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Preface

This Master’s thesis was written in MIS4900 as the final subject of Master in In-
formation Security (Part-time) (MISD) at NTNU Gjøvik. Prof. Slobodan Petrovic
proposed the topic and has supervised work on the thesis. The field of the study
is cryptography and more specifically on stream ciphers based on non-linear com-
bination of Linear Feedback Shift Registers (LFSR) by means of irregular clocking.

The topic of this thesis entails assessing the possibilities and effectiveness of
reconstructing the clock-control sequence of the clocking LFSR in a Binary rate
multiplier (BRM) based stream cipher system. There have been studies on applying
the so-called generalised correlation attack [1] to find candidate sequences for the
clocked LFSR by calculating the constrained Levenshtein distances between an
intercepted ciphertext and the raw output of the clocked LFSR [2]. In [3] the first
part of the attack was implemented both in software and in a Field Programmable
Gate Array (FPGA). The software developed in this thesis builds on the existing
software in an attempt to complete the full attack and recover the initial state of
both the clocking, and the clocked, LFSR.

It is assumed that the reader is familiar with general computer architecture,
basic computer programming and general mathematics including statistics and
binary arithmetic. Any other pre-requisite aspects are thoroughly explained in
Chapter 2.

Adrian Schjelderup Evensen
2021-06-01
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Abstract

Stream ciphers implementing irregularly clocked Linear Feedback Shift Registers
(LFSRs), whose outputs are combined in a non-linear boolean function, are popu-
lar since they produce output sequences with extremely long periods, high linear
complexities and excellent statistics.

However, it is known that such schemes can be broken by means of the so-
called generalised correlation attack [1]. Resistance to such an attack depends on
the characteristics of the combining boolean function. In addition, if the clocked
LFSR is relatively long (over 30 bits), it is difficult to execute the attack since it
involves computation of the constrained edit distance for every tested initial state
of the clocked LFSR and the time complexity of this calculation is quadratic in the
length of the intercepted output sequence of the generator.

Instead of computing constrained edit distance, it is possible to find the best
embedding of the intercepted ciphertext sequence of the generator in the output
sequence of the attacked LFSR for every initial state of that LFSR. This is possible
to achieve by performing a constrained approximate search for the intercepted
sequence as shown in [2].

The next and final step in the cryptographic attack on such ciphers is the re-
construction of the clock control sequence and the initial state of the clocking
LFSR. In the case of the classical, dynamic programming-based approach, this is
done by backtracking through the matrix of partial constrained edit distances.

In this thesis, the possibilities of clock sequence reconstruction in the bit-
parallel approximate search scenario is investigated and a novel attack combining
the use of multi-threaded bit-parallel approximate search and a brute-force attack
is developed and presented. Several experiments are also conducted in an attempt
to find arbitrary optimal input parameters in the approximate search phase of the
attack.
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The idea that theorems follow from the postulates does
not correspond to simple observation. If the Pythagorean
theorem were found to not follow from the postulates,
we would again search for a way to alter the postulates
until it was true. Euclid’s postulates came from the
Pythagorean theorem, not the other way around.

RICHARD W. HAMMING
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Chapter 1

Introduction

1.1 Background

Cryptographic systems implementing stream ciphers using irregularly clocked Lin-
ear Feedback Shift Registers (LFSR) whose outputs are combined in a non-linear
boolean function are in widespread use as they produce output sequences with
long periods, high linear complexities and excellent statistics. Despite their wide
adoption it has been shown that such systems can be attacked through the Gener-
alised correlation attack developed by Golic, et al.[1]. Resilience against this attack
depends on the combining boolean function and the length of the clocked LFSR.
For longer LFSRs (e.g. over 30 bits) it becomes difficult to execute the attack since
it involves the computation of the constrained edit distance for every tested initial
state of the clocked LFSR and the time complexity of this calculation is quadratic
in the length of the intercepted output sequence of the generator.

It has been shown [2] that these attacks become more efficient by replacing
the original constrained edit distance computation procedure with a bit-parallel
constrained search in order to find the best embedding of the intercepted noisy
output sequence of the generator in the output sequence of the controlled LFSR
when it runs without clocking. This first step of the attack has been implemented
in both 64bit CPUs and FPGA with good performance results for stream cipher
systems based on the irregular clocking of an LFSR through the Binary Rate Mul-
tiplier (BRM) decimating function [3].

The next and final step in the cryptanalysis of these types of cryptographic
systems is the recovery of the initial state of the clocking LFSR. In its simplest
form it can be done by evaluating every initial state of the clocking LFSR against
every candidate for the clocked, or decimated, LFSR chosen in the first step. This
would result in a worst case scenario of

|C |⇥ (2p � 2)

iterations where |C | is the total number of candidates for the initial state of the
clocked LFSR (R2) and p is the polynomial degree of the clocking LFSR (R1). The
total time complexity of the attack depends on the decision rules for the selection

1
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of the candidates in the candidate set, C , the algorithm for deducting possible
initial states for the clocking LFSR, the efficiency of the program and the com-
putational power available. In this thesis these topics are addressed and a novel
software implementation using a multi-threaded brute-force approach for recon-
structing the clocking LFSR (and thus the whole cryptosystem) is presented.

1.2 Related research

In their paper, Golic et al. [1] introduce the generalised correlation attack. The
attack is a modification on Siegenthalers [4] ciphertext-only correlation attack
on regularly clocked keystream-generators by using the Hamming-distance meas-
ure [5]. As the Hamming-distance metric is not applicable on irregularly clocked
keystream-generators due to the difference in length in the intercepted ciphertext
bitstream and the undecimated bitstream, Golic et al. proposed a similar attack by
replacing the Hamming-distance with the constrained Levenshtein-distance (CLD)
[6]. They present experimental results for the probability distributions P(D|H0)
and P(D|H1), where H are the hypotheses:

H0: The observed sequence of ciphertext is not produced by the chosen initial
state.

H1: The observed sequence of ciphertext is produced by the chosen initial state.

Petrovic [2] built on Golics research by exploring the possibility of utilising a Shift-
OR bit-parallel search algorithm to compute the constrained Levenshtein distance
in order to find candidates for the initial state of the clocked LFSR in an efficient
manner.

In his thesis, Øverbø [3] developed a software, implementing an Approxim-
ate row-wise bit-parallel (ARBP) search algorithm, using the shift-AND mode of
operation, for both 64bit CPUs and Field programmable gate arrays (FPGA) and
researched the performance difference between the two. It was shown that the
FPGA implementation performs much better (26-346 times faster), due to nat-
ively being able to perform bit-parallel operations on larger registers than a regu-
lar 64bit CPU. The implementations are written in the C-programming language
and Verilog.

1.3 Scope

This thesis seeks to build on the previously discussed related research in order to
complete the cryptanalysis of a stream cipher system utilising BRM for irregular
clocking by developing and implementing an algorithm to recover the initial state
of the clocking LFSR and thus breaking the whole cryptosystem. It is also within
the scope of the thesis to quantitatively research the optimal decision rule for the
hypotheses H0 and H1, resulting in the R2 initial state candidate set C , through
the following parameters:



Chapter 1: Introduction 3

p: The polynomial degree of the LFSR register.
m: The length of the known plaintext.
n: The length of the intercepted ciphertext.
k: The error threshold for determining H0 and H1.

The work on this thesis will involve building on the CPU-based software already
developed in [3]. First, the alternative Shift-OR approximate search algorithm
with different degrees of constraints will be implemented and tested. Finally, these
new algorithm implementations will be combined in an algorithm for testing each
element of the chosen set of possible initial states for R2 against every possible ini-
tial state for the clocking LFSR using a brute-force approach in an efficient manner
in CPU. Several experiments will also be done with multi-threading and utilisation
of highly capable cloud-based virtual hosts.

Implementation of the finalised algorithm in FPGA or GPU (Graphics Pro-
cessing Unit) is not within the scope of this thesis and may be a topic for future
research. However, the computational performance in the CPU implementation of
the algorithms will be improved upon, making it scalable and possibly applicable
in practical attack implementations in the future.

1.4 Contributions

The research and development done in this thesis will contribute by first evaluat-
ing the previous research in order to see if the optimal parameters for generating
the ideal set of candidates for R2ini t can be determined. The thesis will also con-
tribute by attempting to further improve the efficiency of existing software by
implementing a Shift-OR approach with different degrees of constraints, as pro-
posed by Petrovic [2]. Another important contribution will be the implementation
of multi-threading in the application, which was mentioned as a suggestion for
further studies in [3]. In theory, this will significantly improve the efficiency of
both the candidate selection for R2ini t and the subsequent procedure for recover-
ing the clocking LFSRs initial state, R1ini t . Ultimately, an algorithm for recovering
the initial state of the clocking LFSR, R1, will be developed and presented.

1.5 Research questions

In this section the research questions for the thesis are presented. Throughout the
thesis the questions will be referred to by their numeric denomination (e.g. RQ#).

RQ1 - Is it possible to define an arbitrary optimal decision rule for selecting the set
of candidates for the initial state of R2?

RQ2 - Can a practical attack on irregularly clocked stream ciphers based on BRM
be implemented and tested using brute-force in software?

RQ3 - Is it possible to recover the initial states of both the clocking (R1) and
clocked (R2) LFSR in less than (2p � 2)2 brute-force iterations?
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RQ4 - Is it possible to improve the performance of the overall algorithm by intro-
ducing orchestrated multi-threading using cloud based infrastructure?

1.6 Thesis outline

After this introductory chapter follows a thorough explanation of the underlying
theory for irregularly clocked stream ciphers and the cryptoanalysis of such sys-
tems. It seeks also to explain the concepts of the search algorithms which have
been used in previous research upon which this thesis builds. In Chapter 3 the
methodologies employed throughout the project are presented. Chapter 4 explains
the development process and final implementation of the algorithms along with
the rationale behind how it was developed. In Chapter 5 the final product and the
experimental results of the thesis are presented. It culminates with the demon-
stration of the full implementation of the attack on a BRM based cryptographic
system in software. In the final two chapters the implementation and its results are
discussed and a conclusion of the thesis along with suggestions for future research
is presented.



Chapter 2

Theory

This chapter intends to supply the reader with the necessary pre-requisite know-
ledge for the rest of the thesis on the topics of stream ciphers, general cryptanalysis
and search algorithms.

2.1 Stream ciphers

Since Shannons demonstration of the so-called one-time pad in 1949 [7], cryp-
tographic researchers have been implementing more practical and usable stream
ciphers to secure various communications channels. These ciphers, in contrast to
the more modern and widespread block ciphers only encipher one symbol at a
time (most often bits in modern communications) whereas block ciphers encipher
multiple symbols at a time, in blocks. Stream ciphers are, however, well suited for
implementations in hardware where fast communications are needed. As only one
character is enciphered at a time, it is also more resilient against communication
errors than block ciphers, where a single symbol transmission error may render
a whole block of ciphertext unreadable. For the remainder of this thesis we will
refer to symbols as bits, as we are only working with digital implementations of
stream ciphers.

In general, a stream cipher system can be described with with following simple
formula:

Xi � Yi = Zi

Where Xi represents the i-th bit of the plaintext, Yi represents the i-th bit of the
key stream and Zi the resulting i-th bit of the output ciphertext. The plaintext and
key stream bits are combined with the XOR (bitwise addition, modulo 2) boolean
operation in order to produce the corresponding ciphertext bit.

Some famous implementations of stream ciphers include the Vernam cipher
and the more secure specification of it, the one-time pad. The one-time pad is a
special implementation of the Vernam cipher which was proven to be uncondi-
tionally secure by Claude E. Shannon [7] if and only if the following criteria are
met:

5
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1. The keystream must be produced with perfect randomness.
2. The keystream must be of equal or greater length than the plaintext.
3. The key material, as a whole or in part, must only be used once.
4. The key material must be kept completely secret between the transmitting

and receiving party.

As these criteria are very hard to fulfill in practice, such cryptographic systems are
in limited use, however some government agencies are said to have used the one-
time pad for their most secure communication channels, e.g. the "red telephone"
used between the state leaders of the United States of America and the Russian
Federation [8].

For modern widespread communication channels however, the one-time pad
is infeasible to use as it depends heavily on perfect key material generation and
management. Thus, a more practical approach to keystream generation is needed.
This can be achieved by using Linear Feedback Shift Registers (LFSR) to generate
pseudorandom key streams which will be discussed in depth in the next section.

Modern implementations of stream ciphers are used in Bluetooths E0-algorithm
and in GSMs A5/1-algorithm, as shown in Figure 2.1.

Figure 2.1: A5/1 key generator for GSM [9].

While stream ciphers can be highly effective when securing communications, if
they are not properly implemented they can be highly predictable and thus break-
able unless non-linearity is introduced. The details and importance of this will be
discussed in detail in the next few sections of this thesis.

2.2 Linear feedback shift registers

As discussed earlier, a perfectly random key stream is hard to achieve and imprac-
tical to use in practical implementations of stream ciphers. Perfect randomness is
especially hard to achieve in high-throughput systems as it requires perfectly ran-
dom input parameters of the same bandwidth as the key stream output. Therefore,
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in most practical implementations of cryptographic systems, pseudorandom noise
generators are used. Such generators aim to provide a noise sequence which can
be used as a key stream which is sufficiently random enough to be secure. In or-
der to determine if a pseudorandom noise-sequence is sufficiently random we can
check it against Golomb’s three randomness postulates [10]:

Given s, a periodic sequence of period N ;

RP1 In the cycle sN of s, the numbers of 1’s differ from the number of 0’s by at
most 1.

RP2 In the cycle sN , at least half the runs have length 1, at least one-fourth have
length 2, at least one-eight have length 3, etc., as long as the number of
runs so indicated exceeds 1. Moreover, for each of these lengths, there are
(almost) equally many gaps and blocks.

RP3 The auto correlation function C(t) is two-valued. That is for some integer
K ,

N ⇥ C(t) =
X
(2si � 1)⇥ (2si+t � 1) =

®
N , if t = 0
K , if 1 t  N � 1

The Feedback shift register, and more specifically the Linear Feedback Shift Register
(LFSR) is the main building block of most modern stream cipher systems as it
can produce pseudorandom noise sequences of large periods with a sufficient de-
gree of entropy and with good statistical properties. LFSRs are also well-suited
for hardware implementations and because of their structure, they can be readily
analysed using algebraic functions [11].

Figure 2.2: Illustration of an LFSR

The LFSR illustrated in Figure 2.2 consist of stages,

ci , i 2 0, 1, ...L � 1

from left to right, where L is the length of the register. The length of the register is
the amount of bits the register can store. Each stage in the register holds a binary



8 Evensen, A. S.: Reconstruction of clock sequences in BRM

value, ci 2 {0, 1}, at any given time during execution and the initial state of these
bits represent the input key to the cryptosystem. The zero-initial state C0...p�1 = 0
however, can not be used as it would result in an all 0 output sequence, thus there
are 2p � 2 valid states of the LFSR.

Each position in the register has an input, and can also have an output, or
tap, which feeds into the linear combining function g. The system also has a clock
which steps the register. During each step of the generator the following operations
are performed:

1. The value of stage 0 is output and forms part of the output sequence.
2. A shift is performed on the whole register which results in the content of

each stage i being moved to stage i + 1.
3. The value of stage n � 1 is fed back and combined with the other taps to

form the next output and feedback value to stage 0.

It is easy to see that the maximum amount of bits the LFSR can produce before
repeating itself is N = (2p � 2). In order to ensure that we achieve the maximum
output length that also satisfies the requirements for a usable pseudorandom se-
quence, we need to ensure that the LFSRs feedback polynomial C(D) is primitive.
We can describe an LFSR as;

hp, C(D)i where C(D) 2 Z2[D] is the feedback polynomial.

In the definition above, Z2[D] represents the elements of the binary extension
field GF(2p). The polynomial must satisfy the non-singularity condition, which
implies that the degree of the polynomial C(D) must be p, e.g.;

C(D) = 1+ c1D+ c2D2 + ...+ cpDp

Furthermore, the polynomial C(D) 2 Z2[D] of degree p is primitive if and only
if D is a generator of F⇤Dp , where F⇤Dp is the multiplicative group of all the non-
zero elements in F⇤Dp = Z2[D]/(C(D)). In order to test whether an irreducible
polynomial is primitive we can use the following algorithm [11]:

Algorithm 1: Testing whether a polynomial is primitive
input : a prime p, a positive integer m, the distinct prime factors

r1, r2, ..., rt of pm�1, and a monic irreducible polynomial f (x) of
degree m in Zp[x].

output: The answer to the question: "Is f (x) a primitive polynomial?"
for i=1; i<=t; do

Compute l(x) = x (p
m�1)/ri mod f (x);

if l(x) = 1 then
return("Not primitive");

else
return("Primitive");

end
end
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Once a primitive polynomial has been found, a usable cryptosystem can be con-
structed. However, the output bitstream of a single LFSR hp, C(D)i is linear and
predictable and thus weak against algebraic and statistical attacks which will be
discussed in more depth in Section 2.4 of this chapter.

Non-linearity has to be introduced into the cryptosystem in order for it to be
more resilient against such attacks. This can be achieved by combining the output
of two or more LFSRs in a nonlinear combination generator, employing irregular
clocking, or both. An example of a nonlinear combination generator is the A5/1
algorithm in GSM, as illustrated in Figure 2.1 which combines three separately
clocked LFSRs of different lengths. A generalised model of such generators are
given in Figure 2.3. In this thesis we will examine stream cipher systems employ-
ing irregular clocking and more specifically the Binary rate multiplier variant of
such cryptosystems.

Figure 2.3: Generalised illustration of nonlinear combination of multiple LFSR
[11].

2.3 Irregularly clocked stream ciphers

Earlier we saw that we can define an LFSR as hp, C(D)i, where p represents the
length and also the degree of the primitive polynomial C(D). In addition to this,
in order to make the system functional we need a clocking function to step the
generator. A single LFSR implementation is normally restricted to the clock of the
internal system clock or cycles in a Central Processing Unit (CPU), which make
them predictable. In order to introduce non-linearity and to make such systems
less predictable irregular clocking can be employed. Irregular clocking aims to
add uncertainty, or entropy, to when the LFSR is clocked and thus the resulting
output key stream. In GSMs A5/1 key stream generation algorithm, as shown in
Figure 2.1 for example, the clocking of the three registers are dictated by the state
of the 8th, 10th and 10th bit, respectively in each LFSR. The A5/1 implementation
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uses a majority bit function to determine which registers are clocked. For every
cycle the three bits are checked, and only the two registers with the same bit-value
are clocked. Thus, for every cycle only two of the three registers are clocked and
there is a uniform probability of each register clocking of 3/4. Another approach
to irregular clocking is to have one LFSR clock another LFSR, e.g. the output of the
first LFSR dictates the operation of the next. Examples of such generators are the
Alternating step generator, the Shrinking generator and the Binary rate multiplier,
the latter of which will be the main focus of this thesis.

2.3.1 Binary rate multiplier

As discussed earlier, non-linearity has to be introduced into the key stream gen-
erator in order for a stream cipher system to be secure. The Binary rate multiplier
(BRM) accomplishes this by introducing the concept of decimation. Decimation is
defined in the Cambridge dictionary [12] as

"... the act of killing something in large numbers, or reducing something
severely."

Luckily perhaps, the second part of the definition is what will be discussed here.
The binary rate multiplier, or 0/1-clocking as it can also be called, consists of

two separate LFSRs; the clocking LFSR and the clocked or decimated LFSR, hence-
forth referred to as R1 and R2 respectively, throughout this thesis. The LFSRs
themselves work in the conventional way described in the previous section, how-
ever, R1s purpose is only that of deciding whether R2 is clocked or not. The two
LFSR are initialised with their own separate initial states R1ini t and R2ini t . In gen-
eral terms the generator can be described with the model shown in Figure 2.4. In
the figure, Xn represents the bit stream generated by R2 and Yn the bit stream gen-
erated by R1. The resulting key stream, Zn is the result of the decimating function
f (n).

Figure 2.4: Generalised model of the BRM key stream generator.
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The operation of the BRM generator can be explained as follows:

1. R1 is clocked once.
2. If the output of R1 is 0, then R2 is also clocked once and its output bit is

forwarded as part of the key stream. If the output of R1 is 1, R2 is clocked
twice where the first of the generated bits is discarded (or decimated) and
the second forwarded onto the key stream.

The following equations can also be used to illustrate the BRM generators opera-
tion:

zn = x f (n), n= 0, 1,2, ...

f (n) = n+
nX

i=0

yi

In their theorem, Chambers et al. [13] showed that under the following assump-
tions;

• R1 has a primitive feedback polynomial of degree m, with a period of M =
2m � 1
• R2 has a primitive feedback polynomial of degree n, with a period of N =

2n � 1
• All prime factors of M divide N
• The greatest common divisor (

PM�1
i=0 xi , N) = 1

Then the linear complexity, L, is L = nM and the period, P, P = N M . In the
case where both R1 and R2 are of equal length, the requirements of the theorem
is satisfied. In this thesis it is always assumed that R1 and R2 are of equal length
when addressing the BRM.

The statistical model of the BRM in a stream cipher system is shown in Fig-
ure 2.5 and its operation is described in more detail in Algorithm 2.

Figure 2.5: BRM as a key stream generator in a stream cipher system.

As we can see from Algorithm 2, given a plaintext of length m, R1 will produce
m bits of output, while R2 should produce approximately n = 2 ⇥ m bits, given
that R1 satisfies Golomb’s first postulate (RP1) which dictates that in a generated
pseudorandom bit sequence the number of 1’s should differ from the number of
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Algorithm 2: A stream cipher system based on BRM
input : a bit sequence from R2; Xi=0...n�1, R1; Yj=0...m�1 and the

plaintext Pj=0...m�1
output: the ciphertext Zj=0...m�1
for (j < m) do

Step R1! Yj
if Yj = 0 then

Step R2! Xi+1
Xi+1! X 0j

else
Step R2! Xi+1
Step R2! Xi+2
Xi+2! X 0j

end
X 0j � Pj ! Zj
j++

end
return(Zj=0...m�1)

0’s by at most 1 bit. In some implementations of the BRM generator, the decimated
bits may be forgotten by the machine or program running it, however in the case
of the implementations described in this thesis a record of these bits is kept in
order to be able to mount the attack which will be covered later. Specifically, in
the implementations described in Chapter 4 both sequences Xi=0...n�1 for R2 and
Yj=0...m�1 for R1 are fully generated before being combined in the BRM function
to produce the key stream and encrypt the plaintext.

