
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Autom
ated dynam

ic m
alw

are analysis of ELF-files

Espen Taftø Vestad, Amar Licina, Abdulfatah
Abdi-Salah

Automated dynamic malware
analysis of ELF-files

Bachelor’s project in Digital Infrastructure and Cyber Security
Supervisor: Ernst Gunnar Gran

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

Espen Taftø Vestad, Amar Licina, Abdulfatah Abdi-
Salah

Automated dynamic malware analysis
of ELF-files

Bachelor’s project in Digital Infrastructure and Cyber Security
Supervisor: Ernst Gunnar Gran
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Abstract

In today’s digital landscape there is need for more information security research.
In order to help secure crucial information and digital systems there needs to
be reliable tools, frameworks and platforms for information security analysts and
experts. As the threat landscape regarding Linux systems becomes greater, the
need for accurate malware analysis of ELF-files increases. This was one of the
greatest motivators for working with this project. Throughout this thesis project,
we have developed a solution which will hopefully contribute towards evolving
research on these topics.

iii

Sammendrag

I dagens digitale landskap er det mer nødvendig med økt forskning innen in-
formasjonssikkerhet. For å sikre viktig informasjon i digitale systemer er det es-
sensielt med pålitlige verktøy og rammeverk for informasjonssikkerhets-forskere.
Siden trusselbilde for Linux systemer stadig vokser, er det i høyere grad nødvendig
med nøyaktige og effektive analyser av potensiell skadevare i ELF-filer. Gjennom
dette prosjektet har vi utviklet en løsning som forhåpentligvis vil bidra mot et mer
utviklet sikkerhetsmiljø innen Linux-skadevare.

v

Foreword

This thesis was written by students from the Department of Information Secur-
ity and Communication Technology at the Norwegian University of Science and
Technology. The students were:

• Espen Taftø Vestad
• Amar Licina
• Abdulfatah Abdi-Salah

We wish to extend a thanks to the project supervisor Ernst Gunnar Gran, for
providing guidance throughout the project-period, and helping improve the end-
product. We also wish to thank the project owner Lasse Øverlier for their cooper-
ation and accommodation by providing the testing material. Thanks to Lars Erik
Pedersen for providing access to the NTNU cloud services and enabled nested vir-
tualisation. Finally we would like to thank NTNU security for allowing us to test
malware sample.

vii

Contents

Abstract . iii
Sammendrag . v
Foreword . vii
Contents . ix
Figures . xiii
Tables . xv
Code Listings . xvii
Acronyms . xix
Glossary . xxi
1 Introduction . 1

1.1 Project description . 1
1.2 Motivation . 2
1.3 Target audience . 2
1.4 Scope . 2

1.4.1 Problem statement . 2
1.4.2 Objective and goals . 2

1.5 Project Group . 3
1.5.1 Previous knowledge . 4

1.6 Project process and Thesis layout . 4
2 Requirements . 7

2.1 Functional requirements . 7
2.2 Operational requirements . 7
2.3 External requirements . 8

3 Theory and technology . 9
3.1 Malware and reverse engineering . 9
3.2 The Executable Linkable Format . 9
3.3 Definition . 10

3.3.1 Class . 11
3.3.2 Data . 11
3.3.3 Versions . 11
3.3.4 OS/ABI . 11
3.3.5 ABI version: . 12
3.3.6 Machine . 12
3.3.7 Type . 12

ix

x Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

3.3.8 Program headers and section headers in the ELF-header . . . 12
3.3.9 Static and dynamic binaries . 12

3.4 File Data . 13
3.4.1 Program Header . 14
3.4.2 Section headers . 15

3.5 Malware in ELF-files . 15
3.6 Malware analysis methods . 15

3.6.1 Static analysis . 15
3.6.2 Dynamic analysis . 16
3.6.3 Memory Analysis . 16

3.7 Virtualisation . 16
3.8 Obfuscation . 17
3.9 Sandboxing . 17
3.10 The Limon sandbox . 17

3.10.1 Dynamic analysis tools . 18
3.10.2 Static analysis tools . 19

4 Design . 23
4.1 Researching available solutions . 23
4.2 Functionality Design . 23
4.3 Application design . 25
4.4 Architecture design . 25
4.5 Network design . 26
4.6 Sequence diagram . 27

