
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Tobias Moe

I still know who you are!

Soft Biometric Keystroke Dynamics performance
with distorted timing data

Master’s thesis in Information Security
Supervisor: Patrick Bours

May 2021M
as

te
r’s

 th
es

is

Tobias Moe

I still know who you are!

Soft Biometric Keystroke Dynamics performance with
distorted timing data

Master’s thesis in Information Security
Supervisor: Patrick Bours
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Abstract

Using keystroke dynamics as an authentication scheme is a well-researched field.
In keystroke dynamics we use the typing behaviour in addition to a username
and password combination to authenticate users. One of the issues that will be
raised in this research paper is what happens if a user is distorting their keystrokes
to try and circumvent the authentication process? In this research paper one of
the things, we look at is the differences in performance for authentication when
using distorted keystroke dynamics data compared to normal data. We created
a program that allows us to simulate keystrokes from an already written data
set, and then enabled a webpage plugin which distorts the keystrokes. From this
program we can also look to see if it is possible to simulate keystroke dynamics. We
calculate the Equal Error Rate for eight different distance metrics, which gives us
an indication of the performance. The results from these showed that the distorted
data set performs much worse for all of the distance metrics. By looking at the
distorted data set we were able to notice differences from a normal data set and
show that it is possible to detect distorted values when authenticating. We also
tried to reduce the noise in the distorted data set by using three different methods.
These methods consist of ignoring or compensating values that are higher or lower
than a specific threshold. However, these methods fail to reduce the noise in the
distorted data set by a significant amount.

iii

Sammendrag

Bruken av keystroke dynamics some en autentiserings metode er et godt under-
søkt felt. I keystroke dynamics så bruker vi skrive måten, i tillegg til brukernavn
og password, når vi autentiserer. En av problem stillingene som vil stiller er om
det fortsatt er mulig å bli autentisert med keystroke dynamics hvis dataen våres er
forvrengt? I denne undersøkelsen så ser vi på blant annet forskjellene på ytelsen
for et autentiserings system hvor vi bruker forvrengt data i forhold til normal data.
Vi laget et program som tillater oss å simulete tastetrykk fra et allerede laget data
set, også aktiverer en plugin i en nettleser som forvrenger dataen våres. Fra dette
programmet så kan vi også se om det er mulig å simulere tastetrykk. Vi kalkulerte
Equal Error Rate for åtte forskjellige avstandsmetoder, som gir oss en indikasjon
på ytelsen. Resultatene fra de viste at det forvrengte data settet hadde mye dårli-
gere ytelse for alle avstandsmetodene sammenlignet med det normale data settet.
Ved å kikke på det forvrengte data settet så klarte vi å se flere forskjeller i fra det
normale data settet, og viste at det er mulig å oppdage forvrengte tastetrykk når
du autentiserer. Vi prøvde også redusere støy i det forvrengte data settet med å
bruke tre forskjellige metoder. Disse metodene består av å ignorere eller kom-
pensere for lave eller høye data verdier som er definert av en terskel. Imidlertid
klarer ikke disse metodene å redusere støyen i det forvrengte data settet med en
betydelig mengde.

v

Preface

I would like to thank my supervisor, Dr. Patrick Bours for introducing me to this
topic and for the support he gave me during the past six months. This research
would not have been possible without his guidance and help.

I would also like to thank family and friends for proofreading and giving feed-
back during the final days before submission.

vii

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
Figures . xi
Tables . xiii
1 Introduction . 1

1.1 Topic covered by the project . 1
1.2 Keywords . 2
1.3 Problem description . 2
1.4 Justification, motivation and benefits 2
1.5 Research questions . 3
1.6 Planned contributions . 3

2 Keystroke Dynamics . 5
2.1 Biometrics . 5
2.2 Keystroke timing . 7
2.3 Static and dynamic authentication . 8
2.4 Keystroke verification . 8
2.5 Performance . 9
2.6 Distance metrics . 9
2.7 Age and Gender prediction . 10

3 State of the art . 11
3.1 RQ 1a . 11
3.2 RQ 1b . 12
3.3 RQ 1c . 13
3.4 RQ 1d . 13

4 Methods . 15
4.1 Data collection . 16

4.1.1 Plugin . 16
4.2 Analysis . 17

5 Data Collection . 19
5.1 Software development . 19

5.1.1 Simulation of keystrokes . 19
5.1.2 Collection of keystrokes . 20

ix

x T. Moe: Soft Biometric Keystroke Dynamics performance with distorted timing data

5.1.3 Database . 20
5.1.4 Timing . 21

6 Data Analysis . 23
6.1 Distance metrics . 23

6.1.1 Euclidean detector . 23
6.1.2 Euclidean normed detector . 24
6.1.3 Manhattan detector . 24
6.1.4 Manhattan filtered detector . 24
6.1.5 Manhattan scaled detector . 24
6.1.6 Mahalanobis detector . 25
6.1.7 Nearest Neighbour (NN) Mahalanobis detector 25
6.1.8 Outlier Counting Detector . 25

6.2 Process . 26
6.3 Software development . 26

6.3.1 Configurations . 27
6.4 Noise reduction . 28

6.4.1 Compensation . 28
6.4.2 Ignoring values . 29

7 Results and discussion . 31
7.1 Same type of data for reference and probe 31

7.1.1 Normal . 31
7.1.2 Skip first session . 33
7.1.3 Skip 15 samples . 34

7.2 Different reference and probe . 36
7.2.1 Normal . 36
7.2.2 Skip first session . 37
7.2.3 Skip 15 samples . 38

8 Discussion . 41
8.1 Differences when analysing data with or without distortion 41
8.2 Detecting distorted timing information 42
8.3 Comparing performance of real and distorted timing information . 43
8.4 Reducing noise in the distorted data set 45
8.5 Authenticating a user with distorted keystroke dynamics information 45

9 Conclusion & Future research . 47
9.1 Conclusion . 47
9.2 Future research . 48

Bibliography . 49

Figures

2.1 Example of the timing information we can extract from two key-
strokes [7]. 7

3.1 Benford’s Law distribution [21] . 12

6.1 Average timing values for a sample across all users from the original
data set. 28

8.1 Benford’s Law distribution [21] for the distorted data set UD latency
values. 42

8.2 Benford’s Law distribution [21] for the original data set UD latency
values. 43

8.3 Benford’s Law distribution [21] for the simulated data set UD latency
values. 44

xi

Tables

7.1 Results from normal configuration using same type of data for the
reference template and probe. 32

7.2 Results from trying to reduce the noise in the distorted data set for
the normal configuration. 33

7.3 Results from skip first session configuration using same type of data
for the reference template and probe. 33

7.4 Results from trying to reduce the noise in the distorted data set for
the skip first session configuration. 34

7.5 Results from skip 15 samples configuration using same type of data
for the reference template and probe. 35

7.6 Results from trying to reduce the noise in the distorted data set for
the skip 15 samples configuration. 36

7.7 Results from the normal configuration using different data sets for
the reference template and probe. 37

7.8 Results from the skip first session configuration using different data
sets for the reference template and probe. 38

7.9 Results from the skip 15 samples configuration using different data
sets for the reference template and probe. 39

xiii

Chapter 1

Introduction

This chapter describes the main topic of the thesis, keywords, justification motiva-
tion and benefits. Research questions are also defined, as well as giving a problem
description.

1.1 Topic covered by the project

One of the most common ways of authenticating a user is using a username/pass-
word combination where the password is only known to the user. This combina-
tion is occasionally followed up with two-factor authentication, which is a when a
system utilizes two different methods for authenticating, such as a one-time pass-
word/PIN. In recent years there have been several studies around the use of more
authentication measures, as passwords have been proven to be easily guessed by
different methods such as having a program trying all possible combinations of a
password, often referred to as brute forcing. One of these authentication measures
is called keystroke dynamics. Keystroke dynamics is a behavioural authentication
scheme, meaning it is something the user does in order to gain access to a system.
It enables a system to authenticate a user based on their typing pattern or rhythm
on a keyboard or keypad, as these are unique on a user-to-user basis. This can
also be referred to as typing biometrics.

For the system to reliably utilize keystroke dynamics there is a need to setup a
reference template for each user. This reference template is built during the enrol-
ment phase of a user where the user is prompted to type their password several
times. Based on this enrolment phase the reference template is created, which
consists of the average way the user was typing. When a user tries to authenticate
themselves, the system will compare the current typing with the reference tem-
plate. Then the system will give access if these two are similar and deny access
if they are different. A chrome plugin called Keyboard Privacy [1] was created in
order to defeat the use of keystroke dynamics for identification. The plugin ran-
domly delays the keystrokes which makes the system deny access as the reference
template and the current typing differs. This leads to that one cannot use key-

1

2 T. Moe: Soft Biometric Keystroke Dynamics performance with distorted timing data

stroke dynamics for authentication purposes, and in this thesis we will investigate
the impact such a plugin can have in a system.

1.2 Keywords

Keystroke Dynamics, Soft Biometrics, Performance, User Authentication, Distorted
data, Reducing noise and distortion, Simulating keystroke dynamics

1.3 Problem description

Using keystroke dynamics as a means of authentication requires that the system
can rely on the timing information from a genuine user to be correct, otherwise the
authentication could reject a genuine user based on incorrect data. If the timing
information is not correct it can be said that the data is distorted or noisy. By using
the term correct here, it refers to the timing information that was created by the
genuine user. Meaning, if a user is trying to authenticate to their account but has
delayed their keystrokes by any means, then the system would notice that the
keystrokes does not match the reference template for the user because the timing
information does not match. This can become a problem where a user would be
denied access to its own account if the timing information is distorted.

Another thing to highlight is that people might want to distort their timing
information if they are browsing anonymously, as you could still be identified by
your keystrokes even if you are browsing anonymously. However, we still want
to be able to extract soft biometric information, such as age and gender based on
keystroke dynamics timing information. This is because users might not have good
intentions when distorting their keystrokes, as they might be sexual predators who
groom children online via social media.

1.4 Justification, motivation and benefits

As already mentioned, a user would be denied access to their own account if they
would distort their keystroke dynamics information. This is, however, a privacy
concern, as keystroke dynamics can be used to identify them, for example identify-
ing their age or gender. Which means that a user should be allowed to distort their
timing information if they want to. However, tools that distorts timing information
can be abused by criminals in order to avoid detection in identification. Keystrokes
can be used specifically for determining age and gender of a person typing. This
is quite important in cyber grooming as identifying the age and gender of a user
typing can have significant impact when trying to detect if a person is imposing
as someone who they are not, e.g., a teenage girl. If someone were to distort their
timing information, then the system cannot accurately predict the age and gender
of a person typing as the timing information would be randomised. The Return on
Investment (ROI) would be significant in the cyber grooming research field as this

Chapter 1: Introduction 3

thesis lays the foundation of reducing distorted timing information for authentic-
ation as well as soft biometrics. At the same time, distorted keystroke dynamics
timing information is not a very well researched field, and we hope that with this
thesis more people will be interested in researching this field.

1.5 Research questions

This thesis has one main research questions with four sub-research questions as
defined in the listing below.

Can we still use static authentication for keystrokes dynamics if the tim-
ing information is distorted?

a. What are the differences when analysing data with or without dis-
tortion?

b. Is it possible to detect whether the timing information is distorted?
c. How is the performance when real timing information is used vs

distorted timing information?
d. Can you the reduce the noise in a distorted data set for keystroke

dynamics?

1.6 Planned contributions

By researching the questions mentioned in section 1.5 we will determine if there
is a way for a system to either detect or revert distorted or noisy timing informa-
tion. The results of this thesis can be used, as mentioned, as a steppingstone for
detecting cyber grooming conversations in online fora. However, the main result
from this thesis is if it is possible to use distorted keystroke dynamics timing in-
formation in authentication, regardless of privacy concerns. During this project
we also created a program that can simulate keystrokes based on a given data set,
which can be used in future research.

Chapter 2

Keystroke Dynamics

This chapter gives an overview of keystroke dynamics as this is important to un-
derstand in order to comprehend the solutions found to the research questions
defined in section 1.5.

2.1 Biometrics

In authentication we can differentiate between three different classes of authen-
tication or identification methods [2].

• Something you know
• Something you have
• Something you are

Something you know is related to something a user knows in order to gain access
to a system, e.g., a password phrase. It is one of the simplest and most common au-
thentication methods as it is easy to implement and a fast authentication method.
PIN codes used for bankcards are also in this category as a user needs to know the
PIN code in order to use the bank card. However, this authentication method is
quite weak, in terms that users often tend to choose easy passwords or PIN codes.
This makes it easier for attackers to guess or brute force the passwords, and users
will often use the same passwords for multiple sites. Something you have is re-
lated to something a user should have in order to gain access to a system, e.g.,
a bank or key card. For this authentication method, the user only needs to have
the item and does not need to remember any complex password. However, often
we see both mentioned methods used together in order to create a more secure
authentication method. Something you are is related to a uniqueness a user has,
e.g., DNA or fingerprint and it has been gaining popularity in recent years, as for
example, more and more phones use both fingerprint and face recognition sys-
tems for phone access. The advantage of this method is that this is something the
user always has on them, meaning they do not have to remember any complex
passwords or remember to always keep a key or bankcard on them. This method
is often referred to as biometrics, which is the measurement or analysis of a user’s

5

6 T. Moe: Soft Biometric Keystroke Dynamics performance with distorted timing data

unique characteristics.

