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Abstract

The use of executables to introduce and embed malware within systems has been
widely used by malicious actors since the internet was introduced. This progres-
sion has only increased in parallel with the technological dependency within today’s
society. Given the massive amounts of malicious files detected each day security
analysts are simply not able to process and review all of these manually, although it
could be theoretically possible given an infinite amount of human resources. Such
a unrealistic requirement is however not feasible to achieve. Because of this chal-
lenge, focus on classification and triage of malware is very important. Automated
classification allows analysts to only focus on files that actually are malicious, and
a triage process aims to filter out files that are less important. Less important does
not mean it is not malware, but it indicates that it is a type of malware that has
already been analyzed or is very similar to files that have been analyzed. To fur-
ther simplify the process of automated classification and triage we have explored
the possibilities of using the PE headers and rich headers of PE files. While existing
research into the headers have shown promising results separately, significantly
less effort has been put into combining them. Through a combination of features
from the headers we have been able to present one type of technique in which
they can be used to classify malware and be used within a triage process. This has
been done with the intention of reducing the workload of unnecessary analysis
for each security analyst.
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Sammendrag

Bruken av kjørbare filer for å introdusere og legge til skadelig programvare i
systemer har vært mye brukt av ondsinnede aktører siden internett først ble in-
trodusert. Denne progresjonen har bare økt parallelt med den teknologiske avhen-
gigheten i dagens samfunn. Gitt de enorme mengdene skadelige filer som opp-
dages hver dag er sikkerhetsanalytikere rett og slett ikke i stand til å behandle
og analysere alle disse manuelt, selv om det teoretisk sett kan være mulig med
en uendelig mengde menneskelige ressurser. Et slikt urealistisk krav er imidler-
tid ikke oppnåelig. På grunn av denne utfordringen er fokus på klassifisering og
triage av skadelig programvare veldig viktig. Automatisert klassifisering tillater
analytikere å kun fokusere på filer som faktisk er skadelige, og en triage prosess
har som mål å filtrere ut filer som er mindre viktige. Mindre viktig betyr ikke at
det ikke er skadelig programvare, men det indikerer at det er en type skadelig
programvare som allerede er analysert eller er veldig lik andre filer. For å forenkle
prosessen med automatisert klassifisering og triage ytterligere, har vi utforsket
mulighetene for å bruke "PE headeren" og "rich headeren" til PE filer. Eksister-
ende forskning har vist lovende resultater for disse headerene hver for seg, men
vi har fokusert på å utforske kombinasjonen av dem. Gjennom en kombinasjon av
metadata fra headerene har vi vært i stand til å presentere en type teknikk der de
kan brukes til å klassifisere skadelig programvare og brukes i en triage prosess.
Dette er gjort med den hensikt å redusere arbeidsbelastningen for unødvendig
analyse for enhver sikkerhetsanalytiker.
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Chapter 1

Introduction

This chapter provides a introduction to the topics that are covered in the thesis.
A brief overview of the problem and our motivation behind the research project.
Further we provide a outline of our research questions and contributions.

1.1 Topics covered

Our thesis is based on the topic of malware analysis. Malware is a type of soft-
ware that has been created with the intention of performing harmful activities on
computers, this could include anything from extracting sensitive data to physical
harm of components, systems or people, a well known example of the latter from
modern times includes Stuxnet [1]. With the continued growth of the internet and
our dependency on technology the possibilities with malware has also expanded.
Newer and more advanced malware is constantly in development, as seen by the
recent campaigns targeting vulnerabilities in Microsoft Exchange [2] and the Sol-
arWinds incident [3], and deployed by a vast range of threat actors. A threat actor
can be defined as follows: "a threat actor is a group or person behind a malicious
incident" [4].
While new and advanced malware is a challenge by itself, the biggest challenge
can be considered the number of malicious samples [5]. Malware is often re-used
with minor modifications to try and remain undetected, as this would reduce the
cost and effort of developing new malware. Code that targets known vulnerabil-
ities may also become publicly available or be shared among threat actors. This
can be used to target potential victims that have not patched their systems. The
most important thing to note is that every single malicious file that is used can
be considered a sample. This includes both new and old malware, and all the
different variations these may come in. A process of prioritizing these samples is
commonly called a triage process. Such a process aims to remove samples that
are considered insignificant. This could include samples that have already been
analyzed previously or are very similar to further reduce the need for manual
analysis.
An important distinction throughout our research is what we consider to be samples.

1



2 : Using the PE- and Rich headers for Classification and Triage

Samples can generally be any type of software that has a malicious purpose, this
includes the *.exe, *.cmd, *.vbs, *.js, *.pdf file types to name a few [6]. We have
specifically chosen to focus on Portable Executable files, also referred to as win-
dows executable files, *.exe files or PE files, and as such when we refer to samples
we refer to these kinds of files.
Various methods exist using statistics and machine learning to help automate the
process of triage. Our approach has utilized anomaly based detection and classi-
fication in a combination with frequency analysis. Through the use of these tech-
niques we have attempted to classify samples as well as conduct a triage to identify
samples that are of further interest for manual analysis. Anomaly detection and
classification is a binary classification technique1, where an x amount of training
data is used to represent normal and where the input data is classed as either
normal or not normal based on an automated analysis. To be able to compare
our samples we extracted attributes from the headers of the PE files and used a
frequency analysis on the training dataset to establish what was to be considered
normal.

1.2 Keywords

Malware analysis; PE header; Rich header; Classification; Triage

1.3 Problem description

Anti-virus vendors have throughout the decades been considered as the good act-
ors that have developed methods to detect malicious files. These vendors have
specialized in the detection and prevention of harmful activities caused by mal-
ware. While this is still their role today, organizations dedicated to information
security have also become more common in modern times. Organizations such
as Norton LifeLock, with a expansive portfolio of security services, are becoming
necessary to handle analysis of all the different types of malicious samples that
appear. One of the main abilities of such organizations is the capability to per-
form extensive malware analysis. This is both due to their experience within the
domain as well as the resources and capabilities they possess. A larger, specialized,
organization will have better capabilities compared to a single person in terms of
analysis.
We believe that the main problem with malware analysis is the significant num-
ber of samples that are received. These samples are usually collected through tools
and software installed on computers or servers, or even dedicated hardware in-
stalled in networks to detect and collect files that could potentially be malicious.
These techniques will lead to a very large amount of samples being gathered since
a lot of files are transferred within- and to organizations on a day-to-day basis.
Another method of collection is through manual submissions from organizations

1A classification technique where there are only two possible outcomes.
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and people. Organizations and people often have an interest in verifying whether
software is malicious or not, and submitting it to a anti-virus vendor enables them
to do this. This simultaneously leads to the collection of additional samples.
Sufficient analysis of each sample without investing large amounts of organiza-
tional resources, such as hardware for computations or payment for a large num-
ber of employed analysts. The process of finding the necessary number of analysts
can be considered a problem in itself since an endless supply does not exist. The
need for resources also vary over time; it is difficult to pinpoint the workload on
a day-to-day basis. This affects the demand for both computational power and
analysts. These points in combination with the lack of competence and the time
consuming hiring processes makes it a difficult process even for large international
organizations. The large amount of samples has resulted in an increased use of
machine learning techniques to reduce the number of samples that need manual
analysis, as highlighed by known vendors such as Bitdefender [7], Avast [8] and
Comodo Cybersecurity [9].

1.4 Justification, motivation and benefits

Analysis of malware is very important because it helps researchers and organiza-
tions gain further insight into the functionality and purpose of malicious software.
This insight aids in the protection of organizations; potential victims, from threat
actors that utilize malware. The process of analysis is often time consuming since
the number of samples that require analysis is large and require resources. This
includes both computational power and human resources for manual analysis.
The work related to malware analysis is a very important aspect of information
security. Information security is defined by SANS as
"the processes and methodologies which are designed and implemented to protect
print, electronic, or any other form of confidential, private and sensitive information
or data from unauthorized access, use, misuse, disclosure, destruction, modification,
or disruption."
The ability to implement processes and methods to protect sensitive information
or data would be very difficult without the process of malware analysis. Without
the insights that are gained one would not be able to determine how threat actors
attempt to target victims and the methods they use in their attacks. This means
that malware analysis is a fundamental aspect of defining what the focus within
information security needs to be. Malicious actors often use different techniques
to try and infiltrate a system or a specific target and as such the need to analyze
malware will also be a continuous process. The techniques that are used by threat
actors will, if successful, result in unwanted and malicious software being placed
within the targeted system. Effective and automated methods for analysis of such
files are a necessity.
This necessity becomes especially clear then reviewing the number of malware
samples that needs analysis. Norton LifeLock alone receive up to 700 000 new
malware specimen every day. This gives an analyst 0.1 seconds if he or she were to
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look at each sample. Regardless of experience and expertise this is not a sufficient
amount of time to conduct thorough analysis by one analyst. Valuable time will
be wasted on insignificant samples and more sophisticated samples in need of in-
depth analysis will not be able to receive an appropriate analysis. Roughly 1000
analysts would be required to perform sufficient analysis on each of the 700 000
samples. A requirement that is very hard to fulfill, not scalable and is an unrealistic
use of organizational resources. This research will focus on ways to help reduce the
time wasted on insignificant samples; effectively reducing the number of samples
to only the ones that require manual analysis.
A reduction in the number of samples is commonly associated with a triage pro-
cess. The word triage stems from the french word "trier" and was originally used
to describe a process of sorting [10]. It was, and is also today, often referred to
within the medical profession as a method of prioritization. Originally it primarily
focused on situations which involved mass casualties, separating casualties into
groups based on the need for treatment as resources were often limited.
Malware triage builds on the same principles, but applies them to the analysis
process of malicious samples. It is there to help make the analyst more efficient as
well as reducing the time spent on unnecessary or known samples. By reducing the
total number of samples that needs to be analyzed by a given analyst one is able
to achieve this. The process of reducing the number of samples and prioritizing
them is considered triage. Malware analysts can be considered a limited resource,
as a company is not able to maintain an endless supply, nor does an endless supply
even exist. This means that triage is a very important aspect of modern malware
analysis, as the total number of samples that can be observed on a given day varies
as well as being in the millions.

1.5 Scope

We have found it necessary to narrow the scope of research to be able to produce
results within a limited timeframe. Malware can come in many shapes and forms,
but statistics show that the majority of files that are submitted to anti-virus vendors
and VirusTotal are PE files [11]. This lead us to chose PE files as our area of focus.
We gain additional insights into these files through a combination of features from
the PE header and rich header, as this is a area that has not been extensively
researched previously. We do not go further into problems surrounding packed
and unpacked files, or extensively modify our technique for high efficiency, as
this would have been time consuming and further affected our ability to obtain
sufficient results in a negative manor.
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1.6 Research questions

The research questions in this thesis is defined as follows:

• What is the current state of the art for malware analysis using the PE header
and/or the rich header?
• Will classification based upon features from both the PE header and rich

header give better results compared to the headers separately?
• How can a combination of features from the PE header and rich header lead

to a more effective triage of samples?

1.7 Contributions

Previous research has focused on malware classification and triage through the
use of the PE header and some has been conducted with the rich header, i.e. look-
ing at the two headers separately. The main contribution that we provide is the
unique approach using anomaly detection and frequency analysis to conduct clas-
sification and triage. We present prominent results using both the header types,
but especially when considering triage.

1.8 Thesis outline

This thesis is divided into a total of six chapters: starting with the introduction,
chapter 2 presents an overview of the relevant theoretical material and existing
research into the domain. Chapter 3 describes the methodology that was used
and our two datasets. The results that were obtained is presented in chapter 4,
and these are discussed in more detail in chapter 5. Chapter 6 consists of our
conclusion and proposals for future work.





Chapter 2

Background

This chapter aims to provide more detail about malware and some of the relevant
related subtopics, anomaly-based detection and classification, frequency analysis,
and the PE file format. We will conclude the chapter by providing related art-
icles that cover classification and triage through the use of the PE header and
rich header. The articles that are present have been published recently and are
considered as state of the art.

2.1 Malware

Software is considered as malware when it has the ability to cause harm or pur-
posely impact a organization, network, computer or user in a negative manner.
This type of software plays a large part in computer attacks and intrusions today, as
seen in the recent campaigns targeting vulnerabilities in Microsoft Exchange serv-
ers [2] and the SolarWinds breach [3]. Malware can come in all shapes and forms,
commonly known types include: adware, backdoors, spyware, trojans, rootkits,
viruses, worms, etc. [12].

2.1.1 Analysis

Analysis of malicious software is called malware analysis. Sikorski and Honig de-
scribes it further as "[...] the art of dissecting malware to understand how it works,
how to identify it, and how to defeat or eliminate it."[12]. Malware analysis can be
divided into two main subcategories:

• "Static analysis is the testing and evaluation of an application by examining
the code without executing the application " [13].
• "Dynamic analysis is the testing and evaluation of an application during runtime"
[13].

