
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

H
om

b, Birkeland, Isnes, H
usbyn

M
ulti-user M

alw
are and G

oodw
are Repository

Gjert Michael Torp Homb
Michael Cortes Birkeland
Christian Simoes Isnes
Erlend Husbyn

Design and development of Malware
Repository with multi- user access
and characteristics aggregation

Bachelor’s project in IT-Operations and Information Security
Supervisor: Mohamed Abomhara

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

Gjert Michael Torp Homb
Michael Cortes Birkeland
Christian Simoes Isnes
Erlend Husbyn

Design and development of Malware
Repository with multi- user access and
characteristics aggregation

Bachelor’s project in IT-Operations and Information Security
Supervisor: Mohamed Abomhara
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

iii

iv Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

Abstract

Title: Design and development of Malware Repository with
multi- user access and charactheristics aggregation

Date: 20.05.2021
Authors: Gjert Michael Torp Homb, Michael Cortes Birkeland,

Christian Simoes Isnes and Erlend Husbyn

Supervisors: Mohamed Abomhara
Employer: NTNU Malware Lab
Contact Person: Andrii Shalaginov

Keywords: Malware, Repository, Development, MEAN, Full stack,
Multi- user access

Pages: 73
Attachments: 3
Availability: Open
Studypoints: 22.5

Abstract:
The NTNU Malware Lab wished to develop a platform for analysis and storage
of malware and legitimate programs where users can upload and download
files, as well as viewing characteristics of these files. This project aims to create
a platform where multiple users, depending on their authorization can upload
files, see characteristics about these files from various sources, as well as down-
loading files. The platform was built as a Proof of Concept (PoC) where porta-
bility, modularity and simple maintenance was an area of focus. This makes the
platform simple to set up on new servers, and easily transferrable to another
environments if wanted. Additionally, the platform is built so that adding new
sources of analysis is simple. As the main purpose of the platform is to be used
for research and education, the data about each file needs to easily accessible
and collaborative. Therefore, an API to let users automate external processing
of file data is implemented. On the frontend, Feide has been implemented for
access control. As NTNU uses Feide for their IT solutions, the already existing
user database can be used in user access management and authorization.

v

vi Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

Sammendrag

Tittel: Design og utvikling av platform for skadevare-
oppbevaring med rollestyring og aggregering av
kjennetegn

Dato: 20.05.2021
Deltagere: Gjert Michael Torp Homb, Michael Cortes Birkeland,

Christian Simoes Isnes og Erlend Husbyn

Veileder: Mohamed Abomhara
Arbeidsgiver: NTNU Malware Lab
Kontaktperson: Andrii Shalaginov

Nøkkelord: Skadevare, Database, Utvikling, MEAN, Full stack,
Rollestyrt tilgang

Sideantall: 73
Antall vedlegg: 3
Tilgjengelighet: Åpen
Studiepoeng: 22.5

Sammendrag:
NTNU Malware Lab ønsket å utvikle en plattform for analyse og lagring av
skadevare og legitime programmer hvor brukere kunne laste opp og ned filer,
samt se karakteristikker fra disse filene. Dette prosjektet gikk ut på å utvikle
hele denne plattformen hvor flere brukere med forskjellige rettigheter har mu-
lighet til å laste opp filer, se karakteristikker om disse filene fra forskjellige
kilder, samt laste ned filer. Plattformen ble bygd som et Proof of Concept (PoC)
hvor portabilitet, modularitet og enkel vedlikehold sto i sentrum. Dette gjør at
produktet er lett å sette opp på nye servere og, kan lett flyttes til et annet miljø
hvis det er ønskelig. I tillegg er systemet bygget for å lett tilføye flere analysek-
ilder. Denne plattformen skal brukes til forskning og undervisning som betyr at
dataene om hver fil må være lett tilgjenglig. I denne sammenheng har det blitt
implemenert et API for å lett programmere seg mot plattformen, som lar bruk-
eren automatisere prosessering av fildata. På frontend delen har Feide blitt
implemenert til tilgangsstyring. Siden NTNU bruker dette på sine løsninger
betyr det at man kan utnytte den allerede eksisterende brukerdatabasen til
rollestyring og autorisering.

Preface

During the project there has been multiple people who have helped with the
development and progress of the system and thesis. We would like to thank
everyone who read through our bachelor thesis and helped with the writing,
spelling, structure and general fixes.

First, we would like to express our deep appreciation to our contacts at
NTNU Malware Lab and SOC, Andrii Shalaginov, Geir Olav Dyrkolbotn and
Christoffer Vargtass Hallstensen for their help and insight into how to create
and develop this system that they envisioned, and for providing us with this
task.

Second, we also want to offer a special thanks to our supervisor Mohamed
Abomhara for all the valuable feedback and constructive comments regarding
academic writing and report structure.

Last but not least, we want to thank Håvard Johansen who has given us a
lot of guidance during the development, and sparring throughout the project.

vii

Contents

Abstract . iv
Sammendrag . vi
Preface . vii
Contents . ix
Figures . xiii
Tables . xv
Code Listings . xvii
Acronyms . xix
Glossary . xxi
1 Introduction . 1

1.1 Problem description . 1
1.2 Objectives and Defining the assignment 2
1.3 Motivation and purpose of the thesis 2
1.4 Target audience . 3
1.5 Student’s backgrounds and qualifications 3
1.6 Additional roles . 4
1.7 Project process . 4

1.7.1 Development method . 4
1.7.2 Progress plan . 5
1.7.3 Plan for status meeting and decisions 5
1.7.4 General tools used . 5

1.8 Thesis structure . 6
2 Requirements . 7

2.1 Initial project description . 7
2.2 Use-Case diagram . 8
2.3 High level Use Cases . 8
2.4 Misuse cases . 12
2.5 Extended Misuse cases . 13
2.6 Functional requirements . 14
2.7 Non-functional requirements . 15
2.8 External requirements . 15
2.9 Secure system development . 15

3 Deployment technology . 17
3.1 Development stack . 17

ix

x Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

3.1.1 Chosen stack . 17
3.1.2 Alternative stack . 18
3.1.3 Critique of chosen stack . 18
3.1.4 Frontend . 18
3.1.5 Backend / Express . 18
3.1.6 Database . 18

3.2 Deployment . 18
4 Implementation . 21

4.1 Frontend . 21
4.1.1 Login . 22
4.1.2 Listing and viewing files . 24
4.1.3 Admin panel . 27
4.1.4 Authorization . 29
4.1.5 404 and inaccessible pages 30
4.1.6 Uploading . 31
4.1.7 Downloading . 32
4.1.8 Favorite . 33
4.1.9 Filtering . 35

4.2 Backend . 37
4.2.1 Authentication and Authorization 37
4.2.2 Protecting resources . 42
4.2.3 API . 44
4.2.4 Upload . 48
4.2.5 File Analysis . 49
4.2.6 Download . 50

4.3 Database design . 50
4.3.1 Users . 51
4.3.2 Files . 52
4.3.3 Uploads . 53
4.3.4 Downloads . 54
4.3.5 Secure traffic . 55

4.4 Storage . 55
4.4.1 Metadata . 55
4.4.2 File-storage . 55

4.5 Logging . 56
4.5.1 Winston . 57
4.5.2 Winston-daily-rotate . 58
4.5.3 What to log . 58

4.6 System requirements . 58
4.6.1 Frontend . 59
4.6.2 Backend . 59
4.6.3 Database . 59
4.6.4 Testing . 60

5 Security and Legal aspects . 63

Contents xi

5.1 Security . 63
5.2 Secure storage of malicious executables 64
5.3 Legal aspects . 64

5.3.1 Avoiding misuse . 64
5.3.2 Copyright . 65

5.4 Malware research ethics . 65
6 Results and going forward . 67

6.1 Final product . 67
6.2 Choices made during the project . 68
6.3 Critique of final product . 69

7 Conclusion . 71
7.1 Project assessment . 71
7.2 Knowledge gained . 71
7.3 Limitations and future work . 72
7.4 Evaluation of the groups work . 73

Bibliography . 75
A Additional Material . 79

A.1 Project agreement . 80
A.2 Project description, . 83
A.3 Group rules . 84
A.4 Projectplan . 85
A.5 Meeting Logs . 94

A.5.1 With supervisor . 94
A.5.2 With employer . 98

B Additional documentation . 113
B.1 API Documentation . 114
B.2 Worklog . 125

C Code examples . 129

Figures

2.1 Use case diagram . 8
2.2 Misuse cases . 12

3.1 Deployment . 19

4.1 Sitemap of the repositories frontend 22
4.2 The login page . 23
4.3 Permission denied page . 23
4.4 Main user page . 24
4.5 The file list . 24
4.6 Checkboxes . 26
4.7 Pagination on the file list . 26
4.8 Detailed file view . 27
4.9 Admin panel user list . 27
4.10 Edit user dialogues . 28
4.11 Delete user dialogue . 28
4.12 System logs in admin panel . 29
4.13 404-page . 30
4.14 Systems sequence diagram of file uploading 31
4.15 Upload status bar . 32
4.16 Download multiple files . 33
4.17 Download button on detailed view 33
4.18 Favorite button on detailed view . 34
4.19 Favorites page . 34
4.20 The filtering/search component . 35
4.21 The URI crafted by the filtering component 35
4.22 SESSIONID-cookies set by Innsida 37
4.23 The data provided by Dataporten to setup authentication 38
4.24 Button to enable guest users on the Dataporten-dashboard 39
4.25 Overview of file-routes documented with SwaggerHub 45
4.26 Overview of user-routes documented with SwaggerHub 46
4.27 Example of a detailed view of a route shown in Swagger 47
4.28 Docker pipeline for uploading files 49
4.29 How the path for file storage is calculated 56

xiii

xiv Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

4.30 Example of info-log file . 57
4.31 Example list of daily rotated logs . 58
4.32 CPU usage of backend in percent . 60
4.33 CPU usage of database in percent . 61

Tables

2.1 Use-case: Log in with Feide→ Authorize to relevant group 9
2.2 Use-case: Activate/deactivate users 9
2.3 Use-case: View/Download/Upload malware/goodware samples 9
2.4 Use-case: Label samples . 10
2.5 Use-case: See user list . 10
2.6 Use-case: Classify samples . 10
2.7 Use-case: Display samples . 10
2.8 Use-case: Display logs . 11
2.9 Use-case: Favorite samples . 11
2.10 Misuse case: Access admin user . 13
2.11 Misuse-case: Download malware . 13

4.1 DB structure for users . 52
4.2 DB structure for files . 53
4.3 DB structure for uploads . 54
4.4 DB structure for downloads . 55

xv

Code Listings

3.1 NGINX routing/proxy configuration 20
4.1 File sorting algorithm . 25
4.2 Definition of routes and guards . 30
4.3 How the URL is crafted and set. 36
4.4 Directive getting query parameters from URL. 36
4.5 Function for getting the subjects a user is a member of. 41
4.6 Function for getting the subjects a user is a member of 41
4.7 Protecting resources . 42
4.8 Examples of arguments accepted by the middleware 43
4.9 Implementation of authorization middleware 43
4.10 Filefilter removing files unauthorized for users. 43
4.11 Database structure for user objects 51
4.12 Database structure for file objects . 52
4.13 Database structure for upload-status objects 53
4.14 Database structure for download objects 54
4.15 Calculate filepath for file storage . 56
4.16 Winston errorlogger . 57
C.1 The authorization middleware protecting the REST API 129
C.2 Passport strategy handling user-logins 131
C.3 Auth Service Angular . 133
C.4 AuthGuard Angular . 134
C.5 AdminGuard Angular . 135
C.6 LoginGuard Angular . 136
C.7 Filefilter to remove files user is unauthorized for 136

xvii

Acronyms

APK Android Package file. 7, 14

ELF Executable Linkable Format. 7, 14

JS JavaScript. 17, 18

Mach-O Mach object file format. 7, 14

MEAN MongoDB, Express.js, Angular, Node.js. 3, 17, 18, 68

PE32 Portable Executable 32bit. 7, 14

PoC proof of concept. 1, 2, 7, 25, 37, 67, 71, 72

SOC Security Operations Center. 65

SPA Single-page application. 18

URI Uniform Resource Identifier. xiii, 35

URL Uniform Resource Locator. 35

xix

Glossary

authentication The process of verifying the identity of the client. 14

authorization The process of specifying access rights to resources. 14

characteristics Characteristics in this thesis is related to metadata of files.. 7

dataset Structured collection of data. 2

goodware Software that does what it’s supposed to with relative ease and
nothing else.. xv, 1, 2, 7, 9, 13, 15, 20, 56, 67, 71

malware Malware is the collective name for a number of malicious software
variants, including viruses, ransomware and spyware.. xv, 1–3, 6–10, 13–
15, 20, 21, 31, 50, 56, 63, 64, 67, 71

runtime environment The environment the application is executed within.
57

static analysis Analysis of the source code of a file without executing the file.
2, 49

TLS Transport Layer Security. The technology used to encrypt traffic between
two endpoints. 19

transport A process responsible for transporting the logs to their specific loca-
tion, e.g. a folder or remote directory. 57

VirusTotal An online repository with metadata of many different files [1]. 15

xxi

Chapter 1

Introduction

At NTNU, many students and researchers are working with education and re-
search related to malware and goodware. This type of research and study
requires some place to store malware and goodware samples in an efficient,
structured and secure manner.

A malware is a software designed with the intent to cause damage, disrupt
or gain access to a network or computer system[2]. Goodware, on the other
hand, is software that does what it is supposed to do with no unexpected or
malicious behaviour.1 A multi-user malware and goodware repository refers to
a storage system allowing multiple users with different roles such as researcher
or students to interact with files andmetadata of the files in the database. These
roles allow for different functionality depending on who the user is.
• In this bachelor thesis, firstly, the need for upgraded malware and good-
ware storage capabilities were discussed with the NTNU Malware Lab.

• Secondly, research on a suitable development stack was discussed within
the group.

• Thirdly, the development of a proof of concept (PoC) repository began,
with weekly discussion and input from the NTNU Malware Lab. This led
to a functioning PoC malware and goodware repository.

1.1 Problem description

The NTNU Malware Lab is an academic collaborative group aiming to increase
knowledge about malware in public and private sectors.2 Malware and good-
ware samples are important for research and studies at NTNU. However, the
current capabilities for storing malware and goodware samples for research
and education at NTNU lack structure and functionality. Therefore, the NTNU
Malware Lab wants to develop a better way of storing and interacting with
these samples and make collaboration between students and researchers more

1https://androidforums.com/threads/what-is-goodware.832075/1
2https://www.ntnu.edu/malwarelab

1

https://androidforums.com/threads/what-is-goodware.832075/1
https://www.ntnu.edu/malwarelab

2 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

efficient. As the NTNU Malware Lab is responsible for handing out this thesis,
they will be referred to as the employer further down in the report.

The current capabilities consist of multiple datasets containing samples that
have been built through out the years, including 400+ archives with about
12TB of samples. Due to the unstructured fashion of this way of storing sam-
ples, a new storage solution is wanted by the NTNU Malware Lab. The new
structured and sophisticated storage system aims to make fetching samples for
use in research and education more efficient, with central storage and by uti-
lizing a graphical user interface.

1.2 Objectives and Defining the assignment

The overall goal of this project is to enhance the research capabilities as well
as the operations support for the various groups and departments at NTNU.
These groups include the Malware Lab, System Security Group, SOC, Norwe-
gian Cyber Range, etc.

The main goals of this thesis are as following:
• To develop a working proof of concept multi-user malware and Goodware
repository with main functionality such as upload/download, capability
to analyze files and adding relevant information such as tags to a file.

• To improve the current unstructured and functionality-less system, mak-
ing research and education within and among various research groups
more efficient.

• To make the Multi-user malware and Goodware repository portable and
easy to maintain.

To keep the task within a reasonable scope, some limitations are made.
Firstly, the finished proof of concept repository shall only be able to perform
static analysis on the samples with help from third-party tools such as PEframe
and VirusTotal, but may be extended to include more tools in the future. The
reasoning behind this is that creating a dynamic analysis platform is of such
magnitude that it could be a Bachelor thesis on its own, and this thesis consists
the development of a repository, not an analysis platform. Secondly there will
not be a major focus on the design of the frontend, however user friendliness
is important.

1.3 Motivation and purpose of the thesis

When choosing a task for this thesis, it was agreed that a thesis about mal-
ware and viruses would be interesting, and is something that would be excit-
ing to learn more about. Three of the group members have studied malware
in IMT4116 - Reverse Engineering and Malware Analysis, while the last member
studied the course while writing the thesis.

Chapter 1: Introduction 3

The main purpose of this thesis is to create an opportunity for NTNU Mal-
ware Lab to upgrade the current malware storage system, with relevant input
from students who has/is taking the malware class. This will lead to more ef-
ficient handling of malware samples.

1.4 Target audience

The main audience are users of the NTNU Malware Lab, students, researchers
and teachers. Moreover, the report of the thesis is mostly targeting those who
wish to gain deeper knowledge about the system and its components. As the
target audience is mostly qualified, or at least semi-qualified within the subject,
this thesis will be going deep into the specific technologies used and how to
implement or how it was implemented. On the other hand the repository is
targeting those who conduct malware related research and education at NTNU.
Furthermore, as this is a project to make a usable piece of technology, there will
be provided a how-to install/use of the tech was developed.

1.5 Student’s backgrounds and qualifications

The group consists of four BITSEC students at the Norwegian University of
Science and Technology in Gjøvik. During the course of this study, all members
should have acquired the knowledge required to complete a project of this
size. The members of the group have previously worked together on projects.
Although the group inhibits a good amount of knowledge from the years at
NTNU, there will be topics and technologies that will require deeper study and
research. A major part of this self study will be learning how the MEAN3 stack
functions and how its different components communicate with each other.

Gjert Michael Torp Homb

Group leader: 23 years old studying BITSEC at NTNU Gjøvik. Have experience
with malware and network analysis, and will mostly be implementing analysis
and storage of the files uploaded. Working as a security analyst on the side.

Michael Cortes Birkeland

LATEX responsible: 21 years old, third year BITSEC student at NTNU in Gjøvik.
Has knowledge in the fields of information security and development, and has
a lot of experience in using LATEX, means that he will be flexible and able to
work on multiple parts of the project.

3https://en.wikipedia.org/w/index.php?title=MEAN_(solution_stack)&oldid=
1017827543

https://en.wikipedia.org/w/index.php?title=MEAN_(solution_stack)&oldid=1017827543
https://en.wikipedia.org/w/index.php?title=MEAN_(solution_stack)&oldid=1017827543

4 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

Erlend Husbyn

Developer/responsible for conflict resolution: 22 year old student, studying
BITSEC in the third year. He has some programming experience, and should
be able to contribute to most parts of the project. Currently he is working as a
Teachers Assistant beside the Bachelors thesis.

Christian Isnes

Developer responsible for all code, and its quality: 23 years old studying
BITSEC at NTNU Gjøvik. Experience with a wide range of programming lan-
guages and stacks. He will be able to contribute to all layers in the project.
Working as a part-time security analyst at NCSC-NO [3].

1.6 Additional roles

Employer: NTNU Malware Lab
Contact person: Andrii Shalaginov

andrii.shalaginov@ntnu.no

Additional contacts: Geir Olav Dyrkolbotn
geir.dyrkolbotn@ntnu.no

Christoffer Vargtass Hallstensen
christoffer.hallstensen@ntnu.no

Supervisor: Mohamed Abomhara
mohamed.abomhara@ntnu.no

1.7 Project process

1.7.1 Development method

The development method chosen for this project is Kanban4. This is a method
that all group members have previously experienced and worked with; and find
it simple and efficient to use. Adding tasks and requirements from NTNU Mal-
ware Lab is also simple with Kanban. Further, this allows for greater freedom
to choose when to work on these tasks, compared to e.g. Scrum.

Kanban is a lean development method where tasks are visualized and added
to a Kanban board. From here, the members of the development team assigns

4https://en.wikipedia.org/w/index.php?title=Kanban_(development)&oldid=
1013939902

mailto:andrii.shalaginov@ntnu.no
mailto:geir.dyrkolbotn@ntnu.no
mailto:christoffer.hallstensen@ntnu.no
mailto:mohamed.abomhara@ntnu.no
https://en.wikipedia.org/w/index.php?title=Kanban_(development)&oldid=1013939902
https://en.wikipedia.org/w/index.php?title=Kanban_(development)&oldid=1013939902

Chapter 1: Introduction 5

themselves to a task and completes this within the specified time frame (If there
is one). A Kanban board contains various columns saying something about the
progress of the task.This makes for simple identification of what tasks is fin-
ished, under progress and yet to be started.

1.7.2 Progress plan

To ensure that the project is completed within the required time, a detailed
plan was made. A Gantt-chart is created to make sure the group is able to de-
liver on time. The Gantt-chart is included in Appendix A.May 20. is the absolute
deadline for handing in the report, and it should be more or less complete a
few days in advance for proofreading. Project presentations will happen on the
June 7.

1.7.3 Plan for status meeting and decisions

There were continuous communication and daily meetings between the group
members, where decisions are taken. Once per week, the group had a status
meeting where each member covered the status on what they are working
with. This meeting was generally held on Mondays at 12:00, however this var-
ied depending on the availability of the group members. During this meeting,
the group also handled bigger decision-points. Also, the group agreed on a bi-
weekly meeting with the supervisor for follow-ups and guidelines. The super-
visor was also available in case there was a need for another meeting. During
the course of the project there was also weekly status reports and question
meetings with NTNU Malware Lab.

1.7.4 General tools used

Throughout the development of this project, various tools are used as listed
below. The uses for these tools include storing data and code, monitoring the
progress, and communication both within the group and with supervisor and
employers.
• GitLab

◦ GitLab is the groups chosen Git-repository manager. The reason-
ing behind choosing GitLab over other code-repository managers
(such as: GitHub and BitBucket) is that it provides tools and appli-
cations to support the whole development life cycle. This includes
CI pipelines, Docker registry and Kanban boards. While not all these
applications will be integrated in this project, they’re prepared to be
integrated later on. To administrate git branches and easier visual-
ize where every member of the group is working, the group is using
GitKraken as a Git GUI.

• Trello

6 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

◦ For monitoring and structuring our tasks and progress Trello is used.
Trello is a Kanban board manager that is easy to use and manage.
It provides a timeline and issue tracking. Overall this is a helpful
tool to give the group an understanding of the current progress and
what tasks that need to be done.

• Overleaf
◦ Overleaf is the groups preferred LATEX editor and the main text edit-
ing software. Overleaf also provides Git integration which makes
creating backups on local machines easy if Overleaf were to go down
for an unspecified amount of time.

• Teams
◦ Teams is used for maintaining contact and communication with the
groups supervisor and employers. A "team" is created between the
group and the employers.

• Google Drive
◦ Google drive is used to store and share files and documents inter-
nally in the group. Examples of documents stored here are meeting
reports, figures and the groups work-log.

1.8 Thesis structure

The thesis is structured as following.
• Chapter 1 introduces and describes the bachelor thesis, and provides
the reader with an understanding of the problem area. Additionally it
describes the group, as well as the closest people involved in the process.

• Chapter 2 presents details about the requirements for the finished reposi-
tory. This includes intended functionality in addition to various functional
requirements.

• Chapter 3 describes the various technologies that has been used in the
project.

• Chapter 4 describes how the technologies used are implemented.
• Chapter 5 dives into some security related issues and legal aspects of
handling large amounts of malware.

• Chapter 6 describes the achieved results and the future of the repository.
• Chapter 7 concludes the work that has been done during the course of
the Bachelor.

Chapter 2

Requirements

This chapter details the main requirements of the project, as well as the Use
case diagrams.

2.1 Initial project description

Identifying the needs and requirements is an integral part of this thesis and is
critical to its success. The main benefits of the requirements gathering are to
increase productivity and enhance the outcome.

The initial project description of the bachelor thesis outlined certain require-
ments, as well as some anticipated tasks (see Appendix A.2). While these were
the overall indicative requirements for the project, additional features were dis-
cussed during the weekly status meetings with NTNU Malware Lab.

The requirements listed in the initial description were the following:
• Development of a repository that allows access to the most recent and
relevant malware and goodware samples, to serve as a core component
in research and education at NTNU.

• The finished platform should allow for collaboration from multiple direc-
tions: uploading and updating datasets, fetching malware samples under
defined specifications and cyber threats intelligence.

Based on these requirements, a list of anticipated tasks were given to the
group from NTNU Malware Lab. These were the following:

1. Design top-down framework covering: optimal files and characteristics
storage, database design, “push” / “pull” API, user access and roles.

2. Define functional and non-functional requirements to handle ELF / PE32
/ APK / Mach-O files (see Section 2.6 and Section 2.7).

