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Smartphones are essential tools for everyday tasks and are widely used for a multitude
of communication services. Services such as video streaming, content sharing or
instant messaging require users to have an internet connection in order to connect to
a central server. However, in out-of-coverage areas such as the mountains or in areas
where the infrastructure is damaged, phones are unable to establish a connection to
the server. As a consequence, these services become unavailable. This can be critical
during natural disasters and rescue operations where user’s connectivity can make a
significant difference.

In out-of-coverage areas, smartphones equipped with Wi-Fi radio may make
use of the radio to establish a Peer-to-Peer (P2P) network with other users in the
vicinity. This would then enable users to communicate through the established
network. However, unlike ordinary Wi-Fi settings that use a dedicated Wi-Fi base
station, in a P2P setting every device has the opportunity to assume this master role
and the communication has to be adjusted accordingly. To achieve this, other Wi-Fi
technologies, such as Wi-Fi Direct and Wi-Fi Aware, are needed.

The P2P approach also presents new challenges in several aspects of security
due to a lack of connection to a central server. In particular, the authentication of
users is essential to ensure the identity of the communicating parties. Besides, users
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not read or tampered with in the process. Thus, the main challenges are how to
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be performed. In order to validate the solution experimentally, a proof-of-concept
instant messaging application will be developed.
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Abstract

In areas affected by natural disasters, at crowded concerts, and in
rural areas, mobile social networks requiring an Internet connection
might not be available. Without connectivity, users become isolated and
unable to communicate. Open-source solutions are available that provide
connectivity and enable instant messaging between devices. However, the
solutions are mainly limited to Wi-Fi Direct and Bluetooth technologies.
Wi-Fi Aware promises interesting properties that address the shortcomings
of the centralized architecture of Wi-Fi Direct and the short range and of
Bluetooth. However, it has received little research and the full potential
of Wi-Fi Aware is still to be explored. The aim of this master thesis
is to design, propose, and validate a solution that enables connectivity
between mobile devices in the vicinity and provides authenticated and
secure instant messaging between users in internet isolated locations.

The proposed solution uses Wi-Fi Aware for establishing a Peer-to-Peer
(P2P) network and the mutual Transport Layer Security (mTLS) protocol
to provide mutually authenticated and encrypted message transfer. Key
contributions provided by this project comprises research into Wi-Fi
Aware as a connectivity technology for instant messaging together with the
Transport Layer Security (TLS) protocol for authentication. Additional
contribution is a decentralized peer authentication scheme compatible
with Wi-Fi Aware and TLS that enables peers to verify other peers when
offline.

The proposed solution is as follows: A device in an internet isolated
location can discover a group of devices participating in a Wi-Fi Aware
network. That same device can connect to the network and establish
a data path to each device in that group in order to exchange data.
Instant messaging can be performed between peers once an mTLS or
peer authentication connection is established. A connection requires both
communicating parties to verify the other user’s identity by exchanging
authentication credentials. Digital certificates are provided to users who
sign up for the service through an authentication server. Users who have
not signed up for the service can receive authentication credentials by
being verified by another peer.

The created proof-of-concept application makes it possible to evaluate
the performance of Wi-Fi Aware technology experimentally and verify the



proposed TLS offline and online authentication scheme. Testing includes
measuring connectivity and messaging time.

The last part of the thesis presents findings, limitations and a com-
parison of results with other related solutions. The performance of Wi-Fi
Aware compares well with a similar solution using Wi-Fi Direct. The
proposed Peer Authentication scheme works as a backup authentica-
tion solution that enables users to use the application without having
signed up beforehand. However, a limitation of this scheme is that
peer-authenticated users are not able to communicate with each other.



Sammendrag

I områder rammet av naturkatastrofer, på folksomme konserter og i
rurale områder, kan sosiale medier og chatte applikasjoner som krever
internettforbindelse bli utilgjengelige. Uten tilkobling til internett blir
brukerne isolert og ute av stand til å kommunisere. Det eksisterer åpne
kildekode-løsninger som gjør det mulig å sende direktemeldinger til enheter
i nærheten. Disse løsningene er imidlertid hovedsakelig begrenset til de
trådløse kommunikasjonsteknologiene Wi-Fi Direct og Bluetooth. Wi-Fi
Aware lover interessante egenskaper som adresserer manglene av den
sentralisert arkitekturen til Wi-Fi Direct og den korte rekkevidden til
Bluetooth. Det er imidlertid gjort lite forskning på Wi-Fi Aware og få
forsøk på å utnytte dens potensiale. Formålet til denne masteroppgaven
er å designe, foreslå og validere en løsning som muliggjør sammenkobling
mellom mobile enheter i nærheten av hverandre og gir autentisert og
sikker direktemelding mellom brukere i internett isolerte områder.

Den foreslåtte løsningen bruker Wi-Fi Aware for å etablere et peer-
to-peer nettverk og mTLS for å gi gjensidig autentisering og kryptert
overføring av meldinger. Hovedbidragene som denne oppgaven gir, er
forskning på Wi-Fi Aware som en kommunikasjonsteknologi for direkte-
melding sammen med TLS protokollen for autentisering. Tilleggsbidrag er
en desentralisert autentiseringsprosess som gjør det mulig for autentiserte
brukere å verifisere andre brukere.

Den foreslåtte løsningen er som følger: En enhet som befinner seg i et
internett isolert område kan oppdage en gruppe enheter som deltar i et
Wi-Fi Aware nettverk. Den samme enheten kan dermed koble seg på nett-
verket for å utveksle meldinger. mTLS protokollen brukes for å muliggjøre
kryptert og verifisert kommunikasjon over det opprettede nettverket. En
sammenkobling mellom to enheter krever at begge parter kan verifisere
den andres identitet ved å utveksle autentiseringslegitimasjon. Brukere
som registrerer seg når de er tilkoblet internett får utstedt et digitalt
sertifikat av en autentiseringsserver. Brukere som ikke har registrert seg
til tjenesten kan bli verifisert av en annen autentisert enhet i nettverket,
noe som gjør det mulig for brukeren å sender meldinger.

En enkel meldingsapplikasjon basert på den foreslåtte løsningen ble
laget for å evaluere ytelsen og sikkerheten til Wi-Fi Aware teknologien
samt for å kunne verifisere den foreslåtte autentiseringsprosessen. Ekspe-
rimenter utført måler tiden det tar for en sammenkobling og tiden det
tar å sende meldinger.



Den siste delen av oppgaven presenterer funn, begrensninger og en
sammenligning av resultater med andre relaterte løsninger. Ytelsen til
Wi-Fi Aware sammenligner godt med lignende løsninger som bruker Wi-Fi
Direct. Den foreslåtte autentiseringsprosessen muliggjør fungerer som en
reserveløsning for brukere som ikke har registrert seg til tjenesten på
forhånd. En begrensning ved denne løsningen er imidlertid at brukere
som er verifisert andre bruker i nettverket ikke kan kommunisere med
hverandre.
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Chapter1Introduction

When people find themselves in areas without cellular or network infrastructure,
popular messaging applications are unavailable. In such situations, a Peer-to-Peer
(P2P) network can be established with the people in the vicinity. However, this raises
questions such as how to ensure secure and authentication communication between
peers. This thesis proposes a solution that ensures secure communication between
peers in the vicinity utilizing Wi-Fi technology.

The following chapter describes a secure instant messaging application when
people find themselves in internet-isolated locations. It also presents the scope of
the thesis and the research questions that will be answered based on testing the
proof-of-concept application that was developed.

1.1 Motivation

These days, most people use cell phones to communicate and perform everyday tasks.
Popular messaging and calling applications such as WhatsApp and Facebook require
an internet connection in order to access a central server providing authentication
and forwarding of messages. However, in out-of-coverage areas such as rural areas
that lack a network infrastructure or areas in which natural disasters have damaged
the infrastructure, users become isolated from the Internet. Messaging and other
communication services on cell phones become unavailable. This can be an issue in
scenarios such as mountain rescue operations or in areas prone to natural disasters
in which communication is vital.

At concerts, sports events and protests, large crowds of people gather, sharing
photos and messages with friends through mobile applications. These applications
are services that require an internet connection in order to connect to a central
server. When a high volume of network requests are made simultaneously, network
congestion might occur. A high traffic load can lead to lower throughput, which

1



2 1. INTRODUCTION

slows down services. In some edge cases, when network traffic is extensive, Denial of
Service (DoS) can occur, and network services become unavailable.

In scenarios in which the network is congested due to heavy traffic, device-to-
device communication can be a helpful tool for offloading the cellular network. Using
Wi-Fi for connectivity is less power consuming for a phone, compared to using a
3G or 4G cellular network [1]. Device-to-device communication in crowded urban
environments can offload traffic, thereby improving network performance [2]. By
utilizing the radio antennas integrated into smartphones, P2P connections can be
established using technologies such as Wi-Fi Direct and Bluetooth. Files, messages
and images can be shared directly between devices without a connection to a router
or cellular tower. However, Wi-Fi Direct requires one device in a group to serve as a
network Access Point (AP), which entails issues such as unfair battery consumption
and a single point of failure [3]. Further, Bluetooth is limited by its range and
data transfer rates, making it less suitable for large file transfers compared to Wi-Fi
technology.

Wi-Fi Aware is a similar technology to Wi-Fi Direct and utilizes Wi-Fi and
Bluetooth antennas to discover and create decentralized P2P networks between
devices in the vicinity [4]. The network facilitates the sending of encrypted messages,
images and files between devices using the widely adopted IP addressing protocol.
Wi-Fi Aware runs in the background and notifies users when a match for a service is
found, making it energy efficient. There is little documentation beyond the Wi-Fi
Alliance specification [5] and few projects have explored the technology. Wi-Fi Aware
has untapped potential and properties that could make it suitable as a connectivity
technology for instant messaging.

Since Wi-Fi Aware establishes connectivity directly between devices, no authenti-
cation server is responsible for verifying the identity of users. How can peers using
the service be confident that their messages have been delivered to the intended
recipient and not an imposter posing as the recipient? Upper layer measures are
required to ensure that there is no man in the middle listening in or modifying the
transmitted messages.

1.2 Scope

The scope of this master thesis is to design, implement and validate a solution that
enables mobile devices to create a network using Wi-Fi Aware and ensures secure
and authenticated communication when no internet connection is available.

The aim if the thesis is to provide a secure and authenticated solution to a Wi-Fi
Aware established network. This includes providing authentication credentials, such
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as a certificate, to users who have signed up for the service through an authentication
server. A certificate serves as proof that a mutually trusted entity has verified the
identity of a user. Additional focus has been put into searching for a scheme that
can provide authentication credentials to users who wish to join the network when
they are offline.

The proof-of-concept application is limited to device-to-device instant messaging
between devices in a Wi-Fi Aware network. This enables simple validation of the
proposed technology and authentication solutions. However, this can be extended to
sending images, files and audio in group chats. Providing the means to communicate
using infrastructure Wi-Fi or a cellular network is outside the scope of this thesis.

1.3 Challenges

Wi-Fi Aware uses Wi-Fi Protected Access II (WPA2) Personal in order to ensure
confidentiality and integrity protected data transfer during a P2P connection [4].
However, unlike WPA2 Enterprise, WPA2 Personal does not require an authentica-
tion server. Without any additional authentication measures implemented by the
developer, anyone participating in a Wi-Fi Aware network can send messages to
other peers without proving their identity. A user could be talking to an imposter.

A challenge presented in papers and related research is how to authenticate
new users when they are already in an out-of-coverage area. Available and well-
known authentication schemes such as Transport Layer Security (TLS), explained in
more detail in Section 3.2.6, facilitate encrypted and authenticated communication
between web applications and servers [6]. Digital certificates downloaded from an
authentication server are used in TLS to verify the identity of the communicating
parties. Applying this protocol to an out-of-coverage scenario would require users
to sign up to an authentication server before going offline. How can new users be
authenticated in out-of-coverage areas when they have not received authentication
credentials such as a certificate from a central server? These challenges give rise to
research questions.

1.4 Research Questions

– Is Wi-Fi Aware a suitable connectivity technology in terms of ensuring con-
fidentiality, integrity and availability for an instant messaging application in
areas in which internet connectivity is unavailable?