There are two categories for biometrics, named physical and behavioural.
Physical characteristics has to do with the structure of the body, such as finger-
prints and DNA. While the behavioural characteristics has to do with the function
of the body, such as a user’s signature or gait. In order for a biometric characteristic
to be used in a system it needs to have a certain set of properties [3].

• Universality: each user should have the characteristic.
• Uniqueness: the characteristic should be able to sufficiently differentiate

between two users.
• Performance: should have a good accuracy (low error) of recognizing a

user.
• Permanence: characteristic should be immutable and persistent.
• Collectability: the characteristic should be collectable and measurable.
• Acceptability: should be unobtrusive for the users.
• Circumvention: the characteristic should not be easy to collect and replic-

ate to create a fake biometric characteristic.

Another example of a biometric characteristic which has gained a lot of popularity
in recent studies is keystroke dynamics. Keystroke dynamics is a behavioural bio-
metric which refers to the way a user types on their keyboard. It is based on the
assumption that each user can be authenticated because of their unique typing
manner. This is because keystroke dynamics performs on a millisecond’s preci-
sion level [4]meaning it is impossible to accurately recreate the way another user
types. This is true even for a user who is typing their own password, as they would
not be able to type exactly the same way they did last time. Even though the user
might type one of the keys or key pairs the same, there are still other keys that
they could type in a different way. It is because of this reason keystroke dynamics
works as an authentication method. Keystroke dynamics can also be associated
with soft biometrics, which refers to trying to determine some characteristics that
are shared with other users, for example age, gender or hair colour. In order to
authenticate or identity a user we need to extract keystroke dynamics features,
and there are two different features we can extract from each keystroke.

• Timing of when a key was pressed down, often referred to as KeyDown time.
• Timing of when a key was released, often referred to as KeyUp time.

There are other features that could be collected, however, they require special
equipment. For example, we could collect the pressure of the keys being pressed
and use these to improve the performance of a system [5], however, we would
need all users to use a pressure sensitive keyboard. Another example is to use the
sound of keystrokes [6], but for this we would need a microphone to pick up the
sound of the user typing.

Chapter 2: Keystroke Dynamics 7

2.2 Keystroke timing

From the KeyDown and KeyUp time of each keystroke we can calculate the dura-
tion and latency of a key. The duration of a key is how long the key was held down,
this can also be referred to as dwell or hold time. While the latency of a key is the
time between releasing one key and pressing another key, and this can sometimes
be referred to as flight time. We differentiate between 4 different latencies [7],
given as:

• pp-latency: The timing it takes to press down one key and the next key.
• rr-latency: The timing it takes to release one key and the next key.
• rp-latency: The timing it takes to release one key and press the next key.
• pr-latency: The timing it takes to press down one key and release the next

key.

In order to get the pp-, rr- and pr-latency we have to use the timing information
from duration and rp-latency. We can calculate pp-latency as latpp = durA+ latrp,
rr-latency as latr r = latrp + durB and pr-latency as latpr = durA+ latrp + durB
where durA and durB represents the duration of two different keys. Figure 2.1
shows the timing values we can extract if a user types the keys A and B.

Figure 2.1: Example of the timing information we can extract from two key-
strokes [7].

From these latencies, only the rr-latency and rp-latency can be negative. For
example, for the rr-latency we can press the shift key, followed by pressing the C
key, and then release the C key before releasing the shift key. The same can be said
with rp-latency as we can press the next key before releasing the previous key, for
example we can press the C key before releasing the shift key.

Throughout the paper we will only be using pp-latency, rp-latency and dura-
tion for our timing values. The naming of pp-latency refers to press-press-latency,
however, we will refer to this as KeyDown-KeyDown latency (DD). While rp-
latency refers to press-release-latency, which will be called KeyUp-KeyDown latency
(UD) throughout the paper.

8 T. Moe: Soft Biometric Keystroke Dynamics performance with distorted timing data

2.3 Static and dynamic authentication

We can differentiate between two types of authentications for keystroke dynamics,
namely static and continuous authentication. In static authentication we want to
capture the keystrokes at the start of a session, usually when a user enters their
username and password combination. For using this in a system we only need to
calculate the duration and latency of a key and see if it matches the reference
template of the user, this will be further explained in section 2.4.

Continuous authentication happens at any point during a session. The idea
behind this is that we want to re-confirm the identity of a user during a session.
We can differentiate between two different ways to re-confirm the identity of a
user: continuous authentication and periodic authentication. In continuous au-
thentication we will re-confirm the identity of a user after every keystroke, while
in periodic authentication we will re-confirm the identity at regular intervals.

2.4 Keystroke verification

In order to authenticate a user using keystroke dynamics we need to create a
reference template for each user that will represent, as accurately as possible,
their specific typing behaviour. This template varies a lot depending on whether
static or continuous authentication is used. In static authentication we want to
create a template that reflects the typing rhythm that the genuine user uses in
order to type the password. This template is created based on enrolment samples,
where the user would get requested to type their password a number of times.
The features, such as duration and latency, are then extracted and the average
typing rhythm is calculated and stored as a reference template. When a user tries
to authenticate, the system will check their typing rhythm, which is referred to as
a probe, against the reference template and then either reject or accept the user
based on a criterion. This criteria for decision making are decided by a threshold
which is created by a distance score, this is further explained in section 2.6.

Verification for continuous authentication is very similar to static authentica-
tion, in the sense that a template is created based on enrolment samples and a user
is either accepted or rejected based on a similarity or dissimilarity score between
the reference template and a probe. However, the reference template and probe
consist of the timing information of di- and tri-graphs of specific keystrokes in-
stead of the timing information of a specific password [8]. Di- and tri-graphs are
two or three letters that make a single sound, such as "th" or "tch". This is because
we cannot know what the user is going to type in continuous authentication com-
pared to static authentication, so we have to look for specific combinations of
letters. It is possible to update the template over time, as the typing behaviour of
a user might change slightly over time.

Chapter 2: Keystroke Dynamics 9

2.5 Performance

One important aspect of keystroke dynamics is the performance of the verifica-
tion system that would be used. A biometric system operates on False-Match-Rate
(FMR) and False-Non-Match-Rate (FNMR) in order to get an insight on the per-
formance [9] [10].

• FMR: FMR is when the system mismatches the probe and reference template
of two different users, giving a false match. These mismatches that result
in a false match are often referred to as non-mated comparison trials in
literature, but they can also be referred to as imposter trials. This means
that an imposter will be wrongly accepted by the system.

• FNMR: FNMR is when the system mismatches the probe and reference tem-
plate of the same user, giving a false non-match. These mismatches that res-
ult in a false non-match are often referred to as mated comparison trials in
literature, but they can also be referred to as genuine trials. This means that
a legitimate user will be wrongly rejected by the system.

In the literature FMR and FNMR are very often used interchangeably with
False-Acceptance-Rate (FAR) and False-Rejection-Rate (FRR), however the differ-
ence is that FAR and FRR are system errors while FMR and FNMR are algorithmic
errors. When talking about FNMR and FMR rate we are looking at individual users
being accepted or rejected. While the FAR and FRR looks at the acceptance and
reject rate of an entire system. Other system errors are Failure to Enroll Rate (FER)
which is the proportion of the enrolment transactions that resulted in a failure to
enrol. Failure to enrol means that the system failed to create and store an enrol-
ment sample for a specific user. Failure to Capture Rate (FCR) happens when the
system fails to capture a biometric sample [9]. Another system error is the Fail-
ure to Extract Rate (FTX) which happens when the system fails to extract feature
data. This could happen because the captured data is too poor or of low quality.
Another important algorithmic error is the Equal Error Rate (EER), which is the
single point where the FMR and FNMR are equal. It is important to specify that
there can be a system EER as well, which is where the FAR and FRR are equal,
however in this paper we will consider all uses of EER as the algorithmic EER.
EER produces a single value in probability, and the lower the value is, the better
the performance of the biometric system is.

2.6 Distance metrics

The calculation of the performance of a biometric system varies, but one of the
more common methods is utilising a distance metric in order to calculate the dif-
ference between a biometric probe and a biometric reference template. A distance
metric computes a distance score which is a comparison score that decreases with
similarity, which means that a low score means a better match. A distance score
is not to be confused with a similarity score, which instead increases with simil-

10 T. Moe: Soft Biometric Keystroke Dynamics performance with distorted timing data

arity. When comparing a probe and a reference template it is generally the typing
features that are compared, which means the duration and latency for each key-
stroke. Various distance metrics have been proposed in the literature, however
some of the more common ones seen are the Manhattan [11], Euclidean [12] and
Mahalanobis distance [13] [10] [14]. These distance metrics are further explained
in chapter 6.

2.7 Age and Gender prediction

Keystroke dynamics can also be used with high accuracy to identify the age and
gender of a user. In [15] the authors presented a preliminary approach to identify
user characteristics in social networks by using accessible biometric data, namely
keystroke dynamics. The research is based on the GREYC-Keystroke dynamics
database [16], which contains samples collected from 133 participants. From
these 133 participants 98 of them were male, while 35 of them were female.
The results of their study showed that the gender of a user can be predicted with
a high degree of accuracy. Another study [17] used keystroke dynamics feature
for gender recognition with results that showed that the gender of an unknown
user can be identified with over 95% accuracy. For this study there was a total of
75 participants where free-text data were collected from each of the participants
and the keystrokes were collected using a keylogger that was installed on their
computer. Out of these participants 39 were female while 36 were male. The data
acquisition consisted over several months where the participants were tasked to
write as normal on their computer. This resulted in over 248 log files contain-
ing keystroke timing information. From these log files there were extracted over
100 features using a software developed by the authors. The research used five
well-known machine learning models, namely, Support Vector Machine (SVM),
Random Forest (RF), Naive Bayes (NB) classifier, Multi-Layer Perceptron (MLP)
and Radial Basis Function Network (RBFN). The highest achieved accuracy was
95% which was done using RBFN model, and the others were around 80%. Ac-
cording to the research is not necessary to use a very large number of keystroke
dynamics features in order to reach the highest accuracy, which means that sys-
tems can have a short training time.

Programs can also predict with high accuracy the age group a user consists
in using keystroke dynamics. Pentel did a research where over 2.3 million key-
strokes were analysed from 1000 subjects and these subjects were categorized
into six different age groups with an accuracy of around 90% [18]. The study
used only four different features from the extracted keystrokes, and it used bin-
ary classification methods with machine learning models to get their results. In
another study from Pentel [19] he collected data from 1519 subjects and using
machine learning models accumulated an accuracy of 90% when predicting both
user age and gender.

Chapter 3

State of the art

This chapter covers the recent state of the art surrounding the research ques-
tions defined in section 1.5. The chapter is divided into four sections, where each
section is delegated into covering the recent state of the art to each of the four
sub-research questions.

3.1 RQ 1a

Distortion in keystroke dynamics is not a well researched field, and we did not find
many results when doing literature search. However, [20] measured two typing
samples of keystroke dynamics data and used two different measures to compare
the samples. These measures are defined as "R-measures" and "A-measures". The
"R-measures" measure the disorder of an array of K elements, for example, con-
sider array A=[2,5,1,4,3]. The disorder of array A is then (1 + 3 + 2 + 0 + 2) =
8. We can calculate this with the formula given in equation 3.1

n
∑

i=1

|Ai − i| (3.1)

This can also be used with texts that share the same digraphs or even tri-graphs.

"A-measures" are somewhat similar to "R-measures" but instead they only con-
sider the absolute value of the typing speed when comparing. The comparison
requires that a threshold t is set, where all comparison scores below the threshold
are considered a match. Consider the example where E1 has the timing informa-
tion in milliseconds as [280, 220, 150, 230, 265] which represents digraphs, and
E2 has [200, 190, 220, 150, 320]. For the comparison we divide the largest value
by the smallest value for the corresponding indices, which would then produce the
following scores [1.4, 1.157, 1.466, 1.533, 1.207]. Any score below the threshold
is considered the be a similar pair, which means that the digraphs were similar.

11

12 T. Moe: Soft Biometric Keystroke Dynamics performance with distorted timing data

3.2 RQ 1b

As with the first sub-research question there is little literature research surround-
ing the detection of distorted timing information in keystroke dynamics. However,
one method that could be used for detecting distorted timing information is Ben-
ford’s Law and ZIPF’s Law. Benford’s Law, or the first-digit law, is an observation
in a set of numerical data where the first digit, or leading digit, is more likely to
be small. In a balanced distribution of numbers between 1 and 9 there would be
exactly 11% for each number to be the leading digit. However, if Benford’s Law is
obeyed then the change of the leading bits to be small increases as can be seen in
image 3.1.

