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Abstract

The salmon louse (Lepeophtheirus salmonis) is a parasite that inflicts major economic
and ecological consequences for the Atlantic salmon aquaculture. In an attempt to gain
control of the salmon lice, the aquaculture industry is testing various methods and op-
erating models. The aim of this thesis is to see if a shortened sea phase has a positive
effect on salmon lice by analyzing weekly lice numbers. In this thesis, a shortened sea
phase is achieved by placing salmon in the inner fjord system during the first part of
the production. After 7-9 months the salmon are moved to more exposed sites along the
coast, where it remains until it is ready for slaughter.

The development of salmon lice have been studied in production area 7 and 8 in the period
2012-2021, by examining count data from the salmon farmers. To compare different oper-
ating strategies, both weekly data from production cycles operated with a shortened sea
phase and data from year-round productions, both in the fjords and along the coast, have
been analyzed. The reported lice numbers have been plotted against different explanatory
variables to assess the variables impact on lice numbers.

To investigate the effect of the shortened sea phase, generalised linear models, zero-inflated
models and zero-altered models have been fitted to the lice count data. The results in this
thesis suggest that a zero-altered negative binomial model seems to fit the lice count data,
but the regression model could have been improved by including numerical variables for
salinity and other environmental measurements. According to the fitted regression model,
lower lice numbers are associated with the cages inside the fjords compared with cages
along the coast. The model also indicates that compared with year-round operations in
the fjord and along the coast, there are expected a lower count of adult female lice for the
investigated operating model, where the sea phase is shortened by keeping the salmon in
the inner fjord systems the first seven to nine months after deployment.
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Sammendrag

Lakselus (Leopeohtheirus salmonis) er en parasitt som p̊afører store økonomiske og øko-
logiske konsekvenser for havbruksnæringen. I forsøk p̊a å f̊a kontroll over lakselusen tester
oppdrettsnæringen ut ulike metoder og driftsmodeller. Målet med masteroppgaven er å
undersøke om en forkortet sjøfase har en positive effekt p̊a lakselusen ved å analysere
ukentlige lusetall. I dette studiet er forkortet sjøfase oppn̊add ved å plassere laksen i
indre fjordsystem den første delen av produksjonen. Etter 7-9 m̊aneder blir laksen flyttet
ut til mer eksponerte lokaliteter langs kysten, hvor den blir værende til den er slakteklar.

Utviklingen av lakselus ble studert i produksjonsomr̊ade 7 og 8 i perioden 2012-2020,
ved å undersøke lusetall fra lakseoppdretterne. For å sammenligne ulike driftsstrategier,
har b̊ade ukentlige data fra produksjonssykluser driftet med en forkortet sjøfase og data
fra hel̊arsproduksjoner, b̊ade i fjordene og langs kysten, blitt analysert. De rapporterte
lusetallene har blitt plottet mot ulike forklaringsvariabler for å undersøke deres p̊avirkning
p̊a lusetallene.

For å studere effekten av forkortet sjøfase, har b̊ade generaliserte lineære modeller, zero-
inflated modeller og zero-altered modeller blitt tilpasset lusetallene. Resultatene i denne
masteroppgaven indikerer at en zero-altered negativ binomisk modell ser ut til å passe
til dataene, men regresjonsmodellen kunne ha blitt forbedret ved å inkludere numeriske
variabler for saltinnhold og andre miljømålinger. I følge den tilpassede regresjonsmodellen
er det lavere lusetall p̊a oppdrettslaks inne i fjordene, sammenlignet med oppdrettslaks
langs kysten. Regresjonsmodellen indikerer ogs̊a at det forventede antallet voksne hunnlus
for den undersøkte driftsstrategien, hvor forkortet sjøfasen oppn̊as ved å holde laksen inne
i fjorden de første syv til ni månedene etter utsett, er mindre enn for hel̊arsdrift i fjorden
og langs kysten.

v



vi



Contents

Preface i

Abstract iii

Sammendrag v

Table of Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Sea Lice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Developmental Stages . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Start Sites and Growth Sites . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Earlier Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Aims and Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theory 5

2.1 Generalized Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Poisson GLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Negative Binomial GLM . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Models for Zero-Inflated Count Data . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 ZIP and ZINB Models . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 ZAP and ZANB Models . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Indicator Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vii



2.4 Multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Variance Inflation Factor . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Hypergeometric Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Dataset 25

3.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Preparation of the Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Weekly Reported Data . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Merging Start and Growth Stages . . . . . . . . . . . . . . . . . . . 27

3.2.3 Environmental Data . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.4 Response Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.5 Periods of High Lice Pressure . . . . . . . . . . . . . . . . . . . . . 30

3.2.6 Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 The Full Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Visualization of the Data 33

5 Analysis and Validation 47

5.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Poisson Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Negative Binomial Regression . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Zero-Inflated Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5 Hurdle Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.6 Time Series Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.7 Evaluation of the Sample Size . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.8 Number of Delousing Treatments Performed . . . . . . . . . . . . . . . . . 70

5.9 Violations of the Lice Limit . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Discussion 73

6.1 Remarks on Fitted Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Comparison of the Site Locations . . . . . . . . . . . . . . . . . . . . . . . 75

viii



6.3 Evaluation of the Stage Model . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.4 Conclusion and Further Work . . . . . . . . . . . . . . . . . . . . . . . . . 77

Bibliography 79

Appendix 83

A Additional figures 83

B Additional results 103

C R-code examples 109

ix



x



List of Figures

1.1 Developmental Stages of the Salmon Lice . . . . . . . . . . . . . . . . . . . 2

3.1 Map of Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Response Variable - Adult Female Lice . . . . . . . . . . . . . . . . . . . . 30

3.3 High Period of Lice Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Production of Salmon throughout the Period . . . . . . . . . . . . . . . . . 34

4.2 Lice Number versus Sea Temperature . . . . . . . . . . . . . . . . . . . . . 35

4.3 Lice Number versus Fjord . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Lice Number versus Operating Model . . . . . . . . . . . . . . . . . . . . . 37

4.5 Lice Number versus Week Number . . . . . . . . . . . . . . . . . . . . . . 38

4.6 Lice Number versus Number of Salmon . . . . . . . . . . . . . . . . . . . . 38

4.7 Lice Number versus Fish Weight . . . . . . . . . . . . . . . . . . . . . . . 39

4.8 Lice Number versus Biomass . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.9 Lice Number versus Production Week . . . . . . . . . . . . . . . . . . . . . 41

4.10 Lice Number versus Delousing Method . . . . . . . . . . . . . . . . . . . . 42

4.11 Lice Number versus Distance . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.12 Lice Number versus MinDist . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.13 Lice Number versus Neighbours . . . . . . . . . . . . . . . . . . . . . . . . 44

4.14 Adult Female Lice versus Mobile Lice Last Week . . . . . . . . . . . . . . 45

4.15 Correlation Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Residuals Plot - Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Frequency Plot - Sample Model . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Frequency Plot - Cage Model . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Residuals Plot - Negative Binomial . . . . . . . . . . . . . . . . . . . . . . 55

5.5 Residuals Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.6 Plot of Fitted Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.7 Residuals Plots - ZINB/ZANB . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.8 Rootograms - ZINB/ZANB . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xi



5.9 Time Series of Adult Female Lice . . . . . . . . . . . . . . . . . . . . . . . 66

5.10 Auto Correlation Function - ZANB Residuals . . . . . . . . . . . . . . . . 67

5.11 Hypergeometric Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.12 Treatments versus Operating Model . . . . . . . . . . . . . . . . . . . . . . 70

A.1 Response Variable - AllMobile . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.2 Overview - Salmon Lice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.3 Treated Salmon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.4 Sea Temperature and Average Lice Number . . . . . . . . . . . . . . . . . 86

A.5 Salmon Farm Location and Average Lice Number . . . . . . . . . . . . . . 87

A.6 Operating Model and Average Lice Number . . . . . . . . . . . . . . . . . 88

A.7 Week Number and Average Lice Number . . . . . . . . . . . . . . . . . . . 89

A.8 Number of Salmon and Average Lice Number . . . . . . . . . . . . . . . . 90

A.9 Salmon Weight and Average Lice Number . . . . . . . . . . . . . . . . . . 91

A.10 Biomass and Average Lice Number . . . . . . . . . . . . . . . . . . . . . . 92

A.11 Production Week and Average Lice Number . . . . . . . . . . . . . . . . . 93

A.12 Delousing Treatment and Average Lice Number . . . . . . . . . . . . . . . 94

A.13 Distance to Coastline and Average Lice Number . . . . . . . . . . . . . . 95

A.14 Distance to Nearest Salmon Farm and Average Lice Number . . . . . . . . 96

A.15 Number of Neighbours within 10km and Average Lice Number . . . . . . . 97

A.16 Last Weeks Reported Lice Number and Average Lice Number . . . . . . . 98

A.17 Number of Neighbours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.18 Last Weeks Lice Number (Censored) and Average Lice Number . . . . . . 100

A.19 Frequency Plot - Censored . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xii



List of Tables

3.1 Salinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Variables Used in Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Explanatory Variables Used in the Analysis . . . . . . . . . . . . . . . . . 49

5.2 Poisson Regression Coefficients - CountAdultFemale . . . . . . . . . . . . . 50

5.3 Negative Binomial Regression Coefficients - CountAdultFemale . . . . . . . 54

5.4 Likelihood Ratio Test, P/NB . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5 Likelihood Ratio Test, Zero-Inflation . . . . . . . . . . . . . . . . . . . . . 56

5.6 Likelihood Ratio Test, ZINB . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.7 ZINB Regression Coefficients - CountAdultFemale . . . . . . . . . . . . . . 58

5.8 Likelihood Ratio Test, Hurdle . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.9 Model Selection - ZANB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.10 ZANB Regression Coefficients - CountAdultFemale . . . . . . . . . . . . . 62

5.11 Likelihood Ratio Test, ZANB . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.12 The Probability of Not Observing Salmon Lice in 20 Draws . . . . . . . . . 69

5.13 Violations of the Lice Limit . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1 Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B.1 Poisson Regression coefficients - AdultFemaleCage . . . . . . . . . . . . . . 103

B.2 Poisson Regression coefficients - CountAllMobile . . . . . . . . . . . . . . . 104

B.3 ZIP Regression Coefficients - CountAdultFemale . . . . . . . . . . . . . . . 105

B.4 ZINB Regression Coefficients - CountAdultFemale . . . . . . . . . . . . . . 106

B.5 ZAP Regression Coefficients - CountAdultFemale . . . . . . . . . . . . . . 107

B.6 ZANB Regression Coefficients - CountAdultFemale . . . . . . . . . . . . . 108

xiii



xiv



1 Introduction

1.1 Sea Lice

The salmon louse, Leopeohtheirus salmonis (Krøyer, 1837), has been a serious problem
for the Norwegian aquaculture industry since the 1970s (Torrissen et al., 2013). In recent
years, Caligus elongatus (Normann, 1832) has also caused problems for the salmon farmers
(Gaasø, 2019; Hemmingsen et al., 2020). These two parasites are referred to as sea lice
in this thesis, and the term salmon lice will be reserved for only Leopeohtheirus salmonis.
The sea louse infiltrate the salmon by attaching itself to the skin of salmon with grip-
hooks, and feeding on mucus, blood and skin (Overton et al., 2019, Gaasø, 2019). These
infestations can lead to physical damage, chronic stress and skin damage, which makes
the salmon more exposed to secondary bacterial infections (Overton et al., 2019). The
high production of salmon the last years has led to high density of hosts year-round, and
thus created good conditions for the sea louse growth and transmission (Torrissen et al.,
2013).

1.1.1 Developmental Stages

Following Hamre et al. (2013), the life cycle of the salmon louse consists of eight stages
(Figure 1.1). In the initial stages, the salmon louse flow freely in the water and may
spread over large areas. When the louse attach itself to the salmon, it starts growing and
develops through several stages until it can move and gradually become a full-grown adult
louse. In the first stages after the salmon louse has attached itself to the salmon, Chalimus
I and Chalimus II, the louse is sessile. From the Chalimus stages, the louse develops into
pre-adult I and then pre-adult II. In these stages, the louse can move around on the
surface of the salmon. Finally, it becomes an adult male or an adult female. The adult
female louse lays eggs which becomes free-living parasites, and the life cycle is started
again.

The salmon lice count data can be sorted in three different categories: sessile lice, mobile
lice and adult female lice. Sessile lice corresponds to the Chalimus stages and mobile lice
to the preadult and adult male stages. Adult female lice is a separate category, and is
not included in the count of mobile lice (Hamre et al., 2013; Jevne, 2020). In this thesis,
all the preadult and adult stages, including the adult female lice, are referred to as all
mobile lice. Caligus elongatus (C. elongatus) develops trough four Chalimus stages before
it becomes an adult (Hemmingsen et al., 2020), but are not divided into different stages
in this thesis.
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Figure 1.1: Developmental stages of the salmon lice, Lepeophtheirus salmonis (diagram,
not to scale).

Source: Igboeli and Burka, 2013

1.1.2 Regulations

The Ministry of Trade, Industry and Fisheries have laid down regulations for salmon
farmers to reduce the occurrence of salmon lice, such that the harmful effects on the
salmon are minimized (Forskrift om lakselusbekjempelse, 2012). According to these reg-
ulations, the salmon farmers must report the average number of salmon lice per salmon
at the site each week. The sea temperature at 3 meters depth and eventually delousing
treatments used must also be reported. The reported average for the site is based on the
calculated sample mean of salmon lice for each of the cages at the salmon farm. Once per
week, salmon lice must be counted on at least 10 random salmons in each cage. If the tem-
perature is below 4 °C, the number of lice per salmon can be counted every fourteen days
instead of once a week. The average number of salmon lice per salmon calculated from a
sample from the cage, is referred to as the lice number, and is divided into the three stages
defined in Section 1.1.1: adult female lice, mobile lice and sessile lice. The regulations
state that the allowed limit of average adult female lice per salmon at a site is 0.5, but the
limit is reduced to 0.2 during 6 weeks in the spring. For Trøndelag and counties further
south, this applies to the weeks 16-21, while for counties north of Trøndelag the lice limit
is reduced in the weeks 21-26. During these 6 weeks, salmon lice must be counted on
at least 20 random salmons in each cage (Forskrift om lakselusbekjempelse, 2012). C.
elongatus is currently not regulated in Norway.

2



1.1.3 Treatments

The regulation on the control of salmon lice state that measures must be implemented
to ensure that the amount of salmon lice does not exceed the limit for adult female lice
(Forskrift om lakselusbekjempelse, 2012). There are several different delousing treatments
that are used to reduce the lice pressure in cages with high lice numbers, and they can
be divided into five categories: bath treatment, oral treatment, lice flusher, freshwater
treatment and thermic treatment. Medicinal bath treatments were the first delousing
treatments used in Norway, but its use has declined in recent years (Overton et al., 2019;
Poppe et al., 1999). Medicinal oral treatment are use of specialized feed to get rid of the
lice. The salmon louse has developed resistance to most of the chemotherapeutants which
are approved for delousing in Norway today. Therefore, new delousing methods that do
not involve the use of chemotherapeutants have been developed. Lice flusher, freshwater
and thermic treatment are mechanical methods developed in the last ten years, and are the
most utilized treatments today (Myhre Jensen et al., 2020; Norwegian Seafood Research
Fund, n.d.; Overton et al., 2019).

1.2 Start Sites and Growth Sites

The sea lice survival and development are optimal in high-salinity sea water (Heuch et al.,
2009; Torrissen et al., 2013). Bricknell et al. (2006) shows that both the salmon louse
survival and infectivity are impaired by a reduction in salinity levels. In this context, an
operating model with sites in inner fjord systems, where the salinity is low, is considered
to give the farmers better control over the sea lice. According to Torrissen et al. (2013),
a high density of salmon in the fjord throughout the year creates good conditions for the
sea lice. To avoid this, the salmon is therefore transported further out after a period in
the inner fjord system. In this way, the salmon farms will be fallowed (emptied and not
restocked for a period) more frequently. It is thus possible that the environmental impact
will be reduced through less emissions, and that the lice pressure on wild fish and farmed
salmon will be lower. However, moving salmon between salmon farms increases the risk
of spreading infections, and must be taken into account when such a model is considered
(Veiledning: Flytting av laksefisk mellom oppdrettsanlegg, 2019).

A salmon production operated after this model can be divided into two stages, start and
growth. This operating method is referred to as the stage model in this thesis. With the
stage model, the smolts are deployed in inner fjord systems, called start sites, and after
seven to nine months, the salmon are moved to more exposed sites further out, called
growth sites. The traditional production of salmon in Norwegian salmon farms does not
include the movement of salmon between the salmon farms. The salmon are then kept in
the same site from deployment to slaughter, which takes around 1.5 years. The salmon
that are deployed together in a cage, is in this thesis referred to as a generation, and
the sites where the salmon are located throughout production are called whole-generation
sites. This operating method is divided into whether the salmon is kept along the coast
or in inner fjord systems throughout production, and is referred to as the coast model
and the fjord model, respectively.
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1.3 Earlier Studies

Data from the first part of the production of the stage model, the start stage, were
analysed in Karlsen (2020). A Poisson model and a zero-inflated Poisson model were
fitted for the estimated total number of adult female in the cage, and possible factors
that affected the number of lice were investigated. This master thesis is a continuation
of Karlsen (2020), where the entire production cycle, from deployment to slaughter, have
been analysed. The regression analysis have been improved by adding more explanatory
variables to the regression model, and other response variables have been considered.

Following Brakestad (2020), a zero-inflated negative binomial model is a better choice for
modelling the lice count than the zero-inflated Poisson model. In Brakestad (2020), the
analysis was based on open data material on the web, and not collected from the salmon
farmers. This led to other explanatory variables, data at site level instead of at cage level,
and that some more assumptions were made. Thus, both a Poisson model and a negative
binomial model were fitted in this thesis, in addition to associated zero-inflated models
and hurdle models.

1.4 Aims and Outline of the Thesis

The main aim of this master thesis was to investigate the effect shortened sea phase,
obtained with the stage model, has on salmon lice. Data from several salmon farms in
production area 7 and 8, both in inner fjord systems and along the coast, have been
analysed to achieve this. To evaluate the stage model, some sub-aims were formulated:

• Compare the stage model against whole-generation sites along the coast (coast
model)

• Compare the stage model against whole-generation sites in inner fjord systems (fjord
model)

• Compare the two fjords, are there any similarities in the development of lice?

The necessary statistical theory is presented in Section 2. Information about the study
area and the data set are given in Section 3, followed by a visualization of the data in
Section 4. The data analysis and the validation of the fitted models are presented in
Section 5. Finally, a discussion with recommendations for further work is presented in
Section 6.
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2 Theory

To investigate the effect of the stage model, a regression model for the weekly count of
salmon lice in each cage is fitted to the data. The lice count is endeavoured explained by
the covariates describing the sea temperature, the location of the salmon farm, operating
model, season of the year, cage biomass, production week, delousing treatment, distance
to the coastline, number of neighbours, last weeks lice number and an intervention variable
for weeks with high lice pressure (defined in Section 3.2). This section provides theory used
in the analysis of the lice count data, where both generalized linear models, zero-inflated
models and zero-altered models are fitted.

2.1 Generalized Linear Models

Generalized linear models consist of three parts: the distribution of the response variable,
a function of the explanatory variables (the systematic part) and the link between the
mean of the response variable and the systematic part. The Poisson distribution and the
negative binomial distribution are two of the most common distributions used for count
response variables (Zuur et al., 2009).

2.1.1 Poisson GLM

For a Poisson GLM, each observation Yi, for i = 1, . . . , n is assumed to be an independent
Poisson distributed variable with mean and variance equal to λi. The probability mass
function for each variable Yi is given by

f(yi|λi) =
λyii exp(−λi)

yi!
, yi = 0, 1, 2, . . . , λi > 0. (2.1)

Given p covariates xi1, xi2, . . . , xip, where p is the number of parameters without intercept,
the systematic part can be specified by the linear predictor, ηi = xTi β = β0 + β1xi1 +
· · · + βpxip. To ensure that the fitted values always are non-negative, the link function
ln(λi) = xTi β = ηi is used to link the covariates with the mean λi. The expected response
function, which is the inverse of the link function, is thus E[Yi] = λi = exp(ηi) = exp(β0 +
β1xi1 + · · ·+ βpxip) (Fahrmeir et al., 2013; Zuur et al., 2009).

Following Fahrmeir et al. (2013), the parameter vector of interest, β, which includes the
intercept and the slopes of the covariates, is estimated by maximizing the log-likelihood
function. By assuming that the response variables yi are conditionally independent Pois-
son distributed variables, the log-likelihood is given by

l(β) =
n∑
i=1

ln f(yi|β) =
n∑
i=1

ln

(
λyii exp(−λi)

yi!

)
=

n∑
i=1

[yi ln(λi)− λi − ln(yi!)]

=
n∑
i=1

[
yix

T
i β − exp(xTi β)− ln(yi!)

]
. (2.2)
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The maximum likelihood estimate is found by solving s(β̂) = 0, where the score function,
s(β), is the first-order derivatives of the log-likelihood. The score function can be derived
as

s(β) =
∂l(β)

∂β
=

n∑
i=1

∂li(β)

∂β
=

n∑
i=1

si(β) =
n∑
i=1

[
yixi − exp(xTi β)xi

]
=

n∑
i=1

xi
(
yi − exp(xTi β)

)
. (2.3)

By using that E[si(β)] = 0 for all i, the covariance matrix of the score function can be
expressed as

F(β) =
n∑
i=1

Cov[si(β)] =
n∑
i=1

E
[
si(β)sTi (β)

]
=

n∑
i=1

xix
T
i E
[
(yi − exp(xTi β))2

]
=

n∑
i=1

xix
T
i λi, (2.4)

where E
[
(yi − exp(xTi β))2

]
= E [(yi − λi)2] = V ar[yi] = λi is used in the last transition.

The covariance matrix F(β) is the expected Fisher information matrix, and its inverse is
used in solving s(β̂) = 0 by the Fisher Scoring Algorithm

β̂
(t+1)

= β̂
(t)

+ F−1
(
β̂

(t)
)

s
(
β̂

(t)
)
. (2.5)

The maximum likelihood estimate is asymptotically distributed as β̂ ≈ Np(β,F
−1(β̂)).

The diagonal elements in the inverted expected Fisher information matrix evaluated at the
maximum likelihood estimate β̂ are thus the asymptotically variance for the parameters
(Fahrmeir et al., 2013).

If the data shows greater variability in the response counts than presumed by the Poisson
model (Var[Yi] > E[Yi] = λi), the model is overdispersed. A dispersion parameter φ can
be introduced by assuming Var[Yi] = φλi, and it can be estimated as the average deviance
or Pearson statistic

φ̂D =
D

n− p
, or φ̂P =

P

n− p
, (2.6)

where n is the number of observations, p is the number of parameters, D is the residual
deviance and P is the Pearson statistic. If the dispersion parameter φ is larger than 1 it
provides evidence for overdispersion. The residual deviance, D, and the Pearson statistics,
P , for the Poisson GLM are in Zuur et al. (2009) defined as

D = 2
n∑
i=1

[
yi ln

(
yi

λ̂i

)
− (yi − λ̂i)

]
and P =

n∑
i=1

(yi − λ̂i)2

λ̂i
, (2.7)

where λ̂i = exp(xTi β̂) .

The deviance residuals, di, and the Pearson residuals, ri, are important tools for model
validation. For the Poisson model, they are in Zuur et al. (2009) defined as

di,P = sign(yi − λ̂i)

√
2

[
yi ln

(
yi

λ̂i

)
− (yi − λ̂i)

]
and ri,P =

yi − λ̂i√
λ̂i

, (2.8)
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where sign(yi − λ̂i) = 1 if yi − λ̂i > 0 and sign(yi − λ̂i) = −1 if yi − λ̂i < 0. For a good
model there should not be any patterns in the residuals (Zuur et al., 2009).

2.1.2 Negative Binomial GLM

In cases with overdispersion, a negative binomial response function can be useful. The
negative binomial distribution allows that the variance of the response variable is larger
than the mean, and has in addition to the mean, a dispersion parameter to capture the
amount of over-dispersion. Assume that each reported count of lice are independent
Bernoulli(p) trials and let the random variable Y denote the number of failures before the
rth success, where r is a fixed integer. The probability mass function for Y is in Casella
and Berger (2002) given by

f(y|p, r) =

(
r + y − 1

y

)
pr(1− p)y, y = 0, 1, 2, . . . . (2.9)

The expected value for the negative binomial distributed variable Y can following Casella
and Berger (2002) be derived as

E[Y ] =
∞∑
y=0

y

(
r + y − 1

y

)
pr(1− p)y =

∞∑
y=1

(r + y + 1)!

(y − 1)!(r − 1)!
pr(1− p)y

=
∞∑
y=1

(
r + y − 1

y − 1

)
pr(1− p)y. (2.10)

By using z = y − 1, the expression can be simplified to

E[Y ] =
∞∑
z=0

(
r + z

z

)
pr(1− p)z+1 = r

1− p
p

∞∑
z=0

(
(r + 1) + z − 1

z

)
pr+1(1− p)z

= r
1− p
p

, (2.11)

where it is in the last transition used that the sum-term is equal to 1, since it is the sum
over all values of a negative distributed variable Z with r = r+ 1 . The variance, Var[Y ],
can be calculated as Var[Y ] = E[Y 2] − E[Y ]2. By deriving E[Y 2] in the same way as for

the expected value, the variance can be expressed as Var[Y ] = r(1−p)
p2

(Casella & Berger,

2002).

By defining the parameter λ for the mean, λ = E[Y ] = r 1−p
p

, the variance for the negative

binomial distribution can be expressed as Var[Y ] = λ + λ2

r
. By replacing p with r

λ+r
in

Equation (2.9), the probability function for the negative binomial model in terms of the
mean, λ, follows as

f(y|λ, r) =

(
r + y − 1

y

)(
r

λ+ r

)r (
1− r

λ+ r

)y
=

(r + y − 1)!

y!(r − 1)!

(
r

λ+ r

)r (
1− r

λ+ r

)y
(2.12)

=
Γ(r + y)

Γ(y + 1)Γ(r)

(
r

λ+ r

)r (
λ

λ+ r

)y
,
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for y = 0, 1, 2 . . . (Casella & Berger, 2002). The covariates for observation i can be linked
to the mean of Yi with the link function ln(λi) = ηi, where ηi = xTi β = β0 + β1xi1 +
· · · + βpxip, p is the number of parameters without intercept and the vector β includes
the intercept and the p regression coefficients. The expected mean is thus determined by
λi = exp(β0 + β1xi1 + · · ·+ βpxip).

