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Abstract 

The need for partial-face recognition to recognize partial-faces from CCTV footages or other 

pictures existed since the rise of technology. When attempting to do a crime, perpetrators cover 

their face to conceal their identity from the law. They either tie a handkerchief or bandana while 

committing crimes like robbery, kidnapping etc. The need to recognize these face covered 

criminals has also created a need for partial-face recognition. But the need has increased in 

today’s reality where wearing a face mask has become a necessity to stay healthy. Having a 

partial-face recognition system with high efficiency will improve the security systems like 

passport control, access control and biometric face authentication without the need for people 

to remove their face masks. This thesis proposes a method using a patch-based approach on 

deep learning for face recognition of partial-faces covered by face masks. The face areas of 

masked covered faces are first patched, and the patches are then used to train a pre-trained deep 

Convolutional Neural Networks (CNN), FaceNet. The models created after training the CNN 

with these patches are then used for face recognition. Two fusion techniques (Score-level and 

feature-level fusion) for the patches were used out of which Score-level fusion gave the best 

results. The methods used in this thesis consists of using a 3D face masking tool to create 

masked datasets, face detection and alignment, a patch-based transfer learning and fine tuning 

of a pre-trained deep learning model (FaceNet), feature extraction using the trained models, and 

score-level and feature-level fusion of the different patches. The final step of using the score-

level fusion gave promising results on both test datasets. It gave an accuracy of 86.75% and 

EER of 13.25 % for FEI dataset, and accuracy of 91.395% and EER of 8.605% for TUFTS 

dataset. This shows that partially covered faces by face masks can possibly be recognized by 

using patch-based deep learning with high accuracy. We believe the performance can be 

improved by using more diverse face image dataset with high number of images, and pose and 

illumination variations for training the models. The method can also be improved by replacing 

the triplet loss function with hierarchical triplet loss function or quadruplet loss function, and 

by increasing the number of patches for the patch-based deep learning. In the future, this thesis 

can be extended for face recognition of other partial-face images.   

Keywords: Convolutional Neural Network, Transfer Learning, Finetuning, Patch-based, Deep 

Learning, Partial-face Recognition, Support Vector Machine. 
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1. Introduction 

Face recognition techniques have been around for years. In today’s world frontal face 

recognition is widely used with high efficiency for security reasons and identification purposes 

such as for Passports, ID cards, etc. But this usually requires a controlled environment with 

proper lighting, good image quality, posture of the face and fully uncovered face image. Face 

images with occlusion or partially covered faces have low recognition rates with these face 

recognition systems [1]. 

Recently, due to the COVID-19 pandemic situation people are wearing face masks to reduce 

the transmission of the virus. This is making almost everyone wear a mask. The current face 

recognition techniques cannot perform face recognition on these masked faces. Moreover, 

criminals like thieves and robbers cover their faces with masks or clothes when committing a 

crime. And the current situation has given them a golden opportunity to blend in by wearing 

COVID-19 masks and some criminals are taking it [2], [3]. Since the common state-of-the-art 

algorithms for face recognitions cannot be used on partial faces with high accuracy, it is difficult 

to identify these criminals even if we have a picture of them. Many criminals committing these 

crimes also have previous records. This means that the law enforcement database has their images 

which can be used as a reference image to match them to if we have a method for recognizing these 

partial face images. 

Face recognition can still be done with high accuracy when the nose is uncovered but has low 

accuracy where only the eye and forehead area is uncovered [4]–[6]. Since, fully masked faces 

have their nose covered we need a method which works for partial-faces with only the top half 

uncovered. 

1.1 Problem Description 

Even though face recognition has attained a great progress in the last few years due to the use 

of deep learning and other accomplished methods such as Principal Component analysis (PCA) 

method, it still gives a low recognition rate when it comes to partial faces which are covered 

with masks [4], [7]. As a result, it is easy for criminals to get away with crimes by concealing 

their identity by a mere mask or scarf. The current pandemic situation has made it mandatory 

to wear masks to control the infection rates and stop the spread of the virus. In situations like 

this the community access control and face authentication fail [8] and people need to remove 
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their masks putting everyone at risk. It is therefore, very important to have a face recognition 

system which can recognize partial-faces with high accuracy. 

A good partial-face recognition method will help identify the criminals from partial-face images 

helping the law enforcement agencies detect and catch them. This will reduce masked crime 

rates due to the criminals’ fear of getting caught and also help the victim obtain justice. This 

method could also benefit security checks in places like airports and passport control as this 

may not require people to take off their masks for facial recognition. 

1.2 Research Questions 

The two main research questions for this thesis are: 

• To what extent can partial-face or face covered with mask be recognized? 

• Can patch-based deep learning be used for partial-face recognition? 

1.3 Proposed methodology 

For this thesis we require more than one dataset as one of them will be used for transfer learning. 

The other datasets will be used for testing our proposed methodology. Since, people started 

wearing masks recently, the number of masked datasets is limited. We therefore, need a method 

to create these masked datasets. 

After we have the datasets, we need to detect and extract faces from these datasets so that we 

can only focus on the face. This will help with better feature extraction. Alignment of the face 

also increases the face recognition rates [9].  

Partial face images with only eye and nose area have low recognition rate. Using patched face 

images in the training set increases the recognition rate [10]. Patched-based deep learning helps 

the models extract more detailed features from the image than if the whole image is used. 

Patching images therefore, improves the accuracy in some cases [11]. So, to increase the 

accuracy we use a patch-based approach for this thesis. 

Deep learning Face recognition has made tremendous progress in the last few years. 

Convolutional Neural Network is one of the most successful deep learning methods. The CNN 

method is effective in image classification [12], object detection [13], and voice print 

recognition [14]. The CNN can learn abstract expression like a human brain by using a deep 
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architecture [15], [16]. It is also very successful in face recognition, as described in [17], “The 

powerful aspect of Deep CNN is the fact that, given an ample training set, these large-scale 

pattern recognition machines can be optimized end-to-end in order to develop features that 

amplify the identity signal, while being robust to other PIE (pose-illumination-expression) 

variations” The PIE problem is one of the problems other methods suffer from and is unable to 

give good face recognition rates when there is large PIE variations like in [18]. 

CNN can be used in three ways, which is, training a network from scratch, fine-tuning an 

existing model, or using off the shelf CNN features. Fine tuning an existing model is called 

transfer learning [19]. Training a network from scratch requires huge amount of data and takes 

a lot of time. It is therefore, more efficient to use pre-trained CNN models such as VGGFace, 

VGG16, VGG19, FaceNet etc. [20]. 

Therefore, we choose to use transfer learning and fine tuning on a CNN based pre-trained model 

for our feature extraction and face recognition. 

Fusion techniques can be used to improve the accuracy of multiple biometric systems together. 

There are four different levels of fusions:  sensor level fusion, feature level fusion, score level 

fusion and decision level fusion [21]. Score-level fusion is the fusion between the output scores 

of multiple biometric systems and can be used to give a better accuracy using the fused scores 

[22]. Feature level fusion is the fusion between the features from different biometric systems 

before the scores are calculated. This is also used to improve accuracy for biometric 

identifications [23]. For this thesis, we use score-level and feature-level fusion between the 

patches. 

So, to summarize, the overview of the proposed methodology is as follows: 

• Due to lack of masked face datasets for training and evaluation, a mask tool is applied 

to create masked datasets 

• For each masked face image, face detection and face alignment are done to only get the 

face area 

• Each extracted and aligned face is then patched into 3 patches; top, top-left and top-

right patch 
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• Transfer learning and fine tuning on a pre-trained model (FaceNet) is then done using 

the 3 patches from one of the datasets and three different models are generated 

• Using these models, feature vector for each image from the other two datasets are 

obtained 

• Score-level fusion and feature-level fusion is then done using these feature vectors to 

improve the accuracy and reduce the equal error rate. 

A flowchart of the proposed methodology can be seen in Figure 1. 

Figure 1: Flowchart of the proposed methodology 
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2. Motivation and Related Work 

This thesis is motivated by the need of a good face recognition technique for partial faces. The 

current COVID-19 situation has increased the need of such system further for face biometric 

authentication and security. The motivations for each area of the proposed methodology are 

described in this section. 

2.1 Simulated masked face dataset 

Lack of masked face dataset has increased a need for methods to apply face masks digitally.  

InsightFace is an open source 2D and 3D face analysis library that can be used in python [24]. 

They use a lot of face datasets for their projects. To improve and increase the data even more 

they use data augmentation. One of the data augmentations they use is to add masks to faces. 

This is done by using a library for 3D manipulation of the face, Face3D [25]. This can be 

utilized for creating simulated masked face image datasets [26]. 

The masked face dataset explained in the paper “Masked Face Recognition Dataset and 

Application” also used a simulated masked face images to increase the volume and diversity of 

their dataset. They used Dlib library to mask their dataset using the face landmarks around the 

lower region of the face [27].  

Figure 2 shows samples of the two tools to apply face masks on faces. 

2.2 Face detection 

MTCNN (Multi-task Cascaded Convolutional Networks), RetinaFace and OpenPose are state 

of the art algorithms to detect faces. Out of these, MTCNN and RetinaFace uses a pre-trained 

model to detect eyes, nose, and mouth and produce a bounding box, while OpenPose uses ears, 

eyes, nose, and neck without using a pre-trained model [28]. 

MTCNN is the most widely used face detection method. MTCNN method is used for face 

detection efficiently in multiple projects as it uses a lightweight CNN architecture for real -time 

performance combining the face detection and alignment into one [29]. RetinaFace gives a more 

accurate placement of the five facial features and better accuracy in face detection than MTCNN 

[9]. 
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Examples of using InsightFace tool for masking faces [26] 

    

Examples of using Dlib tool for masking faces [27] 

 

Figure 2 : Examples of Simulated masked face images 

MTCNN is done as a three stage CNN. Firstly, a shallow CNN is used to produce candidate 

windows. The number of windows is then reduced using a more complex CNN and discarding 

the windows with no faces. This reduces the number by a lot. Finally, a more powerful CNN is 

used to get the final window with output which gives the five facial landmarks positions. By 

reducing the number of window each time and increasing the complexity, this performs well 

and faster compared to other algorithms in real-time [30]. The whole image can then be cropped 

by increasing the output window by some pixel to incorporate the entire face as done in [31].  

RetinaFace is a pixel-wise robust single-level face detector. It gives a bounding box and five 

face landmarks, which can be used for face detection and alignment like MTCNN. RetinaFace 

performs better than MTCNN in locating the face landmarks but requires more time than 

MTCNN[9], [32]. 

2.3 Patch-based method 

The paper, Patch-based face recognition from video proposes patch-based method of face 

detection from a video. In this method they extract patches of the face from the video frames 

and stitch them for reconstructing the face and then perform face recognition on it. The method 

used in this paper, however, has a chance of having severe noise in the reconstructed image due 
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to self-occlusion and region rectification errors as the patches used in the reconstruction can 

come from different views. The method can also fail in case of large changes in pose, 

illumination and difference in expressions of the face [18]. 

