_wave(1) + mwd_t(2)* ...

weight_time_wave(2);
204 elseif num_nodes_waves(1) == 0 && num_nodes_waves(2) == 0
205 % Data is missing for all node and both points in time. Assigning
206 % arbitrary values to wave parameters. Will be replaced in
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207 % post-processing
208 tp = 10;
209 hs = 3;
210 mwd = 90;
211 missing_wave_data = 1;
212 disp('wave data missing')
213 elseif num_nodes_waves(1) == 0
214 % Data is missing for all nodes for nearest point in time. Data
215 % available for other time point is used.
216 tp = tp_t(2);
217 hs = hs_t(2);
218 mwd = mwd_t(2);
219 else
220 % Data missing for second closest time point. Values for ...

closest point
221 % in time is used.
222 tp = tp_t(1);
223 hs = hs_t(1);
224 mwd = mwd_t(1);
225 end
226

227 % Relative direction of incoming waves, 0 degrees = head waves.
228 adjust = 180; % Direction convention: where waves are travelling ...

towards.
229 % adjust = 0; % Direction convention: where waves are coming from.
230 rel_mwd = abs(wrapTo180(mwd - course + adjust));
231

232 %% Wind data
233

234 % Coordinates of the 4 nearest nodes for the wind data
235 nodes_wind = [wind_lat(ind_lat_wind1), wind_lon(ind_lon_wind1);
236 wind_lat(ind_lat_wind1), wind_lon(ind_lon_wind2);
237 wind_lat(ind_lat_wind2), wind_lon(ind_lon_wind1);
238 wind_lat(ind_lat_wind2), wind_lon(ind_lon_wind2)];
239 % Indices of the wind data nodes stored in matrix
240 node_ind_wind = [ind_lat_wind1, ind_lon_wind1;
241 ind_lat_wind1, ind_lon_wind2;
242 ind_lat_wind2, ind_lon_wind1;
243 ind_lat_wind2, ind_lon_wind2];
244

245 for t=1:2
246 U10 = [1000;1000;1000;1000];
247 % Check if the data is NaN at any of the 4 nodes and 2 points ...

in time.
248 for p=1:4
249 % Value of u10 data at each coordinate
250 u10_i = wind_u10(wind_t_ind(t), node_ind_wind(p,1), ...

node_ind_wind(p,2));
251 % Store the data value in the varable vector if data value ...

is a
252 % number
253 if isnan(u10_i) == 0
254 U10(p) = u10_i;
255 end
256 end
257
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258 %Indices of non-NaN enties for each time step. NaN entries will ...
have the

259 %inital defined value of 1000.
260 non_NaN_U10 = find(U106=1000);
261

262 % Number of nodes kept
263 num_nodes_wind(t) = length(non_NaN_U10);
264

265 % Indices of the non-NaN entries/nodes
266 num_NaN_U10 = zeros(num_nodes_wind(t),1);
267

268 num_NaN_U10 = non_NaN_U10;
269

270 % New variables for storing wind nodes.
271 if num_nodes_wind(t) < 4
272 wind_nodes = zeros(num_nodes_wind(t),2);
273 wind_nodes_ind = zeros(num_nodes_wind(t),2);
274 wind_nodes = nodes_wind(num_NaN_U10,:);
275 wind_nodes_ind = node_ind_wind(num_NaN_U10,:);
276 disp('less than four nodes used for wind data')
277 disp(num_nodes_wind(t))
278 else
279 wind_nodes = nodes_wind;
280 wind_nodes_ind = node_ind_wind;
281 end
282

283 % Distance from the current waypoint to each of the adjacent nodes
284 arclen_wind = zeros(num_nodes_wind(t),1);
285 for j = 1:num_nodes_wind(t)
286 dist = distance('gc',lat, lon,wind_nodes(j,1), wind_nodes(j,2));
287 arclen_wind(j) = deg2nm(dist);
288 end
289

290 % Normalised weighting of each of the nearest nodes based on ...
nearest

291 % distace
292 weight_coord_wind = (sum(arclen_wind) ./arclen_wind) / ...

sum((sum(arclen_wind) ./arclen_wind) );
293

294 % Interpolated values of 10 metres u and v wind components.
295 for p=1:num_nodes_wind(t)
296 u10_t(t) = u10_t(t) + wind_u10(wind_t_ind(t), ...

wind_nodes_ind(p,1), wind_nodes_ind(p,2))* ...
weight_coord_wind(p);

297 v10_t(t) = v10_t(t) + wind_v10(wind_t_ind(t), ...
wind_nodes_ind(p,1), wind_nodes_ind(p,2))* ...
weight_coord_wind(p);

298 end
299

300 end
301

302 if num_nodes_wind(1) > 0 && num_nodes_wind(2) > 0 %isnan(u10_t(1)) ...
== 0 && isnan(u10_t(2)) == 0

