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Summary

The Norwegian aquaculture industry has had a phenomenal growth over last decades and

is expected to continue this growth during the next couple of decades. This will lead to a

huge demand of new well-boats and increased need to streamline well-boat operations.

Different optimization techniques could be of huge help when making decisions

regarding size and capabilities of the future well-boat fleet. By combining simulation

models with optimization, it is possible to obtain a close to optimal solution with the

minimal amount of computational time. Simulation-based optimization also offers a great

way of dealing with uncertainties and stochastic processes.

Meta-heuristics and stochastic adaptive search techniques are reliable algorithms

for simulation-based optimization. Stochastic adaptive search techniques will always con-

verge towards the global optimum and given enough time, they always find a good es-

timation of the optimal solution. Meta-heuristics is not guaranteed to converge towards

the global optimum, but in practice they have shown to be efficient tools for finding good

solutions.

For this problem the genetic algorithm was proven to outperform the others. In

general, the techniques that were quickest to narrow the search in on a promising area,

gave the best results. A reason for this could be that the solution space has one dominant

global optimum. The algorithms that finds this area relatively fast and stays there are also

those who gives the best result. The genetic algorithm and the LAST does this and are also

those who delivers the best solutions.

Performing Pareto Front analysis, the variance of the solution showed no sign of

being correlated with the strength of the solution. This is a clear advantage for any stake-

holder, as they could choose the best solution without compromising on risk tolerance.

The completage percentage for missions for a given fleet was one the other hand

strongly correlated with the strength of the solution. Which again works in the favor of the

stakeholder and reduces the amount of compromises needed.

The best solution found, came from the genetic algorithm, with these values for
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the decision variables: Fleet size 8, vessel types 1, 1, 1, 2, 2, 3, 5 and 5.

The other algorithms also favored vessel type 1, 2 and 5, and a fleet size of 7 or 8.

That the smaller vessels are favored is not what the current market trend would suggest.

Then again new builts are mainly projected for long term contracts while this model is

aimed at the spot market.
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Sammendrag

Den norske oppdrettsindustrien har hatt en fabelaktig vekst de siste 20 årene og

denne veksten er forventet å fortsett i flere tiår framover. Dette vil medføre et stort behov

for nye brønnbåter, samt verktøy for å effektivisere brønnbåtoperasjoner.

Forskjellige optimeringsmetoder kan være til stor hjelp når flåtestørrelse og sam-

mensetning skal bestemmes. Ved å kombinere simuleringsmodeller med optimeringsal-

goritmer er det mulig å finne gode løsninger med minimal bruk av datakraft. Simuler-

ingsbasert optimering tilbyr også en god løsning for å håndtere usikkerhet og stokastiske

prosesser.

Meta heuristikker og stochastic adaptive search teknikker er pålitelige algoritmer

til bruk i simuleringsbasert optimering. Stochastic adaptive search teknikker har beviselige

convergens egenskaper og vil alltid nærme seg det globele optimum. meta heuristikker har

ikke disse konvergens egenskapene men har i praksis vist seg å kunne fungere like godt.

For dette problemet har den genetiske algoritmen vist seg å kunne utkonkurrere de

andre. På generell basis har de teknikkene som raskets kunne peile seg inn på et lovende

område, også levert de beste resultatene. En grunn til dette kan være at løsningsområdet

er dominert av ett globalt optimum. Derfor var det de algoritmene som først fant dette

området og konsentrerte søket her, som også gjorde det best. LAST kom også godt ut.

Ved å gjennomføre en Pareto Front analyse og sette gode løsninger opp mot vari-

ansen, ble det vist liten korrelasjon mellom gode løsninger og høy varians. Dette er et godt

resultat for alle stakeholderene, da de kan gå for beste løsning uten å gå på kompromiss

med risiko villigheten.

Fullføringsraten på oppdrag for en gitt flåte viste seg å ha en sterk korrelasjon med

styrken på løsningen. Dette virker igjen i favør av stakeholderene, da beste flåte kan velges

uten å gå på kompromiss med andre interesser.

Den beste løsningen ble funnet av den genetiske algoritmen, med disse beslut-
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ningsvariablene: Flåtestørrelse 8, båttyper 1, 1, 1, 2, 2, 3, 5 og 5.

De andre algoritmene favoriserte også båttypene 1, 2 og 5, samt en flåtestørrelse

på 7 eller 8 brønnbåter. Det at de mindre båtene ble foretrukket er ikke på linje med den

nåværende trenden i markedet. Denne modellen er laget for spot markedet mens de fleste

ny bygg blir prosjektert for lengere kontrakter. Dette kan forklare noe av forskjellen.
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Chapter 1
Introduction

1.1 The fish farming Industry

Between 1992 and 2012 the Norwegian fish farming industry had a formidable growth.

Over these 20 years the production volumes grew every year and in total it increased more

than ten times over the whole period, according to SSB (1). In 2012 Olafsen (2) published

a report about value creation in the ocean. This report states that the Norwegian fish

farming industry, has a potential of growth up to five times the 2010 levels within 2050. In

production volumes this is an increase from 1 million ton farmed fish in 2010 to 5 million

tons in 2050.

Despite the potential presented by Olafsen, since 2012 the production volumes has

stabilized at 2012 levels, SSB (1). Even without any growth over the resent years, there is

still a lot of optimism within and on behalf of the industry. In 2015 a message from the

Ministry of trade, industry and fisheries to the parliament, stated the five fold increase of

fish farming volumes as a goal for the industry, Stortingsmelding 16 (2015) (3). Although
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Chapter 1. Introduction

Figure 1.1: Possible increase in production volume

the production volumes has stabilized, the export value has more than doubled between

2012 and 2018, SSB (1). The demand for Norwegian fish is high, Tekna (2018) (4) and

could be one of the key drivers for this increase.

To reach a five fold increase in production volume by 2050, Olafsen (2012) (2)

and Ytreberg (2018) (5) addresses several different issues that needs to be solved. Four of

these are listed below:

• Environmental impact

• Lice and diseases

• Lack of new farming areas

• Supply of fish fodder

Being able to control these problems are a precondition for the industry to grow

again. Stein Lier-Hansen in Norsk Industri says the fish farming industry needs to be more

innovative, and look to other industries for new technological developments Aarre (2018)

(6).

Fish farming has up until now, only been done in coastal and weather protected

areas. The high density of fish farms along the cost gives good conditions for fish lice and

2



1.2 Fleet sizing and fleet composition

other diseases to spread. Environmentalists are raising concerns about the natural wildlife

in the fjords. The three first issues listed above are all correlated, and these also needs to

be solved before lack of fish fodder becomes a problem. One way of reducing these issues

are to move fish farms further out in the sea. The possibilities of offshore fish farming

has been investigated by the industry and several companies like SalMar (7), Nordlaks (8)

and Norway Royal Salmon (9), have ongoing projects. While some farmers are moving

offshore, others are aiming for a better and more efficient delousing strategies. Higher

demand for Delousing and fish cages further out from the cost, causes new demands for

the well-boats and their services. Several industry players have over the last years pointed

out this lack of supply of well-boats services, Furuset (2019) (10), Nodland (2015) (11)

and Solem (2017) (12).

This combined with a fivefold increase in salmon production could also mean a

five times or higher demand of well-boat services. As well-boats delivers smolt to the fish

farms and transports fully grown salmon from fish farms to slaughterhouses, the demand

for them can grow proportionally with the industry. The trend of fish farmers investigating

the possibility of moving farming locations further out in more exposed sea, could also

change the operational requirements for well-boats, and ultimately have a huge impact

on the composition of the future fleet. We already see the shift towards bigger and more

technologically advanced well-boats, Kvile (2019) (13). With new fish farms in even more

exposed locations, this trend of new builds is likely to continue.

1.2 Fleet sizing and fleet composition

To ensure new vessels are able to complete assigned missions in a cost effective way, dif-

ferent optimization methods could be an efficient tool. Optimization can be used in the

decision making process to decide which capabilities a single wellboat or fleet needs, to

fulfill contracted tasks. Vehicle routing, fleet sizing, fleet composition and a mix of these

types of problems can often be very complex and close to impossible to describe mathe-
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Chapter 1. Introduction

matically. Even if the problem can be described mathematically it could still be to complex

and require too much computational time to be solved. In such scenarios the problem or

the required accuracy of the solution can be modified to make the problem solvable. One

way is to simplify the problem and then solve it mathematically. Thus finding the exact

solution to a simplified version of the problem. Another way is to only search through a

small part of the whole solution space. This way you are not guaranteed to find the optimal

solution, but you can within a short amount of time find a close to optimal solution. There

exists numerous search algorithms for doing this. These techniques are often referred to as

meta-heuristics and are meant for finding a solution that can be considered good enough,

without actually searching through the whole solution space. These meta-heuristics are

often used in simulation-based optimization.

With simulation, complex and stochastic systems can be modeled and estimated.

Simulation is an imitation of the a real-world system or process over time, Banks et al.

(2011) (14). Instead of writing an exact mathematical equation, a simulation model could

give a far more realistic representation of the real-world problem. Compared to mathe-

matical equations, simulation models can handle uncertainties and stochastic processes in

a more realistic and uncompromised way. By utilizing Monte Carlo Simulation (MCS) a

system with uncertainty can be analysed without increasing the size of the optimization

problem, Ioannis (2003) (15).

This way of combining simulation with optimization is called simulation-based

optimization (SBO), and could be a powerful tool within fleet sizing, fleet composition

and mix of these problems. These types of problems are called maritime fleet size and mix

problems (MFSMP).

Later in this thesis it will be discussed how simulation-based optimization (SBO)

could be used to solve a maritime fleet size and mix problems (MFSMP). Different search

algorithms, meta-heuristics, will be explained and tested against each other.
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Chapter 2
System Description

This thesis will explore the possibility of utilizing simulation-based optimization (SBO)

in a maritime fleet sizing problem. Several different methods and meta-heuristics can be

used in SBO. By discussing strengths and weaknesses of the different methods, this thesis

will try to answer why the different meta-heuristics are chosen, how they work and how

they interact with the simulation model.

The simulation model needs to give an accurate description of the reel life problem,

and still be neath and well adapted to the optimization algorithms. An operational analysis

of well-boat operations will be the baseline for the simulation model. It is important for

the model to give a good representation of the different tasks a well-boat performs, so it

can give a trust worthy answer to the profitability of different fleet compositions.
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Chapter 2. System Description

2.1 The aquaculture industry

The aquaculture industry is one of Norway’s biggest exporting industries and also one of

the biggest aquaculture producers in the world. In 2018 the farming industry produced

approximately 1,35 million tons of fish, with a worth of almost 68 billion NOK (16).

The industry has grown significantly over the last decades in both volumes produced and

created revenue. Although the growth in volumes produced has stopped over the last five

years, revenues in the industry has continued to grow (17). Government regulations and

permits for maximum allowed biomass (MAB) at fish farming locations, could be a reason

for the latest years stagnation in produced volumes.

The Norwegian coastline is divided into 13 different production areas and then

these areas are categorized after how much problems they have with diseases and fish

lice. Production areas are divided into categories which decides how much increase in

production or MAB you can apply for (18). The production areas are categorized with a

color where red indicates problems with diseases and lice, yellow indicates some problems

and green indicates few problems (19), see figure 2.1 below. Fish farms located in green

areas are offered a 2 % annual growth in MAB (20). Besides this all fish farmers are also

allowed to apply for up to 6 % growth in MAB, if some extra criteria are met.