A simple example for m= 5 and the zero plaintext P = 0m�1 is given below;

Pj=0...4 =0, 0,0, 0,0

Xi=0...8 =1, 1,0,1,0, 1,0, 1,1

Yj=0...4 =0, 1,0, 0,1

X 0j=0...4 =1, 0,1, 0,0

Zj=0...4 =1, 0,1, 0,0

The underlined digits of X are the ones being used as the key stream X 0. As the
input plaintext consists of only zeroes, the resulting ciphertext Z = X 0.

2.4 Cryptanalysis of stream ciphers

In this section, different aspects of cryptanalysis and cryptographic attacks are
explained. The main focus will be on the statistical attack and more specifically
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the generalised correlation attack, however some other variations are also briefly
discussed for comparison.

2.4.1 Cryptanalysis fundamentals

Cryptanalysis is the art of analysing cryptographic implementations and algorithms
from different points of view. Sometimes the cryptanalyst assumes "a priori" know-
ledge, which means knowledge that the analyst assumes about the system before
applying the attack. The fundamental problem of the cryptanalyst is to recover the
plaintext and/or determine the key which can be used to decipher said plaintext.
We can classify the types of analysis approaches under the following categories:

• Ciphertext-only attack
• Known plaintext attack
• Chosen plaintext attack
• Chosen ciphertext attack

We assume in most cases that the analyst as a minimum has full knowledge of the
design of the system being analysed, and that he or she has access to, or the abil-
ity to capture, ciphertext produced by the system. The most difficult approach is
where the analyst only has knowledge of the ciphertext and the task of breaking
the system becomes significantly easier with more knowledge. The attack pro-
posed in this thesis is a known plaintext attack, as we assume a priori knowledge
of the plaintext, or parts of it, the ciphertext and the design of the cryptosystem. In
the following sections we will briefly examine some well known general analysis
strategies and attacks on cryptographic systems.

2.4.2 Brute force attacks

The so-called brute force attack assumes only knowledge of the cryptosystem and
some of its corresponding ciphertext. This is the simplest form of cryptographic
attack. The attack is based on the trail-and-error method of trying every possible
key in the key space, K, of the system and see if it deciphers the intercepted
ciphertext into something meaningful. The parameters affecting the feasibility of
such an approach is the key-length, the computational efficiency of the crypto
algorithm and the computational power available to the attacker.

Any modern cryptographic implementation should never be susceptible to this
type of attack, but some older legacy algorithms that were made with smaller key
sizes and made for less efficient computers can still be vulnerable. In some cases,
as with the approach proposed in this thesis, the brute force attack can form parts
of the overall attack. In this thesis for example, the total key space is first reduced
through a statistical attack, before the brute force attack is initiated. Consider for
example a BRM-based stream cipher system with equal length LFSRs. In general,
the worst case key space to test in a brute force approach of a generator with
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non-linear combination of multiple LFSRs can be described by the formula

Nb =
NY

i=1

(2pi � 2)

where N is the amount of combined LFSR of the degree pi . Thus in the case of BRM
the worst case key space to test without any prior reduction (and not counting the
zero-state) would be:

K = (2p � 2)2

With a reduction of the possible key space of one of the LFSR, the total key space
can be drastically reduced, as will be demonstrated later in this thesis.

Table 2.1 shows the amount of possible keys in a BRM key stream generator
when the two LFSR are of equal length p and no reduction has been made to
either LFSRs key space.

Table 2.1: Worst case key space in BRM with equal length LFSR

p L
11 4190209
16 4294836225
20 1.1⇥ 1012

30 1.15⇥ 1018

40 1.21⇥ 1024

64 3.40⇥ 1038

128 1.16⇥ 1077

For comparison, the amount of atoms on Earth is estimated to be 1.33⇥1050 and
the age of the sun 1.45⇥ 1045 seconds.

2.4.3 Algebraic attacks

Algebraic attacks aim to to solve the cryptosystem through a system of equations
relating to the details of the system being attacked. In the case of a single LFSR
this is trivial;

Consider the LFSR shown in Figure 2.6. It has the feedback polynomial f (x) =
1+ x + x4 and output bits yi = 0...n. The goal of the cryptanalyst is to find the
key, e.g. the initial state of the register. We denote the initial state as the state of
each stage, as = {a0, a1, a2, a3}, before the first clock cycle. Given that we have
knowledge of the systems design and the output bit sequence, we can use the set
of equations relating to what we know and solve for as.

y0 = a3 + a0

y1 = y0 + a1

y2 = y1 + a2

y3 = y2 + a3
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Figure 2.6: Simple LFSR with feedback polynomial f (x) = 1+ x + x4

In the case of a non-linear combination of multiple LFSR however, the algebraic
solution to the system becomes much more complex and in most cases becomes
infeasible to solve. As this type of approach is not directly applicable to the further
cryptanalysis in this thesis, we will not address this issue any further.

2.4.4 Statistical attacks

A statistical attack exploit potential weaknesses in the statistical characteristics of
the output sequence of the pseudorandom generator. This may result in a complete
decipherment of the underlying plaintext or at least a reduction of the effective
key space that has to be tried, e.g. in a brute force approach. As a basic principle,
the output of the boolean combining function must be balanced in the sense that
the amount of 0’s and 1’s are approximately equal, adhering to Golomb’s first pos-
tulate as described in Section 2.2, to avoid being breakable by statistical analysis.
As we will see however, even systems following this principle may be susceptible
to a special form of statistical attacks. Especially relevant to the cryptanalysis of
Binary rate multiplier based systems, are correlation attacks, and more specifically
the generalised correlation attack, both of which we will examine in the sections
below.

Correlation attack

Even though a boolean combining operation may provide non-linearity, its output
may be susceptible to statistical attacks, as is the case with the Geffe generator[14].
A powerful type of statistical attack is the correlation attack. This attack exploits
situations where the output bit sequence of a pseudorandom generator correlates
with one or more internal states. The difference, or distance, between two equal
length bit sequences can be measured by the Hamming distance metric [5]. The
Hamming distance is a measure of how many errors, hereby denoted k, there are
between two sequences, as shown in the example below.

k = 2

®
01011101
01010111
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The expected distance of two random uncorrelated sequences of length n would
be k ⇡ n

2 . Thus, a significant deviation from this indicates that the two sequences
are in some way correlated. An example of this can be made of the Geffe generator
which consist of the non-linear combination function

F(x1, x2, x3) = x1 x2 � (1+ x2)x3 = x3 � x1 x2 � x2 x3

It possesses good statistical properties, and with long enough register lengths it is
infeasible to obtain the key through a brute force approach. The output sequence
of the combiner, F , itself is also balanced. However, with knowledge of the system
and by examining the truth table of each component LFSR individually together
with the output bit of the combiner, we can see that there is a correlation bias.

Figure 2.7: Truth table of the Geffe generator correlated with its internal com-
ponents.

As Figure 2.7 shows, the output bit y can be statistically correlated to the internal
outputs {x1, x2, x3} of the three registers. Crucially, this knowledge can be used to
make educated guesses as to what the internal states of the registers were when
that bit was produced. Without exploiting this flaw in the Geffe system the number
of possibilities to try in a brute force attack would be Nb =

Q3
i=1(2

pi�1). However,
with the advantage gained by the discovering the correlation we can reduce the
number to Nc =

P3
i=1(2

pi � 1) possible keys.
In general terms, the measure of correlation, ↵, describes the similarity of the

intercepted ciphertext sequence Cn of length L, the internal LFSR output sequence
X j

n, where j is the LFSR number and n is the bit number and the output of the
combining function Zn. Two hypotheses are defined, where

H0 The intercepted sequence cannot be generated by the tested initial state.
H1 The intercepted sequence can be generated by the tested initial state.

together with their corresponding mean and variance parameters (µ,�2). We also
need to define a decision threshold, T . The threshold is used to decide whether to
accept a candidate initial state to the set of states believed to be generated by the
tested initial state, according to the hypothesis H1. If the measured correlation
is larger than the threshold (↵ > T ) then we accept H1, if not, we assume H0.
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Depending on the chosen threshold value, the length of the intercepted sequence
and the known plaintext there is a risk of both false positives and false negatives.
It is highly likely for example that a set of candidates, A, will contain a number
of false positives in the form of candidates accepted to H1 that is not the actual
initial state we are seeking. A bigger problem however, would be that the true
initial state be rejected by assuming H0, possibly leaving the attacker spending
lengths of time testing a candidate set which will never provide the actual initial
state and thus the key.

From a independently and identical distributed binary sequence, we expect
that P(Zn = 0) = P(Zn = 1) = 0.5. The correlation probability of the combining
function F can be described as P(Zn = X j

n) = qj . The correlation measure, or
Hamming distance[5], is described with

↵= L � 2
LX

n=1

(Cn � X j
n), j 2 {0, ..., N}

The plaintext source Pn that is combined with the output of the generator to form
the ciphertext Zn � Pn = Cn is not random, so P(Yn = 0) = P(Yn = 1) = p0 6= 0.5.
According Siegenthaler [4];

P(Cn � X j
n = 0) = pe = 1� (p0 + qj) + 2p0qj

The distributions P(↵|H1) and P(↵|H0) are binomial and for a large enough L
they are assumed to be Gaussian. The parameters of the probability distributions
of the two hypotheses we defined earlier are

P(↵|H1)

®
µ↵ = L(2pe � 1)
�2
↵ = 4Lpe(1� pe)

, P(↵|H0)

®
µ↵ = 0
�2
↵ = L

If pe or qj is 0.5 then the distributions are identical and the system has no bias
and cannot be broken through the correlation attack.

In order to produce the minimal possible set of candidates A that also holds
the actual initial state of the system the decision threshold, T must be set in a
proper way. Ideally the resulting candidate set has no false negative, pm and as
few false positives, pf as possible.

pf = P(↵� T |H0)
pm = P(↵< T |H1)

The full correlation attack can be described through the following algorithm:

• Determine the probabilities qj for each internal LFSR.
• Choose a LFSR with high qj for the attack.
• For each initial state of LFSR X j the output sequence, X j

n=0...L is generated.
• The correlation measure is calculated.

• If ↵ � T we assume that this may be a valid initial state candidate
according to H1 and add it to the set A.
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• If ↵ < T we assume that this is not a valid initial state and we
discard it.

After iterating through all initial states, if the threshold has been set properly,
we should be left with a set of possible candidates which is small compared to the
total number of initial states of X j = (2m�1). The mean values of the distributions
P(↵|H1), P(↵|H0) should in that case be well separated.

The generalised correlation attack

When irregular clocking is introduced in a cryptosystem, the previously discussed
correlation attack cannot be directly applied, as the Hamming distance cannot be
applied to sequences of different length. Consider the case of the Binary rate mul-
tiplier, where the output of R2 is decimated by the output of R1; as R1 decimates
the output of R2, the output sequence of R2 X 2

n=0...L differs in length from that of
the generated key stream Zm=0...M and resulting ciphertext Cm=0...M . Thus a new
method of attack is needed.

One such attack is the Generalised correlation attack, as demonstrated by Golic,
et al. [1]. The generalised correlation attack is a special kind of statistical attack
which is based on the Levenshtein distance[6] in place of the previously demon-
strated Hamming distance. The modified attack involves measuring the constrained
edit distance between the output of the decimated LFSR R2 X 2

n=0...L against the
output of the clocking function Zm=0...M where M ⇡ L

2 . The constrained edit dis-
tance is the measure of how many edit operations, including deletions, insertions
and substitutions are needed in order to transform one bit sequence into another.
Constraints can be set for the allowed transformations, e.g. a maximum run of
consecutive deletions that are allowed. The constraints are useful for example in
the case of the Binary rate multiplier, where we know that no more than 1 bit can
be decimated at a time.

In contrast to the traditional correlation attack, the parameters of the probabil-
ity distributions P(↵|H1), P(↵|H0) cannot be estimated in the same way as demon-
strated for the normal correlation attack. In order to get a significant separation
of distributions, we need to choose a threshold value based on experimentation.
Choosing this threshold correctly can have a significant impact in the total time
complexity of breaking the cryptosystem. This aspect is one that will be explored
further through the research and experiments done in this thesis.

2.5 Approximate string matching

String matching, or search, is an important and well researched topic within com-
puter science. The general problem is simple; find one or more occurrences of the
string S in text T . As we identified when discussing the generalised correlation
attack, it involves computing the edit distance between two sequences. This is a
directly relatable to the problem of approximate string matching. Approximate
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string matching is defined as the task of finding the pattern p in a text T when a
limited number k errors, or differences, are allowed between the pattern and its
occurrences in the search text [15]. By using the previously discussed constrained
Levenshtein distance (CLD), ed(x , y), between two strings x , y a measure of the
correlation between the two can be calculated.

This is demonstrated in the following example;

p = annual
T = annealing

ed(p, T ) = 4

We can see that, in this case we start with three matches, then an error which
requires the substitution of the letter u. After the substitution two more matches
are found for the letters "al" and finally the suffix "ing" is read, which is not in the
pattern at all, and is therefore deleted. This results in one substitution and three
deletions in total.

By setting an acceptable error level k the problem of approximate matching
can be defined as the task of finding all occurrences in T of every p0 that satisfies
ed(p, p0) k, 0< k < m.

Figure 2.8: The approximate string matching of "annual" against "anneal", rep-
resented by an NFA[16].

The problem of approximate search can be represented as Nondeterministic finite
automata (NFA), as shown by [17]. In Figure 2.8 we see the pattern matching of
"annual" against "anneal" with k = 2 allowed errors, represented as an NFA. In
the model, each row represents errors, horizontal paths represent exact matches
and vertical paths insertions. The solid and dotted diagonal paths represent sub-
stitutions and deletions, respectively. We call the deletions ✏-transitions (or empty
transitions) as they differ from the others in that they only advance in the pattern,
and not the text [18]. The initial self loop allows an occurrence to start anywhere
in the text. Terminal states, or the end of an occurrence, are marked with a double
circle. The gray circles represent the active states after each character is read. As
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we can see, when a state is active all the lower rows (higher number of errors)
are also active. In the example, after reading "anneal" the NFAs terminal state is
at k = 1, meaning we found a match with only one substitution needed.

A more efficient way of implementing approximate string matching is by ex-
ploiting the inherent bit-parallelism present in the central processing units (CPUs)
in modern day computers [19]. Most bit parallel implementations involve simu-
lations of other models, such as the NFA. One such example is the Shift-AND and
Shift-OR algorithms as we will discuss in the next section.

2.5.1 Bit parallelism

In modern computers, CPUs generally operate with 32 and 64-bit registers, the
latter being the most usual and what we will be assuming in this thesis. This
means that a CPU inherently can perform atomic operations on values of up to
64 bits. Arithmetic operations are executed in a section of the CPU called the
Arithmetic Logic Unit, or ALU. Simple bitwise operations on values less than 64
bits are generally very fast in modern CPUs, but when the size of the operands are
above 64 bits the execution time also increases, as more operations are needed to
compute. For this reason, highly specific tasks, such as cryptographic functions,
whether it be encryption, decryption or different attacks are often implemented in
hardware or Field Programmable Gate Arrays (FPGA), as demonstrated by Magnus
Øverbø in his thesis [3].

In this thesis however, we seek to do dynamic experimentation and analysis
of the final part of the cryptographic attack on irregularly clocked stream ciphers,
and will thus only consider CPU implementations.

2.5.2 Bit parallel search

As mentioned, the previously discussed NFA representations of the search problem
can be represented as bit parallel algorithms. One such algorithm for approxim-
ate matching is the BRP or ARBP (Approximate Row-wise Bit Parallel search) al-
gorithm [20], based on extending the Shift-AND algorithm for approximate search.

Shift-And

Some previous implementations of the generalised correlation attack on irreg-
ularly clocked stream ciphers have used the Shift-AND algorithm [3]. However
it has also been shown that the Shift-OR algorithm can increase performance in
theory [2]. In order to illustrate the differences, the Shift-AND algorithm is ex-
plained first, before implementing the subtle difference that makes the leaner
Shift-OR algorithm. The algorithms operation in the exact match scenario will
also be demonstrated before introducing the possibilities of errors, making it an
approximate search algorithm.

Given a pattern p being searched for in the text T , the algorithm keeps a status
word D = dm...d1. The status word represents the set of prefixes of the pattern that



Chapter 2: Theory 21

match a suffix of the text being read. A set bit (1) in D indicates that the pattern
p1...pj is a suffix of t1...t j . The occurrence of an exact match is indicated by dm
being set.

First, the prefix table B which stores a bit mask for every character in the
pattern is built. In the following example we have the search pattern NTNU and
its mask B[N], has p1 = p3 = 1 as shown in Figure 2.9.

Figure 2.9: The prefix table B and the initial status word D for the pattern NTNU
before running the Shift-AND algorithm.

When we start the search, the status word holds the value D = 0m. In order to
update this we need an update procedure which is run for each read character
in the search text. The Shift-AND update procedure is represented by the formula
below:

D0  � ((D << 1) | 0m�11) & B[ti+1]

Here, the << operator is a left shift of the current status word, which moves all
bits one step to the left. This results in the status indicating which positions of
p were suffixes at the previous step, i. Next, the left shifted value is ORed with
0m�11, which marks the empty string * as a suffix. Lastly, the result is ANDed with
the suffix mask value created initially, B[ti+1]. By doing this the positions where
ti+1 matches pj+1 is marked in the search word. Algorithm 3 shows the pseduo-
code for the whole process. We can demonstrate the stages of the algorithm by
simulating a search for the pattern NTNU in the text NOT NTNU, as shown in
Figure 2.11. The Shift-AND case is shown on the left side.

Shift-OR

The Shift-OR variant is very similar and produces exactly the same result as the
Shift-AND algorithm. However, the status word update procedure has fewer oper-
ations and is, as a result, faster. The simplified update procedure is shown together
with the previously discussed Shift-AND procedure below, for comparison:

D0  � ((D << 1) | 0m�11) & B[ti+1] Shift-AND

D0  � (D << 1) | B[ti+1] Shift-OR

We can immediately see that the new procedure consists of only two binary op-
erations, as opposed to the three used by the Shift-AND algorithm. This reduces
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Algorithm 3: The Shift-AND algorithm for exact match [21]
input : p = p1p2...pm, T = t1 t2...tn
output: Alert if an occurrence is found
Preprocessing:
for c 2
P

do
B[c] 0m

end
for j 2 1...m do

B[pj] B[pj] | 0m� j10 j�1

end
Search:
D 0m

for pos 2 1...n do
D ((D << 1) | 0m�11) & B[tpos]
if D & 10m�1 6= 0m then

Occurrence found at pos�m+ 1
end

the amount of operations by one third and thus should in theory reduce execution
time by 1

3 ⇡ 33%. In order for this to work however, when we calculate the prefix
masks B we need to take the complement values from the original calculation, as
shown in Figure 2.10. By changing the prefix masks, we can OR the left-shifted
value of D directly with the mask corresponding with the character being read. E.g.
for the example used earlier with the pattern NTNU now B[N] has p1 = p3 = 0.
Also the status word has to be inverted so that it is now initiated as D = 1m. As
opposed to the previous case, where a 1 in the MSB position indicates a match, a
match is found when dm = 0.

Figure 2.10: The prefix table B and the initial status word D for the pattern NTNU
before running the Shift-OR algorithm.
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Figure 2.11: Side-by-side comparison of Shift-AND and Shift-OR input and ouput
when searching for the pattern NTNU in the text NOT NTNU.
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2.6 Approximate Row-wise Bit Parallel search

In this section the Shift-OR algorithm is extended to allow errors, making it an ef-
ficient approximate search algorithm. The original approach, using the extended
version of Shift-AND was demonstrated in [22]. The extension involves setting
a threshold value of number of allowed errors k, as demonstrated earlier in Fig-
ure 2.8. As opposed to the exact match scenario, k+1 search status words Ri=0..k
are used, each of which represent an approximate match with i errors and where
i = 0 represents the exact match. The initial generation of these is simple, as each
status word is constructed by left-shifting the exact match word R0 = 1m by i pos-
itions, giving each error a "head start" to that of the exact match. The status word
update procedure for R0 remains the same, however a more complex procedure to
accommodate for errors in Ri=1..k is needed. The complete update function with
errors is presented in the formula below [2]:

R00 =((Ri << 1) | B[t j])
R0i =((Ri << 1) | B[t j]) & (match)

((Ri�1 << 1) | NOT B[t j] & (sub)

(R0i�1 << 1) (del)

i = 1...k

This procedure is constrained as it allows for substitutions and deletions, but not in-
sertions or reversals. The scenario which is discussed in this thesis involves search-
ing for the intercepted ciphertext (the pattern) in the undecimated bit sequence of
the LFSR R2 (the search text). To properly emulate the BRMs decimation function,
the case of insertions and reversals can be omitted. As we can see, the substitution
procedure ORs with the complement of B ( | NOT B[t j] ). This operation makes
sure that no substitutions occurs after a match in the previous row of the corres-
ponding NFA.

An even further modified attack is proposed in [2] in order to reduce the
amount of false positives when performing the generalised correlation attack. This
is done by introducing even more constraints in order to eliminate "impossible"
embeddings, e.g. where the amount of decimated (or skipped) bits exceeds that
of the systems design, which is 1 in the case of the BRM system we are analysing
in this thesis.
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dmi =1m, i = 1...k
del =1m

R00 =((Ri << 1) | B[t j]) & (match)

R0i =((Ri�1 << 1) | NOT B[t j] & (sub)

(Ri�1 << 1) | (del)

NOT ((del << 1) | 0m�11) |
NOT ((dmi�1 << 1) | 0m�11) |
(0m�11<< (m� 1))
i = 1...k

As we can see in the modified approach the procedures for matches and substitu-
tions are unchanged but the delete-operation is significantly more complex. How-
ever, the omission of false positives should reduce the total set of candidates C
which in turn would lead to lower execution times in the final stage, the recon-
struction of the clocking LFSRs output sequence and initial state R1ini t .

In Figure 2.12 a practical example of the Shift-OR approximate search al-
gorithm with m = 10, k = 2 and the ciphertext 1010100101(bin) is shown. This
output is generated by the program developed in this thesis, which will be dis-
cussed in detail in chapter Chapter 4.
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Figure 2.12: A practical example of the Shift-OR algorithm.