5 Implementation . 31
5.1 Methodology . 31
5.2 Implementation repository . 32
5.3 Infrastructure Configuration . 32

5.3.1 Initial configuration . 32
5.3.2 Instance deployment . 32

5.4 Installing cuckoo . 33
5.5 Limon setup . 33

5.5.1 Sandbox outline . 33
5.5.2 Host OS configuration . 34
5.5.3 Guest OS configuration . 36
5.5.4 Sandbox network configuration 38
5.5.5 Configuring the Limon script 43

5.6 Scripting the Limon setup . 43
5.6.1 Installing Limon from the thesis repository 43

5.7 Limon modifications . 45
6 Analysis and testing . 47

6.1 Limon usage . 47
6.2 Analysis output . 47
6.3 Performance . 47

6.3.1 Execution performance . 48

Contents xi

6.3.2 Functionality testing . 48
6.3.3 Successful to unsuccessful sample execution ratio 50

6.4 Examples . 54
6.4.1 Tsunami malware execution . 54
6.4.2 Rootkit . 57
6.4.3 Privilege escalation . 58

7 Discussion . 61
7.1 Unmet functional requirements . 61

7.1.1 Logging of executed code or Assembly instructions 62
7.2 Useful malware indicators in ELF-files 63

7.2.1 Symbols . 63
7.2.2 Segments . 63
7.2.3 Run-time indicators . 64

7.3 Improvements and further work . 64
7.3.1 Additions . 65
7.3.2 Modifications . 66
7.3.3 fixes . 68

7.4 The importance of combined analysis 70
7.5 Protecting systems against ELF-malware infection 70

8 Conclusion . 71
8.1 Project assessment . 71
8.2 Learning outcome and evaluation . 72
8.3 Results . 72

Bibliography . 73
A Project plan . 81
B Project agreement . 97
C Meeting schedule . 103
D Working hours . 109
E Developed installation scripts . 129
F Thesis project repository . 137
G Malware test samples . 139

Figures

3.1 Simplified topology of an ELF-file . 10
3.2 ELF header . 11
3.3 File data illustrated schematically. [61] 13
3.4 The program header of an ELF-file [58] 14
3.5 Types of analysis in Limon . 17

4.1 Application interaction diagram . 25
4.2 Architecture design . 26
4.3 Network design . 27
4.4 Sequence diagram . 29

5.1 Trello Kanban board . 31
5.2 Architecture design . 34
5.3 Adding a host-only-network (vmnet10). 39
5.4 Assigning the custom vmnet to the virtual instance. 39
5.5 Confirming that host OS acts as default gateway for the guest OS

sandbox . 40
5.6 Setting preferred DNS visually. 41
5.7 Confirming changes in preferred DNS. 41
5.8 Adding static IP address to the sandbox instance. 41
5.9 Choosing network services to be simulated by INetSim. 42
5.10 Network design . 44

6.1 Reasons regarding failed execution of samples during performance
test. 51

6.2 Mole scanner sample terminated because of missing arguments. . . 52
6.3 Mole scanner sample executed successfully passing required argu-

ments when running Limon. 52
6.4 Readelf reading past end of file for section headers. 53
6.5 Stripped ELF-binary without call trace output. 53
6.6 Tsunami VirusTotal detection . 55
6.7 Possible file creation of /tmp/cron, string comparisons and memory

allocation. 55

xiii

xiv Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

6.8 Possible tampering with crontab to schedule downloads from ma-
licious domain. 56

6.9 Deletion of previously created file. 56
6.10 Observed credentials are written to disk. 56
6.11 SMTP network activity logged by inetsim. 56
6.12 Inspecting network activities in wireshark output. 57
6.13 RootKit VirusTotal detection . 57
6.14 Options for Root Kit . 58
6.15 The FucKit RK script repeated itself 176 times 58
6.16 The figure shows the VirusTotal output from the static analysis . . . 59
6.17 malloc function example from call trace 59

Tables

3.1 Features provided by Limon, according to default configuration. . . 21

4.1 Tools and functionalities planned for implementation. 24

6.1 Features used by Limon. 48
6.2 Description of output-files and which tools generate them. 49

7.1 Representation of whether functional requirements has been covered. 61

xv

Code Listings

5.1 Installing VMware on Linux . 35
5.2 Reinstallation of Strace . 37
5.3 Library packages for executing 32bit binaries on 64bit architectures 37
5.4 Adding malware_analysis directory to /etc/environment 38
5.5 Assigning appropriate variables for Limon in conf.py 42
6.1 Simple Python script for running Limon with several malware samples. 50
6.2 Running a malware sample along with required arguments in Limon. 52
7.1 Pseudo-code for automatic unpacking solution for Limon in statan.py 65
E.1 Limon installation script for configuring the host machine. 134
E.2 Limon installation script for configuring the guest machine. 135

