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ABSTRACT 19 

The sea trout (anadromous brown trout, Salmo trutta) displays extensive among-individual 20 

variation in marine migration behaviour. We studied the migration behaviour of 286 sea trout 21 

(27-89 cm) tagged with acoustic transmitters in the spring, in seven populations located in 22 

two distinct marine fjord systems in Norway. We examined whether individual nutritional 23 

state, sex, and body size influenced marine migration behaviour in terms of i. the decision to 24 

migrate to the sea or remain resident in freshwater and/or estuarine habitats, ii. seasonal 25 
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timing of sea entry, iii. duration of the marine residency, and iv. migration distance at sea 1 

from the home river. Most sea trout were in a poor nutritional state in the spring prior to 2 

migration. Sea trout with low body condition factors and low plasma triglyceride levels were 3 

more likely to migrate to sea, and low triglyceride levels were also associated with earlier 4 

sea-entry. Poor body condition also increased the probability of individuals remaining at sea 5 

longer and migrating further offshore compared to fish in better condition. Females were 6 

more likely to migrate to the sea than males. Larger fish were also more likely to migrate to 7 

sea instead of remaining in freshwater and estuaries and dispersed over greater distances from 8 

the river than smaller fish. In conclusion, this study documented general trends across 9 

multiple populations and showed that nutritional state, sex and body size influence important 10 

aspects of the marine migration behaviour of sea trout. 11 

 12 

1. INTRODUCTION 13 

Migration behaviour is observed in a wide range of taxa (Dingle 2014). There are various 14 

proximate explanations for why animals migrate, but the ultimate reason is for the 15 

optimization of individual growth and survival in order to increase lifetime fitness (Dingle & 16 

Drake 2007). Throughout their lifetimes, individuals must continually allocate energy to 17 

various life-history activities, while balancing the metabolic demands for somatic growth, 18 

maturation, and reproduction (Zera & Harshman 2001). Diadromy, which refers to migrations 19 

between marine and freshwater habitats, is thought to have evolved because of differences in 20 

food availability between these habitats (Gross et al. 1988). Among the fish family 21 

Salmonidae, all species spawn in freshwater, but many are anadromous, which means 22 

individuals migrate to sea at some point in their lives to exploit the richer marine food 23 

resources (Jonsson & Jonsson 1993). Salmonid populations often consist of both freshwater 24 
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resident and sea migrating individuals (i.e partial migration, Chapman et al. 2012). Body size 1 

is positively correlated with fecundity within salmonids (Elliott 1995). Marine migration is 2 

advantageous if the fitness benefits of larger body size outweighs the cost of migration, 3 

including increased risk of mortality, disease and failure to reach  spawning grounds 4 

(Klemetsen et al. 2003, Thorstad et al. 2016).  5 

 The brown trout (Salmo trutta) is a highly adaptable salmonid species, which through 6 

natural dispersal or human transport is found in all continents except Antarctica 7 

(MacCrimmon et al. 1970). Wide variation in environmental conditions and food availability 8 

influences the physiology of individuals, and further determine whether they migrate to sea 9 

(anadromous brown trout, hereafter referred to as sea trout) or remain freshwater resident 10 

(Forseth et al. 1999, Wysujack et al. 2009, Archer et al. 2020). After leaving freshwater, sea 11 

trout display plasticity in migratory tactics, with some individuals using nearshore and 12 

estuarine habitats, while others use marine areas more than 500 km away from their natal 13 

watercourse (Thorstad et al. 2016, Birnie-Gauvin et al. 2019b). However, variation in 14 

migration patterns and life history strategies is not fully understood, thus limiting our 15 

understanding of ecological and evolutionary dynamics of sea trout populations (Birnie-16 

Gauvin et al. 2019b, Ferguson et al. 2019). Understanding the drivers of marine migration 17 

behaviour is crucial for evaluating susceptibility of sea trout to large scale climate change, 18 

and to human induced stressors that can vary both temporally and spatially in coastal zone 19 

ecosystems (Thorstad et al. 2015, Nevoux et al. 2019). In general, migration is regarded as a 20 

biological phenomenon that is particularly sensitive to environmental change and 21 

anthropogenic disturbance (Wilcove & Wikelski 2008) such that it is important to understand 22 

how different taxa respond to such challenges (Lennox et al. 2016). 23 

 Energy status is known to impact migratory strategies of individual trout 24 

(Cucherousset et al. 2005, Boel et al. 2014, Bordeleau et al. 2018). For mature sea trout, 25 
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reproduction is energetically expensive (Lien 1978, Jonsson & Jonsson 2005), and so they 1 

must recondition between spawning events. In watercourses suitable for overwintering, sea 2 

trout can remain in the spawning river system throughout the winter after autumn spawning 3 

(Berg & Berg 1989, Östergren & Rivinoja 2008), but in these oligotrophic systems feeding 4 

and growth are usually limited. Post-spawned individuals are therefore in a generally poor 5 

nutritional state prior to the seaward migration in the spring (Jonsson & Jonsson 1998, 6 

Jonsson & Jonsson 2011a). How individual variation in energy status relates to variation in 7 

marine migration behaviour of sea trout is not well understood. Body condition factor, which 8 

is based on the relationship between body length and mass (i.e., the relative stoutness of fish), 9 

is commonly used as an index of somatic energy status in salmonids and other fishes, but 10 

might not always be a precise predictor of energy status (Weatherley & Gill 1983, Simpson 11 

1992, Næsje et al. 2006). In addition to body condition factor, nutritional correlates derived 12 

from blood plasma samples can be used to assess the nutritional state of fishes. For 13 

salmonids, low levels of plasma triglycerides, total protein, and calcium levels can indicate 14 

poor nutritional state (Congleton & Wagner 2006), which has previously been observed to 15 

promote marine migratory decisions in brown trout and Atlantic salmon (Boel et al. 2014, 16 