Chapter 3

Methodology

In this chapter, the methodology used throughout the work on this thesis is ex-
plained. A few of the essential disciplines and tools are also explained together
with potential limiting factors that may affect the work on this thesis. Finally, a
project timeline overview is presented.

3.1 Research methodology

The topic of the thesis requires elements from both a development project and a re-
search project. In order to answer the research questions asked in the first chapter,
a mixed-methods approach of both qualitative and quantitative methods will be
utilised. Specifically a mixed-methods exploratory design[23] is the chosen meth-
odology for achieving the goals of this thesis. Figure 3.1 below displays the over-
arching project design which will be followed. An exploratory sequential design
involves an initial qualitative phase (Phase One) which has the purpose of devel-
oping the instruments for use in the the quantitative phase (Phase Two). In this
project, the first phase will involve the initial research, assessment of earlier stud-
ies and, ultimately the software development itself. The second phase will involve
quantitative testing of the developed software elements and data gathering.

Figure 3.1: Mixed-methods exploratory design [24].

Through the initial, qualitative phase the works of earlier researchers on the topic
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will be thoroughly examined and possibilities for improvement will be investig-
ated. In particular this involves studying and evaluating the programming work
done in [3]. Several iterations of software development will be undertaken in
this phase, in order to qualitatively test different versions and algorithm variants
with varying input parameters. The result of phase one is the final cryptanalysis
program together with any additional evaluation software. This forms the instru-
ments with which the quantitative experimentation and analysis will be carried
out in phase two.

In order to prevent any compromise of the data gathered in the second phase,
the functionality of the main program should not be changed after the initial phase
is completed and the quantitative data gathering has commenced. However, some
of the wrapping evaluation software or cloud templates may be adjusted through
the course of the quantitative experiments.

3.2 Essential disciplines and tools

3.2.1 Software instrumentation

Software instrumentation is the act of measuring execution times and providing
trace information in computer programs [25]. While optimal performance is not
the most important part of the software development in this thesis, it is very im-
portant to analyse the performance of critical parts of the cryptanalysis program in
order to understand execution times and time complexity of the full cryptographic
attack. The results of software instrumentation may lead to a better understand-
ing and also performance improvements throughout the development phase of
this thesis, or give useful pointers for future research on the topic.

3.2.2 Analysis

The analysis activity in this project is divided in two parts. First, the qualitative
analysis and assessment of existing literature and software which gives direction
to the further software development. Secondly, the analysis of data gathered from
the experiments run on the newly developed software. In a scenario such as this,
where high complexity cryptographic calculations are involved it can be difficult
to provide a large enough data set for analysis within the given time limit and
financial constraints. A trade-off between realistic input parameters (for example
higher orders of LFSR and longer intercepted bit sequences) and parameters that
will provide enough quantitative data for sensible analysis will likely have to be
made.

3.2.3 Tools

The software development in this thesis is done on a 2,4GHz 8-core Intel i9 Mac-
Book Pro using the VSCodium IDE [26]. For virtual hosts used in the experiments,
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Ubuntu 20.04 LTS [27] was chosen as the operating system. All data graphs in
Chapter 5 have been generated in DataGraph [28] and the thesis itself written in
LaTeX on Overleaf.

3.3 Limiting factors

3.3.1 Financial factors

As research question RQ4 asks ‘Is it possible to improve the performance of the over-
all algorithm by introducing orchestrated multi-threading using cloud based infra-
structure?’ a paid account for the chosen cloud service will be needed. A financial
cap is set to NOK3.000,- (approximately USD360$) for the experimental phase of
this thesis. Compared to the predicted time complexity of simulating a full attack
implementation with realistic input parameters, this limit may be too low, but a
best effort will be made to produce representable results with the means available.

3.3.2 Legal factors

While several specific technologies employing Stream ciphers may be mentioned
as examples in the thesis, none of them are directly subject to the attempt at
a cryptoanalytical attack. If however discoveries are made that may impact any
known technologies, these may be withheld from the thesis in order to perform a
proper responsible disclosure [29] to whom it may concern. Any such discoveries
will be discussed with the thesis supervisor before a decision is made.

Also, it is important that any third-party software libraries used in the project
are checked for any applicable licensing models and if the model calls for it, ask
for permission. Regardless of licensing model, credit will always be given where
credit is due, to the original author.

3.4 Timeline

Figure 3.2 shows a Gantt chart[30] for the software development and thesis work.
It has to be noted that the qualitative research phase started during the autumn
semester of 2020. The final delivery deadline was also set to 1st of June, 2021.
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Figure 3.2: Thesis timeline



Chapter 4

Implementation

In this chapter the developed algorithms and their corresponding software imple-
mentations are presented. The testing and analysis process with which the results
(which are presented in the next chapter) have been derived are also described.
First, we address the different technologies with which the software is built, along
with the rationale for using them. Next, the algorithms are presented, which con-
tains the proposed improvement on generation of candidate sets, the clocking-
LFSR reconstruction and the algorithms for evaluation of input parameters and
performance. Finally, we look at the design of the different software elements.
All implementations are done in software and written in the C[31] and Go[32]
programming languages. Previous papers have addressed parts of the problem in
both software and Field-programmable gate arrays (FPGA)[3]. While specifically
designed FPGA implementations may perform better, the experimental nature of
the work in this thesis requires more flexibility and as such, only software imple-
mentations have been considered. However, some of the tests have been done by
running the software on high capacity virtual hosts in the cloud which will also
be shown in this chapter.

4.1 Technologies

In this section, the different technologies that have been used to build the crypt-
analysis program itself and the evaluation elements are presented and briefly dis-
cussed.

4.1.1 C99

The C programming language is the ideal language for high performance com-
puter programs. It is a low level language, which means that it has a relatively
thin abstraction layer to the resulting machine readable code which is produced
when compiling, compared to other compiled languages such as Golang. This in
turn means that the programmer has a higher level of granularity and control
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over the resulting machine execution of the program. For the software imple-
mentations in this thesis the C99 version of C, defined in ISO/IEC 9899:1999
[33], has been used as it is the most widespread implementation and it is fully
POSIX compliant. POSIX compliance is favourable as the software is intended to
be able to run in a distributed manner on multiple hosts with potentially differ-
ent operating systems. One major difference between C99 and the more recent
C11 (ISO/IEC 9899:2011 [34]) is its implementation of multi-threading. C99 uses
pthreads (POSIX threads), while C11 implements a new type of threads. While
the new edition is somewhat improved and more easy to use, it will not compile
on certain operating systems.

Multi-threading with pthreads

One important improvement that has been made in this thesis is the multi-threading
of certain parts of the existing software, which will be shown later. With C99 being
the chosen programming language, the multi-threading features was implemen-
ted using the native pthreads-library [35]. As this library offers no advanced con-
trol features for threading and depends on the programmer implementing these
himself, a helper library was needed in order to orchestrate the threads prop-
erly. Two different modes of operation were considered; the producer-consumer
model and the thread-pooling model. The first works by having a set amount of
producer-threads running a function in parallel, and a different set of consumers
handling the returned data from the producers. The latter is simply a model for
setting a limit to how many threads can be made available to the program at
one time. As we will see later, each thread reads and writes to and from a ded-
icated part of the memory stack, separated from each other, and so the option
of thread-pooling was found to be the suitable choice for this application. The
problem of limiting the number of threads running in a system may seem trivial,
but alas, when the main function starts a pthread it releases it and does not keep
track of how many are running. This can in some systems result in segmentation
faults as operating systems tend to set different limits as to how many threads
are allowed. It is also a point that more threads does not always mean faster exe-
cution times. The inherent multi-threading capacity in any CPU is constrained to
that of its available cores, and so, while a system can have hundreds, even thou-
sands of threads running, it does not make sense to run more threads than the
number of cores available. In normal systems, we can say that a program should
have threadlimit = vC PUtotal � 1, allowing one core open for other system or
user tasks. As the program in this thesis is meant for running on dedicated hosts,
having no user interaction and a minimal of other system processes, we always
assume threadlimit = vC PUtotal . This setting has also been tested and verified
through several trail-and-error runs of the program.

The thread-pooling library used in this thesis is based on the MIT licensed[36]
code found at [37]. The library consists of the files tpool.h and tpool.c which can
be found in Appendix A under Code listing A.1 and Code listing A.2.
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It has to be noted that no parts of the source code has been written with
security of the running hosts in mind. The combination of C and multi-threaded
memory manipulation without carefully implemented security measures, may open
the program to a number of possible exploits. As such, compile and run the pro-
gram at your own risk, and never as root or Administrator.

4.1.2 GMPLib - GNU Multiple Precision Library

As mentioned earlier, CPUs are normally constrained by their register size, when
executing arithmetic operations in the ALU. The normal register size in modern
computers is 64 bits, and 32 bits in some legacy computers. In the case of bit-
parallel computation in cryptanalysis, as in this thesis, the computed search pat-
terns and text will in most cases exceed far beyond 64 bits and, as such, we will
need a method of working around the CPUs inherent constraints. This can be done
by using the GNU Multiple Precision Arithmetic Library (GMPLib) [38]. This lib-
rary allows arithmetic operations on arbitrarily large numbers, and also contains
a number of convenient functions for different operations and representations of
large values. GMPLib is only limited by memory usage, which still has to be mon-
itored and maintained by the programmer.

While the library offers very low-level operations and functions in its mpn-
category, the mpz-category provides more easier to use functions and is assumed
to provide sufficient efficiency at this stage of the research on this topic. If a more
efficient practical attack is to be implemented in the future however, one may
consider migrating the code base to use mpn-functions.

It has to be noted that the operations provided by this library are in no way
atomic, in the sense that they do not represent one bit operation in the CPU or
ALU. Each function will in most cases perform many low-level operations in order
to calculate the results, and more operations will be needed as the size of the
operands grow larger.

4.1.3 Golang

Go, or Golang as its also called, is a higher level programming language developed
at Google Inc. It is a compiled language which aims to provide, among many other
things, good and accessible implementations of multi-threading or Go-routines as
they are called in Go [39].

It was chosen as the framework for orchestrating the experimental process of
this thesis, mainly because of its ability to easily produce cross-compiled binary ex-
ecutables for use on multiple platforms and its self resolving dependency-system.
Several run-time interpreted languages (such as Python and Bash) were considered
for this task, but Golang was chosen. The Go-framework written for this thesis will
be discussed in more detail later in this chapter, but the source code can be found
in Code listing A.5 in Appendix A.
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4.1.4 Amazon Web Services (AWS)

Amazon Web Services (AWS) is a well known cloud infrastructure provider run
by Amazon.com, Inc. [40] which provides many different services, both for com-
mercial use and for research purposes. Of special relevance to this topic was the
ability to rent highly powerful virtual hosts with up to 96 cores (or vCPUs) at spot
pricing. The AWS spot-price instance requests work by letting the customer send
a request for a certain virtual host type, with availability within a certain time-
frame. AWS accepts this requests and provides the requested computing power
whenever there is "left-over" capacity in their systems. Spot-price instances are of-
ten up to 70% cheaper than the equivalent on-demand price which enables more
quantitative data gathering to be done within the thesis given timeline and finan-
cial limits.

By default, AWS limits the amount of total vCPUs a user can utilise. A request
was sent to AWS for a limit increase to 2 ⇥ 96 = 192vCPUs. This was however
only partially fulfilled up to 172vCPUs.

AWS also conveniently allows for automatically running pre-programmed Launch
templates being executed upon an accepted request. In this way, the workload can
be executed as soon as the host is provided, without any user interaction. The
instance is terminated on the behest of Amazon, the set requested time limit runs
out, or the user terminates the request. The program continually writes results to
a mounted persistent cloud storage, which is available regardless of the host being
terminated. The host initialization routine written for the Ubuntu 20.04 LTS AWS
template is given in Code listing A.7.

There are several alternatives to AWS available, including Google GCP [41],
which may or may not provide the same type of functionality. No alternatives were
considered or tested for use in this thesis, due to the authors previous familiarity
with AWS.

4.2 Algorithms

In the following section descriptions and explanations of the programs algorithms
and corresponding software implementations are given. This includes some of
the existing algorithms, which was developed in [3], some of which has been
modified, and also a couple of new ones.

The main cryptanalysis program (main.c - often just referred to as the "main
program" in this thesis) is built on a number of different research papers as refer-
enced in Chapter 2. It simulates a BRM-based pseudorandom generator and the
encryption of a plaintext to produce a ciphertext. Next, it attempts to reverse the
process with only knowledge of the ciphertext and plaintext, in order to derive
the key.

In this section we will use the following symbols and abbreviations:

• p 2 {11,16, 20} - the polynomial degree of both LFSR
• n 2 Z+ - the search text length in bits
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• m 2 Z+, n
2 < m< n - the search pattern length in bits

• R2ini t 2 Z+, 0 < R2ini t < 2p � 1 - The initial state of the decimated LFSR,
R2, in decimal value.
• R1ini t 2 Z+, 0 < R1ini t < 2p � 1 - The initial state of the clocking LFSR, R1,

in decimal value.
• C - the set of R2 candidates where each candidate Ci consist of the tuple

R2i and the corresponding LFSRs output sequence R20...n.
• k 2 Z+, 0 < k < m - the number of allowed errors during the R2 candidate

selection.
• a 2 Z+, 0 <= a < (2p � 1) - the number of accepted ciphertext collisions

accepted when evaluating the R1ini t and R2ini t combinations.

For the experiments in this thesis, some of the algorithms "cheat" at certain points
in order to evaluate its own performance. When cheating, the program assumes a
priori knowledge that it would not have in an actual practical attack. An example
of this is assuming the knowledge of R2ini t in order to evaluate the selected set C
by checking if the real R2ini t has been added to C according to the H1-hypothesis
discussed in Section 2.4.4. Any source code or pseudo-code lines with such im-
plementations are clearly marked, both in this thesis and in the attached source
code.

The main program can be divided into the following overarching algorithms:

Step 1 - Create the target stream cipher system on which we will perform the attack.
Step 2 - Generate the set of R2ini t candidates, C , through ARBP search.
Step 3 - Test each candidate Ci 2 C against every R1ini t until a matching ciphertext

is generated in order to recover the correct clock sequence.

In addition to the main program an orchestration algorithm has been implemen-
ted, which runs the main program repeatedly with different input values in order
to perform the quantitative analysis.

The algorithm for calculating candidates for the initial state of the decimated
LFSR, R2, was implemented in [3], but the main focus of the thesis was an imple-
mentation in FPGA, which is not a topic in this thesis. While the implementation
in this thesis builds on previously developed software, many of the algorithms
have been replaced or restructured.

In the following sections some of the most important code snippets are shown
in the text, however, for brevity, not all functions are given in full. The full source
code can be found in Appendix A.

4.2.1 Polynomials

As shown in Section 2.2 the fact that the polynomial of the component LFSRs are
primitive is essential to the operation of the BRM cryptosystem. In the experiments
performed in this thesis the polynomial degrees are limited to p 2 {11,16, 20}.
The corresponding primitive irreducible polynomials are fetched from [42], which
in turn in derived from [43]. The polynomials are presented in Table 4.1 and im-
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plemented in the polyMap()-function in the main program. This function simply
sets an mpz_t-variable by the decimal value based on the polynomial degree given
as the first argument to the program. Then the bits of the binary representation
of the variable represents the LFSRs taps.

Table 4.1: Primitive irreducible polynomials p = {11, 16,20}.

p Polynomial Decimal
11 x11 + x8 + x6 + x5 + x4 + x1 + 1 1209
16 x16 + x9 + x8 + x7 + x6 + x4 + x3 + x2 + 1 33262
20 x20 + x9 + x5 + x3 + 1 524564

4.2.2 BRM simulation

At the base of the main program is the simulation of the Binary rate multiplier.
Recall Algorithm 2 given in Section 2.3.1. In the software implementation of the
main program given in Code listing A.3 in Appendix A, we can see that this is
the first task to be completed immediately after the variable settings and input
validations. As we can see from the software implementation of the algorithm,
given in Code listing 4.1, it differs slightly from Algorithm 2 in that it pre-generates
the output sequence of both LFSR instead of stepping it bit by bit. This may not
be a suitable implementation for a practical implementation of a stream cipher
system but it works for the pre-defined nature of the input data that is being used
in this thesis.

Code listing 4.1: BRM Simulation
1 ...
2 mpz_init(PLAINTEXT);
3 mpz_set_ui(PLAINTEXT, plain); //Prepare the plaintext
4
5 // SIMULATE THE BRM SYSTEM
6 mpz_t R1SEQ; mpz_init(R1SEQ);
7 lfsrgen(R1SEQ, deg, m, pol, R1STATE, 0, NULL); //Generate R1 output sequence
8
9 mpz_t R2SEQ; mpz_init(R2SEQ);

10 lfsrgen(R2SEQ, deg, n, pol, R2STATE, 0, NULL); //Generate R2 output sequence
11
12 mpz_init( CIPHER );
13 genEncrypt( CIPHER, R1SEQ, R2SEQ, PLAINTEXT, m); //Calculate ciphertext
14
15 mpz_clear( R1SEQ ); //Cleanup LFSRs
16 mpz_clear( R2SEQ );
17 ...

Here we see that all sequences used in the source code are generated using the
GMP-library, and defined and initialized by the data type mpz_t (a multiple pre-
cision integer) and the command mpz_init, which sets its initial value to 0. The
mpz_set_ui command given in line 3 of the code sets the mpz_t variable given as
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the first argument to the unsigned integer given in the second parameter. For the
experiments done in this thesis, the empty plaintext, PLAINTEXT= 0m is used.

Next, the function lfsrgen() is run for both R1 and R2 to produce their output
bit sequences R1i=0...m, R2i=0...n, based on the given R1ini t and R2ini t . We can recall
that the variable m, n

2 < m < n in order for it to have enough clocking bits for
the decimation process in the next step. Generally, if R1 satisfies Golomb’s first
postulate, m= n

2 +1 should always be sufficient. This boundary is always checked
as part of the input validation of the program.

The function genEncrypt() takes the previously generated sequences as its
input and calculates the decimated bit sequence, which in turn is XORed with
the plaintext and returned as the ciphertext and stored in the variable CIPHER.
The CIPHER variable is kept throughout the program and is considered as the
"intercepted" ciphertext when performing the full attack demonstration.

Finally, both the initially generated sequences of the clocking and clocked
LFSR are cleared from memory by the mpz_clear command. Normally, this is
also where the program would "forget" the initial states of the two LFSR, but as
mentioned earlier it will use these to validate results later on, in the evaluation
phase.

4.2.3 R2 Candidate generation

After the BRM system has been simulated and the ciphertext generated, we can
start the attack on the cryptosystem. For the attack we assume the a priori know-
ledge of the "intercepted" ciphertext, the plaintext and the design of the cryptosys-
tem, making it a known-plaintext attack, as discussed in Section 2.4.

The attack starts by performing the generalised correlation attack to generate a
set of possible candidates C for the decimated LFSR, R2. Recall the two hypotheses
discussed in Section 2.4.4.

H0 The intercepted sequence cannot be generated by the tested initial state.
H1 The intercepted sequence can be generated by the tested initial state.

The search pattern is the ciphertext generated in the previous step of the pro-
gram. The search text is the output sequence generated by R2 when iterating
through every possible initial state R2i , i = 1...(2p � 1). The error threshold k is
also defined. The candidate generation algorithm is given in pseudo-code in Al-
gorithm 4. Note that the pseudo-code is written in order to give the reader an
overview of the program flow, and as such, some of the functions and their ar-
guments are given implicitly. The full details can be found in the source code in
Appendix A.
As we can see in Algorithm 4, the pre-processing consists of running the genPre-
fixes()-function, which creates the prefix table, as demonstrated earlier in Fig-
ure 2.10. As we are only considering the binary alphabet for this application, the
resulting array B will always consist of two masks; the search pattern itself and
its complemented value.



38 Evensen, A. S.: Reconstruction of clock sequences in BRM

Algorithm 4: The candidate generation algorithm
input : CIPHER, k, p
output: the set of candidates Ci and the candidate counter u
Preprocessing:
B genPrefixes(CIPHER)
Candidate generation:
for i = 1...(p2 � 1) do

Create thread:
R2SEQ lfsrgen(R2i)
match arbp_search(B, R2SEQ, k)
Ci[SEQ] R2SEQ
if match= True then

Ci[match] True
else

Ci[match] False
end

end
for i = 1...(p2 � 1) do

if Ci[match] = True then
file write(Ci[SEQ])
if i = R2ini t then

found 1 // CHEAT
u u+ 1

end
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Next, the program loops through every possible initial state of R2 and for each
iteration the output sequence of R2 is generated to form the search text which is
used in the arbp_search()-function.

There are two essential differences in this implementation of the ARBP search
algorithm compared to the earlier proposed implementation in [3]. First of all,
every iteration of the first for-loop spawns its own pthread as long as there are
threads available in the thread pool. As discussed earlier, the thread pool is limited
to the amount of available CPU cores, or vCPUs1.

The second important difference, is the implementation of the Shift-OR al-
gorithm in the arbp_search()-function for updating the status words. In Code
listing 4.2 and Code listing 4.3 we can see a side-by-side comparison of the Shift-
OR and the Shift-AND code for exact match, or k = 0, respectively.

Code listing 4.2: OR k = 0
mpz_lshift( tmp1, m );
mpz_ior( tmp1, tmp1, B[Tii] );

Code listing 4.3: AND k = 0
mpz_lshift( tmp1, m );
mpz_setbit( tmp1, 0 );
mpz_and( tmp1, tmp1, B[Ti] );

In the code, tmp1 represents a temporary variable holding the current status
word. It is directly manipulated and written back through the given mpz_*-commands.
The variable B[Ti] is the pre-calculated prefix for the last read letter in the search
text. In the Shift-OR implementation however, the inverse prefix is used. This is
denoted B[Tii]. As can be seen in the code, it exploits the fact that, in the binary
case, the two prefixes for 0 and 1 will always be the inverse of each other. The vari-
able initialisation is shown in the code snippet below. This is a much more efficient
way to get the complement than using the relatively costly mpz_com()-function
[44] of the GMP library.

int Ti = mpz_tstbit( TEXT, pos );
int Tii = (Ti + 1) % 2;

As expected, the C-implementation of the Shift-OR algorithms exact match al-
gorithm is one operation shorter than the previous Shift-AND implementation,
as shown in Section 2.5.2. The exact match operation is performed n⇥ (2p � 2)
times (�2 because the 0-state is not used) during the R2-candidate generation. It
is easy to see that the performance of this operation is less important than that of
the approximate match operation with k-errors, as this is executed n⇥(2p�2)⇥k
times.

