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Abstract

For many people, the Internet has become an important arena for meeting new
people. In chat conversation with strangers, one does however not have any guar-
antees that the conversation partner is the one he/she claims to be. Gender is one
example of something a conversation partner can provide false information about.
Earlier research has achieved good results regarding gender detection based on
complete conversations. In this project we explored the possibilities of detecting
the gender earlier in the conversation by using machine learning models trained
with keystroke dynamics and stylometry features.

We achieved promising results and found clear indications that early gender
detection should be possible, without much accuracy loss. Based on complete chat
conversations, where the average length is 28 written messages from each parti-
cipant, we were able to achieve an accuracy of 80%. We experienced no accuracy
loss when basing the classification on half conversations (14 messages). When
basing the classification on only 5 messages (approximately 18% of the length of
complete conversations), the accuracy loss was still <5 percentage points.
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Sammendrag

For mange mennesker har Internett blitt en viktig arena for å stifte nye bekjent-
skap. Dette innebærer ofte at man befinner seg i chatsamtaler der man ikke har
noen garantier på at motparten er den som vedkommende utgir seg for å være.
Kjønn er et eksempel på noe en samtalepartner kan oppgi falsk informasjon om.
Tidligere forskning har oppnådd gode resultater på å oppdage det sanne kjøn-
net til en chatsamtalepartner basert på hele samtaler. I dette prosjektet forsøker
vi å finne ut om det er mulig å oppnå dette på et tidligere tidspunkt i samtalen
ved å trene opp ulike maskinlæringsmodeller med data basert på tastefrekvens og
stilometri.

Vi oppnådde lovende resultater og fant klare tegn på det skal være mulig å
oppdage kjønnet til en chatsamtalepartner tidlig i samtalen, uten store tap av
treffsikkerhet. Basert på hele samtaler, hvor gjennomsnittlig lengde var 28 sendte
meldinger per deltaker, oppnådde vi en treffsikkerhet på opptil 80%. Ved halverte
samtalelengder (14 meldinger) oppsto det ingen tap av treffsikkerhet. Ved å re-
dusere antall meldinger til 5 (omtrent 18% av hele samtalelengder) var tapet av
treffsikkerhet fortsatt <5 prosentpoeng.
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Chapter 1

Introduction

1.1 Topics covered by the project

The goal of this project is to explore the possibilities of early gender detection
in chat conversations. To achieve this, we will mainly focus on two topics. The
first one of these is keystroke dynamics, which is the act of recognizing people
based on the way they type on a keyboard, most often looking at how long each
key is pressed and how much time passes between each keystroke. The second is
stylometry, which involves determining the author of a text based on the style of
writing, often consisting of aspects such as punctuation usage, frequency of cer-
tain words/phrases or similar. Both of these topics involves determining who is
the author of a given text, and used in combination, it can reveal much informa-
tion about the author. This project will focus on how analyzing a text, specifically
chat logs, using keystroke dynamics and stylometry can reveal information about
the author’s gender, and more specifically, to analyze how many chat messages is
needed before an accurate decision can be made.

1.2 Keywords

Keystroke dynamics, stylometry, soft biometrics, behavioural biometrics, biometric
fusion, gender detection, gender classification.

1.3 Problem description

When talking to strangers online, you cannot be completely certain that the per-
son you are talking to is who he/she claims to be. This project aims to remove
some of this uncertainty by trying to determine the gender of the person you are
talking to, based on keystroke dynamics and stylometry. Research until now has
mainly focused on determining the gender of a person based on all messages one
have written in a chat conversation, meaning that the classification is performed
after the conversation has ended. When talking to a stranger, most people would

1
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however prefer to find out if the conversation partner lies about his/her identity
as soon as possible and before the conversation has ended. This project aims to
address this problem by finding out to what extent it is possible to classify the
gender of a person earlier in the conversation.

1.4 Justification, motivation and benefits

By knowing the true gender of the person you are talking with, the Internet in
general could become a safer place. There are many harmful situations that could
have resulted in different outcomes if this was the case. One example is "Sandra-
saken", which at the time was the biggest child exploitation case in Norwegian
history [1]. An adult male claimed to be a younger female and tricked and black-
mailed hundreds of young boys to send indecent images and videos. In another
case [2], a young man was being blackmailed by someone claiming to be a young
woman who possessed indecent videos of him. It ended with the young man com-
mitting suicide. Another famous example is the "Meier-case", where a 13-year-old
girl was cyberbullied by a group of teenage girls, and one adult woman, posing as a
nice young boy who eventually started to send cruel and harassing messages after
first gaining her trust [3]. This case also ended with a suicide of the 13-year-old
girl. A final example is the case of love scams. These are cases where criminals use
a false identity and pretend to initiate romantic relationships with unsuspecting
victims. After trust has been established, they start asking for increasing amounts
of money. It is not uncommon for victims to lose millions of Norwegian crowns
(NOK) due to this [4].

All of these cases may have been avoided if the victims were aware of the
deceptive nature of the person they were talking with. This makes early gender
detection a beneficial tool for both reducing certain forms of cybercrime and mak-
ing online platforms safer.

1.5 Research questions

The sections above resulted in the main research question Is it possible to accur-
ately classify the gender of a person early in a conversation using keystroke dy-
namics and stylometry? In relation to this, the following associated sub-questions
have also been defined:

How much accuracy is lost when performing the classification early in a conversation?
- One could expect that the accuracy will be lower when basing the classification
on a lower number of messages than on complete chat conversation logs. To de-
termine to which extent early gender detection is possible, we need to find out
how big this accuracy loss is. If the accuracy loss grows too high, the usefulness
of early gender detection would be vastly reduced as one cannot trust the classi-
fication.
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How early is it possible to perform the classification while maintaining accuracy?
- The usefulness of early gender detection would increase the earlier the classific-
ation is made. This does however only hold if there are no significant degradations
in accuracy. Finding out how early it is possible to perform the classification while
maintaining accuracy would allow us to maximize the usefulness of early gender
detection.

When in a conversation should the classification be made? - The performance of
early gender detection is based on the two criteria accuracy and the number of
messages needed before the classification is performed. These are expected to
conflict to some degree as obtaining a high accuracy will often depend on a large
number of messages, while using a small number of messages will often result in
lower accuracy. Finding the optimal moment to perform the classification would
hopefully allow us to preserve both these performance measures, which is crucial
for the usefulness of early gender detection.

How should stylometry and keystroke data be fused? - When using features from
two modalities, a process known as biometric fusion (see Section 2.3) is neces-
sary. The method of fusion can affect the overall accuracy of the classification and
finding the best fusion method is thus necessary to find a proper answer to the
main research question.
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Related work

This chapter will cover the current state-of-the-art regarding how stylometry and
keystroke dynamics have been used for gender detection up until now. Within the
topic of predicting gender using stylometry and keystroke dynamics, the majority
of existing research only considers either stylometry or keystroke dynamics, while
there is generally less literature about how to use these modalities in combination.
This makes it natural to divide this chapter into three main sections, where each
section covers one of the above cases. In addition, there will be one final section
where we will discuss existing research regarding how one could at which point
in the conversation the classification should be performed.

2.1 Keystroke dynamics

2.1.1 Introduction to keystroke dynamics

Biometrics has often been used for authentication [5]. Contrary to traditional
methods of authentication, such as passwords, PINs or key cards, biometric au-
thentication is based on "what you are". This includes physical characteristics, such
as fingerprint recognition [6] or face recognition [7], or characteristics linked to
ones behaviour, such as voice recognition [8] or signature recognition [9]. Key-
stroke dynamics is another one of these behavioural characteristics, and refers
to the way one types on a keyboard [10, 11]. This can include features such as
how long keys are held down, how long the pauses between keystrokes are or
pressure when pressing down a key [10]. These features vary from person to per-
son in such degree that it can be used to distinguish people from one another,
merely by the way they type [10, 11]. Because of this, keystroke dynamics has
often been used for authentication. One example could be that if your computer
is stolen, and the thief also knows your password and tries to log in, the computer
could deny the thief access because his keystroke rhythm when typing the pass-
word (most likely) deviated from yours. Because keystroke dynamics is able to
distinguish between persons, one could wonder if keystroke dynamics also could
distinguish between groups of people that share a certain trait, for example right-

4
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handed and left-handed people, males and females, children and adults or similar.
These non-unique characteristics are called soft biometrics [12]. This section will
cover research that has been done on distinguishing keystroke dynamics between
genders (male or female).

2.1.2 Keystroke dynamics gender classification

To correctly classify the gender of a person, a necessary prerequisite is that there
exists keystroke dynamics features that are able to distinguish male and female
typists. Various approaches to determine this have been taken in literature, with
varying conclusions being drawn. One example is that [13] concluded that fe-
males generally types faster than males, while [14] concluded that there is no
such difference. As this section will show, the consensus does however seem to be
that there exists at least some difference between males and females, in regard to
keystroke dynamics.

In keystroke dynamics, the potential features are generally extracted from a
dataset containing key values and accompanying timestamps for when they were
pressed and released [10, 11]. The features will then consist of timing relations
between different keys. The most common is to have timing relations between 2
keys, in other words between bigrams [10, 11]. The possible features are then:

• Press-Press latency (LatPP) - Time between press of first key and press of
second key.

• Press-Release latency (LatPR) - Time between press of first key and release
of second key.

• Release-Press latency (LatRP) - Time between release of first key and press
of second key.

• Release-Release latency (LatRR) - Time between release of first key and
release of second key.

• Duration - Time between press and release of the same key.

It is also possible to extract features from segments longer than bigrams (often
called n-grams, where n is the length of the sequence), but this is less frequently
encountered. There have been several different feature sets used in research, but
most variants include a combination of the features listed above, sometimes with
small deviations.

In [13], the features were LatPP, typing speed, number of keystrokes in a
message, total duration of written text (time between first and last keystroke)
and total duration of time spent using the backspace key. In addition, some stylo-
metry features were used, which will be covered in Section 2.2. The feature set in
[14] considered all bigrams appearing more than 3 times and extracted the fea-
tures LatPP and both durations. In [15], the feature set consisted of durations for
each key, LatRP, n-gram latency (mean time of n consecutive key presses, where
2 ≤ n ≤ 4), standard deviations for the preceding features, relative frequency of
deletions, total number of keystrokes divided by the number of characters in the
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final text and a final feature which they defined as LatRP + duration of second
key in bigram.

The feature set in [16] consisted of 6 features for each of the 20 most fre-
quently used bigrams. The features were durations of the two keys, LatRP, LatPP,
LatRR and LatPR. In addition, they used deletion ratio (number of deleted char-
acters divided by total number of typed keys) and average thinking time (time
between two sent messages) as two additional features.

The feature set used in [17] and [18] consisted of, for every bigram, LatPP,
LatPR, LatRP and LatRR. In [19], they used LatPP and LatRP, but also the pres-
sure and finger area (area of screen the press occurred) of keystrokes. This was
possible due to the data collection being performed on touchscreen keyboards on
smartphones. The features in [20] consisted of durations for each keystroke and
durations for specific groups of keys (numbers, letters, special characters etc.).

Finally, in [21], the features were LatRP and durations of each individual key
and certain groups of keys. The key groupings were based on which finger/hand
they are typed with, which row on the keyboard the keys are in and the whether
the key value was common/rare. In addition, several stylometry features and fea-
tures relying on both stylometry and keystroke dynamics were used. These are
discussed in Section 2.2.

After the relevant features have been extracted from a variety of subjects (both
male and female), the next step is to use the data to create a model that can ac-
curately classify the gender of a typist. For the last several years, this classification
is most often done utilizing various machine learning concepts.

The highest accuracy was found in [13], which on a dataset consisting of chat
logs from 25 males and 35 females, achieved an accuracy of 98.3% with a Random
Forest (RF) classifier using leave-one-out cross-validation. Details about Random
Forest classification can be found in [22].

In [14], a collection of several classification models was used on a dataset con-
sisting of keystrokes from 39 females and 36 males. The keystrokes were logged
from everyday use. The models were Support Vector Machine (SVM), RF, Naïve
Bayes (NB), Multi-Layer Perceptron (MLP) and Radial Basis Function Network
(RBFN). The reasoning behind this diverse collection of classification models was
to form an opinion on how their performances compared to each other. They
found that all of them performed well, but RBFN was the best with an accuracy
of 95.6% using 10-fold cross-validation. Details about Support Vector Machines,
Naïve Bayes, Multi-Layer Perceptron and Radial Basis Function Network can be
found in [23–26] respectively.