– How can users be verified and participate in authenticated communication, for
both online and offline scenarios?
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– How will Wi-Fi Aware perform as a connectivity technology in a secure commu-
nication application, compared to other related solutions regarding connectivity
time and resource distribution across devices?

1.5 Methodology

The project has been divided into four sections: Preparation, Design, Implementation,
and Validation.

1.5.1 Preparation

The preparation phase involved researching connectivity technologies and understand-
ing related solutions for establishing secure P2P networks. The aim of this phase was
to learn about unresolved issues in existing P2P communication solutions, technology
with untapped potential and areas in which additional contributions could be made.

The solution context, selected during the preparation phase, comprises secure and
authenticated communication between mobile devices in internet-isolated locations.
Communication during hiking and rescue operations in the mountains was selected
as intended use-cases.

During the preparation phase, Wi-Fi Aware was researched and further selected as
a connectivity technology. Security schemes provided by Wi-Fi Aware do not include
a way to authenticate users. Additional methods and schemes in the application
layer are necessary to verify the users participating in the communication. Therefore,
different authentication schemes that could work in a decentralized P2P architecture
were studied.

1.5.2 Design

The architecture of the proposed messaging solution was designed in this phase. More
specifically, a design for a client-server model suitable for Wi-Fi Aware communication
was created. The focus of the design phase was to select an authentication scheme
that would provide users with authentication credentials in both offline and online
scenarios.

An online authentication server was designed to provide users with a signed
certificate. In client-server communication, signed certificates are exchanged to
prove that a mutually trusted entity has verified the identity of each user. The
mutual Transport Layer Security (mTLS) protocol was selected to provide mutually
authenticated and end-to-end encrypted communication using certificates issued
by the authentication server. The authentication server is only accessible using
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the Internet and therefore cannot be used to receive authentication credentials in
out-of-coverage areas.

The process of designing an offline authentication scheme involved searching for
proposed and existing decentralized authentication schemes that could be used in
the solution. The requirement for the scheme was that it could be incorporated into
the existing TLS solution.

Figure 1.1 illustrates the high-level schematic view of the proposed decentralized
Peer Authentication (PA) scheme. The first step shows communication between two
authenticated users, A and B, using mTLS. Since A and B can establish an mTLS
connection, they can trust each other. The second step illustrates user A verifying
the identity of C and providing C with authentication credentials. C and B can
communicate in step 3 because A has verified the identity of C, and because B trusts
A.

Figure 1.1: High level design of the decentralized PA scheme.

1.5.3 Implementation

The proof-of-concept application verified the designed solution and enabled testing
according to the research questions. Android Studio 1 version 4.12 was the develop-
ment platform and the programming language was Java2. The development platform
Application Programming Interface (API)s contained the necessary Wi-Fi Aware
tools and support to implement the application. API is software that allows two
devices to communicate. The phones used throughout the project were a Samsung
Galaxy A71 and a Samsung Galaxy S9, both with Android Version 10. Two models
were used during testing in order to observe Wi-Fi Aware using different hardware.

1Android Studio,https://developer.android.com/studio
2Java,https://www.java.com/en/

https://developer.android.com/studio
https://www.java.com/en/
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1.5.4 Validation

In order to verify the proposed solution a proof-of-concept application using Wi-Fi
Aware, mTLS and a decentralized authentication scheme has been created. Experi-
ments using the application were conducted in order to validate the solution based
on the research questions.

The experimental trials involved measuring the time it takes for a device to
discover a Wi-Fi Aware network, establish a connection to it, and the time it takes
to send messages. The resulting times have been compared with similar solutions.

Wi-Fi Aware packets were captured in order to gain an increased understanding
of how Wi-Fi Aware works and to analyze the link layer security measures it provides.
The battery principles of Wi-Fi Aware have also been studied using the captured
packets and analyzing the role assigned to each device in the network depending on
the battery level.

The packets exchanged between devices were captured using a GNU Radio
transceiver3 with an Ettus USRP B200mini4 and were further studied using the
packet analyzer tool Wireshark5. The Android Developer Bridge (ADB)6 was used
to interact with the devices and perform several runs of devices joining a network
and sending messages.

1.6 Outline

The remaining chapters of the thesis are divided into six sections and are structured
as follows:

Chapter 2: Background and Related Work Introduces the technologies
utilized in order to achieve the proposed solution. Related technologies and research
are also presented.

Chapter 3: Proposed Solution Describes the proposed solution and how it
achieves secure and authenticated message exchange between devices in a Wi-Fi
Aware network. The technologies used are explained in more detail.

Chapter 4: Proof-of-Concept Application Describes how the proposed
solution is implemented in a proof-of-concept application.

3GNU Radio transceiver, https://github.com/bastibl/gr-ieee802-11
4USRP B200mini, https://www.ettus.com/all-products/usrp-b200mini/
5Wireshark, https://www.wireshark.org/
6ADB, https://developer.android.com/studio/command-line/adb/

https://github.com/bastibl/gr-ieee802-11
https://www.ettus.com/all-products/usrp-b200mini/
https://www.wireshark.org/
https://developer.android.com/studio/command-line/adb/
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Chapter 5: Results Presents and analyzes the experimental results with the
aim of validating the proposed solution.

Chapter 6: Discussion Discusses the results produced using the proof-of-
concept application regarding the research questions.

Chapter 7: Conclusion: Concludes the work performed in this thesis and
presents suggestions on how the proposed solution can be improved or further
developed by using related technologies and new Wi-Fi Aware features.





Chapter2Background and Related Work

2.1 Background

Wi-Fi Aware, also known as Neighbor Awareness Networking (NAN), uses the Wi-Fi
radio integrated in phones to enable connectivity between devices in the vicinity.
Independent P2P networks can be created to enable data transfer of images, messages
and files over TCP/IP[4]. Wi-Fi Protected Access II (WPA2) based frame encryption
is used to provide confidentiality and integrity to protect the data being sent [5].
Figure 2.1 shows multi-directional sharing of information between devices in a Wi-
Fi Aware group, also called a cluster. Wi-Fi Aware provides mechanisms that
ensure low energy and fair resource consumption. Devices synchronize and wake up
simultaneously for a short interval to send and receive messages, thereby reducing
battery consumption [5]. Technology with low energy requirements is beneficial when
used in phones that, do not have a constant power supply. Preserving power is
particularly beneficial when phones are used in out-of-coverage areas. Additionally,
the workload is fairly distributed between devices by alternating resource-consuming
roles. A more in-depth study of battery usage and resource distribution is provided
in Section 3.2.2.

Figure 2.1: Wi-Fi Aware cluster.

9
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A connection is automatically established when a device is in proximity to a
cluster, making Wi-Fi Aware suitable for dynamic environments in which devices come
and go. The P2P network has a decentralized structure in which each device functions
independently of the other devices in the cluster. Consequently, no component serves
as a trusted entity responsible for verifying the identity of the users communicating.
However, users of an offline communication application expect the same level of
security offered by an online messaging application. Mechanisms must be in place
for ensuring that an imposter cannot read or modify the contents of messages.
Thus, security protocols beyond what Wi-Fi Aware can offer are needed to ensure
authentication. mTLS is a protocol that can provide this is.

The TLS protocol is a client-server protocol widely used on the Internet to secure
communication between a client, often a web browser, and a server. The protocol was
designed to provide reliable high-end services over TCP [7]. The server is responsible
for providing a certificate to the client, enabling the client to verify that a mutually
trusted party has authenticated the server. The mTLS protocol is an expansion
of TLS in which the client is also responsible for providing a certificate, resulting
in a mutually authenticated connection. As well as authentication, the protocol
offers several cryptographic algorithms to ensure integrity and confidentiality of
the messages sent [6]. The general security principles of digital cryptography are
covered in the following section to provide a better understanding of TLS and other
cryptographic schemes used in the solution.

2.1.1 Security Concepts in Digital Cryptography

Security in computer networks is maintained using three main principles: confiden-
tiality, integrity and availability [8]. These principles are often referred to as the CIA
triad and are the fundamental objectives of information and cybersecurity.

Confidentiality is about preventing unauthorized users from accessing data or
services. It protects personal privacy in addition to other sensitive information by
preventing access by unauthorized recipients. In digital communication, symmetric
or asymmetric cryptography is used to provide confidentiality.

Integrity is about preventing unauthorized users from modifying or destructing
data. Checks are made to ensure that messages are received and sent without
duplication, modification, deletion or replays.

Availability ensures that a system is working correctly and reliably. A loss of
availability means that the system cannot provide users with access to information
systems or services when needed. Natural disasters, power outages or DoS attacks
could cause a loss of availability to services and systems and are particularly important
to avoid in critical infrastructure assets such as health, water and communication.



2.1. BACKGROUND 11

Symmetric Cryptography

Symmetric cryptography, also known as single-key encryption, is used to conceal all
kinds of data [8]. The communicating parties use the same secret key to encrypt
and decrypt messages, files or passwords. The secret key is established using a
secure channel. An analogy used to describe the steps involved in secure digital
communication is the communication between Alice and Bob shown in Figure 2.2.
Alice encrypts a text using a secret key. When Bob receives the message, he decrypts
the text into plaintext using the same secret key. He is now able to read the message
from Alice. The TLS protocol uses symmetric cryptography to provide confidentiality
to messages.

Figure 2.2: Symmetric encryption/decryption.

Asymmetric Cryptography

Asymmetric cryptography, also known as public-key cryptography, is used in digital
signatures and certificates to conceal data such as encryption keys and hash values.
Unlike symmetric encryption, it uses two separate keys for encryption and decryption:
a public key and a private key. The generation of a public-private key pair is shown
in Figure 2.3. The public key is used in encryption to conceal a message and only the
user with the private key corresponding to the public key can decrypt and read the
message contents. Figure 2.4 shows the encryption and decryption process in public
key cryptography. When Alice wants to send a message to Bob, she encrypts the
message using Bob’s public key. When Bob receives the encrypted message, he has
to decrypt it using his private key. Since Alice encrypted the message using Bob’s
public key, his private key is the only key that can decrypt the message. Possession
of the private key proves ownership of the corresponding public key. In TLS, key
pairs are used to generate and verify signatures.

Digital certificates manage public keys and contain the digital signature of the
Certificate Authority (CA) that generated the certificate. Figure 2.5 shows the
process of creating and verifying a digital signature. First, the sender generates a
hash value for the message using a secure hash function. The hash value is then
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Figure 2.3: Key generation of a public-private key pair.

Figure 2.4: Asymmetric encryption/decryption.

encrypted using the senders private key. The result is a short block attached to
the message and function as the digital signature. When the receiver receives the
message, the sender’s public key is used to decrypt the attached signature. The
receiver also generates a hash value of the received message. If the hash value and
the decrypted signature are the same, the recipient can be certain that no one has
forged the message. The process of verifying a signature is used in TLS to verify
that a mutually trusted entity, CA, has signed the certificate provided. Only the
public key of the CA can be used to decrypt to the same hash value, making the
certificate unforgeable.
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Figure 2.5: The creation and verification process of a digital signature.

2.1.2 Related Technology

There are several technologies that can be used to establish connectivity between
devices, other than Wi-Fi Aware. The following sections describe how Wi-Fi Direct
and Bluetooth Low Energy (LE) can be used to enable offline communication.

Wi-Fi Direct

Wi-Fi Direct is a technology used in smartphones, cameras, printers and computers
to make it easier for users to share content and play games using their devices. Wi-Fi
Direct builds upon the traditional Wi-Fi infrastructure used in homes and offices
and shares the same security and battery-saving mechanisms [9]. One device must
serve as an AP, making it possible for other Wi-Fi enabled devices to connect. The
process is similar to connecting to a router. Any client can access by typing in a PIN
number to access the network [9]. A device that serves as an AP is called a Group
Owner (GO). The GO role is negotiated between the devices in the network. Thus,
each device must implement functionality to serve as either a client or a GO. The
GO is responsible for forwarding messages to the intended recipients. This places a
considerable burden on the GO’s resources compared to the other members of the
network [9]. In situations in which devices do not have a constant power supply, this
can be an issue.