Despite the latest regulations and the stagnation of production volumes, the gov-

ernment still has a goal of a fivefold increase in production volumes. To reach this goal

new technologies and methods needs to be implemented in the industry, to deal with prob-

lems related to diseases, lice and escaped fish. Closed fish cages, exposed fish cages further

away from shore and better lice treatment are some suggested solution to the problem. The

two last solutions could also mean an increased demand for well-boat services. Exposed

fish cages means smolt and fully grown fish needs to be transported over longer distances

and better lice treatment could result in more delousing missions for the well-boat fleet.
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2.1 The aquaculture industry

Figure 2.1: Production areas by traffic light categories

2.1.1 The fish farming value chain

The fish farming value chain is an almost 3 year long process from fish roe to the main

course on the dinner table, laks.no (2020) (21). The whole process starts onshore at the

smolt facilities. Here fish roe are hatched into fry in fresh water tanks. Then the fry grows

into smolt, and after 10 to 16 months the smolt are ready to be put out in the sea. Before

the smolt could go on a well-boat and out in the sea, it has to be prepared for the salty sea

water. In the last period in the smolt facility the salinity in the water tanks are gradually

increased. This way the smolt get used to life in the sea.
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Chapter 2. System Description

At this point the well-boat are introduced into the value chain. The smolt are

pumped into the wells of the well-boat, and carried out to the fish cages. Here their again

pumped out off the wells and into the cage. The transportation stage onboard the well-boat

are a very vulnerable and stressful for time the smolt. Thus there are strict regulations for

the welfare of the smolt.

Figure 2.2: Life cycle of farmed fish

After the smolt has been put in the sea, it will stay in the fish cage until it reaches

its slaughter weight of around 4-6 kilograms. This usually takes anything from 16 - 22

months, Nofia (2020) (22). During the growth period in the sea, well-boats will often

assist with delousing. On average the fish will go through delousing 2 - 3 times during its

lifetime, NTS ASA (2019) (23).

After the fish are fully grown to optimal slaughter weight. They will again be

transported by a well-boat, to the slaughter facility. Here they are either pumped over to

holding cages or they are pumped straight into the slaughter house. Although the fully

grow fish are more robust than the smolt, transportation by a well-boat is still stressful for

the fish. Fish welfare has to be one of the highest priorities to prevent any losses.

When the fish first goes into the slaughter house, the whole process from a living

fish to a finished product in the stores, has to be streamlined and efficient. Fresh fish has

a higher market value than frozen fish. Therefor slaughter, meat processing and distribu-

tion needs to be one big operation. As Norwegian fish are distributed to more than 100
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2.2 Well-boats

countries, Chramer (2017) (24), it is required a high level of efficiency in slaughtering,

processing and distribution.

2.2 Well-boats

The main task of a well-boat is to transport live fish in a safe and efficient way. Always

maintaining the welfare of the fish and keep stress to a minimum during the transport, is

important to minimize fish mortality and to ensure the quality of the meet. Government

regulations are strict and requires constantly surveillance of the water in the wells. The

regulations regarding water quality are also dependent many parameters, like the size of

the fish the well-boats are carrying, and whether the well-boat are sailing with closed or

open wells.

Most well-boats has the choice whether they are sailing with closed or open wells.

Sailing with open wells means that seawater are circulating through the wells. The well-

boat is pumping fresh sea water into the wells and the old water out. This way the water

quality is always kept at a high level. The constant change of water in the wells, keeps

carbon dioxide CO2 and ammonium NH3 at low levels, and oxygen O2 at a high level.

When sailing with closed wells, the water in the wells are not renewed only recycled.

Instead of taking in fresh water, the water already in the well is constantly cleaned and

filtered. There are strict regulations for when well-boats are allowed to run with open

wells. Especially when going out of areas that has problems with lice and diseases, like

the PD-zone (zone with high occurence of Pancreas disease) Forskrift om transport av

akvakulturdyr (2008) (25).

When sailing with closed wells NH3 and CO2 needs to be closely monitored as

these are toxic for the fish, Rosten (2010) (26). NH3 and CO2 are wastes form the fish’s

own metabolism. Other parameters critical for the fish’s welfare are Total Ammonia Ni-

trogen (TAN), level of oxygen, temperature and pH-level.
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Well-boats are designed to be able to carry out the three main well-boat missions.

These missions are:

• Transportation of smolt from hatcheries to fish farms

• Transportation of fully grown fish from fish farms to slaughterhouses

• Performing delousing at the fish farms

2.2.1 Transportation of smolt from hatcheries to fish farms

Transportation of smolt from hatcheries to fish farms is the mission that requires the most

delicate treatment of the fish. Usually the density of fish in the wells is not more than

35-50 kg/m3, Heen (2015) (27). The fish is loaded onboard the vessels at the fish farm,

then they are transported out to the fish farm and pumped over to a fish cage. Smolt

transportation have some extra hygienic regulations, before transporting smolt the wells

needs to be disinfected and wait for 48 hours. If the same well-boat is transporting more

smolt from the same hatchery to the same fish farm it does not have to wait for the 48 hour

quarantine time. Because of this quarantine and other regulations it is usually the same

ships that always carries smolt.

2.2.2 Transportation of fully grown fish from fish farms to slaughter

houses

Transportation of fully grown fish from fish farms to slaughter houses is the most com-

monly task a well-boat can do. These missions stands for about 60 % of all performed

well-boat missions, Nodland (2015) (28). Before the fish can be transported from the fish

farms they have not been fed in a few days. This starvation calms the fish and gives less

contamination of the water inside the wells. When pumped down into the wells the fish
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are counted and measures are taken to keep track of the biomass pumped into the wells.

Arriving at the slaughterhouse the fish could either be pumped into a waiting cage or di-

rectly into the slaughterhouse. This last method is quite a bit slower, but it eliminates the

risk of lice and other diseases. After every transportation the wells are disinfected.

2.2.3 Performing delousing at the fish farms

Performing delousing at the fish farms is something most fish experiences during their

lifetime, on average 2-3 times. There are three main methods for lice treatment, chemical,

mechanical and biological. Chemical treatment is usually done with hydrogen peroxide,

but lately a new technique using heated water has been introduced. But now this method

has been proven to be painful for the fish, Mattilsynet (2019) (29) Mechanical delousing

is done by pumping the fish onboard and sending them through brushes to brush away the

lice. With different sized fish this method could harm bigger fish, and will not be very

effective on smaller fish. Biological delousing is done by introducing wrasse or lumpfish

into the cages. Wrasse and lumpfish feed on fish lice and they eat the lice right off the fish.
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Chapter 3
Problem Description

This chapter will describe the problem that will be solved later on in chapter 6. To give

a proper description of the problem, this chapter will try to explain the structure of the

problem, and which assumptions that had to be made. How uncertainties are dealt with

and how demand frequencies for different well-boat services are distributed throughout

the year.

3.1 Defining the optimization problem

The full problem is to find an optimal well-boat fleet to solve a number of different tasks

in the way that creates the most revenue for the stakeholders. This is a huge problem

that will be close to impossible to solve to optimality. In a problem like this with lots of

uncertainties and a solution space too big to calculate, simulation-based optimization is

often the preferred optimization method.

In this thesis the generation of missions for the well-boat fleet is assumed to be
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stochastic. That means missions are generated without any warnings. In a real life situation

up coming demand for well-boat services will be warned some time in advance. To adjust

for this the vessels are given more time to start and complete the mission. Therefor mission

generation is treated as stochastic occurrences, although it’s not completely random. Smolt

are usually put out in the sea either in the spring or in the autumn, and most of the fish

are harvested roughly 1.5 years later. This makes spring and autumn high season for

transportation of live fish. These variations throughout the year will be accounted for in

the simulation model, and is describe further in chapter 5.

Now the problem is reduced to a fleet sizing and fleet composition problem. One

way to simplify it even further would be to see it only as a question of capabilities for the

fleet. How much is needed of each service each year, and then solve it mathematically. To

better account for the stochastic nature of the problem, a more accurate problem imitation,

could be found with SBO. In a simulation model the stochastic behavior of services de-

manded will be handled in a more realistic way. When a demand occurs a ship could fulfill

it although the demand is smaller than the potential capacity the well-boat could supply.

The next step in solving the problem is to decide on a set of decision variables. The

decision variables will be a set of different well-boat types and how many of each type.

How to organize this in the optimization model will be discussed later on while describing

the different meta-heuristics used. One way is to set each well-boat type as a variable and

let it denote how many well-boats of that type there are in the fleet. Another method is

to set the fleet size to be one variable and then create as many new variables as there are

well-boats in the fleet, then each of these variables takes a value that are associated with

one type of well-boat. The structure of the decision variables could effect the way the

optimization model searches through the solution space, and hereby effect the end result.
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3.2 Creating the simulation model

3.2 Creating the simulation model

The simulation model can be seen as an imitation of the real life operational problem.

Its input is a predefined fleet and the output are some sort of comparable performance

measure, like total cost, total income, mission completion percentage, total revenue etc.

See figure 3.1 for a schematic representation of well-boat operations.

Figure 3.1: Well-boat operations

When describing the real life problem and representing it in a simulation model,

several assumptions had to be made. First of all the model presented is a generic model

and does not represent an actual problem. Locations for home port, hatcheries, slaughter

houses and fish cages are chosen based on normal sailing distances for well-boats. These

distances where estimated by analysing AIS data for well-boats. Areas with extra restric-

tions regarding disinfection and quarantine time where not taken into account in the model.

Neither does it differentiate between sailing with open or closed wells.

Although the optimization model dose not consider ship routing, the simulation
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model still needs a set of rules to define how different missions are assigned to different

vessels. When a mission is generated and there are several ships at quay to choose from.

Which ship gets chosen? When a vessel gets free and there are several missions to choose

from. Which mission gets chosen? By applying different heuristics for these choices

into the simulation model, we could let the optimization model find the best heuristic by

treating them as a decision variable. This greatly increase the complexity of the model and

has not been done in this thesis, more about it in chapter 5.
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Chapter 4
Literature Review

4.1 Maritime fleet sizing and mix problems

Imai and Rivera (2001) (30) describes the problem of fleet sizing as, finding the optimal

number of vehicles to satisfy a given demand for loaded trips. With this formulation the

goal is to find the exact optimal solution to the problem. By formulating an exact mathe-

matical optimization model this could be done, but with the complexity of a maritime fleet

sizing and/or scheduling problem, the problem can often be to big to calculate.

Alvares et al. (2011) (31) proposes a mathematical solution to a bulk shipping fleet

sizing problem. They formulated a mixed integer programming model. They simplified the

real life problem by idealizing some aspects of the real business case. For instance they

constrained the problem in time and geographical location, to make the model solvable

within reasonable time. They also solved the the problem for several different scenarios

representing different levels of risk tolerance. This way they could compare the results

and evaluated the trad off between stability and profitability.
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Fagerholt et al. (2009) (32) proposes a simulation-based optimization method for

solving strategic planning problems in maritime tramp and industrial shipping. They com-

bine Monte Carlo simulation with an optimization framework to make a decision support

system for short term routing and scheduling. By implementing different decision heuris-

tics in the simulation this methodology is able to evaluate and compare how these heuris-

tics handles different scenarios. The strength of this method is that it is able to handle

stochastic variables in the routing problem. It is also a flexible algorithm that easily can be

configured to support a wide range of problems, like fleet sizing or analysis of long term

contracts.