A similar approach was used in [15], but with a different set of classification
models. On a dataset consisting of freely written texts from 1519 subjects (997
females and 522 males), the models Logistic Regression (LogR), SVM, k-Nearest
Neigbours (k-NN), C4.5 and RF were used. SVM, k-NN and RF performed best for
gender recognition, all with an accuracy of 73% using 10-fold cross-validation.
Details about Logistic Regression, k-Nearest Neighbors and C4.5 can be found in
[27–29] respectively.
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In [16], they aimed to classify the gender based on chat logs between 10 fe-
males and 35 males. Some male participants were then removed to make a bal-
anced training set. Separate RF classifiers were used on each of the 20 selected
bigrams, and then the generated scores were fused to classify the gender of the
author of a single chat message. They performed majority voting on all messages
by the conversation participant to perform the final gender classification. This
achieved an accuracy of 76% using 3-fold cross-validation.

Another approach, as described in [20], used only an SVM classifier. On a
dataset containing 121 users (53 females and 68 males), they achieved an ac-
curacy of 63.29% using 5-fold cross-validation. A similar approach was used in
[17], but with higher accuracy (84% at most). In [18], there was again used a
collection of different classification models. The dataset consisted of typings of
a short static text by 21 females and 71 males. By using the models SVM, NB,
RF and Multi-nominal Log-Linear (MLL), they found RF to be the most accurate
with an accuracy of 62.63% using a 50/50, training/testing ratio. Details about
Multi-nominal Log-Linear can be found in [30].

In [21], the analysis was performed on a dataset consisting of texts written
freely, in response to some given questions, by 567 males and 415 females. For
classification they then tried the classifiers LogitBoost (LB), NB, SVM and LogR.
Best accuracy (51.6%) was achieved with LB using 10-fold cross-validation. De-
tails about LogitBoost can be found in [31]. Finally, in [19], on a dataset consisting
of keystrokes from 24 males and 18 females, it was used an RF classifier, which
achieved an accuracy of 64.76% using leave-one-user-out cross-validation. The
findings are summarized in Table 2.1.

2.2 Stylometry

2.2.1 Introduction to stylometry

Stylometry refers to the analysis of which style a text is written in [32, 33]. People
tend to write in their own distinct style, which can be shaped from several factors
such as mood, education level, age, gender, dialect or whether one is a native
speaker or not [33]. All these factors in combination lead to people making certain
linguistic choices [32, 33]. Examples could be that a university professor might
use a complex and varied vocabulary, a child might make many common spelling
mistakes, a teenager might use more slang and other hip phrases and a person who
is excited/angry/frustrated might use more exclamation marks (!) and upper-case
characters. This has led to two main use-cases, author attribution/verification and
author profiling [32, 33]. Author attribution/verification means to verify whether
a text was written by a particular author and author profiling means to analyse
whether a text reveals information about the author such as age, gender or level of
education [32, 33]. Like keystroke dynamics, stylometry can also be defined to be
a behavioural biometric characteristic. This section will focus on how stylometry
can be used for author profiling in regard to gender detection.
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2.2.2 Stylometry gender classification

As with keystroke dynamics, the process of determining the gender (male or fe-
male) of a text’s author, relies on the fact that there exists stylometry features that
are able to distinguish males from females. In regard to stylometry, the poten-
tial features are whatever you can extract from a written text. In general, there
are however three main categories of features that are used, which are phonetic
features, lexical features and syntactic features [32]. Phonetic features involve
features based on single characters or syllables. Examples could be count of cer-
tain characters, ratio of vowels/consonants or count of certain syllables. Lexical
features involve features based on word choice, some examples being use of dia-
lect words, average word length or number of unique words. Syntactic features
involve features in regards to sentences. Examples could be tendency to use com-
plete sentences, sentence length or use of certain linguistic concepts (e.g., chiasms
or parallel syntax). In research, several variants have been used.

Some approaches use relatively simple features. Examples could be as in [16],
where only two stylometry features are used, namely average length of words and
average number of words in a message. Another example is [13], where the stylo-
metry features consisted of merely the length of messages, the density of various
characters and word count. This approach did however also use keystroke dynam-
ics features, as discussed in Section 2.1. In [34], the features consisted of message
length, average word length, character frequency, number of distinct words and
usage of emojis, punctuation and stop words. Such simple feature sets have the ad-
vantage of being easy to extract and pre-process. An equally simple feature set was
used in [35], which consisted of character counts (for special characters, spaces
and punctuation), count of different kinds of emojis, average length of words and
total text length. A shared characteristic among all of these is that features were
extracted from a dataset based on chats or tweets, which in general consists of
short texts. This limited amount of text could make it difficult to extract complex
features.

One commonly held belief is that males and females differ in the way they
express emotion. This theory was tested in [36], where the feature set consisted
of word frequencies and metrics regarding the usage of emotion-based words such
as "happy", "love", "sorrow" and "misery". This strategy deviates from many of the
other approaches which focuses on more general features. The features in [37]
consisted of many of the same features already mentioned, like the frequency
of certain words and characters and count of different punctuation symbols. It
did however also use vocabulary richness and frequency of multi-media content
(possible due to the features being extracted from tweets, which allows posting
of such content). Many of the same features were also used in [38], which used
the features of vocabulary richness, count and ratio of punctuation symbols and
length/count of words and sentences.

Other research have followed the philosophy that the more features the better,
and thus ended up with rather complex feature sets. One example is in [39], where
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a total of 545 features were used. These consisted of count of certain characters,
count of certain words/phrases, vocabulary richness, frequency distribution of
word lengths and features regarding message structure (paragraph length, use of
greetings, correct punctuation etc.). Similar complexity is found in [40], where the
features were word length, number of special characters and whether they were
repeated (e.g., !!!! or ???), average number of words in a sentence, vocabulary
richness, sentence richness (whether sentences tended to be complete) and usage
of words/phrases from different categories (e.g. greetings, profanity and emotion
based words). Finally, in [21] the stylometry features consisted of various metrics
for sentences, words, character types and punctuation, in addition to vocabulary
richness. This approach also used keystroke dynamics features as mentioned in
Section 2.1 and some features that are derived from both keystroke dynamics.
They call this language production features and consists of features such as latency
between words of different categories (nouns, verbs, singular/plural etc.) or word
count within a writing burst (a writing burst is a sequence of keystrokes with short
pauses).

Following in the same manner as with keystroke dynamics, the next step is
to train a model with text data from males and females which goal is to classify
the gender of the author accurately. As with keystroke dynamics, this is most of-
ten done using machine learning concepts as this generally yields good results
[33]. The differences between the approaches found in literature is then gener-
ally which machine learning model is used and the properties of the dataset it is
used upon.

In [16], they aimed to classify gender based on chat logs between 10 females
and 35 males, where some male participants were removed to make a balanced
training set. An RF classifier was used, which gave an accuracy of 64% using 3-
fold cross-validation. A dataset derived from chat logs was also used in [34]. The
dataset consisted of chat logs from 200 male and 200 female profiles. Using an
NB classifier, an accuracy of 84.2% was achieved using 10-fold cross-validation.
A k-NN classifier was also tested, but with poorer results (accuracy of 64.6%). A
final approach using chat data is found in [13]. In [13], on a dataset consisting
of chat logs from 25 males and 35 females, they achieved an accuracy of 98.3%
with an RF classifier using leave-one-out cross-validation.

Tweets from Twitter has also been shown to be a popular source of datasets.
In [35], on a dataset consisting of tweets from 1030 males and 1030 females,
a collection of different classifiers was used, consisting of LogR, RF, SVM and
NB. On the testing data, they managed to achieve an accuracy of 76.52%, but
they do not mention which of the classifiers this was achieved by. In [37], they
used a dataset consisting of tweets from 486 males and 514 females for training.
By using an SVM-classifier, they achieved an accuracy of 83.16%. In [40], they
achieved an accuracy of 97.7% using a Convolutional Neural Network (CNN).
They do however not share details about the dataset, other than it consisted of
tweets. This makes it difficult to assess how impressive that accuracy is. Details
about Convolutional Neural Networks can be found in [41].
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Other sources of data have also been used. In [38], the training dataset con-
sisted of text extracted from 328 male and 151 female Facebook-profiles. They
tried the classifiers J48, RF, SVM and NB. They found RF to be the best with
an accuracy of 81.3%, using 10-fold cross-validation. Accuracies achieved by the
other classifiers were not disclosed. Details about J48 can be found in [42].

In [39], two different datasets were used. One of them consisted of 3474 news
articles written by males and 3295 written by females. The other consisted of 4947
e-mails written by males and 4023 written by females. They achieved accuracies
of 76.75% and 82.23% on the two datasets respectively, using SVM with 10-fold
cross-validation. They also tried the classifiers LogR and Decision Trees (DT), but
this resulted in lower accuracies. Details about Decision Trees can be found in
[43].

In [21], the analysis was performed on a dataset consisting of texts written
freely in response to some given questions by 567 males and 415 females. For
classification they then tried the classifiers LB, NB, SVM and LogR. Best accur-
acy (51.6%) was achieved with LB using 10-fold cross-validation. Finally, in [36],
on a dataset consisiting of journal entries from 43 males and 43 females, a max-
imum accuracy of 91.8% was achieved using SVM with 10-fold cross-validation.
Table 2.2 summarizes the findings. One interesting observation in Table 2.2 is that
more complex stylometry features does necessarily imply increased accuracy.

2.3 Combining stylometry and keystroke dynamics

2.3.1 Introduction to fusion

When using features from more than one biometric characteristic/modality, so-
called multi-modal biometrics, the process of biometric fusion is a necessity. In
general terms, biometric fusion involves taking input from different sources into
account, with the goal of making more accurate decisions with higher confidence
[44, 45]. As an example, the idea is that if a face recognition system claims that
a subject is John Doe and a fingerprint recognition system claims that a subject is
John Doe, one can be more confident that the subject actually is John Doe than if
only one of the systems claimed so.

There are in general 5 approaches to biometric fusion, which are distinguished
by where in the biometric process they take place [44, 45].

• Sensor-level fusion: Combine biometric data from multiple sensors before
features are extracted.

• Feature-level fusion: Combine several feature sets (from the same subject)
into one extended feature set.

• Score-level fusion: Process the feature sets individually and combine the
resulting score into a final score.

• Rank-level fusion: Create a ranking of scores in descending order for each
subsystem. The option with highest rankings is chosen.
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• Decision-level fusion: Process each feature set individually. The decisions of
all subsystems are combined to make a final decision.

It is hard to call one approach better than the others, but some claim that
score-level fusion generally tends to perform best [44].

2.3.2 Fusing stylometry and keystroke dynamics

Based on the conducted literature review, there exist only limited research about
fusing stylometry and keystroke dynamics. The only found research that uses both
keystroke dynamics and stylometry for gender detection is found in [13], [16] and
[21].

In [16], they used score-level fusion with equal weights assigned to the scores
from the stylometry classifier and keystroke dynamics classifier. This did however
not increase accuracy. The accuracy remained at 64%, which was the same as
using the stylometry classifier by itself. The keystroke dynamics classifier achieved
an accuracy of 72% by itself. In [13] and [21], they did not explicitly state how
the fusion was performed. Based on the way the features were presented, it does
however seem likely that a feature-level approach was used. In [13] and [21],
they achieved accuracies of 98.3% and 51.6% respectively. More details about the
specific features and classification can be read in Section 2.1 and Section 2.2.

Some approaches of fusion are however not relevant in regard to gender detec-
tion in chats using keystroke dynamics and stylometry. Sensor-level fusion cannot
be used because the data collection is not performed by multiple sensors. Rank-
level fusion is also not relevant as it is mainly used for identification. In addition,
decision-level fusion can be challenging as there are only two modalities that are
to be fused. This can result in a tie when the two modalities disagree on whether
the chatter is male or female. Some sort of tiebreaker would thus be needed. This
makes score-level and feature-level fusion the most relevant for use in this project.

In conclusion, the amount of research regarding the fusion of stylometry and
keystroke dynamics, is rather limited. An important aspect of the project will
therefore be to determine how the fusion should be performed.

2.4 Introducing gender levels

When performing a classification task, it is not always the case that the decision
made by the classifier is correct. The assigned class is only determined to be the
most probable one, based on the data the classifier has received. The topic of
early gender detection implies that the classifier would need to base the decision
on a relatively low number of messages, and not complete conversations. This
can make it more challenging to perform correct classifications. In addition, the
perceived gender of a person could change during the course of a conversation as
the classifier receives more messages to base the decision upon. Even if a person’s
first message is classified as male, it does not necessarily imply that the person’s
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true gender is male. A decision made at a later point will thus probably be more
trustworthy, in the sense that it is more likely to be correct.