Bluetooth Low Energy

Bluetooth Low Energy (LE) is a connectivity technology used to create a Personal
Area Network (PAN) and exchange data using radio waves in the 2.4 GHz frequency
band. It provides reliable and low-power operations, making it suitable for medical
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and fitness applications that run on low-power devices. The following topology
structures are supported: device-to-device, broadcast and mesh networking.

Bluetooth LE supports a data transfer rate of up to 2 Mb/s over 40 channels [10],
which is considerably lower than typical Wi-Fi rates. The range of Bluetooth LE is
limited and considerably lower than the range of Wi-Fi Direct [11]. Although the
theoretical maximum operation range of Bluetooth LE is up to 100 m, the effective
range for a smartphone using Bluetooth is around 10 m [12]. The range depends on
the environment and strength of the radio signal.

2.2 Related Work

Several applications available for consumers use either Wi-Fi Direct or Bluetooth LE
as a connectivity technology to enable instant messaging between devices.

Bridgefy is an offline communication application that uses Bluetooth LE to
exchange messages between devices [13]. Before using the application in out-of-
coverage areas, it requires users to connect to the Internet [13]. The application sets
up a mesh network using Bluetooth LE and broadcasts messages to all users within
range, contacts and non-contacts [13]. The mesh network extends the communication
range by having peers forward messages to other peers until they reach the intended
recipient. Messages sent between two devices are encrypted. Broadcast messages are
also encrypted but are visible to all users receiving the broadcast messages [13].

FireChat is another application that uses mesh networking. It enables users to
send and receive messages using Wi-Fi and Bluetooth LE radios for connectivity [14].
Users can establish anonymous chat rooms on different topics and subscribe to these
topics. The application gained popularity during the mass protests in Hong Kong in
2014 and relieved the heavy network traffic caused by the large gatherings of people
[14].

Another application that uses Wi-Fi Direct to establish a network is Signal Offline
Messaging. Privacy is an important security feature provided by Signal Offline
Messaging so the application is often used by activists and journalists. It is stated
that the application has end-to-end encryption and that no data is stored in the
cloud, just locally on the devices [15] [16].

Serval Mesh is an offline application developed by the Mesh project, an Australian
based company aiming to provide connectivity in rural areas of Australia. The use
of mesh networking and ad-hoc Wi-Fi mode enables users to share files, receive calls
and send messages [17]. However, Wi-Fi ad-hoc mode is currently not supported by
Android smartphones without gaining root access to the phone [18].
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2.2.1 Related Research

The following section presents research on the NAN protocol, as well as research on
authenticated communication in P2P solutions. The schemes studied were considered
as potential authentication schemes for the proposed solution.

An overview of the NAN protocol is presented in the paper by Campus-Mur et
al. [19], in addition to an evaluation of cluster formation and mobility patterns. The
NAN protocol was implemented in a packet-level simulator based on the network
simulator OPNET1. Realistic user movement through a crowded street was simulated
using MobiREAL [20]. It was observed that there were a maximum of five hops,
chain of devices, between the device controlling the cluster to the devices on the
periphery. On a few occasions, the devices were unable to discover a cluster, even
though it was in range. This resulted in the device becoming an Anchor Master (AM)
of its own cluster, leaving it isolated from the rest of the network. It is worth noting
that the solution is based on the NAN protocols specified in [5] and was published
before the Wi-Fi Aware API was available in Android Studio.

The Signal protocol, used in several messaging applications such as Signal Offline
Messaging and WhatsApp, uses public key fingerprints to verify the identity of
users [21]. A public key fingerprint is a shorter version of a public key, created by
applying a cryptographic hash function to the public key. Fingerprints are shared
between users over an independent channel, such as over email or by meeting up
in person. If the fingerprint presented by a user matches the one provided over
the independent channel, the user is authenticated. Applying this method to an
offline instant messaging application presents the challenge of sharing the fingerprint
when independent channels are unavailable. One approach could be to require
users to exchange fingerprints before moving to out-of-coverage areas. A limitation
to this approach is that users who have not exchanged fingerprints are unable to
communicate. These users would have to physically meet up and compare keys in
order to participate in authenticated communication.

In the solution presented by Khacef and Pujolle in [22], blockchain technology is
used to ensure secure and authenticated message exchange. The work proposes an
authentication solution that uses smart contracts through the Ethereum blockchain,
thereby removing the need for a CA. Peer information such as public keys, digital
signatures and general peer information is stored on the blockchain. Blockchain
technology has a decentralized architecture whereby computers all around the world
participate. A decentralized architecture results in a reliable system. It will not
be possible to shut down all the participating computers simultaneously. However,
after a contract has been stored on the blockchain, it is not possible to modify it

1OPNET, http://www.opnet.com

http://www.opnet.com
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without using extensive amounts of power. Additionally, adding a smart contract
onto the blockchain, making it accessible to others, requires internet access. Thus,
the solution is unsuitable for authentication in out-of-coverage areas.

Sigholt, Tola and Jiang used mTLS to provide an authenticated and secure
out-of-coverage instant messaging solution using Wi-Fi Direct [23]. The solution
comprises an authentication component that issues certificates in addition to a server
and a client component. The server component is responsible for forwarding messages
and verifying client certificates. However, the solution is unable to authenticate
new users in out-of-coverage areas, which is presented as the main drawback. The
messaging service is unavailable for unauthenticated users until they can establish a
connection to an online authentication server and receive a certificate.

The decentralized authentication scheme presented by Santos-González et al. [24]
provides a means of authenticating new users without an internet connection. Wi-Fi
Direct, Bluetooth LE or LTE Direct are the proposed connectivity technologies used
in the solution. Users with internet access can send authentication requests to a
server in order to gain access to private chat rooms. However, if a user cannot reach
the server, an authentication request can be made instead to a peer with the required
level of trust. The authenticated user signs the public key of the unauthenticated
user and provides it with its certificate. These credentials are used to gain access
to private chat rooms that require authentication. This solution resolves the issue
described by Sigholt et al. [23] of having to be online in order to be authenticated.



Chapter3Proposed Solution

This chapter describes the architecture and the components of the proposed so-
lution. The technology and security measures required for authenticated secure
communication between peers in an out-of-coverage scenario will be covered.

3.1 The Architecture

The proposed solution comprises an authentication server, responsible for providing a
signed certificate to users signing up, a client-server pair and a PA client-server pair.
An additional PA client-server pair is only used to initiate and respond to connections
made by users who are peer-authenticated. The proposed peer authentication scheme
enables users to vouch for other peers while in internet-isolated locations. This is
introduced and further explained in Section 3.1.6.

3.1.1 The Authentication Server

The solution for the authentication server is in accordance with the Public Key
Infrastructure (PKI) as used in TLS [25]. The authentication server acts as a CA. It
is responsible for issuing, signing and revoking the digital certificates of new users
who join the proposed instant messaging service. The CA is a Trusted Third Party
(TTP), meaning it is trusted by both the owner of the certificate and the party
relying on the certificate.

The authentication component is only reachable via the Internet. Thus, a user
who has not signed up for the service before moving to an internet-isolated location
cannot participate in an mTLS connection, in which both parties are required to
provide a certificate signed by a CA.

17
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3.1.2 Certificates

The certificates used in the proposed solution comply with the X.509 certificate
standard. The certificate binds an identity to a public key for further use in asym-
metric cryptography. Each certificate contains the subject’s public key, in addition
to the certificate subject, the issuer and the expiry date. The public key is part of a
public-private key pair generated when the application is downloaded. The certificate
contains a signature signed by either the CA or the certificate owner (self-signed),
depending on whether the user signed up for the service before going offline.

3.1.3 Signing Up

When a user connects to the authentication server and signs up to the instant
messaging service, a Certificate Signing Request (CSR) is created using the key pair
generated during download. This process is illustrated in Figure 3.1. The key pair
consists of a private and a public key. The private key will be kept private and only
accessible to the user who is signing up. The CSR contains information such as
country, email address, common name and public key.

If the authentication server considers the information provided in the CSR to
be correct and trustworthy, the certificate request is approved, and a certificate is
generated. The certificate is then signed by the CA and returned to the user who
requested the certificate.

Figure 3.1: Issuing of X.509 certificates.
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3.1.4 Certificate Revocation

Certificates are expected to last for their entire period of validity. However, various
circumstances can cause revocation. Users who have violated the terms and conditions
should be restricted from using the service. If a public key has been compromised,
the certificate should also be revoked.

A Certificate Revocation List (CRL) is a collection of certificates revoked before
their expiry date that should no longer be trusted [26]. The list is issued and
maintained either by the CA or the CRL issuer and made available in a public
repository. The list contains the serial number of the revoked certificates, in addition
to the signature of the issuer that revoked it. In the process of determining whether
a certificate is valid and trustworthy, the verifier checks that the certificate’s serial
number is not included in the latest CRL acquired.

Downloading a CRL requires access to the authentication server. In order to
receive an updated version of the list, a user must frequently move into areas with
internet access. A solution to this issue could be to share recent updates of the CRL
between trusted peers while in internet-isolated locations.

3.1.5 The Client-Server Model

In the proposed solution, all devices participating in a Wi-Fi Aware network constantly
have a server running, awaiting incoming requests from clients. No device acts as
an AP forwarding messages for other devices. Thus each device must have a server
running in order to be reachable. Consequently, each device must be able to work as
both a client and a server. The device that first initiates a connection to another
device is assigned the client role.

The Application Server

The server is responsible for awaiting any incoming requests from clients at a specified
port and must handle multiple connections to clients simultaneously. Each device
runs a server on a unique port, making every device reachable for communication.

Data exchange between a server and a client is over TCP/IP using the Wi-Fi
Aware data path and the port advertised by the server. When a server receives
an incoming request from a client, mutual authentication and the negotiation of
cryptographic protocols are performed using mTLS before setting up a connection.

When using mTLS, both server and client must exchange certificates to verify that
both parties have signed up for the service. The server will not accept communication
sessions without the client first providing a certificate signed by the CA.



20 3. PROPOSED SOLUTION

The Application Client

The client is responsible for requesting a communication session from a server and
providing it with a certificate. A network can comprise multiple devices. Thus, a
device must be capable of handling multiple server connections.

The user initiating the communication session with another peer is automatically
assigned the client role for that specific session. Any user participating in a P2P
network can use an established data path to another peer (server) to initiate a
communication session. The port used to contact the server is exchanged during the
establishment of the data path.

The client secures its communication to the server by only accepting certificates
signed by the CA. The cryptographic protocol specifies the encryption schemes
supported by the client, which are provided to the server during connection setup.

3.1.6 Peer Authentication Model

This thesis proposes a peer authentication scheme based on the technique of Santos-
González et al. [24], which enables users to be verified by another authenticated
peer instead of the authentication component. The scheme provides unauthenticated
users with authentication credentials, instead of a signed certificate. The solution
enables new users to communicate with other users, despite not having signed up for
the service before moving to an out-of-coverage area.

The technique is incorporated into the solution by using a server that does not
rely on a certificate signed by the authentication component. Thus, a non-mutual
TLS server that only accepts valid authentication credentials must be used for all
Peer Authentication (PA) connections. Details about what authentication credentials
comprise and how they are issued are presented in the following chapter.

Peer Authentication Server

The device serving as a PA server is responsible for responding to a PA request
from a client and serving incoming TLS connections that only requires the server to
provide a certificate.

The PA server uses the authentication credentials provided by the client instead
of a certificate signed by the CA to verify that another peer has authenticated the
client. The credentials are provided to the application server before starting the
server, using Wi-Fi Aware short messages with a 255-byte limit. The server can
receive these credentials solicited, request them from the client, or unsolicited, either
by the client itself or another user in the network who has exchanged the credentials.
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This means that both the server and the client can initiate the process of starting
the PA server.

If the client’s credentials are valid, the PA server is started using a different port
from the regular server. The client is then able to communicate with the server over
a mutually authenticated and secure connection. The server can set the terms of
the connections it accepts and therefore choose to accept connections in cases where
the client does not provide a certificate. However, the server still needs to provide a
valid certificate to the client in order to establish a connection. Thus, only a peer
that is authenticated by the CA can assume the role of hosting a PA server.

