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A detailed assessment of the inter-scale energy budget of the turbulent flow in a von10

Kármán mixing tank has been performed based on two extensive experimental data sets.11

Measurements were performed at Reλ = 199 in the central region of the tank, using12

Scanning PIV to fully resolve the velocity gradient tensor (VGT), and Stereoscopic PIV13

for an expanded field of view (FoV). Following a basic flow characterization, the Kármán-14

Howarth-Monin-Hill equation was used to investigate the inter-scale energy transfer.15

Access to the full VGT enabled the contribution of the different terms of the energy16

budget to be evaluated without any assumptions or approximations. The scale-space17

distribution of the dominant terms was also reported to assess the isotropy of the energy18

transfer. The results show a highly anisotropic distribution of energy transfer in scale-19

space. Energy transfer was shown in an spherical averaged sense to be dominated at20

the small-scales by the non-linear inter-scale transfer term. However, in contrast to flows21

considered in previous studies, the local energy transfer is found to depend heavily on the22

linear contribution associated with the mean flow. Analysis of the scale-to-scale transfer23

of energy also allowed direct assessment of the classical picture of the energy cascade. It24

was found that while the inter-scale energy cascade driven by the turbulent fluctuations25

always proceeds in the forward direction, the total energy cascade driven by both the26

turbulent fluctuations and the mean flow exhibits significant inverse cascade regions,27

where energy is transferred from smaller to larger scales.28

1. Introduction29

Turbulent flows are characterised by their unsteady, three-dimensional motion across30

a wide range of length and time scales. The observation of small scale motion in flows31

containing energy injection at only the large scale prompted the classical concept of an32

energy cascade (Richardson 1926), where energy is transferred to increasingly fine scale33

motion, until viscosity finally limits the process through dissipation, turning the kinetic34

energy into heat. Since the energy cascade was introduced energy transfer in turbulent35

flows has remained an ongoing subject of investigation for decades (Kolmogorov 1941;36

Batchelor 1969; Godeferd & Cambon 1994; Smith & Waleffe 1999; Cimarelli et al. 2016).37

Energy transfer equations were originally derived using assumptions of homogeneity and38

isotropy for mathematical convenience, but despite numerous attempts to recreate such39

properties in the laboratory (Monin & Yaglom 1975), such properties are rarely found in40

real flows. Therefore, a number of studies have focused on understanding the effects of41
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anisotropy, scale-dependence and inhomogeneity on energy transfer. The effect of mean42

flow gradients was considered by Deissler (1961, 1981), who through spectral analysis43

of general inhomogenous turbulence concluded that not only turbulent self-interactions,44

but also interactions between turbulent fluctuations and the mean flow are sources of45

inter-scale energy transfer, thus transferring energy from larger to smaller scales, or in46

the opposite direction. Further to this, Danaila et al. (1999) suggested a modified version47

of Kolmogorov’s −4/5th law, which is derived for homogeneous, isotropic turbulence,48

by arguing that in many real and laboratory flows, the Reynolds number is not large49

enough to fully separate the small scales from the large scales, and that large scale50

and inhomogeneity effects would therefore affect the energy transfer. In this study an51

inhomogeneity term was added to the equation to make up for non-stationary moments of52

the velocity increments. Later studies by this group also considered a mean flow consisting53

of predominantly one component, which is varying only in one direction (Danaila et al.54

2001, 2002), which would be the case in for example a channel flow. This allowed the55

effect of mean shear on the scaly-by-scale energy budget to also be included, resulting56

in a production term in the inter-scale energy equation. Hill (2002) derived from the57

incompressible Navier-Stokes equation, a formulation that can systematically assess all58

such contributions to the overall deviation from Kolmogorov’s −4/5th law, including59

inhomogeneity, anisotropy, unsteadiness, and large-scale effects. This evolution equation60

of the second order structure function is a fully generalised version of the Kármán61

Howarth equation (von Karman & Howarth 1938) which was originally derived for62

homogeneous, isotropic flows. The equation is sometimes referred to as the Kármán-63

Howarth-Monin-Hill (KHMH) equation, and through its application, it is possible to64

describe the total flow of energy both in physical space and across spatial scales for any65

flow.66

Recent studies have used this equation as a framework to investigate the transfer of67

energy in a range of different turbulent flows. Casciola et al. (2003) used a variant of68

the Kármán Howarth equation for homogeneous, anisotropic turbulence to study a ho-69

mogeneous shear flow using DNS. Similarly, a weak formulation of the Kármán Howarth70

Monin equation was used by Debue et al. (2018b) for investigating the effects of quasi-71

singularities or singularities in a von Kármán flow, and found that the extreme events of72

the instantaneous inter-scale energy transfer govern the intermittency corrections given73

in the refined similarity hypothesis (Kolmogorov 1962; Oboukhov 1962). Fully generalised74

versions of the Kármán Howarth equation have also been used in studies of anisotropic75

and inhomogeneous turbulence to study cascade behaviour in a rotating flow (Campagne76

et al. 2014), the relations between global and local energy transfers in a von Kármán77

flow (Kuzzay et al. 2015), in the near field region behind a grid (Gomes-Fernandes78

et al. 2015; Valente & Vassilicos 2015), and the planar wake generated by a square79

prism (Portela et al. 2017). A common feature in the majority of these previous studies80

is that mean flow contributions to the inter-scale energy budget are negligible, with81

the exception of the study by Portela et al. (2017), where gradients in the mean flow82

are present. In the absence of mean flow, contributions to the scale-to-scale transport83

often focus on the non-linear contribution, with all studies demonstrating some degree of84

inter-scale anisotropy. Furthermore, although the globally spherically averaged transfer85

of energy is in the forward cascade direction, defined such that energy is transported86

from larger to smaller scales, with the exception of Valente & Vassilicos (2015) these87

studies also all contain regions in scale space of locally inverse cascade behaviour, where88

energy is transferred from smaller to larger scales. Similarly Carter & Coletti (2018)89

investigated energy transfer in a jet-stirred turbulent flow, and observed anisotropy in90

the rate of energy transfer, despite well controlled flow homogeneity. Based on these recent91
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studies, it appears that the non-linear inter-scale energy transfer in different flows varies92

significantly, and at present it is still uncertain how flow homogeneity and anisotropy in93

different flows relates to the scale-space orientation of the energy transfer, and if inverse94

cascade behaviour is omnipresent, or if the examples above represent exceptional cases.95

In this work, we have performed a detailed study of the energy transfer of the flow96

between two counter rotating disks or impellers, often referred to as a von Kármán97

flow. The flow has been studied in a large number of analytical (Batchelor (1951);98

Stewartson (1953); Zandbergen & Dijkstra (1987)), numerical (Mordant et al. 2004;99

Kreuzahler et al. 2014; Nore et al. 2018) and experimental studies (Bonn et al. 1993;100

Cadot et al. 1995; Voth et al. 1998; Ouellette et al. 2006; Bourgoin et al. 2006; López-101

Caballero & Burguete 2013; Lawson & Dawson 2015; Podvin & Dubrulle 2018; Debue102

et al. 2018b; Lawson et al. 2019), and the setup is ideal for laboratory experiments as103

high Reynolds numbers can be achieved in relatively small laboratory spaces. The mean104

flow of the tank has been reported to be anisotropic and inhomogeneous (Porta et al.105

2000) but the turbulent fluctuations at the very centre of the tank can be considered to106

be locally homogeneous based on second order metrics (Lawson & Dawson 2014; Jucha107

2014). Given the widespread use of this configuration in understanding the small scale108

structure of turbulent flows, it is of significant interest to study the transfer of energy in109

this apparatus.110

The aim of this study is to use the full KHMH equation to investigate the inter-scale111

energy budget and cascade behaviour in the well known axisymmetric homogeneous flow112

generated by a von Kármán mixing tank. In particular we are interested in understanding:113

Does the energy transfer in this flow share the same directional dependency or anisotropy114

as other flows, and will this nominally statistically homogeneous axisymmetric flow also115

exhibit regions of inverse cascade behaviour such as observed by Qu et al. (2017) in direct116

numerical simulations of purely axisymmetric turbulence? Which processes are significant117

to balance the energy budget at the various scales captured by the experiments? Given118

the flow at the centre of von Kármán tanks have a very small mean component relative119

to turbulent fluctuations, but with strong stationary gradients in all flow directions, how120

significant is the linear inter-scale energy transfer?121

A secondary objective of the current work is to leverage the recent development of122

highly accurate and fully volumetric experimental methods (Lawson & Dawson 2015).123

For many decades researchers had to rely on measurements made at a single-point124

in the flow, and often only consider a single component of velocity (Pao 1965; Shen125

& Warhaft 2002). More recently multi-component planar measurements have become126

widely available (Campagne et al. 2014; Debue et al. 2018b). However, all such studies127

require the use of symmetry assumptions (Gomes-Fernandes et al. 2015) to complete128

their description of inherently three-dimensional quantities such as the dissipation rate;129

a process which can be misleading (Thoroddsen 1995). In the present work we use130

fully volumetric measurements, which allows us for the first time to experimentally131

investigate energy transfer using the KHMH equations without the use of assumptions132

or surrogates on which planar or point-wise measurements must rely (Carter & Coletti133

2018; Gomes-Fernandes et al. 2015; Thiesset et al. 2011; Kuzzay et al. 2015). The current134

investigation therefore employs both planar Stereoscopic and full volumetric Particle135

Image Velocimetry (PIV), and the use of very large experimental data sets (200 000 and136

40 000 samples from Scanning and Stereo PIV respectively) in order to converge the137

higher order statistics.138

Following an introduction of the notation and coordinate systems used in the paper139

given in §2.1, a detailed description of the experimental methodology is presented in140

§2.2, a brief flow characterisation is outlined in §2.3, and details of the method used141
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Figure 1: Schematic of the relative configuration of the considered points, vectors, and
coordinate systems.

for calculating the inter-scale energy budget are described in §2.4. Following this, the142

distribution and transfer of energy is assessed in detail in §3. Here we begin by assessing143

the energy distribution and flux of energy in §3.1 and §3.2. The contribution of the144

non-linear transfer term to the energy budget is discussed in §3.3.1, before including the145

impact of the linear transfer term in §3.3.2. In §3.3.3 we focus on the way in which the146

energy budget is balanced, and take a closer look at local homogeneity in §3.4, before147

some conclusions are drawn.148

2. Methodology149

Data for this study were obtained using both volumetric Scanning PIV and planar150

Stereo PIV. Here, the notation, the experimental facility and methods are presented in151

addition to details on the vector field processing, a brief flow characterisation, and an152

introduction to the inter-scale energy budget.153

2.1. Notation and coordinate system154

This section aims to provide an overview of the notation in this work. In the present155

work the instantaneous velocity field U(x, t) is Reynolds-decomposed into the time av-156

eraged, U(x), and fluctuating components, u(x, t). Similarly, the instantaneous pressure157

field P(x, t) is decomposed into a fluctuating, p(x, t), and a mean part, P (x). We shall158

primarily be concerned with various averages of two-point measurements. The two points159

are denoted x+ and x−. We use superscripts + and − to denote quantities evaluated at160

x+ and x−. The points are centred at position at x = (x+ + x−)/2 and are separated161

by a distance r = |r|, where r = x+ − x−. This configuration is illustrated in Figure 1.162

Cartesian coordinates are indexed (1, 2, 3), are associated with unit vectors x̂1, x̂2, x̂3,163

marked in Figure 2. Later, it shall be convenient to express separations r in terms of164

polar coordinates (r, θ, φ), where the polar direction is aligned with x̂2 and the azimuth is165

measured from x̂1 as shown in Figure 1. Similarly these are associated with unit vectors166

r̂, θ̂ and φ̂ and vector components are indiciated with subscripts r, θ, φ.167

We are interested in quantities, e.g. velocity increments δu(x, r, t) = u(x+, t) −
u(x−, t), which are a function of both position x in physical space and separation r
in scale space. Whenever a reference is made to the behaviour of a given quantity in the
physical space, the x dependence is meant, while the behaviour in scale space should be
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understood in terms of r dependence. The derivatives ∂/∂ri and ∂/∂xi are related by