In the patch-based face Recognition proposed by [33], face images are divided into patches and 

these patches are converted into column vectors. These are then converted into “image matrix” 

using which, the correlation between patches is calculated [33]. [33] uses this image matrixes 

in a two-dimensional principal component analysis (PCA) framework calculating the 

correlation of the patches. The projection matrix for feature extraction is then obtained. This 

method has a better accuracy than one-dimensional PCA, two-dimensional PCA, and two-

directional two-dimensional PCA. 

In [34], Gabor features were used along with patch-based face recognition and this gave 

promising results dealing with the unreliability environment in small sample Face recognition 

and an improves computational efficiency and computational speed. This overcomes the PCA 

method which, even though has the most outstanding performance, is limited by the sample 

size and requires a lot of time. 

 

Figure 3: An example of a patch-based deep learning face recognition [6] 

[7] uses Local binary patterns (LBP) as a local descriptor followed by Kernel-PCA method after 

the image is divided into non-overlapping patches. Multiple sub-Support vector machine 

classifiers are created randomly by a patch sampling technique. This gives good results for faces 
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in which the lower part is missing, like a face covered with mask. [35] also uses a similar 

approach of using SVM but with alignment-based face recognition. 

Patch-based method has proved to give good face recognition rate and has been used with many 

methods. Although it fails to give good face recognition rate when there is a large change in 

pose, illumination and expression using large poses and illumination in the training set will 

improve the accuracy. Patch-based system will also be affective in partial face recognitions. 

2.4 Deep Learning - Transfer learning and Fine Tuning 

The paper “Robust Face Recognition Using the Deep C2D-CNN Model Based on Decision-

Level Fusion” proposes a color 2-dimentional principal component analysis named C2D-CNN. 

This method combines the features extracted by CNN from the original pixels and then make 

decision-level fusion. The CNN model in this paper consists of convolution layer, 

normalization layer, layered activation function layer, probabilistic max-pooling layer, and 

fully connected layer for feature extraction. This model provides a robust face recognition and 

performed better than DeepFace, WSTFusion, COST-S1 and COTS-S1+S2 [15]. The training 

time of the CNN layers noticed in [15], however, shows that it takes hours to train per layer. 

As mentioned in the paper, Deep face recognition using imperfect facial data which uses 

convolutional neural network (CNN) along with pre-trained VGG-Face model for recognizing 

imperfect faces from CCTV cameras, partial faces containing only eyes, nose and cheeks 

individually have low recognition rates. This can be improved slightly using individual parts of 

the face as references. The face recognition is then done using Support Vector Machine and 

Cosine similarity [20]. Convolutional neural network ‘deep’ structures were successfully used 

by many to generate features needed for face recognition [36]. 

Good CNN models require large training data and huge amount of computational power to train 

the models. Training these models with large data also requires a lot of time as seen from above. 

Therefore, using pre-trained face models can help save time giving similar accuracy. The VGG-

Face model used in [10], [20] was trained on an enormous dataset containing 2.6M face images 

of more than 2.6K individuals. This would take lots of resources and massive amount of time 

to train from scratch without proper computational power. Therefore, it was used as a pre-

trained model [20].  
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A way to use the old weights from a pre-trained model for creating a new trained model with 

the same domain is called transfer learning. During transfer learning we separate the feature 

extraction layers from the classification layer and add a new classification layer. Training this 

by freezing the feature extraction layers then tailors the model to our needs. Another transfer 

learning technique is fine tuning. This is done after the previous transfer learning technique. In 

this method we unfreeze all or parts of the feature extraction layers and train our new dataset 

on it using very low learning rate to avoid destroying the pre-trained knowledge and overfitting 

while improving the accuracy [37]–[39]. 

2.5 Partial face recognition 

A dynamic feature matching approach which is a novel partial face recognition approach is 

proposed in the paper Dynamic Feature Matching for Partial Face Recognition. This is a 

combination of fully convolutional networks and sparse representation classification to address 

partial face recognition problem regardless of various face sizes. A frame or still image can be 

extracted from the video and different face recognition methods can be used on it to improve 

the recognition results. The results in this method were more effective in terms of accuracy and 

computation efficiency [4].  

[18] also uses face detection on videos using patch-based face recognition. In the paper, 

different partial face images from the video are stitched together to create a whole face image 

used for face recognition [18]. 

Another, recent paper proposed a deep learning-based method and quantization-based 

technique to deal with the recognition of the masked faces. They used a transfer learning 

approach with a pre-trained CNN and a deep Bag of features layer for face recognition on 

masked faces and achieve high accuracy [8]. 

[20] analyses face recognitions on different parts of the faces and partial face patches 

individually. The paper states that face recognition on images with only eye area has low 

recognition accuracy and can be improved by added the partial face patches while training the 

pre-trained model VGGFace [20]. 

2.6 Support vector machine and Squared Euclidean distance 

Face recognition can be done in multiple ways. The most common ways are to use a classifier 

and a distance metric. The most effective method for this is using Support Vector Machine as 
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classifier and Cosine Similarity as distance metric. This two can separate different data more 

accurately [20]. Squared Euclidean distance is a widely used distance metric which can be used 

to find the distance between two points or in case of face recognition between two feature 

vectors. Euclidean distance has been used for face recognition by [40] along with many other 

image classification methods. 

Support Vector Machine – SVM is a supervised machine learning algorithm which separates 

data using hyperplanes into different classes. SVM can be used for both binary classification 

and multi classification problems. In this project multi classification is required. This can be 

done based on a One-vs-One (OVO) approach [41]. SVM is of two types linear and non-linear 

kernel. In case of face recognition using linear SVM works better [20]. Figure 4 shows an 

illustration of a multi classification using OVO approach. Each class separates itself from other 

classes one by one. This finally creates multiple classes. This means, in the case below, red 

separates itself from blue once then later the green and so on [42]. 

 

Figure 4: Illustration of multi classification using OVO approach [42] 

 

Squared Euclidean Distance – As the name suggests Squared Euclidean distance is the square 

of the Euclidean distance. Since, Euclidean distance has a square root, the square in the Squared 

Euclidean distance cancels it. Square Euclidean distance is therefore, the sum of the square of 

the distance between two vectors. 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ∑ (𝑥1 − 𝑥2)2 
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Squared Euclidean distance is used when the distances are very small and using square root 

reduces it further [43]. Squared Euclidean distance has also been used in classification, 

clustering, image processing, and other areas to save the computational expenses as it avoids 

the computation of square root [44]. In case of feature vectors, the distances are very small and 

using square root give an even smaller distance. 
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3. Methodology 

3.1 Datasets used 

3.1.1 KomNET: Face Image Dataset from Various Media for Face Recognition 

This dataset is used for transfer learning and fine tuning the pre-trained model Facenet. KomNet 

face image dataset is created for performing face recognition by using three different media 

sources; mobile phone camera, digital camera, and social media. For this thesis, the images 

from digital camera were used. The dataset consists of 50 individuals each of them having a 

total of 24 images with different poses with frontal face images. The images were obtained 

without conditions like as lighting, background, haircut, mustache and beard, head cover, 

glasses, and differences of expression. The images were collected in Computer Laboratory, 

Department of Electrical Engineering, Politeknik Negeri Bali, Bali, Indonesia. Samples of the 

images from this dataset can be seen below[45]. 

 

    

    

Figure 5: Examples of images of a single individual from the KomNET dataset [45] 

 

3.1.2 FEI Face Database 

This dataset is used for the face recognition in this thesis and testing the fine-tuned model. The 

FEI dataset is a Brazilian dataset which was created using faces of students and staff at the 

Artificial Intelligence Laboratory of FEI. The individuals used were between 19 to 40 years old 

with different appearance, hairstyle and adorns. It has 14 images for each individual in the 
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dataset. For this thesis, the 14th image which had almost no lighting was discarded as for some 

individual no face was detected with MTCNN or RetinaFace. The images are of homogeneous 

background consisting of frontal face images with profile rotation of up to 180 degrees. It has 

two front faces images one with no expression and one smiling face image. The images 

consisting of poses with 180-degree rotation to the left and right were discarded as well. This 

was because during the pre-processing of the dataset i.e., adding face masks to them using a 

tool by InsightFace (explained later in the paper), the face masks on these images were not 

placed correctly and a part of their nose was not covered with a face mask. Examples of images 

of different poses can be seen in the figure below [46]–[50]. 

 

    

    

Figure 6: Examples of images of a single individual from the FEI database [46]–[50] 

 

3.1.3 Tufts-Face-Database 

This data set is used for face recognition like the FEI face database. Unlike the previously 

mentioned datasets this dataset consists of diverse individuals. The individuals are from more 

than over 15 countries and have an age range of 4 to 70 years. The images collected were of 

students, staff, faculty, and their family members at Tufts University. Each image was taken in 

front of a neutral deep blue background and constant lighting conditions. The dataset consists 

of frontal face images with one smiling image, one mouth opened image, one eyes closed image 

and the rest neutral expression images. The poses of the images have a little rotation to the left 

or right. For this thesis, two individuals were discarded as they contained only 4 images in total 

while the rest had 8 images per person. This was done to keep consistent number of images of 
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all the individuals in train and test sets. Example of images in this dataset can be seen from the 

figure below [51].  

    

    

Figure 7: Examples of images of a single individual from the Tufts-Face-Database [51] 

 

3.2 Data Pre-processing 

3.2.1 Masking 

Due to covid, everyone started wearing masks since 2020. There are not many datasets for face 

recognition which contains all masked faces as this happened only recently. Most datasets with 

masked faces have 3 to 5 images per person. When this is divided into train and validation set 

the amount of data is not enough for transfer learning and does not give a good model. The 

model in this case has low accuracy in predicting unknown or unseen images and hence is low 

in accuracy for feature extraction and face recognition. To get a model which has better 

accuracy in feature extraction and face recognition for unknown or unseen image we need a 

dataset which has many images per person [37], [52]. 

This thesis requires more than one face image dataset with at least one of them having many 

images per person as one dataset is used for transfer learning and fine tuning a pre-trained 

model, as explained above, the more the amount of image per person the better the model. For 

this reason, a masked face dataset was created using normal face recognition datasets with 

frontal face images and a masking tool which is used to apply masks on these images. 
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InsightFace is a deep learning toolkit for face analysis based on MXNet deep learning 

framework [24]. It has a tool created for adding masks to faces automatically which is used for 

data augmentation while training their face recognition models [26]. This tool is created by 

using face3d which is a python toolkit for processing 3D face. Face3d uses 3D68 model and 

Base face model (BFM) which is a pre-trained model. The BFM is created using raw BFM 

morphable model [53] and information from face profiling, 3DDFA (Face Alignment Across 

Large Poses: A 3D Solution) [29], HFPE (High-Fidelity Pose and Expression Normalization 

for Face Recognition in the Wild) [54] and UV coordinates from 3D Morphable Models as 

Spatial Transformer Networks [25], [55]. Some examples of face images before and after face 

masks are applied using this tool can be seen in Figure 8. 