A client that has not been verified by another peer will not be able to communicate
with the server. If the client authentication credentials provided to the server are
invalid, the PA server will not be started. Once the server is started, it will only
accept incoming connections from clients with valid credentials.

The PA server will be started if a request from a client is made and only if the
authentication credentials provided by the client are valid. It is assumed that the
number of peer-authenticated users is limited, and continuously running an additional
server is resource-consuming and unnecessary.

Peer Authentication Client

The peer-authenticated client is responsible for providing the PA server with authen-
tication credentials and requesting a PA connection. By providing authentication
credentials, the client proves that another authenticated and trusted user has vouched
for its identity. A device that has not signed up to the service before moving to
an out-of-coverage area will become the client in any client-server connection. Any
connection to a mTLS server will be rejected because the user does not have a
certificate signed by the CA.

A peer-authenticated client operates in the same way as a regular client and a
connection requires a PA server to provide a valid certificate. Therefore, a connection
between two peer-authenticated users is not possible. The client provides the server
with its supported cryptographic protocols for negotiation.

Figure 3.2 illustrates how an authenticated device, A, verifies an unauthenticated
device, C, thereby enabling B and C to set up a PA TLS connection. Step 2
illustrates the successful verification of C. Consequently, B and C can establish a
secure connection.
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Figure 3.2: Sequence diagram showing the steps necessary to set up a PA connection
between two devices, B and C. A and B are authenticated by the CA and C is
authenticated by A.
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Peer Verification

A user who does not have a certificate signed by the CA can request authentication
from another peer in the network, as illustrated in step 2 in Figure 3.2. Similarly,
any device with a certificate signed by the CA can verify another peer. When an
authenticated user receives a request from a user who wants to be authenticated, it
can deny or accept the request. Such a decision depends on the authenticator’s trust
in the validity of the identity presented by the peer requesting authentication. If
two users are standing next to each other, it can be verified that the Media Access
Control (MAC) address displayed on the requester’s device is the same as the address
presented in the request. If a user cannot verify that the request is from a trusted
user, the user should not be authenticated.

If a user decides to accept a request, it will generate and send authentication
credentials to the other users in the network, informing them about a new authenti-
cated peer. These credentials will enable the peer-authenticated user to prove that it
has been vouched for by an authenticated user in future interactions. Thus, the peer-
authenticated user is able to participate in authenticated and secure communication,
as shown in step 3 in Figure 3.2.

If the request is denied, the user who wants to be authenticated cannot participate
in any connections for communication. It can, however, try to request authentication
from another peer in the network. This is necessary if a device leaves the network
and joins a new network. The devices participating in the new network will have no
knowledge of the authenticator and will therefore not trust the authentication cre-
dentials presented. The reason why a user must have knowledge of the authenticator
is explained in the following section.

Peer Authentication Credentials

The PA scheme proposed by Santos-González et al. uses signed public keys and
certificates as authentication credentials. The authentication credentials are provided
to the unauthenticated user when it has been verified and then presented to other
users when requesting access. Similarly, the proposed solution uses a signed key as
proof of PA. However, public keys are used instead of certificates to verify that an
authenticated user has provided a signature. Public keys are shorter than certificates
and can be sent using Wi-Fi Aware short messages. Unlike the scheme of Santos-
González et al., the PA scheme is limited to one level, meaning that peer-authenticated
users cannot authenticate other unauthenticated users.

Using public keys to verify an authenticator instead of certificates involves an
additional step, step 1, in the authentication process as illustrated in Figure 3.2.
Before the authenticated user B and the peer-authenticated user C can communicate,



24 3. PROPOSED SOLUTION

B must verify that user A is an authenticated user who is trusted to verify C. Thus,
A and B must have had a secure and mutually authenticated connection beforehand
and saved each other’s public key. Instead of performing this procedure with every
authenticator, a list of public keys that are trusted to perform PA can also be
exchanged between users, reducing the number of interactions between devices. A
list of signed keys can also be exchanged in the same way. Information shared by a
peer should be discarded if a mutually authenticated connection has not taken place.

An authenticator will only authenticate and sign the keys of users who can prove
ownership of the key presented. As shown in Figure 3.2, C provides A with its public
key, a signature on a random string and the random string. Device A uses these
values to verify the signature and ensure that C holds the private key corresponding
to the public key presented. Digital signatures and how they work are covered in
more detail in Section 2.1.1.

Before a PA connection can be established, the connection requester must prove
ownership of its authentication credentials, as illustrated in step 3 in Figure 3.2. This
is similar to how A verifies C in step 2 but, in addition, C must provide B with its
public key signed by A. Thus, when B receives the authentication credentials it must
verify that the public key of C has been signed by an authenticated user. If the
signed key decrypts to C‘s public key using A’s public key, the process has verified
that C is the owner of the signed key and the PA connection request is accepted.

3.2 Technologies Used

The general principles of the TLS protocol and Wi-Fi Aware technology are presented
in this section together with how they are utilized in the solution. Also, the security
principles used in the solution are presented and justified to better understand the
schemes and protocols being used.

3.2.1 Wi-Fi Aware

The Wi-Fi Aware Specification, previously known as NAN, is described in the
publication of Wi-Fi Alliance [5]. Devices that support Wi-Fi Aware can autonomously
form clusters of devices and advertise services to facilitate IP communication via
Wi-Fi or Bluetooth LE. Bluetooth LE is used for low energy devices and service
discovery to reduce power consumption [4]. Wi-Fi Aware operates on the link layer
in the Open Systems Interconnection (OSI) model and is responsible for transferring
data frames between nodes across the physical layer [5]. MAC addresses are used to
deliver data link frames to and from the correct destination.
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A Wi-Fi Aware cluster comprises a group of devices listening on the same channel
and synchronized to the same "heartbeat" or clock. A Discovery Window (DW)
specifies the channel and clock on which all devices must converge to achieve optimal
performance. Devices wake up during the DW to listen for or advertise services, as
illustrated in Figure 3.3. Synchronization allows the devices to continuously search
for other devices without transmitting and receiving messages, thereby reducing
power consumption.

Figure 3.3: Illustration of the DW in which devices wake up to discover services
and receive Synchronization Beacons.

3.2.2 Roles

The device responsible for the synchronization of the DW is called the Anchor Master
(AM). The Master role is responsible for propagating Discovery and Synchronization
Beacons, which is a resource demanding task. Thus, to achieve fairness, this role is
periodically alternated. In order to determine the role of each device, their Master
Rank (MR) is calculated based on three values: their Master Preference (MP), a
Random Factor (RF) and their Wi-Fi Aware MAC address [5]. The MP is a value
that each device sets based on how much it wants to be the AM in the cluster. The
MR is a value between 0 and 255 and is calculated as follows:

Master Rank = MP * 2ˆ(56) + RF * 2ˆ(48) + MAC[5] * 2ˆ(40) + ... + MAC[0]

Based on how the MR is calculated, the MP is the value that affects the MR the
most. According to Wi-Fi Alliance, a device with fewer battery restrictions will have
a higher preference and is more likely to have a Master role [5]. Devices with a large
battery capacity, stable clock, or devices connected to a power source should choose a
large MP value. Devices that are periodically moving, such as mobile devices, should
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select a lower preference. If two devices have the same MP, fair battery sharing is
provided by having each device change its Random Factor every 1 to 2 minutes [19].

Figure 3.4: Wi-Fi Aware cluster discovery, synchronization and service discovery.

3.2.3 Cluster and Service Discovery

In order to form a cluster, devices must discover and synchronize with each other.
Figure 3.4 illustrates this process. Devices can discover nearby clusters by listening
for Discovery Beacons transmitted outside the DW by a device operating in a Master
role, as shown in Figure 3.3. Transmission is on common channels in either the 2.4
GHz or 5 GHz band. If a cluster is not detected, the device establishes a new cluster
and starts transmitting Discovery Beacons advertising its presence. If a cluster is
detected, the device receives synchronization information about time frames and
channels. The last step is the service discovery process, where devices can publish a
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service or subscribe to one that matches their needs, such as an instant messaging
service.

The device clock must be synchronized to an AM clock in order to know which
channel and what time to listen for or announce services. Thus, devices only
participate in one cluster at a time. For this reason, Wi-Fi Aware specifies an
algorithm that causes clusters in overlapping areas to converge into one cluster [5].
A device will converge if it receives a Synchronization Beacon from another cluster
with a higher Cluster Grade (CG). The CG is calculated based on the AM Rank
and Time Synchronization Function (TSF) of the cluster. A TSF keeps the clocks
of devices in the same cluster synchronized. If the AM discovers another cluster
with a higher CG, it will converge with that cluster. Prior to this, it will transmit a
Synchronization Beacon to the previous cluster containing information on how to
converge with the new cluster. Cluster merging enables devices to share services
with a larger audience and reduces traffic.

3.2.4 Publish and Subscribe Messages

Every device works as both a publisher and a subscriber in the proposed instant
messaging solution. The publisher is responsible for continuously transmitting
messages on the air advertising its service and awaiting requests from subscribers.
The subscriber is responsible for listening for matches to the transmitted messages.
Each device must have the ability to publish and subscribe to the instant messaging
service advertised in order to be able to initiate and respond to a data path connection.
In a P2P network, all devices have equal responsibility and functionality. Being
assigned fixed roles as either publisher or subscriber would limit the solution’s
usability and not correspond well with instant messaging functionality.

Before establishing a data path, the devices must agree upon which devices use its
publish session and which devices use its subscribe session in order to avoid setting
up two data paths. The MAC address of each device is used to decide which session
to use. This is achieved by converting the address to a decimal value for comparison.
The device with the highest MAC address keeps the publishing session, and the other
keeps the subscribe session.

3.2.5 Security

After a device has obtained either a publish or subscribe session, a data path can
be established. This process is illustrated in Figure 3.5. The subscriber initiates
a 4-way handshake by requesting the data path. The data path is secured using
IEEE 802.11 WPA2 based frame encryption to protect the Data and Action frames
being exchanged [5]. Encryption is an optional feature in Wi-Fi Aware and must be
implemented by the developer. A Wi-Fi Aware Shared Key Cipher suite is used in
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the proposed solution, in which each device knows a Pairwise Master Key (PMK)
derived from a Pre-Shared Key (PSK)[5]. The PSK is a passphrase comprising 8 to
63 ASCII characters and is retrieved when downloading the application. Knowledge
of the PMK is confirmed during the handshake. Wi-Fi Aware supports several cipher
suites and the strongest scheme supported by both devices is selected. The minimum
requirement is to use Counter Mode Cipher Block Chaining Message Authentication
Code Protocol (CCMP)-128 for frame encryption, SHA-256 for the hashing function
and HMAC-SHA-256 for the key derivation function. The CCMP protocol uses
the CBC-MAC protocol that uses the Advanced Encryption Standard (AES) and
provides confidentiality and integrity. AES is explained in more detail in Section 3.3.1.
In order to establish a temporary shared symmetric key for encryption, PMK and
nonces are negotiated during the handshake.

A privacy feature provided by Wi-Fi Aware is the use of local Wi-Fi Aware
Interface Addresses that change periodically [5]. Unlike fixed MAC addresses, local
and dynamic addresses prevent user location and behavior tracking. Address tracking
can result in the identification of users and is a breach of privacy.

3.2.6 mutual Transport Layer Security

As previously presented, mTLS is a widely used and studied protocol for securing
communication in client-server relationships. The protocol requires both client and
server to provide a certificate for the authentication of both parties. In a decentralized
P2P network, all peers have the same functionality and privilege. Thus, each user
has an equal reason for proving their identity, making the mTLS protocol suitable
for authentication in the proposed solution.

In addition to authentication, mTLS uses cryptographic algorithms negotiated
during a 4-way handshake to provide message confidentiality and integrity. Messages
are encrypted to prevent unauthorized persons from reading the messages and
integrity ensures that the receiver can detect any unwanted modification of the
message during transmission.