The maximum likelihood estimate for the negative binomial model is derived in Cameron
and Trivedi (1998) with the parameterization α = r−1, which is another parameter than
used in this thesis. The parameters of interest in this thesis are β and r. The log-likelihood
with this parameterization is found in Zuur et al. (2009), but no further calculation of
the maximum likelihood estimates has been found in the literature. These have therefore
been derived in this thesis. By assuming that the response variables yi are conditionally
independent, the log-likelihood for the negative binomial distribution is derived as

l(β, r) =
n∑
i=1

ln f(yi|λi, r) =
n∑
i=1

ln

(
Γ(r + yi)

Γ(yi + 1)Γ(r)

(
r

λi + r

)r (
λi

λi + r

)yi)
=

n∑
i=1

[
ln Γ(r + yi)

ln Γ(r)
− ln Γ(yi + 1) + r ln

(
r

λi + r

)
+ yi ln

(
λi

λi + r

)]
(2.13)

=
n∑
i=1

(
yi−1∑
j=0

ln(j + r)

)
−

n∑
i=1

[ln Γ(yi + 1) + r ln r − r ln(λi + r)

+ yi ln(λi)− yi ln(λi + r)],

where it is in the last transition used that Γ(r+y)
Γ(r)

=
∏y−1

j=0(j+r) for integers y (Cameron &

Trivedi, 1998). By substituting λi = exp(xTi β) in the log-likelihood and taking derivatives
with respect to β and r, respectively, the following score functions are obtained

s(β) =
∂l(β, r)

∂β
=

n∑
i=1

[
yi
∂ ln

(
xTi β

)
∂β

− (r + yi)
∂ ln

(
exp(xTi β) + r

)
∂β

]

=
n∑
i=1

[
yix

T
i − (r + yi)

xi exp(xTi β)

exp(xTi β) + r

]
=

n∑
i=1

[
rxi

yi − exp(xTi β)

exp(xTi β) + r

]
, (2.14)

s(r) =
∂l(β, r)

∂r
=

n∑
i=1

∂
(∑yi−1

j=0 ln(j + r)
)

∂r
+
∂(r ln r)

∂r
−
∂
(
(r + yi) ln

(
exp(xTi β) + r

))
∂r


=

n∑
i=1

[
yi−1∑
j=0

1

j + r
+ ln r + 1− ln(exp(xTi β) + r)− r + yi

exp(xTi β) + r

]
(2.15)

=
n∑
i=1

[
yi−1∑
j=0

1

j + r
+ ln r − ln(exp(xTi β) + r) +

exp(xTi β)− yi
exp(xTi β) + r

]
.

The maximum likelihood estimates (MLE) of β and r are found by solving s(β̂) = 0 and
s(r) = 0. The asymptotically distribution of the negative binomial MLE β and α = r−1,
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is in Cameron and Trivedi (1998) given as(
β̂
α̂

)
∼ N

[(
β
α

)
,

(
F11(β̂) F12(β̂, α̂)

F21(β̂, α̂) F22(α̂)

)−1
]
, (2.16)

where F(β̂, α̂) is the expected Fisher information matrix for the maximum likelihood
estimates. The expected Fisher information matrix can be calculated as the expected
value of the observed Fisher information matrix H(β̂, α̂), which contains the negative
Hessian matrix of the log-likelihood (Fahrmeir et al., 2013). By using the score functions
obtained above, the asymptotically distribution of β and r can be derived. The elements
of the expected Fisher information matrix F(β̂, r) = E[H(β̂, r)], are obtained as

F11(β) = E

[
−∂s(β)

∂β

]
= E

[
− ∂

∂β

n∑
i=1

(
rxi

yi − λi
λi + r

)]
=

n∑
i=1

rλixix
T
i

λi + r
(2.17)

F22(r) = E

[
−∂s(r)

∂r

]
= E

[
n∑
i=1

(
1

λi + r
− 1

r
+

λi − yi
(λi + r)2

+

yi−1∑
j=0

1

(j + r)2

)]

=
n∑
i=1

(
E

[
yi−1∑
j=0

1

(j + r)2

]
− λi
r(λi + r)

)
(2.18)

F12(β, r) = F12(β, r) = 0, (2.19)

where F12(β, r) and F21(β, r) are equal to 0, since

E

[
∂2l(β, r)

∂β∂r

]
= E

[
∂s(β)

∂r

]
= E

[
∂s(r)

∂β

]
= E

[
n∑
i=1

λixi(yi − λi)
(λi + r)2

]
= 0. (2.20)

This simplifies the covariance matrix, and the maximum likelihood estimates β̂ and r̂
follows the asymptotically distribution(

β̂
r̂

)
∼ N

[(
β
r

)
,

(
F−1

11 (β̂) 0
0 F−1

22 (r̂)

)]
, (2.21)

where F11(β) and F22(r) are defined in Equation (2.17) and (2.18), respectively.

The Pearson residuals are calculated as the difference between the observed values yi and
the estimated values λ̂i, divided by the square root of the variance of Yi (Fahrmeir et al.,
2013). For the negative binomial model the Pearson residuals can then be calculated as

ri,NB =
yi − λ̂i√
λ̂i +

λ̂2i
r

. (2.22)

The deviance residuals for the negative binomial model is in Hilbe (2011) expressed as

di,NB = sign(yi − λ̂i)

√
2

[
yi ln

(
yi

λ̂i

)
− (yi + r) ln

(
r + yi

r + λ̂i

)]
(2.23)
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2.1.3 Hypothesis Testing

The likelihood ratio test can be used to compare two nested models. Let β be a parameter
vector of regression coefficient and βr be a r-dimensional sub-vector of β. For testing the
significance of the r covariates the following hypothesis can be used

H0 : βr = 0 vs. H1 : βr 6= 0.

Under H1 the full model, denoted as A, is considered, while the smaller model, B, without
the r regression coefficients is considered under H0. Model B is nested within model A,
and the likelihood ratio test statistic can be calculated as

−2 lnλ = −2
(

lnL(β̂B)− lnL(β̂A)
)
. (2.24)

Under the null hypothesis the test statistic −2 lnλ are asymptotically χ2
r distributed

with r degrees of freedom, which is the difference in degrees of freedom from β̂A and β̂B
(Fahrmeir et al., 2013).

If the same covariates are used in fitting both a Poisson GLM and a negative binomial
GLM, the negative binomial GLM contains all the terms in the Poisson GLM, and the
models are thus nested. As stated earlier, the variance for the Poisson GLM and the
negative binomial GLM are λi and λi + λ2

i /r, respectively. By defining α = 1/r, the
variance for the negative binomial model can be expressed as Var[Yi]NB = λi + αλ2

i . For
α = 0, the variance is the same for both the models, and a likelihood ratio test with
the null hypothesis H0 : α = 0 can be used to compare the two regression models. The
alternative hypothesis is H1 : α > 0, and under H0 the test statistic, −2 lnλ, follows a
0.5(χ2

0 +χ2
1) = 0.5χ2

1 distribution. This can be taken into account by dividing the p-value
by 2 before evaluating the result (Zuur et al., 2009).
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2.1.4 Model Validation

The residual deviance is twice the difference between the log-likelihood of the observed
values yi and the log-likelihood of the fitted model. The expected mean from the model
fit is defined as λ̂i = exp(xTi β̂), which gives the residual deviance 2[L(y) − L(λ̂i)]. The
explained deviance can be used as a measure of goodness of fit, and is calculated as

null deviance - residual deviance

null deviance
· 100%, (2.25)

where the null deviance is the residual deviance in the model that only contains an
intercept (Zuur et al., 2009).

Another goodness of fit criteria is the Pearson statistic, which is Chi-squared distributed
with n−p degrees of freedom. The Pearson statistic, P , is found by squaring and summing
all the Pearson residuals, which are in general given as

ri =
yi − Ê[Yi]√

V̂ar[Yi]

, (2.26)

If the Pearson statistic P is larger than χ2
α,n−p for a significance level α, the null hypothesis

is rejected and the test indicates that the model does not fit with the observed distribution.
(Fahrmeir et al., 2013; Zuur et al., 2009).

The Akaike information criterion (AIC) is in general defined as

AIC = −2l(β̂) + 2p, (2.27)

where l is the log-likelihood and p is the number of regression parameters (without inter-
cept). If the model contains a dispersion parameter φ, the total number of parameter must
be increased with one, since the maximum likelihood estimator of φ should be substituted
into the model. For model selection the model with the lowest AIC is preferred. The
penalty term for the number of parameters are included in the AIC to prevent overfitting
(Fahrmeir et al., 2013).
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2.2 Models for Zero-Inflated Count Data

A large set of the reported lice numbers are zero, and alternative methods which can
deal with excessive number of zeroes are therefore fitted to the data. In this thesis, both
the zero-inflated and the zero-altered models for the Poisson and the negative binomial
model are used. These models performs two processes, one binomial logit model causing
zeroes and one Poisson or negative binomial model generating counts. The models will
be presented in more detail later in this subsection.

The distinctions between the Poisson and the negative binomial model are, as presented
in the section for the generalised linear model, the ability to handle overdispersion in the
count part. The zero-inflated Poisson (ZIP) is nested in a zero-inflated negative binomial
(ZINB) model, and can, as for the Poisson GLM and the negative binomial GLM, be
compared by the likelihood ratio test presented in Section 2.1.3. This also applies to the
zero-altered Poisson (ZAP) and the zero-altered negative binomial (ZANB) models (Zuur
et al., 2009).

The difference between the zero-inflated models and the zero-altered models is related to
how the zeroes are modelled. The zero-inflated model is a mixture model and can predict
zeros in both processes, while the zero-altered model is a two-part model, where one part
predicts zero and the other predicts non-zero counts with a truncated Poisson or negative
binomial model. The zero-inflated models distinguish between the type of zero; false zero
or true zero. According to Zuur et al. (2009), false zeroes can be due to observed errors,
a suitable habitat which is not used or poor experimental design and sampling practises
(design errors). The zero-altered models, also called hurdle models, does not distinguish
between types of zeros, only absence and presence.

Due to a lack of literature on the maximum likelihood estimates (MLE) for several of
these models, the MLE for the ZINB model and the hurdle models have been derived in
this thesis. The maximum likelihood estimate for the ZIP model is presented in NCSS
Statistical Software (2021). There also exists literature on the MLE for the ZINB model,
but with an other parameterization than used here. For the hurdle model, however, no
literature has been found on the derivation of the maximum likelihood estimates.

2.2.1 ZIP and ZINB Models

In the zero-inflated models, the zero process models the probability of observing a false
zero with a binomial logistic model and the count process generates a true zero or a
positive count. Let the probability of a false zero be π and g(y) be the probability mass
function for the Poisson distribution or the negative binomial distribution. Following
Zuur et al. (2009), the probability mass function for the zero-inflated models can then be
written as

f(yi) =

{
πi + (1− πi)g(yi = 0), yi = 0

(1− πi)g(yi), yi > 0.
(2.28)

By substituting g(y) with the probability mass function given in Equation (2.1), the pmf
for the zero-inflated Poisson model is obtained. By using the negative binomial probability
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mass function from Equation (2.12) instead, yi becomes a zero-inflated negative binomial
distributed variable.

The expected mean and the variance for the zero-inflated models can be derived by using
the basic rules E(Y ) =

∑
y=0 yf(y), Var(Y ) = E(Y 2)−E(Y )2 and Γ(y+1) = yΓ(y), where

f(y) is the probability mass function for the ZIP or the ZINB model. The expected mean
for both the ZIP and ZINB models can be expressed by E(Yi) = λi(1−πi), where λi is the
expected count from the Poisson model and the negative binomial model, respectively.
The variance for the ZIP model is in Zuur et al. (2009) given as Var(Yi) = (1−πi)(λi+πiλ2

i )

and the variance for the ZINB model is given as Var(Yi) = (1− πi)(λi +
λ2i
r

) + λ2
i + (π2

i +
πi). By substituting the obtained mean and variance of ZIP and ZINB, respectively, in
Equation (2.26), the Pearson residuals for the two zero-inflated models can be calculated
as

ri,ZIP =
yi − λ̂i(1− π̂i)√

(1− π̂i)(λ̂i + π̂iλ̂2
i )

(2.29)

ri,ZINB =
yi − λ̂i(1− π̂i)√

(1− π̂i)(λ̂i +
λ̂2i
r

) + λ̂2
i + (π̂2

i + π̂i)

. (2.30)

For both ZIP and ZINB, the linear predictor ηi = xTi β = β0 + β1xi1 + · · · + βpxip is
used to specify the systematic part in the count model and the log-link function links the
covariates with the mean. This gives the response function λi = exp(ηi) = exp(xTi β)for
the count part. The probability of a false zero from the logistic model may not include the
same covariates as for the count model. Therefore, the probability of a false zero given
by πi, is set to be a function of the intercept and q covariates zi1, zi2, . . . , ziq. Following
Zuur et al. (2009), and using the logit link function and the linear predictor φi = zTi γ,
the following relationship for the zero-part is obtained

πi =
exp(φi)

1 + exp(φi)
=

exp(γ0) exp(γ1zi1) · · · exp(γqziq)

1 + exp(γ0) exp(γ1zi1) · · · exp(γqziq)
. (2.31)

Assume that Yi is a zero-inflated Poisson distributed variable, then the likelihood function
for the ith observation can be given as

Li,ZIP (β,γ) = fZIP (yi|β,γ) =

{
πi + (1− πi) exp(−λi), yi = 0

(1− πi)λ
yi
i exp(−λi)

yi!
, yi > 0.

(2.32)

The response variables yi are assumed to be conditionally independent, and the likelihood
function for the ZIP model is given as LZIP (β,γ) =

∏n
i=1 Li,ZIP (β,γ). By taking the

logarithm of the likelihood, and replacing πi with µi
1+µi

, where µi = exp(zTi γ), the log-
likelihood function can be expressed as

lZIP (β,γ) =
n∑
i=1
yi=0

ln[πi + (1− πi) exp(−λi)] +
n∑
i=1
yi>0

ln

[
(1− πi)

λyii exp(−λi)
yi!

]

=
n∑
i=1
yi=0

ln[µi + exp(−λi)] +
n∑
i=1
yi>0

[yi ln(λi)− λi − ln(yi!)]−
n∑
i=1

ln(1 + µi). (2.33)
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The second order derivatives of the log-likelihood is needed to derive the asymptotic
distribution of the maximum likelihood estimates for β and γ. The first order derivatives
of the log-likelihood are given by

∂lZIP
∂β

= −
n∑
i=1
yi=0

xiλi
µi exp(λi) + 1

+
n∑
i=1
yi>0

(yi − λi)xi (2.34)

∂lZIP
∂γ

=
n∑
i=1
yi=0

ziµi exp(λi)

µi exp(λi) + 1
−

n∑
i=1

µi
1 + µi

zi. (2.35)

Thereby, the second order derivatives are

∂2lZIP
∂βm∂βn

=
n∑
i=1
yi=0

ximxinλi[(λi − 1)µi exp(λi)− 1]

[µi exp(λi) + 1]2
−

n∑
i=1
yi>0

λiximxin, m, n = 1, 2, . . . , p

(2.36)

∂2lZIP
∂γr∂γn

=
n∑
i=1
yi=0

zimzinµi exp(λi)

[µi exp(λi) + 1]2
−

n∑
i=1

zimzinµi
[1 + µi]2

, m, n = 1, 2, . . . , q (2.37)

∂2lZIP
∂βm∂γn

=
n∑
i=1
yi=0

ximzinµiλi exp(λi)

[µi exp(λi) + 1]2
, m = 1, 2, . . . , p n = 1, 2, . . . , q. (2.38)

Let β̂ and γ̂ be the maximum likelihood estimates for the parameters β and γ, respect-
ively, in the zero-inflated Poisson regression model. The asymptotically distribution of
the parameters β̂ and γ̂ are in NCSS Statistical Software (2021) given as

(
β̂
γ̂

)
∼ N

(β
γ

)
,

(
− ∂2lZIP

∂βm∂βn
− ∂2lZIP

∂βm∂γn

− ∂2lZIP

∂γn∂βm
− ∂2lZIP

∂γm∂γn

)−1
 , (2.39)

where ∂2lZIP

∂βm∂βn
is defined to be a (p × p) matrix including the second order derivatives in

Equation (2.36), where the (m,n)th entry is ∂2lZIP

∂βm∂βn
. Similarly, the (q× q) matrix ∂2lZIP

∂γm∂γn

includes the second order derivatives in Equation (2.37). The matrices ∂2lZIP

∂γn∂βm
and ∂2lZIP

∂βm∂γn

are respectively, (q×p) and (p×q), and contains the second order derivatives in Equation
(2.38).

Similarly as for zero-inflated Poisson, the parameter estimates β̂, γ̂ and r̂ for the zero-
inflated negative binomial model can be derived. The maximum likelihood estimates are
thus calculated by maximizing the likelihood function LZINB(β,γ, r) =

∏n
i=1 Li,ZINB(β,γ, r),

where

Li,ZINB(β,γ, r) =

πi + (1− πi)
(

r
λi+r

)r
, yi = 0

(1− πi) Γ(r+yi)
Γ(yi+1)Γ(r)

(
r

λi+r

)r (
λi
λi+r

)yi
, yi > 0.

(2.40)
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The log-likelihood lZINB(β,γ, r) =
∑n

i=1 lnLi,ZINB(β,γ, r) is derived as

lZINB(β,γ, r) =
n∑
i=1
yi=0

ln

[
πi + (1− πi)

(
r

λi + r

)r]
+

n∑
i=1
yi>0

[ln(1− πi) + li,NB(β, r)] (2.41)

=
n∑
i=1
yi=0

ln

[
µi +

(
r

λi + r

)r]
+

n∑
i=1
yi>0

li,NB(β, r)−
n∑
i=1

ln(1 + µi),

where li,NB(β, r) is the negative binomial log-likelihood for the ith observation expressed
in Equation (2.13), and the substitution πi = µi

1+µi
, where µi = exp(zTi γ), is used in

the last transition. The ZINB log-likelihood has also similarities to the ZIP likelihood in
Equation (2.33), and the last part

∑n
i=1 ln(1 + µi) is same in both likelihoods. By using

calculations from the negative binomial model and the ZIP model, in addition to a little
algebra, the score functions are derived as

sZINB(β) =
∂lZINB
∂β

=
n∑
i=1
yi=0

rr+1xiλi
(λi + r)(µi(λi + r)r + rr)

+
n∑
i=1
yi>0

[
rxi

yi − λi
λi + r

]
(2.42)

sZINB(γ) =
∂lZINB
∂γ

=
n∑
i=1
yi=0

µizi

µi +
(

r
λi+r

)r − n∑
i=1

µizi
1 + µi

. (2.43)

sZINB(r) =
∂lZINB
∂r

=
n∑
i=1
yi=0

rr
(

ln
(

r
λi+r

)
+ λi

λi+r

)
µi(λi + r)r + rr

+
n∑
i=1
yi>0

[
yi−1∑
j=0

1

j + r
+ ln r − ln(λi + r) +

λi − yi
λi + r

]
. (2.44)

The maximum likelihood estimates β̂, γ̂ and r̂ for the ZINB model follows the multivariate
normal distribution β̂γ̂

r̂

 ∼ N

βγ
r

 ,

F11 F12 F13

F12 F22 F23

F13 F23 F33

−1 , (2.45)

where F is the expected Fisher information matrix of β̂, γ̂ and r. The covariance matrix
in Equation (2.45) is equal to the inverse of E[H(β̂, γ̂, r)], where the observed Fisher
information matrix H(β̂, γ̂, r) contains the negative Hessian matrix of the log-likelihood
in Equation (2.42) (Fahrmeir et al., 2013). The (m,n)th entry for each of the elements in

15



the covariance matrix in Equation (2.45) can thus be calculated as

F11,mn = E

[
−∂

2lZINB
∂βm∂βn

]
= −

n∑
i=1
yi=0

rr+2ximxinλi [µi(1− λi)(λi + r)r + rr]

(λi + r)2[(µi(λi + r)r + rr)]2
,

+
n∑
i=1
yi>0

rλiximxin
λi + r

, m, n = 1, 2, . . . , p, (2.46)

F12,mn = E

[
−∂

2lZINB
∂βm∂γn

]
= −

n∑
i=1
yi=0

rr+1ximzinλiµi(λi + r)r−1

(µi(λi + r)r + rr)2
, (2.47)

m = 1, 2, . . . , p, n = 1, 2, . . . , q,

F13,m1 = E

[
−∂

2lZINB
∂r∂βm

]
=

n∑
i=1
yi=0

ximλir
r+1
[
(λi + r)

(
C1

(
ln r + r+1

r

)
− C2

)
− C1

]
(λi + r)2(µi(λi + r)r + rr)2

, (2.48)

m = 1, 2, . . . , p,

F22,mn = E

[
−∂

2lZINB
∂γm∂γn

]
= −

n∑
i=1
yi=0

zimzinµi

(
r

λi+r

)r
[
µi +

(
r

λi+r

)r]2 +
n∑
i=1

zimzinµi
[1 + µi]2

, (2.49)

m,n = 1, 2, . . . , q,

F23,m1 = E

[
−∂

2lZINB
∂r∂γm

]
=

n∑
i=1
yi=0

zimµir
rC3

(λi + r)r[µi(λi + r)r + rr]2
, m = 1, 2, . . . , q (2.50)

F33 = E

[
−∂

2lZINB
∂r2

]
= rr

n∑
i=1
yi=0

C3C2 −
[
(ln r + 1)C3 +

λ2i
r(λi+r)2

]
C1

C2
1

(2.51)

+
n∑
i=1
yi>0

(
E

[
yi−1∑
j=0

1

(j + r)2

]
− λi
r(λi + r)

)
,

where

C1 = µi(λi + r)r + rr,

C2 =
∂C1

∂r
,= µi(λi + r)r

(
ln(λi + r) +

r

λi + r

)
+ rr(ln r + 1)

C3 = ln

(
r

λi + r

)
+

λi
λi + r

.
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2.2.2 ZAP and ZANB Models

In the hurdle models all the zeros are treated equally. The zero-process models the probab-
ility of presence versus absence with a logistic model, while the count-process generates a
non-zero count with a truncated Poisson (ZAP) or a truncated negative binomial (ZANB)
model. Let the probability of absence (yi = 0) be defined by πi, and g(y) be the prob-
ability mass function for either the Poisson distribution given in Equation (2.1) or the
negative binomial distribution given in Equation (2.12). Following Zuur et al. (2009), the
probability mass function for the hurdle models can be written as

f(yi) =

{
πi yi = 0

(1− πi) g(yi)
1−g(yi=0)

, yi > 0.
(2.52)

Let the covariates xi and zi, with the regression parameters β and γ, be used in the
hurdle models as well. The linear predictors ηi = xTi β and φi = zTi γ links the covariates
and the regression parameters for the count model and the zero model, respectively. The
log-link function is used to link the count covariates with the expected mean and the
logistic link is used for the zero-part. The expected mean for observation i in the count-
part is thus calculated as λi = exp(ηi), and the probability of lice absence is modelled by
πi = 1

1+exp(φi)
(Cameron & Trivedi, 1998). This gives the following odds for a zero count

versus a positive count

πi
1− πi

=

1
1+exp(φi)

exp(φi)
1+exp(φi)

=
1

exp(φi)
= (exp(zTi γ))−1. (2.53)

By taking the logarithm of both sides, the logarithm of the odds for a zero count is

ln
(

πi
1−πi

)
= −zTi γ. The logarithm of the odds for a positive count ln

(
1−πi
πi

)
is thus given

by zTi γ.

The expected mean for ZAP and ZANB are in Zuur et al. (2009) formulated as

EZAP (Yi) =
1− πi

1− exp(−λi)
λi, (2.54)

EZANB(Yi) =
1− πi
1− P0

λi, P0 =

(
r

λi + r

)r
, (2.55)

where λi are the expected Poisson count and the expected negative binomial count, re-
spectively. Zuur et al. (2009) defines the variance for the two hurdle models as

VarZAP (Yi) =
1− πi

1− exp(−λi)
(λi + λ2

i )−
(

1− πi
1− exp(−λi)

λi

)2

, (2.56)

VarZANB(Yi) =
1− πi
1− P0

(
λ2
i + λi +

λ2
i

r

)
−
(

1− πi
1− P0

λi

)2

. (2.57)
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By substituting the mean and the variance in Equation (2.26), the following Pearson
residuals for the two hurdle models are obtained

ri,ZAP =
yi − 1−π̂i

1−exp(−λ̂i)
λ̂i√

1−π̂i
1−exp(−λ̂i)

(λ̂i + λ̂2
i )−

(
1−π̂i

1−exp(−λ̂i)
λ̂i

)2
, (2.58)

ri,ZANB =
yi − λ̂i(1− π̂i)√

(1− π̂i)(λ̂i +
λ̂2i
r

) + λ̂2
i + (π̂2

i + π̂i)

. (2.59)

Assuming that the response variables yi are conditionally independent zero-altered Pois-
son distributed (or zero-altered negative binomial distributed) variables, the maximum
likelihood estimates for β and γ (β, γ and r for ZANB) can be derived by maximizing the
log-likelihood function. The log-likelihood function for the ith observation from a hurdle
Poisson model is calculated as li,ZAP (β,γ) = ln (fZAP (yi)), which gives

li,ZAP (β,γ) =

{
ln(πi), yi = 0

ln(1− πi) + li,P (β)− ln(1− exp(−λi)), yi > 0,

=

{
− ln(1 + µi), yi = 0

ln(µi)− ln(1 + µi) + li,P (β)− ln(1− exp(−λi)), yi > 0,
(2.60)

where the substitution πi = 1
1+µi

with µi = exp(zTi γ) is used in the last transition, and

li,P (β) is the Poisson log-likelihood function for the ith observation in Equation (2.2).
Similarly, let li,NB(β, r) be the ith observation for the negative binomial log-likelihood
function in Equation (2.13). The log-likelihood function for the ith observation for the
hurdle negative binomial model can then be expressed as

li,ZANB(β,γ, r) =

{
− ln(1 + µi), yi = 0

ln(µi)− ln(1 + µi) + li,NB(β, r)− ln
(

1−
(

r
λi+r

)r)
, yi > 0.

(2.61)
The score functions are obtained by taking the partial derivatives of the log-likelihood with
respect to β, γ and r, by using the link functions λi = exp(xTi β) and µi = exp(zTi γ).
The score functions for the ZAP model are derived as

sZAP (β) =
∂l

∂β
=

n∑
i=1
yi>0

[
si,P (β)− λi exp(−λi)xi

1− exp(−λi)

]
=

n∑
i=1
yi>0

[
si,P (β)− λixi

exp(λi)− 1

]
, (2.62)

sZAP (γ) =
∂l

∂γ
=

n∑
i=1
yi>0

zi −
n∑
i=1

µi
1 + µi

zi, (2.63)

where si,P (β) is the ith element in the score function derived from the Poisson distribution
with respect to β, given in Equation (2.3). Similar, let si,NB(β) and si,NB(r) be the score
functions from the negative binomial distribution, given in Equation (2.14) and Equation
(2.15), respectively. The score function with respect to γ is the same for both the ZAP
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model and the ZANB model. The following score functions are derived for the ZANB
model

sZANB(β) =
∂lZANB
∂β

=
n∑
i=1
yi>0

[
si,NB(β) +

λir
r+1xi

(λi + r)[(λi + r)r − rr]

]
, (2.64)

sZANB(γ) =
∂lZANB
∂γ

=
n∑
i=1
yi>0

zi −
n∑
i=1

µi
1 + µi

zi, (2.65)

sZANB(r) =
∂lZANB
∂r

=
n∑
i=1
yi>0

si,NB(r) +
rr
(

ln
(

r
λi+r

)
+ λi

λi+r

)
(λi + r)r − rr

 . (2.66)

For the ZAP model, the second order derivatives does not depend on yi, so the expected
Fisher information matrix is equal to the observed Fisher information matrix, F(β̂, γ̂) =
E[H(β̂, γ̂)] = H(β̂, γ̂) (Fahrmeir et al., 2013). The negative Hessian matrix of the log-
likelihood can thus be used to obtain the asymptotically distribution of the ZAP model.
The zero-part and the count-part in the hurdle models are independent, such that ∂2l

∂β∂γ
=

∂2l
∂γ∂β

= 0. The asymptotically distribution of the ZAP models then simplifies to

(
β̂
γ̂

)
∼ N

(β
γ

)
,

(
−∂2lZAP

∂β∂β
0

0 −∂2lZAP

∂γ∂γ

)−1
 , (2.67)

where the second order derivatives with respect to β and γ are derived as

∂2lZAP
∂βm∂βn

=
n∑
i=1
yi>0

ximxinλi

(
1− (1− λi) exp(λi)− 1

(exp(λi)− 1)2

)
, m, n = 1, 2, . . . , p (2.68)

∂2lZAP
∂γm∂γn

= −
n∑
i=1

zimzinµi
(1 + µi)2

, m, n = 1, 2, . . . , q. (2.69)

For the ZANB model, the observed and expected Fisher information matrix is not equal,
and the expected value of the negative Hessian matrix of the log-likelihood needs to be
calculated. As for the ZAP model, the second derivatives across the zero-part and the
count-part are zero. The asymptotically result for the maximum likelihood estimated for
the negative binomial hurdle model is then given as

β̂γ̂
r̂

 ∼ N


βγ
r

 ,


E
[
−∂2lZANB

∂β∂β

]
0 E

[
−∂2lZANB

∂β∂r

]
0 E

[
−∂2lZANB

∂γ∂γ

]
0

E
[
−∂2lZANB

∂r∂β

]
0 E

[
−∂2lZANB

∂r∂r

]

−1 , (2.70)
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where

E

[
−∂

2lZANB
∂βm∂βn

]
= −

n∑
i=1
yi>0

rr+2ximxinλi [(1− λi)(λi + r)r − rr]
(λi + r)2[(λi + r)r − rr]2

,

+
n∑
i=1
yi>0

rλiximxin
λi + r

, m, n = 1, 2, . . . , p (2.71)

E

[
−∂

2lZANB
∂γm∂γn

]
= E

[
− ∂2lZAP
∂γm∂γn

]
=

n∑
i=1

zimzinµi
(1 + µi)2

, m, n = 1, 2, . . . , q. (2.72)

E

[
−∂

2lZANB
∂βm∂r

]
= −

n∑
i=1
yi>0

λir
r+1xim(λi + r)r−1

(
ln
(

r
λi+r

)
+ λi

λi+r

)
[(λi + r)r − rr]2

+
n∑
i=1
yi>0

λ2
i r
rxim

(λi + r)2[(λi + r)r − rr]
, m = 1, 2, . . . , p (2.73)

E

[
−∂

2lZANB
∂r2

]
= rr

n∑
i=1
yi=0

C3C2 −
[
(ln r + 1)C3 + λ2

r(λi+r)2

]
C1

C2
1

(2.74)

+
n∑
i=1
yi>0

(
E

[
yi−1∑
j=0

1

(j + r)2

]
− λi
r(λi + r)

)
,

where

C1 = (λi + r)r − rr,

C2 =
∂C1

∂r
,= (λi + r)r

(
ln(λi + r) +

r

λi + r

)
− rr(ln r + 1)

C3 = ln

(
r

λi + r

)
+

λi
λi + r

.
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2.3 Indicator Variables

Qualitative variables, such as delousing treatment and operating model, have no natural
scale of measurement. To account for the effect that qualitative variables may have on
the response, indicator variables which includes a set of levels can be assigned. Suppose
a response variable y is represented by two regression variables, x1 and x2. Let x1 be
quantitative and x2 be qualitative with two levels, A and B. The indicator variable takes
the values 0 and 1 to identify the classes of the regression variable x2, i.e.

x2 =

{
0, if the observation is from level A

1, if the observation is from level B.