Figure 3.1: Benford’s Law distribution [21]

In [21] it was proven that Benford’s Law can be utilized for determining
whether the user is a human or non-human. However, the results showed that
only latency values from keystroke dynamics timing information followed the law,
while duration values did not follow the law. The paper also proves that this is cor-
rect for Zipf’s Law as well, which states that the frequency of any word is inversely
proportional to its rank in the frequency table. Essentially it means that the most
frequent word occurs two times more than the second most frequent word and
three times more than the third most frequency word and so on. Benford’s Law
and Zipf’s Law are given in equations 3.2 and 3.3 respectively.

p(x) = log10(1+
1
x
), (x = 1, 2, ..., 9) (3.2)

p(x) = C x−a (3.3)

Chapter 3: State of the art 13

3.3 RQ 1c

There is a lot of algorithms for performance testing for keystroke dynamics. One of
the more popular ones are found in [22]which lists 11 different anomaly detectors
for keystroke dynamics and compares their performance with each other.

The anomaly detectors that were used were:

• Manhatten (filtered) [23]
• Euclidean (normed) [24]
• Mahalanobis (normed) [24]
• Nearest Neighbour (Mahalanobis) [25]
• Neural Network (auto-assoc) [25]
• Fuzzy Logic [26]
• Neural network (standard) [26]
• Outlier Count (z-score) [26]
• SVM (one-class) [27] [28]
• Manhatten (scaled) [29]
• k-means [30]

These detectors were then tested with a data set that was created in [22], and
the best performing detector found using that data set was Manhattan (scaled).

A survey done in [31] looked at different classification methods for keystroke
dynamics, most of these were statistical approaches (61%) while 37% were ma-
chine learning approaches. It is entirely possible to use both statistical and ma-
chine learning methods in order to solve this research question.

3.4 RQ 1d

Reversing distorted timing information is not a very well researched area in key-
stroke dynamics. However, we can look at how distorted noise in other areas are
removed or reduced to draw inspiration.

In [32] it was discovered that there is a complex relationship between the ideal
filter parameters and the noisy scene data for Monte Carlo rendering of images.
They use a machine learning approach, where it learns of the relationship using
a nonlinear regression model.

Four techniques were presented for noise removal in data analysis in [33].
Three of these are methods based on traditional outlier techniques, distance-
based, clustering-based and Local Outlier Factor (LOF). While the last one was
a new method that was proposed called HCleaner. The results from these showed
that HCleaner tended to have a better noise removal capability than the tradi-
tional outlier techniques. However, the performance of HCleaner and LOF were
not consistent.

Chapter 4

Methods

This section explains the methods chosen in order to answer the research ques-
tions defined in section 1.5. A literature study was firstly conducted to get a better
understanding of the state of the art, and the result of this can be seen in chapter
3. To answer the research questions, we needed to collect data and then analyse
it. This project requires the collection of keystroke timing information data, which
means that we needed participants who could type on their keyboard in a program
which would anonymously collect the keystroke timing information. However, the
data collection in this project did not use any participants. Instead, it simulates
the usage of keystrokes based on an already created data set. By doing this we
can be sure we get enough data, as it might have been difficult to find enough
participants because of Covid-19, meaning we would have had to rely on finding
enough people online. Because of the research questions defined in section 1.5
we need to collect both accurate and distorted timing information. Which means
that by simulating keystrokes we can get a much more precise comparison when
analysing the collected data, which in turn will result in more accurate results
when comparing simulated and distorted data.

As mentioned, this project simulates keystrokes based on an already created
data set. In this project we simulate a data set created in [22], which can be
referred to as the CMU data set. The CMU data set is created by Killourhy and
Maxion, and is a publicly available data set which contains timing information
about a single password entry from 51 participants with 400 repetitions each over
8 sessions. The participants waited at least 1 day in between sessions, as they
wanted to capture day-to-day variation in their typing. In this data set they use
the password phrase ".tie5Roanl", as it includes the use of letters, numbers and
a punctuation. It also collects the return key which is entered at the end of the
password phrase, and in general, this is a good thing to include as it allows us to
extract more features. Every keystroke allows us to collect multiple features, and
the more features we collect the more accurate our performance will be. While the
data set uses the shift key it does not collect it, which we consider to be unfortunate
as the shift key could have been used to extract more features. In some data sets
we can even see that the backspace key is collected, however, in this data set it

15

16 T. Moe: Soft Biometric Keystroke Dynamics performance with distorted timing data

is not recorded. They extracted the KeyDown-KeyDown (DD), KeyUp-KeyDown
(UD) and the duration timing values of every keystroke. These timing values were
then placed in a CSV file. The reason for choosing this data set is because it has
been widely used in the literature surrounding keystroke dynamics.

4.1 Data collection

Three different programs were created in order to accomplish the data collection
process. A program in Matlab were created in order to format the CMU data set to
feed the data into the simulator. Afterwards, a website were created and hosted
locally which contains the code for capturing keystrokes. Lastly, we needed a way
to actually simulate keystrokes, which was accomplished by using the Windows
API which has functions that allows a computer to simulate keystrokes. These
programs are given in more detail in chapter 5.

When simulating keystrokes based on an already created data set we do not
have control on how the experiment should be conducted, in the sense that we
cannot control the environment or emotional level of a participant. A strong emo-
tional level of a participant can directly influence the keystroke dynamics authen-
tication process [34] [35]. We also do not control how the experiment is con-
ducted, as if it is a controlled or uncontrolled environment which might directly
influences the typing behaviour of a participant. A controlled environment is when
the participants goes to a specific room or place to conduct the experiment, while
in an uncontrolled environment they can conduct the experiment wherever they
want. This means that researchers have no control over their participants in an
uncontrolled environment, however, some participants might feel more comfort-
able.

4.1.1 Plugin

As already mentioned, we need to collect distorted timing information. This is
done in the simulation process by enabling a plugin called Keyboard Privacy [1].
This plugin artificially alters the rate at which our keystrokes enter the webpage
[36]. With this plugin our latency and duration are delayed before they are re-
gistered in the webpage. This delay is by default set to 200 milliseconds for both
latency and duration in the plugin, but they can be customized. If we have a closer
look at the plugin code, we can see that the plugin actually only 50% of the time
adds a random delay between 0 and 200 milliseconds. This means the plugin does
not delay every keystroke, but rather half of them. The goal of the plugin is to pro-
tect the user’s privacy, as we have stated earlier that keystrokes can be used for
identification. With this plugin enabled during simulation we effectively distort
our data.

Chapter 4: Methods 17

4.2 Analysis

A program written in python was created in order to analyse the performance
of the distorted and simulated data set. It was also used to analyse the original
data set in [22] so it could be used to compare the performances of the simulated
and distorted data sets. The program outputs the EER of eight different distance
metrics, where the overall goal is not how good the individual distance metric are,
but rather the difference in performance between the distorted and the original
data set. We created three different configurations for our program which were
used to run all of our data sets on. These configurations base on increasing or
decreasing the number of samples used for the reference template and probe,
and we further explained them in section 6.3.1. We also created three different
methods for reducing noise in the distorted data set. These methods are simple
in logic, as we either try to compensate or ignore values that are below or greater
than a set threshold. We explained these methods in section 6.4.

For all of these configurations and methods we ran our program in two differ-
ent ways. One where we used the same data set for both the reference template
and probe, and the other one where we used the original data set as reference
template and the other data sets as probes. This is because we wanted to see the
difference in performance when we used the original data set as reference tem-
plate and for example the distorted data set as probes.

Our program is further explained in chapter 6 and the results can be seen in
chapter 7.

Chapter 5

Data Collection

This chapter will give an overview and an explanation of how the data collection
procedure was done. As mentioned in chapter 4 we want to simulate keystroke
dynamics based on a data set and collect that data in order to create a new data
set. A major reason for this is because we want to capture both real and distorted
timing information and this makes it more accurate to compare them as both data
sets were created by the same program. This means we will be working with three
different data sets, which we will throughout the next chapters reference as:

• Original: refers to the original data set created in [22].
• Simulated: refers to the simulated version of the original data set.
• Distorted: refers to the simulated version of the original data set, but with

the plugin enabled which creates the distortion.

5.1 Software development

We simulate keystrokes based on the original data set. This means that we needed
to create a software that can simulate keystrokes. We also needed a webpage that
could collect and store the timing information of the simulated keystrokes.

5.1.1 Simulation of keystrokes

There are a number of different ways we can simulate keystrokes, but there are
mainly two approaches, either simulate them in the webpage or by an external
program. For simulation in webpage we could use jQuery’s event system [37].
This system simulates keystrokes with the "keydown" and "keyup" event and then
triggers the event by using a "trigger" [38]. For external programs we had plenty
of options to choose from in terms of language as most languages offers some
form of keystroke simulation. With Python it is possible to simulate keystrokes
using pynpnut, a library which allows users to control input devices [39]. This
library has a class which can be used to control keyboard input [40] and it can
simulate both a keypress and a keyrelease. Another way of simulating keystrokes

19

20 T. Moe: Soft Biometric Keystroke Dynamics performance with distorted timing data

is using the keybd_event [41] which is a windows function in the Win32 API used
in C++, however this function is superseded by the SendInput function [42]. This
function synthesizes a keystroke and allows the user to simulate both keyrelease
and keypress. The SendInput function takes three inputs, where the first item is
the structure of an array, while second item is an array of the INPUT structure
[43] which is a specific structure used by the SendInput function. In this INPUT
structure we determine which key is going to be pressed or released. the last
input of the function tells us the size of the INPUT structure. We chose to use the
SendInput function in C++ for our development, simply because of preferences
in terms of programming language.

5.1.2 Collection of keystrokes

In order to collect the keystrokes that were entered by the simulation program we
also created a simple webpage that would store the timing information from the
keys. This webpage needed very little functionalities, as it only needs to collect
keystrokes that are entered into a specific field. The keystrokes were captured by
the jQuery keydown [44] and keyup [45] functions in Javascript. From these func-
tions we could figure out what keys were pressed and when they were pressed.
After each key is entered, an Asynchronous JavaScript and XML (AJAX) [46] re-
quest is sent to the backend of the webpage, where the timing information is stored
in a webpage. By using AJAX we can send a request to the backend without reload-
ing the webpage. This is very important when we want to simulate keystrokes, as
we do not have to wait for the webpage to reload after every sample has been
entered as this could potentially disrupt the simulation. As an example, if we had
to refresh the page after every sample, we would have to account for that in the
simulation program. This would be very hard to code, as the simulation program
would have had to guess when the website was done loading. Now we could just
hard-code a wait time of 5 seconds between each sample, but this would mean
that the simulation program would take a quite a long time to run considering
there are 20 400 samples per data set. This accumulates to 102 000 seconds or
about 28 hours of extra run-time of the program, and this is just for one data set.
If we include the actual run-time of each sample as well, which is on average 2.5
seconds, we suddenly have a program that takes days to run.

5.1.3 Database

Every AJAX request is sent to the backend and stored in a database. We want
the backend to be really simple as the webpage is hosted locally and will not be
accessible online. This means that we can disregard a lot of functionalities which
you can usually find in a webpage, such as authentication and security in through
the HTTPS protocol. First off, we needed to choose a programming language for
the backend, and there are a lot of options to choose from. For this project we
choose to program the backend in Python. The main reason for this is because the
analysis will mostly stay in Python. Python is also a freely available programming

Chapter 5: Data Collection 21

language with a large user bases that has an active online forum where questions
are frequently asked.

Python offers a lot of different frameworks that help with developing a backend.
It is important to specify we wanted something lightweight and easy to implement,
as the webpage is relatively simple and only requires it to be locally hosted. This
project mainly only considered two different frameworks, Django [47] and Flask
[48]. Both Django and Flask are web application frameworks that are designed to
make it easy for developers to design and develop a webpage. We chose to utilize
Flask over Django simply because Flask is more lightweight than Django, as this
webpage is relatively simple. We did not need everything that Django has to offer,
even though there would have been no issues using Django.

As mentioned, the database stores all the timing values of every keystroke.
The database has just one table called keystrokes with the following columns:

• user_id: This refers to the id of the user who typed the key.
• session_id: This refers to the current session the user is typing in.
• repetition: This refers to the current repetition the user is in.
• type: This refers to whether it is a keydown or keyup.
• key: This refers to the specific key that was pressed.
• keycode: This refers to the keycode of the key that was pressed.
• clocktime: This refers to the clock time of when the key was pressed or

released.
• lastkey: This refers to how long ago, in milliseconds, last key was either

pressed or released. It is from this column that we get the durations and
latencies.

So, for every keystroke we would have two entries in the database, one for
keyup and one for keydown. The original dataset consists of 20400 samples, where
every sample has 11 keystrokes. This means that we will have almost 500 thou-
sand timing values in the database at once, because 20400∗11∗2= 448800. We
did this once for the simulated data set and once for the distorted data set. For
the distorted data set we activated the keyboard privacy plugin [1] which enables
a delay to every keystroke entered. This delay was set to 200 milliseconds as this
is the default setting of the plugin. With the timing values in the database, we
formatted it to the same format as seen in the original data set [22] so that the
only difference between them are the timing values themselves. This will make
the code for the analysis much easier to create as we only have to worry about
one specific format for all three data sets.