As an example, consider a person’s sent chat messages at times t0 to t3, where
the gender classification of the sent messages at time t i is displayed in Figure 2.1.
For the sake of simplicity, assume that all message classifications are weighted
equally.

Figure 2.1: Sent chat messages from a chat conversation participant at different
times with associated gender classifications

At time t0, the person has sent 5 messages that has been classified as male
and 2 messages has been classified as female. At time t1, there has been sent an
equal number (7) of male and female messages. At time t2, there has been sent
9 messages that has been classified as male and 11 messages has been classified
as female. At time t3, the person has sent 12 messages that has been classified as
male and 20 messages has been classified as female.

It should be clear that a final gender classification made at t3 is more likely to
be correct than the decisions made at t0, t1 and t2. At t3, more data is available,
and it shows a clear trend that most messages are considered to be female. As a
result, t3 is the first point where it is possible to make a somewhat confident final
classification. As we described in Section 1.5, one of the key aspects regarding
early gender detection is to know when the classification can be made. It is thus
necessary with a system that is able to determine when the final classification can
be made with a sufficient confidence.

This has not yet been suspect to much research, but there has been research
dealing with same issue within the area of continuous authentication.1 Many of
these results can potentially also be used for early gender detection.

Continuous authentication systems sometimes rely on trust levels to ensure
that genuine users are not being rejected by the system. The user should only be

1A way of authentication where the authentication process is performed continuously. Done to
ensure that the user is genuine even after the entry-point authentication has been completed.
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rejected when the system is somewhat certain that user is not genuine. This can
be solved by using a penalty-and-reward system [46, 47]. When a user enters the
system, the trust is set to the maximum level. For each action the user performs,
the trust level is re-evaluated. If the action is deviating from the user’s normal
pattern, the trust level decreases (penalty) and if the action is considered normal,
the trust level increases (reward). If the trust level decreases to a certain threshold,
the user can be rejected with high confidence that he/she is not genuine.

A similar system can be imagined for the purpose of early gender detection.
One could consider an axis between 0 and 1, where 0 would represent complete
certainty that a conversation participant is male and 1 would represent complete
certainty that a conversation participant is female. By setting the default gender
level to 0.5, one could increase or decrease the value based on whether the next
message is classified as male or female. The value adjustments could be either
fixed or varying, as discussed in [46, 47]. When the value is approaching further
away from 0.5 towards defined thresholds, the gender classification of the con-
versation participant would most likely have a higher probability of being correct.
Using the same message classifications used in Figure 2.1, one could imagine the
gender level being adjusted as in Figure 2.2. This could solve the issue presented
earlier in this section as a final decision would not be taken before it is possible
to perform the classification with a certain confidence.

Figure 2.2: A visualization of how the gender level could adjust after each pro-
cessed message
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Reference Features Dataset
(males+females
and source)

Classifier Accuracy

[13]
LatPP (median), typing speed, duration of
messages, total duration of backspaces +
stylometry

25+35, from
chat logs

RF 98.3%

[14] LatPP, durations
39+36, from
everyday use

SVM 85.1%
RF 81.9%
NB 78.6%

MLP 85.1%
RBFN 95.6%

[15]
Durations, LatRP, n-graph latency, standard
deviations, deletion ratio, number of
keystrokes divided by number of characters

522+997,
from free-text

LogR 69%
C4.5 67%
SVM 73%
k-NN 73%
RF 73%

[16]
LatPR, LatPP, LatRP, LatRR, durations,
deletion ratio, thinking time

35+10, from
chat logs

RF 72%

[16] Same as above + stylometry
35+10, from
chat logs

RF 64%

[17] LatPP, LatPR, LatRP, LatRR
78+32, from
free-text

SVM 84%

[18] LatPP, LatPR, LatRP, LatRR
71+21, from
fixed text

SVM 59.33%
NB 52.48%

MLL 50.12%
RF 62.63%

[19] LatPP, LatRP, finger area, pressure

24+18, from
performing
fixed tasks on
smartphone

RF 64.76%

[20] Durations
68+53, from
both free- and
fixed text

SVM 63.29%

[21]
LatRP, durations + stylometry features and
combination features

567+415,
from free-text

LB 51.6%
SVM 46.2%
NB 46.8%

LogR 51.3%

Table 2.1: Summary of gender detection with keystroke dynamics
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Reference Features Dataset
(males+females
and source)

Classifier Accuracy

[13]
Message length, density of various
characters + KD

25+35, from
chat logs

RF 98.3%

[16] Length and number of words
35+10, from
chat logs

RF 64%

[16] Same as above + KD
35+10, from
chat logs

RF 64%

[21]

Metrics for words, sentences,
character-types and punctuation,
vocabulary richness + KD and combination
features

567+415, from
free-text

LB 51.6%
SVM 46.2%
NB 46.8%

LogR 51.3%

[34]
Length of words and messages, character
frequency, number of distinct words, usage
of emojis, punctuation and stop words

200+200, from
chat logs

k-NN 64.6%
NB 84.2%

[35]
Character count, emoji count, word and
text length

1030+1030,
from Twitter

LogR 76.5%
SVM 76.5%
NB 76.5%
RF 76.5%

[36]
Word frequency, usage of emotion-based
words

43+43, from
journal entries

SVM 91.8%

[37]
Word and character frequency, count of
punctuation symbols, vocabulary richness,
frequency of multi-media content

486+514, from
Twitter

SVM 83.16%

[38]
Vocabulary richness, sentence
length/count, word length/count,
count/ratio of various characters

328+151, from
Facebook
profiles

RF 81.3%
J48 -
SVM -
NB -

[39]

Character counts, count of certain
words/phrases, vocabulary richness,
frequency distribution of word length,
message structure

3474+3295,
from news
articles

SVM 76%
LogR 67%
DT 70%

[39] Same as above
4947+4023,
from e-mails

SVM 82%
LogR 71%
DT 72%

[40]

Word length, usage of special characters
and certain words/phrases, word count in
each sentence, vocabulary and sentence
richness

Not revealed CNN 97.7%

Table 2.2: Summary of gender detection with stylometry



Chapter 3

Data collection

The methodology of this project consists of two main parts, data collection and
data analysis. This chapter will focus on the former by describing how the data
collection was performed and highlighting the structure and properties of the
obtained dataset. This dataset will be subject to the data analysis described in
Chapter 4.

3.1 AiBA

The dataset used in this project was obtained through the AiBA project. AiBA1

is a current research project conducted by NTNU, with the goal of developing
tools and solutions to help protect children from sexual predators. They do this
by detecting "cyber grooming", which is the process where adults contacts children
with the end-goal of arranging inappropriate physical meetings or luring them to
send inappropriate images/videos. In situations like this, it is not uncommon that
the perpetrator uses a false identity by lying about their age and/or gender. AiBA
aims to combat this by creating systems that are able to detect the true age and
gender of a person automatically.

To be able to do this, they have collected a dataset consisting of chat data that
can be used for training such systems. They created a chat-service where anyone
(above the age of 18) can register and be paired up with a stranger anonymously
to chat with using their own devices. A screenshot of the chat interface is seen in
Figure 3.1. During the course of the conversations, the messages and keystroke
actions were recorded and were labelled with gender and age.

During the registration, the participants also selected which language they
would prefer to chat in. The viable options were either Norwegian, English or both.
If both languages were selected, two separate accounts were generated where
each of them would be used for one language. In the analysis part of this project,
we will primarily use the Norwegian part of the dataset. We will mainly focus on
one language because features will not necessarily translate very well from one

1https://www.aiba.ai
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Figure 3.1: Screenshot of the AiBA chat interface

language to another. The Norwegian part of the dataset was selected due to the
following reasons:

1. The Norwegian part of the dataset is much larger than the English one (con-
taining more messages and keystrokes);

2. Norwegian is the native language of the author of this thesis, which makes
the Norwegian part of the dataset easier to work with; and

3. This project is performed in association with NTNU, which is after all a
Norwegian university.

This dataset makes it possible to extract both keystroke dynamics and stylometry
features. As all messages are also labelled with gender, it is suitable for use in this
project.
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3.2 Dataset

The dataset consisted of 12 fields containing important data and metadata for
each message. The fields and their descriptions are found in Table 3.1. Example
dataset records are seen in Figure 3.2.

Field Comment

Message The content of the message.
Language The language the chat was performed in. Vi-

able options were Norwegian and English.
SenderID An anonymous, randomized ID belonging to

the sender of the message.
SenderGender The gender of the person that sent the mes-

sage.
SenderAge The age of the person that sent the message.
ReceiverID An anonymous, randomized ID belonging to

the receiver of the message.
RecieverGender The gender of the person that received the

message.
ReceiverAge The age of the person that received the mes-

sage.
RoomID A randomized ID for identifying the conversa-

tion.
UserAgent Various info about the chatters’ technical

equipment used during the chat, such as web
browser and operating system.

Timestamp The time the message was sent.
KDinfo Information about keystroke actions. See

Table 3.2 for more details.

Table 3.1: The general structure of the records found in the dataset

Figure 3.2: Examples of records found in the dataset

The chat participants were not given any specific topics to talk about, but were
instructed to speak freely and naturally. A consequence of this is that the chat par-
ticipants might reveal personal information, such as name or location, during the
course of the conversation. To avoid inclusion of personal information in the final
dataset, any personal information apparent in the chat messages were removed by
manual inspection. The pieces of personal information were then replaced with
appropriate placeholder labels (names were replaced with "#NAME", locations
were replaced with "#LOC" and URLs were replaced with "#URL").
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The field KDinfo is more complex than the other fields, and therefore requires
a discussion on its own. All other fields contain either simple integer values or
character arrays, while KDinfo contains a struct2 with several fields of its own.
An example of a struct found in KDinfo is displayed in Figure 3.3. The fields of
KDinfo is described in Table 3.2.

Figure 3.3: Example of a struct stored in the field KDinfo

Field Comment

keyCode The ASCII code of the pressed key (case insens-
itive).

key The value of the pressed key.
TimeDown The time the key was pressed.
TimeUp The time the key was released.
RelTD Relative time value for when the key was

pressed. Used to calculate LatPP, LatPR, LatRP
and Dur.

RelTU Relative time value for when the key was re-
leased. Used to calculate LatRR, LatPR, LatRP
and Dur.

Dur The total duration of the keystroke.
LatRP Latency between release of the first key and

press of the second key in a bigram.
LatPP Latency between press of the first key and

press of the second key in a bigram.
LatRR Latency between release of the first key and

release of the second key in a bigram.
LatPR Latency between press of the first key and re-

lease of the second key in a bigram.

Table 3.2: The general structure of the struct KDinfo

The fields keyCode, key, TimeDown and TimeUp are collected by key-logging.
The fields RelTD and RelTU are dervied from the timestamp in the particular re-
cord (see Figure 3.2 and Table 3.1), and represents relative values that can be
used to calculate the remaining five fields. How the calculations are performed
is discussed in the following paragraph. Recall from Section 2.1.2 the definition

2A data structure used in MATLAB. Similar to dictionaries in other programming languages.
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of the features LatPP, LatPR, LatRP, LatRR and duration. Consider then a bigram
AB, where A is the first key and B is the second key. Consider also that AP and AR
denotes the press and release time for the first key, and BP and BR denotes the
press and release time for the second key. Duration of the keys in a bigram can
thus be calculated as AR−AP and BR−BP . In KDinfo, this is achieved by calculating
the difference between RelTD and RelTU for each keystroke.

LatRP of a bigram can be calculated by BP −AR. In KDinfo, this is achieved by
calculating the difference between RelTU of the first key and RelTD of the second
key.

LatPP of a bigram can be calculated by BP −AP . In KDinfo, this is achieved by
calculating the difference between RelTD of the first key and RelTD of the second
key.

LatPR of a bigram can be calculated by BR−AP . In KDinfo, this is achieved by
calculating the difference between RelTD of the first key and RelTU of the second
key.

LatRR of a bigram can be calculated by BR−AR. In KDinfo, this is achieved by
calculating the difference between RelTU of the first key and RelTU of the second
key.

These features can also be explained visually, as in Figure 3.4.