The first-order model can then be written as y = β0 + β1x1 + β2x2 + ε, where ε is the
error term. In this model, the two response functions for x2 = 0 and x2 = 1 have the
same slope, β1, but different intercepts, β0 and β0 + β2, respectively. For both levels, the
variance of the errors, ε, is assumed to be the same. A change from level A to level B,
leads to a change of β2 in the expected mean E[x2]. Thus, the expected response functions
represents two parallel lines, where the parameter β2 expresses the difference in heights
between the two regression lines. If the regression lines are expected to differ in both
intercept and slope, it is possible to add a cross-product between x1 and the indicator
variable x2, i.e.

y = β0 + β1x1 + β2x2 + β3x1x2 + ε.

The parameter β2 still expresses the change in the intercept resulting from a change from
level A to level B, while β3 reflects the change in the slope associated with a change from
level A to level B (Montgomery & Peck, 1983).

For a qualitative variable with a levels, a − 1 indicator variables, which takes the values
0 and 1, are needed to represent the variable (Montgomery & Peck, 1983). Suppose a
qualitative variable with three levels, A, B and C, should be incorporated in the model.
Two indicator variables x1 and x2 are then required,

if the observation is from level A: x1 = 0, x2 = 0,

if the observation is from level B: x1 = 1, x2 = 0,

if the observation is from level C: x1 = 0, x2 = 1.

When a qualitative factor is included in the generalized linear model, the first level is used
as a reference and the remaining levels are interpreted relative to this level. Let x1 and x2

be as defined above and x3 be a quantitative variable. Assume that the linear predictor
is expected to only differ in intercept. Thus, the linear predictor can be expressed as ηi =
xTi β = β0+β1xi1+β2xi2+β3xi3, where level A is included in the intercept, xi1 = 1 if the ith
observation is from level B, xi2 = 1 if the ith observation is from level C and 0 otherwise.
For the Poisson regression with the log-link function, the expected mean are linked to
the covariates with E[Yi] = λi = exp(ηi) = exp(β0) exp(β1xi1) exp(β2xi2) exp(β3xi3). If
a observation yi changes from level A to level B and x3 is kept constant, the estimated
expected mean λi would increase with a factor exp(β1).
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2.4 Multicollinearity

When there is close to a linear dependence between some of the explanatory variables in
a regression model, the problem of multicollinearity occurs. This can lead to misleading
or incorrect conclusions based on the regression model, and one must therefore be aware
of possible multicollinearity during model building and variables selecting.

Consider the multiple regression model y = Xβ+ε, where y is a vector of n responses, X
is a (n×p) matrix of the explanatory variables, β is a vector of p unknown constants and
ε is a vector of n random errors, with εi ∼ NID(0, σ2). The problem of multicollinearity is
presented following Montgomery and Peck (1983). Assume that the explanatory variabels
has been centered and scaled to unit length, and that the model thus not contain a
intercept. XTX is then a (p × p) correlation matrix between the explanatory variables,
and the correlations between the variables and the response is the p dimensional vector
XTy. Let Xj denote the jth column of the X matrix. If there is a set of constants c1, c2,
. . . , cp, where at least one constant is not zero, and

p∑
j=1

cjXj = 0, (2.75)

the vectors X1, X2, . . . , Xp are linearly dependent. If Equation (2.75) is approximately
true for some subset of the columns of X, it will be a near linear dependency in XTX and
the problem of multicollinearity will occurs.

2.4.1 Variance Inflation Factor

There are several techniques for detecting multicollinearity, but the variance inflation
factor is used in this thesis. The variance inflation factors are defined as the diagonal
elements of the C = (XTX)−1 matrix, and are useful in detecting multicollinearity. Let
Cjj be the jth diagonal element of C. For a model, with only two explanatory variable
x1 and x2, the inverse of XTX is

C = (XTX)−1 =

[
1

1−r212
−r12
1−r212−r12

1−r212
1

1−r212
,

]
(2.76)

where r12 is the correlation between x1 and x2. The jth diagonal element of C = (XTX)−1

for models with several explanatory variables, is in Montgomery and Peck (1983) given
as

Cjj =
1

1−R2
j

, j = 1, 2, . . . , p, (2.77)

where R2
j is the coefficient of determination from the regression of xj on the remaining p−1

explanatory variables. If there is strong multicollinearity between xj and some subset of
the remaining explanatory variables, the value of R2

j is close to unity and Cjj will thus be
large. The variance of the jth coefficient is Cjjσ

2, where the variance inflation factor, Cjj,
measures the combined effect of the dependencies among the explanatory variables on the
variance of β̂j. If a variance inflation factor (VIF) exceeds 5, it indicates multicollinearity
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and the current regression coefficient is poorly estimated because of this (Montgomery &
Peck, 1983).

For categorical variable, a generalised variance inflation factor (GVIF) is calculated. This
gives a common GVIF value for each separate category type, such that the effect of the
different explanatory variables can be identified. Let the matrix of explanatory variables
be partitioned in two, X = [X1,X2], where X1 consists of r columns of X belonging to
the category of interest and X2 is formed by the remaining s = n − r columns. Follow-
ing O’Driscoll and Ramirez (2015), the generalised variance inflation factor can then be
defined as

GVIF([X1|X2]) =
det(XT

1 X1) det(XT
2 X2)

det(XTX)
. (2.78)

The generalised variance inflation factor can be interpreted in the same way as the variance
inflation factor by using the square of GVIF1/2df , where df are the number of coefficients
in the subset. Thus, if (GVIF1/2df )2 is less than 5, the factor indicates that the categorical
variable is not collinear with the remaining explanatory variables (Montgomery & Peck,
1983).

2.5 Hypergeometric Distribution

To evaluate the sample size used to calculate lice numbers, a hypergeometric distribution
is used. The hypergeometric distribution describes the probability of k successes in n
draws, without replacement, from a finite population of size N , wherein each draw is
either a success or a failure. The probability mass for a hypergeometric random variable
X is in Casella and Berger (2002) given as

P (X = k) =

(
m
k

)(
N−m
n−k

)(
N
n

) , k = 0, 1, . . . , n (2.79)

where k, N , n are as defined above andm is the total number of successes in the population
of size N .
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3 Dataset

3.1 Study Area

The stage model was studied in two different fjords in production area 7 (Figure 3.1),
which due to confidentiality in this thesis are named Fjord 1 and Fjord 2. In Fjord 1,
one site had been operated according to the stage model in three production cycles in the
period 2012 to 2018. Three different sites in Fjord 2 operated in the period 2015-2016, one
production cycle each with the stage model strategy. After seven to nine months at the
start sites, the salmon were split into different sites along the coast in production area 7
and 8. With the exception of one production cycle in Fjord 1, which was moved to another
site inside the fjord. This and later production cycles, which have been operated in one
of the two fjords throughout the production cycle were used as basis of comparison. Data
were also collected from some whole-generation productions at coast sites, that previously
have been used as growth sites. In total, data from 9 salmon farms in inner fjord systems
and 9 salmon farms along the coast from the period 2012-2021 were collected. Each of
these consisted of 5 to 16 cages, with a mean of 9.28. The data were studied at cage
level, and contained a total of 235 production cycles. The average duration time of the
production cycles was 68 weeks. The number of generations that were operated with start

Figure 3.1: Map of the study area. The fjords are located in production area 7 (inside black
square), which covers Bindal and the northern part of Trøndelag. The growth sites are
located in both production area 7 and 8. All circles, independent of color, illustrates salmon
farms. The green, yellow and red sections represent production areas, where production
area 1 is the section furthest south and production area 13 is the northernmost section.
(Modified from BarentsWatch, 2021b)
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sites in the fjord and growth sites along the coast was 99.

3.2 Preparation of the Dataset

Weekly data on lice numbers, sea temperatures, number of salmon, mean weight, biomass
and delousing treatments for each cage in operation in the period 2012 to 2021 were
gathered from the companies producing salmon in the study area. The lice numbers were
the average number of lice per salmon calculated on a sample of the salmon in the cage.
Every week at least 10 salmon in each cage were inspected, but the received lice numbers
were mainly based on a sample of 20 salmon. Under the weekly inspection, the number
of adult female lice, mobile lice, sessile lice and C. elongatus were counted. The sample
mean for each of these groups were reported as the lice numbers for the current week and
cage.

Data for each site were sent as separate documents and the formats varied for the different
sites. For sites in Fjord 1 and associated growth sites, there were separate datasets
for lice numbers, temperature, biomass and delousing treatments, while lice numbers,
temperature and biomass were in the same dataset for sites belonging to Fjord 2. Before
these could be merged into one full dataset, a number of adjustments were therefore made.
As an example of how the data has been reshaped, the R-code for the preparation of the
data from the growth sites belonging to Fjord 1 is presented in Appendix C. The division
of production cycles and the preparation of several explanatory variables are also included
in the Appendix.

3.2.1 Weekly Reported Data

To begin with, data for sites from the same fjord and stage (start, growth or whole-
generation) were merged. Let data from the start site in Fjord 1 be named dataset 1,
and data from the growth sites belonging to Fjord 1 be referred to as dataset 2. Similarly
for Fjord 2, dataset 3 contains data from the three start sites in Fjord 2, and dataset
4 contains data for the associated growth sites. In addition, data from the sites that
were operated according to the coast model were merged and stored in dataset 5. The
data from the whole-generation sites in the fjords were merged with the start cages from
the same fjord (dataset 1 and dataset 3), but marked with whole-generation. Before the
merge, the datasets were checked and updated so that lice numbers, sea temperature,
biomass, cage numbers and delousing data existed for all rows. The data from the start
sites were also analysed in Karlsen (2020), thus parts of the R-code from this project were
reused when dataset 1 and 3 were updated.

In cases where lice numbers had not been registered, the latest number of lice in the
same category (adult female/mobile/sessile/scottish) in that cage was used until next
registration. It was mainly only periods of one week that lice numbers were missing
before they were registered again. In 18 cases, the lice numbers were reported for the
last week in the production cycle, but not the sea temperature. In these cases, the sea
temperature was set to be the same as for the previous week in the same cage.
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The delousing treatments were divided into the five methods presented in Section 1.1.3:
bath treatment, oral treatment, freshwater treatment, lice flusher and thermic treatment.
Repeated treatments of the same method on the same cage within 3 days were counted as
one treatment. Based on this, the treatments were grouped into periods and the start date
and end date were updated. The duration of the treatment period was also calculated.
In cases where the treatment period extended over several weeks, as for oral treatment,
all weeks were registered with ongoing delousing. In this way, the explanatory variable
for treatment in the regression model covers all weeks where there has been a treatment,
and not only the first week in the treatment. The total number of delousing treatments
completed in the study period was 809, while the total number of weeks with ongoing
treatment was 1053. Since the number of treatments applied to a small proportion of the
data (6.8%), all the treatments were merged into one explanatory variable, Treatment, in
the regression analysis.

During operations, such as delousing and slaughter, the salmon were often moved to new
cages within the farm. During data recording, this was not taken into account, as the data
registered the salmon that were in the cage at the time of registration and not on the basis
of which cage the salmon originated. In order to follow the salmon from start to slaughter
at cage level, the cage numbers had to be manually changed such that they corresponded
to the movements that had taken place. For this, the companies sent timelines for each
production cycle, which gave an overview of all the relocations, and the cage numbers were
thus updated after these movements. These were not available for all production cycles,
so biomass and the number of salmon were also used to update the cage numbers after
the relocations. In cases where the salmon were split into two cages, a new cage index was
made, and the week and duration of the production cycle were updated such that they
matched the original cage. The cage number for the start cages, which was used in the
analysis in Karlsen (2020), were already updated, but the cages at the whole-generation
sites and the growth sites had to be updated.

3.2.2 Merging Start and Growth Stages

The cages at the start site and the growth site had to be linked together with a cage index
before the data from the start cage and the growth cage could be merged. Two variables
Start locality and Start cage were created, which referred to the site and cage the salmon
originated. For the start sites (dataset 1 and dataset 3), these two variables were the
same as the current site and cage. The start cages for the growth cages in dataset 4 were
manually added in a new column in the excel documents based on received timelines over
the production cycles. In dataset 2, biomass and number of salmon were used to link the
growth cages with the original cages at the start site. As the data for the growth cages
from Fjord 1 were spread over several sheets in excel, an overview of the corresponding
start cage and site for each of the growth cages was made in an excel document. This
was then added to the original dataset 2. Dataset 1 and 2, which contains the entire
production cycle for all the generation deployed in Fjord 1, were merged together into
dataset 6. Dataset 3 and dataset 4 was merged to dataset 7, which contains the entire
production cycle for all the generations deployed in Fjord 2.

The number of weeks the salmon have been in the sea was also necessary to include as
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a variable in the analysis. In order to find this, the data had to be sorted by start cage
and date. To comply with the ISO 8601 standard (International Organization for Stand-
ardization., 2019), the date on Thursday in the current week was stored in the variable
date. The data were grouped by operating model and start cage, and arranged by the
date. If the difference in the date were larger than seven days, a new production cycle
was started. For each production cycle the start and end dates were set, in addition to
the duration of the production cycle. The variable ProductionWeek was found for each
week by subtracting the start date of the production cycle from date. In several cases,
the growth cage contained salmon from two different start cages, and thus from two dif-
ferent productions. Therefore, each of the starting cages of the growth cage was handled
separately during the division of the production cycles.

3.2.3 Environmental Data

By merging dataset 5, 6 and 7, all the data gathered from the companies producing
salmon in the study area were collected in one common dataset, referred to as dataset
8. According to Torrissen et al. (2013), the density of salmon farms has a clear effect
on the levels of sea lice at the individual sites within an area. Therefore, the distance
to the nearest site and the number of sites within a radius of 10km were calculated. To
get the coordinates of the salmon farms in the study area, the dataset ”lice per salmon”
from BarentsWatch (2021a) was downloaded for the period 2012-2021. The dataset was
filtered such that only the 18 sites which are studied, were included. All the unique rows
in terms of site, latitude and longitude coordinates were extracted and stored as a separate
dataset, denoted dataset 9. There were several salmon farms in the study area that were
not included in the analysis, so an overview of all salmon farms in production areas 7 and
8 was downloaded from Fiskehelsedirektoratet (2021), and stored in dataset 10.

The distance from the sites in dataset 9 to each of the 158 salmon farms in dataset 10,
were estimated by using the functions distm() and distVincentyEllipsiod() from the
Geosphere package (Hijmans, 2019). The function distVincentyEllipsiod() estimates
the shortest distance between two points, and assumes that the earth is an ellipsoid
(Hijmans, 2019). The salmon farms that were registered with a distance of less than 10
km from one of the sites in dataset 9, were investigated if they had been in operation
during the study period. The reported lice numbers for the last 10 years for all salmon
farms in Norway are stored in Barentswatch’s database (BarentsWatch, 2021a). Thus, the
dataset ”lice per salmon” was examined for each of the salmon farms which were closer
than 10km from one of the studied sites. For 3 of the sites in dataset 10, no data had been
registered in the period 2012-2021. These salmon farms were thus removed from dataset
10. The smallest distance to the remaining salmon farms and the number of salmon
farms within a radius of 10km were added to dataset 9 with the variables MinDist and
Neighbours, respectively. The distance from the site to the coastline was also found, as
this could be a factor that affected the number of lice. By using the function getbb() in
the R-package osmdata, the coastline data for Trøndelag and Nordland were constructed
(Padgham et al., 2017). To measure the distance from each site to the coastline, the
R-function dist2Line() in the Geosphere package was used (Hijmans, 2019). The result
was stored in the variable Distance and added to dataset 9. Finally, the environmental
data in dataset 9 was added to dataset 8 by the site variable.
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Salinity data were not available for all sites in the dataset, and thus could not be included
as a variable in the regression analysis. Instead, an indicator variable Location was created,
which took into account where the salmon farm was located. Salinity data were available
for three sites in each of the two fjords and for three sites along the coast. These were
thus studied, and it was found that there were large variations in the salinity data for the
different salmon farms. Due to different salinity inside the fjords, the location indicator
was divided into part A and B, based on how far into the fjord the site was located. The
sites in the innermost part of the fjord were included in part A, while the sites further
out in the fjord were included in part B. The average salinity at each of the locations are
presented in Table 3.1. From the table, Fjord 1A and Fjord 2A stand out with lowest
salinity, while Fjord 1B and Fjord 2B have relatively similar salinity as the sites along
the coast.

Table 3.1: Average salinity at the different locations in the dataset

Location Fjord 1A Fjord 1B Fjord 2A Fjord 2B Coast
Salinity mean 8.41‰ 28.67‰ 13.10‰ 34.12‰ 32.20‰

3.2.4 Response Variable

The reported lice numbers from the salmon farms were the average of lice per salmon
calculated on a sample of usually 20 salmon in the cage. The total number of lice counted
on twenty salmon or the estimated total number of lice in the cage were used to get
the response variable as an integer. The estimated total number of lice in the cage was
calculated by multiplying the number of salmon in the cage by the reported lice number.
It is the adult female lice that are most important to avoid, as it is these that multiply
further. Due to many registrations with zero adult female lice, a response variable that
included both adult lice and the developmental stage before the lice becomes fully grown
were tested. In this way, one could achieve a smaller proportion of zeros in the response
variable, higher lice numbers and possibly more changes from week to week. Thus, both
adult female lice and all mobile lice, which then include both preadult and adult lice
regardless of sex, were tested as response variables.

The reported lice numbers of adult female lice (AdultFemaleLice) during the study period
are presented together with the two others response variables for adult female lice in Figure
3.2. The counted number of adult female lice on 20 salmon (CountAdultFemale) are in the
middle and the estimated total number of adult female lice in the cage (AdultFemaleCage)
are at the bottom. The lice numbers have been studied at cage level, and there were
therefore several registered lice numbers from each site for each week. The figure does
not show all the registered data points, as there is a large amount of data points in a
small time interval and points with the same value overlap. The data points are therefore
made partially transparent to give an indication of whether there are overlapping points.
The lice numbers of all mobile lice, AllMobile, were calculated as the sum of the reported
lice numbers of adult female lice and mobile lice. The count of all mobile lice on 20
salmon (CountAllMobile) and the estimated total number of all mobile lice in the cage
(AllMobileCage) are plotted together with AllMobile in Figure A.1 in the Appendix.
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Figure 3.2: The reported lice number of adult female lice (top), the counted number of
adult female lice on twenty salmon (middle) and the estimated total number of adult female
lice (bottom) for each cage plotted against time. To visualize overplotting, the data points
are partially transparent. The data points with the lightest blue color indicates a single
data point, while a darker blue color indicates overlapping points.

3.2.5 Periods of High Lice Pressure

To check for outliers and other unexplained records before the analysis, the different
variables in the dataset were plotted and compared with other variables. The term lice
pressure is used to describe the lice situation, and indicates whether there are high incid-
ences of lice or not. In some periods the lice numbers were much higher than in the rest
of the data, and are in this thesis referred to as periods of high lice pressure. To avoid
that this periods would affect all the explanatory variables in the regression analysis, an
indicator variable for the high period was added to the regression model. It was set to
1 for periods with high lice pressure and 0 otherwise. One variable was created for the
model with adult female lice as response variable and one for the model with all mobile
lice as response variable, as the periods of high lice pressure were not exactly the same.

The periods were determined from the plot of the weekly reported lice numbers of adult
female lice and all mobile lice, respectively, during the study period (Figure 3.3). Weeks
with a reported sample mean of adult female lice larger than 3 or a sample mean of all
mobile lice larger than 10 were considered to have high lice pressure, and were marked
as high periods in Figure 3.3. The high periods for adult female lice and all mobile lice
corresponded well, with the exception of a small period at the end of 2017, when there
was only high lice pressure of adult female lice and not all mobile lice. The periods of high
lice pressure were also a few weeks longer for all mobile lice than for only adult female
lice.

The time plot of the reported lice numbers of adult female lice in Figure 3.2, indicated
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Figure 3.3: Weekly reported lice number of adult female lice (top) and all mobile lice
(bottom) in each cage during the study period. The red data points represent data from
the periods with high lice pressure and the blue data points the rest of the data.

that there was a small proportion of the data that had lice number of adult female lice
above 3. By marking the weeks which included lice numbers above this limit as a high
period, cages with normal lice numbers these weeks were also marked. To avoid this, one
could have marked only those cages with abnormally high lice numbers as HighPeriod.
The reason for these high lice numbers was unknown, so it could be that all the cages were
affected, but that the composition of other factors had limited the number of lice. There
were fewer registrations with zero mobile lice at the turn of the year 2014/2015, than for
the rest of the study period. This supported the assumption that all cages were affected,
and all lice numbers in these high periods were thus marked with high lice pressure.

3.2.6 Missing Data

The dataset lacked 5 weeks for 16 cages operated after the fjord model. This applied to
production week 55− 61 in year 2020. These were not included in the analysis, but were
included with empty values when the duration of the production cycles was determined.
For the cages operated after the coast model, no lice numbers were received for C. elong-
atus. This affected the visualization of C. elongatus in Section 4, but the analysis was not
affected by this, as it was a regression model for the salmon lice that was fitted.

3.3 The Full Dataset

The full dataset contained weekly data for each cage in operation at the studied sites
since 2012 (2015 for Fjord 2). The variables used in the analysis with explanation and
units are presented in Table 3.2.
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Table 3.2: Variables used in the analysis with explanation and units

Variable name Explanation of variable
AdultFemaleLice Lice number of adult female lice - Reported average of adult

female lice calculated from a sample of at least 10 salmon
MobileLice Lice number of mobile lice - Reported average of mobile lice

calculated from a sample of at least 10 salmon
AllMobile Lice number of all mobile lice - The sum of AdultFemaleLice and

MobileLice
SessileLice Lice number of sessile lice - Reported average of sessile lice cal-

culated from a sample of at least 10 salmon
C.elongatus Lice number of Caligus elongatus - Reported average of Caligus

elongatus calculated from a sample of at least 10 salmon
CountAdultFemale The count of adult female lice on a sample of 20 salmon

(Calculated as AdultFemaleLice · 20)
CountAllMobile The count of all mobile lice on a sample of 20 salmon

(Calculated as AllMobile · 20)
AdultFemaleCage The estimated total number of adult female lice in the cage

(Calculated as AdultFemaleLice · NumberOfFish)
AllMobileCage The estimated total number of all mobile lice in the cage

(Calculated as AllMobile · NumberOfFish)
Year Year of the observation, 2012-2021
Week Week number, 1 to 52 (53 in 2015 & 2020)
SeaTemperature Sea temperature, °C
Salinity Salinity at the site, ‰
Weight Average weight of the salmon, g
Biomass Biomass in the cage, metric ton
NumberOfFish Number of salmon in thousand
OperatingModel Operating method, coded as an indicator variable:

StageModel, FjordModel, CoastModel
Stage Stage in production, coded as an indicator variable:

start, growth, normal (whole-generation),
Location The location of the salmon site, coded as an indicator variable:

Fjord1A, Fjord1B, Fjord2A, Fjord2B, Coast
LastWeek Last week’s reported lice number of all mobile lice (both adult

female lice and mobile lice)
Method Delousing method used, divided into bath, oral, freshwater,

thermic and lice flusher
Treatment Delousing indicator variable, coded as: 0 - no treatment, 1 -

ongoing treatment
ProductionWeek Number of weeks since the smolts were deployed, 0-89
Distance Distance from the salmon farm to the coastline
MinDist Distance to the closest salmon farm
Neighbours Number of salmon farms within a radius of 10km
HighPeriod Periods with high lice pressure (defined in Sec 3.2.5), coded as

an indicator variable: 0 - normal, 1 - high lice pressure
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4 Visualization of the Data

In this section, a presentation of the data is given in the form of summary statistics and
visualizations. To get most information from the summary statistics of the lice numbers,
the zeroes have been disregarded when the summary has been retrieved. The summary
statistics for lice abundance and several other quantities are presented in Table 4.1. The
percent of zeros in each lice group are given in parentheses.

Table 4.1: Summary statistics for various quantities in the study period.

Variable Mean 1st Qu. Median 3rd Qu. Min. Max.
AdultFemaleCage* (50.70%) 43805 8488 23365 52156 169 1298430
AllMobileCage* (30.64%) 128918 14716 48966 145644 874 4418843
AdultFemaleLice* (50.70%) 0.32 0.07 0.20 0.40 0.007 8.95
MobileLice* (39.9%) 0.76 0.05 0.3 0.88 0.007 23.7
SessileLice* (68.8%) 0.39 0.05 0.15 0.40 0.005 23.3
C.elongatus* (80.9%) 0.11 0.05 0.10 0.15 0.009 0.95
NumberOfFish (in 1000) 138.3 113.9 142.7 161.5 0.564 372.5
Weight (gram) 1727 523 1153 2723 68.8 7291
Biomass (metric ton) 231.9 68.7 146.7 368.0 0.349 1075
SeaTemperature (°C) 8.2 6.0 7.8 10.4 3.0 16.1

*: Without zero counts, the percent of zeros are given in parentheses

The total number of salmon and the estimated total number of salmon lice in the study
area, both in millions, are plotted against time in Figure 4.1. Both the estimated number
of adult female lice and all mobile lice (pre-adult and adult lice) in the cage are plotted.
The band above the x-axis shows the number of cages treated against salmon lice, where
darker colors indicates that a higher number of cages were treated and black equals 15-19
cages treated. In Figure A.2 in the Appendix, the total number of salmon lice in the
study area grouped into adult female lice, mobile lice and sessile lice are presented. The
total number of salmon treated against salmon lice during the study period is presented
in Figure A.3 in the Appendix.