5.1.4 Timing

As mentioned, we want to analyse three different data sets, original, simulated and
distorted data set. The simulated data set is based on the same timing values as the
original data set, and this was done to showcase the differences in performances
of them, because when simulating keystrokes we can never achieve the exact same
timing values as the original data set. This is due to the fact that it is impossible

22 T. Moe: Soft Biometric Keystroke Dynamics performance with distorted timing data

to get the accuracy of the simulation lower than milliseconds or microseconds.
In our C++ program for simulating keystrokes we utilize the sleep function for
recreating the delay between keystrokes. However, this function is not always
100% accurate as it does not sleep exactly the amount set. If the amount set to
sleep is below the resolution of the system clock, the function might sleep for less
than the specified length [49]. The function can also sleep for longer than the
amount set as well, because of the resolution of the system timer which is around
10 to 16 milliseconds.

We also capture the timing of a keystroke in the web browser, and this is done
with the JavaScript getTime function [50], which gets the current timestamp.
Another function that could have been utilized and in some cases are more accur-
ate than getTime is the performance.now() function [51] [52]. However, these
timestamp values are randomly rounded by some amount in the web browser in
order to avoid the Spectre vulnerability [53]. Spectre was discovered in 2018 and
exploits a vulnerability in the microprocessors to leak the victim’s confidential
information.

Because of the issues explained in this subsection, we cannot accurately re-
create the original data set, however, as will be seen in chapter 7 there is not that
much difference between the performance of these two.

Chapter 6

Data Analysis

This chapter is divided into three sections, where the first section explains the
distance metrics that were used for the analysis. While the second section explains
the process that we used to generate the EER, and the third section explains the
software that was created in order to achieve the results.

6.1 Distance metrics

We used eight different distance metrics for our data analysis process. The reason
we specifically went with these distance metrics is because they are some of the
most popular used ones. In our paper we do not really care about how well
they perform, as we are interested in investigating the difference in performance
between distorted and real timing information. These distance metrics are briefly
explained in this section.

6.1.1 Euclidean detector

The Euclidean detector is calculated by taking the square root of the sum of the
squared differences between two vectors [12] [24]. This is defined in equation
6.1 where r and p are input vectors.

d1.1(r, p) =

√

√

√

n
∑

i=1

(pi − ri)2 (6.1)

In our program we use the numpy.linalg.norm function [54] for calculating the
Euclidean distance. Another way of calculating the Euclidean distance is the use of
SciPy Euclidean function, however, this function is slower. When we tested these
functions, the SciPy Euclidean function used around 500 milliseconds to calculate
the Euclidean distance for each user, while the numpy.linalg.norm function used
around 475 milliseconds. If we multiple the difference by the number of users,
(500 − 475) × 51, then we can see that the SciPy function is 1275 milliseconds
slower than the numpy.linalg.norm function.

23

24 T. Moe: Soft Biometric Keystroke Dynamics performance with distorted timing data

6.1.2 Euclidean normed detector

The Euclidean normed detector is a variant of the Euclidean detector, where we
divide the Euclidean detector with the vectors r and p. This detector is defined
in function 6.2 and it was first described in [24] as the Normalized minimum
distance classifier.

d1.2(r, p) =

q

∑n
i=1(pi − ri)2

pi ri
(6.2)

In our program we use the same function we used for the Euclidean detector.

6.1.3 Manhattan detector

The Manhattan detector, often also called the city block distance, is the sum of the
absolute difference between two vectors [11] [55] [56]. It is defined in equation
6.3, where the two input vectors are r and p.

d1.3(r, p) =
n
∑

i=1

|pi − ri| (6.3)

In our program we calculate the Manhattan detector using the cityblock function
from the python SciPy library [57].

6.1.4 Manhattan filtered detector

The Manhattan filtered detector is similar to the Manhattan distance, and we use
the same function for calculating the detector using equation 6.3. However, for
vector r we filter out elements that are more than 3 standard deviations away
from the mean of the vector [23]. In our program we use the Euclidean distance
to calculate the length between each element and the mean of the vector r. The
calculation of vector r is defined in equation 6.4, where mean(r) is the average of
vector r and std(r) is the standard deviation of vector r.

r =

√

√

√

n
∑

i=1

(ri −µ2
r =

¨

> 3×σ(r) drop element
(6.4)

6.1.5 Manhattan scaled detector

The Manhattan scaled detector is also similar to the Manhattan distance, except
that it divides the absolute difference between two vectors by the average absolute
deviation [29]. We define the detector in equation 6.5 where r and p are the two
input vectors, while a is the average absolute deviation.

d1.5(r, p) =
n
∑

i=1

|pi − ri|
ai

(6.5)

Chapter 6: Data Analysis 25

In our program we calculate the Manhattan scaled detector by looping through
vector r and calculating the absolute sum of every element in the vector using the
equation.

6.1.6 Mahalanobis detector

The Mahalanobis distance is a more complex version of the Euclidean and Man-
hattan distance. This is because the Mahalanobis distance measures the distance
between a distribution and a point, and not the distance between two distinct
points [24]. It is defined in equation 6.6, where the two input vectors are r and p.
The inverse covariance matrix for vector r is defined as C−1.

d1.6(r, p) =
n
∑

i=1

Æ

(pi − ri)T C−1(pi − ri) (6.6)

To calculate the covariance matrix, we used the NumPy function numpy.linalg.cov
[58]we then inverse the matrix using the numpy.linalg.inv function [59]. Then we
use the SciPy Mahalanobis function [60] to calculate the Mahalanobis distance.

6.1.7 Nearest Neighbour (NN) Mahalanobis detector

We name this detector the Nearest Neighbour (NN) Mahalanobis detector because
we use the Mahalanobis detector to calculate the distance between two vectors
used in the K-nearest-neighbour classifier [25]. It is defined in equation 6.7 where
the two input vectors are r and p. We can see that it is quite similar to equation
6.6 except we take the minimum value as the distance because this is the closest
"neighbour" for vectors r and p.

d1.7(r, p) =
n

min
i=1

Æ

(pi − ri)T C−1(pi − ri) (6.7)

In our program we use the same functions as defined in the previous subsection
for the Mahalanobis distance, except we loop through vector r as well.

6.1.8 Outlier Counting Detector

The Outlier Counting detector is used to find outliers in vector p by calculating the
z-score, which is used to find out how far away from the mean a data point is. An
outlier is a data point that is far away from the mean, and in order to find these
outliers we need to set a threshold. We chose to set the threshold at 2.96 because
in the original data set [22] it was set as 1.96, however, we thought that this was
too low and increased the threshold by 1. The distance score is a count of how
many data points are above this threshold. We define this detector in equation
6.8, where the vector inputs are r and p.

d1.8(r, p) =
n
∑

i=1

pi −µri

σi
=

¨

> 2.96 count+ 1
(6.8)

26 T. Moe: Soft Biometric Keystroke Dynamics performance with distorted timing data

In our program we did not use any library functions as we only counted how many
times the z-score was above the threshold 2.96 and used the result of that as the
distance score.

6.2 Process

This section describes the process that we use to calculate the EER. For every user
in our data sets we differentiate between the reference template and probe. It
is important to specify that we cannot use the same data samples for both the
reference template and probe. If we for example use the first 50 samples from a
user as the reference template, then we have to use the remaining 350 samples
as the probe. We would also use 350 samples from the remaining users as the
probe, meaning our total number of probes would be 350×51 which is 17850. A
reference template is created by taking the mean from the first 50 samples, and
this mean vector can be called r. We will throughout the rest of this thesis, refer to
this process as the training process, as this is where we "train" the program. Then,
for every probe, which we can refer to as p, we run through the eight different
distance metrics and calculate the distance between r and p using the formulas
explained in section 6.1. Throughout the rest of this paper we will refer to this step
as the testing process, as this is where we test each sample against the reference
template. From these distance metrics we will get a distance score, which we will
use to calculate the EER. The training and testing steps are done for every user in
the data set, where every user has their own reference template. As mentioned in
section 2.5 the EER gives us an indication on the performance of a system based
on the data set used.

6.3 Software development

We have already explained the different functions we used in order to implement
the distance metrics, and the code for it is largely based on the work from [61].
The run time of our program is very long, multiple hours, because there is a lot
of calculation and the data sets are quite large. Python also only use a single
CPU core by default. Which is why our implementation utilize a package called
"multiprocessing" that enabled us to use several CPU cores at the same time [62].
This drastically reduces the run time of our program to around 30 minutes which
makes it easier to run it with different configurations for the reference template
and probe. The majority of the run time comes from the NN Mahalanobis detector,
because of its computational complexity. If we were to remove this detector, our
program would run in less than 10 minutes.

The rest of this section is divided into two subsections, where the fist subsec-
tion explains the different configurations we have done to our code. The second
one explains our methods of reducing the noise in the distorted data set.

Chapter 6: Data Analysis 27

6.3.1 Configurations

There are only two things we change when we configure the program to run dif-
ferently, and these configurations have a direct effect on the performance. We can
configure the number of samples used for training and testing respectively. When
referring to configuration changes it will be the same for every user in the data
set, as every user has their own reference template. As a reminder, each user in
the data sets has 400 samples.

Normal

In [22] they used 200 samples for training, however, this is unrealistic as this
would mean that we would have to capture a user’s typing 200 times. Which is
why we in this configuration only use the first 50 samples for the training. We then
use 350 samples from every user as probes, which results in 350 × 51 = 17850
probes. Again, we specify that the 350 samples from the other users do not include
the first 50 samples as these samples would be used as the reference template
for that specific user. This is because we cannot use samples as both reference
templates and probes.

Skip first session

In the original data set every user is typing the 400 samples over 8 sessions, which
means that each session consists of 50 samples. It is reasonable to think that in
the first session the user is rather slow compared to the other sessions, as this is
their first time typing the password. This is why we in this configuration skip or
ignore the first session. So, we will use the samples from the second session as the
training for the reference template, i.e., samples 50 to 100. The remaining 300
samples for all of the users are used as probes, meaning we have 300×51= 15300
probes.

Skip 15 samples

A study on between-sessions delays having an impact on the performance of cog-
nitive skill learning was done in [63]. They showed that delays between sessions
yields to the users forgetting some parts of what they learned, and that they would
have to relearn again at the start of the next session. We can show that this is the
case for our data set as well.

Figure 6.1 shows the average timing values across all users for the original
data set. A vertical line in the figure represents a start of a new session, and we
have highlighted the start of every session after the first session in the figure. The
figure shows that the average timing values of the keystrokes are much higher at
the start of every session. We can also see that the timing values decrease as the
session goes on, meaning the users get more accustomed to typing the password.
This means that the first samples at the start of a session are going to deviate more

28 T. Moe: Soft Biometric Keystroke Dynamics performance with distorted timing data

Figure 6.1: Average timing values for a sample across all users from the original
data set.

from the mean as they are much higher than the rest of the samples as seen in
the figure. Because of this, we ran a configuration where we skipped or ignored
the first two sessions and the first 15 samples from the remaining sessions. This
is because in the first two session the typing is clearly slower on average than
the rest of the sessions, and something similar holds for the first 15 samples in a
session.

6.4 Noise reduction

We have developed three simple methods that reduces the noise in the distorted
data set. In this section we explained these three approaches and give arguments
to why they were developed.

6.4.1 Compensation

In this method, we try to compensate for the distortion that was added through
the use of the keyboard privacy plugin. We know that the plugin half of the time
adds a number of milliseconds to the keystrokes, and we also know that the default
configuration is to add 200 milliseconds. We also saw that in the distorted data set
that a lot of duration and DD values were really low and sometimes even negative.
It is impossible for a duration value to be negative, as we cannot negatively hold
down a key. The same can be said for DD values, because if this value is negative
it would mean that the password has a typing error in it, i.e., the password is
wrong. There are 4 686 negative duration and DD values in the distorted data
set. This is about 1% considering there are a total of over 400 000 duration and

Chapter 6: Data Analysis 29

DD values in the data set. However, duration and DD values that are exactly 0
are also technically not possible to be done by a human as this would not be
registered by the computer. This is because if a user holds down a key for exactly
0 milliseconds, then they have not pressed the key as a computer would not have
detected they keystroke. It is also very unlikely that a user has a duration time
that is a very low value. We therefore sat a threshold that says that if a duration
or DD value is less than or equal to 4 milliseconds then something or someone has
modified the timing information. In the original data set we have 48 occurrences
where the duration or DD value is equal or less than 4 milliseconds, while in the
distorted data set we have 24 881 occurrences.

We created a Matlab program that for every duration or DD value that is less
than or equal to 4 milliseconds adds 100 milliseconds to that value. As mentioned
in section 4.1.1, the plugin we use to distort the data adds a random delay between
0 and 200 milliseconds to half of the keystrokes. We therefore assume that the
average value is 100 which is the reason for increasing low duration and DD values
by 100 milliseconds. Since we are adding 100 milliseconds to either duration or
DD values, we have to remove 100 milliseconds from a value as well. We do this
because the total length of a sample is not so different in the distorted data set
compared to the original data set. We reduce the highest value in the past of where
we find a low value. For example, lets says we find that the duration time of the
letter "e" in the password "tie5Roanl" to be a negative value. This has happened
because of something or someone adding a delay to the keystroke, as a duration
value cannot be negative. In order to compensate for that added delay we add
100 milliseconds to that specific duration value and thus turning it into a positive
value. Next, we remove 100 milliseconds from the highest duration, DD or UD
values from the "t" or "i" keystrokes to compensate for adding 100 milliseconds. In
section 2.2 we showed how we calculate the DD values with the following formula
DD = duration+U D. This means that if we add 100ms to the duration value, we
also have to add 100ms to the DD value. By doing this we guarantee consistency
when compensating DD or duration values.