∂
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+
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2

∂

∂xi

∂

∂x−i
= − ∂

∂ri
+
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=
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− ∂

∂x−i

)
(2.1)

where summation over repeated indices is implied.168

Three types of averaging operator are used: the time average, the spatial average and169

the spherical average. We denote the time average of a signal g(x, r, t) as g and define170

g(x, r, T ) =
1

T

∫ T

0

g(x, r, t)dt. (2.2)

This is experimentally approximated by an average over Ns samples. Since the number171

of samples is large and acquired continuously over several days, we shall subsequently172

drop the explicit dependence upon T in our notation. Spatial averages are denoted with173

angled brackets 〈g〉 and defined174

〈g〉(A, r, t) =
1

|A|

∫
A
g(x, r, t)dx (2.3)

where A is the domain over which we measure g, in this case a region of approximately175

homogeneous turbulence near the geometric center of the mixing tank. Additionally, ∂A176

is the boundary of A. Since this region is fixed for the purposes of our experiment, we177

shall subsequently drop the dependence upon A from our notation. Finally, a spherical178

average is denoted by 〈g〉◦(x, r, t) and is defined179

〈g〉◦(x, r, t) =
1

4πr2

∫∫
|r|=r

f(x, r, t)dSr (2.4)

and can be interpreted as the average of g over the surface of a sphere |r| = r. The180

spherical average operation requires 3D data, and for the Scanning PIV data, the181

spherical average of the various terms are calculated directly. For the Stereo PIV data,182

only data in a plane is available, and thus statistical axisymmetry is invoked to estimate183

spherical averages.184

2.2. Experimental setup185

The full experimental setup used in this study consists of a von Kármán mixing tank,186

a laser with an optical setup to guide the laser beam, and a pair of high speed cameras.187

Figure 2(a) shows an overview image of the setup used for the Scanning PIV experiment.188

The setup is the same as described by Lawson et al. (2019), but is presented here in more189

detail.190

The mixing tank, illustrated in figure 2(b), consists of a stainless steel cylinder with a191

height of 58 cm and diameter of 48 cm, with two counter rotating impellers of diameter 25192

cm, located in the top and bottom of the tank. The impellers have 8 baffled vanes of height193

5 cm to increase the production of turbulence. The rotational speed of the impellers is194

maintained at 0.2 Hz, which results in constant energy injection at the largest flow scale.195

The cylinder is closed by two cooling plates which maintain a fixed water temperature196

of 21.2◦C, resulting in a kinematic viscosity ν = 0.975 mm2/s. Between the impellers197

and the cylindrical wall, eight static baffle plates are placed to suppress the large-scale198

rotational motion that would otherwise occur, and to further increase the production of199

turbulence. The measurement volumes from the Stereo and Scanning PIV experiments200
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are marked schematically in green in figure 2(b), where the small square illustrates the201

volumetric measurements. The measurements are made at the geometric centre of the202

tank, where the mean flow velocity is vanishing. The origin of the coordinates system203

(x1, x2, x2) is also located in the geometric centre of the tank, while the axial direction204

coincides with x̂2.205

The laser beam passes through an optical setup consisting of two guiding mirrors, a206

(dynAXIS XS, Scanlab GmbH) galvanometer, followed by sheet forming optics, before207

passing through the measurement volume. A beam dump minimises back scattered light208

into the tank. For the Stereo PIV, the galvanometer was exchanged with a regular guiding209

mirror. For both experiments the laser light was used to illuminate the flow through light210

scattered from 6 µm diameter polymethyl methacrylate (PMMA) microspheres with211

specific gravity 1.22, which act as passive flow tracers (Stokes number of St = 6× 10−5).212

Two Phantom v640, 4 megapixel cameras were used for both the Stereo and Scanning213

PIV experiments. The full image of 2560× 1600 pixels was used for the Stereo PIV214

measurements, while a smaller section of the camera sensor of 512× 512 pixels was used215

in the Scanning PIV experiments due to limitations in the data uploading time.216

With the exception of the optics, the setup for the two experiments were identical. An217

overview of the experimental parameters is given in Table 1. The Taylor microscale is218

estimated using the following relation, which is derived for isotropic flows:219

λ2 =
15ν〈urms〉2

〈ε〉
(2.5)

where 〈urms〉 is the spatial average of the RMS fluctuating velocity urms(x) =220 √
1
3ui(x, t)ui(x, t), and ε(x) = ν ∂ui(x,t)

∂xj

∂ui(x,t)
∂xj

represents dissipation of kinetic energy221

of turbulence. It is important to note that ε, as defined here, is the so called pseudo-222

dissipation. This is in opposition to the true dissipation, εtrue = 2νsijsij , where223

sij = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. The difference between the two is usually small, and thus often224

neglected for the sake of the equations simplicity (Pope 2005). In the present work we are225

consequently using ε, and refer to it as dissipation (except for Appendix B, where εtrue226

is utilized). The longitudinal integral length scale, LLL, is estimated using equation 2.6227

applying the procedure described in Jong et al. (2009) (the spatial averaging is applied228

because the involved statistics are homogeneous to a large extent, as has been confirmed229

in auxiliary checks).230

LLL =

∫ ∞
0

〈
RLL(x, r)

RLL(x, 0)

〉
dr ≈

∫ rmax

0

〈
RLL(x, r)

RLL(x, 0)

〉
dr +

A

B
e−Brmax (2.6)

where RLL(x, r) is the longitudinal autocorrelation function:231

RLL(x, r) =

∫
|r|=r

rirj
4πr4

ui(x− r/2, t)uj(x+ r/2, t) dS (2.7)

The definition of LLL given by equation 2.6 involves integration from r = 0 to r = ∞,232

and thus, as the FoV is of finite size, an extrapolation of 〈RLL(x, r)〉 is required to233

approximate LLL. Towards this purpose, an exponential decay of the form Ae−Br is234

least-square fitted into the resolved tails of 〈RLL〉. Further, we integrate 〈RLL(x, r)〉 up235

to its resolved limit rmax, and past that point we integrate the fit. The resultant relative236

contribution of the extrapolated part of 〈RLL(x, r)〉 in LLL is 25.2%. The resulting value237

of LLL = 180.4η, and is comparable to the value of LLL estimeted by Jucha et al. (2014)238
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(a) (b)

x2
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Figure 2: (a) Experimental setup with laser, optical configuration, flow facility and
cameras. (b) Schematic of flow facility, with decomposition of the mean flow between
the two counter rotating impellers: shear layer (—) and recirculation due to Ekman
pumping (—). The two measurement volumes are marked in green, and the coordinate
system (x1, x2, x3) are given.

Parameter Symbol Value Unit

Impeller rotation frequency f 0.2 Hz
Impeller diameter D 0.25 m
RMS velocity fluctuations 〈urms〉 33.6 mm/s
Reynolds number Reλ 199 -
Mean dissipation rate 〈ε〉 492 mm2/s2

Kolmogorov timescale τ 44.6 ms
Kolmogorov lengthscale η 209 µm
Integral lengthscale LLL/η 180.4 -
Taylor microscale λ/η 27.8 -
Kinematic viscosity ν 0.975 mm2/s
Density ρ 1000 kg/m3

Table 1: Flow parameters and calculated length and time scales.

in the same experimental facility. The Kolmogorov length and timescales are calculated239

as η =
(
ν3/〈ε〉

)1/4
and τ = (ν/〈ε〉)1/2 respectively, and Reλ = λ〈urms〉/ν.240

2.2.1. Measurement techniques241

Measurements were performed in a von Kármán mixing tank using both Stereoscopic242

PIV and Scanning PIV. The spatial resolution (window sizing) of the Scanning and Stereo243

PIV measurements are 3.06η and 2.04η respectively, resulting in a vector spacing of 0.76η244

and 1.16η. The sample sizes are 200 000 and 40 000 samples for the Scanning and Stereo245

PIV, sampled with a minimum spacing of respectively 2 and 4.5 large eddy turnover246

times, ensuring statistically independent measurements. Due to technical constraints,247

the measurement volume for the Scanning PIV is limited to 42η × 42η × 42η. The Stereo248

PIV measurement covers a larger FoV (154η × 199η), and therefore contributes to an249

understanding of the larger length scales of the flow.250

The Stereoscopic PIV data was calibrated and processed using DaVis 8.3, to give 2D3C251

velocity fields. The processing involved the application of a multi-pass cross-correlation252
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algorithm with window deformation, and vector validation through application of the253

RMS criteria over local flow regions. The tomographic Scanning PIV algorithm described254

in Lawson & Dawson (2015) was employed to post-process the volumetric data. In short,255

the method consists of a laser sheet being traversed (scanned) across a measurement256

volume at a rate of 250Hz, while two high speed cameras capture particle images of each257

illumination. 54 images were captured per scan, and intensity volumes are reconstructed258

based on the particle images using a MART algorithm. The reconstructed volumes are259

then cross correlated to obtain vector fields of velocity. Similarly an in-house multi-pass260

algorithm with window deformation was used for the cross-correlation, and a correction261

is applied to correct for the finite sheet speed effects. For each sample, five scans were262

performed, giving five reconstructed particle volumes and four velocity fields, providing263

access to acceleration information. A divergence correction is applied to the velocity264

fields (Wang et al. 2017), and a Lagrangian filter similar to Novara & Scarano (2013) is265

then used on the velocity fields to increase the measurement accuracy. In the procedure,266

artificial tracers inserted to the calculated flow field are tracked backwards and forwards267

in time, then a second-order polynomial is fitted to these trajectories, where the linear268

and quadratic terms yield the velocity and the Lagrangian acceleration respectively. As a269

result, the truncation error and the random error due to the particle positions is reduced.270

The Lagrangian acceleration fields, Dui

Dt = ∂ui

∂t +uj
∂ui

∂xj
, are used to resolve pressure fields271

using a similar procedure as in Lawson & Dawson (2015). The incompressible Navier272

Stokes equation is rearranged to solve for the pressure gradient, ∇pρ = −Dui

Dt + ν∇2ui,273

and when discretized make up an over-determined set of linear equations, which is solved274

using a least-square fit. However, the artificially inserted particles on the edges of the275

volume might leave the FoV when tracked in time, and the material derivative in these276

point will be lost. As a solution to this, the Poisson equation, ∇
2p
ρ = − ∂2

∂xi∂xj
(uiuj), is277

included to the set of linear equations. It should be noted that whenever possible fourth278

order central differences are used to estimate first order derivatives, and fifth order central279

differences are used for second order derivatives.280

The volumetric method relies on accurate knowledge of the laser sheet position. The281

laser sheet position is first calibrated manually. A calibration plate is placed in the282

measurement volume at various depth positions, then images of the laser sheet itself are283

acquired while the sheet is traversed across the calibration plate. From these images, laser284

sheet parameters such as sheet width, spacing, position and orientation are calculated285

(see Lawson & Dawson (2014) for more details). In addition to this manual calibration,286

the laser sheet self-calibration method described by Knutsen et al. (2017) is performed287

to increase the accuracy of the calibration. This self-calibration is also performed during288

the experiment to maintain an accurate calibration over long acquisition periods (the289

data was collected continuously for 12 days), and to be able to detect and correct for290

potential galvanometer drift.291

The Scanning PIV technique allows for seeding densities high enough to achieve292

spatially fully resolved volumetric measurements of the flow for the given Reynolds293

number, Reλ = 199, which in turn allows us to directly calculate the local dissipation294

rate, for a flow which is expected to be fully developed (and exhibit an inertial subrange)295

according to the scaling presented by Dimotakis (2005). The large number of volumetric296

samples taken, combined with the high spatial resolution of the measurements provide297

well converged statistics of the complete volumetric and time dependent flow field without298

the use of any assumptions. A detailed list of the experimental parameters for the two299

measurement methods is presented in table 2.300

An attempt to evaluate the uncertainty of the datasets has been made through an301
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Parameter Stereo PIV Scanning PIV

Region of interest 140η × 180η 42η × 42η × 42η
PIV window size 2.4η 3.06η
PIV Inter-frame time [ms] 4 1.5
Sheet width 7.18η 5.26η
Ratio of sheet width to sheet spacing - 3.86
Complete volumetric scans per sample - 5
Vector spacing 1.16η 0.76η
Number of samples, Ns 40 000 200 000