Establishing an mTLS connection between a client and a server requires a 4-way
handshake between the participating parties, as shown in Figure 3.6. The purpose
of a 4-way handshake is to negotiate cryptographic capabilities, protocol version,
exchange certificates and material to establish keys [6]. Each device may have different
cryptographic capabilities. Thus, negotiation is needed to select an algorithm that is
supported by both client and server. The key established in the handshake protects
all messages sent after the handshake and is part of symmetric key cryptography, as
explained in Section 2.1.1.
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Figure 3.5: The 4-way handshake process of Wi-Fi Aware. The handshake illustrates
a subscriber discovering the services offered by a publisher and then requesting a
secure data path.

3.3 Cryptography

The proposed solution uses several cryptographic principles to provide confidentiality
and integrity protected data transfer over an insecure channel. In mTLS this is
achieved using symmetric and asymmetric encryption. The objective is to protect
against a malicious adversary trying to read or modify the messages exchanged.
A high level of security is achieved by selecting cipher suites and a key exchange
algorithm supported by TLSv1.3. TLSv1.3 removed support for several outdated



30 3. PROPOSED SOLUTION

algorithms and ciphers due to known vulnerabilities and attacks [6].

The key exchange algorithm, Elliptic Curve Diffie–Hellman Ephemeral (ECDHE)
with Elliptic Curve Digital Signature Algorithm (ECDSA), uses Elliptic Curve
Cryptography (ECC) keys and is the only key exchange algorithm supported by
TLSv1.3. The algorithm is used to exchange keys for use in symmetric encryption, and
mandates Perfect Forward Secrecy [27]. In the event of long-term key compromise,
forward secrecy protects the long-term key from exposing the session keys. Session
keys are used to encrypt the messages sent, and a compromise of this key could
expose an entire conversation.

ChaCha20 with Poly1305 and AES 128 in Galois/Counter Mode (GCM) are
the cipher suites used for symmetric encryption in the proposed solution. Using
ChaCha20 with Poly1305 is fast and battery friendly and is therefore suitable for
running in phones. However, AES is still the standard encryption algorithm used
[28] and is faster than ChaCha when used in a device that includes specialized AES
hardware [28]. Two different cipher suites have been selected in order to investigate
whether using ChaCha as an encryption scheme would result in shorter message
times.

Both cipher suites used in the proposed solution are Authenticated Encryption
with Associated Data (AEAD) ciphers. An AEAD is an algorithm that provides
confidentiality, integrity and authenticity of messages [29]. The algorithm combine
an encryption and a Message Authentication Code algorithm into one, making
implementation simple and reducing the amount of computation. TLSv1.3 only
supports the use of AEAD algorithms.

3.3.1 Elliptic Curve Cryptography

Elliptic Curve Cryptography (ECC) is a cryptographic scheme in which the security
is based on the discrete logarithm problem being a hard problem. Finding the discreet
logarithm problem for a point from a random elliptic curve in polynomial time is not
feasible with current computers [30].

An ECC scheme using symmetric encryption and a public-key system is called a
hybrid encryption scheme. Implementing ECC as a hybrid scheme is the standard
way of using ECC and is called the Elliptic Curve Integrated Encryption System
[31]. The material used to establish the key to be used in symmetric encryption
is sent using public-key cryptography. The keying material is determined using a
key agreement, which is a technique used to agree on the key material to be used
when creating keys. In ECC, both participating parties contribute to the input for
the keying material. In mTLS, the keying material is exchanged during the 4-way
handshake using ECDHE, as shown in Figure 3.6.
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Figure 3.6: Message flow for the mTLSv1.2 handshake protocol [32].

Elliptic Curve Diffie-Hellman Ephemeral

A widely used key agreement protocol is Diffie-Hellman and, more specifically,
ECDHE. Diffie-Hellman Ephemeral is a key exchange protocol. The term ephemeral
stands for temporal, meaning the protocol discards the keys after use. Diffie-Hellman
enables the secure exchange of keying material over an insecure channel in order to
establish a shared secret [33].

Elliptic Curve Digital Signature Algorithm

In 2009, a new digital signature technique, ECDSA, was introduced [8]. It uses keys
generated by using points on an elliptic curve and can therefore use smaller keys
and shorter signatures to achieve the same security features as a traditional Digital
Signature Algorithm (DSA) scheme [34].

3.3.2 Encryption Schemes

The solution proposes two symmetric encryption schemes, AES in GCM and ChaCha20
with Poly1305, in order to compare the efficiency of the two schemes implemented in
the proof-of-concept application.
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A widely used symmetric encryption algorithm is the Advanced Encryption
Standard (AES) algorithm, which was finalized in 2001 and designed to replace
the previous algorithm Data Encryption Standard [8]. AES increased the key size
required, offering 18-, 192-, or 256-bit keys [8]. AES combined with GCM is an
authenticated encryption algorithm with AES as the block cipher and GCM as the
mode of operation, which incorporates Counter mode [29]. Counter mode can use
pipelining in hardware implementation and is the mode of choice when developing
high-speed applications. However, it does not provide message authentication. Thus,
the AEAD algorithm AES in GCM includes a Message Authentication Code that is
based on polynomial hashing [35].

Another AEAD algorithm is ChaCha20 with Poly1305, designed by Adam Langley
in 2013 [36]. It combines the symmetric stream cipher ChaCha20 and the crypto-
graphic message authentication code Poly1305, both of which were first designed by
David J. Bernstein. ChaCha20 is used to encrypt messages, while Poly1305 ensures
the integrity and authenticity of the message [37]. The key size is 256-bit. ChaCha20
with Poly1305 was designed as a response to the concerns of the existing cipher suites
in TLS, such as attacks on the stream cipher RC4 [38]. AES-GCM addresses some
of these concerns. However, the performance of AES-GCM and implementing it
effectively in software are still concerns. Both ChaCha20 and Poly1305 were designed
for high performance in software implementation. In addition, ChaCha with Poly1305
was designed for easy implementation into software without it being vulnerable to
software side-channel attacks as they minimize the leakage of information [38].



Chapter4Proof-of-Concept Application

This chapter describes the proof-of-concept application created in order to verify
the proposed solution presented in the previous chapter. Specifics regarding the
functionality of the application, simplifications and technical details will be covered.

4.1 The Authentication Component

Users typically connect to an application server over the Internet in order to sign
up and register a profile in order to receive a certificate. Creating a server that
manages the sign-up of new users and issues signed certificates is beyond the scope
of this thesis. In the proposed solution, an authentication component was created by
manually signing Certificate Signing Request (CSR)s on an Ubuntu machine using
the OpenSSL toolkit1. OpenSSL is an open-source command line tool that can be
used to generate key pairs and sign CSRs.

The authentication component was created by generating a private-public Elliptic
Curve key pair with a corresponding root certificate. The component worked as
a CA responsible for signing CSRs and issuing all of the client/server certificates.
The process of creating and signing certificates was performed manually due to the
limited number of devices involved in the testing process.

4.1.1 Generating Certificates

User credentials were created using the Java Keytool 2 command. The Keytool
command is used to store, manipulate and access key pairs and certificates in a Java
Keystore. The generated private-public key pair of the user was used to create a
keystore and a CSR.

1OpenSSL,https://www.openssl.org/
2Java Keytool,https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
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Two types of certificates were created: a validated certificate signed by the CA
and a self-signed certificate. Self-signed certificates are not possible to use in an
mTLS connection because it has not been signed by the CA. A user will only use one
of these certificates, depending on whether it signed up to the service while online or
not. If the user signed up, it will always use the certificate provided by the CA since
it is signed by a mutual trusted party.

A valid certificate is generated by providing the CSR to the CA and then using
OpenSSL to sign the CSR using the CA’s private key. A self-signed certificate is
generated by using the client’s own private key to sign the CSR.

The root and the client certificate are loaded into the client keystore. This process
is the same for the CA signed certificate and the self-signed certificate. The keystore
is then manually loaded into the internal file system of each phone and used for
setting up a TLS connection. This process was also performed manually due to the
limited number of devices.

For simplicity during development, no intermediate certificate acting as a middle-
man between the root certificate and the client/server certificate was used. This
could be added for an extra layer of protection as it would minimize the damage in
the event of a security breach.

4.2 The Application

The application comprises of two graphical user interfaces: the Main Activity and
the Chat Activity. The Main Activity lets the user see nearby peers, and the Chat
Activity lets the user chat with other peers in the formed cluster.

4.2.1 Main Activity

The Main Activity is the first interface presented to the user and is responsible for
handling the Wi-Fi Aware functionality and setting up the application server. The
Wi-Fi Aware functionality includes turning on the Wi-Fi Aware hardware, joining
or forming a cluster, establishing a subscribe and publish session and establishing a
data path.

Figure 4.1 displays the interface presented to the users showing the peers available
for communication in the cluster. Selecting a MAC address from the list will launch
the Chat Activity and a TLS connection to that user will be initiated. The owner
of the MAC address will receive a notification stating that another user wishes to
communicate. Also, the Main Activity handles PA functionality and enables users to
request authentication before starting to chat with a peer.
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Figure 4.1: The Main Activity interface.

4.2.2 Chat Activity

A TLS connection between two peers is initiated when the Chat Activity is launched.
The device that first launches the Chat Activity becomes the client in the connection.
If a mutually authenticated connection can take place, messages are exchanged and
will appear in chat bubbles. This applies to users with certificates signed by the CA
and users who are verified by another peer. The chat view does not differ. Figure 4.2
displays the user interface, in which the purple messages are the messages sent by
the user and the white messages are those messages that are received. The messages
are displayed in chronological order. To send a message, the user has to tap the
message field on the bottom, then click on the send button.



36 4. PROOF-OF-CONCEPT APPLICATION

Figure 4.2: The Chat Activity interface.

4.2.3 Peer Authentication

If a user has a self-signed certificate, the authentication status is displayed in the top
left corner in Main Activity. Figure 4.3 shows a user with a self-signed certificate that
has not yet been verified by a peer. This user can request authentication credentials
from a peer in the list by clicking on an address. By utilizing Wi-Fi Aware short
messages in the proof-of-concept application, short messages of a length of up to 255
bytes can be exchanged. This enables devices to exchange public keys and signed
messages in order to receive PA.

When an authenticated user receives an authentication request, it is presented
with an option box that enables them to decline or accept the request. The option box
displays the request made by a MAC address as shown in Figure 4.4. By answering
"YES", the authentication credentials are returned to the unauthenticated user and
the TLS server is started. As a result, the PA display is changed and the user is
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notified about the authentication, see Figure 4.3.

Figure 4.3: Display showing the status of an unauthenticated user before (left) and
after (right) PA.

The signed key is stored in internal storage by both the authenticator and the
peer-authenticated user. It is used as part of the PA credentials and sent during
requests for PA TLS connections. If the credentials provided in the connection request
are not valid because the user has no knowledge or does not trust the peer that
issued the authentication credentials, it is given the option to authenticate the user
itself. An option box will be presented to the user and the same procedure as above
takes place. In order to simplify the implementation, only the peer-authenticated
user is able to request the start of the PA server in the proof-of-concept application.
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In the decentralized authentication scheme presented by Santos-González et al.
[24], the unauthenticated user is provided with the certificate of the user authenticat-
ing it. However, the certificates used in the application are about 700 bytes, which
is too large to send using Wi-Fi Aware short messages. Instead, the public key of
authenticated users’ are stored in internal storage the first time two devices make an
authenticated connection. The public keys used are around 124 bytes. The list of
authenticated users is exchanged with other authenticated users upon contact. An
option is to divide the certificate into separate parts and send it piece by piece using
Wi-Fi Aware short messages. However, messages could be lost or sent in the wrong
order, making it difficult to reassemble the certificate [39].

Figure 4.4: Option box including the MAC address of the user requesting authenti-
cation, presented to the verifyer.
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4.2.4 Cryptography

The cipher suites selected, ChaCha20 with Poly1305 and AES 128 GCM, were hard-
coded into the application in order to test which would perform better when it came
to sending messages. In order to choose the cipher suite in Android Studio, the TLS
version had to be downgraded to version 1.2 since cipher suites cannot be customized
when using version 1.3 [40].





Chapter5Results

This chapter aims to experimentally validate the proposed solution by performing
experiments and analyzing the operation of the proof-of-concept application. Network
traffic between devices was captured to validate the security provided by Wi-Fi Aware
and examine its performance. In addition, Android Studio logs were examined and
presented to validate the security mechanisms that were proposed and implemented
in the application. The results are presented according to the layers of the OSI model
in a bottom-up order.