Bordeleau et al. 2018, Bordeleau et al. 2019). Elevated levels of cortisol possibly due to low 17 

food availability, have previously been found to promote earlier seaward migration (Birnie-18 

Gauvin et al. 2019a). These previous studies suggest that sea trout in poor nutritional state 19 

will display more risk-taking behaviour than individuals in better nutritional state in order to 20 

compensate for their depleted energy stores.  21 

 In this study, we tested the hypothesis that poor nutritional state promotes adopting a 22 

more high-risk ocean migratory behaviour in sea trout in terms of timing, duration and 23 

migration distance. We used both body condition factor and blood plasma metabolites as 24 

measures of individuals’ nutritional state. Migration behaviour in sea trout has also been 25 
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observed to be influenced by sex (Pemberton 1976, Knutsen et al. 2004, Jensen et al. 2019) 1 

and body size (Jensen et al. 2014, Jonsson & Jonsson 2014). Hence, sex determined by 2 

genetic analyses and body size were also included in the analyses. We included 286 3 

individual sea trout from seven populations in two fjord systems in Northern Norway in this 4 

study to test the general hypotheses that poor nutritional state, females, and large size would 5 

promote initiation and greater extent of the marine migration. Specifically, we examined 6 

whether nutritional state, sex, and body size (length) influenced i. the tendency to migrate to 7 

the sea or remain resident in freshwater and/or estuarine habitats, ii. the timing of sea entry, 8 

iii. the duration of the marine residency, and iv. the distance moved out to sea from the river 9 

where the fish were tagged.  10 

 11 

2. MATERIAL & METHODS 12 

2. 1 Study site 13 

This study was conducted in two Norwegian fjord systems in Nordland County; 14 

Skjerstadfjorden (67ºN) and Tosenfjorden (65ºN) (Figure 1) as part of two larger tracking 15 

studies, enabling sampling from seven river systems. In Tosenfjorden, fish were captured and 16 

tagged in the period 27 March to 10 June in the Rivers Åbjøra and Urvold (Figure 1). In 17 

Skjerstadfjorden, fish were captured and tagged during 28 April to 15 June in the rivers 18 

Saltdalselva, Botnvassdraget, Lakselva, Laksåga, and Kosmovatnet (Figure 1). Estuaries were 19 

defined as the transition zone between the freshwater and marine environment, where the 20 

water masses were expected to be brackish throughout the year. For all rivers, this included 21 

receivers that were deployed less than 600 meters from the river mouth, except for River 22 

Saltdalselva where receivers deployed up to 1 km from the river mouth were categorized as 23 

estuarine habitats.  24 

 In the Tosenfjorden study area, River Åbjøra has 24 km of river stretch available for 25 
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anadromous fish, and includes a large estuarine area influenced by the tide (about 1.6 km2 of 1 

tidal affected surface area including shoreline areas inundated at high tide and the lower 2 

sections of the river including an estuarine pool), and Lake Åbjørvatnet (surface area of 4.8 3 

km2, 81 meters above the sea). River Åbjøra is regulated for hydropower production and has 4 

a minimum discharge of 7 m3/s. River Urvold has an average water discharge of 5 m3/s, is not 5 

developed for hydropower production, and consists of a 200 m steep river stretch from the 6 

sea to Lake Urvoldvatnet (surface area of 0.6 km2, 8.6 meters above sea level). In the inner 7 

end of Lake Urvoldvatnet, River Urvold has about 1 km of river stretch available for 8 

anadromous fish. The estuary of River Urvold is small (about 0.002 km2 of tidal influenced 9 

area inside the littoral zone) because the steep river drains straight into the open fjord. 10 

 In the Skjerstadfjorden study area, River Saltdalselva is a large river with average 11 

discharge of 55 m3/s and 66 km of river stretch available for anadromous fish. Due to its large 12 

size, and relatively slow-running areas in its lower part, River Saltdalselva has a relatively 13 

large estuary (about 0.47 km2 tidal influenced areas inside the littoral zone). There is only one 14 

lake available for anadromous fish in River Saltdalselva, Lake Vassbotnvatn, which is located 15 

in a tributary. River Botnvassdraget has a 500 m steep river stretch to Lake Botnvatnet (12 m 16 

above the sea), and continues upstream of the lake, making about 8 km of river stretch 17 

available for anadromous fish. River Botnvassdraget’s confined estuary covers about 0.002 18 

km2 of tidal influenced area. River Lakselva has about 7 km of river stretch with no lakes 19 

available to anadromous fish, and has a tidally influenced surface area of about 0.08 km2 in 20 

its estuarine area. River Laksåga hasabout 6.5 km of river stretch available for anadromous 21 

fish and drains into two large brackish-water lakes influenced by the sea (about 15 km2 22 

surface area). River Laksåga is regulated for hydropower purposes. River Kosmovatnet has 23 

about 6 km of river stretch available to anadromous fish, and drains into a brackish-water 24 



8 
 

lake of about 8 km2, separated from the sea by a 1 km narrow channel where the tide governs 1 

the direction of the current. 2 

2.2. Capture and tagging of fish 3 

A total of 286 sea trout, divided into 10 groups based on location and year (Table 1), were 4 

captured and tagged with individually coded acoustic transmitters (Thelma Biotel AS; 9 mm 5 

and 13 mm, expected battery life 10-24 months, tag size depended on body size) during 6 

2016-2018. Fish from River Åbjøra, River Kosmovatnet and River Laksåga were caught, in 7 

the estuarine parts of the river systems. Fish from River Urvold were caught in Lake Urvold 8 

