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Abstract

Resent years has seen an increased focus on creating secure software with tools
and frameworks like Microsoft Security Development Life Cycle and OWASP Soft-
ware Maturity Model, but still we see well known and well documented vulner-
abilities like injections, cross site scripting and buffer overflow in lists over most
common vulnerabilities. Writing secure software can therefore be a challenging
task, and research into security vulnerabilities can help to understand and im-
prove software security. Many of these studies focus on the quantitative aspect of
the subject, like vulnerability lifespan, effect of code review coverage on vulner-
abilities, and metrics like commit sizes in vulnerable code. Such studies can be
helpful in gaining insight into general trends of vulnerability evolution or insight
into measures and scoring systems to identify vulnerable code. On the other hand,
they give little insight into what causes the vulnerabilities to emerge and evolve
and is the question we will try to answer in this thesis.

To answer the question about how vulnerabilities emerge and evolve, we study
the vulnerability history in the Libarchive Open-Source Software (OSS) package.
With an exploratory qualitative approach, we analyse artefacts like code updates,
vulnerability reports and discussions related to the vulnerabilities in the OSS pack-
age and identify patterns and phenomena behind the vulnerabilities. We also per-
form an analysis into the Socio-Technical System (STS) surrounding the vulner-
ability handling in the OSS package. Based on our analysis we present a Vulner-
ability Evolution model describing the phenomena behind the vulnerabilities and
the influence of the STS into these phenomena. We also present memory safety
taxonomy describing the types of errors, sinks, and fixes behind the vulnerabilit-
ies. This taxonomy builds on a previous buffer overflow vulnerability taxonomy
by Schuckert et al. [1]. Together the model and the taxonomy serve as tools to
understand how vulnerabilities emerge and evolve and can be used to improve
development process to produce secure code.
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Sammendrag

I løpet av de siste årene har vi sett et økt fokus på utvikling av sikker program-
vare med rammeverk og verktøy som Microsoft Security Development Life Cycle
og OWASP Software Maturity Model, men fortsatt ser vi kjente og godt doku-
menterte sårbarheter som injections, cross site scripting og buffer overflows i lister
over de mest vanlige sårbarhetene. Det å skrive sikker kildekode kan derfor være
en utfordring og studier rundt sårbarheter i kildekode kan derfor være til hjelp for
å forstå og forbedre programvare sikkerhet. Mange slike studier setter søkelys på
det kvantitative aspektet rundt programvaresikkerhet, som for eksempel levetiden
til sårbarheter, effekten av kodegjennomgang på sårbarheter, eller målinger som
størrelsen på kodeendringer i sårbar kode. Slike studier kan gi innsikt i generelle
trender rundt programvaresårbarheter eller innsikt inn i hvordan sårbarheter kan
måles i kildekode. På den andre siden gir slike studier liten forståelse for hvordan
sårbarheter oppstår og utvikler seg, og dette spørsmålet er teamet for dette pros-
jektet.

For å svare på spørsmålet om hvordan sårbarheter oppstår og utvikler seg i
kildekode vill gi gjøre en studie av sårbarhetshistorikken i det åpne kildekode
prosjektet Libarchive. Med en undersøkende og kvalitativ tilnærming analyserer
vi artefakter rundt sårbarhetene i kildekoden, som kodeoppdateringer, sårbarhet-
srapporter og diskusjoner. Ut ifra denne analysen vill vi identifisere mønstre og
fenomener rundt sårbarhetene. I tillegg vil vi også gjøre en analyse av det Sosio-
Tekniske systemet rundt sårbarhetshåndtering i prosjektet. Basert på disse ana-
lysene presenter vi en sårbarhetsmodell som beskrive fenomenene rund kodesårbar-
heter og hvordan det Sosio-Tekniske systemet spiller inn i disse fenomenene.
Vi presenterer også en taksonomi for minnerelaterte sårbarheter, med type feil,
steder for feil og rettelser av feil for denne typen sårbarheter. Denen taksonomien
bygger på en tidliger buffer overflow taksonomi av Schuckert et al. [1]. Sammen
gir modellen og taksonomien økt forståelse for hvordan sårbarheter oppstår og
utvikler seg i kildekode og kan benyttes som verktøy for å forbedre utviklings-
prosessen og sikkerheten i kildekode.
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Chapter 1

Introduction

1.1 Topic covered by the thesis

Though there has been an increased focus on creating secure software over the last
years, with tools and frameworks like Microsoft Security Development Life Cycle
[3] and OWASP Software Assurance Maturity Module (SAMM) [4], vulnerable
software continues to be a problem. Looking at lists like OWASP Top Ten [5] and
CWE Top 25 [6] we still find well know and well documented vulnerabilities like
injections, cross site scripting and buffer overflow.

In software development we also see that vulnerabilities often are introduced
during code maintenance, that existing vulnerabilities often are missed, and that
implemented defence against vulnerabilities often are incomplete [7]. One ex-
ample is the OpenSSL Heartbleed vulnerability [8], which due to missing input
validation allowed reading of protected memory of the vulnerable versions of Op-
neSSL. The vulnerability was introduced in 2012 and not fixed until 2014 [8].
Another example, also due to improper input validation, is the Shellshock vulner-
ability in Bash shell, which allowed custom code execution [7]. A fix was released
on disclosure in 2014, but five further vulnerabilities and fixes followed before
the issue was fixed [7].

As these examples shows, writing secure software is a challenging task, and re-
search into security vulnerabilities can help us understand and improve software
security and reduce the risk of exploitation. One approach when studying secur-
ity vulnerabilities is to develop measures, scoring systems and categorisation of
vulnerabilities that can give insight into general trends of vulnerability evolution
and help to classify vulnerable source code. This can be helpful in preventing vul-
nerable software reach production systems or identify vulnerabilities already in
production, but it does not help in understanding how vulnerabilities emerge and
how they can be prevented form happen in the first place. This will be the focus
of this thesis project, and with an exploratory qualitative approach we will study
the vulnerability history in the Libarchive Open-Source Software (OSS) package
to explore the question of how vulnerabilities emerge and evolve in code.
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1.2 Keywords

Vulnerability, Open-Source Software, Socio-Technical System, Exploratory Study

1.3 Problem description

Many studies into security vulnerabilities focus on the quantitative aspect of the
subject. This can be the number of vulnerabilities discovered after the software
package end-of-life and number of vulnerabilities inherited from previous versions
of the software packaged [9], the relationship between bugs and vulnerabilities
[10], the effect on code review coverage on vulnerabilities [11] or metrics such as
size of commits via code churns in vulnerable source code files [12]. Such studies
can be helpful in gaining insight into general trends of vulnerability evolution or
insight into useful measures and scoring system used to identify vulnerable source
code. On the other hand, they give little insight into what cause vulnerabilities to
emerge. The target of this project is to investigate this problem and try to find
answers to what cause vulnerabilities to emerge, how they evolve and how they
can be avoided in the future. In answering this question, the study will consider
both social and technical aspects related to how vulnerabilities emerge and evolve.

1.4 Justification, motivation and benefits

With knowledge into how vulnerabilities emerge and evolve in a software project,
changes can be made to the Software Development Life Cycle (SDLC) to prevent
the vulnerabilities from occurring in the first place. Secure software can be de-
veloped from the beginning and resources used to identify and fix vulnerabilities
can be put to better use elsewhere.

1.5 Research questions

This thesis will try to answer the following question:

• How does vulnerabilities emerge and evolve in an OSS package?

To help answer this question we will answer the following sub-questions:

• What insight into vulnerability evolution can be gained by studying artefacts,
including software components, attacks and changes to the component due to
the attack, and reporting and other dialogues surrounding the vulnerabilities,
related to the vulnerabilities?
• What code patterns do we find behind the types of errors causing vulnerabilities

and the fixes to these?
• What phenomena can explain the emergence of vulnerabilities?
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• What insight into vulnerability evolution can be gained by analysing the Socio-
Technical System (STS) surrounding the vulnerability handling in the OSS
project?

1.6 Contributions

In this thesis project we have studied the vulnerability history in the Libarchive
OSS package. By gathering observations on artefacts related to the vulnerabilities,
including code changes, vulnerabilities reports and dialogues around the vulner-
abilities, we have gained insight into the phenomena surrounding the evolution of
vulnerabilities. From this knowledge we will present the following contributions:

• A model of the phenomena and the socio-technical system surrounding the
emergence and evolution of vulnerabilities in a OSS package.
• A memory safety taxonomy presenting types of errors, sinks and type of

fixes to memory vulnerabilities. This taxonomy builds on a previous buffer
overflow taxonomy developed by Schuckert et al. [1].

1.7 Thesis outline

The thesis consists of six main chapters as follows:

• Chapter 1 gives the introduction to the thesis project and research questions
we will answer.
• Chapter 2 gives background information into to the thesis topic and present

related work and an introduction into the Libarchive Open-Source Software
(OSS) package.
• Chapter 3 present the choice of methods used in the making of this thesis.
• Chapter 4 present the results from our study into the vulnerability history

in Libarchive.
• Chapter 5 present our developed vulnerability model and discuss the result.
• Chapter 6 gives the conclusion and proposal for further work.





Chapter 2

Background and related work

This chapter contains background information and related work to the research
questions presented in Chapter 1. Section 2.1 present a survey into studies re-
lated to software security vulnerabilities. In Section 2.2 we give an introduction
into vulnerability scoring used to categorise and prioritise vulnerabilities. Last, in
Section 2.3 we give a short introduction into Libarchive, the OSS package studied
in this thesis project.

2.1 Related work

This thesis focuses on the question of how security vulnerabilities emerge and
evolve in an open source software package and answering the question through
observations of artefacts related to vulnerabilities in the software package. Study-
ing vulnerabilities can help us to better understand and improve software security,
and vulnerability studies is an extensive research field. In contrast to this thesis
however, many of the existing studies focus on a quantitative approach trying
to provide measures of the health of software security, vulnerability trends, etc.
Other studies describe source code patterns of vulnerability categories like SQL
injection and cross site scripting, and there are also studies into the effect of se-
curity knowledge of developers and developers ability to fully understand the se-
curity implications in all parts of a software project. All this gives insight into the
question of how vulnerabilities emerge and evolve, and a survey of these studies
follows in this section. The survey builds the literature review started during the
work on our project plan report.

2.1.1 Vulnerability measures and metrics

In their paper, Ozment and Schechter [13] examined the code base of the OpenBSD
operating system to determine if security is increasing over time. They found that
62% of the vulnerabilities reported during the time of the study was introduced
prior to the first version of OpenBSD included in the study, version 2.3 (referred
to as foundational vulnerabilities). This is explained by legacy code constituting

5
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a large part of the total code base. In version 3.7 of OpenBSD, 61% of the code
base is foundational, meaning that it was introduced in, and has been unchanged
since, or prior to version 2.3 released 7.5 years earlier. The study also found the
median lifetime of a vulnerability to be 2.6 years. The median lifetime was calcu-
lated as the time elapsed between the release of a version and death of half of the
vulnerabilities in that version. Last, the study also found a decrease in reported
vulnerabilities from 0.051 per day at the start of the study to 0.024 at the end
[13]. An argument from this is that software grows more secure over time, with
fewer reported vulnerabilities and large part of the vulnerabilities originated in
legacy (foundational) code. But there is also an interesting point that vulnerabil-
ities are introduced early in the software lifetime and tends to live on for a long
time.

The findings from [13] is partly confirmed by Massacci et al. [9]. Examining
vulnerabilities in the Firefox web browser from version 1.0 to version 3.6 they
found a significant statistical difference between local vulnerabilities (found and
fixed in same version) and inherited vulnerabilities (discovered in this version
but applicable to previous versions) or foundational vulnerabilities (originated in
version 1.0). Foundational vulnerabilities are found to be significantly more than
they should be, and inherited ones less than they should be. As in [13], this can be
explained by legacy code, or slow code evolution. 40% of the code base in version
3.6 originated from version 1.0. The study also found that many vulnerabilities
are discovered after end-of-life of a Firefox version (after-life vulnerabilities). The
after-life vulnerabilities accounted for at least 30% for version 1.0 of Firefox [9].
There is a difference in the definition of foundational vulnerabilities between [13]
and [9], where [13] define this as vulnerabilities that existed at the start of the
study while the definition in [13] is vulnerabilities introduced in version 1.0. But
again, we see that vulnerabilities are introduced early in the life of the software
tends to live on for a long time, possibly explained by the influence of legacy code
[9].

Shin et al. [14] examined if software metrics obtained from source code and
development history are discriminative and predictive of vulnerable code loca-
tions. The examined metrics are code complexity, code churn and developer activ-
ity, and the goal was to guide security inspection by predicting vulnerable files
through these metrics. The code churn metrics is a measure of the number of
check-ins and amount of code changes during development. Performing a case
study on the Firefox web browser and Red Hat Enterprise Linux Kernel they found
discriminating power of at least 24 of 28 metrics for both of the projects. In the
code complexity category 14 different metrics was used related to internal com-
plexity in a file, coupling between files and density of comments. Complex files
can be difficult to understand, test and maintain and therefore more vulnerable.
Highly coupled code will have more input from external source code or use in-
terfaces to external modules, that can be either difficult to trace or implemented
wrongly to cause vulnerability. Low comment density in a file can tell if a novice
developer contributed to a file, or if the code was developed in a hurry. Both can
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be indications of vulnerabilities in the code. In the code churn category, three met-
rics were used. These metrics were the total number of changes (check-ins) for a
file, the total number of changed code lines since creation and the total number
of new lines added since creation. Each change to a file brings risk of introducing
a new vulnerability and the metrics counts different changes to a source code file.
The developer activity category consists of 10 different metrics, divided into de-
veloper network centrality, developer network cluster and contribution network.
A central developer will have better understanding of the source code and cod-
ing practice and thus contributing to fewer vulnerabilities than non-central de-
velopers. A cluster of developers might not communicate about software security
and vulnerable source code files might be more likely to be changed by multiple
separate developer clusters than neutral files. A file changed by many developers
that also has changed many other files has an unfocused contribution and might
be more likely to be vulnerable than a neutral file. Metrics in all categories proved
discriminating powers in both case studies. The historic metrics of code churn
and developer activity showed better prediction performance than the complex-
ity metrics [14]. In other words, we see that the number of changes to file and
who contributed to these changes can tell if a file is vulnerable. More changes, by
many different developers or different clusters of developers can be more vulner-
able than other files. Code complexity can also contribute vulnerabilities.

Similar vulnerability metrics are explored by Meneely et al. [12]. Analysing
vulnerabilities in the Apache HTTP Server project they explored the size, interact-
ive churn, and community dissemination of vulnerability-contributing commits.
The size of the commit is calculated as either an absolute number changed lines
to a source code file, the number of changes relative to the total number lines of
code after the commit or the sum of code churn to the file 30 days prior to the
commit. The interactive code churn metrics measures if vulnerable-contributing
commits are associated with churns that affects other developers and if such com-
mits are related to new committers to the code. Community dissemination are
measures of how long a vulnerability remains in the system, how often they are
part of original source code import, how often they occur in files already patched
for different vulnerabilities and if they are likely to be noted in change logs and
status files [12]. The result from the study partly confirms findings from [14]. The
vulnerability-contributing commits were on average 608.5 lines of churns to 42.2
on non-vulnerable commits. A vulnerability-contributing commit is also on aver-
age affected by 1.78 authors to 1.01 on non-vulnerable commits, and 41.9% of the
vulnerable-contributing commits was changed by new contributing authors [12].
So, large commits, many contributing authors and new authors can be indicators
of vulnerable source code files. Looking at the community dissemination meas-
ures, the median number of days from a vulnerability-contributing commit to fix
was 853 days. 13.5% of the vulnerability-contributing commits were in original
source code and 26.6% was in known vulnerable files. 48.6% the vulnerability-
contributing commits were mentioned in change logs and status files [12]. The
length of the existence of vulnerabilities confirms the findings in [13] and [9],
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but the findings in this study does not find original source code to be the main
contributor to vulnerabilities. Instead, vulnerabilities looks to be the result of evol-
ution of the project, though the study does not look at the influence of legacy code
to the vulnerabilities [12]. That under 50% of the vulnerabilities are mentioned
in change logs and status files can be an interesting point to explore in this project
when exploring how vulnerabilities occur in a project.

Another vulnerability metrics is the effect of code reviews which is explored
by Thompson and Wagner [11]. Working on a data set gathered from GitHub
consisting of 3126 projects in 143 languages, with 489,038 issues and 382,771
pull requests, they found that the code review coverage had a significant impact
on software security using a combination of quantification techniques and regres-
sion modelling. Researching the effect of code review coverage on reported issues
in general and security related issues in particular, the study found a small but
significant relationship between number of unreviewed pull requests and the log
number of both reported issues in general and reported security issues. The study
also found a small but significant relationship between the log mean number of
review comments per pull requests and the number of issues in a project. Projects
with higher number of review comments per pull requests tends to have fewer
issues. However, the same relationship was not found between number of code
review comments and security related issues. In other words, code reviews appear
to reduce the number bugs in general and number of security issues or vulnerab-
ilities in particular [11]. The code review practice and the effect of this could
therefore be one area of interest in this project when studying artefacts related to
vulnerabilities in a open source project.

The question of how the number of vulnerabilities in a software package
evolve over time is explored in [15] and [16]. In their paper, Mitropoulos et
al. [15] used FindBugs on every version of the Maven repository. Across projects
they found no significant increase or decrease in in security issues over time, and
they also found that the average lifetime of a security issue was between two and
three versions. Another finding is a significant, but not always strong, correlation
between categories of bugs, meaning that you do not find only certain categor-
ies of bugs in a project [15]. In [16], Edwards and Chen [16] examined historic
releases of Sendmail, Postfix, Apache HTTP and OpenSSL using static source ana-
lysis and entry rate in the Common Vulnerabilities and Exposures (CVE) diction-
ary. They found a statistically significant correlation between the number security
issues identified by the analyser and the number of occurrences in CVE. Though
the rate of CVE entries in general started to drop three to five years after initial re-
lease, analysis of the issues reported by the static analyser showed that software
quality not always improved with new releases. Large amount of code changes
can decrease quality [16].

Munaiah et al. [10] studies the connection between vulnerabilities and soft-
ware bugs through an analysis of the Chromium project. On the question if a
source code file previously fixed for bugs is likely to be fixed for future vulnerab-
ilities, they found a statistically significant correlation between post-release bugs
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and pre-release vulnerabilities in source code files. On the other hand, there was
also many counterexamples to this leading to a week overall association. They
also found a week association between bugs and vulnerabilities, leading to a lim-
ited ability for bugs in a source code file to predict or indicate vulnerabilities in
the file. Also, none of the source code files with highest bug density was in the files
with highest vulnerability density, and source code files with the most severe vul-
nerabilities did not have a corresponding increase in number of bugs. The study
also tested code review as a vulnerability prediction metric. On the question if a
source code file reviewed by more bug review experienced developers had fewer
vulnerabilities, they found limited effect of the on the occurrence of future vul-
nerabilities [10].