When the Shift-OR algorithm for approximate match is implemented with the
same constraints (OR1) as the previous implementation of Shift-AND, we see from
the code samples below that also the equivalent status word update function with
errors is shorter2. However, as pointed out in [2], setting a constraint that makes
sure a substitution edit-operation occurs after a match is more relevant in this par-
ticular application of the algorithm. The first constrained version (OR2), as it is

1This limit was determined through a trail-and-error approach by measuring the runtime of the
program on a dedicated host.

2This version of the program is compiled by default when running the make-command
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explained in Section 2.5.2, is shown in Code listing 4.63 Note especially the OR-
operation with R[i] and B[Tii]. As mentioned, B[Tii] is the complement value of
the prefix. Due to this operation, the constrained implementation can not use the
same shortcut as the simplified one, which is combining the deletion and substi-
tution operations. This results in the same amount of operations as the original
Shift-AND algorithm.

While performance has not been the main focus of this thesis, a best effort
has been made to make these operations as efficient as possible while still us-
ing the GMPLib functions. Detailed instrumentation and performance results are
presented in Section 5.2.

Code listing 4.4: OR1 k > 0
mpz_set(tmp1, oldR);
mpz_and(tmp1, tmp1, newR); //Del+Sub
mpz_lshift(tmp1, m);
mpz_set(oldR, R[i]);
mpz_lshift(R[i], m);
mpz_ior(R[i], R[i], B[Tii]); //Match
mpz_and(R[i], R[i], tmp1);
mpz_set(newR, R[i]);

Code listing 4.5: AND k > 0
mpz_ior(tmp2, oldR, newR); //Del+Sub
mpz_lshift(tmp2, m);
mpz_setbit( tmp2, 0 );
mpz_set(tmp1, R[i]);
mpz_lshift(tmp1, m);
mpz_and(tmp1, tmp1, B[Ti]); //Match
mpz_ior(tmp1, tmp1, tmp2);
mpz_set(newR, tmp1);
mpz_set(oldR, R[i]);
mpz_set(R[i], newR);

Code listing 4.6: OR2 k > 0
mpz_lshift(newR, m); //Del
mpz_set(tmp1, oldR);
mpz_lshift(tmp1, m);
mpz_ior(tmp1, tmp1, B[Ti]); //Sub
mpz_set(oldR, R[i]);
mpz_lshift(R[i], m);
mpz_ior(R[i], R[i], B[Tii]); //Match
mpz_and(R[i], R[i], tmp1);
mpz_and(R[i], R[i], newR);
mpz_set(newR, R[i]);

If we further constrain the Shift-OR as suggested as the modified attack in [2] the
code obviously gets even more complex. An experimental implementation of this
algorithm has been implemented in the program (OR3) and can be used by setting
both the -DSHIFTOR and -DCONSTRAINTS2 flags in the makefile before compil-
ation. As mentioned in Section 2.5.2, this approach requires an additional register
dmi = 1m, i = 1...k which also increases the amount of operations and memory
used for each run of ARBP. The suggested implementation is given in Code list-
ing 4.7. The first part shows the initialisation of the new status array dmi . The
process exploits the fact that R[0] = 1m at this point in the code which makes the
initialisation more efficient than using multiple mpz-functions in order to set the
bit mask. Note that the new deletion-operation requires significantly more opera-
tions (12) than the previously discussed OR1 and OR2 approaches. This may how-
ever be worth it if in fact the further constrained algorithm provides a candidate

3This version of the program is compiled by compiling it with the make or2-command.
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set C with fewer false positives than that of the less constrained implementations.

Code listing 4.7: OR3 k > 0
mpz_t* dm = malloc( (K)*sizeof(mpz_t) );
mpz_t del;
mpz_init(del);
int d = 0;
while (d<K) {
mpz_init(dm[d]);
mpz_set(dm[d], R[0]);
d++;
}
mpz_set(del, R[0]);

...

// Deletion
mpz_set(tmp2, oldR);
mpz_lshift(tmp2, m);

mpz_lshift(del, m);
mpz_setbit(del,0);
mpz_com(tmp3, del);

mpz_ior(tmp2, tmp2, tmp3);

mpz_lshift(dm[i-1], m);
mpz_setbit(dm[i-1], 0);
mpz_com(tmp3, dm[i-1]);

mpz_ior(tmp2, tmp2, tmp3);

mpz_setbit(tmp2, (m-1));

mpz_set(dm[i], del);

...

As we see in Algorithm 4 and Code listing A.3, all results Ci are stored in memory,
regardless of whether they are a considered a possible match (H1) or not (H0).
As we can not know beforehand how many candidates there will be in the set, we
always assume the worst case of 2p�2 and allocate the necessary memory on the
stack before executing the search algorithm. However, there is a boolean field in
the candidate struct, match that is set to True if the initial state has one or more
matches within the set error threshold, k. While memory usage has not been an
issue while running the experiments related to this thesis, the practice of allocating
more memory than needed may be improved upon in future developments of the
program.

After all initial states have been tested and stored in memory, the array of
2p�2 possible candidates is quickly iterated through once again in order to check
which are valid candidates (match = True) and to write these to a file on disk,
together with their corresponding output sequence. Here, the program "cheats" by
checking whether the actual initial state R2ini t is selected according to H1 for eval-
uation purposes. It is easy to imagine that the best set we can end up with contains
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only one entry, namely R2ini t . While this is a highly unlikely case, the aim turns
to finding the smallest possible set, that also contains R2ini t . In this loop, the total
number of candidates are counted and stored in a temporary variable u, which
is helpful in determining the next steps. The file is saved as a CSV-formatted list
with the .cand-extension which contains the initial state in decimal and the output
sequence in a base-62 encoding as defined in [45]. This feature is primarily inten-
ded for adding the possibility of distributing the steps of the cryptographic attack
between different hosts; e.g. host1 creates candidate-files and multiple hosts test
clock sequence reconstructions. This particular form of load balancing was not
tested in this thesis, but may be relevant in future studies on the topic.

Finally, we evaluate the results found in the previous routine based on the
variable u. This is done according to the following decision flow:

Algorithm 5: Decision flow to determine whether or not to continue to
the next step

input : found, u - the amount of candidates in Ci
output: the next step
switch u do

case 0 do
No candidates found
return �1

end
case u= (2p � 2) do

Full set - All initial states are candidates
return �2

end
case found != True do

The actual initial state R2ini t is not in the set //CHEAT
return u

end
otherwise do

continue
end

end

As we can see, any set that satisfies 0 < u < (2p � 2) and R2ini t 2 Ci are con-
sidered valid and allows the algorithm to continue. In the cases of invalid sets,
the program exits with different return values in order for the user running the
software to determine the cause. The return codes and program are structured
in a machine readable way in order to enable wrapping of the program. As will
be demonstrated later in this thesis, the wrapping program for evaluation and or-
chestration depends on this return value in order evaluate and determine the next
step. In order to get a more human-readable output from the program, it can be
compiled with the make debug command. In the case of a valid set the programs
execution continues and initiates the clock sequence reconstruction algorithm.
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4.2.4 Clock sequence reconstruction

As stated in Section 1.5, RQ2 asks whether a practical attack on irregularly clocked
stream ciphers based on BRM can be implemented and tested using brute-force in
software. In the case of a valid candidate set produced from the previous algorithm
it is easy to perform a brute-force attack by testing every initial state of R1 against
the elements of the candidate set Ci as shown in Algorithm 6.

Algorithm 6: Brute force attack on the system
input : Ci and the intercepted ciphertext
output: matches
for R2i 2 Ci do

X  Ci[SEQ]
Create thread:
for j <= (2p � 2) do

Y  lfsrgen(R1 j)
Z  genEncrypt(X, Y)
if Z = CIPHER then

R2i and R1 j produces the ciphertext
else

R2i and R1 j does not produce the ciphertext
end

end
end

As we can see, the algorithm iterates recursively through all candidates of C . For
every candidate, it reads the stored output sequence X = Ci[SEQ] and then ini-
tiates another multi-threaded loop to iterate through every candidate for R1ini t ,
R1 j = 1...(2p � 1). The looped function is called match_R1() in the source code.
The function first creates the output sequence for the clocking LFSR, Y = lfsrgen(R1 j),
then decimates the R2 candidate sequence and encrypts the known plaintext to
produce a ciphertext, Z . When this is done, the only thing that remains to do is to
determine whether or not the intercepted ciphertext matches the newly generated
one.

A problem that may appear, especially when analysing shorter sequences, is
collisions. A collision occurs when a multiple keys, when encrypting the same
plaintext, produce the same ciphertext. This in turn results in the program return-
ing a false positive combination of R2i , R1 j where R1 j 6= R1ini t or R2i 6= R2ini t ,
or both. It is easy to imagine that the shorter the known plaintext m is, the more
likely a collision will be as the total combinations of possible output sequences
become lower. In the practical application of longer sequences of hundreds or
thousands of bits, collisions are increasingly unlikely. As the actual input R1ini t
and R2ini t is still stored in memory, as mentioned earlier, it is possible to "cheat"
in order to detect and analyze the occurrence of collision. In the program, a col-
lision is detected by determining whether the produced sequence Z = CIPHER is
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in fact produced by R1ini t and R2ini t , which would not be possible in a practical
approach. For the sake of the experiment, the program iterates through every pos-
sible R1 initial state in order to be able to quantify the amount of collisions. This
metric may be useful for future implementations of a practical approach.

In a practical approach, when R1ini t is truly unknown, a possible algorithm
may simply be to iterate sequentially or randomly through the states R1 j=1...(2p�1)
given the knowledge of which combination of error threshold k and known plain-
text length m is likely to not produce collisions. Another, more solid approach is to
use the already implemented collision threshold value, a, when running the pro-
gram. This value can be used by keeping the loop running, even though a match
has been found, until we reach a threshold of

a <
2p � 2

matches

4.3 Evaluation algorithm

The main program discussed in the previous section simulates the BRM-based
cryptosystem and performs the attack with a given error threshold for the ARBP
search algorithm. As we have seen, the total execution time for the brute-force
approach proposed in Section 4.2.4 depends heavily on the resulting candidate
set. In research question RQ1 of this thesis we ask if an arbitrary optimal decision
rule for selecting the set of candidates for the initial state of R2 can be determined.
E.g. given a known plaintext of length m and an intercepted ciphertext of length n,
is it possible to define an ideal threshold value k in order to produce the minimal
set C which satisfies R2ini t 2 C with the total size of C , |C | approaching 1?

In an attempt to answer this, a special evaluation algorithm was developed.
The algorithm simply aims to execute the main program multiple times with dy-
namically set input parameters, depending on the results from the previous run.
The algorithm is implemented in Golang as a wrapper around the main program
and the source code can be found in Code listing A.5 in Appendix A.

The algorithm executes dynamically, in a seeking manner, in order to find the
best settings for the given input data. A snippet of the code is given in Code
listing 4.8 for explanatory purposes. Some parts have been omitted for brevity
(marked by ...).
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Code listing 4.8: Seeking algorithm for analysis
1 for m <= stop_m {
2 n=2*m
3 bottom := 0
4 var resmap = make([]int, x-1)
5 var i int = int(float32(m)/float32(k))
6
7 SeekErrors:
8 for true {
9 if resmap[i] == 1 {

10 i++
11 continue SeekErrors
12 }
13 search_start := time.Now()
14 cmd := exec.Command("./main", strconv.Itoa(deg), strconv.Itoa(x), strconv.Itoa(n

,! ), strconv.Itoa(i), strconv.Itoa(r1), strconv.Itoa(r2), strconv.Itoa(
,! col_accept), strconv.Itoa(cpus))

15 ...
16 if res >= 1 {
17 status = "invalid_no_r2"
18 fmt.Printf("[m=%d,n=%d,k=%d]�FAILED:�Set�of�%d/%d�contains�no�actual�R2STATE...

,! �\n", x, n, i, cands,max)
19 } else if res == -1 {
20 status = "invalid_zero_set"
21 bottom = 1
22 fmt.Printf("[m=%d,n=%d,k=%d]�FAILED:�Zero�candidates...�\n", x, n, i)
23 } else if res == -2 {
24 status = "invalid_full_set"
25 fmt.Printf("[m=%d,n=%d,k=%d]�FAILED:�Too�many�candidates...�\n",x, n, i)
26 } else if res == -3 {
27 status = "invalid_collisions"
28 fmt.Printf("[m=%d,n=%d,k=%d]�FAILED:�Set�of�%d/%d�contains�collisions...�\n",x,

,! n, i,cands,max)
29 } else if res == 0 {
30 status = "valid"
31 fmt.Printf("[m=%d,n=%d,k=%d]�SUCCESS:�Set�of�%d/%d�is�valid!\n",x, n, i,cands,

,! max)
32
33 }
34 resmap[i] = 1
35 logline = fmt.Sprintf("%d,%d,%d,%d,%s,%d,%d\n",x,n,i,cands,status,duration,cpus)
36 writeLog(fname, logline)
37
38 if res >= 0 && bottom == 0 {
39 i--
40 } else if res == -2 && bottom == 0 {
41 i--
42 } else if res >= 1 {
43 i++
44 } else if res == -1 {
45 i++
46 } else if res == -2 {
47 break
48 } else if res == -3 {
49 break
50 }
51 }
52 m=m+20
53 }
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The program takes as its input all the same parameters as the main program, as
listed in the beginning of Section 4.2. In addition, a value stop_m is set, which tells
the program where to stop the analysis cycle. In the supplied code, the m variable
is increased by 20 for each iteration, which was chosen for the experiments in this
thesis. An initial error threshold i is also determined based on the input m and the
initial error threshold factor k, i = m

k where k instead of being an absolute value
of the amount of errors accepted, represents a ratio of the bit sequence length
m (represented by the temporary variable x in the code. The number of vCPUs,
which determines the size of the aforementioned thread pool, are automatically
determined by the simple Go-function given below.

Code listing 4.9: Automatic detection of cpus
1 cpus := runtime.NumCPU()

The output of the evaluation algorithm is a CSV-formatted log file which is written
to in an iterative manner while the algorithm is executing. A sample of a log file is
shown in Code listing 4.10 with headers shown in the first row. The values stored
in the file are the input values m, n and k and the following resulting output values

• #cand - number of candidates in Ci .
• status - a status word indicating the validity of the set.
• runtime - the time taken, in nanoseconds, to execute the full algorithm

(including the brute force of R1).
• #cpus - the amount of vCPUs available to the program. This is essential in

order to create context to the execution time, when comparing results from
different hosts.

The degree, p, the known plaintext length m and the initial states R1ini t , R2ini t ,
along with the chosen maximum n value are all stored in the filename. The colli-
sion acceptance threshold, a is also shown in the filename, although it is always
set to a = 0 in the experiments performed in this thesis. The filename is stored in
the format p_R1ini t_R2ini t_m_mmax_a.log.

Code listing 4.10: Sample of CSV-formatted log file
1 m,n,k,#cand,status,runtime(ns),#cpus
2 38,77,12,1977,valid,8637,16
3 38,77,11,1675,valid,6213,16
4 38,77,10,983,valid,4907,16
5 38,77,9,463,invalid_no_r2,23132,16
6 38,77,8,118,invalid_no_r2,27642,16
7 38,77,7,79,invalid_no_r2,24260,16
8 38,77,6,0,invalid_zero_set,21678,16
9 38,77,13,2047,invalid_full_set,24122,16

As we can see in the sample, the algorithm starts with the settings:

m= 38, n= 77, i = k =
m
3
=

38
3
⇡ 12

As this returns a valid set of |C |= 1977 candidates out of 2p�2= 2046 possible,
the algorithm reduces the error threshold i in the next iteration to see if it is
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possible to create a smaller, valid set. This is true for i = 11, i = 10, but when i = 9
we see that the "cheating" mechanism determines that in the set of |C |= 463, the
actual R2ini t is not present. The algorithm continues reducing i until it reaches
the "bottom", the zero-set, which is indicated by setting the bottom variable to
1. When the zero-set is found, the algorithm needs to determine at what point
it reaches the opposite end, the full-set, when the number of candidates equals
2p �2. When both the "top" and "bottom" has been found, m is increased and the
seeking process repeated until m= stop_m is reached.

4.4 Task separation

The attack described in this thesis consists of multiple stages, as described in Sec-
tion 4.2. Step 2 (the candidate generation for R2) and step 3 (the clock sequence
reconstruction) are especially time consuming. Both in a practical attack and when
researching this topic, it can be useful to separate these tasks. For example, a re-
searcher may want to generate one or multiple candidate sets with different input
settings and then run multiple instances of the clock sequence reconstruction at
a later stage. This is solved in the program by saving the candidates from step
2 in the .cand-files explained in Section 4.2.3. Furthermore, the program can be
compiled with the -DREADCAND option through the make read-command on the
hosts that will read the files. This option changes the program to expect an input
file instead of generating the set. Note that the program still needs to given all the
input parameters, matching that of the .cand-file, except for the error threshold k,
which is only relevant for the ARBP-process which is now skipped. This could be
improved upon in the future by having the program parse the correct settings from
the filename of the input file, but is not important at this stage of the research.

4.5 Cloud orchestration

As the previously described set of programs have been designed with the possib-
ility of being load distributed over multiple hosts, it is possible to run it with high
capacity in the cloud. While the full potential of cloud computing still remains
to be exploited for this particular application, a function for load distributing the
analysis program in the cloud has been implemented.

This works by having the program read "jobs" from a shared job-file which is
stored in a storage that is common for all the running hosts. Specifically for the
tests that have been run for this thesis, this is implemented in AWS by mounting
a shared Elastic File System (EFS)[46] on all tasked hosts, which contains the job-
file. The EFS is AWS’ equivalent of the more commonly known Network File System
(NFS). The jobfile is formatted in the following manner:
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Code listing 4.11: Sample of CSV-formatted job file
1 p,m,n,k,stop_n,R1init,R2init,a,mode
2 ...
3 11,32,801,3, 900,100,1000,0,or1
4 11,32,901,3,1000,1000,1000,0,or1
5 16,32,64,3,100,1000,1000,0,or1
6 16,32,100,3,200,1000,1000,0,or1
7 ...

The running instances reads the top line of the file as its input parameters, deletes
the line and writes the file back to the shared storage. In this procedure there
remains a risk of a race condition, however it is deemed unlikely, as the jobs takes
long time to execute and the job file is not accessed very often. However, this may
have to be taken into account if starting up multiple instances at exactly the same
time, or if it is shared among a high number of hosts simultaneously.

As mentioned in Section 4.1.4, we utilise the spot instance function in AWS
by automatically launching instances according to the template defined in Code
listing 4.12.

Code listing 4.12: AWS Launch template Bash script
1 #!/bin/bash
2 apt-get update
3 apt-get install -y libgmp-dev build-essential nfs-common golang-go
4 cd /home/ubuntu
5 su ubuntu -c "git�clone�-b�evaluate�https://github.com/philedem/BRM_Code"
6 cd BRM_Code/evaluation/src
7 mkdir data
8 mount -t nfs4 -o rsize=1048576,wsize=1048576,hard,timeo=60,retrans=2,noresvport \
9 fs-xxxxxxxx.efs.eu-north-1.amazonaws.com:/ /home/ubuntu/BRM_Code/evaluation/src/

,! data
10 chown ubuntu data
11 chgrp ubuntu data
12 su ubuntu -c "go�run�analysis.go"

As the script shows, it pulls the whole software package related to this thesis
from its Github repository. It also has to install the programs dependencies, as
the host (Ubuntu 20.04 LTS) operating system is a completely clean install on
initial launch. Next the mount command is run to mount the shared EFS to the
operating system. Finally the analysis program is run with the go run command
which self-resolves any Golang dependencies, compiles and immediately runs the
program. As the analysis program itself first compiles the main program main.c
with the provided mode (the last value in the job-line), this procedure should be
easily adaptable to many different Linux and UNIX based platforms.
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Results

In this chapter the results from the experimentation process will be presented.
The first part briefly presents the results of the initial qualitative phase, where the
software implementation was developed. The rest of the chapter shows the results
of quantitative testing of the software in different modes of operation. Some of
the results will be briefly commented upon in this chapter, however the overall
results are further discussed and analysed in Chapter 6.

5.1 Software development

As mentioned in Chapter 3, the project has followed an exploratory mixed-methods
design. As such, the first phase entailed the qualitative data collection and analysis
of the existing and evolving software. This was performed alongside several itera-
tions of the development cycle. The results from this phase are represented as the
software design itself as presented in Chapter 4, derived from what has been im-
plemented before and the theories found in the literature. While the performance
aspect of the software implementation has not been the main focus in this thesis,
a best-effort approach has been used in order to make the program as efficient
as possible under the constraints of using the C programming language with the
GMP Library in CPU. The most important details of the program performance is
presented in the subsequent section of this chapter.

The results of the qualitative phase also includes some preliminary results de-
rived from repeated experimental testing with different values of static variables
throughout the development iterations. One such variable is the chosen error ra-
tio, related to the length of the known-plaintext. This metric is an important vari-
able which marks the starting point for the analysis program which was described
in the previous chapter. According to theory, if given a long enough bit sequence
m the amount of decimated bits should be k ⇡ m

2 . However, it was found that for
the AND and OR1 algorithms the best starting point is closer to k ⇡ m

4 . For the
more constrained algorithms OR2 and OR3, the error ratio was found to be best
somewhere in between m

3 < k < m
2 . This is likely due to the fact that with fewer

constraints, the fewer false positives are produced. This should then in turn lead

49
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to a better selection of the R2-candidate set, C . This theory will be tested in the
quantitative analysis part of this chapter.

Through the testing done on the finished multi-threaded software it is appar-
ent that even when running the algorithms on the full 172 vCPUs allocated by
AWS, running it with polynomial degrees higher than p = 16 is still highly inef-
fective. Therefore, the quantitative experiments will primarily focus on the testing
of p = {11, 16} with the polynomials presented in Section 4.2.1. A few tests may
however be done with p = 20 for comparison. It has also been determined that
sequence lengths of m = 100...300 appear suitable for gaining enough data for
quantitative analysis over the chosen polynomial values. While a realistic attack
may involve much longer sequences, depending on the known plaintext, the range
determined here is likely in the lower end of the spectrum. For example, 300bits
equal 300

8 = 37.5 ASCII formatted characters or just fractions of a second of a
8kbps telephone call. Still, the results found in this thesis should give an indica-
tion of the potential of attacking longer sequences.