In malware analysis, static analysis will focus on reviewing the source code and
metadata to try and determine the functionality and purpose of the software. This
is a process that may provide useful insights while being easy to automate. It is

7
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simultaneously prone to various obfuscation techniques. The use of obfuscation
makes it harder for analysts and automated processes to appropriately analyze
software. A bit more detail regarding this is presented in section 2.1.3.
Dynamic malware analysis is the process of executing; running the software and
observing its behavior. These observations reveal functionality that may not have
been easily identifiable through the static analysis, such as the software unpack-
ing itself during runtime or spawning new processes to hide certain functionality.
Methods of obfuscation can be easier to detect based on the analysis of runtime be-
havior. Actual behavior is harder to detect through static analysis in comparison.
Dynamic analysis is however a process that is considered harder to automate,
compared to static analysis, and require more processing power as software is be-
ing analyzed line by line. However, automation of this kind of analysis has been a
focus area for anti-virus vendors to try and handle the massive number of samples
they are met with [14].

2.1.2 Classification

Classification is a task that is commonly associated with machine learning. Fun-
damentally it is where a object is described through a given amount of features.
These features represent the object. Together the features will enable the object
to be attributed to a overall class that could be further used to describe a group
of similar objects [15]. This is further clarified through an example:
An object o is represented by the features a, b, c. These features become a way
of representing o and can be used to compare the object with other objects. The
object p is represented by the features a, d, e. These two objects have the common
feature of a, but have no other features in common. If these objects were to be
classified into groups and all features are equally weighted, o and p would not be
in the same group. This is because having 1 out of 3 features in common would
not be similar enough. If the features were not equally weighted, and feature a
was considered more important, objects o and p could be classified into the same
group.
In relation to malware, classification acts as a method to determine whether the
given software is in fact malicious or not and it can also be used to determine
which type of malware a sample actually represents [12]. This is a process that
can be done through static analysis, analysis without executing the code, and
dynamic analysis, analysis by executing the code. Analysis is something that can
be conducted by experts that have specialized knowledge within the domain and
are subsequently able to classify the software through manual analysis, or by the
use of machine learning techniques to enable an increased amount of automation
in the process.
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2.1.3 Obfuscation

Malware authors often use specific techniques to obfuscate their malware and
make it more difficult for analysts to detect and analyze. A large variety of tech-
niques exist.

Packers

A subset of obfuscated malicious programs are packed programs [12]. This is
where a malicious program is compressed. Figure 2.1 illustrates the difference
between a unpacked and packed executable. Packers will commonly pack the
contents of the executable and create a unpacking stub. This stub contains the
necessary information to initiate the unpacking and it is where the entry point
is moved to when a file is packed. The header will remain the same, however
some of the contained information will be modified as some metadata related to
the executable will have changed due to the packing e.g. file size, number of im-
ports, section sizes, etc. This means that it is still possible to conduct some analysis
on packed executables, such as packer detection. However, this approach is not
perfect and the use of more uncommon methods, as well as packing in multiple
layers, still makes it a very prominent method of obfuscation - especially consid-
ering how available and easy to use packers are. A program will often need to be
unpacked to reveal its functionality completely.

Figure 2.1: Structure of a unpacked and a packed executable [12].

Encryption

Another method of obfuscation that malware can use is encryption. One or mul-
tiple methods of encryption can be used to encrypt software. This makes it difficult
to conduct thorough analysis and encryption will modify the metadata related to
software until a specific key is submitted. It is also a very simple method that can
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be used to change the signature; hash1 of malware since encryption is based on
a input key [17]. Very minor modifications will lead to different signatures [12].
Changing just a single bit in the metadata will lead to a new signature. This is
further illustrated in the example provided in table 2.1 However, while multiple
input keys can be used the method of decryption will often remain the same.

Table 2.1: Exact hashes of two very similar identical files. File 1 is a *.txt file with
the string "This is a test." and file 2 is a *.txt file with the string "This is a test".

MD5 1b172ccdeb2f51452b5c56351c6cbba6
61fa840406674ddb0aafd4fceea78420

SHA256 3b7dd38c649a6e0fd98cf21c3ae22be1124024829857e60ae47cf8498c426aac
026ce0c5cc4f6785bf0893c44d2276993176c100e18943cbc1770ac124eaf509

As encryption is a form of modification of the software and its contents it will also
lead to a modification of certain parts of the file header [18].

2.2 Anomaly-based detection and classification

Anomaly-based detection is a concept that is more thoroughly used and explored
within intrusion detection systems [19]. Such a technique is commonly used when
one looks for traffic that can be considered abnormal; out of the ordinary. E.g.
detecting an attempt to access an internal server from a completely unknown IP
address. This would usually lead to warnings, many of which are false positives2

as there is no specific way to determine what is to be considered normal traffic.
Anomaly-based classification is a very similar approach, but it focuses on classific-
ation instead. It is commonly when one looks at feature representations that are
abnormal. E.g. detecting that a unknown executable file contains header features
that are not before seen within known benign files. This will commonly lead to
the unknown file being classified as potentially malicious and further flagged for
analysis. In particular cases where features are completely unknown a thorough
manual analysis would be necessary to determine the purpose and functionality.
However, in a lot of cases some features can be attributed to known malware and
can more easily be classified as malicious based on its deviation from the known
benign features. A lot of executables also share common features even though
their intentions differ: benign or malicious. This leaves room for false positives,
where benign files are classified as malicious. However, false negatives3; malicious
files classified as benign, are worse and one should focus on a reduction of them.

1A file hash is a unique identifier used to identify data, often a message or a file [16].
2A false positive is described by Merriam Webster as "a result that shows something is present

when it really is not" [20]; a misclassification.
3A false negative is a result that shows nothing is present while there is actually something there.
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2.3 Frequency analysis

Frequency analysis is a sub-field within descriptive statistics [21]. It is used as
a method to gain more insight into the data that is to be analyzed. Frequency is
commonly in statistics known as the number of occurrences of an event or a thing.
While there are a number of measures that are used within frequency analysis,
namely: measures of central tendency dispersion and percentile values [21]. Our
researched focused on a combination of the central tendency and dispersion. The
central tendency is a measure that is used to describe the data through a value con-
sidered the central position; middle. Commonly used measures are mean, mode
and median. Dispersion is a measure that focuses on the spread or variability
within the data.
We used the central tendency, and the mode, to see what was considered "normal"
among features from a training dataset. Comparison of feature values with the
central tendency of the training dataset and a given sample in the testing dataset
is what we used to determine how a given sample would be classified.

2.4 PE file format

PE stands for "Portable Executable" and it is a file format that is used within the
Windows operating system [12]. Its purpose is to provide the structure that the
operating system loader needs to manage the contained code within the execut-
able files4. The file format is used by: "executables, object code and DLLs" [12].

2.4.1 PE header

The PE file header consists of three main headers and two main tables. It starts
with the DOS Header which contains the string "MZ", the DOS stub and the file
offset to the PE signature. This file offset is always located at 0x3c and it enables
Windows to properly execute the file. The file signature is the letters P and E fol-
lowed by two null bytes. Following the PE signature is the COFF File Header.
This contains information about the type of machine the file is intended for and
some basic flags that provide further information about the file. Then comes the
Optional Header. It is an optional header because it is not present in all files,
specifically: object files5, but it is required by image files6. The optional header
contains extended fields that aim to provide further information about the execut-
able. It has three main sections, standard fields: has general information that is
useful when loading and executing the file, windows-specific fields: an extension
to the COFF optional header that contains information required by the loader and

4An executable file can be described as a type of file that aims to provide specific functionality
based on instructions provided as code.

5An object file is a type of file that is provided as input to the linker. The linker will use this input
to create an image file [22].

6A image file is a executable file, being either a .EXE file or a DLL file [22].
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linker in Windows, and Data Directory Table: pointers and sizes for specific seg-
ments of the files’ data. Lastly there is the Section Table, consisting of multiple
rows, also called section headers, that represent various sections of the executable.
These sections combined contain the program itself, e.g. the instructions. A more
detailed overview of the contents of the different parts is displayed in table 2.2,
based on the documentation provided by Microsoft [18]. An even more detailed
overview off functionality can be found in the original documentation available
in [18].
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Table 2.2: PE Header contents [18].

DOS Header
DOS Stub PE signature offset

COFF File Header
Machine NumberOfSections

TimeDateStamp PointerToSymbolTable
NumberOfSymbols SizeOfOptionalHeader

Characteristics
Optional Header - Standard Fields

Magic MajorLinkerVersion
MinorLinkerVersion SizeOfCode

SizeOfInitializedData SizeOfUninitializedData
AddressOfEntryPoint BaseOfCode

BaseOfData
Optional Header - Windows-Specific Fields
ImageBase SectionAlignment

FileAlignment MajorOperatingSystemVersion
MinorOperatingSystemVersion MajorImageVersion

MinorImageVersion MajorSubsystemVersion
MinorSubsystemVersion Win32VersionValue

SizeOfImage SizeOfHeaders
CheckSum Subsystem

DllCharacteristics SizeOfStackReserve
SizeOfStackCommit SizeOfHeapReserve
SizeOfHeapCommit LoaderFlags

NumberOfRvaAndSizes
Optional Header - Data Directory Table

Export Table Import Table
Resource Table Exception Table
Certificate Table Base Relocation Table

Debug Architecture
Global Ptr TLS Table

Load Config Table Bound Import
IAT Delay Import Descriptor

CLR Runtime Header Reserved, must be zero
Section Table

Name VirtualSize
VirtualAddress SizeOfRawData

PointerToRawData PointerToRelocations
PointerToLinenumbers NumberOfRelocations
NumberOfLinenumbers Characteristics
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Manipulated PE header

Manipulation of the PE header is something that is relatively easy to accomplish
[23]. The header builds on metadata related to the file and its contents. This
means that a simple action such as modifying the code will indirectly impact the
header and act as a form of obfuscation e.g. adding additional code that is not
actually used by the program. Additionally, some of the header data can have
a range of values and some are even arbitrary [18]. Arbitrary, in the sense that
the Windows loader does not read certain sections. This means that the header
is able to be manipulated without necessarily changing the way the program is
interpreted.

2.4.2 Rich header

Documentation for the PE header is well established and known among developers
and analysts. However, within the PE header there is a undocumented structure
that is only present within Microsoft-produced executables: The rich header [24].
An example of how the header looks like is provided in Figure 2.2. The image
also illustrates a few key features of the header: its location and footer. The rich
header is embedded within the DOS stub and resides between the "This program
cannot be run in DOS mode" string and the PE signature (at 0xF0). The footer
will always contain the string "Rich" and it makes it easy to identify the presence
or absence of the rich header.

Figure 2.2: Hex editor view of notepad.exe displaying the rich header, highlighted
in blue.

The rich header appears to have been introduced in 1997 with the final Service
Pack for Visual Studio 5.0 with the first "Rich" capable linker. While first being
introduced with this linker, it only had the capability of creating empty data struc-
tures. This was due to compilers not yet being able to emit the "@comp.id" sym-
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bol7. With the release of Visual Studio 6.0 in 1998 this changed and the rich header
started to contain data.
Analysis done by stephen8 in [25] provides a overview of the contents of the rich
header. It starts with a marker, followed by a checksum (x3), encoded values, the
string "Rich" and then ends with the same checksum. Further insight reveals that
the marker is the value 0x536e6144 (DanS in ascii - an identifier similar to MZ, PE
and Rich) and it is XORed with the calculated checksum value [24–26]. The format
of the encoded values is @comp.id XORed with the checksum and the number of
occurrences of the corresponding @comp.id XORed with the checksum.
A large part of the rich header relies on the calculated checksum, one way it has
been described is as follows: "[...] computed by iterating over every byte of the DOS
Header, skipping the elfanew field, copying the byte into a 32-bit field, rotating the
field left by the field’s offset in the PE header, and then adding that to a sum. But that is
not all. Next, that sum is then added to each compid XORed with its occurrence count.
That is, the 32-bit sum is added to the value resulting from compid XOR occurrence,
for every compid in the list." [25].

Manipulated Rich header

Direct manipulation of the rich header is also something that could occur. While
research shows that anomalies in rich headers are a good feature for malware
detection, as it renders the checksum invalid and this is something which does
not occur for benign executables. However, it becomes significantly more difficult
when the header is modified in such a way that it tries to mimic other "known"
rich headers. This first appeared in the attacks targeting the Pyeongcheng Winter
Olympics in 2018 [27]. The malicious actors had used several techniques to make
their malware samples look similar to samples that had previously been attributed
to the Lazarus group, a APT (Advanced Persistant Threat) with strong links to
North Korea [28]. One of the techniques that were used was manipulation of the
rich header.
This article showcases the potential to use the rich header to mislead investigators.
However, it does not seem to be a very established technique. This is the first time
it has been detected in the wild. There is no way of knowing how many times it
may actually have been used. While not being very widespread as of now, it could
be a technique that becomes more viable and used in the future.