6.4.2 Ignoring values

We have developed two different methods that rely on specifically ignoring values
that are greater or less than a specific threshold. In this subsection we will discuss
these two different methods, which are called "less than" and "greater than". Both
of these methods are programmed in Python and are used during performance
analysis. We use these two methods on the distorted data set in order to reduce
its distortion.

Less than

This method is relatively similar to the previously mentioned method of compens-
ation, however, instead of compensating values we instead ignore duration or DD
values that are equal or less than 4 milliseconds. When calculating the genuine

30 T. Moe: Soft Biometric Keystroke Dynamics performance with distorted timing data

and imposter score we look for values that are equal or less than the threshold
and ignore it, this means we also have to ignore the same value positions in the
training vector. One of the drawbacks of doing this is that we get less features
which might have an impact on some distance metrics.

Greater than

For this method we ignored any value, duration, DD or UD, that are 1.5 times
greater than the value in the training vector. We chose to use 1.5 as our threshold
for this because we believe that it should remove values that are created by the
plugin as it adds delay to the keystrokes. The two others already explained meth-
ods only deal with duration and DD, and we wanted to at least try one method
that uses the UD values as well. The goal of this method is to exclude any val-
ues that are way higher, or lower, than the average vector created in the training
phase.

Chapter 7

Results and discussion

In this chapter we will show and discuss the results from the analysis. It is divided
into two sections, where the first section covers the results from using the same
data set in both the reference template and probe. The second section covers the
results from using the original data set as reference template and the other data
sets as probes. All of the results shown in this chapter is the EER that has been
calculated using the distance metrics described earlier.

7.1 Same type of data for reference and probe

This section is divided into three subsections, where each subsection refers to one
of the three configurations used in the analysis. In the results shown here we use
the same type of data set for the reference template and probe, so for example,
we use the original data set for both the reference template and for the probes.
Each subsection shows the results from the original, simulated and distorted data
set. Then we show the results from trying to mitigate the distortion using the
"compensation", "less than" and "greater than" methods.

7.1.1 Normal

Data sets

Table 7.1 shows the EER from using the same data set in the reference template
and probe. From these results we can see that there is not a lot of difference
between the original and simulated data set. The distance metric that resulted in
the biggest difference between them were the Scaled Manhattan distance, with a
1.4% difference. However, almost all of the other distance metric has a difference
of below 1% when comparing the original and simulated data sets. This could be
because of the added delay in the simulated data set as described in section 5.1.4.
This also holds true for the distance metrics where the simulated data set has a
lower EER than the original data set.

31

32 T. Moe: Soft Biometric Keystroke Dynamics performance with distorted timing data

Distance metric Original Simulated Distorted
Euclidean 39.4% 39.2% 40.5%

Euclidean (normed) 37% 36.9% 39.6%
Manhattan 37.5% 37.4% 40.4%

Manhattan (scaled) 21.3% 22.7% 35.3%
Manhattan (filtered) 34.5% 34.5% 38.8%

Mahalanobis 32% 33.1% 40.6%
NN Mahalanobis 44.9% 44.4% 48.2%
Outlier counting 28.8% 27.6% 37.3%

Table 7.1: Results from normal configuration using same type of data for the
reference template and probe.

The results from the distorted data set is worse than the original data set,
which was to be expected. We see an increase in the EER, which is considered bad,
for all the distance metrics, however, this increase varies across them. The lowest
increase was the Euclidean distance, with only an increase of 0.9% compared
to the Scaled Manhattan distance which had an increase of 14%. The Euclidean
distance overall performs badly compared to the other distance metrics as the
original data set resulted in 39.4% for the EER. However, it seems to be quite
resistant to distortion as the difference between the original and distorted data
set is fairly low compared to the others distance metrics.

Noise reduction

The results here should be compared to the results from the distorted data set in
table 7.1 as a decrease in the EER indicates that we can reduce the distortion.
Table 7.2 shows the EER when we try to reduce the distortion in the distorted
data set. In most cases the EER has not improved, but rather gotten worse, for
example the Mahalanobis detector where we get a 49.4% for the "greater than"
method compared to the distorted result of 40.6%. This is also true for the "less
than" method, where we get an EER of 45.8%. This indicates that removing low
values from the Mahalanobis detector results is not a good approach, as we end
up with a worse score. Out of the 8 different distance metrics, only the outlier
counting distance metric scored better when using the "less than" and greater
than methods. We get the best score by using the "greater than" method, where
the EER is 21.1% which is lower than the distorted and the original data set. This
means that ignoring low values results in a better performance when using the
outlier counting detector. However, the "greater than" method has a relatively low
threshold as it ignores values that are greater than 1.5 times than the probe. This
could mean that it actually ignores so many values, which in turn creates less

Chapter 7: Results and discussion 33

Distance metric Compensation Less than Greater than
Euclidean 39.8% 40.5% 48%

Euclidean (normed) 39.8% 39.1% 44.9%
Manhattan 40.4% 40.1% 48.9%

Manhattan (scaled) 34.6% 35% 44.9%
Manhattan (filtered) 38.5% 38.3% 48.2%

Mahalanobis 42.7% 45.8% 49.4%
NN Mahalanobis 48.3% 49.5% 54.7%
Outlier counting 34.2% 29.9% 21.1%

Table 7.2: Results from trying to reduce the noise in the distorted data set for the
normal configuration.

features for the distance metric to use.

7.1.2 Skip first session

Data sets

The results from this configuration can be seen in table 7.3. If we compare these
results with the ones in table 7.1 we can see a decrease in the EER which means
that this configuration gives us a better performance. The results here indicate
that the first session should not be used as a reference template, as the user is
getting used to the password. We see that the original data set and the simulated
data set remain to give fairly equal EER, which further proves that the there is
little difference between a simulated and non-simulated data set.

Distance metric Original Simulated Distorted
Euclidean 33.9% 33.6% 36.1%

Euclidean (normed) 29.6% 29.5% 34.6%
Manhattan 31% 30.8% 35.8%

Manhattan (scaled) 18.3% 19.2% 32.6%
Manhattan (filtered) 28.2% 28% 33.9%

Mahalanobis 28.2% 30.9% 38.1%
NN Mahalanobis 41.7% 45.7% 44.5%
Outlier counting 24% 23.4% 36.7%

Table 7.3: Results from skip first session configuration using same type of data
for the reference template and probe.

34 T. Moe: Soft Biometric Keystroke Dynamics performance with distorted timing data

We also see that there is a bigger difference between the data sets for the Eu-
clidean detector. In table 7.1 the data sets resulted in almost the same EER for
the Euclidean distance, however, for this configuration we can see that there is
a bigger difference between the distorted and original data set. The biggest EER
change was again with the Scaled Manhattan distance, where there was a differ-
ence of 14.3% between the original and distorted data set. Another interesting
observation is that with the NN Mahalanobis detector we got a better result with
the distorted data set than we did with the simulated data set.

Noise reduction

In table 7.4 we see the results where we try to reduce the distortion in the dis-
torted data set when skipping the first section. We can see that the "compensa-
tion" and "less than" methods gets around the same results as the distorted data
set, with some distance metrics scoring better such as the "less than" method for
the Normed Euclidean which was 0.8% better. The "greater than" method results
scored worse with the exception of the outlier counting detector, which was 16%
better. However, as explained earlier, this might be because it excludes too many
features.

Distance metric Compensation Less than Greater than
Euclidean 36.3% 36% 45.2%

Euclidean (normed) 34.5% 33.8% 41.1%
Manhattan 35.7% 35.2% 46.5%

Manhattan (scaled) 31.8% 31.8% 44%
Manhattan (filtered) 33.8% 33.2% 45.7%

Mahalanobis 40.5% 44.2% 48.7%
NN Mahalanobis 47.1% 49.1% 54.2%
Outlier counting 33.2% 29.3% 20.7%

Table 7.4: Results from trying to reduce the noise in the distorted data set for the
skip first session configuration.

If we compare this table with table 7.2 we can clearly see an overall increase
in performance. This indicates that if the first section is included we will get a
worse performance.

7.1.3 Skip 15 samples

Data sets

In table 7.5 we can see the results when ignoring the first two sessions and the
first 15 samples from the remaining sessions. As seen in figure 6.1 we noted that

Chapter 7: Results and discussion 35

the start of each session that the average typing speed was high. We can confirm
that removing these values increases the performance as seen in the table.

Distance metric Original Simulated Distorted
Euclidean 31% 30.9% 35.5%

Euclidean (normed) 26.6% 26.7% 33.5%
Manhattan 27.6% 27.4% 33.6%

Manhattan (scaled) 17% 18.5% 31.5%
Manhattan (filtered) 25.6% 25.3% 32.6%

Mahalanobis 26.1% 27.6% 38.7%
NN Mahalanobis 35.2% 38.9% 45.7%
Outlier counting 20.2% 19.7% 42.5%

Table 7.5: Results from skip 15 samples configuration using same type of data
for the reference template and probe.

Across almost all of the distance metrics we get an increased performance, for
example the NN Mahalanobis distance which decreased to 35.2% and 38.8% for
the original and simulated data set. However, the distorted data set actually got
worse with this distance metric with an EER of 45.7% which is almost 1% more
than the skip first session configuration. The same can be said about the outlier
counting detector, which had an increase in the performance for the original and
simulated data set but a decrease in performance for the distorted data set. We
also continue to see that the difference between the original and simulated data
set are very close to similar. This further indicates that there is not that much
difference between simulating keystrokes and collecting keystrokes from user’s
performance wise.

Noise reduction

Table 7.6 shows the results for trying to reduce the noise in the distorted data
set using the skip 15 samples configuration. As before, we want to compare these
results in this table with the distorted results from table 7.5. The goal is for these
values to reduce and to get close to the original and simulated data set. However,
as the results in table 7.6 shows we are unable to get a much better perform-
ance, with the exception of the "greater than" method for the outlier counting
detector. This method got a much lower EER than the distorted data with a dif-
ference of 17.2%, however, this method scored got a higher EER for the other
distance metrics compared to the distorted EER. If we look at the Scaled Man-
hattan distance, we can see that the "less than" method got a better EER with a
difference of 0.8% compared to the EER from the distorted data set. However, the

36 T. Moe: Soft Biometric Keystroke Dynamics performance with distorted timing data

"greater than" method scored a higher EER with a 43% compared to 31.5%. This
is a high decrease in performance, as the difference is 11.5%, which indicates that
this method is not good for this distance metric.

Distance metric Compensation Less than Greater than
Euclidean 35.1% 35.1% 43.8%

Euclidean (normed) 33% 32.6% 39.5%
Manhattan 33.4% 33.2% 44.9%

Manhattan (scaled) 30.7% 30.5% 43%
Manhattan (filtered) 32.2% 31.8% 44.1%

Mahalanobis 38.4% 44.8% 49.4%
NN Mahalanobis 44.1% 49.2% 53.5%
Outlier counting 41.1% 35.8% 25.3%

Table 7.6: Results from trying to reduce the noise in the distorted data set for the
skip 15 samples configuration.

7.2 Different reference and probe

This section covers the configurations where we used the original data set for the
reference template and the other data sets as the probe. The results are shown in
three different tables, one for each configuration. We exclude the original data set
in these tables, as they would yield the same results shown in earlier tables.

7.2.1 Normal

Table 7.7 shows the results when we use the original data set for the reference
template and the simulated, distorted and compensation data sets as the probe.
As mentioned earlier, we perform the less than and greater than methods on the
distorted data set during analysis. If we compare the simulated results with the
original results from table 7.1 we can see that there is a slight increase in per-
formance on some of the distance metrics, such as the Euclidean and Manhattan
distance. However, we see a decrease in performance for the Scaled Manhattan,
Mahalanobis and Outlier counting detectors. The largest difference was 6.6% us-
ing the Scaled Manhattan distance. We can see the same performance drop for
these detectors when comparing the distorted data set results. This means that
we only get a worse EER when using the original data set as reference template
and the distorted data set as probe for the Scaled Manhattan, Mahalanobis and
Outlier counting detectors.

As mentioned earlier, we compare the methods "compensation", "less than"
and "greater than" with the distorted results, as these methods are attempts to
reduce the distortion in the data set. When looking at the "compensation" method,

Chapter 7: Results and discussion 37

Distance metric Simulated Distorted Compensation Less than Greater than
Euclidean 38.4% 40.5% 41.3% 40.5% 48.1%
Euclidean (normed) 35.4% 39.7% 40.8% 39.4% 44.9%
Manhattan 36.5% 40.1% 40.5% 39.9% 49.3%
Manhattan (scaled) 27.9% 41% 40.9% 40.5% 47.4%
Manhattan (filtered) 33.8% 38.3% 38.7% 38% 48.7%
Mahalanobis 36.2% 46.5% 46.9% 47% 48.1%
NN Mahalanobis 44.6% 47.2% 47.8% 40.2% 52.2%
Outlier counting 33.9% 42.4% 35.6% 41.7% 44.6%

Table 7.7: Results from the normal configuration using different data sets for the
reference template and probe.

we can see that it only improves the EER for the outlier counting detector, where
there was an increase in performance of 6.8%. It gives roughly same results for
the other distance metrics with a deviation of around less than 1%.