xvii

Acronyms

ABI Application Binary Interface. 11, 12

API Application Programming Interface. 8, 20, 21, 23, 25, 66

CLI Command line interface. 18, 36, 50

DHCP Dynamic Host Configuration Protocol. 41

DNS Domain Name System. 40

ELF Executable Linkable Format. v, xxiii, 1–4, 7–15, 17, 20, 25, 28, 37, 47, 50,
53, 54, 61, 63, 64, 70–72

GUI Graphical user interface. 18, 35, 38, 66, 70

I/O Input/Output. 18, 61, 72

NTNU Norwegian University of Science and Technology. 1, 4, 32, 71

OS operating system. 1, 2, 10, 11, 19, 24, 32, 33, 53, 67

RAM random access memory. 67

SMTP Simple Mail Transfer Protocol. 64

SOC Security Operations Center. 2, 66

VM virtual machine. 16, 18, 19, 32, 33, 35, 38, 41, 44, 67

xix

Glossary

Assembly A low level programming language used by the processor. Assembly is
also used to compile higher level programming languages [1]. 7, 54, 61, 62,
66

client A person or organization which hands out a project or task to recipients.
33, 36

Command and Control Server A server which is controlled by an attacker that
is then used to send commands to a system in order to perform actions such
as stealing information, control botnets and conduct DDoS attacks [2].. 18,
24, 52, 64

Cuckoo An open source software for automating malware analysis [3]. 23, 33

debug A process of identifying a problem and removing those errors [4]. 14, 16

dynamic analysis The process of analyzing a program by running the program
on a real or virtual environment. 1, 3, 15–18, 24, 25, 33, 50, 55, 57, 59, 62,
63, 66–72

egress A point which allows a framework to communicate outside via the egress
point. 32

embedded system A system comprised of both computer software and hardware
which has a specific purpose [5]. 1

exploit A program or code which is used to take advantage of a vulnerability in
a system or application [6]. 52

firewall A security device which monitors traffic and allows or denies access
based on security rules [7]. 32

fuzzy hash A compression method which compares the similarities in digital files
[8]. 20, 21, 24, 36

guest OS An operating system installed on a exsisting operating system by using
for example a virtual machine [9]. xiii, 17, 32, 33, 35–38, 40, 43, 44, 68

xxi

xxii Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

hash A hash function converts the value of input into a hash value which can
only be decoded by comparing input with values in the hash table [10]. 20,
21

Hexdump Hexdump is an utility that displays the content of a binary file in hexa-
decimal, octal, decimal or ASCII. The utility for inspection comes in good
use for data recovery, programming or reverse engineering [11]. 48

host OS The operating system which communicates with the underlying hard-
ware [12]. xiii, 19, 25, 32–38, 40, 41, 43, 44, 65

hypervisor A virtual machine monitor. Software used to host virtual machines
[13]. 16, 19, 25, 32, 35

indicator of compromise The traces left by a potential attacker that are uncovered
by a forensic analysis [14]. 15, 16, 20

InetSim A tool used to simulate network services commonly used by malware
[inetstim]. 18, 21, 24, 25, 27, 28, 36, 38, 41, 49, 56

ingress A point of access which grants access to services outside of a framework.
32

Kanban Kanban is a lean work management method which uses a Kanban board
in order to organizes tasks. 31, 72

LDD A tool used to print the shared objects/libraries of a file [15]. 20, 21, 24, 35

Limon A sandbox used to analyze and report the run time indications of Linux
malware. [16]. xvii, xxiii, xxiv, 17–20, 23–26, 28, 32, 33, 35–37, 40, 42, 43,
45, 47, 48, 50, 51, 54, 55, 62, 63, 65–72, 137

Ltrace Troubleshooting software which shows calls to shared libraries [17]. 19,
25, 28, 38, 47–49, 53–56, 59, 66, 67, 69

Lubuntu A lightweight Linux distribution based on ubuntu [18]. 35

malware Intrusive software which aims to disrupt, destroy or steal data from a
target [19]. 1–5, 8, 9, 15–21, 23–25, 33, 35–38, 45, 47–56, 61–72

malware sample An instance of malicious code which can be used for analysis
in a secure environment. vii

memory analysis Analysis of the volatile memory in a computers memory dump
[20]. 3, 15–17, 24, 33, 36, 37, 69, 70

nested virtualisation A complex process that involves running a virtual machine
within a virtual machine [21]. vii, 16, 25