Figure 3.4: Visual explanation of common keystroke dynamics features

As can be seen in Figure 3.3, some of the fields have occurrences of NaN val-
ues. This is caused by an inability to calculate or collect those particular values.
The last row will always contain NaN values for the fields LatRP, LatPP, LatPR and
LatRR because these are bigram features which cannot be calculated without a
second key following the first one. In addition, the UserAgent might not support
registration of certain keystroke events. Some user agents might only support re-
gistration of key-down events, but not key-up events or vice versa. Some user
agents might only support both key-down and key-up events for specific keys. In
Figure 3.3, one can see that it was not possible to capture TimeDown for the Shift
key, and as a result, the fields requiring this value is inhabited by NaN. Table 3.3
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highlights some key numbers regarding the dataset, which serves the purpose of
summarizing its properties.

Before performing any analysis, we removed all conversations participants
with less than 5 written messages, as these instances were considered to not con-
tain enough data. The updated properties of the dataset after removal of these
instances can be seen in Table 3.4.

Property Value (Norwegian / English)

Number of participants 64 / 18
Number of chat conversations 167 / 29
Number of messages 5898 / 647
Average number of messages per conversation 35.3 / 22.3
Average number of messages per person 92.2 / 35.9
Average number of keystrokes per person 6828.4 / 2352.4
Average number of keystrokes per message 74.1 / 65.4
Average number of characters per message 57.2 / 52.1
Male chat participants 16 / 8
Female chat participants 48 / 10
Male messages 1737 / 387
Female messages 4161 / 260
Average age of participants 32.5 / 33.1

Table 3.3: Properties of the full dataset

Property Value (Norwegian / English)

Number of participants 57 / 13
Number of chat conversations 105 / 15
Number of messages 5719 / 614
Average number of messages per conversation 54.5 / 40.9
Average number of messages per person 100.3 / 47.2
Average number of keystrokes per person 7562.1 / 3198.1
Average number of keystrokes per message 75.4 / 67.7
Average number of characters per message 58.1 / 53.0
Male chat participants 15 / 6
Female chat participants 42 / 7
Male messages 1680 / 364
Female messages 4039 / 250
Average age of participants 32.5 / 33.8

Table 3.4: Properties of the dataset after deleting conversation participants with
less than 5 written messages
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Data analysis

This chapter will describe the second part of our methodology, which is the data
analysis. Key elements are which keystroke dynamics and stylometry features we
utilized, and how we used these to perform gender classifications. The results of
the data analysis will be discussed in Chapter 5. All software that was written to
aid this data analysis, was written in MATLAB [48].

4.1 Feature extraction

Feature extraction is the process of extracting characteristics that can be used to
distinguish two or more classes from each other, in this case between the two
classes male and female. Feature extraction is a necessary prerequisite before any
classification task, as the features serve as the data the classifier will base its de-
cision upon. This section will describe the keystroke dynamics and stylometry
features that were extracted. The extracted features are a combination of features
that have been used in earlier research with promising results (see Chapter 2) and
features that has not been widely studied earlier, but which we suspect could have
an effect on distinguishing males and females.

4.1.1 Keystroke dynamics features

As described in Chapter 2, the keystroke dynamics features for gender classifica-
tion tends to be a combination of LatPP, LatPR, LatRP, LatRR and durations. This
has historically provided good accuracy in several environments. These features
will thus also be included in this analysis. These features were easily extracted, as
they were already provided in the dataset in the fields Dur, LatPP, LatPR, LatRP
and LatRR. See Chapter 3 for more information regarding the dataset.

The features LatPP, LatPR, LatRP, LatRR were extracted for the 50 most fre-
quently occurring bigrams in the dataset. Only the most frequent bigrams were
used as a mean to reduce the total number of features. Considering the set of
95 printable ASCII characters, there would be a total of 95 · 95 = 9025 bigrams.
With 4 features for each bigram (LatPP, LatPR, LatRP, LatRR), the total number

22
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of bigram features would be 4 · 9025 = 36100. Most of these 9025 bigrams does
however never/very seldomly appear in normal Norwegian chat conversations,
neither by males nor females. Examples could be the bigrams "*:", "wx" and "|§".
Figure 4.1 shows the count of the 500 most frequently appearing bigrams in the
dataset. There was a total of 1314 unique bigrams appearing in the dataset, but
the remaining 814 were excluded from the graph in Figure 4.1 due to readability.
It can be seen in Figure 4.1 that there are some bigrams that are used considerably
more often than others. The number 50 was selected as this includes all the top
bigrams that appear significantly more frequently than the others, while still be-
ing low enough to not cause unnecessary computational expense. Increasing the
number of features will require increased computational resources [49]. We also
included one bigram that were not among the 50 most frequently used, namely
"he". This bigram was number 58 sorted by frequency, but was added because
almost all conversations started with this bigram due to its appearance in Nor-
wegian greetings ("hei", "heisann" etc.). We therefore suspected this bigram could
allow us to extract extra relevant information from the very first message in a
conversation, which could prove beneficial for the sake of early gender detection.
The complete list of the 51 selected bigrams can be seen in Appendix A.

Figure 4.1: Count of the 500 most frequently appearing bigrams in the dataset

From each message, we then extracted all occurrences of LatPP, LatPR, LatRP
and LatRR for the selected bigrams. We removed outliers by calculating the mean
µ and standard deviation σ (see Equation (4.1) and Equation (4.2)) and then
removed values that were more than 3 standard deviations away from the mean.
We finally calculated a new mean based on the remaining values, which resulted
in the final features.

µ=

∑n
i=1 x i

n
(4.1)

σ =

√

√

√

∑n
i=1(x i −µ)2

n− 1
(4.2)
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The duration features were extracted for all 29 Norwegian letters, numbers
(0-9), some of the most common special characters (! . ? ; : , - + * ( ) /) and the
spacebar. The Norwegian letters includes the English alphabet a-z, in addition to
the Norwegian letters ’æ’, ’ø’ and ’å’. Other special characters were not included be-
cause there were very few instances of them found in the dataset, and they would
thus not contribute much to distinguish males and females. From each message,
we then extracted all durations of the selected characters and removed outliers
using the same method as described in the previous paragraph. We also calculated
new means based on the remaining values, which resulted in the final duration
features. Despite being relatively frequently pressed, modifier keys (shift, ctrl, alt
etc.) and backspace could not be included. This was because most participants’
user agent did not allow recording of time down events of such keys, but only time
up events. This made it impossible to calculate their durations. We did however
extract the frequency of the most common modification keys (alt, shift, ctrl, tab,
caps lock) and backspace. Even if timing information was not obtainable, it is still
possible that the frequency of use might differ between the genders.

In addition, we extracted four features that we suspected could be of relevance
for gender detection in a chat environment. The first one we called "hesitation",
which is a measure of how long time it takes from the last keystroke in a message
is released until the message is sent. This feature could display whether a person
tends to read the message before sending (e.g., to search for typos) or if a person
tends to immediately send the message after writing it. This feature can in other
words tell something about the impulsiveness of a chat conversation participant.
Extracting this feature consisted of calculating the difference between the field
Timestamp and the last element in KDinfo.TimeUp for each message.

Another feature we extracted is "message time", which is the total time spent
typing a message or alternatively the general typing speed of a conversation par-
ticipant. Initial keystrokes that were not relevant for the message were ignored.
An example of this is that for some users, the first registered keystrokes consisted
of ’ctrl’ + ’tab’. These keystrokes are obviously not related to the message, but
was probably just used to select the correct tab in their web browser and should
thus not be used to calculate typing speed. To extract this feature, we subtracted
the time of the last key-release event with the first key-release event for each mes-
sage. Key-release events were chosen because most chatters started messages with
pressing the shift-key (to capitalize the first letter in a sentence), which caused
many NaN values in the RelTD field (see Section 3.2 for more information).

The final two keystroke dynamics features we extracted were "space pause
tendencies", which consists of a conversation participant’s tendency to have longer
pauses before or after pressing spacebar. This can show when in a sentence a
chatter tends to take a "thinking break". We define a "pause" to be cases where the
latency before or after a space is considerably larger than the other and lasts at
least 500 milliseconds. We considered latencies lasting less than 500 milliseconds
to be too short to be considered as "pauses". To extract these features, we did the
following for each message:
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Assume A is the key pressed before the spacebar, S is the spacebar press and B
is the key pressed after the spacebar. LatRPX ,Y denotes the LatRP value between
keys X and Y . For each instance the spacebar was pressed, we calculated the
formula:

r =
−LatRPA,S + LatRPS,B

LatRPA,S + LatRPS,B
(4.3)

This returned a value r, where −1≤ r ≤ 1, which shows the difference in the
ratio between LatRPA,S and LatRPS,B.

r < 0 would imply that LatRPA,S > LatRPS,B, r > 0 would imply that
LatRPA,S < LatRPS,B and r = 0 would imply that LatRPA,S = LatRPS,B. We then
defined "pauses" to be instances where r < −0.5 or r > 0.5, and the total latency
is larger than 500 milliseconds. We chose to ignore cases where −0.5 ≤ r ≤ 0.5
because this would imply that the latency before and after a space is approximately
equal and did most often occur when a message was written without any pauses.
We then counted how many appearances of r < −0.5 and how many appearances
r > 0.5 and divided each of them by the total number of spacebar presses. The
features then consisted of these two values describing how often pauses appear
before spaces and how often pauses appear after spaces.

A table summarizing all extracted keystroke dynamics features is found in
Table 4.1.

Feature Description

LatPP Mean LatPP, with outliers removed, for the most frequent
bigrams

LatPR Mean LatPR, with outliers removed, for the most frequent
bigrams

LatRP Mean LatRP, with outliers removed, for the most frequent
bigrams

LatRR Mean LatRR, with outliers removed, for the most frequent
bigrams

Durations Mean duration, with outliers removed, for letters, num-
bers, spaces and the most common punctuation symbols

Modification and
backspace frequency

The frequency of backspace and common modifier keys

Hesitation Time between the last keystroke and send time of the mes-
sage

Message time Time between first and last keystroke in a message
Space pause tenden-
cies

Tendency to have longer pauses before or after spaces

Table 4.1: Extracted keystroke dynamics features
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4.1.2 Stylometry features

As seen in Section 2.2, the stylometry features that have been used for gender clas-
sification in earlier research is quite diverse. Where keystroke dynamics features
almost always consists of a combination of LatPP, LatPR, LatRP, LatRR and dur-
ations, stylometry features varies from a wide selection of character-, word- and
sentence-based features. There is however no consensus on which features per-
form the best. In this project we will mainly focus on relatively simplistic features
on the character- and word-level. There are primarily two reasons for this.

1. In previously performed research, complex stylometry features have not ne-
cessarily increased performance (see Section 2.2).

2. The dataset is based on chat conversations, which one can assume tends
to contain a rather simplistic language. This would make complex features
difficult to extract.

All stylometry features were extracted from the field Message, which contains
the content of the message. See Chapter 3 for more information regarding the
dataset.

The first feature is average word length, which provides information regarding
how long words a conversation participant tends to use. Calculating this consisted
of summing all word lengths in each message and dividing the result on the num-
ber of words. In addition, we extracted the average lengths of sentences.

We also extracted the vocabulary richness, which is a feature that measures the
complexity of a message. Vocabulary richness is a measure for how many different
words a person tends to use. High vocabulary richness would thus imply that a
conversation participant has a broad vocabulary and tends to use a relatively large
amount of it in daily conversation.

Extracting this feature consisted of counting the number of unique words in
each message. Another feature measuring message complexity is the frequency of
long words. We extracted this by counting the number of words containing more
than 10 characters and divided this by the total number of words. We also ex-
tracted the total character count of each message, which is a measure of message
length.

Another category of features we used is the frequency of various characters.
This includes letters (a-z, in addition to ’æ’, ’ø’ and ’å’) and some common punc-
tuation symbols (, . ! ? *). The character ’*’ is generally not often used in written
text, but it is frequently used in chat environments to correct mistypings in earlier
messages, which justified its inclusion here. These features might reveal much
information about an author.

Character-densities can identify subtle differences in style and are, compared
to word-densities, not as susceptible to outliers [50]. We also extracted the fre-
quency of some of the most common emojis ( :) ;) :-) ;-) :-( :P :D XD ).

Calculating these features were done by counting each instance of the relevant
characters/emojis and dividing them by the total number of characters. We also
extracted the frequency of repeating punctuation symbols (... ?? !!). This was also
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calculated by counting occurrences of each instance and dividing them by the
total number of characters. A table summarizing all extracted stylometry features
is found in Table 4.2.