2.5 Related work

This chapter aims to showcase some of the related research that has been con-
ducted into both the PE header and rich header within malware detection and
triage. We believe that these articles present the state of the art solutions based
on their time of publication and significance. We deem significance as the number

7A attribute that represents the "compiler build number" and "id" [24].
8A username used by the author. We were unable to find the authors full name.
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of citations and downloads, in addition to briefly reviewing other works by the
author. These factors combined makes us confident in our ability to present state
of the work arts related to our research.
We would like to highlight one key takeaway from these articles: they showcase
the potential with these headers separately, but they do not look at both the head-
ers simultaneously.

2.5.1 Finding the Needle: A Study of the PE32 Rich Header and Re-
spective Malware Triage [26]

Webster et. al has provided further research into the rich header and the potential
it has within malware triage [26]. They present an in-depth analysis of the undoc-
umented rich header and attempt to highlight how it is viable when attempting
to conduct triage.
Through the analysis the authors have been able to present the usefulness of the
rich header to: cheaply identify packed malware, similarity matching and iden-
tification of malware that has been developed using similar build environments
[26]. What further makes this useful is the fact that 71% of the 964 816 samples
that were analyzed included the rich header. Their researched showed that even
samples that had manipulated PE32 headers or PE32 headers with little informa-
tion still maintained useful information for analysts and a source of data for rapid
triage within the rich header. This indicates that the rich header was a largely neg-
lected part of the PE32 file format by malware authors at the time the research
was published.
These are all aspects that make the rich header a very interesting resource when
conducting malware triage. It adds another feature that can be analyzed and this
can further enable a broader approach towards the triage. Analysis of the rich
header by itself is not as interesting, as this is presented in the research paper
[26], but rather a combination of the rich header with other sources of data is of
interest for further research. This approach is also highlighted by the authors as a
potential for future work.

2.5.2 Detecting anomalies in the RICH header [29]

Kwiatkowski looks further at how anomalies within the rich header and how they
could be used for malware detection [29]. The main motivation for the author
came from the article published by Kaspersky looking at rich header manipula-
tion [27], and how the rich header could be leveraged to improve malware de-
tection in Manalyze9. While highlighting multiple ways it could potentially be
used, the author has however found one specific feature that he has implemen-
ted into Manalyze. The rich header will often report a number of imports larger
than the actual number of imports, but a legitimate executable will never report
less imports. The author generally has two hypothesis when there is a discrep-

9"A static analyzer for PE files" [30].
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ancy between the number of imports and actual imports: (1) the PE file has been
packed and replaced the import address table, and (2) the original rich header
has been modified or replaced [29].
This can not be considered expansive research and it does not present any evid-
ence to back up its claims. There is no way of knowing how many samples were
analyzed and what the true positive10 rates could potentially be, as this was not
presented. It does however remain a interesting observation that could be further
analyzed in future research. As it is published by a senior researcher at Kaspersky
and the creator of Manalyze, a popular open source tool for static file analysis, it
does have some merit and credibility attached to it.

2.5.3 Leveraging the PE Rich Header for Static Malware Detection
and Linking [31]

Dubyk has looked further at the PE Rich Header and how it can be used for static
malware detection and creating links between different samples [31]. The au-
thor’s approach consists of looking at 350 samples, extracting their rich headers,
creating hashes for the extracted data, and creating links between the samples in
a graph overview. Links were created based on similarity between samples, using
a exact match for Imphash, Rich, and RichPV. Ssdeep and impfuzzy links were
created based on a pre-determined threshold of 80%. A threshold that has been
determined based on previous research which highlighted it as a good threshold
for high fidelity similarity comparisons [32]. The research was focused on the
Rich and RichPV hashes, as these were the hashes produced based on the rich
header. Other known hashing techniques were also used for benchmarking pur-
poses: md5, ssdeep, impfuzzy, and imphash. Rich and RichPV was evaluated using
two techniques: (1) looking at the generated graph’s density and (2) looking at
the network density. These are graph theory Link-based Object Classifcation tech-
niques [31].
Results indicate that the proposed hashes are able to outperform some of the tra-
ditional techniques related to malware detection and classification [31]. Show-
casing that the rich header is a powerful source of data that could be leveraged to
further improve the capabilities of malware analysts in the future.
While results have been promising, the author has also highlighted some limit-
ations that exist with the rich header. The two proposed hashes require the rich
header to be sufficiently long to ensure that the created hashes are unique [31].
Furthermore, the rich header is not required for a executable to be functional; it
is not relied upon. We would also like to highlight that only 350 samples were
analyzed. This is a very minimal amount of samples and results may largely differ
if this number was increased.

10A true positive shows something is there when there is something there; correct classification.
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2.5.4 PE-Header-Based Malware Study and Detection [33]

The PE header consists of multiple sections that are of interest for malware ana-
lysis. Yibin Liao has in his research paper looked further at 3 of these: the file
header, optional header and section header [33]. He has identified a total of 5
features that are used in his malware detection approach, displayed in table 2.3.
A combination of all the features results in a 99.5% detection rate of malware and
a false positive rate of 0.16% for benign samples. While looking at the PE header,
he also identified the file icon as another feature of interest. Showing indications
that malware commonly uses icons that intend to be misleading, and even in some
cases uses icons that are seldom used by benign software.

Table 2.3: A table of key features in the PE header for malware detection [33].

Index Key Features Malware (5598) Normal (1237) Difference

1 Size Of Initialized Data == 0 1626 (29%) 0 (0%) 29%

2 Unknown Section Name 2709 (48.4%) 16 (1.3%) 47.1%

3 DLL Characteristics == 0 5335 (95.3%) 401 (32.4%) 62.9%

4 Major Image Version == 0 5305 (94.8%) 486 (39.3%) 55.5%

5 Checksum == 0 5084 (90.8%) 474 (38.3%) 52.5%

This brief research showcases the potential within the PE header and how it can
be used to identify malware. The limited amount of features used also indicate
that large sections of the header is not needed for successful analysis.
The author does however highlight a weakness with his approach: it is not able to
detect all malware. He attributes this to the features that have been used, where
usage of different or additional features will potentially be able to aid in the de-
tection of different types of malware.

2.5.5 A New Classification Based Model for Malicious PE Files Detec-
tion [34]

A lot of research has been put into the problem surrounding classification of mal-
ware. Common with all these methods are that they aim to look at a dataset of
both malicious and benign files, determining a set of features, and performing
specific techniques to try and best determine the type of file being analysed. In
2019, Abdessadki and Lazaar published a research paper providing a substantial
look into existing methods and tried to find a new and improved classification
model [34]. A goal that they successfully managed to accomplish.
The authors used pefile11 to extract relevant features, 54 to be exact, from the

11A python module that reads PE files [35].
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headers of the files and used these as input in their classifier. To be able to determ-
ine the best classifier, they used their features on multiple classification methods,
and thereby statistically determining which was the best in terms of accuracy and
speed. Based on this approach their best classifier was with the use of Random
Forests, reaching an accuracy of 99.74%. Also concluding that it used a reason-
able amount of time to achieve this result: under 2 seconds to classify the 211 067
samples. An improvement of 0.24% to the best existing method. This method is
also highlighted in this thesis, in section 2.5.4.
While showing a substantial ability to efficiently classify files as benign or mali-
cious, there is no mention of packed or obfuscated files. Thereby it is not possible
to determine whether the dataset that has been used has excluded such files. As it
is not mentioned in the research paper, our assumption would be that they have
chosen to exclude such files.





Chapter 3

Method

This chapter focuses on our methodology and presents our approach regarding
classification, triage, feature selection and pre-processing. We have also included
further information about the datasets that were used and our hardware setup.
Some of the challenges we faced in regards to our hardware setup has also been
included, as it could provide a useful insight for similar research in the future.

3.1 Classification and triage

Classification of samples into either benign or malicious is an important aspect
of malware analysis. Before one can perform a subsequent triage of samples one
would ideally also try to differentiate between the two classes. In relation to classi-
fication we used a anomaly detection approach. This meant that we would analyze
one part of the dataset, either benign or malicious, and use this as the baseline,
also referred to as the training set, for normal; representation of that specific class.
For the training dataset we reviewed the frequency of the features, i.e. how often
certain features occurred and the number of times they were observed. The more
often a feature was observed in the training dataset the stronger the relationship
between that feature and the class became. The training set essentially provided
an overview of features that one would expect for that certain class. Features from
the testing dataset was gathered in similar fashion but these were compared to the
the training dataset and classified one by one. As a sample in the testing dataset
was handled it would also be classified before moving on to the next sample. If a
significant amount of feature values in a sample from the testing dataset was the
same as the ones observed in the training dataset the sample would lean more
towards the class used in the training dataset. If a significant number of unknown
feature values were observed the sample would shift towards the other class. To
further specify: the training and testing datasets consisted of only one type of
class, either benign or malicious, and not a mix of the two.
What determines a significant number of observations and what threshold val-
ues were used to allow for classification? Throughout our research we used a
threshold value of 0 for the section names and a threshold of 0.5 for compids

21
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from the rich header. These thresholds were found by manually analyzing the out-
put from the feature extraction process and how well different thresholds were
able to classify samples. While the section names and rich header used specific
thresholds, the PE header features were treated differently. For the PE header fea-
tures, each feature was ranked based on its frequency in the training dataset. A
feature could be observed in 0-20%, 20-40%, 40-60% or 80-100% of all samples
in the training dataset. To better represent the nature of the observations related
to the PE header we added exponential weighting, where features that were ob-
served less were weighted more heavily. We wanted to increase the significance of
the features observed less in the training dataset as this would mean the file would
lean more towards the opposite class. The method we used to add weighting is
presented in 3.1. A sample from the testing dataset would lean more towards the
same group as the training dataset if the number of feature in the 80-100% would
be larger than the ones in the 0-20%, after weights had been added.

Code listing 3.1: A function that adds weights to the PE header features.

#Reduces the significance of features that are further away from the index 0 in
#freq_dp
def _add_weighting_freq(self, freq_dp):

i = 0

while i < len(freq_dp):
freq_dp[i] = freq_dp[i]/(i+1)
i += 1

self.freq_dp = freq_dp

Our classifier would use three main groups that acted as a collection of features.
These collections were used to represent the PE header, section names and rich
header. When a sample from the testing dataset was analyzed it would group
feature values in the PE header based on the number of occurrences it had in
total in the training dataset. A simple example: if the feature Checksum had the
value 0 in 0-20% and value 128 in 0-40% of the samples in the training dataset,
a sample with the Checksum value of 0 would add 1 to a counter within the 0-
20% group. Similar comparisons would be done for each individual feature in the
PE header. Features in the section names and rich header were compared on a
1-to-1 basis. A list of all feature values that had occurred would be available from
the training dataset. Each feature value in the sample from the testing dataset
would be compared and a percentage would be calculated based on the number
of features that were the same. More in depth detail regarding our implemented
method of classification is added in Appendix A, specifically code listings A.5 and
A.6.
On a high level the approach we had towards the classification and triage prob-
lem can be regarded as a try-it-all approach. We wanted to try as many different
combinations as we had the time to do and try to gain insight based on the differ-
ence in results. Classification was accredited to tests that used opposing datasets
and the benign dataset comparisons. The triage technique was represented by the
malicious dataset comparisons. This meant that when we tested using e.g. benign
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as the baseline and malicious as the testing dataset, we were looking at our ability
to correctly classify samples. A possibility we had as the datasets were labelled.
This gave us a insight into how different combinations of feature groups impacted
our ability to classify and allowed us to find the best combinations. These results
are presented in sections 4.1 and 4.2. By doing identical tests with the NTNU
dataset and the larger Norton LifeLock dataset we were also able to determine
our abilities to classify when the number of samples were increased significantly.
The results obtained through the comparison of both the malicious datasets, as
presented in section 4.4 is the foundation of our triage suggestion. This is because
it is able to determine which samples from the testing dataset is similar to already
observed samples in the training dataset. Testing different feature combinations
allowed us to find the combinations that were able to provide the most solid res-
ults. The comparison of benign datasets, presented in section 4.3, followed the
same process as the triage technique but used a different class of samples. These
results were not considered as a triage approach, but a test to see the ability of
our classifier to correctly classify samples when the same class was used in both
training and testing. In addition, it acted as a test to see whether features were
impacted by the time the datasets were created - a possibility we had since the
NTNU dataset was roughly 6 years old and to our knowledge the Norton LifeLock
dataset was collected more recently.