Glossary xxiii

open source Code which is accessible for all to use, edit or enhance. [22]. 17,
18, 20, 33, 36, 43

Open Stack An open source platform which provides cloud computing infrastruc-
tures [23]. 25–27, 32

packer Method used to hide malware and make them appear as new by using
run time encryption [24]. 7, 20, 35, 54, 62, 65, 66

Phishing A social engineering attack with often aims to steal user data or other in-
formation by masquerading as a trusted entity to gain the victims trust[Phishing].
70

Pillow A python imaging library [25]. 19, 21, 24

ransomware Ransomware is an attack which encrypts the files on a device ren-
dering them unusable. The attacker then demands payment in order to de-
crypt the encrypted files [26]. 1

Readelf A tool for displaying the information of one or more ELF-files [27]. 11,
20, 21, 24, 35, 53, 63

Remnux A reverse engineering toolkit used on Linux to analyze malware [28].
18, 23, 36

sandbox A safe isolated environment where code can be run and analyzed [29].
xiii, 2–4, 8, 17, 21, 23, 24, 33, 36–38, 40, 45, 47–50, 61, 67, 68, 71, 72

security rule Firewall settings for allowing or denying traffic from a network. 32

snapshot Storing the state of a machine at a certain point in time in order to
return to it if an error occurs [30]. 40, 45, 67

Ssdeep A tool used for fuzzy hashing [31]. 20, 21, 24, 36, 49

SSH A protocol used to secure access the command-line on another machines
[32]. 32

static analysis Analysis method which analyses the source code and tests it for
vulnerabilities [33]. xiv, 3, 8, 15–17, 19, 20, 24, 25, 33, 35, 47, 53, 59, 62

Strace Tool used for tracing system calls. This tool will be used by Limon in order
to trace system calls made by ELF-file [34]. xvii, 19, 21, 24, 25, 28, 37, 38,
47–49, 53, 62, 66, 67, 69

Strings A tool which finds and prints embedded strings in binary files [35]. 20,
49

xxiv Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

Sysdig A tool used for event monitoring and run time threat detection [36]. 21,
24, 44, 45, 69

TCPdump A command-line packet analyzer used by Limon in order to analyze
network traffic [37]. 18, 21, 24, 25, 27, 28, 35, 49

threat actor An actor or a group who pose a threat to the assets [38]. 1, 62, 64,
68

threat intelligence Information used to understand threats that have, will or are
currently at place [39]. 2

tshark A network protocol analyser that allows one to collect data from a live
network or read packets from a formerly saved capture files. [40]. 21, 24

virus Type of a malicious code or program coded with an intent to alter a device,
or spread to another by inserting or attaching itself to a legitimate programs
[41]. 9

VirusTotal An online scanner engine that uses many different antivirus scans
which the users own antivirus scan may have missed [42] . xiv, 20, 21,
24–26, 54, 57–59

VMrun A command that can be used to for example create files, delete files, create
directories in virtual environments [43]. 38, 44

VMware Workstation Workstation is a virtualization software developed by VM-
ware [44]. 17, 19, 25–28, 32, 33, 35, 38, 40, 41, 44, 45

Volatility A memory analysis and forensics tool used to analyze memory dumps
[20]. 36, 37, 44, 69

wireshark Network protocol analyser that allows an analyst to see what is hap-
pening on a network at microscopic level[45]. 18, 56

Yara A tool used by Limon to detect packers and the capabilities of malware using
Yara rules [46]. xxiv, 20, 21, 24, 35, 54, 62, 65

Chapter 1

Introduction

Malware in computer systems are constantly evolving. New pieces of malicious
code and applications are being distributed to computer systems around the world
frequently. Sophisticated threat actors are continuously developing new malware
methods to harm, abuse or control today’s modern systems.
Linux is widely used as the operating system in servers and cloud infrastructure
world wide. In the past years, there has been an increase in malware campaigns
targeting Linux systems. Examples include the famous ransomware "RansomExx"
[47] and the potentially Chinese state sponsored "RedXOR" malware [48]. At the
same time, Linux and embedded systems are widely dependent on ELF-files, which
is short for Executable Linkable Format.