Feature Description

Average word length Average length of words
Average sentence length Average length of sentences
Vocabulary richness Number of unique words in a message
Long words frequency Frequency of words with more than 10 characters
Character count Total number of characters in a message
Letter frequency Frequency of each letter
Punctuation frequency Frequency of certain punctuation symbols
Emoji frequency Frequency of various emojis
Repeating punctuation Frequency of sentences ending with two or more

punctuation symbols

Table 4.2: Extracted stylometry features

4.2 Feature selection

Feature selection is the process of selecting a subset, out of all extracted features,
that will be used to train the model. The purpose of this is to remove features that
are not relevant for the classification task at hand. Removing irrelevant features
can increase accuracy, decrease time complexity of training and make the model
easier to understand, due to the lower number of features [49].

In this project, we used MATLAB’s implementation of the Minimum Redund-
ancy Maximum Relevance (MRMR) algorithm1 for feature selection. MRMR is an
algorithm that ranks features based on their relevance and redundancy based on
calculating the mutual information between each pair of features and between
each feature and the prediction variable (gender in this case). Relevant features
are features that are able to make correct predictions, while redundant features
are features that are highly correlated and thus provide the same information,
which means that some of them can be removed without sacrificing performance.
The algorithm assigns a score to each feature, where a high score implies high
relevance and low redundancy, while a low score implies low relevance and high
redundancy.

To remove the least useful features, we removed every feature with a score
equal to 0 from the feature set. This allowed us to ignore the features that con-
tained no relevant information.

1https://se.mathworks.com/help/stats/fscmrmr.html
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4.3 Fusion

As described in Section 2.3, biometric fusion is the process of combining two or
more biometric modalities with the goal of increasing accuracy. As this project
uses the two modalities keystroke dynamics and stylometry, fusing is necessary to
obtain the advantages of a multi-modal system. See Section 2.3 for more informa-
tion about biometric fusion and previous work regarding the fusion of stylometry
and keystroke dynamics.

In the setting of gender detection using keystroke dynamics and stylometry,
there are primarily two methods of fusion that are relevant. These are feature-level
and score-level fusion. There are no indications of which method will perform
best in this setting, so both methods will be used and assessed. The results of each
method of fusion will be discussed in Chapter 5.

4.3.1 Feature-level fusion

The first method of fusion we will use is feature-level fusion. This implies that
the keystroke dynamics and stylometry features will be merged into an expanded
feature set, before any classifications are done. This expanded feature set will then
be used when training and testing the model.

To achieve this, we first wrote two different MATLAB-functions for extracting
features for keystroke dynamics and stylometry respectively. The features were
then stored in separate tables. We then merged the two tables by performing
MATLAB’s implementation of a join-operation,2 which is a well-known method
for combining tables. We also performed feature normalization by mapping each
feature value to the range [0,1]. Feature normalization is necessary to remove
differences in scale between the features, which can affect certain classifiers by
giving some features increased weight [51]. A visualization of the feature-level
fusion process is seen in Figure 4.2.

When performing a classification, in addition to the predicted label ("male" or
"female"), the model will also return a classification score c which is a probability
between 0 and 1 that describes the classifier’s confidence in its decision. This
classification score will be used in Section 5.2.3.

4.3.2 Score-level fusion

The second method of fusion is score-level fusion. Contrary to feature-level fusion,
this consists of performing the fusion after the two classifications are performed.
Two models, one for keystroke dynamics and one for stylometry, are created and
are trained with keystroke dynamics and stylometry features respectively. When a
classification is performed, each model generates a score which are then combined
to determine the final classification score, which is then used to make the final
classification decision.

2https://se.mathworks.com/help/matlab/ref/table.join.html

https://se.mathworks.com/help/matlab/ref/table.join.html
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To achieve this, we used the same feature extraction functions mentioned in
Section 4.3.1, but instead of joining the two feature sets, we used them on the two
separate models. The features were normalized using the same method. After a
message has been classified by both models, each model returns two scores, which
are probabilities that a message is written by a male or female, according to the
model. Score normalization was not needed as both models returned scores in the
same domain (probabilities between 0 and 1).

We fused the scores from each modality by calculating combined probability
scores for our two classes male and female. The male probability m was obtained
by m = Pkd(male) ∗ wkd + Ps(male) ∗ ws, where Pkd(male) and Ps(male) are the
probabilities that the message is male, according to the keystroke dynamics model
and the stylometry model respectively, and wkd and ws are weights assigned to
each modality, where wkd + ws = 1. As default, we used wkd = ws = 0.5. The
female probability f would thus be f = 1−m. The final classification would then
be "male" if m> f and "female" if f > m. If m= f , the model returns "undecided".
The latter is however highly unlikely to occur. The final classification score c will
be equal to m if the predicted label is "male", equal to f is the predicted label is
"female" and 0.5 if the model returns "undecided". This classification score will be
used in Section 5.2.3.

Alternatively, and possibly more intuitively, score-level fusion can be displayed
visually, as in Figure 4.3.

Figure 4.2: Visualization of feature-level fusion
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Figure 4.3: Visualization of score-level fusion

4.4 Classification

In general terms, classification is the process of assigning an observation to a par-
ticular category or class. In this project, the goal is to categorize a chat conver-
sation participant into one of the two classes, male and female, based on his/her
sent chat messages. As described in Chapter 2, this has most often been done by
building machine learning models. Machine learning models will also be used in
this project. This section will describe how we trained and tested these models.

4.4.1 Model training

For a machine learning model to make correct classifications, it first needs to be
trained. This involves "feeding" the model with correctly labelled training data to
make it able to recognize and correctly label unknown, unlabeled data. This is also
known as supervised learning. The training data in this project consisted of con-
versations where we know the true gender (male or female) of the participants.
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These conversations were obtained from the dataset described in Chapter 3. As
seen in Table 3.3, the dataset contains way more messages written by females than
by males. To balance the training data we therefore randomly removed messages
written by females until the number of messages written by males and females
were equal.

It is important to not use the same data for training and testing, and we thus
split the dataset into separate sections to be used for training and testing respect-
ively. To ensure that the split did not result in any unwanted consequences (e.g.
the testing data only consisted of data that was easy to classify), we used k-fold
cross-validation. k-fold cross-validation divides the dataset randomly into k sec-
tions, where k− 1 sections are used for training and 1 section is used for testing.
This process is iterated k times, where each iteration uses a different section for
testing, and the remaining k− 1 sections for training. We used k = 5.

We extracted the features described in Section 4.1 from the training data, and
used these features to train the models. See Section 4.3 for how the training pro-
cess differs between the two fusion methods. The training itself was performed by
functions already included in MATLAB.3 We trained models using k-NN, RF, SVM
and NN, which have all been extensively used in earlier research (see Chapter 2).
The reason for training several different models was to assess whether some per-
form better than others. A visualization of the training process can be seen in
Figure 4.4.

4.4.2 Model testing

After a machine learning model has been trained, it needs to be tested. This is
done to assess the performance of the model and check if it is able to make correct
classifications. We can achieve this by providing the model with unlabelled data
and checking how the predicted labels compare with the true labels.

To test the model, we first need testing data. As mentioned, this was obtained
using k-fold cross-validation. After testing data has been obtained, we extracted
features from each message in each conversation in the testing data and provided
it as input to our trained models. The model then returns predicted label ("male"
or "female") and classification score c of each message. The predicted labels and
classification scores can then be used to determine the gender of the conversation
participants. Further details regarding how we used these to perform early gender
detection is described in Chapter 5. A visualization of the general model testing
procedure is found in Figure 4.5.

3https://se.mathworks.com/help/stats/classification.html
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Figure 4.4: Visualization of model training

Figure 4.5: Visualization of model testing
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Results and discussion

This chapter will discuss the results obtained during data analysis. These results
will be used to answer the research questions described in Section 1.5, where the
main objective is to assess the possibility of early gender detection.

5.1 Baseline classification

Before trying to detect the gender of conversation participants early, we performed
gender classifications based on the entire conversations. This allowed us to create
a baseline that later can be used to assess the performance of the early classific-
ations. Classifications based on all messages in a conversation are expected to be
more accurate than classifications based on a lower number of messages. These
baseline classifications can thus be used to determine how much accuracy is lost
when making the classifications earlier. Table 5.1 shows the accuracy of our mod-
els, when basing the classification on entire conversations (average length of 28
messages per participant). To classify the gender of a conversation participant
based on the entire conversation, we classified each sent message in the conver-
sation separately, and the conversation would be considered correctly classified
if the majority of the messages were classified as the correct gender. A conver-
sation with an equal number of male and female classified messages would be
considered not correctly classified. We also included accuracies when using each
modality separately.

Based on the results in Table 5.1, one can observe some general tendencies.
Firstly, one might notice that score-level fusion tends two perform slightly better
than feature-level fusion. For both methods of fusion, the performance is nev-
ertheless around what one could expect, based on the results we have found in
related research (see Chapter 2). These accuracies are still a bit lower than the
highest accuracies we have found in related research, but this is not crucial. In this
project we are not primarily interested in obtaining the highest accuracy based on
complete conversations, but rather how much the accuracy decreases when per-
forming the classification earlier. One can also note that the RF and SVM classifiers
performs better than the k-NN classifier. The RF classifier generally achieved the

33
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Classifier Fusion Accuracy

RF Feature 77%
k-NN Feature 53%
SVM Feature 76%
RF Score 80%

k-NN Score 67%
SVM Score 75%
RF KD 78%

k-NN KD 70%
SVM KD 77%
RF Stylometry 70%

k-NN Stylometry 51%
SVM Stylometry 54%

Table 5.1: Performance of classifications based on entire conversations

best accuracies. A final observation is that classifications using solely keystroke dy-
namics seems to perform better than classifications using solely stylometry. This
was also the case with the research in [16]. It is however worth noting that fus-
ing the keystroke dynamics and stylometry scores improved the overall accuracy
when using a RF classifier, which would imply that the stylometry features still
contain relevant information, despite the relatively low accuracy when perform-
ing classifications based on stylometry features alone.

5.2 Early gender detection

This section will display and discuss our results when trying to perform the gender
classification at an earlier stage in the conversations. As early gender detection has
not yet been researched widely, we tried several approaches to assess whether
some perform better than others.

5.2.1 General procedure

Even though we used different methods for early gender detection, they all fol-
lowed the same general procedure. Each conversation in our test dataset, is pro-
cessed message by message. Each participant in the conversation was assigned a
default gender level of 0.5, which is updated after the processing of each message.
See Section 2.4 for a more thorough description of gender levels. If a message is
classified as male, the gender will increase and if classified as female, it will de-
crease. A gender level of 0 will thus imply complete certainty by the model that
the conversation participant is male, while a gender level of 1 will in the same way
imply that the participant is believed to be female. As the gender detection is to be
performed early in a conversation, a certain stop criterion is needed to determine
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when the final classification should be performed. One example of a stop criterion
could be to perform the classification when the gender level approaches a certain
value. To achieve as high performance as possible, we experimented with several
different stop criteria.

5.2.2 Performance measures

When assessing the performance of our early gender detection scheme, we used
two different metrics. The first one is accuracy loss, which is the difference in per-
centage points between the baseline classification accuracy (see Section 5.1) and
the obtained accuracy when performing early gender detection. Ideally, the accur-
acy loss should be as low as possible, with 0 meaning that early gender detection
is just as accurate as gender detection based on entire conversations. It is also pos-
sible that the accuracy loss is<0, which would in fact imply an accuracy gain. Our
second performance metric is the average number of messages needed before the
classification is made. Ideally, this value should also be as low as possible. A lower
number of messages would result in the classification being performed earlier, but
not necessarily with the same accuracy.

5.2.3 Gender level update mechanisms

In the general procedure we described in Section 5.2.1, there are two variables we
can adjust. These are how the gender level is updated and how the stop criterion
is defined. We will first discuss our three mechanisms for updating the gender
level.

Static

The simplest update mechanism we used was with a static value. For each mes-
sage, if it was classified as male, we incremented the gender level by a certain
number s, and if classified as female, the gender level was decremented by the
same value. We used s = 0.025.

Variable

One problem with the aforementioned solution, is that all messages are weighted
equally. This is not optimal as long messages naturally contain more information
than short messages. Longer messages thus gives the classifier more data to base
the prediction upon. In addition, each classifier generates a classification score c
for each message (see Section 4.3), where a higher classification score implies that
the classification is more likely to be correct. Both these aspects argue that treat-
ing each message equal might not be the best solution. We therefore derived an
equation that calculates a variable update value v, taking message length l (total
number of characters, spaces included) and classification score c into account.
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v =
c
p

l
100

(5.1)

Multiplying c and l makes v grow as c and l increases, which means that the
update value grows when the message is long and/or the classifier is confident
in its decision. We used the square root of l to not assign too much weight to the
message length and divided by 100 to obtain a sufficiently small number.