From these studies we see that vulnerabilities tends to live in a system for
longer period of time, and that they to some extent tend to be introduced in initial
releases of the system. The amount of legacy code also influences vulnerabilities in
a software package, but to various degree in the different studies. Changes to code
also introduce changes, and metrics like code complexity code churn proves to
predict vulnerabilities. Other metrics like code reviews and bug counts are weaker
metrics with various results in predicting vulnerable source code files.

2.1.2 Vulnerability prediction model

An area related to vulnerability measures and metrics is vulnerability prediction
models. As described in section 2.1.1, [14] used code complexity, code churn and
developer activity as metrics to predict vulnerable files. The motivation behind
the prediction is to help prioritise which source code files to review in search for
vulnerabilities. The vulnerability measures and metrics are, however, manually
designed features and fails to capture semantic and syntactic features of source
code [17].

Dam et al. [17] uses the deep learning Long Short-Term Memory (LSTM) to
learn semantic and syntactic features in code and the learned features was used
to predict vulnerable source code files. In their approach each source code file
is split into methods with any class declaration treated as a special method, and
the methods is feed into a Long Short Term Memory (LSTM) system to learn a
vector representation of the system. The method vectors are then aggregated into
a single feature vector with syntactic and semantic features. Syntactic features
are local to project and can include method and variable names, while semantic
features are general features across projects. These features are used to build and
train a vulnerability predicting model. The method was evaluated on a dataset
containing the source code from 18 Android application, and compared against
vulnerability prediction using software metrics, Bag-of-Words (BoW) and Deep
Belief Networks. The results show improvement both for within-project prediction
(training and testing on same project) and cross-project prediction (training on
one project, testing on another). In both scenarios, using syntactic and semantic
features, either separate or joint, gave better prediction than the three benchmark
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methods. Interestingly, the software metrics gave lowest performance both for
within-projects and cross-project prediction [17].

In their study, Pang et al. [18] propose a prediction technique combining N-
gram analysis and feature selection algorithm to predict vulnerable source code
components. The features are continuous sequence of tokens containing N-grams
of different size (1-grams like "public", "class", etc. or 2-grams like "public class",
etc.). Feature ranking was used to exclude a large number of features and Support
Vector Machine (SVM) was used as machine learning algorithm. The prediction
method was evaluated on the source code from four Android applications. The
result showed an average accuracy, precision and recall on 92.25%, 95.78% and
87.21% when the technique was applied on the four projects. When applied to
a cross-project scenario the average results are 63.37%, 66.69% and 62.96% for
accuracy, precision and recall. The proposed prediction technique was not bench-
marked against other techniques or features [18]. Again, we see that other fea-
tures than software metrics and measures can give good results in predicting vul-
nerable source code.

As [17] showed, there are differences in the performance between vulnerab-
ility prediction methods, and in [19] Jimenez et al. [19] compared vulnerability
prediction methods using a dataset with all vulnerable Linux components from
2005 to 2016. The three main vulnerability prediction methods that were com-
pared are software metrics, text mining and inclusion and function calls. The soft-
ware metrics method uses features like the one discussed in section 2.1.1, and the
features from [14] was used in this study. The main idea behind the text mining
method used in the study is feature selection without any human interaction. The
source code files are split into token, a vector of unigrams (2-grams) is created
from the tokens, and the frequency of each unigram is calculated. A list of all uni-
grams present in all files are created and feature ranking is used in the feature
selection. Last, random forest is used as machine learning algorithm. Though not
the same, the approach has similarities to [18]. The inclusion and function call
method build on an assumption that vulnerable files share similar sets of imports
and function calls. A feature vector containing imports and function calls for each
file are created and SVM was used as machine learning algorithm. The different
methods were tested in different scenarios looking at the ability to differentiate
between vulnerable and buggy files, the discriminative power in a realistic envir-
onment, and the ability to predict future vulnerability using past data. Overall,
the text mining and inclusion and function calls methods performed better than
the software metrics, tough the software metrics method also performed well in
some scenarios to example using a realistic data set [19]. What is interesting with
regards to this project inclusion and function calls method, which suggest that
there are particular third-party components and API to look for when identifying
vulnerability emergence and evolution.

In another study, Morrison et al. [20] explores the challenges with using vul-
nerability prediction models. They replicated a vulnerability prediction model us-
ing metrics like code complexity, code churn, code coverage and dependency met-
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rics, similar to the metrics discussed in section 2.1.1, and the model was used on
two versions of the Windows Operating System. The vulnerability prediction was
performed both on source file level and on binary level. The binary level predic-
tion gave a precision on 75% and recall on 20%. At the file level the result was
below 50% for precision and below 20% for recall. The challenge is that a binary
can consists of large number of code lines, and a manual inspection of the source
code for the binary is not realistic. On the file level the workload is more realistic,
but with low performance it is still questionable what is gained from the predic-
tion [20]. We have seen that other prediction models can have better performance
than software metrics, but the question of what is gained by predicting vulnerable
files is still valid. For this project, the findings underscore that preventing vulner-
abilities from occurring is important.

2.1.3 Source code patterns and vulnerability categories

Another research area of interest for this thesis project is source code patterns of
vulnerabilities. In [21], [22] and [1], patterns of SQL injection, cross site scripting
and buffer overflows are explored respectively. The papers present taxonomies for
the respective vulnerabilities, and the SQL injection and cross site scripting ana-
lysis is done using open source PHP projects while the buffer overflow analysis
was conducted on the Firefox web browser. The taxonomies give insight into how
the vulnerabilities occur, and for SQL injections and cross site scripting the results
show that missing or improper input sanitisation is a major source for these vul-
nerabilities. Better education and training of developers to increase knowledge
of the vulnerabilities are one suggested solution, but as the results for the buffer
overflow this vulnerability goes beyond critical functions and just learning simple
vulnerabilities are not enough [1, 21, 22].

Another vulnerability category of interest is integer overflows. Many buffer
overflow vulnerabilities are are caused by errors in processing of integers, in par-
ticular determining memory buffer sizes or memory locations. Exploiting these
flaws, an attacker can cause buffer overflows, write to a selected memory loc-
ation or execute arbitrary code [23]. Dietz et al. [24] studies integer overflow
bugs in C and C++ programs. In their study they group the integer overflows into
four categories of intentional and unintentional, well-defined and undefined in-
teger overflows. In C/C++ unsigned integer overflow is defined behaviour, and
intentional use of this behaviour is not vulnerable. Signed integer overflows are
undefined behaviour in C/C++ and intentional and unintentional use of signed
overflows gives design errors and implementation errors respectively. The study
describes these as possible "time bombs", the implementation might work as ex-
pected in given circumstances but give unexpected results in other. Testing for
integer overflow in 1172 of the top 10000 Debian packages the study found that
35% of these packages triggered an integer overflow, and 16% invoked integer
overflows with undefined behaviour [24].

In their paper, Wressnegger et al. [23] specifically studies integer overflow vul-
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nerabilities caused by migration from 32-bit to 64-bit systems. Due to changes in
the width of integers and the larger address space available on 64-bit systems,
codes that securely runs on 32-bit systems might be vulnerable on 64-bit systems.
The study defines five patterns of 64-bit migrations issues where code behaviour
changes between 32 and 64-bit systems. These are new truncation, new signedness
issues, dormant integer overflows, dormant signedness issues and unexpected beha-
viour of library functions. When testing for the different patterns in 198 Debian
packages and the 200 most popular C/C++ GitHub projects, the study found
that the different patterns occurred between 9.58% (dormant integer overflows)
to 68.41% (unexpected behaviour of library functions). In a case study, the paper
also describes two 64-bit migration related vulnerabilities in the Libarchive open
source software package. Libarchive is the software package studied in this thesis
project and is of interest for us [23].

2.1.4 Developer-centred security

The developer’s role in understanding, considering and implementing security
measures is another research area of interest. One example of this is the con-
siderations of coupled code in the complexity metrics from [14]. Highly coupled
code can have input from external source code and integrating external compon-
ents happens through an application programming interface (API). This can to
example be challenging due to constraints and call order and wrong implement-
ation through APIs, API misuse, is known problem in software that can lead to
vulnerabilities to example due to missing parameter validation [25].

In an empirical study of API-misuse bugs by Gu et al. [25], 830 randomly
selected API-misuse bugs from six open source programs was studied. On average
17.05% of all bugfix related commits was API-misuses related, showing that API-
missus are common bugs in code and not corner-cases. The common API-misuse
cases are improper parameter using, improper error handling and improper causal
function calling. APIs abstracts the underlying implementation details, and certain
conditions must hold whenever an API is invoked. If these preconditions, like input
validation, interrelations among input variables or return values, are not meet
API-misuse bugs occur. 14.29% to 19.51% of the API-misuse bugs was caused
by improper parameter using. Improper error handling bugs happens when the
return value from an API is not checked before proceeding. Of all the analysed
API-misuse bugs in the study, improper error handling caused between 19.51% to
34.13%. Improper causal function calling caused between 27-21% and 42.54% of
the API-misuse bugs and occur when the second function in a causal relationship
is not called [25]. Knowing that API-misuse can lead to vulnerabilities, these types
of bugs is of interest when analysing what causes vulnerabilities in this project.

The question of why developer misuse API is addressed by Oliveira et al. [26],
referring to misunderstandings and misuse of APIs as blind spots. A study was con-
ducted where 109 developers from four countries solved programming puzzles in-
volving Java APIs known to contain blind spots. The results show that developers
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are less likely to correctly solve puzzles with blind spots compared to puzzles
without blind spots. Interestingly, the result found no support for developers tech-
nical and professional experience were associated with the ability to detect blind
spots. Programmers generally trusts APIs and given that even security minded de-
velopers might miss vulnerabilities in API functions. The study also found that
API blind spots particularly had an impact on puzzles involving I/O operations
and more complex programming scenarios [26].

A broader perspective on API-misuse and blind spots is examined by Pieczul
and Foley [27]. In their study they analyse what they refer to as the dark side
of the code; the security gap that can exists between expected and actual beha-
viour in a contemporary application consisting of high-level programming lan-
guages, software frameworks and third party components. Through an example
using the Java method WebUtils.snapshot(), creating snapshot image of a given
URL, they show how this method can be exploited to access resources in the local
network where the application is hosted either local webpages or customs files
from the web server file system. This behaviour is not clear from documentation
or source code for WebUtis.snapshot(), and the paper argues that the level of ab-
stractions makes cognitive efforts to anticipate security problems much harder for
developers. The complexity of today’s systems introduces security gaps between
the high-level expected behaviour and the actual low-level behaviour. This in-
creases the likelihood of introducing vulnerabilities. The paper argues for using
runtime verification approach to check actual behaviour against a model of ex-
pected behaviour to check for vulnerabilities [27].

Developer’s blind spots is also further explored by Oliveira et al. [28]. in their
paper investigating the hypothesis that vulnerabilities are blind spots in developer’s
heuristic-based decision-making process [28]. A study was conducted with 47 de-
velopers from various background where the participants were asked to answer
questions about six programming scenarios not knowing that the study was se-
curity related. The results aligned with the hypothesis that security is not part of
the developers heuristics in their normal programming task. With a short work-
ing memory, humans only keep a limited number of elements readily available
at the time, and security seems not to among those elements. Developers tends
to focus on known elements of functionality and performance. There is also an
issue that developers normally assume common cases for inputs in piece of code,
while the vulnerabilities lie in the uncommon cases. To find these cases requires
to see through a complexity of fault analysis, and developers must use a signific-
ant cognitive effort while people normally prefer to use as little effort as possible
to solve a problem. The study also found, as in [26], that developers often trust
code from third party components like APIs. Another finding in the study is that
if primed about the possibility of finding vulnerability, developers could change
their mindset towards security [28].

Pieczul et al. [29] uses the expression symmetry of ignorance when analysing
the problems in contemporary software development with increasing complexity
of software layers and components, and where everyone through an open source
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software project can become a developer. In this environment the developer can-
not be experts in every security aspects of the software components they use, and
the development of secure software becomes a challenge. Through user-centred
security it is acknowledged that end-users are not to blame for bad security in
the computer system, but in today’s world the end-user can also be a developer
consuming a third-party component through an API. The symmetry of ignorance
exists between the developer and the end-user, where the end-user is ignorant of
the implementation while the developer is ignorant of the user domain. In contem-
porary systems this symmetry of ignorance plays out across many stakeholders in
the system. Developers are both producers and consumers of interfaces and thus
both ignorant of how their own interfaces are consumed, while being ignorant
of how interfaces they use are implemented. There are also other stakeholders
beyond the developers and end-users, like system administrators and architects.
Because of this symmetry of ignorance, the paper argue that the user-centred
security should not be limited to just end-users and developers but include all
producers and consumers of interfaces and that we need to recognise that there
is both expertise and ignorance distributed across all stakeholders [29].

Votipka et al. [30] analysed results from 94 project submissions to the Build it,
break it, fix it secure-coding competition. Vulnerabilities in the submissions were
categorised into three categories, No-implementation, Misunderstandings and Mis-
takes. The result showed that No-implementation and Misunderstandings were
more prevalent than Mistakes. No-implementation was used for vulnerabilities
when there was no attempt to implement necessary security mechanisms, Misun-
derstandings was vulnerabilities caused by failed attempts of security implement-
ations and Mistakes was used on vulnerabilities where there was an attempt on
correct security implementation but there were mistakes leading to vulnerabilit-
ies. This result shows that the developers did not fully understand the security
concepts. In the No-implementation category, unintuitive mistakes (to example
securing against side-channel attacks) was the most common cause of the vulner-
abilities. In the Misunderstandings category, conceptual errors (to example insuf-
ficient randomness) were the most common cause of vulnerabilities. This shows
that even when developers try to provide security, they fail to consider all unin-
tuitive ways to attack a system, and when security control was implemented the
developers was not able to identify or understand correct usage of the security
control. Complexity in the programming problem and the solution was often the
source of Mistakes [30]. These findings confirm what we have discussed earlier
about developers blind spot and heuristics and software complexity as causes for
vulnerabilities.

In [7], Pieczul and Foley [7] analysed the evolution of security defence in the
Apache Struts open source software package over a 12-year period. Trough the
analysis of vulnerabilities and the code changes and other artefacts like related
discussions they observed the phenomena of dark side of the code and developers
blind-spot. The security issues in the low-level details of used components are not
accessible to the developers and developers does not correlate security issues to
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their current world, instead they assume common and not edge cases. The study
also found opportunistic fixes in response to vulnerabilities. Instead of implement-
ing fixes related to the root cause of the problem, developers choose fixes that are
more convenient to implement and do not disrupt the existing code. Counter-
intuitive fixes were another observed phenomenon. This relates to the complexity
that can arise when implementing security controls. Wrong implementations of
interfaces might introduce vulnerabilities [7].

This thesis uses a methodology similar to [7], analysing artefacts related to
vulnerabilities. Being a qualitative research, the result might both confirm the
findings in [7] or identify other answers to how vulnerabilities emerge and evolve.
All the findings from the studies reviewed in this chapter is of interest in this
project when analysing this question.

2.2 Vulnerability scoring

Another area of interest when studying software vulnerability is vulnerability scor-
ing, which helps organisations categorise and priorities reported vulnerabilities.
One set of vulnerability scoring specifications are the Common Vulnerability Scor-
ing System (CVSS), Common Configuration Scoring System (CCSS) and Common
Misuse Scoring System (CMSS) [31]. CVSS address vulnerabilities caused by soft-
ware flaws, like input validation errors. CCSS measures and scores vulnerabilities
related to software configuration issues, which are use of security configuration
settings that negatively affects the software security. CMSS addresses software
feature misuse vulnerabilities where a software feature also provides a path to
compromise security [31]. CVSS is released in several versions, where the last
version is 3.1 from 2019 [32]. CVSS version 2 is from 2007 [33] but is often
found used together with version 3 for compatibility reasons.

All three measurement and scoring system are organised into three groups -
base, temporal, and environment metrics [31]. The base metrics measures char-
acteristics of a vulnerability that is constant over time and a cross environments,
and consists of two sets of metrics, exploitability, and impact, which measures
the vulnerable and impacted components respectively. The temporal group refers
to characteristics of the vulnerability that might change over time but not across
user environment, to example can an easy-to-use exploit kit increase the CVSS
score, and an official patch decrease the score. The environmental group looks
at characteristics of the vulnerability that is unique to the user environment and
includes presence of security controls that might mitigate some consequences of
a successful attack. In general, base and temporal metrics are applied by applica-
tion or security product vendors and environment metrics are applied by end-user
organisations. The base metrics are the only mandatory metrics, while the tem-
poral and environment metrics can be omitted [32]. The specific metrics in each
group varies between the three different scoring systems, but each metric is given
a score and from these scores a total vulnerability score is calculated. This score is
presented together with a vector string, which is a formatted string which contains
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each string assigned to each value [32].
The CVSS score is what we normally find linked to vulnerabilities in CVE data-

bases. Between version 2 [33] and 3 [32] of the CVSS score, we find changes in
changes in the base metric and environment metric group together with changes
in the scoring system. In the base metric group, there is changes in version 3 to
reflect whether physical access to the system is required, whether human users
other than the attacker must participate in a successful attack, and there was also
added a scope metric to capture if a vulnerability in one component impacts re-
sources in other components beyond it security scope. The environment metric
group in version 3 was rewritten to include the new "Modified Base Metric" score.
This makes it possible for an organisation to modify the base metric to reflect
differences between their systems and others [32, 33].

An alternative scoring system, Predictive Prioritisation, is presented by tenable
[34]. This scoring systems assign Vulnerability Priority Rating (VPR) to a vulnerab-
ility after analysing vulnerability characteristics in seven categories. These are past
threat patterns, past threat source, vulnerability metrics, vulnerability metadata,
past hostility, affected vendor and exploit availability from threat intelligence. Ac-
cording to tenable, the VPR score gives a better foundation for prioritising vul-
nerabilities than traditional scoring systems like CVSS. One problem with CVSS
mentioned by tenable, is that changes in the scoring criteria in the last version
has increased the number of vulnerabilities rated as high or critical. This makes
prioritisation harder when handling vulnerabilities [34].

Scoring systems like CVSS or Predictive Prioritisation can be useful when de-
fining vulnerability metrics and features. For this project the scoring, and the basis
for the scoring, can also be of interest when analysing a vulnerability and the
handling of the vulnerability.

2.3 Introduction to Libarchive

In this thesis we study the vulnerability history of the Libarchive [2] Open-Source
Software (OSS) package. The main criteria behind selecting Libarchive as our
OSS package was the number of reported vulnerabilities over the last 10 years,
the distribution of the vulnerabilities over this time period, and the activity in the
project. These criteria and the method we used to select a suitable OSS package is
described in more details in Chapter 3, and the process behind selecting Libarchive
is described in Chapter 4. This section gives a brief introduction into Libarchive
as a background for further reading of the thesis.