Before adding masks 

   

After adding face masks 

   

Figure 8 : Face images before and after using the face mask renderer tool [26] 

 

3.2.2 Face detection 

Before we can train our model, we need to extract faces from the images for better results of 

face recognition. The most widely used method for this is the Multi-task Cascaded 

Convolutional Networks (MTCNN) [29], [56]. MTCNN is a cascaded system which gives 
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quality results and is much faster than other methods [29], [56]. However, MTCNN was not 

able to extract all the faces from our dataset due to the occlusion (face mask). It could not detect 

faces from FEI dataset when the lighting used was very dim for the occluded faces. Another 

issue with using MTCNN was that the five facial landmarks MTCNN detected was a little less 

accurate which caused the face alignment performed in the next section to be less accurate. 

RetinaFace, which is a robust single-stage face detector, on the other hand was able to extract 

all the face images and also gave more accurate face landmarks than MTCNN. Based on our 

pre-analysis of comparing MTCNN and RetinaFace, we decide to apply RetinaFace for face 

detection on our masked datasets. 

RetinaFace is a single-stage pixel-wise face detection framework using a state-of-the-art dense 

face localization method. This is done by exploiting multi-task loses obtained from extra-

supervised and self-supervised signals. RetinaFace simultaneously predicts face score, face 

box, five facial landmarks, and 3D position and correspondence of each face pixel  [9]. In this 

thesis, we used the face box output to extract faces and the five facial landmarks for alignment. 

An example of RetinaFace architecture can be seen in Figure 9. 

The implementation of RetinaFace can be seen in the figure below. RetinaFace is implemented 

using a five level feature pyramids, denoted by Pn in Figure 10. The first 4 feature levels are 

computed from the corresponding ResNet residual stages, denoted by Cn, as seen from the 

figure. The last pyramid feature level P6 is computed through a 3×3 convolution with stride=2 

on C5. Before the multi-task loss is calculated from each anchor independent context modules 

are applied on the five level feature pyramid. This increases the receptive field and enhances 

the rigid context modelling power. Then the multi-task loss is calculated for positive anchors 

which are s (1) a face score, (2) a face box, (3) five facial landmarks, and (4) dense 3D face 

vertices projected on the image plane [9]. 
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Figure 9 : RetinaFace single-stage pixel-wise face localization [9]. 

 

Figure 10 : RetinaFace architecture with five level feature pyramid and independent context 

module followed by multi-task loss for each positive anchor [9]. 

Face recognition rate from the paper ArcFace which uses MTCNN from face detection and 

alignment increased on all databases when RetinaFace was used instead of MTCNN. Compared 

to MTCNN RetinaFace also decreased the normalized mean error rate and failure rate in 

locating the five facial landmarks [9].  

Since face detection and alignment affects the performance of face recognition and using 

RetinaFace locates the five facial features with better accuracy [9], RetinaFace was used for 

this Thesis. It was implemented using InsightFace which is a deep learning toolkit for face 

analysis based on MXNet deep learning framework [24], [57]. 

3.2.3 Face alignment 

Face alignment is another important step which improves face recognition accuracy [9], [58]. 

Specially for this thesis it is important to align faces for the next step, face patching. Since, for 
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face images covered by masks we can only see the top half of the face. The patches we require 

are of the top half. Alignment makes it easier for patching the faces.  

From RetinaFace while we get the face bounding box and the five face landmarks. The eye 

coordinates from the five face landmarks are selected for face alignment. After the alignment 

the face is cropped from the image using the coordinated of the face box. The concept in which 

the face is aligned is explained in the following paragraph. 

First the two eye coordinates are located. Then a line is drawn connecting the two eyes. To align 

the face images, we have to rotate the image to make this line parallel to the horizon [58], [59].  

To get the angle needed to rotate the image we draw another dot using the left eye and right eye 

coordinates and join the dots with two more lines, creating a triangle. Using this triangle, we 

can find the angle of rotation θ. From Figure 11 we can see that tan θ can be calculated by 

Δy/Δx. Therefore, to get the angle θ we need to calculate tan-1 (Δy/Δx). After the angle is 

calculated, the image is rotated in that angle. Then the image is cropped using the face box 

coordinated from RetinaFace and resized to 160 * 160 as the FaceNet pre-trained model 

requires this image size. Figure 12 shows an example of all the steps used for face alignment 

and face extraction. 

 

Figure 11: Example of finding the angle from the triangle [59] 
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Original Image Eye landmarks 

 

Line between eyes 

 

Triangle 

 

Rotated face image 

 

Extracted face using Face box 

 

Figure 12 : Example of the face alignment and face extraction process of a face image 

 

For each dataset that is used in this thesis all faces are cropped and aligned before patching. 

This gives almost similar and consistent patches for all the face image datasets. Since the 

patches in the dataset used for transfer learning and fine-tuning the models is similar to the 

patches used for testing the models, the accuracy of face recognition is higher than if there was 

no alignment done.  

3.2.4 Patching 

The next step after face alignment is to patch the face images into multiple patches so that from 

each patch, we can find out the important features of that patch and finally obtain features from 

the entire image.  
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Since the face images in the datasets of this thesis are already extracted and aligned from the 

previous steps, we can easily patch the face images. This is done by first cropping the face in 

half + 10 pixels and considering the only top half for the first patch. As the face image is of n*n 

size the top part after cropping contains the face not covered by mask. 10 pixels are added extra 

during cropping as due to some individuals’ poses the area below the eye is cropped out. The 

top patch is then divided into two more patches, one is the top left patch containing the left eye 

and another the top right patch containing the right eye. An example of patching a masked face 

image is shown in Figure 13. 

                                           

Figure 13 : Example of patching a masked face image 
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Figure 14 : Example of patching without adding the extra 10 pixels 

 

3.3 Transfer learning and finetuning 

Pre-trained models are trained on large amount of data and can be used for a wide variety of 

image classifications. If we want to perform a specific image classification and train models 

from scratch for it, it will require large amount of data and computational capability which is 

not practical for a normal home laptop. Therefore, we can use transfer learning and fine tuning 

in such cases where we can use the knowledge from a pre-trained data and use our own data to 

create a model which provides classification according to our needs.  

3.3.1  FaceNet: A Unified Embedding for Face Recognition and Clustering 

FaceNet is a system used for face recognition by directly learning to map face images to a 

compact Euclidean space. Distance between these mapping corresponds to a measure of face 

similarity which can be used for face recognition, verification and clustering. FaceNet takes in 

color images as inputs and gives embeddings as outputs, which is a vector of size 128. This 

output can be used as feature vector for face analysis. [60] 

FaceNet uses a deep CNN network followed by L2 normalization. This gives, as outputs, 

embeddings which is then followed by a triplet loss function during training.  Triplet loss is a 

function which minimizes the distance between an anchor and a positive and maximizes the 

distance between an anchor and negative, A positive here is when both have same identity and 

negative is when both has different identity. The dimensionality of the output is selected to be 

128 as when the dimensionality is increased to get better result it requires more training to 

achieve the same accuracy and therefore, even more than that to get better accuracy. [60].  
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Figure 15: Model Structure for FaceNet [60] 

 

Figure 16: Triplet Loss maximization and minimization for training [60] 

Inception based CNNs used for FaceNet reduces the model size giving comparable performance 

as other CNN models [60]. Inception model have multi-branch architectures which has 

powerful representation ability in its dense layers [61]. Residual model is good for training very 

deep architecture. The hybrid of inception and ResNet thus give good efficiency [62], [63]. 

FaceNet implementation in “Face Recognition using FaceNet (Survey, Performance Test, and 

Comparison)” is done using Inception ResNet v1 with training dataset as CASIA- WebFace 

and VGGFace2 Inception both of which gave above 99% accuracy on LFW as test data [64].  

Therefore, for this thesis FaceNet pretrained model based on Inception- ResNet hybrid CNN is 

used. The pre-trained models in “Face Recognition using FaceNet (Survey, Performance Test, 

and Comparison)” is trained using TensorFlow and can be used with TensorFlow [65] whereas 

the FaceNet model by Hiroki Tainai is Keras based. Therefore, to use a Keras pre-trained model 

for this thesis, the pretrained Keras FaceNet model by Hiroki Tainai is used. This pre-trained 

model also uses an Inception ResNet v1 architecture and is trained on MS-Celeb-1M dataset. It 

takes a color image input of size 160*160 pixels [66], [67]. Keras pre-trained model is chosen 

instead of TensorFlow as Keras is easier than TensorFlow to code from scratch [68]. 

3.3.2 Transfer learning 

Transfer learning is used for improving the performance on a related task by using the 

knowledge from another set of tasks from an interrelated learning problem [69]. The training 
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data and future data in this interrelated learning problems or algorithms does not need to be of 

the same feature space or have the same distribution [38]. 

The most common workflow of transfer learning is as follows [39]: 

1. Taking layers from a pre-trained model 

For this thesis, we take all the layers from the pre-trained model FaceNet except the last 

two layers for our transfer learning. 

2. Freeze the layers taken from the pre-trained model to preserve the knowledge it 

learned from previous large dataset it was trained on 

In this step, we freeze all the layers taken from the pre-trained model. As the base model 

(FaceNet) contains Batch normalization layers we have to set the training of the layers 

as training = False to keep it in inference mode during the next step. If this is not done 

the non-trainable weights of the Batch-normalization layer will destroy the knowledge 

of the model when the layers are unfrozen for fine tuning (next step) by updating the 

weights [39]. 

3. Add new unfrozen layers on top to learn from the old features of the pre-trained 

model and use it to predict new features on new dataset 

For this thesis for the classification, 3 fully connected layers (Dense layers) are added 

with Leaky ReLu activation where alpha was set to be 0.03. Leaky ReLu is same as 

ReLu activation with an ability to go to the negative values depending on the alpha we 

set. A leaky ReLu most of the time gives better results than ReLu [70]. For this thesis 

Leaky ReLu gave better accuracy then ReLu activation, so the models were trained 

using Leaky ReLu. The next layer added on top of the dense layers is a batch 

normalization layer to accelerate training with less number of epochs. It also provides 

regularization and reduces generalization error [71]. Since we used Batch 

normalization, we do not use any Dropout here as using a dropout along with the batch 

normalization reduced the accuracy of the models. This is because the combination of 

these causes overfitting [71]. Lastly, another dense layer with SoftMax activation is 

added on top; as the dataset, the models are trained on has a total of 50 classes. 

4. Final step is to train the newly added layers using new dataset 
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For fitting the model and training it Adam optimizer is used. Adam optimizer performs 

better in practice as it achieves good results with less training cost and iteration over 

entire dataset as seen in Figure 17 [72]. The learning rate 0.001 of Adam was kept as 

default learning rate in Keras and other deep learning libraries. This is suggested by the 

original paper as a good default setting for machine learning problems [72]. 