5.2 Performance

In this section the results related to the performance of the cryptoanalytical attack
are presented. First, the results of changing from Shift-AND to Shift-OR are presen-
ted. Next, we look at the performance improvement pertaining to the implement-
ation of multi-threading in the main program. Finally, the overall performance of
the full brute-force algorithm to reconstruct R1 is presented. The execution time
measurements in these experiments are based on a real-clock offset, by calculat-
ing the difference in start time and end time on the system running the tests. This
method was chosen because the measurement based on CPU operations Rops be-
come highly impractical when measuring multi-threaded programs. All execution
times are presented displayed in seconds (s) in the thesis and in nanoseconds (ns)
or microseconds (µs) in the attached raw results in Appendix B.

5.2.1 ARBP performance

One of the contributions in this thesis is the implementation of the Shift-OR al-
gorithm into the software. The program can still however be compiled with the
Shift-AND algorithm as previously implemented in [3] by compiling it with the
make and-command in place of the standard make which defaults to Shift-OR.

The performance comparison of the Shift-AND and two variants of the Shift-
OR implementation is shown in the graphs below. The measurements were made
on a 2,4GHz Intel Core i9 MacBook Pro. The experiment was deliberately done
in single-core mode by disabling the implemented multi-threading in order to get
a more realistic comparison of the three implementations. The method of instru-
mentation was done by inserting a real-clock time measurement in the program
around the section being examined, as shown in Code listing 5.1. The input para-
meters and settings used in the experiment is shown in Table 5.1.
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Table 5.1: Input parameters for the experiment.

deg {11,16}
m 100...300 (interval of 20)
n 2⇥m
k m÷ 4
R1ini t 100(dec) = 00001100100(bin)
R2ini t 100(dec) = 00001100100(bin)

Code listing 5.1: Generic example of instrumentation
1 struct timeval start, end;
2 gettimeofday(&start, NULL);
3 ...
4 // [measured code block]
5 ...
6 gettimeofday(&end, NULL);
7 long seconds = (end.tv_sec - start.tv_sec);
8 long micros = ((seconds * 1000000) + end.tv_usec) - (start.tv_usec);

One important note is that the setting of k = m
4 is not the correct setting for every

algorithm and will in many cases create an empty or otherwise invalid set C . The
resulting C is however of no importance for this performance measurement, as
the most important aspect of performance comparison is that all the algorithms
perform the same amount of operations. As we have seen from the theory and im-
plementation earlier, all candidates for R2ini t are tested in all cases, so the amount
of operations will always be O(n⇥ (2p � 2)⇥ k).

In Figure 5.1, the dotted line represents the Shift-AND measurements (AND),
the dashed line the equivalent Shift-OR implementation (OR1), and the solid line
the additionally constrained Shift-OR implementation (OR2).

As we can immediately see, the OR2 execution time is significantly higher even
though their implementations use the exact same amount of operations in their
respective status word update functions, as was shown in Code listing 4.5 and
Code listing 4.6. This effect is attributed to the fact that the latter contains an extra
mpz_lshift()-operation, which as the name suggests, left-shifts the input value.
The extra left-shift operation is due to the addition constraint in the substitution
operation which requires us to OR the left-shifted value of the previous status
word with the complement of B[i]. The GMP Library has no native implementation
of the left-shift operation, therefore a function for this was implemented in [3].
Within this function, several calls are made to different GMPLib-functions, making
it a computationally costly function to use. This could possibly be improved upon
in future studies but has not been a focus in this thesis.

The execution times of the equivalent implementations of AND and OR are
very similar. Although, while barely discernible in the graph, the data shows that
Shift-OR performs slightly better in this experiment. As the experiment was run
on an operating system that also has to handle other tasks, other system pro-
cesses may have introduced a slight bias to either one even though the systems
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Figure 5.1: The execution time comparison of the Shift-AND, Shift-OR and Shift-
OR with additional constraints when p = 11.

runtime conditions were kept as similar as possible for the two experiments. The
apparent equivalence of the two does however emphasise the importance of the
previous observation that the mpz_lshift()-operation is very costly in its current
implementation. It is also noteworthy, although quite evident from the previously
discussed theory, that execution times are non-linear in nature due to the amount
of allowed errors k has to increase as m is increased, as illustrated in the formula

O(n⇥ (2p � 2)⇥ k) �! O((m⇥ 2)⇥ (2p � 2)⇥ (m
i
))

where i is the temporary ratio of k, initially set to 4 in this experiment.
The same test was also run for the comparison of Shift-AND and the equivalent

Shift-OR algorithm with p = 16 as shown in Figure 5.2. As this is much more time
consuming to run in single-core mode, only the two fastest version were tested for
performance. We can however assume, based on this, that the relationship would
be similar to what was shown in Figure 5.1.

From the Figure 5.2 we can observe that the execution times with p = 16 are
much higher than that of the results observed when p = 11, as expected. When
we look at the equation below, we would expect the p = 16 execution time to be
approximately 32 times slower.

(2⇥ 100)⇥ (211 � 1)⇥
Å

100
4

ã
= 200⇥ 2047⇥ 25= 10235000

(2⇥ 100)⇥ (216 � 1)⇥
Å

100
4

ã
= 200⇥ 65535⇥ 25= 327675000

327675000
10235000

⇡ 32
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Figure 5.2: The execution time comparison of the Shift-AND and Shift-OR (OR1)
when p = 16.

The equations below show the measurement comparisons of p = 11, p = 16 for
some selected values of m.

t(100)11 = 12.42s, 12.42s⇥ 32⇡ 397.44s(OR1)

t(100)16 = 421(OR1)
421

12.42
⇡ 34

t(200)11 = 83.41s, 83.41s⇥ 32= 2669.12s(OR1)

t(200)16 = 2794(OR1)
2794
83.41

⇡ 33

t(300)11 = 250s, 250s⇥ 32= 8000s(OR1)

t(300)16 = 8895(OR1)
8895
250

⇡ 35

As we can see, the prediction of the algorithm being 32 times slower when running
with p = 16 holds within an acceptable degree. The small deviation is attributed
to the fact that the complexity only factors in the ARBP process of the program.
Some parts, such as generation of LFSR output sequences will also contribute to
an overall slower execution time.



54 Evensen, A. S.: Reconstruction of clock sequences in BRM

5.2.2 Multi-threading

As we have seen in the previous section, the candidate generation algorithm
(ARBP) is computationally costly to run. While there are surely ways to improve
this by fine-tuning the code or implementing it directly in machine code, the most
impactful way to improve the overall efficiency is probably by utilising multi-
threading in CPUs. In theory, the original complexity of the ARBP process O(n⇥
(2p � 2)⇥ k) should be reduced to

O
Å

n⇥ (2p � 2)⇥ k
c

ã

where c is the amount of cores, or vCPUs, made available to the program.
We compare the results in the previous section with the multi-threaded version

in the graphs below. The following tests were run on a dedicated virtual host
in Amazon Web Services (AWS), on a c5a.4xlarge-instance. This instance type
provides 16 vCPUs and 32GB of memory.

Figure 5.3: The execution time comparison of the Shift-AND, Shift-OR and Shift-
OR with additional constraints when p = 11 with Multi-threading enabled.
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Figure 5.4: The execution time comparison of the Shift-AND, Shift-OR and Shift-
OR with additional constraints when p = 16 with Multi-threading enabled.

As we can see in Figure 5.3 and Figure 5.4 the execution times have been drastic-
ally reduced. In the equations below, the single-core (denoted SC) measurements
are compared with the multi-threaded (denoted MT) measurements for selected
m values.

t(100)16 = 421s (OR1 SC)

t(100)16 = 38s (OR1 MT)
421s
38s

⇡ 11

t(200)16 = 2794s (OR1 SC)

t(200)16 = 273s (OR1 MT)
2794s
273s

⇡ 10

t(300)16 = 8895s (OR1 SC)

t(300)16 = 887s (OR1 MT)
8895s
887s

⇡ 10

The results show that the total average performance increase is around a factor of
10. This is somewhat less than what was expected from a 16 core dedicated host,
but still a significant improvement from that of the single core implementation.
The deviation from the theoretic performance is likely because of a bias intro-
duced by the virtual operating systems system-tasks interfering with some of the
programs threads. It could also be caused by the operation of the virtual cores al-
located by AWS. As these are part of virtual resource pools some of the cores may
be affected by outside factors such as the physical CPUs operating temperature or
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power available.

5.3 Candidate generation

In this section, the results from the evaluation of the four different ARBP imple-
mentations are evaluated. Recall Section 2.4.4 on Statistical attacks. The process
of generating the set C is essentially generating the output sequence of R2i=1...n
of every possible initial state of the R2 LFSR and deciding on one of the two hy-
potheses :

H0 The intercepted sequence cannot be generated by the tested initial state.
H1 The intercepted sequence can be generated by the tested initial state.

The decision is based on the selected approximate search algorithm being used
and the error threshold parameter, k. An additional parameter a was also intro-
duced in this thesis to measure the amount of collisions when testing whether
ciphertext collisions occur when testing the output sequences of R1 and R2. As
explained earlier, while the more complex implementations of the Shift-OR al-
gorithm are slower in execution time, they may make up for it by creating smaller
valid candidate-sets C . Recall Chapter 2; The optimal set C is the minimal size |C |
which also contains the actual R2ini t 2 C and ideally |C |= 1, Ci = R2i = R2ini t .

The preliminary experiment for determining the ideal settings of k compared
to the values m, n was run by a slightly modified version of the program, which
stops the program after the candidate-set C has been generated. The modified
version excludes the check for possible collisions when running the full attack, as
this will not be applicable before the clock reconstruction is introduced in the next
section of this chapter. The tests were run simultaneously over multiple AWS hosts
of the type c5.18xlarge, providing 72 vCPUs and 144GB of memory, each. The
execution of the experiment was orchestrated through the jobs-file, as explained
in Section 4.5. The seeking algorithm to dynamically change the value of k is
explained in Section 4.3. The initial input parameters are given in the table below.

deg {11,16}
m 100...300 (interval of 20)
n 2⇥m
k m÷ 3 initially
R1ini t 100(dec) = 00001100100(bin)
R2ini t 100(dec) = 00001100100(bin)

Table 5.2: Input parameters for the experiment.

In the first experiment the comparison of the three Shift-OR algorithms and the
resulting candidate set size, |C |, is tested. The Shift-AND mode is excluded from
this experiment, as we already know from the theory that it gives the same results
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as the OR1 version of the Shift-OR implementation.
The graphs in Figure 5.5 and Figure 5.6 display the value |C | on the Y-axis and

the m-value in intervals of 20 on the X-axis for p = 11 and p = 16, correspondingly.
Only the valid sets are shown as dots on the Y-axis, while any invalid sets are
hidden. Each point is marked with its corresponding error threshold value k and
a line is drawn through the minimal, and most ideal sets.
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Figure 5.5: A comparison of the generated sets of R2ini t candidates with corres-
ponding k values when p = 11.
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Figure 5.6: A comparison of the generated sets of R2ini t candidates with corres-
ponding k values when p = 16.
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The first observation we can make from the graphs is that the OR1 and OR2 graphs
are the same, while OR3 differs significantly. As the constraints introduced in OR2,
compared to OR1 only affect the special case where a substitution occurs after
a match and we are analysing relatively small amounts of errors, this may be
natural. This observation will be further addressed in the next chapter. However,
as a result of this, in the further graphs OR1 is omitted and only OR2 and OR3
are compared.

Figure 5.7: A comparison of the kratio m/k for p = 11.

Figure 5.8: A comparison of the kratio m/k for p = 16.

The graphs in Figure 5.7 and Figure 5.8 shows the compared ratio kratio =
m
k for

OR2 and OR3. These values show the relationship between k and m, in order to
give an indication of how many errors need to be accepted by the ARBP algorithm
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in order to produce the optimal set C . As we can see from the equation, the lower
the value of kratio, the more errors need to be allowed. As we can see in the
graph, the OR2 algorithm is much more permissive of errors. This is as expected
as the more permissive constraints open up for more false positives, which should
be showing through the Cratio metric.

The next set of graphs show the relationship Cratio =
|C |
(p2�2) . This relationship

is a measure of the amount of candidates selected according to the H1 hypothesis
compared to the total possible candidates. Ideally this number is as low as pos-
sible, which indicates a more ideal set for the clock sequence reconstruction phase
which is the next step of the cryptanalysis. The graphs show the Cratio value for
the minimal valid sets measured.

Figure 5.9: A comparison of the Cratio = |C |/(p2 � 2) for p = 11.

Table 5.3 and Table 5.4 shows the average results of the candidate set generation.
The table shows the average |C | and the average values of k and |C | with relation
to the tested m-values for OR2 and OR3, respectively.

Table 5.3: The average values of Cratio, kratio and |C | for valid sets over the tested
space m= 100...300 using the OR2 algorithm.

p avg(|C |) avg(Cratio) avg(kratio) CI(kratio) 95%
11 695 0.33939 3.81887 ±0.08591
16 20709 0.31600 3.59314 ±0.07400

Table 5.4: The average values of Cratio, kratio and |C | for valid sets over the tested
space m= 100...300 using the OR3 algorithm.

p avg(|C |) avg(Cratio) avg(kratio) CI(kratio) 95%
11 1156 0.56455 2.50033 ±0.02007
16 14790 0.22568 2.58796 ±0.06467
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Figure 5.10: A comparison of the Cratio = |C |/(p2 � 2) for p = 16.

As we can see, when measuring by the Cratio-metric the OR3 algorithm outper-
forms the OR2 algorithm for p = 16, but performs worse in p = 11. The average
kratio confirms what we saw in the previous graphs; that the OR3 algorithm al-
lows fewer errors than that of OR2. While the Cratio-metric says something about
the quality of the selection, the average kratio is important to analyse which initial
setting of k is to be used to increase the chance of generating the optimal set C .
These results will be further discussed and analysed in Chapter 6.

5.4 Clock sequence reconstruction

The implementation of the clock sequence reconstruction is a brute-force attack,
using the generated candidate set C and testing every possible R1ini t , as explained
in Section 4.2.4. The complexity of this attack O((2p�2)⇥ |C |) is a linear relation-
ship of the total possible initial states of R1ini t 2 GF(2p) and the total candidates
in C , |C |. The program executes the attack using multi-threading by letting each
thread perform the brute-force procedure for one candidate, Ci .

As mentioned earlier, in the classical dynamic programming-approach to crypt-
analysis of irregularly clocked stream ciphers it is possible to backtrack through
the matrix of errors when generating the candidate set for R2 in order to determine
the clock sequence. The possibility of a similar approach for the bit-parallel search
approach was investigated in the project planning for this thesis. However, such an
attack becomes inherently difficult when working with binary operations as most
are impossible to reverse without knowing the previous state. An approach to the
problem that might work is to keep a separate matrix of transitions (substitutions,
deletions and matches) used to reach a valid approximate match. Such an approach
may lead to a significant performance improvement to the clock sequence recon-
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struction phase at a decent time and memory tradeoff in the candidate generation
phase.

5.4.1 Performance

The first performance measurement for the clock reconstruction was the test of
execution times when performing a full brute force procedure with an arbitrary
initial state. A full brute force means that it will always test every candidate in C
against every possible initial state of R1. By doing this the computational complex-
ity will always be the worst case O((2p�2)2). This differs from the more practical
attack where we use the reduced R2ini t candidate set C and also interrupt the
brute force process as soon as a matching ciphertext is found. The full approach
is still useful however, if one wants to assess the performance and the possibility
of collisions.

For the experiment, we compile the program with the make read command,
which tells the program to read a previously generated candidate-file (.cand) into
memory. The goal of the test is to analyse how the performance decreases with
higher degrees of LFSR, p and increasing lengths of ciphertext m. The length of
the intercepted ciphertext m is an important factor, as the algorithm needs to
generate an equally long candidate ciphertext and compare it with the intercepted
ciphertext for every pair of R1ini t and R2ini t 2 C .

In order to make the results comparable, "fictional" candidate files have been
crafted1, which contains the full set |C | = (2p � 2) for three different values of
p and m. The test was run on a dedicated AWS host of the type c5.24xlarge,
providing 96 vCPUs and 192GB of memory. The testing parameters were as given
in Table 5.5.

Table 5.5: Input parameters for the experiment.

deg {11,16}
m {100, 150, 200}
n 2⇥m
R1ini t 100(dec) = 00001100100(bin)
R2ini t 100(dec) = 00001100100(bin)

Table 5.6: Brute force performance experiment 1

p m= 100 m= 150 m= 200
11 1.70s 2.64s 19.96s
16 224.45s 2259.70s 23908.00s

1These sets were hand-crafted by the author, as the program normally will discard any full-
set result from the ARBP-search procedure. Therefore, the crafted sets used in this experiment are
supplied together with the source code of this thesis.
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There was also an intention to test this experiment with p = 20, however, due
to the time required to compute p = 16 and the given financial limits given in
Section 3.3.1 this was not possible. This may however be an experiment to be
considered for future research on the topic.

In order to investigate the results from the previous experiment further, an-
other experiment was constructed in order to perform more detailed instrument-
ation of the implementation. Recall from Section 4.2.4, each thread i performs
the following steps on one candidate R2 output sequence generated by R2i 2 C:

S1 Generate the output sequence of R1, R1seq, given the initial state R1 j .
S2 Encrypt the known plaintext with R1seq and the tested R2i to generate a

candidate ciphertext Z 0.
S3 Compare the candidate ciphertext Z 0 with the intercepted Z ciphertext.

In this experiment the execution time of each of these steps, the total execution
time for one iteration (denoted I in the tables) of the test (R1 j�R2i = Z 0 ?= Z) and
the total thread (denoted T in the tables) execution time were measured in micro-
seconds in a single-core setup on a 2,4GHz Intel Core i9 MacBook Pro. Specifically,
the test is implemented by inserting a real-clock time measurement function into
the threaded function at the different measurement points, as demonstrated in
Code listing 5.1. As the instrumentation itself introduces a few extra operations
and may cause a minor increase in execution times, only one element was meas-
ured at a time. In this experimentation the p = 20 version is also included as the
analysis only requires partial execution of the whole reconstruction procedure.

The results in the following tables are presented as the average times (µs)
over a sample (at least > 5%) of execution times when m = {100, 150,200} for
p = {11,16, 20}, respectively.

Table 5.7: Brute force instrumentation times (µs), p = 11

m T I S1 S2 S3
100 64706 39 38 2 0.03
150 103076 61 57 3 0.05
200 137497 78 72 4 0.02

Table 5.8: Brute force instrumentation times (µs), p = 16

m T I S1 S2 S3
100 2349052 41 41 2 0.03
150 3917884 67 62 3 0.04
200 5062029 89 83 4 0.03
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Table 5.9: Brute force instrumentation times (µs), p = 20

m T I S1 S2 S3
100 104972172 47 45 1 0.06
150 163396701 71 68 2 0.05
200 217826629 95 93 3 0.03

The first observation we can make from these results is that Step 1 is the significant
factor in the execution times. This step consists of the lfsrgen()-function of the
program.

Another interesting observation is that Step 3 (the comparison of the output
sequences) tend to be lower with longer sequences. This step consists of evaluating
the mpz_cmp()-function of GMPLib. However, the measured times being as low
as fractions of a microsecond, this is of very little significance when compared to
the total iteration time (I) and may be caused by a bias in the system.

We can also see that, as one would expect, the thread-internal iteration times
I are approximately linear as m increases. Meanwhile, the total thread times T
deviate slightly from the expected linearity. This is likely due to the fact that the
CPUs handling of threads may vary due to other factors on the system.

5.5 Practical attack demonstration

Finally, a novelty implementation of the full attack on a BRM-generated stream
cipher is demonstrated. This version of the program is compiled without the "cheat-
ing" functions used earlier to analyse the program. This means that after the pro-
gram has simulated the BRM and encrypted the plaintext it has no knowledge of
the actual initial states of R1 and R2. The selected error threshold k is selected
based on the findings in Section 5.3 and, contrary to the development version of
the program, a simple seeking functionality is introduced which increases k if the
candidate set is empty and decreases it if it is full. The brute force algorithm is ex-
ecuted in a sequential manner (iterating sequentially through the initial states, as
opposed to randomly.) and will interrupt and report a match as soon as a match
Z 0 = Z is found regardless of this being a false positive in form of a ciphertext
collision. The program ultimately returns the initial states of R2 and R1.

As the program has primarily been developed for testing purposes, running
the demonstration requires that the -DDEMO flag is used when compiling in or-
der to change to demonstration mode. This can be done by issuing the make
demo-command upon compilation, however if different ARBP search algorithms
are to be tested, this has to be manually specified in the makefile. Figure 5.11
shows a screenshot of a terminal session executing the practical demonstration
with different input parameters.
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Figure 5.11: A screenshot of several runs of the practical demonstration.
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Discussion

In this chapter the results presented in the previous chapter is further analysed
and discussed. The overall process and product will also be evaluated here, before
the thesis is concluded in the next and final chapter.

6.1 Software development and testing

The development of the software was done with testing and evaluation for the
future development of attacks on BRM-based systems as the main focus while de-
livering a "proof-of-concept" of the full attack sequence. As such, there are likely
many improvements that can be made, both in terms of performance, efficiency
and application of "best-practices" in the C-programming language. The work on
the software involved building on the previously developed software in [3]. A com-
plete rebuild and restructuring of the source code was considered but the funda-
mental functionality in the existing software was deemed to be solid and most of
the helper functions was kept and revised. As we saw through the instrumentation
done in Chapter 5 however, the functions mpz_lshift() and lfsrgen() were found
to be a significant factor in increasing processing times of the different algorithms
in the program. The high complexity of running evaluation experiments in this
thesis has made it difficult to produce enough data for quantitative analysis due
to the inherent time constraints and financial limits, as the development phase
itself has taken much of the time allocated to the project. However, the software
together with the "proof-of-concept" of task separation and cloud orchestration
provided in this thesis will likely prove useful for future research on the topic
and the algorithm implementations may be adaptable to other platforms, such as
FPGA or GPU, in the next iteration.