3. Focus on availability and building up new sources of characteristics.
4. Proof of concept with the focus on: portability, modularity, and complex-

ity of maintenance.

7

8 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

These tasks serve as the base of the malware repository project, in correla-
tion with the initial requirements.

2.2 Use-Case diagram

To describe some of the intended functionality of the repository in a under-
standable and graphical manner, a Use-case diagram is utilized, as shown in
Figure 2.1. The Use-Case diagram details the main actors, both users and sys-
tems, as well as the functionality and processes they should be able to perform
and handle.

Use-Case diagram

Log in with
feide

View/Download authorized
malware/goodware

Activate/deactivate user

Authorize correct
group<<include>>

View/Download/Upload
malware/goodware samples

Classify
samples

Display user-list

Display samples

Label samples

Admin

Researcher

Student

Repository
<<system>>

feide
<<system>>

See user-list <<include>>

View logs Display
logs

<<include>>

<<include>>

<<
inc

lud
e>

>

Favorite
samples

Figure 2.1: Use case diagram

2.3 High level Use Cases

High level Use-Cases based on the Use cases shown in Figure 2.1. These go
further into detail than the diagram, and gives a high level understanding of
the various interactions with user and system.

Chapter 2: Requirements 9

Log in with Feide→ Authorize to relevant group
Actor Admin, researcher, student, Feide «system»
Purpose Logging in users of the repository and authorizing them to

their relevant group
Description When a user accesses the repository they aremet with a Feide

login window. When logging in, the Feide system looks at the
users profile and authorizes them to their relevant group,
with adjoining privileges. Note: Users with admin privileges
are hard-coded in a database, as admins and researchers
likely belong to the Feide "employee" group.

Table 2.1: Use-case: Log in with Feide→ Authorize to relevant group

Activate/deactivate users
Actor Admin
Purpose Admins have the privilege of activating and deactivating

users
Description Users needs to have their account activated before being able

to use the repository. This can happen either after a first time
login, or before e.g. in a case where a lecturer adds several
members of a class to a white list. This also works the other
way, where an admin can deactivate a user. This could be
necessary e.g. if a user uses downloaded malware with mali-
cious purpose, and therefore needs to be excluded from the
system.

Table 2.2: Use-case: Activate/deactivate users

View/Download/Upload malware/goodware samples
Actor Admin, researcher, student
Purpose The users of the system should be able to view, download

and upload samples
Description Being able to view samples, download them, and upload new

ones to the repository, is the main functionality of system.
Which of these a user can perform is based on their autho-
rization group. E.g. a student is unable to upload samples to
the repository, and can also only download certain samples.
Researchers and admins can both upload and download.

Table 2.3: Use-case: View/Download/Upload malware/goodware samples

10 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

Label samples
Actor Admin, researcher
Purpose Giving labels to samples makes understanding the content

easier
Description An admin can write labels to a sample to get an easier un-

derstanding of what the malware contains. Additionally this
is useful for the Reverse engineering and Malware analysis
class as samples that have been used for assignments and
exams can be labeled accordingly.

Table 2.4: Use-case: Label samples

See user list
Actor Admin
Purpose View list of users for user management
Description The admin has access to a panel listing all users currently

having access to the system. This is helpful for either activat-
ing or deactivating the accounts of users.

Table 2.5: Use-case: See user list

Classify samples
Actor Repository «system»
Purpose Reveals in-depth information and data about samples
Description By using third-party tools like VirusTotal and Malware-

Bazaar metadata about samples is gathered to give a broader
perspective about their contents.

Table 2.6: Use-case: Classify samples

Display samples
Actor Repository «system»
Purpose Give a simple user interface overview over samples on the

system
Description The backend displays the files stored on the system, in a

structured manner, with the ability to show expanded info
about samples.

Table 2.7: Use-case: Display samples

Chapter 2: Requirements 11

Display logs
Actor Repository «system»
Purpose Displays logs in admin panel for quick status overview
Description The admins are able to see relevant logs in the admin panel,

without diving into the logs stored on the server.

Table 2.8: Use-case: Display logs

Favorite samples
Actor Student, researcher, admin
Purpose Allows users to favorite samples to make finding them again

easier
Description If a user finds a sample that they find interesting, or know

they will work a lot with, they may favorite it. When click-
ing favorite on a sample, that sample is added to that users
favorite panel for later use/fetching.

Table 2.9: Use-case: Favorite samples

12 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

2.4 Misuse cases

The misuse case (Figure 2.2) builds upon and is the inverse of a use case dia-
gram shown in Figure 2.1. It specifies the process of executingmalicious actions
against the system and the actors performing these.

Admin

Saboteur

Hacker

Malicious
user

Access admin
user<<include>>

<<include>>
Access admin

panel

Login with feide

<<include>>

Browse
malware/goodware

Download
malware/goodware

Edit users
(remove/add

priviliges)

Browse users

Delete
malware/goodware

Download malware
with malicious intent

DoS/DDoS

Upload
malware/goodware

Misuse case

User

Figure 2.2: Misuse cases

Chapter 2: Requirements 13

2.5 Extended Misuse cases

Access admin user
Actors Hacker

Description

Hacker gains unauthorized access to an admin user.
Gaining access to the admin user means that
the hacker gains full access to all admin functions
and the admin panel. The hacker could see users,
change user authorization/privileges and delete
malware / goodware from the database

Data (assets) User data, malware and goodware
Attacks Social engineering, hacking

Mitigation Implementing authentication tokens,
anti-tampering functionality, Feide

Requirements Users are required to log in through Feide, and when logged in the
admin’s token expires after a couple hours

Table 2.10: Misuse case: Access admin user

Download malware with malicious intent
Actors Malicious user, hacker

Description

A user with authorization to download malware could download
the malware and use them in a malicious manner as the system
stores different ransomwares, worms, viruses
and similar types of malware.

Data (assets) malware, computers inside and outside of the NTNU network
Attacks Malicious use of given files
Mitigation Logging, authorization

Requirements

Every time a user downloads a malware/goodware sample
from the server it gets logged on the admin panel meaning
that tracking what files users have access to is easier.
Making sure that only the users the admin trusts are
given permission to download files.

Table 2.11: Misuse-case: Download malware

14 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

DoS / DDoS
Actors Saboteur, malicious user, hacker

Description

A user or saboteur performs a DoS/DDoS attack on the service. This
could be a DDoS attack trying to overflow the current network
bandwidth, or could be a user from the inside uploading .zip files
containing Petabytes of files (e.g. Zip bomb). This misuse case
covers any attack preventing the service to other users.

Data (Assets) Database, backend server
Attacks Denial of Service, Distributed Denial of Service
Mitigation Docker containers for file uploading

Requirements

To prevent overflowing the uploading service, using a docker
container should prevent this. There are few mitigations
against a DDoS attack on application level, but they are
less likely to happen as the repository is an internal service
at NTNU.

To read more about zip bombs1.

2.6 Functional requirements

The main functional requirements of the system starts with:
1. User login (authentication): User being authenticated via Feide (see Ta-

ble 2.1).
2. Authorization: Access role to student/researcher and admin (see Table 2.1).

The system needs to be able to authorize users to their correct role.
With each role, various functionality follows. A user with student
privileges should be able to view and download malware samples
with a limit to daily downloads. A user with researcher privileges
can download and upload samples to the system as well as labeling
the samples.
An admin has access to all previously mentioned functionality as
well as the ability to activate and deactivate users (Table 2.2) and
observe live logs being streamed from the backend. In addition, a lot
of minor functionality should be realized. Users of the system should
be able to favorite samples, and samples should be able to be tagged
with relevant information. For the backend, logging should be im-
plemented to assist in troubleshooting and investigating unwanted
activity.

3. Functional requirements for ELF / PE32 / APK / Mach-O files:
These file types are executables made for the most common oper-
ating systems. ELF is made for Linux, PE32 for Windows, APK for
Android and Mach-O for Apple based operating systems. These file

1https://en.wikipedia.org/w/index.php?title=Zip_bomb&oldid=1016214544

https://en.wikipedia.org/w/index.php?title=Zip_bomb&oldid=1016214544

Chapter 2: Requirements 15

types behave differently, meaning that certain precautions need to
be taken when implementing support for these types of files. The
repository be able to classify different filetypes and start analysis
based on the classification (Refer to Table 2.6).

2.7 Non-functional requirements

In regards to non-functional requirements, there were also some guidelines.
These mainly refer to the operability of the system. The non-functional require-
ments of the system are the following:
• Portability:

◦ The system should be portable to allow for simple implementation
on new infrastructures.

• Modularity/Scalability:
◦ The system should be developed with focus on modularity and scal-
ability, meaning further development and implementations on the
system should be simple and uncomplicated.

• Low complexity of maintenance:
◦ The system should be developed with focus on keeping the mainte-
nance as simple as possible. This is an advantage as it requires less
work to keep everything up to date.

With regards to other non-functional requirements such as response time
and efficiency, these will be kept in mind during the development phase but is
out of scope of this thesis.

2.8 External requirements

As a part of the requirement includes static analysis in the process of uploading
samples, third party tools to aid in this sequence is used. While there are many
tools out there that has this functionality, VirusTotal is probably themost known
platform providing data on many different files, and is therefore used in the
malware / goodware repository.

2.9 Secure system development

Since this repository is handling malicious software of all kinds, developing a
secure system is crucial. If the system have a exploitable vulnerability, a mal-
ware uploaded to the system may, in the worst case, be able to infect the host
machine and have full access to the network where the host machine resides.

16 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

Accordingly, secure development practices[4] should be utilized while devel-
oping this repository. When handling the malicious code, defense in depth [5]
is also applied (see Section 4.2.5). This is done to provide several layers of
defense in case of vulnerabilities in any of the tools used.

Chapter 3

Deployment technology

Deciding and defining the main building blocks is an important step in every
software development process. This chapter describes the technologies behind
the parts composing the foundation of the repository, with explanations of why
these were chosen.

3.1 Development stack

A development stack, also called a software -or development stack is an ecosys-
tem defining a set of languages, libraries and tools used for application devel-
opment.1 To develop a solution for a malware repository, a web development
stack is needed which is also referred to as a full-stack. One significant benefit
of using a predefined stack is streamlined development using a single language
across the entire application.

3.1.1 Chosen stack

The MEAN stack is open source and primarily used to develop cloud-hosted
applications due to its flexibility, scaleability and extensibility[6]. The name
MEAN is an acronym for the four technologies it’s built with. MongoDB, Ex-
press, Angular and Node.js. The primary language is JavaScript (JS) which
has been popular for frontends for a long time due to being flexible, dynamic
and easy to use [7]. In recent years, it’s started being an option for backend
and database development, allowing developers to create applications with JS
through the whole stack. By using JS throughout the stack, a smooth flow of
information between all parts is ensured, as they have the same structure of ob-
jects and data. The stack is by all means not static, and any of the components
can be swapped out for another technology if needed [8].

1https://www.techopedia.com/definition/27268/software-stack

17

https://www.techopedia.com/definition/27268/software-stack

18 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

3.1.2 Alternative stack

Since the MEAN stack is not static, it is possible to swap out one or more com-
ponents in the stack. A popular alternative is to change Angular with React2.
React is a JavaScript library for developing frontend applications, and have in
recent times become widely popular.

3.1.3 Critique of chosen stack

Angular is framework designed for big applications. This language does have a
steeper learning curve than other frontend libraries, which makes introduction
to Angular harder. However, it seemed manageable and was therefore chosen.

3.1.4 Frontend

Angular is Google’s Typescript-based frontend framework for developing single-
page applications. By using a SPA, building a highly effective website is possible,
as the whole page is not reloaded every time, only the section changing will be
refreshed[9]. Frontends built on Angular is developed with TypeScript which
is an extended version of JS with a few improvements such as variable type
declarations [10].

3.1.5 Backend / Express

Node.js is an open source JS framework using asynchronous events to pro-
cess multiple connections simultaneously[6]. It is the backbone of the MEAN
stack and connects all the other parts together and passes communication. Ex-
press being the API Router providing endpoints serving different data from the
database based on the request format.

3.1.6 Database

MongoDB is the database located at the bottom of the stack. It is a NoSQL
database, which has many advantages such as being modular, efficient and
able to handle large amounts of data quickly [6]. Additionally it is developer
friendly, providing an advantage for this thesis. A NoSQL database is needed
in this project as data from different analysis sources are unstructured and
unsuitable for a SQL database.

3.2 Deployment

The application need to be deployed on servers to serve its purpose. These
servers can be hosted on public clouds, or on dedicated local servers. This

2https://reactjs.org/

https://reactjs.org/

Chapter 3: Deployment technology 19

project is an internal service at NTNU, therefore, local hosting would be best
suited. There is primarily two different deployment strategies to be consid-
ered[11]:

1. Serving the static files of the Angular application directly with NodeJS/-
Express.

2. Use NGINX as a middleware for serving Angular files, and a proxy for the
NodeJS/Express application.

The second strategy is being defined as the best practice in terms of perfor-
mance and ease of use andmaintenance. The reason is that NGINX is way faster
at serving static raw content[11]. Node/Express is great at executing logic, but
not optimized for static serving. NGINX also offers additional capabilities as
gzip, load balancing and easier TLS integration.

MongoDB
Database
server

NGINX proxy
routing

requests
between
services

NodeJS
APIs

User/browser

Database
calls

Webserver

4 - API
response

3 - API call

2 - Serve
static angular

site to
browser

1 - Request
website

/api &
/auth

/

Static
angular
content

HTML
CSS
JS

/var/www

Figure 3.1: Deployment

20 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

1 location / {
2 # First attempt to serve request as file, then
3 # as directory, then fall back to displaying a 404.
4 try_files $uri /index.html =404;
5 }
6
7 location ~^/(api|auth)/ {
8 proxy_pass http://localhost:3000;
9 proxy_http_version 1.1;

10 }
11
12 location /ws {
13 proxy_pass http://localhost:3000;
14 proxy_http_version 1.1;
15 proxy_set_header Upgrade $http_upgrade;
16 proxy_set_header Connection "upgrade";
17 proxy_set_header Host $host;
18 }

Code listing 3.1: NGINX routing/proxy configuration

As shown in Figure 3.1, the NGINX service acts as the first point of contact
when accessing the Malware Goodware Repository. It will redirect the request
to the correct service running on the server. When a user requests a website on
the server on the root path ’/’, it will serve static content from the /var/www/
folder, where the Angular frontend files are.

Code listing 3.1 reflects this logic with it’s routing definitions. That snip-
pet from the NGINX- configuration file shows how requests to root/index will
be routed to a static file index.html on line 1, which are the Angular static
web-files. The block on line 7 defines that requests starting with either /api
or /auth should be passed to a service running on port 3000, which is the
Node.js/Express backend. The last block at line 12 will handle WebSocket re-
quests, which also will be passed to the backend on port 3000.

Chapter 4

Implementation

During the course of the development process, various modules and compo-
nents are used. As many of these work in similar ways, choosing the best fit
for the repository is an important task. This chapter describes the various com-
ponents of the repository from both the front- and backends perspective, and
how each of these were included.

4.1 Frontend

Creating the top-down framework of the malware repository includes creat-
ing a frontend application with certain requirements, including being able to
view and interact with files, having an admin panel with user editing and log
view, an upload functionality and other functionality to make the application
easier to use. The goal is to make this project a better alternative to what the
NTNU Malware Lab already has, which is unstructured data in zipped archives
on shared folders. Angular Material Design was chosen as the framework for
implementing design elements on the frontend because is one of the most used
UI design frameworks in modern web development. Additionally it has been
developed by Google, which have developed Angular, leading to a great in-
tegration1. The frontend is hosted as a web-application accessible through a
users browser. Figure 4.1 depicts a basic sitemap with the various pages users
may interact with depending on their authorization. The sitemap starts with
the login page, and diverts to either the access denied page or the dashboard,
which contains the main functionality depending on your authorization.

1https://en.wikipedia.org/w/index.php?title=Material_Design&oldid=1019416314 Ac-
cessed: 2021-27-04 15:07

21

https://en.wikipedia.org/w/index.php?title=Material_Design&oldid=1019416314

22 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

Login Access denied

Dashboard / file-list /
filtering Admin-panel

User-
administration

Logs
Tab1

Tab2

Favorites

Detailed file-view

Uploading

Upload-status

Static analysis

General
Tab1

Tab2

Third-party
analysis

Tab3

Figure 4.1: Sitemap of the repositories frontend

4.1.1 Login

When accessing the platform and a user is not logged in, a login screen will
be shown. The login screen prompts the user to sign in with Feide, as shown
in Figure 4.2. The user can then follow the steps and log in with their Feide
credentials, that they share with other NTNU services like e.g. Blackboard.

Chapter 4: Implementation 23

Figure 4.2: The login page

When authenticated with Feide, the server will check if the user is active. If
that is not the case, the user will not be able to access anything and will have
to contact an admin to be activated. This is default behaviour for new users,
or if an admin have deactivated a user. As shown in Figure 4.3, a permission
denied page will be shown to the user as the only resource they can access if
their account is disabled or not yet activated.

Figure 4.3: Permission denied page

24 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

In case the user have successfully logged in, the user will be greeted with
the main dashboard as shown in Figure 4.4.

Figure 4.4: Main user page

4.1.2 Listing and viewing files

On the dashboard, there is a table containing a list of files stored in the repos-
itory as shown in Figure 4.5. It shows the filename, size and when the file was
added to the database. Clicking on a row will expand it and show some more
information and display a link to the detailed view of the file. It is possible to
sort the rows, and select multiple files with checkboxes.

Figure 4.5: The file list

Chapter 4: Implementation 25

Sorting

The table can also be sorted alphabetically, ascending or descending. The table
module supplied by Material Design have struggles with sorting words with
different letters cases. To fix this, there was a need to change the sorting algo-
rithm to account for lower- and higher cases when sorting as shown in Code
listing 4.1. This was a known issue with the table-sorting package from Mate-
rial Design. Finding a solution proved to be an easy task as this was already a
reported issue on Github 2.

1 this.dataSource.sortingDataAccessor = (item, property) => {
2 // If there is no item[property] continue to next drawer in array
3 if(!item[property]) {
4 return this.sort.direction === "asc" ? ’3’ : ’1’
5 }
6 // item[property] to lower case, which makes mat-sort able to sort it
7 return ’2’ + item[property].toLocaleLowerCase()
8 }

Code listing 4.1: File sorting algorithm

Without Code listing 4.1 the sortingwill not work asmat-sort is case-sensitive.
This code will go through the rows that are going to be sorted, checks if the
users want to sort ascending ("asc"), and returns the same data in lower-case.

Checkboxes

The checkboxes enables the possibility to do a mass action, in this case of re-
analysing, downloading, favorite and deleting selected files as shown in Fig-
ure 4.6. When clicking the button ’Execute action’, the system sends an array
containing the selected files to the correct API route according to the specified
action. In this proof of concept repository, reanalyze and download are devel-
oped and working, as these was considered the most important functions of
module

2https://github.com/angular/components/issues/9205#issuecomment-423995549 Ac-
cessed: 2021-4-30 12:00

https://github.com/angular/components/issues/9205#issuecomment-423995549

26 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

Figure 4.6: Checkboxes

Pagination

The table also supports pagination making traversing and loading the file en-
tries easier as shown in Figure 4.7. When clicking on a new page it sends a
new http request to the backend and only loads the files that is needed on the
pagination page. This is faster as it now it only needs to load a defined amount
instead of the whole database.

Figure 4.7: Pagination on the file list

File view

Clicking on the button "expanded details" in the expanded file on the file list,
the user will be redirected to a page containing all information about this spe-
cific file, as shown in Figure 4.8. The detailed information includes most of
the data stored on the database, such as: hashes, original filename, size, data
added, file type, analysed information from 3rd party sites (VirusTotal) and
static analysis (PEframe). Both the sha256 and md5 sum will for convenience
be copied to the users clipboard if clicked on. It is also possible to download the
files, add them to favorites or requesting a reanalysis of the file on the detailed
view and the file list.

Chapter 4: Implementation 27

Figure 4.8: Detailed file view

Tagging

All files uploaded can be tagged. These tags are stored in an array in the
database as mentioned in Section 4.3. This functionality was specifically re-
quested by the employer as they wanted to be able to tag a file with for in-
stance exam to hide it from students, or private to only by visible for the user
who uploaded the file. These tags can be edited by admins, researchers, and
the user who uploaded the file.

4.1.3 Admin panel

The admin panel (Figure 4.9) contains helpful tools for the users with admin
privileges. This panel contains some features. First, a list over users where the
admin has the ability to activate/deactivate and edit users. This is an important
feature as it adds manual control over access to the repository. It is also an
efficient way to deactivate a user in the case of malicious behaviour. Spotting
this behaviour is related to the second feature of the admin panel which is a
simple log view. This shows live logs in a clean format for the admins to see.
The edit functionality allows the admins to change the role of a user.

Figure 4.9: Admin panel user list

28 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

Edit users

On the admin panels user list (Figure 4.10) the admins are able to edit a users
role, status (active or not) and if they are able to upload. As requested by the
NTNU Malware Lab, when editing a student there should be a checkbox to
enable/disable uploading for specific students, as shown in Figure 4.10b. This
is by default disabled.

(a) Edit user if admin (b) Edit user if student

Figure 4.10: Edit user dialogues

Delete users

On the admin panel’s user list the admins are also able to delete users. Clicking
on the delete user selection users are prompted with a delete confirmation, as
shown in Figure 4.11.

Figure 4.11: Delete user dialogue

Log list

The log-list on the frontend is establishing a websocket connection to the back-
end to continuously receive logs and display them to the user. The logs are
created by Winston on the backend and creates a simple way to view the mon-
itor the system as an admin. Figure 4.12 shows an example of logs in admin
panel.

Chapter 4: Implementation 29

Figure 4.12: System logs in admin panel

4.1.4 Authorization

Handling authorization on the frontend with Angular is done by using a Route
Guards, often known as AuthGuard.When a user want to navigate to a different
location, it will trigger a call to the Router inside Angular which will handle
the request. The Router will check with the AuthGuard whether or not the user
should be allowed navigation to the requested route [12]. On the frontend,
AuthGuard has been split into 3 different components, each handling a aspect
of Route Guarding, these components are:

AuthGuard

The AuthGuard checks if the user that is trying to access the page is authen-
ticated, and if not the user gets redirected to the login page. This guard is
enabled on all pages other than the login page itself. And if a users "active"
flag is set to false in the database, meaning the user is not allowed into the
repository, the user will be redirected to a /accessdenied page. The code for this
is shown in Code listing C.4

AdminGuard

The AdminGuard checks if the user is an admin. If not, the user wont have ac-
cess to the admin component. This guard protects the admin dashboard located
on /admin (Code listing C.5).

30 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

LoggedInGuard

The LoggedInGuard prevents users from accessing the /login page if the user
already is logged in, and if the user is not logged in, the user stays on the /login
page (Code listing C.6).

Route and guard definitions

The guards protecting the routes are defined on the frontend in app-routing-
module.ts, which is keeping the definition of all routes. The routes are defined
with their path, which component to render on that path, and which guard to
protect this route.

1 const routes: Routes = [
2 { path: ’admin’, component: AdminComponent, canActivate: [AdminGuard] },
3 { path: ’login’, component: LoginComponent, canActivate: [LoggedInGuard]},
4 { path: ’favorites’, component: FavoritesComponent, canActivate: [AuthGuard]},
5 { path: ’upload’, component: FileUploadComponent, canActivate: [AuthGuard]},
6 { path: ’’, component: DashboardComponent, canActivate: [AuthGuard], pathMatch: ’full’ },
7 { path: ’fileview/:sha256’, component: FileViewComponent, canActivate: [AuthGuard]},
8 { path: ’upload/:id’, component: UploadStatusComponent, canActivate: [AuthGuard]},
9 { path : ’accessdenied’ , component: notactiveComponent },

10 { path: ’**’, component: NotFoundComponent }
11];

Code listing 4.2: Definition of routes and guards

4.1.5 404 and inaccessible pages

Trying to access either inaccessible pages or pages that does not exist will redi-
rect users to a 404 error page shown in Figure 4.13. The error page differen-
tiates from the access denied page shown in Figure 4.3 by the fact that to get
the 404 page the user is already using the website, meaning the account is
activated.

Figure 4.13: 404-page

Chapter 4: Implementation 31

4.1.6 Uploading

Uploading files is the single most important feature of the platform, to be
able to get files into analysis. During the meetings with the employer, they
requested that both admins and researchers should have an option to upload,
in addition to students if they are given explicit permission through the user-
administration tool on the admin-dashboard as seen in Section 4.1.3.