Table 2: Experimental parameters for both Stereo and Scanning PIV measurements.

evaluation of how well the volumetric data obeys the divergence free criteria, and through302

an estimate of the random measurement error through the correlation function. In303

addition, where possible an effort has been made to put confidence intervals on certain304

quantities. See Appendix A for more detailed information and results of the evaluation.305

2.3. Flow characterisation306

The two experimental data sets were taken in the same tank, under the same condi-307

tions, but with different measurement techniques. It is therefore useful to classify the308

similarities and differences between these two data sets, in addition to giving a general309

characterisation of the flow in this von Kármán mixing tank. This comparison and a more310

detailed flow characterisation is presented in Appendix B. For further flow characteristics,311

in addition to a comparison with DNS data, see Lawson et al. (2019), which is based on312

the same Scanning PIV dataset.313

2.3.1. Mean velocity distribution314

The mean flow can be viewed as a superposition of the two flow modes illustrated in315

figure 2(b). The mean flow field calculated from the Stereo PIV data is shown in figure316

3. Contours of normalized velocity magnitude, |U|/〈urms〉, show that the mean flow in317

the centre of the tank is of an order of magnitude smaller than the mean fluctuations.318

The two flow modes resulting in the mean flow are: first a rotating motion, which rotates319

in opposite directions at the top and bottom of the tank, creating a shear layer in the320

mid plane between the two impellers (Ravelet et al. 2004; Monchaux et al. 2006; Cortet321

et al. 2009); and second a centrifugal pumping mode, which results in a straining of the322

flow at the center of the tank.323

The combination of the flow modes results in a stagnation point which occurs approxi-324

mately at the geometric center of the tank. The stagnation point in the x1−x2 plane for325

the Stereo PIV data is calculated to be at (x1,s, x2,s) = (5.22η,−0.1η), while the velocity326

in the center of the measurement volume, (x1, x2) = (0, 0), is (U1, U2, U3) = (1.7%, 0.6%,327

4.3%) of 〈urms〉. Characteristic for a von Kármán flow, strong gradients are present in328

all components of the mean flow, with the highest gradient observed in the x2−direction.329

2.4. Calculation of the inter-scale energy budget330

The final part of this section is used to present the KHMH equation, which governs the331

evolution of the trace of the second order structure function δq2(x, r) ≡ δq2(x, r, t) =332

δui(x, r, t)δui(x, r, t). The KHMH equation is given by eq. 2.8, where for the sake of333

brevity we do not present the explicit functional dependency of the particular terms.334
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Figure 3: Mean flow from the Stereo PIV data. Contours represent the magnitude of the
mean flow normalized by the mean fluctuations, |U|/〈urms〉, while the velocity vectors
are showing the mean flow in the x1 − x2 plane. Every sixth vector is plotted.
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The integral of δq2(x, r) over a sphere of a specified radius r = |r| can be intuitively335

understood as 1/4 of the energy accumulated at the scales equal to and smaller than336

r (Davidson 2004). This becomes more apparent when δq2 is expressed with a Fourier337

integral, where u(x, t) =
∫∫∫∞
−∞ û(κ, t) exp(iκ · x) dκ, which can be written as:338

δq2(r) = 4

∫∫∫ ∞
−∞

Ψ(κ, r)Ê(κ) dκ (2.9)

where κ is the wavevector and summation goes over all Fourier modes, Ê is the energy339

associated with κ and Ψ = 1− cos(κ ·r) can be looked upon as a filter which is weighing340

the wavenumbers which contribute to δq2(x, r).341

Eq. 2.8 does not take into account any assumption of homogeneity or isotropy of the342

flow and thus considers both inter-space and inter-scale transfers of δq2.343

Statistics of the studied flow are homogeneous, to a large degree, within the FoV (this344

was verified for all the particular terms of eq. 2.8). Therefore, in order to reduce the345

amount of data as well as for smoothing of our statistics, we shall consider the space-346

averaged version of eq. 2.8 in all further analysis (note that eq. 2.8 is valid everywhere347

in the flow field, and thus its space-average stays valid as well). The averaging is over348

the extent of the FoV. Using the same approach as Portela et al. (2017) and Gomes-349

Fernandes et al. (2015), the following terms of the space-averaged KHMH equation are350

identified:351
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At = −A−Π −ΠU + P + Tu + Tp +Dx +Dr − εr (2.10)

and the following meaning can be assigned to them (∂A and n designates the boundary352

of the FoV and its normal vector respectively):353

At = At(r,A, T ) = 1
4

〈
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〉
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354

the spatially averaged unsteady term describes the rate of change in time of the kinetic355

energy 1
4
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at scale r.356
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the averaged advection of δq2 through the boundaries of the FoV.359
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〉
360

the spatially averaged non-linear inter-scale transfer of δq2 accounting for the effect of361

non-linear interactions of scales in redistributing δq2 in scale space.362

ΠU = ΠU (r,A, T ) = 1
4
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4
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the spatially averaged linear equivalent of Π; it accounts for inter-scale transfer of δq2364

by the mean flow.365

P = P(r,A, T )366

= − 1
2
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the spatially averaged production of δq2 by the mean flow gradients.368
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the averaged transport of δq2 by the fluctuating velocity through the boundary of the371
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the flux of δuiδp through the boundaries of the FoV.374
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the averaged viscous diffusive flux of δq2 through the boundary of the FoV.376
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the spatially averaged viscous diffusion of δq2 in scale-space.378
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2
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spatially averaged dissipation, which equivalent to 〈ε〉.380

381

The volumetric data permits direct assessment of all terms in the KHMH equation.382

However, as each term in the KHMH equation requires derivatives of averaged quantities383

in all flow directions, it is not possible to calculate them directly from the planar Stereo384

PIV measurements. Therefore, assumptions are required for this data set. Since the385

flow is assumed to be, on averaged, axisymmetric around the direction x̂2, all the spatial386

derivatives in the circumferential direction (i.e. along x̂3 in our present setup) of averaged387
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flow quantities are expected to vanish and thus are neglected. This assumption allows388

us to calculate different terms of the KHMH equation, and since the volumetric data389

is measured under the same flow conditions in the same flow facility, it can be directly390

tested for the smaller length scales. Further, the unsteady term and the pressure terms391

are lacking from the Stereo PIV data. As the data in this study is collected over a392

large number of turnover times, it follows from the stationarity assumption that the393

contribution from the stationary term is expected to go to zero, however, it is a very394

intermittent quantity which is hard to converge, and its residual value can potentially be395

of non-negligible order.396

3. Inter-scale kinetic energy budget397

Having introduced the experimental setup and methods, we now describe both the398

distribution of energy across scales, and the transfer of energy in our flow of interest.399

Our aim is to report the flow behaviour, but also to compare this to other similar400

investigations. Therefore, we discuss both the scale space organisation of energy transfer,401

and the reduced spherically averaged transfer, as well as evaluating this against the402

classical cascade concept. We finally examine the total inter-scale transfer, and consider403

which physical phenomena help balance the inter-scale energy budget.404

3.1. Second order structure functions and isotropy405

The variation of the normalised combined second order structure function,406

〈δq2〉/〈urms〉2, with separation distance is shown in figure 4 for the Stereo PIV407

measurements. Figure 4(a) shows the distribution of 〈δq2〉 in the r1 − r2-plane, whereas408

line plots along different angles of θ in the r1−r2-plane is shown in 4(b). The non-circular409

contours in figure 4(a), and the fact that the lines for different values of θ in figure410

4(b) show that energy is distributed anisotropically at all scales. The anisotropy is411

consistent with stronger longitudinal velocity correlations, and therefore lower kinetic412

energy variations along the symmetry axis of the flow at a given scale. The volumetric413

measurements from the Scanning PIV data (not shown) further shows that 〈δq2〉414

is indifferent to rotation around the axis r2, which resembles the axisymmetry of415

single-point statistics around the axis of the tank, as discussed earlier.416

In order to better understand this anisotropic distribution, let us consider a decompo-417

sition of 〈δq2〉(r) into contributions from velocity components aligned with unit vectors418

of a spherical coordinate system (r, θ, φ) (see figure 1), namely 〈δq2〉 = 〈δuiδuj〉 · (r̂ir̂j +419

θ̂iθ̂j + φ̂iφ̂j) = 〈δu2r〉+ 〈δu2θ〉+ 〈δu2φ〉.420

Figure 5 shows the individual spherical components of 〈δq2〉. To show these over a large421

range of scales, again the functions are plotted in the r1 − r2-plane from the Stereo PIV422

measurements. The figure demonstrates that the main contributions to 〈δq2〉 come from423

the out of plane component, 〈δq2φ〉, which is anticipated as this component is parallel to424

the shear plane and this is where the largest velocity fluctuations exist, and we therefore425

also expect higher velocity differences. The distribution of 〈δq2φ〉 also resembles that of426

〈δq2〉, with elliptical contour lines stretched in the axial direction. Both the radial and427

polar parts of 〈δq2〉, shown in figure 5(a) and (b), are highly anisotropic especially at428

larger scales, as shown from the visibly non-spherical contour lines. From observing the429

shape of the contour lines, the terms become more isotropic at smaller scales. The contour430

lines of the radial part, 〈δq2r〉, are also stretched in r2-direction in a similar way to the431

full term 〈δq2〉 and 〈δq2φ〉, resulting in lower values along the r2-direction than for the432

r1-direction. This is as expected, as the r-vector is aligned with the shear plane along the433



The inter-scale energy budget in a von Kármán mixing flow 13

r1-axis, where there are higher fluctuations and thus lower correlations. The azimuthal434

term exhibits an opposite behaviour, where we observe slightly higher values along the435

diagonal, and stretched contours in r1-direction.436

To further quantify the level of isotropy and how this varies with scale and for the437

different components, let us define a measure of isotropy of an arbitrary function f(r)438

at a given scale r designated as σf (r):439

σf (r) =
1

〈f(r)〉◦

√
〈(f(r)− 〈f(r)〉r)2〉◦ (3.1)

Note that the above definitions is equivalent to considering the L2 norm of coefficients440

in a spherical harmonics decomposition (Arad et al. 1999; Kurien et al. 2000).441

If 〈δq2〉 was distributed isotropically, this parameter would take a constant value of442

zero. The results demonstrate that the standard deviation of the contour lines along443

constant 〈δq2〉 is never zero, and that deviations in 〈δq2〉 along a constant radius,444

representing the level of anisotropy, increase with separation distance until r ≈ 60η ≈445

0.33LLL, where the curve flattens out before it starts to slightly decrease at r ≈ 100η ≈446

0.55LLL. From r = 60η to r = 130η, the value of σ〈δq2〉 is constant to within 10% of its447

maximum value. One would expect increasing anisotropy for larger scales, but studying448

figure 6, it is clear that also 〈δq2φ〉 shows the same tendency to plateau within the FoV.449

The plateau behaviour and the slight decrease in anisotropy of both 〈δq2〉 and 〈δq2r〉 may450

be caused by the increasing importance of 〈δq2θ〉. From figure 5(b) it is clear that the451

contour lines of 〈δq2θ〉 are elongated in the r1-direction while the other two terms are452

elongated in the r2-direction, especially for larger values of r, and thus making the final453

term 〈δq2〉 more isotropic than its components, i.e. different RMS values for different454

velocity components.455

Figure 6 shows that while the distribution of 〈δq2〉 is anisotropic at all scales, the456

level of anisotropy is highest for r ≈ 100η. If the anisotropy is driven by the shear layer457

between the counter rotating fluid cells, it is expected to increase with distance from the458

axis of symmetry following the shear. However, the plateau in the level of anisotropy459

results from the balance between the increments of the different velocity components.460

The terms 〈δq2r〉 and 〈δq2θ〉 are anisotropic even at very small scales, which is a result461

of the apparent anisotropy of single-point velocity statistics. However, there are initial462

decreases of anisotropy of both terms (with minima respectively at 7η and 10η), followed463

by the subsequent growths. This behaviour, although surprising, might be the result464

of specific relations between directional Taylor microscales, directional integral length465

scales, and variances of particular velocity components.466

A more thorough investigation of 〈δq2r〉 is motivated by the highly anisotropic distri-467

bution of the term. Figure 7 demonstrates the orientation dependency of 〈δq2〉 through468

a line plot in (a), where the value of the term is plotted at different values of polar469

coordinate θ, and in (b) where the full distribution of the term is shown. 〈δq2r〉 is the470

longitudinal second order structure function, which for homogeneous isotropic turbulence471

is related to the dissipation rate through Kolmogorov’s 2/3rds law:472

δu2r(r) = C2ε
2/3|r|2/3 (3.2)

where C2 is a constant which is expected to be universal (Pope 2005). In the present473

study a value of C2 = 2.1 is found from the spherical average of 〈δu2r〉◦(r), shown in the474

inset in figure 7(a), which is consistent with previous studies (Ni & Xia 2013).475

Figure 7 shows the normalized 〈δq2r〉, which is expected to have a constant value in the476
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(a) (b)

Figure 4: Distribution of 〈δq2〉 normalized by 〈urms〉2 from Stereo PIV data normalized
by 〈urms〉 from (a) the Stereo PIV data, and (b) the Scanning PIV data. The different
isosurfaces in (b) Line plots of 〈δq2〉 for constant values of θ = [0, π/6, π/3, π/2].