Shyshou et al. (2010) (33) developed a simulation-based model to evaluate what

effect the change of future spot prices on the number of long term ATHS hires. Much

effort where put into the development of a realistic simulation model, to get a detailed

representation of the real life situation. They aimed at finding the optimal fleet size for

a range of different future spot rates. In conclusion of the study they found that the the

fleet size where quite sensitive to lower spot rats and on the other hand more insensitive to

higher spot prices.

4.2 Simulation-based optimization

In simulation-based optimization, simulations are used to evaluate the value of a feasi-

ble solution. The simulation model takes input parameters and creates an output or a

value for the given input parameters or solution. Then the optimization program processes

this output to create a new solution, which again is run through the simulation model.

Simulation-based optimization (SBO) can be seen as an automated process based on nu-

merical simulations and mathematical optimizations algorithms, Attia (2012) (34). A SBO

model can be thought of as a loop, see figure 4.1. It runs through the same algorithm, every

time changing the input parameters trying to find a better solution. The model will always

store the best solution so far, and run until it gets stopped by a predetermined stopping
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criteria. This could be a certain amount of time or number of loops, or it can be set to stop

by a convergence criteria or time without improving the best solution.

Figure 4.1: Simulation-based optimization loop

One of the strengths of simulation-based optimization (SBO) is that it can reduce

the computational time, which again leads to cost and time savings. The idea of SBO is

that you can find a good enough solution in an short amount of time, without having to

compute all feasible solutions. Unlike many other optimization methods SBO will not find

the mathematically best solution, but can rather be seen as a cost effective way of finding

a close to optimal solution. Another strength of using simulations is its flexibility in mod-

eling real life situations. Utilizing simulation models allows for an accurate description of

the real life problem

In a review on simulation-based optimization methods applied to building perfor-

mance analysis Nguyen et al. (2014) (35) Divides SBO into three phases:
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- Preprocessing

- Running optimization

- Post processing

The preprocessing phase consists of building a SBO model, setting constraints and

objective function, defining decision variables, selection of optimization algorithm and

coupling the algorithm with the simulation model. In this phase it is important to under-

stand the real life system to be able to model it and choose the best suited optimization

technique. Especially to be able to find the balance between over simplification and over

detailing the model. To make the right assumptions and screening out non significant

variables is key in this phase.

While running the optimization the main task is to monitor the convergence of the

solution and to detect errors. This is to avoid unnecessary computational time. In a SBO

model convergence does not mean that the final solution is reach but rather that the algo-

rithm are getting problems finding better solutions. Calculating the speed of convergence

or the time the algorithm uses to converge could be close to impossible. There are done

some studies trying to calculate the speed of convergence. One study worth mentioning is

Wright and Alajmi (2005) (36). They investigated the robustness of a genetic algorithm.

They tested the speed of convergence with population sizes of 5, 15 and 30, and found that

the smaller population sizes with a high possibility of crossover and mutation found the

best solution.

The post processing phase is where data is collected and analyzed. Data is orga-

nized in different charts and diagrams, commonly used methods are Pareto front analysis,

convergence plots, variance plots and sensitivity analysis.

Evins et al. (2012) (37) proposed a slightly different approach to the phases of

SBO. Evins 4 phase approach looks a little like the one described above but has some
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differences. The main difference comes in the optimization phase, where Evins has divided

it into to phases, initial optimization and detailed optimization. In the initial optimization

the 21 variables are only allowed to vary between low, medium and high. By analysing the

Pareto front of the initial result some variable could be ruled out. These variables did not

change along the Pareto front and could thereby be locked as constants. To the remaining

variables additional steps in the variables ranges where implemented and a new round of

optimization was run. This optimization round was called detailed optimization. The more

variables and the wider the range of these variables are, the more suited this technique will

be.

4.3 Discrete parametric optimization

Gosavi (2015) p. 29 (38) describes parametric optimization as follows: Parametric op-

timization is the problem of finding the values of decision variables (parameters) that

maximize or minimize some function of the decision variables.

A typical parametric problem is to maximize or minimize an objective function,

f(x(1),x(2),...,x(N)), with a set of N decision variables (x(1),x(2),...,x(N). If the closed

form of the objective function is known and linear, the problem can be solved with linear

programming techniques, like simplex. If the objective function f(.) on the other hand

is unknown or too time consuming to calculate, the use of linear techniques will not be

possible. Sometimes f(.) consists of stochastic elements like a probability or density

function, that are to hard to obtain in closed form. In these cases simulations can be a

powerful tool to estimate the objective function f(.).

Discrete parametric optimizations denotes a non continues function, as the function

may has gaps. With these types of function derivatives may be of little use even knowing

the closed form of the function. By assuming a finite solution space, it will be possible to

use simulations. With simulations the function can be estimated at any given point.
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For problems with a smaller solution space brute-force or exhaustive search can

be used. This mean to make an estimation of all possible solutions to obtain the optimal

solution. Sometimes the solution space gets to big to calculate an estimation of all possible

solution. Then there will be a need for a technique that can quickly search through parts of

the solution space, and still find a close to optimal solution. Meta-heuristic and stochastic

adaptive search techniques that can do this. These techniques work well when solving

discrete combinatorial optimization problems. Stochastic adaptive search techniques often

have well understood convergence properties while these properties are unknown for meta-

heuristics. Although the convergence properties of meta-heuristics are unknown, these

techniques still work well in practice.

4.3.1 Meta-heuristics

Meta-heuristic methods can be seen as a way of guiding the search process through the

solution space. They are not aimed at finding the optimal solution but rather a good so-

lution within a reasonable amount of time. In problems with a large solution space these

techniques work very well. Meta-heuristics are an extension of the local search method.

Where a local search method can get stuck in a local optimum meta-heuristics can be used

instead to avoid this, Lundgren (2010) (39).

Two commonly used meta heuristics are the genetic algorithm and tabu search.

They both starts with a feasible solution or a population of feasible solutions and then tries

to improve the best solution(s) available.

The genetic algorithm is based upon evolutionary theories where only the fittest

survives. The algorithm lets the fittest (best) solution in the population to reproduce and the

new solution will replace the worst solution in the population. There are several different

ways this reproduction can be done and has to be fitted to the actual problem at hand. One

way of doing this will be to make small changes in one or more decision variables in the

fittest solution. Another way, could be to pair the the two best solutions and take half of
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the decision variables from each.

Figure 4.2: Genetic Algorithm

Figure 4.2 above, is a visual representation of how the genetic algorithm work.

First it randomly picks out a initial population, denoted 0. Then the best solution is used

to produce a new solution. As the new solution tends to be close to the solution used

to produce it, the algorithm struggles with breaking out of local optimums. Thus often

several of the best initial solutions are used for reproduction. This way the probability

of getting stuck in at local optimum is lowered and the probability of finding the global

optimum is increased.

The tabu search method was introduced by Glover in 1986 (40) as a meta-heuristic

to avoid cycling in the search. The tabu search separates it self form other meta-heuristics

by storing a list of previous moves of the variables in the solution. This list can be made

in many different ways. It can store single moves or combinations of moves, or even the

opposite move. But it does not store moves that are already on the list.

The moves in the tabu list is considered forbidden. In this way the tabu search
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stops itself form cycling. Thereby allowing the algorithm to efficiently search through a

larger part of the solution space. The length of the tabu list has to be adjusted after the size

of the problem. The bigger the problem the bigger the tabu list needs to be. A too short

tabu list may not prevent cycling and a too long one can cause the algorithm to wonder too

much in the solution space.

Figure 4.3: Tabu Search

In figure 4.3 it is shown how the algorithm wanders around in the solution space.

The tabu list prevents the search from visiting solutions or areas it has visited before.

The tabu search is also very useful for tightly constrained problems, as it can tem-

porary move through infeasible solutions, Cordeau and Laporte (2003) (41). A general

tabu search stores the best solution but uses the current solution to make a new solution.

This way allows for more wondering of the algorithm.
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4.3.2 Stochastic adaptive search

Stochastic adaptive search (SAS) techniques are actually meta-heuristics with proven con-

vergence properties. This means that these techniques guarantees to converge towards the

global optimum.

The pure random search is categorised as SAS although it does not adapt. But

the technique is stochastic and guarantees convergence. It is completely random and are

often used as a baseline to test the effectiveness of other techniques. Pure random search

starts with setting probabilities for selecting any value in the decision variables, the then

randomly search until it meets the selected stopping criteria.

The learning automata search technique (LAST) is quite similar to pure random

search. It starts like the random search but adapts with every iteration. For every iteration

the technique updates the possibilities for choosing a specific value of the decision vari-

ables. The values that earlier have shown to give good solutions gets favored, and becomes

more likely to be chosen again.

All probabilities are stored in a probability matrix which changes with every sim-

ulation. To change the probability matrix in effective way, some knowledge about the

expected solutions could be required. The expected range of the solution values and the

expected amount of iterations, will influence the gain, or the factor used to adjust the

probabilities after every iteration.

This is shown in figure 4.4. In the figure, darker areas shows areas where the next

solution has a higher probability of ending up. As seen, the probabilities changes with

every solution. A good solution gives a slightly higher probability of the next solution

ending up in the same area. A very good solution increases the probabilities even more,

and a bad solution decreases the probabilities.
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Figure 4.4: Learning Automata Search Technique
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Simulated annealing starts at a randomly selected solution and then moves to a

neighbour. If the neighbour is better or equal to the current solution it moves. If the

neighbour is worse than the current solution there is still a low possibility for it to move.

This type of move is called exploration and is the reason this technique can break out of

a local optimum. As the search goes, the possibility of moving to a worse neighbour is

lowered. The best solution is always stored along the way so it does not get lost. Simulated

annealing was a little breakthrough when it was discovered, and has shown remarkable

results in solving both small and large problems.

Figure 4.5: Simulated Annealing

The simulated annealing algorithm moves from the current best solution to the next

solution, just like one variant of the genetic algorithm. But it always has a low probability

of using the latest solution instead of the best solution to produce a new solution. In

figure 4.5, this is shown when the sixth solution is used instead of the third to produce the

seventh solution. After it has made this move it does not come back to the third solution,

but continues from the sixth and the third solution is stored.
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This was just a short description of some meta-heuristics and SAS techniques.

This field is constantly evolving because of its ability to solve problems that are too big

for analytical methods.
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Chapter 5
The Simulation-Based

Optimization model

5.1 The simulation model

This simulation model is an imitation of real life well-boat fleet operations. It is incorpo-

rated in an optimization algorithm, as described in the previous chapter. The model is a

discrete-event simulation as it is modeling a system that changes over time in a way where

state variables change instantaneously at separate points in time, Law (2000) (42). This

means that its is a non continues model which changes its state every time a well-boat

starts or finishes a mission.

This simulation model has been made in cooperation with Hans Tobias Slette, see

figure 5.1 for an overview of the model. At the start Slette was supposed to use the model

for his own article, but in the end he didn’t use this model at all. The signatory has done

all the model design, sketching up the model, deciding how it should react to different
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input and scenarios (weather, mission generation, mission/vessel matching) Slette has im-

plemented this in simulink and written most of the code in the simulation model. The

signatory has coded how missions are generated and and how missions and vessels are

matched in the model.