3.2 Feature selection and pre-processing

The ability to pre-process samples and select features was an important first step
in the analysis stages. It was the fundamental aspects that a future comparison of
samples would be based on. We first had to identify the set of features we would
use to represent a given sample, and the amount of features that were to be used.
Simultaneously we had to consider the need for storage space and how the pro-
cessing times were impacted by the increased complexity. Increased complexity
is considered when more features need to be processed, if a sample is represen-
ted by one feature it would be significantly less complex compared to a sample
represented by 100 features. The latter would require more processing time. To
reduce the complexity of our research, both in terms of necessary processing com-
plexity and a reduction in the risk of accidentally infecting the host system with
malware, we decided that we would only use static analysis of the samples. All
feature extraction was conducted without executing; running the samples. The
main feature groups that were used in our research is presented in table 3.1. The
DOS header, NT header, File header and Optional header provided a total of 55
individual features, the Rich header provided two and the section names provided
one. A more detailed overview of all the individual features that were extracted
from these groups is attached in Appendix B.
A brief overview of figure 3.1 displays that each sample is represented by one
entry, or row, in a larger table. Each column represents an individual feature and
the related value that a specific sample has. All these features combined was what
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Table 3.1: A simplified list of the feature groups that were used.

PE header Rich header Section names
DOS header Rich header Section names
NT header
File header
Optional header

Total # features 55 2 1

we used to describe the samples and it created the foundation for further analysis.
Figures 3.1 and 3.2 provides an illustration of how the beginning and end of such
a row would look like. Figure 3.2 also clarifies how the section names and rich
header is included. The section names are added as a list within the row, as they
are a list of names where additional unnecessary formatting had been removed.
Additional formatting was present as the section names was originally a byte rep-
resentation which we converted to strings for easier processing. The rich header
was treated the same way as the section names, but where no additional removal
of unnecessary formatting was needed.

Figure 3.1: Displays the beginning of the row.

Figure 3.2: Displays the end of the row. This includes elements from all feature
groups.

3.3 Datasets

Our research was based on two different datasets. These were used to determine
which combination of features were the best by reviewing our approach on both a
smaller dataset and a larger one. The datasets were divided into two parts where
one part consisted of benign samples and the second of malicious samples. In both
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datasets the number of malicious samples were significantly higher than benign
ones.
Working with labelled datasets has both its advantages and disadvantages. We
were able to continuously test and verify our ability to correctly classify samples.
A significant advantage during development as we could see how the classifier
improved or worsened depending on the configuration that was used. As both
datasets were separated into benign and malicious samples we could also see
how our classification was able to perform by gathering results by using both
classes as the baseline dataset. While this gives us a good understanding of how
the classifier is able to perform, it does not tell us how well it would handle a
realistic dataset. We did also not have any pre-determined knowledge about the
samples. This resulted in our triage process being more exploratory.
Our research was based on the analysis of PE files. This is also represented in
the datasets we used, as all samples that were used in our analysis were valid PE
files. A valid PE file can be determined by its header - a invalid PE file will be
detected by the pefile python package. When we claim that all files used in our
analysis were valid it is because we removed the files that were deemed as invalid
by pefile. This did not mean that the samples themselves were invalid files, but
it meant that they were not valid PE files. These files were most likely different
file types that had been added during the initial collection. Because our research
was limited to the analysis of PE files we removed the other samples before any
further analysis was conducted. The number of files that were removed and the
datasets they came from is presented in table 3.2.

Table 3.2: The number of invalid samples found in the datasets.

Dataset Invalid samples
NTNU dataset (Benign) 38
NTNU dataset (Malicious) 0
NortonLifeLock dataset (Benign) 0
NortonLifeLock dataset (Malicious) 227

3.3.1 NTNU dataset

The first dataset that was acquired had initially been developed for various re-
search projects at NTNU [36, 37]. While it is decent in size it is a subset of a
larger dataset that had been used in previous research projects by the Testimon
Research group at NTNU. Due to its origin we have called it the NTNU dataset,
hereby referred to as the small dataset, but it is also known as the IJCNN data-
set. The dataset consisted of a total of 9823 samples from 10 different malware
families, a more detailed breakdown is presented in table 3.3.
Samples in the small dataset were collected in 2015 from the following sources:
maltrieve, VirusShare, VxHeaven and various samples that had been shared by
students [36]. The samples are evenly distributed between packed and unpacked
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files with an approximate 50% split.
A concern to highlight with this dataset is its age. At the time of writing the samples
are at a minimum 6 years old. This may have caused misleading results as techno-
logy and malware authors will have changed and improved their techniques over
the years that have passed. Malware from several years ago may look drastic-
ally different than malware that is being used today. This could be anything from
minor modifications on older malware to the development of new and more soph-
isticated malware.

Table 3.3: Details of malware samples in the small dataset

Family Samples
agent 1000
hupigon 1000
obfuscator 1000
onlinegames 1000
renos 1000
small 1000
vb 1000
vbinject 1000
vundo 823
zlob 1000

Sum 9823

To supplement the malicious samples we also included benign samples that also
were provided by NTNU to complete the small dataset. The samples were collec-
ted in relation to existing research projects at NTNU [38, 39]. They were collected
from Portable Apps in 2019 in a grab-it all approach - where as many samples were
needed in a short amount of time [38]. The dataset consisted of various types of
software: such as editors, games, and various software provided by Windows. As
portable apps is a webpage that consists of samples that are updated periodic-
ally there may be minor differences in a newer collection compared to the 2019
version. The dataset itself consisted of 1832 benign samples; x64 Windows ex-
ecutables. However, 38 samples had invalid PE headers and were not included
in further analysis. This left us with a total of 1794 benign samples that were
included in the small dataset.

3.3.2 Norton LifeLock dataset

After initial development and testing through the use of the small dataset provided
by NTNU we were provided with a much larger dataset from our partner, Norton
LifeLock. We will hereby refer to this dataset as the large dataset. The large dataset
consisted of both benign and malicious samples, but the number of malicious
samples significantly outnumbered the benign ones. There were a total of 10 891
benign samples and 328 800 malicious samples. The combination of these samples
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created what we refer to as the large dataset.
To provide more detail about the malicious samples we have included a more de-
tailed overview in table 3.4. Unlike the details provided about the small dataset,
this table is not a 1:1 listing of the malicious samples. Samples can be a part of
none, one or multiple malware families. This causes some discrepancy in the over-
view of the samples compared to table 3.3 from the previous section. However, it
aims to provide some insight into the samples that were used in our research.

Table 3.4: Details of malware samples in the large dataset.

Family Samples Family Samples
adposhel 1656 agent 13438
allaple 5021 alman 180
bancteian 912 banker 310
benjamin 8753 bifrose 196
bladabindi 1368 blocker 148
brontok 201 coinminer 10657
cosmu 251 crypt 273
darkkomet 232 detroie 182
dialer 607 dinwod 3745
eggnog 657 emotet 2796
expiro 1489 farfli 164
fasong 607 fearso 344
floxif 2758 fsysna 3299
fugrafa 170 gandcrab 6333
glupteba 404 hematite 9989
hupigon 371 ipamor 1283
ircbot 656 jeefo 410
juched 133 keylogger 122
koutodoor 154 lamer 5058
locky 107 lolbot 1150
lunam 5646 mabezat 176
madangel 109 mansabo 4910
mydoom 3838 neshta 4416
nimnul 271 nitol 1255
nymaim 216 padodor 9137
pakes 613 parite 1086
picsys 4488 pluto 1754
qqpass 120 qukart 4279
ramnit 2449 renamer 434
ribaj 1174 rozena 129
runouce 1198 sality 5678
shipup 1917 shodi 571
sivis 4665 skybag 100
small 6528 softcnapp 4492
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Table 3.4 continued from previous page.
Family Samples Family Samples

soltern 5250 starter 224
startpage 4579 stormattack 1330
swisyn 769 swrort 396
sytro 9182 tinba 154
toffus 256 tofsee 178
unruy 9455 upatre 4796
urelas 2989 ursnif 317
vbkrypt 162 viking 513
vilsel 638 virlock 9986
virut 9988 vobfus 586
vundo 1921 wabot 9905
warezov 248 xorist 129
zegost 118

Sum 232302
Unknown 96498

Total 328800

The benign samples in the large dataset were gathered through the use of a Win-
dows 10 VM. All community maintained packages from the Chocolatey package
manager were installed on the VM. After which all executables found on the sys-
tem were collected and scanned through VirusTotal1. Executables that were found
to have more than 3 detections in the VirusTotal analysis were removed from the
dataset, which left 95% of the remaining files with 0 detections. A detection in
VirusTotal is when a existing AntiVirus or URL/domain blacklisting service flags
the analyzed sample or URL as malicious [40]. This left 5% of the files within the
1-2 detections range, meaning not all samples could be considered 100% benign.
Additionally, samples that have 0 detections in VirusTotal could still be malicious
as it could be malware that is yet to be detected. As community maintained pack-
ages from Chocolatey go through rigorous review and testing we will assume, for
our research, that the files that remained and were used in the benign dataset
were benign.

3.4 Hardware setup

Programming and analysis of samples were conducted through the use of a virtual
machine with a 64-bit version of Ubuntu 16.04 through the VMware Workstation
16 player. The VM was stored on a external SSD with a 128GB capacity. The main
host system consisted of a Intel(R) Core(TM) i5-8600k CPU @ 4.7GHz with 6
cores and 6 threads and 16GB DDR4 RAM @ 3200MHz. The purpose of storing
the VM on an external SSD was to enable mobility in terms of workspace. A addi-

1A website that allows analysis of files and URLs to detect different types of malware [40].
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tional host system was used when on the move. It had the following specifications:
Intel(R) Core(TM) i5-7200U CPU @ 3.1GHz with 2 cores and 4 threads and 8GB
DDR4 RAM @ 2133 MHz. Both systems utilized NVMe SSD storage. The VM was
allocated 40GB at the beginning of the project, but this was further increased to
75GB. An additional 500GB SSD storage device was used to store the samples
from the larger dataset locally.

3.4.1 Challenges

One of the larger challenges within our research was the use of the VM and alloca-
tion of appropriate space. We significantly underestimated the amount of storage
space that would be needed and created a VM with a total of 40GB of storage. This
was filled relatively fast when we started to conduct analysis with our small data-
set, as this was stored on the VM. The lack of space started to cause issues with
the VM. It would crash and be unable to boot from preserved states; it required
a full restart every time. Fortunately more space was available and we further
increased the storage space to 75GB shortly after it was filled. The increase was
sufficient when working with the small dataset, however this was not the case
when provided with the large dataset. To allow us to download and work with
the large dataset we had to acquire a new storage device that would be able to
store all the samples. To solve this issue an existing SSD device was reformatted
and repurposed to only store samples from the large dataset. The SSD had a ca-
pacity of 500GB. This was a important lesson for us. It is important to try and
anticipate much larger need for storage space in the beginning, especially when
working with datasets similar to ours. This would have reduced the amount of
time we had to spend during the research to work around and expand our stor-
age capacity. A unnecessary challenge that removed time from our research. This
is especially the case when working when working with samples directly. The use
of the cloud as a main storage medium and using the VM as a cache to tempor-
arily store and extract features from the executables before deletion would have
reduced the need for physical storage. However, due to time constraints of the
thesis this did not become a focus area within our research.
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Results

This chapter presents the results that have been obtained through the analysis of
the features collected from the PE header and Rich header of the various samples.
Section 4.1 presents the results that were obtained by using the small dataset, see
section 3.3.1 for more detail. Section 4.2 presents the results that were obtained
using the large dataset, see section 3.3.2 for more detail. In addition to looking
at the datasets isolated from each other, we also gathered results where samples
from the same class was used. Here a combination of both the small and large
datasets were used. Results obtained through comparison of the benign samples
are presented in section 4.3 and malicious samples in section 4.4.
The feature field type in the tables presents the combination of features that were
used in the classification process, which builds from the three main groups: PE
header, section names and rich header. A combination would consist of the differ-
ent combinations of the three main groups that were used to obtain the specific
results. This could range from simply using one of them, or a combination of mul-
tiple. The feature type column aims to highlight the combination of the specific
row. Our research also reviewed how the use of different operators would impact
our results, as such we experimented with different combinations of AND and OR
to observe if this would cause any large variations in the results.
Results presented in sections 4.1, 4.2 and 4.3 displays percentages in relation to
the classification rate. Percentages on the left represent correct classifications and
the right represent misclassifications. The percentage itself is a representation of
the portion of files that have been classified, either correctly or incorrectly, out
of the total number of files in the testing dataset. In section 4.4 we presented the
percentages in the form of malicious- and benign classifications. This was to make
it easier to distinguish our results as the focus in this section was on triage and
not correct classification.
The percentages were rounded up to the nearest second decimal and the elapsed
time was rounded to the nearest second.
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4.1 Small dataset

Results gathered from the small dataset is split in two: Table 4.1 used the benign
samples as a method to try and create a feature representation of benign. Features
from the malicious samples were compared against the established baseline to
see how well different feature combinations were able to classify. In table 4.2 we
switched the dataset around and instead used the malicious samples as the initial
feature representation.