Figure 5: Spherical decomposition of 〈δq2〉 from Stereo PIV data normalized by 〈urms〉2.

inertial range, and for most orientations, the term have reached a plateau. The plateau477

has, however, a different value for different orientations. This directional dependency478

indicates that, depending on along which orientation we calculate the second order479

longitudinal structure function, the resulting dissipation rate would vary significantly480

if a constant value of C2 is used. This result is in contrast to the findings in Chang et al.481

(2012), where they study an anisotropic, zero shear flow, and conclude that C2 shows no482

dependency on isotropy. This indicates that the mean flow gradients in the von Kármán483

flow cause the directional dependency of C2, which is consistent with the predictions in484

Lumley (1967), which are discussed in §3.4 in Biferale & Procaccia (2005). The term485

also levels off at different values for r, indicating that the onset of the inertial range is486

also dependent on orientation in scale space. This is consistent with the anisotropy we487

observe at small scales.488
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Figure 6: Isotropy metric σ of 〈δq2〉 and its spherical components.

(a) (b)

Figure 7: Orientational variation of 〈δq2r〉 normalized. (a) Along fixed values of θ, where
the inset shows the spherical mean value. (b) Contour plot of 〈δq2r〉/(C2(〈ε〉r)2/3). Lines
from (a) marked in (b).

3.2. Energy transfer and isotropy489

After establishing the scale space distribution of energy, it is now of interest to examine490

both the magnitude and direction of energy transfer. This is presented through the flux491

of 〈δq2〉 in scale space, 〈δuδq2〉, which is shown in figure 8(a) and (d) for the Stereo492

and Scanning PIV data respectively. While the discussion relates mainly to the planar493

data which covers a wider range of scales, good agreement is consistently observed at494

smaller scales for the volumetric data. Here the contours represent the flux magnitude,495

and the quiver arrows indicate the vector orientation which represents the scale space496

direction of the energy transfer. As separation distance increases so does the magnitude497

of the energy transfer, and therefore energy transfer takes place primarily at larger scales.498

There is, however, a significant level of anisotropy shown at all scales, with a non-uniform499

preference for transfer at horizontal and vertical scales, shown by the peak magnitude,500

which is observed at a scale space location of (r1/η, r2/η) ≈ (100, 150).501

It is interesting to consider this distribution together with the direction of the energy502

transfer. The quiver arrows describe the redistribution of 〈δq2〉 in scale space. A purely503
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radial vector distribution pointing towards the origin (r1, r2) = (0, 0) would mean energy504

was being transferred directly from larger to smaller scales. This radial part of the energy505

flux is hereafter represented by 〈δurδq2〉 ≡ 〈δuδq2〉 · r̂. It is, however, clear that the506

orientation of the vectors are rarely purely radial. Whenever |〈δuδq2〉| and 〈δurδq2〉507

are not the same, there is also a redistribution of 〈δq2〉 at the given scale r from one508

orientation to another, and energy is not purely transferred across scales.509

The amount of scale to scale transfer and redistribution is indicated through the vectors510

in figure 8(a) and (e), and is made more explicit through the calculation of the angle511

between 〈δuδq2〉 and the radial vector, r, which is denoted, α, and plotted in figure 8(b)512

and (f). These figures show that along the horizontal and vertical axes, where r2 � η and513

r1 � η respectively, the angle α ≈ 0◦, and therefore the energy is only transferred down514

scale without redistribution. While the magnitude along the vertical axis is relatively515

small, the magnitude is more significant along the horizontal axis indicating a reasonable516

level of energy transfer along this path. Alternatively, away from the horizontal and517

vertical axes it appears that at the majority of scales, a combination of downscale energy518

transfer and redistribution within certain scales coexist, evidenced through non-zero519

values of α within a range of 0◦ to 60◦. The positive distribution of the angle arises520

due to the combination of radial and horizontal components, meaning there is often a521

significant component of the flux pointing toward the symmetry axis. This implies energy522

is redistributed to structures which are orientated such that they result in higher velocity523

correlations in the vertical direction in comparison with the horizontal direction, before524

being transported down the scales. This redistribution of energy therefore mirrors the525

behaviour of the mean velocity field and may therefore be directly related to the axially526

straining of the flow field which exists at the centre of the flow.527

To clarify this still further it is possible to isolate the down-scale transfer of energy from528

the total energy transfer. To this end figures 8(c) and (g) show the radial component of529

the third order structure function, 〈δurδq2〉 , where the positive direction is defined away530

from the origin. For comparison, the tangential component, 〈δuθδq2〉 ≡ θ̂ ·〈δuδq2〉, is also531

included in figures 8(d) and (h). From the figures, it is clear that the radial component532

dominates the transfer. 〈δurδq2〉 shows a strong orientation dependence, which is very533

similar in terms of its distribution to the magnitude of 〈δuδq2〉. Therefore, this shows534

that despite a certain amount of energy redistribution at some scales the majority of535

the energy is transferred down-scale. The characteristic non-spherical distribution of536

this down-scale transfer however shows that this transfer occurs anisotropically, with537

structures with higher velocity increments in the r1-orientation dominating the transfer.538

This preferential transfer of energy at different scale space orientations represents a539

departure from the straightforward concept of isotropic down-scale energy transfer. These540

distributions of energy transfer also show significant differences from those obtained in541

nominally isotropic cases (Lamriben et al. 2011; Carter & Coletti 2018), raising the542

possibility that the large scale flow continues to exert an influence even at small scales.543

Despite the small magnitude of the mean flow relative to the turbulent fluctuations, it544

is also interesting to examine its role in the transfer of 〈δq2〉. Therefore, the magnitude545

of the flux of 〈δq2〉 in scale space by the mean flow, |〈δUδq2〉|, is shown in figure 9(a).546

The magnitude and orientation of the flux follow the mean flow distribution, increasing547

in magnitude with separation distance, r. However, perhaps surprisingly, the magnitude548

of this flux is of an order of magnitude larger than the flux of 〈δuδq2〉 by the turbulent549

fluctuations. This is a result of the strong spatial mean flow gradients, and the mean550

stagnation flow pattern characteristic of this configuration, which result in significant551
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mean velocity differences for intermediate separation distances due to the inhomogeneity552

of the mean flow despite its relatively low magnitude.553

In terms of directionality, the vector arrows are negative in the r1-direction indicating554

down-scale transport of energy along this axis, while they are positive in the r2-direction,555

resulting in a transfer of energy up the scales along this axis. This balance is made556

more explicit in figure 9(b), which shows the radial component of this term, 〈δUrδq2〉 ≡557

〈δUδq2〉 · r̂. The positive and negatively signed regions indicate a net transfer of energy558

by the mean flow down-scale for angles 50◦ < θ < 90◦, and up-scale for 0◦ < θ < 50◦.559

Even excluding scale to scale redistribution, the magnitude of the energy transfer is still560

significantly larger than that of the turbulent fluctuations. Therefore, despite the small561

relative magnitude of the mean flow at the centre of a von Kármán tank, this dominates562

the scale to scale energy transfer. Therefore, in contrast to previous investigations in563

which the mean flow contribution is negligible (Campagne et al. 2014; Gomes-Fernandes564

et al. 2015; Valente & Vassilicos 2015; Carter & Coletti 2018), the role of the mean flow565

cannot be neglected in the present work and will be further examined in the following566

sections.567

3.3. Application of the spherically averaged KHMH equation568

In order to understand the evolution of the energy distribution we now begin to examine569

the KHMH equation. It is again an advantage to use both the planar data for the larger570

FoV, and the volumetric data both to be able to validate the planar data at small length571

scales, and to have direct access to all terms in the KHMH equation without the use of572

assumptions. In order to determine which contributions play the most significant role in573

the inter-scale energy transfer in terms of magnitude we begin by analysing their spherical574

averages, which are shown in figure 10, with each term normalised by 〈ε〉. 95% confidence575

intervals are calculated as described in Appendix A. The width of the confidence intervals576

increase with separation distance as expected, due to the reduction in available samples577

for higher separations. The greatest uncertainties were calculated for the Stereo PIV data578

and the Scanning PIV data, with a value of 5.8% of 〈ε〉 for 〈Tu〉◦ , and 4.6% of 〈ε〉 for579

〈At〉◦ respectively. This low level of uncertainty results from the extremely large size of580

the data sets.581

Examining initially the planar data described in figure 10(a), up to intermediate scales582

(r < 90η) it is clear that the budget is dominated by non-linear transfer, 〈Π〉◦ , and the583

viscous diffusion diffusion term, 〈Dr〉◦ , with the other terms only becoming significant584

at larger scales. As the viscous diffusion terms only contribute at very low separation585

distances, where the viscous forces are significant (r/η � 25), within the range 6η <586

r < 90η the energy transfer is therefore defined primarily by the non-linear term. This587

balance is confirmed by the volumetric measurements shown in figure 10(b), which show588

a very similar distribution of terms over the restricted range of scales available to this589

technique.Given that the residual dissipation rate εres = At+A+Π+ΠU−P−Tu−Tp−590

Dx −Dr normalised with the directly evaluated dissipation, i.e. εres/〈ε〉, should have a591

constant value of 1, the volumetric measurements demonstrate the energy transfer budget592

is well captured, with a maximum residual deviation of 2.9%. Therefore, it can be stated593

that εres/〈ε〉 = 1 within the uncertainty of the measurements. This is an important test594

that is only possible to make with the volumetric time resolved measurements, which595

allow the unsteady, At, and pressure, Tp, terms to be directly quantified.596

The instantaneous value of the non-linear inter-scale energy transfer, ∂
∂ri
δuiδq

2 fluctu-597

ates dramatically, from highly positive to highly negative values, in accordance with the598

results from Debue et al. (2018b), and it is only when considering its mean value over599
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Figure 8: (a,e) Distribution of magnitude of 〈δuδq2〉 with quiver arrows indicating the
orientation of the vector 〈δuδq2〉. For better visibility only every eight vector is plotted.
(b,f) Deviation angle, the angle between radial vector r pointing towards the origin and
〈δuδq2〉. (c,g) Radial part of third order structure function, 〈δurδq2〉 (positive direction
is set parallel to r.), (d,h) Tangential part of third order structure function, 〈δuθδq2〉.
(a-d) from Stereo PIV data, while (e-h) from Scanning PIV data.

time that ∂
∂ri
δuiδq2 is positive. It is of particular interest to consider the magnitude of600

〈Π〉◦ in terms of Kolmogorov’s hypothesis of local equilibrium, where it is assumed that601

this term should equal the dissipation rate in the inertial range of scales, Π = −ε. From602

the planar data Π is not reaching a plateau, but instead increases rapidly at small scales603

before reaching a maximum value of −0.89〈ε〉 at a scale ≈ λ, and then decreases slowly604

with increasing length scale. Therefore, the prediction 〈Π〉◦ ≈ −〈ε〉 is quite reasonable605

around r = λ. In this case the underlying reason for the success of this prediction then is606

the small magnitude of the remaining spherically averaged terms in the KHMH equation,607

combined with the mixed sign of these which act to cancel each other out to some degree.608