The input for the simulation model is a selection of preset parameters, and a set of

decision variables given by the optimization model. The model starts with generating a

mission which then gets matched with a vessel. If no vessel are free the mission is stored

until a vessel gets ready. After a mission is matched with a vessel, weather conditions has

to be within set boundaries before the vessel can leave port. Here the model splits in four

roads, one for each mission type. Dependent on mission type the well-boat sails straight to

the fish cages or stops by the hatchery first. When at the fish cages, a new weather check

is done, before operations at the cages can start. For transportation of fully grown fish, the

well-boats now sails to the slaughter house for unloading. Before sailing back to port, the

model check if there are any outstanding volumes left in the mission. If it is, the vessel

goes back in the loop.
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Figure 5.1: Simulation model
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5.1.1 Input and assumptions

The simulation model simulates how a well-boat fleet solves generated missions during

the course of a year. The model takes in the number of each vessel type in the fleet, and

calculates the the profits this fleet makes in the course of a year. The capabilities and costs

for each well-boat can be read in table 5.1 and 5.2.

Vessel

type

Capacity in

ton salmon/

smolt

Speed

knots

Capex

mNOK

Sailing cost

mNOK/

hour

Work cost

mNOK/

hour

Crew cost

mNOK/

hour

Delousing 1

capability

Delousing 2

capability

1 480/160 12 15 0,0019 0,00072 0,0022 yes yes

2 480/160 12 12,5 0,0019 0,00072 0,0022 yes no

3 225/75 10 10 0,0013 0,00062 0,0019 yes no

4 180/60 11 10 0,0013 0,00062 0,0019 yes no

5 150/50 11 7,5 0,0010 0,00045 0,0016 yes no

Table 5.1: Capabilities of each well-boat type

The 5 vessel types are based on vessels in the fleet from Norsk fisketransport AS

(46). Values for sailing- and work cost are estimated from power use in the different

scenarios (23; 43; 44; 45). In appendix figure 8.21, 8.22, 8.23, 8.24, 8.25 and 8.26 power

use for to different vessels can be seen. Extrapolation has been used to adjust for different

vessel sizes and speeds. Fuel consumption is assumed to 200 grams/kWt and fuel prize to

4000 NOK/ton.

The work capabilities for each well-boat are presented in table 5.2
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Work type
Smolt

loading

Somlt

unloading

Salmon

loading

Unloading

waiting cage

Direct

unloading
Delousing 1 Delousing 2

boat type 1 80 100 150 200 80 100 350

boat type 2 80 100 150 200 80 100 0.001

boat type 3 60 75 150 150 80 75 0.001

boat type 4 60 75 150 150 80 75 0.001

boat type 5 50 50 100 100 80 50 0.001

Table 5.2: Work capability rates for each type of well-boat presented in tons/hour

The different missions that could be generated are shown in table 5.3

Mission

type

Mission

#
Loc 1 Loc 2

Work

loc 1

Work

loc 2

Mission

size in

ton

Rates in

mNOK/

ton fish

Smolt 1 2 5-15 1 2 50-500 0,0021

Fully

grown fish
2 5-15 3-4 3 4-5 200-1200 0,0007

Delousing 1 3 1 5-15 0 6 200-1200 0,00063

Delousing 2 4 1 5-15 0 7 200-1200 0,00063

Table 5.3: Mission types and structure

Most wellboats are working on long contracts while some are available on the spot

market. In today’s spot market most well-boats operates with day rates, but still some

operate with rates per kilo treated or transported fish (43). The shift towards day rates is

a way to move the short term risk from well-boat owners to fish farmers. As the farmers

needs to take risk of unexpected events (weather, minor malfunctions, etc.). In the long

well-boat owners bears the cost of this risk. To be able to account for weather and other

uncertainties, rates per ton treated or transported fish has been chosen as the way to reward

the vessels when completing a mission.
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The time between two missions of similar type, are generated following a normal

distribution times a sinus function. Smolt missions are mainly in the spring and fall and the

corresponding sinus function goes almost to zero in the winter and summer. Transportation

of fully grown fish comes on average 1.5 years after the smolt has been set out. Thus this

function has a straighter shape but also peaks in the spring and fall. The probability of

diseases and fish lice grows With the time the fish spends in the cages. Therefore most

delousing missions are generated in between when the smolt is set out in the cages and

the harvesting. In figure 5.2 the three different sinus functions are sketched up. The actual

mission generation density will not necessarily look like this as it is a stochastic process.

But during the course of the Monte Carlo simulations the average will look something like

this.

Figure 5.2: Mission generation

Since it is easier to have all different missions structured in the same matrix, vessels

without delousing of type 2 capabilities, are here said to have a very small capacity. The
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model needs a value above 0, but a very low rate will prevent the vessel from being chosen

to perform the mission. Time for crew change, loading of bunkers and maintenance have

not been implemented in the model. Weather conditions are assumed to have an effect on

the missions and each boat has a different tolerance for bad weather depending on its size.

The weather is checked before the boats sails from depot and again before it stars working

at a location. Different heuristics for what each boat should do if the weather is not good

enough could be implemented in the model, and solved by the optimization model.

The vessle - mission matching is done by making a priority matrix including every

possible match. First the expected time each ship will use to complete each mission is

calculated. Then their priority will increased by 1 if the matching can fulfill some extra

criteria. For smolt missions boats who comes fro a smolt mission or has already waited

48 hours has higher priority. For all missions the priority is increased if the vessel is able

to complete the whole mission alone. If weather is well within the operational boundaries

for the vessel, priority is increased. In the end the vessels who can perform the mission

at the lowest expected cost will be given a higher priority. How much priority a match

should be given in each of these instances, is whole optimization problem in its own. It is

not considered in this thesis as it will add to much complexity compared to the available

time.

The rest of the input for the simulation model are listed in the appendix.

5.2 The optimization model

In general the optimization model chooses the decision variables which then again are sent

to the the simulation model. The simulation model sends back the output value. Based

on this output the optimization model changes the decision variables, and sends it back

in the loop. As described in chapter 4 there are many different algorithms for how the

optimization model chooses these decision variables. In this thesis five of these algorithms
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have been tested up against each other, two meta-heuristics and three SAS techniques. All

five techniques are coded in Matlab and simulations have been run in Simulink. All Matlab

codes can be found in Appendix, and an overview of the simulation model is found earlier

in this chapter.

The main measures for the performance of the different algorithms are: Time used

and value of the best solution. The best value found so far is stored in a vector after every

iteration. This vector is again used to make a regression line. When the derivative of this

nonlinear regression line sinks below a certain level the optimization is stopped. The time

it takes to find a slightly better solution, is from this point expected not to be worth it. The

best solution so far is considered good enough. There are numerous other ways of stopping

the optimization, maximum number of iterations, maximum number of iterations after best

solution is found, convergence criteria etc. The method explained above, combined with a

minimum number of iterations is a way stopping the optimization which also give feedback

on how fast the algorithm searches through the solution space.

Since the computer running the simulations also were used for other tasks, the

actual time used is fluctuating and not comparable. Instead the number of iterations used

could be a better measure for how fast the algorithm finds this solution. By using number

of iterations as a measure of time, the complexity and time it takes to run the optimization

code is not accounted for. But in a case like this it is much smaller than the time used to

run the simulations, and can therefor be neglected.

In the optimization models fleet size is treated as one decision variable with a range

from 3 to 15. Each vessel is also considered as a decision variable and could take numbers

in the rage from 1 to 5. This way the fleet size variable decides how many variables that is

in the model at any given time. Structuring the decision variables this way is thought to be

better suited for the genetic algorithm and the simulated annealing. Setting the vessel types

as decision variables, will require additional restrictions to avoid possible ”neighbours” to

be too far apart.
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5.2 The optimization model

Pure Random Search

The pure random search technique is the simplest of all techniques and works as the base-

line to measure the performance of the others. It picks the decision variables by random

every time, without considering any output from previous iterations.

Genetic Algorithm

The genetic algorithm takes the best or a selection of the best solutions and tries to build

further on these. In this thesis it has been chosen to always build on the two best solutions

so far. This is a compromise between quickly moving towards a optimum and the risk of

getting stuck in a local optimum. The initial population was set to 8. Which again is the

same compromise.

Tabu Search

The tabu search is set up to quickly search through the whole solution space. Instead of

only searching in a small area, like the genetic algorithm tends to do, the tabu search always

moves to the next solution. To prevent cycling or visiting previously visited solutions, the

tabu list forbids the algorithm from doing certain moves. The tabu list could be made and

used in several different ways. the use of the tabu list has to be suited for your decision

variables. When writing the tabu list the actual move or the opposite move for every

decision variable could be put in the list. A move from one solution to another could be

forbidden only if the whole move is in the tabu list, or if only one decision variable does a

move that’s in the tabu list. The problem as it is solved in this thesis has a lot of decision

variables but not that many values each decision variable can take. Therefor making the

whole move forbidden will not be an effective way of leading the algorithm around the

whole solution space. While making the move forbidden if one decision variable makes a
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forbidden move, will make everything forbidden. Here a mix between these two has been

used. If 2/3 or more of the decision variables makes a forbidden move, the whole move is

considered forbidden. Without doing it like this, the tabu list would either be too long or

to short to be considered expedient for the number of iterations. Also a move is forbidden

if the solution has been visited before.

LAST

The LAST randomly picks the next solution, but the probabilities for picking a specific

value for a specific decision variable changes. For every iterations these probabilities

changes depending on whether the solution was good or not. This way the algorithm

spends more time searching in promising areas, without getting stuck in a local optimum.

The difficult part of this method is to choose the My/Mu constants. These constants de-

cides how much the probabilities changes in every iteration. Setting these too high and

the algorithm will quickly narrow in on one area without truly exploring the whole solu-

tion space. Too low and it will use unnecessary much time before narrowing down in a

promising area. Here these were set by running small scale tests of the algorithm.

Simulated Annealing

The simulated annealing algorithm works a little like the genetic algorithm. The next

solution is found by picking a neighbor of the current solution. If this is better than the

current it becomes the new current solution. But if it was not better it would still have a

probability of becoming the new current solution. This way the algorithm can jump out of

a local optimum. The probability for this jump is gradually lowered throughout the search.

How to lower this probability could be difficult to decide. Here there has also been used

some small scale testing to find a reasonable function.

38



Chapter 6
Resultes

6.1 Pure random search

Best
revenue Iterations

Fleet
Size Fleet

207 163 7 1,1,1,2,2,5,5

Table 6.1: Performance of the pure random search

The performance of the pure random search can be seen in table 6.1 above. After

searching through 163 solutions the algorithm stopped itself after the derivative of the

regression line came close to zero.