(freshwater), except for 13 individuals during spring 2017 (Table 1) that were caught in the 9 

river mouth. All fish caught in River Saltdalselva were caught in the river. The fish were 10 

captured by angling or by gillnets in the rivers, lakes and/or estuarine areas. Gill nets were 11 

continuously monitored and quickly tended when a fish was detected to minimize the time 12 

fish were entangled in the nets, and the fish were released using scissors to cut the netting to 13 

prevent damage to the skin and gills. A non-lethal blood sample was drawn shortly after 14 

capture (max 5 ml blood per kg body mass, Lawrence et al., 2020). The fish were held in 15 

keep nets for up to four hours before they had a transmitters implanted. 16 

 Prior to tagging, each sea trout was anesthetized for 4 minutes using 0.5 ml-1 2-17 

phenoxy-ethanol (EC No. 204-589-7, Sigma-Aldrich, USA). For most fish, tags were inserted 18 

through a 1.5-3 cm incision in the body cavity (Cooke et al. 2011, Eldøy et al. 2015). For the 19 

fish tagged in River Åbjøra in 2017 (Table 1), the transmitters were externally attached using 20 

a wire through the dorsum about 1 cm below the dorsal fin, with a silicone plate between the 21 

tag and the fish and a plastic plate on the opposite side of the dorsum to prevent erosion on 22 

skin and flesh. The sea trout were subsequently placed in a holding tank until recovery from 23 

anaesthesia and released in a slow flowing area as close to the capture location as possible. 24 
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The experimental procedures were approved by the Norwegian National Animal Research 1 

Authority (permission number 2015/8518, 1614092 & 18/67706). 2 

2.3 Fish tracking  3 

The tagged sea trout were tracked using 74 acoustic receivers in Tosenfjorden and 82 4 

acoustic receivers in Skjerstadfjorden (Vemco Inc. models: VR2, VR2-W and VR2-AR). The 5 

fish in Tosenfjorden were tracked from May 2016 to December 2017, while the fish tagged in 6 

Skjerstadfjorden were tracked from May 2017 to December 2018, although not all receivers 7 

were operative throughout these periods (Figure 1).  8 

 Tracking data were filtered for false registrations generated by code collisions with 9 

simultaneously transmitting tags, or by noise in the environment (Pincock 2012). After 10 

empirically assessing the frequency of false detections (i.e., a receiver reported detection of 11 

an unused transmitter ID) recorded by each receiver, automated filtering was applied to 16 12 

receivers in Tosenfjorden, and 4 receivers in Skjerstadfjorden (see Figure 1 for filtered 13 

receiver locations). The filter required that a tagged sea trout had to be registered at least two 14 

times by a receiver within a 10-minute time period to be accepted as a true registration, and 15 

resulted in removal of 68 682 of 2 191 047 detections (3.1%) in Tosenfjorden and 2 402 of 16 

594 345 detections (0.4%) in Skjerstadfjorden. The data were subsequently visually inspected 17 

by plotting a timeline of all recordings for each fish, and registrations that did not fit with the 18 

overall migration track of each fish were also removed (i.e. detections suggesting unrealistic 19 

migration speed and/or passing multiple receiver gates without detection). 20 

2.4 Processing and analysing blood samples 21 

Blood samples were stored in tubes and immediately placed in an ice water bath for up to 3 22 

hours before being centrifuged at 1163g for 10 min. Blood plasma was flash-frozen in a 23 

liquid nitrogen  dry shipper and subsequently stored at -80 °C until biochemical analyses 24 

could be carried out. Plasma triglyceride levels were assessed in duplicates using the 25 
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manufacturer’s suggested protocols with a commercially available colorimetric kit (Cayman 1 

Chemical Company, USA). Total plasma protein levels were determined using a Bradford’s 2 

assay (Bradford 1976, Kruger 2009) using commercial reagents (Bio-Rad Laboratories 3 

(Canada) Ltd., Mississauga, ON, Canada). Plasma Ca2+ concentrations were determined 4 

using flame spectrophotometry (Varian Spectra AA 220FS, Varian Inc., Palo Alto, CA, USA) 5 

for a single replicate. Due to the limited volume of blood that could be taken from each fish 6 

(see Lawrence et al. 2020), there was not enough blood for all individuals to run all 7 

biochemical assays. Therefore, 214 fish were tested for blood plasma triglycerides, 204 fish 8 

were tested for blood plasma protein and 185 fish were tested for blood plasma calcium. 9 

2.5 Determining the sex of individuals  10 

DNA samples from adipose fin clips taken at the time of tagging and preserved in ethanol 11 

were used to genetically determine the sex of the sea trout. DNA was extracted using the 12 

QuickExtract kit (Epigen) using the manufacturer’s protocol but with extraction volume 13 

reduced to 150 µl. Using 10 µl reactions of the Qiagen Multiplex PCR kit and Salmo-sdY-F 14 

and Samo sdYR primers, PCR amplification was applied to a 200 base pair fragment from the 15 

first intron of the male-specific SDY gene (Quéméré et al. 2014). PCR steps for denaturation, 16 

annealing and extension were: incubation at 95 °C for 15 min, 11 cycles of touchdown PCR, 17 

held at 94 °C for 30 s, 63-52 °C for 30 s, then 72 °C for 1 min followed by 25 cycles at 94 °C 18 

for 30 s, 52 °C for 30 s, 72 °C for 1 min and a final extension at 72 °C for 10 min. Sex was 19 

determined by running PCR products in 1% agarose gels. 20 

2.6 Migrating to the sea vs. remaining in freshwater and estuaries  21 

The trout could remain resident in the habitat where they were captured and tagged (river, 22 

lake and estuarine habitats), or migrate to the fjord. Individual sea trout were considered sea 23 

migrants if they were recorded by any marine receiver except those categorized as estuarine 24 
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of the river where they were tagged. Fish that we lost track of shortly after tagging, or which 1 

showed a “permanent residency” at a particular receiver indicative of mortality or tag loss 2 

within the receiver’s detection range were excluded from statistical analyses (n = 7). 3 

