
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Atle M
althe Sørenssen

Ensuring quality of covert police w
ork w

ith W
i-Fi and Bluetooth technology

Atle Malthe Sørenssen

Ensuring quality of covert police
work with Wi-Fi and Bluetooth
technology

Master’s thesis in Information Security (MISEB)
Supervisor: Professor Katrin Franke
Co-supervisor: Kyle Porter and Ivar Weider Moen

June 2021

M
as

te
r’s

 th
es

is

Atle Malthe Sørenssen

Ensuring quality of covert police work
with Wi-Fi and Bluetooth technology

Master’s thesis in Information Security (MISEB)
Supervisor: Professor Katrin Franke
Co-supervisor: Kyle Porter and Ivar Weider Moen
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Abstract

The extraction and interpretation of artefacts from digital evidence is highly rel-
evant for law enforcement. However, artefacts from wireless signals transmitted
from Bluetooth and Wi-Fi devices are to a limited extent used by the police today,
even though the data can contribute to investigations. In this master’s thesis, we
capture passive data packets from Bluetooth (Classic) and Wi-Fi and analyse the
data in order to find opportunities that the police can use to increase their situ-
ational awareness in cyberspace (and real life). More specifically, we perform sig-
nal correlation that links Bluetooth and Wi-Fi MAC addresses that belongs to the
same device. Combining metadata from these technologies allow us to identify the
devices even if a random Wi-Fi MAC address is used. In addition, by performing
geolocation, we track devices based on the received signal strength.

In the first part of this study, we designed and built a sensor network con-
sisting of six sensors using off-the-shelf hardware and free software. The Ansible
framework automated, among other things, several of the capturing processes.
With the sensor network fully operational, we completed our experiments by col-
lecting data from two groups of devices. Before starting the collection, we focused
on mitigating interference and multipath propagation. Among the collected data,
the most relevant data types, i.e. signal strength, MAC addresses and timestamps,
were imported into a SQL database.

The primary focuses of this study have been to use the data set to link sig-
nals back to their originating device and use geolocation methods (triangulation
and trilateration) to track devices. At the same time, we have explored different
filtering methods to remove irrelevant data and increase accuracy.

Our results show that the most reliable signal correlation algorithm was the
conversion from Bluetooth to Wi-Fi signal. This algorithm was able to link the
correct pair of MAC addresses with an accuracy between 29-40 %. Among the
three best signal pairs linked, it was between 43-70 % probability that the signal
pair derived from the same device. Among the five best signal pairs, the accuracy
increased between 57-80 %. The results from the geolocation methods showed an
accuracy between 1-7 meters from the actual location and the place of estimation.

iii

Sammendrag

Sikring og tolkning av artefakter fra digitale beslag er svært relevant for politiet.
Artefakter fra trådløse signaler som sendes fra Bluetooth og Wi-Fi enheter brukes
imidlertid i begrenset grad av politiet i dag, selv om dataene kan bidra i etterfor-
skningen. I denne masteroppgaven samler vi inn passive datapakker fra Bluetooth
(Classic) og Wi-Fi, og analyserer dataene for å finne muligheter som politiet kan
bruke for å øke deres situasjonsforståelse i det digitale rom (og det virkelige liv).
Mer spesifikt utfører vi signalkorrelasjon for å linke Bluetooth- og Wi-Fi MAC-
adresser som tilhører samme enhet. Ved å kombinere metadata fra disse teko-
logiene kan vi identifisere enhetene selv om en tilfeldig Wi-Fi MAC-adresse blir
brukt. I tillegg sporer vi enheter basert på mottatt signalstyrke ved å bruke geo-
lokaliseringsmetoder.

I den første delen av denne studien designet og bygget vi et sensornettverk
bestående av seks sensorer ved bruk av hyllevare og gratis programvare. Blant
annet benyttet vi Ansible-rammeverket for å automatisere flere av innhentings-
prosessene. Med sensornettverket fullt operativt fullførte vi våre eksperimenter
ved å samle inn data fra enheter som var inndelt i to grupper. Før vi startet
innsamlingen fokuserte vi på å redusere interferens, samt legge til rette for at
signalene skulle ha færrest mulig blokkeringer fra andre objekter i rommet. Blant
den innsamlede dataen ble de mest interessante datatypene valgt og importert til
en SQL-database, dvs. signalstyrke, MAC-addresser og tidsstempeler.

Det primære fokuset i denne studien har vært å bruke datasettet til å linke
signaler tilbake til deres opprinnelige enhet og bruke geolokaliseringsmetoder
(triangulering og trilaterasjon) for å spore enhetene. Samtidig har vi utforsket
forskjellige filtreringsmetoder for å fjerne irrelevante data og følgelig øke nøyak-
tigheten.

Resultatene våre viser at den mest pålitelige algoritmen for signalkorrelasjon
var å konvertere Bluetooth- til Wi-Fi-signal. Denne algoritmen var i stand til å linke
det korrekte paret av MAC-adresser med en nøyaktighet mellom 29-40 %. Blant
de tre beste signalparene som var linket var det mellom 43-70 % sannsynlighet
for at signalparet kom fra samme enhet. Ved å se på de fem beste signalparene
var nøyaktigheten økt til mellom 57-80 %. Resultatene fra geolokaliseringsmet-
odene viste en nøyaktighet mellom 1-7 meter fra den faktiske plassering til der vi
estimerte.

v

Acknowledgements

I would like to thank my supervisor from NTNU, Professor Katrin Franke, for her
guidance and support. A special thank goes to my co-supervisors, Kyle Porter and
Ivar Weider Moen which have given me advice along the way and provided me
with valuable feedback.

Furthermore, I want to thank Stig Andersen and Vegard Antonsen for interesting
discussions. Mathias Hansen deserves a thank you for helping me during the col-
lection phase and Daniel Bing Andersen that contributed with his SQL skills. Last
but not least, I want to thank all those who have answered my questions related to
the topic, participated in my experiments and otherwise contributed to this study.

Studies take up a lot of time, and thus I would like to express my deepest gratitude
to my family and friends for all your support over the past three years.

Atle Malthe Sørenssen

Stabekk, 31st May 2021

vii

Contents

Abstract . iii
Sammendrag . v
Acknowledgements . vii
Contents . ix
Figures . xiii
Tables . xv
Code Listings . xvii
Acronyms . xix
Glossary . xxi
1 Introduction . 1

1.1 Topic covered by the project . 1
1.2 Keywords . 2
1.3 Problem description . 2
1.4 Research questions . 2
1.5 Justification, motivation and benefits 3
1.6 Planned contributions . 3
1.7 Thesis structure . 4

2 Background . 5
2.1 Technical background . 5

2.1.1 Signal strength . 5
2.1.2 MAC address . 5
2.1.3 Wi-Fi and capturing data frames 6
2.1.4 Bluetooth, discovering and capturing data frames 8

2.2 Related work . 10
3 Methodology . 17

3.1 System architecture . 17
3.2 Capabilities - Tools . 18
3.3 Equipment . 19
3.4 Data cleaning and filtering methods . 19
3.5 Managing the collected data . 21
3.6 Geolocation methods . 22
3.7 Trilateration or triangulation using signal strength 24

3.7.1 Trilateration . 24
3.7.2 Triangulation . 28

ix

x A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

3.8 Linking algorithms using signal strength 31
3.8.1 Euclidean distance . 31
3.8.2 Signal to distance . 32
3.8.3 Normalisation . 32
3.8.4 Bluetooth signal to Wi-Fi signal conversion 32
3.8.5 Trilateration . 33
3.8.6 Triangulation . 33

3.9 Methodology flowchart . 34
4 Experiment setup . 35

4.1 Participants . 35
4.2 Environment . 36
4.3 Scenarios and Experiments . 37

4.3.1 Preliminary scenario . 37
4.3.2 Scenario 1 - Fixed locations . 39
4.3.3 Scenario 2 - Fixed locations, different start-up procedure . . 39
4.3.4 Scenario 3 - Fixed locations, random Wi-Fi MAC enabled . . 40
4.3.5 Scenario 4 - Fixed pattern, moving as one or in groups . . . 41
4.3.6 Scenario 5 - Fixed pattern, move as one group 42

4.4 Experiment setup flowchart . 43
5 Pre-processing and data analysis . 45

5.1 Blue Hydra and Apple Bleee analyses 45
5.1.1 Blue Hydra analysis . 45
5.1.2 Apple Bleee analysis . 46

5.2 Data types and metadata in the collected data 47
5.3 Data filtering and cleaning methods in detail 48
5.4 Statistical averaging and general calibration 53
5.5 Signal correlation analysis . 55
5.6 Geolocation analysis using signal strength 57

6 Results from signal correlation and geolocation methods 61
6.1 Signal correlation . 62

6.1.1 Linking devices - Scenario 1 - Static, experiment 3-1 62
6.1.2 Linking devices - Scenario 1 - Static, experiment 6-1 63

6.2 Triangulation and trilateration using signal strength 64
6.2.1 Geolocation - Scenario 1 - Static, experiment 3-1 64
6.2.2 Geolocation - Scenario 1 - Static, experiment 6-1 66
6.2.3 Geolocation - Scenario 4 - Dynamic, experiment 4 67
6.2.4 Geolocation - Scenario 4 - Dynamic, exp. 7-1, 7-2 (phone 5,7) 71
6.2.5 Geolocation - Scenario 5 - Dynamic, exp. 5 (phone 4,5,10) . 74

7 Discussion and conclusion . 77
7.1 Discussion . 77

7.1.1 General discussion about results and findings 77
7.1.2 Discussion about the research sub-questions 79
7.1.3 Strengths and limitations of the study 81
7.1.4 Possible use cases for law enforcement 82

Contents xi

7.2 Conclusion . 83
7.3 Further work . 84

Bibliography . 87
A Equipment . 91

A.1 Main equipment . 91
A.2 Extra equipment . 93
A.3 Smartphones used in the experiments 93

B System architecture . 95
C Additional results . 97

C.1 Signal correlation . 97
C.1.1 Linking devices in experiment 3-2 97
C.1.2 Linking devices in experiment 3-3 97
C.1.3 Linking devices in experiment 6-2 99
C.1.4 Linking devices in experiment 6-3 99

D Matlab code . 101

Figures

2.1 Public Bluetooth MAC address (BD_ADDR) from a Samsung device 6
2.2 Wi-Fi frequencies and channels [12] 7
2.3 Bluetooth coexisting with Wi-Fi in the 2.4 GHz ISM band [19] . . . 9

3.1 Architecture of the sensor network . 18
3.2 Sensor nodes (S4, S5 and S7) in the controlled environment 19
3.3 Imported data in the SQL database with different tables 22
3.4 Illustrates the concept of trilateration using algebra 25
3.5 Illustrates the concept of triangulation using trigonometry 28
3.6 Illustrates all triangles, their overlapping sectors and restricted angles 29
3.7 Adjacent and opposite length need to be calculated 30
3.8 Plot of the mean linear regression line from all ten known devices . 33
3.9 Different phases in the master’s thesis illustrated as a flowchart . . . 34

4.1 Illustration of the environment including sensor nodes and AP . . . 36
4.2 Illustration of how the preliminary scenario was performed 38
4.3 Illustration of scenario 1-3. Phone 1-10 are indicating the fixed loc-

ations . 40
4.4 Illustration of scenario 4-5 with the pre-defined route 41
4.5 Picture from experiment five showing how it was performed 42
4.6 Different phases of the experiment setup illustrated as a flowchart . 43

5.1 Blue Hydra revealing SAP addresses (UAP+ LAP) of known devices.
The column describing the type is removed for best scaling 46

5.2 Screen status from iPhones obtained with Apple Bleee at 15 meters 47
5.3 Absolute average signal strength from four devices in experiment

3-1. Each signal strength is rounded to the nearest decimal 55
5.4 Received signals from Figure 5.3 converted into distances. Each dis-

tance is rounded to the nearest decimal 56
5.5 Triangulation - Estimated location of phone 10 based on different

pairs of sensors and mean values from Wi-Fi and Bluetooth data . . 58
5.6 Trilateration - Estimated location of phone 10 based on different

sensors and mean values from Wi-Fi and Bluetooth data 59

6.1 Top K nearest neighbours from experiment 3-1 63

xiii

xiv A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

6.2 Top K nearest neighbours from experiment 6-1 64
6.3 Experiment 3-1, static scenario with data from all known devices . 65
6.4 Experiment 6-1, static scenario with data from all unknown devices 66
6.5 Results of phone 4 in experiment 4 . 68
6.6 Results of phone 5 in experiment 4 . 69
6.7 Results of phone 10 in experiment 4 70
6.8 Results of phone 5 and 7 in experiment 7-1 72
6.9 Results of phone 5 and 7 in experiment 7-2 73
6.10 Results of phone 4, 5 and 10 in experiment 5 75

A.1 Raspberry Pi 4 Model B 4GB Starter Kit 91
A.2 Additional tools used with each Raspberry Pi 92

B.1 Architecture of the sensor network. Kafka was not used 95
B.2 Potential software which can be installed on a Kafka Webserver . . 96

C.1 Top K nearest neighbours from experiment 3-2 98
C.2 Top K nearest neighbours from experiment 3-3 98
C.3 Top K nearest neighbours from experiment 6-2 99
C.4 Top K nearest neighbours from experiment 6-3 100

Tables

2.1 Different Wi-Fi protocols with generation names [11] 7
2.2 How the Bluetooth standards have evolved since 1999 [16] 8
2.3 Power classes of Bluetooth devices [17] 9

3.1 Different tools installed on each sensor node 18

5.1 Data types captured by TCPdump and Ubertooth 47
5.2 Data types that were added to each data packet as metadata 48
5.3 Error matrix. Nearly all devices are present in the captured data

related to TCPdump and Ubertooth . 52
5.4 The total amount of Wi-Fi data packets captured by TCPdump in

different experiments and the remaining data packets after differ-
ent filtering methods . 52

5.5 The total amount of Bluetooth data packets captured by Ubertooth
in different experiments and the remaining data packets after dif-
ferent filtering methods . 53

5.6 Devices that occurred most frequently among the linking methods
in top 1 . 57

5.7 Comparing the locations of phone 10 with the use of triangulation
and trilateration based on Wi-Fi and Bluetooth data 60

A.1 List of known devices . 93
A.2 List of unknown devices . 93

xv

Code Listings

3.1 Connection between SQL and Matlab 22
3.2 Example of SQL query from Matlab . 22
5.1 Wi-Fi filtering in Wireshark . 48
5.2 Bluetooth filtering in Wireshark . 48
5.3 Distance-based filtering in SQL for Wi-Fi 50
5.4 Distance-based filtering in SQL for Bluetooth 50
5.5 Time compression filter applied in SQL 51
5.6 Implementing the calibrating of sensors in Matlab 54
5.7 Implementing the calibrating of output power in Matlab 54

xvii

Acronyms

ACI Adjacent-Channel Interference. 7, 35

AFH Adaptive Frequency Hopping. 9

AFU After first unlock. 79

AP access point. 7, 8, 36

BFU Before first unlock. 79

BLE Bluetooth Low Energy. 8, 9

CCI Co-Channel Interference. 7

dBm decibel-milliwatts. 5, 22

E2EE End-to-end encryption. 17

FIFO First-In-First-Out. 41

FSPL Free-Space Path Loss. 23

GDPR General Data Protection Regulation. 35, 43

KDF key derivation function. 18

LAP Lower Address Part. 6, 10, 31, 37, 45, 47, 83

LOS Line of Sight. 37

LQ Link Quality. 10, 12

MAC Media Access Control. 5, 6, 9, 10, 45

NAP Non-significant Address Part. 6

NIC Network Interface Card. 6

xix

xx A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

OUI Organizationally Unique Identifier. 6

RSSI Received Signal Strength Indicator. 5, 10, 12

SAP Significant Address Part. xiii, 6, 45, 46, 97

SQL Structured Query Language. 20, 21, 48

SSH Secure Shell. 17

SSID Service Set Identifier. 12, 36

TCP Transmission Control Protocol. 20, 42

TPL Transmit Power Level. 10, 12

UAP Upper Address Part. 6, 10

VPN Virtual Private Network. 17

Glossary

AFU After First Unlock is a type of mobile forensics extraction, which is only pos-
sible to acquire if the screen lock is already entered by the user after the last
reboot. The extraction could include almost 90 % of a Full File System. 46

BFU Before First Unlock is a type of mobile forensics extraction, which only in-
clude general information about the phone without any access to encrypted
data. 46

Elliptic-curve Diffie-Hellman (ECDH) is a key exchange protocol that includes
both private and public keys in order to send or establish a secure connection
over an insecure medium. 18

ground truth Information that has been measured and can be linked to values
obtained in the experiments. 24

Multiple-Input Multiple-Output (MIMO) Devices using multiple transmitters and
receivers to send more data at the same time. All devices with 802.11n are
MIMO compatible. 49

triangle inequality In a triangle, the sum of the lengths of any two sides must be
greater than or equal to the length of the remaining side. 29

whitelisting A filter to allow for identified devices. In this case, include only those
devices belonging to the participants that had given their consent. 48

xxi

Chapter 1

Introduction

1.1 Topic covered by the project

Collecting Bluetooth and Wi-Fi data, revealing system-specific information and
locating mobile phones may increase situational awareness for law enforcement.
Situational awareness is defined in this master’s thesis to interpret radio signals
from nearby devices using Bluetooth and Wi-Fi standards to make the police
more efficient and prepared before and during operational situations. Situational
awareness can be, among other things, the identification of where devices are po-
sitioned, speed and direction and the tracking of devices to see movement pattern.
Another feature that could help law enforcement from a technical perspective is
revealing individuals behind randomised MAC addresses by combining Bluetooth
and Wi-Fi metadata (through signal correlation).

This master’s thesis is supervised by SDPAi (section for digital police work
and innovation), which is the leading police department in Oslo within digital
forensics. SDPAi has, to some extent, experience with Bluetooth and has earlier
collected Wi-Fi data related to a similar project. Research from this master’s thesis
will hopefully help SDPAi in their process to develop new methods and techniques
to comply with smart city thinking. Interpreting the data from nearby devices
could potentially provide a new source of valuable intelligence to the police. An-
other thing the police could benefit from is the feature to link system information
obtained from mobile forensics extractions to devices in a collected data set. Such
information can provide filtering capabilities in a city environment that are only
available to the police.

The direct focus in this master thesis will be to collect data from a network of
sensor nodes and use different linking and geolocation methods to create value for
the police. These methods include various tools for data collection and different
techniques to filter out unwanted data. In the end, the results will be presented
with graphics and statistics that show if the Bluetooth MAC address belonging to a
device can be linked to the same device’s Wi-Fi MAC address. Also, the geolocation
results will be illustrated to show the accuracy of the tracking capabilities.

1

2 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

1.2 Keywords

Covert police work, Situational awareness, Bluetooth sniffing, Wi-Fi scanning,
Identifying devices, Mobile forensics, Signal correlation, Geolocation tracking

1.3 Problem description

In order to have a safe society, we need the police to maintain public order, pro-
tect citizens, prevent crimes and investigate them. Based on these social tasks,
there is a common understanding that the police must adapt to new technology
and utilise new methods in the cyber domain. While this is the case, some laws
and regulations restrict covert methods when it affects people’s privacy and the
use of these methods if nothing criminal is suspected. This study will look into
possibilities and not the limitations regulated by law.

In general, police work is often linked to situations where there is a lack of a
good overview and situations that require good planning in advance of operations.
Another situation the police is facing is to protect important persons and buildings.
Common to all these situations is that best practices do not include the collection
and interpretation of information from mobile devices that use Bluetooth and
Wi-Fi. With respect to covert methodologies, these new methods may be used
to conduct a greater overview of the situation with tactical intelligence on which
decision-makers can act. Imagine each police unit as a mobile sensor that feeds the
operation centre with live intelligence from nearby devices. Another suggestion is
mobile equipment placed in backpacks to collect Bluetooth and Wi-Fi data in close
vicinity of the target. Such methods would be beneficial for covert operations to
locate nearby devices as a supplement to already existing techniques. After all,
different scenarios are dependent on the environment and thus the need to use
different technologies or enrich each other. In addition, investigators could also
benefit from this information to build better timelines that can confirm or disprove
if a specific device was in proximity of a criminal act. If these data are linked to
mobile forensics extractions, the police would also have the ability to identify the
mobile phone owner. On this basis, the relationship between signals and devices
may be essential to look into.

1.4 Research questions

To solve the problem statement described in 1.3, the main research question is
formulated as such:

• How can the police use Bluetooth and Wi-Fi data for tracking and iden-
tification in covert operations?

In order to answer the question mentioned above, the following sub-questions
must be further analysed:

Chapter 1: Introduction 3

1. What useful information can be collected passively from Bluetooth and Wi-
Fi data?

2. Given that both Bluetooth and Wi-Fi are enabled, how can one find that
these signals originate from the same device?

3. Which algorithms can be considered best to link Bluetooth and Wi-Fi signals
originating from the same device?

4. Which geolocation algorithms can be considered best to track devices using
signal strength from Bluetooth and Wi-Fi data?

5. Can signal interference be a problem while collecting data?
6. What technical challenges may arise when the police collect data from Bluetooth

and Wi-Fi?
7. How should irrelevant and misleading data be filtered out?

1.5 Justification, motivation and benefits

Being a special investigator working with digital forensics, we constantly search
for new methods and capabilities to interpret artefacts and exploit vulnerabilities
in order to reveal the true story. We are always focusing on data integrity and the
correct use of the chain of custody.

The police are dependent on adapting to new technology to investigate crim-
inal cases in the best way possible. Therefore, the overall desire is to make the
police more efficient by using more artefacts from a forensics perspective. The
underlying motivation for this project is to contribute to this process to make sure
that the police is aware of the valuable information that can be extracted from
Bluetooth and Wi-Fi data. Hopefully, this project will enlighten these possibilities
and perhaps help covert police work become more efficient with a greater level of
situational awareness in cyberspace (and real life). To emphasise the results, we
suggest concrete use cases below the discussion part in the last chapter.

1.6 Planned contributions

In contrast to studies performed by Kolberg [1], Groba [2] and Chilipirea et al.
[3], which interpreted Wi-Fi packets (probe requests) that were rarely transmit-
ted, this master’s thesis looks at active Wi-Fi data streams (TCP packets) that are
more often transmitted from devices. Also, Bluetooth packets will be analysed.

The goal of this master’s thesis is to give the police a new source of intelligence
by increasing situational awareness with Bluetooth and Wi-Fi technology. This
intelligence will be obtained by interpreting metadata from data packets to geo-
locate devices and performing signal correlation of Bluetooth and Wi-Fi signals.
Data packets from Bluetooth and Wi-Fi often contain metadata such as MAC ad-
dress, device name, vendor and signal strength. Such information combined will
hopefully give the police a greater level of situational awareness out in the field.

4 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

Overall, this master’s thesis will present an overview of the architecture used, how
data were collected, and the methods used to filter the data. Also, the algorithms
used to determine if a Bluetooth and Wi-Fi signal originates from the same device
and the methods used for geolocation will be presented. The main scripts de-
veloped in Matlab will be attached in Appendix D, while relevant use cases will
be suggested in the discussion part below Section 7.1.4.

1.7 Thesis structure

In the following chapters, the master’s thesis is structured as follows:

Introduction: In the first chapter, the reader is given context to the topic. The
introduction is also where concrete tasks performed in the thesis are described.

Background: This chapter provides the theoretical basis of the thesis, such as
terms related to Bluetooth, Wi-Fi, different methods and algorithms. Related work
is also included in this chapter.

Methodology: The third chapter presents the methods that were used to collect
data, the filtering options chosen and those geolocation methods and signal cor-
relation algorithms tested. The chapter also gives an overview of how the sensor
network was built, which tools were implemented and the equipment used.

Experiment setup: Contains in-depth descriptions of the different scenarios and
how the experiments were performed. This chapter also focuses on what inform-
ation each scenario and experiment would provide.

Pre-processing and data analysis: Takes the reader thoroughly through the pro-
cessing and analysis part, focusing on valuable data from the data set. Also, this
chapter dives into some methods that need further explanations.

Discussion and conclusion: The last chapter contains a discussion part, the strengths
and limitations of the study, possible use cases and findings. Further, the research
questions are accounted for and concluded. Finally, there are some suggestions to
further work to may be carried out.

Appendix: Additional information and attachments such as the complete equip-
ment lists, whole system architecture and Matlab code are found in the appen-
dices.

Chapter 2

Background

This chapter includes a technical background and brief descriptions of studies re-
lated to the research questions mentioned in Section 1.4. Over the years, several
studies have examined how Bluetooth and Wi-Fi data can be collected and ana-
lysed with the overall purpose of tracking. These studies are also deemed relevant
for this master thesis by being a starting point for further assessment and analysis.

• Technical background
• Related work

2.1 Technical background

2.1.1 Signal strength

One of the most important parameters acquired in the data collection is the re-
ceived signal strength measured in decibel-milliwatts (dBm). This is an absolute
value representing the received power in mW (milliwatts) on a logarithmic scale
(1 mW= 0 dBm)[4]. Unlike the Received Signal Strength Indicator (RSSI), which
measures the received signal on a relative scale, and which varies greatly between
different manufacturers [4], signals measured in dBm relates to the same scale.
Normally, Wi-Fi signals vary between -70 and 0 dBm, while Bluetooth signals vary
between -80 and 0 dBm [5][4]. These variations, of course, depend on how much
power the signal is transmitted with. Values closer to zero are stronger than lower
values. Research performed by Longo [6] shows that signals measured in dBm
correlate better with distance than using RSSI. In this master’s thesis, the soft-
ware capturing Wi-Fi data (TCPdump) and Bluetooth data (Ubertooth) included
the absolute value of the received signal measured in dBm.

2.1.2 MAC address

Another important parameter is the Media Access Control (MAC) address, which
is a unique identifier assigned to its hardware for correct addressing in commu-
nication. The MAC address, also referred to as a physical address, is primarily

5

6 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

generated by the manufacturer and assigned to all Network Interface Card (NIC)
such as the NIC for Bluetooth and Wi-Fi. People who are interesting in operational
security may want to keep their public MAC address concealed. The safety focus
is because the MAC address can be linked to the owner’s identity and tracked
based on the device presence [8]. Figure 2.1 illustrates how a 48 bits Bluetooth
MAC address is structured. The Non-significant Address Part (NAP) and Upper Ad-
dress Part (UAP), together forming the Organizationally Unique Identifier (OUI),
is vendor-specific, while the Lower Address Part (LAP) is device-specific. The latter
can be used to identify devices, even though OUI is not discovered. The combina-
tion of UAP and LAP is called the Significant Address Part (SAP). Even though the
MAC address in Figure 2.1 relates to a Bluetooth device, the structure of a Wi-Fi
MAC address is similar, but only divided into OUI (first 24 bits) and a unique NIC
identifier (last 24 bits).

Figure 2.1: Public Bluetooth MAC address (BD_ADDR) from a Samsung device

From a security and privacy perspective, the MAC address for Wi-Fi and Bluetooth
(only Low Energy) are commonly randomised in order to hide the address and to
prevent tracking of the device [7][8]. In this context, a distinction is made between
public and random MAC addresses. The public address is the original MAC address
given by the manufacturer, while the random (also called private) MAC address
is randomised and used openly for communication [9].

When it comes to mobile forensics, the public MAC address related to Bluetooth
and Wi-Fi can be presented and extracted in forensic tools even though the device
is locked. This accessible information could give law enforcement an advantage
in a smart city setting, where the MAC addresses from mobile extractions could
be correlated with data from out in the field (e.g. covert police work and demon-
strations). If the data coincide, it is a high probability that this device belonging
to that person was present in, e.g. the demonstration.

2.1.3 Wi-Fi and capturing data frames

Wi-Fi is a wireless communication technology that consists of several protocols
based on the IEEE 802.11 standard [10]. Wi-Fi enables wireless connectivity that

Chapter 2: Background 7

often allows devices to communicate with each other or with the internet through
an access point (AP) or router. The radio waves are transmitted and received in
the Gigahertz range, generally in 2.4 GHz and 5-6 GHz, depending on which Wi-Fi
protocol is used. An overview of different Wi-Fi protocols that are released since
1999 are listed in Table 2.1. The AP in this thesis was configured to use the Wi-Fi
4 protocol with the frequency option set to 2.4 GHz.

Wi-Fi generation IEEE standard Released Max data rate Frequency

Wi-Fi 1 802.11a 1999 54 Mbps 2.4 GHz
Wi-Fi 2 802.11b 1999 11 Mbps 5 GHz
Wi-Fi 3 802.11g 2003 54 Mbps 2.4 GHz
Wi-Fi 4 802.11n 2009 600 Mbps 2.4/5 GHz
Wi-Fi 5 802.11ac 2014 1.3 Gbps 5 GHz
Wi-Fi 6 802.11ax 2019 10-12 Gbps 2.4/5 GHz

Table 2.1: Different Wi-Fi protocols with generation names [11]

Out of 14 different Wi-Fi channels, there are only 13 that are available in Europe.
Three of those are so-called non-overlapping channels with 5 MHz in between
to mitigate for Adjacent-Channel Interference (ACI), where devices transmit with
overlapping frequencies and thus "talk over each other". Concerning the possibility
for interference with Bluetooth devices, the frequency was in this thesis set to
channel 11 in the AP configuration. This choice could increase the Co-Channel
Interference (CCI) between devices using the same frequency in the same area,
such as Wi-Fi devices connected to the same access point or between Wi-Fi and
Bluetooth devices [12]. However, it is best practice to accept some CCI in order to
avoid ACI [12]. The frequency associated with channel 11 is shown in Figure 2.2.

Figure 2.2: Wi-Fi frequencies and channels [12]

Capturing Wi-Fi data frames

Wireless network traffic can be passively captured with the use of third party ap-
plication such as TCPdump. One of the methods is to let TCPdump set the WLAN
interface in promiscuous mode in order to capture all network traffic from devices

8 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

that are associated with the same AP [13]. This configuration means that network
traffic that is supposed to arrive at a specific device also is captured by the ma-
nipulated WLAN interface. For each data frame (802.11) that are captured with
TCPdump, additional information called radiotap header is encapsulated in the
original frame [14]. In this case, the radiotap header includes supplementary in-
formation, e.g. the received signal.

2.1.4 Bluetooth, discovering and capturing data frames

Bluetooth is a wireless communication technology standard intended for short-
range distances. Bluetooth consists of two non-compatible standards, and both
included in newer smartphones. Bluetooth Classic (BR/EDR) is the oldest stand-
ard, which is currently used for streaming music, while Bluetooth Low Energy
(BLE) is designed with the intention of increased security and lower power con-
sumption. The Classic standard has improved less over the years in comparison
with the newer standard, which lately has been greatly updated in Bluetooth 5.
Although the newest Bluetooth 5.2 standard, introduced at Consumer Electronics
Show (CES) in 2020, includes a game-changing standard for transferring audio
data (LE Audio) with a new audio codec called LC3 (Low Complexity Commu-
nication Codec), most devices supporting this standard will not hit the marked
before later in 2021 [15]. Because devices are lacking support, Bluetooth Classic
will still be used for audio transfer for several years. The rows highlighted in green
in Table 2.2 show the variety of Bluetooth version’s used among the devices in this
master’s thesis.

Versions Released Important Bluetooth features

1.0, 1.0B 1999 First edition
1.1 2002 IEEE Standard 802.15.1, non-encrypted channels

1.2 2005
Improved speed, faster connection and discovery, Adaptive

Frequency Hopping (ADH), backward compatible
2.0 + EDR 2004 General improvements, enhanced data rate (EDR)
3.0 + HS 2009 Higher speed, enhanced power control

4.0 2010
Bluetooth Low Energy (LE) introduced, dual-mode,

support for generic attribute profile (GATT), increased
security for LE, range and connectivity improvements

4.1 2013 Indirect IoT device connection, interference improvement
4.2 2014 Security improvement to Bluetooth LE
5 2016 Range and speed improvement

5.1 2019 Range and speed improvement

5.2 2020
LE audio with a new standard Bluetooth audio codec

called L3C, broadcast audio feature

Table 2.2: How the Bluetooth standards have evolved since 1999 [16]

Chapter 2: Background 9

To limit how much power a Bluetooth antenna transmit, both standards have
regulated the power consumption into three main (one extra for BLE) classes [17].
Smartphones that use Bluetooth for general communication are operating within
the power range of class two and can transmit with a maximum of 4 dBm. Figure
2.3 shows an overview of these power classes.

Class Output power Range range Sample devices

Class 1 100 mW (+20 dBm) 100 m IoT, industrial
Class 1.5 (BLE) 10 mW (+10 dBm) 30 m Beacons, wearable

Class 2 2.5 mW (+4 dBm) 10 m Mobile devices, smart card
Class 3 1 mW (0 dBm) 1 m Bluetooth adapters

Table 2.3: Power classes of Bluetooth devices [17]

Bluetooth is coexisting with Wi-Fi in the 2.4 GHz unlicensed industrial, sci-
entific and medical (ISM) frequency band. The Classic standard leverages an Ad-
aptive Frequency Hopping (AFH) approach, meaning that Bluetooth devices are
trying to mitigate interference by using spread spectrum techniques [18]. In a
point-to-point connection, two Bluetooth devices are using the AFH technique to
rapidly change frequencies among 79 channels based on a secret pattern they have
agreed upon [19]. Figure 2.3 show all the channels associated with Bluetooth,
each spaced 1 MHz apart. The three non-overlapping Wi-Fi channels are also il-
lustrated in the same frequency range.

Figure 2.3: Bluetooth coexisting with Wi-Fi in the 2.4 GHz ISM band [19]

Bluetooth Classic discovering and capturing

One of the Bluetooth Classic shortcomings is the lack of MAC address random-
isation, which BLE have implemented. Instead, Bluetooth Classic use a defence
mechanism to remain non-visible, even though Bluetooth is enabled [20]. The se-
curity feature means devices can avoid being listed when someone is performing
an inquiry scan to search for Bluetooth devices. However, this feature is exploited

10 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

with equipment and software provided by Ubertooth. Ubertooth is able to pass-
ively capture and demodulate signals in the 2.4 GHz ISM band. Each of these
Bluetooth packets (pseudo-header for BR/EDR) contain the unique LAP which
could be used to identify a device. Other parameters included in the packets are
the received signal strength in dBm and the timestamp of when the signal was
received. Another feature in Ubertooth is the survey mode, which can determine
the UAP by capturing packets from the same device over time. The latter is more
time consuming, only revealing one UAP at a time.

BlueZ is another Linux-based software that officially supports the core Bluetooth
layers and protocols. The primary tool within Bluez is the host controller interface
tool (HCI tool) which can send commands to Bluetooth devices in order to fetch
information such as RSSI, Link Quality (LQ) and Transmit Power Level (TPL) [6].
However, fetching this information is only possible during an active connection
and when the full Bluetooth MAC address is known. To overcome this, it is pos-
sible to constantly send L2ping requests that the device will need to answer. These
requests will keep the connection active while the HCI tool is fetching, e.g. RSSI.
To acquire the MAC address of nearby devices, a discovery service called Blue Hy-
dra in combination with the Ubertooth antenna would automatically reveal public
MAC addresses over time [21]. Our tests (performed in April 2020) with Blue Hy-
dra shows that a brand new Samsung with Android 10 over time would reveal
its MAC address while streaming music to a Bluetooth device. However, studies
show that Blue Hydra fails to collect RSSI values [22]. On this basis, Ubertooth is
in this master’s thesis chosen to collect Bluetooth Classic data frames.

2.2 Related work

This section will contain research that may be relevant to the main research ques-
tion: How can the police use Bluetooth and Wi-Fi data for tracking and identification
in covert operations?. Although some of the research is limited to either Wi-Fi or
Bluetooth, the principles may still be relevant for this master’s thesis. The various
research papers chosen relate to these topics:

• Tracking devices in public with Bluetooth Classic and Wi-Fi
• Individual tracking with Wi-Fi
• Bluetooth Low Energy
• Technical challenges
• Signal correlation
• Geolocation methods
• Filtering methods

Tracking devices in public with Bluetooth Classic and Wi-Fi

Research performed by Bai et al. [23] focused on how devices can be tracked
in public. When performing their research, they created a sensing system to de-
termine how many passengers were using public transport. The experiment lasted

Chapter 2: Background 11

over five days and consisted of series of bus and tram journeys. To later verify the
passenger numbers, they also manually counted the people. By counting mobile
devices using Bluetooth and Wi-Fi, the sensing system correlated passenger loads
relative to ground truth information. Various filters were used to remove noise,
such as devices held by people waiting at bus stops or devices passing by. By using
the filters, the results become more accurate and could be correlated to the actual
number of passengers [23].

In another study performed by Schauer et al. [24], Bluetooth and Wi-Fi data
were used to identify crowd densities and pedestrian flows at an airport. By com-
paring the collected data with the actual number of people checking in through
the airport security, it was possible to check the accuracy of the filters used. Fur-
thermore, the study shows that the amount of trackable Bluetooth devices is less
in comparison to the number of boarding pass scans. However, the Wi-Fi density
estimations are more accurate. Schauer et al. concluded that both Bluetooth and
Wi-Fi would be useful to approximate crowd densities in airports [24].

Individual tracking with Wi-Fi

In 2019, Tsai et al. [25] performed a study in which location data from Wi-Fi
were used to reveal the direction of a suspect. The direction was predicted by way
of using six ordinary sensors in addition to multiple auxiliary observation nodes
connected to each sensor. If three auxiliary nodes detected the same device, the
information about the location, signal strength and MAC address was uploaded to
a server. Regardless of the exact location of the suspect, the system would manage
to calculate the suspect’s direction [25].

Another study related to indoor tracking has been performed by Kolberg [1].
In order to track devices, Kolberg tested different geolocation methods on a Wi-
Fi data set consisting of probe requests. Both triangulation and trilateration are
covered in her study, which seeks to give law enforcement an increased situational
awareness by tracking individual devices and interpret crowd densities. Her res-
ults show that it is possible to locate and pinpoint individuals within approxim-
ately five meters. In addition, the study includes several aspects of interpreting
Wi-Fi data that are relevant in this thesis.

An interesting tool using Bluetooth Low Energy

Turning the focus over to the Bluetooth Low Energy (BLE) protocol, a study by
Hexway [26] reveals that Apple’s mobile devices leak status messages by passively
sniffing BLE traffic. Information such as Wi-Fi status (on/off), screen status (lock
screen, home screen, off, calling), and iOS version can all be detected using a
tool called Apple Bleee. The tool would also detect password requests that the
phone transmits in some situations, which can be used to guess the original phone
number [26]. The research mentioned above may be helpful for the police to
quickly get an overview of Apple products in an area or obtain vital information
regarding screen status that is very useful from a mobile forensics perspective.

12 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

Technical challenges

There is a lot of previous research within the field of Bluetooth and Wi-Fi data.
However, the studies have mainly focused on using anonymised data and not spe-
cifically on identifying mobile devices. While this anonymised data can be helpful
in some scenarios, the police will often need to identify devices uniquely. At this
point, technical challenges arise. Due to new privacy legislation (e.g. General Data
Protection Regulation – GDPR), technology companies have implemented security
features in their operating systems to comply with the legislation.

Ansley [7] and Ryan et al. [27] have studied these security features related
to Wi-Fi on Android and iOS. Their research shows that mobile devices are set to
default using MAC address randomisation when they are not associated with a
network. When associating these devices to a known network, their public MAC
addresses will be revealed in the advertising probe requests [7]. According to our
tests (April 2020), this is currently true for iOS (13.3.1) and Android 9. However,
devices with Android 10 (and higher) and iOS 14 (and higher) are using MAC
address randomisation even though the devices are associated with a network
[28][29]. In addition, own tests performed in October 2020 shows that as long
as the SSID name remains the same, devices using Android or iOS will keep their
random Wi-Fi MAC addresses over time. The random MAC address is found in the
Wi-Fi menu related to each SSID. This finding is a bit contrary to what apple says
about Wi-Fi MAC randomisation - "it can’t be used to persistently track a device
by passive observers of Wi-Fi traffic" [30]. Despite this, Ryan et al. [27] mention
the ability to track devices by creating fake access points with which the devices
are familiar. This method could lure the target devices to transmit probe requests
containing the true Wi-Fi MAC addresses.

With regards to Bluetooth security, almost the same challenges will apply. A
study performed by Becker et al. [31] shows that even if the security features
in Bluetooth are optional, the manufacturers often implement randomisation of
MAC addresses. Davies et al. [20] have performed research on how to monitor
non-discoverable Bluetooth Classic devices. Results show that off-the-shelf hard-
ware such as Ubertooth One can discover information from devices regardless of
whether the discoverable mode is turned on or off. The study shows that there are
approximately 4.7 times as many Bluetooth devices in non-discoverable mode as
in discoverable mode [20].

Similar research performed by Longo [6], shows that Bluetooth parameters
such as RSSI, LQ and TPL can be obtained by establishing an active connection
with L2ping and by sending commands to the devices based on their MAC ad-
dresses. Even though Longo [6] used old devices without MAC address random-
isation in his research, this could still be possible by using Blue Hydra to reveal
the true MAC address. However, our tests show that it is challenging to hold sev-
eral active L2ping connections to multiple devices while requesting RSSI values.
Because of this, this method was discarded midway through the master’s thesis.
In this specific field, the literature appears to be weak. Nevertheless, the methods

Chapter 2: Background 13

and hardware above-mentioned are essential in this thesis to encounter security
challenges to identify devices uniquely.

Signal correlation

One of the research questions in this project is related to the linking of Wi-Fi
and Bluetooth signals transmitted from the same device. As random Wi-Fi MAC
address is more standard these days, linking these signals would increase the pos-
sibility of uniquely identify devices. Research done by Longo [6] is in this case
relevant, as he managed with high probability, through the use of RSSI values, to
pair Wi-Fi and Bluetooth signals coming from the same device. The experiment
was performed indoors with six sensors. Several algorithms were tested in order
to separate the signals and pair those originating from the same device. However,
this research did not encounter the same security challenges which this project
must overcome. However, signal correlation of Bluetooth and Wi-Fi signals, as
Longo performed, in combination with geolocation tracking methods mentioned
by Groba and Chilipirea et al., would potentially give law enforcement a greater
situational awareness.

In order to link Bluetooth and Wi-Fi data, the parameters inside the data pack-
ets need to be analysed. Longo assumed that the signals coming from the same
device would look different but should correlate due to the same representation
of the distance between device and sensor [6]. Of five algorithms, one, in par-
ticular, stood out. This algorithm was the conversion from RSSI to distance. The
study shows that the RSSI was highly dependent on the transmitting chipset [6].
To overcome this challenge, Longo created a logarithmic regression line of each
device. On this basis, the RSSI values were converted more correctly into the dis-
tance. Further on, he used Euclidean distance to compare and link the signals back
to the same device. Moreover, by increasing the number of sensors from four to six,
the results became more accurate. Of the five closest values (top-k approach), the
signals could be linked with 100 % accuracy [6]. Longo’s preliminary experiments
would also be relevant in this thesis to see if various chipsets are transmitting with
different output power. Concerning covert operations, this would be not easy to
perform in a real life scenario. Pursuant to Longo [6], it is possible to use on-the-
fly devices hidden at known locations to create a trustworthy relation between
the distance and the received signal strength.

Signal interference

Another research question in this master’s thesis is how the signals will affect the
accuracy of signal strength during the collection phase. Both Wi-Fi and Bluetooth
use the same 2.4 GHz frequency band (ISM), which could lead to interference. Re-
search from Pei et al. [32] shows that Bluetooth devices do have an influence on
Wi-Fi positioning when the technologies coexist in the same environment. How-
ever, bringing a Bluetooth device in a connected state will enable a mechanism
called adaptive frequency hopping (AFH). According to Pei et al., the AFH mech-

14 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

anism will reduce the interference between Bluetooth and Wi-Fi. On this basis,
the Bluetooth devices would be distributed nicely to different channels if they,
e.g. stream music to a connected Bluetooth headset.

Geolocation methods

There are three main geolocation methods considered in this master’s thesis. One
of these is called Time of Arrival (TOA). TOA is calculating the distance based on
the time difference from when a signal is sent until it is received and the speed of
light (constant in vacuum) [33]. Due to the speed the signal uses to propagate, a
deviation of one nanosecond in the TOA measurement will affect the distance by
0.3 meters [33]. Since the experiment is to be conducted indoors, the signals will
likely be reflected by the environment, which affects the propagation time from
sender to receiver. Based on this information from research performed by Schauer
et al., the ToA method will not provide the accuracy needed in this project. The
inaccuracy also applies to the method called Time Difference of Arrival (TDOA),
which calculates the distance between one device and two reference points based
on the time difference received at the reference points [34]. As Schauer et al.
points out, TDOA requires high-end equipment and very accurate time synchron-
isation to obtain accurate results [33].

Another method that can measure the distance is Angle of Arrival (AOA). This
method takes advantage of calculating the angle from the received signal based
on the time difference between multiple antenna elements [35]. Unfortunately, as
Sarshar describes in his research, these multi-array antennas are costly and suf-
fer from complex indoor environments with land-of-sight as a requirement [35].
Additionally, this method requires a high degree of time accuracy (nanoseconds).
Features introduced in Bluetooth 5.1 (BLE) show that AOA could be used to locate
devices more accurately in the future [36].

The third geolocation method calculates the distance between the sender and
the receiver using received signal strength. This method is a proven method per-
formed in several studies already mentioned, such as Kolberg, Longo, Schauer
et al., and Bai et al. Distance estimation using signal strength will be further ex-
plained in Section 3.6.