Additional experiments were conducted to measure the performance of Wi-Fi
Aware technology and the additional security measures implemented in the application.
This include measuring the time used to connect to a Wi-Fi Aware network, time
used to send messages using the two proposed cipher suites, and time used to set up
a PA connection. Finally, the alternation of the Anchor Master (AM) role depending
on battery levels was studied in order to analyze the battery distribution principle
stated by the Wi-Fi Alliance.

5.1 Security

5.1.1 Link Layer Security

The results from this section were produced using a USRP B200mini to capture
data frames sent between Samsung Galaxy A71 and S9 devices. Frame capture was
performed on channel 149 in the 5 GHz frequency band and channel 6 in the 2.4
GHz frequency band as these are the channels on which Wi-Fi Aware operates [5].
Wireshark was used to analyze and present the findings of the captured frames. It is
worth noting that Wireshark recognizes and displays Wi-Fi Aware frames as NAN
frames.

Figure 5.1 shows a Data frame containing the Wi-Fi Aware Interface addresses of
two communicating parties. This means that the Wi-Fi Aware Interface addresses are
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visible to any third party listening in on the correct channel. These addresses conform
to the MAC-48 convention. Frames broadcast by a device running continuously over a
long period were captured. It was observed that the addresses changed approximately
every 30 minutes, as well as whenever the application was restarted.

Figure 5.1: Wi-Fi Aware QoS Data frame showing the Wi-Fi Aware Interface
addresses of the receiver and the transmitter.

The device that first started the proof-of-concept application created the cluster
and therefore also selected the Basic Service Set Identifier (BSSID). A beacon frame
containing the BSSID can be seen in Figure 5.2. The BSSID conforms to the MAC-48
convention and uniquely identifies the address of the Wi-Fi Aware cluster. It was
noted that the BSSID persisted, even though when the device that started the cluster
left. The device that took over as the AM of the cluster used the same BSSID to
advertise the cluster’s capabilities. It is worth noting that unlike traditional APs,
BSSID is not the same as the MAC address of the device creating the cluster. A
manual check of the Network Interface Card (NIC) of the device against the BSSID
in Figure 5.2 confirmed this. A device leaving the cluster was emulated by closing
the application on the device. As long as one device remained in the cluster, the
address was the same.

Figure 5.2: Wi-Fi Aware Synchronization Beacon frame showing the BSSID of the
cluster.
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It was noted that the Samsung Galaxy A71 model generated a unique BSSID
each time it created a cluster, while the S9 model used the same BSSID. Figure
5.3 shows the same BSSID used to create two different clusters. A new cluster was
created by restarting the application on all the devices.

Figure 5.3: Wi-Fi Aware Synchronization Beacon frames sent from a Samsung
Galaxy S9, showing the same BSSID used for two different clusters.

A WPA2 protected data path with pairwise security association was established
during the 4-way handshake, as shown in Figure 5.4. This corresponds with the Wi-Fi
Aware Specification regarding how a secure data path is established [5]. During the
setup, a symmetric key was established from the PSK. The PSK was specified during
implementation and installed on the devices. After the handshake, the established
symmetric key was used in encryption to protect the Data frames, as shown in Figure
5.5. A third party capturing a handshake cannot decrypt messages without having
access to the PSK from the application’s source code.

Figure 5.4: Wi-Fi Aware handshake showing the data path establishment and the
installation of keys.
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Figure 5.5: Protected flag set in QoS Data frame after the 4-way handshake.

Unlike Wi-Fi Direct, Wi-Fi Aware does not use Wi-Fi Protected Setup (WPS)
where the AP manually confirms incoming connections to the network. Anyone
with the same Wi-Fi Aware application can discover, connect and set up encrypted
data paths using the PSK installed on the device. The observation that all devices
running the proof-of-concept application were able to join clusters and set up networks
validates this.

Figure 5.6: Capture of frame were CCMP encryption protocol is enabled.

The captured packet in Figure 5.6 shows that the CCMP encryption protocol
was enabled after a complete handshake. The CCMP protection was present in Data
frames and Action Management frames.
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5.1.2 Transport Layer Security

The link layer alone is not sufficient to provide verification of users’ identities because
of the lack of authentication mechanisms in Wi-Fi Aware. Thus, authentication of
users is provided using the mTLS protocol. The TLS protocol ensures that messages
cannot be tampered with, in both mTLS and PA communication.

A high level of security is achieved by forcing every device to use the cipher suites
recommended in TLSv1.3, as previously explained in Section 3.3. If a device lacks
support for the cipher suites available or does not support the necessary TLS version,
a communication request will be denied. Figure 5.7 shows a failed handshake due
to the client using TLSv1.1 instead of TLSv1.2, as required by the server. A client
or server without a valid certificate in an mTLS connection will also result in the
handshake failing.

Figure 5.7: TLS Handshake failure caused by a client using the wrong TLS version.

5.1.3 Application Layer Security

A client requesting PA credentials or a PA connection is verified in the application
layer. Instead of mutual authentication being performed in the transport layer, as in
mTLS, the client is authenticated using the cryptographic schemes implemented in
the proof-of-concept application. Figure 5.8 shows the successful verification of a peer.
The server is started and accepts incoming connections from the recently verified peer.
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An authenticated peer will only start the PA server if the authentication credentials
provided are valid and signed by a known authenticator, as shown in Figure 5.9.

Figure 5.8: Android Studio log showing an authenticated user verifying a peer.
The signature was valid so the PA server could start and accept the connection.

Figure 5.9: Android Studio log showing that the PA server did not start because
the credentials provided were not signed by a known authenticator.

5.2 Performance

To evaluate the proposed solution, several aspects were tested and measured. This
include the discovery and connectivity delay of Wi-Fi Aware, the performance of
the proposed PA scheme, the time it took to send messages with mTLS with AES
and ChaCha20 separately, and the alternation of the AM role according to battery
levels. The following sections contain the measured results and observations from
experimental trials, involving devices running the proof-of-concept application. In
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experiments that required multiple application runs, a bash script interacting with
the devices through ADB was used.

5.2.1 Wi-Fi Aware Connectivity

The Wi-Fi Aware connectivity performance was tested using two Samsung Galaxy
A71 smartphones and the proof-of-concept application. The application was restarted
500 times on each phone. The application was first started on one device, followed
by a few seconds delay, and then started on the second device. This allowed the
first device to create a cluster before the second device joined. After the devices had
discovered each other and a connection had been made, the application was restarted
on both devices. The measured times were obtained by writing them to a file on the
second device.

The main Wi-Fi Aware events leading up to connectivity were measured and
isolated, as shown in Table 5.1. The time required to start the application was also
included. Starting the application includes the time used to set up the SSLContext 1

for each run. The SSLContext handles device keys and the certificate necessary for
establishing an mTLS connection. Restarting the application between each use and
setting up an SSLContext is not expected user behavior. Thus, the total time is
somewhat less for normal use. The service discovery time shows the time used to
discover a published service. The connectivity time shows the time from the moment
the service is discovered until a secure Wi-Fi Aware data path was set up between
the devices, see Figure 5.4.

Table 5.1 presents statistical summaries for total connectivity time deconstructed
into separate events. Connectivity is the most time-consuming event with a mean
of 2.63 seconds. There was considerable variation in connectivity time across the
experimental runs. The mean value exceeded the median, indicating a right skewness
in the distribution of connectivity times. The connectivity time included the time
used to perform the 4-way handshake. Observations made analyzing captured Wi-Fi
Aware frames showed that it could take between 0.22 and 4.75 seconds to perform
a handshake or parts of a handshake. The second most time-consuming event was
starting the application. It can be seen that the time it took to start the application
is almost constant across the 500 runs, with a Standard Deviation (SD) of 0.01
seconds. Starting the application included setting up an SSLContext, which takes
around 1.17 seconds. The third most time-consuming event was the service discovery,
which presented a mean value of 0.64 seconds and a SD of 0.14 seconds. Finally, the
time it took to attach to a cluster is close to negligible.

1SSLContext, https://developer.android.com/reference/javax/net/ssl/SSLContext

https://developer.android.com/reference/javax/net/ssl/SSLContext
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Mean Median SD

Starting the application 2.46 2.46 0.01
Attach to cluster 0.08 0.09 0.02
Service discovery 0.64 0.62 0.14
Connectivity 2.63 2.53 0.93
Total time 5.81 5.69 0.95

Table 5.1: Statistical summaries of Wi-Fi Aware connectivity times (seconds),
across 500 runs.

A further analysis is provided by visualizing the time used to discover a service
and establish a connection to another peer. The Cumulative Distribution Function
(CDF) plot from Figure 5.10 shows that the discovery time was almost constant,
with the exception of a few large outliers. This corresponds to the right skewness
of the distribution previously mentioned. The six individual runs that caused the
right skewness in the discovery times can be identified from the highest spikes in
Figure 5.11. There was a low autocorrelation (lag-1) of 0.018, meaning that there is
no evident pattern between two subsequent runs. This indicates that the spikes in
discovery delays occur at random.

The variation in connectivity times was much greater than for discovery times, see
Figure 5.10. This process can take up to 8 seconds. It can also be seen that the figure
has a few plateaus, which correspond to an aggregate of connection times of around
2 seconds and 2.6 seconds, respectively and Figure 5.12 confirms this. The frequency
of the aggregated times is similar. Figure 5.12 also shows that the distribution is
right skewed, meaning there are runs that take significantly more time than the mean.
Figure 5.13 shows a scatter plot of two subsequent runs. There were no occurrences
of two long subsequent connection times. This yields a negative autocorrelation
(lag-1) of -0.078. However, no formal statistical test has been conducted, so it cannot
be claimed that the negative autocorrelation is statistically significant.

To investigate whether it was a dependency between the discovery and connectivity
times within a run, the correlation between the two data sets were calculated. The
correlation was found to be 0.025, which means that there is no dependency.

An additional experiment was performed to further investigate the variation in
connectivity times. The experiment was carried out in the same way as before,
but information about the subscriber/publisher session role was also recorded. The
experiment showed that the device was acting as publisher in approximately 50% of
cases, and subscriber in the remaining cases. Figure 5.14 explains the aggregate of
times around 2 and 2.6 seconds, as previously mentioned. When the device serves as
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Figure 5.10: CDF plot of service discovery and connectivity times (seconds), across
500 runs.

Figure 5.11: Discovery and connectivity times (seconds), across 500 runs. Shown
by run.

the subscriber, it uses less time to establish connectivity.
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Figure 5.12: Histogram of connectivity times (seconds), across 500 runs.

Figure 5.13: Scatter plot of connectivity times (seconds) of two subsequent runs,
across 500 runs.

5.2.2 Peer Authentication Connectivity

The performance of the PA scheme was evaluated based on the time it took to receive
PA and the time it took to request and start the PA server. The time was measured
and recorded across 500 runs. Three Samsung Galaxy A71 devices were used in the
experiment. The prerequisites for the experiment was that a data path had been
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Figure 5.14: Histogram of connectivity times (seconds) depending on session role,
across 500 runs.

established between the communicating devices. For testing purposes, all requests
and responses were automated, and no user input was required. All times were
recorded on the peer-authenticated device.

Table 5.2 shows statistical summaries calculated from the data collected during the
experiment. The verify peer event was measured from the time of the authentication
request until the user received the authentication credentials. The average time used,
a mean of 1.78 seconds, is significant.

The request connection event is the time it took to request and receive a response
that the PA server had started and was ready for communication, as shown in
Table 5.2. The average time used, a mean of 2.32 seconds, is considerable. The event
is required every time a peer-authenticated user wants to communicate with another
peer and is therefore added to the total connectivity time.

Mean Median SD

Verify Peer 1.78 1.77 0.10
Request Connection 2.32 2.24 0.42

Table 5.2: Statistical summaries of the time (seconds) used to verify a peer and
request a PA connection, across 500 runs.
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5.2.3 Alternation of the Anchor Master Role

According to the Wi-Fi Aware Specification [5], the AM Role alternates between
devices in order to evenly distribute resource usage. In order to validate this statement,
a USRP B200mini was used to capture the Wi-Fi Aware packets. The packets were
analyzed in Wireshark. The testing was be divided into two scenarios, in which
scenario 2 comprises of three parts. For the first scenario, four identical Samsung
Galaxy A71 smartphones were used. The same four phones were used during the
second scenario, with the addition of the Samsung Galaxy S9 smartphone.