 

Figure 17: Comparison of Adam to Other Optimization Algorithms [72] 

Three models were trained using transfer learning, one for the top patch, two for the top 

split in two (top-left and top-right patch). The KomNET dataset was used here for 

training and validation. The dataset was split into a 70:30 ratio for the train and 

validation sets. Before training, each input is normalized to -1 to +1 range from (0, 255) 

as inception-resnet pre-trained models require the input to be normalized in this range. 

This was done using the formula: 

𝑁𝑒𝑤 𝑖𝑛𝑝𝑢𝑡 = 
(𝑜𝑙𝑑 𝑖𝑛𝑝𝑢𝑡 − 𝑚𝑒𝑎𝑛)

𝑠𝑞𝑟𝑡(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)
 

To avoid overfitting, number of epochs was set to 20 with early stopping. The Early 

stopping was done based on the validation loss. If the validation loss is reduced the 

model is saved and over written every time, we get a lower validation loss. If the 

validation loss keeps decreasing for 3 consecutive epochs, we stop the training.   



Partial-face Recognition using Patch-based Deep Learning 
 

25 
 

Train accuracy vs. validation accuracy Train Loss vs. validation loss 

Figure 18 : Graphs of training the top patch 

 

Train accuracy vs. validation accuracy Train Loss vs. validation loss 

Figure 19 : Graphs of training the top-left patch 

Number of Epochs Number of Epochs 

Number of Epochs Number of Epochs 
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Train accuracy vs. validation accuracy Train Loss vs. validation loss 

Figure 20 : Graphs of training the top-right patch 

3.3.3 Fine tuning 

Fine tuning is part of the transfer learning technique in which we unfreeze a few or all of the 

layers from the pre-trained model after the previously shown steps of transfer learning. Fine-

tuning the model gives better accuracy than already pre-trained models from scratch as the new 

model gets tailored to our requirements [73]. This can give meaningful improvements as it 

adapts the pre-trained features to the new data incrementally [39]. 

For this thesis, we unfroze all the layers from the pre-trained model FaceNet after training the 

newly added layers. Since, previously we set trainable to false, unfreezing the layer keeps the 

Batch normalization layers in inference mode. Hence, their weights are not updated. A very low 

learning rate is used here so that we do not overfit the model to our known test and validation 

set as this will cause the model to extract features poorly on unseen dataset. The learning rate 

used for fine-tuning our three models from the previous step is 1e-5. Increasing this gives good 

training and validation accuracy but give low face recognition accuracy on unseen dataset. 

Similar to the transfer learning step, we use the same early stopping method in this step to avoid 

overfitting. 

We can see from the graphs below; the train accuracy and validation accuracy almost remain 

the same while fine tuning but the validation loss decreases. This gives better accuracy than if 

the models were not fine-tuned.   

Number of Epochs Number of Epochs 
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Train accuracy vs. validation accuracy Train Loss vs. validation loss 

Figure 21 : Graphs of fine tuning the top patch 

 

 

Train accuracy vs. validation accuracy Train Loss vs. validation loss 

Figure 22 : Graphs of fine tuning the top-left patch 

Number of Epochs Number of Epochs 

Number of Epochs Number of Epochs 
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Train accuracy vs. validation accuracy Train Loss vs. validation loss 

Figure 23 : Graphs of fine tuning the top-right patch 

 

3.3.4 Feature extraction 

Embeddings or feature vector of each image from the FEI and TUFTS dataset is obtained in 

this step using the models created in the previous step. Each model takes an input of face patch 

image in size 160*160. The output is taken from the second last layer of the models. This gives 

an embedding of 128 values which is the feature vector. The top, top-right and top-left models 

are used to extract top, top-right and top-left embeddings respectively. For face recognition 

Squared Euclidean distance between the reference embedding and probe embedding is 

calculated. When both reference and probe are of same person the Squared Euclidean distance 

is small and it is large when they are different.  

3.4 Fusion strategy 

Score-level fusion and feature-level fusion are done using multiple samples to reduce the equal 

error rate and improve the accuracy of biometric recognition [74], [75]. For this thesis both 

score-level and feature-level fusion is done to compare which gives better accuracy in our case. 

3.4.1 Score-level fusion 

Score-level fusion is done by generating a new match score by combining the match scores 

outputs from multiple biometric matchers. The match scores from every output are normalized 

before combining them and a weight is used for each match score output [74]. Score-level 

Number of Epochs Number of Epochs 
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fusion of multiple biometric systems gives a better accuracy than if only one biometric system 

is used [76].  

For this thesis, match scores for each patch were calculated separately i.e., top patch match 

scores, top-left match score and top-right match scores, and saved as arrays. The match scores 

in this case are the Squared Euclidean distances between the probe and reference face patches. 

The three-match score arrays are then normalized using the min-max normalization 

individually. The min-max normalizing normalizes the data to a range of 0 to 1. It can be 

achieved by the following formula: 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

Where x is the values to be normalized. 

The normalized match scores are then combined using the following formula:  

𝑠𝑐𝑜𝑟𝑒𝑓𝑢𝑠𝑒𝑑 = 𝑤1 ∗ 𝑠𝑐𝑜𝑟𝑒𝑡𝑜𝑝 + 𝑤2 ∗ 𝑠𝑐𝑜𝑟𝑒𝑡𝑜𝑝−𝑙𝑒𝑓𝑡 + 𝑤3 ∗ 𝑠𝑐𝑜𝑟𝑒𝑡𝑜𝑝−𝑟𝑖𝑔ℎ𝑡   

Where 𝑤1, 𝑤2  𝑎𝑛𝑑 𝑤3 are weights assigned to each match score. And 𝑤1 + 𝑤2 + 𝑤3 = 1 

Scorefused is the final similarity score which is then divided into Genuine scores and Imposter 

scores. Where Genuine score is the distance between the same probe and same reference person 

and Imposter score is the distance between different probe and reference person. From these 

scores, similarity score for each pair is calculated. Which is then used for calculating the EER, 

FNMR and FMR. The process is described in the next chapter. 
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3.4.2 Feature-level fusion 

Feature-level fusion is relatively difficult to achieve in practice because different biometric 

systems may have incompatible feature sets and may have unknown correspondence among 

different feature spaces. Fusion in some cases may be very complicated [75], [77]. 

In this thesis, we have three feature types with similar feature space. All our features are from 

face patches. So, feature fusion is easy in this case. For feature fusion each feature vector is 

normalized first. In our case, min-max normalization is used. Then, the three normalized feature 

vector is concatenated into one single feature vector [78]. For calculating the match score, the 

Squared Euclidean distance between fused feature vector of probe and fused feature vector of 

reference is calculated. This is then divided into Genuine scores and Imposter scores. From 

Weight 1 
Weight 2 

Weight 3 

Top-patch 

Reference 

Top-patch 

Probe 

Top-left 

Reference 

Top-left 

Probe 

Top-right 

Reference 

Top-right 

Probe 

Top-patch match score Top-left match score Top-right match score 

MIN – MAX normalization 

Top-patch score 

normalized 

Top-left score 

normalized 

Top-right score 

normalized 

Fused match score 

Figure 24: Flowchart of Score-level fusion 
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these scores, score similarity score for each pair is calculated to determine the threshold for the 

scores which gives the least equal error rate. The Scores below the threshold are rejected and 

above the threshold are accepted by the system. 

 

Figure 25: Example of feature level fusion of two feature vectors [78] 
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4. Experimental evaluation 

The results from the experiment detailed above are discussed in this section. For evaluation of 

the models, two feature comparator methods were used. First method used was the SVM 

classifier and Squared Euclidean distance. It was used on the feature vectors which were 

extracted using the three models respectively. Second method used was to set a threshold for 

the similarity scores of the probe and references. The probes having low similarity scores than 

the threshold was rejected and the ones having more were accepted by the system. For 

improvement of the second method score-level and feature level fusion is done. 

Table 1: Evaluated subjects 

 FEI dataset TUFTS dataset 

No. of evaluation subjects 109 109 

No. of reference samples 872 545 

No. of probe samples 327 327 

 

4.1 SVM and Squared Euclidean Distance evaluation 

SVM 

The feature vectors of the reference samples are separated into different classes using 

hyperplanes by SVM. The distance between the feature vector of each probe samples with the 

classes created from the reference samples were calculated. The probe sample was classified as 

the class it has the least distance with. 

Squared Euclidean Distance 

For Squared Euclidean Distance method the Squared Euclidean Distance between the feature 

vectors of each probe and reference is calculated. The probe is classified as the class of the 

reference it has the least Squared Euclidean Distance with. 

For both SVM and Squared Euclidean Distance the accuracy is calculated by (the number of 

correctly classified probes / the total number of probe samples) *100 
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The SVM classifier yielded 95.107% accuracy for the top patch of FEI dataset and 92.966% 

accuracy for the top patch of TUFTS dataset. And Squared Euclidean distance for face 

recognition, yields an accuracy of 95.413% for FEI dataset and 93.272% accuracy for TUFTS 

dataset. This is better compared to the accuracy of top patch in the paper “Deep face recognition 

using imperfect facial data”, which uses FEI dataset for training VGG-Face and LFW for 

testing. They propose a similar method of adding face patches to their train set. The accuracy 

their best algorithm yields is 90.2% which uses Cosine similarity [20]. Their method reaches 

95% for three-fourth face images but since in our case we only have half of the face (fully 

masked face) we compare the results to their top half face results from their paper. Another 

paper that had a similar approach of performing face recognition on the top half of the face is 

the “Dynamic Feature Matching for Partial Face Recognition” where the maximum accuracy 

they gained for top half of the face is 46.3%. In paper “Efficient Masked Face Recognition 

Method during the COVID-19 Pandemic” transfer learning and fine tuning of CNN was used 

with Deep bag of features (BoF) technique. The result on this gave an accuracy of 88.9% on 

Simulated Masked Face Recognition Dataset while the accuracy using CNN and SVM was 

86.1% [8], [79]. Although this difference may be because their test dataset had more images 

than the datasets used in this thesis. The SVM classifier test accuracies can be seen in Table 3 

and Squared Euclidean distance face recognition accuracy can be seen in Table 4. 

As it is observed from Table 3 and Table 4, in case of FEI datasets the accuracy improved for 

the Squared Euclidean distance significantly. This is because FEI datasets contain poses with 

faces rotated almost 180 degrees to left or right. When SVM is used, it is difficult for it to cluster 

these into classes as face images with left or right profile have different face features than that 

of forward-facing images. Same as the Cosine Similarity gave better results for face recognition 

than SVM for partial face recognition in [20]. Our Squared Euclidean distance approach was 

similar to the cosine similarity as both are distance metric. 
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Table 2: Comparison of recognition results with CNN and SVM techniques for the top half of 

the face or masked face. 

 Top patch accuracy 

He et al., 2019 46.3% 

Hariri, 2021, Almabdy and Elrefaei, 2019 86.1% 

Elmahmudi and Ugail, 2019 90.2% 

Proposed methodology accuracy 

(Average of both dataset accuracies) 

94.3% 

 

 

 

Table 3 : Accuracies of the SVM classifier face recognition on the different patches of FEI and 

TUFTS datasets. 