The upload service is accepting multiple files at once. They can either be a
non compressed, or compressed files (zip, rar, tar, targz, gz). The file can be
compressed without a password, or zipfiles encrypted with a common password
used for malware samples such as "infected".

Once the files are sent to the backend via the upload-page, there is a need to
see the progress of the files going through analysis after the upload have been
tagged and given a unique ID. This could be achieved by the frontend sending
a request to the backend on a set interval checking the status. However, this
would create unnecessary traffic, and the events would not be entirely live.
Instead, the frontend will establish a websocket connection to the backend
server, and listening to new changes and showing them to the user in real-
time. Figure 4.14 shows the information flow between front- and backend.
The figure does not include cases where the user is not authenticated or other
general errors.

Frontend Backend

POST /api/v1/file/upload [files]

(201) { id: uploadId}

WebSocket /api/v1/file/upload/${uploadId}

Redirect to
/upload/${fileId}

Figure 4.14: Systems sequence diagram of file uploading

32 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

Upload status

When uploading one or several files the user is redirected to a new page show-
ing the status of the upload. The URL of this page consists of the fileId of the up-
loads object covered in Section 4.3.3. The status of the upload is made graphical
with a progress bar shown in Figure 4.15. This gives the user a clear indication
as to the progress of the upload.

Figure 4.15: Upload status bar

4.1.7 Downloading

The user interface for downloading files allows for both single and multiple file
download as shown in Figure 4.16. In the file list, a user can select multiple files
and use the multi-function dropdown box to perform a bulk download which
will ZIP all the requested files and download them on the users device.

Chapter 4: Implementation 33

Figure 4.16: Download multiple files

By opening the detailed file view, a download button is present in the upper
right corner. This will ZIP the requested file and download it to the users device.

Figure 4.17: Download button on detailed view

4.1.8 Favorite

The functionality to favorite samples is present in the repository. Favoriting
samples can be useful if the user want to save a particular file for later access,
without needing to filter the whole database to find it again. During meetings
with the employer, this was confirmed to be a wanted feature, and was imple-
mented as a part of the repository. A sample can be favorited by either selecting
multiple files in the file-list and bulk-adding them to favorites, or by doing it in
the file view with clicking on ’favorite’ in the actions-box.

The favorited files are accessible through the /favorite route, which is one of
the primary features linked on the left sidebar of the repository for easy access.

34 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

Figure 4.18: Favorite button on detailed view

The favorite pagewill list up all the files favorited by the user. A user can only
see their own favorites, and not other users. The list is also been implemented
with pagination in case there is a bigger quantity of files favorited.

Figure 4.19: Favorites page

Chapter 4: Implementation 35

4.1.9 Filtering

Basic search and filtering functionality have been implemented to enable sort-
ing. The component can accept text-search, and requirement-buttons for Virus-
Total analysis.

Figure 4.20: The filtering/search component

Once the search button has been pressed, it will craft an unique URI with
query parameters matching the options from the filtering. This logic of this
functionality is crafted in a way that the URI and the filter-component is two-
way-binded, meaning if users change either, the other will reflect that change.
This makes it possible to share a full URL with query parameters to another
user, and they will receive the same results and the filtering component reflect-
ing those filters to facilitate for further filtering based on the previous query.

Figure 4.21: The URI crafted by the filtering component

The code in Code listing 4.3 shows how the URL is crafted through the
filtering component after clicking "Search". The two filtering values, text and
virustotal are assigned to the local variable data if they are defined, on line 3.
On line 9, the router will navigate the user seamlessly to a route containing
the query parameters set in data.

36 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

1 search(form: NgForm) {
2 // Create a JSON object containing the query params
3 this.data = {
4 text: (form.value.text ? form.value.text : undefined),
5 virustotal: (form.value.virustotal ? form.value.virustotal : undefined),
6 }
7 // Set the URL to accomodate for the new query parameters
8 this.router.navigate([’’],{ queryParams: JSON.parse(JSON.stringify(this.data))}).then(()

=> {
9 // Trigger refresh of file-list

10 this.fileservice.filesUpdated.next(true)
11 })
12 }

Code listing 4.3: How the URL is crafted and set.

An issue proved to be that undefined selections in the filtering-component
(such as a non-selected checkbox for Virustotal), would add ’virustotal=undefined’
as a parameter in the URI. This was solved as a part of line 9 in the code above,
by taking the JSON object, stringifying it and parsing it back to a JSON object.
This removed any undefined keys from the JSON object, and it could be set as
queryParams in the router.

The two-way-binding of parameters was achieved by using a directory in An-
gular to get the query-parameters from the URL. Without the code in Code
listing 4.4, the filtering component would not be aware of any parameters al-
ready set in the URL.

1 ngOnInit() {
2 // Get parameters from URI and save them in queryParams.{}
3 const queryParams = new URLSearchParams(location.search);
4
5 // If query includes form-key, patch it’s value from query
6 if (queryParams.has(this.paramKey)) {
7 this.ngControl.control.patchValue(queryParams.get(this.paramKey));
8 }
9 }

Code listing 4.4: Directive getting query parameters from URL.

When loading the repository with query parameters set in the URL, they
will be sent to the backend which will filter the results before sending them
back to the user.

Chapter 4: Implementation 37

4.2 Backend

The purpose of the backend is to process requests from a user and handle all
files in the repository, including their metadata. Some of these requests will
require processing and analysis of files, in addition to communicating with
the database. The backend will act as a connector between the user and the
database and will resolve queries from the user.

4.2.1 Authentication and Authorization

Authentication refers to the process of making sure someone is who they appear
to be[2]. Authorization on the the other hand is the process of assigning a
user to their corresponding access level[2]. Developing a system where only
authorized users are able to access the different components is a main priority.
This is because the nature of this system is to handle files that can be harmful
if they fall into the wrong hands.

1. Sessions and JWTs

When choosing an authentication method, two of the industry standards and
most used method are JWT’s (JSON Web Tokens) and Session based authenti-
cation. Both solutions are based around storing some data in the users browser,
either a token (JWT) or a cookie (Session based). The main difference between
these two methods of handling authentication is that the users data is stored
on the server when using session based storage; while user data is stored in
the browsers local-storage when using JWTs [13].

The decision on which method to implement was set by the argument of
reusing the technology NTNU already have implemented in their platforms. For
instance the service ’Innsida’ is session-based where they are storing a ’JSES-
SIONID’ in the cookie-store on the browser, and the users data on the web-
server. Blackboard inherits this functionality. In addition, Uninett is supplying
a session-based Node.js backend module, to show a proof of concept of how it
can be implemented.

Figure 4.22: SESSIONID-cookies set by Innsida

2. Methods

During the start of the development, a system for local authentication was de-
veloped. This method used a single username and password for authenticating
the user with the data stored in a database. The employer later requested the

38 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

integration of Feide as an Oauth3 platform to authenticate the users, and re-
searching Uninett’s solutions showed this being possible. Therefore, focus was
shifted away from the local authentication solution and over to implementing
Feide instead.

3. Feide

Feide, one of the main identity management services used in the Norwegian
education, is well integrated with NTNU’s systems and is already in use on most
platforms educationally integrated with NTNU such as Innsida and Blackboard.
Students and employees at NTNU already have an account with Feide; There-
fore, account-creation is not needed for users to access the platform. Uninett is
running Dataporten.no which is a self-service platform for setting up applica-
tions authentication with Feide.

In order to register an application on Dataporten, users need to have an
active Feide account. Once the application is registered, Dataporten will pro-
vide the necessary data for configuring authentication with Oauth2.0, which is
ClientID, Client Secret and Authorization endpoint as shown on Figure 4.23.

Figure 4.23: The data provided by Dataporten to setup authentication

Two-factor authentication will add an extra layer of security, and will re-
quire users to provide two different authentication factors to verify themselves.
A solution for two-factor is currently being launched on Feide, and can be ac-
tivated from the backend when it’s deployed, if needed. Additionally, spring
2021, Feide launched integrationwith ID-porten for authentication usingMinID
or BankID. This is a great way to confirming the authenticity of the users, as
an alternative to traditional two-factor authentication with Feide.

3https://oauth.net/2/

https://oauth.net/2/

Chapter 4: Implementation 39

The employer requested the possibility for users with no connection with
NTNU to access the repository. Through the dashboard on Dataporten, guest-
users can be activated as seen in Figure 4.24. Users can then log in with ordi-
nary email and passwords through Feides IDP portal.

Figure 4.24: Button to enable guest users on the Dataporten-dashboard

4. Oauth2.0

OAuth is the industry standard protocol for authorization. It is commonly used
as a way for users to grant websites or applications access to their information
without passing them their password. In this case, Feide supports OAuth2.0,
and users will be logging into Feide, which then passes information to the
repository about the user. Feide will handle the authentication, and the repos-
itory will handle authorization.

5. OpenID Connect

OpenID Connect is an identity layer sitting on top of the OAuth 2.0 protocol.
It is supported by Feide as per their documentation [14] and makes it possible
to obtain profile information about the end-user in a REST-like manner. User
specific information the platform is requesting through the OpenID Connect
endpoint is:
• What subjects a user is connected to at NTNU. (e.g. IMT4116), what role
they have in that subject such as student and employee, and what faculty
they’re a part of.

• Full name of the user.
• Profile picture of the user for display purposes.

6. Passport.js

On the backend there is a need to protect the API routes from unauthenticated
users. In the backend framework Node.js there are several ways to accomplish

40 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

this, one of which is by coding the whole module ourselves. The drawbacks
of doing this is that future maintenance and refactoring of code will be more
challenging as it is a custom module. To solve this problem, there is a module
for Node.js called Passport 4 which is the most popular library for authentica-
tion in Node/Express based applications[15]. Passport.js is an authentication
middleware for Node.js. Meaning it can be placed in the middle of a API route
to process and manipulate the request before proceeding to the resource. A
common use of this is to append data about the user to the request object.

7. Strategies

Passport.js are using authentication mechanisms called strategies[16] to de-
fine how the authentication should take place. As mentioned in Section 4.2.1,
Uninett has a public GitHub profile with various repositories, one of which is
passport-dataporten5. This package was depending on OAuth2.0 alone, and was
able to authenticate users and show what subjects at NTNU they were a part
of. However, as OpenID connect provides a better way with more endpoints to
obtain user identity, it was decided that it would be a better and more scalable
solution.

Further research showed that Uninett also have a repository called passport-
openid-connect6 onGitHub. This repository successfully integrated OpenID con-
nect, but did not grab which subjects at NTNU the user is a part of. To avoid the
package being overwritten in the future by a possible update from the devel-
oper, it was manually added to the project without connection to the package
manager.

In order tomodify the package to suit the repositories needs, several changes
had to be made.

First, it had to be able to grab a users subjects through the OpenID Connect
endpoint. This was done through a call to the URL supplying user-groups. The
function shown in Code listing 4.5 was added as a part the pipeline in the
strategy provided by Uninett. It crafts a request-body on line 5, and sends the
request on line 13. In return it will receive what groups the user is a part of,
and return it on line 16 to the calling function.

4http://www.passportjs.org/ Accessed: 2021-05-15 14:11
5https://github.com/Uninett/passport-dataporten Accessed: 2021-05-15 14:36
6https://github.com/Uninett/passport-openid-connect Accessed: 2021-05-15 14:38

http://www.passportjs.org/
https://github.com/Uninett/passport-dataporten
https://github.com/Uninett/passport-openid-connect

Chapter 4: Implementation 41

1 OICStrategy.prototype.loadGroups = function() {
2 var that = this; // Workaround for accessing

’this’ inside a subfunction, promise.
3 return new Promise(function(resolve, reject) {
4
5 var options = {
6 url: that.groupsUrl,
7 headers: {
8 ’User-Agent’: ’passport-dataporten’,
9 ’Authorization’: ’Bearer ’ + that.tokenSet.access_token

10 }
11 };
12 // console.log("Perforing OAuth 2.0 Request", options);
13 request(options, function (error, response, body) { // Send request to groups API
14 if (!error && response.statusCode == 200) {
15 var data = JSON.parse(body);
16 resolve(data); // Resolve with data
17 }
18 reject(error); // Reject if error
19 });
20
21 }).then(function(groups) {
22 that.groups = groups;
23 return groups;
24 });
25 };

Code listing 4.5: Function for getting the subjects a user is a member of.

The next thing that had to be done was to modify the serialization of users.
When a user logs in, the account will be serialized and assigned to a session. It
is necessary to create a database records of users using the repository, and to
solve this it was added code to register new users in the database when they
are logging in. This can be seen in Code listing 4.6 where data of new users
will be sent to the database first. This way, all users on the repository can be
administrated by an admin, and it is possible to store additional information
on a user other than what is provided through Feide.

1 OICStrategy.serializeUser = function(user, cb) {
2 // Find the user in the database based on their feide_id
3 userService.findUser(user.data.sub)
4 .then(usr => {
5 // if user exist, serialize the user to a session
6 if (usr) {
7 cb(null, user.serialize());
8 }
9 // if the user does not exist, create it in the

10 // database and serialize the user to a session
11 else {
12 userService.createUser(user)
13 .then(data => {
14 cb(null, user.serialize());
15 })
16 }
17 })
18 .catch(err => {
19 this.fail(err)
20 })
21 }

Code listing 4.6: Function for getting the subjects a user is a member of

On line 3 in Code listing 4.6 the database will see if the user already exists. If
the user exist, it will assign the user a session on line 7. If a user does not exist,
it will create the user on line 12, and once the process is complete the user will

42 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

be assigned a session. The full code for the Passport strategy for authentication
can be found in Appendix C and Code listing C.2.

4.2.2 Protecting resources

Protecting resources from unauthorized users is crucial to achieve a multi- user
repository with access control. There are primarily two levels of authorization
which needs to be implemented. The first layer is implemented as a part of the
API route when users are requesting a resource, and the second layer is a part
of the logic processing the files before sending them back to the user.

1. API middleware

A middleware is a function placed inside the definition of an API route. The
purpose of this middleware is to see if a user got the necessary permissions to
access that particular route. Different applications have different needs, so a
middleware has to be tailored to suit the repositories needs. The middleware
is programmed in such a way that it can restrict access for users based on both
their role, and if they have certain tags set on their account.

As shown in Code listing 4.7, exec() is the main function in the middle-
ware checking if certain functions are resolving as true. First, it is checking if
all authorized users should be able to access the resource on line 8. Further,
it’s checking if the users-role is whitelisted for accessing the resource on line
10. Lastly, it’s checking if the user has any tags set on their account which is
whitelisted for that access on line 12. If none of these checks resolve with true,
it will send a response to the user with HTTP code 401 as unauthorized.

The full authorization middleware can be found in Appendix C and Code
listing C.1.

1 /**
2 * @desc Authorization-check for backend
3 * @params req, res, args (request, response and arguments)
4 * @res Will return true if authenticated/authorized, and send an immediate

401/403 if unauth.
5 */
6 function exec(){
7 if (allowAllAuthenticated()) { // Check if "everyone permitted"

is passed
8 return next()
9 } else if (isUserRoleAllowed(req.user.db.role)) { // Check if users groups

is in the routes groups
10 return next()
11 } else if (isUserTagAllowed(req.user.data.sub)) { // Check if users id

is in the routes whitelisted users
12 return next()
13 } else {
14 return res.status(401).json({ // User not

authorized
15 message: ’Unauthorized’
16 })
17 }
18 }
19 }

Code listing 4.7: Protecting resources

Chapter 4: Implementation 43

Code listing 4.8 shows the different arguments being passed to the authorize
middleware. Line 1 would allow all authenticated users to access the API route.
Line 2 would only allow admins to enter the route, and line 3 would allow
admins and researchers, in addition to everyone else tagged with studass (short
for student assistant).

1 authorize({ all: true })
2 authorize({ role: ["admin"] })
3 authorize({ role: ["admin", "researcher"], tags: ["studass"] })

Code listing 4.8: Examples of arguments accepted by the middleware

A live example of the middleware is shown in Code listing 4.9, where the
authorize middleware has been implemented as a part of the /upload route on
backend. The example shows how the route is allowed only for users being part
of the admin or research role-group, or if they have the ’upload’ tag set on their
user. The latter is intended for students with explicit permission to upload files.

1 /**
2 * @desc Upload a file (the file itself)
3 * @route /api/v1/file/upload - No params, but file(s) as object
4 * @res 400 if post is misformed, 200 if file is uploaded
5 */
6 router.post(
7 "/upload",
8 authorize({ role: ["admin", "researcher"], tags: ["upload"] }),
9 multer,

10 async function (req, res, next) {
11 // code removed for display-purposes
12 }
13);

Code listing 4.9: Implementation of authorization middleware

2. File-filtering

During meetings with the employer, it was clearly a wish to restrict some users
from accessing various files. For instance, a student should not be able to see
files containing the tag exam. This was solved by creating a function which will
check all the files a user is accessing, and remove the ones the user is restricted
to access.

1 function exec() {
2 // Check all files in the array
3 files.forEach(file => {
4 // Check if student and exam tag is set, and if file is private
5 if(isStudent(file) || isPrivate(file)) {
6 // Remove that file from array if user should not have access
7 files.splice(files.map(function(e){return

e.sha256}).indexOf(file.sha256), 1)
8 }
9 })

10 resolve(files)
11 }

Code listing 4.10: Filefilter removing files unauthorized for users.

In Code listing 4.10, the array of files will be looped through on line 3, and
each file will be checked. If a file is tagged with exam and the user is a student,

44 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

or if the file is tagged with private and the user is not the one who uploaded it,
the file will be removed from the array. At the end at line 10, the filtered array
will be returned and eventually sent to the user. This way, users will not able
to access files marked with specific tags if their account is not authorized for
them.

The full filefilter code can be found in Appendix C and Code listing C.7.

4.2.3 API

Communication between the frontend (browser) and the backend, is requiring
a push/pull API. The API is hosted on the backend server on port 3000, and is
behind the URI path /api.

A challenge is updating the API over time, without causing incompatibility
with older versions of frontends and pure API users. This have been solved by
versioning the API. The current API is now version 1, and all API routes have a
prefix of /api/v1/. By implementing a versioning like this, new API routes can
be implemented on /api/v2/ in the future, while still keeping the old version
running. This ensures compatibility across versions.

All API routes are protected with a guard to limit access to only those who
need them. For instance a route for deleting a user is only accessible by users
having the role set to admin in the database. This is achieved with the middle-
ware covered in Section 4.2.2

File endpoints

The file endpoints consists of routes related to file modification and querying.
These routes makes the user able to upload, download and get metadata of
files. In Figure 4.25 there is an overview of the API routes created.

Chapter 4: Implementation 45

Figure 4.25: Overview of file-routes documented with SwaggerHub

User endpoints

The user endpoints consists of routes related to user manipulation. The user
may query information about themselves, and an admin may delete or edit a
users with these endpoints. In Figure 4.26 there is an overview of the API routes
created.

46 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

Figure 4.26: Overview of user-routes documented with SwaggerHub

Admin endpoints

The admin endpoints helps the admin access the logs from the backend server.
All of these endpoints are configured as websockets which will push a stream of
logs once the connection is established. On connection, all logs from the current
date will be pushed, along with new entries when they are made. The routes
passing logs to the administration panel could be configured as a GET-route as
well, but it would not be able to send logs live as the events occur which is a
purpose and usecase of websockets.

Documentation

In order to effectively develop and integrate an API, it’s crucial to document it
well. Two API documentation tools which frequently shows up during research
is a tool provided by Postman, and another tool called Swagger7.

In 2017, Postman released the results of a community-developer survey[17].
It showed that developers work a lot with APIs, as 70% of the community
spends more than a quarter of their time working with APIs. Another key-
highlight of the survey was that API documentation is critical, and could be
better.

7https://swagger.io/tools/swaggerhub/

https://swagger.io/tools/swaggerhub/

Chapter 4: Implementation 47

Both Postman and Swagger provides the same features and use the same
OpenAPI syntax. In the end, Swagger was chosen as the API documenting tool
as it is subjectively speaking, more visually pleasing. Since both services have
implemented the same OpenAPI specification, it can be migrated to Postman
in the future if needed.

Both Figure 4.25 and Figure 4.26 are products of the documentation writ-
ten through Swagger. Each route are collapsible and once expanded they show
additional information such as what parameters the route accepts, and what re-
sponse the user can expect to get in return. An example is shown in Figure 4.27
where the route accepts a body-object with "analyze_source" and "hash" as ar-
guments. In return it will either send HTTP response code 200, or 400.

Figure 4.27: Example of a detailed view of a route shown in Swagger

The full documentation for the API can be found in Appendix B

48 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

4.2.4 Upload

The ability to upload samples to the repository is an important function. Having
a pipeline that is fault-proof is therefore a significant part of the uploading
process. When a user uploads a sample, the sample is put in a folder with a
unique ID that will follow the file through the whole pipeline. Further, the file
is checked for compression and one of two situations will occur:

1. If the file is compressed, a docker container unzips the file. And does so
until there is no longer a compressed file present. In cases where there are
more than 10 compressed files within each other, the file will be thrown
out of the pipeline. This is done to prevent denial of the unzipping service
by uploading a compressed file with an unreasonable amount of recursive
zipped folders inside of it. The unzip service is also capable to bruteforce
the compressed archive with its wordlist containing about 10 passwords.
This wordlist consists of common passwords to encrypt malicious archives
with.

2. The file is not compressed and is immediately transferred for analysis.
After unzipping, the analysis process begins. The file is checked whether

it already exists in the repository database, and if it does it is thrown out of
the pipeline. If it does not already exist, its hash, as well as general metadata
of the file that don’t need to come from analysis, is added to the database.
Third-party analysis based on the hash is also started, as well as static analysis.
After the analysis is finished the file(s) themselves are stored in the repository’s
file-storage.

Should a compressed file with several samples be uploaded, the pipeline is
built to handle this. Such cases result in a queue where samples are analyzed
one by one. Should the compressed file consist of more than 10 files, it will
split the files into several folders to try to parallelize the analysis process.

Figure 4.28 shows the graphical sketch used for implementing the upload
functionality.

Chapter 4: Implementation 49

Upload

Docker_unzip

Docker_analysis

Analyze

Store

Upload file

Create object

Contains
compressed file?

User

Unzip compressed
file

Contains
compressed file?

unzip_counter++*

File exists in
database?

Remove from
pipeline

*If unzip_counter == 10, file
is removed from pipeline

Add file to
database

Perform third-
party analysis
based on hash

Perform static
analysis

Wait for finished
anlysis

Add to file-storage

Green arrow indicates true

Red arrow indicates false

Figure 4.28: Docker pipeline for uploading files

4.2.5 File Analysis

Files that are uploaded are sent to analysis to extract information from the
file that users can search for and view. For this, the method static analysis
is used. Although static analysis only looks at the content of the file without
executing it, it is nearly impossible to ensure that the tools used for analyzing
are without vulnerabilities and weaknesses. Therefore, all actions done on the

50 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

samples, unzipping and analysis, is done inside of a docker container. This
method provides defense in depth 8 , as a sample designed to exploit a possible
vulnerability in the tools used, would also need to escape the docker container
to infect the system.

Per now, the tool used for static analysis is PEframe. This tool is primarily
used to perform analysis on Portable Executables, but is also able to analyse
generic suspicious files. Since the repository is made to be modifiable, it should
be uncomplicated to add more analysis sources. FireEye FLARE team’s CAPA
tool9 was considered, but since the tool did not have any machine readable
output, only graphical, it was not prioritized to format the output data of this
tool.

When more analysis sources are added to the docker container, the con-
tainer may grow quite big. This could affect the overall performance of the
system, as less containers can be started to analyze uploaded files. A possible
solution to this would be to create designated containers for specific types of
files.

4.2.6 Download

When a user is downloading one or several files, the system will decrypt the
queried samples and copy the files to an encrypted zip file. The password for the
zip file is set by the user, but defaults to "infected" as this is standard practice
to use for zip files that contains malware. A reason why a user would want to
change the password is because, by experience, some antivirus engines are able
to unzip and take action on files zipped with this password. Since the filenames
of a zip file are not encrypted, the password is added to the zipped folder as the
name of an empty file to let the user unzip the library even tho the user have
forgot their password. This is done, as the purpose of the password protection
is to obfuscate the file from antivirus engines and make it non-executable, and
not protect it from users trying to open the zip.

4.3 Database design

For storing data about samples/files and users, it is structured in a NoSQL
database run by MongoDB. The database content is divided into several col-
lections where each collection consist of documents containing data. The fol-
lowing collections are present in the database:
• Users: Contains one document per user registered in the repository, with
necessary information for administration.