Libarchive [2] is an open source C programming library that offers read and
write access to streaming archives in a variety of different archive formats. The
distribution also includes bsdtar and bsdcpio which is implementation of tar and
cpio using Libarchive [2]. The supported archive formats are [2]:

• TAR (read and write)
• RAR (read only)
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• ISO9660 (read and write)
• ZIP (read and write)
• 7Zip (read and write)
• CAB (read only)
• MTREE (read and write)
• PAX (read and write)
• CPIO (read and write)
• SHAR (write only)
• AR (read and write)
• XAR (read and write)
• LHA/LZH (read only)
• WARC (read and write)

We find Libarchive used across different software. It is used in the operating
systems FreeBSD, NetBSD, macOS and Windows, and ports of the project is used
Debian and Gentoo Linux. Further, Libarchive is also used in different individual
software like package managers, archiving tools and file browsers [2].

The structure of Libarchive[2] consists of several independent APIs, which can
be used separately from each other. The different APIs has an object-like interface
implementing a C structure reference. These objects have a similar life cycle where
there is new() function creating the object, then different functions are invoked to
configure the object, operations are performed on the object, and last the object
is destroyed with free() or finish(). The configuration functions fill in function
pointers in the structure. If a function is not used the pointer remains NULL and
the associated coded will not be linked to the executable. This makes Libarchive
usable in space constrained applications [2].

When reading an archive file Libarchive implements a bidding process, where
different modules supporting different archive formats inspects the incoming data
[2]. The different archive formats modules contain a bid-function with knowledge
about how to recognise the given archive format. The module gives a number in-
dicating how certain the module is that the format is recognised. When reading an
archive file, the first block of data is read and presented to the bid-function in each
register archive format module, and the module with the highest bid is selected
and a reader for that archive format is initiated. The bidder uses a "peak ahead"
functionality in the archive readers, making it possible for several bidders to in-
spect the incoming data simultaneously without consuming the data. In addition
to validate archive format signatures, the bidder functions do a more thorough
validation of to example check sums, initial header bytes being octal, etc. This
reduces the number of false positives [2].

A simple example of using Libarchive is given in Code listing 2.1. The example
read an archive file, either with support for all archive formats or with support for
ZIP and 7Zip format specifically. The example prints the entry names of the archive
file without reading the entry data.

In the example the archive read object is created in line 5 and the configur-
ation of the filter and format support is done in line 6 to 14. The filter modules
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recognise compression and encoding formats and works the same way as archive
format modules, with bid-functions used to identify the correct compression and
encoding [2]. In our example all filters are included. Internally, initialisation func-
tions allocate workspaces and register additional functions, and the core reader
initiates an initial filter and recursively hands the most recent filter to each avail-
able filter and format bidders in turn. The bidders use the internal read-ahead API
to look at the next bytes in the stream and returns a positive bid if this is a stream
that it can handle. Next, there is an alternation between reading headers and data
[2]. In our example we read the header but skip reading the data, which we see
in the while-loop in line 21.

Code listing 2.1: Libarchive example reading archive file entries [2]
1 struct archive* a;
2 struct archive_entry* entry;
3 int r;
4
5 a = archive_read_new();
6 archive_read_support_filter_all(a);
7
8 if (allFormats) {
9 archive_read_support_format_all(a);

10 }
11 else {
12 archive_read_support_format_zip(a);
13 archive_read_support_format_7zip(a);
14 }
15
16 r = archive_read_open_filename(a, archiveFilePath, 10240);
17
18 if (r != ARCHIVE_OK)
19 exit(1);
20
21 while (archive_read_next_header(a, &entry) == ARCHIVE_OK) {
22 std::cout << archive_entry_pathname(entry) << std::endl;
23 archive_read_data_skip(a);
24 }
25 r = archive_read_free(a);
26
27 if (r != ARCHIVE_OK)
28 exit(1);
29
30 std::cout << "---␣End␣of␣Archive␣---" << std::endl;



Chapter 3

Methodology

In this chapter we describe in detail the methods used in this thesis. The thesis
project follows a qualitative approach by gathering observations from artefacts re-
lated to vulnerabilities in an OSS package to gain insight into how vulnerabilities
emerge and evolve in software. This can be categorised as an exploratory study
in the field of observational research. The main tasks in the project are a liter-
ature review, the identification of an OSS package to analyse, data collection of
relevant artefacts related to the vulnerabilities in the OSS package, data analysis
of the collected artefacts and development of a model describing the phenom-
ena surrounding the emergence and evolution of vulnerabilities. These steps are
summarised in Figure 3.1, and are described in more details in the following sec-
tions after a discussion of observational research and how this project follows this
methodology.

Figure 3.1: Project workflow

3.1 Observational research

Observational research is a research methodology that is suited to answer broad
and open-ended research questions [35]. It is a research category covering obser-
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vation of phenomena, symptoms, and systems, and in general it includes sensing
and data mining in real world systems to discover interesting artefacts. Explorat-
ory studies are a subset of observational research and objective of these studies is
to get insight and understanding of the phenomenon under study. Often the scope
and the data set of the study is large, and the data set is not in immediate control
of the investigator or is collected after the fact [35].

This project is conducted as an exploratory study when we gather insight into
how vulnerabilities emerge and evolve in an OSS package and describe the phe-
nomena behind this evolution. These broad research questions and the goal to
gain insight into vulnerability evolvement suits an exploratory study.

In this project we identify a suitable OSS package with a sufficient number of
reported vulnerabilities over a 10-year period, and then collect relevant data re-
lated to the identified vulnerabilities. This is a qualitative data set containing arte-
facts like code updates, vulnerability reports, code reviews, developer discussions,
etc. With the time frame of 10 years, we will use the longitudinal methodology
which is one of several methodologies that can be used in an exploratory study
[35]. The goal in such studies is to collect information over time to ensure that
the entire life cycle or complete context of the system under study is considered
[35]. This method fits our project when we study how vulnerabilities emerge and
evolve in a software package as this package mature over time.

3.2 Literature review

To gain knowledge into the existing work around software vulnerability stud-
ies we perform a literature review as part of our project, and focus on studies
into vulnerability measures and metrics, vulnerability prediction methods, stud-
ies into source code patterns and vulnerability categorisation, and studies around
developer-centered security. We started the literature review during the work on
our project plan report, and we will build on that work and expand the review with
new literature if needed as we proceed with our project. The literature review is
presented in Chapter 2.

3.3 Identify suitable open source software package

The main criteria when selecting an OSS package is the number of vulnerabilities
and the lifetime of the project. The selected OSS package must have at least 10
to 20 vulnerabilities over the past 10 years. This criteria is in line with what was
used in [7] where security evolution in the Apache Struts open source package
was analysed over a period of 10 years with a total of 20 identified key security
related updates [7]. With a time-frame of 10 years and at least 10 and 20 vulner-
abilities we will be able to analyse how security related issues are handled and
how vulnerabilities emerge and evolve as the software package mature over time.
Other parameters when selecting the OSS package is:
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• Distribution of the vulnerability over the 10-year period.
• Activity in the open source project both terms of developer involvement and

usage of the software package.
• The programming language and domain of the software package.

The evaluation of these parameters is a manual and objective assessment
based on the projects identified after the first criteria of number of vulnerabil-
ities over the past 10 years. Our selected OSS package will be a project where the
reported vulnerabilities are fairly distributed over the 10-year period and where
there are sufficient current activity in both development and usage of the soft-
ware package. The last parameter of programming language and domain will be
assessed against our own knowledge in the area.

To identify an OSS package with an extensive number of vulnerabilities we
focus on vulnerabilities tracked in the CVE database [36] and follow an approach
similar to the one described in [21] with adjustments to fit our project. In [21]
a crawler is created to retrieve SQL injection vulnerabilities. For each entry in
the CVE database the CVE Details [37] record is retrieved. This record provides
information about vulnerability categories and possible links to GitHub commits
which can be used to determine programming language [21].

In contrast to the crawler described in [21] we are not interested in identi-
fying one specific category of vulnerabilities, but the number of vulnerabilities
reported in different OSS packages over the last 10 years. The crawler therefore
only counts CVE entries from 2009 or later based on the year part of the CVE ID.
The crawler supplements each CVE entry with additional information from CVE
Details [37] and then look for GitHub URLs in references on the entry. These URLs
will be used to identify open source projects through the project owner and project
name in the GitHub URL. Checks are added to the crawler to handle the poten-
tial case of GitHub references to more than one open source project on a single
CVE entries. If such cases are found they are reported separately. For each identi-
fied open source project, the crawler retrieve the project description and the list
of used programming languages from GitHub, and present a list off all identified
open source projects with more than 10 CVE entries since 2009 or later.

From this list we do a manual review of the open source projects based on the
additional criteria listed above and look at the distribution of the vulnerabilities
over the time period since 2009, the activity and usage of the OSS package, and
the main programming language and domain of the software package. From this
review we select a suitable open source package to analyse in this thesis project.

3.4 Data collection and analysis

When a suitable OSS package is identified and selected, relevant artefacts related
to the vulnerabilities are collected. We first do a manual control of the vulnerab-
ilities identified by the crawler. This list contains all vulnerabilities with GitHub
references against the OSS package. We perform a manual search for the selected
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OSS in the CVE database [36] to identify any unreferenced vulnerabilities that
should be included in our data set. Depending on the selected software package
and the number of identified vulnerabilities it might be necessary to limit the num-
ber of vulnerabilities to include in this project. If needed, we will do this by limiting
the scope to relevant portion of the software or groups of related vulnerabilities.

The relevant artefacts related to the vulnerabilities are the vulnerability report,
code updates, bug reports, posts in discussion forums, blog posts, news articles,
etc. In [7], where a qualitative approach similar to this project was used, they re-
viewed vulnerability-publications, code-updates, related discussions on the devel-
opment mailing list and other publications often contributed by the vulnerability
report [7]. From the identification of the OSS package described in section 3.3
we have the relevant vulnerability reports and this will form the basis for collect-
ing other relevant artefacts. Through the GitHub references on the CVE entries,
we know that the OSS package use GitHub [38] for source code hosting and is
where we will find the source code with version and commit history. GitHub also
provides an issue tracking system where bugs and other issues are reported, but
projects might choose to use other tracking systems. There might also be other
open sources like discussion forums with relevant data related to the develop-
ment of the software. The data collection is manual task where we from the basis
of the reported vulnerabilities collect source code with commit history leading up
to the vulnerability together with other relevant artefacts related to the changes
in the source code. We then collect changes to the source code in response to
the vulnerability together with other artefacts including the vulnerability report.
The collected data is then analysed to try to understand what choices leading to
the vulnerability being introduced to the code and what choice were made in re-
sponse to the vulnerability. This process is repeated for the selected portion of
vulnerabilities, and we will identify common patterns and behind errors and fixes
to the vulnerabilities and try to identify general phenomena explaining how the
vulnerabilities emerged in the code. In [7], the analysis is summarised in aggreg-
ated changes over releases that resulted in a published security release. This gives
more reliable understanding of the developers intentions than possible incomplete
changes between security releases [7]. We follow the same approach.

This artefact-first approach is described as an archaeological method in [29].
By studying layers of artefacts over time and reconstructing progression to actual
time we can gain insight into what and how developer activities impacted the
security over time. We can also gain insight into how software components were
used, or for what purpose they were built, by studying parameters passed to the
component, etc. [29].

In addition to analyse the collected artefacts related to the vulnerabilities, we
also analyse the Socio-Technical System (STS) surrounding vulnerabilities in the
OSS package. An OSS project consists of both a community of practices, a so-
cial culture, technical practices, processes, and an organisational structure, and
is therefore broader than just a technical definition [39]. When trying to answer
the question of how vulnerabilities emerge and evolve by studying the vulnerab-
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ility history in an OSS package, we also need to understand both the technical
and social aspects of OSS development [39], and a STS analysis will help us gain
this knowledge. With this knowledge we will be able to explain how the identi-
fied vulnerability patterns an phenomena occur by identifying elements in the STS
that influence them, and this will give us a broader understanding of vulnerability
evolvement. We therefore adopt a STS model developed by Kowalski [40] in this
project, and use this to summarise and categorise our findings. The STS model is
depicted in Figure 3.2.

Figure 3.2: Socio-Technical system [40]

The STS model is divided into two subsystems, social and technical, which
each consists of further subsystems [41]. In the social subsystem we find a cul-
tural and a structural subsystem, and in the technical subsystem we find methods
and machines. The inter-dependencies between the elements forms a homeostasis
state, and changes makes the system adjust to maintain equilibrium [41]. By using
the STS model, we get an structural analysis of the relationships between the dif-
ferent elements within the social technical subsystems [39]. We use information
from the collected artefacts related to the vulnerabilities together with collected
information regarding the OSS project like coding guidelines, vulnerability dis-
closure procedures, etc. in this analysis. Together, the analysis of the vulnerability
history and the STS help us answer the question of how vulnerabilities emerge
and evolve in an OSS package.

3.5 Vulnerability model

From the analysis of the artefacts related to the vulnerabilities in the selected OSS
package and the STS surrounding the vulnerability handling in this package, we
develop a model describing the phenomena behind the emergence and evolution
of vulnerabilities. The model will be built from identified common patterns and
phenomena in our analysis, and from our analysis of the STS surrounding the
vulnerability handling, and we will also use the results from the related work
discussed in Section 2.1 in the development.

The developed model will answer our research question of how vulnerabilities
emerge and evolve in an OSS package, and be a tool that can be used in a soft-
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ware project to improve the SDLC to improve the software security by preventing
vulnerabilities to emerge in the code.

To test our developed model, we perform a case study into two additional
OSS packages, by applying our developed model on the vulnerability history in
these two projects. The projects used in this case study are selected from our list of
potential suitable OSS packages identified by our crawler described in Section 3.3.



Chapter 4

Results

In this chapter we present the results from our thesis project. We begin with the
identification of Libarchive as our suitable OSS package for vulnerability analysis.
We then describe the data collection and gives an overview of the Libarchive vul-
nerability history, before we present the results from the analysis of vulnerability
patterns, identified vulnerability phenomena and the result from the STS analysis.

4.1 Selecting an open source software package

To identify and selecting a suitable OSS package for our project we used the
crawler as described in Section 3.3. The data source for crawler was the CVE
entries database as of 26.07.2020 [36]. Our main criteria when selecting the OSS
package was for the package to have a total of at least 10 to 20 vulnerabilities over
the last 10 years. In the crawler we set the cap year to 2009 based on the year part
in the CVE ID. This returned a total of 139909 CVE entries, and through the Git-
Hub reference in these entries we identified 4222 OSS packages. Returning only
OSS packages with more than 10 CVE entries we found a total of 216 packages.
The number of CVE entries in these OSS packages varied from 10 to 962. No CVE
entries was reported to have GitHub references to more than one OSS package.

From the list of 216 OSS packages with more than 10 vulnerabilities since
2009 we did a manual review of the different project based on the other criteria
listed in Section 3.3 and looked at the distribution of the vulnerabilities in the
period since 2009, the activity in the projects and the type of projects. The project
with most vulnerabilities, 962, was the Linux kernel and was assessed to be too
extensive for our project and not considered further. The review also found several
GitHub repositories used to track vulnerabilities in other OSS projects. These were
excluded from further review together with projects with little or no resent activity
in the project and projects with little distribution in time of the vulnerabilities.
This gave a list of 28 possible OSS packages that could be suitable for our thesis
project. These projects are listed in Table 4.1.

From this list we choose the Libarchive C library as our OSS package for fur-
ther vulnerability analysis in this thesis project. Of the CVE entries counted by our
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Table 4.1: Possible open source software packages for further analysis

Project Time period No. CVE
ImageMagic 2014 - 2020 437
FFmpeg 2011 - 2020 81
Bento4 2017 - 2019 57
Libarchive 2013 - 2020 52
Exiv2 2017 - 2019 50
OpenJPEG 2015 - 2020 45
Jackson Databind 2017 - 2020 45
GPAC 2018 - 2020 39
LibRAW 2013 - 2020 34
ExponentCMS 2016 - 2017 34
LimeSurvey 2014 - 2020 33
OpenEMR 2014 - 2019 31
Ansible 2013 - 2020 30
Jenkins 2013 - 2017 28
Piwigo 2016 - 2020 28
PrestaShop 2018 - 2020 28
TeamPass 2012 - 2020 25
Symfony 2016 - 2020 20
Libsndfile 2014 - 2019 18
Pillow 2014 - 2020 17
YARA 2016 - 2019 16
OpenEXR 2009 - 2018 15
Squid 2018 - 2020 15
DokuWiki 2012 - 2018 14
Foreman 2012 - 2019 14
Webadmin 2011 - 2019 11
Salt 2013 - 2020 11
YANG 2019 - 2019 10



Chapter 4: Results 27

crawler Libarchive have 52 vulnerabilities distributed between 2013 and 2020,
which is a good distribution in the selected time period and above our minimum
of 10 to 20 vulnerabilities. We also found that the project is active with new re-
leases of the library up to first half of 2020, and it is found used both in operating
systems and in other software packages. Last, we also find the C programming
language and the domain of file archive to be within scoop of our project. This
make Libarchive a suitable project for further analysis of the vulnerability history
within an OSS package. An introduction to Libarchive is found in Section 2.3.

4.2 Scope and data collection

The result from the crawler used to identify suitable OSS projects returned a total
of 52 Libarchive vulnerabilities from 2009 or later. To control this result we per-
formed manual search for the term "libarchive" in the CVE database[36]. This
search returned a total of 73 vulnerabilities. In addition to the 52 Libarchive vul-
nerabilities returned by the crawler the search returned:

• 14 vulnerabilities reported in other software where Libarchive was the vul-
nerable component. The scope in this thesis project is the vulnerability his-
tory in an OSS package and we decide to exclude these 14 vulnerabilities
and keep the focus on CVE entries directly linked to Libarchive.
• Seven vulnerabilities directly linked to Libarchive but with no GitHub ref-

erences. Of these seven did three date to before our cap year of 2009 and is
excluded in the further analysis.

After a review of the remaining vulnerabilities another three were excluded
from the list due to being disputed or only related to development code. These
three are:

• CVE-2010-4666
• CVE-2011-1779
• CVE-2019-11463

This gives a list of 53 Libarchive vulnerabilities which form the data set in
this thesis project. The number of vulnerabilities is above our minimum require-
ment of 10 to 20 vulnerabilities, and the list is well distributed over a time period
from 2011 to 2020. The total list of the 53 Libarchive vulnerabilities is found in
Table A.1 in Appendix A.

The first Libarchive release containing fixes to any of the vulnerabilities in
our data set is Libarchive version 3.0.0a. The last release before that is Libarchive
version 2.8.5 and this release is set as the initial Libarchive version in our analysis.
Version 2.8.5, released in September 2011, is the last release in Libarchive 2 before
the first release of Libarchive 3 in November 2011 with Libarchive version 3.0.0a.
The release of Libarchive 3 introduced breaking changes in the library API, and
new archive format support is added in the subsequent version 3 releases [2]. By
analysing code updates from Libarchive version 2.8.5 and onward we will gain
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insight into how vulnerabilities emerge, evolve, and are fixed in Libarchive and
use this knowledge to answer our research question.