 Patches Accuracy 

 

FEI dataset 

 

Top half 95.107 

Top-left 74.924 

Top-right 66.667 

 

TUFTS dataset 

 

Top half 92.966 

Top-left 67.568 

Top-right 76.147 
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Table 4: Accuracies of the Squared Euclidean distance face recognition on the different patches 

of FEI and TUFTS datasets 

 Patches Accuracy 

 

FEI dataset 

 

Top half 95.413 

Top-left 86.238 

Top-right 80.428 

 

TUFTS dataset 

 

Top half 93.272 

Top-left 65.165 

Top-right 73.700 

 

4.2 Face recognition algorithm evaluation 

For a real-life face recognition system, we cannot only depend on face recognition systems 

using classifiers like SVM or distances like Cosine Similarity and Squared Euclidean distance. 

If this is done, imposters will get accepted to the system as whichever reference the probe 

imposter’s feature vector has minimum distance with. We, therefore, need to set a threshold for 

rejecting maximum imposters and accepting genuine scores. This can be done by calculating 

the Genuine attempts rejected (False non-match rate) and Imposter attempts accepted (False 

Match Rate) for each threshold. Only reducing the Imposter attempts accepted will give a secure 

system but the number of Genuine attempts rejected will also be high. This will decrease the 

accuracy and efficiency of the system. Therefore, for a good system we choose the point where 

the curves of Genuine attempts reject and Imposter attempts accepted meet. This is where the 

genuine attempts rejected is minimum for the minimum imposter attempts accepted. This point 

gives us the Equal error rate (EER) and setting the threshold to this point gives maximum 

accuracy [21], [80].  
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4.2.1 Evaluation details 

In order to compare the reference samples and probe samples, we calculate the distance between 

their feature vectors. From these distances, the similarity score is calculated by 1- normalized 

distance. Where, the distance is normalized using Min-Max normalization. 

The similarity scores are saved as two separate text files, one with the genuine scores and the 

other with the imposters scores. Genuine scores are scores between the same subjects and 

imposter scores are scores between different subjects. The number of Genuine scores for the 

FEI dataset is 2,616 and TUFTS dataset is 1,638 and the number of Imposter scores for the FEI 

dataset is 282,528 and TUFTS dataset is 180,180. 

The evaluation metrics are described below: 

• False non-match rate (FNMR) 

False non-match is when the biometric matcher categorizes a pair (probe and reference) 

from the same individuals as coming from different individuals. The rate of false non-

match is false non-match rate [81]. 

False non-match rate is calculated for each threshold independently. Anything less than 

threshold is rejected by the system. Therefore, genuine scores below the threshold also 

gets rejected. Let, False non-match be the number of genuine scores which are less than 

the threshold. So, the False non-match rate is equal to (False non-match /total no. of 

genuine scores) *100. 

• False match rate (FMR) 

False match is when the biometric matcher categorizes a pair (probe and reference) from 

the different individuals as coming from same individuals. The rate of False match is 

the False match rate [82]. 

False match rate is calculated for each threshold independently. Anything equal to or 

above the threshold is accepted by the system. Therefore, imposter scores equal to or 

above the threshold also gets accepted. Let, False match be the number of imposter 

scores which are greater than or equal to the threshold. So, the False match rate is equal 

to (False match /total no. of imposter scores) *100. 
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• Equal error rate (EER) 

Equal error rate is the point at which the False non-match rate is minimum for the 

minimum False match rate. This point is where the graph of FNMR and FMR meet. So, 

EER is the point at which FNMR = FMR. The threshold at this point is the most optimal 

threshold. 

• ROC 

ROC curve is the plot of FMR which is the Imposter attempts accepted vs 1-FNMR 

which is the Genuine attempts accepted [83].  

The following graphs shows False non match rate vs. False match rate and ROC curves (ROC 

curves also shows the EER and accuracy) for each of our patches before any fusion is done (for 

better readability the following diagrams are presented in separate single pages): 
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Table 5: False non match rate (FNMR) vs. False match rate (FMR) and ROC curve of the 

different patches of FEI dataset 

FEI dataset 

Top patch 

  

Top-left patch 

  

Top-right patch 
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Table 6: False non match rate (FNMR) vs. False match rate (FMR) and ROC curve of the 

different patches of TUFTS dataset 

TUFTS dataset 

Top patch 

  

Top-left patch 

  

Top-right patch 
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Table 7: EER and Accuracy of the models on FEI and TUFTS dataset 

 Patches EER 

 

FEI dataset 

 

Top half 13.4654 

Top-left 28.1213 

Top-right 29.1359 

 

TUFTS dataset 

 

Top half 9.3930 

Top-left 19.2517 

Top-right 17.6479 

 

Contrary to the accuracy of SVM and Squared Euclidean distance on FEI dataset, this method 

performed poorly on FEI dataset compared to TUFTS dataset. This is because, as mentioned 

previously the FEI dataset have large differences in its poses. The feature vector of different 

poses (left/right profile and front profile) are different. So, the distance between a left/right 

profile image and front face image is large even though the images are of same person. Since, 

the method depends on Squared Euclidean distance between probe and reference images it gives 

high equal error rate for the FEI dataset compared to the TUFTS dataset.  

4.2.2 Score-level and Feature-level fusion evaluation  

To improve the accuracy and reduce the EER we used score-level and feature-level fusion. The 

following graphs show False non match rate (FNMR) vs. False match rate (FMR) and ROC 

curves (ROC curves also shows the EER and accuracy) for score-level fusion and feature-level 

fusion of the three patch feature vectors: 
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Table 8: False non match rate (FNMR) vs. False match rate (FMR) and ROC curve of Score-

level fusion on FEI and TUFTS dataset 

Score-level fusion  

FEI dataset 

  

TUFTS dataset 
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Table 9: False non match rate (FNMR) vs. False match rate (FMR) and ROC curve of Feature-

level fusion on FEI and TUFTS dataset 

Feature-level fusion  

FEI dataset 

  

TUFTS dataset 
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Table 10: EER and accuracy of score-level and feature-level fusion on FEI and TUFTS dataset 

Fusion Dataset EER 

Score-level 

FEI dataset 13.2489 

TUFTS dataset 8.6052 

Feature-level 

FEI dataset 20.5321 

TUFTS dataset 14.1753 

For score-level fusion the weights for the three fused scores were determined by trial-and-error 

method. It was seen that increasing the weight of the top patch and decreasing the top-left and 

top-right patch improved the accuracy from weights (w1=0.5, w2=0.25, w3=0.25) till (w1=0.9, 

w2=0.05, w3=0.05). After this the accuracy of FEI dataset started reducing. Weights of the 

top-left and top-right patches were chosen to be the same as accuracy of these patches were 

almost the similar to each other for both FEI and TUFTS dataset as it can be seen from the 

results before.  

Table 10 shows that the Score-level fusion gave a better accuracy than feature-level vector in 

our case. Score-level fusion accuracy is also better than the accuracy we had before. Feature-

level fusion did not work in our case because the top-left and top-right accuracy was not good 

compared to the top patch. For feature-level fusion we are fusing all the three features without 

any weights which gives then all equal weights. Therefore, the accuracy drops due to the low 

accuracies if top-left and top-right patch. On the other hand, for the score-fusion we set less 

weights on the lower accuracy top-left and top-right patches. This therefore, gives us better 

results. 
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5. Conclusion         

The experimental evaluation of this thesis, we believe, confirms that patch-based transfer 

learning and fine tuning a CNN based pre-trained model can be used for partial face recognition 

with high accuracy. As seen from the experiments performed in this thesis, masked face 

recognition can be successfully performed using deep learning. Face recognition for only parts 

of the faces like top-left or top-right can also be done with an accuracy of up to 80% on some 

databases. This answers our research questions: To what extent can partial-face or face covered 

with mask be recognized? And can patch-based deep learning be used for partial-face 

recognition. 

This thesis incorporated the methods of using a 3D face masking tool to create masked datasets, 

face detection and alignment on the masked datasets, a patch-based transfer learning and fine 

tuning of a pre-trained deep learning model (FaceNet), feature extraction using the trained 

models on different test datasets, and score-level and feature-level fusion of the different 

patches. 

KomNET dataset does not have too many pose variations i.e., there are no 180-degree rotation 

side profiles, and more than half of the images in FEI are of left and right profiles. We separated 

the training dataset and testing dataset by using two completely different datasets , KomNET 

dataset for training and FEI dataset for testing,  we think that is the main reason for the low 

performances [18]. The left and right profiles gave different features than the front profiles. 

Therefore, there were low similarity scores (large distances) between some pairs from the same 

persons. The performance on datasets with large pose variations can be improved by using 

datasets with large pose variations for training the models.  

The performance on TUFTS dataset was better compared to the FEI dataset and gave a final 

accuracy 91.3948 % which still has a large EER of 8.6052 %. Apart from the reason mentioned 

above about having different train and test datasets, another reason for this might be because 

the image quality of TUFTS is lower than the other datasets used. When it is scaled to 160*160 

pixels some of the images are blurry. To have FaceNet perform better on low image qualities 

we have to add low quality images while training [60]. This will help us improve the accuracy 

further. 
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The lighting used in both FEI and KomNET datasets are similar, whereas the lighting used for 

TUFTS dataset is different. Therefore, another way to improve the performance on datasets like 

TUFTS can be to use light changes as data augmentation or use different lighting images while 

training the models. As a difference in illumination causes the face recognition accuracy to drop 

[18]. 

Even though our models were trained with only 50 classes consisting of 1200 images in total 

(both train and validation together) our accuracy reached to 86.7511% for FEI and 91.3948 % 

TUFTS. Thus, increasing the train data for the transfer learning and fine tuning will increase 

the accuracy even further [37]. 

From the experiments in this thesis, we can conclude that partial face recognition can be 

achieved with high accuracy using patch-based deep learning.  
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6. Future work    

The performance of the methodology in this thesis used can be improved by increasing the 

number of training images by: 

• Using data augmentation while training the models specially for different lighting 

conditions 

• Increasing the number of classes and images per person while training the models 

• Using a large variety of poses for the training dataset 

• Using both good quality and bad quality images for the training 

A way of possibly improving the method used in this thesis is to use a different loss function 

than the triplet loss function in the model. As triplet loss function is highly sensitive to noise 

using a hierarchical triplet loss function can possibly improve the accuracy [64], [84]. Using 

quadruplet loss function can perhaps improve the accuracy as well as triplet loss function can 

cause a relatively large intra-class variation and reducing this  intra-class variation and 

enlarging the inter-class variation can improve the model accuracy [85]–[87].   

Increasing the number of patches and making them overlapping like in the paper “Patch strategy 

for deep face recognition” can also improve the accuracy as the models will be able to learn 

more underlying features [6]. 