Filtering methods

Collecting Wi-Fi and Bluetooth signals will require methods to filter out unim-
portant and misleading data. Reducing this data will contribute to smaller and
more manageable log files and make the information more reliable and action-
able for law enforcement. Relevant research by Kurkcu and Ozbay [37], Longo
[6], Groba [2] and Chilipirea et al. [3]mention several filtering methods to apply
for this goal. One of these methods is time-based filtering used by Groba to exclude
devices based on probe requests that appear more than once at each sensor. A sim-
ilar method performed by Kurkcu and Ozbay [37] were to calculate the wait time
of each device. With this information, they could remove devices discovered for

Chapter 2: Background 15

longer than some minutes but also shorter than some seconds. Another filtering
method mentioned by Groba [2] and Chilipirea et al. [3] is called distance-based
filtering. The goal of this method is to filter out all irrelevant data and signals of
low quality. This method is similar to what Longo mentions in his research, where
all corrupted probe requests were removed. Longo also mentions a method for fil-
tering out devices that were passing by. His method ignored those MAC addresses
related to less than ten probe requests [6].

While most of the research papers above-mentioned have focused on collecting
data from a public tracking perspective, this master’s thesis seeks to fill in the
gaps to identify devices and gain individual tracking capabilities. The overall goal
is to increase situational awareness for law enforcement with Bluetooth and Wi-Fi
data. To achieve this, signal correlation based on Wi-Fi and Bluetooth combined
with different tracking methods will be tested and compared. It will be essential
to collect enough data (Wi-Fi and Bluetooth) that contains the same fundamental
parameters. In addition, it will be necessary to utilise several filtering techniques,
as previous research mention, to obtain more reliable and actionable information.
The research carried out by Kolberg [1], and Longo [6] have been two of the most
inspiring related work.

Chapter 3

Methodology

The quantitative approach in this master’s thesis consisted of collecting data through
Bluetooth and Wi-Fi in several experiments and use it to geolocate mobile devices
and perform signal correlation. Such methods could increase situational aware-
ness for law enforcement to become an analysis tool supplement for decision-
makers. In order to describe the methods used, this chapter is divided into these
main sections:

• System architecture
• Data filtering and cleaning methods
• Managing the collected data
• Geolocation methods
• Trilateration and triangulation
• Linking algorithms

3.1 System architecture

Before collecting data, the system architecture was planned, configured and tested.
An overview of the final architecture is shown in Figure 3.1. In this phase, import-
ant functionalities and parameters needed more attention, such as received signal
strength, timestamps and MAC addresses. In addition, correct time synchronisa-
tion on the equipment collecting the data was needed to secure data integrity.

GitLab was used as the main platform for source code and collaboration. In
good cooperation with our project partner, the tools listed in Section 3.2 were im-
plemented and written in the Ansible scripting language. Ansible made it possible
to administrate and distribute tasks such as updating all sensor nodes with new
functionality from GitLab and perform time synchronisation. Also, Ansible made
it easy to start and stop the data collection from all six sensors simultaneously dur-
ing the data collection. To ensure a secure connection, Secure Shell (SSH) over
Virtual Private Network (VPN) was established on all nodes. This gave End-to-end
encryption (E2EE). A software called Wireguard was selected as the VPN-tunnel
because it was simple, free and uses different encryption functionality such as

17

18 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

(i) symmetric key encryption with Chacha201, (ii) Elliptic-curve Diffie-Hellman
(ECDH)1 for key exchange, (iii) encryption hash functions including Blake2 and
SipHash24 and (iv) a key derivation function (KDF) called HKDF [38].

Due to a large amount of data, the way of saving log files was changed during
the data collection. First, the data were sent back to the controlling node but later
saved locally on each sensor node. Completing the system architecture took longer
than expected but was, in return, a system that ensured easy and efficient data
collection. Good help from the project partner was appreciated.

Figure 3.1: Architecture of the sensor network

3.2 Capabilities - Tools

To be able to capture data packets, each sensor node was configured equally and
included tools listed in Table 3.1. These tools were carefully tested before they
were implemented as services and could be started and stopped individually with
ansible commands.

Tools Technology Area of use

Ubertooth Bluetooth Classic Sniffing data packets
TCPdump Wi-Fi Capturing data packets
Blue Hydra Bluetooth Unveil public MAC addresses
HCI tool Bluetooth Retrieve Bluetooth information from devices
L2Ping Bluetooth Ping devices
Apple Bleee Bluetooth Low Energy Retrieve screen status from Apple devices

Table 3.1: Different tools installed on each sensor node

1Explained in the list of glossary

Chapter 3: Methodology 19

3.3 Equipment

The equipment used was hosted and funded by the project partner. New equip-
ment that was needed had a cost of approximately NOK 20,000. Among the equip-
ment, it was simple computers (Raspberry Pi’s), Wi-Fi antennas, Bluetooth dongles
and Ubertooth devices. These antennas were not calibrated equally and thus held
a consumer-grade with the disadvantages it entails. During the experiments, ad-
ditional equipment was used, such as a GoPro camera for recording movements, a
Wi-Fi router to enable internet and a laptop node for administrating the sensors.
Another laptop was used as a time source for comparing timestamps between data
packets and the recordings. This time source needed to be visible in the record-
ings during the experiments. The smartphones subjected to additional testing over
time, grouped as "known devices", were collected from friends, family and work.
There was a total of 10 known devices in addition to ten Bluetooth audio devices.
For the complete list of equipment, see appendix A.

Figure 3.2: Sensor nodes (S4, S5 and S7) in the controlled environment

3.4 Data cleaning and filtering methods

One of the research questions stated in Section 1.4 was to analyse the collected
data to find filtering options and apply them to those methods that could give the
most accurate results. In this section, all the methods used will be covered, while
Section 5.3 in the pre-processing and data analysis chapter explains in detail how
some of these were utilised.

20 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

Unwanted observations

In order to prevent alteration of the relevant data, just necessary cleaning was
performed before importing the data to SQL. After all, further filtering and clean-
ing methods could be performed in Matlab. The first method involved filtering
out irrelevant data. This filter implies reducing the raw data logs only to include
data packets from relevant devices (devices included in the project experiments).
The same approach for eliminating irrelevant devices was performed by Kurkcu
and Ozbay in their initial filtering process [37]. By applying this method to the log
files related to TCPdump, the file size was significantly reduced, which resulted
in faster filtering in the database.

Structural error

When the collected data were imported into the SQL database, the information
was closely examined to see if something was missing. Some information related
to one experiment was quickly identified as missing (not imported correctly) and
was immediately corrected in an improved import script during this examination.
This typo could have had a major impact on the result if it had not been discovered.
Such errors can often appear in data transferring or during data acquisition. [39].

Time-based filtering

Another method is to filter data based on time. In combination with recordings
and a time source, this method was used in this master’s thesis to filter data from
a specific experiment or filter a specific time slot when a participant moved from
one location to another. All data outside the chosen time frames would then be
filtered out. Other research, such as Groba [2], utilised time-based filtering in his
demonstration scenario to exclude devices that appeared more than once at each
sensor. This approach would not have worked in this thesis, as Groba’s sensors
were aligned in a straight line with longer distances between each sensor to find
the direction of devices.

Time compression

In contrast to research performed by Groba [2], who concludes that probe requests
are only showing a fraction of the actual attendance, this thesis has collected active
TCP packets. There are advantages and disadvantages to the different approaches,
but in this master’s thesis, the amount of data has not been an issue. In fact, there
has been so much Wi-Fi data down to milliseconds that one method used was
time compressing. Time compression means that all data within the exact second
is compressed into an average time. When we applied this method to the Wi-Fi
data, it improved the speed when querying data from the SQL database to Matlab
because it was compressed into fewer rows. In addition, it became easier to handle
the data in Matlab based on seconds rather than milliseconds.

Chapter 3: Methodology 21

Distance-based filtering

One obvious method used in this master’s thesis is a combination of distance-
based filtering and unwanted out-liners. This filter means reducing the amount of
data by filtering out received low-quality signal values, which consist of too weak,
too strong or values that research shows are irrelevant. Kurkcu and Ozbay [37],
Groba [2] and Chilipirea et al. [3] do mention this method in their research to
filter out non-relevant signal values. Our distance-based filtering method imple-
mented technology-specific thresholds to limit the received signal strength. These
thresholds prevented the methods from calculating positions outside the room or
calculating longer or shorter distances than realistic. As Chilipirea says, it is vital
to set a threshold because "there is no one-size-fits-all" solution due to different
equipment and sensor structures [3]. Further details of how this method was util-
ised are given in Section 5.3.

Missing data

One mechanism that needed to be implemented in the Matlab script was in re-
gards to missing data. Several if-statements were able to discover null values or
values outside the policy during the execution of the script. These statements were
necessary in order to unveil missing data and for the script to continue without
interruptions. Two ways of dealing with missing data are by imputing data based
on other similar observations or by dropping observations with missing or wrong
values [39]. In this thesis, only a few missing data have been identified. In these
cases, the device or values associated with that device have been ignored. Section
5.3 will give further information about missing data.

3.5 Managing the collected data

SQL database

Following the filtering and cleaning methods mentioned in Section 3.4, the data
was imported into a database supporting Structured Query Language (SQL). This
activity was performed by the project partner based on an import plan with an
overview of data types and column names. Each tool was given its table. Having
all the data available in different tables inside a database made it possible to find
data from different experiments more quickly. It also provided a good overview
for following up the methods performed in Section 3.4.

Matlab code

Due to several mathematical calculations, Matlab was chosen as the scripting lan-
guage to implement methods for geolocation and signal correlation. The Matlab
code, which is presented in Appendix D, consists of two scripts. The first script con-
nects to the SQL database and filters the desired data from different tables (shown

22 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

Figure 3.3: Imported data in the SQL database with different tables

in Figure 3.3) based on SQL queries. Further on, this information is stored in new
tables created in Matlab. In script two, these tables are used in order to calculate
the chosen geolocation or linking methods. Code Listing 3.1 and 3.2 show the
connection between Matlab and SQL and show how Matlab is querying data.

Code listing 3.1: Connection between SQL and Matlab

dbfile = (’Atle_Loggfiler.db’); % Current database file
conn = sqlite(dbfile); % Creates a database connection to "dbfile"

Code listing 3.2: Example of SQL query from Matlab

% SQL query with options like experiment number, signal strength, etc
pre_sqlquery = [’SELECT’,time_format,’,Eksperiment,Source,
round(’,signal_strength_type,’,4),Sensor,Filepath,Combined,
Sum_signalstrength FROM ’,current_type,’ WHERE "Eksperiment" LIKE
’,current_experiment,’ ’];

pre_data = fetch(conn,pre_sqlquery); % Saves data from query to pre_data

3.6 Geolocation methods

This section describes the location methods which have been used. The focus will
lay on finding algorithms that estimate the distance between a device and the
sensor to locate devices and understand the propagation path loss.

Distance estimation using signal strength

To estimate where a signal is coming from, the distance between the transmitting
device and the receiving sensor is essential. This distance can be expressed with
a common value included in Wi-Fi and Bluetooth data frames, which is the signal
strength measured in decibel-milliwatts (dBm). The signal strength is the basis
for all algorithms within this master’s thesis because it can be used together with
other information to estimate the distance between a transmitting device and the
receiving one [40].

Chapter 3: Methodology 23

The first step towards estimating the distance is to know how much a signal is
reduced when propagating through air. By using a power link budget, the received
signal (PR) at the sensor can be subtracted by the transmitted signal (PT) from
the device. The result of the subtraction, called Free-Space Path Loss (FSPL), is
the signal reduction that has been influenced by distance or external factors. The
measured signal reduction can be calculated as follows:

FSP LM = PT − PR (3.1)

Another way of expressing the reduction in signal strength over a distance
was presented by Friis [40]. His transmission equation was based on the ratio
between the received power (Pr) and the transmitted power (Pt). This expression
was further based on the characteristics (Aperture) of the transmitting antenna
(AT), the receiving antenna (AR), the antenna-separation distance (d) and the
wavelength (λ) shown in 3.2.

Pr

Pt
=

ArAt

d2λ2
(3.2)

A more convenient way of expressing the free-space path loss formula is in
decibels (dB). Assuming the antennas are isotropic (no fixed directivity which
disregards the aperture), it is possible to derive equation 3.2 into this equation
(in terms of frequency) [41]:

FSP L(dB) = log10

�

�

4πd f
c

�2
�

(3.3)

where:

log10: Logarithm with base 10
d: Distance between transmitter and receiver in meter
f : Transmitted frequency in MHz
c: Speed of light in vacuum (approximately 300·106 m/s)

At this point, we can input FSP LM from equation 3.1 to the left side of equa-
tion 3.3. Since we already know the frequency, it is possible to solve the equation
based on the distance (d). The equation changes into:

d = 10

� FSP LM − 20log(f)− 20log
�4π

c

�

20

�

(3.4)

Example: If a phone plays music and transmits the audio to a Bluetooth device
with PT = 4 dBm and the received signal strength at the sensor node is measured
to be PR = -55 dBm, then the power link budget according to equation 3.1 will
show a signal reduction equal to FSP LM = 4-(-55)= 59 dBm. The distance is fur-
ther calculated in equation 3.5. Due to frequency hopping in the Bluetooth stand-
ard, the frequency factor is solved by summarising the upper and lower Bluetooth

24 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

frequency channel and divide it by two, which equals 2441 MHz (mean value).

d = 10

�59− 20log(2441)− 20log
� 4π

300

�

20

�

= 8.7m (3.5)

Equation 3.4 will in this master’s thesis be used in both the geolocation meth-
ods and every linking algorithm (except normalisation). It is important to note
that accuracy can be affected by interference, different apertures and the angle at
which the devices are held [40]. However, an estimation of the distance between
the sender and a sensor node may be good enough for law enforcement.

3.7 Trilateration or triangulation using signal strength

3.7.1 Trilateration

One method to locate devices is by way of using trilateration. The basis of this
method is knowing the distance between at least three sensors and the device to
determine the relative position of the device [42]. An illustration of this method is
shown in Figure 3.4. Only four out of six sensors located in each corner were selec-
ted (S1, S2, S5 and S6) to reduce the complexity of this method. Still, with three
sensors calculating the location of the device, there are four different composi-
tions of the sensors (equation 3.8 - 3.11). These compositions could be compared
in order to find which is the most accurate in device tracking.

While ground truth2 is obtained during the experiments, the challenge arises
in a real-life scenario where the actual position of a device will need to be calcu-
lated without knowing the distance. A potential solution would be to estimate the
distances with a surveillance camera. Another approach, which may be sufficient
for law enforcement, is to convert the received signal strength into the distance
with the Friis equation (3.4) and at the same time be aware of deviations. This
approach will be the basis for this method.

To proceed with calculations of trilateration, some algebra knowledge is needed.
The standard formula for a circle is:

ri
2 = (x − x i)

2 + (y − yi)
2 (3.6)

where:

ri: Distance from centre of sensor i to mobile device
x & y: The coordinates to where the mobile device could be located
x i & x i: x and y coordinates where sensor i is positioned

2Explained in the list of glossary

Chapter 3: Methodology 25

Figure 3.4: Illustrates the concept of trilateration using algebra

Step one uses formula 3.6 to create four equations, one for each sensor. In a best-
case scenario, each of these equations intersects in the same coordinates where a
device is located. Thus, the values of x and y are ideally. The goal of this calculation
is to find a set of the equation for x and y.

r1
2 = (x − x1)

2 + (y − y1)
2 (Equation 1 - Sensor 1)

r2
2 = (x − x2)

2 + (y − y2)
2 (Equation 2 - Sensor 2)

r5
2 = (x − x5)

2 + (y − y5)
2 (Equation 3 - Sensor 5)

r6
2 = (x − x6)

2 + (y − y6)
2 (Equation 4 - Sensor 6)

Step two expands the squares into a generic equation (description is given in
equation 3.6:

ri
2 = x2 − 2x(x i) + x2

i + y2 − 2y(yi) + y2
i (3.7)

26 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

Step three is about getting linear expressions by subtracting the second equa-
tion from the first, the fifth equation from the second, the sixth from the fifth and
the first from the sixth. These subtractions will eliminate the squared unknowns
(x2 and y2), making the expressions easier to deal with and allow using linear
algebra. The equations are further rewritten where x and y are moved to the left
side. After moving x and y, all the symbols on the right side of the equation are
known. Also, the equations are simplified by substituting the coefficients with let-
ters.

r2
1 − r2

2 − x2
1 + y2

1 − x2
2 + y2

2 = 2x(−x1 + x2) + 2y(−y1 + y2) (Equation 1)

⇒ 2x(−x1 + x2) + 2y(−y1 + y2) = r2
1 − r2

2 − x2
1 + y2

1 − x2
2 + y2

2

⇒ Ax + B y = C (Equation 1 substituted)

where:

A: 2(−x1 + x2)
B: 2(−y1 + y2)
C: r2

1 − r2
2 − x2

1 + y2
1 − x2

2 + y2
2)

r2
2 − r2

5 − x2
2 + y2

2 − x2
5 + y2

5 = 2x(−x2 + x5) + 2y(−y2 + y5) (Equation 2)

⇒ 2x(−x2 + x5) + 2y(−y2 + y5) = r2
2 − r2

5 − x2
2 + y2

2 − x2
5 + y2

5

⇒ Dx + E y = F (Equation 2 substituted)

where:

D: 2(−x2 + x5)
E: 2(−y2 + y5)
F : r2

2 − r2
5 − x2

2 + y2
2 − x2

5 + y2
5

r2
5 − r2

6 − x2
5 + y2

5 − x2
6 + y2

6 = 2x(−x5 + x6) + 2y(−y5 + y6) (Equation 3)

⇒ 2x(−x5 + x6) + 2y(−y5 + y6) = r2
5 − r2

6 − x2
5 + y2

5 − x2
6 + y2

6

⇒ Gx +H y = I (Equation 3 substituted)

where:

Chapter 3: Methodology 27

G: 2(−x5 + x6)
H: 2(−y5 + y6)
I : r2

5 − r2
6 − x2

5 + y2
5 − x2

6 + y2
6

r2
6 − r2

1 − x2
6 + y2

6 − x2
1 + y2

1 = 2x(−x6 + x1) + 2y(−y6 + y1) (Equation 4)

⇒ 2x(−x6 + x1) + 2y(−y6 + y1) = r2
6 − r2

1 − x2
6 + y2

6 − x2
1 + y2

1

⇒ J x + Ky = L (Equation 4 substituted)

where:

J : 2(−x6 + x1)
K: 2(−y6 + y1)
L: r2

6 − r2
1 − x2

6 + y2
6 − x2

1 + y2
1

The final step is about solving a system of equations which contains information
from three sensors (trilateration). This means that two of the equations below
must be solved with respect to x and y in order to find the coordinates.

• Equation 1: Ax + B y = C
• Equation 2: Dx + E y = F
• Equation 3: Gx +H y = I
• Equation 4: J x + Ky = L

Solving the system with linear algebra based on equation one and two:

Sensor(1, 2,5) : x =
C E − BF
AE − BD

, y =
C D− AF
BD− AE

(3.8)

Solving the system with linear algebra based on equation two and three:

Sensor(2,5, 6) : x =
FH − EI
DH − EG

, y =
FG − DI
EG − DH

(3.9)

Solving the system with linear algebra based on equation three and four:

Sensor(5,6, 1) : x =
IK −H L
GK −HJ

, y =
I J − GL
HJ − GK

(3.10)

Solving the system with linear algebra based on equation four and one:

Sensor(6, 1,2) : x =
LA− KC
JB − KA

, y =
LA− JC
KA− JB

(3.11)

The equations in 3.8-3.11 are further implemented into the Matlab script
where every letter is replaced with their respective expressions. An ideal scen-
ario is already shown in Figure 3.4, where all the sensors convert the measured

28 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

signal strength into the distance and use one of the systems set above to calculate
the exact location of the device. In real life, the sensors will receive different sig-
nal strength due to external factors and interference. Therefore, it is interesting to
see which of the equations above (3.8-3.11) gives the most accurate results when
the devices are both at rest, but also when they are moving away from sensor
1-2 towards the sensor 5-6. This is explained more in detail in the chapter about
experiment setup below scenario 1 (4.3.2) and scenario 2 (4.3.5).

3.7.2 Triangulation

Principles related to trigonometry will apply in this thesis when mobile devices are
to be located through triangulation. In fact, when a phone is transmitting a signal,
two receiving sensors can form a triangle in which the adjacent and opposite side
can be calculated. This process assumes that the received signal is converted to
distance (free-space path loss formula 3.4) to further calculate the angles in the
triangle. Figure 3.5 illustrates how triangulation is performed.

Figure 3.5: Illustrates the concept of triangulation using trigonometry

To exclude locations outside the environment, restrictions have been implemented
in the Matlab script, which, for example, only care about angles between 0 and
45 degrees. In this case, the red devices and the red areas in Figure 3.5 will be
ignored.

First, the six sensor nodes formed four medium and large triangles as seen in

Chapter 3: Methodology 29

Figure 3.6. Along the way, the number of triangles was increased with additional
four small triangles, with a total of eight triangles. These extra small triangles oc-
cur along the long wall, where also the big triangles occur. The medium triangles
occur on the short wall. Furthermore, a distinction is made between whether the
angle of the triangle is calculated from the left sensor (A perspective) or the right
sensor (B perspective). All these triangles give a total of 16 possibilities for calcu-
lating the device location. The possibilities are, of course, limited by the restricted
angles that have been set in each triangle. Figure 3.6 shows the overlapping sec-
tors with some of the restrictions given.

Figure 3.6: Illustrates all triangles, their overlapping sectors and restricted angles

To prevent the calculated distances from falling outside the area and to prevent
triangle inequality 3, several if-statements have been implemented. Various values
related to the if-statements are tested with the data sets to obtain as accurate
locations as possible. These checks related to distance are stated below:

• Small triangle: 10.40 ≤ dtot ≤ 15.7 & d < 11.195
• Medium triangle: 11.195 ≤ dtot ≤ 30.7 & d < 15.35
• Large triangle: 20.80 ≤ dtot ≤ 30.7 & d < 15.35

3Explained in the list of glossary

30 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

where:

dtot : Both distances (in meter) from sensors to device added
d: Distance (in meter) between sensor and device

To calculate the adjacent and opposite side in a triangle (A-perspective), such as
in Figure 3.7, the law of cosines and the Pythagorean theorem need to be used.

Figure 3.7: Adjacent and opposite length need to be calculated

Step one is to find the angle of A with the law of cosines. The received signal
values of a and c are converted into the distance with the free-space path loss
formula 3.4:

a2 = b2 + c2 − 2bc · cos(A)⇒ cos(A) =
b2 + c2 − a2

2bc
(3.12)

where:

a & c: Received signal from phone converted into distance
b: Known distance between Sensor 1 and Sensor 2
A: The angle from Sensor 1 (A-perspective) to the phone
B: The angle from Sensor 2 (B-perspective) to the phone

Step two uses the previous angle and distance c to find the length of the adjacent
side of the right triangle:

cos(A) =
b2 + c2 − a2

2bc
=

ad jacent
hypotenuse

, (hypotenuse = c) (3.13)

ad jacent = c · cos(A) (3.14)

The last step uses the Pythagorean theorem to find the length of the opposite
side of the right triangle:

opposi te2 = c2 − ad jacent2 (3.15)

Chapter 3: Methodology 31

opposi te =
Æ

c2 − ad jacent2 (3.16)

Finally, these values can be plotted in a Cartesian coordinate system as x and y
values: (adjacent, opposite). Even though some triangles in Figure 3.6 are rotated,
the adjacent and opposite side is converted into the same coordinate system.

3.8 Linking algorithms using signal strength

This section is about linking Bluetooth and Wi-Fi signals that are originating from
the same device. The goal is to associate the identifiable Lower Address Part (LAP)
captured in Bluetooth signals with the Wi-Fi MAC address that could be random-
ised. In order to do so, there are several signal correlation methods or linking
algorithms to choose between based on the signal strength. The algorithms that
are applied in this master’s thesis are:

1. Normalisation
2. Signal strength to distance conversion
3. Bluetooth signal to Wi-Fi signal conversion
4. Triangulation
5. Trilateration

3.8.1 Euclidean distance

The algorithms mentioned above are the first step in finding the most similar
Bluetooth-Wi-Fi signal pair to highlight which phone these signals originate from.
The second step, which is used at the end of all the algorithms, is about find-
ing the most similar vectors. This calculation is achieved with a distance met-
ric called Euclidean distance. Euclidean distance will calculate the straight line
between two (or more) points, that is, between a sensor and a mobile device [43,
p. 145]. The devices are likely to be in a straight line without too many obstacles
that may reflect the signal. Hopefully, the correct pair of signals will combine im-
portant system information to identify a specific device, which had been difficult
with just metadata from one of these signals. To later verify the correctness of
the algorithms, system information related to Bluetooth, Wi-Fi and random MAC
address was collected from each device involved in the experiments.

With the different composition of sensors (either 4 or 6 sensors), the Euc-
lidean distance for points given by Cartesian coordinates in higher dimensions is
calculated as follow:

d(w, b) =
Æ

(w1 − b1)2 + (w2 − b2)2 + ..+ (wi − bi)2 + ..+ (wn − bn)2 (3.17)

where:

wi and bi: are the Wi-Fi and Bluetooth values represented by the signal
strength at sensor i th. The composition of i=1,2,..,n, where n = 4 or 6 tells

32 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

the structure of sensor nodes. With i = 1,2,5,6, four of the sensor nodes are
chosen.
d(w, b): will be close to zero if the two vectors are more similar and will be
greater than zero if the vectors are different.
w and b : two points representing the Cartesian coordinates of a device.

3.8.2 Signal to distance

Converting signal strength to distance is one of the primary algorithms used in this
master’s thesis. In this context, each data set consisting of Wi-Fi and Bluetooth sig-
nals were converted into distances with the use of the free-space path loss formula
3.4. Further, Euclidean distance (3.17) calculated the most similar vectors. These
vectors represent the line between sensor i and where the device should be located
based on signal strength.

3.8.3 Normalisation

Perhaps the simplest algorithm used is the process of normalising the data. This
algorithm does not require any pre-calculations or analysis of the devices in ad-
vance but may, in turn, be less accurate. The process of normalisation involves
the adjustment of measured signal strength on different scales to restructure on a
common scale [44]. By normalising both the Bluetooth and Wi-Fi data to a scale
between 0 and 1, it would be possible to find similar values due to the same rep-
resentation of distance [6]. The normalisation of each data set is performed with
this equation:

Ni =
x i −min(x)

max(x)−min(x)
(3.18)

where:

Ni: is the i th normalised data related to device i, ..., 10
x i: signal strength value received by one of the six sensors (x i , .., x6)
xMin: Lowest signal strength measured among the six sensors
xMax : Highest signal strength measured among the six sensors

The normalised data is then compared with Euclidean distance trying to link the
MAC addresses together.

3.8.4 Bluetooth signal to Wi-Fi signal conversion

Another algorithm is the Bluetooth signal conversion to Wi-Fi signal. Because the
relation between the technologies are linear, as Longo [6] noticed, the values from
Bluetooth is possible to be converted to Wi-Fi and vice versa. Functions from the
regression lines obtained during the preliminary experiment (described in chapter
4) are used to convert the signals. In Figure 3.8, one of these lines is represented
by the mean value of all ten known devices. The line is plotted in Microsoft Excel,

Chapter 3: Methodology 33

while the equation is further used in Matlab for the conversion. All ten known
devices do have their regression line, making it more accurate, while the unknown
devices will use the mean regression line as the generic conversion.

Figure 3.8: Plot of the mean linear regression line from all ten known devices

Having the Bluetooth signals converted into Wi-Fi signals, these two data sets
were compared with the Euclidean distance to find the most similar pair.

3.8.5 Trilateration

In Section 3.7.1, trilateration was described. This method is also tested as a can-
didate for linking the pair of Bluetooth and Wi-Fi signals back to the originating
device. Because of four different compositions of sensors that give slightly differ-
ent coordinates associated with the same device, the mean value of these coordin-
ates was used. To find similar signal pairs in this method, we used the Euclidean
distance. This equation is based on a two-dimension formula with the vectors
representing the distance of the received Bluetooth and Wi-Fi signals:

d(w, b) =
q

(wx − bx)2 + (w y − by)2 (3.19)

where:

wx and w y : mean x and y Wi-Fi signal strength represented by the distance.
bx and by : mean x and y Bluetooth signal strength represented by the dis-
tance.
d(w, b): will be close to zero if the two vectors are more similar and will be
greater than zero if the vectors are different.
w and b: two points representing the Cartesian coordinates of a device.

3.8.6 Triangulation

Lastly, triangulation is tested as a linking algorithm. The algorithm will use the
same approach as the location method in Section 3.7.2. However, since different

34 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

triangles give slightly different coordinates associated with the same device, the
mean value of these coordinates was used. The Euclidean distance in Equation
3.19 was used to compare signals and link those that are most similar.

3.9 Methodology flowchart

To summarise the methodology chapter, different phases of the master’s thesis is
shown in Figure 3.9 as a flowchart. First, the system architecture was developed,
including an encrypted network, various nodes, and software to acquire Bluetooth
and Wi-Fi data packets. Further on, the necessary equipment was ordered and as-
sembled. The next phase consisted of network configuration and software testing
to ensure that the data was correctly acquired, stored and easily retrievable. When
the system was completed, different scenarios and experiments were prepared in
a collection plan. It was this plan that was closely followed during the data collec-
tion. After the data was acquired, the raw data logs needed to be verified before
the cleaning and filtering methods were performed. At this stage, the Wi-Fi logs
were heavily reduced in size before importing the data to SQL. This reduction
made the SQL queries against the database significantly faster. The next phase
consisted of data analysis before scripting in Matlab began. The Matlab phase
included the implementation of filtering options, linking methods and geoloca-
tion methods. After the scripting phase was completed, the scripts were used to
perform linking and geolocation calculations. Finally, the results were analysed
before a conclusion was given.

Figure 3.9: Different phases in the master’s thesis illustrated as a flowchart

Chapter 4

Experiment setup

This chapter describes the collection phase of our experiments in which we collec-
ted Bluetooth and Wi-Fi data from different phones in different scenarios, model-
ling different contexts. In order to collect these data packets, a collection plan was
created. This plan described in detail when, where, what, why, who and how the
data should be collected. Three days were used to prepare and complete in total
twelve experiments. The experiments included preliminary work on the group of
known devices to understand signal strength at different distances. These phones
are described in experiment one through five. Ten colleagues were invited to carry
out the same experiments to make them more realistic. These devices are the
group of unknown devices described in experiment 6.1, 6.2, 6.3, 7.1 and 7.2.

In general, the devices would connect to a Wi-Fi network and stream a specific
YouTube video while listening on a Bluetooth audio device. During this session, a
controlling node gave commands to start/stop acquiring data. The Wi-Fi network
was configured to only allow for 2.4 GHz with the fixed frequency channel 11.
Usually, the frequency channel is set to auto, but using a fixed frequency variable
in the Friis equation would make the calculated distance more precise. Also, using
a non-overlapping Wi-Fi channel, as described in Section 2.1.3, the potential risk
of Adjacent-Channel Interference (ACI) would decrease. However, this can be seen
as a limitation of our work.

4.1 Participants

To maintain the legal aspect of collecting personal information such as phone
MAC address, the participants in the group of unknown devices were requested
to provide their consent. The consent form contains information about the parti-
cipation, the purpose of the experiments and the person responsible for the data
collection. It also provided information about laws related to the General Data
Protection Regulation (GDPR). Because of GDPR, information requested in the
consent form and the data collection were kept on a specific laptop with addi-
tional backup to an external hard drive. Both were encrypted with the state of the
art encryption. Also, in accordance with the GDPR, neither personal information

35

36 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

nor specified device information is possible to link to the thesis. The information
was only used to compare data to ground truth. In addition to the information
requested, the participants gave their phones’ random Wi-Fi MAC address associ-
ated with the SSID on the access point (AP) and the public MAC address on their
Bluetooth device. This was not specified in the consent form but was necessary
for a general overview and since one scenario included the use of a random MAC
address. The participants were also given a fixed number that described which
location they should be in during the static experiments and another number that
described in which order they should begin to start walking during the dynamic
experiments. This information could later be linked together with time and video
recordings showing the actual location of the devices. Both the project partner
and a police lawyer approved the consent form before the invitation was sent.

4.2 Environment

The environment used for the experiments was a gym hosted by the project part-
ner. The sensor nodes were located in the corner of the room (S1-S6), while one
sensor node (S7) and the access point (AP) were located in the middle of the room.
All of the sensors had the same hardware (see equipment list in Appendix A) and
were placed at a similar height from the floor. The orientation of the antennas was
either pointing down or up, making it almost vertical to the floor plane.

Figure 4.1: Illustration of the environment including sensor nodes and AP

Chapter 4: Experiment setup 37

In Figure 4.1, the purple circles illustrate where the sensor nodes were loc-
ated, while the red rectangle illustrates a pre-defined rectangle that corresponds
with the location of the sensors. Most of the experiment’s activity were performed
within the blue rectangle, also marked on the floor. Exercise equipment was already
set out in the room. This equipment was not taken away during the collection,
making it more realistic than if the room had been empty. In addition, the pres-
ence of ten participants during experiment six through seven could also increase
the possibility of signal absorption, making the results more inaccurate [45].

4.3 Scenarios and Experiments

Six different scenarios were created in order to collect the desired amount of data.
These scenarios consisted of preliminary work and experiments that the group of
unknown and known devices would perform. The overall goals for scenario 1-4
were to link Bluetooth data with Wi-Fi data and estimate distances to geolocate
devices in the room by the received signal strength. Initially, system information
related to the participants’ devices were unknown. So, when the participants ar-
rived, the software called Blue Hydra (introduced in Section 2.1.4) began to scan
for nearby devices in order to reveal the public Bluetooth MAC address or the
Lower Address Part (LAP). The result of this scan was later used to relate with the
LAP in the Ubertooth logs.

The collection plan was followed throughout the experiments, but minor changes
were made in some scenarios for practical reasons. These changes are described
in the scenarios below. During experiment two through five, an associate helped
with setup and preparation.

4.3.1 Preliminary scenario

The preliminary scenario, which is illustrated in Figure 4.2 consisted of two ex-
periments. The first experiment was intended to collect basic data from 10 smart-
phones to plot signal strength as regression lines at different distances. This would
yield more accurate distance estimations individually than using the same regres-
sion line for all devices [6]. The idea was to take the average value of these regres-
sion lines to estimate distances up to 15 meters without thinking about various
antenna specifications.

The known devices were split into three smaller groups to achieve time effi-
ciency. The first group started at a distance of one meter from the sensor and was
moved backwards approximately one minute later. When the group had moved
15 meters backwards, the second and third group repeated what group one had
completed. During the experiment, start and stop commands were sent at differ-
ent distances. For each stop command, the raw data was placed in a log file that
contained a logical file name, which made the filtering process easier. There was a
clear Line of Sight (LOS) between the sensor and the devices to reduce the signal
reflection.

38 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

The second experiment involved the testing of a software introduced in Sec-
tion 2.2 that is able to capture Bluetooth Low Energy data frames from Apple
devices. The goal was to see if the Apple Bleee software could capture these data
packets from distances up to 15 meters. Since this experiment was carried out
in the same way as experiment one and because it is different from the other
scenarios, this experiment is included in the preliminary scenario.

Figure 4.2: Illustration of how the preliminary scenario was performed

Experiment 1 - Preliminary with known devices

The collected data from this experiment consisted of log files from TCPdump, HCI
tool and Ubertooth.

Experiment 2 - Preliminary, experimental with Apple iPhones

In this experiment, the tool called Apple Bleee was tested to see if screen status
(idle, lock, home, off) from different Apple products could be captured at dif-
ferent distances. Three iPhone’s and one iPad (equipment list in Appendix A.3)
were included in this experiment. The experiment was saved as a screen record-
ing from the program’s graphical interface. A number in the recordings indicated
the distance between the sensor and the device.

Chapter 4: Experiment setup 39

4.3.2 Scenario 1 - Fixed locations

The first scenario, illustrated in Figure 4.3, show where the ten known devices
were located among the fixed positions. Distances from every location to each
sensor node was beforehand measured for later verification. The data acquisi-
tion started before each device was streaming and before they were connected to
a Bluetooth device. The idea was to see if Blue Hydra could reveal information
faster than if the acquisition had started after the devices had connected to their
Bluetooth device. Because of the large amounts of data that TCPdump generated,
the service had to be stopped after 60 seconds. The rest of the services contin-
ued for approximately 2 minutes. In this period, approximately 500-700 MB of
raw data was collected, including logs from TCPdump, HCI tool and Ubertooth. A
closer look at the challenge related to data size indicated that the process of zip-
ping and transferring data back to the controlling node was taking too long when
data began to exceed 800 MB. Therefore, in scenario 1-3, the average acquiring
time for TCPdump was one minute, while Ubertooth and HCI tool continued for
two more minutes.

Experiment 3.1, scenario 1, known devices

Each device was placed 30-50 cm above floor level. Device number one was placed
in the first location, the second device in location two, etc. An overview of devices
can be seen in Appendix A.3.

Experiment 6.1, scenario 1, unknown devices

During the experiment, the participants were told to stand upright and hold the
device in front of them. The number that was given to the participant in the con-
sent form reflected which position they were placed in. Number one was placed
in the first location, etc. During this experiment, one device had a random MAC
address. The solution to this has been to change the list of MAC addresses in Mat-
lab to contain this device random MAC address in experiment 6-1 and 6-2 while
using its public MAC address in experiment 6-3.

4.3.3 Scenario 2 - Fixed locations, different start-up procedure

In the second scenario, the devices were also located at fixed positions. Figure 4.3
can also describe this scenario. Unlike scenario one, the command to acquire data
was sent after the devices connected to an external Bluetooth device and began
streaming the video. The theory was that Blue Hydra would need more time in
this scenario to reveal necessary information about MAC addresses.

Experiment 3.2, scenario 2, known devices

The first known device was placed in the first location, etc.

40 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

Figure 4.3: Illustration of scenario 1-3. Phone 1-10 are indicating the fixed loca-
tions

Experiment 6.2, scenario 2, unknown devices

During the experiment, the participants stood upright while holding their device
in front of them. The number that was given to the participant in the consent form
reflected which position they were placed in.

4.3.4 Scenario 3 - Fixed locations, random Wi-Fi MAC enabled

Wi-Fi MAC randomisation was enabled on devices that supported this function.
The start command was sent after the devices had begun streaming video and
were playing audio on their connected Bluetooth device. Figure 4.3 can also de-
scribe this scenario.

Experiment 3.3, scenario 3, known devices

The first device was placed in the first location, etc.

Experiment 6.3, scenario 3, unknown devices

During the experiment, the participants stood upright while holding their device
in front of them. The number that was given to the participant in the consent form
reflected which position they were placed in.

Chapter 4: Experiment setup 41

4.3.5 Scenario 4 - Fixed pattern, moving as one or in groups

Moving on to the dynamic scenarios. The devices were in this scenario going to
move as Figure 4.4 illustrates. The participants were told to pause for 20 seconds
when arriving at location 2, 3, 5, 6 and 8, as illustrated in red. When arriving at
the purple locations, they should pass by. When the first device began to move
against location three, the next device should start. This would eventually follow
a system called First-In-First-Out (FIFO).

Data were stored locally on each sensor node from this scenario to save time in
further experiments. This also made it possible to acquire data for more than three
minutes without waiting for the experiment to complete zipping and transferring
when the stop command was sent.

Figure 4.4: Illustration of scenario 4-5 with the pre-defined route

Experiment 4, scenario 4, known devices, performed with normal speed

The devices rested for twenty seconds on location 2, 3, 5, 6 and 8. One person
held several devices during the experiment for time efficiency.

Experiment 7.1, scenario 4, unknown devices, performed at a lower speed

The participants were instructed to line up in ascending order with their number
as a basis. Further, they were told to follow a prepared trail that took them from

42 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

one side of the room to the other. During the experiment, it was approximately
20 seconds between the participants.

Experiment 7.2, scenario 4, unknown devices, performed at a higher speed

Same as in experiment 7.1, but with higher speed. Now, only stopping for three
seconds in the red locations (Figure 4.4). This experiment was performed to see
if the results changed when moving faster than normal. The data logs in this ex-
periment had a smaller size as the participants spent less time on the track.

4.3.6 Scenario 5 - Fixed pattern, move as one group

The purpose of scenario five was to track devices when they moved close to each
other through the pre-defined route in Figure 4.4. For practical reasons and to
comply with distance rules related to covid-19, only the group of known devices
were attending this scenario.

Experiment 5, scenario 5, known devices

The person holding these devices walked normally and stopped for 20 seconds
at locations 2, 3, 5, 6 and 8. As Figure 4.5 shows, the devices kept almost the
same angle during the experiment with some distance between each other. All
Bluetooth devices were placed in the compartment at the back of the cardboard
box. An early observation in this experiment was that data related to one device
(relatively new model) only collected a few probe requests instead of metadata
from Transmission Control Protocol (TCP) packets.

Figure 4.5: Picture from experiment five showing how it was performed

Chapter 4: Experiment setup 43

4.4 Experiment setup flowchart

An overview of the experiment setup chapter is presented as a flowchart in Figure
4.6. The first step involved the preparation of various scenarios and experiments.
These scenarios and experiments were further described in detail in the collec-
tion plan, which served as a manual during the data collection. In front of the
data collection, a consent form was created to take care of GDPR concerns. The
consent was reviewed and approved by legal professionals before the participants
were invited and willingly signed the consent form. The next phase consisted of
preparations that needed to be completed to perform the data collection, such as
network stability, video recording and battery charging. Before collecting the data,
we ensured ground truth by measuring the distances between the fixed locations
and the sensors.

The data collection phase took place over three days with constant work.
During day one, experiment one and two, consisting of preliminary work, were
completed. The next day included static and dynamic scenarios consisting of ex-
periment three through five with known devices. Lastly, day three consisted of
static and dynamic scenarios with ten participants that performed experiment six
through seven. These participants had beforehand signed the consent form. After
the collection phase was completed, the acquired data were gathered, verified and
placed on a specific encrypted laptop with additional backup to an external hard
drive.

Figure 4.6: Different phases of the experiment setup illustrated as a flowchart

Chapter 5

Pre-processing and data analysis

This chapter dives into the collected data to analyse how the data was filtered and
cleaned and how the data was further used in signal correlation and geolocation
methods. This chapter will also look into Blue Hydra and Apple Bleee analysis,
describe the different data types within the data logs, elaborate on how statist-
ical averaging was performed and analyse data from different experiments. The
chapter will provide the reader with a detailed perspective of how the data was
processed and utilised.

5.1 Blue Hydra and Apple Bleee analyses

5.1.1 Blue Hydra analysis

In scenario one and two, Blue Hydra managed to reveal the Lower Address Part
(LAP) (SAP minus UAP) and some of the public MAC addresses among the at-
tending devices. In addition, Blue Hydra managed to reveal the device names,
which essentially would hint as to which device belongs to whom. Among the
group of unknown devices, there were ten unique device names. Further on, the
Lower Address Part were used in Matlab to whitelist interesting devices listed in
the Ubertooth logs. Figure 5.1 shows a screenshot taken in the graphical user in-
terface of Blue Hydra when the known devices were streaming a YouTube video
while using a Bluetooth device as the audio source.

An interesting finding while using Blue Hydra show that devices searching
for their Bluetooth device inside the Bluetooth menu increases the probability
for Blue Hydra to reveal their full public MAC address. However, this does not
seem valid for fast Bluetooth re-connection. Although a complete MAC address or
SAP has higher credibility than the LAP address, the latter will provide the law
enforcement with enough uniqueness to distinguish between devices. Scenario
one and scenario two show that Blue Hydra is not finding the LAP address faster
if a phone connects to their Bluetooth device in a normal way, while Blue Hydra is
sniffing. The exception is if the phone spends several seconds inside the Bluetooth
menu or begins a new pairing.

45

46 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

Figure 5.1: Blue Hydra revealing SAP addresses (UAP + LAP) of known devices.
The column describing the type is removed for best scaling

5.1.2 Apple Bleee analysis

Experiment two in this master’s thesis includes a test of Apple Bleee with four
Apple products at different distances. This was mainly to see if the sensor would
pick up different screen status at 15 meters. The experiment may seem tedious, but
from a mobile forensic perspective, it is essential whether the user has entered the
screen lock or not after the last restart. The fact is that an After First Unlock (AFU)1

extraction will contain encrypted information from third-party applications. In
contrast to AFU, a Before First Unlock (BFU)1 extraction only contains general
information from the device. Utilising the Apple Bleee software combined with
covert police work can give basic information on whether the device is in use or
at rest, affecting when a person should be arrested.

Figure 5.2 shows three iPhone’s in the graphical user interface of Apple Bleee
at 15 meters with forensically important screen status and useful information
about the iOS version. The latter will indicate whether the forensic tools which the
law enforcement use is able to support the device or not. The last Apple product
(iPad) is not listed as it does not support Bluetooth Low Energy. The first column
containing the random MAC address changed rapidly during the experiment, mak-
ing it useless for tracking.