2.7 Timing of sea entry and duration of the marine migration  4 

The timing of sea entry was calculated for all individuals that were recorded leaving the 5 

freshwater and estuarine areas of the watercourse where they were tagged. The timing of sea 6 

entry was recorded as the first detection of a tagged fish in the estuary for Rivers Urvold,  7 

Saltdalselva and Botnvassdraget. In River Åbjøra, the timing of sea entry was defined as the 8 

time of the last recorded detection in the river’s estuary, provided the fish was subsequently 9 

detected by a receiver in the fjord. For the fish tagged in Laksåga, the time of sea entry was 10 

defined as the time of first detection by a receiver in the fjord. The different definitions for 11 

timing of sea entry were due to logistical and hydrologic constraints that required different 12 

approaches to receiver deployment in the estuarine areas of the different watercourses. Fish 13 

tagged in rivers Lakselva and Kosmovatnet were excluded from these analyses due to small 14 

sample sizes (n ≤ 2). 15 

 Residence time at sea was calculated as the period between the time a fish entered the 16 

sea to its last detection in the sea prior to entering the river during the first year of tracking. In 17 

River Åbjøra, the sea journey was considered to have ended at the last detection on a receiver 18 

deployed in the river mouth, provided that detection was followed by subsequent detections 19 

within the watercourse. In some cases, sea trout transitioned between freshwater and marine 20 

habitats multiple times within a year. Time spent in the freshwater habitat between migrations 21 

to the sea was not included in the total marine migration time. Fish tagged in Lakselva and 22 

Kosmovatnet were excluded from the analyses of residence time at sea due to a low sample 23 

size (n = 1). At these sites most tagged fish stayed in the river and estuary. 24 
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2.8 Maximum migration distance at sea  1 

For marine migrants, the maximum migration distance at sea from the river mouth was 2 

calculated for the fish from Rivers Åbjøra, Urvold, Saltdalselva, Botnvassdraget and 3 

Laksåga. Because receivers were only deployed in the inner part of Skjerstadfjorden in 2016, 4 

the fish tagged in Skjerstadfjorden in 2016 were excluded from the analyses of migration 5 

distance. The maximum migration distance for each fish was calculated as the distance from 6 

the receiver deployed closest to the mouth of the river in which the fish were tagged to the 7 

furthermost receiver at sea where the fish was recorded. This was done by estimating the 8 

shortest migration route avoiding land, using the ‘costDistance’ function in the gdistance R 9 

package (van Etten 2018). Fish that were not detected after 20 July of the year of tagging 10 

(which was the date corresponding to the upper 95 % percentile for reaching maximum 11 

distance for fish observed returning to watercourses), that were not last observed returning to 12 

freshwater, or were last observed at the outer arrays of receivers in the fjord were not 13 

included in the maximum migration distance analysis (n = 21). 14 

2.9 Statistical analyses 15 

To test for effects of nutritional state, sex and body size (natural length) on migratory 16 

behaviour, we used a set of generalized mixed effect models. The behavioural traits that were 17 

used as response variables were either binomial (migrated or did not migrate) or continuous 18 

and normally distributed (timing, duration and distance of sea migration). Independent 19 

variables (fixed explanatory effects) were sex, body size and nutritional state (body condition 20 

and blood plasma triglycerides). Tagging years were nested within populations (watercourse) 21 

and used as random effects. We did not aim to investigate which of the nutritional state 22 

variables employed were the best proxies. As such, we fitted one full model for each of the 23 

nutritional state variables (i.e. the nutritional state variables were used simultaneously in a 24 

full model). As all nutritional indicators were found to be correlated, and to simplify the 25 
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presentation and interpretation of results in this study, modelling using blood plasma protein 1 

and blood plasma triglycerides was excluded from the manuscript, but can be found in 2 

Appendices 1 – 8. This approach allowed us to avoid issues with co-linearity among 3 

nutritional indicators. 4 

 All statistical analyses were conducted in R Studio version 1.2.1335 (RStudio Team 5 

2019) and R version 3.5.3 (R Core Team 2019) with the ‘glmer’ function in the ‘lme4’ R 6 

package (Bates et al. 2015) for the model with a binomial dependent variable. The ‘lme’ 7 

function in the nlme R package (Pinheiro et al. 2018) was used for models with normally 8 

distributed dependent variables. Collinearity within models was checked using the 9 

‘check_collinearity’ function in the performance R package (Lüdecke et al. 2020), and 10 

collinearity was found to be low (VIF ≤ 1.09). All variables were standardised prior to 11 

modelling using the ‘scale’ function in the R ‘base’ package. Blood plasma triglycerides 12 

values were log-transformed in order to stabilise variance. Body condition factor was 13 

calculated from the formula K = 100 × mass (g) × total length (cm)-3.028, as the regression 14 

coefficient of the mass-length relationship was 3.028 for the tagged individuals. Model 15 

selection was conducted using Akaike information criterion (AIC) (Anderson et al., 2001), 16 

with the ‘dredge’ function in the MuMIn R package (Barton, 2019). In cases when model 17 

selection left us with support for multiple alternative models (∆ AIC < 2), conditional model 18 

averaging was applied, using all alternative models (∆ AIC < 4) to estimate the coefficients 19 

of the explanatory variables. Kruskal-Wallis-tests were applied for comparisons among 20 

groups of tagged fish (based on tagging year and population) in terms of body size, body 21 

condition factor, blood plasma triglycerides, blood plasma protein and blood plasma calcium. 22 

Spearman correlation tests were applied to test for correlations between pairs of nutritional 23 

indicators (body condition factor, blood plasma triglycerides, blood plasma protein and blood 24 

plasma calcium). For visualization purposes, linear regression lines were fitted to the 25 
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relationships among nutritional correlates in Figure 3 using the ‘geom_smooth’ function in 1 

the ggplot2 R package (Wickham 2016). Spearman correlation tests were applied to test for 2 

correlations between behavioural traits (timing of sea entry, marine residency and marine 3 

migration distance). 4 

 The raw tracking dataset on individual fish generated and analysed during the current 5 

study is uploaded to the Ocean Tracking Network data system 6 

(www.oceantrackingnetwork.org).  7 

 8 

 9 

3. RESULTS 10 

3.1 Characteristics of tagged fish  11 

The results were based on 286 trout (165 females, 121 males, i.e. 58% females, 42% males) 12 

with a body size ranging from 270 to 890 mm (mean = 471 mm, SD = 129 mm) (Figure 2). 13 