For each of the 53 vulnerabilities in our data set relevant artefacts were col-
lected. These are:

• Vulnerability introducing and vulnerability fixing GitHub commit(s). This
gives insight into how the vulnerabilities were introduced into the code,
what choices were made during the code updates, and why they were made.
To example fitting a code update into existing code. Alternatively, we used
the the first Libarchive version containing the vulnerability as our vulnerab-
ility introducing code change if we are unable to identify the vulnerability
introducing commit.
• Issues and pull requests from the GitHub issue tracking system related to

the vulnerabilities. These artefacts give information about how the vulner-
ability was discovered, to example testing tools or techniques, and how it
effects the code. We also find discussions around the code updates in these
artefacts.
• Discussions from discussion forum. Libarchive have an own discussion forum,

and for some of the vulnerabilities we found discussions in this forum. We
also collected general discussion around error handling and security testing.
• Blog posts related to the vulnerabilities. These are writ-ups from the re-

searchers that discovered the vulnerabilities and give more detailed inform-
ation around the vulnerable code and how this could be exploited.
• News articles. For some of the vulnerabilities we found news articles that

gave some more information around the vulnerabilities.

A total of 100+ code changes were analysed to track the vulnerability history
in Libarchive. In addition, a total of 83 artefacts related to issues, pull requests,
discussions, blog posts and news articles were collected.

4.3 Tracking Libarchive vulnerability history

The 53 Libarchive vulnerabilities were introduced and fixed in 13 releases from
Libarchive version 2.8.5 in September 2011 to version 3.4.2 in February 2020.
Version 2.8.5 is the initial Libarchive release used in this analysis as describe in
Section 4.2. The timeline is summarised in Table 4.2 and the full version is found
in Table B.1 in Appendix B. The rest of the section describes the Libarchive releases
and the vulnerability history in more details.

4.3.1 Libarchive release September 2011

Libarchive 2.8.5 was released in September 2011 and 24 of the 53 vulnerabilities
in our data set is present in this release. These 24 vulnerabilities relate to 8 dif-
ferent archive formats in addition to vulnerabilities found in general or common
code used across archive formats. In these vulnerabilities we find out-of-bound
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Table 4.2: Libarchive vulnerability timeline summary

Version Date No. intr. No. fixed Comment
2.8.5 Sept. 2011 24 0 Initial release
3.0.0a Nov. 2011 15 2 New archive formats

RAR, CAB, LHA
3.0.1b Nov. 2011 4 0 New archive format 7Zip
3.1.0 Jan. 2013 3 0 Release of multi-volume

RAR support
3.1.900a Feb. 2016 2 22 New archive format

WARC. Fixes to
vulnerabilities from
versions 2.8.5, 3.0.0a,
3.0.1b and 3.1.0.

3.2.0 Apr. 2016 0 1 Fix of vulnerability from
version 3.1.0

3.2.1 June 2016 0 7 Fixes of vulnerabilities
from versions 2.8.5,
3.0.0a, 3.0.1b and
3.1.9a

3.2.2 Oct. 2016 0 4 Fixes of vulnerabilities
from version 2.8.5,
3.0.0a and 3.0.1b

3.3.0 Feb. 2017 1 4 New NFSv4 ACL
support. Fixes
vulnerabilities from
version 2.8.5 and 3.0.0a

3.3.3 Apr. 2019 0 4 Fixes vulnerabilities
from versions 2.8.5 and
3.0.0a

3.4.0 June 2019 1 7 New archive format RAR
v5. Fixes vulnerabilities
from versions 2.8.5,
3.0.0a, 3.0.1b, 3.1.900a
and 3.3.0

3.4.1 Dec. 2019 0 1 Fixes vulnerability from
version 2.8.5

3.4.2 Feb. 2020 0 1 Fixes vulnerability from
version 3.4.0
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reads, NULL pointer dereferences, integer overflows, infinite loops, missing input
validations, and directory traversal and sandbox evasions. The out-of-bound reads
in large parts happens on string operations related to archive entry file names and
archive entry paths and either happens on array operations on the string buffer
or within functions like memcpy and memmove. The NULL pointer dereferences
are also related to file name and file path operations, and both these and the
out-of-bound reads are at large part caused by missing validations. There is also
one missing input validation that causes an illegal left shift operation on a com-
pression parameter in an archive file. One of the infinite loop vulnerabilities are
also related to file name parsing in ISO9660 archives and occur if a directory
in the archive entry path is a member of itself. None of the existing input and
sanity checks catches this special case. The other infinite loop also relates to read-
ing ISO9660 archive files and occur when rock-ridge extensions are missing. In
this case the method returned status "ARCHIVE_OK" causing an infinite retry in
the calling method without moving the pointer. The integer overflows are either
caused by implicit cast or caused by 32-bit/64-bit issues. One of the directory tra-
versal vulnerabilities is the bsdcpio implementation where absolute paths are not
rejected and allows for writing of arbitrary files. Another directory traversal or
sandbox evasion vulnerability relates to archive write code where non-zero sized
hard-links could lead to writing of arbitrary code.

Last, there are two vulnerabilities present in version 2.8.5 or earlier where the
vulnerability reports describe buffer overflows in TAR and ISO9660 related code
causing denial of service or application crash. Our analysis finds that these two
vulnerabilities are caused by the use of exit() in error handling in the Libarchive
library, causing termination of the calling process. We find that this error handling
routine was used after errors in memory allocation in both TAR and ISO9660
related code but also in other parts of the code base in version 2.8.5.

4.3.2 Libarchive release November 2011

In November 2011 Libarchive 3.0.0a and 3.0.1b were released. These versions
were test releases before the release of version 3.0.2 in December 2011. Version
3.0.0a added fixes to the error handling related vulnerabilities described above
and moved away from using exit() on errors and terminating the process. The
implemented fix returns error codes and makes it possible to continue processing
of the next item or gracefully abort processing without full process termination.
This version also added support for the archive formats RAR, CAB and LHA, and
in version 3.0.1b 7Zip archive support was added. This introduced 15 vulnerab-
ilities in code related to these archive formats. In addition, four vulnerabilities
were introduced together with new functionality in the ZIP, MTREE and ISO9660
archive format support. In these new vulnerabilities we find out-of-bound reads,
NULL pointer dereferences, integer overflows and missing input checks or valida-
tions leading to different vulnerable behaviour. Two examples are a double free of
memory caused by realloc with size zero before free on the same memory buffer,
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and a memory allocation of size zero leading to buffer overflow. Both of these are
in RAR-related code. The out-bound read and NULL pointer dereference vulner-
abilities are also caused by missing or insufficient input validation and related to
malformed archive files, to example archive files reporting zero or negative file
sizes. One of the integer overflow vulnerabilities relates to 7Zip archive files and
an integer variable could be overflowed in in a calculation using a crafted archive
file containing especially large values. This later causes buffer overflows due to the
overflowed integer. Another integer overflow relates to writing ISO9660 archive
files. In processing of large file names, an explicit cast from size_t to int causes
overflows on platforms where sizeof(int) < sizeof(size_t). The overflowed integer
is later used in memory allocation leading to buffer overflows and possible writing
of arbitrary code. Though the cast from size_t to int is a problem on 32-bit plat-
forms, this vulnerability requires more than 20GB of memory to be exploited and
needs in practice a 64-bit platform. Last, we also find an integer overflow where
there is a deliberate use of an overflow to define time max/min values on plat-
forms where these are not defined. Since signed integer overflows are undefined
behaviour in C, this is a vulnerable behaviour.

4.3.3 Libarchive release January 2013

Libarchive version 3.1.0 was released in January 2013. In this version three new
vulnerabilities were introduced. These are related to the RAR, ZIP and MTREE
archive formats. Support for multi-volume RAR archive files, where one archive
is split across several files, was added in this release. The RAR vulnerability is a
use-after-free bug that occur when a special crafted single-volume RAR archive
is interpreted as a multi-volume archive. In this case a pointer to the ppmd7 de-
coder is wrongly freed causing the use after free vulnerability. The ZIP vulnerab-
ility was added with support for macOS metadata entry files. When processing
an uncompressed file, the compressed size was used in memory allocation while
the uncompressed size was written to the memory buffer. No input validation was
implemented, and these size fields are controlled by the user and could be ex-
ploited by an attacker to cause a buffer overflow. The MTREE vulnerability is an
out of bound read introduced when adding support for NetBSD MTREE archive
files. When parsing archive entries identifying entry file names a read beyond the
string buffer could occur if the file name was the whole entry line.

4.3.4 Libarchive release February 2016

The next release containing security fixes or introducing new vulnerabilities is
Libarchive version 3.1.900a in February 2016. This was a test release of Libarchive
version 3.2.0 released in April 2016. The release added support for the WARC
archive format. A vulnerability in the WARC decoder could be exploited to cause
a semi-infinite loop using crafted archive file with a large content length and only
a few hundred bytes of data. In the MTREE format code, a revised parsing logic
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was added in this version, and a misplaced array length check caused off-by-one
vulnerability when reading archive arguments.

A total of 22 security patches were included in this version, and 13 of these
relates to vulnerabilities present in version 2.8.5 or earlier. Several of the out of
bound and NULL pointer dereference vulnerabilities were fixed by adding valid-
ation either through size checks or checks for NULL or empty file names in string
operations. In addition, one out of bound read caused by an overlapping mem-
cpy operation was fixed by changing to memmove which is safe for overlapping
buffers. One of the of the out of bound vulnerabilities was in the bsdtar imple-
mentation and was caused by NULL or empty file names returned by the readers
processing the given archive format. This was fixed by adding checks on the re-
turned file names and skip further processing if the file name was missing. Two
CVE items reported this vulnerability using crafted RAR and CAB archive files re-
spectively. Though these archive formats were added to Libarchive after version
2.8.5, the vulnerable code could have been exploited with other archive formats.
If we look at the discussion in the issues tracking these two vulnerabilities, we see
that the return of NULL or empty file names are caused by underlying issues in
the RAR and CAB code. In the RAR case this relates to the issues where a craf-
ted single-volume RAR file are wrongly interpreted as a multi-volume archive file,
and in the CAB case there are issues in the CAB header that cause the reader to
wrongly return empty file names. None of these underlying issues are fixed and
the fix of input check in bsdtar is deliberately chosen as sufficient to fix this par-
ticular vulnerability.

In addition to the out of bound vulnerabilities from version 2.8.5 one integer
overflow and one illegal left shift vulnerability from version 2.8.5 was fixed in
this version. The integer overflow vulnerability related to a signedness issue in ZIP
write functionality running on 64-bit platforms. This was fixed by adding an input
check against INT_MAX in archive_write.c. This also prevents the integer overflow
writing other archive formats. The left-shift vulnerability was exploited through an
invalid compression parameter. Validations was added on the parameter to verify
the size and prevent the illegal left shift. In addition, there were also added other
checks to reject malformed compression data. From the code history we see that
these previously missing checks were a known weakness. The previous code had
the comment "TODO: verify more", now replaced by new input validations. Last,
a directory traversal vulnerability in bsdcpio and the infinite loop in the ISO9660
directory parser causes by self-owned directories was fixed. To fix the directory
traversal vulnerability a flag was added to rejects absolute paths in archive entries.
The flag is set by default. The infinite loop vulnerability was fixed both with a
sanity check to reject self-owned directories, and with a path depth counter in the
parser. If an archive entry path reaches a depth of 1000 directories the archive
entry is rejected.

Of the vulnerabilities introduced in version 3.0.0a, four were fixed in this re-
lease. One was a NULL pointer dereference vulnerability in RAR archive function-
ality. A none-NULL value indicates a filled compression buffer, which could be
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exploited to read buffer values from the last archive entry using a crafted archive
file. This was fixed by setting the pointer NULL before starting the processing.
Another vulnerability fixed was the deliberate integer overflow used to determine
time MIN/MAX values if not defined. This was solved by assuming time variables
are integer and simply using INT_MIN/INT_MAX as time MAX/MIN. Also, an in-
teger overflow related vulnerability where a size field was read as signed number
and then used as an offset was fixed by masking the size field as an unsigned
number. Last an out of bound read in parsing of LHA archive entry names was
fixed by adding validation of the first byte in path name being NULL.

There are also two vulnerabilities introduced in version 3.0.1b and 3.1.0 that
were fixed in this release. One was a NULL pointer dereference vulnerability in
7Zip functionality, which was fixed by adding validations on the input archive
formats rejecting illegal or malformed archive files. The other was an out of bound
read in the MTREE parsing logic caused by a file name filling the whole line in the
archive entry. The parsing logic read the line from end to beginning to identify the
file name. In the cases where the file used the whole line this caused the logic to
read outside the buffer. The fix reversed the parsing to start from the beginning
of the line.

Last, there were three fixes to vulnerabilities that were never introduced in any
previous releases. They were added to the code between the release of Libarchive
version 3.1.2 in February 2013 and the next release being version 3.1.900a in
February 2016. One is an integer overflow in TAR archive format code exploited
with a crafted TAR archive file with large sparse entries. This was fixed by adding a
check on the calculation against INT64_MAX. Another was a memory leak caused
by a misplaced cleanup routine after refactoring the archive_read_extract.c and
archive_read_extract2.c files. This was corrected in this release. The last fix related
to WinZIP AES functionality. A missing input check caused a buffer overflow if the
entry was too small for the encryption header. Input checks were added to fix this
vulnerability and reject malformed entries.

4.3.5 Libarchive release April 2016

In the release of Libarchive version 3.2.0 there was one security patch included.
This related to the out of bound read in uncompressed ZIP archive maxOS metadata
files. This was caused by different compressed and uncompressed size values in
an uncompressed file, and the fix applied different input controls and checks to
mitigate the vulnerability. Uncompressed files with different compressed and un-
compressed sizes are rejected, and there was added checks of the total compressed
size and against both sizes before writing to the buffer.

4.3.6 Libarchive release June 2016

The release of Libarchive version 3.2.1 in June 2016 included seven security
patches. Two of these applied to vulnerabilities in version 2.8.5 or earlier. One
was an integer overflow in ISO9660 archive files, where a calculation of a size
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value defaulted to int causing the overflow. This was fixed by changing the vari-
ables to int64. The other fix corrected a memory allocation error in CPIO archive
functionality. This was caused by large symlink sizes and the fix rejects symlinks
larger than 1MB.

Three of the remaining fixes applied to vulnerabilities introduced in version
3.0.0a. Two of these related to RAR archive functionality, where the first was an
out of bound read in a memcpy operation. This could be exploited using a crafted
RAR archive file manipulating size fields in the file. The fix added input checks
to mitigate the vulnerability. The other RAR fix applied to heap buffer overflow
caused by a zero-sized memory allocation. This could be exploited using crafted
archive files and the vulnerability caused a buffer overflow and possible arbitrary
code execution. The fix added checks to reject the zero-size memory allocation,
and also added input checks in subsequent operations to reject values below given
minimum vales. The last fix related to vulnerabilities from version 3.0.0a is the
integer overflow in ISO9660 archive functionality caused by explicit cast in pro-
cessing large file name. The fix removed the explicit cast and also added validation
on each variable in the calculation, rejecting archive entries where any variable
exceeded the maximum.

The last two fixes relate to vulnerabilities introduced in the releases of versions
3.0.1b and 3.1.9a. The vulnerability from 3.0.1b was an integer overflow in 7Zip
archive code where a crafted archive file with large sub-stream sizes could be
used to exploit the integer overflow to create an subsequent heap buffer overflow.
A check exits on each sub-stream against the constant UMAX_ENTRY, but not on
the summarised total of sub-streams. This check was applied in the fix. The fix
to the 3.1.9b vulnerability relates to a of-by-one bug in MTREE archive code. A
misplaced input check caused this vulnerability and fix correct this mistake.

4.3.7 Libarchive release October 2016

In Libarchive version 3.2.2 release in October 2016, four earlier vulnerabilities
were fixed. One of these was a buffer overflow in tar/util.c present in version 2.8.5
or earlier where printing of file names overflowed a buffer if multi-byte characters
was included in the file name. An input validation existed but the buffer size was
increased to handle this scenario. Two other of the fixes patched vulnerabilities
present since version 3.0.0a. One was an out of bound read when parsing multiple
long lines in the archive file. An error in the calculation could cause a read outside
of the string buffer. The calculation was fix to mitigate the error. The other was
a fixed of a sandbox evasion vulnerability. Hard-links of non-zero sizes was mis-
handled and could be exploited to write arbitrary code. The fix adds check to the
links to mitigate the error. The last fix was of an out of bound read in 7Zip archive
files. This could be exploited with a crafted archive file containing multiple empty
streams, and the fix added checks and reject files with multiple empty streams
attributes. The fix also added validations on other archive file attributes to reject
malformed 7Zip archives.
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4.3.8 Libarchive release February 2017

Libarchive version 3.3.0 was released February 2017. This version included exten-
ded NFSv4 ACL support, and a refactoring of the archive_acl_from_text_l() method
in archive_acl.c caused a NULL pointer dereferece vulnerability. The release also
fixed four vulnerabilities from earlier releases. One was another NULL pointer
dereference vulnerability from version 2.8.5 or earlier, in the archive_string.c source
code file. An validations was added to the method archive_strncat_l() to prevent
the NULL pointer in subsequent processing. The three other fixes were related to
out of bound reads in CAB and LHA archive files present since version 3.0.0a. In
the case of the CAB vulnerabilities, a size parameter was changed to a static value
to correct the vulnerability. The LHA vulnerability was caused by a negative size
value in the archive file, and validation was implemented to prevent the out of
bound read.

4.3.9 Libarchive release Abril 2019

Four other vulnerabilities were patched in version 3.3.3 released April 2017. Two
of these were fixes out of bound reads in XAR and ISO9660 archive files from ver-
sion 2.8.5 or earlier. Both of these related to archive entry name processing and
input checks were added to either reject empty file names or validate directory
sizes. The remaining two vulnerabilities were fixes in RAR and LHA archive func-
tionality from version 3.0.0a. The RAR vulnerability was an of-by-one error due
to UTF16 characters in file names and the fix added validations on this. The LHA
fix was of another negative size value in archive files causing out of bound reads,
and validations was added to reject archives with such values.