Different screen status that is tested:

• Idle: screen off
• Lock screen: lock screen
• Home screen: user entered code, on home screen
• Off: lock screen + idle

1Explained in the list of glossary

Chapter 5: Pre-processing and data analysis 47

Figure 5.2: Screen status from iPhones obtained with Apple Bleee at 15 meters

5.2 Data types and metadata in the collected data

A data packet consists of information from several data types and is found in both
the log files captured by TCPdump and Ubertooth. The data packets included
these types of data: source, signal strength, channel, and name. Table 5.1 is de-
scribing the the data packets more in detail. To make the data more searchable
and recognisable, we added metadata with the Ansible script that contained the
following data types: id, date, type, experiment, sensor, filename and file path.
In Table 5.2 a brief description of these data types is given. The metadata and
data types mentioned here is what we found as useful information that could be
captured passively from Bluetooth and Wi-Fi.

Data type Description of captured data types

Time

Each data packet contained a timestamp. For the Ubertooth tool, these
timestamps were converted from Unix epoch time to UTC+0 (down to
seconds). The TCPdump tool already had this converted correctly (down
to milliseconds)

Source
This field represents the Wi-Fi MAC address captured by TCPdump or
the Bluetooth Lower Address Part (LAP) captured with Ubertooth

Signal
strength

The received signal strength at the antenna measured in dBm. This value
is described more in Section 2.1.1

Channel
Indicates which channel the data packet was sent on. Most of the data
packets collected by TCPdump had channel 11, while data packets cap-
tured with Ubertooth showed channels between 0-78

Name
Data field in packets captured with TCPdump that often contain the
name of the manufacturer such as: SamsungE, Apple, OnePlusT, Google

Packet
number

In TCPdump, each data packet had a packet number that was imported
into SQL. This may be used in further work

Table 5.1: Data types captured by TCPdump and Ubertooth

48 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

Data type Description of metadata added

Id Each data packet was given a unique number during the import to SQL
Date Date information in each data packet and in the title of each log file
Type Log type, such as: Ubertooth, TCPdump
Experiment Name of the experiment that the data packet originated from
Sensor A number associated with the sensor that captured the data packet
Filename A name that was given to each log file to make it more searchable
File path Included as a data type to be sure where the data comes from

Table 5.2: Data types that were added to each data packet as metadata

5.3 Data filtering and cleaning methods in detail

In Section 3.4, the methods for filtering and cleaning data was presented. Some of
those methods will be described more in detail, such as (i) unwanted observations,
(ii) distance-based filtering, (iii) time compression and (iv) missing data.

Unwanted observations

In order to avoid importing irrelevant data to the SQL database, a method called
whitelisting2 was applied as a filtering mechanism in Wireshark to those devices
that were attending the experiments. One of these filtering commands, presented
in Code Listing 5.1, was used to filter and verify pcap-files generated by TCPdump.
Also, Wi-Fi packets with frequency channel different from 11 and received signal
strength represented as null values were removed. These unwanted observations
and the whitelisting reduced a vast amount of irrelevant data. In contrast to Wi-
Fi packets, the raw data files related to Ubertooth (txt-files) were not cleaned
before importing to SQL because of the log simplicity and insignificant data size.
However, the Bluetooth data captured by Ubertooth were opened in Wireshark
for data verification. Code Listing 5.2 shows the whitelisting filter that was used
to verify that each Bluetooth device was included in the Ubertooth logs.

Code listing 5.1: Wi-Fi filtering in Wireshark

% Whitelisting: Filter on transmitter address (TA) and source address (SA)
% Signal strength: less or equal to 0
% Frequency: Show Wi-Fi packets sent on frequency channel 11
((wlan.ta == 04:15:52:6B:B0:CA) || (wlan.sa == 04:15:52:6B:B0:CA)) &&
(wlan_radio.signal_dbm <= 0) && (wlan_radio.channel == 11)

Code listing 5.2: Bluetooth filtering in Wireshark

% Whitelisting: Only show these LAP addresses
(btbredr_rf.lower_address_part == 0x006BB0CB) % or (btbredr... == next LAP address)

2Explained in the list of glossary

Chapter 5: Pre-processing and data analysis 49

Another filtering method used to remove unwanted observations was time
filtering. This filter was applied in those dynamic scenarios where the devices
were following a pre-defined route. The video recordings gave the actual time
and location, and this information was used in Matlab to keep those data packets
captured between start and finish. The data packets outside these timestamps
were excluded.

Distance-based filtering

Section 3.4 gave a brief explanation of the distance-based filtering method. This
section will describe in detail how the thresholds for Wi-Fi and Bluetooth were
calculated. First, in order to find the lower threshold for Wi-Fi signals, the free-
space path loss Equation 5.1 was used. The longest distance within the room was
measured to d = 23.75 meters, while channel 11 was set as the frequency (f =
2462 MHz). The speed of light is still constant (c = 300 · 106m/s). Taking into
account that a human body attenuates signals approximately by 3 dBm (halves
the signal), this value was added in the link budget as path loss [46]. In addition, a
typical transmitted Wi-Fi signal has its output power between 15-20 dBm (30-100
mW) [17]. This master’s thesis chose the transmit power equal to 20 dBm, which
is the maximum transmit power of Wi-Fi. This fits better with this data set than
if the value were, e.g. 15 dBm. However, in contrast, to probe requests that are
transmitted louder than data packets acquired in this thesis, newer devices can
transmit data packets by adjusting the output power dynamically [17][47]. This
includes Wi-Fi devices with newer standards, e.g. radio measurement extensions
(802.11k/r/v) and Multiple-Input Multiple-Output (MIMO)3 where output power
potentially is based on the distance from the device to the wireless access point
[47]. Since this thesis is not accounting for dynamic output power, this could
be a limitation. However, it may still be usable for law enforcement. Equation 5.2
show the power link budget for the lower threshold, including a 10 % uncertainty,
resulting in a limit of 56 dBm. Thus, several low values that could be associated
with multipath are filtered out.

When it comes to the upper threshold, this was set to filter out received signals
stronger than -15 dBm. The threshold was chosen because the number of received
signals in the collected data outside this limit was rare and appeared as mislead-
ing. Also, the methods seem to be more precise when setting this upper threshold.
Based on the facts mentioned above, the Wi-Fi signal thresholds are given in 5.3.

FSP L(dB) = 10log

�

�

4π · 23.75 · 2462
300 · 106

�2
�

= 67,78 dBm (5.1)

⇒ (67, 78 dBm+ 3 dBm− 20 dBm) + 10%≈ 56 dBm (5.2)

⇒−56 dBm≤ Wi-Fi signal≤ −15 dBm (5.3)

3Explained in the list of glossary

50 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

Changing the focus over to Bluetooth, the frequency is set to f = 2441 MHz,
which is the average frequency of all 79 Bluetooth Classic channels. The Bluetooth
signal path loss is also based on the distance equal to d = 23.75 meters and is cal-
culated with Equation 5.4. When we adjusted the link budget for body attenuation
(3 dBm) and assumed that the devices transmitted with a maximum output power
(4 dBm / 2.5 mW, class two devices), the lower Bluetooth signal threshold was
set to 73 dBm including a 10 % uncertainty. The upper threshold is also in this
technology set to -15 dBm. Expression 5.5 show the lower and upper Bluetooth
signal thresholds which are used in this master’s thesis.

FSP L(dB) = 10log

�

�

4π · 23.75 · 2441
300 · 106

�2
�

= 67,71 dBm (5.4)

⇒ (67, 71 dBm+ 3 dBm− 4 dBm) + 10%≈ 73 dBm

⇒−73 dBm≤ Bluetooth signal≤ −15 dBm (5.5)

Code Listing 5.3 and 5.4 are showing how the distance-based filter was performed
in SQL for Wi-Fi and Bluetooth.

Code listing 5.3: Distance-based filtering in SQL for Wi-Fi

insert into tcpdump_whitelisted_distance
SELECT *
FROM tcpdump_updated
WHERE (Signal_strength_dBm_2 >=-56 AND Signal_strength_dBm_2 <=-15)

Code listing 5.4: Distance-based filtering in SQL for Bluetooth

insert into ubertooth_whitelisted_distance
SELECT *
FROM ubertooth_whitelisted
WHERE (Signal_strength_dBm >=-73 AND Signal_strength_dBm <=-15)

Time compression in dynamic scenarios

In the acquired data, huge amounts of data packets, especially from TCPdump,
were received within the same second. Hence, to prepare the data for the dynamic
scenarios, it was necessary to compress these data packets into the same second.
One second should be associated with one signal value. The solution was to group
the data packets by time, sensor and source, while the average signal strength
was calculated from all the packets associated with this group. The result, which
significantly reduced the number of data rows, made the data more convenient in
Matlab. For the static scenarios, time compression was unnecessary as all devices
were located in the same place during the experiment. In the static scenarios, the
average signal strength of all received data packets was calculated. More about
that in Section 5.4.

Chapter 5: Pre-processing and data analysis 51

Time compression, as described above, generated two additional tables in
SQL. These tables were only used in the geolocation scenarios when the devices
were moving, described in Section 4.3.5 and 4.3.6.

• tcpdump_whitelisted_combined_seconds_distance
• ubertooth_whitelisted_combined_seconds_distance

Code Listing 5.5 shows how time compression was applied to the Wi-Fi data pack-
ets captured by TCPdump. The same procedure was performed on the Bluetooth
data packets captured by Ubertooth.

Code listing 5.5: Time compression filter applied in SQL

insert into tcpdump_whitelisted_combined_seconds_distance
SELECT *,
MAX(Signal_strength_dBm_2) AS "Signal_strength_dBm_2_high",
AVG(Signal_strength_dBm_2) AS "Signal_strength_dBm_2_Average_Limit56",
count(*) AS "Combined",
strftime(’%H:%M:%S’, time) as "Time_2"
FROM tcpdump_updated
group by strftime(’%H:%M:%S’, time), Sensor, substr(Source, -8)

Missing data and error matrix

As described in Section 3.4, mechanisms were implemented into the Matlab script
to discover missing data packets. These mechanisms discovered among the Bluetooth
data that packets associated with the known phone 9 were not captured during ex-
periment 3-2, 3-3, 4 and 5. This was probably because the device was not playing
the YouTube video during these experiments or because the Bluetooth device was
disconnected. When looking at the Wi-Fi data, it was discovered that the known
phone 1 was missing in experiment 3-3 and 5. Only a few packets were captured
from Phone 2, so that data was discarded. This means that the results will have a
deviation with these devices in mind.

We realised that capturing data packets with the HCI tool and L2ping were
not as robust as expected in early tests. Several attempts to improve the Ansible
script did not solve the problem: to use L2ping in parallel with the HCI tool to cap-
ture data packets from several devices simultaneously. Of those few data packets
that were captured with the HCI tool in parallel with L2ping, these were only
associated with some devices and were only captured at some sensors. Because
of this, these packets were discarded and is not analysed further in this master’s
thesis. However, the data packets captured with Ubertooth and TCPdump included
nearly all devices and was well distributed between the sensors. Table 5.3 gives
an overview of the missing data packets from the attending devices in different
experiments between different capturing tools.

The impact of filtering and cleaning methods

To give an overview of the impact of the above-mentioned filtering methods, Table
5.4 and Table 5.5 show the amount of Wi-Fi and Bluetooth data packets captured

52 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

Experiments
1 3-1 3-2 3-3 4 5 6-1, 6-2, 6-3 7-1, 7-2

TCPdump All All All 8/10 All 9/10 All All
Ubertooth All All 9/10 9/10 9/10 9/10 All All
HCI tool - -
L2ping - -

Table 5.3: Error matrix. Nearly all devices are present in the captured data related
to TCPdump and Ubertooth

in each experiment. The tables also show the impact of packet reduction when
applying to each filtering method.

Wi-Fi data packets after filtering

EXP
Wi-Fi

data packets
Unwanted

observations
Distance

based
Time

compression

1 1 226 239 784 226 736 401 -
3-1 2 008 234 360 905 262 550 -
3-2 1 010 121 178 697 151 255 -
3-3 454 585 72 487 56 979 -
4 2 934 196 462 214 378 636 6 785
5 2 537 181 386 976 322 136 8 466

6-1 795 604 163 924 144 837 -
6-2 432 437 77 077 69 128 -
6-3 862 703 173 562 157 934 -
7-1 4 215 968 691 882 591 664 20 527
7-2 1 312 388 236 293 206 123 4 496

Total 17 789 656 3 588 243 3 077 643 40 274

Table 5.4: The total amount of Wi-Fi data packets captured by TCPdump in differ-
ent experiments and the remaining data packets after different filtering methods

Chapter 5: Pre-processing and data analysis 53

Bluetooth data packets after filtering

EXP
Bluetooth

data packets
Unwanted

observations
Distance

based
Time

compression

1 45 136 29 149 29 023 -
3-1 24 856 14 418 12 865 -
3-2 15 500 9 843 9 338 -
3-3 15 531 11 265 10 887 -
4 100 386 76 178 62 463 11 095
5 29 553 21 647 20 929 6 076

6-1 32 143 17 167 16 356 -
6-2 22 099 13 608 13 033 -
6-3 45 777 22 023 20 827 -
7-1 85 465 51 263 47 316 15 907
7-2 29 115 16 976 15 843 4 389

Total 445 561 283 537 258 880 37 467

Table 5.5: The total amount of Bluetooth data packets captured by Ubertooth
in different experiments and the remaining data packets after different filtering
methods

5.4 Statistical averaging and general calibration

Statistical averaging in static experiments

Section 5.3 describes how time compression was calculated in the dynamic ex-
periments. This section describes the adjustments and calculations that were per-
formed on the received signals in the static experiments. The goal was to asso-
ciate one value of signal strength per device per sensor per experiment. In order
to achieve this, statistical averaging was necessary. Both the mean and median
value was tested in several experiments to find which that fitted best. By analysing
the data, we found that the overall received signals varied greatly (e.g. strongest
Bluetooth signal was measured at -29 dBm, while the weakest was measured to be
-73 dBm). Since the median value is better for data with similar values, the mean
averaging method was chosen. This means that the sum of received signal val-
ues (associated with the same device, sensor and experiment) was divided by the
number of data packets. This approach was common for all the static experiments,
including 1, 3-1, 3-2, 3-3, 6-1, 6-2 and 6-3.

Calibrating sensors and individual output power

Research performed by Kolberg [1] show that individual calibration of sensors and
output power improved the estimated distance between the sensor and the device.
Such calibration was also performed manually in this thesis, where we used a
reference device from experiment 3-1. This device was located in the middle of

54 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

the room, where the actual distances were known. Code Listing 5.6 shows the
specific values that calibrated each sensor. By doing this, the estimated distance
become more accurate compared to earlier estimations. However, the calibration
was technology-dependent, which generated some values associated with the Wi-
Fi data and some for the Bluetooth data.

Code listing 5.6: Implementing the calibrating of sensors in Matlab

% Based on static exp. 3-1 with known Phone #10 located in the middle of the room
% Wi-Fi specific

% Constant to compensate for PR in each sensor. First value relates to sensor 1, etc
PR_constant_wifi = [5;5.2499;6.1701;5.1694;-0.2861;5.1];

% Bluetooth specific
% Constant to compensate for PR in each sensor. First value relates to sensor 1, etc
PR_constant_bluetooth = [-1.574;-2.2037;2;-0.605;-2.173;-1.9316];

% Add mean value of the current data to the specific sensor constant
PR_powerreceiver = PR_constant_wifi(s) + mean(current_data{:,4});

Bluetooth and Wi-Fi specification show that devices usually send with power equal
to 20 dBm (Wi-Fi) and 4 dBm (Bluetooth) [17]. During the calculation of estim-
ated path loss, these values were first used. Later, it occurred that the output
power could be device individual. We divided the standard output power into a
general value (PT_Wi-Fi = 15 dBm and PT_Bluetooth = 8 dBm) and a device-
individual constant to mitigate the unknown output power. Because this calibra-
tion was time-consuming and would not be realistic to calibrate unknown devices,
only the known devices were individually calibrated. The unknown devices used
the general output value. Code Listing 5.7 gives an overview of the individual
values that were manually tested to find the value which gave the most accur-
ate distance. Both the calibrated PR and PT values were used directly into the
free-space path loss formula 3.1.

Code listing 5.7: Implementing the calibrating of output power in Matlab

% Based on static EXP 3-1 with known Phone #10 located in the middle of the room
% Wi-Fi specific

% Power Transmit Wi-fi - Reference number (Normal output should be 20 dBm)
PT_powertransmit_wifi_known = 15;
% Constant to compensate for PT, number 10 is zero because it’s the reference device
PT_constant_wifi = [2.2;-4;2.4;1;3;0;-1;2.5;0;0];

% Bluetooth specific
% Power Transmit Bluetooth - Reference number (Normal output should be 4 dBm)
PT_powertransmit_bluetooth_known = 8;
% Constant to compensate for PT, number 10 is zero because it’s the reference device
PT_constant_bluetooth = [4;-1.15;3;1;2;-3;5;-3;-0.3;0];

% Add the general output value to the device specific constant
PT_powertransmit_current = PT_powertransmit_wifi_known + PT_constant_wifi(m);

Chapter 5: Pre-processing and data analysis 55

5.5 Signal correlation analysis

In this section, the data from a static experiment have been analysed to give an
overview of how Bluetooth and Wi-Fi signals were linked. The goal was to de-
termine if the partially unique Bluetooth LAP address and the Wi-Fi MAC address
were coming from the same device. Data from TCPdump and Ubertooth captured
in the static experiments (3-1, 3-2, 3-3, 6-1, 6-2 and 6-3) have been tested with
the linking methods mentioned in Section 3.8.

Figure 5.3 show data from four devices that were attending experiment 3-1.
On the x-axis, the devices are grouped to the sensor which received the signals.
Bluetooth and Wi-Fi signals coming from the same device are presented side by
side in each group, with their absolute average signal strength on the y-axis.

Figure 5.3: Absolute average signal strength from four devices in experiment 3-1.
Each signal strength is rounded to the nearest decimal

By converting the signal values into distances with Equation 3.4, it was pos-
sible to compare the distances with ground truth. This conversion is performed
in Figure 5.4. According to the numbers, sensor 1 and 2 have received weaker
signal values from phone 9 than phone 1 and phone 4. On the opposite side of the
room, sensor 5 and 6 have received the strongest signal from phone 9. This agrees
quite well with the actual distances, as device 9 is 3.43 meters away from sensor
5 and 8.25 meters away from sensor 6. Although the information deviates from
the actual distances, it may give us a pattern to link Bluetooth and Wi-Fi signals
coming from the same device.

There will always be uncertainty associated with the measured signal values
that will affect the accuracy when the signals are linked. One uncertainty is related
to the dynamic output power that the device with newer hardware could change

56 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

Figure 5.4: Received signals from Figure 5.3 converted into distances. Each dis-
tance is rounded to the nearest decimal

depending on the distance. In this thesis, we have accounted for a constant out-
put power (both Bluetooth and Wi-Fi). Some uncertainty is also associated with
the data packets as the data packets are captured passively and received in an
unordered sequence. Because of this, data packets that have suffered from mul-
tipath may arrive later and inaccurately affect the result. With only four devices
in the room, it would be easier to link Bluetooth and Wi-Fi signals originating
from the same device. However, as we will see, this is more challenging with sev-
eral devices in close vicinity. To present the accuracy of the linking algorithms,
the section about these results will use a top k-nearest neighbours approach. The
approach involves searching the entire data set for the k number of most similar
MAC addresses or neighbours showing the closest values. As the euclidean dis-
tance between the vectors (associated with the MAC addresses) is presented in
ascending order (downwards), the MAC addresses that are closest linked (lowest
value) came at the top. That way, it is possible to see if the MAC addresses are
linked on the top 1, top 3, top 5, or top k devices.

Frequency analysis from the signal correlation in experiment 3-1 and 6-1
shows that some devices were easier to link correctly in the top 1. These devices
are coloured green and listed in Table 5.6. Note that devices with older Android
OS top the list in experiment 3-1, while devices with relatively new iOS top the
list in experiment 6-1. The remaining devices which were found in the top 3, top
5 and top 10 are also listed in Table 5.6 but not coloured. Results related to signal
correlation are presented in the next chapter in Section 6.1.

Chapter 5: Pre-processing and data analysis 57

3-1 (known devices) 6-1 (unknown devices)

Samsung S5 Neo Android 6.0.1 Google Pixel 4 Android 11
Samsung S5 Neo Android 6.0.1 iPhone SE iOS 13.6.1
Samsung S6 Android 7.0 iPhone XR iOS 13.7
iPhone XS iOS 13.6.1 iPhone 8 iOS 14.1

Samsung S20 Android 10 Samsung S20-5G Android 10
Samsung S8 Android 9 iPhone 11 Pro iOS 14
iPhone SE iOS 13.5.1 Samsung S10e Android 10
iPhone 6 iOS 12.4.8 OnePlus 8 Pro Android 10
iPad 2 iOS 9.3.5 iPhone XR iOS 14.0.1
Samsung S4 Active Android 5.0.1 iPhone XR iOS 14.0.1

Table 5.6: Devices that occurred most frequently among the linking methods in top 1

5.6 Geolocation analysis using signal strength

Triangulation and trilateration are methods performed in both the static experi-
ments (3-1, 6-1) and the dynamic experiments (4, 5, 7-1, 7-2) to estimate where
devices are located based on received signal strength. These two methods share
some steps that will be described further in this section. This section will also in-
clude an example of the data from experiment 3-1, where a device’s location will
be estimated with geolocation methods to check for inaccuracies. The example
is illustrated using triangulation and trilateration that also show the accuracy
between Bluetooth and Wi-Fi data.

In the static experiments, where the devices were at rest, the mean value of
all received signals associated with the same device, sensor and experiment were
calculated. This is already elaborated in Section 5.4. In contrast to the static ex-
periments, the dynamic experiments applied time compression and time filtering
described in Section 5.3. Even though time compression reduced huge amounts of
data packets into the same second and time filtering excluded irrelevant packets,
the data from TCPdump and Ubertooth still included tens of data rows. It eventu-
ally became difficult to illustrate and compare the results without further action.
A solution performed in this thesis is by scattering every other x estimation to only
include around ten estimations. For example, if triangulation estimates around 60
locations based on Bluetooth data, the plot only shows every other five estima-
tions (12/60). This provided better space in the plotted coordinate system and
made it easier to present both Bluetooth and Wi-Fi data using triangulation and
trilateration.

Triangulation analysis using signal strength from Wi-Fi and Bluetooth data

To better understand how triangulation works, data from experiment 3-1 are used
to estimate the location of phone 10. Analysis of the estimated location is illus-
trated in Figure 5.5. In this estimation, 6 out of 16 sensor pairs were used to calcu-

58 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

late the mean location. These six estimations are shown with a blue (Bluetooth) or
yellow (Wi-Fi) triangle. The two enlarged triangles in blue and yellow represent
the mean value of these smaller triangles. The remaining ten triangles were ig-
nored because they either were outside the area or did not comply with the policy
described in Section 3.7.2. By taking the mean value of the smaller triangles,
the estimation seems to be more accurate. Wi-Fi packets captured with TCPdump
seem to be more accurate than the Bluetooth packets captured with Ubertooth.
Both estimations are slightly (1.2-2.2 meters) further to the left than the actual
location, illustrated with the green circle. A closer look at the estimations from all
devices attending experiment 3-1 shows that the estimation of phone 10 is one of
the top three.

Figure 5.5: Triangulation - Estimated location of phone 10 based on different
pairs of sensors and mean values from Wi-Fi and Bluetooth data

Chapter 5: Pre-processing and data analysis 59

Trilateration analysis using signal strength from Wi-Fi and Bluetooth data

The same data from above is also analysed with trilateration to estimate the loc-
ation of phone 10. This estimation is illustrated in Figure 5.6 with blue and yel-
low circles. The smaller circles are the estimates from different compositions of
sensors, while the enlarged circles are the mean value of those smaller ones. In
this case, the data included enough data packets to estimate the location from
four sensor compositions. However, the overall data shows that other devices’ es-
timated locations only consist of two out of four sensor compositions. This will
affect the accuracy of the estimations since Figure 5.6 shows that the mean value
of several sensor compositions increases accuracy. Even though the mean Wi-Fi
estimation is slightly better than the mean Bluetooth estimation, the locations are
1.2-2.2 meters away from the actual position. All results related to experiment
3-1 and the other scenarios related to triangulation and trilateration are given in
the next chapter below Section 6.2.

Figure 5.6: Trilateration - Estimated location of phone 10 based on different
sensors and mean values from Wi-Fi and Bluetooth data

60 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

Wi-Fi mean coordinates (x,y),
distance to the actual location

Bluetooth mean coordinates (x,y),
distance to the actual location

Triangulation (4.71, 11.02), 1.20 m (5.70, 10.83), 2.20 m
Trilateration (5.66, 11.16), 1.30 m (4.89, 10.98), 2.02 m
Ground truth (6.90, 10.78)

Table 5.7: Comparing the locations of phone 10 with the use of triangulation and
trilateration based on Wi-Fi and Bluetooth data

Table 5.7 shows the accuracy of the estimations analysed above. The estimated
position using trilateration based on the Wi-Fi data is, in this case, slightly more
accurate than using the Bluetooth data or the triangulation method.

Triangulation and trilateration uncertainty

When it comes to various factors that affect estimating the devices’ position, some
need further attention. The first factor is multipath, where the signals propagate
in different directions before it arrives the destination. This extra time because of
multipath can allow other data packets transmitted later to be captured earlier
at the sensor. Without techniques for getting the packets sorted in the correct
sequence, multipath is the primary factor in inaccurate estimations. The second
factor is related to the dynamic output power, as described in Section 5.5 about
signal correlation. Here, the same challenge related to output power will occur
with geolocation. The third factor is associated with SQL commands and the Mat-
lab scripts. Although the programming part included in this master’s thesis has
been thoroughly tested, errors cannot be ruled out.

Chapter 6

Results from signal correlation
and geolocation methods

This chapter summarises the results of the signal correlation and the results of
the geolocation methods using signal strength. The quality and reliability of the
results are slightly touched upon but are covered later in the discussion section
below 7.1.

When it comes to the signal correlation, the focus has been on showing the results
from two static experiments (3-1 and 6-1), while the remaining results performed
in experiment 3-2, 3-3, 6-2 and 6-3 are put in Appendix C. Due to a large amount
of data, the results from triangulation and trilateration will only focus on some
devices in the dynamic experiments. For the static experiments, all the devices are
present in the same figures. Below is an overview of the results that are included
in this chapter.

• Signal correlation

◦ Linking devices in experiment 3-1 and 6-1 (all phones)

• Triangulation and trilateration using signal strength

◦ Scenario 1 - Static, experiment 3-1 and 6-1 (all phones)
◦ Scenario 4 - Dynamic, experiment 4 (phone 4, 5 and 10)
◦ Scenario 4 - Dynamic, experiment 7-1 vs 7-2 (phone 5 and 7)
◦ Scenario 5 - Dynamic, experiment 5 (phone 4, 5 and 10)

61

62 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

6.1 Signal correlation

In order to present the linking results, a top k-nearest neighbours approach have
been used. The values from this approach are plotted in bar charts to show the
different linking algorithms and the accuracy of the MAC addresses linked when
top k was set to top 1, top 3 and top 5. When two signals are linked at top 1, the
Bluetooth LAP and the Wi-Fi MAC address are linked in the first sorted row among
the calculated Euclidean distances. The accuracy of this is related to the degree
of correctness associated with the linking algorithm used. Even if the result has
linked two MAC addresses, false positives (correct estimated, incorrect to ground
truth) and false negatives resulting from poor programming can still occur.

6.1.1 Linking devices - Scenario 1 - Static, experiment 3-1

In experiment 3-1, ten devices were spread out to fixed locations for about three
minutes. They were placed in an upright position on top of objects in their loca-
tion. Human activity was restricted to a minimum and only while connecting to
the Bluetooth device and starting the YouTube stream. In this static experiment,
the goal was to see if signals would be linked and use the data for geolocation
purposes. Figure 6.1 show the accuracy for different top k values which are col-
oured green (top 1), yellow (top 3) and orange (top 5). The y-axis shows different
linking algorithms with information whether the method used four or six sensors.
The algorithms that performed best in this experiment among the top 5 were (i)
trilateration and (ii) Bluetooth to Wi-Fi conversion (6 sensors). In the top 5, both
algorithms could link the MAC addresses with an 80 % accuracy, which is eight out
of ten devices. Three algorithms could, with 40 % accuracy, link the correct MAC
addresses on top 1. The different algorithms managed to link the same MAC ad-
dresses, but there were also differences. In any case, by comparing the algorithms,
one can see indications of whether the signal correlation was performed correctly.
Even in the top 5, one device was not linked at all. This device was positioned in
the fixed location number seven, close to the long wall. Those devices that were
frequently linked in the top 1 are listed as green in Table 5.6. The results also
show that the algorithms using data from six sensors instead of four managed to
link the devices slightly more accurately.

Chapter 6: Results from signal correlation and geolocation methods 63

Figure 6.1: Top K nearest neighbours from experiment 3-1

6.1.2 Linking devices - Scenario 1 - Static, experiment 6-1

In experiment 6-1, data from ten devices were also collected. The devices were,
this time, held by the participants in a comfortable and normal position in front
of them. The participants were told to stand in an upright position and the exact
location during the experiment. The goal of experiment 6-1 was to use the data for
signal correlation and static geolocation. Even though the trilateration algorithm
performed best with 80 % accuracy in the top 5, the algorithm using normalisation
with four sensors linked most MAC addresses in top 1 (40 %). The correctness
of the linking in top 1 made the normalisation algorithm appear more reliable
than trilateration. Also, in this experiment, the device in location seven was never
linked. Compared to Experiment 3-1, slightly fewer MAC addresses were linked
in experiment 6-1. There is a noticeable difference when it comes to the number
of MAC addresses that were linked in the top 1. The presence of several people
in the room could have increased the probability of multipath. The absence of
individual calibration of the devices can also be a factor of reduced accuracy.

64 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

Figure 6.2: Top K nearest neighbours from experiment 6-1

6.2 Triangulation and trilateration using signal strength

The triangulation and trilateration result from different experiments is plotted
in their respective Cartesian coordinate systems to present the accuracy. These
coordinate systems illustrate the room where the experiments took place, where
the x-axis and y-axis equal the width and height of the room in meters. The tri-
angles in the next figures refer to the estimated mean value used by triangulation,
while the circles refer to the estimated mean value of trilateration. These mean
values originate from at least two estimations performed by different sensor pairs
(triangulation) or sensor composition (trilateration) within the same second. The
calculation behind these mean estimations is explained in the previous Chapter 5
and illustrated in Figure 5.5 (triangulation) and Figure 5.6 (trilateration). The es-
timated location with the dynamic experiments in mind also includes a timestamp
represented in minutes and seconds. This timestamp relates to those signals that
were compressed with the time-based filtering method. In order to distinguish
between Wi-Fi and Bluetooth data, each estimate is identified with either a "W"
er "B".

6.2.1 Geolocation - Scenario 1 - Static, experiment 3-1

Results from experiment 3-1 are presented in Figure 6.3. The goal was to pinpoint
each device located in fixed positions to indicate how accurate the geolocation
methods were. As we see, several estimates deviate from the actual locations.

Chapter 6: Results from signal correlation and geolocation methods 65

Not many estimates are grouped either. However, some results stand out. One of
these is the clustered estimates associated with phone 10. Both triangulation and
trilateration have estimated that the device is located slightly to the left of the
actual position. Another good result is the clustered group of phone 5 and phone
4. In addition, there are some perfect estimates, such as phone 2 estimated from
the triangulation method based on Bluetooth data and the estimation of phone 5
based on trilateration.

Figure 6.3: Experiment 3-1, static scenario with data from all known devices

66 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

6.2.2 Geolocation - Scenario 1 - Static, experiment 6-1

In experiment 6-1, the same goal as experiment 3-1 applies. Here, the devices were
not individually calibrated but used a default output power instead. The results
are scattered in Figure 6.4. We see that most of the estimates are more than 1.5
meters away from the actual position. Although some estimates are close to the
actual position, they often have low reliability because they are not clustered with
the other estimates from the same phone.

Figure 6.4: Experiment 6-1, static scenario with data from all unknown devices

Chapter 6: Results from signal correlation and geolocation methods 67

6.2.3 Geolocation - Scenario 4 - Dynamic, experiment 4

In the first dynamic scenario, the devices should follow a pre-defined track. When
arriving at position 2, 3, 5, 6 and 8, the devices should rest for 20 seconds. A
theory was that the devices would be clustered around these positions. In order
to present the results, three devices (phone 4, 5, 10) have been selected due to the
high amount of data. The figures in the following pages refer to this experiment.

First, the estimated route of phone 4 is scattered in Figure 6.5. The geolocation
result shows several estimates with the corresponding timestamp of when the data
was captured. Immediately, there is no obvious pattern or clusters that can tell
where the device was moving. When looking at the estimates from triangulation
based on Wi-Fi data, it appears that these estimates are most accurate to the actual
locations. In general, we can say that the device spent the most time in the centre,
moving from the lower to the upper part of the room.

When it comes to phone 5, the estimated route is presented in Figure 6.6.
Here, the estimates are less accurate. Some estimates of trilateration from Wi-Fi
data appear as the most reliable. Nevertheless, the data confirm that the device
has been in the room for some time. This piece of information can be important
from a police perspective.

The estimated route of phone 10 is presented in 6.7. In general, the estimates
of trilateration and triangulation show low accuracy. Although some estimates are
reasonably correct, e.g. triangulation from Wi-Fi data, it is difficult to distinguish
them from the remaining estimates from the same device with lower accuracy.

68 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

Geolocation - Phone 4 in experiment 4

Figure 6.5: Results of phone 4 in experiment 4

Chapter 6: Results from signal correlation and geolocation methods 69

Geolocation - Phone 5 in experiment 4

Figure 6.6: Results of phone 5 in experiment 4

70 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

Geolocation - Phone 10 in experiment 4

Figure 6.7: Results of phone 10 in experiment 4

Chapter 6: Results from signal correlation and geolocation methods 71

6.2.4 Geolocation - Scenario 4 - Dynamic, exp. 7-1, 7-2 (phone 5,7)

Experiment 7-1 was performed in the same way as experiment 4, but this time, the
group of devices was changed into the unknown devices that refer to the attending
participants. To see if the participants’ speed had any influence on the data, the
participants walked about twice as fast in experiment 7-2 and 7-1. They rested
for only three seconds in some locations (2, 3, 5, 6 and 8). The theory was that
experiment 7-2 would give fewer estimates without any larger clusters around the
locations as mentioned above.

First, Figure 6.8 show the results from experiment 7-1 with two selected phones
(5 and 7). The figure shows a mixture of estimates with low and high accuracy
between 1-6 meters, making the estimates together less reliable.

The estimated locations in experiment 7-2 of when the participants walked
faster are shown in Figure 6.9. There were less than half as many mean estim-
ates in this experiment compared to experiment 7-1 when the participants walked
slower. That may explain some of the spread in this result compared to experiment
7-1. Although the participants walked faster, several estimates have high accuracy
compared to actual location and time.

72 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

Geolocation - Phone 5 and 7 in experiment 7-1

Figure 6.8: Results of phone 5 and 7 in experiment 7-1

Chapter 6: Results from signal correlation and geolocation methods 73

Geolocation - Phone 5 and 7 in experiment 7-2

Figure 6.9: Results of phone 5 and 7 in experiment 7-2

74 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

6.2.5 Geolocation - Scenario 5 - Dynamic, exp. 5 (phone 4,5,10)

The last scenario was carried out in order to locate the devices when moving
together as a group. Figure 6.10 shows three devices out of nine. Although the
devices were close to each other along the way, it does not appear in the fig-
ure. Neither are the devices clustered around the locations where they rested for
20 seconds. Further, the estimated locations are not accurate if compared to the
actual time and location. However, the triangulation results from Bluetooth and
Wi-Fi data state that the devices were close to each other around "09:15". Also,
in the time between "08:32-08:41", the results of trilateration/ triangulation from
Bluetooth and Wi-Fi data state that the devices were near location 5. These results
agree well with the ground truth.

Chapter 6: Results from signal correlation and geolocation methods 75

Geolocation - Phone 4, 5 and 10 in experiment 5

Figure 6.10: Results of phone 4, 5 and 10 in experiment 5

Chapter 7

Discussion and conclusion

This chapter includes a discussion of the results, the conclusion of this master’s
thesis and suggestions for further work. While the conclusion answers the main re-
search question related to the problem statement, the discussion part discusses the
sub-questions stated in Section 1.4 which were formulated by the main question.
The discussion also includes our findings, strengths and limitations and possible
use cases for law enforcement.

7.1 Discussion

7.1.1 General discussion about results and findings

The linking and geolocation methods are in this thesis based on signal strength,
which means that the results are affected by the signal strength measured at each
sensor. As for the Wi-Fi data, the signal strength varied a lot in the received TCP
packets. These variations were the most surprising, as the network had a fixed
channel, and the devices had almost a line of sight to each sensor. Here, it turned
out that the Wi-Fi standard can dynamically adjust the transmitted power de-
pending on the distance to the access point. We believe that this was one of the
major factors that influenced the estimation of the devices’ location. Although
the devices were at rest in some experiments, the signal strength also varied
in the Bluetooth data. These variations were also surprising since the distance
between the Bluetooth devices and the mobile phone had almost the same dis-
tance throughout all of the experiments, which would indicate that the transmit-
ted power would be constant. Thus, other factors affected the received Bluetooth
signals. One of these could be the characteristic frequency hopping of Bluetooth.

We have tried to mitigate Bluetooth frequency hopping using all the channel’s
mean value in the calculation. Our tests show that various Bluetooth frequencies
have a minor impact on the estimates. On that basis, the mean value of the fre-
quencies was an acceptable solution.

Something that also could explain the varying signal strength in the received
Bluetooth and Wi-Fi data is the interference from other signals. However, the ef-

77

78 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

fect of interference was not measured in this study due to a lack of special equip-
ment. Nevertheless, according to research performed by Pei et al. [32] about mit-
igating interference (mentioned in Section 2.2), the Wi-Fi channel was set to a
fixed frequency.

Another explanation of the signal strength inaccuracies may be the phenomenon
of multipath caused by objects or people located nearby. In general, devices were
more often estimated to be near the centre of the room. A theory could be that
the locations closer to the walls were more challenging to estimate due to mul-
tipath. Also, some locations gave more deviations and were repetitive in several
experiments. Among the results from the signal linking experiments (3-1 and 6-
1), two different devices placed in location seven were never linked among the
top five devices. The same trend for the same devices was seen in the results of
geolocation. The inaccuracy shows that small changes, e.g. angle, rotation and
minor location changes, would make a big difference indoors, even with multiple
sensors covering different corners.

Suppose the multipath phenomenon is the main reason for reducing the accur-
acy of the estimated locations. In that case, the results should have been slightly
better in the first set of the static geolocation experiments (3-1, 3-2 and 3-3) as
there were only two persons in the room. In contrast, there were a total of 11
persons in the room during the second set of static geolocation experiments (6-1,
6-2 and 6-3). However, experiment 3-1 shows that the devices were spread more
around the room but with device number seven estimated far away from its ac-
tual location. Experiment 6-1 (uncalibrated output power) shows the estimated
locations generally gathered around the centre of the room. This observation may
be due to the higher impact of multipath, uncalibrated output power or a com-
bination of both.

Given the number of sensors used, the results of signal correlation show that
it was better to use six sensors rather than four in most experiments. The increase
to six sensors was especially valid in experiment 3-1, 3-2 and 3-3 (signal linking
experiments with known devices) when each device was individually calibrated
for output power according to actual distances. In experiment 6-1, 6-2 and 6-3
(signal linking experiments with unknown devices), in which the output power
was based on a regression line from a more trustworthy device, it was challenging
to say whether the increase from four to six sensors resulted in better accuracy.
In general, the linking in these experiments without calibration of output power
was less accurate.

One question that remains to be answered is whether the geolocation results
would be more accurate if triangulation and trilateration were combined with
Bluetooth and Wi-Fi as data sources. To answer this question, we use the static
geolocation experiment 3-1 as an example. Looking at the result of experiment
3-1, it may seem that all ten locations would have been estimated with higher
accuracy if the mean value of triangulation and trilateration from both Bluetooth
and Wi-Fi were used. By merging these estimates, the results would also have been
presented with less noise. For the dynamic experiments, however, estimating the

Chapter 7: Discussion and conclusion 79

locations using Bluetooth and Wi-Fi data would have been more challenging as
data packets were received at different times.

Several interesting findings need to be mentioned. The first finding relates
to mobile forensics and experiment number two (Apple Bleee). The Apple Bleee
software provided screen status from Apple products, showing whether a person
was actively using their phone or not. This piece of information is crucial to ob-
tain an After first unlock (AFU) mobile extraction with encrypted information. In
contrast, a Before first unlock (BFU) extraction (device restarted since last use)
will only contain basic metadata. However, since the Bluetooth MAC addresses in
the Apple Bleee software were randomised, it was not easy to distinguish between
the devices from a fixed location.

Another interesting finding was that all the devices attending the experiments
kept their random Wi-Fi MAC address over time. This connection between the
device and the network would be helpful from a forensic perspective as the device
can be linked to a specific place at a specific time.

7.1.2 Discussion about the research sub-questions

Four out of seven research sub-questions have already received attention in the
previous chapters. These are linked to their corresponding sections below. The re-
maining research sub-questions (3, 4 and 6) are further discussed:

1. What useful information can be collected passively from Bluetooth and Wi-Fi data?
Section 5.2 describes the data types and metadata used in this study. In gen-
eral, the data types from Bluetooth and Wi-Fi were inspected in Wireshark. Only
the most valuable and necessary data types were imported into SQL (i.e. signal
strength, MAC address and timestamp). Compared to the Bluetooth packets, the
Wi-Fi packets included more data.

2. Given that both Bluetooth and Wi-Fi are enabled, how can one find that these sig-
nals originate from the same device? This question was elaborated in Section 2.2.
Previous research performed by Longo [6] states that Bluetooth and Wi-Fi could
be correlated due to the same representation of the distance (between device and
sensor). Based on this relation, we have tested five linking algorithms to see which
that best could link the Bluetooth and Wi-Fi signals originating from the same
device. We have seen that Wi-Fi is a more complex standard than first thought.
Most likely, this is because we have captured actively TCP packets rather than the
less frequent probe requests with constant output power.

3. Which algorithms can be considered best to link Bluetooth and Wi-Fi signals origin-
ating from the same device? This answer is based on the results presented in Section
6.1 and the results given in Appendix C. In general, the results are more accurate
in the experiments where the devices were calibrated for output power. This cal-
ibration applies to the signal correlation experiments (3-1, 3-2 and 3-3), where

80 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

trilateration gave the highest accuracy among the top 5 devices. However, the
algorithm that gave the most reliable results was the conversion from Bluetooth
to Wi-Fi signals (based on regression lines) using six sensors. This algorithm was
more reliable as most devices were correctly linked in the top 1 (Bluetooth LAP
and the Wi-Fi MAC address were linked in the first sorted row). In experiment 6-1,
6-2 and 6-3, where the devices were not calibrated for output power, the following
algorithms gave the highest accuracy among the top 5 devices (i) normalisation
of the received signal strength with six sensors and (ii) signal to distance with six
sensors. Nevertheless, the most reliable algorithm in linking devices correctly in
top 1 was trilateration.

4. Which geolocation algorithms can be considered best to track devices using signal
strength from Bluetooth and Wi-Fi data? This answer is based on the results from
the geolocation experiments presented in Section 6.2. The results show that tri-
angulation is slightly more accurate than trilateration when looking at the static
geolocation experiments. Also, the results are more clearly shown in the static
experiment 3-1 than 6-1 because of the output power calibration. It is difficult
to determine what technology that best can estimate the location - the accuracy
seems to be quite similar, with variations around 1-7 meters.

In the dynamic experiments, the estimations from the use of triangulation
also seem more accurate. However, it is difficult to determine what technology
that best can estimate each device’s movement pattern. For instance, Bluetooth
appears more accurate in one part of the room, while Wi-Fi appears more accur-
ate in other parts. In this case, a mean value of the triangulation results based
on Wi-Fi and Bluetooth could provide better estimations. The same goes for the
results performed with trilateration.

5. Can signal interference be a problem while collecting data? This was elaborated
in Section 2.2. The influence of interference was not measured during this study.

6. What technical challenges may arise when the police collect data from Bluetooth
and Wi-Fi? There are two important factors to mention when working with wire-
less signals at these short distances. First, the area where the data from Bluetooth
and Wi-Fi are captured should include a video surveillance camera. Alternatively,
a person with mobile equipment will perceive what is happening "on the go" in-
stead of a camera. Secondly, a correct time source must be visible in the recorded
video. These two factors were helpful in this study to confirm actual position and
time. The process of finding ground truth would have become a technical chal-
lenge if they were not accounted for. As mentioned in Section 4.3.2, a challenge
occurred during the experiment due to a large amount of Wi-Fi data. A future
sensor network should, on this basis, include mechanisms that filter the data con-
tinuously during the collection. Also, sufficient network speed is necessary when
the amount of data increases.

Chapter 7: Discussion and conclusion 81

7. How should irrelevant and misleading data be filtered out? In general, we have
filtered out unwanted observations using whitelisting (based on MAC addresses),
channel and time. In addition, we have performed distance-based filtering to re-
move weak/strong signals outside the thresholds calculated in Section 5.3. We
have also performed time compression on the data collected in the dynamic scen-
arios to obtain simpler timestamps (seconds rather than milliseconds). Here, the
signal values within the same second were compressed into a mean value associ-
ated with the new timestamp. Section 3.4 gave a brief introduction to the filtering
and cleaning methods, while Section 5.3 described in-depth how these filters were
applied.