An extension of this experiment can be to use the proposed methods on other partial face 

images. This can be used for recognizing people from low resolution cameras or different angle 

cameras like CCTV footages. 
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Appendix  

Appendix A – Codes 

Before running the codes use pip to install all the imported packages 

A1- Code example of creating masked face dataset 

• Download and install the libraries and models required following the instructions from 

https://github.com/deepinsight/insightface/tree/master/recognition/tools  

• Edit the code mask_renderer.py depending on your dataset, an example of the code used 

for this thesis is given below. 

 

# this program is used to create masked face datasets 

 

 

import os, sys, datetime 

import numpy as np 

import os.path as osp 

import face3d 

from face3d import mesh 

from face3d.morphable_model import MorphabelModel 

import cv2 

 

 

class MaskRenderer: 

    def __init__(self, model_dir, render_only=False): 

        self.bfm = MorphabelModel(osp.join(model_dir, 'BFM.mat')) 

        self.index_ind = self.bfm.kpt_ind 

        uv_coords = 

face3d.morphable_model.load.load_uv_coords(osp.join(model_dir, 

'BFM_UV.mat')) 

        self.uv_size = (224, 224) 

        self.mask_stxr = 0.1 

        self.mask_styr = 0.33 

        self.mask_etxr = 0.9 

        self.mask_etyr = 0.7 

        self.tex_h, self.tex_w, self.tex_c = self.uv_size[1], 

self.uv_size[0], 3 

        texcoord = np.zeros_like(uv_coords) 

        texcoord[:, 0] = uv_coords[:, 0] * (self.tex_h - 1) 

        texcoord[:, 1] = uv_coords[:, 1] * (self.tex_w - 1) 

        texcoord[:, 1] = self.tex_w - texcoord[:, 1] - 1 

        self.texcoord = np.hstack((texcoord, np.zeros((texcoord.shape[0], 

1)))) 

        self.X_ind = self.bfm.kpt_ind 

        if not render_only: 

            from image_3d68 import Handler 

            self.if3d68_handler = Handler(osp.join(model_dir, 'if1k3d68'), 

https://github.com/deepinsight/insightface/tree/master/recognition/tools
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0, 192, ctx_id=0) 

 

    def transform(self, shape3D, R): 

        s = 1.0 

        shape3D[:2, :] = shape3D[:2, :] 

        shape3D = s * np.dot(R, shape3D) 

        return shape3D 

 

    def preprocess(self, vertices, w, h): 

        R1 = mesh.transform.angle2matrix([0, 180, 180]) 

        t = np.array([-w // 2, -h // 2, 0]) 

        vertices = vertices.T 

        vertices += t 

        vertices = self.transform(vertices.T, R1).T 

        return vertices 

 

    def project_to_2d(self, vertices, s, angles, t): 

        transformed_vertices = self.bfm.transform(vertices, s, angles, t) 

        projected_vertices = transformed_vertices.copy()  # using stantard 

camera & orth projection 

        return projected_vertices[self.bfm.kpt_ind, :2] 

 

    def params_to_vertices(self, params, H, W): 

        fitted_sp, fitted_ep, fitted_s, fitted_angles, fitted_t = params 

        fitted_vertices = self.bfm.generate_vertices(fitted_sp, fitted_ep) 

        transformed_vertices = self.bfm.transform(fitted_vertices, 

fitted_s, fitted_angles, 

                                                  fitted_t) 

        transformed_vertices = self.preprocess(transformed_vertices.T, W, 

H) 

        image_vertices = mesh.transform.to_image(transformed_vertices, H, 

W) 

        return image_vertices 

 

    def build_params(self, face_image): 

 

        landmark = self.if3d68_handler.get(face_image)[:, :2] 

        # print(landmark.shape, landmark.dtype) 

        if landmark is None: 

            return None  # face not found 

        fitted_sp, fitted_ep, fitted_s, fitted_angles, fitted_t = 

self.bfm.fit(landmark, self.X_ind, max_iter=3) 

        return [fitted_sp, fitted_ep, fitted_s, fitted_angles, fitted_t] 

 

    def generate_mask_uv(self, mask, positions): 

        uv_size = (self.uv_size[1], self.uv_size[0], 3) 

        h, w, c = uv_size 

        uv = np.zeros(shape=(self.uv_size[1], self.uv_size[0], 3), 

dtype=np.uint8) 

        stxr, styr = positions[0], positions[1] 

        etxr, etyr = positions[2], positions[3] 

        stx, sty = int(w * stxr), int(h * styr) 

        etx, ety = int(w * etxr), int(h * etyr) 

        height = ety - sty 

        width = etx - stx 

        mask = cv2.resize(mask, (width, height)) 

        uv[sty:ety, stx:etx] = mask 

        return uv 

 

    def render_mask(self, face_image, mask_image, params, auto_blend=True, 

positions=[0.1, 0.33, 0.9, 0.7]): 
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        uv_mask_image = self.generate_mask_uv(mask_image, positions) 

        h, w, c = face_image.shape 

        image_vertices = self.params_to_vertices(params, h, w) 

        output = (1 - mesh.render.render_texture(image_vertices, 

self.bfm.full_triangles, uv_mask_image, self.texcoord, 

                                                 self.bfm.full_triangles, 

h, w)) * 255 

        output = output.astype(np.uint8) 

        if auto_blend: 

            mask_bd = (output == 255).astype(np.uint8) 

            final = face_image * mask_bd + (1 - mask_bd) * output 

            return final 

        return output 

 

 

if __name__ == "__main__": 

    tool = MaskRenderer('assets_mask') 

    # folder of the unmasked dataset 

    folder = "F:/thesis/datasets/cropped_aligned_TUFTS_dataset" 

    # folder to save the masked images 

    folder_save = "F:/thesis/datasets/TUFTS" 

    # the mask image you want to apply 

    mask_image = cv2.imread("masks/black-mask.png") 

    for i in os.listdir(folder): 

        fold = os.path.join(folder, i) 

        for filename in os.listdir(fold): 

            image = cv2.imread(os.path.join(fold, filename)) 

            fold_s = os.path.join(folder_save, i) 

            if image is not None: 

                params = tool.build_params(image) 

                mask_out = tool.render_mask(image, mask_image, params) 

                # make new folders to sort each individual in diff folders 

                if not os.path.exists(fold_s): 

                    os.makedirs(fold_s) 

                cv2.imwrite(os.path.join(fold_s, filename), mask_out) 
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A2 – After masking the faces face detection, extraction and alignment is done. The following 

code is used for that. Code consists of both RetinaFace and MTCNN incase one fails to detect 

faces as they are not 100% accurate 

MTCNN can be install by using pip and RetinaFace model can be found at  

https://github.com/deepinsight/insightface/tree/master/detection/RetinaFace  

# This program uses MTCNN and RetinaFace to extract faces from the masked 

face databases 

# If RetinaFace fails it uses MTCNN 

 

import insightface 

from matplotlib import pyplot 

from mtcnn.mtcnn import MTCNN 

import os 

import numpy as np 

import cv2 

 

 

# face detection and extraction 

def extract_face(filename, folder_save, model, detector): 

    # load image from file 

    pixels = pyplot.imread(filename) 

    # create the detector, using default weights 

    img = cv2.imread(filename) 

    model.prepare(ctx_id=-1, nms=0.4) 

    bbox, landmark = model.detect(pixels, threshold=0.5, scale=1.0) 

 

    if not bbox.any(): 

        # detect faces in the image 

        results = detector.detect_faces(pixels) 

        if not results: 

            print(filename) 

            return None 

        else:  # MTCNN is RetinaFace does not fine face 

            # extract the bounding box from the first face 

            x1, y1, width, height = results[0]['box'] 

            x2, y2 = x1 + width, y1 + height 

            # sometimes these are negative so make them zero 

            if y1 < 0: 

                y1 = 0 

            if y2 < 0: 

                y2 = 0 

            if x1 < 0: 

                x1 = 0 

            if x2 < 0: 

                x2 = 0 

            left_eye_center = results[0]['keypoints']['left_eye'] 

            right_eye_center = results[0]['keypoints']['right_eye'] 

            # align face before cropping 

            rotated = align_face(img, left_eye_center, right_eye_center) 

            rotated = rotated[y1:y2, x1:x2] 

            rotated = cv2.resize(rotated, (224, 224)) 

            # cv2.imshow("image", rotated) 

            # cv2.waitKey(0) 

            cv2.imwrite(folder_save, rotated) 

https://github.com/deepinsight/insightface/tree/master/detection/RetinaFace
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            return rotated 

    else:  # RetinaFace 

        x1, y1, x2, y2 = bbox[0][0:4] 

        print(x1, y1, x2, y2) 

        left_eye_x, left_eye_y = landmark[0][0] 

        right_eye_x, right_eye_y = landmark[0][1] 

        left_eye_center = (left_eye_x, left_eye_y) 

        right_eye_center = (right_eye_x, right_eye_y) 

        # align face before cropping 

        rotated = align_face(img, left_eye_center, right_eye_center) 

        # sometimes these are negative so make them zero 

        if y1 < 0: 

            y1 = 0 

        if y2 < 0: 

            y2 = 0 

        if x1 < 0: 

            x1 = 0 

        if x2 < 0: 

            x2 = 0 

        rotated = rotated[int(y1):int(y2), int(x1):int(x2)] 

        rotated = cv2.resize(rotated, (224, 224)) 

        # cv2.imshow("image", rotated) 

        # cv2.waitKey(0) 

        cv2.imwrite(folder_save, rotated) 

        return rotated 

 

 

# Face alignment 

def align_face(img, left_eye_center, right_eye_center): 

    delta_x = right_eye_center[0] - left_eye_center[0] 

    delta_y = right_eye_center[1] - left_eye_center[1] 

    angle = np.arctan(delta_y / delta_x) 

    angle = (angle * 180) / np.pi 

 

    h, w = img.shape[:2] 

    center = (w // 2, h // 2) 

    M = cv2.getRotationMatrix2D(center, (angle), 1.0) 

    rotated = cv2.warpAffine(img, M, (w, h)) 

    # cv2.imshow("image", rotated) 

    # cv2.waitKey(0) 

    return rotated 

 

 

# change the folder values for different datasets 

folder = "F:/thesis/datasets/TUFTS" 

folder_save = "F:/thesis/datasets/TUFTS" 

model = insightface.model_zoo.get_model('retinaface_r50_v1') 

detector = MTCNN() 

for i in os.listdir(folder): 

    fold = os.path.join(folder, i) 

    folder_s = os.path.join(folder_save, i) 

    for filename in os.listdir(fold): 

        image = os.path.join(fold, filename) 

        save = os.path.join(folder_s, filename) 

        if image is not None: 

            pixels = extract_face(image, save, model, detector) 
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A3 – An example of the code for patching the aligned faces, change the folder link to use with 

any datasets 

# this program patches extracted faces and saves them in 

# folders for easy training of deep learning 

 

import cv2 

from PIL import Image 

import os 

import numpy as np 

 

 

# function to patch the face images 

def patch_faces(image, filename, i): 

    image = cv2.imread(image) 