The terms A and Tu from the KHMH equation represent transport of 〈δq2〉 in physical609

space by the mean flow and the fluctuations respectively. When integrated over all610

separations r, these terms can be compared with the findings of Marié & Daviaud (2004)611

who investigated the importance of the mean flow and the turbulent fluctuations in612
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Figure 9: (a) Distribution of magnitude of 〈δUδq2〉 with quiver arrows indicating the
orientation of the vector 〈δUδq2〉 normalised by 〈urms〉3. For better visibility only every
eighth vector is plotted. (b) Distribution of radial flux 〈δq2〉 by mean flow, 〈δUδq2〉.

the angular momentum budget in physial space in a von Kármán flow. From the current613

study, we see that 〈A〉◦ is zero for all separations both from the volumetric and the planar614

measurements, whereas 〈Tu〉◦ has a non-zero value, and will thus dominate the transfer615

of 〈δq2〉 in physical space. The significance of the mean flow and the fluctuations for616

the transport of 〈δq2〉 in the center of the tank is therefore comparable to the transport617

of momentum found in Marié & Daviaud (2004). Further, 〈Dx〉◦ , which is negligible at618

all scales accessible in the current study, can be compared to the viscous term studied619

in Marié & Daviaud (2004) (equation 3), which was reported to have a small overall620

contribution.621

It is also worth observing that the Taylor microscale appears to reasonably define622

the transition between viscous and inertial ranges based on the decreasing significance623

of 〈Dr〉◦ and the increasing significance of 〈Π〉◦ , which is in agreement with Valente &624

Vassilicos (2015), where they prove that 〈Dr〉◦ is only significant at scales smaller than λ.625

This might, however, be a coincidence as this coincides with the conventional beginning626

of the inertial range at r ≈ 30η (Pope 2005). The behaviour of 〈Dr〉◦ has earlier been627

predicted (Dubrulle 2019) and shown (Debue et al. 2018b) to follow a scaling of r−4/3,628

which is consistent with the results from the current study, shown in figure 11.629

At larger length scales (r > 90η) the linear transfer, 〈ΠU 〉◦ , turbulent production,630

〈P〉◦ , and turbulent transport, 〈Tu〉◦ , all become increasingly significant, reaching the631

same order of magnitude as the non-linear transfer term. As the mean velocity gradients632

are uniform over extended spatial areas, the expected inertial range scaling of the second633

order structure function implies that 〈ΠU 〉◦ scales as r2/3, in contrast to r0, and this can634

explain why 〈ΠU 〉◦ becomes important at larger scales. The pressure term, 〈Tp〉◦ , also has635

a contribution to the overall budget which is negative and has an increasing magnitude636

with increased separation. At r ≈ 130η, the spherical averaged production reaches a value637

of 〈P〉◦ ≈ 0.57〈ε〉. The production of 〈δq2〉 is a result of flow anisotropy, acting through638

the tensors 〈δuiδuj〉 and 〈(u+i + u−i )δuj〉. Had the flow been isotropic at these scales there639

would be no production in this region. As this is not the case, there is a contribution640

from the production term at all scales. The spherical averaged production, 〈P〉◦ , at a641



20 A. N. Knutsen et al.

(a) Planar measurements

(b) Volumetric measurements

Figure 10: Spherical averaged terms of the KHMH equation for the planar and volumetric
measurements, where the subscript ◦ indicates spherical mean values. The Taylor
microscale λ is marked.

certain length scale r represents the total production at that length scale and smaller.642

Both data sets show that the production first increases parabolically until around 20η,643

resulting in a linear derivative with respect to r, after which it has a linear growth, and644

a constant derivative, this is illustrated in figure 12, where the production term together645

with the parabolic and linear fits from both data sets are shown. The constant slope646

when r > 20η indicates a constant production at these scales, while the parabolic shape647

at smaller separations indicates a linearly increasing production at larger length scales.648

As previously observed, the flow is more isotropic at the smallest scales resulting in649

lower production at these scales. Consideration of these terms in addition to the non-650

linear transfer and diffusion terms provides a more complete description of the energy651

budget over the range of scales examined in this spherically averaged sense. However, it652

is also interesting to examine the scale space distribution and hence the anisotropy of653

the significant terms in more detail, which is undertaken in the next two sections.654
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Figure 11: Spherical averages of the viscous term, 〈Dr〉◦ , and the non-linear inter-
scale transfer term, 〈Π〉◦ (a) from planar measurements, and (b) from volumetric
measurements, showing a scaling of the of 〈Dr〉◦ in agreement with the predictions by
Dubrulle (2019).

Figure 12: Measured and fitted spherically averaged values of the production term of
KHMH equation from (a) the planar data and (b) the volumetric PIV data.

3.3.1. Inter-scale transfer and the energy cascade655

In this section we examine the scale space distribution of the divergence of the inter-656

scale energy flux, Π, in order to evaluate in more detail the mechanisms by which energy657

is transferred. Π represents the transfer from all other scales to the scales space region658

of scale r and below. In the spherically averaged distributions in figure 10, the energy659

transfer within spherical shells of a given radius, r, was considered. The scale space660

representation here allows us to go further and assess both the magnitude and direction661

of the local scale-to-scale transfers, and the redistribution of energy at the same scale.662

The scale space distribution of non-linear inter-scale energy transfer, Π, is shown in663

figure 13. It is immediately observed that the transfer is negative at all scales. However, it664

should be noted that this energy transfer consists of both transfer to different scales, and665

redistribution within the same scale. At very small scales (r < 6η) the magnitude of the666

non-linear inter-scale transfer is small, as viscous forces dominate in this region. At larger667
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(a) Planar data
(b) Volumetric data

Figure 13: Distribution of Π, the non-linear inter-scale transfer rate normalized by the
mean dissipation rate 〈ε〉 with quiver arrows representing the direction of the flux 〈δuδq2〉,
from (a) Stereo PIV measurements, and (b) Scanning PIV measurements. Only every
sixth and fourth vector shown for visibility for the Stereo and Scanning PIV results
respectively.

scales the magnitude increases, giving rise to a strongly anisotropic distribution. For668

intermediate scales the magnitude is largest when r1 is small, and the strongest variation669

in magnitude is observed in the r1-direction. The high level of anisotropy in the inter-670

scale transfer, where certain orientations are responsible for a greater proportion of energy671

transfer, may imply that the scale space orientation of energy containing structures define672

the amount of energy these transfer. The high magnitudes over a range of r2 values where673

r1 is small suggests high energy transfer where low velocity differences are also observed674

in the r2 or axial flow direction (shown in figure 4) dominate the non-linear inter-scale675

energy transfer.676

The non-linear inter-scale transport term, Π, acts not only to transfer energy between677

scales, but also to redistribute it within the same scale. Therefore, it is also useful to split678

the term into its radial and tangential contributions, Πr and Πt, where Π = Πr+Πt. The679

two terms are calculated in spherical coordinates using equation 3.3 and 3.4 respectively.680

We will first focus on the radial contributions Πr, which is shown in figure 14.681

Πr =
1

4

( ∂
∂r

+
2

r

)〈
δurδq2

〉
(3.3)

Πt =
1

rsinθ

(
∂

∂θ

(
〈δuθδq2〉sinθ

)
+

∂

∂φ
〈δuφδq2〉

)
(3.4)

The distribution of this radial component is again highly anisotropic, and distinctly682

different to the total term presented previously in figure 13. The largest values of Πr683

are found along the r1-axis, for relatively small values of r1, with a maximum value of684

Πr = −1.08〈ε〉. The radial non-linear inter-scale energy transfer is greatest where there685

are large velocity differences in the r1 or radial flow direction, which again may have686

implications for the scale space orientation of the energy containing structures.687

The energy cascade concept describes the inter-scale transfer of energy in the flow,688
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(a) Planar data (b) Volumetric data

Figure 14: Radial contributions to the non-linear inter-scale transfer normalized by 〈ε〉
from the Stereo and Scanning PIV data.

and it is of interest to evaluate the local direction of the cascade. Given that energy689

is injected at the large scale by the impellers and eventually converted to heat at the690

small scales by viscous dissipation, the overall transfer has to necessarily proceed from691

large to small scales in what is referred to as the forward cascade. There is however, the692

possibility that inverse cascade behaviour, where energy is transferred from smaller to693

larger scales, co-exists locally for certain orientations in scale-space. Such regions have694

been observed by a number of previous studies (Campagne et al. 2014; Gomes-Fernandes695

et al. 2015; Portela et al. 2017; Carter & Coletti 2018) in a wide range of flows, and696

specifically for von Kármán flow (Herbert et al. 2012) and for purely axisymmetric flows697

(Qu et al. 2017).698

Recent studies (Gomes-Fernandes et al. 2015; Portela et al. 2017) have noted that for699

energy to be truly transferred in either the forward or inverse directions, two conditions700

must be fulfilled: first, the energy flux across scales,
〈
δurδq2

〉
, must be either negative or701

positive; and second, the divergence of the flux across scales, Πr, must also be negative702

or positive correspondingly. A physical interpretation of this definition, for example for703

forward cascade behaviour, is that energy is being transferred from larger to smaller704

scales as the radial component of the energy flux is negative, but also that energy705

accumulates at consecutively smaller scales due to the negative divergence of this flux.706

In other words, the amount of energy which is transferred to a given scale through707

the non-linear transfer is greater than the amount which is transferred away from that708

scale by the same mechanism. This energy is then either dissipated or removed by other709

mechanisms such that energy does not accumulate at any scale. Conversely for inverse710

cascade behaviour, energy is transferred from smaller to larger scales through Πr, but711

again more energy remains than what is transferred away to still larger scales.712

Recalling that the radial part of
〈
δuδq2〉, shown in figure 8(c) and (g) is always713

positive, this means that energy is always being transferred from larger to smaller scales.714

Evaluating this in conjunction with the scale space distribution of Πr which is also715

always negative, indicates that over all scale space orientations, the non-linear transfer716

exhibits forward cascade behaviour and energy is always transferred to smaller scales.717

This behaviour is in contrast with the results of the previous studies mentioned above,718

in which inverse cascade behaviour is identified in correspondence with the non-linear719
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term. At larger separations beyond the measurement domain, we can not confidently720

extrapolate the energy transfer behaviour, but it is interesting to note the increasing721

trend of Πr along the r1-axis beyond r1 ≈ λ, which may result in more diverse cascade722

behaviour at larger values of r1.723

3.3.2. Contribution of linear inter-scale transfer724

While the absence of inverse cascade behaviour through the non-linear term marks a725

departure from the majority of previous investigations, in the present flow the magnitude726

of the inter-scale flux of energy from the mean flow was shown to be substantial (figure727

9). Therefore, it is interesting to further consider the contribution that the mean flow728

exerts on the inter-scale transfer.729

The linear inter-scale transfer, ΠU , is the inter-scale transfer of 〈δq2〉 associated730

with the interaction of the turbulent fluctuations with the mean flow. The scale space731

distribution of the term is presented in figure 15. At each scale, r, its value represents,732

similarly to the non-linear transfer, transfer of energy from all other scales to the scale r733

and smaller. While the spherical averaged contribution from this term (〈ΠU 〉◦ in figure734