7.1.3 Strengths and limitations of the study

In this master’s thesis, we have captured data from Bluetooth and Wi-Fi based on
two different methods. The method of capturing Bluetooth data did not require
any user input besides that the device had to stream music with the Bluetooth
Classic standard. In contrast, when capturing Wi-Fi data, the participant needed to
connect to a wireless network. The accessibility of Bluetooth data implies that this
technology is better suited for outside tracking. However, it has become common
for people in public places to access free Wi-Fi, e.g., shopping malls, airports, and
public transport. Perhaps, in a smart city setting, we may see Wi-Fi become more
available and free?

Because devices are manufactured with different chipsets, they transmit sig-
nals differently. This factor is a disadvantage in this study because it is advantage-
ous to calibrate the received signal values to get a more accurate result. A solution
to this real-life challenge would be to compare signal strength to hidden on-the-fly
devices where the distance is known. Although the results show that it is better
to calibrate individual devices based on their signal strength when the distance is
known, the result can still be satisfying for the police.

We are proud to say that the sensor network in this study worked nearly per-
fectly and as intended. This achievement enabled us to manage sensors securely
through a VPN tunnel over the internet by distributing Ansible commands to mul-
tiple sensors in parallel. The architecture in combination with the Ansible frame-
work is to be recommended in similar projects.

The script part in Matlab is, in this study, a prototype, and cognitive biases can
therefore not be ruled out. If the study had been repeated, several persons should
have reviewed the programming more carefully to exclude any mistakes.

A limitation is related to how the data was processed in the dynamic exper-
iments. Due to the phenomenon of multipath and interference, an unique data
packet can be captured at different times by the sensors. This interference will
result in unordered sequences of data packets, making it difficult to identify data
packets without any identifiers. Since the Bluetooth data did not contain an iden-
tifier, the order of these data packets was based on the time when the signals
were received. When it comes to Wi-Fi, the data packets contained an incremental

82 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

packet number. However, it was rare for all six sensors to capture the same data
packet. This observation was the reason why the packet number lost our interest
in this study.

7.1.4 Possible use cases for law enforcement

So, how can law enforcement make use of the results and findings from this study?
The police are already able to analyse Bluetooth logs from mobile extraction to
find, among other things, the connection between a Bluetooth device and the
paired mobile phone. Wi-Fi is also often used by the police to link a device to
a crime scene. Nevertheless, the possibilities are many, and some of these are
discussed below.

Map devices with Bluetooth and Wi-Fi in important areas or special situations

The most obvious way to make use of a sensor network is to map devices in a spe-
cific area as a live feed. A permanent sensor would also give historical activity with
devices’ frequency and function as an alarm that can trigger specific devices. This
concept would also be able to estimate the direction of a device and confirm or
disprove any device presence. The latter could become a database for investigat-
ors to enrich their police reports. Another possibility is to discover the cooperation
of people based on geolocation and link the devices to a specific location in time.
From a telecommunication perspective, this is not new. It is already possible to
obtain "traffic data" from base stations containing valuable logs from SMS, calls
and network use. However, logs from Bluetooth and Wi-Fi may still be interesting
if the device is in flight mode or serve as a supplement to traffic data. Further-
more, a discovered MAC address from a sensor network would be easy to link
to a database that holds information from existing mobile extractions that may
provide the full identity of the device’s owner.

Link Bluetooth and Wi-Fi data to combine metadata from the same device

The investigators could interpret more metadata by linking a random Wi-Fi MAC
address with a unique Bluetooth LAP address originating from the same device.
The idea is to use Bluetooth or Wi-Fi to answer investigative questions limited by
the other data source. Together, the artefacts may increase situational awareness
for investigators and give higher reliability when performing geolocation. If the
geolocation methods based on Bluetooth and Wi-Fi are interpreted equally, the
credibility in the court of law would also increase.

Capture Bluetooth and Wi-Fi data with mobile sensors

A fact is that the police sometimes struggle to identify people that have not be-
haved properly. It would be beneficial to bring mobile sensors to collect Bluetooth

Chapter 7: Discussion and conclusion 83

and Wi-Fi data (only probe requests as the devices are not connected to a wire-
less network) from public demonstrations (e.g. SIAN). An overview of, e.g. MAC
addresses and device names, could give investigators a greater level of situational
awareness in situations where people may be attempting to remain anonymous.

Stalker attack - obtain correct data from a specific device on the move

It can be challenging to distinguish devices from each other in larger gatherings
and link a specific device to the correct individual. The idea is to let the police
use mobile equipment to capture Bluetooth data while pursuing an individual.
This method would increase the possibility of obtaining the correct device name
and MAC/LAP address. The same equipment (i.e. Raspberry Pi and antennas)
and software (Blue Hydra, Ubertooth or Apple Bleee) utilised in this study may
be used for this purpose. When the correct MAC/LAP address is found, it would
be efficient to search among existing mobile extractions to reveal any identities.
The method must consider that a person may have several devices and that these
devices may be in several places simultaneously (e.g. smartphone, smartwatch
and laptop).

7.2 Conclusion

This master’s thesis was set off with this research question: How can the police use
Bluetooth and Wi-Fi data for tracking and identification in covert operations?

In search of an answer to this question, we have focused on signal correlation and
geolocation. Signal correlation involves the linking of Bluetooth and Wi-Fi signals
that belongs to the same device. Here, the intention was to combine metadata and
find the connection between a device’s Wi-Fi MAC address (or its random Wi-Fi
MAC address) and its Bluetooth Lower Address Part. Geolocation means, in this
case, to estimate the location of a device using triangulation or trilateration based
on the received signal strength. To achieve this, we created a sensor network that
was able to capture Bluetooth and Wi-Fi data. The collected data was analysed
and imported into a SQL database. A connection from the database enabled us to
perform calculations and visualisations directly in Matlab.

Our results show that it is possible to perform a satisfying signal correla-
tion when calibrating the received signal values based on device-specific output
power. Following the Euclidean distance (metric function) and the top k-nearest
approach, we were able to find the signal pairs (ergo MAC addresses) closest
linked to each other. The MAC address pair with the lowest value gave the best
linking. Among the five algorithms tested, the most reliable algorithm was the
conversion from Bluetooth to Wi-Fi signal. This algorithm was able to link the
MAC addresses correctly with 29-40 % accuracy. Among the three best signal pairs
linked, it was between 43-70 % probability that the signal pair derived from the
same device. Among the five best signal pairs, the accuracy increased between

84 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

57-80 %.
Without calibration, the most reliable algorithm was trilateration that cor-

rectly linked the MAC addresses with 20-30 % accuracy. Among the three best
signal pairs linked, it was between 40-60 % probability that the signal pair de-
rived from the same device. Among the five best signal pairs, the accuracy in-
creased between 50-80 %. In general, the accuracy improved for the algorithms
that used six sensors rather than four.

The results of geolocation show that the triangulation method performs slightly
better than the trilateration method. However, both methods estimate within the
same accuracy; 1-7 meters from the actual location. The devices calibrated for out-
put power had also their estimations better grouped around the actual location.
Although several devices were estimated well concerning their position, some
were less accurate - these non-accurate results derived from the dynamic geoloca-
tion experiments. The degree of accuracy from the dynamic experiments was not
expected and made it hard to show that the devices followed a pre-defined route.
Also, the varying results from different devices made it difficult to see whether it
was Bluetooth or Wi-Fi data that estimated the position best.

With metadata from Bluetooth and Wi-Fi combined and the ability to track
devices within seven meters accuracy, law enforcement may increase their situ-
ational awareness in cyberspace (and real life). Specifically, it will be appropriate
to search for historical activity among Bluetooth and Wi-Fi data to link a device
(and its owner) to a specific area at a precise time. The direction in which the
device was moving can also be useful information for police investigators.

7.3 Further work

Future work may include a deeper analysis of data packets, suggestions for new
methods or improvement in those methods that have already been tested in this
thesis. New ideas and directions relevant to the topic are described below.

Look into the new Bluetooth Low Energy standard v5.2

During this master’s thesis, the next generation of Bluetooth has emerged. The
new version called Bluetooth 5.2 with LE audio is based on the Low Energy pro-
tocol and is predicted to take over for Bluetooth Classic currently used for audio
transferring. The new standard would be exciting to look into. Also, other wire-
less technologies which are associated with the internet of things may be deemed
relevant, e.g. Zigbee, Z-wave or the new smart home standard; Matter.

Identify the same data packets on several sensors

In order to achieve more accurate results with the geolocation methods used in
this thesis, it would be beneficial to take a closer look at the packet number in each
Wi-Fi packet. Instead of taking the mean value of all the signal strength within the

Chapter 7: Discussion and conclusion 85

exact second, one can focus on the signal values from the same packet number.
The correct order of packets would prevent multipath signals from degrading the
average value.

Increase the results in general

To further increase the accuracy of the signal correlation, it would be possible
to compare the algorithms to confirm similarities or differences. When it comes
to the dynamic geolocation results, the estimated locations may become more
reliable if Bluetooth and Wi-Fi were combined. It may also be relevant to combine
the estimated locations based on trilateration and triangulation.

Improvements in the architecture of the sensor network

In the collection phase, we discovered a challenge related to collecting large amounts
of Wi-Fi data. A temporary solution was to store the data locally at each sensor.
Hence, it would be necessary to improve the network flow further. An automated
filtering process will also be necessary if the sensor network is used on a larger
scale. In addition, the Matlab script should be updated to be more straightforward
and more automated so that it can be compiled into an executable program.

Rotate the devices in different fixed location when they are at rest

For the static experiments, it would be interesting to compare the estimated loca-
tions when the devices are rotated between the fixed locations. The result can tell
if the geolocation methods provide the exact location for different devices.

Present the estimated locations in a better fashion

In collaboration with the project partner, an idea has been to analyse and present
the estimated location from geolocation in a better fashion. A broader illustration
of the potential system architecture is found in appendix B. The system architec-
ture includes a web server running Kafka, which can receive and process collected
data from the sensor nodes. Elasticsearch (back end) and Kibana (front end) can
also be used as tools to put information into context and provide better structure
for the police.

Bibliography

[1] H. Kolberg, Gaining situational awareness using wi-fi, Master’s thesis, Nor-
wegian University of Science and Technology, 2020.

[2] C. Groba, ‘Demonstrations and people-counting based on wifi probe re-
quests’, in 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), 2019,
pp. 596–600. DOI: 10.1109/WF-IoT.2019.8767208.

[3] C. Chilipirea, A. Petre, C. Dobre and M. van Steen, ‘Presumably simple:
Monitoring crowds using wifi’, in 2016 17th IEEE International Conference
on Mobile Data Management (MDM), vol. 1, 2016, pp. 220–225. DOI: 10.
1109/MDM.2016.42.

[4] metageek, Understanding rssi, Retrieved from https://www.metageek.
com/training/resources/understanding-rssi.html [Online; accessed
2021-02-23], 2021.

[5] J. Marcel, 3 key factors that determine the range of bluetooth, Retrieved from
https://www.bluetooth.com/blog/3-key-factors-that-determinethe-
range-of-bluetooth/ [Online; accessed 2021-02-23], 2019.

[6] E. Longo, Pairing wi-fi and bluetooth mac addresses through passive packets
capture, Retrieved from https://www.politesi.polimi.it/bitstream/
10589/138894/3/el-tesi.pdf [Online; accessed 2020-04-06], 2017.

[7] C. Ansley, Mac randomization in mobile devices, Retrieved from https://
www.nctatechnicalpapers.com/Paper/2019/2019-mac-randomization-
in-mobile-devices [Online; accessed 2020-04-13], 2019.

[8] J. K. Becker, D. Li and D. Starobinski, ‘Tracking anonymized bluetooth
devices’, Proceedings on Privacy Enhancing Technologies, vol. 2019, no. 3,
pp. 50–65, 2019.

[9] M. Afaneh, Bluetooth addresses & privacy in bluetooth low energy, Retrieved
from https://www.novelbits.io/bluetooth-address-privacy-ble/
[Online; accessed 2021-02-28], 2020.

[10] CISCO, What is wi-fi?, Retrieved from https://www.cisco.com/c/en/us/
products/wireless/what-is-wifi.html [Online; accessed 2021-02-23],
2021.

87

https://doi.org/10.1109/WF-IoT.2019.8767208
https://doi.org/10.1109/MDM.2016.42
https://doi.org/10.1109/MDM.2016.42
https://www.metageek.com/training/resources/understanding-rssi.html
https://www.metageek.com/training/resources/understanding-rssi.html
https://www.bluetooth.com/blog/3-key-factors-that-determinethe-range-of-bluetooth/
https://www.bluetooth.com/blog/3-key-factors-that-determinethe-range-of-bluetooth/
https://www.politesi.polimi.it/bitstream/10589/138894/3/el-tesi.pdf
https://www.politesi.polimi.it/bitstream/10589/138894/3/el-tesi.pdf
https://www.nctatechnicalpapers.com/Paper/2019/2019-mac-randomization-in-mobile-devices
https://www.nctatechnicalpapers.com/Paper/2019/2019-mac-randomization-in-mobile-devices
https://www.nctatechnicalpapers.com/Paper/2019/2019-mac-randomization-in-mobile-devices
https://www.novelbits.io/bluetooth-address-privacy-ble/
https://www.cisco.com/c/en/us/products/wireless/what-is-wifi.html
https://www.cisco.com/c/en/us/products/wireless/what-is-wifi.html

88 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

[11] G. Phillips, The most common wi-fi standards and types, explained, Retrieved
from https://www.makeuseof.com/tag/understanding-common-wifi-
standards-technology-explained/ [Online; accessed 2021-02-23], 2021.

[12] C. David, 2.4 ghz channel planning, Retrieved from https://www.extremenetworks.
com/extreme-networks-blog/2-4-ghz-channel-planning/ [Online; ac-
cessed 2021-02-23], 2021.

[13] Blumira, Promiscuous mode, Retrieved from https://www.blumira.com/
glossary/promiscuous-mode/ [Online; accessed 2021-02-23], 2021.

[14] Github, Radiotap, Retrieved from https://www.radiotap.org/ [Online;
accessed 2021-02-23], 2021.

[15] R. Triggs, What is le audio and lc3, the latest in bluetooth audio?, Retrieved
from https://www.soundguys.com/bluetooth-le-audio-lc3-explained-
28192/ [Online; accessed 2021-02-26], 2020.

[16] N. D, Bluetooth 5.0 vs. 4.0 - a detailed comparative analysis, Retrieved from
https://www.intuz.com/blog/bluetooth-version-5-vs-4-comparative-
analysis [Online; accessed 2021-02-26], 2020.

[17] E. Ferro and F. Potorti, ‘Bluetooth and wi-fi wireless protocols: A survey
and a comparison’, IEEE Wireless Communications, vol. 12, no. 1, pp. 12–
26, 2005. DOI: 10.1109/MWC.2005.1404569.

[18] J. Marcel, How bluetooth technology uses adaptive frequency hopping to over-
come packet interference, Retrieved from https://www.bluetooth.com/
blog/how-bluetooth-technology-uses-adaptive-frequency-hopping-
to-overcome-packet-interference/ [Online; accessed 2021-02-26], 2020.

[19] Argenox, Introduction to bluetooth classic, Retrieved from https://www.
argenox.com/library/bluetooth-classic/introduction-to-bluetooth-
classic/ [Online; accessed 2021-02-26], 2020.

[20] M. Davies, E. Furey and K. Curran, ‘Improving compliance with bluetooth
device detection’, Telkomnika, vol. 17, no. 5, pp. 2355–2369, 2019.

[21] GitHub, Bluehydra, Retrieved from https://github.com/pwnieexpress/
blue_hydra [Online; accessed 2020-04-14], 2020.

[22] LCDI, Bluetooth tracking analysis, Retrieved from https://www.champlain.
edu/Documents/LCDI/Bluetooth%20Tracking%20Analysis_2017.docx.
pdf [Online; accessed 2020-04-15], 2020.

[23] L. Bai, N. Ireson, S. Mazumdar and F. Ciravegna, ‘Lessons learned using wi-
fi and bluetooth as means to monitor public service usage’, in Proceedings
of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2017 ACM International Symposium on
Wearable Computers, 2017, pp. 432–440.

https://www.makeuseof.com/tag/understanding-common-wifi-standards-technology-explained/
https://www.makeuseof.com/tag/understanding-common-wifi-standards-technology-explained/
https://www.extremenetworks.com/extreme-networks-blog/2-4-ghz-channel-planning/
https://www.extremenetworks.com/extreme-networks-blog/2-4-ghz-channel-planning/
https://www.blumira.com/glossary/promiscuous-mode/
https://www.blumira.com/glossary/promiscuous-mode/
https://www.radiotap.org/
https://www.soundguys.com/bluetooth-le-audio-lc3-explained-28192/
https://www.soundguys.com/bluetooth-le-audio-lc3-explained-28192/
https://www.intuz.com/blog/bluetooth-version-5-vs-4-comparative-analysis
https://www.intuz.com/blog/bluetooth-version-5-vs-4-comparative-analysis
https://doi.org/10.1109/MWC.2005.1404569
https://www.bluetooth.com/blog/how-bluetooth-technology-uses-adaptive-frequency-hopping-to-overcome-packet-interference/
https://www.bluetooth.com/blog/how-bluetooth-technology-uses-adaptive-frequency-hopping-to-overcome-packet-interference/
https://www.bluetooth.com/blog/how-bluetooth-technology-uses-adaptive-frequency-hopping-to-overcome-packet-interference/
https://www.argenox.com/library/bluetooth-classic/introduction-to-bluetooth-classic/
https://www.argenox.com/library/bluetooth-classic/introduction-to-bluetooth-classic/
https://www.argenox.com/library/bluetooth-classic/introduction-to-bluetooth-classic/
https://github.com/pwnieexpress/blue_hydra
https://github.com/pwnieexpress/blue_hydra
https://www.champlain.edu/Documents/LCDI/Bluetooth%20Tracking%20Analysis_2017.docx.pdf
https://www.champlain.edu/Documents/LCDI/Bluetooth%20Tracking%20Analysis_2017.docx.pdf
https://www.champlain.edu/Documents/LCDI/Bluetooth%20Tracking%20Analysis_2017.docx.pdf

Bibliography 89

[24] L. Schauer, M. Werner and P. Marcus, ‘Estimating crowd densities and ped-
estrian flows using wi-fi and bluetooth’, in Proceedings of the 11th Interna-
tional Conference on Mobile and Ubiquitous Systems: Computing, Networking
and Services, 2014, pp. 171–177.

[25] M.-H. Tsai, J.-N. Luo, M.-H. Yang and N.-W. Lo, ‘Location tracking and
forensic analysis of criminal suspects’ footprints’, in 2019 IEEE 2nd Interna-
tional Conference on Information and Computer Technologies (ICICT), IEEE,
2019, pp. 210–214.

[26] Hexway, Apple bleee. everyone knows what happens on your iphone, Re-
trieved from https://hexway.io/research/apple-bleee/ [Online; ac-
cessed 2020-04-16], 2019.

[27] F. Ryan and M. Schukat, ‘Wi-fi user profiling via access point honeynets’, in
2019 30th Irish Signals and Systems Conference (ISSC), IEEE, 2019, pp. 1–4.

[28] A. O. S. Project, Privacy: Mac randomization, Retrieved from https://
source.android.com/devices/tech/connect/wifi-mac-randomization
[Online; accessed 2020-04-14], 2020.

[29] Apple, Use private wi-fi addresses in ios 14, ipados 14 and watchos 7, Re-
trieved from https://support.apple.com/en- au/HT211227 [Online;
accessed 2021-02-21], 2021.

[30] Apple, Wi-fi privacy, Retrieved from https://support.apple.com/guide/
security/wi-fi-privacy-secb9cb3140c/web [Online; accessed 2021-02-
24], 2021.

[31] J. K. Becker, D. Li and D. Starobinski, ‘Tracking anonymized bluetooth
devices’, Proceedings on Privacy Enhancing Technologies, pp. 50–65, 2019.

[32] L. Pei, J. Liu, Y. Chen, R. Chen and L. Chen, ‘Evaluation of fingerprinting-
based wifi indoor localization coexisted with bluetooth’, The Journal of
Global Positioning Systems, vol. 15, no. 1, p. 3, 2017.

[33] L. Schauer, F. Dorfmeister and M. Maier, ‘Potentials and limitations of wifi-
positioning using time-of-flight’, in International Conference on Indoor Pos-
itioning and Indoor Navigation, IEEE, 2013, pp. 1–9.

[34] B. O’Keefe, ‘Finding location with time of arrival and time difference of
arrival techniques’, ECE Senior Capstone Project, 2017.

[35] M. H. Sarshar, ‘Analyzing large scale wi-fi data using supervised and unsu-
pervised learning techniques’, PhD thesis, Dalhousie University, 2017.

[36] M. Woolley, Bluetooth direction finding: A technical overview, Retrieved from
https://www.bluetooth.com/bluetooth-resources/bluetooth-direction-
finding/ [Online; accessed 2020-04-20], 2019.

[37] A. Kurkcu and K. Ozbay, ‘Estimating pedestrian densities, wait times, and
flows with wi-fi and bluetooth sensors’, Transportation Research Record,
vol. 2644, no. 1, pp. 72–82, 2017.

https://hexway.io/research/apple-bleee/
https://source.android.com/devices/tech/connect/wifi-mac-randomization
https://source.android.com/devices/tech/connect/wifi-mac-randomization
https://support.apple.com/en-au/HT211227
https://support.apple.com/guide/security/wi-fi-privacy-secb9cb3140c/web
https://support.apple.com/guide/security/wi-fi-privacy-secb9cb3140c/web
https://www.bluetooth.com/bluetooth-resources/bluetooth-direction-finding/
https://www.bluetooth.com/bluetooth-resources/bluetooth-direction-finding/

90 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

[38] Wireguard, Protocol & cryptography, Retrieved from https://www.wireguard.
com/protocol/ [Online; accessed 2021-02-19], 2021.

[39] elitedatascience, Data cleaning, Retrieved from https://elitedatascience.
com/data-cleaning [Online; accessed 2021-02-07], 2021.

[40] H. T. Friis, ‘A note on a simple transmission formula’, Proceedings of the IRE,
vol. 34, no. 5, pp. 254–256, 1946. DOI: 10.1109/JRPROC.1946.234568.

[41] ElectronicsNotes, Free space path loss: Details & calculator, Retrieved from
https://www.electronics-notes.com/articles/antennas-propagation/
propagation-overview/free-space-path-loss.php [Online; accessed
2020-10-11], 2019.

[42] J. Du, J.-F. Diouris and Y. Wang, ‘A rssi-based parameter tracking strategy
for constrained position localization’, EURASIP Journal on Advances in Sig-
nal Processing, vol. 2017, no. 1, pp. 1–10, 2017.

[43] H. Anton and C. Rorres, Elementary linear algebra: applications version,
11th ed. John Wiley & Sons, 2013, p. 145.

[44] S. Raschka, About feature scaling and normalization, Retrieved from https:
//sebastianraschka.com/Articles/2014_about_feature_scaling.
html [Online; accessed 2020-04-21], 2014.

[45] S. Garcia-Villalonga and A. Perez-Navarro, ‘Influence of human absorption
of wi-fi signal in indoor positioning with wi-fi fingerprinting’, in 2015 In-
ternational Conference on Indoor Positioning and Indoor Navigation (IPIN),
2015, pp. 1–10. DOI: 10.1109/IPIN.2015.7346778.

[46] accoladewireless, Why wifi is complicated: Wifi signal issues, Retrieved from
http://www.accoladewireless.com/wlan-wifi-signal-issues/ [On-
line; accessed 2021-02-11], 2016.

[47] Re: Wi-Fi signals and transmit power [Questioned in an online digital forensics
forum, network-forensics, 2020-11-27].

https://www.wireguard.com/protocol/
https://www.wireguard.com/protocol/
https://elitedatascience.com/data-cleaning
https://elitedatascience.com/data-cleaning
https://doi.org/10.1109/JRPROC.1946.234568
https://www.electronics-notes.com/articles/antennas-propagation/propagation-overview/free-space-path-loss.php
https://www.electronics-notes.com/articles/antennas-propagation/propagation-overview/free-space-path-loss.php
https://sebastianraschka.com/Articles/2014_about_feature_scaling.html
https://sebastianraschka.com/Articles/2014_about_feature_scaling.html
https://sebastianraschka.com/Articles/2014_about_feature_scaling.html
https://doi.org/10.1109/IPIN.2015.7346778
http://www.accoladewireless.com/wlan-wifi-signal-issues/

Appendix A

Equipment

A.1 Main equipment

• Raspberry Pi 4 Model B 4GB Starter Kit

◦ Raspberry Pi 4 Model B, 4GB RAM
◦ Raspberry Pi 4 3A USB-C Charger, Black
◦ SanDisk MicroSDHC Ultra 32GB
◦ Raspberry Pi 4 Model B Case, Black

• PoE hat for Raspberry Pi 3B and 4B
• ASUS USB-BT500 Bluetooth USB-adapter
• Ubertooth One w/ case
• Alfa Network AWUS036ACH

Figure A.1: Raspberry Pi 4 Model B 4GB Starter Kit

91

92 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

(a) PoE hat for Raspberry Pi 3B and 4B (b) Ubertooth One USB adapter

(c) ASUS BT500 Bluetooth USB adapter (d) Alfa Network AWUS036ACH USB adapter

Figure A.2: Additional tools used with each Raspberry Pi

Chapter A: Equipment 93

A.2 Extra equipment

• GoPro camera
• 10x smartphones (table A.3)
• 10x Bluetooth devices
• Wi-Fi router (TP-Link, Archer C7)
• 2x clients (time source and controlling node)

A.3 Smartphones used in the experiments

Devices in table A.1 were collected from friends, family and work. They are grouped
as "known devices", meaning they were subjected to additional testing over time.
Further on, devices in A.2 were the "unknown devices" that associates owned.

Brand Model Operating system

1 Samsung S20 SM-G981B/DS Android OS 10
2 Samsung S8 SM-G950F Android OS 9
3 Apple iPhone SE A1723 iOS 13.5.1
4 Apple iPhone 6 A1586 iOS 12.4.8
5 Apple iPhone XS A2097 iOS 13.6.1
6 Apple iPad 2 MC769KN/A iOS 9.3.5
7 Samsung S4 Active GT-I9295 Android OS 5.0.1
8 Samsung S5 Neo SM-G903F Android OS 6.0.1
9 Samsung S6 SM-G920F Android OS 7
10 Samsung S5 Neo SM-G903F Android OS 6.0.1

Table A.1: List of known devices

Brand Model Operating system

1 OnePlus 8 Pro Android OS 10
2 Google Pixel 4 Android OS 11
3 Apple iPhone XR iOS 14.0.1
4 Apple iPhone 11 Pro iOS 12.4.8
5 Samsung S20 Android OS 10
6 Apple iPhone SE iOS 13.6.1
7 Apple iPhone XR iOS 14.0.1
8 Apple iPhone XR iOS 13.7
9 Samsung S10e Android OS 10
10 Apple iPhone 8 iOS 14.1

Table A.2: List of unknown devices

Appendix B

System architecture

R
asp

b
erri Pi

n
o

de
R

asp
b

erri Pi
n

o
de

A
n

sib
le

 – C
re

ate, m
an

age
 an

d
 d

istrib
u

te
co

d
e to

 ru
nn

ing n
o

d
es. C

o
d

e is sto
red

 in

G
itlab

A
n

sib
le

 – C
re

ate, m
an

age
 an

d
 d

istrib
u

te
co

d
e to

 ru
nn

ing n
o

d
es. C

o
d

e is sto
red

 in

G
itlab

</>
</>

A
n

sib
le

 – C
re

ate, m
an

age
 an

d
 d

istrib
u

te
co

d
e to

 ru
nn

ing n
o

d
es. C

o
d

e is sto
red

 in

G
itlab

</>

R
asp

b
erri Pi

n
o

de
R

asp
b

erri Pi
n

o
de

R
asp

b
erri Pi

n
o

de
R

asp
b

erri Pi
n

o
de

SSH
 o

ve
r

V
PN

-tu
n

n
el

K
afka – D

atabase
an

d
 W

e
b serve

r
K

afka – D
atabase

an
d

 W
e

b serve
r

Figure B.1: Architecture of the sensor network. Kafka was not used

95

96 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

A
p

ach
e

 H
TT

P
se

rver
A

p
ach

e
 H

TT
P

se
rver

K
ib

an
a -

D
atavisualise

rin
g fo

r
Elasticse

arch

K
ib

an
a -

D
atavisualise

rin
g fo

r
Elasticse

arch

Elasticse
arch

 – D
istrib

u
ted

an

d
 R

ESTfu
l search and

an

alytics e
ngine

Elasticse
arch

 – D
istrib

u
ted

an

d
 R

ESTfu
l search and

an

alytics e
ngine

N
eo

4
j – G

rap
h

 d
atab

ase
m

an
age

m
en

t syste
m

N

eo
4

j – G
rap

h
 d

atab
ase

m
an

age
m

en
t syste

m

K
afka – D

atabase
an

d
 W

e
b serve

r
K

afka – D
atabase

an
d

 W
e

b serve
r

Figure B.2: Potential software which can be installed on a Kafka Webserver

Appendix C

Additional results

C.1 Signal correlation

Scenario 2 (experiment 3-2, 3-3) and scenario 3 (6-2 and 6-3) were performed al-
most in the same way as scenario 1 (experiment 3-1 and 6-1). The difference was
that scenario 2 used a different start-up procedure to see if Blue Hydra would re-
veal the Bluetooth Significant Address Part (SAP) faster. In scenario 3 the devices
enabled their private Wi-Fi MAC address if the phone supported that. These dif-
ferences should not have influenced the linking results.

C.1.1 Linking devices in experiment 3-2

In experiment 3-2, data packets from nine out of ten devices were captured. The
results, plotted in Figure C.1, show that MAC addresses were more rarely linked
in top 1 compared to experiment 3-1. Algorithms using six sensors were more
accurate than those using four sensors. Converting the signals from Bluetooth
into Wi-Fi showed the most reliable results and performed with 78 % accuracy.

C.1.2 Linking devices in experiment 3-3

Data packets from eight out of ten devices were in experiment 3-3 captured. The
x-axis is updated to coincide with the number of devices when a MAC address
was linked. The results from experiment 3-3 are plotted in Figure C.2. Here, the
triangulation algorithm performs best with 86 % accuracy among the top 5, while
the signal conversion into Wi-Fi signals (six sensors) appears more reliable with
two devices linked in top 1.

97

98 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

Figure C.1: Top K nearest neighbours from experiment 3-2

Figure C.2: Top K nearest neighbours from experiment 3-3

Chapter C: Additional results 99

C.1.3 Linking devices in experiment 6-2

Results from experiment 6-2 show poor accuracy of linking MAC addresses. The
most reliable and best algorithm performed from this data is trilateration, where
50 % of the devices were linked among the top 5 devices.

Figure C.3: Top K nearest neighbours from experiment 6-2

C.1.4 Linking devices in experiment 6-3

In experiment 6-3, the method using normalisation with four sensors stands out
as the algorithm that linked most MAC addresses in top 1 and top 3, with a total
of 80 % in the top 5 devices.

100 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

Figure C.4: Top K nearest neighbours from experiment 6-3

Appendix D

Matlab code

Due to the data collection size, it was necessary to manage the data in a smart
way. Our solution generated two Matlab scripts in addition to a script for plotting
the results. Script one created a connection to the SQL database and used SQL
queries to import data into Matlab. In this script, the data was also thoroughly
filtered and stored in smaller tables for further calculations. The second script
used the stored tables in different linking and geolocation methods described in
chapter 3. This appendix consists of script 1 and script 2.

• Step 1: Prepare data from SQL the database (filtering, calculate mean signal
strength and convert the signal to distance)

• Step 2: Use prepared data in different methods (linking and geolocation)
• Step 3: Plot and visualise the results (script not included)

101

Table of Contents

Intro
MAC ADRESSES
Tables and variables
Conection to database
Filtering options
Pre check
Filtering + Friis calculations
DYNAMIC
STATIC
Notes

Matlab Step 1 - Prepare data from SQL database

Intro

@ Master thesis - Ensuring quality of covert police work with Wi-Fi and Bluetooth technology
@ Written in 2020/2021 by Atle Sørenssen, NTNU student

MAC ADRESSES

% ____MAC Wi-Fi__________________________

% Removed in this version due to GDPR

% ____MAC Bluetooth______________________

% Removed in this version due to GDPR

Tables and variables

__Create tables______________________

sensor = char('s1','s2','s3','s4','s5','s6');

Results_static_signalstrength = strings(10,7);

Results_static_distance = strings(10,7);

Power_transmit = strings(10,7);

FSPLm= zeros(10,7);

% Static exp 3-1 - Calculated using device 10 as reference

% Wi-Fi specific - All data

PR_constant_wifi = [5;5.2499; 6.1701; 5.1694; -0.2861; 5.1]; %

Constant to compensate for PR in each sensor

PT_powertransmit_wifi_known = 15; % Power Transmit Wifi - Reference number

PT_constant_wifi = [2.2;-4;2.4;1;3;0;-1;2.5;0;0]; %[3;-5;3;5;6;-2;-1.5;4;0;0];

% Bluetooth specific

PR_constant_bluetooth = [-1.5740; -2.2037; 2; -0.6050; -2.1730; -

1.9316]; % Constant to compensate for PR in each sensor

PT_powertransmit_bluetooth_known = 8; % Power Transmit Bluetooth - Reference

number

102 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

PT_constant_bluetooth = [4;-1.15;3;1;2;-3;5;-3;-0.3;0]; % Constant to

compensate for PT, number 10 is zero because its the reference device

Conection to database

__Connect to database_______________________

dbfile = ('Atle_Loggfiler.db');

conn = sqlite(dbfile);

Filtering options

__Choose your config_____________________

 % A1 - Choose log file and MAC-list

groupofdevices = 'unknown'; % known/unknown (if known, use device spesific

values obtained in experimet 1, else use mean values from experiment 1)

mac_list = mac_unknown_6_1_6_2_wifi; % mac_known_bluetooth,

mac_unknown_ubertooth, mac_known_wifi, mac_unknown_wifi (dynamic),

mac_known_random_wifi, , mac_unknown_6_1_6_2_wifi, mac_unknown_random_6_3_wifi

current_type = '"tcpdump_static"'; % Dynamic: tcpdump_dynamic,

ubertooth_dynamic. Static: ubertooth_static, tcpdump_static, l2ping, hcitool

dynamic = 0; % 1/0 DYNAMIC/STATIC, choose between static (3-1,3-2,3-3,6-1,6-2)

or dynamic (4,5,7-1,7-2)

 % A2 - Choose options for device, experiment and filepath-value

Devicenr = 5; % Select phone 1-10 (used only in dynamic experiments)

mac_address = mac_list(Devicenr,:); % save current mac_address in variable

based on device number

current_experiment = '"Eksperiment6-1"'; % (Eksperiment1 + meter, Eksperiment1-

2 + meter, Eksperiment3-1, Eksperiment3-2, Eksperiment3-3, Eksperiment4 + heat,

Eksperiment5, Eksperiment6-1, Eksperiment6-2, Eksperiment6-3, Eksperiment7-1,

Eksperiment7-2

Filepath_value = '2020'; % ' or " eks. '2020', "_1m", "_2m", "_3m" ,..."_14m",

"_15m" eller "Heat1", "Heat2", "Heat3"

 % A3 - Choose a spesific time from/to

time = 0; % 1/0 - If yes, choose time below

time_from = '21:49:32'; % From - Timestamp in GMT

time_to = '21:52:13'; % To - Timestamp in GMT

if time == 1 && contains(current_type,'ubertooth') % compensating for UTC+2

time_from = datestr(datevec(time_from)+[0 0 0 2 0 0], 'HH:MM:SS'); % adding two

hours from GMT time

time_to =datestr(datevec(time_to)+[0 0 0 2 0 0], 'HH:MM:SS'); % adding two

hours from GMT time

end

Chapter D: Matlab code 103

 % B1 - Predefined - Choose settings related to signal strength filtering

Filtrer_signalstyrke = 1; % 0/1, yes/no - If yes, choose a value

if contains(current_type,'tcp') % Wi-Fi

LessOrEqual_to = -15; % Less or equal to (strongest signal)

GreaterOrEqual_to = -56; % Greater or equal to ((weakest signal), Wi-Fi limit:

-56 dBm

else % Bluetooth

LessOrEqual_to = -15; % Less or equal to (strongest signal)

GreaterOrEqual_to = -73; % Greater or equal to (weakest signal), Bluetooth

limit: -73 dBm

end

Filter_signalstrength_in_percent = 0; % 1/0 = Yes/No - Filtering out the

highest and lowest values

Percentfactor = 0.10; % 0.1 = 10 %

Filter_only_high = 0; % Filtering out the highest values (actually the lowest

values)

Filter_only_low = 1; % Filtering out the lowest values (actually the highest

values)

 % B2 - Predefined - Choose values related to technology

c_constant = 300*10^6; % Speed of light in vacuum - Constant

if contains(current_type,'tcp') % Wi-Fi frequency

f_frequency = 2462*10^6; % 2462 (Wi-Fi, channel 11)

else % Bluetooth frequency

f_frequency = 2441*10^6; % 2441 (Bluetooth), Value in Mhz (Mean of 79 channels

from 2402 GHz to 2480 GHz - 2441 ((2480+2402)/2) = 2441)

end

channel = 11; % Static channel for tcpdump (wifi), 2462 MHz.

Pre check

__Pre check_______________________

tic % Start stopwatch

 % Check to choose between dBm and RSSI

 if contains(current_type,'hcitool') || contains(current_type,'l2ping')

 signal_strength_type = 'Signal_strength_RSSI'; % Signal type of hcitool

and l2ping

 time_format = 'Time';

 elseif contains(current_type, 'tcpdump_dynamic')

 current_type = '"tcpdump_whitelisted_combined_seconds_distance"'; %

Correct name of table in SQL

 signal_strength_type = 'Signal_strength_dBm_2_Average_Limit56';

 time_format = 'Time_2';

 elseif contains(current_type, 'ubertooth_dynamic')

104 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 current_type = '"ubertooth_whitelisted_combined_seconds_distance"'; %

Correct name of table in SQL

 signal_strength_type = 'Signal_strength_dBm_Average_Limit73'; %

Signal_strength_dBm_Average_Limit73

 time_format = 'Time_2';

 elseif contains(current_type,'ubertooth_static')

 current_type = '"ubertooth_whitelisted_distance"'; % Correct name of

table in SQL

 signal_strength_type = 'Signal_strength_dBm'; % Signal received with

ubertooth hardware (only one antenna)

 time_format = 'Time';

 elseif contains(current_type,'tcpdump_static')

 current_type = '"tcpdump_whitelisted_distance"'; % New table in SQL

where recevied signals (in antenna 0) equal to zero have been removed. This

gives more realiable mean values signals received with antenna 1

 signal_strength_type = 'Signal_strength_dBm_2'; % Signal value (antenna

1) from wireshark that occurs to be more accurate

 time_format = 'Time';

 end

% ____Pre data_________________________

if contains(current_type,'tcpdump_whitelisted_combined_seconds_distance')

 pre_sqlquery = ['SELECT

',time_format,',Eksperiment,Source,round(',signal_strength_type,',4),Sensor,File

path,Channel,Combined,Sum_signalstrength FROM ',current_type,' WHERE

"Eksperiment" LIKE ',current_experiment,' ESCAPE ''\'' '];

 pre_data = fetch(conn,pre_sqlquery);

 pre_data = cell2table(pre_data,...

 'VariableNames',{'Time' 'Eksperiment' 'MAC Wi-Fi'

'Signal_strength_dBm_2_Average_Limit56' 'Sensor' 'Filepath' 'Channel' 'Combined'

'Sum signalstrength'});

elseif contains(current_type,'tcpdump_whitelisted_distance')

 pre_sqlquery = ['SELECT

',time_format,',Eksperiment,Source,round(',signal_strength_type,',4),Sensor,File

path,Channel FROM ',current_type,' WHERE "Eksperiment" LIKE

',current_experiment,' ESCAPE ''\'' '];

 pre_data = fetch(conn,pre_sqlquery);

 pre_data = cell2table(pre_data,...

 'VariableNames',{'Time' 'Eksperiment' 'MAC Wi-Fi'

'Signal_strength_dBm_2_Average_Limit56' 'Sensor' 'Filepath' 'Channel'});

elseif (contains(current_type, 'hcitool')) && (contains(current_experiment, '1-

2'))

 pre_sqlquery = ['SELECT

',time_format,',Eksperiment,Source,round(',signal_strength_type,',4),Sensor,File

name FROM ',current_type,' WHERE "Eksperiment" LIKE ',current_experiment,' '];

 pre_data = fetch(conn,pre_sqlquery);

Chapter D: Matlab code 105

 pre_data = cell2table(pre_data,...

 'VariableNames',{'Time' 'Eksperiment' 'MAC Bluetooth'

'Signalstyrke RSSI' 'Sensor' 'Filename'});

elseif (contains(current_type, 'l2ping')) || (contains(current_type,

'hcitool'))

 pre_sqlquery = ['SELECT

',time_format,',Eksperiment,Source,round(',signal_strength_type,',4),Sensor,File

path FROM ',current_type,' WHERE "Eksperiment" == ',current_experiment,' '];

 pre_data = fetch(conn,pre_sqlquery);

 pre_data = cell2table(pre_data,...

 'VariableNames',{'Time' 'Eksperiment' 'MAC Bluetooth'

'Signalstyrke RSSI' 'Sensor' 'Filepath'});

elseif contains(current_type,

'ubertooth_whitelisted_combined_seconds_distance')

 pre_sqlquery = ['SELECT

',time_format,',Eksperiment,Source,round(',signal_strength_type,',4),Sensor,File

path,Combined,Sum_signalstrength FROM ',current_type,' WHERE "Eksperiment" LIKE

',current_experiment,' '];

 pre_data = fetch(conn,pre_sqlquery);

 pre_data = cell2table(pre_data,...

 'VariableNames',{'Time' 'Eksperiment' 'MAC Bluetooth'

'Signal_strength_dBm_Average_Limit67' 'Sensor' 'Filepath' 'Combined' 'Sum

signalstrength'}); % Signal_strength_dBm_Average_Limit67

elseif contains(current_type, 'ubertooth_whitelisted_distance')

 pre_sqlquery = ['SELECT

',time_format,',Eksperiment,Source,round(',signal_strength_type,',4),Sensor,File

path FROM ',current_type,' WHERE "Eksperiment" LIKE ',current_experiment,' '];

 pre_data = fetch(conn,pre_sqlquery);

 pre_data = cell2table(pre_data,...