The amount of salmon varied throughout the study period and reached a small peak each
year. The time of year the smolts were deployed varied for the various productions in the
dataset, but most productions were started in the spring. During the study period, there
were always some cages in the data set that were in operation and contained salmon.
From Figure 4.1, the salmon production was highest for the period 2016-2018, and it was
for this period that most data had been received. The periods with high lice pressure
presented in Figure 3.3 corresponds to the high peaks with all mobile lice in year 2015
and 2016/2017 in Figure 4.1. The fact that both adult female lice and all mobile lice
fluctuated equally throughout the study period confirmed that both a regression model
for adult female lice and for all mobile lice could be used to model the lice pressure in the
study area.

33



Figure 4.1: Total number of salmon and salmon lice in the study area during the period
2012-2021. The total numbers are found by summarising over all cages in the study area.
The number of salmon lice in each cage is estimated as the reported lice number multiplied
with the number of salmon in each cage. The band above the x-axis shows the number of
cages treated against salmon lice, where white indicates that zero cages have been treated
and black indicates that 15-19 cages have been treated. *The 13 points above the scale
are; 13, 17, 22, 26, 24, 24, 13, 15, 14, 18, 16, 14 and 16 millions pre-adult and adult lice
in year/week 2014/41, 2014/44 - 2014/48, 2016/39, 2016/42 and 2016/44 - 2016/48,
respectively.

The weekly reported lice numbers of adult female lice, all mobile lice and C. elongatus for
each cage in operation have each been plotted against the explanatory variables used in
the analysis. The reported lice numbers of mobile lice and sessile lice were not included
in the visualization, as they were not used in the analysis and it was expected that they
had a relatively similar trend as adult female lice and all mobile lice. All the different
development stages of salmon lice were visualized in Karlsen (2020), but there were no
remarkable differences in the trend for the different stages of the salmon lice. The visu-
alization of C. elongatus was included as this behaved differently from the salmon lice.
The data were grouped after the indicator variable HighPeriod, so that the effect of the
various variables both with and without the period of high lice pressure became visible.

The variables AdultFemaleLice and allMobile included 15596 observations each, which led
to an overlap of the data points when plotted against the various explanatory variables.
In order to be able to distinguish between overlapping points and individual points, the
data points were made partially transparent. This only differed between the degree of
overlap where there were fewer than 4 overlapping points, and for most points there was a
greater degree of overlap. To get a clearer indication of how the lice numbers were related
to the various explanatory variables, the explanatory variables were divided into intervals
and an average for each of these interval was calculated. The average lice number, for
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each of the explanatory variables, is plotted as a line together with the lice numbers below
1 adult female lice and 2 mobile lice (including adult female lice) in Appendix A.

In Figure 4.2, the weekly reported lice numbers of adult female lice, all mobile lice and
C. elongatus are plotted against the explanatory variable SeaTemperature. Neither the
salmon lice nor the C. elongatus seemed to be affected of the sea temperature largely, but
the reported lice numbers were a bit smaller for sea temperatures below 4°C and above
14°C. The average of AdultFemaleLice and allMobile for each degree Celsius is plotted
together with the lice numbers in Figure A.4 in the Appendix. There were no major
differences in the average for the different sea temperatures.

Figure 4.2: The weekly reported lice numbers of adult female lice, all mobile lice and C.
elongatus for each cage in operation plotted against the sea temperature (°C). The red data
points represent data from the period with high lice pressure and the blue points the rest
of the data. To visualize overplotting, the data points are partially transparent.

In Figure 4.3, box-plots of the explanatory variable Location and the weekly reported
lice number of adult female lice, all mobile lice and C. elongatus are presented. The
salmon lice numbers seemed to be least for Fjord 1A and Fjord 2A, which is the inner
part of the two fjords. For the period with normal lice pressure (HighPeriod=0), there
were no clear differences in the lice numbers between coast sites and the sites in the outer
parts of the fjords (Fjord 1B and Fjord 2B). For the period with high lice pressure, the
highest lice numbers were observed at the coast and in Fjord 1B. There were no salmon
production in Fjord 1A during the periods with high lice pressure, so Fjord 1A is therefore
not represented for HighPeriod=1. The average lice number of adult female lice and all
mobile lice for coast sites and Fjord 1A were, according to Figure A.5 in the Appendix,
highest. Most of the data from Fjord 1A were not zero, so the average became high
even though no particularly high lice numbers were registered. The median of the lice
numbers in Fjord 2A was zero, and the median for Fjord 1B and 2B were close to zero.
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The main part of the lice numbers from these locations were low, but both Fjord 1B and
2B had cases where the lice number deviated strongly from the average. From Figure 4.3,
it seemed to be most C. elongatus in Fjord 1B and along the coast. Note that the lice
numbers of C. elongatus were below 1 lice per salmon in the entire data set, while the
maximum lice number of adult female lice was 9 lice per salmon. Thus, the C. elongatus
did not seem to be as big a problem as the salmon lice.

Figure 4.3: The weekly reported lice numbers of adult female lice, all mobile lice and C.
elongatus for each cage in operation plotted against the explanatory variable Location in a
box-plot. The explanatory variable differs between whether the site was located along the
coast or where in Fjord 1 or Fjord 2 it was located. Part A is the innermost part of the
fjords where the salinity is lowest, and part B is the outer part of the fjords. The red data
points represent data from the period with high lice pressure and the blue points the rest
of the data.

In Figure 4.4, box-plots of the explanatory variable OperatingModel and the weekly re-
ported lice numbers of adult female lice, all mobile lice and C. elongatus are presented.
When focusing on the period with normal lice pressure, there were no clear differences in
the lice numbers between the various operating models. The inner quartile range for all
appeared to be approximately 0 and all operating methods had cases of lice up to 3 adult
female lice per salmon and 10 mobile lice per salmon, respectively. In the high period,
there were a little more differences between the various operating methods. The lice num-
bers for the coast model were most often low, but some lice numbers were very high. The
stage model and the fjord model had several cases with lice, but the stage model did not
have as high lice numbers as the highest registered numbers for the coast model. Lice
numbers for C. elongatus had not been received for cages operated after the coast model,
and is therefore not represented in the figure. The average lice number of adult female
lice and all mobile lice for each of the operating models is presented in Figure A.6 in the
Appendix. The average was highest for the coast model and lowest for the fjord model.
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The medians of AdultFemaleLice for the stage model and the fjord model were zero. This
indicated that there were normally least lice on the salmon that were operated in inner
fjord systems throughout production.

Figure 4.4: The weekly reported lice numbers of adult female lice, all mobile lice and C.
elongatus for each cage in operation plotted against the explanatory variable Operating-
Model in a box-plot. The red data points represent data from the period with high lice
pressure and the blue points the rest of the data.

In Figure 4.5, the weekly reported lice numbers of adult female lice, all mobile lice and
C. elongatus for each cage in operation are each plotted against the explanatory variable
Week. There appeared to be less lice during a period in the summer and greatest lice
pressure in the fall. The average lice number of adult female lice and all mobile lice for
each week are presented in Figure A.7 in the Appendix. The average shows the same
trend as Figure 4.5, and the year could be divided into three parts according to the lice
numbers. The lice pressure was lowest in the middle of the year, from around week 14 to
week 32. In late summer and autumn, the lice pressure was highest, before it decreased
when winter came. According to Figure 4.5, there were no major changes in lice number
for the C. elongatus during the study period, but it seemed to fluctuate slightly throughout
the year.

In Figure 4.6, the weekly reported lice numbers of adult female lice, all mobile lice and
C. elongatus for each cage in operation are each plotted against the explanatory variable
NumberOfFish. The number of salmon in a cage decreased slightly each week, and there
were usually no major changes in the number of salmon during a production. From
Table 4.1, the average number of salmon in a cage was 138.3 thousand, and the 1st and
3rd quartile were 113.9 and 161.5 thousand, respectively. The number of salmon lice
tended to increase up to around 150 thousand salmon, before it decreased with increasing
number of salmon. In some cases, there were cages with a much higher number of salmon
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Figure 4.5: The weekly reported lice numbers of adult female lice, all mobile lice and C.
elongatus for each cage in operation plotted against the week number. The red data points
represent data from the period with high lice pressure and the blue points the rest of the
data. To visualize overplotting, the data points are partially transparent.

Figure 4.6: The weekly reported lice numbers of adult female lice, all mobile lice and C.
elongatus for each cage in operation plotted against the number of salmon in the cage,
given in thousand. The red data points represent data from the period with high lice
pressure and the blue points the rest of the data. To visualize overplotting, the data points
are partially transparent.
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than usual, and for these the lice numbers seemed to increase with increasing numbers
of salmon. Quite similar to the salmon lice, the C. elongatus numbers were highest for
100-170 thousand salmon, which covers the deployed amount of salmon in most of the
cages in the dataset.

The number of salmon was divided into intervals of 21 thousand, and an average lice
number for each of the intervals were calculated and presented in Figure A.8. The average
curve indicated a different relationship than assumed from Figure 4.6, as it appeared
that the lice number decreased with the number of salmon. The cages studied usually
contained between 100 and 200 thousand salmon, but under deploying, transport and
slaughtering there could be large changes in the number of salmon in a cage. These were
only temporary changes that last until all the salmon had been moved or slaughtered, and
only applied to a small part of the data. There were therefore not enough data to make a
representative average for the cages with less than 80 thousand salmon or for cages with
over 200 thousand salmon. Due to this and the low change in number of salmon in the
cage throughout a production, NumberOfFish was not a preferred explanatory variable.

In Figure 4.7, the weekly reported lice number of adult female lice, all mobile lice and
C. elongatus for each cage in operation are each plotted against the explanatory variable
Weight. The salmon lice numbers tended to increase with increasing weight up to 3kg and
then decreases with increasing weight. It was a peak in the beginning, which seemed to
be from one of the periods of high lice pressure, and was thus not necessarily common for
the majority. C. elongatus behaves differently than salmon lice, and for this the highest

Figure 4.7: The weekly reported lice numbers of adult female lice, all mobile lice and C.
elongatus for each cage in operation plotted against the average weight of the salmon in
the cage, given in gram. The red data points represent data from the period with high lice
pressure and the blue points the rest of the data. To visualize overplotting, the data points
are partially transparent.
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lice numbers had been registered for salmon below 2 kg. The average lice number of adult
female lice and all mobile lice calculated for every 200 gram are presented in Figure A.9
in the Appendix. The average seemed to increase with increasing weight, as indicated by
Figure 4.7, but after the highest average value were reached, around 3500g, the average
did not decrease but fluctuate. It also seemed to be fewer cases with absence of salmon
lice on salmon larger than 3kg.

In Figure 4.8, the weekly reported lice numbers of adult female lice, all mobile lice and
C. elongatus for each cage in operation are each plotted against the explanatory variable
Biomass. The biomass are the total weight of salmon in the cage, and was calculated
as NumberOfFish multiplied with Weight. The salmon lice number seemed to increase
with increasing biomass up to 500 metric ton, and for biomass above 500 metric ton
there were fewer cases of zero adult female lice. Thus, the lower limit of the salmon lice
seemed to increase with increasing biomass. The biomass were divided into intervals of 20
metric ton, and the average of adult female lice and all mobile lice for each of the interval
were calculated and plotted in Figure A.10 in the Appendix. The average increased with
increasing biomass up to 500 metric ton and then fluctuated before it increased for the
largest biomasses.

Figure 4.8: The weekly reported lice numbers of adult female lice, all mobile lice and
C. elongatus for each cage in operation plotted against the biomass of the cage, given in
metric ton. The red data points represent data from the period with high lice pressure and
the blue points the rest of the data. To visualize overplotting, the data points are partially
transparent.

In Figure 4.9, the weekly reported lice number of adult female lice, all mobile lice and
C. elongatus for each cage in operation are each plotted against the explanatory variable
ProductionWeek. The figure indicated the same as mentioned for Figure 4.7, the salmon
lice numbers had a peak in the beginning, and the lice numbers increased with increasing
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weeks up to around 60 weeks. It was expected that the salmon weight and the number
of weeks since deployment correlate positively, since the salmon weight increases with
time. For the C. elongatus, the lice numbers seemed to peak after around 25 weeks in
production and then, with some exceptions, decrease again. The average lice number of
adult female lice and all mobile lice for each production week are plotted with the lice
numbers in Figure A.11 in the Appendix. The average values of the lice numbers were
low until they increased rapidly in the middle of the production, from around production
week 40 to production week 55. After this, the average of adult female lice fluctuated
around 0.4 adult female lice per salmon.

Figure 4.9: The weekly reported lice numbers of adult female lice, all mobile lice and C.
elongatus for each cage in operation plotted against number of weeks since deployment.
The red data points represent data from the period with high lice pressure and the blue
points the rest of the data. To visualize overplotting, the data points are partially trans-
parent.

In Figure 4.10, box plots of the explanatory variable Treatment and the weekly reported
lice numbers of adult female lice, all mobile lice and C. elongatus for each cage in operation
are presented. The indicator variable Treatment is 1 if a delousing method has been used
and 0 otherwise. One interesting result was that AdultFemaleLice and allMobile were
highest for no treatment (Treatment0), especially for the high period. The lice numbers
that were registered the week the treatment started could have been counted after the
end of the treatment, and the lice numbers could thus have been reduced as a result of the
delousing. In such situations, it is natural that the lice numbers were higher in the week
before the delousing treatment. There were no clear differences in ongoing treatment
or none treatment for C. elongatus. The average lice number of adult female lice and
all mobile lice for no treatment and ongoing treatment are presented in Figure A.12 in
the Appendix. The average was highest for ongoing delousing treatment (Treatment1),
which is natural since there are cages with high lice numbers that tend to be treated
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against salmon lice. It is not common to delouse a cage with zero lice, so most of the lice
numbers for ongoing delousing treatment were greater than zero. The average for each
of the delousing methods are also presented in Figure A.12 in the Appendix. The bath
treatment appeared to be the delousing methods that had been used for cages with highest
lice pressure, while oral treatment had been used for cages with lowest lice pressure. This
is also related to when the cages has been deloused, as before 2016 only bath and oral
treatment were used to delouse the studied cages.

Figure 4.10: The weekly reported lice numbers of adult female lice, all mobile lice and C.
elongatus for each cage in operation plotted against the delousing indicator variable in a
box-plot. Treatment0 indicates that the cage not had been deloused the current week, while
Treatment1 indicates that there was an ongoing treatment. The red data points represent
data from the period with high lice pressure and the blue point the rest of the data.

In Figure 4.11, the weekly reported lice numbers of adult female lice, all mobile lice
and C. elongatus for each cage in operation are each plotted against the explanatory
variable Distance. With the exception of one site, the distance from the sites to the
coastline was less than 300m. The salmon lice number tended to decrease with increasing
distance for the sites below 300m. For the site 1650m from the coastline, the lice number
increased a bit compared to the lice numbers from the sites 300m from the coast. There
were no linear trend between the lice numbers of C. elongatus and the distance to the
coastline. The average lice number of adult female lice and all mobile lice for every 150
meter from the coastline, plotted in Figure A.13 in the Appendix, indicated the same as
mentioned above. The lice number decreased with increasing distance from the coastline,
but increased somewhat again for the salmon farm far from the coastline.

In Figure 4.12, the weekly reported lice number of adult female lice, all mobile lice and
C. elongatus for each cage in operation are each plotted against the explanatory variable
MinDist, which contains the distance to the nearest salmon farm in meters. The smallest
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Figure 4.11: The weekly reported lice numbers of adult female lice, all mobile lice and C.
elongatus for each cage in operation plotted against the distance from the salmon farm to
the coastline, given in meter. The red data points represent data from the period with high
lice pressure and the blue points the rest of the data.

Figure 4.12: The weekly reported lice numbers of adult female lice, all mobile lice and
C. elongatus for each cage in operation plotted against the distance to the nearest salmon
farm, given in meter. The red data points represent data from the period with high lice
pressure and the blue points the rest of the data. To visualize overplotting, the data points
are partially transparent.
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distance to the nearest salmon farm for the studied sites was 794 meter and the longest
distance was 9334 meter. There were no clear trend between the distance and the salmon
lice, but it seemed like the lice pressure was highest for sites with neighbours within 5km.
For the C. elongatus, it did not appear that the lice number was affected by the distance to
the nearest salmon farm. The average lice number of adult female lice and all mobile lice
calculated for every half kilometer are presented in Figure A.14. The average was highest
for the salmon farms with a close neighbour, but there were no clear trend between the
average of salmon lice and the distance to the nearest neighbour.

In Figure 4.13, the weekly reported lice number of adult female lice, all mobile lice and
C. elongatus for each cage in operation are each plotted against the explanatory variable
Neighbours. This variable contained the number of neighbours the site had within a radius
of 10km, and the number of neighbours to the sites varied from 1 to 4 neighbours. The
figure indicates that the number of lice, both salmon lice and C. elongatus, increased
with the number of neighbours. The average lice number of adult female lice and all
mobile lice for 1,2,3 and 4 neighbours, respectively, are presented in Figure A.15 in the
Appendix. There were no major differences in the average for sites with one, two and
three neighbours, but for sites with four neighbours the average was twice as high as for
the others.

Figure 4.13: The weekly reported lice numbers of adult female lice, all mobile lice and C.
elongatus for each cage in operation plotted against the number of salmon farms within a
radius of 10km. The red data points represent data from the period with high lice pressure
and the blue points the rest of the data. To visualize overplotting, the data points are
partially transparent.

In Figure 4.14, the weekly reported lice number of adult female lice, all mobile lice and C.
elongatus for each cage in operation are plotted against the explanatory variable LastWeek.
The last weeks reported lice number of all mobile lice, which included both adult female
lice and mobile lice, was used since the number of adult female lice depends on the survival
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of adult female lice and the number of mobile lice which has become adult female from
last week. There were a positive correlation between the salmon lice numbers and the last
weeks reported lice numbers, while the lice numbers of C.elongatus seemed to be highest
when none mobile lice had been observed last week. The lice numbers for the C. elongatus
decreased for increasing lice numbers last week. As presented in Figure 1.1, only half of
the mobile lice are assumed to become adult female lice, while the other half becomes
adult male lice. The correlation between the adult female lice and the last weeks reported
number of all mobile lice was therefore a bit lower than for all mobile lice. The average
lice number of adult female lice and all mobile lice for each of last weeks reported lice
number with one significant digit is plotted in Figure A.16 in the Appendix. There were
few observations with last weeks lice numbers above 10, so no average was calculated for
these. The average increased linearly with increasing number of mobile lice last week up
to 5 all mobile lice per salmon.

Figure 4.14: The weekly reported lice numbers of adult female lice, all mobile lice and C.
elongatus for each cage in operation plotted against the last weeks reported lice numbers of
all mobile lice. The red data points represent data from the period with high lice pressure
and the blue points the rest of the data. To visualize overplotting, the data points are
partially transparent.

In Figure 4.15, the correlation between each pair of the numerical variables are presented.
In the upper triangle, the Pearson correlation coefficients are presented, and in the lower
triangle, scatter plots of each pair are drawn. The variable distribution are plotted on the
diagonal. The Pearson correlation indicated high correlation between some of the vari-
ables. AdultFemaleLice and allMobile were highly correlated with correlation coefficient
0.784, and the scatter plot of these two indicated that there had not been observed a low
lice number of adult female lice while the lice number of all mobile lice was high. This
supported that an alternative model with allMobile as a response variable could be used
to model the lice pressure in the study area.

45



Figure 4.15: Pearson correlation coefficients between each pair of the numeric variables,
scatter plots of each pair and distribution plot of each variable.

As indicated in Figure 4.14, the last weeks reported lice number of all mobile lice,
LastWeek, was positive correlated with AdultFemaleLice and allMobile. The Pearson cor-
relation coefficient between these pairs were calculated to be 0.617 and 0.737, respectively.
The variable for production week was highly correlated with both the salmon weight and
the biomass, with the correlation coefficient 0.904 and 0.804, respectively. The Pearson
correlation coefficient between Weight and Biomass was calculated to be 0.883.

The distance to the closest neighbour, MinDist, and the number of neighbours within
10km, neighbours, were negative correlated with correlation coefficient −0.811. This make
sense, since a lower distance to the nearest neighbour could lead to more salmon farms
within a radius of 10 km. There was also a correlation between these two variables and
the distance to the coastline, Distance. The Pearson correlation coefficient for Distance
and MinDist was 0.515, and −0.471 for Distance and neighbours. Scatter plots of each of
these pairs are plotted in Figure A.17 in the Appendix. There were no clear connection
between the distance to the coastline and the sites nearby in these plots, but the site
with much longer distances to the coastline probably affected the associated correlation
coefficients.

According to the calculated Pearson coefficients in Figure 4.15 there were no major differ-
ences in the correlation between the different explanatory variables for AdultFemaleLice
and allMobile. This indicated that a model for all mobile lice could be a good alternative
if it became difficult to model only adult female lice due to a high number of zeros. From
the distribution plot of Week the data seemed to be well spread over the whole year. This
was also supported by the Pearson correlation between ProductionWeek and SeaTemper-
ature, which was not significant. C.elongatus did not appear to correlate strongly with
either the lice numbers for salmon lice or with any of the other variables.
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5 Analysis and Validation

The lice numbers from the salmon farms were the reported average of lice per salmon cal-
culated from a sample of at least 10 random salmon in a cage. The lice numbers gathered
in this thesis were usually calculated from a sample of 20 salmon. To get a counting
variable as response variable, the lice numbers needed to be converted to integers. Both
the counted number of lice on a sample of 20 salmon in the cage and the estimated total
number of lice in the entire cage were tested as response variable. The response vari-
able was intended to apply to adult female lice, but to reduce the number of zeros, a
model that included all mobile salmon lice was also tested. Thus, 4 different response
variables were used in the fitting of a regression model for salmon lice: CountAdultFe-
male, CountAllMobile, AdultFemaleCage and AllMobileCage. As presented in Table 3.2,
CountAdultFemale and CountAllMobile were calculated as the reported sample mean of
adult female lice and all mobile lice, respectively, multiplied by 20 salmon. AdultFema-
leCage and AllMobileCage were estimated as the reported sample mean of adult female
lice and all mobile lice, respectively, multiplied by the reported number of salmon in the
cage. Regression models based on the count of lice on a sample of 20 salmon are further
referred to as sample models, while models for the estimated count of lice in the entire
cage are referred to as cage models.

5.1 Model Selection

The explanatory variables for the regression model were selected based on experiences of
the data set and the visualization in Section 4. In addition, the variance inflation factor,
calculated with the R-function vif from the car-package (Fox & Weisberg, 2019), was used
to assess multicollinearity in the regression model. The number of salmon in a cage varied
little throughout the production cycles, so instead of using Weight and NumberOfFish as
explanatory variables, the product of these two, Biomass, was used. The variance inflation
factor for MinDist and Neighbours indicated multicollinearity (VIF≥ 5), so the distance
to the nearest salmon farm was not included in the model. The number of neighbors
within 10km was assumed to be a better explanatory variable, since MinDist only took
into account the nearest salmon farm and did not say anything about whether there
were several salmon farms nearby. Nor was there a clear trend between the distance to
the nearest salmon farm and the salmon lice numbers, while the lice pressure seemed to
increase with the number of neighbors within 10km.

As presented in the correlation plot (Figure 4.15), the variable LastWeek was positive
correlated with the response variables. An explanatory variable with last week’s reported
lice numbers could be interpreted as a reproduction number, where the exponential of the
estimated coefficient indicates the expected factor increase in the lice count if the previous
lice number increases by one and other factors are constant. The highest reported lice
number of all mobile lice in the study period was 31 lice per salmon, while 81.4% of the
data had lice number below 1. By using the last week’s lice numbers as an explanatory
variable, too high values were predicted for the observations with highly registered lice
numbers previous week and too low otherwise.
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Farming companies are required to introduce measures to prevent the lice number from
rising above 0.5 adult female lice per salmon. It was therefore most interesting to adapt
a suitable model for lice counts below this limit, as this is where other factors have the
greatest impact on the number of lice. Once the lice numbers in the cage becomes too high,
the lice multiply quickly and a delousing treatment are needed to reduce the lice pressure.
To avoid that the highest lice numbers in LastWeek affected the coefficient estimate, all
reported lice numbers from the previous week that were greater than 1 were registered
as 1 in the explanatory variable LastWeek1. In this way, the variable ranged from 0 all
mobile lice to 1 all mobile lice per salmon, which indicated that 20 mobile lice (including
adult female lice) had been counted on a sample of 20 salmon. By using this variable as
explanatory variable instead, the correlation with the response variables became less and
the regression model fitted the low lice numbers better. The correlation coefficient for
LastWeek1 and the lice numbers AdultFemaleLice and allMobile were calculated as 0.531
and 0.576, respectively. The average lice number of adult female lice and all mobile lice
calculated for every tenth in LastWeek1 are presented in Figure A.18. High lice numbers
have been observed regardless of last weeks lice numbers, but the average lice number
increased for higher reported lice numbers last week.

The visualization of the explanatory variables in Section 4, gave an indication that the lice
numbers not had a clearly increasing or decreasing trend for all the variables. Therefore,
some polynomial terms and indicator variables were added to the model. Quadratic
terms of the sea temperature and the biomass were added to the model. This lead
to multicollinearity, and instead of using the quadratic term of Biomass, an indicator
variable, BiomassIndicator, was used. According to Figure 4.8, the lice number increased
with the biomass up to 490 metric ton and there were fewer cases of zero lice in cages
with larger biomasses. Therefore, BiomassIndicator were used to indicate whether the
biomass in the cage was smaller or larger than 490 metric ton.

To take into account how the lice numbers changed with the time of the year an indicator
variable, Season, was created. It distinguished between the three periods with different
lice pressure, as commented in Figure 4.5. The period with lowest lice pressure, week
14-32 was denoted spring, the period with highest lice pressure, week 33-48, was denoted
autumn and the last period was named winter. One site was located 1650m from the
coastline, while all other sites were closer than 300m to the coastline. An indicator
variable, DistToCoast, was thus preferred instead of the continuous variable Distance.
The distance to the coastline were divided into three levels; 0: less than 150m, 1: 150-
300m and 2: > 300m. In Figure 4.9 and Figure A.11 it was a clear trend that the lice
numbers became higher after the salmon had been in the sea for around 50 weeks. Instead
of using the continuous variable for production week, which was highly correlated with the
biomass, an indicator variable, ProdWeek50, which indicated whether it had been more
than 50 weeks since deployment, was used in the regression model. The final explanatory
variables used in the full model with definitions and units are presented in Table 5.1.
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Table 5.1: The explanatory variables used in the analysis with explanation and units

Variable name Explanation of variable
SeaTemperature Sea temperature, °C
Location The location of the salmon site (Fjord 1A, 1B, 2A, 2B

or Coast), coded as an indicator variable with Coast as
reference variable

OperatingModel The operating method used (Stage, Fjord or Coast),
coded as an indicator variable with the stage model as
reference

Season Period of the year (Spring: week 14-32, Autumn: week
33-48, Winter: week 49-13), coded as an indicator vari-
able with Autumn as reference

Biomass The reported biomass in the cage, in metric ton
BiomassIndicator An indicator variable indicating whether the biomass

was larger than 490 metric ton. Biomass under 490 met-
ric ton was used as a reference.

ProdWeek50 An indicator variable indicating whether there was over
50 weeks since the smolts were deployed. Production
weeks below 50 were used as the reference.