Hybrid

Our final update mechanism is a combination of static and variable updates. We
used the same static value of s = 0.025, but we also introduced a confidence
coefficient b which is used in combination with the static value to determine the
gender level increment/decrement. The confidence coefficient can take the value
of 0, 1, 2, or 4 and is a result of which bin the classification score is placed in. More
precisely, given classification score c, the confidence coefficient b is 0 if 0.5< c ≤
0.625, 1 if 0.625< c ≤ 0.75, 2 if 0.75< c ≤ 0.875 and 4 if 0.875< c ≤ 1. A higher
confidence score results in a higher confidence coefficient. The final hybrid update
value h is obtained by calculating h= s·b. An advantage of this update mechanism
is that it allows for not adjusting the gender level if the current message has a low
confidence score. This could potentially affect performance.

5.2.4 Progression of gender levels

Before a stop criterion is determined, it can be interesting to observe how the
gender level changes during the course of a conversation. This can aid us in finding
the optimal stop criterion as we can notice at what time the gender level tends to
become stable, if any.

We plotted a collection of graphs (Figures 5.1 to 5.6) were each line represents
a conversation participant in our testing data. The graphs show the gender level at
message number i in the conversation. The blue lines are instances where the true
gender is male, and the red lines are instances where the true gender is female.
The dots display at what time the conversation ended and the horizontal dashed
line at 0.5 splits the gender level range into male and female sub-ranges. As the
RF classifier achieved the best performance (by a slight margin) in the baseline
classification, the graphs in this section will focus on gender level progressions
when using this classifier.

See Appendix B for the gender level progressions when using all classifiers
(RF, k-NN and SVM).
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Figure 5.1: Gender level progressions using static gender level update mechanism
and score-level fusion with the RF classifier

Figure 5.2: Gender level progressions using variable gender level update mech-
anism and score-level fusion with the RF classifier
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Figure 5.3: Gender level progressions using hybrid gender level update mechan-
ism and score-level fusion with the RF classifier

Figure 5.4: Gender level progressions using static gender level update mechanism
and feature-level fusion with the RF classifier
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Figure 5.5: Gender level progressions using variable gender level update mech-
anism and feature-level fusion with the RF classifier

Figure 5.6: Gender level progressions using hybrid gender level update mechan-
ism and feature-level fusion with the RF classifier

Based on Figures 5.1 to 5.6, one could categorize the conversation participants
into three distinct categories. The first category consists of the participants whose
gender level converges straight towards the correct gender. These are the male
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participants whose gender level converges straight towards 0 and female parti-
cipants whose gender level converges straight towards 1.

The second category consists of the participants whose gender level converges
straight towards the false gender; females converging straight towards 0 and
males converging straight towards 1. These two categories can be ignored when
selecting a stop criterion for early gender detection. Because the gender level only
moves in one direction, the result of the classification will not change no matter
when the classification is performed.

The third category consists of the conversation participants whose gender level
does not converge to either 0 or 1. Most of these participants have a gender level
which, on different times, can be either above or below the default value of 0.5.
These are the participants that can be affected by our stop criterion.

The first thing one might notice is that most conversation participants’ gender
level tend to converge straight towards 0 or 1 rather quickly. This means that only
a few participants have a gender level that changes widely in both directions. This
is highly positive for the case of early gender detection. If the gender level tends
to only change in one direction, there will be no accuracy loss by performing the
classification earlier than at the end of the conversation.

One can also notice that using a static or hybrid update mechanism increases
the risk of having "undecided" classifications, which occur when the final gender
level is exactly 0.5. This is however not a major issue as it only applies to a small
number of the conversation participants and the risk decreases as the number
of messages increases. Finally, one can see that all update mechanisms produce
similar looking gender level progressions in regard to structure. All fit with one of
the three categories we defined above. The only significant difference is that the
variable update mechanism causes the gender level to converge to either 0 or 1
much faster than the two others. We did not observe any significant differences
between the two methods of fusion.

Table 5.2 shows the accuracy obtained with the RF classifier when using dif-
ferent fusion methods and update mechanisms based on the gender level at the
end of each conversation. The letters ’S’, ’V’ and ’H’ represent our static, variable
and hybrid gender level update mechanisms. Note in Table 5.2 that when using
feature-level fusion, the variable gender level update mechanism performs better
than the baseline accuracy. This is a promising sign of its proficiency as an update
mechanism.

Fusion Classifier Male accuracy Female accuracy Total accuracy
S V H S V H S V H

Feature RF 74% 76% 72% 79% 79% 77% 77% 78% 75%
Score RF 79% 81% 69% 80% 80% 78% 80% 80% 75%

Table 5.2: End of conversation accuracies using different update mechanisms and
methods of fusion
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5.2.5 Absolute thresholds

The first stop criterion we tested, was with absolute thresholds. By "absolute",
we mean that the final gender classification occurs right when one of the defined
thresholds are reached. We tested several different threshold options, which al-
lowed us to observe how the different performance measures were affected by
different thresholds. This can be seen in Table 5.3. In this table, the two columns
"Accuracy loss" and "Average number of messages" corresponds to our two per-
formance measures. The letters ’S’, ’V’ and ’H’ still represent our static, variable
and hybrid gender level update mechanisms. Note that some of the configurations
have a negative accuracy loss (or accuracy gain). This would imply that the ac-
curacy is higher than what we achieved in the baseline classification. Negative
accuracy loss only appears when using the variable or hybrid update mechanism,
which means that these update mechanisms sometimes performs better than the
simplistic approach we used in the baseline classification where a conversation
participant was simply classified to be the gender which the majority of the mes-
sages were classified as. Recall also that when basing the classifications on entire
conversations, the average number of messages were 28.

Based on Table 5.3, it is apparent that early gender detection is very well
possible. In the most extreme scenario, where the gender of a conversation par-
ticipant is only based on the first message, the accuracy loss is never larger than
10 percentage points (except when using the k-NN classifier with score-level fu-
sion). The generally low accuracy loss confirms what we saw in Section 5.2.4,
where most conversation participants’ gender level converge straight towards the
correct end of the gender level scale. The general trend in Table 5.3 is neverthe-
less that the lowest accuracy loss appear when using thresholds 0.0/1.0. As the
thresholds moves towards 0.5, we can see that the accuracy loss increases, and the
average number of messages decreases. This aligns well with what we expected.
When basing the classification on less data, it is not surprising that the accuracy
will suffer to some degree.

It is also interesting to see that our gender level update mechanisms affect per-
formance in different ways. In this case, the best performance is achieved by our
variable update mechanism. The variable update mechanism achieves, in most
cases, the lowest accuracy loss, and in all cases, the lowest average number of
messages. This update mechanism is the only one that takes message length into
account and its performance shows that assigning heavier weight to longer mes-
sages has a positive effect on accuracy. Increasing the weight of longer messages
also means that a single message can have a large impact on the gender level,
which means that the gender level will approach the thresholds faster than with
other update mechanisms.
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Thresholds Fusion Classifier Accuracy loss Average
number of
messages

S V H S V H

0.0 / 1.0 Feature
RF 0 -1 2 18 13 16

k-NN 0 -4 -5 22 16 21
SVM 0 -1 1 20 14 16

0.1 / 0.9 Feature
RF 0 0 2 16 11 14

k-NN 0 -4 -5 20 14 19
SVM 0 -1 1 19 13 16

0.2 / 0.8 Feature
RF 0 0 2 13 9 12

k-NN 0 -3 -4 17 12 17
SVM 0 -1 1 16 11 13

0.3 / 0.7 Feature
RF 0 0 2 10 7 9

k-NN 0 0 -3 13 9 14
SVM 0 -1 1 12 8 11

0.4 / 0.6 Feature
RF 1 3 3 6 5 6

k-NN 2 -1 -3 7 5 9
SVM 0 1 3 7 5 8

0.49 / 0.51 Feature
RF 8 8 4 1 1 2

k-NN -5 -3 0 1 1 2
SVM 6 6 4 1 1 2

0.0 / 1.0 Score
RF 0 0 5 19 14 22

k-NN 0 -6 3 23 18 25
SVM 0 0 4 20 15 22

0.1 / 0.9 Score
RF 0 1 5 17 12 20

k-NN 0 -6 3 21 16 24
SVM 0 0 4 18 14 21

0.2 / 0.8 Score
RF 1 1 5 14 10 18

k-NN 0 -6 3 19 14 23
SVM 0 0 4 15 11 19

0.3 / 0.7 Score
RF 1 2 5 11 8 15

k-NN 1 -4 3 15 10 21
SVM 0 0 4 12 9 17

0.4 / 0.6 Score
RF 3 2 6 6 5 10

k-NN 3 -1 4 8 6 16
SVM 0 2 4 7 5 12

0.49 / 0.51 Score
RF 10 9 6 1 1 3

k-NN 24 21 4 1 1 7
SVM 2 2 9 1 1 5

Table 5.3: Performance of early gender detection with absolute thresholds
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Our hybrid update mechanism also has some interesting properties. It gener-
ally needs relatively many messages to reach a threshold and the accuracy loss
is generally not as low as with our variable update mechanism, but the accuracy
loss is not widely affected by changing the threshold. By changing the thresholds
from 0.0/1.0 to 0.49/0.51, the accuracy loss increases on average by 7.5 and 9.2
percentage points for static and variable update mechanism respectively, while it
only increases by 2.9 percentage points on average for our hybrid update mech-
anism. This can most likely be attributed to the fact that this is the only update
mechanism that allows for not updating the gender level if the confidence score
is too low.

There is less to say about our static gender level update mechanism. It does
not perform best on any of our performance measures, but the performance is by
no means bad. Using feature-level fusion, it for example achieved no performance
loss and more than halved the average number of messages when using thresholds
0.3/0.7.

The classifiers also differ in their performance. When it comes to accuracy loss,
k-NN actually achieved the best performance in most cases. It did however always
need the highest number of messages. It should also be noted that k-NN achieved
the lowest baseline accuracy, which reduces the gain from the low accuracy loss.
A higher baseline accuracy, as we achieved with RF and SVM, naturally leads to
a higher tolerance for eventual accuracy loss. There is however one case where
the accuracy loss of k-NN is much higher than the other classifiers. This occurred
when using score-level fusion with thresholds 0.49/0.51. In this case, the accuracy
loss when using a static or variable update mechanism was above 20 percentage
points. This would imply that our k-NN classifier is more unreliable when using
only the first message in a conversation, compared to our RF and SVM classifiers.

The RF and SVM classifiers were pretty similar in performance. RF needed a
slightly lower average number of messages to reach the thresholds, while SVM
achieved slightly lower accuracy loss. Based on Table 5.3, these classifiers should
nevertheless both be considered to be better than k-NN due to the higher baseline
accuracies. A slight edge could potentially be assigned to the RF classifier as this
achieved the highest baseline accuracy.

The two methods of fusion do also not have any significant differences regard-
ing performance. Both the accuracy loss and the average number of messages is
approximately the same in all cases. The one exception is the case with k-NN us-
ing thresholds 0.49/0.51 with static or variable update mechanism, as discussed
above. In this case, the accuracy loss was way higher when using score-level fu-
sion. This is however not a particularly important difference. When the classific-
ation is based only on the first message, one should accept that accuracy is lower
than classifications based on more messages. In a real-world scenario one should
thus not choose thresholds that close to 0.5. In addition, one can see that k-NN
achieved negative accuracy loss when using feature-level fusion with the same
thresholds, which also shows that thresholds that close to 0.5 are obviously un-
stable at best.
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Based on our findings in Table 5.3, we could try to determine an optimal set of
thresholds. This is however difficult as our two performances measures are some-
what conflicting. Thresholds with the lowest accuracy loss often need the highest
average number of messages and vice versa. How a compromise should be made
would differ from application to application based on one whether quickness or
correctness is of most importance. If one were to select thresholds representing a
middle ground, thresholds between 0.2/0.8 and 0.3/0.7 should be appropriate.
Based on our findings in Table 5.3, this would ensure virtually no accuracy loss
and approximately halving the average number of messages from 28 to around 14
(some minor variations based on method of fusion, classifier and update mech-
anism). If some accuracy loss can be tolerated, the thresholds could be set to
0.4/0.6, which would result in an average number of messages around 5, while
still keeping the accuracy loss <5%.