4.3.10 Libarchive release June 2019

Libarchive version 3.4.0 was released June 2019 and added support for RAR ver-
sion 5. Due to missing input validation of the header size in RAR5 archive files an
archive file with header size like zero would cause a segmentation fault. In addi-
tion, security patches for seven vulnerabilities were included in this version. These
related to vulnerabilities present in version 2.8.5 and onward. From version 2.8.5
the infinite loop in ISO9660 archive functionality was fixed. The loop was caused
by a failed sanity check returning status ARCHIVE_OK and fixed changed this re-
turn status to ARCHIVE_WARN on failed checks. Related to RAR archive files one
double free and one use after free vulnerability from version 3.0.0a was fixed. The
double free vulnerability was caused a realloc with size zero followed by a free,
resulting in the double free of the buffer. This was fixed with input validation of
the size before calling realloc. The use after free vulnerability was caused by a
missing re-initialisation of parameters after errors in parsing of the last archive
header. This caused a missing allocation of a buffer. The re-initialisation was fixed
in this version. Another fixed RAR vulnerability relates to mulit-volume RAR sup-
port introduced in version 3.1.0. This was also a use after free vulnerability and
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was caused by a crafted single-volume RAR file being handled as multi-volume
RAR file. A buffer in the ppmd7 is prematurely freed in this situation, causing the
use after free bug in subsequent processing. Improved validation of multi-volume
RAR files was added to fix the vulnerability. The last three fixes related to 7Zip
and WARC archive files and to processing of archive ACL strings. The 7Zip vulner-
ability was a combination of performance optimisation and a malformed archive
file not returning the presumed minimum size. This was fixed by always using the
minimum size in the buffer operations. The WARC vulnerability was an invalid
size field causing a semi-infinite loop in the decoder reading the archive file. Data
was not consumed in a scenario with a large content length and little actual data.
The logic to consume previously read data was improved to fix the vulnerability.
The last vulnerability fixed was a NULL pointer dereference which could be ex-
ploited with an archive file containing a malformed ACL field. This was fixed by
implementing input validation of the ACL field.

4.3.11 Libarchive release December 2019 and January 2020

The last two releases containing security patches to the previous vulnerabilities
are Libarchive version 3.4.1 released in December 2019 and 3.4.2 from February
2020. In version 3.4.1 a vulnerability in archive_string.c present since version 2.8.5
was fixed. Due to an inconsistency in use of a size parameter an out of bound read
could occur in a string append method. The logic is corrected in the fix to use
correct parameters. In version 3.4.2, The RAR version 5 vulnerability caused by
malformed archive headers is fixed. Input validations are implemented to reject
zero sized headers and headers whit sizes less than legal minimum size.

4.3.12 Summary

From tracking the Libarchive vulnerabilities we do the following observations:

• We find vulnerabilities in code related to 13 archive formats.
• We find vulnerabilities introduced together with support for new archive

formats. To example with support for RAR archive in version 3.0.0a and
7Zip in version 3.0.1b.
• The majority of the vulnerabilities are memory related, either through in-

teger overflows, buffer overflows, or pointer issues like NULL pointer derefer-
ences, use-after-free or double-free vulnerabilities. Other vulnerabilities are
variations of infinite loops and directory traversals.
• The implemented fixes centers around new or improved input checks or

return value checks.

4.4 Vulnerability categorisation and patterns

From our review of the Libarchive vulnerability history in Section 4.3 we see that
the majority of the vulnerabilities center around buffer and integer overflows, im-
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Table 4.3: Vulnerabilities per CWE ID

CWE ID CWE name No. vuln.
CWE-19 Data Processing Errors 1
CWE-20 Improper Input Validation 7
CWE-22 Improper Limitation of a Pathname to a

Restricted Directory (’Path Traversal’)
1

CWE-119 Improper Restriction of Operations within the
Bounds of a Memory Buffer

11

CWE-125 Out-of-bounds Read 17
CWE-189 Numeric Errors 1
CWE-190 Integer Overflow or Wraparound 5
CWE-193 Off-by-one Error 1
CWE-399 Resource Management Errors 1
CWE-415 Double Free 1
CWE-416 Use After Free 2
CWE-476 NULL Pointer Dereference 6
CWE-835 Loop with Unreachable Exit Condition (’Infinite

Loop’)
1

proper or missing input validations, and NULL pointer dereferences. This is also
confirmed when we summarise the Common Weakness Enumeration (CWE) cat-
egories from the 53 vulnerabilities in our data set, listed in Table 4.3. A total of
46 of the vulnerabilities falls into these categories (CWE-20, CWE-119, CWE-125,
and CWE-476). There are relationships between some these categories, where
CWE-119 is the parent of CWE-125 and also can follow CWE-20 and CWE-190
[42]. In addition, CWE-476, CWE-415 and CWE-416 are memory access vulner-
abilities, and as for the buffer overflow related vulnerabilities these vulnerabilities
could cause illegal memory access and possible arbitrary code execution [42].

To categorise the vulnerabilities further and gain insight into patterns behind
the vulnerabilities we use the taxonomies of errors, sinks and fixes for buffer over-
flow vulnerabilities by Schuckert et al. [1]. The taxonomy was developed after a
review of 50 randomly selected buffer overflow vulnerabilities from Firefox, and
the goal was to create a categorisation of buffer overflow vulnerabilities from the
developers point of the view. In the review of the 50 vulnerabilities the types of
errors, involved sinks and patches of the vulnerabilities were considered, and cat-
egories were created from these results [1]. From our data set we see that the
NULL pointer dereference, Double-Free and Use-After-Free vulnerabilities could
be categorised using the same taxonomy, expanding this from a buffer overflow
to a memory safety taxonomy. 46 of our 53 Libarchive vulnerabilities are included
in this categorisation, and the following sections lists the results. The remaining
seven vulnerabilities not included in the taxonomy are listed in Section 4.4.4.
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Table 4.4: Types of memory safety errors. Extensions to [1] listed in italic

Main category Subcategory No.
Variable overflow Variable overflow allocation 2

Variable overflow in check 1
Variable overflow in memory access 1
Intentional signed overflow 1

Unexpected input Unexpected input zero 5
Unexpected input negative 2
Unexpected input minimum 4
Unexpected input maximum 4
Unexpected input NULL 5

Mismatching data types Unsigned-signed 1
32-64 bits 4
int-long 0

Missing return value check 0
Unchecked 6
Invalid index Invalid index update 0

Invalid index bound 1
Invalid index initialisation 0

Unexpected calculation 2
Logical errors 12
Missing initialisation 2

4.4.1 Memory safety taxonomy - Types of errors

The result from categorisation of the types of errors in our data set is listed in
Table 4.4. Seven of the 46 vulnerabilities in the categorisation are included in more
than one category. These are situations where one type of error causes another.
Examples are CVE-2013-0211 and CVE-2016-6250 where the variable overflow
allocation error are caused by 32-64 bit data type error, or CVE-2016-4302 where
an unexpected zero causes a subsequent input below expected minimum.

In the Variable overflow category, we find four Variable overflow allocations
and no Variable overflow check or Variable overflow in memory access. The vari-
able overflow category covers instances of buffer overflows correlated to integer
over- or under-flowed variables [1]. We find vulnerabilities in all subcategories
from [1] in our analysis. These are instances where the overflowed variable is used
in memory allocations causing the allocated memory to be smaller than the input
copied into it, instances where the over-flowed variable is used in input checks
causing the input check to fail and subsequently buffer overflows, or vulnerabilit-
ies where the over-flowed value is used in memory access [1]. In addition, there
are one special in CVE-2015-8931. To calculate the values of TIME_T_MIN and
TIME_T_MAX and integer overflow or underflow is deliberately triggered. Signed
integer overflow is undefined behaviour in C, and such code is therefore vulner-
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able. We add the subcategory Intentional signed overflow to the Variable overflow
category.

In [1], the Variable overflow category is tied to the CWE-190 category (In-
teger overflow or wraparound). Of the five vulnerabilities from our data set in
this CWE category, four is categorised in the Variable overflow category including
the intentional signed overflow. The last is categorised under Mismatching data
types and is further described below. In addition, the one vulnerability in CWE-189
is categorised as a Variable overflow allocation. This is CVE-2013-0211 described
above.

The Unexpected input category covers input not expected by the developer.
This could be negative file sizes or content lengths above or below expected max-
imum or minimum values [1]. In our data set we find vulnerabilities in all four
subcategories. In addition, we add the new subcategory Unexpected input NULL.
In this category we find Out-of-Bound reads caused by NULL or empty strings, and
two of the vulnerabilities in the NULL pointer dereference category is categorised
in this subcategory. There is also one special case where the first byte of a string
is NULL. This is also counted as an unexpected NULL input.

We also categorise one NULL pointer dereference vulnerability in the unex-
pected input zero category and one in the unexpected maximum category. The
former is caused by an unexpected zero length string, the latter is caused by an
unexpected number of attributes causing a subsequent NULL pointer dereference.
In addition, we find the Double-Free vulnerability in the unexpected input zero
subcategory. Reallocation with size zero is causing the double free.

The mismatching data types category are vulnerabilities where values of dif-
ferent data types are assigned to each other [1]. In our analysis we find vulner-
abilities in the Unsigned-Signed and 32-64 bits subcategories. The 32-64 bits in-
stances are all implicit or explicit casts between integer types. Among these are
CVE-2013-0211 and CVE-2016-6250 described above. Both are exploitable on 64-
bit platforms due to cast between variable types and variable size differences on
different platforms.

In [1], the Unchecked category are defined as vulnerabilities where user in-
put reach methods vulnerable for buffer overflows [1]. In our analysis we find
vulnerabilities related to memory transfer or memory comparison with memcpy,
memmove or memcmp. In addition, there is one unchecked value causing a third-
party library to read into invalid memory.

The Missing return check category covers vulnerabilities where developers
does not check the returned values [1]. In [1], this was typically related to memory
allocation. We find no instances of this error in our data set.

In the Invalid index category, we find vulnerabilities where invalid indexes are
used in loops [1]. In our data set we find one instance in the invalid index bound
category. This is linked to a logical error caused by a misplaced index check.

The Unexpected calculation category includes vulnerabilities where unexpec-
ted results are obtained during calculations [1]. In our analysis we find two vul-
nerabilities in this category. One is caused by parsing an MTREE archive entry



40 G. A. Bjørnseth: Studying vulnerability history in an open source software package

backwards to identify the file name. If the file name is the whole entry and Out-
of-Bound read occurred and caused a subsequent unchecked error with memcpy.
The other is an over-count of the MTREE line size when reading ahead in the
archive file.

We also add one new main category, Missing initialisation, where the lack of
variable initialisation causes memory vulnerabilities. Two vulnerability is added to
this category. One is CVE-2015-8926, where a NULL-pointer dereference vulner-
ability was caused by a pointer not being initialised as NULL. This could cause the
RAR archive reader to be tricked into reading the decompression buffer from the
last decompressed file. The other is a Use-After-Free vulnerability in CVE-2019-
18408, caused by a missing re-initialisation after an ARCHIVE_FAIL is returned.
We also putt this vulnerability in the Logical error category due to the missing
clean-up after a failure.

The last category covers logical errors made by the developer [1]. We find 12
vulnerabilities in this category and include issues like misplaced cleanup routines
causing memory leaks and interchangeable use of compressed uncompressed sizes
on uncompressed archive files without checks on the sizes being equal. One NULL
pointer dereference vulnerability is placed in this category. This is vulnerability
where a NULL value is deliberate is allowed when it should have been rejected.
We also find the two Use-After-Free vulnerabilities in this category. One is the
missing re-initialisation described above, the other was tied to logical errors in
identifying a multi-volume RAR archive file.

Comparing our results of types of errors with the taxonomy from [1] we find
vulnerabilities in all main categories except the missing return check category. As
an extension to the original buffer overflow taxonomy, we introduce the subcat-
egory Intentional signed overflow in the variable overflow category and the Unex-
pected input NULL in the unexpected input category. We also added the new main
category Missing initialisation containing errors caused by missing pointer initial-
isation. Of the six vulnerabilities in CWE category 476 NULL pointer dereference,
we find four in the Unexpected input category. Two in the new unexpected NULL
subcategory, and the other two in the unexpected zero and unexpected maximum
subcategories. Of the remaining two one is in the missing initialisation category
and the last is a logical error. The Use-After-Free vulnerability (CWE 415) is caused
by an unexpected zero input, and the two Double-Free vulnerabilities (CWE 416)
are both caused by logical errors where one of the logical errors causing a missing
initialisation.

4.4.2 Memory safety taxonomy - Types of sinks

The results from categorisation of the types of sinks in the data set is listed in
Table 4.5. Sinks are the last instance where user input can exploit vulnerable code
[1]. The two Use-After-Free vulnerabilities (CWE 416) are categorised in both
Pointer read and Pointer write since both read and write behaviour was observed
in the security report. This is CVE-2018-1000878 and CVE-2019-18408.
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Table 4.5: Types of memory safety sinks. Extensions to [1] listed in italic

Main category Subcategory No.
Critical functions Transfer memory 7

String copy 0
String scanf 0
Memory compare 1
Allocations 3
Third-party functions 2

Array Array read 7
Array write 2
Array read static 0

Pointer Pointer read 20
Pointer write 4

Integers 2

The critical function category contains sinks that are memory-critical functions
[1]. In this category we find seven instances of transfer memory sinks. These are
unchecked operations with memcpy, memmove and memset. We find no in-
stances of string copy string scanf sinks, but we add three new subcategories.
These are Memory compare, Allocations and Third-party functions. The one vul-
nerability in the memory compare subcategory is caused by an unchecked com-
parison with memcmp causing an Out-of-Bound read. In the third party subcat-
egory we find sinks memory transfer functions in third-party components used by
Libarchive. We choose to add this as a separate category to show how third-party
components can be sinks. The allocation subcategory consists of three vulnerabil-
ities connected to allocations. One is a memory leak caused by a misplaced free of
the allocated memory and one is the Double-Free vulnerability caused by realloc
with size zero. The last is a malloc failing due to out-of-memory. This error was
correctly handled in code and discovered using and address sanitizer. Since this
was correctly handled, we put this vulnerability in this subcategory and not in the
transfer memory subcategory.

The pointer and array category are sinks caused by misuse of arrays and point-
ers [1]. In the array category we find bot array read and array write sinks, but no
static read in arrays in our data set. In the pointer category we also see both reads
and writes, and pointer read is the largest subcategory with 20 instances. As men-
tioned above the two Use-After-Free vulnerabilities are counted in both pointer
read and write.

Last, we add a new category Integers. In this category we put two vulnerab-
ilities caused by undefined behaviour in C. One is the deliberate signed integer
overflow in CVE-2015-8931. The other is left shift of 31 bytes on a 32-bit integer,
CVE-2015-8932. This is also undefined behaviour in C, and potential vulnerable
code.

Comparing our categories of sinks against the taxonomy in [1] we find vul-
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Table 4.6: Types of memory safety fixes. Extensions to [1] listed in italic

Main category Subcategory No.
Proper input check Not too high 6

Black listing 0
Not negative or zero 9
Not too small 4
White listing 0
Not NULL 5
Is NULL 1
Matching values 2

Check overflow underflow Checkable type 0
Check before calculation 2
Check before send 1

Check if allocation succeeded 0
Use safe function 0
Fix indexes Fix index update 2

Fix index initialisation 0
Change to matching data types 4
Fix calculation 3
Proper allocation 4
Fix logic 8

nerabilities in all the main categories, and as an extension to this taxonomy we
add the Memory compare, Allocations and Third-party functions under the Crit-
ical functions category. We also add the new Integers main sink category. All the
NULL pointer dereference vulnerabilities from CWE-476 are placed in the Array
read category, and as mentioned above the two Use-After-Free vulnerabilities are
placed in both Array read and Array write. The one Double-Free vulnerability is
in the new Allocations category.

4.4.3 Memory safety taxonomy - Types of fixes

The types of fixes are listed in Table 4.6. Six of these vulnerabilities has two imple-
mented fixes and are therefore counted in more than one category. One example
is CVE-2016-6250 where both changes to matching data types and proper input
validations are part of the fix.

The proper input check category covers input checks that was missing, or the
developer did not have in mind [1]. In our analysis we extend the Not negative
category to also cover Not zero. Two vulnerabilities fall into the not-zero part of
this category. One is the Double-Free vulnerability caused by realloc with new size
zero. In addition to this we add three new subcategories. These are Not NULL, Is
NULL and Matching values. In the not NULL subcategory, we find the five vulner-
abilities from the unexpected input NULL subcategory from the types of errors.
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These are all string operations on NULL strings. In the is NULL category we find
a Out-of-Bound read caused by existing attributes on a 7Zip archive file when no
attributes (NULL) were expected. The fix adds checks to reject the entry if the
attributes are not NULL. In the matching values subcategory, we find two vul-
nerabilities. One is the earlier described vulnerability where the compressed and
uncompressed sizes of a uncompressed ZIP archive file did not match. One of the
implemented fixes was to compare these values before proceeding. In the other
vulnerability an actual field length was compared with the given length as an
input check.

In the check overflow underflow category, we have no instances in the check-
able type subcategory. In [1] this was related to a checkdint class which allowed
to check for under- or overflows [1]. No such class or other methods exists in
Libarchive. We find two instances in the check before calculation subcategory,
where there are checks added to to check if integer overflows occur before the
integer value is used. In addition, we added the new subcategory Check before
send, containing one vulnerability (CVE-2013-0211). In this case a variable is over-
flowed in a cast when sent as parameter to other methods. The fix checks that the
value is not larger than MAX_INT before sending the variable. Since this check
affected multiple possible calculations, we keep this as separate subcategory and
not as a part of check before calculation. All three vulnerabilities fixes errors from
the variable overflow error category.

The fix index category contains fixes to two vulnerabilities in the fix index
update subcategory. Both were off-by-one errors, the first caused by a misplaced
check the other by a logical error in handling of UTF-16 strings. In the change
to matching data types category we find four instances, all from the mismatch-
ing data types error category except CVE-2013-0211 which is described above.
This category includes fixes to implicit and explicit casting of variables. The fix
calculation contains the two vulnerabilities from the unexpected calculation error
category, in addition to one from the logical error category. In this vulnerability
an Out-of-Bound read occurred due to use of wrong size variables in the and the
fix corrects this error in the calculation.

In [1] the proper allocation category contains fixes where the memory alloc-
ation was fixed, and the four vulnerabilities in our categorisation also falls into
this definition. All caused memory failures due to insufficient memory allocations
either through static allocations or errors in returned values used in allocation.

In the two categories "Check if allocation succeeded" and "Use safe functions",
we have no instances in our analysis. The allocation succeed category is linked
to the missing return check error category were we also have no instances in our
analysis, and none of the vulnerabilities in our data set were fixed with use of safe
functions.

Last, we add a new category Fix logic. In this category we find fixes to vulner-
abilities from the logical error category. Examples are fixes to clean-up routines
to prevent memory leaks, proper initialisation or re-initialisation of pointers to
prevent NULL pointer dereferences or Use-After free errors, or fixes of consume
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logic when parsing an archive file to prevent a quasi-infinite loop. We also put
the fix to the intentional integer overflow used to find time max/min values in
this category. The fix simplified the logic to use INT64_MAX/INT64_MIN as time
max/min values.

Comparing our categories of fixes with the taxonomy from [1] we find vul-
nerabilities in all categories except the "Check if allocation succeeded" and "Use
safe function" category. We add the new subcategories Not NULL, Is NULL and
Matching values under the proper input check category. We also add the new Fix
logic category, containing fixes to the memory vulnerabilities not covered by any
of the other categories. We find the NULL pointer dereference, Use-After-Free and
Double-Free vulnerabilities in the proper input check and the fix logic categories.