The major contributions to the software made in the development phase of
the work on this thesis has been:

• the software implementation of the Shift-OR algorithm (with three different
levels of constraints) in the Approximate Row-wise Bit Parallel String match-
ing-process which is part of the important R2ini t candidate set generation.

67
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• the introduction of multi-threading in the candidate generation algorithm.
• the multi-threaded clock sequence reconstruction algorithm.
• altering the output of the main program to provide both sensible output

codes and .cand-files which enable wrapping the program in other lan-
guages.

In addition to these elements a wrapper-program (analysis.go) was developed in
order to enable and simplify the process of running larger-scale analysis of the
software in the cloud. The main programs output is specifically designed to work
with such wrappers, and future work based on this software may further build on
this, and possibly also in other languages such as Python, etc.

Throughout the evaluation process, Amazon Web Services [40] were used to
provide dedicated high capacity computing power. By using spot requests, as much
experimentation as possible has been done within the set financial limits. As AWS
only provides a small number of total CPUs allowed in spot instances by default, a
request was made to Amazon for an increased limit to at least 2⇥96= 192vCPUs.
This was partially approved up to 172 vCPUs. While the experiments constructed
and executed though cloud computing in this thesis could have been structured
in a better way in order to answer the research questions given in Section 1.5, the
possibilities of a practical attack load-distributed over many such hosts should be
easy to implement from the supplied source code.

If further research into cryptanalysis of BRM-based stream ciphers is to be un-
dertaken in the future it is highly recommended to assess the possibilities and ad-
vantages of implementing the ARBP-search generation algorithm and the clock se-
quence reconstruction procedure in GPU (Graphics processing unit), for example
using Nvidias CUDA (Compute Unified Device Architecture) platform, rather than
CPU. There are readily available implementations of GMPLib for CUDA, see for
example [47], [48] and [49].

6.2 Performance

As presented earlier in the thesis, several different versions of the Shift-OR was
implemented in software, based on [2]. As we have seen in Chapter 5, the per-
formance results vary significantly over the four different implemented search
algorithms. While the basic Shift-OR algorithm (OR1) is of less complexity than
the Shift-AND algorithm and thus should be theoretically faster, it has been shown
that the computational complexity of some of the functions used in the implement-
ation cause it to be slower. Through instrumentation it was shown that the most
significant factor of this was the mpz_lshift()-function which was implemented
in [3], which itself consists of five mpz_*-function calls.

The most significant improvement made to performance through the work
on this thesis has been the introduction of multi-threading. It was shown in Sec-
tion 5.2.2 that the total running time of the program was reduced by approxim-
ately a factor of 10 when running with p = 16 on a 16 vCPU dedicated virtual host
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when compared to the equivalent single-core experiment. As has been shown in
this thesis, the program is easily scalable when running in the cloud which makes
it fully achievable to reach the same performance levels as was achieved in FPGA
for the candidate generation algorithm (26-346 times faster)[3] at a reasonable
cost.

6.3 Candidate generation

The process of generating the candidate set, C , is essential in the proposed at-
tack on BRM-based stream ciphers. The total complexity of the brute-force attack,
O((2p � 2)⇥ |C |), heavily depends on the size |C | of the generated candidate set
C . The best case complexity of the clock sequence reconstruction is O((2p�2)⇥1)
(C contains only the actual initial state of R2) and the worst case is O((2p � 2)2)
(C contains all initial states), as was tested in the experiment in Section 5.2.1. As
such, a large portion of the research in this thesis has been dedicated to improving
optimisation of the algorithm by the introduction and testing of OR2 and OR3 and
tuning the parameters used in the ARBP-process.

As have been discussed in the theory, the additional constraints introduced
in the OR2 version of the Shift-OR algorithm eliminates the possibility of a sub-
stitution occurring if a match occurred in the previous row of the error matrix.
From the experiments done in this thesis, very few false positives stem from the
additional constraint introduced in OR2 compared to OR1. As such, the added
complexity introduced by OR-ing the shifted status word with the complement
of the bit-mask may not be worth it in most cases. One possible bias here is that
the algorithm has not been tested over a large set of different initial-state com-
binations and perhaps most importantly not for higher degrees of LFSR (over 30
bits).

The OR3 algorithm implemented in this thesis introduces even further con-
straints into the deletion-part of the algorithm. These constraints eliminate the
possibility of a deletion occurring at the end, and also the possibility of multiple
deletions occurring in a row. These constraints are coherent with the operation of
the BRM stream cipher system. It has been shown that the use of this algorithm
effectively reduces the R2 candidate set. The drawback is the added complexity,
which makes the overall performance slower.

It is fair to say that more analysis (both qualitative and quantitative) has to
be done on determining the optimal decision rules and input parameters to the
candidate generation algorithm. While it was the intention with this thesis to do
quantitative analysis of larger data sets for many different input values, the inher-
ent time complexity of the problem, the timeline and financial limits prevented
this. It is however the hope of the author that the algorithms and instruments
developed through the work on this thesis will provide future researchers with
the necessary tools to further explore this topic in order to further improve the
candidate selection process.
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6.4 Clock sequence reconstruction

As mentioned in Section 4.2 the algorithm has been implemented with "cheating"-
operations in order to evaluate the performance and efficiency of the program.
One aspect of this was to evaluate the possibilities of ciphertext collisions (a set
of incorrect R1 and/or R2 that produces the correct ciphertext) by evaluating
whether a reported ciphertext match was generated by the actual initial states.
However, the probability of such collisions occurring are very low when operat-
ing on longer bit sequences (m > 50), which is normally the case. In the more
realistic scenario where there is no knowledge of the initial states of R1 and R2,
the behaviour can be changed to count matches, regardless of the matches being
confirmed hits or possible collisions. If the program ends up with only one match-
ing ciphertext it is likely to be the correct one. If the program reports more than
one match, collisions have occurred and the program may have to be run again
with different settings. To reach the optimum performance, the program can also
be set to interrupt the process upon the first match, as was shown in the practical
demonstration. This may however result in a false positive result.

The clock sequence reconstruction algorithm proposed in this thesis requires
the whole ciphertext of length m to be generated for every pair of R2ini t 2 C , R1i ,
which is very time consuming. One possible improvement that could be intro-
duced here is by sequentially evaluating the generated bit sequence through a
fast-filtering function as explained in [50]. This may provide a significant improve-
ment, especially for longer known-plaintext sequences, m > 1000. However, as
we have seen in Tables 5.7-5.9, the lfsrgen()-function (S1) accounts for approx-
imately 99% of the execution time of each iteration (I), which may be sensible
to improve upon first. We can also see from the results that the execution time
increases approximately linearly compared to m. Thus, the implementation of fil-
tering, which possibly would require running this function multiple times for every
iteration may be counter-productive unless lfsrgen() is rewritten to be more effi-
cient. A new version of lfsrgen() may perhaps provide a builtin option for filtering.

As expected, based on the theory, the higher p values significantly increase
the computation times. The possibility of p = 20 was included and tested in the
program. It is however clear that in order to attain the necessary amount of data
for a thorough quantitative analysis of LFSRs of higher order than p = 16, a lot of
computation power and time is needed.

The brute force approach, while usable for the low polynomial degrees of the
component LFSRs used in this thesis, is likely not a viable solution for higher and
more realistic degrees unless the performance is further improved through for
example use of GPU arrays. As mentioned, in the initial research phase of this
thesis the possibilities of backtracking through the candidate set in order to de-
rive possible clock sequences was explored. The author of this thesis was however
unable to see any practical solutions to this problem with the available literat-
ure and tools. One possible solution may however be building on the program
developed in this thesis and by introducing a matrix of applied edit operations
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it could be possible to backtrack through this matrix to derive the corresponding
clock sequences at the cost of using more memory.





Chapter 7

Conclusion

This thesis is the result of a mixed-method exploratory research project on clock
sequence reconstruction in irregularly clocked stream ciphers. It is the final step
in the full bit-parallel attack on such ciphers, which has to the best of the au-
thors knowledge, not been researched before in the known literature. The thesis
provides and exploratory insight into a simple baseline process of brute force al-
gorithm to break a stream cipher system based on BRM. The final program is
heavily based upon the theory developed by Petrovic [2] and initial software im-
plementation by Øverbø [3]. Many areas of the process remain to be further re-
searched and improved upon. However, this thesis has demonstrated a framework
for the attack making breaking the full system possible in CPU software for low
polynomial degrees. It is left to future researchers to further improve performance
and hopefully also develop a clock reconstruction algorithm that is more efficient
than the brute force approach taken in this thesis. Specific ideas for future im-
provements are suggested in the final section of this chapter.

7.1 Answers to research questions

Recalling the research questions from Section 1.5, the thesis concludes with the
following answers:

RQ1 - Is it possible to define an arbitrary optimal decision rule for selecting
the set of candidates for the initial state of R2?

In the thesis several experiments have been done over a set of different input
parameters for the different algorithm implementations. It was shown that for
the less constrained version (OR2) of the candidate generation algorithm, an
initial value of the error threshold k approximately k ⇡ m

3.6 is appropriate. The
constrained OR3 algorithm requires a higher threshold due to the additional con-
straints, k ⇡ m

2.5 . The thesis also introduces the idea of the seeking algorithm in
order to evaluate the resulting candidate sets before continuing the attack.
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It is clear however that a definitive conclusion on this question cannot be made
until further quantitative analysis is done on larger data set and for a representable
selection of different initial states.

RQ2 - Can a practical attack on irregularly clocked stream ciphers based on
BRM be implemented and tested using brute-force in software?

As the demonstration in Section 5.5 showed, a practical attack is in fact feas-
ible when the degree of the LFSRs are low enough or the attacker has access to
large amounts of computing power. It was shown that the introduction of multi-
threading makes the program capable of performing at the same levels as the
FPGA implementations proposed in [3] when run in large virtual resource pools.
As the software developed in the thesis is scalable and possible to load distribute,
a practical attack on actual implementations may be possible for an actor with
access to large computing resources.

RQ3 - Is it possible to recover the initial states of both the clocking (R1) and
clocked (R2) LFSR in less than (2p � 2)2 brute-force iterations?

As shown in this thesis, it is possible to recover the initial states of both R1 and
R2 in |C |⇥ (2p � 2) brute-force iterations in the worst case, where |C | represents
the amount of R2 candidates in the candidate set C . By assuming no collisions oc-
cur during the process the average case of the attack would be closer to |C |⇥(2

p�2)
2

iterations, as the program interrupts the process as soon as a match is found.
The load distribution functions proposed in this thesis, which are easily imple-
mented through the supplied software framework can further improve the overall
brute-force performance. The thesis also suggests improvements to the candidate
generation in order to generate the smallest possible valid set of candidates for
R2 as the answer to RQ1.

RQ4 - Is it possible to improve the performance of the overall algorithm by
introducing orchestrated multi-threading using cloud based infrastructure?

It has been shown that the deployment of the software and its wrapper programs
in the cloud can drastically increase the performance at relatively low costs us-
ing AWS spot-instances. The introduction of the .cand output files which can be
distributed to multiple hosts which in turn are issued "jobs" through the jobs-file
enables scaling the attack to a degree only limited by the resources available to
the attacker.

While the full potential of cloud based load distribution in the program re-
mains to be exploited, it has been shown that it is highly effective and the provided
software framework should make even further improvements easy to implement.
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7.2 Future work

Throughout the thesis, pointers have been made to what can be improved upon
or further researched in the topic of cryptanalysis of irregularly clocked pseudor-
andom generators in the future.

As a direct continuation of the research done in this topic, there remains a
potential for further improvements on the arbitrary decision rules as asked in
RQ1. While the results from applying different search algorithms for different
values of k relating to m has been tested, it is probably necessary to test this over
a representable set of initial states to determine if the results given in this thesis
holds for the whole system. This thesis leaves future researchers with the tools for
generating larger data sets which will be required for quantitative analysis on this
topic.

In order to further improve the performance of the attack, a fully distributed
approach using the .cand-file and the read version of the program on many vir-
tual hosts in the cloud is possible to achieve given the framework provided in this
thesis and may be a part of future studies on practical attacks. Several potential
improvements in the program itself has also been pointed out through the instru-
mentation of the key functions of the algorithms. Specifically, the improvement
of the lfsrgen() and mpz_lshift()-functions has the potential to significantly im-
prove the overall performance of the program. Furthermore, the implementation
of the proposed algorithms in GPU (see [47],[48] and [49]) may provide signific-
ant performance improvements compared to that of the CPU version developed
in this thesis.

Finally, as the brute-force approach is the simplest and least effective form
of cryptoanalytic attack, future researches are encouraged to attempt alternative
methods of reconstructing the clock sequence in irregularly clocked pseudoran-
dom sequence generators when employing bit-parallel search to generate candid-
ates. A similar approach to that of the dynamic programming approach [51] may
be possible and the possibilities of this should be further explored.
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Appendix A

Source code

A.1 Multi-threading libraries

Code listing A.1: <tpool.h> Thread pool header file [37]
1 // fetched from https://nachtimwald.com/2019/04/12/thread-pool-in-c/ 11.04.2021
2
3
4 #ifndef __TPOOL_H__
5 #define __TPOOL_H__
6
7 #include <stdbool.h>
8 #include <stddef.h>
9

10 struct tpool;
11 typedef struct tpool tpool_t;
12
13 typedef void (*thread_func_t)(void *arg);
14
15 tpool_t *tpool_create(size_t num);
16 void tpool_destroy(tpool_t *tm);
17
18 bool tpool_add_work(tpool_t *tm, thread_func_t func, void *arg);
19 void tpool_wait(tpool_t *tm);
20
21 #endif /* __TPOOL_H__ */

Code listing A.2: <tpool.c> Thread pool source file [37]
1 #include "tpool.h"
2 #include <pthread.h>
3 #include <stdlib.h>
4
5
6 struct tpool_work {
7 thread_func_t func;
8 void *arg;
9 struct tpool_work *next;

10 };
11 typedef struct tpool_work tpool_work_t;
12
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13 struct tpool {
14 tpool_work_t *work_first;
15 tpool_work_t *work_last;
16 pthread_mutex_t work_mutex;
17 pthread_cond_t work_cond;
18 pthread_cond_t working_cond;
19 size_t working_cnt;
20 size_t thread_cnt;
21 bool stop;
22 };
23
24 static tpool_work_t *tpool_work_create(thread_func_t func, void *arg)
25 {
26 tpool_work_t *work;
27
28 if (func == NULL)
29 return NULL;
30
31 work = malloc(sizeof(*work));
32 work->func = func;
33 work->arg = arg;
34 work->next = NULL;
35 return work;
36 }
37
38 static void tpool_work_destroy(tpool_work_t *work)
39 {
40 if (work == NULL)
41 return;
42 free(work);
43 }
44
45 static tpool_work_t *tpool_work_get(tpool_t *tm)
46 {
47 tpool_work_t *work;
48
49 if (tm == NULL)
50 return NULL;
51
52 work = tm->work_first;
53 if (work == NULL)
54 return NULL;
55
56 if (work->next == NULL) {
57 tm->work_first = NULL;
58 tm->work_last = NULL;
59 } else {
60 tm->work_first = work->next;
61 }
62 return work;
63 }
64 static void *tpool_worker(void *arg)
65 {
66 tpool_t *tm = arg;
67 tpool_work_t *work;
68
69 while (1) {
70 pthread_mutex_lock(&(tm->work_mutex));
71
72 while (tm->work_first == NULL && !tm->stop)
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73 pthread_cond_wait(&(tm->work_cond), &(tm->work_mutex));
74
75 if (tm->stop)
76 break;
77
78 work = tpool_work_get(tm);
79 tm->working_cnt++;
80 pthread_mutex_unlock(&(tm->work_mutex));
81
82 if (work != NULL) {
83 work->func(work->arg);
84 tpool_work_destroy(work);
85 }
86
87 pthread_mutex_lock(&(tm->work_mutex));
88 tm->working_cnt--;
89 if (!tm->stop && tm->working_cnt == 0 && tm->work_first == NULL)
90 pthread_cond_signal(&(tm->working_cond));
91 pthread_mutex_unlock(&(tm->work_mutex));
92 }
93
94 tm->thread_cnt--;
95 pthread_cond_signal(&(tm->working_cond));
96 pthread_mutex_unlock(&(tm->work_mutex));
97 return NULL;
98 }
99

100 tpool_t *tpool_create(size_t num)
101 {
102 tpool_t *tm;
103 pthread_t thread;
104 size_t i;
105
106 if (num == 0)
107 num = 2;
108
109 tm = calloc(1, sizeof(*tm));
110 tm->thread_cnt = num;
111
112 pthread_mutex_init(&(tm->work_mutex), NULL);
113 pthread_cond_init(&(tm->work_cond), NULL);
114 pthread_cond_init(&(tm->working_cond), NULL);
115
116 tm->work_first = NULL;
117 tm->work_last = NULL;
118
119 for (i=0; i<num; i++) {
120 pthread_create(&thread, NULL, tpool_worker, tm);
121 pthread_detach(thread);
122 }
123
124 return tm;
125 }
126
127 void tpool_destroy(tpool_t *tm)
128 {
129 tpool_work_t *work;
130 tpool_work_t *work2;
131
132 if (tm == NULL)
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133 return;
134
135 pthread_mutex_lock(&(tm->work_mutex));
136 work = tm->work_first;
137 while (work != NULL) {
138 work2 = work->next;
139 tpool_work_destroy(work);
140 work = work2;
141 }
142 tm->stop = true;
143 pthread_cond_broadcast(&(tm->work_cond));
144 pthread_mutex_unlock(&(tm->work_mutex));
145
146 tpool_wait(tm);
147
148 pthread_mutex_destroy(&(tm->work_mutex));
149 pthread_cond_destroy(&(tm->work_cond));
150 pthread_cond_destroy(&(tm->working_cond));
151
152 free(tm);
153 }
154
155 bool tpool_add_work(tpool_t *tm, thread_func_t func, void *arg)
156 {
157 tpool_work_t *work;
158
159 if (tm == NULL)
160 return false;
161
162 work = tpool_work_create(func, arg);
163 if (work == NULL)
164 return false;
165
166 pthread_mutex_lock(&(tm->work_mutex));
167 if (tm->work_first == NULL) {
168 tm->work_first = work;
169 tm->work_last = tm->work_first;
170 } else {
171 tm->work_last->next = work;
172 tm->work_last = work;
173 }
174
175 pthread_cond_broadcast(&(tm->work_cond));
176 pthread_mutex_unlock(&(tm->work_mutex));
177
178 return true;
179 }
180 void tpool_wait(tpool_t *tm)
181 {
182 if (tm == NULL)
183 return;
184
185 pthread_mutex_lock(&(tm->work_mutex));
186 while (1) {
187 if ((!tm->stop && tm->working_cnt != 0) || (tm->stop && tm->thread_cnt !=

,! 0)) {
188 pthread_cond_wait(&(tm->working_cond), &(tm->work_mutex));
189 } else {
190 break;
191 }
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192 }
193 pthread_mutex_unlock(&(tm->work_mutex));
194 }

A.2 Main program

Code listing A.3: <main.c> The main program source code
1 /**############################################################################
2 ** TITLE: CipherSearch 3.0
3 ** CONTRIBUTORS: Magnus Overbo & Adrian S. Evensen
4 ** ABOUT: Ciphersearch utilises the GMP library to manage arbitrary sized
5 ** numbers and perform an unconstrained approximate row-based bit
6 ** parallell search. It searches for an intercepted bitsequence,
7 ** generated by a decimated LFSR encrypted with a message, and
8 ** tries to find this in all possible generated sequences which are
9 ** not decimated. The candidate set can then be attacked with

10 ** a brute force attack in order to break the cryptosystem.
11 **
12 ** Release: 20190313 - 64b version
13 ** Release: 20190328 - GMP library version for arbitrary bit size
14 ** Release: 20210531 - Add option for shift-OR implementation (default)
15 ** - Add brute force for clock reconstruction
16 **#########################################################################**/
17
18 //-----------------------------------------------------------------------------
19 // INCLUDES
20 //-----------------------------------------------------------------------------
21 #include <stdio.h>
22 #include <unistd.h>
23 #include <stdbool.h>
24 #include <pthread.h>
25 #include <sys/types.h>
26 #include <sys/stat.h>
27 #include <assert.h>
28 #include <stdlib.h>
29 #include <sys/time.h>
30 #include <string.h> //strlen
31 #include <stdint.h> //64b Int
32 #include <inttypes.h> //64b int
33 #include <gmp.h> //arbitrary integer size
34 #include "tpool.h"
35
36 //-----------------------------------------------------------------------------
37 // GLOBAL VARIABLES
38 //-----------------------------------------------------------------------------
39 size_t num_threads = 16; // Thread pool limit. Generally set to # of vCPUs in cloud

,! instances
40 const int ALPHASIZE = 2; // Alphabet size, 0 & 1
41 tpool_t *tm;
42 int col_acceptance;
43 int col;
44 int hit;
45 int m;
46 int n;
47 int deg;
48 mpz_t pol;
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49 int slen;
50 int plain = 0;
51 mpz_t PLAINTEXT;
52 mpz_t CIPHER;
53 int R1STATE;
54 int R2STATE;
55 mpz_t max;
56 mpz_t* B;
57
58 //-----------------------------------------------------------------------------
59 // STRUCTs
60 //-----------------------------------------------------------------------------
61 struct LFSR {
62 mpz_t POLYNOMIAL; //Polynomial definition
63 mpz_t STATE; //LFSR state
64 int DEGREE; //Polynomial degree
65 };
66
67 struct CANDIDATE {
68 int istate; // R2 initial state
69 bool match;
70 mpz_t X; // Undecimated output
71 };
72
73 //-----------------------------------------------------------------------------
74 // FUNCTION DECLARATIONs
75 //-----------------------------------------------------------------------------
76 int search(); // Gen target system
77 int polyMap(int); // Get LFSR polynomial
78 mpz_t* genAlphabet( int ); // Gen array of the alphabet
79 int lfsr_iterate( struct LFSR*); // Gen next state & output
80 void lfsrgen(mpz_t, int, int, mpz_t, uint_least64_t, int, mpz_t*); // Gen LFRS
81 mpz_t* arbp_search( mpz_t*, mpz_t, int, int, int ); // Main search

,! function
82 mpz_t* genError(int); // Gen init error table
83 void genPrefixes( mpz_t*, mpz_t, int ); // Generate the prefixes
84 void genEncrypt( mpz_t, mpz_t, mpz_t, mpz_t, int ); // Encrypt the

,! plaintext
85 void mpz_lshift( mpz_t, int ); // Left shift bin seq by 1
86 char* pb( mpz_t, int, int ); // Print prepending zeros
87
88
89 // CSV Parse function fetched from
90 // https://stackoverflow.com/questions/12911299/read-csv-file-in-c
91 const char* getfield(char* line, int num)
92 {
93 const char* tok;
94 for (tok = strtok(line, ",");
95 tok && *tok;
96 tok = strtok(NULL, ",\n"))
97 {
98 if (!--num)
99 return tok;

100 }
101 return NULL;
102 }
103
104 void match_R1(void *arg) { // Thread for brute force attempts
105 struct CANDIDATE *cand = (struct CANDIDATE *)arg;
106 mpz_t LCLK; mpz_init(LCLK); //LFSR for dessimating
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107 mpz_t CIPHER2; mpz_init( CIPHER2 ); //Gen test ciphertext
108 mpz_init(LCLK);
109 mpz_init(CIPHER2);
110 int i = 0;
111 int c = 0;
112
113 while ( i<mpz_get_ui(max) && col <= col_acceptance ) { // Iterate through all

,! R1States until a hit is found or collision acceptance exceeded
114 #if defined DEBUG
115 printf("Generating�clocking�LFSR�(R1)�output�sequence:�\n");
116 #endif
117 lfsrgen(LCLK, deg, m, pol, i, 0, NULL); // Clocking LFSR, R1
118
119 #if defined DEBUG
120 printf("Calculating�the�Decimated�bitsequence�and�creating�ciphertext:\n\n");
121 #endif
122
123 genEncrypt(CIPHER2, LCLK, cand->X , PLAINTEXT, m); // Generate the candidate

,! cipher
124
125 if ( mpz_cmp(CIPHER, CIPHER2) == 0 ) { // Check if candidate cipher matches
126 #if defined DEMO
127 printf("\t�-�POSSIBLE�MATCH�FOUND�for�R1�init�state�%i�and�R2�init�state�%i\n",

,! i, cand->istate);
128 col++;
129 #else
130 if (cand->istate == R2STATE && i == R1STATE) { // CHEATING. However, in a real

,! approach, the collision indicator will work as a counter and indicate if
,! there are 1 or more hits.