Treatment An indicator variable indicating whether there was an
ongoing delousing treatment in the cage, where no treat-
ment was used as the reference

DistToCoast Distance from the salmon farm to the coastline, coded
as an indicator variable: 0 - less than 150m (used as
reference), 1 - 150-300m, 2 - over 300m

Neighbours Number of salmon farms within a radius of 10km (1-4
neighbours)

LastWeek1 Last week’s reported lice number of all mobile lice (adult
female lice and mobile lice), where all reported lice num-
bers larger than 1 were equal to 1.

HighPeriod An indicator variable indicating whether the week was
defined with high lice pressure, where periods with nor-
mal lice pressure were used as reference. The variable
was defined in Sec 3.2.5, and there were some small dif-
ferences compared to whether it was a model for adult
female lice or all mobile lice that was adapted.
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5.2 Poisson Regression

A Poisson regression model for the data was fitted by assuming that the counts of salmon
lice from each cage and week followed an independent Poisson distribution, yi ∼ Po(λi),
with

ln λ̂i = β̂0 + β̂1 · SeaTemperature + β̂2 · SeaTemperature2

+ β̂3 · Location1A + β̂4 · Location1B + β̂5 · Location2A

+ β̂6 · Location2B + β̂7 ·OperatingModelCoast

+ β̂8 ·OperatingModelFjord + β̂9 · SeasonSpring + β̂10 · SeasonWinter (5.1)

+ β̂11 · Biomass + β̂12 · BiomassIndicator + β̂13 · ProdWeek50

+ β̂14 · Treatment + β̂15 ·DistToCoast1 + β̂16 ·DistToCoast2

+ β̂17 · Neighbours + β̂18 · LastWeek1 + β̂19 · HighPeriod.

For modelling the count of adult female lice, regression models for both the sample model
and the cage model were fitted in R. The summary output from the model fit of the sample
model with CountAdultFemale as response variable is given in Table 5.2. The estimated
regression coefficients with standard error, z-value and p-value for the cage model with
AdultFemaleCage as response variable are presented in Table B.1 in the Appendix.

Table 5.2: Regression coefficients with associated estimate, standard error, z-value and
p-value from the Poisson regression for the sample model of adult female lice.

Coefficients Estimate Std. Error z value p-value
Intercept -0.6864 0.0670 -10.24 < 2 · 10−16

SeaTemperature -0.1023 0.0127 -8.04 8.69 · 10−16

SeaTemperature2 0.0069 0.0007 10.28 < 2 · 10−16

Location1 A -0.5788 0.0423 -13.68 < 2 · 10−16

Location1 B -0.4112 0.0282 -14.58 < 2 · 10−16

Location2 A -0.4658 0.0490 -9.50 < 2 · 10−16

Location2 B -0.5487 0.0328 -16.75 < 2 · 10−16

OperatingModelCoast 0.2858 0.0146 19.60 < 2 · 10−16

OperatingModelFjord 0.6447 0.0275 23.46 < 2 · 10−16

SeasonSpring -0.3154 0.0151 -20.94 < 2 · 10−16

SeasonWinter -0.1277 0.0166 -7.71 1.24 · 10−14

Biomass 0.0013 4.6 · 10−5 29.49 < 2 · 10−16

BiomassIndicator -0.3289 0.0162 -20.36 < 2 · 10−16

ProdWeek50 0.5182 0.0165 31.46 < 2 · 10−16

Treatment -0.2288 0.0151 -15.17 < 2 · 10−16

DistToCoast1 -0.1125 0.0138 -8.14 3.89 · 10−16

DistToCoast2 0.2037 0.0239 8.53 < 2 · 10−16

Neighbours 0.1361 0.0082 16.50 < 2 · 10−16

LastWeek1 2.0244 0.0181 112.07 < 2 · 10−16

HighPeriod 0.7181 0.0132 54.35 < 2 · 10−16

AIC: 73406, Null deviance: 125348 on 15595 degrees of freedom
Residual deviance: 49321 on 15576 degrees of freedom
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The p-values from the Wald test indicated that all the terms were significant for both
the sample model and the cage model. There were no major changes in the coefficient
estimates for the two models, but the intercept and the linear term of SeaTemperature
changed sign and became positive for the cage model. By substituting the estimated mean
λ̂i in Equation (2.7), the Pearson statistic for the sample model and the cage model were
calculated as P = 67362 and P = 463842913, respectively. The corresponding quantile
of the χ2

α,n−p distribution was χ2
0.05,15576 = 15867. Thus, both models were rejected at

significance level α = 0.05, since the test statistic P was larger than χ2
0.05,15576 for both

models.

Residual plots of the Pearson residuals plotted against the fitted values for both models
are presented in Figure 5.1. The shape of the residual plots were quite similar for both
the sample model and the cage model, but there were large differences in the magnitude
of the fitted values. A count of 50 adult female lice on 20 salmon will give a lice number of
2.5, and for a cage with 140 thousand salmon this corresponds to 350 000 estimated adult
female lice in the cage. There were thus large differences in the size of the two response
variables, and naturally then also in the fitted models.

Figure 5.1: Plot of Pearson residuals against fitted values from the Poisson regression
for the sample model of adult female lice (top) and the cage model of adult female lice
(bottom). The points are colored after the corresponding lice count of adult female lice,
which is the observed count of adult female lice on a sample of 20 salmon (top) and the
estimated total count of adult female lice in the cage (bottom).

According to the goodness of fit test and the residual plots, the Poisson regression model
was not a good fit to the data. By using the observed Pearson statistic, the overdispersion
parameter was estimated as φ̂P = P

n−p = 4.32 for the sample model and 29779.33 for
the cage model. Both indicated overdispersion, and since the Pearson statistic was chi-
squared distributed under H0 : φP ≤ 1 and P > χ2

0.05,15576, this supported the impression
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of overdispersion.

A frequency plot of fitted and observed values of the count of adult female lice on a sample
of 20 salmon are presented to the left in Figure 5.2. The plot shows that there was an
excessive number of zeros in the observed data and that the Poisson model not was able
to fit enough zeroes. Instead, it predicted more ones than what had been observed. It
had been reported absence of adult female lice on the sample in 8125 observations. The
expected mean from the Poisson model was used to calculated the probability of observing
zero salmon lice for each row in the data set. By summarizing the probability for all rows,
the expected number of observations with zero salmon lice from the model was estimated.
The estimated expected number of zeroes predicted from the sample model was 5748
zeros, which gave a ratio of 0.71.

Figure 5.2: The frequency of observed and fitted values from the sample model of adult
female lice and all mobile lice, respectively. Only counts up to 20 lice are presented here
(lice numbers ≤ 1), but the highest observed counts were 179 adult female lice and 622
all mobile lice. The maximum fitted values from the two models were 40 adult female lice
and 195 all mobile lice, respectively.

To reduce the number of observed zeroes, a sample model for all mobile lice on 20 salmon
was fitted. CountAllMobile was thus used as the response variable, and the summary
output from the Poisson regression is presented in Table B.2 in the Appendix. The
frequency plots for the observed values and the fitted values are presented to the right
in Figure 5.2. The frequency of observed values equal to zero was reduced compared to
the model for adult female lice, but none of the fitted values for the count of all mobile
lice were zero. By using the expected mean from the regression model, the model was
expected to predict 993 zeroes, while it was observed 4911 zeroes. This gave a ratio of
0.20, which was lower than for the sample model of adult female lice. The overdispersion
parameter was estimated as 14.7, and a model with all mobile lice thus did not appear to
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improve the dispersion problem.

The expected means from the Poisson regression for the cage model of adult female lice
were high, and the model was thus not expected to fit any zeroes. Frequency plots of both
observed values and fitted values from the Poisson regression for the cage model of adult
female lice are presented in Figure 5.3. The lowest fitted values was 1118 adult female
lice, while absence of salmon lice had been observed in 7907 cases. The observed number
of adult female in the cage, AdultFemaleCage, was estimated as the number of salmon in
the cage multiplied with the average number of adult female lice calculated from a small
sample of the cage. If none adult female lice had been observed on the sample of salmon,
it was for the cage model assumed that there were zero lice in the cage. There was thus
great uncertainty in the estimated number of lice in the cage. The sample model, which
was based on the sample of 20 salmon, also comes better out on the goodness-of-fit tests,
so the sample model was used further in the analysis.

Figure 5.3: The frequency of observed (top) and fitted (bottom) values from the Poisson
model for the cage model of adult female lice. The frequency of observed zeroes are cut at
9, but there was estimated that there were 7907 observed values of zero adult female lice
in the cage.

Censored frequency plots for observed values of both adult female lice and all mobile lice
on a sample of 20 salmon, with frequency below 100 and an unlimited x-axis are presented
in Figure A.19 in the Appendix. This indicated that on a sample of 20 salmon, it was
most often counted below 20 adult female lice and 80 all mobile lice, but there were cases
which differs greatly from this. The highest fitted values from the Poisson model was 40
adult female lice and 195 all mobile lice, while there had been observed up to 179 adult
female lice and 622 all mobile lice. It therefore appeared that there was greater variance
in the positive data than expected from a Poisson model. Thus, the overdispersion was
probably due to both zero-inflation and extra variance in the positive count data.
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5.3 Negative Binomial Regression

The negative binomial regression model allows larger variance in the count data than
the Poisson model, and was thus fitted for the sample model of adult female lice. The
summary output from the model fit in R is given in Table 5.3. The p-values from the Wald
test indicated that all the terms without SeasonWinter and Treatment was significant up
to a significance level 0.05. There were no changes in sign from the estimated Poisson
regression coefficient in the sample model in Table 5.2. The Pearson statistic for the
negative binomial model was calculated as P = 19077, which was lower than the Pearson
statistic from the Poisson model. The corresponding quantile χ0.05,15576 = 15867 was still
lower than the Pearson statistic, which indicated that the fitted model did not fit with
the observed distribution. From the null deviance and the residual deviance in Table 5.3,
the explained deviance was calculated as 61.3% by using Equation (2.25).

Table 5.3: Regression coefficients with associated estimate, standard error, z-value and
p-value from the negative binomial regression for the sample model of adult female lice.

Coefficients Estimate Std. Error z value p-value
Intercept -1.0065 0.1527 -6.59 4.37 · 10−11

SeaTemperature -0.1684 0.0295 -5.70 1.18 · 10−08

SeaTemperature2 0.0113 0.0016 7.22 5.39 · 10−13

Location1 A -0.5572 0.0839 -6.64 3.06 · 10−11

Location1 B -0.3072 0.0542 -5.66 1.49 · 10−8

Location2 A -0.4220 0.0853 -4.95 7.58 · 10−7

Location2 B -0.7044 0.0611 -11.53 < 2 · 10−16

OperatingModelCoast 0.4982 0.0354 14.07 < 2 · 10−16

OperatingModelFjord 0.5905 0.0453 13.05 < 2 · 10−16

SeasonSpring -0.1826 0.0320 -5.70 1.18 · 10−8

SeasonWinter -0.0273 0.0406 -0.67 0.5015
Biomass 0.0026 0.0001 23.10 < 2 · 10−16

BiomassIndicator -0.6989 0.0444 -15.74 < 2 · 10−16

ProdWeek50 0.6473 0.0390 16.59 < 2 · 10−16

Treatment -0.0272 0.0387 -0.70 0.4821
DistToCoast1 -0.0673 0.0310 -2.17 0.0299
DistToCoast2 0.3052 0.0521 5.85 4.82 · 10−9

Neighbours 0.0900 0.0184 4.88 1.06 · 10−6

LastWeek1 2.2157 0.0378 58.59 < 2 · 10−16

HighPeriod 0.6590 0.0438 15.05 < 2 · 10−16

AIC: 50335, Null deviance: 34814 on 15595 degrees of freedom
Residual deviance: 13468 on 15576 degrees of freedom

Both the Pearson residuals and the deviance residuals for the negative binomial sample
model are plotted against the fitted values in Figure 5.4. It seemed to be a dominance
of positive residuals for fitted values close to zero. The residuals then decreased with
increasing fitted values and it became an dominance of negative residuals. A positive sign
of the residuals indicates that the observed value was higher than the predicted value
from the model. The variance of the Pearson residuals was higher for fitted values close
to zero, and decreased for higher fitted values. There seemed to be heteroscedasticity in
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the residuals, which violated the assumption of constant variance for the residuals.

Figure 5.4: Pearson residuals (top) and deviance residuals (bottom) plotted against the
fitted values from the negative binomial regression model for the sample model of adult
female lice. Because of the large data set, the data points are partly transparent and the
black line is a loess smoothing curve.

As presented in Section 2.1.3, a likelihood ratio test could be used to compare the sample
models obtained from the Poisson distribution and the negative binomial distribution,
respectively. The Poisson model was nested within the negative binomial model, since the
same covariates were used in both models. If r →∞, the variance function VarNB[Yi] =
λi + λi

r
→ λi, which is the variance of a Poisson model. Thus, by defining α = r−1, the

null hypothesis H0 : α = 0 could be tested against the alternative hypothesis H1 : α > 0.
The likelihood ratio test was conducted by using the R-function lrtest from the lmtest

package (Zeileis & Hothorn, 2002). The results from the test is presented in Table 5.4.
The p-value was lower than 2.2 · 10−16, which suggested that the negative binomial model
was a more appropriate model than the Poisson model.

Table 5.4: Results from the likelihood ratio test between the Poisson sample regression
model and the negative binomial sample model for adult female lice.

Number of df log likelihood df Chisq p-value
20 -36683
21 -25147 1 23073 < 2.2 · 10−16

The parameter r in the variance function VarNB[Yi] = λi+
λi
r

was estimated as 1.049 with
standard error 0.022 in the model fit. The negative binomial sample model was expected
to predict 7810 zeros, which gave a ratio of observed and predicted zero as 0.96. The
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ratio was within the tolerance range, and the model did not seem to be underfitting zeros
as the Poisson model did. By using the ratio of the Pearson statistic and the degrees of
freedom the dispersion parameter was estimated as 1.22. This was an improvement from
the Poisson model, but the dispersion parameter still indicated slightly overdispersion.

5.4 Zero-Inflated Regression

The reported lice numbers of adult female lice included a lot of zeros (50.7%). The Poisson
model was underfitting zeros, while the negative binomial model seemed to fit almost
enough zeros. An alternative was to fit both a zero-inflated Poisson regression model and
a zero-inflated negative binomial model for the sample model of adult female lice. Which
covariates that affected the zero part and the count part were not known, so for the full
model, the same covariates were used for both the zero part and the count part, xi = zi.
The expected mean for observation i in the count part was given by λi = exp(xTi β), and

the probability of observing a false zero was given by πi =
exp(zTi γ)

1+exp(zTi γ)
. The parameters

in the zero-inflated Poisson (ZIP) model were thus θ = (β0, β1, . . . , β19, γ0, γ1, . . . , γ19)T ,
and for the zero-inflated negative binomial (ZINB) model, the parameter r in Equation
(2.12) also had to be included. The ZIP model was thus nested within the ZINB model,
and the sample models could be compared with a likelihood ratio test using lrtest from
the R-package lmtest (Zeileis & Hothorn, 2002).

The zero-inflated models were fitted in R by the function zeroinfl from the countreg

package (Zeileis et al., 2008). The summary output from the model fit of the sample mod-
els ZIP and ZINB are presented in Table B.3 and Table B.4 in the Appendix, respectively.
The results from the likelihood ratio test are presented in Table 5.5. The null hypothesis
was rejected (p-value < 2.2 · 10−16), and there was a strong support for the ZINB model.
The ratio of observed and predicted zeros for the ZINB sample model was 0.96, which was
within the tolerance range 0.05. The ratio for the ZIP sample model was 0.81, which was
an improvement from the Poisson model, but the ZIP model did still not predict enough
zeroes compared to the observed numbers of zeros.

Table 5.5: Results from the likelihood ratio test between the full regression models ZIP and
ZINB, both sample models for adult female lice.

Number of df log likelihood df Chisq p-value
40 -32384
41 -23928 1 16913 < 2.2 · 10−16

Several of the regression parameters for the ZINB model in Table B.4 were not significant
at a 5%-level, so a model selection was preferred. The standard error for the zero-inflated
coefficient ProdWeek50 was 567, which was very large compared to the estimated regres-
sion coefficient. The p-value 0.9769, from the Wald test, indicated that the indicator
variable was not significant and thus not important for the zero-inflation. From a biolo-
gical perspective, it was not expected that the probability of observing a false zero changed
after production week 50, and since the variables for biomass correlated with the produc-
tion week, it seemed that ProdWeek50 lead to multicollinearity in the zero-inflation part.
The model was thus refitted without this term, and the estimated zero-inflated coefficient
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for BiomassIndicator then increased from 1.72 to 3.26, and became significant with a
p-value 4.08 · 10−7.

From a new Wald test, the count coefficient SeaTemperature was not significant. In
addition, the significance of each of the categorical variables with more than 2 levels
were calculated by dropping all the levels from the model, and comparing the refitted
model with the full model using likelihood ratio test. The likelihood ratio test suggested
that the zero-inflation coefficient Season was not significant. Sequentially, models where
either the count-coefficient SeaTemperature or the zero-inflation coefficient Season had
been dropped was fitted. The model where Season was dropped in the zero-part gave
the lowest AIC, and the likelihood ratio test with p-value 0.41 supported that the season
term was not significant for the zero-inflation. The ZINB model was refitted without the
zero-inflation coefficient Season.

The significant of the remaining categorical variables where tested with the likelihood
ratio test, and the result from the test are given in Table 5.6. The summary output
for the sample model without the zero-inflation coefficients ProdWeek50 and Season is
presented in Table 5.7. From the likelihood ratio test in Table 5.6 and the Wald test in
Table 5.7, no further terms could be dropped from the model, and the preferred ZINB
sample model was obtained. The signs of the count coefficient estimates for the ZINB
model were the same as for the standard models Poisson and negative binomial.

Table 5.6: Results from the likelihood ratio tests where the significance of each of the
categorical variables in the optimal ZINB sample model for adult female lice (Table 5.7)
are tested. λi is the expected mean in the count part and πi is the probability of observing
a false zero.

Dropped term #Df LogLik Df Chisq p-value
None 38 -23974
Location from λi 34 -23995 4 41.16 2.48 · 10−8

OperatingModel from λi 36 -24055 2 161.8 < 2.2 · 10−16

Season from λi 36 -24043 2 137.4 < 2.2 · 10−16

DistToCoast from λi 36 -23992 2 35.74 1.73 · 10−8

Location from πi 34 -24057 4 165.04 < 2.2 · 10−16

OperatingModel from πi 36 -23995 2 40.75 1.42 · 10−9

DistToCoast from πi 36 -23982 2 15.01 5.49 · 10−4

The Pearson residual for the ZIP model (Table B.3), the negative binomial model (Table
5.3) and the ZINB model (Table 5.7) are plotted against their fitted values in Figure
5.5. The residual plot for the ZIP model seemed to be randomly spread around the
horizontal axis, while the residuals for the negative binomial model and the ZINB model
were highest for the low fitted values. It appeared that there was an improvement in
the residual plot for the zero-inflated negative binomial model, compared to the residuals
from the negative binomial model. The residuals for the low fitted values were smaller
for the ZINB model, and the residuals seemed thus to be more randomly spread and the
variance in the residuals were more constant compared to the residuals from the negative
binomial model. The negative binomial model fitted values up to 70 adult female lice
counted on 20 salmon, while the zero-inflated models did not fit values above 40 adult
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Table 5.7: Regression coefficients with associated estimate, standard error, z-value and
p-value from the zero-inflated negative binomial regression for the preferred sample model
of adult female lice.

Count-model coefficients Estimate Std. Error z-value p-value
Intercept -0.3983 0.1535 -2.5941 0.0095
SeaTemperature -0.0594 0.0296 -2.0062 0.0448
SeaTemperature2 0.0049 0.0016 3.1054 0.0019
Location1 A -0.4938 0.0921 -5.3646 8.11 · 10−8

Location1 B -0.2749 0.0630 -4.3635 1.28 · 10−5

Location2 A -0.1948 0.1198 -1.6258 0.1040
Location2 B -0.3115 0.0780 -3.9912 6.57 · 10−5

OperatingModelCoast 0.2995 0.0328 9.1304 < 2 · 10−16

OperatingModelFjord 0.4407 0.0630 6.9902 2.75 · 10−12

SeasonSpring -0.3502 0.0310 -11.3098 < 2 · 10−16

SeasonWinter -0.0748 0.0378 -1.9821 0.0475
Biomass 0.0012 0.0001 11.3202 < 2 · 10−16

BiomassIndicator -0.2723 0.0408 -6.6679 2.59 · 10−11

ProdWeek50 0.5479 0.0344 15.9290 < 2 · 10−16

Treatment -0.1480 0.0348 -4.2554 2.09 · 10−5

DistToCoast1 -0.0870 0.0329 -2.6435 0.0082
DistToCoast2 0.2547 0.0477 5.3445 9.06 · 10−5

Neighbours 0.1395 0.0183 7.6397 2.18 · 10−14

LastWeek1 1.5114 0.0374 40.3599 < 2 · 10−16

HighPeriod 0.7270 0.0428 16.9778 < 2 · 10−16

Log(r) 0.3609 0.0226 15.9654 < 2 · 10−16

Zero-inflated coefficients Estimate Std. Error z-value p-value
Intercept 1.4059 0.6731 2.0888 0.0367
SeaTemperature 0.3884 0.1254 3.0974 0.0020
SeaTemperature2 -0.0202 0.0073 -2.7662 0.0057
Location1 A -0.9492 0.5588 -1.6987 0.0894
Location1 B -1.0449 0.3256 -3.2095 0.0013
Location2 A 0.2212 0.3910 0.5659 0.5715
Location2 B 1.2056 0.3140 3.8397 0.0001
OperatingModelCoast -1.4175 0.2709 -5.2335 < 2 · 10−16

OperatingModelFjord -0.5163 0.1378 -3.7475 0.0002
Biomass -0.0139 0.0011 -13.2144 < 2 · 10−16

BiomassIndicator 3.2210 0.6311 5.1041 3.32 · 10−7

Treatment -1.2014 0.5634 -2.1324 0.0330
DistToCoast1 0.0993 0.1704 0.5831 0.5598
DistToCoast2 1.1604 0.3017 3.8464 0.0001
Neighbours 0.2321 0.1077 2.1551 0.0312
LastWeek1 -20.9839 1.4012 -14.9753 < 2 · 10−16

HighPeriod 0.5285 0.2366 2.2334 0.0255
AIC=48025.01
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female lice. The highest observed lice count of adult female lice on 20 salmon was 160,
but the lice count on 20 salmon was normally below 10 adult female lice (lice number
0.5).

Figure 5.5: Pearson residuals plotted against the fitted values for the regression models
ZIP (top), negative binomial (middle) and ZINB (bottom) for the sample model of adult
female lice. Because of the large data set, the data points are partly transparent and the
black line is a loess smoothing curve.

The fitted values from the model fit of the negative binomial model (Table 5.3) and the
zero-inflated negative binomial model (Table 5.7) are plotted against the time in Figure
5.6. To compare fitted values against observed values, a plot with the observed count
of adult female lice on 20 salmon is also included. Due to some high observed values,
a censored plot, where CountAdultFemale> 70 = 70, is used for the comparison. The
observed values are presented without censoring in Figure 3.2. The average fitted count
of adult female lice on a sample of 20 salmons was calculated for each week in the study
period for each of the regression models, and plotted as a black line in the plots. The
average reported lice count was calculated from CountAdultFemale and not the censored
variable. The fitted values from both the negative binomial model and the zero-inflated
negative binomial model seemed to fit the lice count well, but the high lice numbers fitted
from the negative binomial model in the middle of 2018, did not match with the observed
values from this period. The ZINB model did not fit as high values as the negative
binomial model, but seemed to hit the periods of high and low lice numbers better than
the negative binomial model.
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Figure 5.6: The fitted values for the negative binomial sample model (top) and the ZINB
sample model for adult female lice (middle) during the study period. The observed number
of adult female lice on a sample of 20 salmon (bottom) are plotted for comparison of fitted
and observed values. The reported lice count are censored, such that lice count above
70 adult female lice are plotted as 70 adult female lice. The points are colored after the
location of the site. The black line is the average value calculated for each week in the
study period. The average reported lice count are calculated from CountAdultFemale and
not the censored variable.
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5.5 Hurdle Regression

Another model for data with zero-inflation is the zero-altered regression model, also called
the hurdle regression model. Both a Poisson hurdle (ZAP) model and a negative binomial
hurdle (ZANB) model were fitted for the count of adult female lice on 20 salmon (sample
model). All the explanatory variables presented in Table 5.1 were used for both the count-
part and the zero-part. The hurdle models were fitted by using the R-function hurdle

from the countreg package (Zeileis et al., 2008), and the summary outputs from the
model fit for the ZAP model and the ZANB model are presented in Table B.5 and Table
B.6 in the Appendix, respectively. The ZAP model was nested within the ZANB model,
and the models were thus compared with the likelihood ratio test. The AIC for the ZAP
model was 64881.76, while it was 48604.38 for the ZANB model. From the likelihood ratio
test presented in Table 5.8 and the calculated AICs, the ZANB model was preferred.

Table 5.8: Results from the likelihood ratio test between the full regression models ZAP
and ZANB, both sample models for adult female lice.

Number of df log likelihood df Chisq p-value
40 -32401
41 -24261 1 16279 < 2.2 · 10−16

From the Wald test for the ZANB model, the count variable SeaTemperature and the zero-
inflation variables Neighbours and HighPeriod were not significant for a significance level
of 0.05 (Table B.6). The model was thus simplified by using backward selection, and the
results from the likelihood ratio tests are presented in Table 5.9, together with the refitted
model’s AIC. The expected mean for observation i in the count part was given by λi =
exp(xTi β), and the probability of observing zero lice was given by πi = (1 + exp(zTi γ))−1.
The model where Neighbours was dropped from πi gave the lowest AIC, and the likelihood
ratio test supported that Neighbours could be dropped from πi. The model selection was
continued, and the AIC was slightly improved by also dropping HighPeriod from πi, with
a p-value 0.258 from the likelihood ratio test. The count coefficient SeaTemperature was
still not significant according to the Wald test, but the AIC became higher by dropping it
from the model. Thus, no further terms were dropped, and the optimal model based on
the AIC was the model without Neighbours and HighPeriod in πi. The summary output
for the preferred model is presented in Table 5.10.

Table 5.9: Results of the first step of model selection in the ZANB sample model for adult
female lice presented in Table B.6

Dropped term df AIC Likelihood ratio test
None 41 48604.38
SeaTemperature from λi 40 48605.12 X2 = 2.74 (df = 1, p = 0.098)
Neighbours from πi 40 48602.84 X2 = 0.46 (df = 1, p = 0.496)
HighPeriod from πi 40 48603.67 X2 = 1.29 (df = 1, p = 0.257)
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Table 5.10: Regression coefficients with associated estimate, standard error, z-value and
p-value from the hurdle negative binomial regression for the preferred sample model of
adult female lice.