    # folders of the patched dataset 

    folder_save_top = "F:/thesis/face_recog/TUFTS all/top" 

    folder_save_topr = "F:/thesis/face_recog/TUFTS all/top_right" 

    folder_save_topl = "F:/thesis/face_recog/TUFTS all/top_left" 

 

    height, width, channels = image.shape 

    crop_bot = image[int(height / 2):height, 0:width] 

    crop_top = image[0:int(height / 2) + 10, 0:width] 

 

    crop_top = Image.fromarray(crop_top) 

    crop_top = crop_top.resize((160, 160)) 

    save_patches(crop_top, filename, i, folder_save_top) 

 

    top_left = image[0:int(height / 2) + 10, 0:int(width / 2)] 

    top_left = Image.fromarray(top_left) 

    top_left = top_left.resize((160, 160)) 

    save_patches(top_left, filename, i, folder_save_topl) 

 

    top_right = image[0:int(height / 2) + 10, int(width / 2):width] 

    top_right = Image.fromarray(top_right) 

    top_right = top_right.resize((160, 160)) 

    save_patches(top_right, filename, i, folder_save_topr) 

 

# function to save the patches in different folders 

def save_patches(image, filename, i, folder_save): 

    folder_save = os.path.join(folder_save, i) 

    save = os.path.join(folder_save, filename) 

    if not os.path.exists(folder_save): 

        os.makedirs(folder_save) 

    image = np.array(image) 

    cv2.imwrite(save, image) 

 

 

# folder of the unpatched face dataset 

folder = "F:/thesis/datasets/TUFTS" 

for i in os.listdir(folder): 

    fold = os.path.join(folder, i) 

    for filename in os.listdir(fold): 

        image = os.path.join(fold, filename) 

        patch_faces(image, filename, i) 
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A4 – The following is the code to read the datasets from folders and saving it in a “.npz” format 

to load and use later while feature extraction. Do this for all the datasets used for testing. Train 

folder is the reference folder and validation folder is the probe folder. 

from os import listdir 

from os.path import isdir 

from PIL import Image 

from numpy import savez_compressed 

from numpy import asarray 

 

 

def resize_extracted_faces(filename, required_size=(160, 160)): 

    image = Image.open(filename) 

    image = image.convert('RGB') 

    face = asarray(image) 

    image = Image.fromarray(face) 

    image = image.resize(required_size) 

    face_array = asarray(image) 

    return face_array 

 

 

def load_faces(directory): 

    faces = list() 

    for filename in listdir(directory): 

        path = directory + filename 

        face = resize_extracted_faces(path) 

        faces.append(face) 

    return faces 

 

 

def load_dataset(directory): 

    X, y = list(), list() 

    for subdir in listdir(directory): 

        path = directory + subdir + '/' 

        if not isdir(path): 

            continue 

        faces = load_faces(path) 

        labels = [subdir for _ in range(len(faces))] 

        print('loaded %d examples for class: %s' % (len(faces), subdir)) 

        X.extend(faces) 

        y.extend(labels) 

    return asarray(X), asarray(y) 

 

# change the folder links for different datasets 

trainX, trainy = load_dataset("F:/thesis/face_recog/FEI 

final/masked_full/train/") 

print(trainX.shape, trainy.shape) 

valX, valy = load_dataset("F:/thesis/face_recog/FEI 

final/masked_full/validation/") 

print(valX.shape, valy.shape) 

savez_compressed("FEI.npz", trainX, trainy, valX, valy) 
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A5- The code below is to use transfer learning and fine tuning on pre-trained model FaceNet. 

The model and model weights can be downloaded from https://github.com/nyoki-mtl/keras-

facenet  

Change the folder links for the dataset and saving the graphs. The model is saved in the same 

folder as the python file. 

from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint 

from keras.layers.normalization import BatchNormalization 

from keras.models import load_model 

from keras.models import Model 

from keras.layers import Dense 

from keras.layers import LeakyReLU 

import numpy as np 

from tensorflow import keras 

import tensorflow as tf 

from glob import glob 

from keras.preprocessing.image import ImageDataGenerator 

import matplotlib.pyplot as plt 

 

gpus = tf.config.experimental.list_physical_devices('GPU') 

if gpus: 

    try: 

        # Currently, memory growth needs to be the same across GPUs 

        for gpu in gpus: 

            tf.config.experimental.set_memory_growth(gpu, True) 

        logical_gpus = tf.config.experimental.list_logical_devices('GPU') 

        print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical 

GPUs") 

    except RuntimeError as e: 

        # Memory growth must be set before GPUs have been initialized 

        print(e) 

 

train_path = 'F:/thesis/face_recog/more_val/top_left/train' 

valid_path = 'F:/thesis/face_recog/more_val/top_left/validation' 

folders = glob('F:/thesis/face_recog/more_val/top_left/train/*') 

model = load_model('facenet_keras.h5') 

# model.summary() 

print('Loaded Model') 

 

model.load_weights('facenet_keras_weights.h5') 

 

for layer in model.layers: 

    layer.trainable = False 

 

inputs = keras.Input(shape=(160, 160, 3)) 

x = inputs 

norm_layer = keras.layers.experimental.preprocessing.Normalization() 

mean = np.array([127.5] * 3) 

var = mean ** 2 

# Scale inputs to [-1, +1] 

x = norm_layer(x) 

norm_layer.set_weights([mean, var]) 

 

# removing last layers and adding new layers  

model = Model(inputs=model.inputs, outputs=model.layers[-3].output) 

https://github.com/nyoki-mtl/keras-facenet
https://github.com/nyoki-mtl/keras-facenet
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x = model(x, training=False) 

x = Dense(1024)(x) 

x= LeakyReLU(alpha=0.03)(x) 

x = Dense(512)(x) 

x= LeakyReLU(alpha=0.03)(x) 

x = Dense(128, activation='relu')(x) 

x= BatchNormalization()(x) 

outputs = Dense(len(folders), activation='softmax')(x) 

model = keras.Model(inputs, outputs) 

model.summary() 

model.compile(optimizer='Adam', loss='categorical_crossentropy', 

metrics=['accuracy']) 

 

 

datagen = ImageDataGenerator() 

training_set = datagen.flow_from_directory(train_path, 

                                           target_size=(224, 224), 

                                           batch_size=32, 

                                           class_mode='categorical') 

 

test_set = datagen.flow_from_directory(valid_path, 

                                       target_size=(224, 224), 

                                       batch_size=32, 

                                       class_mode='categorical') 

 

checkpoint = ModelCheckpoint("models/final_top_left_2.h5", 

                             monitor="val_loss", 

                             mode="min", 

                             save_best_only= True, 

                             verbose=1) 

 

earlystop = EarlyStopping(monitor='val_loss', 

                          min_delta=0, 

                          patience=3, 

                          verbose=1, 

                          restore_best_weights= True) 

callbacks = [earlystop, checkpoint] 

 

r=model.fit_generator( 

  training_set, 

  validation_data=test_set, 

  epochs=20, 

  callbacks= callbacks, 

  steps_per_epoch=len(training_set), 

  validation_steps=len(test_set) 

) 

 

# loss 

plt.plot(r.history['loss'], label='train loss') 

plt.plot(r.history['val_loss'], label='val loss') 

plt.legend() 

fig1 = plt.gcf() 

plt.show() 

fig1.savefig('F:/thesis/face_recog/more_val/top_left/LossVal_loss') 

 

# accuracies 

plt.plot(r.history['accuracy'], label='train acc') 

plt.plot(r.history['val_accuracy'], label='val acc') 

plt.legend() 

fig1 = plt.gcf() 

plt.show() 
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fig1.savefig('F:/thesis/face_recog/more_val/top_left/AccVal_acc') 

 

 

# fine tuning with early stopping 

model.trainable = True 

model.compile(keras.optimizers.Adam(1e-5), loss='categorical_crossentropy', 

metrics=['accuracy']) 

 

r=model.fit_generator( 

  training_set, 

  validation_data=test_set, 

  epochs=20, 

  callbacks= callbacks, 

  steps_per_epoch=len(training_set), 

  validation_steps=len(test_set) 

) 

 

# loss 

plt.plot(r.history['loss'], label='train loss') 

plt.plot(r.history['val_loss'], label='val loss') 

plt.legend() 

fig1 = plt.gcf() 

plt.show() 

fig1.savefig('F:/thesis/face_recog/more_val/top_left/LossVal_loss_fine_tune

') 

 

# accuracies 

plt.plot(r.history['accuracy'], label='train acc') 

plt.plot(r.history['val_accuracy'], label='val acc') 

plt.legend() 

fig1 = plt.gcf() 

plt.show() 

fig1.savefig('F:/thesis/face_recog/more_val/top_left/AccVal_acc_fine_tune') 
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A6 – This code is of feature extraction from the model created by the previous code  

from numpy import load 

from numpy import expand_dims 

from numpy import asarray 

from numpy import savez_compressed 

from keras.models import load_model 

import tensorflow as tf 

from keras.models import Model 

 

gpus = tf.config.experimental.list_physical_devices('GPU') 

if gpus: 

    try: 

        # Currently, memory growth needs to be the same across GPUs 

        for gpu in gpus: 

            tf.config.experimental.set_memory_growth(gpu, True) 

        logical_gpus = tf.config.experimental.list_logical_devices('GPU') 

        print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical 

GPUs") 

    except RuntimeError as e: 

        # Memory growth must be set before GPUs have been initialized 

        print(e) 

 

def get_embedding(model, face_pixels): 

    samples = expand_dims(face_pixels, axis=0) 

    yhat = model.predict(samples) 

    return yhat[0] 

 

 

# load the face dataset 

data = load('npz and svm/TUFTS_top_random.npz') 

trainX, trainy, valX, valy = data['arr_0'], data['arr_1'], data['arr_2'], 

data['arr_3'] 

print('Loaded: ', trainX.shape, trainy.shape, valX.shape, valy.shape) 

model = load_model('models/final_top_2.h5') 

 

model = Model(inputs=model.inputs, outputs=model.layers[-2].output) 

 

model.summary() 

print('Loaded Model') 

 

# convert each face in the train set to an embedding 

newTrainX = list() 

for face_pixels in trainX: 

    embedding = get_embedding(model, face_pixels) 

    newTrainX.append(embedding) 

newTrainX = asarray(newTrainX) 

print(newTrainX.shape) 

 

# convert each face in the test set to an embedding 

newValX = list() 

for face_pixels in valX: 

    embedding = get_embedding(model, face_pixels) 

    newValX.append(embedding) 

newValX = asarray(newValX) 

print(newValX.shape) 

 

# save arrays to one file in compressed format 

savez_compressed('final/TUFTS_top_random_embeddings.npz', newTrainX, 

trainy, newValX, valy) 
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A7 – The following Code is of using SVM after the feature extraction for accuracy calculation 

from numpy import load 

from sklearn.metrics import accuracy_score 

from sklearn.preprocessing import LabelEncoder 

from sklearn.preprocessing import Normalizer 

from sklearn.svm import SVC 

 