131 printf("\t�-�ACTUAL�INIT�STATES�FOUND�for�R1�init�state�%i�and�R2�init�state�%i
,! \n", i, cand->istate);

132 hit = 1;
133 } else {
134 printf("\t�-�COLLISION�FOUND�at�R1�init�state�%i�and�R2�init�state�%i\n", i,

,! cand->istate);
135 //run function to terminate all match_R1 instances.
136 col ++;
137 }
138 #endif
139 }
140 i++;
141 }
142 mpz_clear(LCLK);
143 mpz_clear(CIPHER2);
144 }
145
146 void search_thread(void *arg) { // Thread for ARBP search
147 struct CANDIDATE *cand = (struct CANDIDATE *)arg;
148 mpz_t TEXT; // This variable stores the current search text
149 mpz_init(TEXT);
150 int ci = 0;
151
152 lfsrgen( TEXT, deg, n, pol, cand->istate, 1, B ); // Generate undecimated bitseq

,! TEXT for current initial state
153
154 mpz_t* MATCH = arbp_search(B, TEXT, slen, m, n); // Run the ARBP search on TEXT

,! with slen errors allowed and return matches with CLD and position.
155
156 int j = 0;
157 while(j < n){ //For each position
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158 if( mpz_cmp_ui(MATCH[j], m) < 0 ){ //If match is less than m
159 mpz_clear( MATCH[j] );
160 ci++; //increment counter for print
161 }
162 j++; //Next position
163 }
164
165 if (ci > 0) { //If matches exist, add state to Candidate matrix.
166 cand->match = true;
167 mpz_init(cand->X); mpz_set(cand->X, TEXT);
168 ci = 0;
169 }
170 else {
171 cand->match = false;
172 mpz_init(cand->X); mpz_set(cand->X, TEXT);
173 }
174 free(MATCH);
175 }
176
177 //-----------------------------------------------------------------------------
178 // Program start
179 //-----------------------------------------------------------------------------
180 int main(int argc, char *argv[]){
181 struct timeval start, end;
182 gettimeofday(&start, NULL);
183 //------------------------------------------------------------
184 // Parameter initialization and validation
185 //------------------------------------------------------------
186 #if defined READCAND // Change argument requirements when reading file. These

,! should in the future be changed to parse from filename instead
187 if( argc != 9 ){ //Check that required input parameters are met
188 printf("Incorrect�number�of�arguments\n�Usage:�./main�<polynomial�degree>�<

,! search�word�length>�<search�text�length>�<init�state�R1>�<init�state�R2>
,! �<collision�acceptance>�<#�CPUs>�<.cand�path>\n");

189 return 1;
190 }
191 deg = atoi( argv[1] );
192 m = atoi( argv[2] );
193 n = atoi( argv[3] );
194 slen = 0; // Doesn’t matter, as we are not doing ARBP
195 R1STATE = atoi( argv[4] );
196 R2STATE = atoi( argv[5] );
197 col_acceptance = atoi( argv[6] );
198 num_threads = atoi( argv[7] );
199 char* candfile = argv[8];
200 #else
201 if( argc != 9 ){ //Check that required input parameters are met
202 printf("Incorrect�number�of�arguments\nUsage:�./main�<polynomial�degree>�<search

,! �word�length>�<search�text�length>�<errors>�<init�state�R1>�<init�state�
,! R2>�<collision�acceptance>�<#�CPUs>\n");

203 return 1;
204 }
205 deg = atoi( argv[1] );
206 m = atoi( argv[2] );
207 n = atoi( argv[3] );
208 slen = atoi( argv[4] )+1;
209 R1STATE = atoi( argv[5] );
210 R2STATE = atoi( argv[6] );
211 col_acceptance = atoi( argv[7] );
212 num_threads = atoi( argv[8] );
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213 #endif
214
215 struct stat st = {0};
216 if (stat("./data", &st) == -1) { // Create ./data directory if it does not

,! exist.
217 mkdir("./data", 0777);
218 }
219
220 if (n<2*m) {
221 printf("Search�text�must�be�at�least�2�*�m...\n");
222 return 1;
223 }
224
225 if (slen >= m) {
226 printf("Error:�Errors�cannot�be�higher�than�search�word�(m)...\n");
227 return 1;
228 }
229
230 mpz_init( pol );
231 mpz_set_ui(pol, polyMap(deg)); //Get LFSR polynomial
232
233 mpz_init( max );
234 mpz_setbit(max, deg); //Set max val, eg 2047 in 2^11
235 if (R1STATE > mpz_get_ui(max)) {
236 printf("Error:�R1�initial�state�(%d)�is�higher�than�LFSR�capacity�(%lu)\n",

,! R1STATE, mpz_get_ui(max));
237 return 1;
238 } else if (R2STATE > mpz_get_ui(max)) {
239 printf("Error:�R2�initial�state�(%d)�is�higher�than�LFSR�capacity�(%lu)\n",

,! R2STATE, mpz_get_ui(max));
240 return 1;
241 }
242
243 mpz_init(PLAINTEXT);
244 mpz_set_ui(PLAINTEXT, plain); //Default value is 0
245
246 // SIMULATE THE BRM SYSTEM
247 mpz_t R1SEQ; mpz_init(R1SEQ);
248 lfsrgen(R1SEQ, deg, m, pol, R1STATE, 0, NULL); //Generate R1 output sequence
249
250 mpz_t R2SEQ; mpz_init(R2SEQ); //LFSR to be decimated
251 lfsrgen(R2SEQ, deg, n, pol, R2STATE, 0, NULL); //Decimated LFSR
252
253 mpz_init( CIPHER ); //Gen intercepted ciphertext
254 genEncrypt( CIPHER, R1SEQ, R2SEQ, PLAINTEXT, m);
255
256 mpz_clear( R1SEQ ); //Cleanup LFSRs
257 mpz_clear( R2SEQ );
258
259 //-----------------------------------------------------------------------------
260 // At this point, the target (CIPHER) has been created.
261 // The known-plaintext attack starts here.
262 //
263 // Step ONE: Generate prefixes and run ARBP search and choose candidates for R2
264 // Candidates are stored in an array in memory in the form:
265 // <initial state>, <R2 undecimated output sequence of length n>
266 //
267 // UNLESS: READCAND was defined when compiling, changing the modus of the
268 // program into clock sequence reconstruction only.
269 //-----------------------------------------------------------------------------
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270 #if defined DEMO
271 while (true) {
272 #endif
273
274 tm = tpool_create(num_threads);
275 struct CANDIDATE* C = malloc( mpz_get_ui(max) * sizeof(struct CANDIDATE) ); //

,! Initialize candidate array
276 struct CANDIDATE* ptr = C;
277 struct CANDIDATE* endPtr = C + (sizeof(*C)/sizeof(struct CANDIDATE) * mpz_get_ui(

,! max));
278
279 #if defined READCAND // If we expect to read an already generated .cand-file from

,! previous generation
280 printf("Reading�file...�\n");
281 FILE* stream = fopen(candfile, "r");
282 int l;
283 char line[1024];
284 while (fgets(line, 1024, stream)) // iterate through all lines in .cand file
285 {
286 char* tmp = strdup(line);
287 l = atoi(getfield(tmp, 1));
288 char* tmp2 = strdup(line);
289 C[l].istate = l;
290 mpz_set_str(C[l].X, getfield(tmp2, 2), 62); //Decode the base-62 sequence
291 }
292 // Start brute force attack
293 struct timeval start, end;
294 gettimeofday(&start, NULL);
295 tm = tpool_create(num_threads);
296 col = 0; // Reset collision counter
297 for (int i = 0; i < (mpz_get_ui(max)-1); i++){ // Iterate through all initial

,! states of R1
298 C[i].istate = i;
299 tpool_add_work(tm, match_R1, &C[i]); // Launch brute-force threads
300 }
301 tpool_wait(tm);
302 tpool_destroy(tm);
303 // Attack done, summarize.
304 if (hit > 0) {
305 printf("Found�%d�ACTUAL�hits�(by�cheating)�and�%d�collisions.", hit, col);
306 } else {
307 printf("No�hits�found...");
308 }
309 gettimeofday(&end, NULL);
310 long seconds = (end.tv_sec - start.tv_sec);
311 long micros = ((seconds * 1000000) + end.tv_usec) - (start.tv_usec);
312 printf("\nThe�elapsed�time�is�%ld�seconds�and�%ld�micros�after�R1�reconstruction\

,! n", seconds, micros);
313 #else // Normal mode of operation
314 char* FNAME;
315 int found;
316
317 B = genAlphabet( ALPHASIZE ); //Generate alphabet
318 genPrefixes(B, CIPHER, m); //Generate prefixes for the alphabet
319
320 for (int i = 0; i < (mpz_get_ui(max)-1); i++){ // Iterate through all initial

,! states of R2
321 C[i].istate = i+1;
322 tpool_add_work(tm, search_thread, &C[i]); // Launch thread for ARBP
323 }
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324 tpool_wait(tm); // Wait here until all threads are dead
325 tpool_destroy(tm);
326
327 int u=0;
328
329 // Open file for writing. May need to be moved back up if position of edits are

,! to be written
330 FNAME = malloc(60*sizeof(char)); //Filename allocation
331 sprintf(FNAME, "./data/%d_%d_%d_%d_%d_%d.cand", deg, m, n, slen-1, R1STATE,

,! R2STATE);
332 FILE* fh = fopen(FNAME, "w"); // Open output file for writing
333
334 while ( ptr < endPtr ) { // Iterate through all possible candidates
335 if (ptr->match == true){ // If this is a valid candidate
336 fprintf(fh, "\n%i,", ptr->istate); mpz_out_str(fh, 62, ptr->X); // Write it to

,! file
337 #if !defined DEMO
338 if (ptr->istate == R2STATE) {
339 found = 1;
340 }
341 #endif
342 u++; // Increase candidate counter
343 }
344 ptr++;
345 }
346
347 fclose( fh ); // Close data file
348 if ( u == 0 ) { // Zero matches, empty dataset
349 remove(FNAME); // Discard file
350 #if defined DEMO
351 printf("[k=%d]�Empty�candidate�set.�Increasing�error�threshold\n", slen);
352 slen++;
353 #else
354 printf("%d,%d",-1,u);
355 return -1;
356 #endif
357 } else if( u >= mpz_get_ui(max)-1 ) { // Full dataset, all candidates
358 remove(FNAME); // Discard file
359 #if defined DEMO
360 printf("[k=%d]�Full�candidate�set.�Decreasing�error�threshold\n", slen);
361 slen--;
362 #else
363 printf("%d,%d",-2,u);
364 return -2;
365 #endif
366 }
367 #if !defined DEMO
368 else if ( found != 1 ) { // Dataset not containing the actual candidate (cheat)
369 remove(FNAME); // Discard file
370 printf("%d,%d",u,u);
371
372 return u;
373 }
374 #endif
375 else {
376 // Dataset is VALID!
377 // R1 reconstruction phase starts here
378 // Start brute force attack with intercepted CIPHER and known PLAINTEXT with the

,! generated R2 candidate set
379 #if defined DEMO
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380 printf("[k=%d]�Valid�candidate�set�|C|=%d�(of�%lu).�Starting�brute�force�attack
,! !\n", slen, u, mpz_get_ui(max)-1);

381 #endif
382 tm = tpool_create(num_threads); // Create thread pool
383 col = 0; // Reset collision counter
384 for (int i = 0; i < (mpz_get_ui(max)-1); i++){ // Iterate through all initial

,! states of R1
385 C[i].istate = i+1;
386 tpool_add_work(tm, match_R1, &C[i]); // Launch brute-force threads
387 }
388 tpool_wait(tm); // Wait here until brute force is done
389 tpool_destroy(tm);
390
391 #if defined DEMO
392 if (col>0) {
393 gettimeofday(&end, NULL);
394 long seconds = (end.tv_sec - start.tv_sec);
395 long micros = ((seconds * 1000000) + end.tv_usec) - (start.tv_usec);
396
397 printf("A�match�was�found�in�%ld!�Exiting.\n", micros);
398 return 0;
399 } else {
400 printf("No�matches�found...�Increasing�error�threshold�\n");
401 slen++;
402 }
403 #else
404 if (col > 0) {
405 printf("%d,%d",-3,u);
406 return -3;
407 } else {
408 printf("%d,%d",0,u);
409 }
410 return 0;
411 #endif
412
413
414 }
415 #endif
416
417 #if defined DEMO
418 }
419 #endif
420
421
422 exit(0);
423
424 }
425
426 /**############################################################################
427 **
428 ** Helper functions
429 **
430 **#########################################################################**/
431
432 /*-----------------------------------------------------------------------------
433 * Generates the cipher which then becomes the prefix.
434 * Y is the clocking LFSR
435 * X is the encrypting LFSR
436 * Implementation of the BRM
437 -----------------------------------------------------------------------------*/
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438 void genEncrypt(mpz_t rop, mpz_t CLK, mpz_t DES, mpz_t PLAINTEXT, int m){
439 int i = 0;
440 int j = 0;
441 int x, y;
442 char* t;
443 mpz_t CIPHER; mpz_init(CIPHER);
444 while( i < m ){ //Counter for clocking lfsr
445 x = 0;
446 y = 0;
447 #if defined DEBUG
448 printf("\tCLK(%d)=%d�", i, mpz_tstbit(CLK, i) );
449 #endif
450
451 if( mpz_tstbit(CLK, i) == 1 ){
452 j++; //Decimate LFSR by skipping a bit
453 #if defined DEBUG
454 printf("\tDES(%d)=%d�-->�\tDES(%d)=%d", j-1, mpz_tstbit(DES, j-1), j,

,! mpz_tstbit(DES, j) );
455 #endif
456 }
457 #if defined DEBUG
458 else{
459 printf("\t\t\tDES(%d)=%d", j, mpz_tstbit(DES,j));
460 }
461 #endif
462
463 //Val of dessimated LFSR output
464 if( mpz_tstbit(DES, j) == 1 ) x = 1; //grab value of bit
465 if( mpz_tstbit(PLAINTEXT, i) == 1 ) y = 1; //Grab value of bit
466 if( (y^x) == 1 ) mpz_setbit(CIPHER, i); //Xor to get CIPHER
467
468 #if defined DEBUG
469 printf("�^�P(%d)=%d�==�C(%d)=%d\n", i, mpz_tstbit(PLAINTEXT, i), i, mpz_tstbit(

,! CIPHER, i) );
470 #endif
471 i++;
472 j++; //Increment counters
473 }
474 #if defined DEBUG
475 printf("\n");
476 t = pb(CIPHER, m, 0);
477 printf("\tCIPHERTEXT:�%s", t); mpz_out_str(stdout, 2, CIPHER);
478 free(t);
479 printf("\n\n");
480 #endif
481 mpz_set(rop, CIPHER); //Set var to generated cipher
482 mpz_clear( CIPHER );
483 }
484
485 /*-----------------------------------------------------------------------------
486 *
487 * Return an irreducible polynomial based on the given degree.
488 *
489 -----------------------------------------------------------------------------*/
490 int polyMap(int deg) {
491 int pol;
492 switch(deg) {
493 case 11:
494 pol = 1209;
495 break;
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496 case 16:
497 pol = 33262;
498 break;
499 case 20:
500 pol = 524564;
501 break;
502 }
503 return pol;
504 }
505
506 /*-----------------------------------------------------------------------------
507 * Prepend bits to a binary representation of a number.
508 * returns a char pointer to an array filled with missing bits
509 * or nothing if it is already full.
510 -----------------------------------------------------------------------------*/
511 char* pb( mpz_t num, int len, int b ){
512 size_t plen = len+1 - mpz_sizeinbase( num, 2 );
513 if( plen == 0 )
514 return "";
515 char* pre = malloc( plen * sizeof(char) ); //Allocate plen length array
516 int i = 0;
517 while( i < plen-1 ){
518 if( b == 1){
519 pre[i++] = ’1’;
520 }
521 else{
522 pre[i++] = ’0’;
523 }
524 }
525 pre[i]=’\0’;
526 return pre;
527 }
528
529 /*-----------------------------------------------------------------------------
530 * Left shift MPZ_T variable to the left
531 * n number of shift
532 * rop is mpz_t value to shift
533 -----------------------------------------------------------------------------*/
534 void mpz_lshift( mpz_t rop, int len ) {
535 mpz_t tmp;
536 mpz_init( tmp ); //temp variable
537 int i = len-1;
538 while( i > 0 ){
539 if(mpz_tstbit(rop, i-1) == 1){
540 mpz_setbit( tmp, i ); //set bit
541 }
542 i--;
543 }
544 mpz_set(rop, tmp); //Set original var to tmp
545 mpz_clear(tmp);
546 }
547
548 /*-----------------------------------------------------------------------------
549 * Generate initial m-bitmasks for the alphabet of ALPHASIZE
550 * Shift-OR Complements 1
551 -----------------------------------------------------------------------------*/
552 mpz_t* genAlphabet( int ALPHASIZE ){
553 mpz_t* B = malloc((ALPHASIZE)*sizeof( mpz_t ));
554 #if defined DEBUG
555 printf( "Generating�masks�for�the�alphabet\n" );
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556 #endif
557
558 int i=0;
559 while( i < ALPHASIZE ){
560 mpz_init( B[i] );
561 mpz_set_ui( B[i], 0 );
562
563 #if defined DEBUG
564 printf("\tB[%d]�",i);
565 mpz_out_str(stdout, 2, B[i]);
566 printf("\n");
567 #endif
568 i++;
569 }
570 #if defined DEBUG
571 printf( "\tDone\n\n" );
572 #endif
573 return B;
574 }
575
576 /*-----------------------------------------------------------------------------
577 * LFSR iteration function
578 * Calculates the next state of the LFSR by first grabbing the MSB as output
579 * value. Then it calculates the AND of cur state and the polynomial before
580 * running an XOR on all bits that are set in the temp var to generate the
581 * feedback value.
582 *
583 * Finally it left shifts the entire original state and sets the LSB to the
584 * value of the feedback polynomial.
585 *
586 * The feedback value is then set
587 -----------------------------------------------------------------------------*/
588 int lfsr_iterate( struct LFSR* lfsr) {
589 int i = 0; //Counter
590 int fbck = 0; //XOR calculated value
591 int ret = mpz_tstbit( lfsr->STATE, lfsr->DEGREE-1 );
592
593 mpz_t tmp;
594 mpz_init( tmp );
595 mpz_and(tmp, lfsr->STATE, lfsr->POLYNOMIAL); //AND taps the LFSR according to the

,! given POLYNOMIAL
596
597 while( i < lfsr->DEGREE ){ //Calc feedback
598 fbck = fbck + mpz_tstbit( tmp, i );
599 i++;
600 }
601
602 fbck = fbck % 2; // XOR the feedback bits
603 mpz_lshift(lfsr->STATE, lfsr->DEGREE); //Left shift
604 if( fbck == 1 ) mpz_setbit( lfsr->STATE, 0 );
605 mpz_clear( tmp );
606 return ret; //Return output character
607 }
608
609 /*-----------------------------------------------------------------------------
610 * Generate LFSR and output an n-length bitsequence
611 * With all arbitrary skips until first prefix is met
612 -----------------------------------------------------------------------------*/
613 void lfsrgen(mpz_t rop, int psize, int olen, mpz_t p,
614 uint_least64_t iv, int skip, mpz_t* B){
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615 int i; //Counter var
616 int initmatch = 0; //Check if first prefix is found
617 struct LFSR lfsr; //Create struct variable
618 char* t;
619
620 lfsr.DEGREE = psize; //Set polynomial degree
621
622 mpz_init( lfsr.POLYNOMIAL );
623 mpz_set(lfsr.POLYNOMIAL, p); //Set polynomial
624
625 mpz_init( lfsr.STATE );
626 mpz_set_ui(lfsr.STATE, iv); //Set initial vector (seed)
627
628 #if defined DEBUG
629 t = pb(lfsr.STATE, psize, 0);
630 printf("\n\tINIT�STT:\t%s",t); mpz_out_str( stdout, 2, lfsr.STATE );
631 printf("\n");
632 free(t);
633 #endif
634
635 mpz_t OUTPUT;
636 mpz_init( OUTPUT );
637 int tmpOUT = 0; //temp char holder
638 i = 0; //Zero out counter
639 while( i < olen ){ //Iterate the LFSR for the set output length
640 tmpOUT = lfsr_iterate(&lfsr);
641 if( initmatch == 0 && skip == 1) { // Iterate until we match the first bit of