5.2.6 Introducing stability thresholds

In the previous section, we described the stop criterion where the final classifica-
tion was made once the conversation participant’s gender level reached a defined
threshold. It was not taken into account what happens after this point in the con-
versation. We therefore also tested another stop criterion where the classification
was performed when the gender level has been above a certain threshold for N
consecutive messages. In our case, we used N = 3. As can be seen, in for instance
Figure 5.2, there are several conversation participants whose gender level first
dips quite far below 0.5 before changing direction and stabilizes above 0.5. Not
making a decision before one has stayed for a certain time above/below a certain
threshold could have an effect on performance. Table 5.4 displays performance
with this new stop criterion.

As seen in Table 5.4, the general trend is that stability thresholds achieve
slightly lower accuracy loss, while also needing a slightly higher average number
of messages. The differences are however too small to be considered significant.
This does however teach us one important thing: Once a gender level threshold
is reached, the gender level does normally not return to the other side. This dis-
covery is highly in favour of early gender detection because it tells us that when
a gender level threshold is reached, there is not much to gain by waiting and see
whether the gender level will stay there; in most cases it does.

It is therefore difficult to claim that stability thresholds are better than absolute
thresholds. First of all, whether stability thresholds are the better option would
be situation dependent and would vary based on whether accuracy loss or a low
number of messages is prioritized. In a situation where minimizing accuracy loss
would have top priority could be interpreted as an argument in favour of stability
thresholds, but one must also remember that the attributes of stability thresholds,
namely slightly lower accuracy loss and a slightly higher number of messages,
could however also be achieved by adjusting the absolute thresholds.
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Thresholds Fusion Classifier Accuracy loss Average
number of
messages

S V H S V H

0.0 / 1.0 Feature
RF 0 -1 2 19 14 17

k-NN 0 -4 -5 23 17 22
SVM 0 -1 1 21 16 17

0.1 / 0.9 Feature
RF 0 -1 2 17 13 15

k-NN -1 -4 -5 21 16 20
SVM 0 -1 1 19 14 16

0.2 / 0.8 Feature
RF 0 0 2 15 11 14

k-NN 0 -3 -4 18 14 18
SVM 0 -1 1 17 13 14

0.3 / 0.7 Feature
RF 0 0 2 12 9 11

k-NN 0 -2 -3 14 11 16
SVM 0 -1 1 14 11 12

0.4 / 0.6 Feature
RF 2 0 3 8 7 8

k-NN 2 -1 -2 10 8 11
SVM 0 1 2 10 8 9

0.49 / 0.51 Feature
RF 2 4 3 4 3 4

k-NN 1 -1 -3 4 3 5
SVM 2 5 3 4 4 4

0.0 / 1.0 Score
RF 0 0 5 20 16 22

k-NN 0 -6 3 23 19 26
SVM 0 0 4 21 17 23

0.1 / 0.9 Score
RF 0 0 5 18 14 21

k-NN 0 -6 3 22 18 25
SVM 0 0 4 19 15 21

0.2 / 0.8 Score
RF 0 1 5 16 12 19

k-NN 0 -6 3 20 16 23
SVM 0 0 4 16 13 20

0.3 / 0.7 Score
RF 1 1 5 12 10 16

k-NN 1 -5 3 16 13 21
SVM 0 0 4 14 11 18

0.4 / 0.6 Score
RF 3 3 6 8 8 12

k-NN 0 -2 4 11 9 17
SVM 0 1 4 9 8 14

0.49 / 0.51 Score
RF 3 5 6 4 4 5

k-NN 6 4 3 4 4 9
SVM 2 3 8 4 3 7

Table 5.4: Performance of early gender detection with stability thresholds
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We saw in Section 5.2.5 that as the thresholds moved close towards 0.0/1.0,
the accuracy loss was lowered and the average number of messages increased.
There is therefore, in our case, not much to gain by introducing stability thresholds.
One should however not completely discard such thresholds either. Compared
to our findings in Chapter 2, our dataset is rather small so we should not over-
generalize the observations, and it is also possible that there exist other cases
where stability thresholds would be a definite improvement. More research is
needed to draw a final conclusion.

5.2.7 Separating keystroke dynamics and stylometry

We have in the previous sections looked at how keystroke dynamics and stylo-
metry have performed in combination. It can also be interesting to look at each
modality separately. This allows us to discover how each modality affects the
gender classification. We saw in Section 5.1 that keystroke dynamics generally
performs better than stylometry in regards to accuracy at the end of conversation,
but there are still aspects that the baseline accuracy cannot uncover. One example
is how the gender levels progresses throughout the conversations. We therefore
plotted the gender level progressions for each modality separately when using
the RF classifier, which can be seen in Figures 5.7 to 5.12. We will only focus
on the RF classifier in this section, as it generally achieved the best performance.
Table 5.5 shows relevant accuracies associated with the gender level progressions
in Figures 5.7 to 5.12.

Figure 5.7: Keystroke dynamics gender level progressions when using static
gender level update mechanism with the RF classifier
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Figure 5.8: Keystroke dynamics gender level progressions when using variable
gender level update mechanism with the RF classifier

Figure 5.9: Keystroke dynamics gender level progressions when using hybrid
gender level update mechanism with the RF classifier
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Figure 5.10: Stylometry gender level progressions when using static gender level
update mechanism with the RF classifier

Figure 5.11: Stylometry gender level progressions when using variable gender
level update mechanism with the RF classifier
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Figure 5.12: Stylometry gender level progressions when using hybrid gender
level update mechanism with the RF classifier

Modality Classifier Male accuracy Female accuracy Total accuracy
S V H S V H S V H

KD RF 76% 79% 76% 79% 79% 76% 78% 79% 76%
Stylometry RF 72% 75% 65% 69% 57% 63% 70% 63% 64%

Table 5.5: End of conversation accuracies using separate modalities with different
update mechanisms

Based on Figures 5.7 to 5.12, the most significant observation is that stylo-
metry gender level progressions are way more cluttered than with keystroke dy-
namics. By "cluttered" we mean that there are many conversation participants
whose gender level tend to stay relatively close to the gender separation value of
0.5 and often swings both above and below this value. Visually, it is also difficult
to manually notice any distinct patterns. This is most apparent in Figure 5.11 and
Figure 5.12. By looking at the stylometry gender level progressions using a hybrid
update mechanism (Figure 5.12), one can also see that this graph is flatter than
most others, due to the fact that there are many cases where the gender level
does not decrease or increase. This means that there are many messages where
the stylometry classifier has a low confidence in its classification. Basing a system
for early gender detection on solely stylometry appears therefore to be somewhat
challenging, at least in our case. It is however important to remember that when
using the RF classifier, we achieved a higher baseline accuracy when including
stylometry in addition to keystroke dynamics, which shows that stylometry is still
useful in regard to gender detection.
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Contrary to stylometry, the gender level progressions using only keystroke dy-
namics are mostly similar to the progressions displayed in Section 5.2.4 and there
are thus not any additional observations to be made.

We also tested combining the gender level progressions from the two modal-
ities into a single one. This must not be confused with our previously used fusion
methods where the modalities are combined into a single value which is used to
update the gender level, as described in Section 4.3. In this case, we first obtain
the gender level update value (static, variable or hybrid) using only keystroke
dynamics. This value is then used to update the gender level. We then, from the
same message, obtain the gender level update value (static, variable or hybrid)
using only stylometry. This second value is then used to update the gender level
again. We also divided each gender level update value by 2 to ensure updates with
the same proportions as when we used traditional feature-level and score-level fu-
sion. These gender level progressions are displayed in Figures 5.13 to 5.15, and
Table 5.6 shows relevant accuracies associated with the gender level progressions
in these figures.

Figure 5.13: Gender level progressions using static two-step gender level update
mechanism with an RF classifier



Chapter 5: Results and discussion 51

Figure 5.14: Gender level progressions using variable two-step gender level up-
date mechanism with an RF classifier

Figure 5.15: Gender level progressions using hybrid two-step gender level update
mechanism with an RF classifier
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Fusion Classifier Male accuracy Female accuracy Total accuracy
S V H S V H S V H

two-step RF 81% 81% 76% 81% 79% 79% 81% 80% 78%

Table 5.6: End of conversation accuracies using different two-step update mech-
anisms

When updating the gender levels in two steps for each message, as seen in
Figures 5.13 to 5.15, we observe that there not many differences compared to the
one-step gender level progressions discussed in Section 5.2.4. All observations
made in Section 5.2.4 also holds in this case.

The only difference is that when a two-step update mechanism is used, the
gender level converges a bit slower towards 0 and 1 than when a one-step up-
date mechanism is used. One possible explanation of this is due to the relatively
low accuracy achieved when using only stylometry. As an example, consider a
conversation participant whose true gender is female, and the two modalities dis-
agree on the gender of the current message. Based on keystroke dynamics the
message seems to be female with a somewhat high confidence, while based on
stylometry, the message seems to be male with a slightly lower confidence. This
is a typical scenario as we have observed that stylometry generally achieves both
lower accuracy and lower confidence than keystroke dynamics. With a one-step
update mechanism, the gender level would increase with a moderately high num-
ber because the high confidence achieved with keystroke dynamics dominates the
lower confidence achieved with stylometry. With a two-step update mechanism
the gender level would first increase with a somewhat high number before de-
creasing with a slightly lower number. The net increase would thus be lower than
with a one-step update mechanism. This would naturally cause the gender level
progressions using a two-step update mechanism to converge slower towards the
maximum and minimum gender level.

Other than this, there are not any major differences between the number of
steps used in the update mechanism. The accuracy is slightly higher than what
we achieved with feature-level and score-level fusion, but the difference is too
small to be considered significant. One final observation is however that when
using a hybrid update mechanism (Figure 5.15), is that are no female conversa-
tion participants whose gender went all the way down to 0, and only one male
conversation participant whose gender level went all the way up to 1. This shows
that the false classifications, in this case, are "less false" than what we observed
in Section 5.2.4, where the false classifications tended to converge rather quickly
towards the wrong ends of the gender level scale.
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5.2.8 Outliers

When observing the gender level progressions, we noticed a select few cases which
displayed some interesting properties. We observed some instances where the
gender level varied widely between both ends of the gender level scale. We call
these "outliers" and are defined to be instances where the difference between the
maximum and minimum gender level is more than 0.75. The gender level pro-
gressions of these instances are seen in Figure 5.16.

Figure 5.16: Gender level progression of conversation participants defined to be
outliers

In addition to being outliers, these instances share some additional character-
istics. First of all, they are all female. This could imply that females have less
predictable chat behaviour than males. In addition, 1 of the outliers occurred
when using the RF classifier, 2 when using the SVM classifier and 8 when us-
ing the k-NN classifier. 10 occurred when using feature-level fusion and 1 when
using score-level fusion. Finally, 7 occurred when using a variable update mech-
anism and 4 when using a hybrid update mechanism. The clear observation is
thus that most outliers occur when a female is classified using the k-NN classifier
with feature-level fusion and a variable update mechanism.

To further explore the cause of the outliers, we also plotted the gender level
progressions when using each modality separately. This is seen in Figures 5.17
and 5.18.
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Figure 5.17: Gender level progression of conversation participants defined to be
outliers using only keystroke dynamics

Figure 5.18: Gender level progression of conversation participants defined to be
outliers using only stylometry

We can observe in Figures 5.17 and 5.18 that the outliers do not occur when
using only stylometry, while some of them (4) still occur when using only key-
stroke dynamics. This shows that the cause of at least some of the outliers, in
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our case, is that the keystroke timing information changed mid-conversation for
some conversation participants. We did also observe that outliers did occur a lot
more frequently when using feature-level fusion compared to score-level fusion.
Due to the fact that we found keystroke dynamics to be causing some of the out-
liers, a possible explanation of the differences between the fusion methods is that
feature-level fusion implicitly assigns heavier weights to keystroke dynamics fea-
tures. As described in Section 4.1, we extracted approximately 250 keystroke dy-
namics features and approximately 50 stylometry features. When combining these
into a single feature set, the final feature set would consist of approximately 300
features with the majority being keystroke dynamics features. In total, the col-
lection of keystroke dynamics features would thus have a larger impact on the
classification than the collection of stylometry features. This is not the case when
using score-level fusion because the modalities are handled separately and only a
final score is fused (see Section 4.3.2). When using score-level fusion, adjusting
the weights in favour of keystroke dynamics should thus result in more outliers.
To test this hypothesis, we adjusted the weights from 0.5/0.5 to 0.85/0.15 in fa-
vour of keystroke dynamics, and plotted all outliers occurring with these updated
parameters. This is seen in Figure 5.19.