Table 4.1: Benign as the baseline for normal and malicious samples as input.

Feature type Class. % Misclass. % Elapsed time (s)
PE header 77.83% 22.17% 164
Section names 26.30% 73.70% 162
Rich header 37.00% 63.00% 160
PE header and section names and rich header 2.21% 97.79% 157
PE header and section names or rich header 55.43% 44.57% 158
PE header or section names and rich header 79.47% 20.53% 156
PE header or section names or rich header 94.09% 5.91% 160
PE header and section names 20.66% 79.34% 163
PE header or section names 83.47% 16.53% 164
PE header and rich header 24.74% 75.26% 165
PE header or rich header 90.08% 9.92% 163
Section names and rich header 3.86% 96.14% 163
Section names or rich header 59.43% 40.57% 164

Table 4.2: Malicious as the baseline for normal and benign samples as input.

Feature type Class. % Misclass. % Elapsed time (s)
PE header 19.12% 80.88% 82
Section names 66.56% 33.44% 85
Rich header 46.10% 53.90% 82
PE header and section names and rich header 92.36% 7.64% 83
PE header and section names or rich header 25.75% 74.25% 83
PE header or section names and rich header 16.83% 83.17% 82
PE header or section names or rich header 8.58% 91.42% 88
PE header and section names 72.01% 27.99% 86
PE header or section names 13.66% 86.34% 86
PE header and rich header 53.46% 46.54% 87
PE header or rich header 11.76% 88.24% 82
Section names and rich header 90.08% 9.92% 82
Section names or rich header 22.58% 77.42% 83
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4.2 Large dataset

Results from the large dataset were gathered the same way as the small dataset,
where we looked at benign and malicious as the baseline in the two different
tables. The results are presented in tables 4.3 and 4.4.

Table 4.3: Benign as the baseline for normal and malicious samples as input.

Feature type Class. % Misclass. % Elapsed time (s)
PE header 80.65% 19.35% 19698
Section names 31.76% 68.24% 20059
Rich header 39.11% 60.89% 19718
PE header and section names and rich header 8.15% 91.85% 20300
PE header and section names or rich header 59.97% 40.03% 19705
PE header or section names and rich header 81.52% 18.48% 20395
PE header or section names or rich header 87.50% 12.50% 20854
PE header and section names 29.01% 70.99% 21520
PE header or section names 83.40% 16.60% 20405
PE header and rich header 34.15% 65.85% 19238
PE header or rich header 85.61% 14.39% 18958
Section names and rich header 9.01% 90.99% 19147
Section names or rich header 61.86% 38.14% 19106

Table 4.4: Malicious as the baseline for normal and benign samples as input.

Feature type Class. % Misclass. % Elapsed time (s)
PE header 13.61% 86.39% 4004
Section names 98.83% 1.17% 3946
Rich header 47.10% 52.90% 4180
PE header and section names and rich header 99.69% 0.31% 4373
PE header and section names or rich header 46.34% 53.66% 4465
PE header or section names and rich header 13.59% 86.41% 4074
PE header or section names or rich header 5.09% 94.91% 4342
PE header and section names 98.93% 1.07% 4268
PE header or section names 13.52% 86.48% 4183
PE header and rich header 55.55% 44.45% 4086
PE header or rich header 5.16% 94.84% 4211
Section names and rich header 99.66% 0.34% 4337
Section names or rich header 46.27% 53.73% 4835
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4.3 Benign dataset comparison

As we worked with classification of malicious and benign samples we also wanted
to see how well we would be able to classify samples as benign when using benign
samples from both our datasets against each other. These results are presented in
tables 4.5 and 4.6.

Table 4.5: Benign samples from the small dataset as baseline for normal and the
benign samples from the large dataset as input.

Feature type Class. % Misclass. % Elapsed time (s)
PE header 35.30% 64.70% 225
Section names 96.77% 3.23% 275
Rich header 47.04% 52.96% 217
PE header and section names and rich header 99.03% 0.97% 236
PE header and section names or rich header 46.23% 53.77% 216
PE header or section names and rich header 34.86% 65.14% 217
PE header or section names or rich header 11.99% 88.01% 226
PE header and section names 98.21% 1.79% 229
PE header or section names 33.86% 66.14% 218
PE header and rich header 69.36% 30.64% 255
PE header or rich header 12.99% 87.01% 217
Section names and rich header 98.59% 1.41% 243
Section names or rich header 45.23% 54.77% 225

Table 4.6: Benign samples from large dataset as baseline for normal and the
benign samples from the small dataset as input.

Feature type Class. % Misclass. % Elapsed time (s)
PE header 16.05% 83.95% 149
Section names 87.96% 12.04% 150
Rich header 46.10% 53.90% 183
PE header and section names and rich header 96.66% 3.34% 166
PE header and section names or rich header 41.03% 58.97% 200
PE header or section names and rich header 13.49% 86.51% 164
PE header or section names or rich header 7.36% 92.64% 229
PE header and section names 91.58% 8.42% 147
PE header or section names 12.43% 87.57% 183
PE header and rich header 53.73% 46.27% 181
PE header or rich header 8.42% 91.58% 196
Section names and rich header 94.10% 5.90% 146
Section names or rich header 39.97% 60.03% 167
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4.4 Malicious dataset comparison

As the previous section looked at our ability to classify samples into the benign
category, this section further explores the possibility of triage based on the given
classification. Here our results are presented in the percentage of malicious and
benign, instead of classification and misclassification. This is to make the results
easier to reflect upon since the priority was triage and not classification. The ob-
tained results are presented in tables 4.7 and 4.8. The reason we view this as a
triage technique is because of the samples that are classified as benign. These are
more interesting to review as they deviate from what is considered normal based
on the already analyzed malicious samples.

Table 4.7: Malicious samples from the small dataset as the baseline for normal
and malicious samples from the large dataset as input.

Feature type Malicious % Benign % Elapsed time (s)
PE header 53.31% 46.69% 13654
Section names 30.70% 69.30% 13580
Rich header 39.11% 60.89% 13643
PE header and section names and rich header 6.03% 93.97% 13589
PE header and section names or rich header 52.49% 47.51% 14393
PE header or section names and rich header 56.66% 43.34% 14347
PE header or section names or rich header 76.53% 23.47% 13638
PE header and section names 19.41% 80.59% 14163
PE header or section names 64.60% 35.40% 13560
PE header and rich header 23.83% 76.17% 13562
PE header or rich header 68.59% 31.41% 14551
Section names and rich header 9.38% 90.62% 14590
Section names or rich header 60.43% 39.57% 13881

Table 4.8: Malicious samples from the large dataset as the baseline for normal
and malicious samples from the small dataset as input.

Feature type Malicious % Benign % Elapsed time (s)
PE header 71.46% 28.54% 4050
Section names 16.32% 83.68% 3845
Rich header 32.52% 67.48% 3785
PE header and section names and rich header 0.76% 99.24% 4043
PE header and section names or rich header 43.69% 56.31% 4175
PE header or section names and rich header 71.96% 28.04% 4304
PE header or section names or rich header 84.65% 15.35% 3949
PE header and section names 11.94% 88.06% 4258
PE header or section names 75.84% 24.16% 4289
PE header and rich header 23.21% 76.79% 4252
PE header or rich header 80.77% 19.23% 4259
Section names and rich header 1.26% 98.74% 4196
Section names or rich header 47.57% 52.43% 3958





Chapter 5

Discussion

This chapter discusses the results presented in chapter 4 and aims to highlight
both the insight gained as well as the weaknesses with the conducted research.
We start by reviewing the results where opposite datasets were used, benign and
malicious, before discussing our findings when the same dataset types were used.
In the end we will provide suggestions for future work based on our observations
and findings.

5.1 Opposing datasets

It was really interesting to see how much the results varied based on the baseline
dataset, i.e. the dataset that was used for training. Results based on benign samples
has a larger spread compared to the results based on the malicious samples. This
was the case for both the classification itself and the different feature combin-
ations. The latter of which was the most interesting. Feature combinations that
would give a very strong result in one table could be completely different in the
other, e.g. PE header in table 4.3 and PE header in table 4.4 had the classification
rate of 80.65% in the first table and 13.61% in the latter. Similarly section names
had 31.76% in the first and 98.83% in the latter. As this is apparent through-
out our results it is important to consider what one wants to use as the baseline.
Should it be by looking at benign samples and classification based on these, or
could one use malicious samples instead? Research into the field commonly sees
a much larger sample size of malicious samples compared to benign samples. As
a result, utilization of malicious samples to a larger degree could be more benefi-
cial as well as in the comparison of similar malicious samples to perform a triage.
However, one key issue here is new and unknown malware. Malicious samples
that deviate more from the norm have a larger chance of being misclassified as
benign, at least in the approach we used. Another way this could be approached
is the comparison of malicious samples with other malicious samples, as we have
done in section 4.4. This becomes a technique in a prioritization process; triage.
In this type of comparison malicious samples that were classified as benign would
be the samples that one would want to review further. The ones that were cor-
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rectly classified would be of less interest. This is because the samples that are
correctly classified as malicious would be relatively similar to samples that have
already been seen before in the baseline dataset. Here it is important to maintain
that the baseline dataset should consist of samples that have already been ana-
lyzed in this case, as usage of unknown samples would defeat the purpose of the
aforementioned theory.
One early observation that we made was the importance of the benign dataset. A
larger benign dataset will give a better foundation for our ability to classify, which
is reflected in our results in tables 4.1 and 4.3. The tables are relatively similar
showing that our classification ability was somewhat viable. Drastically different
results would have indicated larger uncertainty. Based on our results we found
that the use of a larger benign dataset somewhat lowered the classification rate.
This was not unexpected as the increase in the number of benign samples makes
comparisons more ambiguous; introduces more variance. When one attempts to
classify based on a lower amount of samples it becomes easier to overfit as the
proper data foundation is not present. While the majority of classification rates
are relatively similar among the two tables some combinations are improved when
using a larger dataset, e.g. PE header and section names improves from 20.06% to
29.01%. Another common factor within both tables is the feature combination that
gives the best classification rate, this remains the "PE header or section names or
rich header". Important factors to keep in mind when comparing these two tables
is that the data foundation is relatively different. Benign samples were collected
using different methodologies and at different time periods. This could impact
some of the features that are used within our program, e.g. the compiler ids within
the rich header will be different in a a dataset collected in 2021 compared to 2015.
This impacts the ability to determine a good basis for benign files, without a large
enough sample size. If benign samples from different time periods are used the
possibilities to determine malicious samples from a larger time span increases.
Similarly if benign samples are compared with benign samples from a different
time period one will see relatively large differentials, as presented in section 4.3.
Through the comparison of the benign datasets one can see that the PE header and
rich header are features that can vary quite a bit over time, as our ability to classify
is quite weak with these features. Section names seems to remain more stable over
time. We have not been able to obtain results with the combination of benign
samples from both datasets to verify that our theory regarding classification over
a longer time span holds. However, it could be considered a natural assumption
as an increase in the data foundation to represent a larger time span should also
improve our ability to correctly classify over that time span.
Existing research, some of which we presented in section 2.5, already points to
the potential of a combination of the PE header and rich header for analysis of
malicious samples. Both for detection of malicious samples and as a source of
information for a preemptive triage process. An approach that focuses on classi-
fication based on anomaly detection where a frequency analysis as the basis does
not seem to provide solid results, as showcased in chapter 4. There is a large vari-
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ety in the results based on the features that were used. This is somewhat logical,
as the use of a stricter approach leads to less samples being classified as mali-
cious and vice versa, but it also leads to a larger number of false positives. As the
classifier skews towards one class it will either favor classification of benign or
malicious samples which results in a large number of true positives for one side
but also false positives for the opposite.
When reviewing the results where benign is the baseline dataset, the strictest
combination type provided us with a significantly small number of malicious clas-
sifications compared to a more open combination type. 2.21% of the samples were
correctly classified as malicious in the small dataset, see table 4.1, and 8.15% in
the large dataset, see table 4.3. If only considering classification this would be a
very bad result, however since we also consider the triage possibility in our re-
search this could act as a method to find the samples that are the most significant
in the dataset - the ones that could be flagged for further analysis. Only having
to review 2.21% or 8.15% of the malicious samples significantly lessens the bur-
den on physical analysts and the resources and time they need. The reason that
these files are of interest are because a significant amount of header features, sec-
tion names and compiler ids deviate from the benign dataset. This means that
these are the files that have very little in common with the benign samples. While
this comparison is somewhat present through comparison of benign and malicious
samples, one could change the approach such that two malicious datasets are com-
pared for triage purposes. This would find the samples that are the most unique
in terms of the reviewed features. These results have been gathered through our
research and was presented in section 4.4.
One aspect with our research that has become more clear throughout the process is
that our approach is not sufficient when purely considering classification. We have
been working with determined datasets with benign and malicious samples. The
ability of our program to correctly classify an "unknown" sample into benign or
malicious would be very inconclusive based on the results we have obtained so far.
Better methods for classification already exist, some of which we have presented
in section 2.5, and due to this we reduced our focus on finding better methods
of classification in our thesis. Another factor that lead to us moving away from
focusing on classification was because of its time consuming nature. Our ability
to provide results would have been heavily reduced if we would have dedicated
even more time towards the improvement of the classification.