4.4.4 Non-buffer overflow vulnerabilities

Above we have categorised 46 of the 53 Libarchive vulnerabilities using the memory
safety taxonomy. The remaining seven vulnerabilities are:

• CVE-2011-1777
• CVE-2011-1778
• CVE-2015-2304
• CVE-2015-8930
• CVE-2016-5418
• CVE-2016-7166
• CVE-2019-1000020

The two vulnerabilities CVE-2011-1777 and CVE-2011-1778 are reported as
buffer overflow vulnerabilities in ISO9660 and TAR archive file functionality re-
spectively, allowing an attacker to cause denial of service through crafted archive
files. Both CVE entries have CWE category 119 "Improper restriction within the
bounds of memory buffer". In our data collection and analysis, we find no direct or
specific trace of any buffer overflows, but through the applied patches to the errors
we see an error through the use of exit in error handling. This will cause program
termination on errors, and the code shows that this could be triggered through a
failed memory allocation. The fix moves away from the use of exit in errors (only
used in some special cases), and to the use of error/status codes which makes it
possible to either terminate in orderly manners or skip the current processing and
move on to the next archive entry.

CVE-2015-8930, CVE-2016-7166 and CVE-2019-1000020 are all variations of
infinite loops. The first is caused by a special situation in ISO9660 archive files
where a directory in an archive entry is self-owned, which leads to an infinite loop
in a path-builder method. The second is caused by a stack-compressed archive file
(archive compressed multiple times). Without any upper limit of number of com-
pressions an attacker could trigger an semi-infinite chains of compressors causing
resource exhaustion and denial of service. The fix applies a maximum of 25 com-
pressions rejecting an archive if more. The last also relates to ISO9660 archive
files, and occur due to a logical error where a failed sanity check still returns status
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ARCHIVE_OK causing an infinite retry without moving the pointer. The applied
fix changes to logic.

The last two, CVE-2015-2304 and CVE-2016-5418, are variations of directory
traversals or sandbox evasions. The first relates to absolute paths in the bsdcpio
implementation, the other relates to hardlinks causing sandbox evasions. These
are fixed with rejecting archive entries or stripping archive entry paths of absolute
paths.

4.5 Observed vulnerability phenomena

In the above sections we have seen that the Libarchive vulnerabilities in our data
set centers around memory related issues, and we have analysed patterns behind
the types of errors, sinks and fixes of these vulnerabilities. In the following sec-
tion we will present the results from the analysis of general patterns behind how
vulnerabilities emerge in the OSS package.

4.5.1 "The dark side of the code"

In modern application development the complexity of the application and the
manner of their development will cause aspects in their behaviour that is not al-
ways considered or fully understood by the developers. This can range from the
application level to low-level system calls [27]. The layered nature of applications
encapsulates and hides lower-level details resulting in the developer not always
understand the operational details of the entire application. As a result, the de-
veloper does not know, or have access to the low-level details where the security
issues occur [7]. This is described by Pieczul and Foley [27] as "The dark side
of the code", a phenomenon which forms a security gap between expected and
actual behaviour of the code [27]. In our data set of Libarchive vulnerabilities
we see this phenomenon in practise related to integer overflows and misuse of C
standard library functions.

As we have seen in Section 4.4 we have different integer overflow related vul-
nerabilities. These are caused by low-level details as platform issues, undefined
compiler behaviour, or integer casting issues not considered by the developer.
From the definition of "Dark side" we see that these issues are examples of this
phenomena. One of these examples is the intentional signed overflow described
earlier (CVE-2015-8931), used to get min/max time values. The problem in this
solution is signed integer overflows being undefined C behaviour. Dietz et al. [24]
describe this type of undefined behaviour as time bombs, code that can work today
but can break in the future due to optimisations and other changes [24]. Two
of the other integer overflow vulnerabilities relates to size differences between
variables on 32- and 64-bit platforms. These are CVE-2013-0211 and CVE-2016-
6250, relating to ZIP and ISO9660 archive files respectively. The former is caused
by signedness issue in cast between size_t and int64_t. On 32-bit systems this
cast is unproblematic with INT64_MAX > SIZE_MAX, but on 64-bit platforms the
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width is the same and the sign will change. The overflowed value is used in size
compare before writing to an allocated buffer causing a buffer overflow [23]. The
latter is another signedess issue related to the check of an archive entry file name
length in ISO9660 archives. In this check the file name length is stored as size_t
but casted to int. This is also a potential problem on 32-bit systems given the equal
variable width of size_t and int, but to allocating enough memory to bypass the
file name length check is only possible on 64-bit systems [23]. In addition to these
examples, we find integer overflows caused by implicit casts between int64_t and
int, and integer overflows caused by variable overflows in calculations.

Of the C standard library misuse vulnerabilities, we find one security error
(CVE-2015-8918) caused by the use memcpy on an overlapping memory buffer
causing a segmentation fault. The copy between overlapping memory buffers is
undefined behaviour [43]. In addition, we find two issues caused by undefined
or implementation defined compiler behaviour. One issue is the Double-Free vul-
nerability caused by realloc with size zero. A call to realloc with new size zero
is implementation defined behaviour and the allocated memory might be freed
[43], resulting in a double free when the clean-up routine using free is called.
The other issue is an illegal left shift on an integer (CVE-2015-8932). The root
cause a malformed archive file with an invalid compression parameter, but this
error resulted in a left shift of 31 bytes on a 32-bit integer. As for the intentional
signed overflow a left shift of at least the full size of the variable is undefined
behaviour and also a potential "time bomb" [24].

Pieczul and Foley [27] demonstrated the "Dark side of the code" phenomena
through a theoretical example showing how the Java method WebUtils.snapshot()
hides functionality making it possible to exploit the method to access resources
on the local network [27]. In the study of the evolution of security controls in
the Apache Struts OSS package, Pieczul and Foley [7] observed the "Dark side"
phenomena in practice. The study showed how low-level details of components
used in the Java application was inaccessible to the developers causing the "Dark
side" phenomena [7]. In our project we have observed how low-level system de-
tails like undefined or implementation defined C behaviour or integer overflows
caused by 32/64-bit platform issues can be "Dark side of the code", areas of the
code and functionality not fully considered or understood by the developer. These
are issues requiring in-depth knowledge of programming language application
platform(s) specifics and have the potential to cause a security gap between ac-
tual and expected behaviour when they are not understood or considered by the
developer.

4.5.2 Blind spots

In our data set of Libarchive vulnerabilities we see that many of the security
errors relates to special crafted or malformed archive files. These archive files
give unexpected input or causes unexpected behaviour in the code, which we
also see through the types of errors in the memory safety taxonomy (Table 4.4)
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where we find "Unexpected input" as the category with most vulnerabilities. The
study by Oliveira et al. [28] showed that vulnerabilities are blind spots in de-
veloper’s heuristic-based decision-making process. In their day-to-day operations
developers focus on the problem at hand which normally involves functional and
performance requirements, and they usually assume common cases for the inputs
and states the piece of code can reach. The vulnerabilities, on the other hand,
lies in the uncommon cases often overlooked by the developer and exploited by
the attacker. To find these cases a significant cognitive effort is required through
complexity of fault analysis, whereas people normally prefer to use as little effort
as possible when solving a problem [28].

The blind spot instances we find in our data set relates to illogical or illegal
values in the archive files, to example wrong size or compression ratio values or
empty archive entry file names. One instance is CVE-2015-8930 where directory in
one ISO9660 archive entry is a member of itself. This uncommon case results in an
infinite loop in a path-builder method used when parsing the archive entries. The
self-owned directory results in the pointer not moving and the path-builder adding
the same directory to the path indefinitely. The fix adds a sanity check rejecting
a self-owned directory before processing of the entry, and also ads a depth check
in the path builder method rejecting an archive entry if directory depth of 1000
is reached. One observation from these fixes is that a directory depth of 1000
violates the ISO9660 specifications, which restricts the directory hierarchy depth
to eight [44].

Another instance is CVE-2016-4302, related to RAR archive files. An illegal
dictionary size of 0 was not rejected in the archive processing. This resulted in
a zero-sized memory allocation, and a subsequent heap-based buffer overflow
and possible arbitrary code execution. Adding to the security issue was also an
assumption in the Ppmd7 decompression routine of a dictionary size of at least
12 bytes. This assumption was not enforced, allowing the overflow of the previous
heap buffer chunk. The applied fix rejects zero sized dictionaries and enforce the
12 byte assumptions in the Ppmd7 decoder.

We also see a blind spot scenario in CVE-2016-1541, related to ZIP metadata
entries in macOS. On an uncompressed file, the compressed and uncompressed
sizes are used interchangeably when allocating and writing to a memory buffer.
The uncompressed size was used when allocating the buffer and then the com-
pressed size was used in the input check when writing to the buffer. In a normal
situation with an uncompressed archive file these sizes would be equal, but the
fields are user controlled making it possible for an attacker to manipulate the
values to create a buffer overflow.

As a link between the "Dark Side" phenomena and blind spots we find the
integer overflow in CVE-2016-4300. In a crafted 7Zip archive file it is possible to
cause a size_t variable to overflow given the sufficient number of numFolders
and the sufficient numUnpackStream values. The overflowed value is used in
memory allocations and could be exploited to cause a heap buffer overflow. In
the code we find an input check on each numUnpackStreams being less than the
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defined variable UMAX_ENTRY, but each numUnpackStreams is added to the
size_t variable unpack_streams without any check making an integer overflow
possible. To exploit this vulnerability an abnormal large number of sub-streams
are needed. That we find input checks on each numUnpackStreams, but not on
in the calculation of unpack_streams can be explained by this scenario being a
blind spot for the developer.

Another link to "Dark Side" is the illegal left shift described in Section 4.5.1.
The root cause for this vulnerability is a compression code with an illegal size
larger than 16 bits. Some validations existed of the compression code but not on
the size, showing that this was an unconsidered scenario.

Of the other vulnerabilities caused by developer blind spots we find archive
files with zero or negative file size values, negative compression size values, or
archive entry file names that are either NULL, empty or containing illegal char-
acters values. Though we find input value checks, sanity checks and return value
checks in the code, these vulnerabilities are exploited through uncommon cases
or conditions not considered by the developers. We also see that this happens re-
peatedly, to example with the introduction of RAR version 5 support in Libarchive
version 3.4.0. A missing check on illegal RAR headers of size 0 resulted in segment-
ation faults when parsing the corrupt RAR archive. Legal RAR 5 header size is 7
bytes and illegal values should have been rejected. Overall, the exploitation of vul-
nerabilities through crafted or malformed archive files is blind spot to Libarchive
developers.

4.5.3 Opportunistic fixes and solutions

Another phenomenon we see in our data set is opportunistic fixes and solutions.
When fixing a security issue, the developer might prefer the solution that fits the
existing code and not the more extensive and complete solution relating to the
root cause of the problem. Such solutions are often more convenient to imple-
ment and does not interfere with the existing code structure [7]. This can also
relate to implementation of new functionality. The easiest solutions that fit and
not interfere with the existing code is preferred by the developer.

We find one clear example of this phenomena in CVE-2015-8916. The secur-
ity error is reported as a NULL pointer dereference in the bsdtar implementation
caused by an empty archive entry file name returned by the RAR reader. Further
processing of the returned file name results in the NULL pointer dereference er-
ror. The root cause of the vulnerability is identified by the developer as the header
in the malformed RAR archive file being wrongly interpreted by the RAR reader
as being a multi-volume RAR file, causing the empty file name to be returned.
Though the root cause is identified, the implemented fix only adds a return value
check in bsdtar rejecting empty file names returned from the reader and prevent-
ing the NULL pointer dereference error. The fix of the root cause is deferred to
later versions, but we find no follow up of this until the same multi-volume RAR
problem occur in CVE-2018-1000878. In this error a malformed RAR archive file is
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also interpreted as a multi-volume archive file as in CVE-2015-8916, but this time
the error causes an early release of a Ppmd7 buffer resulting in a Use-After-Free
vulnerability. The implemented fix applies extended checks to verify if the file is a
multi-volume file or not, preventing the premature release of the buffer. Such an
extensive check to fix CVE-2015-8916 could have prevented the vulnerability in
CVE-2018-1000878.

In relation to CVE-2015-8916 we also find CVE-2015-8917. This is the same
NULL pointer dereference in bsdtar as in CVE-2015-8916, but this time caused
by a malformed CAB archive file returning empty archive entry file names. The
same return value check in bsdtar is applied as fix to both vulnerabilities, but as
for the RAR vulnerability the CAB vulnerability has a root cause in the malformed
archive file. The root cause is identified as a combination of missing CAB header
checks and illegal characters in the entry file name. No follow up of these issues
are found, and no later CAB related vulnerabilities are caused by these issues.

Of opportunistic or easy solutions, we see the error handling issue related
to CVE-2011-1777 and CVE-2011-1778. The use of exit in error handling made
it possible for an attacker to trigger an application termination through a mal-
formed archive file. The two reported vulnerabilities relate to memory allocation
errors in TAR and ISO9660 archives, but the error handling was applied across the
whole library. By Libarchive version 3.0.0a the error handling system was mainly
rewritten, and the library moved away from process termination to status codes
and either graceful termination or skipping or bailing on the current processing
while continue with the next item in line. The process termination with exit is
only used in special cases, and the new error handling routine is advised in the
"getting started" guidelines for Libarchive.

The original exit-solution is an opportunistic easy solution to error handling
where there is no need to clean-up or other measures to make the application
continue to functioning after an error, but Libarchive being a programming lib-
rary such solution has implication beyond the library or the bsdtar and bsdcpio
implementations. Given that this issue was fixed and the current advice around
error handling in the guidelines, the issue was understood by the developers. But
we also see in discussion forums that this did not have full priority and that it took
some time to implement.

Of other instances related to opportunistic fixes and solutions we again see the
illegal left shift vulnerability described above, caused by an illegal sized compres-
sion code. In the original code we found some validation of the compression para-
meters, but also the comment "TODO: verify more". These verifications were
added in the fix to the vulnerability, but the validation of the compression code
size was a separate verification issue. Though the root cause would not have been
caught by the complete compression parameter validation, the initial solution was
incomplete but still deemed good enough to be put into production.

We also see the directory traversal vulnerability in bsdcpio in CVE-2015-2304
in relation to opportunistic fixes. In the discussion of a potential fix to this vul-
nerability it was decided to implement a non-Windows solution as the first step.
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We find no trace of a follow-up of the Windows part of this, but in the Windows
related code we find a cleanup_path_name() method where absolute paths seems
to be handle correctly. There is therefore unclear how much of a problem absolute
paths were on the Windows-side in the beginning, but the discussion leading up
to the fix shows the willingness to limit the solution in the first place.

4.5.4 Report biases

In their study, Pieczul and Foley [7] found how a "Dark Side" phenomena also
could exists in the documentation and interpreting of vulnerability reports. Vul-
nerabilities are often identified by security researchers external to the develop-
ment project, and though these reports give detailed descriptions of the security
problem and attack vectors they can lack a broader and detailed understanding
of the application they are testing. The result can be that the developers review-
ing the security report limit their scope to the problem as described in the report
instead of looking at the problem in a broader scope and trying to identify similar
problems or other attack vectors [7]. In our analysis we observe how the report
bias is influenced by the use of automated testing tools like fuzzing and in addition
to create a dark side scenario also can influence opportunistic fixes.

Fuzzing is Black-Box testing technique used to identify implementation bugs
using malformed data injection in an automated fashion. Fuzzing can also be
used for automated file format testing, where the fuzzer generates malformed file
samples and uses these in the automated test [45]. In our data set of Libarchive
vulnerabilities we see that fuzzing is used to identify several of the vulnerabilities.
With Libarchive being a low-level file centered application, fuzzing is a good and
necessary testing tool and many of the vulnerabilities would not have been iden-
tified without the use of fuzzers. But we also observe some phenomena related
to these vulnerabilities that is worth noting when studying how vulnerabilities
emerge and evolve.

As described above, Pieczul and Foley [7] found that the vulnerability reports
could limit the scope of the developers to the error as described in the report.
What we see in our analysis is that the vulnerabilities identified using fuzzing
comes with the log or trace from the testing as the only documentation of the
vulnerability. In some instances that makes dismissing or closing vulnerabilities
as duplicates the easy solution even if the root cause is different. If we go back to
CVE-2015-8916 and CVE-2015-8917 described in Section 4.5.3 we see that an op-
portunistic fix was implemented as a solution to both vulnerabilities. Both vulner-
abilities reports the same NULL pointer dereference in the strip_absolute_path()
method in tar/util.c using a fuzzer with malformed RAR and CAB archive files re-
spectively. As described above, the root cause in the RAR case was identified as a
single-/muliti-volume RAR archive issue, but a fix to this was deferred to later and
the implemented fix focused on the NULL pointer dereference by adding a return
value check in bsdtar. The RAR root cause was identified by the same developer
implementing the fix. The same developer also closed the CAB vulnerability as a
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duplicate with same fix and comments in the issue tracker, but without identifying
any root causes to that vulnerability. The root causes in the CAB archive reader
were identified some months later by another developer. Given the identified RAR
root cause, the existence of a different CAB root cause must have been understood
by the developer but the similarities between the vulnerabilities have caused the
same opportunistic fix to be applied to both vulnerabilities.

We also find fuzzing related vulnerabilities where there are actual duplicated
reports in our data set. One example of this is CVE-2016-8688 related to MTREE
archive files. We find six different error reports in the Libarchive bug tracking sys-
tem related to this vulnerability. All are reporting Out-of-Bound or Use-After-Free
errors in the MTREE reader. Five of these issues were reported by the same re-
searcher using a fuzzing tool, while the last was reported by another researcher
with manual testing using a crafted archive file. All had the same root cause in
a calculation error when reading ahead to the next line in the archive file. In
addition to this example there are other similar issues, either with one CVE-ID
connected to two or more error reports with the same root cause or two or more
CVE-ID’s where the error reports on each has the same root cause. In some of these
cases the different error reports are reported by different researchers around the
same time and the double reporting have a natural explanation. For other double
report, for the example with CVE-2016-8688, the multiple reports from the same
researcher can be explained by the automated testing tools and the lack of broader
knowledge of the application by the researcher. The different tests are performed
with different settings and malformed files and produces different traces and logs.
Without further analysis of the result and knowledge of the code an external re-
searcher cannot easily say if these issues are the same or not. Reporting all the
issues are therefore correct handling of this, but it falls on the developers to ana-
lyse these further. With several double-reports like the ones in CVE-2016-8688
this can cause situations where it easy to dismiss issues as duplicates based on
trace files and previous experience even if the root causes are different.