 'VariableNames',{'Time' 'Eksperiment' 'MAC Bluetooth'

'Signal_strength_dBm_Average' 'Sensor' 'Filepath'}); %

Signal_strength_dBm_Average_Limit67

end

Rows_pre = size(pre_data{:,4}); % Saves number of rows related to experiment

pre_data = sortrows(pre_data,[1],{'ascend'});

Filtering + Friis calculations

if dynamic == 1 % Following one MAC/UAP address through the rest of the code

DYNAMIC

__Ready to FILTER__________

 % Filtering down to sensors, then calculate or put value in new table

106 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 for s=1:6

 current_data = pre_data; % Sets current data to the data obtained from

SQL (pre_data)

 current_data =

current_data(contains(current_data.(3),mac_address(1,1:8)),:); % Filtering the

spesific MAC/UAP address

 current_data =

current_data(contains(current_data.(6),Filepath_value),:); % Filtering filename

 if contains(current_type,'tcp') % Filtering channel 11 in table tcpdump

 current_data = current_data(current_data.(7) == 11,:); % Filtering

out other channels than 11 in tcpdump log

 end

 if Filtrer_signalstyrke == 1

 current_data = current_data(current_data.(4) <= LessOrEqual_to,:); %

Filtering on the strongest value

 current_data = current_data(current_data.(4) >=

GreaterOrEqual_to,:); % Filtering on the weakest value

 end

 if time == 1

 if height(current_data) >=1 % Check if there are any data between

the timestamps

 current_data = current_data(datenum(current_data.Time) >=

datenum(time_from),:);

 current_data = current_data(datenum(current_data.Time) <=

datenum(time_to),:);

 else

 continue % Passes control to the next iteration of s (sensor) if

no data

 end

 end

 if contains(current_type,'ubertooth') % compensating for UTC+2 in

Ubertooth data

 current_time_ubertooth = current_data.Time;

 new_time_ubertooth = datestr(datevec(current_time_ubertooth)-[0 0 0

2 0 0], 'HH:MM:SS'); % adjusting into UTC+0

 current_data.Time = new_time_ubertooth; % Update current data with

new time

 end

 if height(current_data) == 0 % Final check to see if there are any data

left before calculation

 if (s == 6 && height(current_data) == 0)

 msg = 'No data from this device.' % Message will occur in

command line if no data is detected

 return;

 end

Chapter D: Matlab code 107

 continue % Passes control to the next iteration of s (sensor) if no

data

 end

 if s ==1 % Setting timestamps in current data in column 1 - do it once

when s=1

 current_data_timestamps =

sortrows(string(current_data{:,1}),{'ascend'}); % Converting to string and

sorting timestamps from start to end

 current_data_timestamps_unique = unique(current_data_timestamps(:,1));

 sizecurrent_data = size(current_data_timestamps_unique(:,1));

 Results_dynamic_signalstrength = strings(sizecurrent_data(1,1),7); %

preallocating

 Results_dynamic_distance = strings(sizecurrent_data(1,1),7); %

preallocating

 Results_dynamic_distance(1:sizecurrent_data,1) =

unique(current_data_timestamps(:,1));

 Results_dynamic_signalstrength(1:sizecurrent_data,1) =

unique(current_data_timestamps(:,1));

 end

 current_data =

current_data(contains(current_data.(5),sensor(s,1:2)),:); % Filtering on current

sensor

% ______End of filtering DYNAMIC____________

% ______Calculation begins DYNAMIC__________

 % For every timestamp put signalstrength in

Results_dynamic_signalstrength or calcualte distance

 for t=1:size(current_data(:,1)) % Do this loop for the length of

current data (different amount of data on each sensor)

 if contains(current_type,'tcp') % Wi-Fi

 PR_powerreceiver = PR_constant_wifi(s) +

(current_data{t,4}); % Save current receiving signal value within that second as

PR_powerreceiver and add calibrated value for sensor

 else % Bluetooth

 PR_powerreceiver = PR_constant_bluetooth(s) +

(current_data{t,4}); % Save current receiving signal value within that second as

PR_powerreceiver and add calibrated value for sensor

 end

 % Find best PT_powertransmit based on info from Experiment 1

 mac_address_numberinlist =

find((all(ismember(mac_list,mac_address),2))==1); % To link MAC address to

PT_powertransmit

 if contains(current_type,'tcp')

 if contains(groupofdevices,'unknown')

 PT_powertransmit_current = PT_powertransmit_wifi_known;

% Same default value for known/unknown device (15 dbm)

108 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 else

 PT_powertransmit_current = PT_powertransmit_wifi_known

+ PT_constant_wifi(mac_address_numberinlist); % Default output power (15dbm) +

individual constant

 end

 else

 if contains(groupofdevices,'unknown')

 PT_powertransmit_current =

PT_powertransmit_bluetooth_known; % Same default value for known/unknown device

(8 dbm)

 else

 PT_powertransmit_current =

PT_powertransmit_bluetooth_known +

PT_constant_bluetooth(mac_address_numberinlist); % Default output power (8dbm) +

individual constant

 end

 end

 FSPLm=double(PT_powertransmit_current-PR_powerreceiver); %

signal path loss

 timestamp_numberinlist =

find(all(ismember(current_data_timestamps_unique,current_data{t,1}),2)); % Find

matching timestamp in current data where timestamp is unique

 Results_dynamic_distance(timestamp_numberinlist,s+1) =

10^((FSPLm-(20*log10(f_frequency))-(20*log10(4*pi/c_constant)))/20); % Using

Friis equation to calculate signal to distance

 Results_dynamic_signalstrength(timestamp_numberinlist,s+1) =

double(current_data{t,4}); % Putting signalstrength in table

 t=t+1; % Increment row of timestamp with 1

 end

 s=s+1; % Increment sensorID with 1

 end

 % Setting variable names to the table and converts to table

 Results_dynamic_signalstrength =

array2table(Results_dynamic_signalstrength,...

 'VariableNames',{'Timestamp' 's1' 's2' 's3' 's4' 's5' 's6'});

 Results_dynamic_distance = array2table(Results_dynamic_distance,...

 'VariableNames',{'Timestamp' 's1' 's2' 's3' 's4' 's5' 's6'});

 if (contains(current_type,'tcpdump'))

 Results_dynamic_wifi_signalstrength = Results_dynamic_signalstrength;

 Results_dynamic_wifi_distance = Results_dynamic_distance;

 fname = sprintf('Output/@Dynamic/R_dyn_wifi_dis_exp%s_device-%d.mat',

current_experiment, Devicenr);

 save (fname, 'Results_dynamic_wifi_distance'); % Saves the value of

Results_.. in the file Results_...mat. This will be later used in

Studie_Master_Step2.m

Chapter D: Matlab code 109

 fname = sprintf('Output/@Dynamic/R_dyn_wifi_sig_exp%s_device-%d.mat',

current_experiment, Devicenr);

 save (fname, 'Results_dynamic_wifi_signalstrength');

 else

 Results_dynamic_bluetooth_signalstrength =

Results_dynamic_signalstrength;

 Results_dynamic_bluetooth_distance = Results_dynamic_distance;

 fname = sprintf('Output/@Dynamic/R_dyn_blue_dis_exp%s_device-%d.mat',

current_experiment, Devicenr);

 save (fname, 'Results_dynamic_bluetooth_distance'); % Saves the value

of Results_.. in the file Results_...mat. This will be later used in

Studie_Master_Step2.m

 fname = sprintf('Output/@Dynamic/R_dyn_blue_sig_exp%s_device-%d.mat',

current_experiment, Devicenr);

 save (fname, 'Results_dynamic_bluetooth_signalstrength');

 end

else

STATIC

Totalrows = 1; % Manual counter to compare to SQLdatabase

% ____Ready to FILTER STATIC experiment______________

for m=1:size(mac_list(:,1)) % Do this loop for the length of mac_list

 if (contains(current_experiment,'t1') ||

contains(current_experiment,'1-2')) && (contains(current_type,'tcp') ||

contains(current_type,'ubertooth'))

 s=1; % Number of sensors in experiment 1 is one

 elseif (contains(current_experiment,'t1') ||

contains(current_experiment,'1-2')) && (contains(current_type,'l2ping') ||

contains(current_type,'hcitool'))

 s=2;

 else

 s=1:6; % Number of sensors in the other experiments are six

 end

 for s=s

 current_data = pre_data;

 if contains(current_type,'tcp') % Filtering channel 11 in

table tcpdump

 current_data = current_data(current_data.(7) == 11,:); %

Filtering out other channels than 11 in tcpdump log

 end

 current_data =

current_data(contains(current_data.(3),mac_list(m,1:8)),:); % Filtering on MAC

 current_data =

current_data(contains(current_data.(5),sensor(s,1:2)),:); % Filtering on sensor

110 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 current_data =

current_data(contains(current_data.(6),Filepath_value),:); % Filtering on

filename

 if time == 1

 if height(current_data) >=1 % Check if there are any

data between the timestamps

 current_data =

current_data(datenum(current_data.Time) >= datenum(time_from),:);

 current_data =

current_data(datenum(current_data.Time) <= datenum(time_to),:);

 else

 continue % Passes control to the next iteration of s

(sensor) if no data

 end

 end

 if height(current_data) == 0 % Final check to see if there

are any data left before calculation

 continue % Passes control to the next iteration of s

(sensor) if no data

 end

 if Filtrer_signalstyrke == 1

 if height(current_data) >=1 % Check if there are any

data left

 current_data = current_data(current_data.(4) <=

LessOrEqual_to,:); % Filtering on the strongest value

 current_data = current_data(current_data.(4) >=

GreaterOrEqual_to,:); % Filtering on the weakest value

 else

 continue % Passes control to the next iteration of s

(sensor) if no data

 end

 end

 Rows = height(current_data); % Check current rows in current

data

 if Rows >=1 % Quit if there are no data

 if Rows > 5

 current_data =

sortrows(current_data,[4],{'descend'}); % Sort with highest value

 % Filtering received signals,

10 % of the HIGHEST and LOWEST signals from every MAC address related to each

sensor

 if Filter_signalstrength_in_percent ==

1 && Filter_only_low == 0 && Filter_only_high == 0

 x_length_current_data =

round(height(current_data)*Percentfactor); % Choosing to remove X % of values

Chapter D: Matlab code 111

 length_current_data =

height(current_data);

 y_length_current_data =

length_current_data - x_length_current_data;

 current_data =

current_data(1:y_length_current_data,:);

 current_data =

current_data(x_length_current_data:y_length_current_data,:);

 % Filtering away X % of the

HIGHER signal values

 elseif

(Filter_signalstrength_in_percent == 1 && Filter_only_low == 1)

 x_length_current_data =

round(height(current_data)*Percentfactor); % Choosing to remove X % of values

 current_data =

current_data(x_length_current_data:end,:);

 % Filtering away X % of the

LOWER signal values

 elseif

(Filter_signalstrength_in_percent == 1 && Filter_only_high == 1)

 x_length_current_data =

round(height(current_data)*Percentfactor); % Choosing to remove X % of values

 length_current_data =

height(current_data);

 y_length_current_data =

length_current_data - x_length_current_data;

 current_data =

current_data(1:y_length_current_data,:);

 else

 end

 else

 end

 Totalrows = Totalrows+Rows;

 % ______End of filtering STATIC________________

 % ______Calculation begins STATIC______________

 if height(current_data) > 0 % Checks if there

exists rows after filtering

 if contains(current_type,'tcp') %

Wi-Fi

Results_static_signalstrength(m,s+1)= PR_constant_wifi(s) +

mean(current_data{:,4}); % Calibrate each sensor. Calculate mean value of

current data.

112 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 PR_powerreceiver =

PR_constant_wifi(s) + mean(current_data{:,4}); % Save current receiving signal-

value in own variable after calibration.

 else % Bluetooth

Results_static_signalstrength(m,s+1)= PR_constant_bluetooth(s) +

mean(current_data{:,4}); % Calibrate each sensor. Calculate mean value of

current data.

 PR_powerreceiver =

PR_constant_bluetooth(s) + mean(current_data{:,4}); % Save current receiving

signal-value in own variable after calibration.

 end

 end

 % Calibrate PT_powertransmit based on

info from Experiment 3-1

 if contains(current_type,'tcp')

 if

contains(groupofdevices,'unknown')

 PT_powertransmit_current =

PT_powertransmit_wifi_known; % + PT_constant_wifi(m);

 else

 PT_powertransmit_current =

PT_powertransmit_wifi_known + PT_constant_wifi(m); % PT_powertransmit_wifi_known

= 15; % Mean value from PT in experiment 3-1 (Wi-Fi)

 end

 else

 if

contains(groupofdevices,'unknown')

 PT_powertransmit_current =

PT_powertransmit_bluetooth_known; % + PT_constant_bluetooth(m); % Device

spesific obtained in experiment 3-1

 else

 PT_powertransmit_current =

PT_powertransmit_bluetooth_known + PT_constant_bluetooth(m); %

PT_powertransmit_bluetooth_known = 8; % Mean value from PT in experiment 3-1

(Bluetooth)

 end

 end

FSPLm(m,s+1)=double(PT_powertransmit_current-PR_powerreceiver); % Calculate free

space path loss

 if contains(groupofdevices,'known')

 if contains(current_type,'tcp') %

Wi-fi

Results_static_signalstrength(m,s+1) = PT_powertransmit_wifi_known -

Chapter D: Matlab code 113

FSPLm(m,s+1); % Changing PR if PT is individually calibrated (not changing for

unknown devices..)

 else % Bluetooth

Results_static_signalstrength(m,s+1) = PT_powertransmit_bluetooth_known -

FSPLm(m,s+1); % Changing PR if PT is individually calibrated (not changing for

unknown devices..)

 end

 else % do not change unkown devices

 end

 if (contains(current_type,'l2ping') ||

contains(current_type,'hcitool'))

 Results_static_distance(m,s+1) =

(10^((FSPLm(m,s+1)-(20*log10(f_frequency))-(20*log10(4*pi/c_constant)))/20));

% Using Friis equation to calculate signal to distance

 else

 Results_static_distance(m,s+1) =

10^((FSPLm(m,s+1)-(20*log10(f_frequency))-(20*log10(4*pi/c_constant)))/20);

% Using Friis equation to calculate signal to distance

 end

Results_static_signalstrength(m,1)=current_data{1,3}; % Setting current MAC

address in table

Results_static_distance(m,1)=current_data{1,3}; % Setting current MAC address in

table

 Power_transmit(m,1)=current_data{1,3}; %

Setting current MAC address in table

 if (m==1 || m==2) &&

(contains(current_experiment,'"3-3"')) % Ignore known device #1, #2 in exp 3-3

- See error matrix in analysis chapter

Results_static_signalstrength(m,s+1)='omitnan';

Results_static_distance(m,s+1)='omitnan';

 end

 if m==9 &&

(contains(current_experiment,'"3-2"') || contains(current_experiment,'"3-3"')) %

Ignore known device #9 in exp 3-2 and 3-3 - See error matrix in analysis chapter

Results_static_signalstrength(m,s+1)='omitnan';

Results_static_distance(m,s+1)='omitnan';

 end

114 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 % ______End of calculations__________________

 else

 break

 end

 s=s+1; % Increment sensorID with 1

 end

 m=m+1; % Increment MAC address with 1

end

 % Setting variable names to the table and converts to table

 Results_static_signalstrength =

array2table(Results_static_signalstrength,...

 'VariableNames',{'MAC' 's1' 's2' 's3' 's4' 's5' 's6'});

 Results_static_distance = array2table(Results_static_distance,...

 'VariableNames',{'MAC' 's1' 's2' 's3' 's4' 's5' 's6'});

 if (contains(current_type,'tcpdump'))

 Results_static_wifi_signalstrength = Results_static_signalstrength;

 Results_static_wifi_distance = Results_static_distance;

 % Saves the value of Results_.. in the file Results_...mat. This will be

later used in Studie_Master_Step2.m

 save Output/@Static/Results_static_wifi_distance.mat

Results_static_wifi_distance;

 save Output/@Static/Results_static_wifi_signalstrength.mat

Results_static_wifi_signalstrength;

 else

 Results_static_bluetooth_signalstrength = Results_static_signalstrength;

 Results_static_bluetooth_distance = Results_static_distance;

 % Saves the value of Results_.. in the file Results_...mat. This will be

later used in Studie_Master_Step2.m

 save Output/@Static/Results_static_bluetooth_distance.mat

Results_static_bluetooth_distance;

 save Output/@Static/Results_static_bluetooth_signalstrength.mat

Results_static_bluetooth_signalstrength ;

 end

end

clear

toc % Stop stopwatch

Notes

__Mathematics_______________

 %d_distance = 10^((FSPLm_bluetooth-(20*log10(f_frequency_bluetooth))-

(20*log10(4*pi/c_constant)))/20)

% ____Filtering tips____________

Chapter D: Matlab code 115

 % current_data = sortrows(current_data,[1],{'ascend'});

 % current_data(:,1:5)

 % sortrows(current_data(:,1:5),[4],{'descend'})

 % sortrows(pre_data(:,1:5),[4],{'descend'})

 % t = {'12:34:56'};

 % dnt = datenum(current_data.Time)

 % str2double(string(Resultat_distanse{1,2}))

116 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

Table of Contents

Variables
Input values
Loading tables
Experiment type
STATIC
1 Normalization + Euclidean + Top K-values - 4/6 sensors
2 Bluetooth/Wi-Fi signal to distance + Euclidean + Top K-values - 4/6 sensors
3 Converting Bluetooth signal to Wi-Fi signal + Euclidaen (equations from logarithmic regression
lines) - 4/6 sensors
4 Triangulation + Euclidean
5 Trilateration + Euclidean
Triangulation
Trilateration
DYNAMIC
Triangulation
Trilateration

Matlab Step 2 - Use prepared data from step 1 in linking
and geolocation methods

Variables

xy = [0 0; 11.195 0; 0 20.80; 11.195 20.80]'; % Static coordinates of sensors

to be used in trilateration

sensors_triangulation = [0 0; 11.195 0; 0 10.4; 11.195 10.40; 0 20.80; 11.195

20.80]'; % Static position of sensors (coordinates)

locations = [7.7606 3.7000; 2.6216 3.7120; 2.6738 9.0360; 5.6953 7.3921; 8.6681

9.4556; 10.1249 14.5731; 2.4515 12.2649; 7.1954 16.3039; 3.0962 19.3244; 6.8989

10.7836]; % static locations where the decives were located during static

experiments

base_color = [0 0 0;0 0.4470 0.7410;0.8500 0.3250 0.0980; 0.4290 0.4940 0.4250;

0.4940 0.1840 0.5560;0.4660 0.6740 0.1880;0.3010 0.7450 0.9330;0.6350 0.0780

0.1840;1.0000 1.0000 0;1.0000 0.6633 0]; % Define colormap

Input values

static = 1; % 1/0, Static/Dynamic (experiment type)

device = 10; % Dynamic only - choose device from step 1 to be loaded

experiment = '4'; % Dynamic only - choose experiment

groupofdevices = 1; % Known/Unknown 1/0 (Only in static.. when 0 i selected, a

mean value from the known devices are used)

method = 1; % 1/2/3 - Linking/Triangulation/Trilateration

Loading tables

if static == 1

Chapter D: Matlab code 117

% Static files

load Output/@Static/Results_static_wifi_distance; % Import of static results

from step 1

Results_static_wifi_distance =

str2double(string(Results_static_wifi_distance{:,2:7})); % Converting only the

results to double

load Output/@Static/Results_static_wifi_signalstrength;

Results_static_wifi_signalstrength =

str2double(string(Results_static_wifi_signalstrength{:,2:7}));

load Output/@Static/Results_static_bluetooth_distance;

Results_static_bluetooth_distance =

str2double(string(Results_static_bluetooth_distance{:,2:7}));

load Output/@Static/Results_static_bluetooth_signalstrength;

Results_static_bluetooth_signalstrength =

str2double(string(Results_static_bluetooth_signalstrength{:,2:7}));

else

% Dynamic files

roothpath = 'Output/@Dynamic/';

exp_devices=sprintf('*%s"_device-%d', experiment,device);

findfiles = struct2cell(dir(fullfile(roothpath,[exp_devices,'.mat'])))';

files = string(findfiles(:,1));

 if length(files(:,1)) < 4 % Check for both Wifi and Bluetooth files

 msg = 'Skipping device - Only bluetooth or Wifi'

 return;

 end

 for f=1:length(files)

 current_filename = files(f);

 files_with_roothpath = sprintf('%s%s',roothpath,files(f));

 if (contains(files(f),'wifi') && contains(files(f),'dis'))

 load (files_with_roothpath);

 Fulltable_dynamic_wifi_distance = Results_dynamic_wifi_distance; %

Allocating this variable with full table including timestamps

 Results_dynamic_wifi_distance =

str2double(string(Results_dynamic_wifi_distance{:,2:7})); % Converting only the

results to double

 elseif (contains(files(f),'blue') && contains(files(f),'dis'))

 load (files_with_roothpath);

 Fulltable_dynamic_bluetooth_distance =

Results_dynamic_bluetooth_distance;

 Results_dynamic_bluetooth_distance =

str2double(string(Results_dynamic_bluetooth_distance{:,2:7}));

 end

 end

end

Experiment type

118 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

if static == 1 % Choosing static results based on input values

STATIC

Methods - Linking / Triangulation / Multilateration

 if method == 1 % Linking Wi-Fi and Bluetooth signals + Top K-values

1 Normalization + Euclidean + Top K-values - 4/6 sensors

 % Variables needed in normalization

 Results_bluetooth_signalstrength_double_norm=zeros(10,7);

 Results_wifi_signalstrength_double_norm=zeros(10,7);

 % Normalizing both the wi-fi and bluetooth data

 for r=1:10 % loop through every device in both bluetooth and wi-fi data

 Results_bluetooth_signalstrength_double_norm(r,2:7) =

(Results_static_bluetooth_signalstrength(r,:) -

min(Results_static_bluetooth_signalstrength(r,:))) /

(max(Results_static_bluetooth_signalstrength(r,:)) -

min(Results_static_bluetooth_signalstrength(r,:)));

 Results_bluetooth_signalstrength_double_norm(r,1) = r; % Setting current

device in first column

 Results_wifi_signalstrength_double_norm(r,2:7) =

(Results_static_wifi_signalstrength(r,:) -

min(Results_static_wifi_signalstrength(r,:))) /

(max(Results_static_wifi_signalstrength(r,:)) -

min(Results_static_wifi_signalstrength(r,:)));

 Results_wifi_signalstrength_double_norm(r,1) = r; % Setting current device

in first column

 % result(k,:) = (x(k,:) - min(x(k,:))) ./ (max(x(k,:)) - min(x(k,:)));

 % All values from sensor 1-6 are normalized with one command

 % x: data from six sensors in a table (10x6)

 % k: row in data

 % result: i(th) normalized data

 % xmin: lowest value from the 6 sensors

 % xmax: highest value from the 6 sensors

 end

 % Euclideaon distance - Testing each Wi-Fi MAC address against each

Bluetooth MAC address

length=0;

 for wr=1:10 % loop through the normalized wifi data - wr (wifi-row)

 for br=1:10 % loop through the normalized bluetooth data - br

(bluetooth-row)

Chapter D: Matlab code 119

 length = length+1;

 % Calculation based on 6 sensors (1,2,3,4,5,6) - Euclidean distance

between two points (in this case between the Bluetooth data and Wi-Fi data)

 Results_signalstrength_double_norm_euclideon_6sensros(length,1) =

wr; % Saves Wi-Fi device number in column 1

 Results_signalstrength_double_norm_euclideon_6sensros(length,2) =

br; % Saves Bluetooth device number in column 2

 Results_signalstrength_double_norm_euclideon_6sensros(length,3) =

sqrt(((Results_wifi_signalstrength_double_norm(wr,1+1)-

Results_bluetooth_signalstrength_double_norm(br,1+1))^2)+((Results_wifi_signalst

rength_double_norm(wr,2+1)-

Results_bluetooth_signalstrength_double_norm(br,2+1))^2)+((Results_wifi_signalst

rength_double_norm(wr,3+1)-

Results_bluetooth_signalstrength_double_norm(br,3+1))^2)+((Results_wifi_signalst

rength_double_norm(wr,4+1)-

Results_bluetooth_signalstrength_double_norm(br,4+1))^2)+((Results_wifi_signalst

rength_double_norm(wr,5+1)-

Results_bluetooth_signalstrength_double_norm(br,5+1))^2)+((Results_wifi_signalst

rength_double_norm(wr,6+1)-

Results_bluetooth_signalstrength_double_norm(br,6+1))^2));

 % Calculation based on 4 sensors (1,2,5,6) - Euclidean distance

between two points (in this case between the Bluetooth and Wi-Fi values)

 Results_signalstrength_double_norm_euclideon_4sensros(length,1) =

wr; % Saves Wi-Fi device number in column 1

 Results_signalstrength_double_norm_euclideon_4sensros(length,2) =

br; % Saves Bluetooth device number in column 2

 Results_signalstrength_double_norm_euclideon_4sensros(length,3) =

sqrt(((Results_wifi_signalstrength_double_norm(wr,1+1)-

Results_bluetooth_signalstrength_double_norm(br,1+1))^2)+((Results_wifi_signalst

rength_double_norm(wr,2+1)-

Results_bluetooth_signalstrength_double_norm(br,2+1))^2)+((Results_wifi_signalst

rength_double_norm(wr,5+1)-

Results_bluetooth_signalstrength_double_norm(br,5+1))^2)+((Results_wifi_signalst

rength_double_norm(wr,6+1)-

Results_bluetooth_signalstrength_double_norm(br,6+1))^2));

 % Format: d(w, b) = sqrt((w(s1)-b(s1))^2+(w(s2)-b(s2))^2);

 % d(w, b): is close to 0 if the two rows are very similar and

became greater if the lines are different

 % w: The normalized wifi value

 % b: The normalized bluetooth value

 % s: sensor-1, sensor-2,... sensor-6

 end

 end

 % Top K-values

 data_device_from = 1;

120 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 data_device_to = 10;

 for data_device = 1:10

 % 6 sensors

 current_data =

sortrows(Results_signalstrength_double_norm_euclideon_6sensros(data_device_from:

data_device_to,:),[3],{'ascend'}); % For every device in

"Results_signalstrength_double_norm_euclideon", sort the values in ascending

order

TopK_6sensors_signalstrength_double_norm_euclideon(data_device_from:data_device_

to,:) = current_data; % Final values to look through when plotting into graph

 % 4 sensors

 current_data =

sortrows(Results_signalstrength_double_norm_euclideon_4sensros(data_device_from:

data_device_to,:),[3],{'ascend'}); % For every device in

"Results_signalstrength_double_norm_euclideon", sort the values in ascending

order

TopK_4sensors_signalstrength_double_norm_euclideon(data_device_from:data_device_

to,:) = current_data; % Final values to look through when plotting into graph

 data_device_from = data_device_from + 10; % sliding windows - next 10

devices

 data_device_to = data_device_to + 10; % sliding windows - next 10

devices

 end

2 Bluetooth/Wi-Fi signal to distance + Euclidean + Top K-values -
4/6 sensors

 % Euclideaon distance - Testing each Wi-Fi MAC address against each

Bluetooth MAC address using distance as input (calculated in

"Study_Master_step1_static.m" with Friis equation)

length=0;

for wr=1:10 % loop through the converted distance wifi data - wr (wifi-row)

 for br=1:10 % loop through the converted distance bluetooth data - br

(bluetooth-row)

 length = length+1;

 % Calculation based on 6 sensors (1,2,3,4,5,6) - Euclidean distance

between two points (in this case between the Bluetooth and Wi-Fi values)

 Results_distance_double_signaltodistance_euclideon_6sensors(length,1) =

wr; % Saves Wi-Fi device number in column 1

 Results_distance_double_signaltodistance_euclideon_6sensors(length,2) =

br; % Saves Bluetooth device number in column 2

 Results_distance_double_signaltodistance_euclideon_6sensors(length,3) =

sqrt((Results_static_wifi_distance(wr,1)-

Results_static_bluetooth_distance(br,1))^2+(Results_static_wifi_distance(wr,2)-

Chapter D: Matlab code 121

Results_static_bluetooth_distance(br,2))^2+(Results_static_wifi_distance(wr,3)-

Results_static_bluetooth_distance(br,3))^2+(Results_static_wifi_distance(wr,4)-

Results_static_bluetooth_distance(br,4))^2+(Results_static_wifi_distance(wr,5)-

Results_static_bluetooth_distance(br,5))^2+(Results_static_wifi_distance(wr,6)-

Results_static_bluetooth_distance(br,6))^2);

 % Calculation based on 4 sensors (1,2,5,6) - Euclidean distance between

two points (in this case between the Bluetooth and Wi-Fi values)

 Results_distance_double_signaltodistance_euclideon_4sensors(length,1) =

wr; % Saves Wi-Fi device number in column 1

 Results_distance_double_signaltodistance_euclideon_4sensors(length,2) =

br; % Saves Bluetooth device number in column 2

 Results_distance_double_signaltodistance_euclideon_4sensors(length,3) =

sqrt((Results_static_wifi_distance(wr,1)-

Results_static_bluetooth_distance(br,1))^2+(Results_static_wifi_distance(wr,2)-

Results_static_bluetooth_distance(br,2))^2+(Results_static_wifi_distance(wr,5)-

Results_static_bluetooth_distance(br,5))^2+(Results_static_wifi_distance(wr,6)-

Results_static_bluetooth_distance(br,6))^2);

 % Format: d(w, b) = sqrt((w(s1)-b(s1))^2+(w(s2)-b(s2))^2);

 % d(w, b): is close to 0 if the two rows are very similar and

became greater if the lines are different

 % w: The normalized wifi value

 % b: The normalized bluetooth value

 % s: sensor-1, sensor-2,... sensor-6

 end

end

 % Top K-values

 data_device_from = 1;

 data_device_to = 10;

 for data_device = 1:10

 % 6 sensors

 current_data =

sortrows(Results_distance_double_signaltodistance_euclideon_6sensors(data_device

_from:data_device_to,:),[3],{'ascend'}); % For every device in

"Results_distance_double_signaltodistance_euclideon", sort the values in

ascending order

TopK_6sensors_distance_double_signaltodistance_euclideon(data_device_from:data_d

evice_to,:) = current_data; % Final values to look through when plotting into

graph

 % 4 sensors

 current_data =

sortrows(Results_distance_double_signaltodistance_euclideon_4sensors(data_device

_from:data_device_to,:),[3],{'ascend'}); % For every device in

"Results_distance_double_signaltodistance_euclideon", sort the values in

ascending order

122 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

TopK_4sensors_distance_double_signaltodistance_euclideon(data_device_from:data_d

evice_to,:) = current_data; % Final values to look through when plotting into

graph

 data_device_from = data_device_from + 10; % sliding windows - next 10

devices

 data_device_to = data_device_to + 10; % sliding windows - next 10

devices

 end

3 Converting Bluetooth signal to Wi-Fi signal + Euclidaen
(equations from logarithmic regression lines) - 4/6 sensors

 Converted_signalstrength_bluetooth_to_wifi_double=zeros(10,7);

 for r = 1:10 % loop through all devices

 for s = 1:6 % loop through all sensors

 if groupofdevices == 1 % Known devices - Using linear expressions

(obtained in excel by building graphs from experiment 1 (devices were moved

backwards from 1 meter to 15 meters)

 if r == 1

 % Converted_signalstrength_bluetooth_to_wifi_double(r,s+1)=

(Results_static_bluetooth_signalstrength(r,s)-5.097)/1.0727;

 Converted_signalstrength_bluetooth_to_wifi_double(r,s+1)=

(Results_static_bluetooth_signalstrength(r,s))*0.4215 - 23.797;

 elseif r == 2

 %Converted_signalstrength_bluetooth_to_wifi_double(r,s+1)=

(Results_static_bluetooth_signalstrength(r,s)+44.115)/0.1524;

 Converted_signalstrength_bluetooth_to_wifi_double(r,s+1)=

(Results_static_bluetooth_signalstrength(r,s))*1.0895 + 11.264;

 elseif r == 3

 %Converted_signalstrength_bluetooth_to_wifi_double(r,s+1)=

(Results_static_bluetooth_signalstrength(r,s)+14.934)/0.71;

 Converted_signalstrength_bluetooth_to_wifi_double(r,s+1)=

(Results_static_bluetooth_signalstrength(r,s))*0.6997 - 6.4171;

 elseif r == 4

 %Converted_signalstrength_bluetooth_to_wifi_double(r,s+1)=

(Results_static_bluetooth_signalstrength(r,s)+14.85)/0.6798;

 Converted_signalstrength_bluetooth_to_wifi_double(r,s+1)=

(Results_static_bluetooth_signalstrength(r,s))*0.6795 - 8.8969;

 elseif r == 5

 %Converted_signalstrength_bluetooth_to_wifi_double(r,s+1)=

(Results_static_bluetooth_signalstrength(r,s)+8.9543)/0.9899;

 Converted_signalstrength_bluetooth_to_wifi_double(r,s+1)=

(Results_static_bluetooth_signalstrength(r,s))*1.2073 + 22.484;

 elseif r == 6

Chapter D: Matlab code 123

 %Converted_signalstrength_bluetooth_to_wifi_double(r,s+1)=

(Results_static_bluetooth_signalstrength(r,s)+18.694)/0.6694;

 Converted_signalstrength_bluetooth_to_wifi_double(r,s+1)=

(Results_static_bluetooth_signalstrength(r,s))*0.4686 - 16.179;

 elseif r == 7

 %Converted_signalstrength_bluetooth_to_wifi_double(r,s+1)=

(Results_static_bluetooth_signalstrength(r,s)+22.306)/0.6028;

 Converted_signalstrength_bluetooth_to_wifi_double(r,s+1)=

(Results_static_bluetooth_signalstrength(r,s))*0.8417 - 4.3166;

 elseif r == 8

 %Converted_signalstrength_bluetooth_to_wifi_double(r,s+1)=

(Results_static_bluetooth_signalstrength(r,s)+36.307)/0.2334;

 Converted_signalstrength_bluetooth_to_wifi_double(r,s+1)=

(Results_static_bluetooth_signalstrength(r,s))*1.0793 + 10.026;

 elseif r == 9

 %Converted_signalstrength_bluetooth_to_wifi_double(r,s+1)=

(Results_static_bluetooth_signalstrength(r,s)+15.659)/0.7495;

 Converted_signalstrength_bluetooth_to_wifi_double(r,s+1)=

(Results_static_bluetooth_signalstrength(r,s))*0.9074 + 2.9372;

 elseif r == 10

 %Converted_signalstrength_bluetooth_to_wifi_double(r,s+1)=

(Results_static_bluetooth_signalstrength(r,s)+1.969)/1.0533;

 Converted_signalstrength_bluetooth_to_wifi_double(r,s+1)=

(Results_static_bluetooth_signalstrength(r,s))*1.3121 + 21.601;

 end

 else % Mean linear expression used by the "unknown devices" - See

figure "Wi-Fi vs Bluetooth"

 Converted_signalstrength_bluetooth_to_wifi_double(r,s+1)=

(Results_static_bluetooth_signalstrength(r,s))*1.0793 - 10.643; % Mean of all 10

devices

 end

 Converted_signalstrength_bluetooth_to_wifi_double(r,1) = r; %

Setting current device in first column

 end

 end

 % Euclideaon distance - Testing each Wi-Fi MAC address against each

Bluetooth MAC address

length=0;

 for wr=1:10 % loop through the wi-fi data - wr (wifi-row)

 for br=1:10 % loop through the converted bluetooth to wi-fi data - br

(bluetooth-row)

 length = length+1;

 % Calculation based on 6 sensors (1,2,3,4,5,6) - Euclidean distance

between two points (in this case between the original Wi-Fi values and the

converted Wi-Fi values). Saves values in column 3

124 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

Results_converted_signalstrength_double_euclideon_6sensors(length,1) = wr; %

Saves Wi-Fi device number in column 1

Results_converted_signalstrength_double_euclideon_6sensors(length,2) = br; %

Saves Bluetooth device number in column 2

Results_converted_signalstrength_double_euclideon_6sensors(length,3) =

sqrt((Results_static_wifi_signalstrength(wr,1)-

Converted_signalstrength_bluetooth_to_wifi_double(br,1+1))^2+(Results_static_wif

i_signalstrength(wr,2)-

Converted_signalstrength_bluetooth_to_wifi_double(br,2+1))^2+(Results_static_wif

i_signalstrength(wr,3)-

Converted_signalstrength_bluetooth_to_wifi_double(br,3+1))^2+(Results_static_wif

i_signalstrength(wr,4)-

Converted_signalstrength_bluetooth_to_wifi_double(br,4+1))^2+(Results_static_wif

i_signalstrength(wr,5)-

Converted_signalstrength_bluetooth_to_wifi_double(br,5+1))^2+(Results_static_wif

i_signalstrength(wr,6)-

Converted_signalstrength_bluetooth_to_wifi_double(br,6+1))^2);

 % Calculation based on 4 sensors (1,2,5,6) - Euclidean distance

between two points (in this case between the Bluetooth and Wi-Fi values)

Results_converted_signalstrength_double_euclideon_4sensors(length,1) = wr; %

Saves Wi-Fi device number in column 1

Results_converted_signalstrength_double_euclideon_4sensors(length,2) = br; %

Saves Bluetooth device number in column 2

Results_converted_signalstrength_double_euclideon_4sensors(length,3) =

sqrt((Results_static_wifi_signalstrength(wr,1)-

Converted_signalstrength_bluetooth_to_wifi_double(br,1+1))^2+(Results_static_wif

i_signalstrength(wr,2)-

Converted_signalstrength_bluetooth_to_wifi_double(br,2+1))^2+(Results_static_wif

i_signalstrength(wr,5)-

Converted_signalstrength_bluetooth_to_wifi_double(br,5+1))^2+(Results_static_wif

i_signalstrength(wr,6)-

Converted_signalstrength_bluetooth_to_wifi_double(br,6+1))^2);

 % Format: d(w, b) = sqrt((w(s1)-b(s1))^2+(w(s2)-b(s2))^2);

 % d(w, b): is close to 0 if the two rows are very similar and

became greater if the lines are different

 % w: The original singals from wifi

 % b: The converted bluetooth to wi-fi signal

 % s: sensor-1, sensor-2,... sensor-6

 end

 end

Chapter D: Matlab code 125

 % Top K-values

 data_device_from = 1;

 data_device_to = 10;

 for data_device = 1:10

 % 6 sensors

 current_data =

sortrows(Results_converted_signalstrength_double_euclideon_6sensors(data_device_

from:data_device_to,:),[3],{'ascend'}); % For every device in

"Results_signalstrength_double_norm_euclideon", sort the values in ascending

order

TopK_converted_signalstrength_double_euclideon_6sensors(data_device_from:data_de

vice_to,:) = current_data; % Final values to look through when plotting into

graph

 % 4 sensors

 current_data =

sortrows(Results_converted_signalstrength_double_euclideon_4sensors(data_device_

from:data_device_to,:),[3],{'ascend'}); % For every device in

"Results_signalstrength_double_norm_euclideon", sort the values in ascending

order

TopK_converted_signalstrength_double_euclideon_4sensors(data_device_from:data_de

vice_to,:) = current_data; % Final values to look through when plotting into

graph

 data_device_from = data_device_from + 10; % sliding windows - next 10

devices

 data_device_to = data_device_to + 10; % sliding windows - next 10

devices

 end

4 Triangulation + Euclidean

 results_triangulation = zeros(200,5);

 results_triangulation_bluetooth_mean = zeros(10,3);

 results_triangulation_wifi_mean = zeros(10,3);

 Results_triangulation_distancetocoordinates_euclideon = zeros(100,3);

 current_data = Results_static_wifi_distance; % Choosing the wifi data set

 current_row = 1;

 for technologies = 1:2 % loop through both Wi-Fi and Bluetooth data

 current_device = 1; % Starting at device one

 for current_device = 1:size(current_data,1) % Looping through all

devices

 % 1 Triangle A perspective (s1-s2)

 % Check for "true" triangles: Check if distance between s1-s2 >

widt and distance between s5-s1 > length, also that the signal converted to

distance is shorter than 22.5 and that both distances does not exeeds 45

126 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 if ((current_data(current_device,1)+current_data(current_device,2)

> 11.195) && (current_data(current_device,1)+current_data(current_device,2) <

30.7) && ((current_data(current_device,1) < 15.35) &&

(current_data(current_device,2) < 15.35)))

 % Step 1 - Calculate angle in triangle 1A with the law of cosines:

a^2 = b2^2 + c2^2-2bc*Cos(A) --> Cos(A) = (b2^2+c^2-a^2)/(2*bc)

 angle_triangle_1A_s1s2 =

((11.195)^2+(current_data(current_device,1))^2-

(current_data(current_device,2))^2)/(2*11.195*(current_data(current_device,1)));

% Law of cosines

 % Step 2 - Calculate the (adjacent) in a right-angled triangle with

the law of cosines: cos(A) = adjacent / hypotenuse, where hyp = a --> cos(A) * a

= adj

 if (angle_triangle_1A_s1s2 < 1 && angle_triangle_1A_s1s2

>cosd(62.5)) % Check angle - Must be between 0 and 45 degrees, filtering out

angles outside of the sector/room

 adj_triangle_1A_s1s2 =

(angle_triangle_1A_s1s2*current_data(current_device,1)); % adj = angle * c

 % Step 3 - Calculate opposite with pytagoras theorem: c^2 = adj^2 +

opp^2

 opp_triangle_1A_s1s2 =

sqrt((current_data(current_device,1))^2-(adj_triangle_1A_s1s2)^2); %

 % Storing opp/adj-values in triangulation_results --> (adj,opp)

 results_triangulation(current_row,1) = technologies; % Put

current device in first column

 results_triangulation(current_row,2) = current_device; %

Put current technology in second column

 results_triangulation(current_row,3) = 1.1; % Put current

triangle in third column

 results_triangulation(current_row,4) = adj_triangle_1A_s1s2;

% Put current adj value in fourth column as x

 results_triangulation(current_row,5) = opp_triangle_1A_s1s2;

% Put current opp value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 1 Triangle B perspective (s2-s1)

 % Check for "true" triangles: Check if distance between s1-s2 >

widt and distance between s5-s1 > length, also that the signal converted to

distance is shorter than 22.5 and that both distances does not exeeds 45

 if ((current_data(current_device,2)+current_data(current_device,1)

> 11.195) && (current_data(current_device,2)+current_data(current_device,1) <

30.7) && ((current_data(current_device,2) < 15.35) &&

(current_data(current_device,1) < 15.35)))

Chapter D: Matlab code 127

 % Step 1 - Calculate angle in triangle 1B with the law of cosines:

b^2 = c^2+a^2-2ca*Cos(B) --> Cos(B) = (c^2+a^2-b^2)/2ca

 angle_triangle_1B_s2s1 =

((current_data(current_device,2))^2+(current_data(current_device,1))^2-

(11.195)^2)/(2*(current_data(current_device,2)*current_data(current_device,1)));

% Law of cosines

 % Step 2 - Calculate the (adjacent) in a right-angled triangle with

the law of cosines: cos(A) = adjacent / hypotenuse, where hyp = a --> cos(A) * a

= adj

 if (angle_triangle_1B_s2s1 < 1 && angle_triangle_1B_s2s1

>cosd(62.5)) % Check angle - Must be between 0 and 1, filtering out angles

outside of the room

 adj_triangle_1B_s2s1 =

(angle_triangle_1B_s2s1*current_data(current_device,2)); % adj = angle * a

 % Step 3 - Calculate opposite with pytagoras theorem: a^2 = adj^2 +

opp^2

 opp_triangle_1B_s2s1 =

sqrt((current_data(current_device,2))^2-(adj_triangle_1B_s2s1)^2); %

 % Storing opp/adj-values in triangulation_results --> (adj,opp)

 results_triangulation(current_row,1) = technologies; % Put

current device in first column

 results_triangulation(current_row,2) = current_device; %

Put current technology in second column

 results_triangulation(current_row,3) = 1.2; % Put current

triangle in third column

 results_triangulation(current_row,4) = 11.195-

adj_triangle_1B_s2s1; % Put current adj value in fourth column as x

 results_triangulation(current_row,5) = opp_triangle_1B_s2s1;

% Put current opp value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 2 Triangle A perspective (s5-s1)

 if ((current_data(current_device,5)+current_data(current_device,1) >

20.8) && (current_data(current_device,5)+current_data(current_device,1) < 30.7)

&& ((current_data(current_device,5) < 15.35) && (current_data(current_device,1)

< 15.35)))

 angle_triangle_2A_s5s1 =

((20.80)^2+(current_data(current_device,5))^2-

(current_data(current_device,1))^2)/(2*20.80*(current_data(current_device,5)));

 if (angle_triangle_2A_s5s1 < 1 && angle_triangle_2A_s5s1

>=cosd(45))

 adj_triangle_2A_s5s1 =

(angle_triangle_2A_s5s1*current_data(current_device,5)); % y

128 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 opp_triangle_2A_s5s1 =

sqrt((current_data(current_device,5))^2-(adj_triangle_2A_s5s1)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 2.1;

 results_triangulation(current_row,4) = opp_triangle_2A_s5s1;

% Put opp value in fourth column as x

 results_triangulation(current_row,5) = 20.80-

adj_triangle_2A_s5s1; % Need to subtract adj from length to obtain same x/y-

axis, then put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 2 Triangle B perspective (s1-s5) - Most inaccurate

 if ((current_data(current_device,1)+current_data(current_device,5) >

20.8) && (current_data(current_device,1)+current_data(current_device,5) < 30.7)

&& ((current_data(current_device,1) < 15.35) && (current_data(current_device,5)

< 15.35)))

 angle_triangle_2B_s1s5 =

((current_data(current_device,1))^2+(current_data(current_device,5))^2-

(11.195)^2)/(2*(current_data(current_device,1)*current_data(current_device,5)));

 if (angle_triangle_2B_s1s5 < 1 && angle_triangle_2B_s1s5

>=cosd(45))

 adj_triangle_2B_s1s5 =

(angle_triangle_2B_s1s5*current_data(current_device,1)); % y

 opp_triangle_2B_s1s5 =

sqrt((current_data(current_device,1))^2-(adj_triangle_2B_s1s5)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 2.2;

 results_triangulation(current_row,4) = opp_triangle_2B_s1s5;

% Put opp value in fourth column as x

 results_triangulation(current_row,5) = adj_triangle_2B_s1s5;

% Put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 3 Triangle A perspective (s6-s5)

 if ((current_data(current_device,6)+current_data(current_device,5) >

11.195) && (current_data(current_device,6)+current_data(current_device,5) <

30.7) && ((current_data(current_device,6) < 15.35) &&

(current_data(current_device,5) < 15.35)))

Chapter D: Matlab code 129

 angle_triangle_3A_s6s5 =

((11.195)^2+(current_data(current_device,6))^2-

(current_data(current_device,5))^2)/(2*11.195*(current_data(current_device,6)));

 if (angle_triangle_3A_s6s5 < 1 && angle_triangle_3A_s6s5

>cosd(65))

 adj_triangle_3A_s6s5 =

(angle_triangle_3A_s6s5*current_data(current_device,6)); % x

 opp_triangle_3A_s6s5 =

sqrt((current_data(current_device,6))^2-(adj_triangle_3A_s6s5)^2); % y

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 3.1;

 results_triangulation(current_row,4) = 11.195-

adj_triangle_3A_s6s5; % Need to subtract adj from width to obtain same x/y-axis,

then put adj value in fourth column as x

 results_triangulation(current_row,5) = 20.80-

opp_triangle_3A_s6s5; % Need to subtract opp from length to obtain same x/y-

axis, then put opp value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 3 Triangle B perspective (s5-s6)

 if ((current_data(current_device,5)+current_data(current_device,6) >

11.195) && (current_data(current_device,5)+current_data(current_device,6) <

30.7) && ((current_data(current_device,5) < 15.35) &&

(current_data(current_device,6) < 15.35)))

 angle_triangle_3B_s5s6 =

((current_data(current_device,5))^2+(current_data(current_device,6))^2-

(11.195)^2)/(2*(current_data(current_device,5)*current_data(current_device,6)));

 if (angle_triangle_3B_s5s6 < 1 && angle_triangle_3B_s5s6

>cosd(65))

 adj_triangle_3B_s5s6 =

(angle_triangle_3B_s5s6*current_data(current_device,5)); % x

 opp_triangle_3B_s5s6 =

sqrt((current_data(current_device,5))^2-(adj_triangle_3B_s5s6)^2); % y

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 3.2;

 results_triangulation(current_row,4) = adj_triangle_3B_s5s6;