8https://en.wikipedia.org/w/index.php?title=Defense_in_depth_(computing)&oldid=
999960956 Accessed: 2021-05-02 18:25

9https://github.com/fireeye/capa

https://en.wikipedia.org/w/index.php?title=Defense_in_depth_(computing)&oldid=999960956
https://en.wikipedia.org/w/index.php?title=Defense_in_depth_(computing)&oldid=999960956
https://github.com/fireeye/capa

Chapter 4: Implementation 51

• Files:One document per file/sample uploaded containingmetadata about
the file and data from various analysis-sources

• Uploadstatus: One document per upload. Contains the status of that
current upload.

• Download: One document per Download. Contains the file(s) down-
loaded, along with the user downloading the file(s).

4.3.1 Users

Every user of the repository will get a unique object in the collection when
registering, and an object will be stored as shown in Code listing 4.11. This
object contains data about the user, with some of it coming from Feide, while
other is system specific. The properties of this object is explained in further
detail in Table 4.1.

1 {
2 "_id": {
3 "$oid": "6053167e03f5b13c040a46d3"
4 },
5 "active": true
6 "tags": [
7 "upload"
8],
9 "favorites": [

10 "8da1be1c6179a66381135e6c030ddd0b58b932411672b5015e884718a9c745b9",
11 "57bf4e824e079c3fbf72eec0d51007850888a016e26c99084bd8cf8aeb57b10a",
12 "4a9758db02222776ffbf5b1d3123161da1585d6a48a8d4450b069abd5591061a",
13 "72f266ddfe97003446b27ad01474b5a1737730ef4cf92b3f249eef63e8142772"
14],
15 "feide_id": "5a9108a2-118b-4e97-8b47-5d23f79cf39f",
16 "name": "Christian Simoes Isnes",
17 "role": "student",
18 "lastLogin": {
19 "$date": "2021-05-05T12:18:28.922Z"
20 },
21 "dateRegistered": {
22 "$date": "2021-03-18T08:59:42.083Z"
23 },
24 "__v": 0
25 }

Code listing 4.11: Database structure for user objects

52 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

_id This is an ID given by MongoDB to that object for unique
identification.

active

Boolean identifying if a user is active or not. New users are
default set to false and need manual activation to be able
to access the platform. Administrators have permissions
to change this value in the admin-dashboard.

tags Array containing various tags admins can assign to a user.
Functionality is added to the "upload" tag, which grants the
user access to the upload-page to upload samles.

favorites Array containing sha256 hashes the user have favorited for
later use.

feide_id String of the unique feide_id of that particular user.
name String with the full name of the user, received from Feide’s

OpenID connect endpoint.
role String showing the role of the user. (Admin/Researcher/Stu-

dent)
lastLogin Date value holding the last time the user was active in the

repository
dateRegistered Date value holding exact time the user registered on the

repository.

Table 4.1: DB structure for users

4.3.2 Files

Every file uploaded will get their own entry in the collection. In this step, each
file entry is updated consecutively with the data from their analysis. Code list-
ing 4.12 shows how the database entry for each file object is set up. Table 4.2
explains each property in further detail.

1 {
2 "_id": {
3 "$oid": "6092a3692fa7b325c3d67efe"
4 },
5 "pending_analysis": {
6 "virustotal": false,
7 "static_analysis": false
8 },
9 "filetype": "Unknown",

10 "uploaded_by": "Gjert Michael Torp Homb",
11 "tags": [],
12 "sha256": "d20d3c377f9a6cd80339dd457b5ced7c2bbdd62197d8ef99085ec104fd1f7709",
13 "md5": "7daf4fd0a1f6634bcf40721cc4e3b6b7",
14 "original_filename": "GB-7daf4fd0.png",
15 "size": {
16 "$numberLong": "1252"
17 },
18 "date_added": {
19 "$date": "2021-05-05T13:53:45.165Z"
20 },
21 "__v": 0,
22 "analyzed_info": []
23 }

Code listing 4.12: Database structure for file objects

Chapter 4: Implementation 53

_id This is an ID given by MongoDB to that object for unique
identification.

pending_analysis
Object containing enabled analysis-sources as subitems. The
subitems are boolean values indicating if the analysis is still
in progress, or not.

filetype String containing the filetype.
uploaded_by String containing the name of the user which uploaded the

file.
tags Array of strings containing the tags a user has assigned to

the file. For instance "exam".
sha256 String containing the sha256 hash of the file
md5 String containing the md5 hash of the file
size Long value containing the size of the file in bytes
date_added Date value holding exact time the file was added to the

database
analyzed_info Array containing one object for each analysis-source holding

it’s respective data.

Table 4.2: DB structure for files

4.3.3 Uploads

Every upload will get their own entry in the collection. In this step, each entry
is updated when a new step in the analysis process is reached. Code listing 4.13
shows how the database entry for each object is set up. Table 4.3 explains each
property in further detail.

1 {
2 "_id": {
3 "$oid": "606eed0fad06c93d22d212b6"
4 },
5 "contains_compressed": false,
6 "unzipped": true,
7 "added_database": false,
8 "analyzed": false,
9 "analyze_queue": null,

10 "added_storage": false,
11 "splits": [],
12 "fileId": "yr4Bty",
13 "__v": 0
14 }

Code listing 4.13: Database structure for upload-status objects

54 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

_id This is an ID given by MongoDB to that object for unique
identification.

contains_
compressed

Boolean identifying whether the file being uploaded
contains other compressed files, or is compressed itself.

unzipped
Boolean identifying whether a compressed file has been
unzipped. Note: If a single uncompressed file is uploaded,
unzipped is still true.

added_database Boolean identifying whether the data of the file(s) being
uploaded has been added to the database.

analyzed Boolean identifying whether the file(s) being uploaded
has been analyzed.

analyze_queue Int identifying which position in the analyze queue the
file is.

added_storage Boolean identifying whether the file(s) has been added to
storage.

splits
If more than 10 files are uploaded, they are split into splits
of 10 to parallelize the process. The splits row contains
references to the other uploadstatus objects created.

fileId A randomly generated ID for the uploadstatus object.

Table 4.3: DB structure for uploads

4.3.4 Downloads

Every download will get their own entry in the collection. Each entry will have
a list of the files downloaded, along with the user downloading the files and
the password for the archive. Code listing 4.14 shows how the database entry
for each download object is set up. Table 4.4 explains each property in further
detail.

1
2 {
3 "_id": {
4 "$oid": "608fe0932473a961a83b2b82"
5 },
6 "files": [
7 "e0b96c98a691938b04a4240de745c0db0d55e573570815b3e7b4ea5bb2b1a52a",
8 "57bf4e824e079c3fbf72eec0d51007850888a016e26c99084bd8cf8aeb57b10a"
9],

10 "downloader": "Christian Simoes Isnes",
11 "password": "infected",
12 "downloadTime": {
13 "$date": "2021-05-03T11:37:55.671Z"
14 },
15 "__v": 0
16 }

Code listing 4.14: Database structure for download objects

Chapter 4: Implementation 55

_id This is an ID given by MongoDB to that object for unique identification.
files Array containing the files that are downloaded
downloader String containing the name of the user which initiated the download
password String containing the password of the file archive that was downloaded
downloadTime Date value holding exact time the file(s) was downloaded

Table 4.4: DB structure for downloads

4.3.5 Secure traffic

When deployed in a production environment, it is recommended to generate
and sign a certificate to use MongoDB with TLS. This will ensure authenticity
and confidentiality, as it would counteract eavesdropping of the traffic passing
between the backend server and the database.

4.4 Storage

Two types of storage methods are used to store the samples and its metadata.
This is done to ensure optimal storage of both the files and the characteristic-
s/metadata of the files.

4.4.1 Metadata

Dsicussed in Section 4.3. The metadata of the files are stored in a MongoDB
database. This makes it possible to index and search across all the metadata
in the database. This metadata consists of: SHA256 sum, MD5 sum, original
filename, size and who it is uploaded by.

4.4.2 File-storage

Storing of the encrypted files is done on the local filesystem the server is run-
ning on. A distributed network filesystem like glusterFS was considered, but
since the repository is not disk-intensive, this was considered unnecessary and
would make the system harder to maintain. The file-storage is used only when
uploading, downloading and when files are sent to reanalysis.

Furthermore, to increase performance when storing files in the file-storage,
a form of hash table10 is used to evenly distribute files across different folders.
The files are stored in folders where the filename is changed to their SHA256
hash. As seen in Figure 4.29 and Code listing 4.15, the first two characters of
the hash is the name of the root folder. The next two characters is the name
of the subfolder. The file is then stored within that subfolder. This makes it

10https://en.wikipedia.org/w/index.php?title=Hash_table&oldid=1019270041 Accessed:
2021-05-03 12:03

https://en.wikipedia.org/w/index.php?title=Hash_table&oldid=1019270041

56 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

possible to store large amount of files without affecting the performance of the
filesystem [18].

Malicious.exe

Malware.exe

Dll.dll

Files SHA256 File path

0a
60

0b

0c

0a60d4970162283be09120dcb600...

f4
0bf4bfbfdf4d9eastereggfb286eca9...

39

e8
0c39eb4b0709c8062be85fd04a16...

0ce8e5ac3381086339cc8d56f41e...

Virus.exe

Figure 4.29: How the path for file storage is calculated

1
2 // get first two characters of hash
3 let folder1 = hash.slice(0, 2)
4 //get next two characters of hash
5 let folder2 = hash.slice(2, 4)
6 //concatenate to get the full path to store the file
7 let folderpath = ‘${process.env.dbfilePath}/${folder1}/${folder2}‘
8 //create directory and return it
9 fs.mkdir(folderpath, { recursive: true }, (err => {

10 if (err) {
11 console.error(err)
12 } else {
13 resolve(‘${process.env.dbfilePath}/${folder1}/${folder2}/${hash}‘)
14 }

Code listing 4.15: Calculate filepath for file storage

4.5 Logging

Logging refers to the procedure of storing data about a system for a predeter-
mined amount of time.11 These logs can be analyzed to look for errors and
unwanted activity, or to automatically warn when some parts of the system
are not working as expected, to name a few. Logging must be implemented in
a large infrastructure and it is included in the malware/Goodware Repository.
There are simple ways to log, such as console.log(), however this is not an ideal
solution as it can only be viewed in the console and will be deleted once the
program stops. These are best used during the development process to debug,
and may cause a small decrease in performance. 12 For more advanced logging
capabilities, a dedicated library is needed. For Node.js, there are options like
Winston, Bunyan and Log4js-node.

11https://www.techopedia.com/definition/596/data-logging
12https://blog.logrocket.com/node-js-logging-best-practices/

https://www.techopedia.com/definition/596/data-logging
https://blog.logrocket.com/node-js-logging-best-practices/

Chapter 4: Implementation 57

4.5.1 Winston

Winston is a logger built for Node.js applications. As Node.js is heavily used
for this project, a logger based on this runtime environment was needed. This
logger is designed to be simple and flexible which is great, as the time spent
on implementing logging will be limited[19]. The reasoning behind choosing
Winston, is mainly because it supports multiple transports. This allows for sim-
ple remote storage of log files, with various types of logs, such as e.g. system-,
user-, and error-logs. Additionally it is the most popular logger library for Node
applications, which was taken into account when choosing it.

When implementing Winston, a dedicated logger directory is created for a
clean structure. In this directory the various loggers are created. These loggers
are then imported and referenced in the other files making up the repository,
and when triggered they ship logs to a file.

The example below (Code listing 4.16) shows a logger designed for storing
error messages that may occur.

1 const winston = require(’winston’);
2 require(’winston-daily-rotate-file’);
3
4 var errorTransport = new winston.transports.DailyRotateFile({
5
6 //Specify information about the logfiles including where to store them
7 name: ’errorlogger’,
8 level: ’error’,
9 filename: ’error-%DATE%.log’,

10 dirname: ’logging/errorlogs’,
11 datePattern: ’YYYY-MM-DD’,
12 zippedArchive: true,
13 maxSize: ’20m’,
14 maxFiles: ’14d’
15 });
16
17 const errorlogger = winston.createLogger({
18
19 //Formatting the log-message
20 format: winston.format.combine(winston.format.timestamp(), winston.format.json()),
21 //Ships the logs to the transport specified on line 4
22 transports: [
23
24 errorTransport
25]
26 })
27
28 //Export the logger
29 module.exports = errorlogger;

Code listing 4.16: Winston errorlogger

Figure 4.30 shows an example of how a info-log file may look.

Figure 4.30: Example of info-log file

58 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

4.5.2 Winston-daily-rotate

When handling logs an important feature is to be able to swap to an empty log
on a fitting time interval to ensure that no log file gets too big. This enables
a more structured manner of storing log files, as well as making the logging
flexible and customizable. The current interval for changing to a clean log-file
is every 24 hours, however this can be easily changed. Each file is named with
their respective date for easy backtracking.

Figure 4.31: Example list of daily rotated logs

4.5.3 What to log

Deciding what to log is a task requiring some thought. After all, some info and
data about the system is more useful when debugging and searching for un-
wanted activity.13 User activity is important to log, as this will enable traceabil-
ity and accountability for the users. Additionally, system logs play an important
part in gauging the overall state of the system.

4.6 System requirements

When deploying the repository onto servers, some requirements need to be
met. It is recommended that the database, backend and frontend is deployed
on three different servers. This is to ensure that the frontend and database is
responsive when the backend is busy analyzing files. The requirements listed
below are results from testing the system. Less resources than the minimum
requirement is possible, but would affect the stability of the system.

13https://coralogix.com/log-analytics-blog/important-things-log-application-software/

https://coralogix.com/log-analytics-blog/important-things-log-application-software/

Chapter 4: Implementation 59

4.6.1 Frontend

Minimum Recommended
Disk 50 GB 50 GB
CPU 2 Cores 4 Cores
RAM 4 GB 8 GB
OS Ubuntu 18.04 Ubuntu 20.04
Software Webserver (Apache / NGINX)

The frontend is the least demanding part of the repository. Its main job is to
serve static files to the user and request content from the backend.

4.6.2 Backend

Minimum Recommended Notes

Disk 50 GB 200 GB Disk size is mainly dependent
on the size of the file storage.

CPU 4 Cores 16 Cores More CPU means faster upload
and analysis

RAM 16 GB 16 GB
OS Ubuntu 18.04 Ubuntu 20.04

Software
Docker
Node.js
NPM

Git

The backend is the the most CPU-demanding part of the repository, and thus
need the most processing power. The processing power is mainly used to an-
alyze files that are uploaded. This means that analysis is faster the more CPU
cores it gets. It is worth noticing that when more analysis sources are added
later in development, more processing power is needed.

4.6.3 Database

Minimum Recommended
Disk 50 GB 50 GB
CPU 2 Cores 4 Cores
RAM 4 GB 8 GB
OS Ubuntu 18.04 Ubuntu 20.04
Software MongoDB

MongoDB is highly efficient. In testing(Section 4.6.4) it was discovered that a
server dedicated for MongoDB running with 2 CPU cores, were able to insert

60 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

about 17 000 files in 2 minutes.
The disk usage on the database is further quite lean. 17 000 files uses around

108 MB of the disk, which means 1,7 million files would use 11 GB of disk on
the database server. Note that this is only with one analysis source. As more
sources are added, the documents in the database will use more disk space.

4.6.4 Testing

At the end of the project, the repository was tested to measure performance on
upload and analysis, and locate eventual bugs in the software. The most inter-
esting parts to measure performance were on the backend and the database.
These two servers will experience much load when big archives are uploaded
and analyzed. During performance testing, 17 000 files were uploaded to the
backend, analyzed, and inserted into the database.

Backend

Figure 4.32: CPU usage of backend in percent

The main consumer of processing power on the backend is the analysis module.
As seen in Figure 4.32, the backend used 1 hour and 55 minutes to analyze
the provided 17 000 files. This translates to roughly 8500 files an hour. The
backend was limited to the minimum requirement of 4 CPU cores and 16 GB
of RAM. It is expected that the analysis time will scale linear relative to the
CPU power.

Critique of testing

When testing the analysis module in the backend, the only analysis source that
is implemented, PEframe, was used. This tool have been observed to spend a

Chapter 4: Implementation 61

vast difference in resources on files of the same size. Some files are observed
to use up to 5 minutes in analysis, only to output several Megabytes of noise.
This means that the selection of files used to test performance can give a wide
spread in the results.

Database

Figure 4.33: CPU usage of database in percent

As a result of how the backend is designed, the database will experience the
most load when the initial entries of an upload is added. During this step,
all files from the archive is added simultaneously. The database consequently
needs to handle this traffic. When it comes to adding analysis data, the backend
will add the data in a much larger timeframe, so there will not be as much
load on the database at this point. The database was limited to the minimum
requirement of 2 CPU cores and 4 GB of RAM. As seen in Figure 4.33, the
database peaked at 5 percent CPU usage. This is the time when all inital entries
was added to the database. Note that the actual use was higher, but the graph
calculates the average use in a larger timeframe.

Chapter 5

Security and Legal aspects

Handling and storing large quantities of malware samples brings forth several
challenges related to security and legal aspects. Some of the main challenges
includes avoiding having malware executing on the NTNU network as well as
avoiding misuse of the available samples. As the purpose of the platform is to
facilitate research at the Department of Information Security and Communica-
tion Technology, making users and partners aware of these challenges is vital. In
other words, ensuring the secure handling of samples is an integral part of this
project. This chapter discusses the various security and legal related challenges
faced, both in regards to technological, but also human aspects. Additionally,
some suggested solutions to these challenges are described.

5.1 Security

When storing live malware samples that is being accessed by several people,
there are many aspects to take into consideration related to security. After all,
the main purpose of a malware is to cause damage, and/or disruption to users
or systems. Any malicious activity is not only harmful for other users but also
for NTNU from a public relations standpoint. Therefore it is important to make
users aware of the consequences of breaking NTNU’s guidelines.

As Feide has been implemented as the main way to access the platform,
only people who are authorized and are involved with NTNU to some extent,
are allowed to access the website and use it. There are security features and
guards to protect the different components from unauthorized use. The only
way of NTNU partners is to create a guest user with Feide and then gain access
when an admin gives them authorization.

Confidentiality, Integrity, and Availability (CIA) of the platform and its data
is an important aspect to consider while developing. The platform have been
developed with this model in mind, and several decisions have been made with
this model as a reason. Examples of that is choosing the platform stack and
protecting API routes. Since a popular software stack is used, it is optimized

63

64 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

to prevent downtime and unexpected crashes. Protecting the API routes is one
of the measures to ensure integrity and confidentiality of the data.

5.2 Secure storage of malicious executables

When storing malware, it is crucial that the malware is not executable and that
any eventual antivirus on the server will not be able to scan and delete the
malware. For this reason, the repository is encrypting the files with AES 256
in CBC mode, making the malware unreadable on the server. Zipping the file
is not good enough, as modern antivirus engines are able to scan and delete
files inside a zipped folder. While the malware only needs to be obfuscated
to avert execution and antivirus, a simple obfuscation of the file data would
suffice. However, that would demand making of a new function to manipulate
the content of the file. This method have a lot of pitfalls and since encryption is
a native function in Node, that was considered the better option. When a user
uploads samples, the samples will be temporarily be stored in plaintext on the
system while it is scanned and analyzed. This is not ideal, as at this moment
the samples are both executable and able to trigger antivirus. The best solution
here would be to never write the sample to disk in plaintext, but instead keep
it as a datastream in memory and encrypt the sample before writing to disk.

5.3 Legal aspects

Most malware aims to harm or disrupt normal operation of a system. This
means that there is potential for users of the repository to commit illegal activ-
ities with malicious samples. Such activities may result in legal ramifications
against NTNU as they are responsible. Therefore, with the probable imple-
mentation of the repository, a plan describing the consequences of misusing
the system should be composed. As a foundation for this plan, NTNU already
manages an Information Security Policy[20]. This policy describes the basic
rules and strategies regarding information security at NTNU. Some of these
policies and laws are GDPR, ISO 27001 and The Personal Data Act (Personop-
plysningloven). These policies could be used as a base for the terms of service
described in the next chapter.

5.3.1 Avoiding misuse

To avoid the misuse of malware samples downloaded from the system, a terms
of service should be created. The terms of services should contain definitions
of what a breach of the terms imply, so that users are aware of what they
should not do when using the system. Additionally the terms should include
what repercussions a breach will cause. As composing a terms of service is not
included in the groups scope, this will be up to NTNU to handle. The terms

Chapter 5: Security and Legal aspects 65

of service should in some way or form be acknowledged by the user either
before being allowed access, or when entering the web page, as this puts the
responsibility on to the user.

5.3.2 Copyright

During development of the repository, a variety of third party packages and li-
braries have been used. It is important to follow limitations given by the owner
of the packages. All the packages in the repository uses licenses where modifi-
cation and usage of the code is allowed free of charge. Some of the packages
does however require credit for usage of the package.

5.4 Malware research ethics

Performing research and work related to malware comes with some ethical im-
plications that should be addressed[21]. While malware research generally has
good intentions, there are some often overlooked aspects in regards to ethics.
For the project, the group received two compressed archives containing several
thousand malware samples each. The purpose of receiving these were for test-
ing whether the system could handle uploading large amounts of real samples.
As the server running the platform was connected to the school network, great
caution needed to be taken so that no malware would execute and cause harm
on this network. Therefore, the IP’s used was shared with the NTNU Security
Operations Center (SOC) for surveillance, before attempting to upload these.
These tests went well, however they are a testament to how cautious one has
to be when researching with malware.

Chapter 6

Results and going forward

This chapter discusses the results from the development process. As features
were often discussed weekly with the employer, some choices that were made
during development are mentioned. Finally, some suggestions for future im-
provements of the repository are discussed.

6.1 Final product

The NTNU Malware Lab wanted a storage system for malware and goodware
samples, in an effort to facilitate more efficient research and as well as to gen-
erate new knowledge and research methods related to information security.
From the beginning, some general requirements as to what functionality the
system should handle were set (See Section 2.2). However, during weeklymeet-
ings with the Malware Lab new functionality was often discussed and later
implemented. Additionally the system should meet certain non-functional re-
quirements, namely: Portability, Modularity/Scalability and Low complexity
of maintanance as described in Section 2.7.

The final product of this project consists of a working proof of concept mal-
ware and goodware repository system. The system contains the main func-
tional requirements, as well as lots of other functionality described earlier in
this report. It allows for multiple users to log in and be authorized based on
their role in the Feide system. The system supports uploading of files with the
subsequent analysis of them. The data from the analysis is then viewable for
each and every file. Additionally the users are able to download files of their
choosing. Overall the group and the Malware Lab are very satisfied with the
result.

Non-functional requirements

The non-functional requirements are also a vital measurement of whether the
goals were reached. Below is a discussion of whether the non-functional re-
quirements were met:

67

68 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

• Portability:
◦ In regards to the portability of the system, setting it up on a new
infrastructure is pretty simple. The frontend is easily deployed on
a new infrastructure. Angular uses a compiler called ahead-of-time
(AOT) which will compile all the code into efficient JavaScript code.
This compiled code can be deployed on any webserver that can host
HTML and JavaScript code such as NGINX and Apache in a matter
of minutes. The backend can be deployed to a new infrastructure
relatively quickly and simple. The project contains a file called pack-
age.json which is readable by Node.js and will install all necessary
packages and modules in a few minutes. In the future, compiling
the backend into a Docker container can be of interest. This way
the environment is the same each time, and the container can be
installed on a new server knowing it will work, every time.

• Modularity/Scalability:
◦ The way the system is developed, adding new components and func-
tionality is mostly pretty simple.With Angular on the frontend, adding
new components is simply done with a single command to create its
file structure and the adding relevant libraries and code. As this is
an open source project and is developed by the group, the backend
is designed with the intention to later be able to support more anal-
ysis tools and with that, more functionality. Therefore, this should
be a relatively simple process.

• Low complexity of maintenance:
◦ When it comes to maintenance, the system is designed to be of low
complexity. The MEAN stack is modern and well documented. Third
party modules picked during the development are ones that are still
beingmaintained, if available. This was done to ensure that eventual
bugs that might occur would be fixed if an issue was reported.

6.2 Choices made during the project

During the project some decisions were made that may have diverted from or
supported the original plan:
• When creating a full stack, choosing a method that has been proven to
work was a must. And therefore, the choice was the MEAN stack. Choos-
ing the MEAN

• Innsida uses session tokens when handling authentication cookies. There-
fore, to standardize what NTNU uses on their platform there was imple-
mented a session-based authentication solution.

• Employer did not require Feide to be implemented, but mentioned it

Chapter 6: Results and going forward 69

would be best if it was. There was a solution for local authentication
already implemented, but Feide was chosen for the final iteration.