5.2 Same type datasets

Within the benign results presented in section 4.3 there is one major takeaway:
The section names are a major feature that can be used to determine whether a
sample is benign or not during classification. Section names alone were able to
correctly classify 96.77% of the samples in table 4.5 and 87.96% in table 4.6. This
shows that benign samples have a lot in common in terms of the section names
that are set. In comparison the malicious analysis in section 4.4 only had a 30.70%
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and 16.32% classification rate. These results indicate that it is easier to classify
benign samples based on section names compared to malicious ones. This is fur-
ther amplified when viewing tables 4.2 and 4.4, when using benign samples as the
input and malicious datasets as the baseline we can see a similar pattern. In the
first table section names alone lead to a 66.56% classification rate and 98.83% in
the latter table. Section names in combination with other features also lead to an
even greater classification rate, as seen in "PE header and section names and rich
header", "PE header and section names" and "Section names and rich header".
The most successful classification in terms of determining benign samples was
the combination of all features: "PE header and section names and rich header",
as presented in tables 4.2 (92.36%), 4.5 (99.03%) and 4.6 (96.66%). A combin-
ation of the section names and rich header provided the second best results with
the largest differential being 2.56%. As the results are relatively similar, the re-
moval of the main PE header features to reduce complexity, albeit at the cost of
slightly worse results, could be a interesting area to explore further. However, one
thing to keep in mind is what the main priority is. If performance is a major factor
one could start to consider removal of features, but if the priority is correct classi-
fication one would want to keep the features and potentially segment them even
further.
Sections 4.3 and 4.4 has one main pattern in common. The strictest combination
of features leads to a better benign classification and a more open combination
leads to more malicious classifications. This can be considered normal behavior,
as methods that are more lenient in classification will lead to more malicious
classifications but this also introduces more potential false positives.
An interesting observation is that the results were very strong when we compared
benign datasets but relatively weak when we compared the malicious datasets. In
the latter the strongest result was 84.65%, 12.01% worse than the worst result
in the benign dataset comparison. This is based on a comparison of the best res-
ult from each respective table in sections 4.3 and 4.4. We also observed a more
even spread among the results where the baseline dataset came from the small
dataset, compared to tests where the baseline dataset came from the large data-
set. This could be attributed to the size of dataset, where the small dataset does
not contain enough samples to appropriately classify all the incoming samples. In
cases where the baseline dataset contains very few samples compared to the input
dataset it is more likely that the input dataset has a larger amount of features that
have not been previously observed. This could subsequently lead to more samples
being misclassified. We believe that this shows how it is important to have a rel-
atively large dataset when utilizing anomaly detection techniques for the purpose
of malware classification. It is very hard for a small dataset to be an appropriate
representation of what is to be considered normal in the domain of all benign
executables. This is also something which is represented in our results, where the
use of a larger dataset lead to more confidence in the observed results. A smal-
ler dataset could in certain domains be a good representation of "normal", e.g.
communication between nodes in a industrial control system has a very specific
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purpose and variation in data is often minimal. Very minor deviations would in
this case be considered abnormal. In this scenario one would not need a signi-
ficant dataset to represent normal behavior. For PE files however, this is not very
viable. Malware developers constantly update and develop new samples to try
and remain undetected. This means that there will commonly be a large variation
in observed samples over time.
There are some observed differences in the results in section 4.4. We believe that
the main reason these difference exist can be attributed to the size of the baseline
dataset. Table 4.7 uses the small dataset and table 4.8 uses the large dataset. This
means that the best representation of the results should be in table 4.8, since the
dataset used as the baseline is much larger. As previously mentioned we believe
that the malicious dataset comparisons could be used as a component within a
triage process. From our results we want to highlight how benign classifications,
which in this case could be considered misclassifications, can be used as a means
to perform triage on new samples. If the sample is already known to be mali-
cious one can view the samples that are classified as malicious as uninteresting.
This is because such a classification means that the sample already has a lot of
features in common with existing data. Samples that are classified as benign are
more interesting as these have less features in common with existing data; they
are less similar. As the samples have less in common one would want to further
review them manually. However, this leaves some expectations on the dataset.
The baseline dataset should consist of malicious samples that have already been
analyzed and determined to be uninteresting for further manual review. The input
dataset should consist of samples that have already been classified as malicious.
With the introduction of a dataset consisting of both malicious and benign samples
as the testing dataset one may also observe a larger amount of true positives in
terms of classification; benign samples that are classified as benign. While this is
generally good, it partially defeats the purpose of using the samples classified as
benign in a triage process. It could also lead to more uncertainty for an analyst
because one would also need to spend time reviewing benign samples that have
been flagged for manual analysis. This could be attributed to the predetermined
expectation that the samples are inherently malicious.
The best results that were gathered in section 4.4 was where 84.65% of the
samples were classified as malicious. This left 15.35% of the samples classified
as benign. Based on our research and the data we used we believe that these
are the samples that should be prioritized for manual analysis. However, this still
leads to a relatively large amount of samples that needs to be analyzed. Roughly
281 samples is still a large amount of samples to analyze manually, even though
it is significantly less than 1832. Due to this we believe that it may be beneficial
to use this triage method as a component in a larger process. Based on our results
we can not with confidence say that the triage technique is effective enough to
be the only method that is used. A longer and more effective process would be
beneficial to further help reduce the samples that should be analyzed manually.
This may in addition improve the confidence in the samples that are chosen, as
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the ability of finding the most significant samples would likely improve.
Unlike the other results we obtained there is specifically one combination of fea-
tures in section 4.4 that shows greater results compared to the others: "PE header
or section names or rich header", especially in table 4.8 where the second best
result is only 68.59% compared to 76.53%. This combination of features provides
the best results in both tables. The "PE header or rich header" is the second best
combination and it slightly improved its differential between the best result to
only 3.88% in table 4.8, where the large dataset was the baseline dataset. This
combination shows promise in terms of the gathered results, but is not as sig-
nificant. The differential is not small enough to consider a removal of features
for effectiveness of the program, an action that our results related to the elapsed
times would not support. The combination that used all features was already more
effective in terms of the results as well as the elapsed time.

5.3 Elapsed time

An aspect of our research also focused on the effectiveness of the program and
how the use of different datasets and feature combinations impacted this statistic.
This is presented in the elapsed time in all tables within chapter 4. The elapsed
time shows the time that was used to run through one specific combination within
our program. Elapsed times for a specific combination included the entire process
of pre-processing, data extraction, analysis of both the baseline and testing data-
sets and using the specified combination as a method of classification. The number
was rounded to the nearest whole number and is displayed in seconds. Each run
through used the same methodology. Methods to improve the times were not in-
troduced in our research, e.g. caching to improve the elapsed time between the
first combination type and the remaining ones. While it is a parameter that we
measured and chose to include and display in our results, they do not give us a
clear indication of how different feature combinations impact the elapsed times.
If we exclusively looked at the results we obtained one could say that no specific
combination is a clear favorite, and that a reduction of features should be deemed
unnecessary. However, our results have not been verified and as such we do not
deem it as a absolute conclusion. Further tests would need to be performed to
verify whether or not the theory is viable. Feature reduction is known as a process
to remove features for another type of gain. A gain could include improvements
such as faster processing times, need for less storage space, need for less computa-
tional power, etc. Before we conducted our research we believed feature reduction
would be necessary when analyzing the large datasets. However, our results in-
dicate that this may not be the case. It is possible that the number of features may
not be significant enough to matter in terms of efficiency. Perhaps an even further
segmentation of the features would be viable.
The one thing our research managed to showcase through the elapsed times was
how the increased size of the datasets significantly impacted the time needed
to analyze them. This is not something that was unexpected because increased
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datasets naturally lead to more complexity in the pre-processing, data extraction
and comparison stages. Our results also show that a significantly less amount of
time was needed to analyze the samples when the largest dataset was used as
the baseline dataset, as seen in the elapsed times of the tables in section 4.2. The
large malicious dataset as the baseline lead to the elapsed times being reduced
by roughly 20-25% compared to when the large benign dataset was used. We be-
lieve this is attributed to the difference in the number of samples, where the large
malicious dataset consisted of 328 800 samples compared to the 10 891 samples
in the large benign dataset. This indicates that the process of analysing samples
in the testing dataset and classifying them was a more time consuming process.
This means that further effectivization of the code, and potentially similar tech-
niques, should focus on performance improvements for the incoming dataset and
the comparison between the existing and new data. We believe that the introduc-
tion of techniques such as parallel processing to be able to utilize more of the
processing power within CPU’s would be a viable option, or potentially exploring
the impact of GPU processing. A bit more surrounding this topic is presented in
future work; section 6.1.

5.4 Strengths and weaknesses

Through our research we have been able to find and present which combination of
features work better for classification of samples than others. Our results indicated
that there were major differences in which features were significant, as seen by
the large differences in classification rates in chapter 4. This also depended on the
dataset that was being analyzed, as the features when a benign dataset was used
as the baseline would be very different compared to analysis when the malicious
dataset was used as the baseline.
While we are able to verify our results - to some extent, based on the comparisons
of the same dataset types we believe that this was not sufficient. More effort needs
to be made to verify that the claims we have made throughout this research are vi-
able techniques in future malware classification and triage methodologies. More
elaborate use of statistical methods would be able to accomplish this. Our ap-
proach can be considered a less established approach to the problem but it does
not make it irrelevant. It brings a new perspective to the domain and shows a
different way that this common problem could be approached. It may not be a vi-
able option to use as the only means of classification and triage, but it is thought
processes and components that could potentially be used within a much larger
process. This would naturally require some modification and additional work in
terms of verification but the foundation is present, as the source code that was
used is also included in appendix A.
An unfortunate effect of the limited time we had to conduct our research lead to
the problem surrounding packed and unpacked files not being considered. A file
being packed or unpacked will lead to some differences in the header fields, and
specifically in terms of the section names as packers can modify these names [41].
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As an example we can consider a file packed through the use of UPX1, one of the
common packers that can be observed used for both benign and malicious samples
- but it is more commonly used by malicious actors as a simple means of obfusca-
tion. Files that are packed using the same packer will already have some similar
features because the section names of both files will be identical. As these simil-
arities exist it potentially became harder for our classifier to distinguish between
benign and malicious as a side effect. However, we did not verify this as we did
not have a specific statistic on the different packers used by all the packed samples
in the dataset. We did not know the distribution between packed and unpacked
either, except for within the malicious small dataset where it was roughly 50%.
Another side-effect of not having significant insight into the dataset was related
to header obfuscation. Header obfuscation is a technique that is used in the wild
by malware authors. Our approach should be well suited to classify files with ob-
fuscated headers and correctly classify them, in the case where a benign dataset is
used as the baseline, because an obfuscated header would deviate from a regular
benign header. This is due to the fact that benign files would have no reason to
have obfuscated headers. A file that deviated heavily from what was considered
normal would be classified accordingly by our program and due to this we be-
lieve that the correct classification of obfuscated files would be a trivial matter.
However, we do not have any solid evidence or tests to prove this as our research
did not go further into the details of our datasets. We were not aware if any of
the samples contained obfuscated headers or not, but considering the size of the
datasets it is very likely that some did.
On a positive note we were confidently able to show what impacted the elapsed
times of the program: the dataset not features. As previously mentioned, our re-
search did not only focus on classification and triage of samples, but also on the
elapsed times of our program and at which speeds we were able to analyze the
datasets. As we presented in chapter 4. Noticeably the elapsed time was more af-
fected by the size of the baseline dataset compared to the second dataset. In tests
where the largest of the two datasets was used as the baseline the elapsed times
were quicker compared to when the smallest dataset was used, e.g. tables 4.1 and
4.2.
While there was a clear pattern in what caused the elapsed times we observed,
there was no clear indication of a combination of features that was better or more
efficient than others. Results between the datasets varied significantly and based
on our tests we could not conclude with a significant finding based on the observed
elapsed times. Simultaneously, there was no large variation within the elapsed
times when smaller datasets were used. They were very similar with minor differ-
ences. A reduction in features is something that could cause important data to be
removed unknowingly and would not be recommended unless it could signific-
antly improve the elapsed times. Our observations indicate that there are no true
benefit to reducing the number of features that are used
An external factor that may have impacted the elapsed times of our program

1A free and high performance open source executable packer [42].
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would be by not having a dedicated machine for analysis. While the analysis
was executed on a VM, the main machine itself was in some cases still in regular
or extensive use. This may have lead to irregular elapsed times in some cases.
This raises concerns about the reliability of the gathered results in relation to the
elapsed times. We do however believe that they give a firm indication of results
one may expect from other tests where similar specifications are used. Naturally
the elapsed times would be faster with a machine that was more capable to be
used for analysis, as well as with a analysis program that would be able to utilize
more of the available processing power.