% Put adj value in fourth column as x

 results_triangulation(current_row,5) = 20.80-

opp_triangle_3B_s5s6; % Need to subtract opp from length to obtain same x/y-

axis, then put opp value in fifth column as y

 current_row = current_row +1;

 else

130 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 end

 end

 % 4 Triangle A perspective (s2-s6) Not so accurate

 if ((current_data(current_device,2)+current_data(current_device,6) >

20.8) && (current_data(current_device,2)+current_data(current_device,6) < 30.7)

&& ((current_data(current_device,2) < 15.35) && (current_data(current_device,6)

< 15.35)))

 angle_triangle_4A_s2s6 =

((20.80)^2+(current_data(current_device,2))^2-

(current_data(current_device,6))^2)/(2*20.80*(current_data(current_device,2)));

 if (angle_triangle_4A_s2s6 < 1 && angle_triangle_4A_s2s6

>=cosd(45))

 adj_triangle_4A_s2s6 =

(angle_triangle_4A_s2s6*current_data(current_device,2)); % y

 opp_triangle_4A_s2s6 =

sqrt((current_data(current_device,2))^2-(adj_triangle_4A_s2s6)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 4.1;

 results_triangulation(current_row,4) = 11.195-

opp_triangle_4A_s2s6; % Need to subtract opp from width to obtain same x/y-axis,

then put adj value in fourth column as x

 results_triangulation(current_row,5) = adj_triangle_4A_s2s6;

% Put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 4 Triangle B perspective (s6-s2) Not so accurate

 if ((current_data(current_device,6)+current_data(current_device,2) >

20.8) && (current_data(current_device,6)+current_data(current_device,2) < 30.7)

&& ((current_data(current_device,6) < 15.35) && (current_data(current_device,2)

< 15.35)))

 angle_triangle_4B_s6s2 =

((current_data(current_device,6))^2+(current_data(current_device,2))^2-

(11.195)^2)/(2*(current_data(current_device,6)*current_data(current_device,2)));

 if (angle_triangle_4B_s6s2 < 1 && angle_triangle_4B_s6s2

>=cosd(45))

 adj_triangle_4B_s6s2 =

(angle_triangle_4B_s6s2*current_data(current_device,6)); % y

 opp_triangle_4B_s6s2 =

sqrt((current_data(current_device,6))^2-(adj_triangle_4B_s6s2)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 4.2;

Chapter D: Matlab code 131

 results_triangulation(current_row,4) = 11.195-

opp_triangle_4B_s6s2; % Need to subtract opp from width to obtain same x/y-axis,

then put opp value in fourth column as x

 results_triangulation(current_row,5) = 20.80-

adj_triangle_4B_s6s2; % Need to subtract adj from length to obtain same x/y-

axis, then put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 5 Triangle A perspective (s3-s1) (rotated)

 if ((current_data(current_device,3)+current_data(current_device,1) >

10.40) && (current_data(current_device,3)+current_data(current_device,1) < 15.7)

&& ((current_data(current_device,3) < 11.195) && (current_data(current_device,1)

< 11.195)))

 angle_triangle_5A_s3s1 =

((10.4)^2+(current_data(current_device,3))^2-

(current_data(current_device,1))^2)/(2*10.4*(current_data(current_device,3)));

 if (angle_triangle_5A_s3s1 < 1 && angle_triangle_5A_s3s1 >0)

 adj_triangle_5A_s3s1 =

(angle_triangle_5A_s3s1*current_data(current_device,3)); % y

 opp_triangle_5A_s3s1 =

sqrt((current_data(current_device,3))^2-(adj_triangle_5A_s3s1)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 5.1;

 results_triangulation(current_row,4) = opp_triangle_5A_s3s1;

% Put opp value in fourth column as x (triangle is rotated)

 results_triangulation(current_row,5) = 10.40-

adj_triangle_5A_s3s1; % Need to subtract adj from length to obtain same x/y-

axis, then put adj value in fifth column as y (triangle is rotated)

 current_row = current_row +1;

 else

 end

 end

 % 5 Triangle B perspective (s1-s3)

 if ((current_data(current_device,1)+current_data(current_device,3) >

10.40) && (current_data(current_device,1)+current_data(current_device,3) < 15.7)

&& ((current_data(current_device,1) < 11.195) && (current_data(current_device,3)

< 11.195)))

 angle_triangle_5B_s1s3 =

((current_data(current_device,1))^2+(current_data(current_device,3))^2-

(11.195)^2)/(2*(current_data(current_device,1)*current_data(current_device,3)));

 if (angle_triangle_5B_s1s3 < 1 && angle_triangle_5B_s1s3 >0)

 adj_triangle_5B_s1s3 =

(angle_triangle_5B_s1s3*current_data(current_device,1)); % y

132 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 opp_triangle_5B_s1s3 =

sqrt((current_data(current_device,1))^2-(adj_triangle_5B_s1s3)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 5.2;

 results_triangulation(current_row,4) = opp_triangle_5B_s1s3;

% Put opp value in fourth column as x (triangle is rotated)

 results_triangulation(current_row,5) = adj_triangle_5B_s1s3;

% Put adj value in fifth column as y (triangle is rotated)

 current_row = current_row +1;

 else

 end

 end

 % 6 Triangle A perspective (s5-s3)

 if ((current_data(current_device,5)+current_data(current_device,3) >

10.40) && (current_data(current_device,5)+current_data(current_device,3) < 15.7)

&& ((current_data(current_device,5) < 11.195) && (current_data(current_device,3)

< 11.195)))

 angle_triangle_6A_s5s3 =

((10.4)^2+(current_data(current_device,5))^2-

(current_data(current_device,3))^2)/(2*10.4*(current_data(current_device,5)));

 if (angle_triangle_6A_s5s3 < 1 && angle_triangle_6A_s5s3 >0)

 adj_triangle_6A_s5s3 =

(angle_triangle_6A_s5s3*current_data(current_device,5)); % y

 opp_triangle_6A_s5s3 =

sqrt((current_data(current_device,5))^2-(adj_triangle_6A_s5s3)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 6.1;

 results_triangulation(current_row,4) = opp_triangle_6A_s5s3;

% Put opp value in fourth column as x

 results_triangulation(current_row,5) = 20.80-

adj_triangle_6A_s5s3; % Need to subtract adj from length to obtain same x/y-

axis, then put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 6 Triangle B perspective (s3-s5)

 if ((current_data(current_device,3)+current_data(current_device,5) >

10.40) && (current_data(current_device,3)+current_data(current_device,5) < 15.7)

&& ((current_data(current_device,3) < 11.195) && (current_data(current_device,5)

< 11.195)))

 angle_triangle_6B_s3s5 =

((current_data(current_device,3))^2+(current_data(current_device,5))^2-

(11.195)^2)/(2*(current_data(current_device,3)*current_data(current_device,5)));

Chapter D: Matlab code 133

 if (angle_triangle_6B_s3s5 < 1 && angle_triangle_6B_s3s5 >0)

 adj_triangle_6B_s3s5 =

(angle_triangle_6B_s3s5*current_data(current_device,3)); % y

 opp_triangle_6B_s3s5 =

sqrt((current_data(current_device,3))^2-(adj_triangle_6B_s3s5)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 6.2;

 results_triangulation(current_row,4) = opp_triangle_6B_s3s5;

% Put opp value in fourth column as x

 results_triangulation(current_row,5) =

10.40+adj_triangle_6B_s3s5; % Need to add length to adj to obtain same x/y-axis,

then put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 7 Triangle A perspective (s4-s6)

 if ((current_data(current_device,4)+current_data(current_device,6) >

10.40) && (current_data(current_device,4)+current_data(current_device,6) < 15.7)

&& ((current_data(current_device,4) < 11.195) && (current_data(current_device,6)

< 11.195)))

 angle_triangle_7A_s4s6 =

((10.4)^2+(current_data(current_device,4))^2-

(current_data(current_device,6))^2)/(2*10.4*(current_data(current_device,4)));

 if (angle_triangle_7A_s4s6 < 1 && angle_triangle_7A_s4s6 >0)

 adj_triangle_7A_s4s6 =

(angle_triangle_7A_s4s6*current_data(current_device,4)); % y

 opp_triangle_7A_s4s6 =

sqrt((current_data(current_device,4))^2-(adj_triangle_7A_s4s6)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 7.1;

 results_triangulation(current_row,4) = 11.195-

opp_triangle_7A_s4s6; % Need to subtract opp from width to obtain same x/y-axis,

then put opp value in fourth column as x

 results_triangulation(current_row,5) =

10.40+adj_triangle_7A_s4s6; % Need to add length to adj to obtain same x/y-axis,

then put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 7 Triangle B perspective (s6-s4)

 if ((current_data(current_device,6)+current_data(current_device,4) >

10.40) && (current_data(current_device,6)+current_data(current_device,4) < 15.7)

134 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

&& ((current_data(current_device,6) < 11.195) && (current_data(current_device,4)

< 11.195)))

 angle_triangle_7B_s6s4 =

((current_data(current_device,6))^2+(current_data(current_device,4))^2-

(11.195)^2)/(2*(current_data(current_device,6)*current_data(current_device,4)));

 if (angle_triangle_7B_s6s4 < 1 && angle_triangle_7B_s6s4 >0)

 adj_triangle_7B_s6s4 =

(angle_triangle_7B_s6s4*current_data(current_device,6)); % y

 opp_triangle_7B_s6s4 =

sqrt((current_data(current_device,6))^2-(adj_triangle_7B_s6s4)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 7.2;

 results_triangulation(current_row,4) = 11.195-

opp_triangle_7B_s6s4; % Need to subtract opp from width to obtain same x/y-axis,

then put opp value in fourth column as x

 results_triangulation(current_row,5) = 20.80-

adj_triangle_7B_s6s4; % Need to subtract adj from length to obtain same x/y-

axis, then put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 8 Triangle A perspective (s2-s4)

 if ((current_data(current_device,2)+current_data(current_device,4) >

10.40) && (current_data(current_device,2)+current_data(current_device,4) < 15.7)

&& ((current_data(current_device,2) < 11.195) && (current_data(current_device,4)

< 11.195)))

 angle_triangle_8A_s2s4 =

((10.4)^2+(current_data(current_device,2))^2-

(current_data(current_device,4))^2)/(2*10.4*(current_data(current_device,2)));

 if (angle_triangle_8A_s2s4 < 1 && angle_triangle_8A_s2s4 >0)

 adj_triangle_8A_s2s4 =

(angle_triangle_8A_s2s4*current_data(current_device,2)); % Need to calculate y

first (the triangle is rotated).

 opp_triangle_8A_s2s4 =

sqrt((current_data(current_device,2))^2-(adj_triangle_8A_s2s4)^2);

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 8.1;

 results_triangulation(current_row,4) = 11.195-

opp_triangle_8A_s2s4; % Need to subtract opp from width to obtain same x/y-axis,

then put opp value in fourth column as x

 results_triangulation(current_row,5) = adj_triangle_8A_s2s4;

% Put adj value in fifth column as y

 current_row = current_row +1;

Chapter D: Matlab code 135

 else

 end

 end

 % 8 Triangle B perspective (s4-s2)

 if ((current_data(current_device,4)+current_data(current_device,2) >

10.40) && (current_data(current_device,4)+current_data(current_device,2) < 15.7)

&& ((current_data(current_device,4) < 11.195) && (current_data(current_device,2)

< 11.195)))

 angle_triangle_8B_s4s2 =

((current_data(current_device,4))^2+(current_data(current_device,2))^2-

(11.195)^2)/(2*(current_data(current_device,4)*current_data(current_device,2)));

 if (angle_triangle_8B_s4s2 < 1 && angle_triangle_8B_s4s2 >0)

 adj_triangle_8B_s4s2 =

(angle_triangle_8B_s4s2*current_data(current_device,4)); % y

 opp_triangle_8B_s4s2 =

sqrt((current_data(current_device,4))^2-(adj_triangle_8B_s4s2)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 8.2;

 results_triangulation(current_row,4) = 11.195-

opp_triangle_8B_s4s2; % Need to subtract opp from width to obtain same x/y-axis,

then put opp value in fourth column as x

 results_triangulation(current_row,5) = 10.40-

adj_triangle_8B_s4s2; % Need to subtract adj from length to obtain same x/y-

axis, then put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % Remove negative values in results_triangulation and results outside

of room

 results_triangulation =

results_triangulation(results_triangulation(:,4)>0,:);

 results_triangulation =

results_triangulation(results_triangulation(:,5)>0,:);

 results_triangulation =

results_triangulation(results_triangulation(:,4)<11.195,:);

 results_triangulation =

results_triangulation(results_triangulation(:,5)<20.80,:);

 current_row = size(find(results_triangulation(:,1)>0),1)+1; % Find

total rows after removing negative values

 % Pre-work Euclideaon distance - If results greater than 0, calculate

mean values (coordinate) among all triangles. Do it for both Wifi and Blueototh

data

 currentresults =

results_triangulation((results_triangulation(:,1)==technologies) &

136 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

(results_triangulation(:,2)==current_device),:); % Save results that only

contain current device and current technology

 %if size(currentresults)>=1 % Test to see if data is zero

 if technologies == 2 % Test to see if wifi or bluetooth

 xy_results_triangulation_bluetooth_currentlocation =

currentresults(:,3:5); % Use x and y value in column 4 and 5

 % Bluetooth - If there exists multiple results for the

same device, calculate mean value of these coordinates

 count_current_values =

size(xy_results_triangulation_bluetooth_currentlocation(:,1));

 if count_current_values(1) >= 1 % if there exists

multiple results, then statement is true

results_triangulation_bluetooth_mean(current_device,1) = currentresults(1,2); %

put device number in first column

results_triangulation_bluetooth_mean(current_device,2) =

mean(xy_results_triangulation_bluetooth_currentlocation(:,2)); % mean of x

values

results_triangulation_bluetooth_mean(current_device,3) =

mean(xy_results_triangulation_bluetooth_currentlocation(:,3)); % mean of y

values

 results_triangulation_bluetooth_mean =

results_triangulation_bluetooth_mean(results_triangulation_bluetooth_mean(:,1)>0

,:); % remove null values

 else % Put null values in the table (will also be

compared)

results_triangulation_bluetooth_mean(current_device,1)=current_device;

results_triangulation_bluetooth_mean(current_device,2:3)=nan;

 end

 else

 xy_results_triangulation_wifi_currentlocation =

currentresults(:,3:5);

 % WiFi - If there exists multiple results for the same

second, calculate mean value of these coordinates

 count_current_values =

size(xy_results_triangulation_wifi_currentlocation(:,1));

 if count_current_values(1) >= 1 % if there exists

multiple results, then statement is true

 results_triangulation_wifi_mean(current_device,1) =

currentresults(1,2); % put device number in first column

 results_triangulation_wifi_mean(current_device,2) =

mean(xy_results_triangulation_wifi_currentlocation(:,2)); % mean of x values

Chapter D: Matlab code 137

 results_triangulation_wifi_mean(current_device,3) =

mean(xy_results_triangulation_wifi_currentlocation(:,3)); % mean of y values

 results_triangulation_wifi_mean =

results_triangulation_wifi_mean(results_triangulation_wifi_mean(:,1)>0,:); %

remove null values

 else % Put null values in the table (will also be

compared)

results_triangulation_wifi_mean(current_device,1)=current_device;

results_triangulation_wifi_mean(current_device,2:3)=nan;

 end

 end

 end

 current_data = Results_static_bluetooth_distance; % Changing technology

and data set

 end

 % Euclideaon distance - Testing best coordinate obtained above (in

relation to known locations) between Wi-fi and Bluetooth

 length=0;

 for wr=1:10 % loop through the calculated coordinates from wifi data - wr

(wifi-row)

 for br=1:10 % loop through the calculated coordinates from bluetooth

data - br (bluetooth-row)

 length = length+1; % Increment length by one on each loop

 Results_triangulation_distancetocoordinates_euclideon(length,1) =

wr; % Saves Wi-Fi device number in column 1

 Results_triangulation_distancetocoordinates_euclideon(length,2) =

br; % Saves Bluetooth device number in column 2

 % Calculates the Euclidean distance between two points (in this

case between the nearest Bluetooth and Wi-Fi coordinates in relation to known

locations)

 Results_triangulation_distancetocoordinates_euclideon(length,3) =

sqrt((results_triangulation_wifi_mean(wr,2)-

results_triangulation_bluetooth_mean(br,2))^2+(results_triangulation_wifi_mean(w

r,3)-results_triangulation_bluetooth_mean(br,3))^2);

 % Format: d(w, b) = sqrt((w(s1)-b(s1))^2+(w(s2)-b(s2))^2);

 end

 end

 % Top K-values 6 sensors (mean value of all triangles)

 data_device_from = 1;

 data_device_to = 10;

 for data_device = 1:10

138 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 current_data =

sortrows(Results_triangulation_distancetocoordinates_euclideon(data_device_from:

data_device_to,:),[3],{'ascend'}); % For every device in

"Results_triangulation_distancetocoordinates_euclideon", sort the values in

ascending order

TopK_triangulation_distancetocoordinates_euclideon(data_device_from:data_device_

to,:) = current_data; % Final values to look through when plotting into graph

 data_device_from = data_device_from + 10;

 data_device_to = data_device_to + 10;

 end

5 Trilateration + Euclidean

 xy_results1 = zeros(10,4);

 xy_results2 = zeros(10,4);

 xy_results3 = zeros(10,4);

 xy_results4 = zeros(10,4);

 xy_results_trilateration_wifi_total = zeros(200,4);

 xy_results_trilateration_bluetooth_total = zeros(200,4);

 xy_results_trilateration_wifi_mean = zeros(10,3);

 xy_results_trilateration_bluetooth_mean = zeros(10,3);

 Data=Results_static_wifi_distance;

 for technologies = 1:2 % loop through both Wi-Fi and Bluetooth data

 length_of_data = 1;

 for length_of_data = 1:size(Data,1)

 % Stores values from sensor 1,2,5,6 based on current row into r1..r6

 r1 = (Data(length_of_data,1));

 r2 = (Data(length_of_data,2));

 r5 = (Data(length_of_data,5));

 r6 = (Data(length_of_data,6));

 % See how step 1-4 were performed in method 2 Trilateration

 % Step 5 - Let Matlab understand the three equations

 A = 2*(-xy(1,1)+xy(1,2));

 B = 2*(-xy(2,1)+xy(2,2));

 C = (r1)^2-(r2)^2-(xy(1,1))^2+(xy(1,2))^2-(xy(2,1))^2+(xy(2,2))^2;

 D = 2*(-xy(1,2)+xy(1,3));

 E = 2*(-xy(2,2)+xy(2,3));

 F = (r2)^2-(r5)^2-(xy(1,2))^2+(xy(1,3))^2-(xy(2,2))^2+(xy(2,3))^2;

Chapter D: Matlab code 139

 G = 2*(-xy(1,3)+xy(1,4));

 H = 2*(-xy(2,3)+xy(2,4));

 I = (r5)^2-(r6)^2-(xy(1,3))^2+(xy(1,4))^2-(xy(2,3))^2+(xy(2,4))^2;

 J = 2*(-xy(1,4)+xy(1,1));

 K = 2*(-xy(2,4)+xy(2,1));

 L = (r6)^2-(r1)^2-(xy(1,4))^2+(xy(1,1))^2-(xy(2,4))^2+(xy(2,1))^2;

 % 1 Equation 1 (Sensor 1,2,5)

 x_1 = abs((C*E-B*F)/(A*E-B*D));

 y_1 = abs((C*D-A*F)/(B*D-A*E));

 % 2 Equation 2 (Sensor 2,5,6)

 x_2 = abs((F*H-E*I)/(D*H-E*G));

 y_2 = abs((F*G-D*I)/(E*G-D*H));

 % 3 Equation 3 (Sensor 5,6,1)

 x_3 = abs((I*K-H*L)/(G*K-H*J));

 y_3 = abs((I*J-G*L)/(H*J-G*K));

 % 4 Equation 4 (Sensor 6-1-2)

 x_4 = abs((L*A-K*C)/(J*B-K*A));

 y_4 = abs((L*A-J*C)/(K*A-J*B));

 % Save values of x and y into tables of results based on different

equations, remove values outside of room or null values

 if x_1 > 11.195 || y_1 > 21.5 || isnan(x_1) || isnan(y_1) %

Original distance is 20.8. 21.5 meters is to include data from location 9 in

static experiment 3-1

 else

 xy_results1(length_of_data,1) = x_1; % Stores x values in table

xy_results1 from equation 1

 xy_results1(length_of_data,2) = y_1; % Stores y values in table

xy_results1 from equation 1

 xy_results1(length_of_data,3) = 1; % Store equation number in

column 3

 xy_results1(length_of_data,4) = length_of_data; % Store device

number in column 4

 end

 if x_2 > 11.195 || y_2 > 21.5 || isnan(x_2) || isnan(y_2)

 else

 xy_results2(length_of_data,1) = x_2; % Stores x values in table

xy_results2 from equation 2

 xy_results2(length_of_data,2) = y_2; % Stores y values in table

xy_results2 from equation 2

140 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 xy_results2(length_of_data,3) = 2; % Store equation number in

column 3

 xy_results2(length_of_data,4) = length_of_data; % Store device

number in column 4

 end

 if x_3 > 11.195 || y_3 > 21.5 || isnan(x_3) || isnan(y_3)

 else

 xy_results3(length_of_data,1) = x_3; % Stores x values in table

xy_results3 from equation 3

 xy_results3(length_of_data,2) = y_3; % Stores y values in table

xy_results3 from equation 3

 xy_results3(length_of_data,3) = 3; % Store equation number in

column 3

 xy_results3(length_of_data,4) = length_of_data; % Store device

number in column 4

 end

 if x_4 > 11.195 || y_4 > 21.5 || isnan(x_4) || isnan(y_4)

 else

 xy_results4(length_of_data,1) = x_4; % Stores x values in table

xy_results4 from equation 4

 xy_results4(length_of_data,2) = y_4; % Stores y values in table

xy_results4 from equation 4

 xy_results4(length_of_data,3) = 4; % Store equation number in

column 3

 xy_results4(length_of_data,4) = length_of_data; % Store device

number in column 4

 end

 % Finding mean value of xy_results1-4 related to static

location

 if technologies == 2

 xy_results_trilateration_bluetooth_total =

[xy_results1(length_of_data,:); xy_results2(length_of_data,:);

xy_results3(length_of_data,:); xy_results4(length_of_data,:)];

 xy_results_trilateration_bluetooth_total =

xy_results_trilateration_bluetooth_total(xy_results_trilateration_bluetooth_tota

l(:,1)>0,:); % remove null values

 % Bluetooth - If there exists multiple results for the same

second, calculate mean value of these coordinates

 count_current_values =

size(xy_results_trilateration_bluetooth_total(:,1));

 if count_current_values(1) >= 1 % if there exists multiple

results, then statement is true

xy_results_trilateration_bluetooth_mean(length_of_data,1) =

Chapter D: Matlab code 141

xy_results_trilateration_bluetooth_total(1,4); % put device number in first

column

xy_results_trilateration_bluetooth_mean(length_of_data,2) =

mean(xy_results_trilateration_bluetooth_total(:,1)); % mean of x values

xy_results_trilateration_bluetooth_mean(length_of_data,3) =

mean(xy_results_trilateration_bluetooth_total(:,2)); % mean of y values

 xy_results_trilateration_bluetooth_mean =

xy_results_trilateration_bluetooth_mean(xy_results_trilateration_bluetooth_mean(

:,1)>0,:); % remove null values

 else

xy_results_trilateration_bluetooth_mean(length_of_data,1) = length_of_data; %

put device number in first column

xy_results_trilateration_bluetooth_mean(length_of_data,2:3) = nan;

 continue; % Passes control to the next iteration of

lengthof_data is zero

 end

 else

 xy_results_trilateration_wifi_total =

[xy_results1(length_of_data,:); xy_results2(length_of_data,:);

xy_results3(length_of_data,:); xy_results4(length_of_data,:)];

 xy_results_trilateration_wifi_total =

xy_results_trilateration_wifi_total(xy_results_trilateration_wifi_total(:,1)>0,:

); % remove null values

 % WiFi - If there exists multiple results for the same

second, calculate mean value of these coordinates

 count_current_values =

size(xy_results_trilateration_wifi_total(:,1));

 if count_current_values(1) >= 1 % if there exists multiple

results, then statement is true

 xy_results_trilateration_wifi_mean(length_of_data,1) =

xy_results_trilateration_wifi_total(1,4); % put device number in first column

 xy_results_trilateration_wifi_mean(length_of_data,2) =

mean(xy_results_trilateration_wifi_total(:,1)); % mean of x values

 xy_results_trilateration_wifi_mean(length_of_data,3) =

mean(xy_results_trilateration_wifi_total(:,2)); % mean of y values

 xy_results_trilateration_wifi_mean =

xy_results_trilateration_wifi_mean(xy_results_trilateration_wifi_mean(:,1)>0,:);

% remove null values

 else

 xy_results_trilateration_wifi_mean(length_of_data,1) =

length_of_data; % put device number in first column

142 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 xy_results_trilateration_wifi_mean(length_of_data,2:3)

= nan;

 continue; % Passes control to the next iteration of

lengthof_data is zero

 end

 end

 end

 length_of_data = length_of_data + 1;

 % Save results from each equation into seperate variables

 if technologies == 2

 xy_results_trilateration_bluetooth_1 =

xy_results1(xy_results1(:,1)>0,:); % Save only valid coordiantes (0,0 is

invalid)

 xy_results_trilateration_bluetooth_2 =

xy_results2(xy_results2(:,1)>0,:);

 xy_results_trilateration_bluetooth_3 =

xy_results3(xy_results3(:,1)>0,:);

 xy_results_trilateration_bluetooth_4 =

xy_results4(xy_results4(:,1)>0,:);

 else

 Data=Results_static_bluetooth_distance;

 xy_results_trilateration_wifi_1 =

xy_results1(xy_results1(:,1)>0,:);

 xy_results_trilateration_wifi_2 =

xy_results2(xy_results2(:,1)>0,:);

 xy_results_trilateration_wifi_3 =

xy_results3(xy_results3(:,1)>0,:);

 xy_results_trilateration_wifi_4 =

xy_results4(xy_results4(:,1)>0,:);

 xy_results1 = zeros(10,4); % resetting before bluetooth

technology

 xy_results2 = zeros(10,4);

 xy_results3 = zeros(10,4);

 xy_results4 = zeros(10,4);

 end

 end

 % Concatenating all bluetooth and wifi results into two tables

 xy_results_trilateration_wifi_total =

cat(1,xy_results_trilateration_wifi_1,xy_results_trilateration_wifi_2,xy_results

_trilateration_wifi_3,xy_results_trilateration_wifi_4);

 xy_results_trilateration_bluetooth_total =

cat(1,xy_results_trilateration_bluetooth_1,xy_results_trilateration_bluetooth_2,

xy_results_trilateration_bluetooth_3,xy_results_trilateration_bluetooth_4);

Chapter D: Matlab code 143

 % Euclideaon distance 4 sensors (mean value)- Testing each coordinate from

Wi-fi data with each coordinate from Bluetooth

 length=0;

 for wr=1:10 % loop through the calculated coordinates from wifi data - wr

(wifi-row)

 for br=1:10 % loop through the calculated coordinates from bluetooth

data - br (bluetooth-row)

 length = length+1; % Increment length by one on each loop

 Results_multilateration_distancetocoordinates_euclideon(length,1) =

wr; % Saves Wi-Fi device number in column 1

 Results_multilateration_distancetocoordinates_euclideon(length,2) =

br; % Saves Bluetooth device number in column 2

 % Calculates the Euclidean distance between two points (in this

case between the Bluetooth and Wi-Fi values)

 Results_multilateration_distancetocoordinates_euclideon(length,3) =

sqrt((xy_results_trilateration_wifi_mean(wr,2)-

xy_results_trilateration_bluetooth_mean(br,2))^2+(xy_results_trilateration_wifi_

mean(wr,3)-xy_results_trilateration_bluetooth_mean(br,3))^2);

 %Results_triangulation_distancetocoordinates_euclideon(length,3) =

sqrt((results_triangulation_wifi_mean(wr,2)-

results_triangulation_bluetooth_mean(br,2))^2+(results_triangulation_wifi_mean(w

r,3)-results_triangulation_bluetooth_mean(br,3))^2);

 % Format: d(w, b) = sqrt((w(s1)-b(s1))^2+(w(s2)-b(s2))^2);

 % d(w, b): is close to 0 if the two rows are very similar and

became greater if the lines are different

 % w: The coordinates of wifi date

 % b: The coordinates of bluetooth data

 % s: wifi(x1), wifi(y1), bluetooth(x1), bluetooth(x2).

 % Better solution

 % coordinates = [0,0;6.7028,11.4674];

 % d = pdist(coordinates,'euclidean');

 end

 end

 % Top K-values

 data_device_from = 1;

 data_device_to = 10;

 for data_device = 1:10

 % Results with all equations - Mean

 current_data =

sortrows(Results_multilateration_distancetocoordinates_euclideon(data_device_fro

m:data_device_to,:),[3],{'ascend'}); % For every device in

"Results_multilateration_distancetocoordinates_euclideon", sort the values in

ascending order

144 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

TopK_multilateration_distancetocoordinates_euclideon(data_device_from:data_devic

e_to,:) = current_data; % Final values to look through when plotting into graph

 data_device_from = data_device_from + 10;

 data_device_to = data_device_to + 10;

 end

 elseif method == 2

Triangulation

 results_triangulation = zeros(200,6);

 results_triangulation_bluetooth_mean = zeros(10,3);

 results_triangulation_wifi_mean = zeros(10,3);

 air_distance = zeros(10,3);

 current_data = Results_static_wifi_distance; % Choosing the wifi data set

 current_row = 1;

 for technologies = 1:2 % loop through both Wi-Fi and Bluetooth data

 current_device = 1; % Starting at device one

 for current_device = 1:size(current_data,1) % Looping through all

devices

 % 1 Triangle A perspective (s1-s2)

 % Check for "true" triangles: Check if distance between s1-s2 >

widt and distance between s5-s1 > length, also that the signal converted to

distance is shorter than 22.5 and that both distances does not exeeds 45

 if ((current_data(current_device,1)+current_data(current_device,2)

> 11.195) && (current_data(current_device,1)+current_data(current_device,2) <

30.7) && ((current_data(current_device,1) < 15.35) &&

(current_data(current_device,2) < 15.35)))

 % Step 1 - Calculate angle in triangle 1A with the law of cosines:

a^2 = b2^2 + c2^2-2bc*Cos(A) --> Cos(A) = (b2^2+c^2-a^2)/(2*bc)

 angle_triangle_1A_s1s2 =

((11.195)^2+(current_data(current_device,1))^2-

(current_data(current_device,2))^2)/(2*11.195*(current_data(current_device,1)));

% Law of cosines

 % Step 2 - Calculate the (adjacent) in a right-angled triangle with

the law of cosines: cos(A) = adjacent / hypotenuse, where hyp = a --> cos(A) * a

= adj

 if (angle_triangle_1A_s1s2 < 1 && angle_triangle_1A_s1s2

>cosd(62.5)) % Check angle - Must be between 0 and 45 degrees, filtering out

angles outside of the sector/room

 adj_triangle_1A_s1s2 =

(angle_triangle_1A_s1s2*current_data(current_device,1)); % adj = angle * c

 % Step 3 - Calculate opposite with pytagoras theorem: c^2 = adj^2 +

opp^2

Chapter D: Matlab code 145

 opp_triangle_1A_s1s2 =

sqrt((current_data(current_device,1))^2-(adj_triangle_1A_s1s2)^2); %

 % Storing opp/adj-values in triangulation_results --> (adj,opp)

 results_triangulation(current_row,1) = technologies; % Put

current device in first column

 results_triangulation(current_row,2) = current_device; %

Put current technology in second column

 results_triangulation(current_row,3) = 1.1; % Put current

triangle in third column

 results_triangulation(current_row,4) = adj_triangle_1A_s1s2;

% Put current adj value in fourth column as x

 results_triangulation(current_row,5) = opp_triangle_1A_s1s2;

% Put current opp value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 1 Triangle B perspective (s2-s1)

 % Check for "true" triangles: Check if distance between s1-s2 >

widt and distance between s5-s1 > length, also that the signal converted to

distance is shorter than 22.5 and that both distances does not exeeds 45

 if ((current_data(current_device,2)+current_data(current_device,1)

> 11.195) && (current_data(current_device,2)+current_data(current_device,1) <

30.7) && ((current_data(current_device,2) < 15.35) &&

(current_data(current_device,1) < 15.35)))

 % Step 1 - Calculate angle in triangle 1B with the law of cosines:

b^2 = c^2+a^2-2ca*Cos(B) --> Cos(B) = (c^2+a^2-b^2)/2ca

 angle_triangle_1B_s2s1 =

((current_data(current_device,2))^2+(current_data(current_device,1))^2-

(11.195)^2)/(2*(current_data(current_device,2)*current_data(current_device,1)));

% Law of cosines

 % Step 2 - Calculate the (adjacent) in a right-angled triangle with

the law of cosines: cos(A) = adjacent / hypotenuse, where hyp = a --> cos(A) * a

= adj

 if (angle_triangle_1B_s2s1 < 1 && angle_triangle_1B_s2s1

>cosd(62.5)) % Check angle - Must be between 0 and 1, filtering out angles

outside of the room

 adj_triangle_1B_s2s1 =

(angle_triangle_1B_s2s1*current_data(current_device,2)); % adj = angle * a

 % Step 3 - Calculate opposite with pytagoras theorem: a^2 = adj^2 +

opp^2

 opp_triangle_1B_s2s1 =

sqrt((current_data(current_device,2))^2-(adj_triangle_1B_s2s1)^2); %

 % Storing opp/adj-values in triangulation_results --> (adj,opp)

 results_triangulation(current_row,1) = technologies; % Put

current device in first column

146 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 results_triangulation(current_row,2) = current_device; %

Put current technology in second column

 results_triangulation(current_row,3) = 1.2; % Put current

triangle in third column

 results_triangulation(current_row,4) = 11.195-

adj_triangle_1B_s2s1; % Put current adj value in fourth column as x

 results_triangulation(current_row,5) = opp_triangle_1B_s2s1;

% Put current opp value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 2 Triangle A perspective (s5-s1)

 if ((current_data(current_device,5)+current_data(current_device,1) >

20.8) && (current_data(current_device,5)+current_data(current_device,1) < 30.7)

&& ((current_data(current_device,5) < 15.35) && (current_data(current_device,1)

< 15.35)))

 angle_triangle_2A_s5s1 =

((20.80)^2+(current_data(current_device,5))^2-

(current_data(current_device,1))^2)/(2*20.80*(current_data(current_device,5)));

 if (angle_triangle_2A_s5s1 < 1 && angle_triangle_2A_s5s1

>=cosd(45))

 adj_triangle_2A_s5s1 =

(angle_triangle_2A_s5s1*current_data(current_device,5)); % y

 opp_triangle_2A_s5s1 =

sqrt((current_data(current_device,5))^2-(adj_triangle_2A_s5s1)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 2.1;

 results_triangulation(current_row,4) = opp_triangle_2A_s5s1;

% Put opp value in fourth column as x

 results_triangulation(current_row,5) = 20.80-

adj_triangle_2A_s5s1; % Need to subtract adj from length to obtain same x/y-

axis, then put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 2 Triangle B perspective (s1-s5) - Most inaccurate

 if ((current_data(current_device,1)+current_data(current_device,5) >

20.8) && (current_data(current_device,1)+current_data(current_device,5) < 30.7)

&& ((current_data(current_device,1) < 15.35) && (current_data(current_device,5)

< 15.35)))

 angle_triangle_2B_s1s5 =

((current_data(current_device,1))^2+(current_data(current_device,5))^2-

(11.195)^2)/(2*(current_data(current_device,1)*current_data(current_device,5)));

Chapter D: Matlab code 147

 if (angle_triangle_2B_s1s5 < 1 && angle_triangle_2B_s1s5

>=cosd(45))

 adj_triangle_2B_s1s5 =

(angle_triangle_2B_s1s5*current_data(current_device,1)); % y

 opp_triangle_2B_s1s5 =

sqrt((current_data(current_device,1))^2-(adj_triangle_2B_s1s5)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 2.2;

 results_triangulation(current_row,4) = opp_triangle_2B_s1s5;

% Put opp value in fourth column as x

 results_triangulation(current_row,5) = adj_triangle_2B_s1s5;

% Put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 3 Triangle A perspective (s6-s5)

 if ((current_data(current_device,6)+current_data(current_device,5) >

11.195) && (current_data(current_device,6)+current_data(current_device,5) <

30.7) && ((current_data(current_device,6) < 15.35) &&

(current_data(current_device,5) < 15.35)))

 angle_triangle_3A_s6s5 =

((11.195)^2+(current_data(current_device,6))^2-

(current_data(current_device,5))^2)/(2*11.195*(current_data(current_device,6)));

 if (angle_triangle_3A_s6s5 < 1 && angle_triangle_3A_s6s5

>cosd(65))

 adj_triangle_3A_s6s5 =

(angle_triangle_3A_s6s5*current_data(current_device,6)); % x

 opp_triangle_3A_s6s5 =

sqrt((current_data(current_device,6))^2-(adj_triangle_3A_s6s5)^2); % y

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 3.1;

 results_triangulation(current_row,4) = 11.195-

adj_triangle_3A_s6s5; % Need to subtract adj from width to obtain same x/y-axis,

then put adj value in fourth column as x

 results_triangulation(current_row,5) = 20.80-

opp_triangle_3A_s6s5; % Need to subtract opp from length to obtain same x/y-

axis, then put opp value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 3 Triangle B perspective (s5-s6)

148 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 if ((current_data(current_device,5)+current_data(current_device,6) >

11.195) && (current_data(current_device,5)+current_data(current_device,6) <

30.7) && ((current_data(current_device,5) < 15.35) &&

(current_data(current_device,6) < 15.35)))

 angle_triangle_3B_s5s6 =

((current_data(current_device,5))^2+(current_data(current_device,6))^2-

(11.195)^2)/(2*(current_data(current_device,5)*current_data(current_device,6)));

 if (angle_triangle_3B_s5s6 < 1 && angle_triangle_3B_s5s6

>cosd(65))

 adj_triangle_3B_s5s6 =

(angle_triangle_3B_s5s6*current_data(current_device,5)); % x

 opp_triangle_3B_s5s6 =

sqrt((current_data(current_device,5))^2-(adj_triangle_3B_s5s6)^2); % y

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 3.2;

 results_triangulation(current_row,4) = adj_triangle_3B_s5s6;

% Put adj value in fourth column as x

 results_triangulation(current_row,5) = 20.80-

opp_triangle_3B_s5s6; % Need to subtract opp from length to obtain same x/y-

axis, then put opp value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 4 Triangle A perspective (s2-s6) Not so accurate

 if ((current_data(current_device,2)+current_data(current_device,6) >

20.8) && (current_data(current_device,2)+current_data(current_device,6) < 30.7)

&& ((current_data(current_device,2) < 15.35) && (current_data(current_device,6)

< 15.35)))

 angle_triangle_4A_s2s6 =

((20.80)^2+(current_data(current_device,2))^2-

(current_data(current_device,6))^2)/(2*20.80*(current_data(current_device,2)));

 if (angle_triangle_4A_s2s6 < 1 && angle_triangle_4A_s2s6

>=cosd(45))

 adj_triangle_4A_s2s6 =

(angle_triangle_4A_s2s6*current_data(current_device,2)); % y

 opp_triangle_4A_s2s6 =

sqrt((current_data(current_device,2))^2-(adj_triangle_4A_s2s6)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 4.1;

 results_triangulation(current_row,4) = 11.195-

opp_triangle_4A_s2s6; % Need to subtract opp from width to obtain same x/y-axis,

then put adj value in fourth column as x

Chapter D: Matlab code 149

 results_triangulation(current_row,5) = adj_triangle_4A_s2s6;

% Put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 4 Triangle B perspective (s6-s2) Not so accurate

 if ((current_data(current_device,6)+current_data(current_device,2) >

20.8) && (current_data(current_device,6)+current_data(current_device,2) < 30.7)

&& ((current_data(current_device,6) < 15.35) && (current_data(current_device,2)

< 15.35)))

 angle_triangle_4B_s6s2 =

((current_data(current_device,6))^2+(current_data(current_device,2))^2-

(11.195)^2)/(2*(current_data(current_device,6)*current_data(current_device,2)));

 if (angle_triangle_4B_s6s2 < 1 && angle_triangle_4B_s6s2

>=cosd(45))

 adj_triangle_4B_s6s2 =

(angle_triangle_4B_s6s2*current_data(current_device,6)); % y

 opp_triangle_4B_s6s2 =

sqrt((current_data(current_device,6))^2-(adj_triangle_4B_s6s2)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 4.2;

 results_triangulation(current_row,4) = 11.195-

opp_triangle_4B_s6s2; % Need to subtract opp from width to obtain same x/y-axis,

then put opp value in fourth column as x

 results_triangulation(current_row,5) = 20.80-

adj_triangle_4B_s6s2; % Need to subtract adj from length to obtain same x/y-

axis, then put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 5 Triangle A perspective (s3-s1) (rotated)

 if ((current_data(current_device,3)+current_data(current_device,1) >

10.40) && (current_data(current_device,3)+current_data(current_device,1) < 15.7)

&& ((current_data(current_device,3) < 11.195) && (current_data(current_device,1)

< 11.195)))

 angle_triangle_5A_s3s1 =

((10.4)^2+(current_data(current_device,3))^2-

(current_data(current_device,1))^2)/(2*10.4*(current_data(current_device,3)));

 if (angle_triangle_5A_s3s1 < 1 && angle_triangle_5A_s3s1 >0)

 adj_triangle_5A_s3s1 =

(angle_triangle_5A_s3s1*current_data(current_device,3)); % y

 opp_triangle_5A_s3s1 =

sqrt((current_data(current_device,3))^2-(adj_triangle_5A_s3s1)^2); % x

150 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 5.1;

 results_triangulation(current_row,4) = opp_triangle_5A_s3s1;

% Put opp value in fourth column as x (triangle is rotated)

 results_triangulation(current_row,5) = 10.40-

adj_triangle_5A_s3s1; % Need to subtract adj from length to obtain same x/y-

axis, then put adj value in fifth column as y (triangle is rotated)

 current_row = current_row +1;

 else

 end

 end

 % 5 Triangle B perspective (s1-s3)

 if ((current_data(current_device,1)+current_data(current_device,3) >

10.40) && (current_data(current_device,1)+current_data(current_device,3) < 15.7)

&& ((current_data(current_device,1) < 11.195) && (current_data(current_device,3)

< 11.195)))

 angle_triangle_5B_s1s3 =

((current_data(current_device,1))^2+(current_data(current_device,3))^2-

(11.195)^2)/(2*(current_data(current_device,1)*current_data(current_device,3)));

 if (angle_triangle_5B_s1s3 < 1 && angle_triangle_5B_s1s3 >0)

 adj_triangle_5B_s1s3 =

(angle_triangle_5B_s1s3*current_data(current_device,1)); % y

 opp_triangle_5B_s1s3 =

sqrt((current_data(current_device,1))^2-(adj_triangle_5B_s1s3)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 5.2;

 results_triangulation(current_row,4) = opp_triangle_5B_s1s3;

% Put opp value in fourth column as x (triangle is rotated)

 results_triangulation(current_row,5) = adj_triangle_5B_s1s3;

% Put adj value in fifth column as y (triangle is rotated)

 current_row = current_row +1;

 else

 end

 end

 % 6 Triangle A perspective (s5-s3)

 if ((current_data(current_device,5)+current_data(current_device,3) >

10.40) && (current_data(current_device,5)+current_data(current_device,3) < 15.7)

&& ((current_data(current_device,5) < 11.195) && (current_data(current_device,3)

< 11.195)))

 angle_triangle_6A_s5s3 =

((10.4)^2+(current_data(current_device,5))^2-

(current_data(current_device,3))^2)/(2*10.4*(current_data(current_device,5)));

 if (angle_triangle_6A_s5s3 < 1 && angle_triangle_6A_s5s3 >0)

Chapter D: Matlab code 151

 adj_triangle_6A_s5s3 =

(angle_triangle_6A_s5s3*current_data(current_device,5)); % y

 opp_triangle_6A_s5s3 =

sqrt((current_data(current_device,5))^2-(adj_triangle_6A_s5s3)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 6.1;

 results_triangulation(current_row,4) = opp_triangle_6A_s5s3;

% Put opp value in fourth column as x

 results_triangulation(current_row,5) = 20.80-

adj_triangle_6A_s5s3; % Need to subtract adj from length to obtain same x/y-

axis, then put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 6 Triangle B perspective (s3-s5)

 if ((current_data(current_device,3)+current_data(current_device,5) >

10.40) && (current_data(current_device,3)+current_data(current_device,5) < 15.7)

&& ((current_data(current_device,3) < 11.195) && (current_data(current_device,5)