• A NoSQL database structure was chosen, as the database needs to be able
to handle data which may not be structured to fit in a SQL database.

• It was mentioned in the project plan that the design was not going to be a
part of the project. But when working on the system there was necessary
to have some design to make the systemmore usable. This does not mean
that the design is finished as it needs a lot more polishing, but some
design and CSS is in place to make the experience more passable.

6.3 Critique of final product

During the development, some improvements have been found. The frontend
is developed with AngularJS, which is a fairly big and heavy framework. Some
time was used to study the functionality of the framework. This time could in-
stead have been used on developing more features in the repository if a lighter
framework had been used. Further, during testing of the product, it was dis-
covered that the repository was not able to extract certain type of encrypted
zip files. This should have been discovered much sooner, and suggests that test-
ing should have been more used in the development of the repository. Lastly,
when files are uploaded, the backend spins up a container for each upload-
object and deletes it afterwards. This could have been solved more neatly by
having one container that is constantly running and analyzing files when they
are transferred to the container.

Chapter 7

Conclusion

In this project a proof of concept repository for NTNU Malware Lab’s malware
and goodware samples has been developed. By researching and looking at
other solutions to repositories a system has been made that fulfilled the needs
that NTNU Malware Lab had. As a result, a repository which is modular, scal-
able, modern and easy to use was created.

The system enables an easy push-pull API, meaning uploading and storing
the samples is easy as well as viewing the details and downloading the samples.
In addition, the structure of how the samples are stored is more efficient and
it is easier to both browse and find files when on a larger scale.

When users wants to access the site and samples there is implemented re-
strictions to prevent unwanted tampering and usage. Enabling new users to
be able to access has also been simplified and can be done from the platform
itself. If lets say a sample to be used in an exam is uploaded to the platform, an
admin or the uploader is able to set a flag which will make all students unable
to download and view the file.

7.1 Project assessment

The proof of concept product that has been developed is satisfactory for both
the group and the employer. Although if the development was to be done again
the knowledge gained throughout the project would help with making the cor-
rect choices earlier and it would make the whole process of creating the full-
stack faster andmore efficient. Additionally, learning how to take requests from
an employer has been important.

7.2 Knowledge gained

Whenworking with this project and bachelor thesis, the group has learned both
technical and academic skills. Firstly, when working on a project of this scale,
planning, researching technologies, talking with employers and choosing a de-

71

72 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

velopment method that suits our group and project will make the development
easier and prevent unnecessary revisions and ambiguities. Secondly for more
technical skills, learning how to program a full-stack using Angular, Node.js,
Express, MongoDB, TypeScript, Docker and other tools to realize the project
that the employer has envisioned have been accomplished.

7.3 Limitations and future work

There are several steps that should be done to make this proof of concept in to
a full working product:

1. A search engine should be implemented to better search through samples
and their metadata. The current search functionality is dissatisfactory
and was not prioritized in this project. Since the database consists of
MongoDB, the use of ElasticSearch should be considered, as this search
engine seems to be well supported for MongoDB.

2. It is recommended to add more analysis sources. An idea would be to
create a container for each type of file to have designated tools working
on different files. This is something that was not prioritized in this thesis,
but would greatly improve the analysis functionality.

3. Working on the design to make it more aligned with other NTNU systems
would be beneficial. As mentioned in the project plan (see Appendix A),
the plan was not to focus on any design which was not necessary. Some
design has been implemented to make the system more user-friendly, but
more could be done and should be done.

4. Some optimizations should be done on the file list. Currently it only loads
the page it currently is on, which is not bad, but when the pages get bigger
(for example 250, 1000, 2500... rows per page) there should be imple-
mented lazyloading to reduce the total API calls to the backend and make
it seem faster for the users. Lazyloading means pre-loading the next 2-3
pages of the pagination on the users browser, so when the user click the
next line it instantly goes to the next page which already was loaded on
their browser

5. When talking about file list optimizations; the checkbox’s batch action
should be worked with. There has been developed a proof of concept of
batch actions when reanalyzing and download, but none for favoriting
and deleting the checkboxed rows.

6. When uploading a batch of samples, the uploader should be able to set
options for the batch. For example if the uploader wants to upload a set
of files for the current semesters exams the uploader needs to manually

Chapter 7: Conclusion 73

change all the files after they have been added to the database and change
all the files to be tagged with "exam". This is tedious and in the future
a function to just say on the upload page that the current batch that is
being uploaded should all be tagged with "exam".

7. The current parsing of the analysis data is not satisfactory. Trying to read
raw JSON data is hard and not viable in the long term. Creating a solu-
tion where the JSON data is parsed and easy to read through and find-
ing specific information should be a priority in future development on
the frontend. When it comes to the VirusTotal data, a new widget that
implements VirusTotal on third party websites have been released. This
should be looked into if VirusTotal data is going to be used further down
the line.

7.4 Evaluation of the groups work

From the start of the project the group was interested in the project and had a
clear vision of how the repository should be. The group members started read-
ing, researching and working on the project before the semester started to be
as prepared as possible. Starting strong only meant that the rest of the project
went well.

This was not the first time the group has been working together in a project.
This is why organizing, communication and planning how to carry out the
project went as well as it did. The group did not encounter any problems work-
ing together, and all conflicts have been solved with minimal issues. The group
worked with developing the system from January and worked with the project
almost every weekday Monday-Friday since project start. The group members
schedules were known from before project start, in this case work and other
school subjects, which meant they were accounted for early. A worklog has
been created to track what and how much the members have done each work-
ing day throughout the project, the worklog can be seen on Appendix B.

The group members strengths and weaknesses were addressed early and
meant choosing a role which enabled each other the most were set early. The
group members had similar amounts of work distributed across the project de-
velopment and writing the rapport. The supervisor and employer were both
helpful with keeping the project on the right path and giving advice on what
to implement.

The Kanban board showed to be tremendous help for the group as it enabled
individual work and tracking what needed to be done by setting deadlines and
objectives. As a development method it works well, it was easy to set up, plan
and use.

Bibliography

[1] Virustotal. [Online]. Available: https://www.virustotal.com/, Accessed:
2021-05-10 20:50.

[2] M. E. Whitman and H. J. Mattord, Principles of information security. Cen-
gage Learning, 2011.

[3] Ncsc. [Online]. Available: https://nsm.no/fagomrader/digital-sikkerhet/
nasjonalt-cybersikkerhetssenter/, Accessed: 2021-5-11 11:02.

[4] A. Apvrille and M. Pourzandi, “Secure software development by exam-
ple,” IEEE Security & Privacy, vol. 3, no. 4, 2005.

[5] M. R. Stytz, “Considering defense in depth for software applications,”
IEEE Security & Privacy, vol. 2, no. 1, pp. 72–75, 2004.

[6] A. Adhikari, “Full stack javascript: Web application development with
mean,” 2016.

[7] S. Alimadadi, A. Mesbah, and K. Pattabiraman, “Understanding asyn-
chronous interactions in full-stack javascript,” in 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE), IEEE, 2016,
pp. 1169–1180.

[8] Web development stacks – what stacks (should) we use in 2021? The Soft-
ware House, Jul. 2020. [Online]. Available: https://tsh.io/blog/web-
development-stacks/, Accessed: 2021-3-1 12:00.

[9] M. A. Jadhav, B. R. Sawant, and A. Deshmukh, “Single page application
using angularjs,” International Journal of Computer Science and Informa-
tion Technologies, vol. 6, no. 3, 2015.

[10] Typed javascript at any scale, TypeScript. [Online]. Available: https://
www.typescriptlang.org/, Accessed: 2021-2-10 14:10.

[11] A. Oualim, How to serve an angular app with node js api on a nginx server.
[Online]. Available: https://medium.com/@anasecn/how-to-serve-an-
angular-app-with-node-js-api-on-a-nginx-server-ca59de51850,
Accessed: 2021-5-19 10:30.

75

https://www.virustotal.com/
https://nsm.no/fagomrader/digital-sikkerhet/nasjonalt-cybersikkerhetssenter/
https://nsm.no/fagomrader/digital-sikkerhet/nasjonalt-cybersikkerhetssenter/
https://tsh.io/blog/web-development-stacks/
https://tsh.io/blog/web-development-stacks/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://medium.com/@anasecn/how-to-serve-an-angular-app-with-node-js-api-on-a-nginx-server-ca59de51850
https://medium.com/@anasecn/how-to-serve-an-angular-app-with-node-js-api-on-a-nginx-server-ca59de51850

76 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

[12] Ryan Chenkie, “Angular authentication: Using route guards,” Jul. 2017.
[Online]. Available: https://medium.com/@ryanchenkie_40935/angular-
authentication-using-route-guards-bf7a4ca13ae3, Accessed: 2021-
4-29 13:34.

[13] Sherry Hsu, “Session vs token based authentication,” Jun. 2018. [On-
line]. Available: https://medium.com/@sherryhsu/session-vs-token-
based-authentication-11a6c5ac45e4, Accessed: 2021-4-26 14:55.

[14] Feide,Openid connect/oauth technical details. [Online]. Available: https:
//docs.feide.no/service_providers/openid_connect/index.html,
Accessed: 2021-5-15 14:05.

[15] T. Ukachukwu, Authentication using passport.js in a node.js backend api.
[Online]. Available: https://javascript.plainenglish.io/authentication-
using-passport-js-in-a-node-js-backend-api-51e9946549cb, Ac-
cessed: 2021-5-19 11:40.

[16] Passport, Passport overview. [Online]. Available: http://www.passportjs.
org/docs/, Accessed: 2021-5-15 14:39.

[17] Postman 2017 state of api survey. [Online]. Available: https://www.
prweb.com/releases/2017/10/prweb14767541.htm, Accessed: 2021-5-
14 14:30.

[18] Nick Coons, Storing large files, Jul. 2013. [Online]. Available: https:
//stackoverflow.com/questions/17935978/storing- large- files-
binary - data - in - a - mysql - database - when - is - it - ok / 17941042 #
17941042, Accessed: 2021-3-13 11:34.

[19] Winston, Techopedia, Aug. 2020. [Online]. Available: https://github.
com/winstonjs/winston, Accessed: 2021-2-9 10:15.

[20] Policy for information security. [Online]. Available: https://innsida.
ntnu.no/wiki/-/wiki/English/Policy+for+information+security,
Accessed: 2021-5-12 14:00.

[21] J. P. Sullins, “A case study in malware research ethics education: When
teaching bad is good,” in 2014 IEEE Security and Privacy Workshops,
IEEE, 2014, pp. 1–4.

[22] Themongodb 4.4manual, MongoDB. [Online]. Available: https://mongoosejs.
com/docs/index.html, Accessed: 2021-2-10 14:54.

[23] Mongoose getting started, Mongoose. [Online]. Available: https://mongoosejs.
com/docs/index.html, Accessed: 2021-2-10 14:58.

[24] The Net Ninja, Mongodb for beginners, Jan. 2017. [Online]. Available:
https://www.youtube.com/playlist?list=PL4cUxeGkcC9jpvoYriLI0bY8DOgWZfi6u,
Accessed: 2021-2-10 14:59.

https://medium.com/@ryanchenkie_40935/angular-authentication-using-route-guards-bf7a4ca13ae3
https://medium.com/@ryanchenkie_40935/angular-authentication-using-route-guards-bf7a4ca13ae3
https://medium.com/@sherryhsu/session-vs-token-based-authentication-11a6c5ac45e4
https://medium.com/@sherryhsu/session-vs-token-based-authentication-11a6c5ac45e4
https://docs.feide.no/service_providers/openid_connect/index.html
https://docs.feide.no/service_providers/openid_connect/index.html
https://javascript.plainenglish.io/authentication-using-passport-js-in-a-node-js-backend-api-51e9946549cb
https://javascript.plainenglish.io/authentication-using-passport-js-in-a-node-js-backend-api-51e9946549cb
http://www.passportjs.org/docs/
http://www.passportjs.org/docs/
https://www.prweb.com/releases/2017/10/prweb14767541.htm
https://www.prweb.com/releases/2017/10/prweb14767541.htm
https://stackoverflow.com/questions/17935978/storing-large-files-binary-data-in-a-mysql-database-when-is-it-ok/17941042#17941042
https://stackoverflow.com/questions/17935978/storing-large-files-binary-data-in-a-mysql-database-when-is-it-ok/17941042#17941042
https://stackoverflow.com/questions/17935978/storing-large-files-binary-data-in-a-mysql-database-when-is-it-ok/17941042#17941042
https://stackoverflow.com/questions/17935978/storing-large-files-binary-data-in-a-mysql-database-when-is-it-ok/17941042#17941042
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://innsida.ntnu.no/wiki/-/wiki/English/Policy+for+information+security
https://innsida.ntnu.no/wiki/-/wiki/English/Policy+for+information+security
https://mongoosejs.com/docs/index.html
https://mongoosejs.com/docs/index.html
https://mongoosejs.com/docs/index.html
https://mongoosejs.com/docs/index.html
https://www.youtube.com/playlist?list=PL4cUxeGkcC9jpvoYriLI0bY8DOgWZfi6u

Bibliography 77

[25] Erkan Güzeler, “Angular role-based routing access with angular guard,”
Apr. 2020. [Online]. Available: https://medium.com/echohub/angular-
role-based-routing-access-with-angular-guard-dbecaf6cd685, Ac-
cessed: 2021-2-10 15:13.

[26] guelfoweb, Peframe. [Online]. Available: https://github.com/guelfoweb/
peframe, Accessed: 2021-05-10 20:50.

[27] Rest api tutorial. [Online]. Available: https://restfulapi.net/, Ac-
cessed: 2021-5-14 14:30.

https://medium.com/echohub/angular-role-based-routing-access-with-angular-guard-dbecaf6cd685
https://medium.com/echohub/angular-role-based-routing-access-with-angular-guard-dbecaf6cd685
https://github.com/guelfoweb/peframe
https://github.com/guelfoweb/peframe
https://restfulapi.net/

Appendix A

Additional Material

79

PROJECT AGREEMENT

between NTNU Faculty of Information Technology and Electrical Engineering (IE) at Gjøvik
(education institution), and

__

___ (employer), and

__

__

___ (student(s))

The agreement specifies obligations of the contracting parties concerning the completion of the
project and the rights to use the results that the project produces:

1. The student(s) shall complete the project in the period from __________________ to
__________________.

The students shall in this period follow a set schedule where NTNU gives academic supervision.
The employer contributes with project assistance as agreed upon at set times. The employer
puts knowledge and materials at disposal necessary to complete the project. It is assumed that
given problems in the project are adapted to a suitable level for the students’ academic
knowledge. It is the employer’s duty to evaluate the project for free on enquiry from NTNU.

2. The costs of completion of the project are covered as follows:
- Employer covers completion of the project such as materials, phone/fax, travelling and
necessary accommodation on places far from NTNU. Students cover the expenses for printing
and completion of the written assignment of the project.
- The right of ownership to potential prototypes falls to those who have paid the components
and materials and so on used to make the prototype. If it is necessary with larger or specific
investments to complete the project, it has to be made an own agreement between parties
about potential cost allocation and right of ownership.

NTNU

11.01.2021

20.05.2021

Erlend Husbyn, Gjert Michael Homb, Michael Cortes Birkeland og

Christian Simoes Isnes

80 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

A.1 Project agreement

Norwegian University of Science and Technology

Faculty of Information Technology and Electrical Engineering (IE)

2

3. NTNU is no guarantor that what employer has ordered works after intentions, nor that the
project will be completed. The project must be considered as an exam related assignment
that will be evaluated by lecturer/supervisor and examiner. Nevertheless it is an obligation
for the performer of the project to complete it according to specifications, function level and
times as agreed upon.

4. All passed assignments will be registered and published in NTNU Open, which is NTNUs open
archive.

This depends on that the students sign a separate agreement where they give the library
rights to make their main project available both on print and on Internet (ck. The Copyright
Act). Employer and supervisor accept this kind of disclosure when they sign this project
agreement, and they must possibly give a written message to students and head of
Department if they during the project period change view on this kind of disclosure.

The total assignment with drawings, models and apparatus as well as program listing, source
codes and so on included as a part of or as an appendix to the assignment, is handed over as
a copy to NTNU who free of charge can use it in lessons and in research purpose. The
assignment or appendix cannot be used by NTNU for other purposes, and will not be handed
over to an outsider without an agreement with the rest of the parties in this agreement. This
applies as well to companies where employees at NTNU and/or students have interests.

5. The assignment’s specifications and results can be used by the employer’s own work. If the
student(s) in its assignment or while working with it, makes a patentable invention, relations
between employer and student(s) applies as described in Act respecting the right to
employees' inventions of 17th of April 1970, §§ 4-10.

6. Beyond the publishing mentioned in item 4, the student(s) have no right to publish
his/hers/theirs assignment, fully or partly or as a part of another work, without consensus
from the employer. Equivalent consent must be made between student(s) and
lecturer/supervisor regarding the material placed at disposal by the lecturer/supervisor.

7. The students shall hand in the assignment with attachments electronic (PDF) in NTNU’s
digital exam system. In addition the students shall hand in a copy to the employer.

8. This agreement is drawn up with one copy to each party. On behalf of NTNU it is the head of
the Department/Group that approves the agreement.

9. In each case it is possible to enter separate agreement between employer, student(s) and
NTNU who closer regulate conditions regarding issues such as ownership, further use,
confidentiality, cost coverage, and economic utilization of the results.

Title of the Bachelor Thesis: Building Multi-user Malware and Goodware Repository

The man goal of this project is to enhance malicious software-focused research and
operations support at NTNU (Malware Lab, System Security Group, SOC, Norwegian Cyber
Range, etc.) by building a repository (software platform) to give access to high-quality dataset of
recent ”malicious” samples and “good” software samples. The value of the categorized malware
samples enriched with cyber threat intelligence is the core when it comes to research initiatives,
project proposals and master project topics at NTNU. Current capabilities include multiple novel
datasets acquired and build through years, e.g. possession of 400+ archives with 12 TBytes of
unstructured malware samples from VirusShare. The platform needs to be developed allowing
access to most recent and relevant malware samples serving as a core component in education and
research activities at NTNU. Besides source of files and characteristics from VirusTotal, students
should consider FireEye FLARE team’s CAPA - open-source tool to identify capabilities in
executable files that can be used to define characteristics in addition to VirusTotal. Once completed,
the platform will allow collaboration form multiple directions: uploading and updating datasets,
fetching malware samples under defined specifications and cyber threats intelligence, and sharing
through machine learning and unsupervised learning.

Anticipated tasks:
1. Design top-down framework covering: optimal files and characteristics storage, database

design, “push” / “pull” API, user access and roles
2. Define functional and non-functional requirements to handle ELF / PE32 / APK / Mach-O

files
3. Focus on availability and building up new sources of characteristics
4. Proof-of-concept with the focus on: portability, modularity, and complexity of

maintenance

Contact:
Andrii Shalaginov, andrii.shalaginov@ntnu.no
Christoffer Vargtass Hallstensen, christoffer.hallstensen@ntnu.no
Geir Olav Dyrkolbotn, geir.dyrkolbotn@ntnu.no

References:
1. VirusTotal, https://www.virustotal.com/gui/
2. >CMATLiS< - Complex Mobile Application Tesing Laboratory for Information Security

assessment, https://github.com/ashalaginov/CMATLiS
3. Storing large files / binary data in a mysql database: when is it ok?,

https://stackoverflow.com/a/17941042
4. Functional Requirements vs Non Functional Requirements: Key Differences,

https://www.guru99.com/functional-vs-non-functional-requirements.html
5. VirusTotal API v3 Reference, https://developers.virustotal.com/v3.0/reference
6. CAPA: The FLARE team's open-source tool to identify capabilities in executable files.
 https://github.com/fireeye/capa

Chapter A: Additional Material 83

A.2 Project description,

Group rules
Michael Cortes Birkeland, Erlend Husbyn, Christian Isnes,

Gjert Michael Torp Homb

The point of this section is for the group to have a collective understanding of what is
both expected and required of them. This includes a description of how a regular week
should look like in terms of amount of work and other routines like meetings.
Additionally, there is a set of rules which should be followed, and the consequences of
breaking them.

Routines
The routines are a general set of weekly activities that should be followed to achieve the
main goals of the week. As a general, there should be an attempt to individually perform
25-30 hours of work – weekly. The group has agreed with the supervisor to conduct
bi-weekly meetings, and weekly meetings with NTNU Malware lab. Within the team,
there should be a weekly meeting. Additionally, the group will communicate daily over
the Internet and we intend to continue with this over the course of this thesis. Should an
emergency situation occur, group members need to be prepared to take over another
group members task.

Rules
Group members are expected to meet at the agreed meetings at the correct time,
unless a valid reason is presented.
Group members are expected to do their given tasks within the specified time frames.

Consequences of breaking rules
Repeated violations of these rules will lead to the group forwarding these issues to the
supervisor and if this does not help we would have to escalate to having to contact the
bachelor coordinator.

Signatures:

Michael Cortes Birkeland: ______________________________

Erlend Husbyn: ______________________________

Christian Isnes: ______________________________

Gjert Michael Torp Homb: ______________________________

84 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

A.3 Group rules

Project plan

Building Multi-user Malware and Goodware Repository
Michael Cortes Birkeland, Erlend Husbyn, Christian Isnes,

Gjert Michael Torp Homb

1. Goals and constraints
1.1. Background

At NTNU, many students and researchers are working with research and
education related to Malware and Goodware. This type of research and
study requires some place to store malware and goodware samples in an
efficient and structured manner to be used for the purpose of research and
education.

A malware is a software designed with the intent to cause damage, disrupt
or gain access to a network or computer system.1 Goodware, on the other
hand, is software that does what it is supposed to do with no unexpected
behaviour.2 A multi-user Malware and Goodware repository refers to a
storage system allowing multiple users with different roles such as
researcher or student to interact with files and metadata of the files in the
database. These roles allow for different functionality depending on who
the user is.

The current capabilities for storing malware and goodware samples for
research and education at NTNU lack structure and functionality. These
malware and goodware samples are an important part of everyday work of
students, researchers and staff. Therefore, the NTNU Malware lab wants
to have a better way of storing these samples, which essentially is the task
we have been given.

1.2. Project goals
The overall goal for this entire project is to enhance the research
capabilities as well as the operations support for the various groups and
departments at NTNU. These groups include the Malware Lab, System
Security Group, SOC, Norwegian Cyber Range, etc.

2 https://androidforums.com/threads/what-is-goodware.832075
1 https://www.forcepoint.com/cyber-edu/malware

Chapter A: Additional Material 85

A.4 Projectplan

The intended goals of this thesis are as follows:
● Develop a working multi-user malware and goodware repository

with functionality such as upload/download, searching by metadata
and adding relevant information to a file such as tags.

● Improve the current unstructured and functionless system making
research and education within and among various research groups
more efficient.

● Make the multi-user malware and goodware repository more
portable and easy to maintain.

1.3. Constraints
There are some constraints to this project. As this is a project within
NTNU, the organizational rules should be followed. Additionally at the start
of the bachelor a project agreement is signed, giving certain guidelines for
what can and can’t be done in regards to the project. For the project
dynamic analysis and sandboxing of the samples uploaded will not be
considered.

2. Scope
2.1. Problem area

The necessity of this project arised due to the fact that the current
capabilities for storing malware and goodware in use within NTNU is
outdated. These capabilities consist of multiple datasets containing
samples that have been built through the years, including 400+ archives
with about 12TB of samples. The most important factor in why a new
storage capability is wanted, is the unstructured fashion these samples
are stored in. To make fetching samples for use in research and education
more efficient, there is a need for a more structured and sophisticated
storage system.

2.2. Limitations
● The repository is only going to perform static analysis3 of the

samples with tools like virustotal and third party libraries. The tools
in question are going to be determined later in the development
phase. However, it is built to be extendable with more tools in the
future.

3 Analysis of the malware performed without executing the program

● The frontend is made to be functional, with little to no graphical
design in mind.

2.3. Task description
The project should be a proof of concept full-stack solution of a malware
and goodware repository. The final report, and repository, should cover
optimal file and characteristics storage, database design, REST-API, user
access and roles. Along with definitions of functional and nonfunctional
requirements to handle ELF/PE32/APK and Mach-O files. These file types
are executables made for the most common operating systems. ELF is
made for Linux4, PE32 for Windows5, APK for Android 6 and Mach-O for
Apple based operating systems7. These file types behave differently,
meaning that certain precautions need to be taken when implementing
support for these types of files.

Furthermore, the platform should be able to perform static analysis of the
samples uploaded using linked third party services, and local static
analysis libraries.