,! the sequence
642
643 if( mpz_tstbit(B[tmpOUT], 0) == 1 ) {
644 initmatch = 1; //Set state to found
645 if( tmpOUT == 1 )
646 mpz_setbit(OUTPUT, i); //Set output to tmpvar
647
648 i++; //inc counter
649 }
650 }
651 else {
652 if( tmpOUT == 1) mpz_setbit(OUTPUT, i);
653 i++; //Next bit
654 }
655 }
656
657 //Print LFSR information
658 #if defined DEBUG
659 printf("\tDEGREE:\t\t%d\n", psize);
660 printf("\tLENGTH:\t\t%d\n", olen);
661 printf("\tPOLYNOMIAL:\t"); mpz_out_str( stdout, 2, lfsr.POLYNOMIAL );
662 t = pb(lfsr.STATE, psize, 0);
663 printf("\n\tFINAL�STT:\t%s", t); mpz_out_str( stdout, 2, lfsr.STATE );
664 free(t); t = pb(OUTPUT, olen, 0);
665 printf("\n\tSEQUENCE:\t%s", t); mpz_out_str( stdout, 2, OUTPUT);
666 free(t);
667 printf("\n\n");
668 #endif
669 mpz_set(rop, OUTPUT);
670 mpz_clear(OUTPUT);
671 mpz_clear( lfsr.POLYNOMIAL );
672 mpz_clear( lfsr.STATE );
673 }
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674
675 /*-----------------------------------------------------------------------------
676 * Creates the prefixes
677 -----------------------------------------------------------------------------*/
678 void genPrefixes( mpz_t* B, mpz_t P, int m ){
679 int j = 0;
680
681 mpz_t tmp;
682 mpz_init(tmp);
683 mpz_set_ui( tmp, 1);
684
685 while( j<m ){
686 int ci = mpz_tstbit(P, j); //Char value 0/1
687
688 #if defined DEBUG
689 printf("\tj=%d\tB[%d]�|\t%s", j, mpz_tstbit(P,j), pb(B[ci],m,0) );
690 mpz_out_str(stdout, 2, B[ci]);
691 #endif
692
693 mpz_ior( B[ci], B[ci], tmp ); //current value or-ed with 10^(j-1)
694 mpz_lshift( tmp, m );
695
696 #if defined DEBUG
697 printf( "\n\t\t\t%s", pb(B[ci],m,0));
698 mpz_out_str( stdout, 2, B[ci]); printf( "\n" );
699 #endif
700
701 j++; //Next pattern character
702 }
703
704
705 mpz_clear( tmp );
706
707 }
708
709 /*-----------------------------------------------------------------------------
710 * Creates the error list of K-size
711 -----------------------------------------------------------------------------*/
712 mpz_t* genError(int K) {
713 mpz_t* R = malloc( K*sizeof(mpz_t) ); //Allocate memory for array
714 #if defined DEBUG
715 printf("Gen�error�R[%d..%d]\n", 0, K-1);
716 #endif
717 int k = 0; //Set counter
718 while( k<K ){
719 int i = 0;
720 mpz_init( R[k] );
721 while( i < k ){
722 mpz_setbit( R[k], i );
723 i++;
724 }
725 #if defined SHIFTOR
726 mpz_t mask;
727 mpz_init(mask);
728 mpz_ui_pow_ui(mask, ALPHASIZE, m);
729 mpz_sub_ui(mask, mask, 1);
730 mpz_xor( R[k], R[k], mask );
731 //mpz_com(R[k], R[k]);
732 #endif
733
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734 #if defined DEBUG
735 char* t;
736 t = pb(R[i],m,0);
737 printf("\tR[%d]\t=�%s", k, t);
738 mpz_out_str( stdout, 2, R[k]);
739 printf( "\n" );
740 #endif
741 k++;
742 }
743
744 return R;
745 }
746
747 /*-----------------------------------------------------------------------------
748 * Perform search on TEXT and PREFIX
749 -----------------------------------------------------------------------------*/
750 mpz_t* arbp_search(mpz_t* B, mpz_t TEXT, int K, int m, int n) {
751 mpz_t tmp1;
752 mpz_init( tmp1 ); //Tmp variables
753 mpz_t tmp2;
754 mpz_init( tmp2 );
755 mpz_t tmp3;
756 mpz_init( tmp3 );
757 char* t;
758 char* b;
759 //Match for each position in text
760 mpz_t* R = genError( K ); //Gen error-table
761 mpz_t* MATCHES = malloc( n * sizeof(mpz_t) );
762
763 #if defined CONSTRAINTS2 // Additional matrix for the OR3 algorithm
764 mpz_t* dm = malloc( (K)*sizeof(mpz_t) ); // Initialize dm_i, i=1...k
765 mpz_t del;
766 mpz_init(del);
767 int d = 0;
768 while (d<K) {
769 mpz_init(dm[d]);
770 mpz_set(dm[d], R[0]); // Set all dm_i to 1^m
771 d++;
772 }
773 mpz_set(del, R[0]);
774 #endif
775
776 mpz_t oldR, newR; //Create and init variables
777 mpz_init( oldR );
778 mpz_init( newR );
779
780
781
782 #if defined DEBUG
783 printf( "\nBeginning�search\n");
784 #endif
785
786 uint_least64_t pos = 0; //Start search from char 1
787
788 while( pos < n ){ //Search entire TEXT
789
790 #if defined DEBUG
791 printf("--------------�%llu", pos);
792 #endif
793
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794 int Ti = mpz_tstbit( TEXT, pos ); //Grab current chars int value
795 int Tii = (Ti + 1) % 2; //Trick to get the complemented value
796
797 mpz_clear( oldR ); mpz_init( oldR ); //Reset variables
798 mpz_clear( newR ); mpz_init( newR );
799
800 mpz_set( oldR, R[0] ); //Init oldR to cur R[0] (R[i])
801 mpz_set( tmp1, R[0] );
802
803 // Exact match
804 #if defined SHIFTOR
805 mpz_lshift( tmp1, m ); //lshift
806 mpz_ior( tmp1, tmp1, B[Tii] ); //OR with B[Ti]
807 #else
808 mpz_lshift( tmp1, m ); //lshift
809 mpz_setbit( tmp1, 0 ); //OR with 1
810 mpz_and( tmp1, tmp1, B[Ti] ); //AND with B[Ti]
811 #endif
812
813 #if defined DEBUG
814 b = pb(B[Ti],m,0);
815 printf("\n\nB[%d]:�%s", Ti, b);
816 mpz_out_str(stdout, 2, B[Ti]);
817 #endif
818
819 mpz_set( newR, tmp1 ); //Set newR to tmp
820 mpz_set(R[0], newR); //Set R[0] to R’[i]
821
822 // Approximate match algorithms
823 #if defined (DEBUG) && defined (SHIFTOR)
824 if(mpz_tstbit(R[0], m-1) > 0){
825 t = pb(R[0],m,1);
826 }
827 else{
828 t = pb(R[0],m,0);
829 }
830 printf("\nR[0]:�%s", t);
831 mpz_out_str(stdout, 2, R[0]);
832 if( mpz_tstbit(R[0], m-1) == 0 ) printf("�[!]"); // Print indicator if match
833 printf("\n");
834 #elif defined DEBUG
835 t = pb(R[0],m,0);
836 printf("\nR[0]:�%s", t);
837 mpz_out_str(stdout, 2, R[0]);
838 if( mpz_tstbit(R[0], m-1) == 1 ) printf("�[!]"); // Print indicator if match
839 printf("\n");
840 #endif
841
842
843 uint_least64_t i = 1; //Calc matches with K allowed errors
844 while( i < K ) {
845 mpz_clear( tmp1 );mpz_clear(tmp2);mpz_clear(tmp3);
846 mpz_init(tmp1); mpz_init(tmp2);mpz_init(tmp3); //Reset and initialise temp

,! variables
847
848 #if defined SHIFTOR
849 #if defined CONSTRAINTS2 // OR3 algorithm implementation
850 // Deletion
851 mpz_set(tmp2, oldR);
852 mpz_lshift(tmp2, m);
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853
854 mpz_lshift(del, m);
855 mpz_setbit(del,0);
856 mpz_com(tmp3, del);
857
858 mpz_ior(tmp2, tmp2, tmp3);
859
860 mpz_lshift(dm[i-1], m);
861 mpz_setbit(dm[i-1], 0);
862 mpz_com(tmp3, dm[i-1]);
863
864 mpz_ior(tmp2, tmp2, tmp3);
865
866 mpz_setbit(tmp2, (m-1));
867
868 mpz_set(dm[i], del);
869 // Substitution
870 mpz_set(tmp1, oldR); //tmp3 = oldR
871 mpz_lshift(tmp1, m); //tmp3 = <tmp3> << 1
872 mpz_ior(tmp1, tmp1, B[Ti]); // OR NOT B[]
873
874 mpz_set(oldR, R[i]); //Store R[i] for next error
875
876 // Match
877 mpz_lshift(R[i], m);
878 mpz_ior(R[i], R[i], B[Tii]);
879
880 mpz_and(R[i], R[i], tmp1);
881 mpz_and(R[i], R[i], newR);
882
883 mpz_set(newR, R[i]); //newR = <tmp1>
884
885 #elif defined CONSTRAINTS1 // OR2 algorithm implementation
886 // Deletion
887 mpz_lshift(newR, m);
888
889 // Substitution
890 mpz_set(tmp1, oldR); //tmp3 = oldR
891 mpz_lshift(tmp1, m); //tmp3 = <tmp3> << 1
892 mpz_ior(tmp1, tmp1, B[Ti]); // OR NOT B[]
893
894 mpz_set(oldR, R[i]); //Store R[i] for next error
895
896 // Match
897 mpz_lshift(R[i], m);
898 mpz_ior(R[i], R[i], B[Tii]);
899
900 mpz_and(R[i], R[i], tmp1);
901 mpz_and(R[i], R[i], newR);
902
903 mpz_set(newR, R[i]); //newR = <tmp1>
904
905 #else // OR1 algorithm implementation
906 mpz_set(tmp1, oldR);
907 mpz_and(tmp1, tmp1, newR); //Del+Sub
908 mpz_lshift(tmp1, m);
909 mpz_set(oldR, R[i]);
910 mpz_lshift(R[i], m);
911 mpz_ior(R[i], R[i], B[Tii]); //Match
912 mpz_and(R[i], R[i], tmp1);



Chapter A: Source code 101

913 mpz_set(newR, R[i]);
914
915 #endif
916
917
918 #else // Shift-AND implementation
919 mpz_ior(tmp2, oldR, newR); //tmp2 = (oldR|newR)
920 mpz_lshift(tmp2, m); //tmp2 = <tmp2> << 1
921
922 mpz_setbit( tmp2, 0 );
923
924 mpz_set(tmp1, R[i]); //Copy value
925 mpz_lshift(tmp1, m); //tmp1 = R[i]<<1
926 mpz_and(tmp1, tmp1, B[Ti]); //tmp1 = <tmp1> & B[Ti]
927
928 mpz_ior(tmp1, tmp1, tmp2); //tmp1 = <tmp1> | <tmp2>
929
930 mpz_set(newR, tmp1); //newR = <tmp1>
931 mpz_set(oldR, R[i]); //Store R[i] for next error
932 mpz_set(R[i], newR); //R[i] == R’[i]
933 #endif
934
935
936
937 #if defined (DEBUG) && defined (SHIFTOR)
938 if(mpz_tstbit(R[i], m-1) > 0){
939 t = pb(R[i],m,1);
940 }
941 else{
942 t = pb(R[i],m,0);
943 }
944 printf("R[%llu]:�%s", i, t );
945 mpz_out_str(stdout, 2, R[i]);
946 if( mpz_tstbit(newR, m-1) == 0 ) printf("�[!]");
947 printf("\n");
948
949 #elif defined DEBUG
950 t = pb(R[i],m,0);
951 printf("R[%llu]:�%s", i, t );
952 mpz_out_str(stdout, 2, R[i]);
953 if( mpz_tstbit(newR, m-1) == 1 ) printf("�[!]"); // Print indicator if match
954 printf("\n");
955
956 #endif
957
958 i++; //Next error
959 }
960
961 mpz_init( MATCHES[pos] );
962 mpz_set_ui( MATCHES[pos], m ); //Init val of match at cur pos
963 int j = 0; //Init counter
964 #if defined SHIFTOR
965 if( mpz_tstbit(newR, m-1) == 0 ){ //Check if R-table has a match
966 #else
967 if( mpz_tstbit(newR, m-1) == 1 ){ //Check if R-table has a match
968 #endif
969
970 while( j<K ){ //Loop R-table for matches (MSB set)
971 #if defined SHIFTOR
972 if(mpz_tstbit(R[j], m-1) == 0){ //Check if MSB zero
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973 #else
974 if(mpz_tstbit(R[j], m-1) == 1){ //Check if MSB set
975 #endif
976 mpz_set_ui(MATCHES[pos], j); //Set match to the R-level (0-K)
977 j = K; //Skip to end
978 }
979 j++; //Next error value
980 }
981 }
982
983 #if defined DEBUG
984 printf("\n");
985 #endif
986 pos += 1; //Next position in search text
987 }
988
989 #if defined DEBUG
990 printf("Search�done.\n");
991 #endif
992 mpz_clear( oldR );
993 mpz_clear( newR );
994 free(R);
995
996 return MATCHES;
997
998 }

Code listing A.4: <makefile> The main programs makefile
1
2 main: clean
3 gcc -DSHIFTOR -o main main.c tpool.c -lgmp -lpthread
4
5 and: clean
6 gcc -o main main.c tpool.c -lgmp -lpthread
7
8 or2: clean
9 gcc -DSHIFTOR -DCONSTRAINTS1 -o main main.c tpool.c -lgmp -lpthread

10
11 or3: clean
12 gcc -DSHIFTOR -DCONSTRAINTS2 -o main main.c tpool.c -lgmp -lpthread
13
14 read: clean
15 gcc -DREADCAND -o main main.c tpool.c -lgmp -lpthread
16
17 demo: clean
18 gcc -DSHIFTOR -DCONSTRAINTS2 -DDEMO -o main main.c tpool.c -lgmp -lpthread
19
20 debug: clean
21 gcc -DSHIFTOR -DDEBUG -o main main.c tpool.c -lgmp -lpthread
22
23 clean:
24 rm -f main *.lib

A.3 Analysis framework
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Code listing A.5: <analysis.go> Go framework for testing
1 package main
2
3 import (
4 "fmt"
5 "strconv"
6 "os/exec"
7 "log"
8 "math"
9 "strings"

10 "time"
11 "os"
12 "io"
13 "runtime"
14 "encoding/csv"
15 )
16
17 func main() {
18
19
20 data_path := "./data" // Local system path to store data files
21 cpus := runtime.NumCPU()
22
23 // Get available jobs
24 for {
25 jobfile := fmt.Sprintf("%s/jobs.txt",data_path) // Avilable jobs
26 ret_job := getJob(jobfile) //
27
28 deg, _ := strconv.Atoi(strings.TrimSpace(ret_job[0]))
29 m, _ := strconv.Atoi( strings.TrimSpace(ret_job[1]))
30 n, _ := strconv.Atoi( strings.TrimSpace(ret_job[2]))
31 k, _ := strconv.ParseFloat( strings.TrimSpace(ret_job[3]), 32)
32 stop_m, _ := strconv.Atoi( strings.TrimSpace(ret_job[4]))
33 r1, _ := strconv.Atoi( strings.TrimSpace(ret_job[5]))
34 r2, _ := strconv.Atoi( strings.TrimSpace(ret_job[6]))
35 col_accept, _ := strconv.Atoi( strings.TrimSpace(ret_job[7]))
36 mode := strings.TrimSpace(ret_job[8])
37
38 make_cmd := exec.Command("make")
39
40 if mode == "and" {
41 make_cmd = exec.Command("make","and")
42 } else if mode == "or2" {
43 make_cmd = exec.Command("make","or2")
44 } else if mode == "or3" {
45 make_cmd = exec.Command("make","or3")
46 }
47
48 err := make_cmd.Run()
49 if err != nil {
50 log.Fatalf("FATAL�ERROR:�Build�failed�%s\n", err)
51 return
52 }
53
54 n=2*m
55
56 var status string
57 var logline string
58
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59 max := int(math.Exp2(float64(deg)))
60
61 fname := fmt.Sprintf("%s/%s_%d_%d_%d_%d_%d_%d.log", // Logfile name
62 data_path, mode, deg, r1, r2, m, n, col_accept)
63
64
65 if n < m*2 {
66 fmt.Printf("Search�text�too�short...\n")
67 continue
68 }
69
70 for m <= stop_m {
71 n=2*m
72 bottom := 0
73 var resmap = make([]int, m-1)
74 var i int = int(float32(m)/float32(k))
75
76 SeekErrors:
77 for true {
78 if resmap[i] == 1 {
79 i++
80 continue SeekErrors
81 }
82 search_start := time.Now()
83 cmd := exec.Command("./main", strconv.Itoa(deg), strconv.Itoa(m), strconv.Itoa

,! (n), strconv.Itoa(i), strconv.Itoa(r1), strconv.Itoa(r2), strconv.Itoa
,! (col_accept), strconv.Itoa(cpus))

84 b, _ := cmd.Output()
85 duration := time.Since(search_start)
86 s := strings.Split(string(b), ",")
87 res, _ := strconv.Atoi(s[0])
88 cands, _ := strconv.Atoi(s[1])
89
90 if res >= 1 {
91 status = "invalid_no_r2"
92 fmt.Printf("[m=%d,n=%d,k=%d]�FAILED:�Set�of�%d/%d�contains�no�actual�R2STATE

,! ...�\n", m, n, i, cands,max)
93 } else if res == -1 {
94 status = "invalid_zero_set"
95 bottom = 1
96 fmt.Printf("[m=%d,n=%d,k=%d]�FAILED:�Zero�candidates...�\n", m, n, i)
97 } else if res == -2 {
98 status = "invalid_full_set"
99 fmt.Printf("[m=%d,n=%d,k=%d]�FAILED:�Too�many�candidates...�\n",m, n, i)

100 } else if res == -3 {
101 status = "invalid_collisions"
102 fmt.Printf("[m=%d,n=%d,k=%d]�FAILED:�Set�of�%d/%d�contains�collisions...�\n",

,! m, n, i,cands,max)
103 } else if res == 0 {
104 status = "valid"
105 fmt.Printf("[m=%d,n=%d,k=%d]�SUCCESS:�Set�of�%d/%d�is�valid!\n",m, n, i,cands

,! ,max)
106 // If success on first run, save the parameters and decrease. Skip ahead to a

,! set value when done
107 }
108 resmap[i] = 1
109 logline = fmt.Sprintf("%d,%d,%d,%d,%s,%d,%d\n",m,n,i,cands,status,duration,

,! cpus)
110
111 writeLog(fname, logline)
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112
113 // m,n,k, invalid_full_set/invalid_zero_set/invalid_no_r2/invalid_collisions/

,! valid
114 if res >= 0 && bottom == 0 {
115 i--
116 } else if res == -2 && bottom == 0 {
117 i--
118 } else if res >= 1 {
119 i++
120 } else if res == -1 {
121 i++
122 } else if res == -2 {
123 break
124 } else if res == -3 {
125 break
126 }
127
128 }
129 m=m+20
130 }
131 }
132 fmt.Printf("Done\n")
133 os.Exit(0)
134 }
135
136 func writeLog(fname string, logline string) {
137 f, err := os.OpenFile(fname, os.O_CREATE|os.O_APPEND|os.O_WRONLY, 0666); // File

,! to hold return values for later statistics
138 if err != nil {
139 panic(err)
140 }
141 if _, err := f.WriteString(logline); err != nil {
142 panic(err)
143 }
144 f.Close()
145
146 }
147
148 func getJob(jobfile string) []string {
149 csvfile, err := os.Open(jobfile)
150 if err != nil {
151 log.Fatalln("Couldn’t�open�the�csv�file", err)
152 }
153 os.Remove(jobfile)
154 newfile, err := os.OpenFile(jobfile, os.O_CREATE|os.O_EXCL|os.O_WRONLY, 0666)
155 r := csv.NewReader(csvfile)
156 i := 0
157
158 ret_job, err := r.Read()
159 if err == io.EOF {
160 fmt.Printf("No�more�jobs,�shutting�down...\n")
161 os.Exit(0)
162 }
163 if err != nil {
164 log.Fatal(err)
165 }
166
167 for {
168 job, err := r.Read()
169 if err == io.EOF {
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170 break
171 }
172 if err != nil {
173 log.Fatal(err)
174 }
175 writer := csv.NewWriter(newfile)
176 writer.Write(job)
177 writer.Flush()
178 i++
179 }
180
181 return ret_job
182
183 }

Code listing A.6: <jobs.txt> Sample job-file for analysis.go
1 11,40,80,4,40,100,100,0,or1
2 11,40,80,4,40,100,100,0,or2
3 11,40,80,4,40,100,100,0,or3

A.4 AWS Launch template

Code listing A.7: AWS Launch template Bash script
1 #!/bin/bash
2 apt-get update
3 apt-get install -y libgmp-dev build-essential nfs-common golang-go
4 cd /home/ubuntu
5 su ubuntu -c "git�clone�-b�evaluate�https://github.com/philedem/BRM_Code"
6 cd BRM_Code/evaluation/src
7 mkdir data
8 mount -t nfs4 -o rsize=1048576,wsize=1048576,hard,timeo=60,retrans=2,noresvport \
9 fs-xxxxxxxx.efs.eu-north-1.amazonaws.com:/ /home/ubuntu/BRM_Code/evaluation/src/

,! data
10 chown ubuntu data
11 chgrp ubuntu data
12 su ubuntu -c "go�run�analysis.go"



Appendix B

Data

B.1 Evaluation data

As the quantitative evaluation data set contains large amounts of data, this is
included separately in the provided .zip-file which also contains the source code
related to this thesis. The filename is evaluation.xlsx.

107
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B.2 Performance data
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