< 11.195)))

 angle_triangle_6B_s3s5 =

((current_data(current_device,3))^2+(current_data(current_device,5))^2-

(11.195)^2)/(2*(current_data(current_device,3)*current_data(current_device,5)));

 if (angle_triangle_6B_s3s5 < 1 && angle_triangle_6B_s3s5 >0)

 adj_triangle_6B_s3s5 =

(angle_triangle_6B_s3s5*current_data(current_device,3)); % y

 opp_triangle_6B_s3s5 =

sqrt((current_data(current_device,3))^2-(adj_triangle_6B_s3s5)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 6.2;

 results_triangulation(current_row,4) = opp_triangle_6B_s3s5;

% Put opp value in fourth column as x

 results_triangulation(current_row,5) =

10.40+adj_triangle_6B_s3s5; % Need to add length to adj to obtain same x/y-axis,

then put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 7 Triangle A perspective (s4-s6)

 if ((current_data(current_device,4)+current_data(current_device,6) >

10.40) && (current_data(current_device,4)+current_data(current_device,6) < 15.7)

&& ((current_data(current_device,4) < 11.195) && (current_data(current_device,6)

< 11.195)))

152 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 angle_triangle_7A_s4s6 =

((10.4)^2+(current_data(current_device,4))^2-

(current_data(current_device,6))^2)/(2*10.4*(current_data(current_device,4)));

 if (angle_triangle_7A_s4s6 < 1 && angle_triangle_7A_s4s6 >0)

 adj_triangle_7A_s4s6 =

(angle_triangle_7A_s4s6*current_data(current_device,4)); % y

 opp_triangle_7A_s4s6 =

sqrt((current_data(current_device,4))^2-(adj_triangle_7A_s4s6)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 7.1;

 results_triangulation(current_row,4) = 11.195-

opp_triangle_7A_s4s6; % Need to subtract opp from width to obtain same x/y-axis,

then put opp value in fourth column as x

 results_triangulation(current_row,5) =

10.40+adj_triangle_7A_s4s6; % Need to add length to adj to obtain same x/y-axis,

then put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 7 Triangle B perspective (s6-s4)

 if ((current_data(current_device,6)+current_data(current_device,4) >

10.40) && (current_data(current_device,6)+current_data(current_device,4) < 15.7)

&& ((current_data(current_device,6) < 11.195) && (current_data(current_device,4)

< 11.195)))

 angle_triangle_7B_s6s4 =

((current_data(current_device,6))^2+(current_data(current_device,4))^2-

(11.195)^2)/(2*(current_data(current_device,6)*current_data(current_device,4)));

 if (angle_triangle_7B_s6s4 < 1 && angle_triangle_7B_s6s4 >0)

 adj_triangle_7B_s6s4 =

(angle_triangle_7B_s6s4*current_data(current_device,6)); % y

 opp_triangle_7B_s6s4 =

sqrt((current_data(current_device,6))^2-(adj_triangle_7B_s6s4)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 7.2;

 results_triangulation(current_row,4) = 11.195-

opp_triangle_7B_s6s4; % Need to subtract opp from width to obtain same x/y-axis,

then put opp value in fourth column as x

 results_triangulation(current_row,5) = 20.80-

adj_triangle_7B_s6s4; % Need to subtract adj from length to obtain same x/y-

axis, then put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

Chapter D: Matlab code 153

 end

 % 8 Triangle A perspective (s2-s4)

 if ((current_data(current_device,2)+current_data(current_device,4) >

10.40) && (current_data(current_device,2)+current_data(current_device,4) < 15.7)

&& ((current_data(current_device,2) < 11.195) && (current_data(current_device,4)

< 11.195)))

 angle_triangle_8A_s2s4 =

((10.4)^2+(current_data(current_device,2))^2-

(current_data(current_device,4))^2)/(2*10.4*(current_data(current_device,2)));

 if (angle_triangle_8A_s2s4 < 1 && angle_triangle_8A_s2s4 >0)

 adj_triangle_8A_s2s4 =

(angle_triangle_8A_s2s4*current_data(current_device,2)); % Need to calculate y

first (the triangle is rotated).

 opp_triangle_8A_s2s4 =

sqrt((current_data(current_device,2))^2-(adj_triangle_8A_s2s4)^2);

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 8.1;

 results_triangulation(current_row,4) = 11.195-

opp_triangle_8A_s2s4; % Need to subtract opp from width to obtain same x/y-axis,

then put opp value in fourth column as x

 results_triangulation(current_row,5) = adj_triangle_8A_s2s4;

% Put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 8 Triangle B perspective (s4-s2)

 if ((current_data(current_device,4)+current_data(current_device,2) >

10.40) && (current_data(current_device,4)+current_data(current_device,2) < 15.7)

&& ((current_data(current_device,4) < 11.195) && (current_data(current_device,2)

< 11.195)))

 angle_triangle_8B_s4s2 =

((current_data(current_device,4))^2+(current_data(current_device,2))^2-

(11.195)^2)/(2*(current_data(current_device,4)*current_data(current_device,2)));

 if (angle_triangle_8B_s4s2 < 1 && angle_triangle_8B_s4s2 >0)

 adj_triangle_8B_s4s2 =

(angle_triangle_8B_s4s2*current_data(current_device,4)); % y

 opp_triangle_8B_s4s2 =

sqrt((current_data(current_device,4))^2-(adj_triangle_8B_s4s2)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_device;

 results_triangulation(current_row,3) = 8.2;

 results_triangulation(current_row,4) = 11.195-

opp_triangle_8B_s4s2; % Need to subtract opp from width to obtain same x/y-axis,

then put opp value in fourth column as x

154 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 results_triangulation(current_row,5) = 10.40-

adj_triangle_8B_s4s2; % Need to subtract adj from length to obtain same x/y-

axis, then put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % Remove negative values in results_triangulation and results outside

of room

 results_triangulation =

results_triangulation(results_triangulation(:,4)>0,:);

 results_triangulation =

results_triangulation(results_triangulation(:,5)>0,:);

 results_triangulation =

results_triangulation(results_triangulation(:,4)<11.195,:);

 results_triangulation =

results_triangulation(results_triangulation(:,5)<20.80,:);

 current_row = size(find(results_triangulation(:,1)>0),1)+1; % Find

total rows after removing negative values

 % Pre-work If results greater than 0, calculate mean value

(coordinate) among all triangles. Do it for both Wifi and Blueototh data

 currentresults =

results_triangulation((results_triangulation(:,1)==technologies) &

(results_triangulation(:,2)==current_device),:); % Save results that only

contain current device and current technology

 if size(currentresults)>=1 % Test to see if data is zero

 if technologies == 2 % Test to see if wifi or bluetooth

 xy_results_triangulation_bluetooth_currentlocation =

currentresults(:,3:5); % Use x and y value in column 4 and 5

 % Bluetooth - If there exists multiple results for the

same second, calculate mean value of these coordinates

 count_current_values =

size(xy_results_triangulation_bluetooth_currentlocation(:,1));

 if count_current_values(1) >= 1 % if there exists

multiple results, then statement is true

results_triangulation_bluetooth_mean(current_device,1) = currentresults(1,2); %

put device number in first column

results_triangulation_bluetooth_mean(current_device,2) =

mean(xy_results_triangulation_bluetooth_currentlocation(:,2)); % mean of x

values

results_triangulation_bluetooth_mean(current_device,3) =

mean(xy_results_triangulation_bluetooth_currentlocation(:,3)); % mean of y

values

Chapter D: Matlab code 155

 results_triangulation_bluetooth_mean =

results_triangulation_bluetooth_mean(results_triangulation_bluetooth_mean(:,1)>0

,:); % remove null values

 end

 else

 xy_results_triangulation_wifi_currentlocation =

currentresults(:,3:5);

 % WiFi - If there exists multiple results for the same

second, calculate mean value of these coordinates

 count_current_values =

size(xy_results_triangulation_wifi_currentlocation(:,1));

 if count_current_values(1) >= 1 % if there exists

multiple results, then statement is true

 results_triangulation_wifi_mean(current_device,1) =

currentresults(1,2); % put device number in first column

 results_triangulation_wifi_mean(current_device,2) =

mean(xy_results_triangulation_wifi_currentlocation(:,2)); % mean of x values

 results_triangulation_wifi_mean(current_device,3) =

mean(xy_results_triangulation_wifi_currentlocation(:,3)); % mean of y values

 results_triangulation_wifi_mean =

results_triangulation_wifi_mean(results_triangulation_wifi_mean(:,1)>0,:); %

remove null values

 end

 end

 else

 end

 end

 current_data = Results_static_bluetooth_distance; % Changing technology

and data set

 end

 % Pre-work for plotting the xy-coordinates

 for d=1:size(results_triangulation(:,1)) % Could the sum of x and y help

determine where in the room the device is located?

results_triangulation(d,6)=results_triangulation(d,4)+results_triangulation(d,5)

; % Sum x and y in column 6

 end

 for d=1:size(Results_static_bluetooth_distance(:,1)) % Just to see if I

can determine if the device in on the left/right side of the room

Results_static_bluetooth_distance(d,7)=Results_static_bluetooth_distance(d,1)+Re

sults_static_bluetooth_distance(d,3)+Results_static_bluetooth_distance(d,5); %

Sum distances from sensor 1,3,5 in column 7

156 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

Results_static_bluetooth_distance(d,8)=Results_static_bluetooth_distance(d,2)+Re

sults_static_bluetooth_distance(d,4)+Results_static_bluetooth_distance(d,6); %

Sum distances from sensor 2,4,6 in column 8

 end

 wifilength = size(find(results_triangulation(:,1)==1));

 results_triangulation_wifi = results_triangulation(1:wifilength,:);

 bluetoothlength = size(find(results_triangulation(:,1)==2));

 results_triangulation_bluetooth =

results_triangulation(wifilength+1:(wifilength+bluetoothlength),:);

 % Plotting Wi-Fi, Bluetooth xy-coordinates, sensors from method and

static locations. Comment out code to choose between technology and all/mean

results

 figure();

 set(gcf, 'Position', [100, 100, 550, 650]);

plot(sensors_triangulation(1,:),sensors_triangulation(2,:),'rs','MarkerSize',

12, 'LineWidth',2,'DisplayName','Actual position');

text(sensors_triangulation(1,:)+0.2,sensors_triangulation(2,:)+0.2,{'s1','s2','s

3','s4','s5','s6'},'FontSize',14);

 hold on;

 for l=1:10

 % if l==10

scatter(locations(l,1),locations(l,2),50,'filled','green','square'); % Plotting

all 10 locations

 text(locations(l,1),locations(l,2),sprintf(' %.f',l),'FontSize',

14)

 % else

 % end

 end

 % Wifi

 for d=1:length(results_triangulation_wifi_mean(:,1)) % Wifi mean

 % if d==10

 counter = results_triangulation_wifi_mean(d,1);

scatter(results_triangulation_wifi_mean(d,2),results_triangulation_wifi_mean(d,3

),40,'filled','^','MarkerFaceColor',base_color(counter,:));

text(results_triangulation_wifi_mean(d,2),results_triangulation_wifi_mean(d,3),s

printf(' %.fW',counter),'FontSize', 14);

 %else

 %end

Chapter D: Matlab code 157

 end

 % Bluetooth

 for d=1:length(results_triangulation_bluetooth_mean(:,1)) %

Bluetooth mean

 %if d==10

 counter = results_triangulation_bluetooth_mean(d,1);

scatter(results_triangulation_bluetooth_mean(d,2),results_triangulation_bluetoot

h_mean(d,3),40,'filled','^','MarkerFaceColor',base_color(counter,:));

text(results_triangulation_bluetooth_mean(d,2),results_triangulation_bluetooth_m

ean(d,3),sprintf(' %.fB',counter),'FontSize', 14);

 %else

 %end

 end

 % title('Results from triangulation - Static'); % Give name to the

plot

 axis([0 11.195 0 20.8]);

 xticks(0:1:11.195);

 yticks(0:1:20.80);

 grid on;

 % Finding Euclidean distance from known location to Wi-Fi and Bluetooth

data - Air distance

 for t=1:2

 for l=1:10

 if t==1

 air_distance(l,2) =

pdist([results_triangulation_wifi_mean(l,2:3);locations(l,:)],'euclidean'); %

format: d = pdist(coordinates,'euclidean')

 else

 air_distance(l,3) =

pdist([results_triangulation_bluetooth_mean(l,2:3);locations(l,:)],'euclidean');

% calculate Euclidean distance

 air_distance(l,1) = l; % Put device number in first column

 end

 end

 end

 % Setting variable names to the table and converts to table

 air_distance = array2table(air_distance,...

 'VariableNames',{'Device #' 'Wi-Fi [m]' 'Bluetooth [m]'});

 elseif method == 3

Trilateration

158 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 xy_results = zeros(10,4);

 xy_results1 = zeros(10,4);

 xy_results2 = zeros(10,4);

 xy_results3 = zeros(10,4);

 xy_results4 = zeros(10,4);

 air_distance = zeros(10,3);

 xy_results_trilateration_wifi_mean = zeros(10,3);

 xy_results_trilateration_bluetooth_mean = zeros(10,3);

 Data=Results_static_wifi_distance;

 for technologies = 1:2 % loop through both Wi-Fi and Bluetooth data

 length_of_data = 1;

 for length_of_data = 1:size(Data,1)

 % Stores values from sensor 1,2,5,6 based on current row into r1..r6

 r1 = (Data(length_of_data,1));

 r2 = (Data(length_of_data,2));

 r5 = (Data(length_of_data,5));

 r6 = (Data(length_of_data,6));

% Calculations explained --> dynamic --> trilateration

 A = 2*(-xy(1,1)+xy(1,2)); % 2(-x1+x2)

 B = 2*(-xy(2,1)+xy(2,2)); % 2(-y1+y2)

 C = (r1)^2-(r2)^2-(xy(1,1))^2+(xy(1,2))^2-(xy(2,1))^2+(xy(2,2))^2;

 D = 2*(-xy(1,2)+xy(1,3));

 E = 2*(-xy(2,2)+xy(2,3));

 F = (r2)^2-(r5)^2-(xy(1,2))^2+(xy(1,3))^2-(xy(2,2))^2+(xy(2,3))^2;

 G = 2*(-xy(1,3)+xy(1,4));

 H = 2*(-xy(2,3)+xy(2,4));

 I = (r5)^2-(r6)^2-(xy(1,3))^2+(xy(1,4))^2-(xy(2,3))^2+(xy(2,4))^2;

 J = 2*(-xy(1,4)+xy(1,1));

 K = 2*(-xy(2,4)+xy(2,1));

 L = (r6)^2-(r1)^2-(xy(1,4))^2+(xy(1,1))^2-(xy(2,4))^2+(xy(2,1))^2;

 % 1 Equation 1 (Sensor 1,2,5)

 x_1 = abs((C*E-B*F)/(A*E-B*D));

 y_1 = abs((C*D-A*F)/(B*D-A*E));

 % 2 Equation 2 (Sensor 2,5,6)

 x_2 = abs((F*H-E*I)/(D*H-E*G));

 y_2 = abs((F*G-D*I)/(E*G-D*H));

Chapter D: Matlab code 159

 % 3 Equation 3 (Sensor 5,6,1)

 x_3 = abs((I*K-H*L)/(G*K-H*J));

 y_3 = abs((I*J-G*L)/(H*J-G*K));

 % 4 Equation 4 (Sensor 6-1-2)

 x_4 = abs((L*A-K*C)/(J*B-K*A));

 y_4 = abs((L*A-J*C)/(K*A-J*B));

 % Save values of x and y into tables of results based on different

equations, remove values outside of room

 if x_1 > 11.195 || y_1 > 21.5

 else

 xy_results1(length_of_data,1) = x_1; % Stores x values in table

xy_results1 from equation 1

 xy_results1(length_of_data,2) = y_1; % Stores y values in table

xy_results1 from equation 1

 xy_results1(length_of_data,3) = 1; % Store equation number in

column 3

 xy_results1(length_of_data,4) = length_of_data; % Store device

number in column 4

 end

 if x_2 > 11.195 || y_2 > 21.5

 else

 xy_results2(length_of_data,1) = x_2; % Stores x values in table

xy_results2 from equation 2

 xy_results2(length_of_data,2) = y_2; % Stores y values in table

xy_results2 from equation 2

 xy_results2(length_of_data,3) = 2; % Store equation number in

column 3

 xy_results2(length_of_data,4) = length_of_data; % Store device

number in column 4

 end

 if x_3 > 11.195 || y_3 > 21.5

 else

 xy_results3(length_of_data,1) = x_3; % Stores x values in table

xy_results3 from equation 3

 xy_results3(length_of_data,2) = y_3; % Stores y values in table

xy_results3 from equation 3

 xy_results3(length_of_data,3) = 3; % Store equation number in

column 3

 xy_results3(length_of_data,4) = length_of_data; % Store device

number in column 4

 end

 if x_4 > 11.195 || y_4 > 21.5

 else

160 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 xy_results4(length_of_data,1) = x_4; % Stores x values in table

xy_results4 from equation 4

 xy_results4(length_of_data,2) = y_4; % Stores y values in table

xy_results4 from equation 4

 xy_results4(length_of_data,3) = 4; % Store equation number in

column 3

 xy_results4(length_of_data,4) = length_of_data; % Store device

number in column 4

 end

 % Finding mean value of xy_results1-4 related to static

location

 if technologies == 2

 xy_results_trilateration_bluetooth_total =

[xy_results1(length_of_data,:); xy_results2(length_of_data,:);

xy_results3(length_of_data,:); xy_results4(length_of_data,:)];

 xy_results_trilateration_bluetooth_total =

xy_results_trilateration_bluetooth_total(xy_results_trilateration_bluetooth_tota

l(:,1)>0,:); % remove null values

 % Bluetooth - If there exists multiple results for the same

second, calculate mean value of these coordinates

 count_current_values =

size(xy_results_trilateration_bluetooth_total(:,1));

 if count_current_values(1) >= 1 % if there exists multiple

results, then statement is true

xy_results_trilateration_bluetooth_mean(length_of_data,1) =

xy_results_trilateration_bluetooth_total(1,4); % put device number in first

column

xy_results_trilateration_bluetooth_mean(length_of_data,2) =

mean(xy_results_trilateration_bluetooth_total(:,1)); % mean of x values

xy_results_trilateration_bluetooth_mean(length_of_data,3) =

mean(xy_results_trilateration_bluetooth_total(:,2)); % mean of y values

 xy_results_trilateration_bluetooth_mean =

xy_results_trilateration_bluetooth_mean(xy_results_trilateration_bluetooth_mean(

:,1)>0,:); % remove null values

 else

xy_results_trilateration_bluetooth_mean(length_of_data,1) = length_of_data; %

put device number in first column

xy_results_trilateration_bluetooth_mean(length_of_data,2:3) = 0;

 continue; % Passes control to the next iteration of

lengthof_data is zero

Chapter D: Matlab code 161

 end

 else

 xy_results_trilateration_wifi_total =

[xy_results1(length_of_data,:); xy_results2(length_of_data,:);

xy_results3(length_of_data,:); xy_results4(length_of_data,:)];

 xy_results_trilateration_wifi_total =

xy_results_trilateration_wifi_total(xy_results_trilateration_wifi_total(:,1)>0,:

); % remove null values

 % WiFi - If there exists multiple results for the same

second, calculate mean value of these coordinates

 count_current_values =

size(xy_results_trilateration_wifi_total(:,1));

 if count_current_values(1) >= 1 % if there exists multiple

results, then statement is true

 xy_results_trilateration_wifi_mean(length_of_data,1) =

xy_results_trilateration_wifi_total(1,4); % put device number in first column

 xy_results_trilateration_wifi_mean(length_of_data,2) =

mean(xy_results_trilateration_wifi_total(:,1)); % mean of x values

 xy_results_trilateration_wifi_mean(length_of_data,3) =

mean(xy_results_trilateration_wifi_total(:,2)); % mean of y values

 xy_results_trilateration_wifi_mean =

xy_results_trilateration_wifi_mean(xy_results_trilateration_wifi_mean(:,1)>0,:);

% remove null values

 else

 xy_results_trilateration_wifi_mean(length_of_data,1) =

length_of_data; % put device number in first column

 xy_results_trilateration_wifi_mean(length_of_data,2:3)

= 0;

 continue; % Passes control to the next iteration of

lengthof_data is zero

 end

 end

 end

 length_of_data = length_of_data + 1;

 % Save results from each equation into seperate variables

 if technologies == 2

 xy_results_trilateration_bluetooth_1 =

xy_results1(xy_results1(:,1)>0,:); % Save only valid coordiantes (0,0 is

invalid)

 xy_results_trilateration_bluetooth_2 =

xy_results2(xy_results2(:,1)>0,:);

 xy_results_trilateration_bluetooth_3 =

xy_results3(xy_results3(:,1)>0,:);

 xy_results_trilateration_bluetooth_4 =

xy_results4(xy_results4(:,1)>0,:);

162 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 else

 Data=Results_static_bluetooth_distance;

 xy_results_trilateration_wifi_1 =

xy_results1(xy_results1(:,1)>0,:);

 xy_results_trilateration_wifi_2 =

xy_results2(xy_results2(:,1)>0,:);

 xy_results_trilateration_wifi_3 =

xy_results3(xy_results3(:,1)>0,:);

 xy_results_trilateration_wifi_4 =

xy_results4(xy_results4(:,1)>0,:);

 xy_results1 = zeros(10,4); % resetting before bluetooth

technology

 xy_results2 = zeros(10,4);

 xy_results3 = zeros(10,4);

 xy_results4 = zeros(10,4);

 end

 end

 % Concatenating all bluetooth and wifi results into two tables

 xy_results_trilateration_wifi_total =

cat(1,xy_results_trilateration_wifi_1,xy_results_trilateration_wifi_2,xy_results

_trilateration_wifi_3,xy_results_trilateration_wifi_4);

 xy_results_trilateration_bluetooth_total =

cat(1,xy_results_trilateration_bluetooth_1,xy_results_trilateration_bluetooth_2,

xy_results_trilateration_bluetooth_3,xy_results_trilateration_bluetooth_4);

 % Plotting all/mean wifi and blutooth location (+ Sensors and static

locations)

 figure();

 set(gcf, 'Position', [100, 100, 600, 600]);

 plot(xy(1,:),xy(2,:),'rs','MarkerSize', 12,

'LineWidth',2,'DisplayName','Actual position');

 text(xy(1,:),xy(2,:),{'s1','s2','s5','s6'});

 hold on;

 for d=1:10 % Current static locations

 %if d==10

scatter(locations(d,1),locations(d,2),40,'filled','green','square'); % plot

marker

 text(locations(d,1),locations(d,2),sprintf('

%.f',d),'FontSize', 14) % plot text related to marker

 end

 % Wi-Fi

 for d=1:length(xy_results_trilateration_wifi_mean(:,1)) % Mean wifi

device location

 counter = xy_results_trilateration_wifi_mean(d,1); % Use

counter to get right color on marker

Chapter D: Matlab code 163

scatter(xy_results_trilateration_wifi_mean(d,2),xy_results_trilateration_wifi_me

an(d,3),40,'filled','MarkerFaceColor',base_color(counter,:));

text(xy_results_trilateration_wifi_mean(d,2),xy_results_trilateration_wifi_mean(

d,3),sprintf(' W%.f',xy_results_trilateration_wifi_mean(d,1)),'FontSize',14);

 end

 % Bluetooth

 for d=1:length(xy_results_trilateration_bluetooth_mean(:,1)) % Mean

wifi device location

 counter = xy_results_trilateration_bluetooth_mean(d,1); % Use

counter to get right color on marker

scatter(xy_results_trilateration_bluetooth_mean(d,2),xy_results_trilateration_bl

uetooth_mean(d,3),40,'filled','MarkerFaceColor',base_color(counter,:));

text(xy_results_trilateration_bluetooth_mean(d,2),xy_results_trilateration_bluet

ooth_mean(d,3),sprintf('

B%.f',xy_results_trilateration_bluetooth_mean(d,1)),'FontSize',14);

 end

 %title('Device locations using trilateration'); % Give name to the

plot

 axis([0 11.195 0 20.8]);

 xticks(0:1:11.195);

 grid on;

 % Finding Euclidean distance from known location to Wi-Fi and Bluetooth data -

Air distance

 for t=1:2

 for l=1:10

 if t==1

 air_distance(l,2) =

pdist([xy_results_trilateration_wifi_mean(l,2:3);locations(l,:)],'euclidean'); %

format: d = pdist(coordinates,'euclidean')

 else

 air_distance(l,3) =

pdist([xy_results_trilateration_bluetooth_mean(l,2:3);locations(l,:)],'euclidean

'); % calculate Euclidean distance

 air_distance(l,1) = l; % Put device number in first column

 end

 end

 end

 % Setting variable names to the table and converts to table

 air_distance = array2table(air_distance,...

 'VariableNames',{'Device #' 'Wi-Fi [m]' 'Bluetooth [m]'});

164 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 end

else % Choosing dynamic results based on input values

DYNAMIC

if method == 2

Triangulation

 results_triangulation = zeros(500,5);

 current_data = Results_dynamic_wifi_distance; % Choosing the wifi data set

 current_row = 1;

 for technologies = 1:2 % loop through both Wi-Fi and Bluetooth data

 current_time = 1; % Starting at timestamp one

 for current_time = 1:size(current_data,1) % Looping through all

timestamps, starting at one

 % 1 Triangle A perspective (s1-s2)

 % Check for "true" triangles: Check if distance between s1-s2 >

widt and distance between s5-s1 > length, also that the signal converted to

distance is shorter than 22.5 and that both distances does not exeeds 45

 if ((current_data(current_time,1)+current_data(current_time,2) >

11.195) && (current_data(current_time,1)+current_data(current_time,2) < 30.7) &&

((current_data(current_time,1) < 15.35) && (current_data(current_time,2) <

15.35)))

 % Step 1 - Calculate angle in triangle 1A with the law of cosines:

a^2 = b2^2 + c2^2-2bc*Cos(A) --> Cos(A) = (b2^2+c^2-a^2)/(2*bc)

 angle_triangle_1A_s1s2 =

((11.195)^2+(current_data(current_time,1))^2-

(current_data(current_time,2))^2)/(2*11.195*(current_data(current_time,1))); %

Law of cosines

 % Step 2 - Calculate the (adjacent) in a right-angled triangle with

the law of cosines: cos(A) = adjacent / hypotenuse, where hyp = a --> cos(A) * a

= adj

 if (angle_triangle_1A_s1s2 < 1 && angle_triangle_1A_s1s2

>cosd(62.5)) % Check angle - Must be between 0 and 45 degrees, filtering out

angles outside of the sector/room

 adj_triangle_1A_s1s2 =

(angle_triangle_1A_s1s2*current_data(current_time,1)); % adj = angle * c

 % Step 3 - Calculate opposite with pytagoras theorem: c^2 = adj^2 +

opp^2

 opp_triangle_1A_s1s2 =

sqrt((current_data(current_time,1))^2-(adj_triangle_1A_s1s2)^2); %

 % Storing opp/adj-values in triangulation_results --> (adj,opp)

 results_triangulation(current_row,1) = technologies; % Put

current device in first column

Chapter D: Matlab code 165

 results_triangulation(current_row,2) = current_time; % Put

current technology in second column

 results_triangulation(current_row,3) = 1.1; % Put current

triangle in third column

 results_triangulation(current_row,4) = adj_triangle_1A_s1s2;

% Put current adj value in fourth column as x

 results_triangulation(current_row,5) = opp_triangle_1A_s1s2;

% Put current opp value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 1 Triangle B perspective (s2-s1)

 % Check for "true" triangles: Check if distance between s1-s2 >

widt and distance between s5-s1 > length, also that the signal converted to

distance is shorter than 22.5 and that both distances does not exeeds 45

 if ((current_data(current_time,2)+current_data(current_time,1) >

11.195) && (current_data(current_time,2)+current_data(current_time,1) < 30.7) &&

((current_data(current_time,2) < 15.35) && (current_data(current_time,1) <

15.35)))

 % Step 1 - Calculate angle in triangle 1B with the law of cosines:

b^2 = c^2+a^2-2ca*Cos(B) --> Cos(B) = (c^2+a^2-b^2)/2ca

 angle_triangle_1B_s2s1 =

((current_data(current_time,2))^2+(current_data(current_time,1))^2-

(11.195)^2)/(2*(current_data(current_time,2)*current_data(current_time,1))); %

Law of cosines

 % Step 2 - Calculate the (adjacent) in a right-angled triangle with

the law of cosines: cos(A) = adjacent / hypotenuse, where hyp = a --> cos(A) * a

= adj

 if (angle_triangle_1B_s2s1 < 1 && angle_triangle_1B_s2s1

>cosd(62.5)) % Check angle - Must be between 0 and 1, filtering out angles

outside of the room

 adj_triangle_1B_s2s1 =

(angle_triangle_1B_s2s1*current_data(current_time,2)); % adj = angle * a

 % Step 3 - Calculate opposite with pytagoras theorem: a^2 = adj^2 +

opp^2

 opp_triangle_1B_s2s1 =

sqrt((current_data(current_time,2))^2-(adj_triangle_1B_s2s1)^2); %

 % Storing opp/adj-values in triangulation_results --> (adj,opp)

 results_triangulation(current_row,1) = technologies; % Put

current device in first column

 results_triangulation(current_row,2) = current_time; % Put

current technology in second column

 results_triangulation(current_row,3) = 1.2; % Put current

triangle in third column

166 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 results_triangulation(current_row,4) = 11.195-

adj_triangle_1B_s2s1; % Put current adj value in fourth column as x

 results_triangulation(current_row,5) = opp_triangle_1B_s2s1;

% Put current opp value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 2 Triangle A perspective (s5-s1)

 if ((current_data(current_time,5)+current_data(current_time,1) >

20.8) && (current_data(current_time,5)+current_data(current_time,1) < 30.7) &&

((current_data(current_time,5) < 15.35) && (current_data(current_time,1) <

15.35)))

 angle_triangle_2A_s5s1 =

((20.80)^2+(current_data(current_time,5))^2-

(current_data(current_time,1))^2)/(2*20.80*(current_data(current_time,5)));

 if (angle_triangle_2A_s5s1 < 1 && angle_triangle_2A_s5s1

>=cosd(45))

 adj_triangle_2A_s5s1 =

(angle_triangle_2A_s5s1*current_data(current_time,5)); % y

 opp_triangle_2A_s5s1 =

sqrt((current_data(current_time,5))^2-(adj_triangle_2A_s5s1)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_time;

 results_triangulation(current_row,3) = 2.1;

 results_triangulation(current_row,4) = opp_triangle_2A_s5s1;

% Put opp value in fourth column as x

 results_triangulation(current_row,5) = 20.80-

adj_triangle_2A_s5s1; % Need to subtract adj from length to obtain same x/y-

axis, then put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 2 Triangle B perspective (s1-s5) - Most inaccurate

 if ((current_data(current_time,1)+current_data(current_time,5) >

20.8) && (current_data(current_time,1)+current_data(current_time,5) < 30.7) &&

((current_data(current_time,1) < 15.35) && (current_data(current_time,5) <

15.35)))

 angle_triangle_2B_s1s5 =

((current_data(current_time,1))^2+(current_data(current_time,5))^2-

(11.195)^2)/(2*(current_data(current_time,1)*current_data(current_time,5)));

 if (angle_triangle_2B_s1s5 < 1 && angle_triangle_2B_s1s5

>=cosd(45))

 adj_triangle_2B_s1s5 =

(angle_triangle_2B_s1s5*current_data(current_time,1)); % y

Chapter D: Matlab code 167

 opp_triangle_2B_s1s5 =

sqrt((current_data(current_time,1))^2-(adj_triangle_2B_s1s5)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_time;

 results_triangulation(current_row,3) = 2.2;

 results_triangulation(current_row,4) = opp_triangle_2B_s1s5;

% Put opp value in fourth column as x

 results_triangulation(current_row,5) = adj_triangle_2B_s1s5;

% Put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 3 Triangle A perspective (s6-s5)

 if ((current_data(current_time,6)+current_data(current_time,5) >

11.195) && (current_data(current_time,6)+current_data(current_time,5) < 30.7) &&

((current_data(current_time,6) < 15.35) && (current_data(current_time,5) <

15.35)))

 angle_triangle_3A_s6s5 =

((11.195)^2+(current_data(current_time,6))^2-

(current_data(current_time,5))^2)/(2*11.195*(current_data(current_time,6)));

 if (angle_triangle_3A_s6s5 < 1 && angle_triangle_3A_s6s5

>cosd(65))

 adj_triangle_3A_s6s5 =

(angle_triangle_3A_s6s5*current_data(current_time,6)); % x

 opp_triangle_3A_s6s5 =

sqrt((current_data(current_time,6))^2-(adj_triangle_3A_s6s5)^2); % y

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_time;

 results_triangulation(current_row,3) = 3.1;

 results_triangulation(current_row,4) = 11.195-

adj_triangle_3A_s6s5; % Need to subtract adj from width to obtain same x/y-axis,

then put adj value in fourth column as x

 results_triangulation(current_row,5) = 20.80-

opp_triangle_3A_s6s5; % Need to subtract opp from length to obtain same x/y-

axis, then put opp value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 3 Triangle B perspective (s5-s6)

 if ((current_data(current_time,5)+current_data(current_time,6) >

11.195) && (current_data(current_time,5)+current_data(current_time,6) < 30.7) &&

((current_data(current_time,5) < 15.35) && (current_data(current_time,6) <

15.35)))

168 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 angle_triangle_3B_s5s6 =

((current_data(current_time,5))^2+(current_data(current_time,6))^2-

(11.195)^2)/(2*(current_data(current_time,5)*current_data(current_time,6)));

 if (angle_triangle_3B_s5s6 < 1 && angle_triangle_3B_s5s6

>cosd(65))

 adj_triangle_3B_s5s6 =

(angle_triangle_3B_s5s6*current_data(current_time,5)); % x

 opp_triangle_3B_s5s6 =

sqrt((current_data(current_time,5))^2-(adj_triangle_3B_s5s6)^2); % y

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_time;

 results_triangulation(current_row,3) = 3.2;

 results_triangulation(current_row,4) = adj_triangle_3B_s5s6;

% Put adj value in fourth column as x

 results_triangulation(current_row,5) = 20.80-

opp_triangle_3B_s5s6; % Need to subtract opp from length to obtain same x/y-

axis, then put opp value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 4 Triangle A perspective (s2-s6) Not so accurate

 if ((current_data(current_time,2)+current_data(current_time,6) >

20.8) && (current_data(current_time,2)+current_data(current_time,6) < 30.7) &&

((current_data(current_time,2) < 15.35) && (current_data(current_time,6) <

15.35)))

 angle_triangle_4A_s2s6 =

((20.80)^2+(current_data(current_time,2))^2-

(current_data(current_time,6))^2)/(2*20.80*(current_data(current_time,2)));

 if (angle_triangle_4A_s2s6 < 1 && angle_triangle_4A_s2s6

>=cosd(45))

 adj_triangle_4A_s2s6 =

(angle_triangle_4A_s2s6*current_data(current_time,2)); % y

 opp_triangle_4A_s2s6 =

sqrt((current_data(current_time,2))^2-(adj_triangle_4A_s2s6)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_time;

 results_triangulation(current_row,3) = 4.1;

 results_triangulation(current_row,4) = 11.195-

opp_triangle_4A_s2s6; % Need to subtract opp from width to obtain same x/y-axis,

then put adj value in fourth column as x

 results_triangulation(current_row,5) = adj_triangle_4A_s2s6;

% Put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

Chapter D: Matlab code 169

 end

 % 4 Triangle B perspective (s6-s2) Not so accurate

 if ((current_data(current_time,6)+current_data(current_time,2) >

20.8) && (current_data(current_time,6)+current_data(current_time,2) < 30.7) &&

((current_data(current_time,6) < 15.35) && (current_data(current_time,2) <

15.35)))

 angle_triangle_4B_s6s2 =

((current_data(current_time,6))^2+(current_data(current_time,2))^2-

(11.195)^2)/(2*(current_data(current_time,6)*current_data(current_time,2)));

 if (angle_triangle_4B_s6s2 < 1 && angle_triangle_4B_s6s2

>=cosd(45))

 adj_triangle_4B_s6s2 =

(angle_triangle_4B_s6s2*current_data(current_time,6)); % y

 opp_triangle_4B_s6s2 =

sqrt((current_data(current_time,6))^2-(adj_triangle_4B_s6s2)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_time;

 results_triangulation(current_row,3) = 4.2;

 results_triangulation(current_row,4) = 11.195-

opp_triangle_4B_s6s2; % Need to subtract opp from width to obtain same x/y-axis,

then put opp value in fourth column as x

 results_triangulation(current_row,5) = 20.80-

adj_triangle_4B_s6s2; % Need to subtract adj from length to obtain same x/y-

axis, then put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 5 Triangle A perspective (s3-s1) (rotated)

 if ((current_data(current_time,3)+current_data(current_time,1) >

10.40) && (current_data(current_time,3)+current_data(current_time,1) < 15.7) &&

((current_data(current_time,3) < 11.195) && (current_data(current_time,1) <

11.195)))

 angle_triangle_5A_s3s1 = ((10.4)^2+(current_data(current_time,3))^2-

(current_data(current_time,1))^2)/(2*10.4*(current_data(current_time,3)));

 if (angle_triangle_5A_s3s1 < 1 && angle_triangle_5A_s3s1 >0)

 adj_triangle_5A_s3s1 =

(angle_triangle_5A_s3s1*current_data(current_time,3)); % y

 opp_triangle_5A_s3s1 =

sqrt((current_data(current_time,3))^2-(adj_triangle_5A_s3s1)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_time;

 results_triangulation(current_row,3) = 5.1;

 results_triangulation(current_row,4) = opp_triangle_5A_s3s1;

% Put opp value in fourth column as x (triangle is rotated)

170 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 results_triangulation(current_row,5) = 10.40-

adj_triangle_5A_s3s1; % Need to subtract adj from length to obtain same x/y-

axis, then put adj value in fifth column as y (triangle is rotated)

 current_row = current_row +1;

 else

 end

 end

 % 5 Triangle B perspective (s1-s3)

 if ((current_data(current_time,1)+current_data(current_time,3) >

10.40) && (current_data(current_time,1)+current_data(current_time,3) < 15.7) &&

((current_data(current_time,1) < 11.195) && (current_data(current_time,3) <

11.195)))

 angle_triangle_5B_s1s3 =

((current_data(current_time,1))^2+(current_data(current_time,3))^2-

(11.195)^2)/(2*(current_data(current_time,1)*current_data(current_time,3)));

 if (angle_triangle_5B_s1s3 < 1 && angle_triangle_5B_s1s3 >0)

 adj_triangle_5B_s1s3 =

(angle_triangle_5B_s1s3*current_data(current_time,1)); % y

 opp_triangle_5B_s1s3 =

sqrt((current_data(current_time,1))^2-(adj_triangle_5B_s1s3)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_time;

 results_triangulation(current_row,3) = 5.2;

 results_triangulation(current_row,4) = opp_triangle_5B_s1s3;

% Put opp value in fourth column as x (triangle is rotated)

 results_triangulation(current_row,5) = adj_triangle_5B_s1s3;

% Put adj value in fifth column as y (triangle is rotated)

 current_row = current_row +1;

 else

 end

 end

 % 6 Triangle A perspective (s5-s3)

 if ((current_data(current_time,5)+current_data(current_time,3) >

10.40) && (current_data(current_time,5)+current_data(current_time,3) < 15.7) &&

((current_data(current_time,5) < 11.195) && (current_data(current_time,3) <

11.195)))

 angle_triangle_6A_s5s3 = ((10.4)^2+(current_data(current_time,5))^2-

(current_data(current_time,3))^2)/(2*10.4*(current_data(current_time,5)));

 if (angle_triangle_6A_s5s3 < 1 && angle_triangle_6A_s5s3 >0)

 adj_triangle_6A_s5s3 =

(angle_triangle_6A_s5s3*current_data(current_time,5)); % y

 opp_triangle_6A_s5s3 =

sqrt((current_data(current_time,5))^2-(adj_triangle_6A_s5s3)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_time;

 results_triangulation(current_row,3) = 6.1;

Chapter D: Matlab code 171

 results_triangulation(current_row,4) = opp_triangle_6A_s5s3;

% Put opp value in fourth column as x

 results_triangulation(current_row,5) = 20.80-

adj_triangle_6A_s5s3; % Need to subtract adj from length to obtain same x/y-

axis, then put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 6 Triangle B perspective (s3-s5)

 if ((current_data(current_time,3)+current_data(current_time,5) >

10.40) && (current_data(current_time,3)+current_data(current_time,5) < 15.7) &&

((current_data(current_time,3) < 11.195) && (current_data(current_time,5) <

11.195)))

 angle_triangle_6B_s3s5 =

((current_data(current_time,3))^2+(current_data(current_time,5))^2-

(11.195)^2)/(2*(current_data(current_time,3)*current_data(current_time,5)));

 if (angle_triangle_6B_s3s5 < 1 && angle_triangle_6B_s3s5 >0)

 adj_triangle_6B_s3s5 =

(angle_triangle_6B_s3s5*current_data(current_time,3)); % y

 opp_triangle_6B_s3s5 =

sqrt((current_data(current_time,3))^2-(adj_triangle_6B_s3s5)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_time;

 results_triangulation(current_row,3) = 6.2;

 results_triangulation(current_row,4) = opp_triangle_6B_s3s5;

% Put opp value in fourth column as x

 results_triangulation(current_row,5) =

10.40+adj_triangle_6B_s3s5; % Need to add length to adj to obtain same x/y-axis,

then put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 7 Triangle A perspective (s4-s6)

 if ((current_data(current_time,4)+current_data(current_time,6) >

10.40) && (current_data(current_time,4)+current_data(current_time,6) < 15.7) &&

((current_data(current_time,4) < 11.195) && (current_data(current_time,6) <

11.195)))

 angle_triangle_7A_s4s6 = ((10.4)^2+(current_data(current_time,4))^2-

(current_data(current_time,6))^2)/(2*10.4*(current_data(current_time,4)));

 if (angle_triangle_7A_s4s6 < 1 && angle_triangle_7A_s4s6 >0)

 adj_triangle_7A_s4s6 =

(angle_triangle_7A_s4s6*current_data(current_time,4)); % y

 opp_triangle_7A_s4s6 =

sqrt((current_data(current_time,4))^2-(adj_triangle_7A_s4s6)^2); % x

172 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_time;

 results_triangulation(current_row,3) = 7.1;

 results_triangulation(current_row,4) = 11.195-

opp_triangle_7A_s4s6; % Need to subtract opp from width to obtain same x/y-axis,

then put opp value in fourth column as x

 results_triangulation(current_row,5) =

10.40+adj_triangle_7A_s4s6; % Need to add length to adj to obtain same x/y-axis,

then put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 7 Triangle B perspective (s6-s4)

 if ((current_data(current_time,6)+current_data(current_time,4) >

10.40) && (current_data(current_time,6)+current_data(current_time,4) < 15.7) &&

((current_data(current_time,6) < 11.195) && (current_data(current_time,4) <

11.195)))

 angle_triangle_7B_s6s4 =

((current_data(current_time,6))^2+(current_data(current_time,4))^2-

(11.195)^2)/(2*(current_data(current_time,6)*current_data(current_time,4)));

 if (angle_triangle_7B_s6s4 < 1 && angle_triangle_7B_s6s4 >0)

 adj_triangle_7B_s6s4 =

(angle_triangle_7B_s6s4*current_data(current_time,6)); % y

 opp_triangle_7B_s6s4 =

sqrt((current_data(current_time,6))^2-(adj_triangle_7B_s6s4)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_time;

 results_triangulation(current_row,3) = 7.2;

 results_triangulation(current_row,4) = 11.195-

opp_triangle_7B_s6s4; % Need to subtract opp from width to obtain same x/y-axis,

then put opp value in fourth column as x

 results_triangulation(current_row,5) = 20.80-

adj_triangle_7B_s6s4; % Need to subtract adj from length to obtain same x/y-

axis, then put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 8 Triangle A perspective (s2-s4)

 if ((current_data(current_time,2)+current_data(current_time,4) >

10.40) && (current_data(current_time,2)+current_data(current_time,4) < 15.7) &&

((current_data(current_time,2) < 11.195) && (current_data(current_time,4) <

11.195)))

 angle_triangle_8A_s2s4 = ((10.4)^2+(current_data(current_time,2))^2-

(current_data(current_time,4))^2)/(2*10.4*(current_data(current_time,2)));

Chapter D: Matlab code 173

 if (angle_triangle_8A_s2s4 < 1 && angle_triangle_8A_s2s4 >0)

 adj_triangle_8A_s2s4 =

(angle_triangle_8A_s2s4*current_data(current_time,2)); % Need to calculate y

first (the triangle is rotated).

 opp_triangle_8A_s2s4 =

sqrt((current_data(current_time,2))^2-(adj_triangle_8A_s2s4)^2);

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_time;

 results_triangulation(current_row,3) = 8.1;

 results_triangulation(current_row,4) = 11.195-

opp_triangle_8A_s2s4; % Need to subtract opp from width to obtain same x/y-axis,

then put opp value in fourth column as x

 results_triangulation(current_row,5) = adj_triangle_8A_s2s4;