3. Project organization
3.1. Responsibilities and roles

Gjert - Group leader, responsible for communication
Michael - LaTeX responsible
Christian - Code Quality Assurance
Erlend - Responsible for conflict resolution

Responsible for communication: There will be two meetings a week for
follow up with team members and bi-weekly for follow up with the
supervisor. Gjert is responsible for arranging the meeting calls and
planning them.

LaTeX responsible: We will be writing the main project document in LaTeX
on the Overleaf platform. Michael is responsible for ensuring that the
document runs correctly and

7 https://en.wikipedia.org/wiki/Mach-O
6 https://fileinfo.com/extension/apk
5 https://en.wikipedia.org/wiki/Portable_Executable
4 https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Code Quality Assurance: Christian is responsible for the quality of the
code pushed to Git, and reviewing all pull-requests to the master branch. It
is important that the syntax of all code pushed is consistent and well
commented to facilitate future development.

Responsible for conflict resolution: Should any conflict or disagreement
arise within the group, Erlend will try to be a mediator to hopefully be able
to solve the conflict internally. Should this prove difficult, Erlend will include
the group's supervisor to resolve the conflict.

3.2. Routines and rules in the group
The point of this section is for the group to have a collective understanding
of what is both expected and required of them. This includes a description
of how a regular week should look like in terms of amount of work and
other routines like meetings. Additionally, there is a set of rules, and the
consequences of breaking them.

Routines
The routines are a general set of weekly activities that should be followed
to achieve the main goals of the week. As a general, there should be an
attempt to individually perform 25-30 hours of work – weekly. The group
has agreed with the supervisor to conduct bi-weekly meetings, and weekly
meetings with NTNU Malware lab. Within the team, there should be a
weekly meeting. Additionally, the group will communicate daily over the
Internet and we intend to continue with this over the course of this thesis.
Should an emergency situation occur, group members need to be
prepared to take over another group members task.

Rules
Group members are expected to meet at the agreed meetings at the
correct time, unless a valid reason is presented.
Group members are expected to do their given tasks within the specified
time frames.

Consequences of breaking rules
Repeated violations of these rules will lead to the group forwarding these
issues to the supervisor and if this does not help we would have to
escalate to having to contact the bachelor coordinator.

4. Planning, follow-up and reporting
4.1. Main division of the project

Choice of System development model / process framework
with argumentation
We have chosen to use the Kanban board system development
framework for our development focused project. The Kanban board
was the most versatile and optimal for individual working. The
Kanban board gives the team members the opportunities to work
whenever they want and track their own progress on the kanban
board.

■ Choice of research methodology and approach

The research methodology is based on researchgates8 example of
a research methodology.

The methodology has been edited and been adjusted to be more
aligned to a development based project by adding the testing and
quality assurance.

The steps of the model are the following:
- Identify problem & motivate means identifying the

problem(s), and why the module/function needs to be
implemented. This should be based on chapter 2.1 Problem
area.

8

https://www.researchgate.net/figure/Example-of-a-Design-Science-Research-Methodology-23_fig10_280
774529

- Define objectives of a solution figuring out what the final
state of the module should contain and be able to do. This
should be based on chapter 1.2 Project goals.

- Design and development means figuring out the design of
the module and developing it.

- Testing & quality assurance defines a set of procedures
regarding testing that the code, and module work, as well as
documenting the work. These procedures are defined in
chapter 5 Organizing quality assurance.

- Demonstration refers to demonstrating the module to the
supervisors, throughout the process, so that they have an
idea of our progress and also if they agree with our solution.

- Communication refers to discussing whether the goals has
been reached, and if necessary going back up the ladder
and redoing what needs change.

■ Describe the group's way of following the model
As Kanban board is chosen as our System development
framework, an online resource trello.com will be used to host the
Kanban board. The board will be divided into 7 parts: Backlog, to
do, Development, Testing, Deployment, Documentation and Done.
Backlog being pre-development of a task and done being the end
when the task has been fully developed, tested and documented.
The choice of methodology has been based on the Kanban Board,
identifying problems is the initial step of any Kanban based
development projects.

4.2. Plan for status meetings and decision points in the period
There will be continuous communication between the group-members
almost daily, where small decisions will be taken. Once per week the
group will have a status meeting where each member covers the status on
what they’re working with. This meeting will generally be held on mondays
at 12:00, however this may vary depending on the availability of the group
members. During this meeting, the group will also handle bigger
decision-points. When meeting with project owners or our supervisor,
meeting reports will be written. Also, the group has agreed on a bi-weekly
meeting with the supervisor for follow-ups and guidelines. In addition to,
on call meetings with the supervisor when needed.

5. Organizing quality assurance
5.1. Documentation and source code

The thesis will be documented in a LaTeX document while working on the
project. All references will also be documented and placed in the
bibliography. Code being worked on will be pushed onto a git repository,
and for this project Gitlab will be used. For testing the developed software,
a server owned by a member of the group, located in the NTNU
server-room will be used.

5.2. Risk analysis
When working on a project of this size, there are several things that might
not work out as planned. Therefore, it is necessary to perform a risk
analysis to mitigate the probability of an unexpected incident halting our
progress. Although some risks are not easily mitigated, there is still a point
in being aware of them.
Possible risks:

Risk Description Mitigation(s)

Extended downtime of
text editing software

Downtime in the text editing software
may cause loss of work and inability
to work for the downtime period.

By keeping regular local
backups, chances of losing
lots of work is smaller.
Additionally we should have
other text editing software
available. The overleaf
document is being backed up
every day at 12:00 and 00:00.

Group member(s) or
supervisor(s) become
ill over extended period
of time

Due to the current pandemic there is
an inherent risk that people involved
in the project may become ill.

The government regularly
updates the public on new
guidelines, and these should
be monitored and followed.

Loss of code Crashes or unforeseen situations
may cause loss of code.

This situation can be mitigated
by regularly pushing code to
the groups repository. Code
should be pushed after
ensuring that it is working.

Lack of time/Scope is
too large

If the defined scope turns out to be
too massive, there might not be
enough time to complete the set
goals.

To prevent taking on too much
work, sticking to the specified
tasks and goals will be
important. Further functionality
can be added if time allows it.

6. Plan for implementation
6.1. Gantt chart

The Gantt chart is a plan for the whole process from start to finish, with
simple descriptions of the work and their respective time-limits. The final
project document will be worked on throughout the project.

94 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

A.5 Meeting Logs

A.5.1 With supervisor

Referat møte 18.01

Først litt introduksjoner

Han gleder seg til å jobbe med oss :)

Han vil helst ha møte på slutten av dagen 14-15
Vi skal diskutere om vi vil ha fixed ukentlige møter, eller biweekly.

Project plan meeting førstkommende fredag22. Kl 14-15
Dele draft 21. så han kan lese igjennom først
Vil ha tilgang til litt div filer gjennom teams, gir også tilgang til gitlab.

Han kan gjerne motta i Word.

TLF: 0047 91 526 213
Campus: A126 eller A127

Send epost med alle våre adresser så setter han opp møter for oss.

Chapter A: Additional Material 95

18.01.2021

Referat 16.03.2021 med veileder

Ask if NTNU can provide a license to virustotal to be able to analyze more than 500 samples a
day.

Mohamed is now added to the overleaf document,

Use git product number to refer to previous work.

How feide is integrated. Not important to explain in depth of how feide works.
Mention how we customized previous code that we have used.

No problem to use previous work just mention how and why we used it and if we customized it.
Changes we have made should be added to the appendix.

96 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

16.03.2021

Referat 22.04.2021

Agenda:
- Discuss comments received from supervisor

Why does the NTNU not use a commercial product?

Remind Mohamed within 27. April to give a second opinion.

Employer: Malware lab

Chapter A: Additional Material 97

18.01.2021

98 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

A.5.2 With employer

Referat 20.01.2021
Møte med Andrii

Why we chose MEAN stack.
Comments about the current plan:

- Plan looks fine
- Motivation for the task
- - Many people working with malware analysis. ELA file or exe’s. Data more or less the

same. Need file storage and metadata storage.
- Basic front-end functionality. File size. Search by metadata. Access control. E.g admin,

student, research members
- Local users are fine for us. Study how to implement it with feide.
- Admin: delete/upload files.
- Research members: Access and upload files.
- Master/bachelor students: Access certain files.
- Pipeline: Specify how to add other modules
- PEframe for metadata to put in the database, in addition to virustotal.

1.
- Specify users.
- How files are uploaded

2.
- Think of some limitations

3.
- Add metadata for example

4.
- Modularity for the research team at NTNU. E.g. add new modules and such

- Risk management is important for the project plan.
- Other systems than the MEAN stack, might be a question.

- Include similar projects in the report.

Chapter A: Additional Material 99

20.01.2021

Referat 27.01.21
Meeting with Andrii and Geir Olav

Goodware: Something we know is good. Things we definitely know are not malware.
E.g. binaries from windows. Should be defined in the repository.

General malware description (what kind of malware) in the repository

Tendency that code has good intentions can be used for bad actions.
Should we somehow label goodware that we know have been used for evil purposes?
User added comments maybe.

Functionality to add more info on a file. Use for REM courses. Label if it has been used
for an exam. Suitable for dynamic analysis for example?

How to handle passwords?
Admin creates users. Applies username and role. Receives one-time password that
admin passes on to the user.

Making a group for a class may be a relevant task.

Trouble regarding passworded zip files.
Upload zip files to the repository. Should be able to decrypt zip files with known
password

samples should be encrypted when being stored.

Full stack-framework. Front to back-end.

Current capabilities:
Stored in virtual machines. Peer-to-peer.

There should be focus on Logging. Accountability.

Admin labels. May be extended in the future or if we have time.

Let IT know of our project.

Ethical and legal part of thesis. Ethical implications of storing malware. Legal
implications. What can go wrong?

100 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

27.01.2021

Referat 03.02.21 meeting with Andrii

Show that we have ability to add data.
Avclass is a tool that we may use to classify data.

Option to classify should be implemented.
Get the report started soon.

Møte neste torsdag kl 10

https://github.com/malicialab/avclass

Chapter A: Additional Material 101

03.02.2021

Referat 11.02.2021
Møte med Andrii

Authorization and roles based on tags. Who should access what?

Admin -> Bulk deletion etc. Log files
Researcher -> Can edit etc, read/write.
Student -> Access to files unless tagged with hidden or exam ex,. read only

Admin, researcher, student. List of tags not accessible to students. Research level should be
able to edit/delete meatadata/tags.

What should be in the report:
Explore some basic status of malware.

CAPA output.

Document 2-factor authentication in report, and implement if possible. Feide also.

102 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

11.02.2021

Referat 19.02.2021
Møte med Andrii

Able to upload files. Working on opening zipped files.
Logging up and running. Decide what to log.
Feide login running.

Mach-O fetch metadata. Challenging to analyze.

Currently private server. Do we have to talk to someone before uploading some
malware to this. It’s ok as long as Christoffer knows the IP.

Static analysis on the zip file itself. Can't recall any examples of malicious zip files, the
payload is most interesting. Most focus on the executables.

Chapter A: Additional Material 103

19.02.2021

Referat 25.02.2021

Thoughts on logging?

Ta opptak av en demo i forkant av møte.

Sha256 er ryddig å forholde seg til for sortering. Metadata fil i en mappe med filen, så trenger
man ikke tilgang til databasen for å

Logging on admin panel. Who, when and what.

Access periodically. Might not need logs for every day

Download multiple files at the same time?

Password protected zip files. Maybe find another than infected.

104 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

25.02.2021

Referat 08.03.2021

Demo of feide and basic UI.
Take general items to show in expanded fil view as many of the fields change regularly.

Load balancing in regards to VirusTotal analysis. 4 requests per minute or something. Look into
rate limits.

Look at e.g. peframe to get metadata for particular platforms. Windows: peframe. Linux: readelf.
Would be nice to have platform specific information for the files. This will be helpful for the
search function.

Andrii will send us malicious files today.

How to organize filetype.

/usr/share/applications/defaults.list
image/bmp=org.gnome.eog.desktop
image/jpg=org.gnome.eog.desktop
image/pjpeg=org.gnome.eog.desktop
image/svg+xml=org.gnome.eog.desktop

Some other repos have hex view. If possible to implement as a web component that would be
helpful. Then you can have hexadecimal representation etc.

Demonstration of unzipping files.
Maybe add a shortcut func where we place files in a folder, and the script will process.

How to classify researchers?

Admin may be able to edit the database?

Misuse. With feide problems with user accounts being compromised isn't too realistic.

Chapter A: Additional Material 105

08.03.2021

Referat 17.03.2021

Short presentation for NTNU might happen in the near future. We will be noticed.
Access control more or less in place, says Andrii.

System currently running on a private server in NTNU.

System logs implemented soon.

Maybe a limit on how many samples a student/single user can download. (E.g. 10 000 a day)
Rather have admins being able to hide certain samples, for example ones that will be used for
exams or assignments.

: tag file with exam, hidden, private

106 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

17.03.2021

Referat 25.03.2021

Presentation: Maybe after easter.
Domain name: Up after easter.

Adding a logo would be nice.

Proof-of-concept. Portability? Specify versions of software components. All info that is needed
to move the product. Snapshot of software versions. Package files are in the system.

Modularity

Classify malware: AVclass

Parallel optimization of for loops to classify more than one file.

Chapter A: Additional Material 107

25.03.2021

Referat 08.04.2021

Mainly look at the report.
When uploading files the system returns files is uploaded. What happens next.

Pefram question. Sometimes peframes. Does strange things. Sometimes it produces files that
are bigger than itself. 55 mb is too big.
2 causes:

- Symbols sequence.

Security of the whole solution. Describe what measures we have regarding executing malware

Be aware of challenges regarding accidental execution of malware. How trustworthy is
third-party tools? Make sure to write some lines about this in the thesis.

In terms of open source programs, check their reviews. You never know what code is in open
source projects.

Concerns about storing large amounts of malware.

108 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

08.04.2021

Referat 15.04.2021

Core functionality, Download, upload, see info.

Hundreds of thousands of files. What will happen? What are the bottlenecks. What are the
limitations?

Searching bottlenecks. Monolithic search engine like sphinx. Basic search functionality will be
ok for now.

Chapter A: Additional Material 109

15.04.2021

Referat 22.04.2021

Agenda:
- Vise demo av download og litt søk.

Searching in MongoDB is difficult.

Sphinx search engine.

Store passwords of zipped files somehow, to avoid having to download large batches
more than one time. Consider resilience in the long run.

Question from Andrii:
- Regarding what happens after the delivery on May 20th.

110 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

22.04.2021

Referat 29.04.2021

Detail more with screenshots in the appendix.

Remember to credit source code.

Chapter A: Additional Material 111

29.04.2021

Appendix B

Additional documentation

113

Malware and Goodware Repository
Table of Contents

File

GET /api/v1/file/count
POST /api/v1/file/download
GET /api/v1/file/
GET /api/v1/file/{hash}/file
GET /api/v1/file/{hash}
POST /api/v1/file/reanalyze
PUT /api/v1/file/tags
POST /api/v1/file/upload

User

GET /api/v1/user/favorite/count
GET /api/v1/user/favorite
PUT /api/v1/user/favorite
GET /api/v1/user
DELETE /api/v1/user/{id}
GET /api/v1/user/{id}
PUT /api/v1/user/{id}
GET /api/v1/user/profile

File

GET /api/v1/file/count
Get the number of files in the database (apiV1FileCountGet)

Return type
Object

Example data
Content-Type: application/json

"{}"

Produces
This API call produces the following media types according to the Accept request header; the media type will be conveyed
by the Content-Type response header.

application/json

Responses
200
ID of the upload Object
500
Triggers if the database throws an error

POST /api/v1/file/download
Download several files (apiV1FileDownloadPost)

Triggers a download of a multiple files

Request body

body (required)

114 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

B.1 API Documentation

Body Parameter — Required data to download files

Produces
This API call produces the following media types according to the Accept request header; the media type will be conveyed
by the Content-Type response header.

application/zip

Responses
200
A ZIP file protected with the password 'infected'.
400
Triggers if no hashes was sent

GET /api/v1/file/
Gets a set of files from the database (apiV1FileGet)

Used for getting a specific number of files and searching in the database.

Query parameters

size (optional)
Query Parameter — The paginate size to get

index (optional)
Query Parameter — The paginate index to start from

text (optional)
Query Parameter — The string to search for in the database

Return type
array[file]

Example data
Content-Type: application/json

[{
 "uploaded_by" : "uploaded_by",
 "date_added" : "date_added",
 "original_filename" : "original_filename",
 "pending_analysis" : "{}",
 "sha256" : "sha256",
 "size" : 0,
 "analyzed_info" : "{}",
 "tags" : ["tags", "tags"],
 "md5" : "md5"
}, {
 "uploaded_by" : "uploaded_by",
 "date_added" : "date_added",
 "original_filename" : "original_filename",
 "pending_analysis" : "{}",
 "sha256" : "sha256",
 "size" : 0,
 "analyzed_info" : "{}",
 "tags" : ["tags", "tags"],
 "md5" : "md5"
}]

Produces
This API call produces the following media types according to the Accept request header; the media type will be conveyed
by the Content-Type response header.

application/json

Chapter B: Additional documentation 115

Responses
200
Successful
500
If the database throws any error

GET /api/v1/file/{hash}/file
Downloads a file (apiV1FileHashFileGet)

Triggers a download of a specific file.

Path parameters

hash (required)
Path Parameter — The hash of the requested file

Produces
This API call produces the following media types according to the Accept request header; the media type will be conveyed
by the Content-Type response header.

application/zip

Responses
200
A ZIP file protected with the password 'infected'.
400
Triggers if no hashes was sent

GET /api/v1/file/{hash}
Get data for a specific file (apiV1FileHashGet)

Used for grabbing metadata and analysis-date of a sample stored in the database

Path parameters

hash (required)
Path Parameter — The hash of the requested file

Return type
file

Example data
Content-Type: application/json

{
 "uploaded_by" : "uploaded_by",
 "date_added" : "date_added",
 "original_filename" : "original_filename",
 "pending_analysis" : "{}",
 "sha256" : "sha256",
 "size" : 0,
 "analyzed_info" : "{}",
 "tags" : ["tags", "tags"],
 "md5" : "md5"
}

Produces
This API call produces the following media types according to the Accept request header; the media type will be conveyed
by the Content-Type response header.

application/json

116 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

Responses
200
Successful File
404
If the file does not exist in the database
500
If the database throws any error

POST /api/v1/file/reanalyze
Triggers reanalysis of files (apiV1FileReanalyzePost)

Triggers new analysis of a specific file using a specific analysis-source.

Request body

body (required)
Body Parameter — Required data to trigger new analysis

Produces
This API call produces the following media types according to the Accept request header; the media type will be conveyed
by the Content-Type response header.

application/json

Responses
200
Analysis triggered successfully
400
Triggers if no hash or source was sent

PUT /api/v1/file/tags
Updating filetags (apiV1FileTagsPut)

Lets admins and researcher update the tags of a file

Request body

body (required)
Body Parameter — Required data to download files

Return type
Object

Example data
Content-Type: application/json

"{}"

Produces
This API call produces the following media types according to the Accept request header; the media type will be conveyed
by the Content-Type response header.

application/json

Responses
200
Tags are updated. Object
400
Triggers if no hash or tags was sent
500
Triggers if MongoDB is having trouble updating the tags

Chapter B: Additional documentation 117

POST /api/v1/file/upload
Uploads files to the repository (apiV1FileUploadPost)

Accepts a single file, or multiple files

Consumes
This API call consumes the following media types via the Content-Type request header:

multipart/form-data

Form parameters

file (required)
Form Parameter — The uploaded file data

Return type
Object

Example data
Content-Type: application/json

"{}"

Produces
This API call produces the following media types according to the Accept request header; the media type will be conveyed
by the Content-Type response header.

application/json

Responses
200
ID of the upload Object
400
Triggers if no files are sent to the route

User

GET /api/v1/user/favorite/count
Get favorite count (apiV1UserFavoriteCountGet)

Used for getting the number of favorites a user have

Return type
Object

Example data
Content-Type: application/json

"{}"

Produces
This API call produces the following media types according to the Accept request header; the media type will be conveyed
by the Content-Type response header.

application/json

Responses
200
Successfull Object
500
Internal server error

118 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

GET /api/v1/user/favorite
Get favorite (apiV1UserFavoriteGet)

Used for getting tags for a user.

Query parameters

size (optional)
Query Parameter — The paginate size to get

index (optional)
Query Parameter — The paginate index to start from

Produces
This API call produces the following media types according to the Accept request header; the media type will be conveyed
by the Content-Type response header.

application/json

Responses
200
Successfull
500
Internal server error

PUT /api/v1/user/favorite
Set/remove favorite (apiV1UserFavoritePut)

Used for adding/removing a favorite for a user. It works as a toggle. If the hash already exist on the user it will remove it, otherwise it
will add it.

Request body

body (required)
Body Parameter — Required data to set/remove favorite

Produces
This API call produces the following media types according to the Accept request header; the media type will be conveyed
by the Content-Type response header.

application/json

Responses
200
Successfull added/removeda favorite
400
Missing parameters
404
User does not exist
500
Internal server error

GET /api/v1/user
Get all users (apiV1UserGet)

Used for getting all the users. Require admin-access

Query parameters

size (optional)
Query Parameter — The paginate size to get

Chapter B: Additional documentation 119

index (optional)
Query Parameter — The paginate index to start from

Return type
array[user]

Example data
Content-Type: application/json

[{
 "authored" : "true",
 "favorites" : ["favorites", "favorites"],
 "role" : "student",
 "feide_id" : "5a91dghd2-118b-4e97-8b47-5d2gfhfjg39f",
 "name" : "Christian Simoes Isnes",
 "photo" : "https://api.dataporten.no/userinfo/v1/user/media/p:619f1215-5b3c-44cb-8754-e511bc382ec5",
 "groups" : ["{}", "{}"],
 "active" : true,
 "token" : "46h8e4jd-d232-4e56-91e9-3b3ee8365ca4",
 "tags" : ["upload", "upload"]
}, {
 "authored" : "true",
 "favorites" : ["favorites", "favorites"],
 "role" : "student",
 "feide_id" : "5a91dghd2-118b-4e97-8b47-5d2gfhfjg39f",
 "name" : "Christian Simoes Isnes",
 "photo" : "https://api.dataporten.no/userinfo/v1/user/media/p:619f1215-5b3c-44cb-8754-e511bc382ec5",
 "groups" : ["{}", "{}"],
 "active" : true,
 "token" : "46h8e4jd-d232-4e56-91e9-3b3ee8365ca4",
 "tags" : ["upload", "upload"]
}]

Produces
This API call produces the following media types according to the Accept request header; the media type will be conveyed
by the Content-Type response header.

application/json

Responses
200
Successfull
500
Internal server error

DELETE /api/v1/user/{id}
Delete user from the database (apiV1UserIdDelete)

Used for deleting all data about a user from the database

Path parameters

id (required)
Path Parameter — Feide_id for the user

Produces
This API call produces the following media types according to the Accept request header; the media type will be conveyed
by the Content-Type response header.

application/json

Responses

120 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

204
Successfull deleted user
400
Missing parameters
404
User does not exist
500
Internal server error

GET /api/v1/user/{id}
Get data about a specific user (apiV1UserIdGet)

Used for grabbing data stored about a user from the database

Path parameters

id (required)
Path Parameter — Feide_id for the user

Return type
user

Example data
Content-Type: application/json

{
 "authored" : "true",
 "favorites" : ["favorites", "favorites"],
 "role" : "student",
 "feide_id" : "5a91dghd2-118b-4e97-8b47-5d2gfhfjg39f",
 "name" : "Christian Simoes Isnes",
 "photo" : "https://api.dataporten.no/userinfo/v1/user/media/p:619f1215-5b3c-44cb-8754-e511bc382ec5",
 "groups" : ["{}", "{}"],
 "active" : true,
 "token" : "46h8e4jd-d232-4e56-91e9-3b3ee8365ca4",
 "tags" : ["upload", "upload"]
}

Produces
This API call produces the following media types according to the Accept request header; the media type will be conveyed
by the Content-Type response header.

application/json

Responses
200
Successful user
400
If the request is missing feide_id as parameter
404
If the user does not exist in the database
500
If the database throws any error

PUT /api/v1/user/{id}
Edit data for a user (apiV1UserIdPut)

Used for editing data about a user in the database

Path parameters

id (required)

Chapter B: Additional documentation 121

Path Parameter — Feide_id for the user

Request body

body (required)
Body Parameter — Required data to edit user

Produces
This API call produces the following media types according to the Accept request header; the media type will be conveyed
by the Content-Type response header.

application/json

Responses
204
Successfull editing of a user
400
Missing parameters
404
User does not exist
500
Internal server error

GET /api/v1/user/profile
Authorizing a user (apiV1UserProfileGet)

Used for authorizing a user if the user is logged in. Will return user-object if user is serialized.