Chapter 6

Conclusion and future work

We have successfully been able to present and review some of the current state
of the art within malware analysis using the PE header and/or rich header as the
main basis for analysis. While we have been able to present what we believe to
be the current state of the art, we acknowledge that this is a domain in constant
development. More techniques and different research will continuously appear
with the dedication of malware researchers in academia, commercial research
and development teams, analysts, and even enthusiasts. New techniques created
by malicious threat actors often emerge and as a result research into this domain
will most likely newer cease to exist as long as malware is being developed and
used. Throughout our research we have displayed a variety of results that indic-
ate that the combination of the PE header and rich header could be effective for
analysis, but also at times ineffective. Not all combinations of features have been
equally successful. While in some cases there are really strong results pointing at a
specific combination, it was not equally strong when utilizing a different dataset.
This could be attributed to different factors, as we have discussed in the previous
chapter. Our research would benefit from additional focus on the verification of
results, and due to the variety we observed we do not have the ability to provide
a definite conclusion of our second research question: "Will classification based
upon features from both the PE header and rich header give better results com-
pared to the headers separately?". More work needs to be done utilizing these
features before a scientifically based conclusion can be made. Our research does
however indicate that there are some features combinations that show signs of
promise, these may in turn be researched further to see if there are any merit to
their potential.
In terms of triage techniques, and our third research question "How can a com-
bination of features from the PE header and rich header lead to a more effective
triage of samples?", we have been able to present some of the potential that the
combination of features have. It was the combination of all features that lead
to the most successful results in terms of triage, but our method still has some
caveats. The number of samples that remained were less than the total number
of samples, and it can as such be considered a promising triage technique. Even
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though we saw an ability to reduce the number of samples by a relatively large
amount we still believe that there is a potential to reduce even further. As such
we believe that our method may be best suited as a component in a larger triage
process. This would enable it to be the initial stage where unknown samples are
filtered, before they go through a more substantial; dynamic analysis to determine
if there is a need for manual analysis. Similarly to our other results this was also
an area which would require further testing and verification before one would be
able to confidently rely on the technique.
Our research acts as a new addition to the large number of solutions that aim
to tackle the common problems surrounding malware classification and triage.
It sheds a light on the benefits of using both the PE header and rich header for
analysis. We believe our results alone can not be considered extensive enough to
reach a final verdict in terms of the headers, but the potential has been presented.
Additional methods using both of these headers may be able to further solidify
the claims and hypotheses that we have made.

6.1 Future work

The program that has been developed can be considered a good basis for further
development. We have not utilized techniques that would help improve runtimes
and it became code that functions for its specific purpose; it is not instantly ad-
aptable elsewhere. Modification and adaption would be necessary. Introduction
of methods that would increase efficiency should be a priority in future or sim-
ilar work. As we have presented, the focus should be more towards the incoming
samples that need classification because the size of the input dataset seems to have
heavily impacted the elapsed times. This could include methods such as parallel
programming, where multiple threads, cores, CPU’s or GPU’s are used to process
all of the data, addition of more "best practice" approaches to the program struc-
ture itself, or utilization of the cloud to improve the efficiency of the analysis.
Utilization of the cloud in itself should be its own key point within future work.
We did not have the time to review these possibilities due to lack of experience
and prioritizations that had to be made due to time limitations, but it remains an
area we believe would be promising. We believe there are two main methods that
one could use to create a hybrid solution: (1) Use the cloud as a storage medium.
Only store files for analysis temporarily on local disks. After the features have been
extracted the sample could be removed from the local disk. Essentially using the
local disk as a cache and the main storage being in the cloud. A on-prem NaS1

unit may also be used in a similar way, but very strict measures would need to
be in place to avoid malware being spread unintentionally through bad handling.
(2) Move the actual analysis to the cloud as well, instead of running it locally.
Utilization of the cloud would allow ffor further benefits through the potential of
horizontal scalability. Analysis would be able to be conducted more efficiently as

1Network-attached Storage [43].
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more processing power would be easy to access as the demand for it increased
based on the dataset size.
Our research did not look at the differences when one tries to group packed and
unpacked files. We focused on the pure analysis of the samples regardless if they
were packed or not. An aspect where this impact can be theorized was through
the use of common packers, such as UPX. When samples from both classes can be
observed using the same packer it may lead to more misclassification. In turn the
use of less common packers can be an indication of malicious samples by itself. To
further review the impact that packed and unpacked files have on the ability to
classify and perform triage it would be beneficial to detect and split the datasets
based on the type of sample it is; packed or unpacked. By doing this one would
be able to collect information about the differences that may occur. Analysis of
unpacked samples would be the most ideal for our classifier, as packers would
impact the accuracy of the classifier and may lead to an increased number of false
positives.
Further segmentation of the features may be an area to explore further, as our
results did not indicate a strong relationship between different combinations of
features and the elapsed times. We believe that segmenting the data even further
may lead to better classification and triage results as samples and data are given
a richer context. One would also be able to better determine the features that are
more significant compared to others. We only dealt with three main groups from
two header types. More research into this area would be needed to determine
whether this would be a possibility or not based on our existing approach.
Verification of the results we gathered has been mentioned numerous times through-
out this thesis. As such we find this to be a natural continuation of the work and
effort that has been put into this research. The results themselves may be decent,
but they may also be unreliable. Further efforts into the verification of the results,
potentially through testing with cross-validation, would be beneficial to this pro-
cess. At this current time a lot of statements are left up in the air as the results
lack sufficient validation, at least in the researcher’s opinion. With the ability to
further validate or disprove the results that have been obtained one would be able
to gain a better understanding of how well this approach may or may not function
in its intended use case.
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Appendix A

Code listings

Code listing A.1: Dependencies in the code base.

import os
import pandas as pd
import pefile
import richheader
# doc:https://github.com/CIRCL/PyRichHeader/blob/master/richheader/richheader.py
import numpy as np
import time
from collections import Counter
from numpy import arange

Code listing A.2: Code that was used to extract the features.

# Returns the features and their data in 2 lists. Feature / Data pairs are
# matched by their index in the lists
def get_header_data(header):

# Iterates each header type related to a file and returns a filled list

# Removes the structure tag (header type)
del header[’Structure’]

keys_dict = list(header.keys())
values_dict = list(header.values())

i = 0 # iterator

# Initialize empty list of lists
# len() of keys and values will always match
# data = [[] for _ in range(len(keys_dict))]
columns = []
values = []

# Fills a list with pairs of keys() and values()
while i < len(keys_dict):

# data[i].append(keys_dict[i])
# data[i].append(values_dict[i].get(’Value’))

columns.append(keys_dict[i])
values.append(values_dict[i].get(’Value’))
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i += 1

return columns, values

# Returns a item based on the directory name that is given
def handle_directory(dir_name):

c_dir = f’data/{dir_name}/’ # directory where files are
try:

dir_files = os.listdir(c_dir) # files in the directory
idx, data, df = create_item(dir_files, c_dir) # creates new item based on

# files in directory
except:

print(f’Error:␣Directory␣{dir_name}␣not␣found,␣exiting...’)
exit()

return idx, data, df

# Iterates through a dataset and creates two lists. The first contains index values
# and the second contains data
def create_item(files, data_dir):

pe_header_data = []
cont = True # variable to make sure that the columns are only added to

# pe_header_data once, important!
files_dropped = []

# Iterates each file in the directory
for f in files:

try:
cur_file = FileAnalyzer(f, data_dir)

# Build a list containing PE header data of all files being analyzed
while cont:

pe_header_idx = cur_file.header_data_columns # append columns
# only once

cont = False

pe_header_data.append(cur_file.header_data_values)

except:
# Files that do not have a valid header will not be added to the
# dataframe
files_dropped.append(cur_file.file_name)
continue

if files_dropped:
print(’The␣following␣files␣have␣invalid␣PE␣headers␣and␣are␣not␣included

␣␣␣␣␣␣␣␣in␣the␣analysis:’)
print(files_dropped)
print(f’#␣of␣files␣dropped:␣{len(files_dropped)}\n’)

df = fill_dataframe(pe_header_idx, pe_header_data)

del pe_header_data[0] # first element in list somehow are the indexes, remove.

return pe_header_idx, pe_header_data, df

Code listing A.3: Code that was used in feature handling.
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# Returns all features related to a file, including the PE header, Section names
# and Rich header
def feature_handling(idx, data, df):

features = []
tmp_section_list = []
tmp_rich_list = []
# average = True
thresh_feature_freq = 0.01 # only include {index, value} pairs with a

# frequency above the given threshold

for file in data: # iterate each file
i = 0
for index in idx: # iterate based on length of index, used to handle idx,

# data pair
# Handles section names
if index == ’section_names’:

for e in file[i]:
tmp_section_list.append(e)

# Handles the rich header
elif index == ’rich_header’:

for e in file[i]:
if type(e) == str: # checks if the value is ’None’

tmp_rich_list.append(file[i]) # add the string
else:

tmp_rich_list.append(e[0]) # only takes compids, not how
# many times it occurs for that
# file

i += 1

# Count how many times a specific element occurs
section_cnt = Counter(tmp_section_list)
rich_cnt = Counter(tmp_rich_list)
# Convert the Counter into a list of lists containing (string, # occurred)
section_list = [list(i) for i in section_cnt.items()]
rich_list = [list(i) for i in rich_cnt.items()]

features = find_features(df, False)

# Add the section names and rich header to the feature list
features.append(section_list)
features.append(rich_list)

return features

# Returns a list of PE header features and their frequency in the dataset
def find_features(df, average):

features = []
for col_name, col_data in df.iteritems():

if average:
tmp = df[col_name].value_counts(normalize=True).nlargest(n=1)

else:
tmp = df[col_name].value_counts(normalize=True)

for col_val, freq in tmp.items():
# Add all features except section names and rich header - these are
# handled independently
if col_name != ’section_names’ and col_name != ’rich_header’:

features.append([col_name, col_val, freq])
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return features

Code listing A.4: Class that was used to analyze a given file.

class FileAnalyzer:
def __init__(self, file, data_dir):

self.file_name = file
self.file_loc = data_dir + file
self._get_pe_header()
self._get_rich_header()
self._header_handler()

# Initializes the PE header
def _get_pe_header(self):

# fast_load prevents parsing the directories, which are uninteresting for
# analysis
self.pe_header = pefile.PE(self.file_loc, fast_load=True)

# Initializes the Rich header
def _get_rich_header(self):

try: # if rich header exists
self.rich_header = richheader.RichHeader()
self.rich_header.parse_path(self.file_loc)

except: # else
self.rich_header.valid_checksum = False
self.rich_header.compids = None

# Initializes the header data
def _header_handler(self):

f_dos_header = list(get_header_data(self.pe_header.DOS_HEADER.dump_dict()))
f_nt_header = list(get_header_data(self.pe_header.NT_HEADERS.dump_dict()))
f_file_header =
list(get_header_data(self.pe_header.FILE_HEADER.dump_dict()))
f_optional_header =
list(get_header_data(self.pe_header.OPTIONAL_HEADER.dump_dict()))

i = 0 # counter to remove items based on index

# Iterates through each item in the optional header and looks for two
# specific fields. If they are found they are dropped from both the
# columns and values of the header. These are two fields that occur
# occasionally for some executables, for simplicity in the implementation
# I have chosen to drop these as trying to work around them has lead
# to a lot of unnecessary time being wasted...
for item in f_optional_header[0]:

if item == ’Reserved1’:
f_optional_header[0].pop(i) # columns
f_optional_header[1].pop(i) # values

if item == ’BaseOfData’:
f_optional_header[0].pop(i) # columns
f_optional_header[1].pop(i) # values

i += 1

section_names = []
section_names_column = [’section_names’]

for section in self.pe_header.sections:
section_names.append(section.Name)