The fish were divided into ten groups based on the river and year they were tagged. The 14 

proportion of females within these groups varied between 38% and 78% (Figure 2). There 15 

were significant differences in body condition factor among the groups (Kruskal-Wallis test n 16 

= 286, P < 0.001, Figure 2). Average concentrations of the nutritional metabolites (pooled 17 

samples for all fish from all rivers) derived from blood plasma sampling were 0.71 mmol l-1 18 

triglycerides (SD = 0.85, range 0.004-4.36), 25.03 mg ml-1  of protein (SD = 5.70, range 8.87-19 

45.85) and 3.21  mmol l-1 of calcium (SD = 0.43, range = 1.94-5.56) among the groups 20 

(Figure 2). However, there were significant differences among the groups in concentrations 21 

of blood plasma triglycerides (Kruskal-Wallis test; n = 214, P < 0.001), plasma protein (n = 22 

204, P < 0.001) and plasma Calcium (n = 185, P < 0.001, Figure 2). 23 

3.2 Correlations between the nutritional indicators 24 
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There were significant positive correlations between all the measured variables reflecting 1 

nutritional state (Appendix 1). There was a positive correlation between body condition 2 

factor and 1) log transformed blood plasma triglycerides (Spearman’s correlation; n = 214, rs 3 

= 0.36, P < 0.001), 2) blood plasma protein (n = 204, rs = 0.42, P < 0.001), and 3) plasma 4 

calcium (n = 185, rs = 0.23, P < 0.001). There were positive correlations between the log 5 

transformed blood plasma triglycerides and both blood plasma protein (n = 194, rs = 0.45, P 6 

< 0.001) and blood plasma calcium (n = 178, rs = 0.31, P < 0.001). There was also a positive 7 

correlation between blood plasma protein and blood plasma calcium (n = 173, rs = 0.60, P < 8 

0.001). 9 

3.3 To migrate to the sea or stay in freshwater and estuaries  10 

Of the 286 tagged trout, 173 individuals migrated to the sea, while 106 individuals remained 11 

in freshwater and estuaries during the rest of the year. For 7 individuals, migratory decision 12 

could not be determined due to absence of detections, or detection records suggesting 13 

mortality, tag loss or tag malfunction. Overall, the models (see below) suggested that the fish 14 

migrating to the sea had greater body sizes than those remaining in freshwater, that females 15 

had a greater tendency to migrate to the sea than males, and that those migrating had lower 16 

body condition factors and lower blood plasma triglyceride levels than individuals remaining 17 

resident (Figure 3 and 4, Appendix 2 and 3). 18 

 Using body condition factor as the nutritional indicator, a  model for migratory 19 

decision which included  condition factor, sex and body size,  and an alternative model 20 

excluding sex, were of equally good (∆ AIC = 0.62, Appendix 2). Conditional model 21 

averaging indicated that body size had the strongest effect on migratory decision, followed by 22 

condition factor and sex, respectively (Figure 3, Appendix 3).  23 

 Using plasma triglycerides as nutritional indicator, the model on migratory decision 24 

which included sex and body size was the best model (∆ AIC 2.22 to second best model; 25 
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Appendix 2). The model estimates showed that sex had the strongest effect on migratory 1 

decision, followed by body size and blood plasma triglycerides, respectively (Figure 4, 2 

Appendix 3). 3 

  4 

 5 

3.4 Timing of sea entry  6 

Timing of sea entry could be determined for 161 individuals. There were four models with ∆ 7 

AIC < 2 (Appendix 4) for the timing of sea entry, including the null model, when using body 8 

condition factor as a nutritional indicator. Here, the model averaging estimates generally 9 

suggested limited effects of all explanatory variables (Figure 3, Appendix 5). 10 

 Three equally well supported models for timing of sea entry were identified when 11 

using plasma triglycerides as the nutritional indicator (∆ AIC = 1.89, Appendix 4). The model 12 

averaging estimates indicated that sea trout with higher plasma triglyceride levels entered the 13 

sea later in the season, while the effect of sex and body size on timing of sea entry was 14 

limited (Figure 4, Appendix 5). 15 

  16 

 17 

3.5 Marine residence time  18 

The marine residence times could be determined for 74 individuals. Three equally well 19 

supported models for the marine residence time were identified when using body condition 20 

factor as the nutritional indicator (∆ AIC = 1.65, Appendix 6). The model estimates from 21 

conditional model averaging showed that condition factor had the strongest effect on marine 22 

residence time, showing that sea trout with lower condition factors spent longer times at sea 23 

(Figure 3, Appendix 7). 24 
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 There were four models with ∆ AIC < 2 (Appendix 6) for the marine residence time, 1 

including the null model, when using body plasma triglycerides as the nutritional indicator. 2 

Conditional model averaging for these models showed that the standard errors exceeded the 3 

estimated effects of the explanatory variables (Figure 4, Appendix 7). 4 

 There was a significant negative correlation between timing of sea entry and marine 5 

residence time (Spearman’s correlation; n = 80, P < 0.001), where fish entering the sea earlier 6 

spent more time at sea. 7 

 8 

3.6 Maximum migration distance in the sea  9 

Maximum migration distance could be determined for 111 individuals. The full model on 10 

migration distance, which included condition factor, sex and body size, and an alternative 11 

model excluding sex, were equally well supported (∆ AIC = 1.97, Appendix 8). Model 12 

averaging showed that larger fish and fish with lower body condition factors migrated further 13 

out in the marine habitat, and that sex had limited effect on the migration distance (Figure 3, 14 