Scenario 1: Four Samsung Galaxy A71s

In the first scenario, the devices had different battery levels. One device was also
connected to a power source. The capture from Figure 5.15 shows the Synchronization
and Discovery Beacon frames transmitted by the AM, broadcasting information
about the newly established cluster. The device that created the cluster started as
the AM with both Master Preference (MP) and Random Factor (RF) set to 0, as
shown in Figure 5.16. It can also be noted that the Hop Count to AM was zero,
which verifies that this device was actually the AM. When the second device joined,
it assumed the role of AM because it had a higher MP value, as shown in Figure
5.17. Observations showed that the second device to join always had the Master
Rank (MR) set higher than the device that established the cluster, with MP and RF
set to zero.

Figure 5.15: Discovery and Synchronization Beacons broadcast by the AM.

By examining the frames in Wireshark when all four devices were connected, it
was clear that all devices had the MP set to one. Because the MAC address was the
same on each device during the experiment, the only factor that affected the MR
value was the RF.

Scenario 2: Four Samsung Galaxy A71s and one Samsung Galaxy S9

Scenario 2 included five devices, four A71 devices and one S9. Three experiments
were conducted using this setup. In the first experiment, the five devices were fully
charged. The second experiment was performed similarly but the S9 was connected
to a power source. Both these experiments were conducted once each. For the last
experiment, a more in-depth study of how the MP was affected by the battery level
on the S9 was conducted.
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Figure 5.16: MP and RF of the device that initiates the cluster.

Figure 5.17: MP and RF of the second device to join the cluster.

In the first two experiments, the application was first started on the four A71
devices, then on the S9. An examination of the captured frames in Wireshark showed
that the S9 took over as the AM after it had connected to the cluster in both
experiments. The MP was 0x76 in the first experiment and 0x61 in the second.

The last experiment investigated how different battery values affected the MP by
recording the MP values for the S9 at two different battery levels. In order to record
the values of a fully charged device, 100% battery level, the charger was connected
for the entire experiment. The second values were recorded when the device started
at 50% battery level decreasing to 40%, since it was not connected to a power source.
The application was restarted 100 times on the S9, while on the four A71 devices it
was started once and kept running throughout the experiment.
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Mean Median SD

100% battery level and connected to a power source 56.7 51.0 35.2
40% to 50% battery level 63.2 63.0 37.3

Table 5.3: Statistical summaries of the MP, value from 0 to 255, for a Samsung
Galaxy S9, across 100 runs.

The average MP value for the device connected to a power source was lower than
the average MP value for the device starting at 50% battery level, see Table 5.3. The
average MP was higher for a device with less battery, and not the opposite. The
variation was significant for both parts of the experiment and the SD of the averages
is 3.52 and 3.73, as shown in Figure 5.18.

Figure 5.18: Recorded values (decimal) for the change of the MP value for the
Samsung Galaxy S9.

5.2.4 Message Times with mTLS

The time it takes to send messages between two devices with mTLS was measured,
using both AES in GCM and ChaCha20 Poly1305 as cipher suites for comparison.
The system clocks on the phones were not synchronized. Thus, it was difficult to
accurately measure the time it takes to send a single message. Instead, two messages
were exchanged between the devices and the round trip time of the messages was
measured. The same device measured the transmission time by measuring how long
it took to send one message and then receive one back. Consequently, the time it
took to send one message is half the time it took to send a message and receive
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a message back. The measuring was carried out using two Samsung Galaxy A71
phones. The experiment included sending both short 3-byte and long 32,680-byte
messages. A prerequisite for the experiment was that an mTLS connection had been
established.

The time it takes to send two long messages using ChaCha20 as an encryption
scheme, was slightly less than the time it takes with AES, see Table 5.4. However, a
two-sided t-test gives the p-value 0.45, making the findings statistically insignificant.
It cannot be concluded that there were significant differences in the times.

The average time it takes to send two short messages between two devices was
also slightly less for ChaCha than for AES. A two-sided t-test gave a p-value of
7.37 · 10−6, which is very statistically significant. The mean of ChaCha was 0.083
seconds and the mean of AES was 0.097 seconds. Hence, this confirms the hypotheses
that messages sent using ChaCha perform better.

Mean Median SD

Total time ChaCha20 Poly1305 0.185 0.179 0.021
Total time AES in GCM 0.192 0.180 0.095

Table 5.4: Statistical summaries of the time (seconds) it takes to send two long
messages of 32,680 bytes with an mTLS connection, across 100 runs.

Mean Median SD

Total time ChaCha20 Poly1305 0.083 0.072 0.027
Total time AES in GCM 0.097 0.094 0.017

Table 5.5: Statistical summaries of the time (seconds) it takes to send two short
messages of 3 bytes with an mTLS connection, across 100 runs.
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The following sections will present the limitations and advantages of the proposed
solution by using the results obtained from the experiments and observations made
using the proof-of-concept application.

6.1 Security

The first research question in the introduction is as follows: "Is Wi-Fi Aware a
suitable connectivity technology in terms of ensuring confidentiality, integrity and
availability for an instant messaging application in areas in which internet connectivity
is unavailable?". The extent to which the chosen technology is suitable for instant
messaging is discussed throughout this chapter.

A solution to the research question "How can users be verified and participate in
authenticated communication, for both online and offline scenarios?" is presented
in Chapter 3. The limitations and vulnerabilities of the proposed authentication
solution are discussed.

As shown in the results in Section 5.1.1, Wi-Fi Aware can be used to establish a
data path, thereby ensuring the availability of an instant messaging service in out-of-
coverage areas. A data path is established by using a session obtained from either a
subscribed or a published service. Neither Android Developer nor Wi-Fi Alliance
specify best practices on how a device can be both a publisher and a subscriber of
the same service simultaneously. Use of the proposed and implemented solution,
described in Section 3.2.4, avoids the need to establish two data paths. The devices
decide which session should be used to establish a data path based on the two MAC
addresses involved. The use of two paths as redundancy was regarded as being
unnecessary due to the additional resource consumption.

A potential vulnerability regarding cluster formation and advertisements is the
device’s inability to distinguish between authentic and false Synchronization Bea-
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con frames. If a malicious device were to transmit false Synchronization Beacons
containing false information and disrupting the discovery process, it could result in
a DoS attack. This could disrupt the entire network, thus denying users access to
the service being sought. This would reduce the availability of the instant messaging
service. No attempt has been to incorporate a way of preventing/detecting this in
the solution.

User privacy is maintained by using dynamically changing Wi-Fi Interface ad-
dresses instead of fixed MAC addresses, as shown in Figure 5.1. These findings match
the feature of using dynamic Wi-Fi Aware Interface addresses specified by the Wi-Fi
Alliance [5]. Randomization of the address increases user privacy by preventing
malicious users from logging and tracking the addresses of nearby users. Address
tracking can result in identification of a user and can be used to keep track of which
users are communicating. If a malicious user was able to correlate an address to an
identity, addresses and identities would have to be mapped every 30 minutes, making
it resource consuming and unlikely to occur.

The S9 model used in the experiment generated the same BSSID every time it
created a cluster, introducing a potential breach of privacy. If an attacker were to
gain access to the identity that generated the cluster, the BSSID could be used in
any future session to map the address to an identity. Given that the findings are
based on testing a limited number of devices, it is difficult to state whether this is a
widespread issue.

The two models used in the experiment behaved differently regarding generation
of the BSSID. The differences can be explained by different Wi-Fi Aware settings
and configurations in different phone models. This is supported by findings regarding
the different AM preference properties in the two models.

Confidentiality is one of the fundamental security objectives of the CIA triad,
as presented in Section 2.1.1. The results in Section 5.1.1 show that confidentiality
is provided by Wi-Fi Aware on the link layer by encrypting messages with a key
established during a 4-way handshake. It could be argued that configuring WPA2 in
the proof-of-concept application is redundant, as the confidentiality of the messages
sent is also provided in the transport layer that uses TLS. However, this was
implemented in order to observe and test the protection and performance of Wi-Fi
Aware technology. Adding security measures to several layers of the OSI model is
a common practice in network operation and ensures secure communication. If an
attacker were to gain access to the PSK installed on the devices, it would be able to
decrypt the link layer frame. Due to the TLS protocol implemented in higher layers,
the attacker would still not be able to read the content of the message.

Observations made during the testing regarding access control showed that anyone
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with access to the application can prove knowledge of the passphrase (PSK) and
would therefore also be able to set up a protected data path to access the service.
The Wi-Fi Alliance states that the communication is authenticated, but this is purely
based knowledge of the passphrase. A user should not be considered trustworthy
only because of its ability to join the network and set up an encrypted data path. A
TTP does not authenticate a user’s identity making it possible for man-in-the-middle
attacks.

The shortcomings of Wi-Fi Aware were addressed by implementing authentication
schemes in the transport layer and application layer. The TLS protocol was mainly
added to provide authentication. However, the protocol also provides end-to-end
encryption and integrity checks to packets sent, adding redundancy to the solution.
Forward secrecy is provided in the solution by using ECDHE with ECDSA.

The proposed offline authentication scheme enables peers to verify other peers
in a web-of-trust way. As shown in the results, a peer with a valid signature on a
string can receive PA credentials if it can prove ownership of its public key. The
peer-authenticated user can then participate in TLS connections if it can provide
valid PA credentials.

There is no system to prevent a rogue user from accepting any PA request
it receives. However, since an authenticator must sign the authenticated peer’s
credentials, it is possible to keep track of malicious users. A solution similar to the
CRL, used in PKI architecture, could be used in the PA scheme. If a user is no
longer trusted, it should be included in a list of keys that should not be trusted to
sign a peer’s public key.

Unauthenticated users depend on being authenticated by other users. If no peer
wants to authenticate the user, it cannot participate in the communication. This
denies it access to the service.

The design of the PA scheme was based on the assumption that most devices
have been authenticated by the CA before going offline. Two devices that are peer-
authenticated are unable to communicate because they only have the functionality
to serve as the client in communication. This limitation reduces the user experience
and availability if more than one of the devices participating in a cluster is verified by
a peer. On one hand, this could deny users the ability to communicate. On the other
hand, the PA scheme increases the total availability of the system by enabling users
to be verified by other peers and thereby giving them the ability to communicate. It
is assumed that most devices sign up to the service and that the PA scheme works
as intended, which is as a backup solution to enable availability for unauthenticated
users.
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6.2 Performance

The service quality provided by Wi-Fi Aware used in the proof-of-concept application
will be discussed in this section. The delay of key events in the network setup is used
to answer the research question "How will Wi-Fi Aware perform as a connectivity
technology in a secure communication application, compared to other related solu-
tions regarding connectivity time and resource distribution across devices?". The
performance of the PA system is also discussed in the following section.

6.2.1 Wi-Fi Aware

The spikes in the connectivity time, found in Figure 5.11, can be explained by
the delay caused by the 4-way handshake. The handshake from Figure 5.4 took
approximately 0.5 seconds. However, observations show that it could take between
0.22 and 4.75 seconds to perform a handshake. The difference is caused by having to
retransmit frames, which also explains the large variation found in the data set.

A reason for the high number of retransmitted frames could be devices using a
different Discovery Window (DW) to send and receive messages. A device is only
awake for a short period of time and is not able to receive messages sent outside the
DW. Frames are retransmitted until a response is provided, as shown in Figure 5.4.
A device might not even wake up during the scheduled DW. This would explain why
there are such a high number of retransmissions. However, expectations are that this
behavior would affect the variation in the discovery delay, seeing as service discovery
frames are transmitted during the DW. The time used to discover a service is more
stable and less time consuming compared to the connectivity delay.

Synchronization Beacons are sent within the DW. If the device is somehow not
able to receive these beacons, it will not receive the most recent information about a
change of the DW.