Count-model coefficients Estimate Std. Error z value p-value
Intercept -0.3524 0.1744 -2.0210 0.0433
SeaTemperature -0.0546 0.0330 -1.6548 0.0980
SeaTemperature2 0.0041 0.0017 2.3291 0.0199
Location1 A -0.5534 0.1029 -5.3751 7.66 · 10−8

Location1 B -0.2973 0.0713 -4.1683 3.07 · 10−5

Location2 A -0.3419 0.1302 -2.6247 0.0087
Location2 B -0.3350 0.0868 -3.8604 0.0001
OperatingModelCoast 0.2284 0.0361 6.3256 2.52 · 10−10

OperatingModelFjord 0.4227 0.0708 5.9692 2.38 · 10−9

SeasonSpring -0.3778 0.0355 -10.6330 < 2 · 10−16

SeasonWinter -0.1290 0.0425 -3.0310 0.0024
Biomass 0.0012 0.0001 10.9251 < 2 · 10−16

BiomassIndicator -0.2934 0.0438 -6.6931 2.18 · 10−11

ProdWeek50 0.4412 0.0382 11.5612 < 2 · 10−16

Treatment -0.0986 0.0390 -2.5297 0.0114
DistToCoast1 -0.0535 0.0355 -1.5092 0.1312
DistToCoast2 0.3227 0.0540 5.9718 2.35 · 10−9

Neighbours 0.1483 0.0205 7.2206 5.18 · 10−13

LastWeek1 1.5610 0.0404 38.6266 < 2 · 10−16

HighPeriod 0.7896 0.0459 17.2063 < 2 · 10−16

Log(r) 0.3325 0.0333 9.9967 < 2 · 10−16

Zero-inflated coefficients Estimate Std. Error z value p-value
Intercept -1.7274 0.2909 -5.9380 2.89 · 10−9

SeaTemperature -0.3051 0.0588 -5.1874 2.13 · 10−7

SeaTemperature2 0.0197 0.0031 6.2688 3.64 · 10−10

Location1 A 0.0626 0.1737 0.3606 0.7184
Location1 B 0.2691 0.1135 2.3705 0.0178
Location2 A -0.0491 0.1287 -0.3819 0.7025
Location2 B -0.6734 0.1123 -5.9966 2.01 · 10−9

OperatingModelCoast 1.0877 0.0846 12.8647 < 2 · 10−16

OperatingModelFjord 0.6384 0.0701 9.1074 < 2 · 10−16

SeasonSpring 0.1510 0.0631 2.3915 0.0168
SeasonWinter 0.2173 0.0853 2.5467 0.0109
Biomass 0.0056 0.0003 21.2712 < 2 · 10−16

BiomassIndicator -1.4586 0.1324 -11.0152 < 2 · 10−16

ProdWeek50 1.2844 0.0968 13.2691 < 2 · 10−16

Treatment -0.2105 0.0991 -2.1246 0.0336
DistToCoast1 -0.1686 0.0647 -2.6079 0.0091
DistToCoast2 -0.1205 0.0857 -1.4065 0.1596
LastWeek1 3.3572 0.0933 35.9970 < 2 · 10−16

AIC=48602.13
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The significance of the categorical variables with more than 2 levels in Table 5.10 were
tested with the likelihood ratio test, where each of the categorical variables in turn was
dropped from the preferred model. The obtained p-values for the categorical variables
Location, OperatingModel, Season and DistToCoast obtained from the likelihood ratio
test are presented in Table 5.11. All the terms in Table 5.11 were significant up to
a significance level 0.05, which indicated that they affected the salmon lice count and
should not be dropped from the regression model.

Table 5.11: Results from the likelihood ratio test where the significance of the categorical
variables in the optimal ZANB sample model for adult female lice (Table 5.10) are tested.

Dropped term #Df LogLik Df Chisq p-value
None 39 -24262
Location from µi 35 -24278 4 32.05 1.87 · 10−6

OperatingModel from µi 37 -24308 2 92.12 < 2.2 · 10−16

Season from µi 37 -24319 2 113.38 < 2.2 · 10−16

DistToCoast from µi 37 -24281 2 38.33 4.75 · 10−9

Location from πi 35 -24334 4 144.22 < 2.2 · 10−16

OperatingModel from πi 37 -24401 2 278.71 < 2.2 · 10−16

Season from πi 37 -24266 2 7.93 0.0190
DistToCoast from πi 37 -24266 2 7.24 0.0268

Residual plots for the zero-inflated negative binomial model and the hurdle negative bi-
nomial model are presented in Figure 5.7. The residual plots for the two models were

Figure 5.7: Pearson residuals plotted against the fitted values for the regression models
ZINB (top) and ZANB (bottom) for the sample model of adult female lice. Because of the
large data set, the data points are partly transparent and the black line is a loess smoothing
curve.
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relatively similar, but there was an improvement in the residuals for the hurdle model.
The residuals for fitted values close to zero were smaller for the hurdle model than for
the zero-inflated model. The residuals seemed to be quite randomly spread around the
horizontal axis for the ZANB model, but there were some high positive residuals for fitted
values below 10.

Rootograms for the zero-inflated negative binomial model and the negative binomial
hurdle model (Figure 5.8) were obtained by the function rootogram from the R-package
countreg (Kleiber & Zeileis, 2016). The smooth red line is the expected counts given
from the regression model and the bars, which hangs from the curve, represent the ob-
served counts. By the construction of the hurdle models, the expected number of zeros

Figure 5.8: Rootograms for the sample regression models ZINB and ZANB.
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corresponded to the observed number of zeroes. There were no big differences between
the two models, and for both models the bar exceeded the zero line for counts 6-8, which
indicated that the models were underfitting at this counts. There were no major devi-
ations from observed and predicted values, but there was a slight tendency of overfitting
for counts between 12 and 30, and underfitting for higher counts. As visualized in Figure
A.19, the highest number of adult female lice counted on 20 salmon was 160. The models
was thus also underfitting for counts above 70, but this only applied to 11 observations.

The estimated regression coefficients of the zero-inflated negative binomial model in Table
5.7 were compared with the estimated regression coefficients of the negative binomial
hurdle model in Table 5.10. For the significant parameters in the count part, the sign
and the magnitude were very similar. The biological conclusion for the count part was
thus the same for both the models. For the logit part, there were a few more differences
for the two models. For the ZINB model ProdWeek50 and Season were dropped, while
Location1A, Location2A, DistToCoast1 were included with a p-value < 0.05. The zero-
inflated coefficients of Neighbour and HighPeriod were significant in the ZINB model, but
were dropped from the ZANB model as they were non-significant. The dropped terms in
the ZINB model, ProdWeek50 and Season, were significant in the hurdle model. Same
for the both models, Location1A and Location2A were not significant up to a significance
level 0.05, while the common variable Location were significant according to the likelihood
ratio test. The magnitude of the significant parameters were in most cases similar, but
the sign changed for all the parameters without Treatment. The definition of πi for the
ZINB model and the ZANB model are, as presented in Section 2.2.2, different. It was
therefore expected that the zero-inflation regression coefficients changed sign for the two
models. The odds for a false zero in ZINB was given by πi

1−πi = exp(ηi), while the odds
for a zero count in ZANB was given by πi

1−πi = exp(−ηi).

From the estimated regression coefficients from the model fit of the negative binomial
hurdle model in Table 5.10, the odds for a zero count could be estimated as

ln

(
π̂i

1− π̂i

)
= 1.727 + 0.305 · SeaTemperature− 0.020 · SeaTemperature2

− 0.063 · Location1A− 0.269 · Location1B + 0.049 · Location2A

+ 0.673 · Location2B− 1.088 ·OperatingModelCoast

− 0.638 ·OperatingModelFjord− 0.151 · SeasonSpring (5.2)

− 0.217 · SeasonWinter− 0.006 · Biomass + 1.459 · BiomassIndicator

− 1.284 · ProdWeek50 + 0.211 · Treatment + 0.169 ·DistToCoast1

+ 0.121 ·DistToCoast2− 3.357 · LastWeek1.

The odds for a zero count for a biomass above 490 metric ton would thus increase with
a factor exp(1.459) = 4.300 over the odds for a zero count for biomass below 490 metric
ton. From the estimated count coefficients in Table 5.10, the expected count of adult
female lice would decrease with a factor exp(−0.293) = 0.746 if the biomass in the cage
exceeded 490 metric ton and all other terms were kept constant. In addition, the odds of
a zero count would decrease with a factor exp(−0.006) = 0.999 and the expected count
of adult female lice would increase with a factor exp(0.001) = 1.001 if the biomass in the
cage increased with one unit (1 metric ton) and all other coefficients were kept constant.
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5.6 Time Series Analysis

The number of adult female lice counted on 20 salmon each week during the study period
in a selected cage forms a time series. The reported counts for one of the cages, where
it had been started 7 production cycles during the study period, are presented in Figure
5.9. Several of the production cycles had been operated according to the stage model, so
the salmon had been moved from the starting cage after a while. The lice numbers were
then obtained from the growth cage that contained the salmon from the given starting
cage. After the salmon had been moved to the growth area and the salmon farm had been
empty for a while, a new production cycle could be started and smolts could be deployed
in the cage. Therefore, an overlap in the data could be seen, and separate time series for
each production were studied.

Figure 5.9: The weekly count of adult female lice on a sample of 20 salmon in a given
cage throughout the study period. The points are grouped after production cycles.

The residuals from the negative binomial hurdle model belonging to the selected cage were
studied to see if there was any correlation in the residuals. The auto correlation function
(ACF) of the residuals from production cycle 3,4 and 5 are presented to the left in Figure
5.10. From these, it was clear that the time correlation varied for the different production
cycles. By dropping the explanatory variable LastWeek1 in both the count and the zero-
inflation part, the residuals were expected to be more correlated. Following Aldrin et al.
(2019), the count of adult females for a given week and cage depends on the survival of
adult females from previous week and recruitment of females from mobile lice. For high
lice numbers, it was thus expected that if no delousing had been used, the data would be
more correlated than for low lice numbers. The auto correlation function of the residuals
from the ZANB model without last weeks reported lice number is presented to the right
in Figure 5.10. The residuals were collected from the same production cycles as for the

66



full ZANB model, and for production cycle 4 and 5 an increase in correlation between the
residuals could be seen. This indicated that LastWeek1 reduced the correlation in the
residuals, but there was still some correlation in the residuals.

Figure 5.10: Auto correlation function plot of the residuals from the negative binomial
hurdle regression model with (left) and without (right) the explanatory variable LastWeek1.
The plots corresponds to production cycle 3,4 and 5 in Figure 5.9

67



5.7 Evaluation of the Sample Size

As presented in Section 1.1.2, The Ministry of Trade, Industry and Fisheries states that
salmon lice should be counted on at least 10 random salmon in each cage each week in
operation. There are some exceptions from these regulations, and during 6 weeks in the
spring the salmon lice should be counted on at least 20 random salmon in each cage
(Forskrift om lakselusbekjempelse, 2012). To assess whether a sample of 10 salmon were
enough to obtain a representative average for the cage, hypergeometric distribution was
used. The lice number gathered in this thesis were mainly based on a sample of 20 random
salmon in each cage, so the difference between a sample size of 10 and 20 salmon was also
investigated.

It was assume that there was no distinction between the number of lice on the salmon, but
only whether salmon lice was observed or not. Thus, for the hypergeometric distribution,
a salmon with lice was seen as a success, while a salmon without lice was seen as a failure.
The number of salmon in the cage was set to be N = 140000, which was close to the
average number of salmon in a cage (Table 4.1). The probability of drawing at least one
salmon with salmon lice from a cage with N = 140000 salmon, where one tenth of the
salmon has salmon lice, m = 14000, is plotted against the number of draws in Figure
5.11. The probability of observing salmon lice during 10 draws was calculated as 65.1%,
while the probability increased to 87.8% by increasing the number of draws to 20. This
indicated that the count was more representative for the lice pressure in the cage for
higher number of draws, but the effect of increasing the number of draws with one unit
was highest in the beginning and declined for values above 15.

Figure 5.11: The probability of observing salmon lice in at least one draw (P 6= 0), plotted
against the total number of draws, without replacement, from a sample size of 140000
salmon where 1/10 has salmon lice.

68



The probability of not observing salmon lice in 20 draws without replacement from a
cage with 140000 salmon for different ratios of salmon lice are presented in Table 5.12.
How many salmon with salmon lice this corresponded to for a sample size of 20 salmon is
represented in column x. The probability of getting the same sample ratio as the given
ratio for the whole cage was estimated as P (X = x). The probability that zero lice
was observed in 20 draws if one quarter of the salmon had lice was 0.32%, while if there
were salmon lice on 1/20 of the salmon the probability was 35.8%. Both the probability
of observing zero and the probability of getting the same sample ratio as the true ratio
increased with a decreasing amount of lice in the cage. For ratios smaller than 1/20,
the number of salmon with salmon lice needed to get a representative sample ratio were
smaller than 1. For the last three rows, the number was closer to zero than one, and the
probability P (X = 0) was thus most appropriate to use. One salmon less without lice in
the sample would for small ratios have a great effect on the sample ratio.

Table 5.12: The probability of not observing salmon with salmon lice in n = 20 draws
without replacement calculated with the hypergeometric distribution for different cases.
The finite population size are N = 140000 and the ratio are defined as the number of
salmon lice divided by the number of salmon in the cage. The probability of getting the
same sample ratio as the ratio for the whole cage, are estimated as P(X = x), where x
are nearest integer of 20 · ratio.

Ratio m N-m P(X=0) x P(X=x)
1/2 70000 70000 < 0.001% 10 17.6%
1/3 46667 93333 0.003% 7 18.2%
1/4 35000 105000 0.32% 5 20.2%
1/8 17500 122500 6.92% 3 23.0%

1/10 14000 126000 12.2% 2 28.5%
1/16 8750 131250 27.5% 1 36.7%
1/20 7000 133000 35.8% 1 37.7%
1/40 3500 136500 60.3% 1 30.9%
1/80 1750 138250 77.8% 1 19.7%

1/200 700 139300 90.5% 1 9.09%
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5.8 Number of Delousing Treatments Performed

The number of delousing treatments that have been performed for each of the operating
methods were used in the comparison of the different operating strategies, as this indicates
how the lice pressure has been. The number of delousing treatments performed on the
cages operated according to the stage models was 364, while 251 and 194 treatments had
been performed for the coast model and the fjord model, respectively. Only the first week
of a treatment was included in the count, such that treatments that ran over two weeks
were not counted twice. The amount of data from the different operating models varied,
so it was most appropriate to use the proportion presented in Figure 5.12. The proportion
was related to how many weeks each of the operating models had been in operation, and
thus the maximum number of delousing treatments that could have been performed for
each of the models. The operating model with the highest number of cages treated against

Figure 5.12: The proportion of delousing treatments relative to the number of weeks in
operation for each of the operating models.

salmon lice was the stage model, but from the figure there were more frequent delousing
treatments on the cages operated according the coast model. Delousing treatments were
most rarely performed at salmon that had been in the fjord throughout the production.
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5.9 Violations of the Lice Limit

The allowed limit of adult female lice per salmon is mainly 0.5 (0.2 in the six weeks
presented in Section 1.1.2), and has to be calculated for a sample of at least 10 salmon
(Forskrift om lakselusbekjempelse, 2012). Violations of this limit were used to compare
the lice pressure for the different operating models. Number of violations are represented
in Table 5.13, together with the number of counts performed at cage level. Only the
weeks when the lice numbers went from legal value to above 0.5 (or 0.2 during the 6
weeks specified in Section 1.1.2) were registered as violations. Subsequent weeks where
the lice number was above the lice limit were not included, as these depended on the effect
of the delousing and not the operating models. There were different amounts of data for
the different operating models, so the ratio between violations and the number of counts
was used in the comparison of the operating models. The number of counts reflected the
total number of weeks the cages had been operated according to the given model.

Table 5.13: Number of violations of the lice limit for each of the operating models and
the locations of the salmon farms. Counts represent the total number of registrations per-
formed at cage level for each of the operating models/locations. The percentage represents
the ratio between violation of the lice limit and the number of registrations.

OperatingModel Location Stage Violation Counts Violation %

StageModel

1 B
start

15 2303 0.65
2 A 0 417 0.00
2 B 0 735 0.00
Fjord start 16 3455 0.46
Coast growth 190 2972 6.39
Fjord + Coast 206 6427 3.21

CoastModel Coast normal 142 3149 4.51

FjordModel

1 A

normal

25 538 4.65
1 B 59 3013 1.96
2 A 15 446 3.36
2 B 59 2023 2.92
Fjord normal 158 6020 2.62

From the table, the coast model had the highest number of violations of the lice limit
relative to the number of counts (4.51%). The stage model violated the limit of adult
female lice in 3.21% of the counts, while 2.62% of the counts in the fjord model violated
the limit. Most of the violations of the lice limit for the stage model occurred after the
salmon had been moved from the fjord to the coast. For the stage model, violations of
the lice limit for cages in Fjord 1 had been observed in 16 cases, while the lice numbers
for Fjord 2 remained below the limit throughout the start stage. The ratio for the growth
stage in the stage model was 6.39%, while the ratio for the coast model was 4.51%. From
Figure 4.9, the lice numbers increased after around 50 weeks in production, which was
around the same time the salmon were moved to the growth stages. It therefore made
sense that the growth stage, which was the last part of the production for the stage model,
had a higher ratio of violations of the lice limit, than the coast model, which was based
on the entire production cycle.
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6 Discussion

6.1 Remarks on Fitted Models

Alternative response variables with lice counts of adult female lice and all mobile lice for a
sample of 20 salmon and the estimated total number of salmon lice in the cage have been
tested. There were a lot of uncertainty linked to the observed values for the cage model,
as these were estimated as the number of lice calculated from a small sample multiplied
by the number of salmon in the cage. The probability of not observing salmon lice during
20 draws from a cage with 140 000 salmon, where one out of twenty has salmon lice, was
35.8% (Table 5.12). This indicated that even if no lice had been counted on 20 salmon,
there may was lice in the cage, and the estimated number of lice in the cage thus became
too inaccurate. There were also great variation between the observed values in the cage
model (min 0 - max 1298430), and thus it became difficult to adapt a suitable model.
The cage model for adult female lice was not expected to predict a single zero. By basing
the regression model on the sample count of adult female lice instead, the model fit were
largely improved, and the sample model was thus preferred for modelling the salmon lice.
Due to the large number of zeros in the observed counts, it was tested whether a model for
all mobile lice would fit the data better. The number of observed zeros was thus reduced,
but the ratio between observed and predicted zeros was not improved. Since the count
of adult female lice was most interesting to model, the sample count of adult female lice
stood out as the preferred response variable in the analysis.

The sample model for adult female lice were fitted by the generalised linear models Pois-
son and negative binomial, the zero-inflated Poisson and negative binomial models and
the Poisson and negative binomial hurdle models. The sign of the estimated regression
coefficients were the same for all the models, while there were some differences in the
magnitude and the significance of the coefficients, especially between the GLMs and the
models for zero-inflation. The model statistics from the model fit of the full sample model
for the different regression models are summarized in Table 6.1. The Poisson model was
clearly inferior to all other fits, and the GLM negative binomial improved the fit dra-
matically. The model was further improved by the zero-inflated and the hurdle models
with the negative binomial distribution for the counts. This indicated that a model which
handled zero-inflation and extra variance in the count data seemed to be appropriate for
the lice count data.

Table 6.1: Model comparison for the fitted regression models for the full sample model for
adult female lice.

Poisson Neg.bin ZIP ZINB ZAP ZANB
Degrees of freedom 20 21 40 41 40 41
Log-likelihood -36683 -25147 -32384 -23923 -32401 -24261
Expected number of 0 5748 7810 6580 7788 8125 8125
AIC 73406 50335 64848 47938 64882 48604

73



The ZINB model and the ZANB models gave almost identical fits and lead to the same
qualitative results. There was a slight improvement in the residual plot for the ZANB
model compared with the residuals from the ZINB model. The interpretation of the
hurdle model was also nicer, since the hurdle model is a two-part model, where one part
generates whether lice have been observed and the other determines how many lice that
have been observed. The cause of the excessive number of zeros should also be considered
when choosing between the zero-inflated model and the hurdle model. The hurdle models
do not discriminate between the different types of zeroes, while the zero-inflation models
discriminate between true and false zeroes. There may were some zeros in the observed
dataset that were false zeros due to observed errors, but in most cases the recorded zeroes
were correct and there were no lice on the salmon in the sample. It was therefore most
natural to choose a hurdle model, which in the zero part looked at the probability of the
absence or presence of lice, and not the probability of false zeroes as in the zero-inflated
model. The negative binomial hurdle model was thus the preferred regression model for
the sample count of adult female lice.

From the rootograms in Figure 5.8, the negative binomial hurdle model did not predict
as high values as the highest observed lice counts. This also appeared in the residual plot
(Figure 5.7), where there were some high positive residuals that stood out. Otherwise,
the residuals seemed to be randomly spread around the horizontal axis. By including
an uncensored variable of last week’s lice numbers, the model would predict higher lice
numbers, but then far too high. For the purpose of evaluating the effect of the stage
model and other factors, it was the lowest lice numbers that were most interesting, since
their impact on lice numbers was greatest under low lice pressure. The estimated count
coefficient for LastWeek1 was 1.56 for the ZANB model. The data for this variable was
the last weeks lice number, which was the average number of lice per salmon calculated
on a sample of the cage. An increase of one unit in LastWeek1 was therefore the same as
that 20 extra salmon lice had been counted on a sample of 20 salmon. Thus, if all other
coefficients were kept constant, and the last weeks observed number of salmon lice on a
sample of 20 salmon increased with one, the expected number of lice on 20 salmon was
in the ZANB model estimated to increase with a factor exp(1.56/20) = 1.081 while the
odds for zero lice would decrease with a factor exp(−3.357/20) = 0.845.

The estimated regression coefficients from the ZANB regression model, seen in Table 5.10,
were compared with the plots in Section 4. From the plot of adult female lice and sea
temperature (Figure 4.2), it was expected a quadratic trend of the sea temperature, where
the lice number increased with the temperature up to around 10°C, and then decreased
again. The linear term for the sea temperature in the count-part was not significant for a
significance level 0.05. A quadratic term of the sea temperature was thus probably not the
best way to model the sea temperature, but since most of the explanatory variables were
categorical, a numerical variable with a linear and a quadratic term were chosen in this
analysis. Otherwise, all the estimated regression coefficients for the count corresponded
well to the visualization in Section 4.

There were several potential problems with the analysis of the salmon lice data. The data
were reported from different salmon farms and there may have been some dependency
between the data from same generation or site. From Figure 5.10, most of the temporal
correlation within each of the residuals time series were removed by adding last weeks
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reported lice number of all mobile lice to the regression model. The study period extended
over a period of nine years, so there may have been changes in the operation and routines
throughout the study period that have affected the lice numbers. There were no available
data on this, and it was therefore assumed that there had been no major differences
in operations outside the factors that were included in the model. In order to achieve a
more accurate model, environmental factors such as salinity, wind and current should also
have been included in the model. The regression model used in this thesis included most
categorical variables, so by including continuous environmental factors the lice numbers
could have been analysed more dynamically.

6.2 Comparison of the Site Locations

Figure 4.3 indicated that the lice numbers were highest along the coast and lowest in the
inner part of the two fjords. The coast sites were used as a reference in the regression
model, and from the estimated ZANB regression coefficients in Table 5.10, there was
expected a significant decrease in the lice count if the cage was moved from the coast
to one of the two fjords. The lice count was expected to decrease most if the cage was
moved from the coast to Fjord 1A, which from Table 3.1 had the lowest average salinity.
The inner part of Fjord 1 was also, according to Figure 4.3, the location with lowest lice
numbers. This corresponds with the results in Torrissen et al. (2013), which shows that
salmon lice prefer high-salinity sea water. If the cage was moved from the coast to the
inner part of Fjord 1 and all other terms were kept constant, the expected count of lice
on a sample of 20 salmon would decrease with a factor exp(−0.553) = 0.575. The odds
for a zero-count for the inner part of the two fjords were not significantly different from
the odds for a coast site, while the odds for absence increased for Fjord 2B and decreased
for Fjord 1B. For Fjord 1A, most of the lice numbers in Figure A.5 were larger than
zero. This corresponded to the estimated regression coefficients, but there were no clear
differences in the amount of zeros for Fjord 2A and the outer part of the two fjords in the
figure. The results from the model fit of the ZANB model was thus a bit surprising, and
would have been interesting to study further.

The smallest factor change in the expected count of lice due to changed location was
exp(−0.297) = 0.743, and occurred if all other terms were fixed and the cage was moved
from the coast to Fjord 1B (Table 5.10). The outer part of Fjord 1 was also the location
in Figure 4.3 that had the highest lice numbers of the fjord locations. According to the
gathered salinity data (Table 3.1), the average salinity was highest for Fjord 2B. There
were some shortcomings in the salinity data, so the salinity for each of the locations should
have been studied in more detail with an improved dataset. By including environmental
measurements as salinity and currents in the regression model, the indicator variable for
the location of the cage could give an indication of whether there were other differences
between the two fjords.
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6.3 Evaluation of the Stage Model

The estimated regression coefficients for the ZANB sample model in Table 5.10 indicated
that the count of adult female lice was expected to increase if a coast model or a fjord
model were used instead of the stage model. The lice count on a sample of 20 salmon
were from the ZANB model expected to increase by a factor exp(0.228) = 1.26 if a coast
model was used instead of a stage model, and all other terms were fixed. If a fjord model
was used instead of the stage model, the lice count was expected to increase by a factor
exp(0.423) = 1.53. A location along the coast was used as reference, and for all four fjord
locations, the count of lice was expected to be lower than at the coast. A cage operated
after the coast model was always located by the coast, and the other location levels in
Location were thus irrelevant for the coast model. For the fjord model, it was expected
that the count of lice, in addition to being increased by a factor of 1.53 compared to the
stage model, would be reduced by a factor between 0.58 and 0.74 depending on where in
the two fjords the cage was located. It was therefore the coast model that had the highest
expected lice count if both the location and the operating model were considered.

The probability of absence of lice were studied from the estimated zero-inflated regression
coefficients in the ZANB model. The odds of a positive count on a sample of 20 salmon
was for the coast model and the fjord model increased by a factor exp(1.088) = 2.97 and
exp(0.638) = 1.89, respectively, if the stage model were used as reference and all other
terms were fixed. Thus, there were less likely to observe lice on a sample of 20 salmon
from a cage operated according to the stage model than from a cage with whole-generation
operation along the coast or in the fjord.

The number of delousing treatments and violations of the lice limit (0.5 adult female lice
per salmon) were used as an indicator for the lice pressure for the different operating
methods. From Table 5.13, 3.21% of the lice numbers from the stage model violated the
limit, while 4.51% of the coast model and 2.62% of the fjord model violated the lice limit.
From Figure 5.12, the proportion of delousing treatments relative to the number of weeks
in production for each of the operating models stage, coast and fjord were 5.66%, 7.97%,
3.22%, respectively. The number of treatments was higher than the violations, which is
natural, since the salmon should be deloused before the limit is exceeded. If the limit
is exceeded, several different treatments may be needed before the lice number is at an
acceptable level. Both the ratio of the violations of the lice limit and the proportion of
delousing treatments indicates that the lice pressure is highest for the coast model and
lowest for the fjord model.
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6.4 Conclusion and Further Work

The negative binomial hurdle model for the sample count of adult female lice seemed to
fit the lice count data best, and were used to evaluate the effect of a shortened sea phase.
From the estimated regression coefficients, the stage model seems to be significantly better
than the coast model and the fjord model, as a lower lice count is expected for the stage
model. The odds of absence of lice is higher for the stage model than for the coast model
and the fjord model. Both the estimated regression coefficient, the number of violations
of the lice limit and the proportion of delousing treatments indicates that there is a lower
lice pressure for cages operated in the fjord versus along the coast.

There were fewer delousing treatments and violations of the lice limit associated with
the fjord model compared with the stage model. There have been no consecutive whole-
generation productions in the two fjords, so a possible increasing lice situation for future
productions in the fjords due to that there is a lot of salmon in the fjord throughout the
year, was not visible in this analysis. Thus, the full effect of the shortened sea phase,
that is achieved by moving the salmon to the coast after 7 to 9 months of production in
the fjord, could not be assessed. The regression model indicates that keeping the salmon
in inner fjords systems has good effect on the lice pressure, but the effect of moving the
salmon out instead of keeping it in the fjord should have been investigated further.

For further work, it would therefore be interesting to set up a research project across
several production cycles for the fjord model and the stage model, where environmental
variables and other factors that may affect the lice pressure are reported. This would
improve the database, and the differences between the fjord model and the stage model
could have been studied more accurate. Then the infection dynamics between sites and lice
development in the two fjords by the various operating methods could also be investigated.
Several of the salmon farms that were considered as neighbour sites in this analysis may
not have been in operation for several years, and should therefore not have been considered
as a neighbour site in the regression model. The number of neighbors should therefore
also be reported during a possible research project, so that the neighbor variable becomes
more accurate. By including several variables, a more general regression model would
be obtained, and the count of lice would be described more dynamically using numerical
variables such as salinity and wind.