10) was shown to be modest compared to the non-linear transfer for a wide range of735

scales, it is clear from figure 15 that locally the magnitude of this is significant and that736

the quantity is highly dependent on orientation. In terms of magnitude, the local values737

of the linear transfer is of the same order as the non-linear transfer, but due to large738

cancellations, the observed distribution of positive and negative regions results in only739

a small contribution in an spherically averaged sense. The distribution of this transfer740

bears the imprint of the mean flow, which is made more apparent through the vector741

arrow representation of the mean energy flux, 〈δUδq2〉, with a clear reorientation of742

energy within scales. The region at large r1 and small r2 values demonstrates a strong743

negative contribution to the energy budget. In contrast, the region where r1 is small and744

r2 large, is strongly positive. The high positive values of linear transfer, ΠU , appear to745

balance the high negative values of non-linear transfer, Π, observed in this latter region,746

with the similar magnitude of these opposite signed regions likely to result in an overall747

low magnitude of transfer in this region. Describing this distribution again highlights748

the significant role of the mean flow on the inter-scale transfer, which, as first shown in749

figure 10, is increasingly significant at larger length scales for the spherically averaged750

inter-scale energy budget.751

Given that the linear transfer is not small enough to be neglected, it is useful to consider752

the total inter-scale transfer as the combination of linear and non-linear parts, (Π+ΠU ),753

which are presented in figure 16(a) and (d), with quiver arrows showing the direction754

of the total flux, (〈δuδq2〉+ 〈δUδq2〉). These combined contributions are approximately755

isotropic at small values of r, before becoming highly dependent on orientation from756

r ≈ 10η. A region of high negative values for the combined inter-scale transfer is757

observed along the radial axis for r1 values from ∼ 10η − 80η. As the combined inter-758

scale flux, (〈δuδq2〉 + 〈δUδq2〉), is pointing towards the origin in this region, there is a759

net transport of energy down the scales. This combined with the strong negative values760

of (Π + ΠU ) indicates that the transport is decelerated, and thus that the inter-scale761

transfer contributes to an accumulation of energy in this region in scale space. As the762

flow is stationary, this energy will have to be removed by another mechanism. The values763

of (Π + ΠU ) in this region are around the value of the mean dissipation rate, 〈ε〉. The764

small contributions from the remaining terms in this region indicates that total inter-765

scale transfer and the dissipation rate approximately balance each other in this region.766

However, this implies that in other regions in scale space, the other terms in the KHMH767
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equation play a more significant role in balancing the energy budget, which is discussed768

further in §3.3.3.769

While (Π +ΠU ) is negative for the majority of scales measured here, for large values770

of r2 the combined inter-scale transfer takes positive values. This therefore requires us to771

re-evaluate the behaviour of the energy cascade. The cascade based on only the non-linear772

transfer was observed to be in the forward direction, with energy transferred from larger773

to smaller scales at all orientations and separations within the FoV. If we now define the774

energy cascade to include the inter-scale transfer of 〈δq2〉, both due to interactions with775

turbulent fluctuations and the mean flow, we can study its behaviour by investigating776

the radial part of (Π +ΠU ), which is plotted in figure 16(b) and (e).777

The behaviour of the inter-scale energy cascade based on this combined inter-scale778

transfer, is significantly different from the transfer based only on the turbulent fluctua-779

tions. The values of the combined term range from high positive values for small values780

of θ (where the orientation of θ is defined in figure 1), transition through zero at θ ≈ 50◦,781

and then become increasingly negative at higher angles. The contour of (Π + ΠU ) = 0782

is marked on the figure with a dashed green line. It is interesting to note that the783

transition from negative to positive values of the total energy transfer coincide almost784

exactly with the sign of the radial part of the total inter-scale flux, (〈δurδq2〉+〈δUrδq2〉),785

which is marked with a dashed pink line in figure 16(b) and (e)). Therefore the scale786

space distribution of energy transfer is divided into two distinct regions fulfilling the787

requirements of opposite cascade behaviour. Energy is transferred in the forward cascade788

direction when 50◦ < θ < 90◦, and in the inverse direction when 0 < θ < 50◦.789

It can also be observed that the magnitude of the radial component of (Π + ΠU ) is790

significantly larger than the magnitude of the total term. To balance this, there is also791

expected to be a significant redistribution of energy to different orientations within each792

scale. To investigate this, the tangential part of the combined transfer, (Πt+ΠU,t), where793

Πt is defined in equation 3.4, and ΠU,r and ΠU,t are defined in analogy to Πr (equation794

3.3) and Πt. The role of (Πt +ΠU,t) can be understood as an exchange of 〈δq2〉 between795

different points in scale space that sits on the same sphere with radius r (i.e. tangential796

exchange of 〈δq2〉), and describes energy transfer within the same scale only. Note that797

(Πt+ΠU,t) vanishes when integrated over an infinitesimally thin spherical shell with and798

inner radius of r, and thus positive values of (Πt +ΠU,t) at an arbitrary point r0 on the799

shell comes at the expense of a negative contribution of equal absolute value distributed800

over the rest of the same shell, where r 6= r0, |r| = |r0|. Given the interpretation of δq2(r)801

discussed in §2.4, this can be understood as a transfer of energy from all structures whose802

characteristic size is |r0| or smaller, to structures aligned with r0 of scale |r0| or smaller.803

(Πt +ΠU,t) is presented in figures 16(c) and (f), and we see from the results that the804

term is increasingly negative for smaller values of θ, and positive for high values of θ,805

almost mirroring the scale space distribution of the radial component but with a change806

in sign. The zero crossing of the term is marked in green, which occurs when θ ≈ 55◦. This807

therefore also demarcates the scale space distribution into two distinct regions, where the808

forward cascade region (50◦ < θ < 90◦) is also accompanied by a strong redistribution809

of energy within the same scales, from the r1-axis to the r2-axis, and vice-versa for the810

inverse cascade region. In other words, this may imply that structures orientated along811

the radial axis of the flow supply energy to structures oriented in the axial direction,812

which again may be linked to the axial straining associated with the mean flow.813

After discussing the local behaviour of the total inter-scale energy transfer, and814

observing a significant region which experiences inverse cascade behaviour, it is finally815

useful to examine the spherical average of this combined transfer. Figure 17 shows the816
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(a) Planar data (b) Volumetric data

Figure 15: Distribution of ΠU , the linear inter-scale transfer of 〈δq2〉 normalised by
the mean dissipation rate 〈ε〉 with quiver arrows representing the direction of the flux
〈δUδq2〉, from (a) Stereo PIV measurements, and (b) Scanning PIV measurements.

spherical average of the radial component of the total inter-scale transfer, 〈(Πr+ΠU,r)〉◦ .817

Despite regions of locally inverse cascade behaviour, the net transfer at each scale is818

still negative, implying a net forward cascade where energy on average is transferred819

from larger to smaller scales. Furthermore, it is remarkable that despite the significant820

magnitude of energy transfer locally, the residual of these which define the spherically821

averaged global cascade in the forward direction operates at a fraction of the level of822

the local energy transfers. It should, however, be noted that Herbert et al. (2012) found823

evidence of an overall inverse cascade in a von Kármán flow for scales larger than forcing824

scales. In the current study we do not have access to these scales, but the trend given in825

figure 17 is that the value of 〈(Πr+ΠU,r)〉◦ is increasing for increasing separation distance,826

and an inverse cascade for separations larger than captured in these measurements is not827

unimaginable. This would to some extend also be comparable to the results of Qu et al.828

(2017), who found that in purely axisymmetric turbulence, energy is transported to larger829

scale in an inverse cascade. The von Kámán flow is, however, only axisymmetric in a mean830

sense, and is not expected obtain the exact behaviour of a purely axisymmetric flow.831

3.3.3. Balancing the inter-scale energy budget and contributions to isotropy832

Having described the role of the inter-scale transfer in defining the cascade behaviour,833

we are now left with the outstanding question of which terms contribute to balancing the834

energy budget in regions of the flow where the inter-scale transfer terms do not balance835

the dissipation rate. From figure 10 it is clear that the viscous diffusion term is important836

for balancing the dissipation rate at small separations. The only other term which has837

a positive contribution to the energy budget, in addition to Π, ΠU and Dr, is the838

production term associated with the mean flow gradients, P. The term is plotted from the839

two data sets in figure 18. In general, the production increases with increasing separation840

distance, which was also indicated previously through the spherical average shown in841

figure 10. However, examining the scale space distribution of this demonstrates that it is842

not isotropic, and has an orientation dependence, which is especially pronounced at small843

separation distances. It is the scale space part (with derivatives with respect to r) which844
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Figure 16: (a,d) Distribution of the normalised combined inter-scale transfer, (Π +ΠU ),
with quiver arrows indicating the direction and magnitude of the combined inter-
scale flux, (〈δuδq2〉 + 〈δUδq2〉). (b,e) the radial part of the combined transfer, where

indicates where (Πr + ΠU,r) is zero, and indicates where (〈δurδq2〉 + 〈δUrδq2〉)
is zero. (c,f) the azimuthal part of the combined transfer ( indicates zero line). Based
on (a,b,c) planar data and (d,e,f) volumetric data.

Figure 17: Spherical average of the radial part of the combined inter-scale transer, (Πr +
ΠU,r).
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(a) Planar data (b) Volumetric data

Figure 18: Distribution of the production term P normalized by the mean dissipation
rate 〈ε〉 from (a) Stereo PIV measurements, (b) Scanning PIV measurements.

strongly dominates the term. The shape of the contour lines for small r indicates that845

there is less production along the r1-direction. This region of low production corresponds846

to the region where the dissipation rate, 〈ε〉, is of same magnitude as the inter-scale847

transfer terms, (Π+ΠU ). This region in scale space is also where high values of 〈δq2〉 were848

previously observed, and thus higher velocity increments. Conversely, the region in the849

scale space map with the highest production occurs for large values of r2, which is where850

we observe lower values of 〈δq2〉. The production term therefore appears to contribute851

towards predominantly increasing the scale space distribution of kinetic energy most in852

regions where it is lowest, which could therefore be described as making the scale space853

distribution of energy more isotropic.854

To test this statement, we have investigated what happens to the isotropy of 〈δq2〉 if we855

restrict its dynamics to contributions from particular terms of the KHMH equation acting856

individually. For instance, to evaluate the effect of the non-linear inter-scale transfer is857

reduced equation 2.10 to At = Π. We evaluated finite differences between isotropy of the858

measured 〈δq2〉 and of 〈δq2〉 after a short period ∆t of its assumed simplified evolution.859

This can be expressed as:860

∆σ〈δq2〉 = σ〈δq2+At∆t〉 − σ〈δq2〉 (3.5)

Results are displayed in figure 19. As expected from the qualitative argument above861

the production contributes to a more isotropic distribution, particularly for small and862

intermediate scales. While the turbulent transport term, Tu, does not change the isotropy863

of the flow significantly, both linear and non-linear inter-scale transport terms have864

a significant effect. Π contributes to making the distribution of 〈δq2〉 more isotropic,865

whereas ΠU balances all of the other terms by contributing to a more anisotropic866

distribution of energy.867

3.4. Flow homogeneity868

The central region of the von Kármán mixing flow has earlier been referred to as869

homogeneous (Worth 2010; Lawson 2015; Kuzzay et al. 2015; Debue et al. 2018a). This870

assumption was further supported by the characterisation of the flow in Appendix B,871
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Figure 19: Influence of different terms in the KHMH equation on isotropy of the
distribution of 〈δq2〉.

where the spatial variations of the local RMS-value of the turbulent fluctuations did872

not vary with more than 1.9% for the Stereo PIV data, and 0.7% for the Scanning PIV873

data. The effect of homogeneous turbulent fluctuations would be expected to result in874

the mean transport of 〈δq2〉 by turbulent fluctuations, Tu, to be zero. However, figure875

10 previously showed that the spatial average of Tu is not zero, but reaches a value876

of −0.1〈ε〉 at r = 25η, and keeps decreasing to a maximum of −0.22〈ε〉 at the largest877

separation distance. It is therefore of interest to investigate the local distribution of Tu,878

which is presented for the two data sets in figure 20. The term is zero for small values of879

r, before becoming negative for larger values. The distribution of Tu is close to isotropic880

at small scales, before becoming dependent on orientation for r > 40η. The dependence881

of this term on scale space orientation warrant a more thorough investigation of the flow882

homogeneity, and in particular the skewness factor, which is defined as:883

Sui =
u3i

u2i
3/2

(3.6)

The mean skewness factor for different velocity components is shown in table 3,884

with small negative values for each component. However, plotting the distribution of885

skewness over the domain in figure 21 shows the local values of the skewness of u1 varies886

significantly in magnitude from -0.12 to 0.12. The skewness varies almost linearly with887

radial location, transitioning from negative to positive values from left to right hand sides888

of the measurement domain. This variation indicates that the turbulent fluctuations are889

not in fact completely homogeneous, even in the center region of the tank, and that890

the probability for high values of the fluctuations occurring in the direction opposite891

to the mean flow is higher than the probability of high fluctuations in the direction of892

the mean flow. In other words, there tends to be large sweeps outwards, away from the893

symmetry axis more often than sweeps inwards, towards the symmetry axis. The lack of894

homogeneity in this higher order metric is consistent with the non-zero transport of 〈δq2〉895

by the turbulent fluctuations, Tu, which also depends on the velocity triple-products.896

4. Conclusions897

Fully resolved planar Stereoscopic PIV and volumetric Scanning PIV experiments were898

conducted to study the inter-scale energy budget in a von Kármán mixing flow. A large899
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(a) Planar data (b) Volumetric data

Figure 20: Distribution of the turbulent diffusion of 〈δq2〉, Tu, normalized by the mean
dissipation rate 〈ε〉 from (a) Stereo PIV measurements, (b) Scanning PIV measurements.