Of other issues we see related vulnerabilities reported using fuzzing is prob-
lems to reproduce the security errors and situations where the error is correctly
handled in the code but still reported as a vulnerability. We find that the prob-
lems with reproducing the errors are due to lack of information around issues like
platform and compiler settings, and that there are discussions around these issues
in the in the issue tracking system. CVE-2016-4809 is caused by a malloc failure
in the CPIO reader due to large symlinks. The failure is handled correctly in the
code, but still reported as an error or after a fuzzer test. An input validation on
symlink sizes is added as a fix. Together with the double reporting, the reprodu-
cing problem and the issues like CVE-2016-4809 risk creating a sense of noise and
the issues being less important and we get comments like "Do something sensible
for empty strings to make fuzzers happy", as we see in the commit comment in the
fix to CVE-2017-14166.
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4.6 Socio-Technical system analysis

From the phenomena described in the previous section we see how the low-level
details of operating systems, platforms and compilers create "Dark sides" for the
developers and how complexity of file systems and file formats supports can cre-
ate developer blind spots. We also observe how developers opting for opportun-
istic fixes and solutions creates or influence vulnerable code, like the error hand-
ling solution causing abrupt process termination or the fix to the NULL pointer
dereference in bsdtar where the underlying multi-volum RAR issue was left un-
fixed causing a new vulnerability later. Last, we have also seen how external se-
curity researchers and the use of automated testing tools creates report biases. We
have seen examples of vulnerabilities with similarities in the trace or log files are
treated as the same issues without attempts to find and fix any underlying root
causes. We have also observed actual double reporting due to the use fuzzers,
and also problems reproducing the vulnerabilities due lack of information in the
vulnerability reports from the testing tools.

To gain insight into how these phenomena occur and what is influencing them
we analyse the Socio-Technical System (STS) surrounding the vulnerability hand-
ling in Libarchive. In this analysis we adopt the STS model by Kowalski [40].
As discussed in Section 3.4, an OSS project consists of both social and technical
aspects and the STS model help us better understand how the above described
phenomena. The STS model is showed in Figure 3.2 and a summary of our find-
ings is presented in Figure 4.1. The following sections presents these findings in
detail.

Figure 4.1: Socio-Technical analysis results

4.6.1 Culture

Sabbagh and Kowalski [46] define security culture as “The way our minds are
programmed that will create different patterns of thinking, feeling and actions for
providing the security process”. As we have described above, the "Dark side" phe-
nomena is the security gap that occur between expected and actual behaviour of
the code and the blind spots happens in the corner cases and unusual informa-
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tion flows overlooked by the developers in their day-to-day operations. From the
definition of the security culture, we see that this guides the thinking and actions
around the security process in the OSS project, and from that we see that the se-
curity culture influence how and to which extent the "Dark side" and the blind
spot phenomena are allowed to occur and influence the security in the project.
The security culture will also guide the thinking around opportunistic fixes and
solutions and the handling of reported vulnerabilities and how report biases will
influence this process.

In our analysis of the Libarchive vulnerabilities we do not find a clear and
defined security culture. There are no existing guidelines regarding secure pro-
gramming or vulnerability awareness. In the Libarchive GitHub project page there
is a Wiki page with a "getting started" guide including code examples, but none of
these includes the topic of secure programming or common vulnerabilities. The
one thing we find is an error-handling guideline which describes the correct use
of error-codes with regards to the earlier described vulnerabilities caused by the
unconditional use of exit on errors.

From the follow-up and implemented fixes of the reported vulnerabilities we
see few if any discussions regarding broader scopes of the vulnerabilities, and we
see that the focus mainly is on fixing the problem at hand without any attempts
to find similar vulnerable code or look at the vulnerability in a broader context.
We also see, as discussed in Section 4.5, that opportunistic fixes and solutions are
selected when implementing fixes or adding new functionality. In connection with
this there is no general broader focus on the common types of vulnerabilities found
in the project. As discussed in Section 4.4 we find that Libarchive vulnerabilities
center around memory safety, and we find no guidelines or discussions around
these types of vulnerabilities with regards to how such vulnerabilities occur and
how to prevent them.

From this we observe how a limited security culture with little focus on what
types of vulnerabilities that can occur in the application and how to secure the
code against these, allows for our observed phenomena of "Dark side", blind spots,
opportunistic fixes and solutions, and report bias to occur.

4.6.2 Structure

OSS development is characterised by community driven development, and unlike
traditional software development organisations they do have few if any formal
structures regarding formal planning and schedules [47]. With the focus on the
question of how vulnerabilities emerge and evolve in an OSS project we find three
stakeholders of interest. These are the contributing developers, testers or security
researchers testing the software, and the users of the software. In addition, the
vulnerability disclosure structure is of interest in our analysis.

With the focus on vulnerability introducing commits and vulnerability fixing
commits we find that only a few of the developers with contributing commits to
Libarchive were involved. Libarchive has a total of 184 developers with contribut-
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ing commits. Of those, the top 5 contributors have more than 100 commits, and
the top 2 has more than 1500 commits. Analysing the vulnerability introducing
commits, we find 18 commits after Libarchive version 2.8.5. Among these we find
extensive commits introducing new archive format support or extending support
for existing formats. Eight developers were involved in these commits, where 13
of these commits, and 2 pull request approvals were by three of the top 5 de-
velopers. Of the vulnerability fixing commits we find 41 of the 53 vulnerabilities
were fixed by one of the top 5 developers, and in addition we find that two of
the top 5 developers approved six pull requests with fixes of nine vulnerabilities.
From this we see that the vulnerabilities are not caused by a broad community of
developers with limited knowledge about the project. The fixing of vulnerabilities,
including the use of opportunistic fixes, are also limited to a few developers. All
with broad knowledge of the project.

Among the testers or security researchers we find three groups contributing
to the testing of Libarchive. These are professional security researchers like Cisco
Talos or professional tools like Google OSS-Fuzz, semi-professional researchers
like "The fuzzing project" by Hanno Böck, or single users testing the library on their
own. As discussed in Section 4.5.4, external testers often have limited knowledge
of the internal structure and working of the software under testing. This together
with the use of automated testing tools like fuzzers contribute to a report bias
where the developers risk limited their scope to the security error at hand without
any attempt to look at the vulnerability in a broader scope.

Libarchive is used across operating systems like FreeBSD, NetBSD, macOS,
Windows and various Linux distributions. It is also used in individual software like
package managers, archiving tools and file browsers. This creates a cross-platform
environment increasing the complexity in the software. The cross-platform envir-
onment also influences the requirements of the archive formats with regards to
platform and OS specific behaviour.

Last, there are no defined vulnerability disclosure policy for Libarchive. Many
of the vulnerabilities found using fuzzing are reported as "normal" issues in the
issue tracking system in GitHub. For other vulnerabilities the researcher asks for
contact information either through issue tracking or the discussion forum. In some
instances, the project owners are also contacted directly. The vulnerabilities repor-
ted through the issue tracker are fixed as they occur, and as described above the
fixes are mainly done by a few of the top contributing developers. We also find
examples of vulnerabilities that are not followed up until they are re-reported
through a new or similar issue. This can be due to a lack of a structured vulner-
ability disclosure policy, and that the possible security impact of vulnerabilities
reported through the issue tracking system are not fully understood by the de-
velopers.
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4.6.3 Methods

In the methods section we analyse the methods used with regards to secure pro-
gramming, the methods used in testing the software both internal and external,
and the methods used to implement archive formats support in Libarchive.

As discussed under Culture in 4.6.1, we find no guidelines or coding standards
regarding secure programming in Libarchive. There are also no specific guidelines
or introduction to the most common vulnerability categories in the OSS project.
What we find is a Libarchive test suite and in the testing guidelines we see: "Any
significant change to Libarchive, including most bug fixes, should be accompanied
by new tests or changes to existing tests" [2]. This is a reactive approach to testing,
where you test for known issues whereas the vulnerabilities often are found in the
uncommon cases and in unknown issues as we have seen in the previous discus-
sions. We also find fuzz tester in the testing suite, and we also see that after 2016
Libarchive was added to Google OSS-Fuzz which is a free fuzzing platform for
OSS [48]. As described in Section 4.5.4 fuzzing is an automated testing tool used
to find software bugs through malformed data injection [45]. This is proactive
testing approach where the goal is to uncover unknown security bugs and ideally
fix these before the vulnerable code reach production.

Fuzzers are also used by external security researchers testing Libarchive. As
discussed in Section 4.5.4 we have seen how these testing tools and the security
reports produced from these tools can contribute to a report bias. The security
reports consisting of trace or log files from the fuzzers combined with external
researchers with limited knowledge of the program under testing causes issues
like double reporting of error, problems recreating the errors, and we also find
examples of the developers closing errors as duplicates even if the errors have
different root causes. The last issue can be contributed to the security reports
consisting of trace file limiting the developers scope of the problem to the issues
as showed in the trace file.

Another report issue related to the use of fuzzing as test method is a bias in
reported read versus reported write related vulnerabilities. Libarchive can read 18
archive formats and write 8 archive formats. Of the 53 vulnerabilities in our data
sat, only 4 relates to write functionality. One explanation for this is that testing of
read functions is easier done with fuzzing tools, than the manual process needed
to test write functionality. Some write-tests exists in the Libarchive test suite, but
from the Libarchive test guidelines we see that these tests mainly verify bytes
written to memory to test that an archive was created correctly [2]. We have not
done any analysis or testing into undiscovered vulnerabilities in the write-part of
Libarchive and cannot say that there is an actual bias in the testing. But given
the difference in number of vulnerabilities and the extensive use of fuzzers in the
testing, this is a possible bias worth noting.

Another method related issue is the implementation of archive format support.
Multiple archive formats are supported by Libarchive and many of the vulnerab-
ilities in our data set is found is edge and corner cases in crafted or malformed
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archive files. Libarchive need to be able to read archive files created from other
implementations, and in some cases this means that not every part of an archive
format standard is followed to the letter. We see examples of these dynamic im-
plementations of an archive format support leads to missing or insufficient input
validations that could be exploited. One example of this is ISO9660 infinite loop
described earlier caused by a self-owned directory. The ISO9660 standard limit the
directory to a depth of eight [44], but no input check existed on this restriction
and after the fix of the vulnerability Libarchive still allows up to 1000 deep dir-
ectory hierarchies. Another example is the vulnerability in the RAR reader caused
by an illegal zero sized dictionary variable. The RAR specification defines legal
dictionary sizes to be between 64 KB and 4096 KB [49], and we also find these
values defined as constants in the source code, but they are all unused. Given that
not all archive files to be read by Libarchive follows the standard it is necessary
to have a less strict implementation of the different archive formats, but as the
two examples shows this can also cause missing input validations and possible
vulnerable code.

4.6.4 Machines

As discussed above, Libarchive is cross-platform software used across different op-
erating systems and in different individual software packages. This cross-platform
context influences the vulnerabilities and the fixes to these. As we have seen in
Section 4.5 this can be through 32/64-bit platform issues causing integer over-
flows or fixes that only applies to some of the platforms like the fix to the directory
traversal in bsdcpio.

The cross-platform context also applies to the support of multiple archive
formats, including support for platform specific implementations of these archive
formats. This adds to the complexity of the application, and as discussed in the
previous section the need to for multi-format support can cause missing input
validations and possible vulnerabilities.



Chapter 5

Vulnerability evolution model
and case studies

In this chapter we present our model of how vulnerability emerge and evolve in an
OSS package. The model is developed from the results of our analysis into patterns
and phenomena behind the Libarchive vulnerabilities in our data set, and from the
analysis into the STS surrounding the vulnerability handling in Libarchive. We will
also present the results from a case study where we apply the model on two other
Open-Source Software (OSS) packages, and also do a comparison between our
model and a similar vulnerability model by Pieczul and Foley [7].

5.1 Vulnerability evolution model

From our analysis of the Libarchive vulnerabilities, we develop the model depicted
in Figure 5.1. The model describes four vulnerability causing phenomenon and
three input or influencing elements into these phenomena. The four phenomena
are "Dark side", blind spots, opportunistic fixes, and opportunistic solutions. The
three inputs elements are the security culture and practises in the OSS project,
the application context and report biases in the vulnerability reports.

In our analysis we have observed how "Dark side" phenomena can occur in
low-level details application platforms and compiler details, and how blind spots
occur in application complexity caused by cross-platform support and multi-archive
format support. We have also observed how opportunistic fixes to one vulnerab-
ility can cause new vulnerabilities, and also how opportunistic solutions to initial
problems causes vulnerable code. We have also observed how the vulnerability
causing phenomena can influence or be connected to each other. One example
of this is how integer overflows can be caused both by low-level details not con-
sidered by the developer and also through unexpected input values. We also see
that opportunistic fixes and opportunistic solutions causes new "Dark side" and
blind spot scenarios leading to new vulnerabilities, and we see that the "Dark
side" and blind spot phenomena leads to opportunistic fixes of a vulnerability in-
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fluenced by report biases in the vulnerability reports.

Figure 5.1: Vulnerability evolution model

Through our STS analysis we see how the OSS project security culture, and
the structures and methods around this culture, influence the four vulnerability
causing phenomena. As defined earlier, the security culture is the way our minds
are programmed that will create different patterns of thinking, feeling and actions
for providing the security process [46], and as we have seen in our STS analysis
a mature security culture should include methods like secure coding guidelines
and structures like structures like vulnerability disclosure policies. Together, a ma-
ture security culture with these methods and structures in place will decrease the
room for the vulnerability causing phenomena to occur. To example, secure cod-
ing guidelines and focus on common vulnerabilities in the project will increase
the focus on possible vulnerable code and make the "Dark side" and blind spots
phenomena less likely. Such guidelines together with a defined testing policy can
also make opportunistic fixes and solutions less likely choices when implement-
ing fixes or new solutions. A security disclosure policy can ensure a structured
and defined handling of reported vulnerabilities, and to example ensure broader
scope when fixing a security bug and decrease the chance for opportunistic fixes
of these types of bugs. On the other hand, a less mature security culture with
fewer methods and structures in place to support the vulnerability handling in
OSS project will increase the room for the vulnerability causing phenomena to
occur. From this we see that security culture in the OSS project determines the
methods and structures in place around the security handling, and together the
security culture and practices are an influencing element into the vulnerability
causing phenomena in our model.
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In the application context we find elements from the structure, methods, and
machine in our STS analysis, and it is defined by the cross-platform support, the
user base and used testing tools. As showed in the STS analysis, the cross-platform
support covers both support for multiple operating systems, 32/64-bit platforms,
and multiple file systems. The analysis also showed a connection between the
user base and the cross-platform support in terms of user request for support of
multiple operating systems, file systems, file formats, etc. In the case of Libarchive
we saw this also included the support of vendor specific implementations of file
format support, not always compliant with the file format specifications. Together
with the used testing tools this forms the application context. As we have seen,
the "Dark side" phenomenon is the security gap that occur between expected and
actual behaviour, and in our analysis we have observed how this can happen in
the low-level operations of cross-platform environments and compiler operations
determined by the application context. The blind spot phenomenon is caused by
unexpected input and system states not considered by the developer, and again
we have observed how this phenomena is influenced by the application context
and a cross-platform environment where the system complexity is increased by
multi-format input causing more areas for blind spots to occur.

Last, we have also observed how report biases influence the phenomena caus-
ing vulnerabilities. In our analysis we first observed report bias as a separate phe-
nomena in the emergence and evolvement of vulnerabilities, and through the STS
analysis we observed how report bias was caused by the structure, methods and
machines through external security researchers, the use of automated testing tools
and narrow security reports. We therefore put report bias as an influencing ele-
ment in our model. The report bias can in itself cause a "Dark side" or blind spot.
The limited scope of a security report can hide broader details and consequences
of the vulnerability and cause the developer to limit the scope of the fix to the
error as described at hand. We have also observed how the use of automated test-
ing tools like fuzzers can contribute to this phenomenon through security reports
mainly consisting of trace and log files, and we have also seen how such secur-
ity reports contributes to opportunistic fixes where the root cause is left unsolved
and only the problem described in the trace file is solved. We also observe report
biases in testing coverage of the code caused by the used testing tools. We find
more vulnerabilities in code that can be automated tested than in code requiring
manual testing. Last, we also observed that automated testing caused double re-
porting, and this combined by the security bugs being reported as normal bugs in
the issue tracking system caused the developer to look at these issues as any other
issue where the goal was to close the issue.

As showed in our model, the report bias is also influenced by the security
culture and practices and by the application context. The security culture and
practices determine the vulnerability disclosure practice and the practices in use
for fixing vulnerabilities. The application context determines the types of testing
tools that can be applied to the application.
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5.2 Case study

To test our model, we perform a case study by applying the model to two addi-
tional OSS packages. The case study is performed by first identifying and analys-
ing the input elements of security culture and practices, application context, and
report biases, before analysing the reported vulnerabilities in the OSS packages
against our vulnerability causing phenomena. The goal with these case studies is
to identify how well the model describe how vulnerabilities emerge and evolve in
an OSS package, and possibly identify other elements not included in our model.

The two OSS packages used in the case studies are Libsndfile [50] and Dok-
uWiki [51]. These projects are both on our list of possible OSS projects, showed in
Table 4.1, and fits our criteria of sufficient number of vulnerabilities over a 10 year
period and a sufficient distribution of vulnerabilities in that period.Libsndfile is C
library for reading and writing sound files [50], and has similarities to Libarchive
through being a low-level C library with cross-platform support. DokuWiki is an
open-source PHP wiki application [51]. Applying our model on these two OSS
projects, we are able to test how the models applies to different project types.

5.2.1 Libsndfile

With the crawler described in Section 3.3 we found 18 Libsndfile vulnerabilities
from the period between 2009 and 2020. These are all vulnerabilities with refer-
ences to the Libsndfile GitHub project. After a manual review of these vulnerabil-
ities and a control of the result against CVE Details [37]we included an additional
12 vulnerabilities in our case study. These are all Libsndfile vulnerabilities without
any GitHub references. The list of the included Libsndfile vulnerabilities is found
in Table C.1 in Appendix C. The results from the case study are summarised in
Figure 5.2, and described in detail below.

Security culture & practices

Analysing the security culture and practices, we find no defined security culture
in Libsndfile. There are no secure coding guidelines or listings of common vul-
nerability types, and no information sharing or learning attempts from previous
vulnerabilities in the project. Also, we find no vulnerability disclosure policy in
the project. From the 30 vulnerabilities in our list, we find that these are either
reported directly to the lead developer or through the GitHub issue tracker. Last,
we do find that Libsndfile has a test suite, and the project is included in the Google
OSS-Fuzz project.

Application context

Studying the application context, we find that Libsndfile is a cross-platform ap-
plication supporting Linux, macOS and Windows. From the documentation we
see that Libsndfile use features specified by the 1999 ISO C standard, and that the
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Figure 5.2: Case study Libsndfile

project actively does not support C++ compilers. The library support 26 different
sound file formats, with several sub-formats [50].

Report biases

From the 30 reported Libsndfile vulnerabilities we find that these are reported by
external security researchers or users of the library, and they are discovered using
automated testing tools. In connection with this we find examples of difficulties
reproducing the errors, and one vulnerability is marked as disputed due to such
difficulties. There is also one follow-up vulnerability caused by an insufficient fix to
a previous vulnerability. As we also observed in the security culture and practice’s
we see no broader scope or attempts in looking for similar security issues when
fixing the vulnerabilities.