% Put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % 8 Triangle B perspective (s4-s2)

 if ((current_data(current_time,4)+current_data(current_time,2) >

10.40) && (current_data(current_time,4)+current_data(current_time,2) < 15.7) &&

((current_data(current_time,4) < 11.195) && (current_data(current_time,2) <

11.195)))

 angle_triangle_8B_s4s2 =

((current_data(current_time,4))^2+(current_data(current_time,2))^2-

(11.195)^2)/(2*(current_data(current_time,4)*current_data(current_time,2)));

 if (angle_triangle_8B_s4s2 < 1 && angle_triangle_8B_s4s2 >0)

 adj_triangle_8B_s4s2 =

(angle_triangle_8B_s4s2*current_data(current_time,4)); % y

 opp_triangle_8B_s4s2 =

sqrt((current_data(current_time,4))^2-(adj_triangle_8B_s4s2)^2); % x

 results_triangulation(current_row,1) = technologies;

 results_triangulation(current_row,2) = current_time;

 results_triangulation(current_row,3) = 8.2;

 results_triangulation(current_row,4) = 11.195-

opp_triangle_8B_s4s2; % Need to subtract opp from width to obtain same x/y-axis,

then put opp value in fourth column as x

 results_triangulation(current_row,5) = 10.40-

adj_triangle_8B_s4s2; % Need to subtract adj from length to obtain same x/y-

axis, then put adj value in fifth column as y

 current_row = current_row +1;

 else

 end

 end

 % Remove negative values in results_triangulation and results outside of

room

174 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 results_triangulation =

results_triangulation(results_triangulation(:,4)>0,:);

 results_triangulation =

results_triangulation(results_triangulation(:,5)>0,:);

 results_triangulation =

results_triangulation(results_triangulation(:,4)<11.195,:);

 results_triangulation =

results_triangulation(results_triangulation(:,5)<20.80,:);

 current_row = size(find(results_triangulation(:,1)>0),1)+1; % Find total

rows after removing negative values

 currentresults =

results_triangulation((results_triangulation(:,1)==technologies) &

(results_triangulation(:,2)==current_time),:); % Save results that only contain

current time and current technology

 if size(currentresults)>=1 % Test to see if data is zero

 if technologies == 2 % Test to see if wifi or bluetooth

 xy_results_triangulation_bluetooth_currentlocation =

currentresults(:,4:5); % Use x and y value in column 4 and 5

 else

 xy_results_triangulation_wifi_currentlocation =

currentresults(:,4:5);

 end

 end

 end

 current_data = Results_dynamic_bluetooth_distance; % Changing

technology and data set

 end

 % Pre-work for plotting the xy-coordinates

 wifilength = size(find(results_triangulation(:,1)==1)); % length of

results_triangulation for wifi

 results_triangulation_wifi = results_triangulation(1:wifilength,:); %

show only wifi results

 bluetoothlength = size(find(results_triangulation(:,1)==2)); % length

of results_triangulation for bluetooth

 results_triangulation_bluetooth =

results_triangulation(wifilength+1:(wifilength+bluetoothlength),:); % show only

bluetooth results

 % WiFi - If there exists multiple results for the same second,

calculate mean value of these coordinates

 wifi_unique_values = unique(results_triangulation_wifi(:,2),'stable');

% show unique values

 results_triangulation_wifi_mean = zeros(length(wifi_unique_values),6);

% allocate new variable as a table with zeros

 counter=1;

 for nr=1:length(wifi_unique_values) % for the length of unique values

Chapter D: Matlab code 175

 count_unique =

histc(results_triangulation_wifi(:,2),unique(wifi_unique_values)); % count the

unique values

 results_triangulation_wifi_mean(nr,1:5) =

results_triangulation_wifi(counter,1:5);

 results_triangulation_wifi_mean(nr,6) = 0; % if not merged, set

zero in column 6

 if count_unique(nr) > 1 % if there exists multiple results, then

statement is true

 print_unique =

find(results_triangulation_wifi(:,2)==wifi_unique_values(nr));

 start_unique = min(print_unique);

 end_unique = max(print_unique);

 results_triangulation_wifi_mean(nr,4) =

mean(results_triangulation_wifi((start_unique:end_unique),4)); % mean of x

values

 results_triangulation_wifi_mean(nr,5) =

mean(results_triangulation_wifi((start_unique:end_unique),5)); % mean of y

values

 results_triangulation_wifi_mean(nr,6) = 1; % if merged, set

value in column 6

 counter = counter-1 + count_unique(nr); % jump to next unique

number

 end

 counter=counter+1; % increase counter by one

 end

 results_triangulation_wifi_mean =

results_triangulation_wifi_mean(results_triangulation_wifi_mean(:,6) >0,:); %

Update table to include only merged coordinates

 % Find timestamps from wi-fi data that were used in the method

 timestamps_wifi = strings(wifilength(1,1),2); % List of timestamps

 for t=1:wifilength % For the length of wifi triangulation results

relate a timestamp to the results

 timestampnumber = results_triangulation_wifi(t,2); % timestampnumber

increases when new timestamp in results_triangulation_wifi changes

 timestamps_wifi(t,1) =

Fulltable_dynamic_wifi_distance{timestampnumber,1}; % Creates a list of

timestamp related to wifi triangulation results. Here, timestamps can occur

several times

 timestamps_wifi(t,2) = results_triangulation_wifi(t,2);

 end

 % Find merged timestamps from wi-fi data that are merged

 timestamps_wifi_merged =

strings(length(results_triangulation_wifi_mean(:,1)),2); % List of timestamps

176 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 for t=1:length(timestamps_wifi_merged(:,1)) % For the length of wifi

triangulation results relate a timestamp to the results

 timestampnumber_merged = results_triangulation_wifi_mean(t,2); %

timestampnumber increases when new timestamp in results_triangulation_wifi

changes

 timestamps_wifi_merged(t,1) =

Fulltable_dynamic_wifi_distance{timestampnumber_merged,1}; % Creates a list of

timestamp related to wifi triangulation results. Here, timestamps can occur

several times

 timestamps_wifi_merged(t,2) = results_triangulation_wifi_mean(t,2);

 end

 % Bluetooth - If there exists multiple results for the same second,

calculate mean value of these coordinates

 bluetooth_unique_values =

unique(results_triangulation_bluetooth(:,2),'stable'); % show unique values

 results_triangulation_bluetooth_mean =

zeros(length(bluetooth_unique_values),6); % allocate new variable as a table

with zeros

 counter=1;

 for nr=1:length(bluetooth_unique_values) % for the length of unique

values

 count_unique =

histc(results_triangulation_bluetooth(:,2),unique(bluetooth_unique_values)); %

count the unique values

 results_triangulation_bluetooth_mean(nr,1:5) =

results_triangulation_bluetooth(counter,1:5);

 results_triangulation_bluetooth_mean(nr,6) = 0; % if not merged,

set zero in column 6

 if count_unique(nr) > 1 % if there exists multiple results, then

statement is true

 print_unique =

find(results_triangulation_bluetooth(:,2)==bluetooth_unique_values(nr));

 start_unique = min(print_unique);

 end_unique = max(print_unique);

 results_triangulation_bluetooth_mean(nr,4) =

mean(results_triangulation_bluetooth((start_unique:end_unique),4)); % mean of x

values

 results_triangulation_bluetooth_mean(nr,5) =

mean(results_triangulation_bluetooth((start_unique:end_unique),5)); % mean of y

values

 results_triangulation_bluetooth_mean(nr,6) = 1; % if merged,

set value in column 6

 counter = counter-1 + count_unique(nr); % jump to next unique

number

 end

Chapter D: Matlab code 177

 counter=counter+1; % increase counter by one

 end

 results_triangulation_bluetooth_mean =

results_triangulation_bluetooth_mean(results_triangulation_bluetooth_mean(:,6)

>0,:); % Update table to include only merged coordinates

 % Find timestamps from bluetooth data that were used in the method

 timestamps_bluetooth = strings(bluetoothlength(1,1),2);

 for t=1:bluetoothlength

 timestampnumber = results_triangulation_bluetooth(t,2);

 timestamps_bluetooth(t,1) =

Fulltable_dynamic_bluetooth_distance{timestampnumber,1};

 timestamps_bluetooth(t,2) = results_triangulation_bluetooth(t,2);

 end

 % Find merged timestamps from bluetooth data that are merged

 timestamps_bluetooth_merged =

strings(length(results_triangulation_bluetooth_mean(:,1)),2); % List of

timestamps

 for t=1:length(timestamps_bluetooth_merged(:,1)) % For the length of

wifi triangulation results relate a timestamp to the results

 timestampnumber_merged = results_triangulation_bluetooth_mean(t,2); %

timestampnumber increases when new timestamp in results_triangulation_wifi

changes

 timestamps_bluetooth_merged(t,1) =

Fulltable_dynamic_bluetooth_distance{timestampnumber_merged,1}; % Creates a list

of timestamp related to wifi triangulation results. Here, timestamps can occur

several times

 timestamps_bluetooth_merged(t,2) =

results_triangulation_bluetooth_mean(t,2);

 end

 % EveryXrdRow - Need to skip Wi-Fi rows in order to present the data

more nicley - Manual work

 if (length(results_triangulation_wifi_mean(:,1)) > 130 &&

length(results_triangulation_wifi_mean(:,1)) <= 150)

 results_triangulation_wifi_mean =

results_triangulation_wifi_mean(1:15:end,:);

 timestamps_wifi_merged = timestamps_wifi_merged(1:15:end,:);

 elseif (length(results_triangulation_wifi_mean(:,1)) > 95 &&

length(results_triangulation_wifi_mean(:,1)) <= 130)

 results_triangulation_wifi_mean =

results_triangulation_wifi_mean(1:13:end,:);

 timestamps_wifi_merged = timestamps_wifi_merged(1:13:end,:);

178 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 elseif (length(results_triangulation_wifi_mean(:,1)) > 70 &&

length(results_triangulation_wifi_mean(:,1)) <= 95)

 results_triangulation_wifi_mean =

results_triangulation_wifi_mean(1:9:end,:);

 timestamps_wifi_merged = timestamps_wifi_merged(1:9:end,:);

 elseif (length(results_triangulation_wifi_mean(:,1)) > 50 &&

length(results_triangulation_wifi_mean(:,1)) <= 70)

 results_triangulation_wifi_mean =

results_triangulation_wifi_mean(1:7:end,:);

 timestamps_wifi_merged = timestamps_wifi_merged(1:7:end,:);

 elseif (length(results_triangulation_wifi_mean(:,1)) >= 28 &&

length(results_triangulation_wifi_mean(:,1)) <= 50)

 results_triangulation_wifi_mean =

results_triangulation_wifi_mean(1:3:end,:);

 timestamps_wifi_merged = timestamps_wifi_merged(1:3:end,:);

 elseif (length(results_triangulation_wifi_mean(:,1)) >= 18 &&

length(results_triangulation_wifi_mean(:,1)) < 30)

 results_triangulation_wifi_mean =

results_triangulation_wifi_mean(1:2:end,:);

 timestamps_wifi_merged = timestamps_wifi_merged(1:2:end,:);

 elseif (length(results_triangulation_wifi_mean(:,1)) > 10 &&

length(results_triangulation_wifi_mean(:,1)) < 18)

 results_triangulation_wifi_mean =

results_triangulation_wifi_mean(1:3:end,:);

 timestamps_wifi_merged = timestamps_wifi_merged(1:3:end,:);

 else

 % Few coordinates - Continue

 end

 % EveryXrdRow - Need to skip Bluetooth rows in order to present the

data more nicley - Manual work

 if (length(results_triangulation_bluetooth_mean(:,1)) > 95 &&

length(results_triangulation_bluetooth_mean(:,1)) <= 150)

 results_triangulation_bluetooth_mean =

results_triangulation_bluetooth_mean(1:13:end,:);

 timestamps_bluetooth_merged =

timestamps_bluetooth_merged(1:13:end,:);

 elseif (length(results_triangulation_bluetooth_mean(:,1)) > 60 &&

length(results_triangulation_bluetooth_mean(:,1)) <= 95)

 results_triangulation_bluetooth_mean =

results_triangulation_bluetooth_mean(1:9:end,:); % Every other 4

 timestamps_bluetooth_merged =

timestamps_bluetooth_merged(1:9:end,:);

 elseif (length(results_triangulation_bluetooth_mean(:,1)) >= 27 &&

length(results_triangulation_bluetooth_mean(:,1)) <= 60)

Chapter D: Matlab code 179

 results_triangulation_bluetooth_mean =

results_triangulation_bluetooth_mean(1:3:end,:); % Every other 3

 timestamps_bluetooth_merged =

timestamps_bluetooth_merged(1:3:end,:);

 elseif (length(results_triangulation_bluetooth_mean(:,1)) >= 18 &&

length(results_triangulation_bluetooth_mean(:,1)) < 30)

 results_triangulation_bluetooth_mean =

results_triangulation_bluetooth_mean(1:2:end,:); % Every other 2

 timestamps_bluetooth_merged =

timestamps_bluetooth_merged(1:2:end,:);

 elseif (length(results_triangulation_bluetooth_mean(:,1)) > 10 &&

length(results_triangulation_bluetooth_mean(:,1)) < 18)

 results_triangulation_bluetooth_mean =

results_triangulation_bluetooth_mean(1:2:end,:); % Every other 2

 timestamps_bluetooth_merged =

timestamps_bluetooth_merged(1:2:end,:);

 else

 % Few coordinates - Continue

 end

 % Save results into six bigger tables (device specific) for plotting

 Triangulation_timestamp_devices_wifi(:,device) = ""; % Clear column

Triangulation_timestamp_devices_wifi(1:(length(timestamps_wifi_merged(:,1))),dev

ice) = timestamps_wifi_merged(:,1); % Fill table with timestamp from device

 fname =

sprintf('Output/@Plotting/Triangulation_plot_wifi_timestamp_exp%s.mat',

experiment); % Declare a variable name associated to current experiment

 save (fname, 'Triangulation_timestamp_devices_wifi'); % save variable

as mat-file

 %Triangulation_x_devices_wifi = zeros(100,10);

 Triangulation_x_devices_wifi(:,device) = 0;

Triangulation_x_devices_wifi(1:(length(results_triangulation_wifi_mean(:,1))),de

vice) = results_triangulation_wifi_mean(:,4);

 fname = sprintf('Output/@Plotting/Triangulation_plot_wifi_x_exp%s.mat',

experiment);

 save (fname, 'Triangulation_x_devices_wifi');

 %Triangulation_y_devices_wifi = zeros(100,10);

 Triangulation_y_devices_wifi(:,device) = 0;

Triangulation_y_devices_wifi(1:(length(results_triangulation_wifi_mean(:,1))),de

vice) = results_triangulation_wifi_mean(:,5);

180 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 fname = sprintf('Output/@Plotting/Triangulation_plot_wifi_y_exp%s.mat',

experiment);

 save (fname, 'Triangulation_y_devices_wifi');

 Triangulation_timestamp_devices_bluetooth(:,device) = "";

Triangulation_timestamp_devices_bluetooth(1:(length(timestamps_bluetooth_merged(

:,1))),device) = timestamps_bluetooth_merged(:,1);

 fname =

sprintf('Output/@Plotting/Triangulation_plot_bluetooth_timestamp_exp%s.mat',

experiment);

 save (fname, 'Triangulation_timestamp_devices_bluetooth');

 %Triangulation_x_devices_bluetooth = zeros(100,10);

 Triangulation_x_devices_bluetooth(:,device) = 0;

Triangulation_x_devices_bluetooth(1:(length(results_triangulation_bluetooth_mean

(:,1))),device) = results_triangulation_bluetooth_mean(:,4);

 fname =

sprintf('Output/@Plotting/Triangulation_plot_bluetooth_x_exp%s.mat',

experiment);

 save (fname, 'Triangulation_x_devices_bluetooth');

 %Triangulation_y_devices_bluetooth = zeros(100,10);

 Triangulation_y_devices_bluetooth(:,device) = 0;

Triangulation_y_devices_bluetooth(1:(length(results_triangulation_bluetooth_mean

(:,1))),device) = results_triangulation_bluetooth_mean(:,5);

 fname =

sprintf('Output/@Plotting/Triangulation_plot_bluetooth_y_exp%s.mat',

experiment);

 save (fname, 'Triangulation_y_devices_bluetooth');

 % Plotting in seperate script

elseif method == 3

Trilateration

 xy_results = zeros(700,4);

 xy_results1 = zeros(700,4);

 xy_results2 = zeros(700,4);

 xy_results3 = zeros(700,4);

 xy_results4 = zeros(700,4);

 xy_results_trilateration_bluetooth_results(1,1:4) = zeros;

Chapter D: Matlab code 181

 xy_results_trilateration_wifi_results(1,1:4) = zeros;

 Data=Results_dynamic_wifi_distance;

 counter = 1;

 for technologies = 1:2 % loop through both Wi-Fi and Bluetooth data

 length_of_data = 1;

 for length_of_data = 1:size(Data,1)

 % Stores values from sensor 1,2,5,6 based on current row into r1..r6

 r1 = (Data(length_of_data,1));

 r2 = (Data(length_of_data,2));

 r5 = (Data(length_of_data,5));

 r6 = (Data(length_of_data,6));

% Step 1-5 explained

 % Step 1 - The four equations for the three circles around the sensors are

as follows:

 % r1_p2 = (x-xy(1,1))^2 + (y-xy(1,2))^2; % Sensor1 radius to current

devcie

 % r2_p2 = (x-xy(2,1))^2 + (y-xy(2,2))^2; % Sensor2 radius to current

devcie

 % r5_p2 = (x-xy(5,1))^2 + (y-xy(5,5))^2;% Sensor5 radius to current

devcie

 % r6_p2 = (x-xy(6,1))^2 + (y-xy(6,6))^2;% Sensor6 radius to current

devcie

 % r1_p2 : Is the same as r1 power to 2 (r1^2)

 % format: ri^2 = (x-x1)^2+(y-y1)^2

 % xi and yi corresponds to the location of sensor i.

 % x and y is the common location of the current device in

"Results_wifi_signalstrength_double"

 % Step 2 - By expanding out the squares in each of these four equations:

 % r1_p2 = x^2 - 2*xy(1,1)*x + xy(1,1)^2 + y^2 - 2*xy(1,2)*y +

xy(1,2)^2;

 % r2_p2 = x^2 - 2*xy(2,1)*x + xy(2,1)^2 + y^2 - 2*xy(2,2)*y +

xy(2,2)^2;

 % r5_p2 = x^2 - 2*xy(5,1)*x + xy(5,1)^2 + y^2 - 2*xy(5,2)*y +

xy(5,2)^2;

 % r6_p2 = x^2 - 2*xy(6,1)*x + xy(6,1)^2 + y^2 - 2*xy(6,2)*y +

xy(6,2)^2;

 % format: ri^2 = x^2 - 2*xi*x + xi^2 + y^2 - 2*yi*y + yi^2, where i

is the nth sensor.

 % Step 3 - Subtracting the second equation from the first, the fifth

equation from the second, the sixth from the fifth and the first from the sixth:

182 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 % 2x*(-xy(1,1)+xy(1,2)) + 2y*(-xy(2,1)+xy(2,2)) == r1^2 - r2^2 -

xy(1,1)^2 + xy(1,2)^2 - xy(2,1)^2 + xy(2,2)^2;

 % 2x*(-xy(1,2)+xy(1,3)) + 2y*(-xy(2,2)+xy(2,3)) == r2^2 - r5^2 -

xy(1,2)^2 + xy(1,3)^2 - xy(2,2)^2 + xy(2,3)^2;

 % 2x*(-xy(1,3)+xy(1,4)) + 2y*(-xy(2,3)+xy(2,4)) == r5^2 - r6^2 -

xy(1,3)^2 + xy(1,4)^2 - xy(2,3)^2 + xy(2,4)^2;

 % 2x*(-xy(1,4)+xy(1,1)) + 2y*(-xy(2,4)+xy(2,1)) == r6^2 - r1^2 -

xy(1,4)^2 + xy(1,1)^2 - xy(2,4)^2 + xy(2,1)^2;

 % The reason for doing it is because we want linear expressions.

 % Step 4 - Simplify the above linear equations by letters.

 % eqn1 = A*x + B*y = C;

 % eqn2 = D*x + E*y = F;

 % eqn3 = G*x + H*y = I;

 % eqn4 = J*x + K*y = L;

 % Step 5 - Let Matlab understand the three equations

 A = 2*(-xy(1,1)+xy(1,2));

 B = 2*(-xy(2,1)+xy(2,2));

 C = (r1)^2-(r2)^2-(xy(1,1))^2+(xy(1,2))^2-(xy(2,1))^2+(xy(2,2))^2;

 D = 2*(-xy(1,2)+xy(1,3));

 E = 2*(-xy(2,2)+xy(2,3));

 F = (r2)^2-(r5)^2-(xy(1,2))^2+(xy(1,3))^2-(xy(2,2))^2+(xy(2,3))^2;

 G = 2*(-xy(1,3)+xy(1,4));

 H = 2*(-xy(2,3)+xy(2,4));

 I = (r5)^2-(r6)^2-(xy(1,3))^2+(xy(1,4))^2-(xy(2,3))^2+(xy(2,4))^2;

 J = 2*(-xy(1,4)+xy(1,1));

 K = 2*(-xy(2,4)+xy(2,1));

 L = (r6)^2-(r1)^2-(xy(1,4))^2+(xy(1,1))^2-(xy(2,4))^2+(xy(2,1))^2;

 % Test with 4 sensors - B becomes zero... (1,2,5,6)

% x = (C/A)-(B/A)*((G*F-D*I)/(G*E-D*H));

% y = (C/B)-(A/B)*((H*F-E*I)/(D*H-E*G));

 % Becomes the same as equ 1

% x = (L/J)-(K/J)*((G*F-D*I)/(G*E-D*H));

% y = (L/K)-(J/K)*((H*F-E*I)/(D*H-E*G));

 % Wrong Equation (Sensor 1,2,5,6) (AN becomes BM...)

% x = (C*H-B*I)/(A*H-B*G);

% y = (C*G-A*I)/(B*G-A*H);

Chapter D: Matlab code 183

 % 1 Equation 1 (Sensor 1,2,5)

 x_1 = abs((C*E-B*F)/(A*E-B*D));

 y_1 = abs((C*D-A*F)/(B*D-A*E));

 % 2 Equation 2 (Sensor 2,5,6)

 x_2 = abs((F*H-E*I)/(D*H-E*G));

 y_2 = abs((F*G-D*I)/(E*G-D*H));

 % 3 Equation 3 (Sensor 5,6,1)

 x_3 = abs((I*K-H*L)/(G*K-H*J));

 y_3 = abs((I*J-G*L)/(H*J-G*K));

 % 4 Equation 4 (Sensor 6-1-2)

 x_4 = abs((L*A-K*C)/(J*B-K*A));

 y_4 = abs((L*A-J*C)/(K*A-J*B));

 % Save values of x and y into tables of results based on different

equations, remove null values and values outside of the room

 if x_1 > 0 || y_1 > 0 || isnan(x_1) || isnan(y_1)

 if x_1 > 11.195 || y_1 > 20.8

 else

 xy_results1(length_of_data,1) = x_1; % Stores x values in

table xy_results1 from equation 1

 xy_results1(length_of_data,2) = y_1; % Stores y values in

table xy_results1 from equation 1

 xy_results1(length_of_data,3) = 1; % Store equation number

in column 3

 xy_results1(length_of_data,4) = length_of_data; % Store

timestampnumber in column 4

 end

 end

 if x_2 > 0 || y_2 > 0 || isnan(x_2) || isnan(y_2)

 if x_2 > 11.195 || y_2 > 20.8

 else

 xy_results2(length_of_data,1) = x_2; % Stores x values in

table xy_results2 from equation 2

 xy_results2(length_of_data,2) = y_2; % Stores y values in

table xy_results2 from equation 2

 xy_results2(length_of_data,3) = 2; % Store equation number

in column 3

 xy_results2(length_of_data,4) = length_of_data; % Store

timestampnumber in column 4

 end

 end

 if x_3 > 0 || y_3 > 0 || isnan(x_3) || isnan(y_3)

 if x_3 > 11.195 || y_3 > 20.8

184 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 else

 xy_results3(length_of_data,1) = x_3; % Stores x values in

table xy_results3 from equation 3

 xy_results3(length_of_data,2) = y_3; % Stores y values in

table xy_results3 from equation 3

 xy_results3(length_of_data,3) = 3; % Store equation number

in column 3

 xy_results3(length_of_data,4) = length_of_data; % Store

timestampnumber in column 4

 end

 end

 if x_4 > 0 || y_4 > 0 || isnan(x_4) || isnan(y_4)

 if x_4 > 11.195 || y_4 > 20.8

 else

 xy_results4(length_of_data,1) = x_4; % Stores x values in

table xy_results4 from equation 4

 xy_results4(length_of_data,2) = y_4; % Stores y values in

table xy_results4 from equation 4

 xy_results4(length_of_data,3) = 4; % Store equation number

in column 3

 xy_results4(length_of_data,4) = length_of_data; % Store

timestampnumber in column 4

 end

 end

 % Process results into two tables - Wifi and Bluetooth, use

this to plot the data

 if technologies == 2

 xy_results_trilateration_bluetooth_total =

[xy_results1(length_of_data,:); xy_results2(length_of_data,:);

xy_results3(length_of_data,:); xy_results4(length_of_data,:)]; % Combine current

results from all equations in.. total

 xy_results_trilateration_bluetooth_total =

xy_results_trilateration_bluetooth_total(xy_results_trilateration_bluetooth_tota

l(:,1)>0,:); % Remove invalid data

 size_current_data =

length(xy_results_trilateration_bluetooth_total(:,1)); % find number of rows in

current data, use this to increment counter

 if xy_results_trilateration_bluetooth_total(:,1)>1 % check if

there exists data after filtering

xy_results_trilateration_bluetooth_results(counter:counter+(size_current_data-

1),:) = xy_results_trilateration_bluetooth_total(:,:); % Save current data in

results

 counter = counter + size_current_data; % keeping track on the

next row the data will be saved in

Chapter D: Matlab code 185

 else

 continue; % Passes control to the next iteration of

lengthof_data if no data

 end

 else

 xy_results_trilateration_wifi_total =

[xy_results1(length_of_data,:); xy_results2(length_of_data,:);

xy_results3(length_of_data,:); xy_results4(length_of_data,:)]; % Combine current

results from all equations in.. total

 xy_results_trilateration_wifi_total =

xy_results_trilateration_wifi_total(xy_results_trilateration_wifi_total(:,1)>0,:

); % Remove invalid data

 size_current_data =

length(xy_results_trilateration_wifi_total(:,1)); % find number of rows in

current data, use this to increment counter

 if xy_results_trilateration_wifi_total(:,1)>1 % check if

there exists data after filtering

xy_results_trilateration_wifi_results(counter:counter+(size_current_data-1),:) =

xy_results_trilateration_wifi_total(:,:); % Save current data in results

 counter = counter + size_current_data; % keeping track on the

next row the data will be saved in

 else

 continue; % Passes control to the next iteration of

lengthof_data if no data

 end

 end

 end

 length_of_data = length_of_data + 1; % for each row of data,

increment the row at the end of the loop

 % Keep track on technology

 if technologies == 2

 else

 Data=Results_dynamic_bluetooth_distance; % Change

technology

 counter=1; % reset counter

 end

 end

 % Pre-work for plotting

 wifilength = size(xy_results_trilateration_wifi_results(:,1)); % length

of results_triangulation for wifi

 bluetoothlength =

size(xy_results_trilateration_bluetooth_results(:,1)); % length of

results_triangulation for bluetooth

186 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 % WiFi - If there exists multiple results within the same second, calculate

mean value of these coordinates

 wifi_unique_values =

unique(xy_results_trilateration_wifi_results(:,4),'stable'); % show unique

values

 xy_results_trilateration_wifi_merged =

zeros(length(wifi_unique_values),5); % allocate new variable as a table with

zeros

 counter=1;

 for nr=1:length(wifi_unique_values) % for the length of unique values

 count_unique =

histc(xy_results_trilateration_wifi_results(:,4),unique(wifi_unique_values)); %

count the unique values

 xy_results_trilateration_wifi_merged(nr,1:4) =

xy_results_trilateration_wifi_results(counter,1:4);

 xy_results_trilateration_wifi_merged(nr,5) = 0; % if not merged,

set zero in column 5

 if count_unique(nr) > 1 % if there exists multiple results, then

statement is true

 print_unique =

find(xy_results_trilateration_wifi_results(:,4)==wifi_unique_values(nr));

 start_unique = min(print_unique);

 end_unique = max(print_unique);

 xy_results_trilateration_wifi_merged(nr,1) =

mean(xy_results_trilateration_wifi_results((start_unique:end_unique),1)); % mean

of x values

 xy_results_trilateration_wifi_merged(nr,2) =

mean(xy_results_trilateration_wifi_results((start_unique:end_unique),2)); % mean

of y values

 xy_results_trilateration_wifi_merged(nr,5) = 1; % if merged,

set value in column 5

 counter = counter-1 + count_unique(nr); % jump to next unique

number

 else

 xy_results_trilateration_wifi_merged(nr,1) =

xy_results_trilateration_wifi_results(nr,1); % mean of x values

 xy_results_trilateration_wifi_merged(nr,2) =

xy_results_trilateration_wifi_results(nr,2); % mean of y values

 xy_results_trilateration_wifi_merged(nr,5) = 0; % if not

merged, set value in column 5

 end

 counter=counter+1; % increase counter by one

 end

 xy_results_trilateration_wifi_merged =

xy_results_trilateration_wifi_merged(xy_results_trilateration_wifi_merged(:,5)

>0,:); % Update table to include only merged coordinates

Chapter D: Matlab code 187

 % Find timestamps from wi-fi data that were used in the method

 timestamps_wifi = strings(wifilength(1,1),4); % List of timestamps

 for t=1:wifilength % For the length of wifi trilateration results

relate a timestamp to the results

 timestampnumber = xy_results_trilateration_wifi_results(t,4); %

timestampnumber increases when new timestamp in

xy_results_trilateration_wifi_results changes

 timestamps_wifi(t,1) =

Fulltable_dynamic_wifi_distance{timestampnumber,1}; % Creates a list of

timestamp related to wifi trilateration results. Here, timestamps can occur

several times

 timestamps_wifi(t,2) = xy_results_trilateration_wifi_results(t,4);

 end

 timestamps_wifi_unique = unique(timestamps_wifi,'rows'); % Find uniqe

list of timestamps - Will be used to plot timestamp related to merged data

 % Find merged timestamps from wi-fi data that are merged

 timestamps_trilateration_wifi_merged =

strings(length(xy_results_trilateration_wifi_merged(:,1)),2); % List of

timestamps related to merged data

 for t=1:length(timestamps_trilateration_wifi_merged(:,1)) % For the

length of wifi trilateration results relate a timestamp to the results

 timestampnumber_merged = xy_results_trilateration_wifi_merged(t,4); %

timestampnumber increases when new timestamp in

xy_results_trilateration_wifi_results changes

 timestamps_trilateration_wifi_merged(t,1) =

Fulltable_dynamic_wifi_distance{timestampnumber_merged,1}; % Creates a list of

timestamp related to wifi trilateration results. Here, timestamps can occur

several times

 timestamps_trilateration_wifi_merged(t,2) =

xy_results_trilateration_wifi_merged(t,4);

 end

 % Bluetooth - If there exists multiple results within the same second,

calculate mean value of these coordinates

 bluetooth_unique_values =

unique(xy_results_trilateration_bluetooth_results(:,4),'stable'); % show unique

values

 xy_results_trilateration_bluetooth_merged =

zeros(length(bluetooth_unique_values),5); % allocate new variable as a table

with zeros

 counter=1;

 for nr=1:length(bluetooth_unique_values) % for the length of unique

values

188 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 count_unique =

histc(xy_results_trilateration_bluetooth_results(:,4),unique(bluetooth_unique_va

lues)); % count the unique values

 xy_results_trilateration_bluetooth_merged(nr,1:4) =

xy_results_trilateration_bluetooth_results(counter,1:4);

 xy_results_trilateration_bluetooth_merged(nr,5) = 0; % if not

merged, set zero in column 5

 if count_unique(nr) > 1 % if there exists multiple results, then

statement is true

 print_unique =

find(xy_results_trilateration_bluetooth_results(:,4)==bluetooth_unique_values(nr

));

 start_unique = min(print_unique);

 end_unique = max(print_unique);

 xy_results_trilateration_bluetooth_merged(nr,1) =

mean(xy_results_trilateration_bluetooth_results((start_unique:end_unique),1)); %

mean of x values

 xy_results_trilateration_bluetooth_merged(nr,2) =

mean(xy_results_trilateration_bluetooth_results((start_unique:end_unique),2)); %

mean of y values

 xy_results_trilateration_bluetooth_merged(nr,5) = 1; % if

merged, set value in column 5

 counter = counter-1 + count_unique(nr); % jump to next unique

number

 else

 xy_results_trilateration_bluetooth_merged(nr,1) =

xy_results_trilateration_bluetooth_results(nr,1); % mean of x values

 xy_results_trilateration_bluetooth_merged(nr,2) =

xy_results_trilateration_bluetooth_results(nr,2); % mean of y values

 xy_results_trilateration_bluetooth_merged(nr,5) = 0; % if not

merged, set value in column 5

 end

 counter=counter+1; % increase counter by one

 end

 xy_results_trilateration_bluetooth_merged =

xy_results_trilateration_bluetooth_merged(xy_results_trilateration_bluetooth_mer

ged(:,5) >0,:); % Update table to include only merged coordinates

 % Find timestamps from bluetooth data that were used in the method

 timestamps_bluetooth = strings(bluetoothlength(1,1),4); % List of

timestamps

 for t=1:bluetoothlength % For the length of bluetooth trilateration

results relate a timestamp to the results

 timestampnumber = xy_results_trilateration_bluetooth_results(t,4); %

timestampnumber increases when new timestamp in

xy_results_trilateration_bluetooth_results changes

Chapter D: Matlab code 189

 timestamps_bluetooth(t,1) =

Fulltable_dynamic_bluetooth_distance{timestampnumber,1}; % Creates a list of

timestamp related to wifi trilateration results. Here, timestamps can occur

several times

 timestamps_bluetooth(t,2) =

xy_results_trilateration_bluetooth_results(t,4);

 end

 timestamps_bluetooth_unique = unique(timestamps_bluetooth,'rows'); %

Find uniqe list of timestamps - Will be used to plot timestamp related to merged

data

 % Find merged timestamps from bluetooth data that are merged

 timestamps_trilateration_bluetooth_merged =

strings(length(xy_results_trilateration_bluetooth_merged(:,1)),2); % List of

timestamps related to merged data

 for t=1:length(timestamps_trilateration_bluetooth_merged(:,1)) % For

the length of wifi trilateration results relate a timestamp to the results

 timestampnumber_merged =

xy_results_trilateration_bluetooth_merged(t,4); % timestampnumber increases when

new timestamp in xy_results_trilateration_wifi_results changes

 timestamps_trilateration_bluetooth_merged(t,1) =

Fulltable_dynamic_bluetooth_distance{timestampnumber_merged,1}; % Creates a list

of timestamp related to wifi trilateration results. Here, timestamps can occur

several times

 timestamps_trilateration_bluetooth_merged(t,2) =

xy_results_trilateration_bluetooth_merged(t,4);

 end

 % EveryXrdRow - Need to skip Wi-Fi rows in order to present the data

more nicley - Manual work

 if (length(xy_results_trilateration_wifi_merged(:,1)) > 90 &&

length(xy_results_trilateration_wifi_merged(:,1)) <= 150)

 xy_results_trilateration_wifi_merged =

xy_results_trilateration_wifi_merged(1:13:end,:);

 timestamps_trilateration_wifi_merged =

timestamps_trilateration_wifi_merged(1:13:end,:);

 elseif (length(xy_results_trilateration_wifi_merged(:,1)) > 60 &&

length(xy_results_trilateration_wifi_merged(:,1)) <= 90)

 xy_results_trilateration_wifi_merged =

xy_results_trilateration_wifi_merged(1:7:end,:); % Every other 3

 timestamps_trilateration_wifi_merged =

timestamps_trilateration_wifi_merged(1:7:end,:);

 elseif (length(xy_results_trilateration_wifi_merged(:,1)) >= 30 &&

length(xy_results_trilateration_wifi_merged(:,1)) <= 60)

 xy_results_trilateration_wifi_merged =

xy_results_trilateration_wifi_merged(1:3:end,:); % Every other 3

190 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

 timestamps_trilateration_wifi_merged =

timestamps_trilateration_wifi_merged(1:3:end,:);

 elseif (length(xy_results_trilateration_wifi_merged(:,1)) >= 18 &&

length(xy_results_trilateration_wifi_merged(:,1)) < 30)

 xy_results_trilateration_wifi_merged =

xy_results_trilateration_wifi_merged(1:2:end,:); % Every other 2

 timestamps_trilateration_wifi_merged =

timestamps_trilateration_wifi_merged(1:2:end,:);

 elseif (length(xy_results_trilateration_wifi_merged(:,1)) > 10 &&

length(xy_results_trilateration_wifi_merged(:,1)) < 18)

 xy_results_trilateration_wifi_merged =

xy_results_trilateration_wifi_merged(1:2:end,:); % Every other 2

 timestamps_trilateration_wifi_merged =

timestamps_trilateration_wifi_merged(1:2:end,:);

 else

 % Few coordinates - Continue

 end

 % EveryXrdRow - Need to skip Bluetooth rows in order to present the

data more nicley - Manual work

 if (length(xy_results_trilateration_bluetooth_merged(:,1)) > 90 &&

length(xy_results_trilateration_bluetooth_merged(:,1)) <= 150)

 xy_results_trilateration_bluetooth_merged =

xy_results_trilateration_bluetooth_merged(1:13:end,:);

 timestamps_trilateration_bluetooth_merged =

timestamps_trilateration_bluetooth_merged(1:13:end,:);

 elseif (length(xy_results_trilateration_bluetooth_merged(:,1)) > 60 &&

length(xy_results_trilateration_bluetooth_merged(:,1)) <= 90)

 xy_results_trilateration_bluetooth_merged =

xy_results_trilateration_bluetooth_merged(1:9:end,:);

 timestamps_trilateration_bluetooth_merged =

timestamps_trilateration_bluetooth_merged(1:9:end,:);

 elseif (length(xy_results_trilateration_bluetooth_merged(:,1)) >= 30 &&

length(xy_results_trilateration_bluetooth_merged(:,1)) <= 60)

 xy_results_trilateration_bluetooth_merged =

xy_results_trilateration_bluetooth_merged(1:4:end,:);

 timestamps_trilateration_bluetooth_merged =

timestamps_trilateration_bluetooth_merged(1:4:end,:);

 elseif (length(xy_results_trilateration_bluetooth_merged(:,1)) >= 18 &&

length(xy_results_trilateration_bluetooth_merged(:,1)) < 30)

 xy_results_trilateration_bluetooth_merged =

xy_results_trilateration_bluetooth_merged(1:3:end,:);

 timestamps_trilateration_bluetooth_merged =

timestamps_trilateration_bluetooth_merged(1:3:end,:);

 elseif (length(xy_results_trilateration_bluetooth_merged(:,1)) > 21 &&

length(xy_results_trilateration_bluetooth_merged(:,1)) < 18)

Chapter D: Matlab code 191

 xy_results_trilateration_bluetooth_merged =

xy_results_trilateration_bluetooth_merged(1:1:end,:);

 timestamps_trilateration_bluetooth_merged =

timestamps_trilateration_bluetooth_merged(1:1:end,:);

 else

 % Few coordinates - Continue

 end

 % Save results into six bigger tables (device specific) for plotting

 Trilateration_timestamp_devices_wifi(:,device) = ""; % Clear column

Trilateration_timestamp_devices_wifi(1:(length(timestamps_trilateration_wifi_mer

ged(:,1))),device) = timestamps_trilateration_wifi_merged(:,1); % Fill table

with timestamp from device

 fname =

sprintf('Output/@Plotting/Trilateration_plot_wifi_timestamp_exp%s.mat',

experiment); % Declare a variable name associated to current experiment

 save (fname, 'Trilateration_timestamp_devices_wifi'); % save variable

as mat-file

 Trilateration_x_devices_wifi(:,device) = 0;

Trilateration_x_devices_wifi(1:(length(xy_results_trilateration_wifi_merged(:,1)

)),device) = xy_results_trilateration_wifi_merged(:,1);

 fname = sprintf('Output/@Plotting/Trilateration_plot_wifi_x_exp%s.mat',

experiment);

 save (fname, 'Trilateration_x_devices_wifi');

 Trilateration_y_devices_wifi(:,device) = 0;

Trilateration_y_devices_wifi(1:(length(xy_results_trilateration_wifi_merged(:,1)

)),device) = xy_results_trilateration_wifi_merged(:,2);

 fname = sprintf('Output/@Plotting/Trilateration_plot_wifi_y_exp%s.mat',

experiment);

 save (fname, 'Trilateration_y_devices_wifi');

 Trilateration_timestamp_devices_bluetooth(:,device) = "";

Trilateration_timestamp_devices_bluetooth(1:(length(timestamps_trilateration_blu

etooth_merged(:,1))),device) = timestamps_trilateration_bluetooth_merged(:,1);

 fname =

sprintf('Output/@Plotting/Trilateration_plot_bluetooth_timestamp_exp%s.mat',

experiment);

 save (fname, 'Trilateration_timestamp_devices_bluetooth');

 Trilateration_x_devices_bluetooth(:,device) = 0;

192 A.M.S.: Ensuring quality of covert police work with Wi-Fi and Bluetooth technology

Trilateration_x_devices_bluetooth(1:(length(xy_results_trilateration_bluetooth_m

erged(:,1))),device) = xy_results_trilateration_bluetooth_merged(:,1);

 fname =

sprintf('Output/@Plotting/Trilateration_plot_bluetooth_x_exp%s.mat',

experiment);

 save (fname, 'Trilateration_x_devices_bluetooth');

 Trilateration_y_devices_bluetooth(:,device) = 0;

Trilateration_y_devices_bluetooth(1:(length(xy_results_trilateration_bluetooth_m

erged(:,1))),device) = xy_results_trilateration_bluetooth_merged(:,2);

 fname =

sprintf('Output/@Plotting/Trilateration_plot_bluetooth_y_exp%s.mat',

experiment);

 save (fname, 'Trilateration_y_devices_bluetooth');

 clear xy_results_trilateration_bluetooth_results; % Reset results for

next device

 clear xy_results_trilateration_wifi_results; % Reset results for next

device

 % Plotting in separate script

end

end

Chapter D: Matlab code 193

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Atle M
althe Sørenssen

Ensuring quality of covert police w
ork w

ith W
i-Fi and Bluetooth technology

Atle Malthe Sørenssen

Ensuring quality of covert police
work with Wi-Fi and Bluetooth
technology

Master’s thesis in Information Security (MISEB)
Supervisor: Professor Katrin Franke
Co-supervisor: Kyle Porter and Ivar Weider Moen

June 2021

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Acknowledgements
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Glossary
	Introduction
	Topic covered by the project
	Keywords
	Problem description
	Research questions
	Justification, motivation and benefits
	Planned contributions
	Thesis structure

	Background
	Technical background
	Signal strength
	MAC address
	Wi-Fi and capturing data frames
	Bluetooth, discovering and capturing data frames

	Related work

	Methodology
	System architecture
	Capabilities - Tools
	Equipment
	Data cleaning and filtering methods
	Managing the collected data
	Geolocation methods
	Trilateration or triangulation using signal strength
	Trilateration
	Triangulation

	Linking algorithms using signal strength
	Euclidean distance
	Signal to distance
	Normalisation
	Bluetooth signal to Wi-Fi signal conversion
	Trilateration
	Triangulation

	Methodology flowchart

	Experiment setup
	Participants
	Environment
	Scenarios and Experiments
	Preliminary scenario
	Scenario 1 - Fixed locations
	Scenario 2 - Fixed locations, different start-up procedure
	Scenario 3 - Fixed locations, random Wi-Fi MAC enabled
	Scenario 4 - Fixed pattern, moving as one or in groups
	Scenario 5 - Fixed pattern, move as one group

	Experiment setup flowchart

	Pre-processing and data analysis
	Blue Hydra and Apple Bleee analyses
	Blue Hydra analysis
	Apple Bleee analysis

	Data types and metadata in the collected data
	Data filtering and cleaning methods in detail
	Statistical averaging and general calibration
	Signal correlation analysis
	Geolocation analysis using signal strength

	Results from signal correlation and geolocation methods
	Signal correlation
	Linking devices - Scenario 1 - Static, experiment 3-1
	Linking devices - Scenario 1 - Static, experiment 6-1

	Triangulation and trilateration using signal strength
	Geolocation - Scenario 1 - Static, experiment 3-1
	Geolocation - Scenario 1 - Static, experiment 6-1
	Geolocation - Scenario 4 - Dynamic, experiment 4
	Geolocation - Scenario 4 - Dynamic, exp. 7-1, 7-2 (phone 5,7)
	Geolocation - Scenario 5 - Dynamic, exp. 5 (phone 4,5,10)

	Discussion and conclusion
	Discussion
	General discussion about results and findings
	Discussion about the research sub-questions
	Strengths and limitations of the study
	Possible use cases for law enforcement

	Conclusion
	Further work

	Bibliography
	Equipment
	Main equipment
	Extra equipment
	Smartphones used in the experiments

	System architecture
	Additional results
	Signal correlation
	Linking devices in experiment 3-2
	Linking devices in experiment 3-3
	Linking devices in experiment 6-2
	Linking devices in experiment 6-3

	Matlab code