39



Chapter 6. Resultes

Figure 6.1: Revenue from the pure random search

Figure 6.2: Shows highest revenue over the regression line
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6.1 Pure random search

Figure 6.3: Shows the percentage completed compared to how much it costed

Figure 6.1 shows revenue from all solutions obtained by the algorithm. It shows

no change with time and is as scattered in the end as in the beginning, which would be

expected from the pure random algorithm. The best solution is found after about 100

iterations and the algorithm stops itself as the regression line flattens out, as seen in figure

6.2. From figure 6.3 we can see how many of the generated missions the fleet is able to

complete. The even distribution along the diagonal is a clear sign of the algorithm picking

solution from all over the solution pool. With changes in rates the Pareto front in this

figure could serve as a decision tool for fleet sizing.
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6.2 Genetic algorithm

Best
revenue Iterations

Fleet
Size Fleet

211 110 8 1,1,1,2,2,3,5,5

Table 6.2: Performance of the genetic algorithm

Figure 6.4: Revenue from the pure random search

Figure 6.4 shows revenue from all solutions obtained by the algorithm. It shows a

clear change with time, and after only 15 iteration it only searches in the higher part of the

solution space. This is an expected behaviour from the genetic algorithm. It quickly finds

good solutions, but runs the risk of getting stuck in a local optimum. The best solution is

found after about 55 iterations and the algorithm stops itself as the regression line flattens

out, as seen in figure 6.5. From figure 6.6 we can see how many of the generated missions

the fleet is able to complete. The solutions are highly concentrated around 60 - 65 percent

of the missions completed.
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6.2 Genetic algorithm

Figure 6.5: Shows highest revenue over the regression line

Figure 6.6: Shows the percentage completed compared to how much it costed
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6.3 Tabu search

Best
revenue Iterations

Fleet
Size Fleet

206 60 7 1,1,1,2,2,2,4

Table 6.3: Performance of the tabu search

Figure 6.7: Revenue from the tabu search

Figure 6.7 shows revenue from all solutions obtained by the algorithm. As ex-

pected there are few rapid changes in revenue value, as the search is guided from one

neighbour to another. The best solution is found after about 35 iterations and the algo-

rithm stops itself as the regression line flattens out, as seen in figure 6.8. It seems like the

search was stopped too early. With a solution space of this size it needs more iterations

to be able to search through all parts of the solution space. The reason why it stopped too

early, is because the first few solutions found where quite good and it flattened out the re-

gression line. This is a clear disadvantage of using this criteria to stop the algorithm. From

figure 6.9 we can see how many of the generated missions the fleet is able to complete.

The solutions are evenly distributed along the diagonal. a clear sign that the algorithm has

44



6.3 Tabu search

Figure 6.8: Shows highest revenue over the regression line

Figure 6.9: Shows the percentage completed compared to how much it costed
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been through most of the possible fleet sizes.

6.4 Simulated annealing

Best
revenue Iterations

Fleet
Size Fleet

207 151 11 1,1,1,3,3,3,3,4,5,5,5

Table 6.4: Performance of the simulated annealing

Figure 6.10: Revenue from the simulated annealing

Figure 6.10 shows revenue from all solutions obtained by the algorithm. It clearly

shows signs of having similarities with the genetic algorithm. Each the the solution comes

out significantly worse than the previous solution, it quickly comes back up. Especially

this happens later in the search. Early in the search it seems like the stays low for a

few iterations. This could be the exploration moves as explained in chapter 4. The best

solution is found after about 90 iterations and the algorithm stops itself as the regression

line flattens out, as seen in figure 6.11. From figure 6.12 we can see how many of the
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6.4 Simulated annealing

Figure 6.11: Shows highest revenue over the regression line

Figure 6.12: Shows the percentage completed compared to how much it costed
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generated missions the fleet is able to complete. The solutions are concentrated between

55 and 75 percent of the missions completed. It could seem like the equivalent graph for

the genetic algorithm, only with a slightly wider search area.

6.5 Learning automata search technique

Best
revenue Iterations

Fleet
Size Fleet

209 190 8 1,1,2,2,2,4,5,5

Table 6.5: Performance of the LAST

Figure 6.13: Revenue from the LAST

Figure 6.13 shows revenue from all solutions obtained by the algorithm. It starts

just as the pure random search, and then it gradually evolves. The solution get better and

better with time, and the algorithm almost stops creating bad solutions at all. The best

solution is found after only 60 iterations and the algorithm stops itself as the regression

line flattens out, as seen in figure 6.14. Although the best solution is found rather quickly
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Figure 6.14: Shows highest revenue over the regression line

Figure 6.15: Shows the percentage completed compared to how much it costed
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it still runs for a long time due to all the bad solution found at the start. From figure 6.15

we can see how many of the generated missions the fleet is able to complete. There are

two different places with a high density of solutions. The strength of this algorithm is that

it does not need to go through a worse solution or a set of worse solutions to move from

one local optimum to another. Thus effectively searching through several promising areas

at the same time.

Figure 6.16: Probability of choosing each fleet size

Figure 6.17: Probability of choosing the different vessel

As seen from figure 6.16 the algorithm clearly favors a vessel size between 7 and

9, which also is the area where most of the other algorithm also found their best solution.

Figure 6.17 shows which boats who got favored. Vesseltype 1, 2 and 5 is way more likely

to be chosen than 3 and 4. This because these have given good results throughout the
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search.

Figure 6.18 shows a low degree of variance when running MCS. This shows that

most solutions perform well considering the stochastic nature of the mission generation

and weather. There is evidence for correlation between a solutions ability to perform in all

situations and its expected revenue.

Figure 6.18: Variance compared to revenue
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Chapter 7
Discussion

4 out of the 5 optimization algorithm found a fleet size of 7 - 8 vessels to be optimal.

Although none of them where able to complete more than 75 % of the mission. The

reason for this could be the stochastic mission generation, seasonal variations or missions

aborted due to high weather. Seasonal variations causing the algorithm to choose between

maximizing revenue in the high season and loosing money in the low season, could be an

explanation. Making rates swing along with the seasons could have been considered.

It seems like the vessels 1 is favored bye all algorithms and vessel 2 and 5 are fa-

vored by 4 out of 5. This does not fit with the trend in the current market situation. The

later years the trend has been shifting towards bigger and more better quipped vessels.

Small changes in cost rates could make a huge impact on the fleet composition. Addi-

tional cost due to onshore personnel and administration is not considered in this thesis. If

considered it could have made the algorithms slightly shift towards bigger well-boats.

Many small vessels gives the fleet a possibility serving more missions at the same

time. Since the model does not allow vessels to jump between missions without going
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through the depot, a fleet with fewer and bigger vessels misses that opportunity to reduce

sailing times. More and smaller vessels also gives more flexibility and might deal with

uncertainties in a better way. That this model is aimed at the spot market while most

well-boats are designed for long term contracts could also be a likely reason all algorithm

deviates from the real world trend.

Pure Random
Search

Genetic
Algorithm

Tabu
Search

Simulated
Annealing LAST

Best
revenue 207 210 206 207 209

Iterations 163 110 60 151 190

Table 7.1: Performance of the meta-heuristics

From table 7.1 we can see that there is almost no difference between the best so-

lutions found by each algorithm. The best and the worst only differed by less than 2 %.

Despite such a small difference it does not seem to be random which algorithm who actu-

ally finds the best solution. From figure 6.4 and figure 6.13 it seems like the best solution

obtained comes from continuously searching in a promising area. Both the genetic algo-

rithm and the LAST delivers a high percentage good solutions close to the best solution.

The genetic algorithm is the first to narrow the search in a promising region, and thus find-

ing the best solution. This could be because the solution space is dominated by on global

optimum. Thereby allowing this algorithm to search here for a longer time. It could also

be a result of the optimization model stopping too early, not giving the other algorithms

enough time to explore the whole solution space.

The tabu search is an algorithm that would need more time. It is designed to wonder

around in the solution space, obtaining the best solution by minimizing the risk of not

having explored any promising regions. This algorithm fell victim to the stopping criteria

put up for the optimization model. By finding really good solutions early on, the algorithm

misread it to be a sign that it would not be worth the time looking for a better solution.

Simulated annealing is an algorithm that also by nature will need more time than

the genetic algorithm. The whole theory behind it is to start out as the genetic algorithm
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(though without the initial population). Then jumping from one promising region to an-

other after searching in each for some time. Setting the probabilities for the algorithm to

explore could be quite tricky and needs more research. From figure 6.10 it seems like the

algorithm does some exploration. But it is hard to say if it explores too much or just do

not get enough time to search in each region.

With the learning automata search technique the running time needed is determined

by the number of decision variables and their range. In this case the technique clearly

favors some ranges of the decision variables. These are also the same ranges where the

other algorithms found their best solutions.
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Chapter 8
Conclusion and further work

8.1 Conclusion

The Norwegian aquaculture industry has a huge potential for growth over the next decades,

as both the industry and politicians sees the opportunity for big revenues. This will set high

standards for the future fleet of well-boats. Optimization methods could be a powerful tool

to ensure efficient transportation and delousing of fish, both close to shore and further out

in the sea.

With an increased demand for well-boats the pressure on utilizing these boats to

the fullest of their capacities will also increase. Different optimization techniques could

be a valuable tool when trying to utilize your fleet to the fullest. Finding the exact so-

lution to a maritime fleet sizing problem will often be too complex and time consuming.

One approach to this problem is to simplify the problem enough so that exact mathemati-

cal algorithms can be used. By obtaining the closed form of the objective function linear

programming can often be used. If the problem is to big the algorithm could use years ob-
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taining the optimal solution from the solution space. Simplifying these problems without

leaving out significant decision variables can be a complex task.

Another approach is to develop an algorithm that can quickly search through the

solution space to find a solution considered good enough. With this approach the real

life problem could be modeled more accurately. By running simulations a probability

function of the expected outcome can be derived. This way simulation can be used instead

of finding the closed form of the objective function. The mean and variance of these

probability functions can be a measure for the solution.

Simulation-based optimization methods could be well suited for solving these types

of real life problems. Compared to the more conventional linear optimization, simulation-

based optimization can handle uncertainties in a better way. By running Monte Carlo

simulations the effect of stochastic and correlating variables could be estimated. Also

by analysing the variance of the solution, uncertainties can be mitigated and the risk for

stakeholders could be lowered.

The simulation model presented in this thesis can handle stochastic variables, like

weather and mission generation, in a way linear optimization would struggle.

In Simulation-based optimization many different heuristics for searching through

the solution space can be used. Meta-heuristics and stochastic adaptive search techniques

are two different classifications of these heuristics. Meta-heuristics techniques can not

guarantee that the algorithm convergences towards the global optimum like all stochastic

adaptive search techniques do. Still they are widely used and they have been shown to

work very well in practice.

The different search algorithms tested gave a little unexpected result, but this could

be explained by the nature of the problem, and the set up of the decision variables. In the

end the genetic algorithm proved to be the best, although it does not handle local optimums

in a good way. Its superiority could result from a dominant global optimum in the solution
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space, or too little time for the other algorithms to search for the best solution. The fact

that most algorithms came out with quite similar solutions could support the theory of a

dominant global optimum.

The criteria for stopping the optimization model could have been chosen in another

way. Some algorithms, like the tabu search could have been stopped too early. But using

the derivative of the regression line too decide when too stop also seemed too work very

well for both the Genetic algorithm the LAST which both outperformed the pure random

search.

All algorithms also favored the smaller well-boats. This is a clear difference form

the real world trend. Projected and newly built well-boats are usually built to serve longer

contracts, while this model is aimed at the spot market. For this reason the model could

favor the smaller vessels because of the flexibility they provide. The biggest and most

advanced well-boat is also preferred by the algorithms. This is mainly because it can

perform delousing missions the other vessels cant.