Vulnerability causing phenomena

Analysing the Libsndfile vulnerabilities using our model of vulnerability causing
phenomena, we find no "Dark side" scenarios caused by low-level platform issues
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like 32/64-bit issues and no compiler or C specification issues. The vulnerabilities
are mainly blind spot scenarios caused by crafted or malformed sound files, to
example sound files changing the number of channels in the middle of the file.
There are vulnerabilities where an insufficient error handling was exploited. This
falls into the "Dark side" phenomena caused by a difference between expected and
actual behaviour. Of opportunistic fixes and solutions, we find one unfixed root
cause but also on rejected fix due to being insufficient and completely fixing the
security error. There are no opportunistic solutions causing vulnerabilities.

Summary

Overall, we see that the emergence and evolvement of vulnerabilities in Libsndfile
cab be described using our model. We find that the security culture allows for the
vulnerability causing phenomena to occur, we observe how these phenomena are
influenced by the application context, we find report biases, and all vulnerabilities
can be traced to one of the vulnerability causing phenomena. But though we find
an application context influence through the multi-format support for sound files
and blind spots caused by malformed archive files, we find less influence through
low-level cross-platform issues or compiler issues. The latter can be attributed to
the well-defined support for the 1999 ISO C standard. On the former we see that
though we have 30 vulnerabilities in our list, and we find the usages of automated
testing in these issues, Libsndfile is less thoroughly tested than Libarchive. We also
see that even if Libsndfile is tested through Google OSS-Fuzz, none of the security
errors found through this tool are assigned an CVE ID, and thus not part of our
case study. An analysis including all security related issues in the issue tracker
could therefore uncover such issues, and also uncover issues not covered by our
model.

5.2.2 DokuWiki

Our crawler fro Section 3.3 returned 14 DokuWiki vulnerabilities in the time
period 2009 to 2020. As for Libsndfile we performed a manual review of these
vulnerabilities and controlled the result against CVE Details [37]. This returned
an additional six DokuWiki vulnerabilities without any reference to the GitHub
project. These were included in our study and the list of the vulnerabilities are
found in Table C.1 in Appendix C. The results from the DokuWiki case study are
summarised in Figure 5.3 and described in details below.

Security culture & practices

From our case study we find a mature security culture in DokuWiki. We find secur-
ity guidelines both with regards to coding on installation and configuration of the
application. The guidelines contain an overview of the most common vulnerab-
ility types and we find a general openness around security errors with published
descriptions of the issue and release of security patches. In connection with this



Chapter 5: Vulnerability evolution model and case studies 63

Figure 5.3: Case study DokuWiki

we also find an example of follow-up on a vulnerability where a vulnerability in
the ACL plugin caused the developers to do a broader review of the plugin finding
two additional vulnerabilities. There is also a DokuWiki test suite and guidelines
around testing.

Application context

The application context analysis shows that DokuWiki is a cross-platform applic-
ation both in terms of OS, web server and web host support. The main input to
the application is user input through application text editor including embedded
media files. There is also a plugin functionality where users can write their own
DokuWiki plugins to extend functionality. These plugins also cover areas like LDAP
authentication.
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Report biases

Analysing possible report biases we find mainly external researchers doing the
testing, but little information around test methods and tools. There are examples
of double reporting and disputed vulnerabilities, but we find discussions and ex-
planations around these issues and the vulnerabilities are not just closed as du-
plicates or "no error". We find vulnerabilities in several areas of the application,
including configuration issues and there are no traces of bias with regards to test
coverage.

Vulnerability causing phenomena

Analysing the 20 vulnerabilities against our model and the vulnerability causing
phenomena we find no direct opportunistic fixes or solutions causing vulnerabilit-
ies. There is the release of the ACL plugin resulting in three vulnerabilities. From
our data collection and analysis, we find this as result of insufficient testing more
than a result of an opportunistic solution. The vulnerabilities mainly fall into the
blind spot phenomena where unexpected input and missing or insufficient input
checks (missing sanitation) causes injections. There are also some configuration
issues in the vulnerabilities that can be categorised as "Dark side" phenomena
where we find unexpected behaviour due to the unconsidered configuration is-
sues.

Summary

These results shows that our model describes the DokuWiki vulnerabilities to some
extent, but there are also areas less covered by our model. The model shows how a
mature security policy influence the vulnerabilities. One example of this is the fol-
low up we see from the developers on the ACL plugin vulnerability, resulting in the
discovery of two related vulnerabilities in the same plugin. We also see this in the
security guidelines and the general openness around vulnerabilities. We find less
influence of report biases and the application context into the vulnerabilities. We
find some double reporting and disputed vulnerabilities but not to an extent that
causes security errors to be overlooked or taken less seriously. There are config-
uration related vulnerabilities, but none of these are due to cross-platform issues
or other low-level issues.

When developing our model from the analysis of Libarchive vulnerabilities
we defined the application context element in the model in terms OS support, file
system support, 32/64-bit issues, etc. What we see from the DokuWiki case study
is that this definition can be too narrow to fit a PHP web application, and that these
types of issues to little extent applies to this type of application. The application
type can in itself be a context issue, determining the types of vulnerabilities we
are likely to find the application. As we have described above, we can also put the
plugin functionality into the application context element. This is a way to extend
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functionality without interfering with the core application, and as we have seen
it can introduce vulnerable code as in the ACL plugin.

Another issue to consider is the vulnerabilities due to configuration issues.
In the discussion above we categorised this a "Dark side" phenomena, due to
these issues being details not considered by the developer and affecting differ-
ences between expected and actual behaviour. On the other hand, these are not
programming related vulnerabilities and an argument can be made for these is-
sues to be treated separately from our defined phenomena. To some extent these
configuration issues are part of the application context and is an influencing or
input item into the vulnerability causing phenomena. In a web application like
DokuWiki configuration and setup is more of an influence into application vul-
nerabilities than in low-level applications like Libarchive and Libsndfile. If we also
should threat the configuration issues as separate vulnerability causing phenom-
ena is a question for further work and analysis.

As for Libsndfile, an analysis including all security related issues in the issue
tracker and not only vulnerabilities assigned an CVE ID could also have uncovered
more report bias related issues or other elements or phenomena not covered by
our model.

5.3 Comparison to Pieczul & Foley

A similar study as ours was performed by Pieczul and Foley [7]. The study analysed
the evolution of a security control in the Apache Struts OSS package and presented
a model describing how vulnerabilities emerge and evolved based on their results.
We have referred to the work in [7] in our analysis of the vulnerability history in
Libarchive, and for completeness we include a comparison between our model
and the model from [7] depicted in Figure 5.4.

Figure 5.4: Vulnerability model by Pieczul and Foley [7]

First, there are differences in the methods used in developing the two models.
In our model we have identified phenomena causing vulnerabilities and role of the
STS into these phenomena. This is the result of the analysis of collected artefacts
related to or data set of reported Libarchive security vulnerabilities. The model by
Pieczul and Foley [7] was developed from the result of analysing the evolution of
one security control in the Apache Struts OSS package. This security control had
several reported security vulnerabilities, and the analysis was done on collected
artefacts related to the evolution of the security control component [7]. As in
our study the artefacts were security reports, code changes, discussions in issue
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trackers, etc. but with focus on the whole evolution of the security component and
not only on the security vulnerabilities.

Comparing the two models we find the "Dark side", blind spot and opportun-
istic fix phenomena in both our model and in [7]. Under the opportunistic fix
phenomena, Pieczul and Foley [7] also observed how compatibility issues played
a part in causing the opportunistic fix through sub-optimal solutions to make the
fix compatible with older versions [7]. We have not observed this in our study.
What we have seen in our analysis is that the Libarchive vulnerabilities exists in
the lower levels of the library, whereas the API has remained unchanged through
the versions included in our analysis. This makes compatibility issues less likely
to occur. In addition to this, our model also includes opportunistic solutions as a
separate phenomena. We have observed how choosing easy solutions or solutions
fitting the existing code also applies to implementation of new functionality and
not only fixes in old code. These types of opportunistic solutions can also cause
vulnerable code.

Another phenomena found in [7] but not in our model is "Counter-intuitive
mechanisms" and in connection with this, "Assumptions about consumers". This is
a phenomenon where the code in itself is not vulnerable in itself, but the solution
and correct usage is difficult to understand. Thus, incorrect usage might cause
their own vulnerabilities. Contributing to this an incorrect assumption about con-
sumers understanding about security mechanisms [7]. As for the compatibility is-
sues, the low-level existence of the vulnerabilities and the well-defined API causes
this phenomena less likely to occur in our analysis. We have not found issues where
wrong usage of the library caused the vulnerability.

The last element in the model by Pieczul and Foley [7] is the Report bias. In
their model the report bias is observed as a "Dark side" when documenting or
interpreting a vulnerability report. The researcher might not fully understand all
implications of the vulnerable code and the developer might limit the scope to the
vulnerability report when implementing the fix [7]. We also observed report biases
in our analysis, and in addition to the limited scope in writing and interpreting
the vulnerability reports we did also observe how the usage of automated testing
causing report biases. In our analysis we have seen how fuzzing causes double
reporting of vulnerabilities, how limited vulnerability reports mostly containing
trace or log output causes difficulties in reproducing the errors, how the trace and
log output from the testing tools can make it easier to dismiss vulnerabilities with
different root causes as duplicates, and we have also seen a possible bias in test
coverage due to the use of tools like fuzzers. Through the analysis of the STS,
we did also find how the report bias was caused by the structure and methods
in the STS model, with external researchers and the usage of automated testing
tools. We therefore put the report bias as an input into the vulnerability causing
phenomena in our model.

In addition to the report bias, our STS analysis found how the security cul-
ture and practices, and the application context influence the vulnerability causing
phenomena of "Dark side", blind spot and opportunistic fixes and solutions. These
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are elements not found in the model by Pieczul and Foley [7]. The STS analysis is
a new element added to the vulnerability model in our study, and together with
the differences in methodology and the differences in the OSS packages analysed
we see how these differences effect the results analysis and the resulting models.





Chapter 6

Conclusion and further work

6.1 Conclusion

In this thesis project we have presented a model describing how vulnerabilities
emerge and evolve in an OSS package. This model is developed from analysis
of artefacts related to vulnerabilities in the Libarchive OSS project in the period
between 2009 and 2020. The model answers our research question of how vul-
nerabilities emerge and evolve and what insight can be gained into this question
from the related artefacts.

In developing the model, we have studied the patterns and phenomena be-
hind the vulnerabilities, and the STS surrounding the vulnerability handling in
the OSS package. Our model shows how the security culture and practices, the
application context and report biases in security test coverage or in writing or in-
terpreting vulnerability reports serves as an input or influence into vulnerability
causing phenomena of "Dark side", blind spots and opportunistic fixes and op-
portunistic solutions. In addition to our vulnerability model, we also presented a
memory safety taxonomy from our analysis of patterns behind the vulnerabilities.
This taxonomy builds on the buffer overflow taxonomy by Schuckert et al. [1] by
expanding this to include other memory related vulnerabilities.

Together, the model and taxonomy serve as tools to understand how vulnerab-
ilities emerge and evolve. The taxonomy give insight into the specifics of how and
where memory vulnerabilities occur and how to fix these, whereas the model give
a more general understanding about what causes the vulnerabilities to occur in
the development process and the influence of the STS into these phenomena. Both
artefacts can be used to broaden the understanding around the topic of vulnerable
code and improve the development process to increase security.

6.2 Further work

In this project we have used an iterative approach in the analysis of the vulnerabil-
ities in our collected data set. We first analysed patterns behind the vulnerabilities,
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then performed an analysis to find broader phenomena describing how vulnerab-
ilities emerge and evolve in the OSS package, and last an analysis into the STS
around the vulnerability handling in the OSS package. Each iteration increased
our detail level into the knowledge of how vulnerability emerge and evolve in
code, and resulted in the memory safety taxonomy and the vulnerability model.
To test the model, we performed two case studies applying the model to two other
OSS packages. Though we did find that our model described the vulnerabilities
history in these two projects, our results also showed a better fit between our
model and Libsndfile than with DokuWiki. This can be explained by Libsndfile
bearing similarities to Libarchive both being C programs related to file handling,
whereas DokuWiki being a PHP web application. The DokuWiki case study showed
a possible extension to the application context element in our model, and we also
found a set of vulnerabilities related to configuration issues. Though these could
be defined as vulnerabilities caused by the "Dark side" phenomena, it can also be
argued the threat these as caused as a separate element in the model. We also
performed a comparison between our model and another vulnerability model by
Pieczul and Foley [7], which showed differences between observed patterns and
phenomena behind vulnerabilities. From our iterative approach in the analysis,
the result from the case studies, and the comparison between similar models we
see that a next step in this work is to preform additional analysis of vulnerabil-
ity history in other OSS packages to expend and increase the detail level in our
proposed model.

Other further work is a detailed study into how the proposed model can be
used to improve software security. We see that the model can be used to gain know-
ledge into the different factors causing vulnerabilities, but such a study should fo-
cus on how the model could improve the Software Development Life Cycle (SDLC)
to prevent vulnerabilities to occur in the first place.
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Appendix A

Libarchive vulnerabilities

Table A.1 contains the total list of the 53 Libarchive vulnerabilities analysed in
this thesis project.
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Appendix B

Libarchive vulnerability timeline

Table B.1: Libarchive vulnerability timeline, full version

Version Date Introduced Fixed Comment
2.8.5 Sept. 2011 TAR:

CVE-2011-1778,
CVE-2015-8924,
CVE-2015-8932
RAR:
CVE-2015-8916
ISO9660:
CVE-2011-1777,
CVE-2015-8930,
CVE-2016-5844,
CVE-2017-14501,
CVE-2019-1000020
ZIP:
CVE-2013-0211
CPIO:
CVE-2015-8915,
CVE-2015-2304,
CVE-2016-4809
CAB:
CVE-2015-8917,
CVE-2015-8918
MTREE:
CVE-2015-8921,
CVE-2015-8925
Other:
CVE-2015-8920,
CVE-2016-7166,
CVE-2017-14166
General:
CVE-2016-5418,
CVE-2016-8687,
CVE-2016-10209,
CVE-2019-19221

Initial release in analysis

Continued on next page
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Table B.1 – continued from previous page
Version Date Introduced Fixed Comment
3.0.0a Nov. 2011 RAR:

CVE-2015-8926,
CVE-2015-8934,
CVE-2016-4302,
CVE-2017-14502,
CVE-2018-1000877,
CVE-2019-18408
ISO9660:
CVE-2016-6250
ZIP:
CVE-2015-8923
LHA:
CVE-2015-8919,
CVE-2017-5601,
CVE-2017-14503
MTREE:
CVE-2015-8931,
CVE-2016-8688
CAB:
CVE-2016-10349,
CVE-2016-10350

TAR:
CVE-2011-1778
ISO9660:
CVE-2011-1777

Support for archive
formats RAR, CAB and
LHA added in this
version.

3.0.1b Nov. 2011 7Zip:
CVE-2015-8922,
CVE-2016-4300,
CVE-2016-8689,
CVE-2019-1000019

Support for achive
format 7Zip added in this
version

3.1.0 Jan. 2013 RAR:
CVE-2018-1000878
ZIP:
CVE-2016-1541
MTREE:
CVE-2015-8928

Continued on next page
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Table B.1 – continued from previous page
Version Date Introduced Fixed Comment
3.1.900a Feb. 2016 MTREE:

CVE-2016-4301
Other:
CVE-2018-1000880

TAR:
CVE-2015-8924,
CVE-2015-8929,
CVE-2015-8932,
CVE-2015-8933
RAR:
CVE-2015-8926,
CVE-2015-8916
ISO9660:
CVE-2015-8930
ZIP:
CVE-2013-0211,
CVE-2015-8923,
CVE-2015-8927
CPIO:
CVE-2015-2304,
CVE-2015-8915
CAB:
CVE-2015-8917,
CVE-2015-8918
LHA:
CVE-2015-8919
METREE:
CVE-2015-8921,
CVE-2015-8925,
CVE-2015-8928,
CVE-2015-8931
7Zip:
CVE-2015-8922
Other:
CVE-2015-8920,
CVE-2016-7166

Support for achive
format WARC added in
this version

3.2.0 April 2016 ZIP:
CVE-2016-1541

3.2.1 Jun 2016 RAR:
CVE-2015-8934,
CVE-2016-4302
ISO9660:
CVE-2016-5844,
CVE-2016-6250
CPIO:
CVE-2016-4809
MTREE:
CVE-2016-4301
7Zip:
CVE-2016-4300

3.2.2 Oct. 2016 MTREE:
CVE-2016-8688
7Zip:
CVE-2016-8689
General:
CVE-2016-5418,
CVE-2016-8687

Continued on next page
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Table B.1 – continued from previous page
Version Date Introduced Fixed Comment
3.3.0 Feb. 2017 General:

CVE-2018-1000879
CAB:
CVE-2016-10349,
CVE-2016-10350
LHA:
CVE-2017-5601
General:
CVE-2016-10209

3.3.3 April 2019 RAR:
CVE-2017-14502
ISO9660:
CVE-2017-14501
LHA:
CVE-2017-14503
Other:
CVE-2017-14166

3.4.0 June 2019 RAR:
CVE-2020-9308

RAR:
CVE-2018-1000877,
CVE-2018-1000878,
CVE-2019-18408
ISO9660:
CVE-2019-1000020
7Zip:
CVE-2019-1000019
Other:
CVE-2018-1000880
General:
CVE-2018-1000879

Support for achive
format RAR version 5
added in this version

3.4.1 Dec. 2019 General:
CVE-2019-19221

3.4.2 Feb. 2020 RAR:
CVE-2020-9308



Appendix C

Case study vulnerabilities

Table C.1: Libsndfile and DokuWiki vulnerabilities

Libsndfile DokuWiki
CVE-2007-4974 CVE-2009-1960
CVE-2009-0186 CVE-2010-0287
CVE-2009-1788 CVE-2010-0288
CVE-2009-1791 CVE-2010-0289
CVE-2009-4835 CVE-2012-0283
CVE-2011-2696 CVE-2012-2128
CVE-2014-9496 CVE-2012-2129
CVE-2014-9756 CVE-2014-8761
CVE-2015-7805 CVE-2014-8762
CVE-2017-12562 CVE-2014-8763
CVE-2017-14245 CVE-2014-8764
CVE-2017-14246 CVE-2014-9253
CVE-2017-14634 CVE-2015-2172
CVE-2017-16942 CVE-2016-7964
CVE-2017-6892 CVE-2016-7965
CVE-2017-7585 CVE-2017-12583
CVE-2017-7586 CVE-2017-12979
CVE-2017-7741 CVE-2017-12980
CVE-2017-7742 CVE-2017-18123
CVE-2017-8361 CVE-2018-15474
CVE-2017-8362
CVE-2017-8363
CVE-2017-8365
CVE-2018-13139
CVE-2018-13419
CVE-2018-19432
CVE-2018-19661
CVE-2018-19662
CVE-2018-19758
CVE-2019-3832
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