The "less than" method improved the EER for the NN Mahalanobis detector,
where it got an EER of 40.2% compared to the distorted EER of 47.2%. Interest-
ingly enough we did not see this same increase when using the same reference
template and probe as seen in tables 7.1 and 7.2. For the Outlier counting detector
it performed worse than the "compensation" method, but slightly better than the
distorted EER. There were not any large differences between the other distance
metrics for this method.

The "greater than" method performed worse for all distance metrics. Previ-
ous results from section 7.1.1 saw a large increase in performance for the out-
lier counting detector. However, the results here saw a decrease in performance
44.6% compared to 42.4%. This indicates that although the "greater than" method
seemed to give better results in previous results it still seems to have its flaws.

7.2.2 Skip first session

Table 7.8 shows the results we gained when using the skip first session config-
uration. Compared to the results from the normal configuration in table 7.7 we
can see an overall increase in performance across all distance metrics, with the
exception of the Outlier counting detector. We saw this same increase in over-
all performance in section 7.1.2, which further adds to the fact that skipping the
first session yields better performance. The simulated EER has a slight increase in
performance for most of the distance metrics compared to the results from table
7.3, however, the performance of the Scaled Manhattan and Outlier counting de-
tectors are worse. Also, in table 7.3 we saw that the difference in performance
between the original and simulated were 4%, however, in table 7.8 we see that
this difference has been removed.

The distorted results shows that the Scaled Manhattan and Mahalanobis de-
tector gives much worse performance as the EER is higher compared to the dis-
torted results in table 7.5. The difference between the Scaled Manhattan distance

38 T. Moe: Soft Biometric Keystroke Dynamics performance with distorted timing data

Distance metric Simulated Distorted Compensation Less than Greater than
Euclidean 32.8% 36.3% 37.1% 36.2% 45.4%
Euclidean (normed) 28.2% 34.8% 36% 34.3% 34.3%
Manhattan 30% 35.7% 36.2% 35.2% 46.9%
Manhattan (scaled) 24.5% 39.3% 39.1% 38.6% 41.2%
Manhattan (filtered) 27.5% 33.7% 34.2% 33.3% 46.3%
Mahalanobis 31.9% 45.7% 46.1% 46.3% 50.5%
NN Mahalanobis 41.4% 46.4% 47.8% 52.5% 52.7%
Outlier counting 29.7% 34.7% 37.8% 32.4% 48%

Table 7.8: Results from the skip first session configuration using different data
sets for the reference template and probe.

was 6.7%, while for the Mahalanobis distance it was 7.6%. The Outlier counting
detector gives a slight increase in performance, however, the rest of the distance
metrics gives relatively the same performance.

With the "compensation" method we see no increase in performance compared
to the distorted data set. We see that some of the distance metrics performs slightly
worse, for example the Outlier counting detector. Only the Scaled Manhattan dis-
tance increased in performance, although this increase was only 0.2%.

The "less than" method had around the same EER for most of the distant met-
rics compared to the distorted EER. The exception here is that the NN Mahalanobis
detector performed much worse, while the Outlier counting detector performed
slightly better. We can see that we saw the same decrease in performance for the
"less than" method in section 7.1.2.

The "greater than" method performed much worse compared to the distorted
EER. For example, the Euclidean distance resulted in 36.3% for the distorted data
set, however, for the "greater than" method it resulted in 45.4%. This is an in-
crease of 9.1% which is fairly large. The reasoning for these high increases might
be because this method removes too many features. However, for the Normed Eu-
clidean and Scaled Manhattan detectors we see that the performance is relatively
similar, which indicates that these detectors might work better for less features.

7.2.3 Skip 15 samples

Table 7.9 shows the results when using the skip 15 samples configuration. We see
an overall increase in performance for the simulated data set compared to table
7.8. We saw the same increase in performance in section 7.1.3, which again indic-
ates that we get an increased performance if we remove the two first sections and
skip the first samples for the remaining sections. However, the Scaled Manhattan,
Mahalanobis and Outlier counting detectors are worse compared to the results in
the previous section. At the same time we see an increase in the performance for
the other distance metrics, for example the NN Mahalanobis.

The distorted data sets results are also worse for the Scaled Manhattan and
Mahalanobis detectors compared to table 7.5. However, we see an increase in

Chapter 7: Results and discussion 39

Distance metric Simulated Distorted Compensation Less than Greater than
Euclidean 30.9% 36.1% 36.5% 35.7% 44.2%
Euclidean (normed) 25.9% 33.8% 34.8% 33.6% 39.9%
Manhattan 27.1% 34.1% 34.4% 33.6% 45.4%
Manhattan (scaled) 22.5% 38.7% 38.3% 37.7% 45.6%
Manhattan (filtered) 25.5% 32.9% 33% 32.2% 44.7%
Mahalanobis 31.1% 45.4% 45.7% 47.2% 48.9%
NN Mahalanobis 36.7% 45.4% 46.6% 52.1% 52%
Outlier counting 31% 33.1% 35.5% 40% 47.1%

Table 7.9: Results from the skip 15 samples configuration using different data
sets for the reference template and probe.

performance for the Outlier counting detector where the difference is 9.4%. The
rest of the distance metrics performed relatively similar to each other.

With the "compensation" method we can see that the performance is fairly
equal compared to the distorted performance. The largest difference can be found
with the Outlier counting detector with a difference of 2.4%. However, for the
"less than" method we can see that the Mahalanobis, NN Mahalanobis and Outlier
counting detectors EER are worse compared to the distorted EER. The rest of
the distance metrics performs slightly better, for example the Filtered Manhattan
detector resulted in 32.2% for the "less than" method compared to 32.9% for the
distorted data set.

For the "greater than" method we can see that the overall performance is
greatly worse. In section 7.6 we saw that the Outlier counting detector performed
better, however here we see that it performs much worse as the difference between
the distorted data set was 14%.

Chapter 8

Discussion

In this chapter we will summarize and discuss the results that have been found
throughout the research. We divide this chapter into five sections, where each sec-
tion discusses the results found around the research questions defined in section
1.5.

8.1 Differences when analysing data with or without dis-
tortion

In general there are not that many differences when analysing data with or without
distortion. The biggest difference is that we get bigger differences between values,
for example we can get very low or even negative values for the duration and DD
features in a data set with distortion. We noticed that these low or negative values
for duration and DD were not present in a dataset without distortion. We assume
that the main reason for this is because of how simulating keystrokes behaves
compares to normal user behaviour when typing with delay. For example, when a
user types on their keyboard with a delay, it is reasonable to assume that the user
will pause their typing when the keystrokes do not immediately appear on screen.
This, however, is not the case when simulating keystrokes, as the program would
have no way of knowing when keystrokes are not appearing on screen, at least
not in our implementation. Ultimately this is a downside when simulating key-
strokes and we do not know the differences that this actually creates as we could
not collect the data needed to compare this, because it requires participants.

The reason for the low and negative values being created is because of the
delay "catching up". As mentioned, our simulation program does not account for
delay in the web page. Which means, that if we have a keystroke that is delayed
more than the actual time between the keystrokes, then we might get two key-
strokes which are instantly typed after each other, creating a DD time of 0.

41

42 T. Moe: Soft Biometric Keystroke Dynamics performance with distorted timing data

8.2 Detecting distorted timing information

As we already have mentioned, it is impossible for a user to create a negative
duration or DD value. This means that if we see duration or DD value being neg-
ative then we know that specific value has been messed with. This does not mean
that the rest of the sample is distorted, at least not in our case. Because the plu-
gin we used to distort our data only distorts values half of the time, meaning we
could only really assume that half of the values from a particular sample is dis-
torted. However, this all depends on which method the user used to disrupt their
keystrokes.

We also looked at if the distorted data set follows Benford’s Law distribution.
As mentioned in section 3.2 Benford’s Law is an observation in a set of numerical
data where the first digit is likely to be small. In [21] they showed that Benford’s
Law do follow for the UD latency. For this distribution it is expected that the lead-
ing bit is the number 1 30% of the time, however, as we can see in figure 8.1 this
number if higher for the distorted data set. The y-axis represents the probability,

Figure 8.1: Benford’s Law distribution [21] for the distorted data set UD latency
values.

while the x-axis is the leading bit which can be between 1 and 9. The number 1 is
the leading bit almost 45% of the time, which is 15% higher predicted by Benford’s
Law. We see that the numbers 2, 3 and 4 matches the Benford’s Law, however, the
rest of the numbers do not match. We also notice that the last numbers do not
follow Benford’s Law at all and seem to be more random.

Figure 8.2 shows Benford’s Law for the UD latency values on the original data
set. In this figure we can clearly see that the UD latency values for the original
data set follows Benford’s Law. We notice that the number 1 is the leading bit
around 32% of the time, which is 2% higher predicted by Benford’s Law. The rest

Chapter 8: Discussion 43

of the leading bits are also very close to the Benford’s Law, and we notice that the
distribution is very similar.

Figure 8.2: Benford’s Law distribution [21] for the original data set UD latency
values.

However, we noticed something completely different when we tested Ben-
ford’s Law against the UD latency values for the simulated data set. Figure 8.3
shows Benford’s Law for the UD latency values on the simulated data set. We can
see that this distribution is much worse compared to the one for the distorted data
set. Numbers 5 and 8 are very low, which means that in the simulated data set the
leading bit is almost never 5 or 8. The only number that somewhat follows the
Benford’s Law is number 1, however, the rest of the numbers seem to be more ran-
dom. It is very interesting observation, as this distribution is worse than Benford’s
Law for the distorted data set. We believe this is a result of simulated keystrokes,
and that enabling the plugin that distorted our keystrokes seemed to "flatten" the
curve more.

8.3 Comparing performance of real and distorted timing
information

In chapter 7 we showcased the performance when using real timing information
and distorted timing information, and in this section we will summarize the most
important points. We could clearly see from the results that the distorted data
set performed worse for most of the distance metrics. We also saw that skipping
the first two sessions and the first 15 samples from the remaining sessions proved
to give better results. For the results where we used the same data set for the
reference template and probe, we saw that the best performing detector for the

44 T. Moe: Soft Biometric Keystroke Dynamics performance with distorted timing data

Figure 8.3: Benford’s Law distribution [21] for the simulated data set UD latency
values.

distorted data set was the Euclidean detector which was within 5% of the original
data set. When talking about best performing detector in this case we want to look
at which detector using the distorted data set got the closest EER to the original
data set. The worst performing detector for the distorted data set was the detector
which was furthest away from the original data set EER. For our results we found
that the outlier counting detector was the worst performing one. This is most likely
because we get a lot of outlier data points with the distorted data set as the data
is distorted.

For the results where we used different data sets for the reference template
and probe, we saw that the outlier counting detector became the best performing
detector for the distorted data set. While the Scaled Manhattan detector became
the worst performing one. We also saw that we got better results when using
the "skip 15 samples" configuration. From this it seems that Scaled Manhattan
detector performs worse for the distorted data set when we used the original data
set as reference template, this may indicate that this detector highlights bigger
differences between the genuine and imposter scores.

In some cases we saw an increase in the performance with a specific distance
metric for the original and simulated data set and a decrease in performance for
the distorted data set. This is important to keep in mind for a system developer
for example, as their system would decrease in performance for users that dis-
torts their keystrokes. The system developer should instead perhaps choose a less
performing solution that is more resistant to distorted timing information.

Chapter 8: Discussion 45

8.4 Reducing noise in the distorted data set

As with section 8.3 we will summarize the findings from chapter 7 that relates
to reducing the distorted data. We developed some simple methods for redu-
cing the distortion in the data set. We only try to compensate or remove specific
values within a certain threshold, however, we feel that these methods at least
highlight that it might be possible to reduce distortion in the distorted data set.
The worst method was the "greater than" method which almost always performed
much worse and very often increased the EER. The only time we saw this method
perform better was for the outlier counting detector, however, as previously men-
tioned we believe this is because a lack of features when performing the analysis.
As this method removes any values that are higher than 1.5 times the reference
template, which often results to removing a lot of values, especially when the
reference template does not contain distorted values.

The "less than" method is similar to the "greater than" method, in the sense that
we ignore values that are greater or less than a threshold. We decided to set our
threshold at 4 milliseconds for this because we believe it is unreasonable for a user
to manage to hold a key down for anything less than 4 milliseconds. In the results
we saw that this method performed overall equally as the distorted data set with
some exceptions. When using different data sets for the reference template and
probe, we saw that we were able to reduce the distortion completely with using the
"less than" method for the NN Mahalanobis detector. However, this was only the
case for the normal configuration where we did not skip any sessions or samples.
We saw that the "less than" method got worse for the NN Mahalanobis detector
when we used the other configurations. This is interesting, because the skip 15
samples and skip first session configurations overall increased the performance
compared to the normal configuration. This might indicate that the "less than"
method suffers somewhat the same as the "greater than" method, where we might
ignore to many values and therefore get less features when comparing distances.