8.2 Further work

It would be recommended to work closer with a industry partner to be able make an even

more realistic simulation model. Also parameters like cost rates and income could be

more accurately calculated. With more insight into the indusrty it could be possible at add

differnet heuristics for the choice of matching well-boats with missions in the simulation

model.

Heuristics for dealing with bad weather could also be made for the simulation

model. The decisions whether to wait or cancel a mission and how long each vessel should

wait, could also the topic for a whole new optimization problem. By implementing these

heuristics as decision variables in the optimization model, the solution space will be greatly
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enlarged. This would again required more computational time than expedient for this

thesis.

Another thing to look deeper into is the actual results obtained from the optimiza-

tion algorithms. Could Pareto front analysis or variance analysis say something about the

robustness of the solution? Or how risky they are compared to other solutions?
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Dagens Naeringsliv. Available at: https://www.dn.no/havbruk/bruker-70-mill-pa-ny-

bat-haper-den-blir-liggende-ved-kai/2-1-165950 (accessed: 10. January 2020).

[13] Kvile, K. (2019) Ingen kunne sett for seg veksten brønnbåtene har hatt. Fiskeribladet.
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Appendix

Matlab koder

Code 8.1: Plotting

1

2 % Reads input from file

3 VesselTypes = ...

readmatrix('JoachimSimInput.xlsx','Sheet','Baattyper','Range','A2:k6');

4 Rates = ...

readmatrix('JoachimSimInput.xlsx','Sheet','Rater','Range','A2:H6');

5 OperationalLimits = ...

readmatrix('JoachimSimInput.xlsx','Sheet','Operasjonsgrenser','Range','A2:G6');

6 MissionTypes = ...

readmatrix('JoachimSimInput.xlsx','Sheet','Oppdragstyper','Range','B2:O5');

7 VesselOps = ...

readmatrix('JoachimSimInput.xlsx','Sheet','Baat-oppdrag','Range','B2:E6');

8 DistanceMatrix = ...

readmatrix('JoachimSimInput.xlsx','Sheet','Distansematrise','Range','B2:P16');

9

10 Hs = ncread('NordsjoWeather.nc','Weather');

11

12 SimTime = 8760;

13

14 VOr = length(VesselOps(:,1));
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15 VOc = length(VesselOps(1,:));

16 VTr = length(VesselTypes(:,1));

17 VTc = length(VesselTypes(1,:));

18 Rr = length(Rates(:,1));

19 Rc = length(Rates(1,:));

20 DMr = length(DistanceMatrix(:,1));

21 DMc = length(DistanceMatrix(1,:));

22 OLr = length(OperationalLimits(:,1));

23 OLc = length(OperationalLimits(1,:));

Code 8.2: Plotting

1 % Create vectors and set parameters

2 SimRevenueVector = [];

3 TotSimRevenue = 0;

4 SimCostVector = [];

5 TotSimCost = 0;

6 PercentageVector = [];

7 Percentage = 0;

8 for j=1:40

9 run('MainJoachim.m'); %running simulation

10 SimRevenueVector = [SimRevenueVector Revenue];

11 TotSimRevenue = TotSimRevenue + SimRevenueVector(j);

12 SimCostVector = [SimCostVector TotalCost];

13 TotSimCost = TotSimCost + SimCostVector(j);

14 PercentageVector = [PercentageVector MissionPercentage];

15 Percentage = Percentage + PercentageVector(j);

16 end

17 AvarageTotalRevenue = TotSimRevenue/j;

18 AvarageTotalCost = TotSimCost/j;

19 AvarageTotalPercentage = Percentage/j;

20

21 % Update vectors

22 Variance = var(SimRevenueVector);

23 VarianceVector = [VarianceVector Variance];

24 SolutionVector = [SolutionVector; Variance AvarageTotalRevenue fleet];

25 RevenueVector = [RevenueVector AvarageTotalRevenue];
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26 CostVector = [CostVector AvarageTotalCost];

27 MissionPercentageVector = [MissionPercentageVector ...

AvarageTotalPercentage];

28 if BestValue ≤ AvarageTotalRevenue

29 BestValue = AvarageTotalRevenue;

30 BestValueVector = [BestValueVector AvarageTotalRevenue];

31 BestSolution = [fleetsize fleet];

32 bestfleet = fleet;

33 bestfleetsize = fleetsize;

34 else

35 BestValueVector = [BestValueVector BestValue];

36 end

37

38 Counter = Counter + 1

39 XVector = [XVector Counter];

40 xm = [XVector'];

41 ym = [BestValueVector'];

42 CurveFit = table(xm, ym);

43

44 % Make a regression curve to the BestValueVector

45 if Counter ≥ 60

46 writetable(CurveFit,'BestSolutions.csv');

47 run('regression.m');

48

49 % Convergens criteria

50 Derivative = -b/Counterˆ2 + c/Counter

51 if Derivative ≤ 0.024

52 breaking = 1;

53 end

54 end

Code 8.3: Plotting

1 % Reads input from file

2 Fleet = ...

readmatrix('JoachimSimInput.xlsx','Sheet','Flaate','Range','A2:B16');

3
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4 for k = 1:15

5 if Fleet(k,2) == 80

6 Fleet = Fleet([1:k-1],1:2);

7 break

8 end

9 end

10

11

12

13 SimTime = 8760; %Hours. Total simulation time. one year. (time-step)

14

15

16 WhetherRand = randi([1 length(Hs(1,1,:))-SimTime]);

17 Weather = squeeze(Hs(1,1,WhetherRand:WhetherRand+SimTime-1));

18

19 MaxWeather = max(Weather);

20 Weather = Weather/(MaxWeather/9);

21 Weather = round(Weather);

22

23 Fr = length(Fleet(:,1));

24 Fc = length(Fleet(1,:));

25 Wr = length(Weather(:,1));

26 Wc = length(Weather(1,:));

27 % Run simulation

28 sim('JoachimBronnbatModell.slx');

29 % Write output data

30 MissionList = ans.MissionListRes.Data;

31 SailTimes = ans.SailTimesRes.Data;

32 WorkTimes = ans.WorkTimesRes.Data;

33 % calculating cost

34 SailCost = 0;

35 WorkCost = 0;

36 CrewCost = 0;

37 VesselCost = 0;

38 for i=1:Fr

39 SailCost = SailCost + SailTimes(i)*VesselTypes(Fleet(i,2),7);

40 WorkCost = WorkCost + WorkTimes(i)*VesselTypes(Fleet(i,2),8);

41 CrewCost = CrewCost + (SailTimes(i)+WorkTimes(i)) * ...
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VesselTypes(Fleet(i,2),9);

42 VesselCost = VesselCost + VesselTypes(Fleet(i,2),6);

43 end

44

45 TotalCost = CrewCost + SailCost + WorkCost + VesselCost;

46

47 % Compledet missions and revenue calculation

48 CompletedSmolt = 0;

49 CompletedSlaught = 0;

50 CompletedDel1 = 0;

51 CompletedDel2 = 0;

52 for i = 1: length(MissionList(:,1))

53 if MissionList(i,2)==1 %If smolt-oppdrag

54 CompletedSmolt = CompletedSmolt + MissionList(i,5) - ...

MissionList(i,7);

55 elseif MissionList(i,2)==2 %If slakt-oppdrag

56 CompletedSlaught = CompletedSlaught + MissionList(i,5) - ...

MissionList(i,7);

57 elseif MissionList(i,2)==3 %If avlusing 1-oppdrag

58 CompletedDel1 = CompletedDel1 + MissionList(i,5) - ...

MissionList(i,7);

59 else %If avlusing 1-oppdrag

60 CompletedDel2 = CompletedDel2 + MissionList(i,5) - ...

MissionList(i,7);

61 end

62 if MissionList(i,1)==0

63 break

64 end

65 end

66 MissionPercentage = (sum(MissionList(:,5)')-sum(MissionList(:,7)')) ...

/ sum(MissionList(:,5)') * 100;

67 Income = (CompletedSmolt*MissionTypes(1,11) + ...

CompletedSlaught*MissionTypes(2,11) + ...

CompletedDel1*MissionTypes(3,11) + ...

CompletedDel2*MissionTypes(4,11));

68 Revenue = Income - TotalCost;
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Code 8.4: Plotting

1 figure(1)

2 plot(RevenueVector);

3 ylabel('Revenue')

4 xlabel('Iterations')

5 title(Title)

6 axis([1 Counter 100 220])

7

8 figure(2)

9 plot(BestValueVector);

10 hold on

11 fplot(@(x) a+b/x+c*log(x))

12 hold off

13 ylabel('Revenue')

14 xlabel('Iterations')

15 title(Title)

16 legend('Best Solution','Regression')

17 axis([1 Counter 160 220])

18

19 figure(3)

20 plot(z.xm,z.ym,'o');

21 hold on

22 plot(z.xm,z.y,'x');

23 ylabel('Revenue')

24 xlabel('Iterations')

25 title(Title)

26 legend('Best Solution','Regression')

27 hold off

28

29 SolutionVector = sortrows(SolutionVector);

30 ParetoFront = [SolutionVector(1,:)];

31 w = 1;

32 for i = 2:Counter

33 if ParetoFront(w,2) < SolutionVector(i,2)

34 ParetoFront = [ParetoFront; SolutionVector(i,:)];

35 w = w + 1;

36 end

37 end
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38

39 figure(4)

40 plot(VarianceVector, RevenueVector, 'o');

41 hold on

42 plot(ParetoFront(:,1)', ParetoFront(:,2)')

43 hold off

44 ylabel('Revenue')

45 xlabel('Variance')

46 title(Title)

47 legend('Solutions','Pareto Front')

48

49

50 MissionVector = sortrows([CostVector' MissionPercentageVector']);

51 ParetoFront2 = [MissionVector(1,:)];

52 w = 1;

53 for i = 2:Counter

54 if ParetoFront2(w,2) < MissionVector(i,2)

55 ParetoFront2 = [ParetoFront2; MissionVector(i,:)];

56 w = w + 1;

57 end

58 end

59

60 figure(5)

61 plot(MissionVector(:,1)', MissionVector(:,2)', 'o');

62 hold on

63 plot(ParetoFront2(:,1)', ParetoFront2(:,2)')

64 hold off

65 ylabel('Completed missions [%]')

66 xlabel('Total costs')

67 title(Title)

68 legend('Solutions','Pareto Front')

Code 8.5: Plotting

1 clear;

2 clc;

3
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4 Title = 'Pure Random Search';

5 tic; % Starts timer

6

7 run('ReadData.m'); % Reads input from file

8

9 % Create vectors and set parameters

10 RevenueVector = [];

11 CostVector = [];

12 MissionPercentageVector = [];

13 BestValueVector = [];

14 VarianceVector = [];

15 SolutionVector = [];

16 XVector = [];

17 BestValue = 0;

18 Counter = 0;

19 breaking = 0;

20 Mmax = 500; %number of iterations

21

22 filename = 'JoachimSimInput.xlsx';

23

24 % Creating a new random fleet before every simulation

25 for i = 1:Mmax

26 vesselnumber = zeros(1,15);

27 fleet = [80 80 80 80 80 80 80 80 80 80 80 80 80 80 80];

28 fleetsize = randi([3 15]); %Diciding on number of vessels in ...

the fleet

29 vesselnumber(1:fleetsize) = [1:fleetsize];