303 % Both point in time have available data from at least one node.
304 % Relative weighting of the two time indices:
305 t_dist_wind = abs(sim_date - [wind_t(wind_t1), wind_t(wind_t2)]);
306 weight_time_wind = 1 - (t_dist_wind / sum(t_dist_wind));
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307

308 % Wind speeds interpolated between the two cosest points in time
309 u10 = u10_t(1) * weight_time_wind(1) + u10_t(2) * ...

weight_time_wind(2);
310 v10 = v10_t(1) * weight_time_wind(1) + v10_t(2) * ...

weight_time_wind(2);
311 elseif num_nodes_wind(1) == 0 && num_nodes_wind(2) == 0
312 % Data is missing for all node and both points in time. Assigning
313 % arbitrary values to wave parameters. Will be replaced in
314 % post-processing
315 u10 = 10;
316 v10 = 10;
317 missing_wind_data = 1;
318 disp('wind data missing')
319 elseif num_nodes_wind(1) == 0
320 % Data is missing for all nodes for nearest point in time. Data
321 % available for other time point is used.
322 disp('wind data missing for one time point')
323 u10 = u10_t(2);
324 v10 = v10_t(2);
325 else
326 % Data missing for second closest time point. Values for ...

closest point
327 % in time is used.
328 disp('wind data missing for one time point')
329 u10 = u10_t(1);
330 v10 = v10_t(1);
331 end
332 % Resultant wind speed from components
333 wind_speed = sqrt(u10ˆ2 + v10ˆ2);
334

335 % Wind direction in degrees from u-direction
336 wd = atand(v10/u10);
337

338 % Direction from north meridian [0-360 degrees]
339 if u10 > 0
340 wind_dir = 90 - wd;
341 else
342 wind_dir = 270 - wd;
343 end
344

345 % Wind direction i relative to the ship course. Degrees (0-360) of ...
CL, head

346 % wind = 0, tail wind = 180.
347 rel_wind_dir = wrapTo180(wind_dir - course);
348 rel_wind_dir = rel_wind_dir + 180;
349 end

Combined air and wind resistance

1 function R_AA = air_res(Vreq,u10,u10d)
2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 03.12.2018
4
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5 % Function for calculating combined wind and air resistance
6

7 rho_air = 1.25; %kg/m3 density, air
8 Ap = 700; % m2 transverse projected area above water
9 C_air = 0.60; % Drag coefficient

10

11 % Speed of air equal to ship speed [m/s]
12 V = Vreq*1852/3600;
13

14 % Wind speed in direction of ship. Posivite speed for head wind, ...
negative

15 %for tail wind.
16 Ux = u10*(cosd(u10d));
17

18 U = Ux + V; % Wind speed relative to vessel
19

20 % Resistance due to air and wind
21 R_AA = C_air*0.5*rho_air*(U*abs(U))*Ap;
22

23 % Incoming wind speed assumed to be uniform
24

25 end

Planning next event

1 function [lat_new, lon_new, time_next_event, distance_next, ...
complete_leg] = update_sim(speed,leg,lat,lon, dist_sailed_leg, ...
course, dist_leg, wpts, time_step)

2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 03.12.2018
4

5 % Function responsibel for planning the next event, by finding the
6 % corrdinates of the next event, as well as the distance to and time
7 % until the next event.
8 coder.extrinsic('nm2deg')
9 coder.extrinsic('reckon')

10

11 % It is neccesary to give initial value to the lat and lon vaiable
12 % to aviod error in assigned dimensions in Simulink.
13 lat_new = 0;
14 lon_new = 0;
15

16 % Distance sailed [nm]
17 distance_next = speed * time_step;
18

19 % Remaining distance of current leg
20 remain_dist_leg = dist_leg - dist_sailed_leg;
21

22 if distance_next < remain_dist_leg
23 % Next event is a point on the same leg
24

25 % Distance sailed in given timestep[deg]
26 arc_length=nm2deg(distance_next);
27
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28 % Coordinates of point reached in a given timestep along the
29 % course of the current leg
30 [lat_new, lon_new]=reckon('rh',lat, lon, arc_length, course);
31

32 %Time until next event
33 sailing_time = time_step;
34

35 % Leg is not complete
36 complete_leg = 0;
37 else
38 % Next event starts a new leg
39

40 % Coordinates
41 lat_new = wpts((leg+1),1);
42 lon_new = wpts((leg+1),2);
43

44 % Time until next waypoint at current speed
45 sailing_time = (remain_dist_leg / speed);
46

47 % Distace to next event/waypoint
48 distance_next = remain_dist_leg;
49

50 % Next event marks the completion of the current leg
51 complete_leg = 1;
52 end
53 % Time until next event
54 time_next_event = sailing_time;
55 end

Check if journey is completed

1 function outport = fcn(Leg, num_legs)
2 % Author: Ole Brynjar Helland Paulsen
3 % Date: 03.12.2018
4

5 if Leg == num_legs
6 % Journey is complete
7 outport = 1;
8 else
9 % Jouney is not complete

10 outport=2;
11 end
12

13 end
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