Figure 5.19: Gender level progression of conversation participants defined to be
outliers with adjusted weights for score-level fusion

In Figure 5.19 there are now a total of 15 outliers. 11 of them are the same
as in Figure 5.16. The additional 4 occurred when using score-level fusion due to
our adjusted weights. This confirms our claim that some of the outliers are caused
by feature-level fusion implicitly assigning heavier weights to keystroke dynamics
features. The remaining outliers are more difficult to explain. We did not find any
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specific causes of their occurrences, but as we have discussed in this section, there
are several aspects that could play a role. We saw that most outliers occurred when
using a k-NN classifier in combination with feature-level fusion. It is possible that
there is something regarding this particular combination that potentially could
lead to outliers. We also noticed that all outliers were female. This could imply
that males display a more consistent chat behaviour. It is too early to draw any
final conclusions, but whether there are any gender differences regarding this
consistency of chat behaviour could be an interesting topic for further research.

5.2.9 Gender detection using the English dataset

As we described in Chapter 3, the data collection resulted in one Norwegian and
one English dataset. We have primarily focused on the Norwegian dataset, but we
also wanted to perform some analysis of the English dataset. This allows us to as-
sess whether our gender detection scheme is sufficiently language independent to
achieve strong performance in other languages than Norwegian. We used the same
training parameters as with the Norwegian dataset and we calculated baseline ac-
curacies as described in Section 5.1. These accuracies are seen in Table 5.7.

Classifier Fusion Accuracy

RF Feature 55%
k-NN Feature 59%
SVM Feature 45%
RF Score 55%

k-NN Score 52%
SVM Score 48%
RF KD 55%

k-NN KD 55%
SVM KD 52%
RF Stylometry 55%

k-NN Stylometry 62%
SVM Stylometry 59%

Table 5.7: Performance of classifications based on entire conversations using the
English dataset

Based on Table 5.7, it is clear that the accuracy is generally much lower when
using the English dataset. The accuracy is on average around 50% and when us-
ing score-level fusion, the total accuracy is actually lower than when using any of
the modalities by themselves. This shows that models trained on our Norwegian
dataset is not suitable for classifying the gender of chat conversation participants
in our English dataset. It is however not surprising that the accuracy decreased.
When changing language, it is reasonable to believe that some typing character-
istics will change. One interesting observation is that the accuracy when using
only stylometry is approximately the same for both the Norwegian and English
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dataset. This can probably be attributed to our chosen stylometry features. Fea-
tures such as emoji densities, word length and message length are less affected by
changing language than features such as word selection. English and Norwegian
are also both part of the same language family, Germanic languages [52], which
means that they share some similarities. One could speculate that the stylometry
accuracy would decrease if we tested with a language less similar to Norwegian.

The main reason the baseline accuracy is lower when using the English dataset
is thus probably due to the keystroke dynamics modality. One possible explanation
for this is our bigram selection. We chose to extract features from only the most
common bigrams in the Norwegian dataset, but these might not necessarily be
the same bigrams that are most common in the English language. Due to habit,
it is also naturally to believe that common bigrams are generally typed quicker
than rare bigrams. A consequence of this could be that English speakers would
generally type these bigrams slower than Norwegian speakers, which would thus
affect classification accuracy. Many of these issues could be resolved if we used
English chat conversations for the training data, but this was not possible due to
the limited size of our English dataset. Any results obtained would thus be too
unreliable to be considered useful.

We also plotted the gender level progressions when using the RF classifier and
a variable update mechanism, as this generally achieved the best performance
when using the Norwegian dataset. These are seen in Figures 5.20 and 5.21, and
Table 5.8 shows relevant accuracies associated with the gender level progressions
in these figures. Even though the baseline accuracy is too low to provide any real
usefulness, it can still be interesting to see how the gender levels progress.

Figure 5.20: English dataset - Gender level progressions using variable gender
level update mechanism and feature-level fusion with an RF classifier
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Figure 5.21: English dataset - Gender level progressions using variable gender
level update mechanism and score-level fusion with an RF classifier

Fusion Classifier Male accuracy Female accuracy Total accuracy
Feature RF 53% 67% 59%
Score RF 59% 58% 59%

Table 5.8: End of conversation accuracies using different two-step update mech-
anisms

As seen in Figures 5.20 and 5.21, there is not anything particularly special
with these gender level progressions. As when using the Norwegian dataset in Sec-
tion 5.2.4, we can still see that the gender level progressions can be divided into
the same three categories, consisting of gender level progressions that quickly con-
verge towards the correct end of the scale, gender level progressions that quickly
converge towards the wrong end of the scale and gender level progressions that
tend to move in both directions. The only difference in this case, where the English
dataset is used, is that there is a higher ratio of conversation participants whose
gender level converges in the wrong direction. This is not surprising because of
the low baseline accuracy. Other than this, they are not much different from the
gender level progressions discussed in Section 5.2.4. We did not further explore
the possibility of early gender detection. Because of the limitations of our English
dataset and the low baseline accuracies, it would be highly unlikely to obtain any
useful results.



Chapter 6

Conclusion and future research

6.1 Conclusion

In this project, we have explored the possibility of performing gender detection
early in a conversation and we have found clear indications that this should indeed
be possible.

When using our gender level system, we found that the vast majority of conver-
sation participants in our test dataset depicted a highly gender typical chat beha-
viour in regard to the extracted keystroke dynamics and stylometry features. This
means that most females wrote predominantly messages considered to be female
and that most males wrote predominantly messages considered to be male. A con-
sequence of this was that we were able to perform gender detection early without
much accuracy loss. Our results showed that it was possible to halve the average
number of messages the classification is based upon (from 28 to 14) without any
accuracy loss. By further reducing the average number of messages to 5, the ac-
curacy loss was still <5 percentage points in most cases. Any further reduction of
the average number of messages generally increased the accuracy loss too much
to be considered tolerable.

These results also showed that our gender level system performed well in
regards to determining when to perform the classification. As the results above
describe, the gender level system allowed us to maintain both performance meas-
ures in most cases. We tested both absolute and stability thresholds and found no
significant differences between them.

We performed the analysis using two methods of fusion (feature-level and
score-level). We did not find any significant differences between them, which
could indicate that both feature-level and score-level fusion is appropriate for
early gender detection. One interesting observation is however that feature-level
fusion generated more outliers. We also observed that keystroke dynamics gener-
ally performed better than stylometry for the purpose of gender detection. Finally,
we tested our gender detection scheme with an English dataset, which resulted
in significantly lower accuracy. Although the English dataset was small, it is still a
sign that our gender detection scheme is not language independent.
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6.2 Future research

In this research project, we have found promising results regarding the possibility
of early gender detection. The topic is however by no means fully explored, and
there are still several aspects that could be suspect for future research. This chapter
will describe some of them.

One of the limitations in this project is that we have only used a dataset con-
sisting of adult subjects. Research has already shown that there exist differences
between age groups in regards to keystroke dynamics and stylometry [15, 40].
This could potentially also affect the capabilities of early gender detection. An in-
teresting topic could thus be to explore whether children and adults share similar
properties when it comes to early gender detection.

Another limitation was that the small size of the English dataset, made it dif-
ficult to obtain any reliable results when using that dataset. Further testing with a
larger English dataset, or any other language of interest, could thus be of interest
for future research.

One of our findings in Chapter 5 was that all of the most extreme outliers
were female. This could imply that males are more consistent in typing behaviour.
Due to the limited amount of data, it was however not possible to draw a final
conclusion. It could be interesting to research whether our findings are correct or
simply coincidental.

Finally, due to the finite scope of this project, it was not practically possible
to perform testing with all possible combinations of parameters used during ana-
lysis. Further research results could possibly be obtained by adjusting these, such
as trying other machine learning models, selecting different features or making
changes to the gender level system. Especially further research regarding the po-
tential of stability thresholds could be interesting. We did not find any significant
advantages of using stability thresholds, but due to our relatively small dataset,
more research should be performed to either confirm or disprove these results.
An additional example could be to base the final gender classification on several
sub-classifications performed during the course of a conversation. We saw in Sec-
tion 6.1 that we can achieve good accuracy when basing the classification on 5
messages. One could than imagine a system where the gender level is updated as
usual for the first 5 messages, before a gender classification is performed and the
gender level is reset back to its default value of 0.5. This process is then repeated
for the next 5 messages and so on. A final classification can then be based on a
majority voting of all the performed classifications. It is possible that this could
affect accuracy and also prevent the occurrence of some outliers as sudden large
changes to gender level would be nullified when resetting the gender level. Both
these aspects make it a fitting and interesting topic for future research.
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Appendix A

Selected bigrams

The nabla symobol ∇ represents the space character

Bigram r∇ er e∇ t∇ en ∇s de ∇d n∇ g∇ et
Relative frequency 3.0% 2.7% 2.4% 2.3% 2.1% 2.0% 1.9% 1.7% 1.6% 1.6% 1.5%

Table A.1: Bigram 1-11 and their relative frequency

Bigram å∇ ∇m ∇e ∇h me te ∇f eg ,∇ je re
Relative frequency 1.3% 1.3% 1.3% 1.3% 1.1% 1.1% 1.0% 1.0% 1.0% 0.9% 0.9%

Table A.2: Bigram 12-22 and their relative frequency

Bigram ha an ∇i ar li ke el ∇v ∇j ∇o ne
Relative frequency 0.9% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8%

Table A.3: Bigram 23-33 and their relative frequency

Bigram or ∇p ∇t le tt i∇ ∇b st in ∇a ik
Relative frequency 0.7% 0.7% 0.7% 0.7% 0.7% 0.7% 0.7% 0.6% 0.6% 0.6% 0.6%

Table A.4: Bigram 34-44 and their relative frequency

Bigram sk ve ∇k se ti kk he
Relative frequency 0.6% 0.6% 0.6% 0.6% 0.6% 0.6% 0.5%

Table A.5: Bigram 45-51 and their relative frequency
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Gender level progressions

This appendix includes all gender level progressions used or mentioned in Sec-
tion 5.2.4, in addition to a table summarizing associated accuracies.

Figure B.1: Gender level progressions using static gender level update mechan-
ism and score-level fusion with the RF classifier
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Figure B.2: Gender level progressions using variable gender level update mech-
anism and score-level fusion with the RF classifier

Figure B.3: Gender level progressions using hybrid gender level update mechan-
ism and score-level fusion with the RF classifier
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Figure B.4: Gender level progressions using static gender level update mechan-
ism and feature-level fusion with the RF classifier

Figure B.5: Gender level progressions using variable gender level update mech-
anism and feature-level fusion with the RF classifier
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Figure B.6: Gender level progressions using hybrid gender level update mechan-
ism and feature-level fusion with the RF classifier

Figure B.7: Gender level progressions using static gender level update mechan-
ism and score-level fusion with the k-NN classifier
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Figure B.8: Gender level progressions using variable gender level update mech-
anism and score-level fusion with the k-NN classifier

Figure B.9: Gender level progressions using hybrid gender level update mechan-
ism and score-level fusion with the k-NN classifier
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Figure B.10: Gender level progressions using static gender level update mechan-
ism and feature-level fusion with the k-NN classifier

Figure B.11: Gender level progressions using variable gender level update mech-
anism and feature-level fusion with the k-NN classifier
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Figure B.12: Gender level progressions using hybrid gender level update mech-
anism and feature-level fusion with the k-NN classifier

Figure B.13: Gender level progressions using static gender level update mechan-
ism and score-level fusion with the SVM classifier
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Figure B.14: Gender level progressions using variable gender level update mech-
anism and score-level fusion with the SVM classifier

Figure B.15: Gender level progressions using hybrid gender level update mech-
anism and score-level fusion with the SVM classifier
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Figure B.16: Gender level progressions using static gender level update mechan-
ism and feature-level fusion with the SVM classifier

Figure B.17: Gender level progressions using variable gender level update mech-
anism and feature-level fusion with the SVM classifier
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Figure B.18: Gender level progressions using hybrid gender level update mech-
anism and feature-level fusion with the SVM classifier

Fusion Classifier Male accuracy Female accuracy Total accuracy
S V H S V H S V H

Feature RF 74% 76% 72% 79% 79% 77% 77% 78% 75%
Score RF 79% 81% 69% 80% 80% 78% 80% 80% 75%

Feature k-NN 99% 97% 97% 30% 37% 37% 53% 57% 57%
Score k-NN 82% 84% 71% 60% 68% 60% 67% 73% 64%

Feature SVM 66% 71% 69% 81% 80% 78% 76% 77% 75%
Score SVM 66% 69% 69% 80% 78% 73% 75% 75% 71%

Table B.1: End of conversation accuracies using different update mechanisms and
methods of fusion
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