30 BtNummer = vesselnumber';

31 fleet(1:fleetsize) = randi([1 5],1,fleetsize); %Choosing type ...

of vessels in the fleet

32 BtType = fleet';

33 data(1) = randi(3);

34

35

36 writematrix(BtNummer,filename,'Range','A2:A16');

37 writematrix(BtType,filename,'Range','B2:B16');

38

39 run('SimRun.m');
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40

41 if breaking == 1

42 break

43 end

44 end

45

46 toc; %Stops timer

47

48 run('Plot.m'); % Plot output

Code 8.6: Plotting

1 clear;

2 clc;

3

4 Title = 'Genetic Algorithem';

5 tic; % Starts timer

6

7 run('ReadData.m'); % Reads input from file

8

9 % Create vectors and set parameters

10 RevenueVector = [];

11 CostVector = [];

12 MissionPercentageVector = [];

13 BestValueVector = [];

14 VarianceVector = [];

15 SolutionVector = [];

16 Population = [];

17 XVector = [];

18 BestValue = 0;

19 Counter = 0;

20 breaking = 0;

21 Mmax = 96; %number of iterations

22 filename = 'JoachimSimInput.xlsx';

23

24 % Creating a population of 8 random fleets

25 for j = 1:8
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26 fleet = [80 80 80 80 80 80 80 80 80 80 80 80 80 80 80];

27 fleetsize = randi([3 15]); %Diciding on number of vessels in ...

the fleet

28 vesselnumber = zeros(1,15);

29 vesselnumber(1:fleetsize) = [1:fleetsize];

30 fleet(1:fleetsize) = randi([1 5],1,fleetsize); %Choosing type ...

of vessels in the fleet

31

32 % Writing to input file befor simulations

33 BaatNummer = vesselnumber';

34 fleet = sort(fleet); %sorting the fleet vector

35 BaatType = fleet';

36 writematrix(BaatNummer,filename,'Range','A2:A16');

37 writematrix(BaatType,filename,'Range','B2:B16');

38

39 run('SimRun.m');

40

41 Population = [Population; AvarageTotalRevenue fleetsize fleet];

42 end

43 Population = sortrows(Population,'descend');

44

45 % Running the whole algorithem

46 for k = 1:Mmax

47 % Find a neighbor for the two best solutions so far and running

48 % simulations for each of them

49 for l = 1:2

50 if Population(l,2) == 3

51 Changefleetsize = randi([0 1]); %Diciding on change in ...

fleetsize

52 elseif Population(l,2) == 15

53 Changefleetsize = randi([-1 0]); %Diciding on change in ...

fleetsize

54 else

55 Changefleetsize = randi([-1 1]); %Diciding on change in ...

fleetsize

56 end

57 fleetsize = Population(l,2) + Changefleetsize; %Diciding on ...

number of vessels in the fleet
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58 fleet = Population(l,3:17);

59 if Changefleetsize == -1

60 fleet(randi([1 fleetsize])) = 80; %Removing one vessel ...

from fleet

61 elseif Changefleetsize == 1

62 fleet(fleetsize) = randi([1 5]); %Adding one vessel to ...

fleet

63 end

64 fleet = sort(fleet);

65

66 for m=1:15

67 if m ≤ fleetsize

68 if fleet(m) == 1

69 ChangeVessel = randi([0 1]); %Diciding on ...

change in fleet

70 elseif fleet(m) == 5

71 ChangeVessel = randi([-1 0]); %Diciding on ...

change in fleet

72 else

73 ChangeVessel = randi([-1 1]); %Diciding on ...

change in fleet

74 end

75 fleet(m) = fleet(m) + ChangeVessel; %Changing fleet

76 else

77 fleet(m) = 80;

78 end

79 end

80 fleet = sort(fleet);

81

82 % Writing to input file before simulations

83 vesselnumber = zeros(1,15);

84 vesselnumber(1:fleetsize) = [1:fleetsize];

85 BaatNummer = vesselnumber';

86 fleet = sort(fleet); %Sorting the fleet vector

87 BaatType = fleet';

88 writematrix(BaatNummer,filename,'Range','A2:A16');

89 writematrix(BaatType,filename,'Range','B2:B16');

90
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91 run('SimRun.m');

92 % Putting latest fleet into the population

93 Population(6+l,:) = [AvarageTotalRevenue fleetsize fleet];

94

95 end

96 Population = sortrows(Population,'descend'); % Sorting population

97 if breaking ==1

98 break

99 end

100 end

101

102 toc; %stops timer

103

104 run('Plot.m'); % Plot output

Code 8.7: Plotting

1 clear;

2 clc;

3

4 Title = 'Tabu search';

5 tic; % Starts timer

6

7 run('ReadData.m');% Reads input from file

8

9 % Create vectors and set parameters

10 RevenueVector = [];

11 BestValueVector = [];

12 CostVector = [];

13 MissionPercentageVector = [];

14 VarianceVector = [];

15 SolutionVector = [];

16 XVector = [];

17 SolutionList = [];

18 TabuList = [];

19 BestValue = 0;

20 Counter = 0;
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21 breaking = 0;

22 Mmax = 500; %number of iterations

23 filename = 'JoachimSimInput.xlsx';

24

25 vesselnumber = zeros(1,15);

26 fleet = [80 80 80 80 80 80 80 80 80 80 80 80 80 80 80];

27 fleetsize = randi([3 15]); %Diciding on number of vessels in the fleet

28 vesselnumber(1:fleetsize) = [1:fleetsize];

29 fleet(1:fleetsize) = randi([1 5],1,fleetsize); %Choosing type of ...

vessels in the fleet

30

31 % Writing to input file befor simulations

32 BaatNummer = vesselnumber';

33 fleet = sort(fleet); %Sorting the fleet vector

34 BaatType = fleet';

35 writematrix(BaatNummer,filename,'Range','A2:A16');

36 writematrix(BaatType,filename,'Range','B2:B16');

37

38 run('SimRun.m');

39

40 SolutionList = [SolutionList fleet];

41 BestSolution = [fleet];

42 TabuList = [fleetsize fleet fleetsize fleet];

43

44 % Running the algorithem

45 for h=1:Mmax

46 % While-loop makes sure that no moves towards the next fleet ...

are tabu

47 vesselnumber = zeros(1,15);

48 Forbidden = 0;

49 while Forbidden < 2

50 Forbidden = 2;

51 Move = [fleetsize fleet];

52

53 %Diciding on change in fleet size

54 if fleetsize == 3

55 Changefleetsize = randi([0 1]); %Diciding on change in ...

fleetsize
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56 elseif fleetsize == 15

57 Changefleetsize = randi([-1 0]); %Diciding on change in ...

fleetsize

58 else

59 Changefleetsize = randi([-1 1]); %Diciding on change in ...

fleetsize

60 end

61 newfleetsize = fleetsize + Changefleetsize; %Diciding on ...

number of vessels in the fleet

62 Move = [Move newfleetsize];

63

64 newfleet = fleet;

65 if Changefleetsize == -1

66 newfleet(randi([1 newfleetsize])) = 80; %Removing one ...

vessel from fleet

67 newfleet = sort(newfleet);

68 elseif Changefleetsize == 1

69 newfleet(newfleetsize) = randi([1 5]); %Adding one ...

vessel to fleet

70 newfleet = sort(newfleet);

71 else

72 end

73

74 %Diciding on change in fleet

75 for i=1:15

76 if i≤newfleetsize

77 if newfleet(i) == 1

78 ChangeVessel = randi([0 1]); %Diciding on ...

change in fleet

79 elseif newfleet(i) == 5

80 ChangeVessel = randi([-1 0]); %Diciding on ...

change in fleet

81 else

82 ChangeVessel = randi([-1 1]); %Diciding on ...

change in fleet

83 end

84 newfleet(i) = newfleet(i) + ChangeVessel; %Changing ...

fleet
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85

86 else

87 newfleet(i) = 80;

88 end

89 end

90 newfleet = sort(newfleet);

91 Move = [Move newfleet];

92

93 % Checking if the move is forbidden by the tabu list

94 for i=1:max(length(TabuList(:,1)),1)

95 Tabu = 0;

96 for j=1:newfleetsize+1

97 if Move(j) == TabuList(i,j) && Move(j+16) == ...

TabuList(i,j+16)

98 if j == 1 && j > length(TabuList(:,1))-5

99 Tabu = Tabu + 1;

100 end

101 Tabu = Tabu + 1;

102 end

103 end

104 if round((newfleetsize+1)/1.5) ≤ Tabu

105 Forbidden = 1

106 break

107 end

108 end

109

110 %Checking if the solution already has been visited before

111 for i=1:max(length(SolutionList(:,1)),1)

112 if newfleet == SolutionList(i,:)

113 Forbidden = 0

114 break

115 end

116 end

117

118 end

119

120 % Checking if Move is in the TabuList and updating it

121 test = 0;
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122 for d = 1:length(TabuList(:,1))

123 if Move == TabuList(d,:)

124 if d == length(TabuList(:,1))

125 test = 1;

126 break

127 end

128 TabuList(d:length(TabuList(:,1))-1,:) = ...

TabuList(d+1:length(TabuList(:,1)),:);

129 TabuList(length(TabuList(:,1)),:) = Move;

130 test = 1;

131 break

132 else

133 end

134 end

135

136 % Updating it TabuList

137 if test == 0;

138 if length(TabuList(:,1)) ≥ 10

139 TabuList = TabuList(2:length(TabuList(:,1)),:);

140 TabuList = [TabuList; Move];

141 else

142 TabuList = [TabuList; Move];

143 end

144 end

145

146 fleetsize = newfleetsize;

147 fleet = newfleet;

148

149 % Writing to input file befor simulations

150 vesselnumber(1:newfleetsize) = [1:newfleetsize];

151 BaatNummer = vesselnumber';

152 BaatType = newfleet';

153 writematrix(BaatNummer,filename,'Range','A2:A16');

154 writematrix(BaatType,filename,'Range','B2:B16');

155

156 run('SimRun.m');

157

158 SolutionList = [SolutionList; newfleet];
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159

160

161 if breaking == 1

162 break

163 end

164 end

165

166 toc; %Stops timer

167

168 run('Plot.m');

Code 8.8: Plotting

1 clear;

2 clc;

3

4 Title = 'Simulated Annealing';

5 tic; % Starts timer

6

7 run('ReadData.m'); % Reads input from file

8

9 % Create vectors and set parameters

10 RevenueVector = [];

11 CostVector = [];

12 MissionPercentageVector = [];

13 BestValueVector = [];

14 VarianceVector = [];

15 SolutionVector = [];

16 XVector = [];

17 BestValue = 0;

18 breaking = 0;

19 Phases = 10; %number of iterations

20 Iterations = 20;

21 Counter = 0;

22 filename = 'JoachimSimInput.xlsx';

23

24 vesselnumber = zeros(1,15);
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25 fleet = [80 80 80 80 80 80 80 80 80 80 80 80 80 80 80];

26 fleetsize = randi([3 15]); %Diciding on number of vessels in the fleet

27 vesselnumber(1:fleetsize) = [1:fleetsize];

28 fleet(1:fleetsize) = randi([1 5],1,fleetsize); %Choosing type of ...

vessels in the fleet

29 BtNummer = vesselnumber';

30 BtType = fleet';

31

32 writematrix(BtNummer,filename,'Range','A2:A16');