Return type
user

Example data
Content-Type: application/json

{
 "authored" : "true",
 "favorites" : ["favorites", "favorites"],
 "role" : "student",
 "feide_id" : "5a91dghd2-118b-4e97-8b47-5d2gfhfjg39f",
 "name" : "Christian Simoes Isnes",
 "photo" : "https://api.dataporten.no/userinfo/v1/user/media/p:619f1215-5b3c-44cb-8754-e511bc382ec5",
 "groups" : ["{}", "{}"],
 "active" : true,
 "token" : "46h8e4jd-d232-4e56-91e9-3b3ee8365ca4",
 "tags" : ["upload", "upload"]
}

Produces
This API call produces the following media types according to the Accept request header; the media type will be conveyed
by the Content-Type response header.

application/json

Responses
200
Response containing information of the user logged in. user
401
Triggers if the user is not authenticated
500
Triggers if an internal server error occurs.

Models

122 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

[Jump to Methods]

Table of Contents

1. file -
2. user -

file -

pending_analysis (optional)
Object

uploaded_by (optional)
String

tags (optional)
array[String]

sha256 (optional)
String

md5 (optional)
String

original_filename (optional)
String

size (optional)
Integer

date_added (optional)
String

analyzed_info (optional)
Object

user -

feide_id (optional)
String
example: 5a91dghd2-118b-4e97-8b47-5d2gfhfjg39f

name (optional)
String
example: Christian Simoes Isnes

photo (optional)
String
example: https://api.dataporten.no/userinfo/v1/user/media/p:619f1215-5b3c-44cb-8754-
e511bc382ec5

token (optional)
String
example: 46h8e4jd-d232-4e56-91e9-3b3ee8365ca4

groups (optional)
array[Object]

active (optional)
Boolean
example: true

authored (optional)
String
example: true

role (optional)
String
example: student

tags (optional)
array[String]

Chapter B: Additional documentation 123

favorites (optional)
array[String]

124 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

A
rb

ei
ds

lo
gg

 i
Ti

m
er

H
VA

 D
U

 H
A

R
 G

JO
R

T
M

ic
ha

el
G

je
rt

C
hr

is
tia

n
Er

le
nd

M
ic

ha
el

G
je

rt
C

hr
is

tia
n

Er
le

nd
13

.0
1.

20
21

5
t

4
t

6
t

Le
se

r o
pp

 p
å

M
on

go
D

B
 o

g
M

on
go

os
e

O
pp

se
tt

av
 re

po
si

to
ry

O
pp

se
tt

og
 re

st
ru

kt
ur

er
in

g
av

 b
oi

le
rp

la
te

s
14

.0
1.

20
21

5
t

Le
se

r o
pp

 p
å

M
on

go
D

B
 o

g
M

on
go

os
e

15
.0

1.
20

21
8

t
5

t
6

t
6

t
Le

se
r o

pp
 p

å
M

on
go

D
B

 o
g

M
on

go
os

e
Vi

ru
st

ot
al

 -
pi

pe
lin

e
W

at
ch

ed
 tu

to
ria

ls
 o

n
no

de
 a

nd
 m

on
go

D
B

16
.0

1.
20

21
5

t
K

ur
s

i A
ng

ul
ar

 o
g

op
ps

et
t a

v
A

ng
ul

ar
17

.0
1.

20
21

3
t

18
.0

1.
20

21
6

t
5

t
5

t
Jo

bb
et

 m
ed

 fo
rp

ro
sj

ek
t

Fo
rp

ro
sj

ek
t o

g
A

ng
ul

ar
 (b

oo
ts

tra
p)

Jo
bb

et
 m

ed
 fo

rp
ro

sj
ek

t
19

.0
1.

20
21

5
t

5
t

6
t

Jo
bb

et
 m

ed
 fo

rp
ro

sj
ek

t
Jo

bb
et

 m
ed

 fo
rp

ro
sj

ek
t

20
.0

1.
20

21
5

t
2

t
6

t
7

t
Jo

bb
et

 m
ed

 fo
rp

ro
sj

ek
t

le
se

r o
pp

 p
å

no
de

R
E

S
T

A
P

I t
es

tin
g

Jo
bb

et
 m

ed
 fo

rp
ro

sj
ek

t
21

.0
1.

20
21

7
t

6
t

6
t

Jo
bb

et
 m

ed
 fo

rp
ro

sj
ek

t
Jo

bb
et

 m
ed

 fo
rp

ro
sj

ek
t o

g
R

E
S

T-
ap

i
Jo

bb
et

 m
ed

 fo
rp

ro
sj

ek
t

22
.0

1.
20

21
6

t
7

t
7

t
6

t
La

Te
X

 b
ac

ku
p,

 te
st

in
g

Te
st

, d
b

og
 m

od
el

s
A

P
I

Ve
ile

dn
in

gs
m

øt
e,

 fo
rp

ro
sj

ek
ta

rb
ei

d
23

.0
1.

20
21

7
t

10
 t

7
t

5
t

Te
st

in
g

m
od

el
s,

 p
ip

el
in

e,
 d

b
A

P
I

Fo
rp

ro
sj

ek
ta

rb
ei

d
24

.0
1.

20
21

7
t

5
t

7
t

5
t

G
an

tt-
sc

he
m

a
pr

og
gi

ng
A

P
I

Fo
rp

ro
sj

ek
ta

rb
ei

d
25

.0
1.

20
21

6
t

2
t

7
t

6
t

Fu
llf

ør
t g

an
tt,

 te
st

 te
st

in
g

pr
os

je
kt

pl
an

A
P

I o
g

fo
rp

ro
sj

ek
t

Fo
rp

ro
sj

ek
ta

rb
ei

d,
 S

tu
dy

 M
E

A
N

 s
ta

ck
26

.0
1.

20
21

7
t

3
t

7
t

6
t

Fo
rp

ro
sj

ek
t

pr
os

je
kt

pl
an

A
P

I
Fo

rp
ro

sj
ek

ta
rb

ei
d

27
.0

1.
20

21
7

t
4

t
5

t
8

t
Fo

rp
ro

sj
ek

t
pr

os
je

kt
pl

an
Fr

on
te

nd
Fo

rp
ro

sj
ek

ta
rb

ei
d

28
.0

1.
20

21
7

t
3

t
6

t
8

t
Fo

rp
ro

sj
ek

t
pr

os
je

kt
pl

an
Fr

on
te

nd
Fo

rp
ro

sj
ek

ta
rb

ei
d

29
.0

1.
20

21
8

t
6

t
7

t
6

t
Fo

rp
ro

sj
ek

t
pr

os
je

kt
pl

an
, t

es
t,

se
rv

ic
es

Fr
on

te
nd

Fo
rp

ro
sj

ek
ta

rb
ei

d,
 F

ro
nt

-e
nd

30
.0

1.
20

21
31

.0
1.

20
21

3
t

01
.0

2.
20

21
4

t
4

t
8

t
7

t
pa

ss
po

rt.
js

 a
nd

 J
W

T'
s

Fr
on

te
nd

Fo
rp

ro
sj

ek
ta

rb
ei

d,
 in

nl
og

gi
ng

ss
yt

em
02

.0
2.

20
21

10
 t

7
t

7
t

7
t

JW
T

im
pl

em
en

te
rin

g
m

al
w

ar
eb

az
aa

r
Fr

on
te

nd
 o

g
A

P
I

E
rr

or
 h

an
dl

in
g

03
.0

2.
20

21
8

t
7

t
6

t
7

t
K

on
t.

JW
T

im
pl

em
en

te
rin

g
pi

pe
lin

e,
 d

oc
ke

r
Fr

on
te

nd
 o

g
A

P
I

E
rr

or
 h

an
dl

in
g,

 re
se

ar
ch

04
.0

2.
20

21
8

t
5

t
5

t
5

t
M

er
 d

yn
am

is
k

au
th

.g
ua

rd
pi

pe
lin

e,
 d

oc
ke

r
Fr

on
te

nd
 o

g
A

P
I

E
rr

or
 h

an
dl

in
g

05
.0

2.
20

21
8

t
4

t
5

t
8

t
Jo

bb
er

 m
ed

 ra
pp

or
t,

lit
t k

od
in

g
do

ck
er

R
ed

es
ig

n
av

 fr
on

te
nd

A
rb

ei
d

m
ed

 ra
pp

or
t

06
.0

2.
20

21
6

t
R

ed
es

ig
n

av
 fr

on
te

nd
07

.0
2.

20
21

7
t

5
t

JW
T'

s
R

ed
es

ig
n

av
 fr

on
te

nd
08

.0
2.

20
21

8
t

10
 t

5
t

6
t

A
ut

ho
riz

at
io

n
un

zi
p

R
ef

ac
to

re
d

fro
nt

en
d

co
de

 to
 h

an
dl

e
er

ro
rs

 b
et

te
r

LA
O

S
 k

ur
s.

 li
tt

fro
nt

-e
nd

09
.0

2.
20

21
9

t
8

t
8

t
5

t
A

ut
ho

riz
at

io
n

pi
pe

lin
e

Fu
lls

ta
ck

 a
ut

he
nt

ic
at

io
n

Fr
on

t-e
nd

, W
in

st
on

 lo
gg

in
g

re
se

ar
ch

10
.0

2.
20

21
9

t
6

t
5

t
5

t
D

oc
um

en
tin

g
pi

pe
lin

e
Fr

on
te

nd
 a

nd
 b

ac
ke

nd
, d

el
et

io
n

of
 u

se
rs

P
ro

sj
ek

ts
kr

iv
in

g
11

.0
2.

20
21

8
t

7
t

5
t

5
t

M
on

go
D

B
 re

co
nn

ec
t

pi
pe

lin
e

FE
ID

E
W

in
st

on
 lo

gg
in

g
12

.0
2.

20
21

7
t

5
t

4
t

A
ss

ig
nm

en
t i

n
IM

T4
11

6
pi

pe
lin

e
FE

ID
E

W
in

st
on

 lo
gg

in
g

13
.0

2.
20

21
A

ss
ig

nm
en

t i
n

IM
T4

11
6

Jo
bb

14
.0

2.
20

21
A

ss
ig

nm
en

t i
n

IM
T4

11
6

Jo
bb

15
.0

2.
20

21
6

t
2

t
A

ss
ig

nm
en

t i
n

IM
T4

11
6

FE
ID

E
LA

O
S

 k
ur

s.
 w

in
st

on
-d

ai
ly

-r
ot

at
e

16
.0

2.
20

21
8

t
10

 t
8

t
6

t
Fi

le
 o

ve
rv

ie
w

pi
pe

lin
e,

 u
pl

oa
d

FE
ID

E
W

in
st

on
-d

ai
ly

-r
ot

at
e

lo
gg

in
g

17
.0

2.
20

21
7

t
6

t
5

t
7

t
Im

pl
em

en
te

d
fil

e
ov

er
vi

ew
up

lo
ad

FE
ID

E
W

in
st

on
-d

ai
ly

-r
ot

at
e

lo
gg

in
g

18
.0

2.
20

21
9

t
6

t
6

t
5

t
A

ss
ig

nm
en

t i
n

IM
T4

11
6,

 lo
ok

in
g

in
to

 p
ag

in
at

io
n

fil
ec

la
ss

FE
ID

E
P

ag
in

at
io

n
19

.0
2.

20
21

8
t

6
t

5
t

6
t

E
xp

an
si

on

fil
ec

la
ss

U
pg

ra
de

d
au

th
 c

lie
nt

 fr
om

 O
au

th
2

to
 O

ID
C

 (f
or

 M
FA

 +
++

)
P

ag
in

at
io

n
20

.0
2.

20
21

8
t

A
ss

ig
nm

en
t i

n
IM

T4
11

6
R

ef
ac

to
re

d
tw

o
U

N
IN

E
TT

 m
od

ul
es

 to
 s

up
pp

or
t O

ID
C

 w
ith

 g
ro

up
s

21
.0

2.
20

21
7

t
A

ss
ig

nm
en

t i
n

IM
T4

11
6

O
ve

rle
af

 d
oc

um
en

ta
tio

n
ab

ou
t e

ve
ry

th
in

g
re

la
te

d
to

 F
E

ID
E

22
.0

2.
20

21
5

t
6

t
6

t
A

ss
ig

nm
en

t i
n

IM
T4

11
6

pi
pe

lin
e

D
ev

el
op

ed
 m

id
dl

ew
ar

e
ba

se
rt

på
 g

ro
up

s,
 id

 o
r a

ll
au

th
en

tic
at

ed
Fi

ni
sh

ed
 p

ag
in

at
io

n
23

.0
2.

20
21

7
t

6
t

6
t

M
is

us
e

ca
se

s,
 D

oc
um

en
tin

g
re

po
rt

w
rit

in
g,

 d
oc

ke
r

Jo
bb

R
ep

or
t w

rit
in

g,
 n

gx
-lo

g-
m

on
ito

r r
es

ea
rc

h
24

.0
2.

20
21

8
t

4
t

S
or

tin
g

in
 fi

le
 o

ve
rv

ie
w

, b
eg

un
 lo

ok
in

g
in

to
 s

el
ec

t
fil

ep
ag

e
Jo

bb
25

.0
2.

20
21

9
t

6
t

5
t

Im
pl

em
en

te
d

de
ta

ile
d

fil
ev

ie
w

m
ee

tin
g

C
om

bi
ni

ng
 a

ll
br

an
ch

es
 a

nd
 a

ut
h

gu
ar

d

Chapter B: Additional documentation 125

B.2 Worklog

26
.0

2.
20

21
7

t
4

t
In

fo
rm

at
io

n
ca

rd
s

U
se

r (
de

)s
er

ia
liz

at
io

n
27

.0
2.

20
21

28
.0

2.
20

21
FR

I,
Sk

itu
r

FR
I

FR
I

FR
I,

Sk
itu

r
01

.0
3.

20
21

FR
I,

Sk
itu

r
FR

I
FR

I
FR

I,
Sk

itu
r

02
.0

3.
20

21
FR

I,
Sk

itu
r

FR
I

FR
I

FR
I,

Sk
itu

r
03

.0
3.

20
21

5
t

6
t

5
t

In
fo

rm
at

io
n

ca
rd

s
co

nt
.

U
se

r (
de

)s
er

ia
liz

at
io

n
w

eb
so

ck
et

04
.0

3.
20

21
7

t
4

t
4

t
In

fo
rm

at
io

n
ca

rd
s

co
nt

.
U

se
r (

de
)s

er
ia

liz
at

io
n

R
ap

po
rts

kr
iv

in
g

05
.0

3.
20

21
8

t
8

t
4

t
7

t
In

fo
rm

at
io

n
ca

rd
s

co
nt

.
un

zi
p

R
ap

po
rts

kr
iv

in
g

06
.0

3.
20

21
8

t
un

zi
p

FR
I

07
.0

3.
20

21
FR

I
08

.0
3.

20
21

6
t

9
t

5
t

5
t

M
ee

tin
g,

 s
ta

rte
d

lo
ok

in
g

in
to

 4
04

-p
ag

es
vi

ru
st

ot
al

 ra
te

 li
m

it
R

ed
es

ig
ne

d
se

ria
liz

at
io

n
of

 u
se

rs
M

ee
tin

g,
 tr

ou
bl

es
ho

ot
in

g
09

.0
3.

20
21

7
t

5
t

6
t

im
pl

em
en

te
d

40
4-

pa
ge

R
ed

es
ig

ne
d

se
ria

liz
at

io
n

of
 u

se
rs

R
ap

po
rts

kr
iv

in
g

10
.0

3.
20

21
6

t
5

t
4

t
D

oc
um

en
tin

g
Fi

le
vi

ew
 o

rg
an

iz
at

io
n

W
eb

so
ck

et
, l

og
vi

ew
11

.0
3.

20
21

9
t

6
t

5
t

R
ef

re
sh

 v
iru

st
ot

al
 fr

on
t-e

nd
Fi

le
vi

ew
 o

rg
an

iz
at

io
n

W
eb

so
ck

et
, l

og
vi

ew
12

.0
3.

20
21

7
t

7
t

5
t

R
ef

re
sh

 a
dd

ed
 to

 fr
on

te
nd

 fi
le

vi
ew

W
eb

so
ck

et
, l

og
vi

ew
13

.0
3.

20
21

6
t

Iro
ne

d
ou

t c
ou

nt
le

ss
 fr

on
te

nd
 b

ug
s

an
d

st
ru

ct
ur

ed
 fi

le
-v

ie
w

14
.0

3.
20

21
4

t
Im

pl
em

en
tin

g
fa

vo
rit

es
, a

dd
ed

 ta
gs

 to
 u

sr
+f

ile
, g

ua
rd

ed
 ro

ut
es

15
.0

3.
20

21
7

t
10

 t
4

t
10

 t
D

oc
um

en
tin

g
m

ul
tip

le
 fi

le
 u

pl
oa

d
R

ew
or

ke
d

us
er

 ro
ut

es
R

ap
po

rts
kr

iv
in

g
16

.0
3.

20
21

7
t

5
t

5
t

6
t

M
ee

tin
g,

 D
oc

um
en

tin
g,

 lo
gv

ie
w

lo
gv

ie
w

M
ee

tin
g

an
d

D
el

et
eU

se
r o

n
ad

m
in

 p
an

el
R

ap
po

rts
kr

iv
in

g
17

.0
3.

20
21

8
t

12
 t

10
 t

7
t

D
iv.

 fi
xe

s,
 ra

pp
or

ts
kr

iv
in

g
lo

gv
ie

w
M

ee
tin

g
an

d
D

el
et

eU
se

r o
n

ad
m

in
 p

an
el

R
ap

po
rts

kr
iv

in
g

18
.0

3.
20

21
8

t
8

t
6

t
Fi

le
 u

pl
oa

d
fro

nt
en

d
E

di
tU

se
r o

n
ad

m
in

 p
an

el
R

ap
po

rts
kr

iv
in

g
19

.0
3.

20
21

7
t

6
t

5
t

U
se

rli
st

 p
ag

in
at

io
n

an
d

so
rti

ng
D

el
et

eU
se

r o
n

ad
m

in
 p

an
el

R
ap

po
rts

kr
iv

in
g

20
.0

3.
20

21
21

.0
3.

20
21

22
.0

3.
20

21
7

t
R

ap
po

rts
kr

iv
in

g
23

.0
3.

20
21

7
t

6
t

5
t

S
el

ec
tio

n
fil

e-
lis

t
R

ap
po

rts
kr

iv
in

g
24

.0
3.

20
21

7
t

5
t

5
t

D
oc

um
en

tin
g

Fa
vo

rit
es

R
ap

po
rts

kr
iv

in
g

25
.0

3.
20

21
8

t
6

t
6

t
Fi

xe
d

se
le

ct
io

n
an

d
ad

de
d

m
as

s-
ac

tio
n

to
 li

st
Fa

vo
rit

es
R

ap
po

rts
kr

iv
in

g
26

.0
3.

20
21

7
t

12
 t

3
t

6
t

S
ta

rte
d

w
or

ki
ng

 o
n

ac
tio

ns
 fo

r s
el

ec
tio

n,
 d

iv.
 fi

xe
s

an
al

yz
e

P
as

sp
or

t
R

ap
po

rts
kr

iv
in

g
27

.0
3.

20
21

12
 t

4
t

an
al

yz
e

is
 n

ow
 w

or
ki

ng
P

ar
si

ng
 a

na
ly

si
s

da
ta

28
.0

3.
20

21
5

t
29

.0
3.

20
21

8
t

8
t

C
he

ck
bo

x
fu

nc
tio

na
lit

y
an

d
ad

de
d

to
 u

se
r-

lis
t

P
ar

si
ng

 a
na

ly
si

s
da

ta
30

.0
3.

20
21

6
t

A
ss

ig
nm

en
t i

n
IM

T4
11

6
O

pt
im

iz
in

g
fro

nt
en

d
31

.0
3.

20
21

4
t

A
ss

ig
nm

en
t i

n
IM

T4
11

6
Fr

on
te

nd
 o

g
A

P
I

01
.0

4.
20

21
6

t
6

t
A

ss
ig

nm
en

t i
n

IM
T4

11
6

Fr
on

te
nd

 o
g

A
P

I
R

ap
po

rts
kr

iv
in

g
02

.0
4.

20
21

9
t

7
t

A
ss

ig
nm

en
t i

n
IM

T4
11

6
Fr

on
te

nd
 o

g
A

P
I

R
ap

po
rts

kr
iv

in
g

03
.0

4.
20

21
12

 t
8

t
A

ss
ig

nm
en

t i
n

IM
T4

11
6

up
lo

ad
04

.0
4.

20
21

8
t

5
t

A
ss

ig
nm

en
t i

n
IM

T4
11

6
do

w
nl

oa
d

05
.0

4.
20

21
4

t
6

t
7

t
A

ss
ig

nm
en

t i
n

IM
T4

11
6

do
w

nl
oa

d
Fr

on
te

nd
 o

g
A

P
I

R
ap

po
rts

kr
iv

in
g

06
.0

4.
20

21
8

t
5

t
5

t
A

ss
ig

nm
en

t i
n

IM
T4

11
6

up
lo

ad
 s

ta
tu

s
Fr

on
te

nd
 o

g
A

P
I

R
ap

po
rts

kr
iv

in
g

07
.0

4.
20

21
6

t
8

t
8

t
A

ss
ig

nm
en

t i
n

IM
T4

11
6

fil
ec

la
ss

Fr
on

te
nd

 o
g

A
P

I
R

ap
po

rts
kr

iv
in

g
08

.0
4.

20
21

7
t

6
t

9
t

8
t

C
ha

rts
 a

nd
 m

ee
tin

g
up

lo
ad

 s
ta

tu
s

Fr
on

te
nd

 o
g

A
P

I
R

ap
po

rts
kr

iv
in

g,
 U

pl
oa

d
st

at
us

09
.0

4.
20

21
8

t
8

t
11

 t
8

t
C

ha
rts

 a
nd

 R
ep

or
t w

rit
in

g
Fr

on
te

nd
 o

g
A

P
I

U
pl

oa
d

st
at

us
10

.0
4.

20
21

11
.0

4.
20

21
12

.0
4.

20
21

6
t

8
t

7
t

7
t

R
ep

or
t w

rit
in

g
up

lo
ad

 s
ta

tu
s

R
ep

or
t w

rit
in

g
R

ap
po

rts
kr

iv
in

g
13

.0
4.

20
21

6
t

8
t

4
t

8
t

R
ep

or
t w

rit
in

g
up

lo
ad

 s
ta

tu
s

R
ep

or
t w

rit
in

g
R

ap
po

rts
kr

iv
in

g

126 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

14
.0

4.
20

21
7

t
6

t
9

t
8

t
R

ep
or

t w
rit

in
g

up
lo

ad
 s

ta
tu

s
R

ep
or

t w
rit

in
g

R
ap

po
rts

kr
iv

in
g,

 u
pl

oa
d-

st
at

us
15

.0
4.

20
21

8
t

10
 t

7
t

6
t

R
ep

or
t w

rit
in

g
an

d
m

ee
tin

g
di

v
bu

gf
ix

es
R

ep
or

t w
rit

in
g

up
lo

ad
16

.0
4.

20
21

7
t

10
 t

7
t

7
t

R
ep

or
t w

rit
in

g
se

ar
ch

R
ep

or
t w

rit
in

g
up

lo
ad

17
.0

4.
20

21
up

lo
ad

 d
ra

g
an

d
dr

op
18

.0
4.

20
21

19
.0

4.
20

21
6

t
6

t
7

t
8

t
R

ep
or

t w
rit

in
g

se
ar

ch
R

ep
or

t w
rit

in
g

up
lo

ad
20

.0
4.

20
21

6
t

8
t

9
t

6
t

R
ep

or
t w

rit
in

g
se

ar
ch

R
ep

or
t w

rit
in

g
up

lo
ad

 d
ra

g
an

d
dr

op
21

.0
4.

20
21

8
t

8
t

8
t

6
t

R
ep

or
t w

rit
in

g
R

ep
or

t w
rit

in
g

up
lo

ad
22

.0
4.

20
21

6
t

8
t

7
t

7
t

R
ep

or
t w

rit
in

g
R

ep
or

t w
rit

in
g

R
ap

po
rts

kr
iv

in
g

23
.0

4.
20

21
7

t
5

t
5

t
R

ep
or

t w
rit

in
g

R
ep

or
t w

rit
in

g
R

ap
po

rts
kr

iv
in

g
24

.0
4.

20
21

25
.0

4.
20

21
26

.0
4.