Appendix 9).  15 

 The migration distance model selection process where blood plasma triglyceride was 16 

used as nutritional indicator found that a model only including body size and an alternative 17 

model including body size and sex were equally well supported (∆ AIC = 1.73, Appendix 8). 18 

Here, model conditional averaging showed that larger fish tended to migrate further out to sea 19 

than smaller fish,  while sex and blood triglycerides had limited effect on the migration 20 

distance (Figure 4, Appendix 9). 21 

 The maximum migration distance at sea was not correlated with the timing of sea 22 

entry (Spearman’s correlation; n = 167, P = 0.89) or the duration of the marine residency (n = 23 

69, P = 0.49).  24 

 25 
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4 DISCUSSION 1 

Overall, nutritional state, sex and body size (length) influenced the marine migration 2 

behaviour of sea trout from the seven study populations in two distinct fjord systems in 3 

northern Norway. Sea trout with poor body conditions and low triglyceride levels tended to 4 

leave the river and estuaries and migrate to the sea, and individuals with low triglyceride 5 

levels migrated to the sea earlier. Fish with poor body condition prior to the migration 6 

remained at sea for a longer time-period and migrated further out in the fjords than fish in 7 

better condition. Although all the nutritional indicators were found to be highly correlated, 8 

this study suggests that measuring both body condition and blood plasma metabolites gave a 9 

better evaluation of the nutritional state of the individuals and the impacts of nutritional state 10 

on behaviour. While body condition results from the balance between energy intake vs. 11 

expenditure over time frames of weeks or months, blood plasma triglycerides have previously 12 

been observed to change in response to food intake over much shorter time scales (Sheridan 13 

1988, Congleton & Wagner 2006).  14 

 Migrating to the marine environment is believed to provide better feeding 15 

opportunities and potentially increased growth and reproductive capacity (Klemetsen et al. 16 

2003, Thorstad et al. 2016) because of the higher productivity in marine habitats than 17 

freshwater habitats in high latitude areas (Gross et al. 1988). On the other hand, energetic 18 

costs related to migration and osmoregulation, the risk of predation, disease, or other factors 19 

that could prevent a migratory individual from returning to freshwater spawning grounds are 20 

all risk factors presumed to be higher when an individual migrates to the sea (Thorstad et al. 21 

2015, Jensen et al. 2019). In this study, the observed effects of nutritional state on sea trout 22 

migratory behaviour suggest that individuals in a poor nutritional state tend to engage in 23 

riskier migration behaviour than fish in a better nutritional state. The results from this study 24 

also suggest that individuals in a poor nutritional state were energetically limited in 25 
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freshwater, tipping the cost vs. benefit trade-off in favour of migration. In a previous study, 1 

Boel et al. (2014) found that sea trout with poor body condition were most likely to migrate 2 

towards the sea. Davidsen et al. (2014) observed that starved hatchery-reared sea trout 3 

released to the wild utilized sea habitat to a greater extent than well fed hatchery fish, which 4 

tended to remain in the lower parts of the river and estuarine areas to which they were 5 

released. The observed relationship between nutritional state and timing of sea entry is also 6 

consistent with previous studies on reconditioning post-spawn Atlantic salmon S. salar which 7 

exhibited earlier sea entry for individuals in poor body condition (Halttunen et al. 2018, 8 

Bordeleau et al. 2019). Birnie-Gauvin et al. (2019a) showed that elevated baseline cortisol 9 

levels, possibly in response to nutritional need, were associated with earlier migration 10 

towards the sea for post-spawned sea trout. Interestingly, we observed a stronger effect of 11 

blood plasma triglycerides levels than of body condition factor on the timing of sea entry. 12 

This may suggest behavioural response to nutritional need, as acute triglyceride deprivation 13 

was a strong predictor for migratory initiation. Alternatively, it may suggest that 14 

opportunistic feeding in the freshwater or estuarine habitats during early spring may 15 

recondition nutritional state and delay the initiation of marine migration. 16 

 Once migration has occurred, sea trout with poor body condition factors tended to 17 

spend more time at sea and migrate further out in the marine habitat, possibly reflecting a 18 

greater need to recondition compared to individuals with better body condition factors. There 19 

was a significant relationship between timing of sea entry and duration of marine residency, 20 

where fish that migrated early resided longer at sea. The prolonged residency at sea may 21 

enable sea trout to recondition for the next spawning and overwintering season but may also 22 

include higher risk of mortality as marine habitats often have greater abundance of potential 23 

predators. A previous study by Haraldstad et al. (2018) showed that post-spawned sea trout in 24 

poor body condition were more likely to skip spawning the following season compared to 25 
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individuals in better body condition. Bordeleau et al. (2018) reported that the pre-migratory 1 

level of blood plasma triglycerides was negatively correlated with the duration of marine 2 

residency in veteran sea trout migrants. According to previous studies, sea trout with a low 3 

body condition tended to migrate further out to sea compared with individuals in a better 4 

body condition (Davidsen et al. 2014, Eldøy et al. 2015, Bordeleau et al. 2018). In the present 5 

study, differences in characteristics of the near marine habitats among the multiple sites we 6 

studied probably impacted how far the sea trout from the various rivers needed to migrate to 7 

meet their metabolic demands. No correlation was found between migration distance and 8 

timing of marine entry or marine residence time. 9 

  As expected, there were significant positive correlations among all measured 10 

nutritional indicators. A previous lab experiment by Congleton et al. (2006) documented low 11 

levels of blood plasma triglycerides, blood plasma protein and blood plasma calcium in 12 

starved juvenile salmonids. Overall nutritional state is determined by net differences over 13 

periods of weeks or months between energy intake and energy expenditure (Congleton & 14 