Another reasonable explanation for the spikes in the connectivity delay and the
large variation is the unstable nature of Wi-Fi Aware messages. Short messages are
used to exchange MAC and IP addresses and are necessary for establishing a data
path. These messages might not have been delivered or are received the wrong order.
The frames must therefore be retransmitted before a handshake can occur, adding to
the connectivity delay and variation. This could happen, according to the Android
Developer pages [39].

An interesting finding is that most runs had a connectivity delay of either 2 or
2.6 seconds, as shown in Figure 5.12. The only factor that changed during each run
of the experiment was which device initiated the 4-way handshake. An additional
investigation showed that the connectivity delay was approximately 0.6 seconds
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longer when the device is acting as a publisher, as shown in Figure 5.12. However,
this implies that the second device participating in the communication, the device
that created the cluster, acted as a subscriber. The total connectivity delay should
be the same for each device and it cannot be concluded that being assigned the role
of initiator leads to less connectivity delay.

The USRP B200mini was unable to capture the full handshake of every run.
Knowing the total time of each handshake would have provided more insight into
how much the handshake added to the connectivity delay.

It is worth nothing that because each device broadcast publish messages and
listens for matching services, resource consumption is higher than for a device that
is just listening for or sending broadcast messages. This adds to the total resource
consumption of each device.

Wi-Fi Aware Wi-Fi Direct
Mean Median SD Mean Median SD

Discovery 3.18 3.16 0.14 3.42 3.07 1.17
Connection 2.63 2.53 0.93 2.03 1.90 0.46
Total time total 5.81 5.69 0.95 5.45 5.00 1.54

Table 6.1: Statistical summaries of Wi-Fi Aware (left) and Wi-Fi Direct (right)
discovery and connectivity delay (seconds), across 500 runs. SD is standard deviation.

The performance of Wi-Fi Aware as a connectivity technology regarding discovery
and connection delay is similar to the observation of Wi-Fi Direct presented by
Sigholt, Tola and Jiang [23]. A comparison of the statistical summaries of both
solutions is presented in Table 6.1. Wi-Fi Direct discovery is the time used by a
device to discover broadcasts sent by a group, and connectivity is the time used
by the same device to join the group. To compare the performance on an equal
basis, the Wi-Fi Aware discovery time is a summation of three events: starting the
application, attaching to cluster and service discovery.

On average, the Wi-Fi Aware solution used 0.24 seconds less to discover a service
than the Wi-Fi Direct solution. However, Wi-Fi Aware had a longer connectivity
delay, making the average total time to set up a connection 0.36 seconds less for
Wi-Fi Direct. This difference is probably unnoticeable in terms of user experience
and the average total time of the two connectivity technologies compared well.

Sigholt et al. [23] noted that the total time used to discover and connect to
a group could take up to 10 seconds in the edge cases. Considerable variation in
connectivity times is also present in the Wi-Fi Aware solution, making the total time
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to establish a network unpredictable.

The devices used in the Wi-Fi Direct solution experienced some difficulties
discovering group broadcasts, causing the device to set up a separate group. This
issue was not present in the experiment conducted with the Wi-Fi Aware application.

6.2.2 Peer Authentication

The verify peer event, a mean of 1.78 seconds, as shown in Table 5.2, is an additional
step that must be performed by an unauthenticated user before it can participate
in communication. Compared to signing up for a service, this cannot be considered
a time-consuming event. Signing up for a service often requires users to verify
ownership of an email address, in addition to providing in other personal information.
The verify peer event only has to be performed once within a cluster. However, if
the user joins a new cluster, in which the devices do not trust the verifier, the user
must receive new authentication credentials. If a user joins and leaves clusters on
a regular basis, the verify peer event would have to be performed frequently. This
would make the total time for connectivity considerable.

The request connection event, a mean of 2.32 seconds, only needs to be performed
by a peer-authenticated user, requiring additional time for communication compared
to an authenticated user. Since the time used to request a connection is measured
after a full data path has been set up, the total time to set up a connection is closer
to 8 seconds. This can be a considerable amount of time.

Several cryptographic computations are made in order to verify the peer requesting
the connection, which adds to the time. If the list of trusted authenticators is long,
the process of searching and checking signatures would be computationally expensive
and not suitable for resource-scarce devices. In addition, several short messages are
exchanged in a request connection event.

6.2.3 Alternation of the Anchor Master Role

The results from scenario 1 in Section 5.2.3 confirm that the device with the highest
MP value is assigned the AM role. The results also confirm that the device that
created the cluster started with MP and RF both set to zero. The devices that joined
the cluster always had these values set higher than zero. However, the results from
both scenarios 1 and 2 show that the Samsung Galaxy A71’s MP default value was
set to one. Thus, the only variable that contributes to alternating the AM role is the
periodically changing RF. This is consistent with how the MR value is calculated, as
explained in Section 3.2.2.
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The results from scenario 2 confirm that the device with the highest MP value
works as the AM, taking into account that the Samsung Galaxy S9 device was
assigned the AM role every time it joined a cluster during all three experiments.
The experiments also indicate randomness in how the MP values are generated, see
Figure 5.18. Surprisingly, the average value for the device with battery levels below
50% was higher than the average values for the device that was connected to a power
source, as shown in Table 5.3. The results indicate that battery level has seemingly
less relationship with the choice of the AM role. However, observations show that the
device model affects the Wi-Fi Aware settings and behavior. It cannot be concluded
that the same behavior is present in every device that uses the Wi-Fi Aware hardware,
due to the limited number of device models included in the experiments.

Although the MP has not been calculated as expected, the results confirm that the
AM role alternates between devices. Resource usage is distributed between devices,
unlike the solution presented by Sigholt, Tola and Jiang [23], in which one device is
responsible for broadcasting discovery information and managing connectivity among
devices.

6.2.4 Messaging

As expected, the average time used to send long messages was longer compared to
short messages. The average time was almost twice as much, indicating that the
byte stream had to be split up and sent in separate frames. It is unlikely that an
instant messaging application will be used to send messages with a length exceeding
32,680 bytes. Thus, the average time used to send short messages is therefore more
representative in terms of instant messaging scenarios.

Conducting the experiment with a smaller message size gave a very small p-value.
Based on the results, it could be concluded that ChaCha performs better than AES
when it comes to sending short messages. The speed for AES128 in GCM is 1909.1
Mb/s on a 2 GHz Intel Core i7, compared to ChaCha20 Poly1305 with a speed of
625.2 Mb/s [41]. However, without support for AES in the hardware, ChaCha20
Poly1305 is much faster, with 130.9 Mb/s on a Snapdragon S4 Pro compared to
AES with a speed of 41.5 Mb/s. Considering most phones do not include hardware
support for AES in GCM [41], ChaCha would perform better when used in an instant
messaging application.

Even though the average time of ChaCha is lower and the findings are statistically
significant, the times are so similar that a user would be unable to detect any
difference, performance wise, between the two cipher suites.
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6.3 User Experience

Several simplifications have been made to the proof-of-concept application. Function-
ality and methods were primarily added in order to validate the proposed solution
in regard to the research questions. Thus, the user interface lacks features that are
common in instant messaging solutions.

Before a user has established a TLS connection with another user, the list of
available devices will identify other peers by their Wi-Fi Aware MAC address. User
names are saved with the certificate and only shared after the TLS handshake has
been successfully established. This makes it difficult for users to know who is in the
group without establishing a TLS connection or meeting up.

Another limitation regarding user experience relates to PA. As previously men-
tioned in Section 3.1.6, it is not possible for two peer-authenticated users to com-
municate. However, the list of peers in the vicinity does not indicate this. All
peers are included in the list without anything indicating whether peers have been
authenticated or have a valid certificate issued by a CA. A connection must be
established before the application knows whether a peer has a valid certificate or has
been peer-authenticated.

In order for peers to always be able to receive messages, they have a server
continuously running after a network has been established. This is resource consuming
for the device hosting the application. However, in order to achieve the functionality
expected in an instant messaging application, in which all users receive and initiate
connections, this was considered necessary.
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People are becoming increasingly used to always being connected to the Internet
and sharing content such as messages and images. However, if a network goes down
and people find themselves in an area with no connectivity, social applications that
require access to a central server become unavailable. Using technologies that offers
device-to-device connectivity enables users to communicate with users who are close
by in internet-isolated locations.

The thesis presents a solution that provides secure instant messaging in out-of-
coverage areas, using Wi-Fi Aware. Wi-Fi Aware enables devices to be aware of
the services and information that are available to them as they move around and
to establish a data path for secure communication if certain matching criteria are
met. Measures to enable secure and authenticated communication are provided using
mTLS certificates downloaded from an online authentication server. The solution
also provides an alternative authentication scheme: PA, for users who have not signed
up for the service before moving to an internet-isolated locations.

In order to validate the proposed solution, a simple chat application has been
developed using Android Studio. The application offers secure communication with
end-to-end encryption between communicating peers, in addition to authentication
of users in both online and offline scenarios.

The performance and security features of the application have been tested and
considered. Even though Wi-Fi Aware is a good alternative to Wi-Fi Direct in
terms of performance and operation, the time used to set up a network between
devices is significant. Additional results showed that Wi-Fi Aware uses a fair resource
principle that alternates the responsibility of each device within a group. However,
observations made showed that not all phones fully support this functionality. Thus,
in order to benefit from this functionality in the future, the Wi-Fi Aware hardware
on phones might need an upgrade.
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The main drawback of the presented solution is the inability of peer-authenticated
devices to send instant messages to other peer-authenticated devices. The decentral-
ized authentication scheme is presented as a backup for use in emergency scenarios
or for one-time use. If a user is unable to reach the authentication server, it can
resort to the PA scheme for authentication. Taking into account the considerable
verification and connection time, the PA scheme should not be used as a standard
authentication method. It is assumed that once a user restores connectivity, it will
sign up for the service and download a certificate.

Another drawback is that the solution does not provide forwarding of messages,
meaning that users can only send messages to users within range of establishing a
network connection. The solution does not provide upper layer measurements that
enable one device to forward a message on behalf of another to a peer that is out of
range of the transmitter.

7.1 Further work

Below are suggestions about how the proposed system in this thesis could be improved,
in addition to alternative technologies that could be used to restore availability in
out-of-coverage areas.

Additional work on the PA scheme could be to further investigate the use of
certificates instead of public keys and different levels of trust. Similar to the web-of-
trust scheme, a user would have to have a minimum trust level before being able to
authenticate another user.

7.1.1 New features in Wi-Fi Aware

Wi-Fi Aware APIs are still being developed and new features are being added from
API level S from Android version 12. One new feature is the option to create a
network connection with multiple peers rather than having to create one for a specific
peer. This makes it possible to implement group chat functionality. Another new
feature is the option to measure the distance to other peers using a Wi-Fi Round
Trip Time [42]. It can be used to limit the distance at which Discovery Beacons
can be detected. In order to use this feature, the hardware must implement the
802.11-2016 FTM standard, which is not included in most phones. In addition to
using Wi-Fi Aware features implemented in the APIs by Android Development, the
Wi-Fi Aware Specification comprises many features and best practices that can be
further explored.
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7.1.2 TLSv1.3

TLSv1.3 includes several upgrades compared to TLSv1.2. One upgrade is a faster
handshake with Zero Round-Trip Time key exchange, enabling clients to send data in
the first message. However, this feature is not yet supported by Android Developer
[40]. Cipher suites that do not support perfect forward security are no longer
supported. Even though TLSv1.2 has been used in this project, only cipher suites
supported by TLSv1.3 have been used. Also, the renegotiation of parameters and
the generation of new keys is not supported by version 1.3, which prevents the risk
of downgrade attacks.

7.1.3 Bluetooth Mesh

Bluetooth Mesh was introduced by the Bluetooth Special Interest Group (SIG) as a
way of creating a large-scale network of devices. It uses the capabilities of traditional
Bluetooth BR/EDR and the more recent low energy consumption standard Bluetooth
Low Energy [43]. The Bluetooth standard introduces a many-to-many topology,
which means that potentially tens of thousands of nodes can participate in the
network [43]. If one node is damaged or leaves the network, the network simply
reroutes the packets immediately. Currently, Android and IoS-operated devices do
not natively support Bluetooth Mesh networking [44]. However, this could be an
interesting topic to look at for further studies.
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