33 writematrix(BtType,filename,'Range','B2:B16');

34

35 %run('MainJoachim.m');

36 run('SimRun.m');

37

38 CurrentValue = Revenue;

39

40 for l = 1:Phases

41 for j = 1:Iterations

42 %Deciding on change in fleetsize

43 if fleetsize == 3

44 Changefleetsize = randi([0 1]);

45 elseif fleetsize == 15

46 Changefleetsize = randi([-1 0]);

47 else

48 Changefleetsize = randi([0 1]);

49 if Changefleetsize == 0

50 Changefleetsize = -1;

51 end

52 end

53 newfleetsize = fleetsize + Changefleetsize; %Changing ...

number of vessels in the fleet

54 newfleet = fleet;

55

56 if Changefleetsize == -1

57 newfleet(fleetsize) = 80; %Removing one vessel from fleet

58 elseif Changefleetsize == 1

59 newfleet(newfleetsize) = randi([1 5]); %Adding one ...

vessel to fleet
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60 else

61 end

62

63 % Deciding on change in fleet

64 for m=1:15

65 if m ≤ newfleetsize

66 if newfleet(m) == 1

67 ChangeVessel = randi([0 1]);

68 elseif newfleet(m) == 5

69 ChangeVessel = randi([-1 0]);

70 else

71 ChangeVessel = randi([0 1]);

72 if ChangeVessel == 0

73 ChangeVessel = -1;

74 end

75 end

76 newfleet(m) = newfleet(m) + ChangeVessel; %Changing ...

fleet

77 else

78 newfleet(m) = 80;

79 end

80 end

81

82 % Writing to input file

83 vesselnumber = zeros(1,15);

84 vesselnumber(1:newfleetsize) = [1:newfleetsize];

85 BtNummer = vesselnumber';

86 BtType = newfleet';

87 writematrix(BtNummer,filename,'Range','A2:A16');

88 writematrix(BtType,filename,'Range','B2:B16');

89

90 run('SimRun.m');

91

92 if breaking == 1

93 break

94 end

95

96 Delta = CurrentValue - Revenue;
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97 T = 2*Phases/l - 0.1*l + 5;

98

99 if Delta ≤ 0

100 fleet = newfleet;

101 fleetsize = newfleetsize;

102 else

103 U = rand;

104 if U ≤ exp(-(Delta/T))

105 fleet = newfleet;

106 fleetsize = newfleetsize;

107 end

108 end

109

110 CurrentValue = Revenue;

111

112 end

113 if breaking == 1

114 break

115 end

116 end

117

118 toc; %Stops timer

119

120 run('Plot.m');

Code 8.9: Plotting

1 clear;

2 clc;

3

4 Title = 'LAST';

5 tic;

6

7 run('ReadData.m');% Reads input from file

8

9 % Create vectors and set parameters

10 RevenueVector = [];
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11 CostVector = [];

12 MissionPercentageVector = [];

13 BestValueVector = [];

14 VarianceVector = [];

15 SolutionVector = [];

16 XVector = [];

17 BestValue = 0;

18 breaking = 0;

19 Mmax = 500; %number of iterations

20 Counter = 0;

21 filename = 'JoachimSimInput.xlsx';

22 M = 1;

23 Fbest = 0;

24 Rmax = 230;

25 Rmin = 150;

26 My = 0.1;

27 Mu = 0.06;

28 Solution = zeros(1,16);

29 sol = 0;

30 vesselnumber = zeros(1,15);

31 fleet = [80 80 80 80 80 80 80 80 80 80 80 80 80 80 80];

32

33 Bfs = zeros(1,13);

34 B = zeros(5,15);

35

36 % Setting probabilities for the first fleet

37 Pf = zeros(1,13);

38 for k = 1:13

39 Pf(k) =1/13; %Set the probability of each choice.

40 end

41 Pm = zeros(5,15);

42 for i = 1:5

43 for j = 1:15

44 Pm(i,j) =1/5; %Set the probability of each choice.

45 end

46 end

47

48
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49 while M < Mmax + 2 %Starting iteration loop

50

51 vesselnumber = zeros(1,15);

52 fleet = [80 80 80 80 80 80 80 80 80 80 80 80 80 80 80];

53

54 Random = rand;

55 Pfcum = 0;

56 for i = 1:13

57 Pfcum = Pfcum + Pf(i);

58 if Random ≤ Pfcum

59 fleetsize = i+2; %choosing fleetsize

60 break

61 end

62 end

63

64 for i = 1:fleetsize

65 Random = rand;

66 Pmcum = 0;

67 for k = 1:5

68 Pmcum = Pmcum + Pm(k,i);

69 if Random ≤ Pmcum

70 fleet(i) = k; %choosing fleet

71 break

72 end

73 end

74 end

75

76 for g = 1:M

77 if Solution(g) == [fleetsize sort(fleet)]

78 sol = 1;

79 break

80 end

81 end

82 if sol == 1

83 continue

84 end

85

86 vesselnumber(1:fleetsize) = [1:fleetsize];
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87 BtNummer = vesselnumber';

88 BtType = fleet';

89

90 writematrix(BtNummer,filename,'Range','A2:A16');

91 writematrix(BtType,filename,'Range','B2:B16');

92

93 run('SimRun.m');

94

95 R = Revenue;

96 F = (R-Rmin)/(Rmax-Rmin);

97 Fbest = F;

98 xfs = fleetsize - 2;

99 x = fleet(1:fleetsize);

100

101 % Changing probabilities for choosing a decision variable

102 accumulatorfs = 0;

103 for d = 1:13

104 if Bfs(d) < Bfs(xfs)

105 Pf(d) = Pf(d) - Mu*(Bfs(xfs)-Bfs(d))*Pf(d); %changing ...

the probability of each choice.

106 elseif Bfs(d) > Bfs(xfs)

107 Pf(d) = Pf(d) + ...

Mu*(Bfs(d)-Bfs(xfs))*(1-Pf(d))*Pf(xfs)/12; ...

%changing the probability of each choice.

108 end

109

110 if d == xfs

111 else

112 accumulatorfs = accumulatorfs + Pf(d); %changing the ...

probability of each choice.

113 end

114 end

115 Pf(xfs) = 1 - accumulatorfs; %changing the probability of each ...

choice.

116

117 % Changing probabilities for choosing a decision variable

118 for i = 1:fleetsize

119 accumulator = 0;
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120 for d = 1:5

121 if B(d,i) < B(x(i),i)

122 Pm(d,i) = Pm(d,i) - My*(B(x(i),i)-B(d,i))*Pm(d,i); ...

%changing the probability of each choice.

123 elseif B(d,i) > B(x(i),i)

124 Pm(d,i) = Pm(d,i) + ...

My*(B((d),i)-B(x(i),i))*((1-Pm(d,i))*Pm(x(i),i)/4); ...

%changing the probability of each choice.

125 end

126 if d == x(i)

127 else

128 accumulator = accumulator + Pm(d,i); %changing the ...

probability of each choice.

129 end

130 end

131 Pm(x(i),i) = 1 - accumulator; %changing the probability of ...

each choice.

132 end

133

134 % Updating B matrix

135 for i = 1:fleetsize

136 if F > B(x(i),i)

137 B(x(i),i) = F;

138 end

139 end

140 if F > Bfs(xfs)

141 Bfs(xfs) = F;

142 end

143

144 Solution = [Solution; fleetsize sort(fleet)];

145 if breaking == 1

146 break

147 end

148 M = M + 1;

149 end

150

151 toc;

152
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153 run('Plot.m');
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Input data

Boat
type

Length
[m]

Capacity
slaughter [ton]

Capacity
smolt [ton]

Speed
[kn]

CAPEX
[mNOK]

Sail cost
[mNOK/hour]

Work Cost
[mNOK/hour]

Crew Cost
[mNOK/hour]

Delousing
1

Delousing
2

1 85 480 160 12 15 0.0019 0.00072 0.0022 1 1
2 85 480 160 12 12.5 0.0019 0.00072 0.0022 1 0
3 63 225 75 10 10 0.0013 0.00062 0.0019 1 0
4 63 180 60 11 10 0.0013 0.00062 0.0019 1 0
5 51 150 50 11 7.5 0.0010 0.00045 0.0016 1 0

Boat
type

Smolt
loading

Smolt
unloading

Slaughter
loading

Slaughter
unloading

Slaughter
direct unloading

Delousing
1

Delousing
2

1 80 100 150 200 80 100 350
2 80 100 150 200 80 100 0.0001
3 60 75 150 150 80 75 0.0001
4 60 75 150 150 80 75 0.0001
5 50 50 100 100 80 50 0.0001

Boat
type

Smolt
loading

Smolt
unloading

Slaughter
loading

Slaughter
unloading Delousing Sailing

1 8 6 6 7 6 7
2 8 6 6 7 6 7
3 8 5 5 6 5 6
4 8 5 5 6 5 6
5 7 4 4 5 4 6

Mission
type

Mission
number

Loc 1
low

Loc 1
high

Loc 2
low

Loc 2
high

Work
1

Work
2 low

Work 2
high

Ton/mission
low

Ton/mission
high

Time between
missions

Smolt 1 2 2 5 15 1 2 2 50 500 75
Slaughter 2 5 15 3 4 3 4 5 200 1200 12
Delousing 1 3 1 1 5 15 0 6 6 200 1200 25
Delousing 2 4 1 1 5 15 0 7 7 200 1200 50

Boat
type Smolt Slaughter

Delousing
1

Delousing
2

1 1 1 1 1
2 1 1 1 0
3 1 1 1 0
4 1 1 1 0
5 1 1 1 0
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Location
number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 20 15 24 26 57 49 63 60 64 44 44 50 43 26
2 20 0 14 7 36 55 30 48 70 48 36 24 66 56 27
3 15 14 0 8 41 67 44 61 74 51 49 33 65 57 35
4 24 7 8 0 47 69 35 55 81 40 47 22 75 66 40
5 26 36 41 47 0 37 52 59 36 83 35 55 34 20 12
6 57 55 67 69 37 0 52 45 35 95 26 65 58 40 32
7 49 30 44 35 52 52 0 20 79 44 27 18 86 72 40
8 63 48 61 55 59 45 20 0 77 61 25 40 93 74 47
9 60 70 74 81 36 35 79 77 0 115 55 85 32 17 43
10 64 48 51 40 83 95 44 61 115 0 70 28 114 104 73
11 44 36 49 47 35 26 27 25 55 70 0 39 68 50 24
12 44 24 33 22 55 65 18 40 85 28 39 0 89 76 45
13 50 66 65 75 34 58 86 93 32 114 68 89 0 19 46
14 43 56 57 66 20 40 72 74 17 104 50 76 19 0 31
15 26 27 35 40 12 32 40 47 43 73 24 45 46 31 0
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Figure 8.5: Pure Random Search Values
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Figure 8.10: Pure Random Search Regres-
sion
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Figure 8.15: Pure Random Search Variance
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Figure 8.20: Pure Random Search Pareto
Front
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Figure 8.21: Simulation-based optimization loop

Figure 8.22: Simulation-based optimization loop
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Figure 8.23: Simulation-based optimization loop

Figure 8.24: Simulation-based optimization loop
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Figure 8.25: Simulation-based optimization loop

Figure 8.26: Simulation-based optimization loop
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