Wagner 2006). Poor nutritional state could likely be explained by limited feeding while 15 

overwintering, and for fish that reproduced, also by the energy expenditure during spawning 16 

the previous autumn (Bordeleau et al. 2018). The energy investment in spawning can be 17 

substantial for brown trout (Jonsson & Jonsson 2011b). In Lake Vangsvatnet in Norway, 18 

Jonsson and Gravem (1985) documented that immature migrants fed little while in freshwater 19 

and that mature migrants stopped feeding after the spawning season. 20 

 Although the nutritional status of most fish in the study was poor, there was large 21 

variation in nutritional state both among individuals and groups of fish. There may be several 22 

reasons for this, including differences in nutritional state after the previous growth season, 23 

energy investment in previous spawning, overwintering conditions, metabolic rate and 24 

feeding activity (Midwood et al. 2015, Auer et al. 2016). Some individuals had elevated 25 
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nutritional indicators indicative of a better nutritional status. These individuals mainly 1 

belonged to the groups of fish tagged in the estuarine habitats of River Åbjøra, River 2 

Lakselva and the Kosmovatnet watercourse. For these fish, elevated blood plasma 3 

triglyceride level was the most obvious signal. This might suggests that the fish had started 4 

feeding prior to tagging, because triglycerides become elevated a few hours after feeding 5 

(Sheridan 1988), and a previous laboratory experiment documented that blood plasma 6 

triglycerides recovered quickly when refeeding began after a starvation period in rainbow 7 

trout Oncorhynchus mykiss (Congleton & Wagner 2006). Common for these groups of tagged 8 

fish was that they were captured and tagged in lower parts of watercourses which have 9 

relatively large estuarine areas likely suitable for opportunistic feeding during early spring. 10 

 Females were more likely to migrate to the sea than males, instead of remaining in the 11 

freshwater and estuarine areas of the river where they were tagged. Previous studies with this 12 

species have also noted that females are more likely to migrate than males (Pemberton 1976, 13 

Knutsen et al. 2004, Jensen et al. 2019). In a study in Tosenfjorden, Bordeleau et al. (2018) 14 

found that females in the Åbjøra watercourse were more likely to leave the estuarine areas 15 

than males. This is likely caused by a greater benefit of increased feeding opportunities for 16 

females than males due to the strong correlation between female body size and the number of 17 

eggs the female can produce (Elliott 1995). Sexual bias in migratory behaviours is a well-18 

known phenomenon that has previously been observed in a range of salmonid species 19 

(reviewed by Dodson et al. 2013).  20 

 The models in the present study provided limited support for the influence of sex on 21 

migration timing, duration and distance migrated at sea. Some previous studies have reported 22 

that male sea trout tended to migrate earlier (Jensen 1968, Östergren & Rivinoja 2008), while 23 

others at different sites have suggested an earlier migration timing for females (Berg & Berg 24 

1989). Berg & Berg (1989) also observed that females had a longer duration of marine 25 
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residency than males. Bordeleau et al. (2018) found that females migrated further from the 1 

river than males and were more likely to migrate to the outer fjord areas of Tosenfjorden. 2 

Although the reasons female and males differed in their migration patterns among these 3 

different sites remain obscure, it suggests that a combination of local environmental 4 

conditions and population characteristics may plays an important role for the trade-off 5 

mechanisms shaping the migratory decisions of individuals within sea trout populations. This 6 

plasticity is one of the reasons the species has been so successful.  7 

 Larger fish of both sexes were more likely to migrate to the sea and migrated greater 8 

distances at sea than smaller fish. These tendencies are likely driven by the need of larger 9 

individuals to find more prey of larger size than the smaller fish, that larger fish are less 10 

susceptible to predation than smaller fish, and possibly because larger fish may be more 11 

powerful swimmers (Dill 1983, Klemetsen et al. 2003). Individual sea trout tend to repeat 12 

their migratory patterns among successive years (Eldøy et al. 2019) although some studies 13 

suggest that iteroparous salmonids may reduce their migration distances as they become 14 

larger and older (Svärdson & Fagerström 1982, Bond et al. 2015). The earlier seaward 15 

migration of large fish observed in the present study is similar to the timing observed in 16 

previous studies (Pemberton 1976, Bohlin et al. 1996, Jonsson & Jonsson 2009). The positive 17 

correlation we noted between body size and the duration of the marine migration is consistent 18 

with previous work (Eldøy et al. 2015). However, the tendency we found for larger fish to 19 

migrate further out to sea compared to smaller individuals has only been noted in a few of the 20 

previous studies on this species (e.g. Berg & Berg 1989, Jensen et al. 2014, Jonsson & 21 

Jonsson 2014). 22 

 In conclusion, despite the large individual and among-group variation observed in 23 

both nutritional state and migratory behaviour, this study showed that sex, body size and pre-24 

migratory nutritional state strongly influenced the migratory patterns of sea trout. Anadromy 25 



23 
 

is considered a quantitative threshold trait, where environmental thresholds for triggering 1 

behavioural responses are genetically determined (Ferguson 2006, Ferguson et al. 2019). 2 

Previous studies have suggested that the migratory behaviour of brown trout is a continuum 3 

of behavioural responses to the environmental cues experienced by the individuals in coastal 4 

trout populations (Cucherousset et al. 2005, Boel et al. 2014, Villar-Guerra et al. 2014). 5 

However, the importance of different factors affecting the pre-migratory nutritional state, and 6 

the influence of carry-over effects are poorly understood (O'Connor et al. 2014). For 7 

example, it is unknown how the success of a previous feeding migration interacts with 8 

spawning investment and over-wintering conditions to determine the nutritional state and 9 

subsequent marine migrations of post-spawned, veteran sea trout migrants (Bordeleau 2019). 10 