# load dataset 

data = load('final/TUFTS_top_right_embeddings2.npz') 

trainX, trainy, valX, valy = data['arr_0'], data['arr_1'], data['arr_2'], 

data['arr_3'] 

print('Dataset: train=%d, validation=%d' % (trainX.shape[0], 

valX.shape[0])) 

# normalize input vectors 

in_encoder = Normalizer(norm='l2') 

trainX = in_encoder.transform(trainX) 

valX = in_encoder.transform(valX) 

# label encode targets 

out_encoder = LabelEncoder() 

out_encoder.fit(trainy) 

trainy = out_encoder.transform(trainy) 

valy = out_encoder.transform(valy) 

# fit model 

model = SVC(kernel='linear', probability=True) 

model.fit(trainX, trainy) 

 

yhat_train = model.predict(trainX) 

yhat_val = model.predict(valX) 

# score 

score_train = accuracy_score(trainy, yhat_train) 

score_val = accuracy_score(valy, yhat_val) 

# summarize 

print('Accuracy: train=%.3f, val=%.3f' % (score_train*100, score_val*100)) 

 

A8 – The following code is using Squared Euclidean Distance for accuracy calculation 

from numpy import load 

import numpy as np 

 

data = load('final/TUFTS_top_right_embeddings2.npz') 

trainX, trainy,valX, valy = data['arr_0'], data['arr_1'], data['arr_2'], 

data['arr_3'] 

 

 

Correct=0 

for x in range(valX.shape[0]): 

    distances = list() 

    for emb in trainX: 

        distance = np.sum(np.square(emb-valX[x])) 

        # if you want Euclidean Distance 

        # distance = np.sqrt(np.sum(np.square(emb - valX[x]))) 

        distances.append(distance) 

 

    min_dist = min(distances) 

 

    max_dist = max(distances) 
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    distances = (distances-min_dist)/(max_dist-min_dist) 

    distances = distances.tolist() 

    min_dist = min(distances) 

 

    min_index = distances.index(min_dist) 

    if trainy[min_index] == valy[x]: 

        Correct=Correct+1 

 

total=valX.shape 

Accuracy = (Correct/total[0])*100 

print("Accuracy : " , Accuracy) 
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A9 – Saving the distances into two text files one for genuine scores and one for imposter score 

for FNMR vs FMR and ROC curves to calculate EER and accuracy before fusion 

from numpy import load 

import numpy as np 

import os 

from sklearn.preprocessing import normalize 

 

# load face embeddings 

data = load('final/TUFTS_top_embeddings.npz') 

trainX, trainy, valX, valy = data['arr_0'], data['arr_1'], data['arr_2'], 

data['arr_3'] 

 

same_sub = list() 

diff_sub = list() 

 

for x in range(valX.shape[0]): 

    for y in range(trainX.shape[0]): 

        distance = np.sum(np.square(trainX[y] - valX[x])) 

        # if you want Euclidean distance 

        # distance = np.sqrt(np.sum(np.square(trainX[y] - valX[x]))) 

        if trainy[y] == valy[x]: 

            same_sub.append(distance) 

        else: 

            diff_sub.append(distance) 

 

 

same_sub = np.array(same_sub) 

diff_sub = np.array(diff_sub) 

 

conc=same_sub.shape[0] 

 

# normalizing the distances from 0 to 1 

all_distances=np.concatenate((same_sub,diff_sub)) 

all_distances=all_distances.reshape(-1,1) 

all_distances = normalize(all_distances, norm='l2', axis=0) 

all_distances=all_distances.flatten() 

same_sub=all_distances[0:conc] 

diff_sub=all_distances[conc:] 

 

np.savetxt('score_files_before_fusion/same_subject_scores_top_TUFTS.txt', 

same_sub, fmt='%.5f', newline=os.linesep) 

np.savetxt('score_files_before_fusion/different_subject_scores_top_TUFTS.tx

t', diff_sub, fmt='%.5f', newline=os.linesep) 
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A10 – This code is for feature level fusion 

After fusion, saving the distances into two text files one for genuine scores and one for imposter 

score for FNMR vs FMR and ROC curves to calculate accuracy and EER after fusion 

from numpy import load 

import numpy as np 

import os 

from sklearn.preprocessing import MinMaxScaler 

 

# load face embeddings 

data_top = load('final/FEI_top_embeddings2.npz') 

data_top_right = load('final/FEI_top_right_embeddings2.npz') 

data_top_left = load('final/FEI_top_left_embeddings2.npz') 

 

train_topX, train_topy, val_topX, val_topy = data_top['arr_0'], 

data_top['arr_1'], data_top['arr_2'], data_top['arr_3'] 

train_top_rightX, train_top_righty, val_top_rightX, val_top_righty = 

data_top_right['arr_0'], data_top_right['arr_1'], \ 

                                                                     

data_top_right['arr_2'], data_top_right['arr_3'] 

train_top_leftX, train_top_lefty, val_top_leftX, val_top_lefty = 

data_top_left['arr_0'], data_top_left['arr_1'], \ 

                                                                 

data_top_left['arr_2'], data_top_left['arr_3'] 

 

transformer = MinMaxScaler() 

rows, cols = train_topX.shape 

cols = cols * 3  # 3 feature vector of same size concatenated 

fused_features_train = np.zeros((rows,cols)) 

 

# fusing train set 

for x in range(train_topX.shape[0]): 

    # normalize before fusion 

    top = train_topX[x].reshape(-1, 1)  # top feature 

    top = transformer.fit_transform(top)  # min-max 

    top = top.flatten() 

     

    top_right = train_top_rightX[x].reshape(-1, 1)  # top_right 

    top_right = transformer.fit_transform(top_right)  # min-max 

    top_right = top_right.flatten() 

 

    top_left = train_top_leftX[x].reshape(-1, 1)  # top_left 

    top_left = transformer.fit_transform(top_left)  # min-max 

    top_left = top_left.flatten() 

 

    fused = np.concatenate((top, top_left, top_right)) 

    fused_features_train[x] = fused 

 

rows, cols = val_topX.shape 

cols = cols * 3  # 3 feature vector of same size concatenated 

fused_features_val = np.zeros((rows,cols)) 

# fusing val set 

for x in range(val_topX.shape[0]): 

    # normalize before fusion 

    top = val_topX[x].reshape(-1, 1)  # top feature 

    top = transformer.fit_transform(top)  # min-max 

    top = top.flatten() 
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    top_right = val_top_rightX[x].reshape(-1, 1)  # top_right 

    top_right = transformer.fit_transform(top_right)  # min-max 

    top_right = top_right.flatten() 

 

    top_left = val_top_leftX[x].reshape(-1, 1)  # top_left 

    top_left = transformer.fit_transform(top_left)  # min-max 

    top_left = top_left.flatten() 

 

    fused = np.concatenate((top, top_left, top_right)) 

    fused_features_val[x] = fused 

 

same_sub = list() 

diff_sub = list() 

 

for x in range(fused_features_val.shape[0]): 

    for y in range(fused_features_train.shape[0]): 

        distance = np.sum(np.square(fused_features_train[y] - 

fused_features_val[x])) 

        if train_topy[y] == val_topy[x]: 

            same_sub.append(distance) 

        else: 

            diff_sub.append(distance) 

 

same_sub = np.array(same_sub) 

diff_sub = np.array(diff_sub) 

 

np.savetxt('score_files_after_fusion/feature_fused_same_FEI.txt', same_sub, 

fmt='%.5f', 

           newline=os.linesep) 

np.savetxt('score_files_after_fusion/feature_fused_different_FEI.txt', 

diff_sub, fmt='%.5f', 

           newline=os.linesep) 
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A11- Score level fusion code 

After fusion, saving the distances into two text files one for genuine scores and one for imposter 

score for FNMR vs FMR and ROC curves to calculate accuracy and EER after fusion 

from numpy import load 

import numpy as np 

import os 

from sklearn.preprocessing import MinMaxScaler 

 

# load face embeddings 

data_top = load('final/FEI_top_embeddings2.npz') 

data_top_right = load('final/FEI_top_right_embeddings2.npz') 

data_top_left = load('final/FEI_top_left_embeddings2.npz') 

 

train_topX, train_topy, val_topX, val_topy = data_top['arr_0'], 

data_top['arr_1'], data_top['arr_2'], data_top['arr_3'] 

train_top_rightX, train_top_righty, val_top_rightX, val_top_righty = 

data_top_right['arr_0'], data_top_right['arr_1'], \ 

                                                                     

data_top_right['arr_2'], data_top_right['arr_3'] 

train_top_leftX, train_top_lefty, val_top_leftX, val_top_lefty = 

data_top_left['arr_0'], data_top_left['arr_1'], \ 

                                                                 

data_top_left['arr_2'], data_top_left['arr_3'] 

print('Loaded: ', train_topX.shape, 

train_top_leftX.shape,train_top_rightX.shape) 

 

transformer = MinMaxScaler() 

 

 

def calculate_dist(trainX, valX, trainy, valy): 

    same_sub = list() 

    diff_sub = list() 

 

    for x in range(valX.shape[0]): 

        for y in range(trainX.shape[0]): 

            distance = np.sum(np.square(trainX[y] - valX[x])) 

            if trainy[y] == valy[x]: 

                same_sub.append(distance) 

            else: 

                diff_sub.append(distance) 

 

    same_sub = np.array(same_sub) 

    diff_sub = np.array(diff_sub) 

    conc = same_sub.shape[0] 

    all_distances = np.concatenate((same_sub, diff_sub)) 

    all_distances = all_distances.reshape(-1, 1) 

    transformer = MinMaxScaler() 

    all_distances = transformer.fit_transform(all_distances) 

    all_distances = all_distances.flatten() 

    same_sub = all_distances[0:conc] 

    diff_sub = all_distances[conc:] 

    return same_sub, diff_sub 

 

# calculate scores of all the patches 

same_sub_top, diff_sub_top = calculate_dist(train_topX, val_topX, 

train_topy, val_topy) 

same_sub_top_left, diff_sub_top_left = calculate_dist(train_top_leftX, 
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val_top_leftX, train_top_lefty, val_top_lefty) 

same_sub_top_right, diff_sub_top_right = calculate_dist(train_top_rightX, 

val_top_rightX, train_top_righty, 

                                                        val_top_righty) 

# score level fusion 

w1, w2, w3 = 0.8, 0.1, 0.1 

same_sub= (w1*same_sub_top)+(w2*same_sub_top_right)+(w3*same_sub_top_left) 

diff_sub= (w1*diff_sub_top)+(w2*diff_sub_top_right)+(w3*diff_sub_top_left) 

 

np.savetxt('score_files_after_fusion/score_fused_same_FEI.txt', same_sub, 

fmt='%.5f', 

           newline=os.linesep) 

np.savetxt('score_files_after_fusion/score_fused_different_FEI.txt', 

diff_sub, fmt='%.5f', 

           newline=os.linesep) 
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