# Converts the section names to a str type so it can be added to the
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# dataframe
str_section_names = str(section_names)
# Removes spaces, additional formatting and the byte notation.
# Returns a comma separated string.
str_section_names = str_section_names.replace(’\\x00’, ’’)
str_section_names = str_section_names.replace(’␣’, ’’)
str_section_names = str_section_names.replace("b’", ’’)
str_section_names = str_section_names.replace("’", ’’)
str_section_names = str_section_names.replace("[", ’’)
str_section_names = str_section_names.replace("]", ’’)

section_names = [str_section_names.split(’,’)]

# Concatenate lists to create two lists, representing the column indices
# and their values
self.header_data_columns = f_dos_header[0] + f_nt_header[0] +
f_file_header[0] + f_optional_header[0] + section_names_column
self.header_data_values = f_dos_header[1] + f_nt_header[1] +
f_file_header[1] + f_optional_header[1] + section_names

# Makes the row index available from the start of each list
self.header_data_columns.insert(0, ’r_index’)
self.header_data_values.insert(0, self.file_name)

# Starts adding rich header data to the list
self.header_data_columns.append(’rich_head_valid’)
self.header_data_values.append(self.rich_header.valid_checksum)

self.header_data_columns.append(’rich_header’)
if self.rich_header.valid_checksum:

rich_header_data = []
for k, v in self.rich_header.compids.items():

tmp = [k, v]
rich_header_data.append(tmp)

else:
rich_header_data = ’None’

self.header_data_values.append(rich_header_data)

Code listing A.5: Code that was used to analyze the testing dataset.

def process_unknown_df(df, idx):

m_counter = 0 # unknown files classed as malware
b_counter = 0 # unknown files classed as benign

analyzed_files = [] # fills list with information about files that have been
# analyzed

# Iterate each file (row) in the dataframe
for f_name, data in df.iterrows():

random_count = 0

index_count = 1 # used to iterate through the indexes of features. Start
# at 1 to skip r_index (file name)

benign_occ = 0 # counts number of times a feature occurs in the benign
# dataset

feature_app = 0 # number of features that are identified
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unkn_features = [] # contains all the features of the current file
unkn_section_n = [] # contains section names of current file
unkn_rich_h = [] # list of lists containing rich header compids and their

# occurrence for the current file
section_n_found = [] # section names found in both benign base and current

# file
compid_found = [] # compids found in both benign base and current file
compid_not_found = [] # compids from current file not found in benign base
freq_dist_app = [0, 0, 0, 0, 0] # stores the frequency "type" of the

# features, 0-0.2, 0.2-0.4, 0.4-0.6,
# 0.6-0.8, 0.8-1.0

for e in data:
unkn_features.append([idx[index_count], e])
index_count += 1

for feature in benign:
for item in unkn_features:

# if the column names and their values match i.e.
# how many times the given column and value has appeared in benign
# samples
if item[0] == feature[0] and item[1] == feature[1]:

benign_occ += feature[2] # increases based on frequency of
# value in benign dataset

feature_app += 1 # increases for each feature that is
# identified

for counter in arange(0.2, 1.1, 0.2): # iterates to 1.1 in
# increments of 0.2

if counter == 0.2 and (counter - 0.2) <= feature[2] <=
counter:

# print(f’Weak strength for {feature[0]}, benign
# frequency {feature[2]}’)
freq_dist_app[0] += 1
break

elif counter == 0.4 and (counter - 0.2) <= feature[2] <=
counter:

# print(f’Weak/Med strength for {feature[0]}, benign
# frequency {feature[2]}’)
freq_dist_app[1] += 1
break

elif counter == 0.6 and (counter - 0.2) <= feature[2] <=
counter:

# print(f’Med strength for {feature[0]}, benign
# frequency {feature[2]}’)
freq_dist_app[2] += 1
break

elif counter == 0.8 and (counter - 0.2) <= feature[2] <=
counter:

# print(f’Med/High strength for {feature[0]},
# benign frequency {feature[2]}’)
freq_dist_app[3] += 1
break

elif counter == 1.0 and (counter - 0.2) <= feature[2] <=
counter:

# print(f’High strength for {feature[0]}, benign
# frequency {feature[2]}’)
freq_dist_app[4] += 1
break

for i in unkn_features:
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# Handles section names
if i[0] == ’section_names’:

unkn_section_n = i[1] # fills a list with section name features
# Handles rich header
elif i[0] == ’rich_header’ and i[1] == ’None’:

unkn_rich_h = [[’None’]] # ensures that None is returned as a list
# not a string

elif i[0] == ’rich_header’:
unkn_rich_h = i[1] # fills a list with rich header features

for ben_e in ben_section_n:
for unkn_e in unkn_section_n:

if unkn_e == ben_e[0]: # if section name is found in benign and
# current file

# print(f’Section name {mal_e}, frequency in benign set:
# {ben_e[1]}’)
section_n_found.append(unkn_e) # add to found

# names that were not found
section_n_not_found = np.setdiff1d(unkn_section_n, section_n_found)

# print(f’Unknown section names found: {len(not_found)}’)
section_n_ratio = len(section_n_not_found) / (len(section_n_found) +
len(section_n_not_found))
# print(f’Unknown to Benign ratio: {section_n_ratio}’)

# Look for matching compids between benign set and incoming file
for ben_compid in ben_rich_h:

for unkn_compid in unkn_rich_h:
if ben_compid[0] == unkn_compid[0]: # if compids match

compid_found.append(unkn_compid)

for i in unkn_rich_h:
if compid_found: # if any matching rich header compids are found

for j in compid_found: # iterate found list
if i[0] != j[0]: # each feature that is not in the found list

# is added to "not found"
compid_not_found.append(i)

else: # if no matches are found all compids are marked as "not found"
compid_not_found = unkn_rich_h

# Calculate the ratio of "not found" features
compid_ratio = len(compid_not_found) / (len(compid_found) +
len(compid_not_found))

# print(f’Rich header compids also found in benign {compid_found}’)
# print(f’Unknown rich header compids found: {len(compid_not_found)}’)
# print(f’Unknown to Benign ratio: {compid_ratio}’)

# print(f’Feature distribution (weighted): {freq_dist_app}’)

f_class_obj = Classify(freq_dist_app, section_n_ratio, compid_ratio)

f_class = f_class_obj.all_features(0, 0.5)
class_header = f_class_obj.feature_freq()
class_section = f_class_obj.section_names(0.5)
class_compid = f_class_obj.compids(0.5)

if f_class == ’Malicious’:
m_counter += 1
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else:
b_counter += 1

analyzed_files.append([f_name, freq_dist_app, compid_ratio, section_n_ratio,
class_header, class_compid, class_section, f_class])

analyzed_files_idx = [’file_name’, ’feature_frequency_base_vs_unknown’,
’unknown_compid_ratio’, ’unknown_section_n_ratio’,
’class_header’, ’class_compids’,
’class_section_names’, ’classification’]

return m_counter, b_counter, analyzed_files, analyzed_files_idx

Code listing A.6: Class that was used to classify samples.

class Classify:
def __init__(self, freq_dist_app, section_n_ratio, compid_ratio):

self._add_weighting_freq(freq_dist_app)
# self.freq_dp = freq_dist_app
self.section_nr = section_n_ratio
self.compid_r = compid_ratio

def _add_weighting_freq(self, freq_dp):
i = 0

while i < len(freq_dp):
freq_dp[i] = freq_dp[i]/(i+1)
i += 1

self.freq_dp = freq_dp

def feature_freq(self):
# Only uses index 0 and 4 as there are very few entries in the indexes
# between
if self.freq_dp[0] > self.freq_dp[4]:

return ’Malicious’
else:

return ’Benign’

def section_names(self, t):
if self.section_nr > t:

return ’Malicious’
else:

return ’Benign’

def compids(self, t):
if self.compid_r > t:

return ’Malicious’
else:

return ’Benign’

def all_features(self, t_section, t_compid):
if self.freq_dp[0] > self.freq_dp[4] and self.section_nr > t_section
and self.compid_r > t_compid:

return ’Malicious’
else:

return ’Benign’

Code listing A.7: Code that was used to provide information surrounding the
datasets that currently were in use.
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def analyze_files_in_dir(b_df, df, idx, dataset_name):

print(f’Dataset:␣{dataset_name}’)
print(f’Data␣distribution:␣Malicious_NTNU␣({len(b_df)})␣and␣Malicious_NLL

␣␣␣␣({len(df)})’)

mal_counter, ben_counter, analyzed_f, analyzed_f_idx =
process_unknown_df(df, idx)

mal_class_rate = mal_counter / (mal_counter + ben_counter)
ben_class_rate = 1 - mal_class_rate

print(f’Malicious␣files:␣{mal_counter},␣Benign␣files␣{ben_counter}’)
print(f’Malicious␣classification␣rate:␣{mal_class_rate}’)
print(f’Benign␣classification␣rate:␣{ben_class_rate}\n’)

# analyzed_df = fill_dataframe(analyzed_f_idx, analyzed_f)
# analyzed_df.to_csv(f’{dataset_name}.csv’)

Code listing A.8: Code that was used to fill dataframes with the correct indexes
and data.

# Creates a dataframe based on index values (features) and their data
def fill_dataframe(idx, data):

# Creates a dataframe

data.insert(0, idx) # combines the lists, purpose: column creation

df = pd.DataFrame(data, columns=idx)

# Sets the filename as the row index
df = df.set_index(idx[0])
# Removes the row containing row index and column indexes after they have been
# added (not needed)
df = df.drop([idx[0]])
# Sorts by filename
df = df.sort_values(by=[idx[0]])

# Stores dataframe as a CSV file
df.to_csv(’output.csv’)

return df

Code listing A.9: Example of how the main part of the code could look like.

if __name__ == ’__main__’:
start = time.perf_counter() # time at start

benign_directory = ’/samples/benign’
malware_directory = ’/samples/malicious’

ntnu_ben_idx, ntnu_ben_data, ntnu_ben_df = handle_directory(benign_directory)
ntnu_mal_idx, ntnu_mal_data, ntnu_mal_df = handle_directory(malware_directory)

benign = feature_handling(ntnu_ben_idx, ntnu_ben_data, ntnu_ben_df)
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ben_section_n = []
ben_rich_h = []
keeper_tracker = True

for feature in benign:
# Start handling the section names and rich header - they are stored as
# a list within the feature list
if type(feature[0]) == list: # first e is section names, second is

# rich headers
if keeper_tracker:

ben_section_n = feature
keeper_tracker = False

else:
ben_rich_h = feature

analyze_files_in_dir(ntnu_ben_df, ntnu_mal_df, ntnu_mal_idx,
’ntnu␣&␣norton␣lifelock’)

end = time.perf_counter() # time when complete
elapsed_time = end - start
print(f’\nElapsed␣time:␣{elapsed_time}’)
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Complete feature list

The index of each sample was based on the file name as this would be the best
way to identify the files. The PE header builds on all features from the headers
that were specified in section 3.2. Section names is considered to be based on
one feature: a list of section names. The rich header uses two features. A binary
verification to indicate whether the file actually has a rich header, and a following
list of compiler IDs if the rich header is valid.

Table B.1: Attributes that were gathered and used to represent each sample that
was analyzed.

Index PE header Section names Rich header
file name e_magic section names (list) rich_header_valid

e_cblp comp_ids (list)
e_cp
e_crlc
e_cparhdr
e_minalloc
e_maxalloc
e_ss
e_sp
e_csum
e_ip
e_cs
e_lfarlc
e_ovno
e_res
e_oemid
e_oeminfo
e_res2
e_lfanew
Signature
Machine
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Table B.1 continued from previous page
Index PE header Section names Rich header

NumberOfSections
TimeDateStamp
PointerToSymbolTable
NumberOfSymbols
SizeOfOptionalHeader
Characteristics
Magic
MajorLinkerVersion
MinorLinkerVersion
SizeOfCode
SizeOfInitializedData
SizeOfUninitializedData
AddressOfEntryPoint
BaseOfCode
ImageBase
SectionAlignment
FileAlignment
MajorOperatingSystemVersion
MinorOperatingSystemVersion
MajorImageVersion
MinorImageVersion
MajorSubsystemVersion
MinorSubsystemVersion
SizeOfImage
SizeOfHeaders
CheckSum
Subsystem
DllCharacteristics
SizeOfStackReserve
SizeOfStackCommit
SizeOfHeapReserve
SizeOfHeapCommit
LoaderFlags
NumberOfRvaAndSizes
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