Stereo PIV Scanning PIV

〈Su1〉 -0.02 -0.01

〈Su2〉 -0.02 -0.01

〈Su3〉 -0.01 0.03

Table 3: Skewness factor of different velocity components from the two data sets.

(a) Planar data

(b) Volumetric data

Figure 21: Spatial distribution of the skewness factor of u1, Su1
, from (a) Stereo PIV

measurements, (b) Scanning PIV measurements.
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number measurements were made at the center of the tank, where the mean flow is900

much weaker than the turbulent fluctuations. An initial characterisation of the flow901

was performed together with a comparison of the two data sets. Mean and turbulent902

flow quantities closely resembled previous measurements made in von Kármán mixing903

flows, and the fidelity of measurements was quantified. Furthermore, good agreement904

was observed between the two data sets, with the very similar flow statistics providing905

in particular confidence in the quality of the volumetric measurements.906

Both the distribution and transfer of kinetic energy in the flow were observed to907

be anisotropic at all scales. The longitudinal second order structure function was also908

investigated, and showed a strong directional dependency, which, when normalized ac-909

cording to Kolmogorov’s 2/3rd-law, led to a directional dependency of the Kolmogorov910

constant C2, which is consistent with the predictions given in (Lumley 1967; Biferale911

& Procaccia 2005) for turbulent shear flows. The transfer due to turbulent fluctuations912

and the mean flow were quantified, and it was found that the latter dominated the local913

energy transfer in contrast to previous work. Therefore, despite the small magnitude of914

the mean flow the large gradients in all directions result in significant contributions to915

the energy flux at large separation distances. This flow configuration is the first to give916

rise to such significant mean flow interactions with the inter-scale transfer of turbulent917

kinetic energy, which enables a novel assessment of the energy cascade behaviour. Further918

investigation demonstrated that the transfer due to the turbulent fluctuations was always919

in the downscale direction, with energy transferred unidirectionally from larger to smaller920

scales, and certain scale space regions were shown to dominate this transfer. In contrast921

the inter-scale transfer due to the mean flow contained regions of both upscale and922

downscale transfer.923

Following this the Kármán Howarth Monin Hill equation was used as a tool to924

investigate the inter-scale energy budget. In a spherically averaged sense at small to925

moderate flow scales (6η < r < 90η) the non-linear energy transfer term dominates926

the energy budget, providing some support to the assumption of simple inertial sub-927

range cascade behaviour, where dissipation and energy transfer are balanced. While the928

spherically averaged value of the non-linear inter-scale transfer, 〈Π〉◦ , is neither constant,929

nor equal to the dissipation rate 〈ε〉 across the scales investigated in this study, the930

assumption is still a reasonably accurate assessment of the broad flow behaviour. At931

larger scales the effects of the mean flow become more significant through the interaction932

of turbulent production and mean flow gradients, restricting the further applicability of933

this simple picture.934

Further examination of the non-linear inter-scale transfer term in scale space showed935

that the radial energy flux from scale to scale is always negative, indicating a cascade936

of energy in the forward direction; where energy at all scale space orientations is passed937

from larger to smaller scale. The radial part of the inter-scale transfer term, Πr, is also938

always negative, which also points towards forward cascade behaviour. However, when939

including the linear transfer caused by the mean flow, two distinct regions of the flow are940

observed, where we have forward cascade behaviour in one region and inverse cascade941

in the other. Despite occupying a similar sized region of scale space, in an spherically942

averaged sense the combined energy transfer is still downscale. However, the emergence943

of such a large region of inverse cascade behaviour connected directly to the mean flow944

presents the opportunity to understand more about the transfer of energy from scale945

to scale. Additionally, the trend of the total inter-scale transfer is such that a change946

of direction of the energy cascade might be possible at larger scales, which would be in947

agreement with the findings of Herbert et al. (2012). Despite its significant contributions948

to inter-scale transfer, the mean flow was shown to have small contributions to the transfer949
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of 〈δq2〉 in physical space, which coincides with the results of Marié & Daviaud (2004)950

for transport of angular momentum in in the center region of a von Kármán flow.951

Finally, scale space evaluation of other significant terms in the KHMH equation were952

used to show that energy contributions from the turbulent production term balances953

the energy budget in regions exhibiting inverse cascade behaviour. Analysis was also954

conducted to assess the influence of various terms on the scale space distribution of 〈δq2〉,955

and it was observed that the production term, P, and the non-linear term Π both act956

towards increasing the isotropy of the scale space distribution of 〈δq2〉, whereas the linear957

term, ΠU acts to make this more anisotropic. Finally, a non-negligible contribution from958

the turbulent diffusion term, Tu, was also observed, and coupled to a spatial variation of959

the skewness of the fluctuating velocity components.960

It is striking that despite a high level of local activity in scale space for a range of961

sources, the balance of these in an spherically averaged sense results in only modest962

contributions to the total energy budget, meaning non-linear inter-scale energy transfer963

approximately balances dissipation for moderate flow scales. Therefore, this simplistic964

picture of energy transfer does not capture the strikingly varied picture arising from a965

more complete overview of energy transfer in this well known turbulent flow.966
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Appendix A. Measurement error analysis and determination of973

confidence intervals974

A.1. Measurement error analysis975

Following the flow characterisation, the accuracy of the two data sets is quantified976

through an assessment of the measurement errors. We follow initially the methodology977

of Romano et al. (1999) and Benedict & Gould (1998), who estimated the variance978

of the random measurement error, εi, through the correlation of velocity fluctuations,979

〈Rii(x, r)〉 = 〈ui(x, t)ui(x+ r, t)〉, where the measured component velocities at location,980

x, are a combination of the true velocity and the measurement error, so that ui(x, t) =981

ui,true(x, t) + εi. While the complete shape of this correlation function is not known, its982

shape when the separation distance, |r|, tends to zero is known to be parabolic (Pope983

2005). Assuming that the error is a normally distributed random value, and is neither984

spatially correlated nor correlated with the measured velocity field, the contribution of985

this error to 〈Rii(x, r)〉 will only appear at |r| = 0. The RMS value of εi can thus be986

found by fitting a parabolic surface into 〈Rii〉 for small separation distances where |r|987

is close to zero, and then comparing the measured and fitted values of 〈Rii〉 at |r| = 0.988

Applying this method, the errors for the Stereo and Scanning PIV data were calculated,989

using only every second vector for the Stereo PIV data and every fourth vector from990

the Scanning PIV data, to remove correlation from vectors calculated on overlapping991

interrogation windows/volumes. The fit was based on the 2nd to 5th point only, with992
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〈ε1,rms〉/〈urms〉 〈ε2,rms〉/〈urms〉 〈ε3,rms〉/〈urms〉
Stereo PIV 0.30% 0.25% 0.38%

Scanning PIV 0.09% 0.33% 0.22%

Table 4: Estimates of rms values of random error εi expressed as a percentage of the
mean fluctuation magnitude, 〈urms〉.

values reported in table 4. It is observed that the random errors are of an insignificant993

order of magnitude (<0.3%) compared to the mean fluctuations, demonstrating a high994

signal to noise ratio (SNR).995

A second method of evaluating the measurement uncertainty is through the divergence996

free criteria. As the flow is assumed to be incompressible, the sum of diagonal velocity997

gradient tensor terms should be zero. The correlation coefficient calculated from the998

joint PDF of gradient components from the Scanning PIV data takes a value of 0.867,999

compared to an ideal value of unity. This high correlation value demonstrates that large1000

departures from continuity are rare, and compares very well to other previous studies1001

(Casey et al. 2013; Worth 2010; Ganapathisubramani et al. 2007), demonstrating the high1002

fidelity of the measurements. To translate this into an estimate of the uncertainty in the1003

gradients, the standard deviation of the sum ∂ui/∂xi (which from continuity should be1004

zero), i.e.
√

3σgrad , was calculated for the Scanning PIV data using equation A 1.1005

√
3σgrad =

√
1

Ns

(
∂ui
∂xi

)2

(A 1)

The results in a standard deviation for each particular derivative (assuming they are1006

independent of each other) of σgradτ = 0.12, where τ =
√
ν/〈ε〉 is the Kolmogorov time1007

scale, again demonstrating only very small deviations from the divergence free condition.1008

A.2. Determination of confidence intervals1009

Where possible an effort has been made to put confidence intervals on certain quanti-1010

ties. The underlying distribution of the variables in questions is not known, and therefore1011

to estimate these the bootstrap method (Efron & Tibshirani 1994) may in theory be1012

used. However, due to the extremely large data sets, excessive computational time makes1013

it unrealistic to use the standard bootstrap approach in this case, and therefore an1014

alternative method was applied to give an indicative estimate of the uncertainty. The1015

standard bootstrap approach was applied to a small subset of our dataset (of size1016

n), yielding approximations of variances of different statistics evaluated based on the1017

restricted dataset, σ̃2. In the second step, the variances was scaled to the size of the full1018

dataset, Ns, as expressed by equation A 2, using asymptomatic properties of bootstrap1019

predictions (Bickel & Freedman 1981). In this work, we have used n = 100, and repeated1020

the calculations for 1000 subsets.1021

σ =
σ̃√
Ns/n

(A 2)

This value is then used to define 95% confidence intervals. The procedure was evaluated1022

with different values of n to confirm that the scaling of σ̃ did in fact vary with 1/
√
Ns/n1023

as expected.1024
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Stereo PIV Scanning PIV
i = 1 i = 2 i = 3 i = 1 i = 2 i = 3

j = 1 2.32 -0.01 0.02 2.28 0.01 0.02
j = 2 -0.01 0.95 -0.02 0.01 0.98 0.01
j = 3 0.02 -0.02 2.24 0.02 0.01 2.34

Table 5: Reynolds stresses normalized by impeller frequency and radius, 〈uiuj〉/(D2 f)2

Appendix B. Flow characterisation1025

B.1. Flow characterisation and comparison of data sets1026

B.1.1. Velocity fluctuation statistics1027

The RMS of the spatial mean fluctuations in the various flow directions have a1028

maximum deviation from the spatio-temporal mean value,

√
〈u2i − 〈u2i 〉〉/

√
〈u2i 〉, of 1.3%,1029

1.9% and 1.3% in x1-, x2- and x3-direction respectively from the Stereo PIV data,1030

and 0.4%, 0.7%, and 0.3% from the Scanning PIV data, implying that the flow is1031

homogeneous relative to the mean flow. The velocity gradients also appear to be ap-1032

proximately locally homogeneous, with the largest spatial variation of the square of1033

the gradients varying from (〈(∂u1/∂x2)2 − 〈(∂u1/∂x2)2〉〉)/(〈(∂u1/∂x2)2〉) = 7.4% to1034

(〈(∂u2/∂x1)2 − 〈(∂u2/∂x1)2〉〉)/(〈(∂u2/∂x1)2〉) = 13.6% from the Stereo PIV data,1035

and from (〈(∂u3/∂x1)2 − 〈(∂u3/∂x1)2〉〉)/(〈(∂u3/∂x1)2〉) = 3.4% to (〈(∂u3/∂x3)2 −1036