For the "compensation" method we noticed that it overall performed better
than the "less than" and "greater than" methods. However, the "compensation"
method resulted in almost always the same results as the distorted data set. In
some cases it slightly increased the performance, however, this increase was not
by a lot.

8.5 Authenticating a user with distorted keystroke dy-
namics information

Through this thesis we have shown that we get a worse performance for our sys-
tem if we use distorted data compared to non-distorted data. We could still use
static authentication for keystroke dynamics if the timing information is distor-
ted, however, we will get a worse performing system. As mentioned, we did not
manage to significantly reduce the distortion in the data set with our methods.

Chapter 9

Conclusion & Future research

9.1 Conclusion

In this research, we have created a program that allows us to simulate keystroke
dynamics based on an already existing data set. By using this program we have
simulated a data set by Killourhy and Maxion [22]. We simulated it twice, where
we enabled a plugin which delays keystrokes for one of the simulations and thereby
created a distorted data set. We then created another program which analysed the
performance of the original, simulated and distorted data set using eight differ-
ent distance metrics. From the results we could see that there were not any large
differences between the original and simulated data set, and therefore conclude
that it is possible to simulate keystroke dynamics. We saw clear differences when
comparing the performance of the original and distorted data set. There was a
decrease in performance across all distance metrics, and the best performing dis-
tance metric for the distorted data set was the Euclidean detector where the dif-
ference was 5% compared to the original data set. Our best performing distance
metric for the original data set was the Scaled Manhattan distance, which got an
EER of 17%. However, if we used the distorted data set on this detector we got
33.6%. This means that although the Scaled Manhattan distance is a good de-
tector to use in a system, it drastically reduces the performance if distorted data
is used. We therefore conclude that there is a significant decrease in performance
when using a distorted data set for authentication with keystroke dynamics. In
some cases

From our observations in the distorted data set we saw that there were a lot of
low and negative values for duration and DD. Values that are close to 0 or negative
are considered to be "un-human" like, in the sense that no human could possibly
achieve it. We therefore conclude that it is possible to detect distorted data by
looking for these values in a given data set.

We tried three different methods for reducing the noise in the distorted data
set. From these three methods we did not get any results that significantly re-
duced the noise. There were only in some cases we managed to reduce the noise,
however, it was not by a lot. From our three methods we noticed that the "com-

47

48 T. Moe: Soft Biometric Keystroke Dynamics performance with distorted timing data

pensation" method performed best. We believe more research needs to be done
around this before we can exclude it as a possibility. We therefore conclude that it
might be possible to reduce the noise in a distorted data set, but there need to be
more research around it before we can accurately reject or accept this statement.

We can still use static authentication for keystroke dynamics if the timing in-
formation is distorted, however, the system will get a worse performance. It should
also be mentioned that, for example a system developer, should choose a slightly
less performing distance metric if means more resistance to distorted timing in-
formation.

9.2 Future research

In this thesis we tested eight different distance metrics. Some of these distance
metrics had good performances, and some of them had poor performances. We
feel that there is still a need to test other distance metrics in order to find distance
metrics that might give better results for distorted data sets other than the ones
found in this paper. We also believe that other machine learning models, such as
Support Vector Machines [28], needs to be tested.

In this thesis we specifically look at static authentication where we analysis
the timing values form a password phrase. Research for analysing distorted data
in continuous authentication is needed as this is equally as important as static au-
thentication. Our implementation will not work for continuous authentication as
we rely on comparing the distance between two equal length password phrases. In
continuous authentication we will not always have equal length comparison and
would instead have to rely on comparing the distance between specific keystrokes,
such as the typing the letters "th" or "ed".

For this thesis we have only developed three different methods. These methods
are simple in the sense that they can be easily implemented in a system. However,
we think more complex methods needs to be developed and tested in order to
try and reduce the distortion even more. In this paper we looked at distortion
in a data set that was simulated. We think it would be beneficial to also look at
the differences when the distortion is not generated in a simulated data set. This
means, that a participant would type their password phrases normally, however,
they would have a plugin of some sorts that distorts the timing information to
their keystrokes.

We also did only test our program against one particular data set, the original
data set [22]. Other data sets needs to be simulated, or collected, and tested in
order to confirm our results in this thesis. We also believe that other methods for
distort keystrokes, such as webpage extensions or other software, should be tested
as they could have different methods from the extension we used. Fairly late in our
thesis we also noticed that it might be possible to reduce the clock frequency on a
computer, which is between 0-16 milliseconds. We believe this should be possible
using windows timeBeginPeriod function [64].

Bibliography

[1] U. Group, Keyboard privacy (2.7), https://chrome.google.com/webstore/
detail/keyboard-privacy/aoeboeflhhnobfjkafamelopfeojdohk?hl=en,
2019.

[2] M. Shanmugapriya and P. Ganapathi, ‘A survey of biometric keystroke dy-
namics: Approaches, security and challenges,’ International Journal of Com-
puter Science and Information Security, vol. 5, Sep. 2009.

[3] K. Delac and M. Grgic, ‘A survey of biometric recognition methods,’ in Pro-
ceedings. Elmar-2004. 46th International Symposium on Electronics in Mar-
ine, 2004, pp. 184–193.

[4] C. Senk and F. Dotzler, ‘Biometric authentication as a service for enterprise
identity management deployment: A data protection perspective,’ in 2011
Sixth International Conference on Availability, Reliability and Security, 2011,
pp. 43–50. DOI: 10.1109/ARES.2011.14.

[5] H. Nonaka and M. Kurihara, ‘Sensing pressure for authentication system
using keystroke dynamics,’ Open Science Research Excellence, 2005. DOI:
doi.org/10.5281/zenodo.1058297.

[6] J. Roth, X. Liu, A. Ross and D. Metaxas, ‘Biometric authentication via key-
stroke sound,’ in 2013 International Conference on Biometrics (ICB), 2013,
pp. 1–8. DOI: 10.1109/ICB.2013.6613015.

[7] A. Morales, M. Falanga, J. Fierrez, C. Sansone and J. Ortega-Garcia, ‘Key-
stroke dynamics recognition based on personal data: A comparative exper-
imental evaluation implementing reproducible research,’ Sep. 2015. DOI:
10.1109/BTAS.2015.7358772.

[8] T. Sim and R. Janakiraman, ‘Are digraphs good for free-text keystroke dy-
namics?’ In 2007 IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2007, pp. 1–6. DOI: 10.1109/CVPR.2007.383393.

[9] B. Hafez, ‘Keystroke Dynamics: How typing characteristics differ from one
application to another,’ M.S. thesis, NTNU Gjøvik, Norway, 2009.

[10] Y. Zhong and Y. Deng, ‘A survey on keystroke dynamics biometrics: Ap-
proaches, advances, and evaluations,’ in. Jan. 2015, pp. 1–22, ISBN: 978-
618-81418-2-7. DOI: 10.15579/gcsr.vol2.ch1.

49

https://chrome.google.com/webstore/detail/keyboard-privacy/aoeboeflhhnobfjkafamelopfeojdohk?hl=en
https://chrome.google.com/webstore/detail/keyboard-privacy/aoeboeflhhnobfjkafamelopfeojdohk?hl=en
https://doi.org/10.1109/ARES.2011.14
https://doi.org/doi.org/10.5281/zenodo.1058297
https://doi.org/10.1109/ICB.2013.6613015
https://doi.org/10.1109/BTAS.2015.7358772
https://doi.org/10.1109/CVPR.2007.383393
https://doi.org/10.15579/gcsr.vol2.ch1

50 T. Moe: Soft Biometric Keystroke Dynamics performance with distorted timing data

[11] S. Craw, ‘Manhattan distance,’ in Encyclopedia of Machine Learning and
Data Mining, C. Sammut and G. I. Webb, Eds. Boston, MA: Springer US,
2017, pp. 790–791, ISBN: 978-1-4899-7687-1. DOI: 10.1007/978-1-4899-
7687-1_511. [Online]. Available: https://doi.org/10.1007/978-1-
4899-7687-1_511.

[12] I. Dokmanic, R. Parhizkar, J. Ranieri and M. Vetterli, ‘Euclidean distance
matrices: Essential theory, algorithms, and applications,’ IEEE Signal Pro-
cessing Magazine, vol. 32, no. 6, pp. 12–30, Nov. 2015, ISSN: 1053-5888.
DOI: 10.1109/msp.2015.2398954. [Online]. Available: http://dx.doi.
org/10.1109/MSP.2015.2398954.

[13] G. Mclachlan, ‘Mahalanobis distance,’ Resonance, vol. 4, pp. 20–26, Jun.
1999. DOI: 10.1007/BF02834632.

[14] B. Hassan, K. Fouad and M. Hassan, ‘Implementation of distance metric
between two samples of keystroke dynamics,’ Dec. 2015, pp. 92–97. DOI:
10.1109/ICENCO.2015.7416331.

[15] M. Fairhurst and M. Da Costa-Abreu, ‘Using keystroke dynamics for gender
identification in social network environment,’ in 4th International Confer-
ence on Imaging for Crime Detection and Prevention 2011 (ICDP 2011),
2011, pp. 1–6. DOI: 10.1049/ic.2011.0124.

[16] R. Giot, M. El-Abed and C. Rosenberger, ‘Greyc keystroke: A benchmark for
keystroke dynamics biometric systems,’ Oct. 2009, pp. 1–6. DOI: 10.1109/
BTAS.2009.5339051.

[17] I. Tsimperidis, A. Arampatzis and A. Karakos, ‘Keystroke dynamics features
for gender recognition,’ Digital Investigation, vol. 24, pp. 4–10, 2018, ISSN:
1742-2876. DOI: https://doi.org/10.1016/j.diin.2018.01.018.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/S174228761730364X.

[18] A. Pentel, ‘Predicting user age by keystroke dynamics,’ in Artificial Intelli-
gence and Algorithms in Intelligent Systems, R. Silhavy, Ed., Cham: Springer
International Publishing, 2019, pp. 336–343, ISBN: 978-3-319-91189-2.

[19] A. Pentel, ‘Predicting age and gender by keystroke dynamics and mouse
patterns,’ in Adjunct Publication of the 25th Conference on User Modeling,
Adaptation and Personalization, ser. UMAP ’17, Bratislava, Slovakia: Associ-
ation for Computing Machinery, 2017, pp. 381–385, ISBN: 9781450350679.
DOI: 10.1145/3099023.3099105. [Online]. Available: https://doi.org/
10.1145/3099023.3099105.

[20] D. Gunetti and C. Picardi, ‘Keystroke analysis of free text,’ ACM Trans.
Inf. Syst. Secur., vol. 8, pp. 312–347, Aug. 2005. DOI: 10.1145/1085126.
1085129.

https://doi.org/10.1007/978-1-4899-7687-1_511
https://doi.org/10.1007/978-1-4899-7687-1_511
https://doi.org/10.1007/978-1-4899-7687-1_511
https://doi.org/10.1007/978-1-4899-7687-1_511
https://doi.org/10.1109/msp.2015.2398954
http://dx.doi.org/10.1109/MSP.2015.2398954
http://dx.doi.org/10.1109/MSP.2015.2398954
https://doi.org/10.1007/BF02834632
https://doi.org/10.1109/ICENCO.2015.7416331
https://doi.org/10.1049/ic.2011.0124
https://doi.org/10.1109/BTAS.2009.5339051
https://doi.org/10.1109/BTAS.2009.5339051
https://doi.org/https://doi.org/10.1016/j.diin.2018.01.018
http://www.sciencedirect.com/science/article/pii/S174228761730364X
http://www.sciencedirect.com/science/article/pii/S174228761730364X
https://doi.org/10.1145/3099023.3099105
https://doi.org/10.1145/3099023.3099105
https://doi.org/10.1145/3099023.3099105
https://doi.org/10.1145/1085126.1085129
https://doi.org/10.1145/1085126.1085129

Bibliography 51

[21] A. Iorliam, A. T. S. Ho, N. Poh, S. Tirunagari and P. Bours, ‘Data forensic
techniques using benford’s law and zipf’s law for keystroke dynamics,’ in
3rd International Workshop on Biometrics and Forensics (IWBF 2015), 2015,
pp. 1–6. DOI: 10.1109/IWBF.2015.7110238.

[22] K. S. Killourhy and R. A. Maxion, ‘Comparing anomaly-detection algorithms
for keystroke dynamics,’ in 2009 IEEE/IFIP International Conference on De-
pendable Systems Networks, 2009, pp. 125–134. DOI: 10.1109/DSN.2009.
5270346.

[23] R. Joyce and G. Gupta, ‘Identity authentication based on keystroke laten-
cies,’ Commun. ACM, vol. 33, no. 2, pp. 168–176, Feb. 1990, ISSN: 0001-
0782. DOI: 10.1145/75577.75582. [Online]. Available: https://doi.org/
10.1145/75577.75582.

[24] S. Bleha, C. Slivinsky and B. Hussien, ‘Computer-access security systems us-
ing keystroke dynamics,’ IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 12, no. 12, pp. 1217–1222, 1990. DOI: 10.1109/34.62613.