As shown by Jensen et al. (2020), life history patterns or decisions adopted early in life may 11 

persist throughout an individual’s lifetime, and significantly affect the animal’s  lifetime 12 

fitness. Jensen et al. (2020) showed that early migrants continued to migrate early throughout 13 

their life time, had better growth, and a larger lifetime fecundity. This suggests that 14 

individuals developing under favourable conditions will gain fitness benefits throughout their 15 

lifetime. Jensen et al. (2020) therefore concluded that individuals that experience 16 

environmental conditions as juveniles in freshwater and/or with genes that contribute to a 17 

large smolt size and early smolt migration may benefit preferentially from growth 18 

opportunities  in the sea, and the benefits of the early adoption of anadromy enables them to 19 

continue with early and longer migrations during following years. However, the fact that sea 20 

trout populations do not evolve to contain exclusively early migrants highlights again that 21 

there are costs that counterbalance the strategy. 22 

 While at sea, sea trout commonly reside in habitats heavily affected by human activity 23 

(Nevoux et al. 2019). Salmon lice infestation related to open cage farming of Atlantic salmon 24 

was recently evaluated as the biggest threat for Norwegian sea trout stocks (Norwegian 25 
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Scientific Advisory Committee for Atlantic Salmon 2019) . Serra-Llinares et al. (2020) 1 

documented that sea trout infested with salmon lice altered their migration behaviour and 2 

experienced increased mortality. The results of the present study, where fish in poor 3 

nutritional state seemed to migrate to the sea earlier and spent more time at sea, suggest that 4 

fish in poor nutritional state may display behavioural patterns that make them especially 5 

vulnerable to such negative anthropogenic factors at sea. This is both because their longer 6 

stay at sea increases the risk of being infested by salmon lice, and because they migrate to 7 

areas with high salinity favourable for sea lice instead of remaining in brackish water areas 8 

where the lice do not survive well. The links between migration behaviour, human induced 9 

stressors and reproductive success throughout the lifetime of sea trout remain obscure. Future 10 

studies examining the link between marine migration behaviour and reproductive investment 11 

over consecutive years are therefore advocated. 12 

 13 
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Table 1: Description of fjord, watercourse, tracking year, number of individuals, date 1 
oftagging and mean (± SD) sea trout body size (mm) and body mass (g) 2 

.  3 

Site Watercourse 

Tracking 

year Tagging date 

 

n  

Body size 

(mm) 

Body 

Mass (g) 

Tosenfjorden Åbjøra 2016 

21/05/2016–

26/05/2016 

 

23    

405±62 

(290-520) 

705±269 

(240-1280) 

Tosenfjorden Åbjøra 2017 

27/03/2017–

29/03/2017 

 

37    

451±58 

(350-560) 

847±318 

(400-1540) 

Tosenfjorden Urvoll 2016 

04/05/2016–

10/06/2016 

 

24    

415±81 

(270-620) 

639±401 

(160-1940) 

Tosenfjorden Urvoll 2017 

19/04/2017–

14/05/2017 

 

46    

463±98 

(330-730) 

949±816 

(290-4550) 

Skjerstadfjorden Botnvassdraget 2016 

01/05/2016–

20/05/2016 

 

21    

574±164 

(300-850) 

2068±1812 

(200-5800) 

Skjerstadfjorden Kosmovatnet 2017 

11/05/2017–

15/06/2017 

 

19    

379±71 

(275-470) 

531±284 

(180-990) 

Skjerstadfjorden Laksåga 2017 

30/05/2017–

31/05/2017 

 

34    

384±78 

(290-630) 

538±447 

(180-2590) 

Skjerstadfjorden Lakselva 2017 

02/05/2017–

09/05/2017 

 

13    

442±53 

(360-520) 

902±377 

(410-1580) 

Skjerstadfjorden Saltdalselva 2016 

28/04/2016–

30/04/2016 

 

40    

520±157 

(360-860) 

1574±1611 

(350-5600) 

Skjerstadfjorden Saltdalselva 2018 

01/05/2018–

10/05/2018 

 

29    

637±113 

(450-890) 

2459±1626 

(830-8400) 

  4 
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 1 

Figure 1: Map over the study areas in the two fjords Skjerstadfjorden (upper) and 2 

Tosenfjorden (lower), with tagging sites and receiver positions indicated. “Automated 3 

filtering” indicates receivers where automatic data filtering was applied to remove false 4 

detections. Light blue water surface indicates watercourses. Purple to deep blue surface 5 

colour indicate the depth of estuarine and marine habitats. 6 
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 1 

Figure 2: Sex (a), body size (mm) (b), body condition factor (c), blood plasma triglycerides 2 

(d), blood plasma proteins (e) and blood plasma calcium (f) for the study’s groups of tagged 3 

fish (location and year of tagging for the groups indicated on the x-axes). The stacked bar 4 

plots (a) shows the proportion of males and females in each group. The box plots show the 5 

interquartile range (boxes), median (horizontal line in boxes), the 5th and 95th percentiles 6 

(whiskers) and outliers (dots), with number of individuals in each group denoted at the top of 7 

the panels.  8 
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 10 
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 1 

Figure 3: Estimated effect of body condition factor, sex (male) and body size on the decision 2 
to migrate to sea (a), timing of sea entry (b), marine residence time (c) and migration distance 3 
at sea (d). The bar plots show the estimated parameter coefficients and their standard error 4 
(whiskers) for the best fitted model (∆ AIC < 2) or from conditional model averaging 5 
(including models with ∆ AIC < 4) where model selection identified multiple models of 6 
similar support.  7 
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 2 

Figure 4: Estimated effect of plasma triglycerides, sex (male) and body size on the decision to 3 
migrate to sea (a), timing of sea entry (b), marine residence time (c) and migration distance at 4 
sea (d). The bar plots show the estimated parameter coefficients and their standard error 5 
(whiskers) for the best fitted model (∆ AIC < 2) or from conditional model averaging 6 
(including models with ∆ AIC < 4) where model selection identified multiple models of 7 
similar support.  8 

 9 

 10 