〈(∂u3/∂x3)2〉〉)/(〈(∂u3/∂x3)2〉) = 8.4% from the Scanning PIV data.1037

Table 5 shows an overview of the mean Reynolds stresses. In an isotropic flow, the1038

diagonal values of the Reynolds stresses would be equal, and the remaining stresses1039

would be zero, while in an axisymmetric flow, the tensor should follow relation:1040

uiuj = Aδij +Bninj (B 1)

where n is the unit vector for the symmetry axis and δij is the Kronecker delta1041

(Batchelor & Taylor 1946).1042

The strong shear generated by the counter rotating flow creates high turbulent fluctua-1043

tions, and neither the mean flow nor the turbulent fluctuations in the tank are isotropic.1044

There is, however, an axisymmetry along the x2-axis, with the constants in equation1045

B 1 equal to A/(D2 f) ≈ 2.3 and B/(D2 f) ≈ 1.0. Previous studies of von Kármán mixing1046

flow have found that the ratio between fluctuations in the radial and axial directions is1047

∼ 1.5, while the off-diagonal terms are expected to be close to zero (Voth et al. 1998).1048

Therefore, the current measured ratios of 1.55 and 1.52 from the Stereo and Scanning1049

PIV data agree well with previous results (Voth et al. 2002; Worth 2010; Lawson 2015).1050

Furthermore, the predicted Reynolds stresses from the two data sets are very similar,1051

and vary by a maximum of uiuj/(
D
2 f)2 = 0.1 for the square of the out-of-plane velocity,1052

which corresponds to 4.3% of urms.1053

The mean flow gradients are approximately constant across the measurement volume,1054

and the values collected from the two data sets are presented in table 6. The results1055

are similar, with a maximum deviation of 〈∂Ui

∂xi
〉/f = 0.25, again for the out-of-plane1056

component. The result of constant gradients is an expected constant dissipation rate.1057

Based on the Scanning PIV data has small local variations: 〈(ν ∂ui

∂xj

∂ui

∂xj
− ε)2〉/〈ε〉 = 0.8%.1058

The dissipation rate is therefore assumed to have a constant value across the FoV.1059
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〈 ∂U1
∂x1
〉/f 〈 ∂U2

∂x2
〉/f 〈 ∂U3

∂x3
〉/f

Stereo PIV −2.10 4.00 −1.95
Scanning PIV −2.00 4.15 −2.15

Table 6: Mean gradients in the flow normalized by impeller frequency calculated from
the two data sets.

B.1.2. Comparison of flow topology between measurement methods1060

The flow topology is briefly characterised in terms of the distribution of enstrophy and1061

dissipation, and then invariant quantities. Given that the full velocity gradient tensor1062

is available from the volumetric measurements, the true dissipation rate can be directly1063

calculated without assumptions using equation B 2.1064

εtrue = 2νsijsij (B 2)

where the strain rate tensor, sij , is evaluated from equation B 3,1065

sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (B 3)

However, the same calculations cannot be made using the planar data, as the velocity1066

gradient tensor is incomplete. Therefore, the dissipation rate is calculated using assump-1067

tions of axisymmetry, with the missing terms replaced according to George & Hussein1068

(1991) using equation B 4.1069

εaxi = 2ν

((
∂u1
∂x1

)2

+

(
∂u2
∂x2

)2

+

(
∂u3
∂x3

)2

+

(
∂u1
∂x2

)2

+

(
∂u2
∂x1

)2

+ 2
∂u1
∂x2

∂u2
∂x1

+

(
∂u3
∂x1

)2

+
1

2

∂u1
∂x1

∂u3
∂x3

) (B 4)

The relation in equation B 4 is usually used to estimate the mean dissipation rate,1070

which also is the case for this work. In addition we use the instantaneous values of the1071

two dissipation rates, ε′true and ε′axi (where ′ implies that it is the instantaneous values1072

which is considered) to compare the joint PDF and PDF of the two terms shown in figure1073

22, which, when compared to the distribution of the full dissipation, εtrue, appears to be1074

a good approximation. However, we will still like to emphasize that the instantaneous1075

estimations of ε′axi are solely used to compare the two datasets. To assess the level of local1076

axisymmetry, a test was performed by using the following relations derived in George &1077

Hussein (1991), where it is stated that K1 = K2 in axisymmetric flow:1078

K1 = 2

〈(
∂u2
∂x2

)2〉/〈(
∂u1
∂x2

)2〉
(B 5)

1079

K2 = 2

〈(
∂u2
∂x2

)2〉/〈(
∂u3
∂x2

)2〉
(B 6)

The values from the Stereo PIV data was calculated to be 0.94 and 0.93 for K1 and1080

K2 respectively, giving a good indication that the flow is behaving locally axisymmetric.1081
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Figure 22: (a) PDFs of dissipation rate ε′true, the dissipation rate based on axisymmetric
assumptions ε′axi, and the third component of the vorticity, ω2

3 . Solid lines from Scanning
PIV data, and dashed lines from Stereo PIV data. (b) Joint PDF of dissipation rate ε′true
and the enstrophy, ω2 from Scanning PIV data. The contours are logarithmically spaced
from 10−5 to 10−2.

To test the validity of these assumptions, and again compare the calculated velocity1082

gradients of the two data sets, the probability density function (PDF) of ε′axi, ε
′
true and1083

the third component of the vorticity vector squared, ω2
3 (where ω = ∇×u), based on the1084

two datasets are compared in figure 22(a). There is an almost exact overlap of the PDFs1085

of ω2
3 based on the two datasets, indicating that the gradients based on the two datasets1086

have a very similar behaviour. As for the dissipation, the shape of the distributions of1087

ε′axi and ε′true is similar, but the planar data tends to slightly overestimate extreme high1088

and low dissipation events compared to the PDF of the full dissipation rate calculated1089

from the volumetric data.1090

To evaluate the distribution of high gradient regions, the joint probability density1091

function (JPDF) of enstrophy, ω2, and dissipation rate is given in figure 22(b). The1092

distribution shows good agreement with previous studies (Yeung et al. 2012; Carter &1093

Coletti 2018; Worth & Nickels 2011), demonstrating characteristic associated with high1094

Reynolds number turbulent flows. The first quadrant, where high values of both ε and ω2
1095

are present has an almost symmetric, pointed shape, indicating that extreme high values1096

of the two terms occur simultaneously (Worth & Nickels 2011). The close agreement1097

observed between the velocity gradient statistics using the two different measurement1098

methods provides confidence that the more technically challenging volumetric measure-1099

ments are consistent with the planar measurements, and that the volumetric data set is1100

capable of capturing the important flow gradient characteristics.1101
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cycle of the turbulent von Kármán flow. Physics of Fluids 27 (7), 075105.1202

Lamriben, C., Cortet, P.P. & Moisy, F. 2011 Direct measurements of anisotropic energy1203

transfers in a rotating turbulence experiment. Physical Review Letters 107, 024503.1204

Lawson, J.M. 2015 A scanning PIV study of homogeneous turbulence at the dissipation scale.1205

PhD thesis, University of Cambridge.1206

Lawson, J.M., Bodenschatz, E., Knutsen, A.N., Dawson, J.R & Worth, N. A. 20191207

Direct assessment of kolmogorov’s first refined similarity hypothesis. Physical Review1208

Fluids 4.1209

Lawson, J.M. & Dawson, J.R. 2014 A scanning PIV method for fine-scale turbulence1210

measurements. Experiments in Fluids 55 (12), 1857.1211

Lawson, J.M. & Dawson, J.R. 2015 On velocity gradient dynamics and turbulent structure.1212

Journal of Fluid Mechanics 780, 60–98.1213
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of the von Kármán sodium dynamo experiment. Journal of Fluid Mechanics 854, 164195.1230

Novara, Matteo & Scarano, Fulvio 2013 A particle-tracking approach for accurate material1231

derivative measurements with tomographic PIV. Experiments in Fluids 54.1232

Oboukhov, A. M. 1962 Some specific features of atmospheric tubulence. Journal of Fluid1233

Mechanics 13 (1), 7781.1234

Ouellette, N.T., Xu, H., M.B. & Bodenschatz, E. 2006 An experimental study of turbulent1235

relative dispersion models. New Journal of Physics 8 (6), 109.1236

Pao, Y.H. 1965 Structure of turbulent velocity and scalar fields at large wavenumbers. Physics1237

of Fluids 8.1238

Podvin, B. & Dubrulle, B. 2018 Large-scale investigation of a turbulent bifurcation in the1239

swirling von karman flow. Fluid Dynamics Research 50 (6), 065508.1240

Pope, S. B. 2005 Turbulent flows. Cambridge: Cambridge Univ. Press.1241

Porta, A. La, Voth, G.A., Moisy, F. & Bodenschatz, E. 2000 Using cavitation to measure1242

statistics of low-pressure events in large-reynolds-number turbulence. Physics of Fluids1243

12 (6), 1485–1496.1244

Portela, F.A., Papadakis, G. & Vassilicos, J.C. 2017 The turbulence cascade in the near1245

wake of a square prism. Journal of Fluid Mechanics 825, 315–352.1246

Qu, B., Bos, W. & Naso, A. 2017 Direct numerical simulation of axisymmetric turbulence.1247

Physical Review Fluids 2.1248

Ravelet, Florent, Mari, Louis, Chiffaudel, Arnaud & Daviaud, F. 2004 Multistability1249

and memory effect in a highly turbulent flow: Experimental evidence for a global1250

bifurcation. Physical review letters 93, 164501.1251

Richardson, L. F. 1926 Atmospheric diffusion shown on a distance–neighbour graph. Royal1252

Society of London Proceedings Series A 110 (709), 709–737.1253

Romano, G.P., Antonia, R.A. & Zhou, T. 1999 Evaluation of LDA temporal and spatial1254

velocity structure functions in a low reynolds number turbulent channel flow. Experiments1255

in Fluids 27 (4), 368–377.1256

Shen, X. & Warhaft, Z. 2002 Longitudinal and transverse structure functions in sheared and1257

unsheared wind-tunnel turbulence. Physics of Fluids 14 (1), 370–381.1258

Smith, L.M. & Waleffe, F. 1999 Transfer of energy to two–dimensional large scales in forced,1259

rotating three–dimensional turbulence. Physics of Fluids 11 (6), 1608–1622.1260

Stewartson, K. 1953 On the flow between two rotating coaxial disks. Mathematical Proceedings1261

of the Cambridge Philosophical Society 49 (2), 333–341.1262

Thiesset, F., Danaila, L., Antonia, R.A. & Zhou, T. 2011 Scale-by-scale energy budgets1263

which account for the coherent motion. Journal of Physics: Conference Series 318 (5),1264

052040.1265

Thoroddsen, ST 1995 Reevaluation of the experimental support for the kolmogorov refined1266

similarity hypothesis. Physics of Fluids 7 (4), 691–693.1267

Valente, P & Vassilicos, J 2015 The energy cascade in grid-generated non-equilibrium1268

decaying turbulence. Physics of Fluids 27, 045103.1269

Voth, G.A, Porta, A. La, Crawford, A.M., Aelxander, J. & Bodenschatz, E. 20021270

Measurement of particle accelerations in fully developed turbulence. Journal of Fluid1271

Mechanics 469, 121–160.1272

Voth, G.A., Satyanarayan, K. & Bodenschatz, E. 1998 Lagrangian acceleration1273

measurements at large reynolds numbers. Physics of Fluids 2268 (10).1274

Wang, C., Gao, Q., Wei, R., Li, T. & Wang, J. 2017 Weighted divergence correction scheme1275

and its fast implementation. Experiments in Fluids 58, 1–14.1276



40 A. N. Knutsen et al.

Worth, N. 2010 Tomographic PIV measurement of coherent dissipation scale structures. PhD1277

thesis, University of Cambridge.1278

Worth, NA & Nickels, TB 2011 Time-resolved volumetric measurement of fine-scale coherent1279

structures in turbulence. Physical Review E 84 (2), 025301.1280

Yeung, PK, Donzis, DA & Sreenivasan, KR 2012 Dissipation, enstrophy and pressure1281

statistics in turbulence simulations at high reynolds numbers. Journal of Fluid Mechanics1282

700, 5–15.1283
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