[25] S. Cho, C. Han, D. H. Han and H.-I. Kim, ‘Web-based keystroke dynamics
identity verification using neural network,’ Journal of Organizational Com-
puting and Electronic Commerce, vol. 10, no. 4, pp. 295–307, 2000. DOI:
10.1207/S15327744JOCE1004_07.

[26] S. Haider, A. Abbas and A. K. Zaidi, ‘A multi-technique approach for user
identification through keystroke dynamics,’ in Smc 2000 conference pro-
ceedings. 2000 ieee international conference on systems, man and cybernetics.
’cybernetics evolving to systems, humans, organizations, and their complex in-
teractions’ (cat. no.0, vol. 2, 2000, 1336–1341 vol.2. DOI: 10.1109/ICSMC.
2000.886039.

[27] Enzhe Yu and Sungzoon Cho, ‘Ga-svm wrapper approach for feature sub-
set selection in keystroke dynamics identity verification,’ in Proceedings of
the International Joint Conference on Neural Networks, 2003., vol. 3, 2003,
2253–2257 vol.3. DOI: 10.1109/IJCNN.2003.1223761.

[28] V. Vapnik, Statistical learning theory. Wiley, 1998, pp. I–XXIV, 1–736, ISBN:
978-0-471-03003-4.

[29] L. C. F. Araujo, L. H. R. Sucupira, M. G. Lizarraga, L. L. Ling and J. B. T.
Yabu-Uti, ‘User authentication through typing biometrics features,’ IEEE
Transactions on Signal Processing, vol. 53, no. 2, pp. 851–855, 2005. DOI:
10.1109/TSP.2004.839903.

[30] P. Kang, S.-s. Hwang and S. Cho, ‘Continual retraining of keystroke dynam-
ics based authenticator,’ in Advances in Biometrics, S.-W. Lee and S. Z. Li,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 1203–1211,
ISBN: 978-3-540-74549-5.

https://doi.org/10.1109/IWBF.2015.7110238
https://doi.org/10.1109/DSN.2009.5270346
https://doi.org/10.1109/DSN.2009.5270346
https://doi.org/10.1145/75577.75582
https://doi.org/10.1145/75577.75582
https://doi.org/10.1145/75577.75582
https://doi.org/10.1109/34.62613
https://doi.org/10.1207/S15327744JOCE1004_07
https://doi.org/10.1109/ICSMC.2000.886039
https://doi.org/10.1109/ICSMC.2000.886039
https://doi.org/10.1109/IJCNN.2003.1223761
https://doi.org/10.1109/TSP.2004.839903

52 T. Moe: Soft Biometric Keystroke Dynamics performance with distorted timing data

[31] P. S. Teh, A. Teoh and S. Yue, ‘A survey of keystroke dynamics biometrics,’
TheScientificWorldJournal, vol. 2013, p. 408 280, Nov. 2013. DOI: 10.1155/
2013/408280.

[32] N. K. Kalantari, S. Bako and P. Sen, ‘A machine learning approach for filter-
ing monte carlo noise,’ ACM Trans. Graph., vol. 34, no. 4, Jul. 2015, ISSN:
0730-0301. DOI: 10.1145/2766977. [Online]. Available: https://doi.
org/10.1145/2766977.

[33] H. Xiong, Gaurav Pandey, M. Steinbach and Vipin Kumar, ‘Enhancing data
analysis with noise removal,’ IEEE Transactions on Knowledge and Data En-
gineering, vol. 18, no. 3, pp. 304–319, 2006. DOI: 10.1109/TKDE.2006.46.

[34] C. Epp, M. Lippold and R. L. Mandryk, ‘Identifying emotional states using
keystroke dynamics,’ in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’11, Vancouver, BC, Canada: Associ-
ation for Computing Machinery, 2011, pp. 715–724, ISBN: 9781450302289.
DOI: 10.1145/1978942.1979046. [Online]. Available: https://doi.org/
10.1145/1978942.1979046.

[35] F. Monrose and A. Rubin, ‘Keystroke dynamics as a biometric for authen-
tication,’ Future Generation Computer Systems, vol. 16, pp. 351–359, Feb.
2000. DOI: 10.1016/S0167-739X(99)00059-X.

[36] P. Moore, Behavioral profiling: The password you can’t change. https://
paul.reviews/behavioral-profiling-the-password-you-cant-change/,
2015.

[37] J. F. js.foundation, Event Object | jQuery API Documentation (2.2.4), en-US,
https://api.jquery.com/category/events/event-object/. (visited on
30/01/2021).

[38] J. F. js.foundation, .trigger() | jQuery API Documentation (2.2.4), en-US,
https://api.jquery.com/trigger/. (visited on 30/01/2021).

[39] M. Palmér, Pynput: Monitor and control user input devices (1.7.3), https:
//github.com/moses-palmer/pynput. (visited on 30/01/2021).

[40] B. Vollebregt, Simulate Keypresses In Python, en, https://nitratine.net/
blog/post/simulate-keypresses-in-python/. (visited on 30/01/2021).

[41] Microsoft, Keybd_event function (winuser.h) - Win32 apps, en-us, https://
docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-
keybd_event. (visited on 30/01/2021).

[42] Microsoft, SendInput function (winuser.h) - Win32 apps, en-us, https://
docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-
sendinput, 2018.

[43] Microsoft, INPUT (winuser.h) - Win32 apps, en-us, https://docs.microsoft.
com/en-us/windows/win32/api/winuser/ns-winuser-input, 2018.

[44] J. F. js.foundation, .keydown() | jQuery API Documentation (2.2.4), en-US,
https://api.jquery.com/keydown/. (visited on 16/02/2021).

https://doi.org/10.1155/2013/408280
https://doi.org/10.1155/2013/408280
https://doi.org/10.1145/2766977
https://doi.org/10.1145/2766977
https://doi.org/10.1145/2766977
https://doi.org/10.1109/TKDE.2006.46
https://doi.org/10.1145/1978942.1979046
https://doi.org/10.1145/1978942.1979046
https://doi.org/10.1145/1978942.1979046
https://doi.org/10.1016/S0167-739X(99)00059-X
https://paul.reviews/behavioral-profiling-the-password-you-cant-change/
https://paul.reviews/behavioral-profiling-the-password-you-cant-change/
https://api.jquery.com/category/events/event-object/
https://api.jquery.com/trigger/
https://github.com/moses-palmer/pynput
https://github.com/moses-palmer/pynput
https://nitratine.net/blog/post/simulate-keypresses-in-python/
https://nitratine.net/blog/post/simulate-keypresses-in-python/
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-keybd_event
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-keybd_event
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-keybd_event
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-sendinput
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-sendinput
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-sendinput
https://docs.microsoft.com/en-us/windows/win32/api/winuser/ns-winuser-input
https://docs.microsoft.com/en-us/windows/win32/api/winuser/ns-winuser-input
https://api.jquery.com/keydown/

Bibliography 53

[45] J. F. js.foundation, .keyup() | jQuery API Documentation (2.2.4), en-US,
https://api.jquery.com/keyup/. (visited on 16/02/2021).

[46] Mozilla, Getting Started - Developer guides | MDN, https://developer.
mozilla.org/en-US/docs/Web/Guide/AJAX/Getting_Started, 2021.

[47] Django, The Web framework for perfectionists with deadlines | Django (3.2.3),
https://www.djangoproject.com/, 2021.

[48] T. P. Project, Flask (1.1.2), https://palletsprojects.com/p/flask/, 2021.

[49] Microsoft, Sleep function (synchapi.h), https://docs.microsoft.com/en-
us/windows/win32/api/synchapi/nf-synchapi-sleep, 2018.

[50] Mozilla, Date.prototype.getTime() - JavaScript | MDN, en-US, https://
developer.mozilla.org/en- US/docs/Web/JavaScript/Reference/
Global_Objects/Date/getTime.

[51] Mozilla, Performance.now() - Web APIs | MDN, en-US, https://developer.
mozilla.org/en-US/docs/Web/API/Performance/now.

[52] P. Irish, When milliseconds are not enough: Performance.now | Web, en, https:
//developers.google.com/web/updates/2012/08/When-milliseconds-
are-not-enough-performance-now, 2019.

[53] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz and Y. Yarom, ‘Spectre attacks: Exploiting specu-
lative execution.,’ meltdownattack.com, 2018.

[54] NumPy, Numpy.linalg.norm (v1.20), https://numpy.org/doc/stable/
reference/generated/numpy.linalg.norm.html, 2021.

[55] Y. Zhong, Y. Deng and A. K. Jain, ‘Keystroke dynamics for user authentic-
ation,’ in 2012 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshops, 2012, pp. 117–123. DOI: 10.1109/CVPRW.
2012.6239225.

[56] P. E. Black, Manhattan distance, 2019.

[57] T. S. community, Scipy.spatial.distance.cityblock (1.6.3), https://docs.
scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.
cityblock.html, 2021.

[58] NumPy, Numpy.cov, https://numpy.org/doc/stable/reference/generated/
numpy.cov.html, 2021.

[59] NumPy, Numpy.linalg.inv, https://numpy.org/doc/stable/reference/
generated/numpy.linalg.inv.html, 2021.

[60] SciPy, Scipy.spatial.distance.mahalanobis, https://docs.scipy.org/doc/
scipy/reference/generated/scipy.spatial.distance.mahalanobis.
html, 2021.

[61] R. Sachdeva, Rehassachdeva/Anomaly-Detection-for-Keystroke-Dynamics, en,
https://github.com/rehassachdeva/Anomaly-Detection-for-Keystroke-
Dynamics, 2016.

https://api.jquery.com/keyup/
https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX/Getting_Started
https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX/Getting_Started
https://www.djangoproject.com/
https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-sleep
https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-sleep
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/getTime
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/getTime
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/getTime
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developers.google.com/web/updates/2012/08/When-milliseconds-are-not-enough-performance-now
https://developers.google.com/web/updates/2012/08/When-milliseconds-are-not-enough-performance-now
https://developers.google.com/web/updates/2012/08/When-milliseconds-are-not-enough-performance-now
https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html
https://doi.org/10.1109/CVPRW.2012.6239225
https://doi.org/10.1109/CVPRW.2012.6239225
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cityblock.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cityblock.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cityblock.html
https://numpy.org/doc/stable/reference/generated/numpy.cov.html
https://numpy.org/doc/stable/reference/generated/numpy.cov.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.inv.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.inv.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.mahalanobis.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.mahalanobis.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.mahalanobis.html
https://github.com/rehassachdeva/Anomaly-Detection-for-Keystroke-Dynamics
https://github.com/rehassachdeva/Anomaly-Detection-for-Keystroke-Dynamics

54 T. Moe: Soft Biometric Keystroke Dynamics performance with distorted timing data

[62] Python, Multiprocessing — Process-based parallelism — Python 3.9.5 docu-
mentation, https://docs.python.org/3/library/multiprocessing.
html, 2020.

[63] T. Rickard, ‘Forgetting and learning potentiation: Dual consequences of
between-session delays in cognitive skill learning,’ Journal of experimental
psychology. Learning, memory, and cognition, vol. 33, pp. 297–304, Apr.
2007. DOI: 10.1037/0278-7393.33.2.297.

[64] Microsoft, Timebeginperiod function (timeapi.h), https://docs.microsoft.
com/en-us/windows/win32/api/timeapi/nf-timeapi-timebeginperiod,
2018.

https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://doi.org/10.1037/0278-7393.33.2.297
https://docs.microsoft.com/en-us/windows/win32/api/timeapi/nf-timeapi-timebeginperiod
https://docs.microsoft.com/en-us/windows/win32/api/timeapi/nf-timeapi-timebeginperiod

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Tobias Moe

I still know who you are!

Soft Biometric Keystroke Dynamics performance
with distorted timing data

Master’s thesis in Information Security
Supervisor: Patrick Bours

May 2021M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Introduction
	Topic covered by the project
	Keywords
	Problem description
	Justification, motivation and benefits
	Research questions
	Planned contributions

	Keystroke Dynamics
	Biometrics
	Keystroke timing
	Static and dynamic authentication
	Keystroke verification
	Performance
	Distance metrics
	Age and Gender prediction

	State of the art
	RQ 1a
	RQ 1b
	RQ 1c
	RQ 1d

	Methods
	Data collection
	Plugin

	Analysis

	Data Collection
	Software development
	Simulation of keystrokes
	Collection of keystrokes
	Database
	Timing

	Data Analysis
	Distance metrics
	Euclidean detector
	Euclidean normed detector
	Manhattan detector
	Manhattan filtered detector
	Manhattan scaled detector
	Mahalanobis detector
	Nearest Neighbour (NN) Mahalanobis detector
	Outlier Counting Detector

	Process
	Software development
	Configurations

	Noise reduction
	Compensation
	Ignoring values

	Results and discussion
	Same type of data for reference and probe
	Normal
	Skip first session
	Skip 15 samples

	Different reference and probe
	Normal
	Skip first session
	Skip 15 samples

	Discussion
	Differences when analysing data with or without distortion
	Detecting distorted timing information
	Comparing performance of real and distorted timing information
	Reducing noise in the distorted data set
	Authenticating a user with distorted keystroke dynamics information

	Conclusion & Future research
	Conclusion
	Future research

	Bibliography