In this study, only lice numbers were used as a basis in the evaluation of the stage model,
but there are also other factors that should be taken into account when such a operating
strategy is considered. Such as the salmon growth and the risk of spreading infections
associated with transporting the salmon from inner fjord systems to the coast (Veiledning:
Flytting av laksefisk mellom oppdrettsanlegg, 2019). The environmental impacts and the
lice pressure on wild fish are also factors that should be consider when comparing the
operating models.
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Appendix

A Additional figures

Figure A.1: Presentation of the response variables for all mobile lice. The reported mean
of all mobile lice (top), the counted number of all mobile lice on twenty salmon (middle)
and the estimated total number of all mobile lice (bottom) in each cage plotted against
time.
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Figure A.2: Total number of salmon and salmon lice in the study area during the period
2012-2021. The total number is found by summarising over all cages in the study area.
The number of salmon lice in each cage is estimated as the reported lice number for the
cage multiplied with the number of salmon in the cage.
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Figure A.3: Total number of salmon and salmon treated against salmon lice in the study
area during the period 2012-2021. The total number is found by summarising over all
cages in the study area.
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Figure A.4: The average of AdultFemaleLice and allMobile for every degree Celsius in the
sea temperature plotted as a black line. The blue points are the reported lice numbers for
adult female lice and all mobile lice, respectively, and are grouped into the periods with
high lice pressure (light blue) and normal lice pressure (dark blue). Only lice numbers
below 1 and 2, respectively, are plotted in this figure (all points are plotted in Figure 4.2).
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Figure A.5: The average of AdultFemaleLice and allMobile for the locations Coast, Fjord
1A, Fjord1B, Fjord2A and Fjord2B, plotted as a black bar. Box-plots of the reported lice
numbers for adult female lice and all mobile lice, respectively, and the explanatory variable
Location are also presented. Only lice numbers below 1 and 2, respectively, are plotted in
this figure (all points are plotted in Figure 4.3).
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Figure A.6: The average of AdultFemaleLice and allMobile for the stage model, coast
model and fjord model, plotted as a black bar. Box-plots of the reported lice numbers for
adult female lice and all mobile lice, respectively, and the explanatory variable Operating-
Model are also presented. Only lice numbers below 1 and 2, respectively, are plotted in
this figure (all points are plotted in Figure 4.4).
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Figure A.7: The average of AdultFemaleLice and allMobile per week plotted as a black
line. The blue points are the reported lice numbers for adult female lice and all mobile
lice, respectively, and are grouped into the periods with high lice pressure (light blue) and
normal lice pressure (dark blue). Only lice numbers below 1 and 2, respectively, are plotted
in this figure (all points are plotted in Figure 4.5).
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Figure A.8: The average of AdultFemaleLice and allMobile for every 21000 salmon in
the cage plotted as a black line. The blue points are the reported lice numbers for adult
female lice and all mobile lice, respectively, and are grouped into the periods with high lice
pressure (light blue) and normal lice pressure (dark blue). Only lice numbers below 1 and
2, respectively, are plotted in this figure (all points are plotted in Figure 4.6).
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Figure A.9: The average of AdultFemaleLice and allMobile for every hundred gram plotted
as a black line. The blue points are the reported lice numbers for adult female lice and
all mobile lice, respectively, and are grouped into the periods with high lice pressure (light
blue) and normal lice pressure (dark blue). Only lice numbers below 1 and 2, respectively,
are plotted in this figure (all points are plotted in Figure 4.7).
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Figure A.10: The average of AdultFemaleLice and allMobile for every twenty metric tons
plotted as a black line. The blue points are the reported lice numbers for adult female
lice and all mobile lice, respectively, and are grouped into the periods with high lice pres-
sure (light blue) and normal lice pressure (dark blue). Only lice numbers below 1 and 2,
respectively, are plotted in this figure (all points are plotted in Figure 4.8).
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Figure A.11: The average of AdultFemaleLice and allMobile for each production week plot-
ted as a black line. The blue points are the reported lice numbers for adult female lice and
all mobile lice, respectively, and are grouped into the periods with high lice pressure (light
blue) and normal lice pressure (dark blue). Only lice numbers below 1 and 2, respectively,
are plotted in this figure (all points are plotted in Figure 4.9).
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Figure A.12: The average of AdultFemaleLice and allMobile for no treatment and ongoing
treatment, as well as the average for each of the different delousing methods, plotted as a
black bar. Box-plots of the reported lice numbers for adult female lice and all mobile lice,
respectively, for both Treatment and Method are also presented. Only lice numbers below
1 and 2, respectively, are plotted in this figure (all points are plotted in Figure 4.10).
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Figure A.13: The average of AdultFemaleLice and allMobile for every 150 meter from the
coastline plotted as a black line. The blue points are the reported lice numbers for adult
female lice and all mobile lice, respectively, and are grouped into the periods with high lice
pressure (light blue) and normal lice pressure (dark blue). Only lice numbers below 1 and
2, respectively, are plotted in this figure (all points are plotted in Figure 4.11).
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Figure A.14: The average of AdultFemaleLice and allMobile for every half kilometer from
the nearest neighbour plotted as a black line. The blue points are the reported lice numbers
for adult female lice and all mobile lice, respectively, and are grouped into the periods with
high lice pressure (light blue) and normal lice pressure (dark blue). Only lice numbers
below 1 and 2 are plotted in this figure (all points are plotted in Figure 4.12).
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Figure A.15: The average of AdultFemaleLice and allMobile for each number of neighbours
within 10km plotted as a black line. The blue points are the reported lice numbers for adult
female lice and all mobile lice, respectively, and are grouped into the periods with high lice
pressure (light blue) and normal lice pressure (dark blue). Only lice numbers below 1 and
2, respectively, are plotted in this figure (all points are plotted in Figure 4.13).
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Figure A.16: The average of AdultFemaleLice and allMobile for the last weeks reported
lice number with one significant digit are plotted as a black line. The blue points are the
reported lice numbers for adult female lice and all mobile lice, respectively, and are grouped
into the periods with high lice pressure (light blue) and normal lice pressure (dark blue).
Only lice numbers with last weeks reported lice number below 10 are plotted in this figure
(all points are plotted in Figure 4.14).
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Figure A.17: Top left: The distance to the closest salmon farm in meter (Mindist) plotted
against the number of neighbours within 10km (neighbours). Top right: The distance to
the coastline in meter (Distance) plotted against the number of neighbours within 10km
(neighbours). respectively. Bottom left: The distance to the coastline in meter (Distance)
plotted against the distance to the closest salmon farm in meter (Mindist). Bottom right:
The reported lice number of adult female lice plotted against the number of neighbours
within 10km. The data points are grouped into the location of the salmon farm.
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Figure A.18: The average of AdultFemaleLice and allMobile for the censored last weeks
reported lice number with one significant digit are plotted as a black line. All the reported
lice numbers from last weeks which are larger than 1, are registered as 1 in this figure.
The blue points are the reported lice numbers for adult female lice and all mobile lice,
respectively, and are grouped into the periods with high lice pressure (light blue) and normal
lice pressure (dark blue). Only lice numbers below 1 and 3, respectively, are plotted in this
figure (all points are plotted in Figure 4.14).
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Figure A.19: The frequency of the CountAdultFemale and CountAllMobile with a censor-
ing at frequency above 100.
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B Additional results

Table B.1: Regression coefficients with associated estimate, standard error, z-value and
p-value from the Poisson regression for the cage model of adult female lice.

Coefficients Estimate Std. Error z value p-value
Intercept 7.6732 0.0008 9339.33 < 2 · 10−16

SeaTemperature 0.0054 0.0002 34.46 < 2 · 10−16

SeaTemperature2 0.0021 8.1 · 10−6 261.55 < 2 · 10−16

Location1 A -0.7952 0.0006 -1407.63 < 2 · 10−16

Location1 B -0.3735 0.0004 -1062.35 < 2 · 10−16

Location2 A -0.5490 0.0006 -929.82 < 2 · 10−16

Location2 B -0.5105 0.0004 -1275.69 < 2 · 10−16

OperatingModelCoast 0.1899 0.0002 1131.68 < 2 · 10−16

OperatingModelFjord 0.5173 0.0003 1504.54 < 2 · 10−16

SeasonSpring -0.4651 0.0002 -2611.70 < 2 · 10−16

SeasonWinter -0.2412 0.0002 -1189.81 < 2 · 10−16

Biomass 0.0027 5.3 · 10−7 5122.60 < 2 · 10−16

BiomassIndicator -0.3406 0.0002 -1761.47 < 2 · 10−16

ProdWeek50 0.0199 0.0002 107.47 < 2 · 10−16

Treatment -0.1577 0.0002 -897.24 < 2 · 10−16

DistToCoast1 -0.2517 0.0002 -1528.92 < 2 · 10−16

DistToCoast2 0.1592 0.0003 576.04 < 2 · 10−16

Neighbours 0.1417 0.0001 1449.25 < 2 · 10−16

LastWeek1 1.8225 0.0002 8468.28 < 2 · 10−16

HighPeriod 0.7441 0.0002 4724.04 < 2 · 10−16

AIC: 339990937, Null deviance: 903657462 on 15595 degrees of freedom
Residual deviance: 339899458 on 15576 degrees of freedom
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Table B.2: Regression coefficients with associated estimate, standard error, z-value and
p-value from the Poisson regression for the sample model of all mobile lice.

Coefficients Estimate Std. Error z value p-value
Intercept 1.1667 0.0335 34.84 < 2 · 10−16

SeaTemperature -0.1777 0.0063 -28.21 < 2 · 10−16

SeaTemperature2 0.0108 0.0003 32.24 < 2 · 10−16

Location1 A 0.2518 0.0196 12.81 < 2 · 10−16

Location1 B 0.4719 0.0114 41.37 < 2 · 10−16

Location2 A 0.0885 0.0236 3.75 0.0002
Location2 B 0.1103 0.0146 7.57 3.69 · 10−14

OperatingModelCoast 0.2768 0.0075 37.09 < 2 · 10−16

OperatingModelFjord -0.1797 0.0112 -16.05 < 2 · 10−16

SeasonSpring -0.3701 0.0076 -48.80 < 2 · 10−16

SeasonWinter -0.3223 0.0085 -37.84 < 2 · 10−16

Biomass 0.0009 2.29 · 10−5 38.93 < 2 · 10−16

BiomassIndicator -0.2266 0.0080 -28.19 < 2 · 10−16

ProdWeek50 0.4560 0.0083 54.69 < 2 · 10−16

Treatment -0.2793 0.0072 -38.81 < 2 · 10−16

DistToCoast1 -0.1682 0.0071 -23.85 < 2 · 10−16

DistToCoast2 0.0606 0.0122 4.96 6.89 · 10−7

Neighbours 0.1084 0.0042 26.06 < 2 · 10−16

LastWeek1 2.3073 0.0086 267.27 < 2 · 10−16

HighPeriod 0.8592 0.0067 128.13 < 2 · 10−16

AIC: 197655, Null deviance: 477241 on 15595 degrees of freedom
Residual deviance: 156004 on 15576 degrees of freedom
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Table B.3: Regression coefficients with associated estimate, standard error, z-value and
p-value from the zero-inflated Poisson regression for the full sample model of adult female
lice.

Count-model coefficients Estimate Std. Error z value p-value
Intercept. 0.2540 0.0702 3.6164 0.0003
SeaTemperature -0.0546 0.0132 -4.1387 3.49 · 10−5

SeaTemperature2 0.0034 0.0007 4.9110 9.06 · 10−7

Location1 A -0.5362 0.0491 -10.9152 < 2 · 10−16

Location1 B -0.2234 0.0330 -6.7642 1.34 · 10−11

Location2 A -0.4358 0.0629 -6.9272 4.29 · 10−12

Location2 B -0.3523 0.0403 -8.7322 < 2 · 10−16

OperatingModelCoast 0.1719 0.0154 11.1715 < 2 · 10−16

OperatingModelFjord 0.4768 0.0344 13.8767 < 2 · 10−16

SeasonSpring -0.3310 0.0160 -20.7151 < 2 · 10−16

SeasonWinter -0.1793 0.0169 -10.5887 < 2 · 10−16

Biomass 0.0008 4.42 · 10−5 18.3968 < 2 · 10−16

BiomassIndicator1 -0.1598 0.0166 -9.6394 < 2 · 10−16

ProdWeek50 0.3122 0.0165 18.9312 < 2 · 10−16

Treatment -0.1782 0.0153 -11.6076 < 2 · 10−16

DistToCoast1 -0.0452 0.0150 -3.0159 0.0026
DistToCoast2 0.1973 0.0248 7.9561 1.78 · 10−15

Neighbours 0.1213 0.0088 13.7118 < 2 · 10−16

LastWeek1 1.3833 0.0192 72.1942 < 2 · 10−16

HighPeriod 0.7141 0.0134 53.2057 < 2 · 10−16

Zero-inflated coefficients Estimate Std. Error z value p-value
Intercept 1.2440 0.3498 3.5564 0.0004
SeaTemperature 0.3000 0.0667 4.4985 6.84 · 10−6

SeaTemperature2 -0.0196 0.0036 -5.4691 4.52 · 10−8

Location1 A -0.3350 0.2318 -1.4450 0.1485
Location1 B -0.5282 0.1303 -4.0528 5.06 · 10−5

Location2 A -0.1984 0.1801 -1.1013 0.2708
Location2 B 0.4592 0.1306 3.5146 0.0004
OperatingModelCoast -1.1619 0.0986 -11.7791 < 2 · 10−16

OperatingModelFjord -0.3760 0.0796 -4.7206 2.35 · 10−6

SeasonSpring -0.3361 0.0731 -4.6001 4.22 · 10−6

SeasonWinter -0.2930 0.0943 -3.1083 0.0019
Biomass -0.0058 0.0003 -18.9606 < 2 · 10−16

BiomassIndicator 1.5964 0.1528 10.4498 < 2 · 10−16

ProdWeek50 -1.3151 0.1104 -11.9158 < 2 · 10−16

Treatment 0.1514 0.1116 1.3559 0.1751
DistToCoast1 0.1757 0.0743 2.3636 0.0181
DistToCoast2 0.3589 0.1291 2.7806 0.0054
Neighbours 0.1270 0.0471 2.6985 0.0070
LastWeek1 -3.0410 0.1045 -29.0914 < 2 · 10−16

HighPeriod 0.2604 0.1133 2.2986 0.0215
AIC: 64848, 47, Loglik: -32384.23, Expected zeroes: 6580

105



Table B.4: Regression coefficients with associated estimate, standard error, z-value and
p-value from the zero-inflated negative binomial regression for the full sample model of
adult female lice.

Count-model coefficients Estimate Std. Error z value p-value
Intercept -0.4338 0.1545 -2.8084 0.0050
SeaTemperature -0.0436 0.0297 -1.4656 0.1428
SeaTemperature2 0.0041 0.0016 2.5999 0.0093
Location1 A -0.5380 0.0923 -5.8286 5.59 · 10−9

Location1 B -0.3090 0.0632 -4.8896 1.01 · 10−6

Location2 A -0.2966 0.1206 -2.4585 0.0140
Location2 B -0.3628 0.0781 -4.6434 3.43 · 10−6

OperatingModelCoast 0.2801 0.0327 8.5560 < 2 · 10−16

OperatingModelFjord 0.4920 0.0634 7.7573 8.68 · 10−15

SeasonSpring -0.3522 0.0316 -11.1482 < 2 · 10−16

SeasonWinter -0.0607 0.0386 -1.5729 0.1158
Biomass 0.0012 0.0001 11.3619 < 2 · 10−16

BiomassIndicator -0.2658 0.0405 -6.5571 5.49 · 10−11

ProdWeek50 0.5040 0.0346 14.5814 < 2 · 10−16

Treatment -0.1503 0.0348 -4.3144 1.60 · 10−5

DistToCoast1 -0.0685 0.0330 -2.0774 0.0378
DistToCoast2 0.2464 0.0475 5.1817 2.20 · 10−7

Neighbours 0.1313 0.0182 7.2041 5.84 · 10−13

LastWeek1 1.5229 0.0368 41.3490 < 2 · 10−16

HighPeriod 0.7253 0.0427 16.9855 < 2 · 10−16

Log(r) 0.3625 0.0225 16.1445 < 2 · 10−16

Zero-inflated coefficients Estimate Std. Error z value p-value
Intercept 0.4472 0.7831 0.5711 0.5679
SeaTemperature 0.5257 0.1379 3.8127 0.0001
SeaTemperature2 -0.0229 0.0076 -3.0330 0.0024
Location1 A -0.5299 0.5262 -1.0071 0.3139
Location1 B -0.8434 0.3222 -2.6176 0.0089
Location2 A -0.1878 0.3855 -0.4873 0.6260
Location2 B 1.0521 0.3145 3.3450 0.0008
OperatingModelCoast -1.4959 0.2663 -5.6177 1.94 · 10−8

OperatingModelFjord -0.2560 0.1382 -1.8522 0.0640
SeasonSpring -0.1438 0.1593 -0.9024 0.3669
SeasonWinter 0.2502 0.1933 1.2939 0.1957
Biomass -0.0126 0.0010 -12.7064 < 2 · 10−16

BiomassIndicator 1.7293 0.9901 1.7465 0.0807
ProdWeek50 -16.4463 566.9700 -0.0290 0.9769
Treatment -1.0825 0.5302 -2.0416 0.0412
DistToCoast1 0.1697 0.1629 1.0416 0.2976
DistToCoast2 0.9646 0.2975 3.2422 0.0012
Neighbours 0.1256 0.1049 1.1970 0.2313
LastWeek1 -18.6639 1.3311 -14.0214 < 2 · 10−16

HighPeriod 0.3403 0.2388 1.4253 0.1541
AIC: 47973, 94, Loglik: -23927.97, Expected zeroes: 7788
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Table B.5: Regression coefficients with associated estimate, standard error, z-value and
p-value from the zero-altered Poisson regression for the full sample model of adult female
lice.

Count-model coefficients Estimate Std. Error z value p-value
Intercept 0.2567 0.0701 3.6645 0.0002
SeaTemperature -0.0546 0.0132 -4.1382 3.50 · 10−5

SeaTemperature2 0.0034 0.0007 4.9226 8.54 · 10−7

Location1 A -0.5236 0.0486 -10.7630 < 2 · 10−16

Location1 B -0.2056 0.0327 -6.2885 3.21 · 10−10

Location2 A -0.4088 0.0615 -6.6438 3.06 · 10−11

Location2 B -0.3288 0.0398 -8.2563 < 2 · 10−16

OperatingModelCoast 0.1751 0.0154 11.3795 < 2 · 10−16

OperatingModelFjord 0.4567 0.0339 13.4685 < 2 · 10−16

SeasonSpring -0.3304 0.0159 -20.7285 < 2 · 10−16

SeasonWinter -0.1807 0.0170 -10.6462 < 2 · 10−16

Biomass 0.0008 4.43 · 10−5 18.2293 < 2 · 10−16

BiomassIndicator -0.1602 0.0166 -9.6610 < 2 · 10−16

ProdWeek50 0.3161 0.0164 19.2206 < 2 · 10−16

Treatment -0.1811 0.0153 -11.8036 < 2 · 10−16

DistToCoast1 -0.0529 0.0149 -3.5446 0.0004
DistToCoast2 0.1962 0.0248 7.9250 2.28 · 10−15

Neighbours 0.1211 0.0088 13.8271 < 2 · 10−16

LastWeek1 1.3806 0.0191 72.1755 < 2 · 10−16

HighPeriod 0.7132 0.0134 53.1529 < 2 · 10−16

Zero-inflated coefficients Estimate Std. Error z value p-value
Intercept -1.6625 0.3060 -5.4326 5.55 · 10−8

SeaTemperature -0.3050 0.0589 -5.1772 2.25 · 10−7

SeaTemperature2 0.0198 0.0032 6.2750 3.50 · 10−10

Location1 A 0.0216 0.1844 0.1169 0.9069
Location1 B 0.2814 0.1141 2.4666 0.0136
Location2 A -0.0946 0.1453 -0.6510 0.5150
Location2 B -0.6774 0.1142 -5.9320 2.99 · 10−9

OperatingModelCoast 1.0948 0.0850 12.8857 < 2 · 10−16

OperatingModelFjord 0.6378 0.0702 9.0899 < 2 · 10−16

SeasonSpring 0.1393 0.0645 2.1604 0.0307
SeasonWinter 0.2079 0.0857 2.4257 0.0153
Biomass 0.0055 0.0003 21.1693 < 2 · 10−16

BiomassIndicator -1.4562 0.1326 -10.9858 < 2 · 10−16

ProdWeek50 1.2837 0.0969 13.2416 < 2 · 10−16

Treatment -0.2058 0.0992 -2.0742 0.0381
DistToCoast1 -0.1542 0.0669 -2.3058 0.0211
DistToCoast2 -0.1608 0.1063 -1.5128 0.1303
Neighbours -0.0268 0.0393 -0.6804 0.4963
LastWeek1 3.3828 0.0954 35.4698 < 2 · 10−16

HighPeriod -0.1281 0.1133 -1.1315 0.2579
AIC: 64881.76, Loglik: -32400.88, Expected zeroes: 8125
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Table B.6: Regression coefficients with associated estimate, standard error, z-value and p-
value from the zero-altered negative binomial regression for the full sample model of adult
female lice.

Count-model coefficients Estimate Std. Error z value p-value
Intercept -0.3524 0.1744 -2.0210 0.0433
SeaTemperature -0.0546 0.0330 -1.6548 0.0980
SeaTemperature2 0.0041 0.0017 2.3291 0.0199
Location1 A -0.5534 0.1029 -5.3751 7.66 · 10−8

Location1 B -0.2973 0.0713 -4.1683 3.07 · 10−5

Location2 A -0.3419 0.1302 -2.6247 0.0087
Location2 B -0.3350 0.0868 -3.8604 0.0001
OperatingModelCoast 0.2284 0.0361 6.3256 2.52 · 10−10

OperatingModelFjord 0.4227 0.0708 5.9692 2.38 · 10−9

SeasonSpring -0.3778 0.0355 -10.6330 < 2 · 10−16

SeasonWinter -0.1290 0.0425 -3.0310 0.0024
Biomass 0.0012 0.0001 10.9251 < 2 · 10−16

BiomassIndicator -0.2934 0.0438 -6.6931 2.18 · 10−11

ProdWeek50 0.4412 0.0382 11.5612 < 2 · 10−16

Treatment -0.0986 0.0390 -2.5297 0.0114
DistToCoast1 -0.0535 0.0355 -1.5092 0.1312
DistToCoast2 0.3227 0.0540 5.9718 2.35 · 10−9

Neighbours 0.1483 0.0205 7.2206 5.18 · 10−13

LastWeek1 1.5610 0.0404 38.6266 < 2 · 10−16

HighPeriod 0.7896 0.0459 17.2063 < 2 · 10−16

Log(r) 0.3325 0.0333 9.9967 < 2 · 10−16

Zero-inflated coefficients Estimate Std. Error z value p-value
Intercept -1.6625 0.3060 -5.4326 5.55 · 10−8

SeaTemperature -0.3050 0.0589 -5.1772 2.25 · 10−7

SeaTemperature2 0.0198 0.0032 6.2750 3.50 · 10−10

Location1 A 0.0216 0.1844 0.1169 0.9069
Location1 B 0.2814 0.1141 2.4666 0.0136
Location2 A -0.0946 0.1453 -0.6510 0.5150
Location2 B -0.6774 0.1142 -5.9320 2.99 · 10−9

OperatingModelCoast 1.0948 0.0850 12.8857 < 2 · 10−16

OperatingModelFjord 0.6378 0.0702 9.0899 < 2 · 10−16

SeasonSpring 0.1393 0.0645 2.1604 0.0307
SeasonWinter 0.2079 0.0857 2.4257 0.0153
Biomass 0.0055 0.0003 21.1693 < 2 · 10−16

BiomassIndicator -1.4562 0.1326 -10.9858 < 2 · 10−16

ProdWeek50 1.2837 0.0969 13.2416 < 2 · 10−16

Treatment -0.2058 0.0992 -2.0742 0.0381
DistToCoast1 -0.1542 0.0669 -2.3058 0.0211
DistToCoast2 -0.1608 0.1063 -1.5128 0.1303
Neighbours -0.0268 0.0393 -0.6804 0.4963
LastWeek1 3.3828 0.0954 35.4698 < 2 · 10−16

HighPeriod -0.1281 0.1133 -1.1315 0.2579
AIC: 48604.38, Loglik: -24261.19, Expected zeroes: 8125
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C R-code examples

Packages and Functions

\usemintedstyle{tango}

#Install packages

library(easypackages)

#install.packages("countreg", repos="http://R-Forge.R-project.org")

#library(devtools)

#install_github("vqv/ggbiplot")

packages("tidyverse", "readxl", "conflicted", "gt", "gridExtra", "pscl",

"performance", "plotly", "ISOweek", "GGally", "AER", "MASS",

"wesanderson", "GGally", "ggpubr", "osmdata", "geosphere",

"sf", "reshape2", "ggcorrplot", "countreg", "ggbiplot", "xtable")

conflict_prefer("filter", "dplyr")

conflict_prefer("lag", "dplyr")

conflict_prefer("select", "dplyr")

conflict_prefer("mutate", "dplyr")

conflict_prefer("arrange", "dplyr")

conflict_prefer("first", "dplyr")

conflict_prefer("summarise", "dplyr")

conflict_prefer("summarize", "dplyr")

conflict_prefer("group_by", "dplyr")

conflict_prefer("startsWith", "gdata")

conflict_prefer("zeroinfl", "pscl")

conflict_prefer("zeroinfl.control", "pscl")

conflict_prefer("hurdle", "pscl")

#Functions

###Preparation of the dataset - growth sites fjord1 ###

fjord_1 <- function(path){

biomasse_opprinnelig <- read_excel(path, sheet = "Biomasse", skip = 6)

temperatur_opprinnelig <- read_excel(path, sheet = "Temperatur ", skip = 6)

lusetall_opprinnelig <- read_excel(path, sheet = "Lusetall", skip = 8)

avlusing_opprinnelig <- read_excel(path, sheet = "Avlusninger")

biomasse <- biomasse_opprinnelig %>%

mutate(YearWeek = ifelse(startsWith(`Row Labels`, "20"), `Row Labels`, NA))

while(anyNA(biomasse$YearWeek)==TRUE){

biomasse <- biomasse %>%

mutate(YearWeek = ifelse(is.na(YearWeek), lag(YearWeek), YearWeek))