20
21

8
t

7
t

8
t

7
t

R
ep

or
t w

rit
in

g
do

w
nl

oa
d

R
ep

or
t w

rit
in

g
R

ap
po

rts
kr

iv
in

g
27

.0
4.

20
21

7
t

10
 t

4
t

8
t

R
ep

or
t w

rit
in

g
do

w
nl

oa
d

R
ep

or
t w

rit
in

g
R

ap
po

rts
kr

iv
in

g
28

.0
4.

20
21

7
t

9
t

9
t

8
t

R
ep

or
t w

rit
in

g
do

w
nl

oa
d

R
ep

or
t w

rit
in

g
R

ap
po

rts
kr

iv
in

g
29

.0
4.

20
21

5
t

9
t

5
t

6
t

R
ep

or
t w

rit
in

g
do

w
nl

oa
d

R
ep

or
t w

rit
in

g
R

ap
po

rts
kr

iv
in

g
30

.0
4.

20
21

5
t

9
t

7
t

7
t

R
ep

or
t w

rit
in

g
re

de
si

gn
 A

P
I r

ou
te

s
R

ep
or

t w
rit

in
g

R
ap

po
rts

kr
iv

in
g

01
.0

5.
20

21
6

t
re

de
si

gn
 A

P
I r

ou
te

s
02

.0
5.

20
21

6
t

re
de

si
gn

 A
P

I r
ou

te
s

03
.0

5.
20

21
8

t
8

t
7

t
7

t
R

ep
or

t w
rit

in
g

di
v

R
ep

or
t w

rit
in

g
R

ap
po

rts
kr

iv
in

g
04

.0
5.

20
21

7
t

8
t

7
t

7
t

R
ep

or
t w

rit
in

g
re

fa
ct

or
 fi

le
cl

as
s

P
ro

te
ct

ed
 R

E
S

T
A

P
I r

ou
te

s
R

ap
po

rts
kr

iv
in

g
05

.0
5.

20
21

7
t

8
t

7
t

7
t

R
ep

or
t w

rit
in

g
re

fa
ct

or
 fi

le
cl

as
s

P
ro

te
ct

ed
 R

E
S

T
A

P
I r

ou
te

s
an

d
re

po
rt

w
rit

in
g

R
ap

po
rts

kr
iv

in
g

06
.0

5.
20

21
9

t
8

t
7

t
8

t
R

ep
or

t w
rit

in
g

re
fa

ct
or

 fi
le

cl
as

s
P

ro
te

ct
ed

 R
E

S
T

A
P

I r
ou

te
s

R
ap

po
rts

kr
iv

in
g

07
.0

5.
20

21
9

t
8

t
7

t
8

t
R

ep
or

t w
rit

in
g

re
fa

ct
or

 fi
le

cl
as

s
P

ro
te

ct
ed

 R
E

S
T

A
P

I r
ou

te
s

R
ap

po
rts

kr
iv

in
g

08
.0

5.
20

21
09

.0
5.

20
21

3
t

se
tu

p
ba

ck
en

d
on

 e
xt

er
na

l s
er

ve
r

10
.0

5.
20

21
8

t
5

t
7

t
8

t
R

ep
or

t w
rit

in
g

st
re

ss
te

st
 o

f b
ac

ke
nd

R
ep

or
t w

rit
in

g,
 c

od
e-

co
m

m
en

tin
g

R
ap

po
rts

kr
iv

in
g

11
.0

5.
20

21
9

t
8

t
7

t
8

t
R

ep
or

t w
rit

in
g

R
ep

or
t w

rit
in

g
R

ep
or

t w
rit

in
g,

 c
od

e-
co

m
m

en
tin

g
R

ap
po

rts
kr

iv
in

g
12

.0
5.

20
21

8
t

8
t

7
t

8
t

R
ep

or
t w

rit
in

g
R

ep
or

t w
rit

in
g

R
ep

or
t w

rit
in

g,
 c

od
e-

co
m

m
en

tin
g

R
ap

po
rts

kr
iv

in
g

13
.0

5.
20

21
7

t
8

t
7

t
6

t
R

ep
or

t w
rit

in
g

R
ep

or
t w

rit
in

g
A

P
I d

oc
um

en
ta

tio
n

R
ap

po
rts

kr
iv

in
g

14
.0

5.
20

21
8

t
8

t
7

t
6

t
R

ep
or

t w
rit

in
g

R
ep

or
t w

rit
in

g
A

P
I d

oc
um

en
ta

tio
n

R
ap

po
rts

kr
iv

in
g

15
.0

5.
20

21
7

t
6

t
5

t
R

ep
or

t w
rit

in
g

R
ep

or
t w

rit
in

g
R

ap
po

rts
kr

iv
in

g
16

.0
5.

20
21

7
t

6
t

5
t

R
ep

or
t w

rit
in

g
R

ep
or

t w
rit

in
g

R
ap

po
rts

kr
iv

in
g

17
.0

5.
20

21
18

.0
5.

20
21

8
t

6
t

4
t

6
t

R
ep

or
t w

rit
in

g
R

ep
or

t w
rit

in
g

A
P

I d
oc

um
en

ta
tio

n
R

ap
po

rts
kr

iv
in

g
19

.0
5.

20
21

8
t

10
 t

8
t

R
ep

or
t w

rit
in

g
R

ep
or

t w
rit

in
g

R
ap

po
rts

kr
iv

in
g

20
.0

5.
20

21
La

st
 c

ha
ng

es
 to

 d
oc

um
en

t
SU

M
:

58
1

t
53

3
t

59
7

t
52

4
t

TO
TA

L:
22

35
 t

Chapter B: Additional documentation 127

Appendix C

Code examples

Authorize

1 /**
2 * @desc Authorization-check for backend
3 * @params req, res, args (request, response and arguments)
4 * @res Will return true if authenticated/authorized, and send an immediate 401/403 if

unauth.
5 */
6 module.exports.authorize = function (args) {
7 return (req, res, next) => {
8 let allowedRole = [];
9 let allowedTags = [];

10 let allowAll = false;
11
12 // Check if req.user is on request, and user is active
13 if (req.user && req.user.db.active) {
14 // Set ’all’ from middleware
15 if (args.all != undefined) {
16 allowAll = args.all;
17 }
18
19 // Set role from middleware
20 if (args.role != undefined) {
21 allowedRole = args.role;
22 }
23
24 // Set tags from middleware
25 if (args.tags != undefined) {
26 allowedTags = args.tags;
27 }
28
29 // User is authenticated, data set, start checking for authorization
30 exec();
31 } else {
32 // User did not have a session, or inactive, unauthenticated
33 return res.status(401).json({
34 message: "Unauthorized",
35 });
36 }
37
38 /**
39 * @desc Authorization-check for backend
40 * @params req, res, args (request, response and arguments)
41 * @res Will return true if authenticated/authorized, and send an immediate 401/403

if unauth.
42 */
43 function exec() {
44 // Check if "any: true " is passed
45 if (allowAllAuthenticated()) {
46 return next();
47 }

129

130 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

48
49 // Check if users role is in the routes groups
50 else if (isUserRoleAllowed(req.user.db.role)) {
51 return next();
52 }
53
54 // Check if users tags is in the routes tags
55 else if (isAnyUserTagsAllowed(req.user.db.tags)) {
56 return next();
57 }
58
59 // User not authorized
60 else {
61 return res.status(401).json({
62 message: "Unauthorized",
63 });
64 }
65 }
66
67 /**
68 * @desc Check if specifictag is allowed
69 * @params userTag - Users tag to check
70 * @res Will return true if the users tag is in the list of allowed tags passed from

middleware
71 */
72 function isTagAllowed(userTag) {
73 for (var i = 0; i < allowedTags.length; i++) {
74 if (allowedTags[i] == userTag) {
75 return true;
76 }
77 }
78 return false;
79 }
80
81 /**
82 * @desc Check if any tag is allowed
83 * @params userTags[]
84 * @res Will return true if any tags is in the list of allowed tags passed from

middleware
85 */
86 function isAnyUserTagsAllowed(userTags) {
87 for (var i = 0; i < userTags.length; i++) {
88 if (isTagAllowed(userTags[i])) {
89 return true;
90 }
91 }
92 return false;
93 }
94
95 /**
96 * @desc Check if any role is allowed
97 * @params role[]
98 * @res Will return true if any role is in the whitelisted IDs passed to authorize.js
99 */

100 function isUserRoleAllowed(userRole) {
101 for (var i = 0; i < allowedRole.length; i++) {
102 if (allowedRole[i] == userRole) {
103 return true;
104 }
105 }
106 return false;
107 }
108
109 /**
110 * @desc Check if anyone is allowed
111 * @res Will return true if the "all" flag is passed
112 */
113 function allowAllAuthenticated() {
114 if (allowAll) {
115 return true;
116 }
117 }
118 };
119 };

Chapter C: Code examples 131

Code listing C.1: The authorization middleware protecting the REST API

Passport strategy

1 const userService = require(’../../../db/user-service’)
2 var openid = require(’openid-client’)
3 var passport = require(’passport’)
4 var util = require(’util’)
5 const request = require(’request’)
6 var User = require(’./User’).User
7
8 var OICStrategy = function(config) {
9 this.name = ’passport-openid-connect’

10 this.config = config || {}
11 this.groupsUrl = ’https://groups-api.dataporten.no/groups/me/groups’
12 this.client = null
13 this.tokenSet = null
14 this.init()
15 .then(() => {
16 console.log("Initialization of OpenID Connect discovery process completed.")
17 })
18 }
19 util.inherits(OICStrategy, passport.Strategy)
20
21 OICStrategy.prototype.init = function() {
22 if (!this.config.issuerHost) {
23 throw new Error("Could not find requried config options issuerHost in

openid-passport strategy initalization")
24 }
25 return Promise.resolve().then(() => {
26 return openid.Issuer.discover(this.config.issuerHost)
27 })
28 .then((issuer) => {
29 this.client = new issuer.Client(this.config)
30 })
31 .catch((err) => {
32 console.error("ERROR", err);
33 })
34 }
35
36 OICStrategy.prototype.authenticate = function(req, opts) {
37 if (opts.callback) {
38 return this.callback(req, opts)
39 }
40 try {
41 var authurl = this.client.authorizationUrl(this.config)
42 this.redirect(authurl)
43 } catch (error) {
44 console.error("Error getting authUrl", error);
45 this.fail(error)
46 }
47
48
49 }
50
51 OICStrategy.prototype.getUserInfo = function() {
52 return this.client.userinfo(this.tokenSet.access_token)
53 .then((userinfo) => {
54 this.userinfo = userinfo
55 })
56 }
57
58 OICStrategy.prototype.loadGroups = function() {
59 var that = this; // Workaround for accessing

’this’ inside a subfunction, promise.
60 return new Promise(function(resolve, reject) {
61
62 var options = {
63 url: that.groupsUrl,

132 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

64 headers: {
65 ’User-Agent’: ’passport-dataporten’,
66 ’Authorization’: ’Bearer ’ + that.tokenSet.access_token
67 }
68 };
69 // console.log("Perforing OAuth 2.0 Request", options);
70 request(options, function (error, response, body) { // Send request to groups API
71 if (!error && response.statusCode == 200) {
72 var data = JSON.parse(body);
73 resolve(data); // Resolve with data
74 }
75 reject(error); // Reject if error
76 });
77
78 }).then(function(groups) {
79 that.groups = groups;
80 return groups;
81 });
82 };
83
84
85 OICStrategy.prototype.callback = function(req, opts) {
86 return this.client.callback(this.config.redirect_uri, req.query)
87 .then((tokenSet) => { // Get users basic information
88 this.tokenSet = tokenSet
89 return this.getUserInfo()
90 })
91 .then(() => { // Get users groups
92 return this.loadGroups()
93 })
94 .then(() => { // Set user object with user-data
95 var user = new User(this.userinfo)
96 user.token = this.tokenSet
97 user.idtoken = this.tokenSet.claims
98 user.groups = this.groups
99 this.success(user)

100 })
101 .catch((err) => {
102 console.error("Error processing callback", err);
103 this.fail(err)
104 })
105 }
106
107 OICStrategy.serializeUser = function(user, cb) {
108 userService.findUser(user.data.sub)
109 .then(usr => {
110 if (usr) {
111 cb(null, user.serialize());
112 } else {
113 userService.createUser(user)
114 .then(data => {
115 cb(null, user.serialize());
116 })
117 }
118 })
119 .catch(err => {
120 this.fail(err)
121 })
122 }
123 OICStrategy.deserializeUser = function(packed, cb) {
124
125 userService.findUser(packed.data.sub)
126 .then(usr => {
127 packed.db = usr
128 cb(null, User.unserialize(packed))
129 })
130
131
132 }
133
134
135 exports.Strategy = OICStrategy

Code listing C.2: Passport strategy handling user-logins

Chapter C: Code examples 133

Auth_service

1 import { Injectable, EventEmitter, Output } from "@angular/core";
2 import {
3 HttpClient,
4 HttpHeaders,
5 HttpClientModule,
6 } from "@angular/common/http";
7 import { AuthData } from "./auth-data.model";
8 import { Router } from "@angular/router";
9 import { User } from "../models/user";

10 import { catchError, map } from "rxjs/operators";
11 import { BehaviorSubject, of } from "rxjs";
12 import { Subject } from "rxjs";
13 import { TmplAstRecursiveVisitor } from "@angular/compiler";
14
15 const httpOptions = {
16 headers: new HttpHeaders({
17 mode: "no-cors",
18 }),
19 };
20
21 @Injectable({ providedIn: "root" })
22 export class AuthService {
23 authStatusListner = new Subject<boolean>();
24 isAuthenticated = false;
25 public user;
26 public subscription$;
27
28 constructor(private http: HttpClient, private router: Router) {}
29
30 getAuthStatusListener() {
31 return this.authStatusListner.asObservable();
32 }
33
34 getUserProfile() {
35 this.http
36 .get("/api/v1/user/profile") // is not, pull profile
37 .subscribe(
38 (user: any) => {
39 if (user && user.active && user.authored) {
40 // check if user exist on session and is active
41 this.user = user;
42 this.authStatusListner.next(true); // permit user
43 } else {
44 if (!user.active || !user.authored) {
45 // check if user is not active
46 this.authStatusListner.next(false);
47 } else {
48 this.authStatusListner.next(false);
49 }
50 }
51 },
52 (error) => {
53 // all unknown errors redirect to login, typical for user does not exist

in db etc
54 console.log("User is not authenticated, redirecting.");
55 this.router.navigate(["/login"]);
56 }
57);
58 }
59
60 updateAuthenticated(status: boolean) {
61 console.log("Updating isAuthenticated to, ", status);
62 this.authStatusListner.next(status);
63 }
64
65 public signout() {
66 this.updateAuthenticated(false);
67 }
68 }

Code listing C.3: Auth Service Angular

134 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

AuthGuard

1 import { Injectable } from "@angular/core";
2 import {
3 ActivatedRouteSnapshot,
4 CanActivate,
5 Router,
6 RouterStateSnapshot,
7 } from "@angular/router";
8 import { AuthService } from "./auth.service";
9 import { Subscription } from "rxjs";

10 import {
11 HttpClient,
12 HttpHeaders,
13 HttpClientModule,
14 } from "@angular/common/http";
15 import { Console } from "console";
16 import { getMatInputUnsupportedTypeError } from "@angular/material/input";
17
18 @Injectable({
19 providedIn: "root",
20 })
21 export class AuthGuard implements CanActivate {
22 userIsAuthenticated = false;
23 private authListnerSubs: Subscription;
24 constructor(
25 private authService: AuthService,
26 private router: Router,
27 private http: HttpClient
28) {}
29
30 canActivate(
31 route: ActivatedRouteSnapshot,
32 state: RouterStateSnapshot
33): Promise<boolean> {
34 return new Promise((resolve) => {
35 this.authListnerSubs = this.authService
36 .getAuthStatusListener()
37 .subscribe((isAuthenticated) => {
38 this.userIsAuthenticated = isAuthenticated;
39 });
40
41 if (this.userIsAuthenticated) {
42 // Checking if global var isAuth is set
43 resolve(true);
44 }
45 // is not, pull profile
46 else {
47 this.http
48 .get("/api/v1/user/profile")
49 .subscribe(
50 (user: any) => {
51 // check if user exist on session and is active
52 if (user && user.active && user.authored) {
53 this.authService.user = user;
54 console.log("Auth guard: User authenticated");
55 this.authService.authStatusListner.next(true);
56 resolve(true); // permit user
57 } else {
58 // check if user is not active
59 if (!user.active || !user.authored) {
60 console.log("User must talk to an admin");
61 // redirect to notactive to tell user to talk to an admin
62 this.router.navigate(["/accessdenied"]);
63 this.authService.authStatusListner.next(false);
64 resolve(false);
65 }
66 // user profile does not exist on session, redirect to login
67 else {
68 console.log("User is not authenticated, redirecting...");
69 this.authService.authStatusListner.next(false);
70 this.router.navigate(["/login"]);
71 resolve(false);
72 }

Chapter C: Code examples 135

73 }
74 },
75 (error) => {
76 // all unknown errors redirect to login, typical for user does

not exist in db etc
77 console.log("User is not authenticated, redirecting.");
78 this.router.navigate(["/login"]);
79 }
80);
81 }
82 });
83 }
84 }

Code listing C.4: AuthGuard Angular

AdminGuard

1
2 import {
3 CanActivate,
4 ActivatedRouteSnapshot,
5 RouterStateSnapshot,
6 Router,
7 } from "@angular/router";
8 import { Injectable } from "@angular/core";
9 import { Subscription } from "rxjs";

10 import { HttpClient, HttpHeaders, HttpClientModule } from ’@angular/common/http’;
11 import { AuthService } from "./auth.service";
12
13 @Injectable()
14 export class AdminGuard implements CanActivate {
15 user
16 userIsAuthenticated = false
17 private authListnerSubs: Subscription
18 constructor(private authService: AuthService, private router: Router, private http:

HttpClient) {}
19
20 canActivate(route: ActivatedRouteSnapshot,state: RouterStateSnapshot): Promise<boolean> {
21 return new Promise((resolve) => {
22 this.authListnerSubs = this.authService.getAuthStatusListener()
23 .subscribe(isAuthenticated => {
24 this.userIsAuthenticated = isAuthenticated
25 })
26
27 if(this.userIsAuthenticated) { //

Checking if global var isAuth is set
28 resolve(true)
29 } else {
30 this.http.get(’/api/v1/user/profile’) //

is not, pull profile
31 .subscribe((user : any) => {
32 if (user && user.active && user.authored) { //

check if user exist on session and is active
33 this.authService.user = user
34 this.authService.authStatusListner.next(true);
35 if(user.role == ’admin’) {
36 resolve(true)
37 } else {
38 this.router.navigate([’/’])
39 resolve(false)
40 } // permit user
41 } else {
42 if(!user.active || !user.authored) { //

check if user is not active
43 console.log(’User must talk to an admin’)
44 this.router.navigate([’/accessdenied’])

// redirect to notactive to tell user to talk to an admin
45 this.authService.authStatusListner.next(false);
46 resolve(false);
47 } else {

136 Birkeland, Husbyn, Homb, Isnes: Multi-user Malware and Goodware Repository

48 console.log("User is not authenticated, redirecting...") //
user profile does not exist on session, redirect to login

49 this.authService.authStatusListner.next(false);
50 this.router.navigate([’/login’])
51 resolve(false);
52 }
53 }
54 }, error => {
55 console.log("User is not authenticated, redirecting.") //

all unknown errors redirect to login, typical for user does not
exist in db etc

56 this.router.navigate([’/login’])
57 });
58 }
59 })
60 }
61 }

Code listing C.5: AdminGuard Angular

LoginGuard

1
2 import {
3 CanActivate,
4 ActivatedRouteSnapshot,
5 RouterStateSnapshot,
6 Router,
7 } from "@angular/router";
8 import { Injectable } from "@angular/core";
9 import { AuthService } from "./auth.service";

10 import { HttpClient, HttpHeaders, HttpClientModule } from ’@angular/common/http’;
11
12
13 @Injectable()
14 export class LoggedInGuard implements CanActivate {
15 user
16 constructor(private router: Router, private AuthService: AuthService, private http:

HttpClient) {}
17
18 canActivate(route: ActivatedRouteSnapshot, state: RouterStateSnapshot): Promise<boolean>

{
19 return new Promise((resolve) => {
20 this.http.get(’/api/v1/user/profile’) // is

not, pull profile
21 .subscribe((user : any) => {
22 console.log(’User is authenticated, redirect to index’)
23 this.router.navigate([’/’])
24 resolve(false)
25 }, error => {
26 console.log("User is not authenticated, stay.") // all

unknown errors redirect to login, typical for user does not exist
in db etc

27 resolve(true)
28 });
29
30 })
31 }
32 }

Code listing C.6: LoginGuard Angular

FileFilter

1 /**
2 * @desc Authorization-check for backend

Chapter C: Code examples 137

3 * @params req, res, args (request, response and arguments)
4 * @res Will return true if authenticated/authorized, and send an immediate 401/403 if

unauth.
5 */
6 module.exports.filefilter = function (files, user) {
7 return new Promise((resolve, reject) => {
8
9 exec();

10
11 /**
12 * @desc Remove files if
13 * @params req, res, args (request, response and arguments)
14 * @res Will return true if authenticated/authorized, and send an immediate 401/403

if unauth.
15 */
16 function exec() {
17 // Check all files in the array
18 files.forEach(file => {
19 // Check if student and exam tag is set, and if file is private
20 if(isStudent(file) || isPrivate(file)) {
21 // Remove that file from array if user should not have access
22 files.splice(files.map(function(e){return

e.sha256}).indexOf(file.sha256), 1)
23 }
24 })
25 resolve(files)
26 }
27
28 /**
29 * @desc Check if user is student, and if file contains student-limiting tag such as

"exam"
30 * @params file - File to check user against
31 * @res Will return true if user is student and file has exam tag. Else false
32 */
33 function isStudent(file) {
34 if(user.db.role == ’student’ && file.tags.includes(’exam’)) {
35 return true
36 } else {
37 return false
38 }
39 }
40
41 /**
42 * @desc Check if any tag is allowed
43 * @params userTags[]
44 * @res Will return true if any tags is in the list of allowed tags passed from

middleware
45 */
46 function isPrivate(file) {
47 if(file.tags.includes(’private’) && !user.db.name == file.uploaded_by) {
48 return true
49 } else {
50 return false
51 }
52 }
53 })
54 };

Code listing C.7: Filefilter to remove files user is unauthorized for

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

H
om

b, Birkeland, Isnes, H
usbyn

M
ulti-user M

alw
are and G

oodw
are Repository

Gjert Michael Torp Homb
Michael Cortes Birkeland
Christian Simoes Isnes
Erlend Husbyn

Design and development of Malware
Repository with multi- user access
and characteristics aggregation

Bachelor’s project in IT-Operations and Information Security
Supervisor: Mohamed Abomhara

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Glossary
	Introduction
	Problem description
	Objectives and Defining the assignment
	Motivation and purpose of the thesis
	Target audience
	Student's backgrounds and qualifications
	Additional roles
	Project process
	Development method
	Progress plan
	Plan for status meeting and decisions
	General tools used

	Thesis structure

	Requirements
	Initial project description
	Use-Case diagram
	High level Use Cases
	Misuse cases
	Extended Misuse cases
	Functional requirements
	Non-functional requirements
	External requirements
	Secure system development

	Deployment technology
	Development stack
	Chosen stack
	Alternative stack
	Critique of chosen stack
	Frontend
	Backend / Express
	Database

	Deployment

	Implementation
	Frontend
	Login
	Listing and viewing files
	Admin panel
	Authorization
	404 and inaccessible pages
	Uploading
	Downloading
	Favorite
	Filtering

	Backend
	Authentication and Authorization
	Protecting resources
	API
	Upload
	File Analysis
	Download

	Database design
	Users
	Files
	Uploads
	Downloads
	Secure traffic

	Storage
	Metadata
	File-storage

	Logging
	Winston
	Winston-daily-rotate
	What to log

	System requirements
	Frontend
	Backend
	Database
	Testing

	Security and Legal aspects
	Security
	Secure storage of malicious executables
	Legal aspects
	Avoiding misuse
	Copyright

	Malware research ethics

	Results and going forward
	Final product
	Choices made during the project
	Critique of final product

	Conclusion
	Project assessment
	Knowledge gained
	Limitations and future work
	Evaluation of the groups work

	Bibliography
	Additional Material
	Project agreement
	Project description,
	Group rules
	Projectplan
	Meeting Logs
	With supervisor
	With employer

	Additional documentation
	API Documentation
	Worklog

	Code examples