}

biomasse <- biomasse %>%

filter(startsWith(`Row Labels`,"20")==FALSE & `Row Labels`!="Grand Total")%>%

separate("YearWeek", c("Year", "Week"), sep = "w", remove=TRUE) %>%

mutate(Cage=`Row Labels`, Year=as.numeric(Year), Week = as.numeric(Week))%>%

select(-c(`Row Labels`))%>%

filter(`IB Biomasse`!=0)

temperatur <- temperatur_opprinnelig %>%

mutate(YearWeek = ifelse(startsWith(`Row Labels`, "20"), `Row Labels`, NA))

while(anyNA(temperatur$YearWeek)==TRUE){
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temperatur <- temperatur %>%

mutate(YearWeek = ifelse(is.na(YearWeek), lag(YearWeek), YearWeek)) }

temperatur <- temperatur %>%

filter(startsWith(`Row Labels`,"20")==FALSE & `Row Labels`!="Grand Total")%>%

separate("YearWeek", c("Year", "Week"), sep = "w", remove=TRUE) %>%

mutate(Cage=`Row Labels`, Year=as.numeric(Year),

Week = as.numeric(Week))%>%

select(-c(`Row Labels`))

lusetall <- lusetall_opprinnelig %>%

mutate(YearWeek = ifelse(startsWith(`Row Labels`, "20"),

`Row Labels`, NA))

while(anyNA(lusetall$YearWeek)==TRUE){

lusetall <- lusetall %>%

mutate(YearWeek = ifelse(is.na(YearWeek), lag(YearWeek), YearWeek))}

if(path=="data_R.xlsx"){

lusetall <- lusetall %>%

filter(startsWith(`Row Labels`,"20")==FALSE &

`Row Labels`!="Grand Total")%>%

separate("YearWeek", c("Year", "Week"), sep = "w", remove=TRUE) %>%

mutate(Mobile = Mobile (large) + Mobile (small)) %>%

mutate(Cage=`Row Labels`, Year=as.numeric(Year),

Week = as.numeric(Week))%>%

select(-c(`Row Labels`))}

else{

lusetall <- lusetall %>%

filter(startsWith(`Row Labels`,"20")==FALSE & `Row Labels`!="Grand Total")%>%

separate("YearWeek", c("Year", "Week"), sep = "w", remove=TRUE) %>%

mutate(Cage = `Row Labels`, Year=as.numeric(Year),

Week = as.numeric(Week))%>%

mutate(Mobile = ifelse(is.na(Mobile),

Mobile (large) + Mobile (small),Mobile)) %>%

select(-c(`Row Labels`))}

avlusing <- avlusing_opprinnelig %>%

mutate(Date = as.Date(TreatmentDate, "%d.%m.%Y"))%>%

mutate(Method = ifelse(Method=="Mekanisk",

str_replace_all(`Active Substance`, c("Hot water" = "Thermic",

"Lice flusher" = "Lice_flusher",

"Seawater" = "Lice_flusher",

"fresh water" = "Freshwater")), Method)) %>%

mutate(Method = str_replace_all(Method, c("Feed" = "Oral"))) %>%

mutate(Cage = as.factor(UnitName), AC = `Active Substance`,

Method = as.factor(Method)) %>%

group_by(Cage, Method) %>%

arrange(Date) %>%

mutate(date.diff = c(1,diff(Date)))%>%

mutate(period_treatment = cumsum(date.diff>3))%>%

ungroup()%>%

group_by(Cage, Method, period_treatment)%>%

summarize(start_treatment = min(Date),

end_treatment = max(Date))

treatment <- avlusing %>%

mutate(duration_treatment=end_treatment-start_treatment,

Week = as.numeric(strftime(start_treatment, format = "%V")),

Year = as.numeric(strftime(start_treatment, format = "%Y")))

treatments = treatment
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if (any(as.numeric(strftime(treatment$end_treatment[],

format = "%V"))-treatment$Week[]==1)) {

week2 <- treatment %>%

filter(as.numeric(strftime(end_treatment, format = "%V"))-Week==1)%>%

mutate(Week = as.numeric(strftime(end_treatment, format = "%V")))

treatments <- rbind(treatments, week2)}

if (any(as.numeric(strftime(treatment$end_treatment[],

format = "%V"))-treatment$Week[]==2)) {

week3 <- treatment %>%

filter(as.numeric(strftime(end_treatment, format = "%V"))-Week==2) %>%

mutate(Week = as.numeric(strftime(start_treatment, format = "%V"))+1)

treatments <- rbind(treatments, week3)}

total <- biomasse %>%

left_join(temperatur, by=c("Year", "Week", "Cage"))

total <- total %>%

left_join(lusetall, by=c("Year", "Week", "Cage"))

total <- total %>%

left_join(treatments, by=c("Year", "Week", "Cage")) %>%

mutate(Locality=substr(Cage, 1, 1))%>%

mutate(SeaTemperature = `Temperatur gj.snitt.`,

Biomass = `IB Biomasse`,

NumberOfFish = `IB Antall`, Weight = `IB Vekt`,

AdultFemaleLice = `Adult female ovig.`,

MobileLice = `Mobile`,

SessileLice = `Chalimus`,

ScottishLice = `Scottish lice`) %>%

select(Locality, Cage, Year, Week, SeaTemperature, AdultFemaleLice,

MobileLice, SessileLice, ScottishLice, NumberOfFish, Weight,

Biomass, start_treatment, end_treatment, Method, period_treatment,

duration_treatment) %>%

filter(Year>2011)

return(total)

}

###Sort in production cycles ###

Production_cycle <- function(dataset){

dataset %>%

group_by(base) %>%

arrange(base, date) %>%

mutate(date.diff = c(1,diff(date))) %>%

mutate(production_cycle = cumsum(abs(date.diff) > 7)) %>%

ungroup() %>%

group_by(base, production_cycle) %>%

mutate(start = date[1], end = date[length(date)]) %>%

mutate(duration_production_cycle = as.numeric((end-start)/7)) %>%

mutate(week_in_production_cycle = as.numeric((date-start)/7))

}

###Temperature for each week###

temperatur <- function(dataset){

notemp <- subset(dataset, is.na(dataset$SeaTemperature))

for (i in 1:nrow(notemp)){

index <- which(dataset$Locality==notemp$Locality[i] &

dataset$Week==notemp$Week[i] &

dataset$Year==notemp$Year[i] &

dataset$Cage==notemp$Cage[i])
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if((notemp$Week[i]==1) & (notemp$Year[i]==2016)){ #Check last year (2015 has 53

weeks)↪→

last_number <- which(dataset$Locality==notemp$Locality[i] &

dataset$Week==53 &

dataset$Year==(notemp$Year[i]-1) &

dataset$Cage==notemp$Cage[i])}

else if ((notemp$Week[i]==1) & (notemp$Year[i]!=2016)){

last_number <- which(dataset$Locality==notemp$Locality[i] &

dataset$Week==52 &

dataset$Year==(notemp$Year[i]-1) &

dataset$Cage==notemp$Cage[i]) }

else{ #forrige uke

last_number <- which(dataset$Locality==notemp$Locality[i] &

dataset$Week==(notemp$Week[i]-1) &

dataset$Year==notemp$Year[i] &

dataset$Cage==notemp$Cage[i])}

dataset$SeaTemperature[index] <- dataset$SeaTemperature[last_number]}

return(dataset)

}

###Merge start and growth site after base1 (start site nr 1) ###

Prod1 <- function(data){

data <- data %>%

group_by(base)%>%

arrange(date) %>%

mutate(date.diff = c(1,diff(date))) %>%

mutate(cycle = cumsum(abs(date.diff) > 7)) %>%

ungroup() %>%

group_by(base, cycle) %>%

mutate(start = date[1], end = date[length(date)]) %>%

mutate(duration_production_cycle = as.numeric((end-start)/7)) %>%

mutate(week_in_production_cycle = as.numeric((date-start)/7)) %>%

mutate(start = as.Date(start), end=as.Date(end)) %>%

ungroup()%>%

select(-cycle)

return(data)

}

###Group into production cycles ###

Prod11 <- function(data){

data <- data %>%

group_by(base)%>%

arrange(date) %>%

mutate(date.diff = c(1,diff(date))) %>%

mutate(cycle = cumsum(abs(date.diff) > 7)) %>%

ungroup() %>%

group_by(base) %>%

mutate(start = date[1], end = date[length(date)]) %>%

mutate(duration_production_cycle = as.numeric((end-start)/7)) %>%

mutate(week_in_production_cycle = as.numeric((date-start)/7)) %>%

mutate(start = as.Date(start), end=as.Date(end)) %>%

ungroup()%>%

select(-cycle)

return(data)

}

###Merge start and growth site after base2 (start site nr 2) ###
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Prod2 <- function(data){

b <- data%>%

filter(!is.na(base2))

cage <- as.character(b$base2[!duplicated(b$base2)])

b2 <- as.character(b$base[!duplicated(b$base2)])

for (i in 1:length(cage)){

data <- data %>%

mutate(end = as.Date(ifelse(Cage==cage[i],

data$end[which(data$base==b2[i] &

data$duration_production_cycle==data$week_in_production_cycle)],

end), format= "%Y-%m-%d"))}

data <- data %>%

mutate(duration_production_cycle = as.numeric(end-start)/7)

return(data)

}

###Group into production cycles if two start sites ###

Prod22 <- function(data){

b <- data%>%

filter(!is.na(base2))

cage <- as.character(b$base2[!duplicated(b$base2)])

b2 <- as.character(b$base[!duplicated(b$base2)])

for (i in 1:length(cage)){

data <- data %>%

mutate(end = as.Date(ifelse(base==cage[i],

data$end[which(data$base==b2[i] &

data$duration_production_cycle==data$week_in_production_cycle)],

end), format= "%Y-%m-%d"))}

data <- data %>%

mutate(duration_production_cycle = as.numeric(end-start)/7)

return(data)

}

###Load salinity data - preparation ###

salinity <- function(path){

miljo_opprinnelig <- read_excel(path, sheet = "Miljødata", skip = 7, guess_max =

5000)↪→

miljo <- miljo_opprinnelig %>%

select(-c(1,2, 4, 5, 6, 8, 9, 10))%>%

subset(!is.na(Date)) %>%

mutate(YearWeek = strftime(Date, format = "%Y-W%V")) %>%

separate(YearWeek, c("Year", "Week"), sep = "-W", remove=TRUE) %>%

mutate(Locality = path) %>%

subset(!is.na(`Salinity(5m) (‰)`)) %>%

mutate(Salinity = as.numeric(sub(",", ".", `Salinity(5m) (‰)`, fixed = TRUE)))%>%

filter(Salinity<50) %>%

group_by(Locality, Year, Week) %>%

summarize(Salinity = mean(Salinity, na.rm=T))%>%

subset(!is.na(Salinity))

return(miljo)

}
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Preparation of the Dataset: Growth Sites - Fjord 1

M <- fjord_1("data_M.xlsx")

N <- fjord_1("data_N.xlsx")

O <- fjord_1("data_O.xlsx")

P <- fjord_1("data_P.xlsx")

Q <- fjord_1("data_Q.xlsx")

R <- fjord_1("data_R.xlsx")

mowing <- read_xlsx("Flytting_A.xlsx")

#Rename the cages after relocations

##Location M is used as an example

M_oppd <- M %>%

filter(Cage!="M01" | (Year!=2014 | Week<15))%>%

filter(Cage!="M02" | (Year!=2014 | Week<15))%>%

filter(Cage!="M03" | (Year!=2014 | Week<15)) %>%

mutate(Cage =

ifelse((Cage=="M02" & Year==2013 & Week>45 & Week<49), "M01",

ifelse((Cage=="M05" & Year==2013 & Week>45 & Week<49), "M02",

ifelse((Cage=="M07" & Year==2013 & Week>45 & Week<49), "M03",

ifelse((Cage=="M03" & Year==2013 & Week>45 & Week<49), "M04",

ifelse((Cage=="M04" & Year==2013 & Week>45 & Week<49), "M05",

ifelse((Cage=="M01" & Year==2013 & Week>45 & Week<49), "M06",

ifelse((Cage=="M06" & Year==2013 & Week>48 & Week<52), "M02",

ifelse((Cage=="M02" & Year==2013 & Week>48 & Week<52), "M04",

ifelse((Cage=="M04" & Year==2013 & Week>48 & Week<52), "M06",

ifelse((Cage=="M05" & Year==2013 & Week>51 & Week<53), "M02",

ifelse((Cage=="M02" & Year==2013 & Week>51 & Week<53), "M04",

ifelse((Cage=="M04" & Year==2013 & Week>51 & Week<53), "M05",

ifelse((Cage=="M07" & Year==2013 & Week>51 & Week<53), "M06",

ifelse((Cage=="M05" & Year==2014 & Week<9), "M02",

ifelse((Cage=="M02" & Year==2014 & Week<9), "M04",

ifelse((Cage=="M04" & Year==2014 & Week<9), "M05",

ifelse((Cage=="M07" & Year==2014 & Week<9), "M06",

ifelse((Cage=="M05" & Year==2014 & Week>8 & Week<17), "M02",

ifelse((Cage=="M06" & Year==2014 & Week>8 & Week<30), "M03",

ifelse((Cage=="M02" & Year==2014 & Week>8 & Week<17), "M04",

ifelse((Cage=="M04" & Year==2014 & Week>8 & Week<17), "M05",

ifelse((Cage=="M07" & Year==2014 & Week>8 & Week<17), "M06",

ifelse((Cage=="M04" & Year==2014 & Week>16 & Week<30), "M06",

Cage)))))))))))))))))))))))) %>%

mutate(Cage =

ifelse((Cage=="M02" & Year==2016 & Week>39 & Week<44), "M01",

ifelse((Cage=="M03" & Year==2016 & Week>39 & Week<44), "M02",

ifelse((Cage=="M04" & Year==2016 & Week>39 & Week<44), "M03",

ifelse((Cage=="M01" & Year==2016 & Week>39 & Week<44), "M05",

ifelse((Cage=="M05" & Year==2016 & Week>39 & Week<43), "M06",

ifelse((Cage=="M06" & Year==2016 & Week>39 & Week<43), "M07",

ifelse((Cage=="M02" & Year==2016 & Week>47), "M01",

ifelse((Cage=="M03" & Year==2016 & Week>47), "M02",

ifelse((Cage=="M04" & Year==2016 & Week>47), "M03",

ifelse((Cage=="M01" & Year==2016 & Week>47), "M05",

ifelse((Cage=="M05" & Year==2016 & Week>47), "M06",

ifelse((Cage=="M06" & Year==2016 & Week>47), "M07",
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ifelse((Cage=="M02" & Year==2017 & Week<10), "M01",

ifelse((Cage=="M03" & Year==2017 & Week<10), "M02",

ifelse((Cage=="M04" & Year==2017 & Week<10), "M03",

ifelse((Cage=="M01" & Year==2017 & Week<10), "M05",

ifelse((Cage=="M05" & Year==2017 & Week<10), "M06",

ifelse((Cage=="M06" & Year==2017 & Week<10), "M07",

ifelse((Cage=="M07" & Year==2017 & Week>9 & Week<43), "M01",

ifelse((Cage=="M05" & Year==2017 & Week>9 & Week<43), "M06",

Cage)))))))))))))))))))))

#Plotting the biomass to control the changes

M_oppd%>%

filter(Year>2015)%>%

group_by(Cage) %>%

ggplot(aes(x=Week, y = `Biomass`))+

geom_point(aes(color=Cage))+

#geom_line(aes(color=Cage))+

labs(x="Year")+

theme_bw()

#Lice number for each week

liceM <- lice(M_oppd)

liceN <- lice(N_oppd)

liceQ <- lice(Q_oppd)

growth <- rbind(liceM,liceN,liceQ) %>%

mutate(OperatingModel = "StageModel", Stage="growth", Fjord="Coast")

liceO <- lice(O_oppd)

liceP <- lice(P_oppd)

liceR <- lice(R_oppd)

normal <- rbind(liceO, liceP, liceR)%>%

mutate(OperatingModel = "NormalModel", Stage="normal",

Fjord = ifelse(Locality=="R","1_A", "1_B"))

total <- rbind(growth, normal) %>%

mutate(Start_Locality = "A",

base = substr(Cage, 1,3),

base2 = NA)

#Sea temperature for each week

total[which(is.na(total$SeaTemperature)),]

total <- temperatur(total)

#Dato-column

data <- total %>%

mutate(Year = as.character(Year), Week = as.character(Week)) %>%

group_by(Year, Week, Cage) %>%

mutate(Week = ifelse(nchar(Week)==1, paste("0",Week, sep=""), Week)) %>%

mutate(Week = paste("W",Week, sep="")) %>%

mutate(date = ISOweek2date(paste(Year, Week,4, sep = "-" ))) %>%
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mutate(Year = as.numeric(Year),

Week = as.numeric(str_replace_all(Week, "W", "")))

#Which cage did the salmon originate from

mow <- mowing %>%

select(-c(`Til lok`, `Fra lok`))

data2 <- Production_cycle(data)

data <- left_join(data2, mow,

by=c("Year"="År", "Week"="Uke", "base"="Cage", "Stage")) %>%

group_by(base, production_cycle) %>%

arrange(base, date) %>%

mutate(Start_cage = Start_cage[1],

A_production_cycle = A_production_cycle[1])

#Save dataframe

saveRDS(data, file="A_growth")

Merging Start and Growth Sites - Fjord 1

#Merge together data from start and growth

start <- readRDS("FjordA") %>%

mutate(A_production_cycle = production_cycle) %>%

mutate(Fjord = "1_B")

growth <- readRDS("A_growth")%>%

select(Locality, Cage, Year, Week, OperatingModel, Fjord, Stage,

Start_cage, Start_Locality, SeaTemperature, AdultFemaleLice,

MobileLice, SessileLice, ScottishLice, NumberOfFish, everything())

data <- rbind(start, growth) %>%

mutate(Locality = as.factor(Locality), Cage=as.factor(Cage),

OperatingModel = as.factor(OperatingModel),

Fjord=as.factor(Fjord), Stage=as.factor(Stage)) %>%

mutate(Method = as.factor(ifelse(is.na(Method), 0 ,Method)))

summary(data)

#Egen datokolonne

data <- data %>%

mutate(Year = as.character(Year), Week = as.character(Week)) %>%

group_by(Year, Week, Cage) %>%

mutate(Week = ifelse(nchar(Week)==1, paste("0",Week, sep=""), Week)) %>%

mutate(Week = paste("W",Week, sep="")) %>%

mutate(date = ISOweek2date(paste(Year, Week,4, sep = "-" ))) %>%

mutate(Year = as.numeric(Year),
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Week = as.numeric(str_replace_all(Week, "W", "")))

#Produksjonssyklus

#If the growth stage is the sum of two start cages

#Functions defined in the top of this section

staged <- data %>%

mutate(base = ifelse(nchar(Start_cage)==3, Start_cage,

substr(Start_cage, 1,3))) %>%

mutate(base2 = ifelse(nchar(Start_cage)==3, NA,

substr(Start_cage, 5,7))) %>%

ungroup()

prod0 <- staged %>%

filter(A_production_cycle==0)

prod1 <- staged %>%

filter(A_production_cycle==1)

prod2 <- staged %>%

filter(A_production_cycle==2)

prod3 <- staged %>%

filter(A_production_cycle==3)

prod4 <- staged %>%

filter(A_production_cycle==4)

prod5 <- staged %>%

filter(A_production_cycle==5)

prod6 <- staged %>%

filter(A_production_cycle==6)

P0 <- Prod1(prod0)

P0 <- Prod2(P0)

P1 <- Prod1(prod1)

P1 <- Prod2(P1)

P2 <- Prod1(prod2)

P2 <- Prod2(P2)

P3 <- Prod1(prod3)

P3 <- Prod2(P3)

P4 <- Prod1(prod4)

P4 <- Prod2(P4)

P5 <- Prod1(prod5)

P5 <- Prod2(P5)

P6 <- Prod11(prod6)

P6 <- Prod22(P6)

P <- rbind(P0,P1,P2,P3, P4, P5, P6)

summary(P)

#Plot to control that everything is okay

P6%>%
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group_by(base) %>%

ggplot(aes(x=date, y = `Biomass`))+

geom_point(aes(color=Cage))+

#geom_line(aes(color=Cage))+

labs(x="Year")+

theme_bw()

#Save dataframe

saveRDS(P, file="x")

Merging to a Common Dataset and Making Several Variables

#Loading data

y <- readRDS("y") %>%

select(-LiceCount_date) %>%

select(Locality, Cage, Year, Week, date, everything())%>%

mutate(Stage=as.factor(Stage),

OperatingModel = as.character(OperatingModel))%>%

mutate(OperatingModel = ifelse(OperatingModel != "NormalModel",

OperatingModel, ifelse(Fjord=="Coast", "CoastModel","FjordModel")),

A_production_cycle = production_cycle)

x <- readRDS("x")%>%

select(Locality, Cage, Year, Week, date,everything()) %>%

mutate(start_treatment = strftime(start_treatment, format = "%Y/%V"),

end_treatment = strftime(end_treatment, format = "%Y/%V"),

duration_treatment = as.numeric(duration_treatment),

OperatingModel = as.character(OperatingModel)) %>%

mutate(OperatingModel = ifelse(OperatingModel != "NormalModel",

OperatingModel, ifelse(Fjord=="Coast", "CoastModel", "FjordModel")),

A_production_cycle = A_production_cycle)

Coast <- readRDS("CoastData") %>%

mutate(A_production_cycle = production_cycle)

Latlon <- read_xlsx("barentswatch.xlsx", sheet="LatLon")

sites <- read_xlsx("Akvakulturregisteret.xlsx", sheet="Prod78")

salinity <- readRDS("Salinity")

start_data <- bind_rows(x, y, Coast)

summary(start_data)

##Make different variables to the visualization and the analysis

data <- start_data%>%

mutate(NumberOfFish1000 = NumberOfFish/1000,

Biomass = Biomass/1000) %>%

mutate(censoredAdult = ifelse(AdultFemaleLice>3, 3, AdultFemaleLice)) %>%

mutate(allMobile = AdultFemaleLice+MobileLice) %>%

mutate(censored = ifelse(allMobile>10, 10, allMobile)) %>%
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ungroup()%>%

mutate(Treatment = as.factor(ifelse(Method!=0, 1, 0)),

Stage = factor(Stage, levels=c("normal", "start", "growth")),

Fjord = factor(Fjord,

levels=c("Coast", "1_A", "1_B", "2_A", "2_B")),

Locality = factor(Locality,

levels=c("A", "B", "C", "D", "E", "F",

"G", "H", "I", "J", "K", "L",

"M", "N", "O", "P", "Q", "R")),

Location=as.factor(Fjord),

OperatingModel = as.factor(OperatingModel)) %>%

mutate(OperatingModel = factor(OperatingModel,

levels=c("StageModel", "CoastModel", "FjordModel"))) %>%

group_by(Cage, production_cycle) %>%

arrange(Cage, production_cycle, week_in_production_cycle) %>%

mutate(LastWeek = dplyr::lag(allMobile, default=0)) %>%

ungroup() %>%

mutate(AllMobileCage = as.integer(allMobile*NumberOfFish),

AdultFemaleCage= as.integer(AdultFemaleLice*NumberOfFish),

CountAllMobile = as.integer(allMobile*20),

CountAdultFemale = as.integer(AdultFemaleLice*20),

A_production_cycle = factor(A_production_cycle, ordered = TRUE))

summary(data)

#Distance from coastline

{r echo=True, include=FALSE}

osm_box <- getbb(place_name = "Trøndelag")%>%

opq() %>%

add_osm_feature("natural","coastline") %>%

osmdata_sf()

osm_box_nordland <- getbb(place_name = "Nordland")%>%

opq() %>%

add_osm_feature("natural","coastline") %>%

osmdata_sf()

saveRDS(osm_box, file="osm_box")

saveRDS(osm_box_nordland, file="osm_box_nordland")

{r echo=True, include=FALSE}

osm_box <- readRDS("osm_box")

osm_box_nordland <- readRDS("osm_box_nordland")

d1_sf = Latlon %>%

st_as_sf(coords = c("Lon", "Lat")) %>%

st_set_crs(4326) %>%

select(Locality, geometry)

coastline <- ggplot() +

geom_sf(data=osm_box$osm_lines) +

geom_sf(data=osm_box_nordland$osm_lines)

geom_sf(data=d1_sf)

dist <- dist2Line(p=st_coordinates(d1_sf),

line=st_coordinates(osm_box$osm_lines)[,1:2])

dist2 <- dist2Line(p=st_coordinates(d1_sf),
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line=st_coordinates(osm_box_nordland$osm_lines)[,1:2])

distt = as.data.frame(dist)

colnames(distt)[1]<-"distanceT"

distn = as.data.frame(dist2)

colnames(distn)[1]<-"distanceN"

distancetot = cbind(distt,distn)%>%

select(!starts_with("L"))

distancetot$Distance=apply(distancetot,1,FUN=min)

saveRDS(distancetot, file="distancetot")

distancetot <- readRDS("distancetot")

locdist <- Latlon %>%

select(Locality,Lat,Lon,ProduksjonsområdeId)%>%

mutate(Distance = distancetot$Distance)

#Distance from other sites

site_overwiev <- sites %>%

select(LOK_NAVN,N_GEOWGS84,Ø_GEOWGS84,PROD_OMR)

site_overwiev <- site_overwiev[which(!duplicated(site_overwiev)),] %>%

mutate(Lat = as.numeric(N_GEOWGS84),

Lon = as.numeric(Ø_GEOWGS84),.keep="unused")

distance=data.frame()

for (i in 1:nrow(site_overwiev)){

for (j in 1:nrow(locdist)){

distance=append(distance,distm(c(locdist$Lon[j],locdist$Lat[j]),

c(site_overwiev$Lon[i],site_overwiev$Lat[i]),

fun=distVincentyEllipsoid))}

}

output=matrix(unlist(distance),ncol=nrow(locdist),byrow=T,

dimnames=list(site_overwiev$LOK_NAVN,locdist$Locality))

outputframe=as.data.frame(output)

#Remove sites that not has been in operation the last 10 years

neighbours <- outputframe

for (i in 1:ncol(outputframe)){

for (j in 1:nrow(outputframe)){

if(outputframe[j,i]>10000){

neighbours[j,i]=NA}

}

}

remove = c("xxx", "xxx", "xxx")

outputframe <- outputframe[!rownames(outputframe) %in% remove, ]

#Mindist og neighbours

locdist$Mindist=NA

locdist$neighbours=NA

for (i in 1:nrow(locdist)){

locdist$Mindist[i] = min(outputframe[,i][which(outputframe[,i]>1)])

locdist$neighbours[i] = sum(outputframe[,i]<10000 & outputframe[,i]>1)

120



}

#Merge with the rest

total_data <- left_join(data, locdist)

total_data2 <- left_join(total_data, salinity) %>%

mutate(Locality = as.factor(Locality),

Fjord = as.factor(Fjord))

#High period

total_data2%>%

ggplot(aes(x=date, y = allMobile))+

geom_point(aes(color=Locality))+

labs(x="Year")+

theme_bw()

total_data2%>%

filter(allMobile>=10) %>%

arrange(date)

total_data2%>%

ggplot(aes(x=date, y = AdultFemaleLice))+

geom_point(aes(color=Locality))+

labs(x="Year")+

theme_bw()

total_data2%>%

filter(AdultFemaleLice>=3) %>%

arrange(date)

total <- total_data2%>%

mutate(HighPeriod = as.factor(ifelse((Year==2014 & Week==34) |

(Year==2014 & Week>43 & Week<49) |

(Year==2016 & Week>41 & Week<50) |

(Year==2017 & Week>6 & Week<9) |

(Year==2019 & Week>38 & Week<41),1,0))) %>%

mutate(HighPeriod_adult = as.factor(ifelse(((Year==2014 & Week>39 & Week<43) |

(Year==2014 & Week>45 & Week<52) |

(Year==2016 & Week>46 & Week<50) |

(Year==2017 & Week>6 & Week<9) |

(Year==2017 & Week>37 & Week<41) |

(Year==2019 & Week>37 & Week<41)),1,0)))

#Plot lice numbers vs date - grouped into highperiod

g1 <- total%>%

ggplot(aes(x=date, y = AdultFemaleLice))+

geom_point(aes(color=HighPeriod_adult))+

geom_line(y=3)+

labs(x=NULL, color="HighPeriod")+

scale_color_manual(values=c("#336699","#993300"))+

theme_bw(base_size = 9)

g2 <- total%>%

ggplot(aes(x=date, y = allMobile))+

geom_point(aes(color=HighPeriod))+

geom_line(y=10)+

labs(x="Year", color="HighPeriod")+

scale_color_manual(values=c("#336699","#993300"))+
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theme_bw(base_size = 9)

ggarrange(g1,g2, common.legend = TRUE, ncol=1, nrow=2,

align="hv", legend = "right")

#Save dataframe

saveRDS(total, file="AnalyseData")

122