Based on this increase, dynamic analysis techniques to identify behaviour of ELF-
malware will be relevant for the coming years. Through this thesis, methods and
technologies for dynamically analysing malware in ELF-files will be investigated
and implemented.

1.1 Project description

Considering the fact that malware in ELF-files now are an increasing threat, pro-
ject client Lasse Øverlier at NTNU in Gjøvik, has provided the group with the
task of exploring how to dynamically analyse these binary files. Throughout the
project period, it is desired that a secure sandbox environment is implemented.
This environment should take advantage of one or several methods of performing
dynamic malware analysis that provides useful output regarding how ELF-files be-
haves during execution. Information regarding library calls, network activity, disc
activity and logging of executed code are desired in the output that the analysis
platform should produce. Discussing other parameters that might contribute to
identify ELF-malware are also relevant for the thesis.

1

2 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

1.2 Motivation

This thesis may be of interest for those with attentiveness for topics such as mal-
ware analysis, cybercrime and criminality in general. Working towards a more se-
cure everyday is something that motivates many to pursue a career in information
security. Being capable of analyzing malware, creates the feeling of contribution
towards an important community, by bringing cybercrime to a more manageable
level. People with an interest in applying technical skills related to information
security may also find this thesis interesting as it also touches other topics such as
threat intelligence, Python programming and Bash scripting.

1.3 Target audience

The target audience for this report is mainly people that are interested in dy-
namically analysing Linux binary files for possible malware, for instance security
analysts/researchers, SOC-operators and threat hunters. The reader should have
some previous knowledge about information security and the Linux operating sys-
tem in order to fully comprehend the project report.

1.4 Scope

This thesis project has implemented a secure sandbox environment in order to
automatically run and execute malicious ELF-files, returning relevant output for
further analysis. Which output is relevant is determined by the project client, Lasse
Øverlier, and is further specified as a part of the problem statement. To determ-
ine the scope of this thesis, the research question along with appropriate goals,
objectives and delimitations will be defined through this chapter.

1.4.1 Problem statement

Based on the task description along with the guidance given by the project super-
visor and clarifications given by the client, the following problem statement has
been developed:

The goal of the project is to establish a secure sandbox environment which executes
and analyses ELF-files dynamically, producing behaviour reports for further analysis.
The project will also explore what parameters are relevant in order to identify ELF-
malware, and behavioural reports should include data regarding performed library
calls, disk access, network activity, and code logging.

1.4.2 Objective and goals

This section defines the goals in which the project aims to achieve through this
thesis, both on a short and long term basis.

Chapter 1: Introduction 3

Effect goals

The effect goals describe the implementation’s anticipated long term impact, along
with potential for desired changes from how things currently operate.

• Make ELF-file analysis more effective for security analysts.
• Implement a method which, in the long run, may provide indications of

potential malware contained in ELF-files for the target audience.

Achievement goals

Achievement goals refers to objectives to be achieved during the thesis project
period.

• Implement an automated method for dynamic malware analysis of ELF-files.
• Explore different sandbox technologies which might be used for dynamic

analysis of ELF-files, and study how this can be implemented in a secure
way.
• Discuss useful parameters that might be used to classify an ELF-file as mali-

cious.

Delimitations

Delimitations describe the focus area and boundaries of the project based on the
requirements provided by the client, Lasse Øverlier, in order to make an accurate
and complete solution.

• Methods used to perform dynamic analysis of ELF-files might be commercial,
preexisting, or custom methods developed specifically for the thesis.
• If commercial methods are available, their functionality might be described

rather than being implemented in the environment.
• The project focuses mainly on dynamic analysis methods, whereas static- or

memory analysis methods are not considered. However, some static analysis
methods might still be relevant for the final result.
• The final project solution will not determine whether analysed ELF-samples

contains malware. The user only receives information about what the ELF-
binary performs during execution, providing indications on whether the file
might be malicious or not.

1.5 Project Group

The thesis participants has discussed which roles are appropriate and necessary
to have for the project. The list below contains the roles for the project:

• Espen Taftø Vestad: Group-leader, Contact person, and timekeeper.
• Amar Licina: Second group-leader, Facilitator and Secretary.

4 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

• Abdifatah Abdi-salah: Secretary.

1.5.1 Previous knowledge

All thesis participants have experience regarding information security, program-
ming and network. They have taken several relevant courses at NTNU and have
worked with related activities in their spare time. These courses range from artifi-
cial intelligence and algorithmic methods to ethical hacking and reverse engineer-
ing courses. The list below illustrates all the courses the thesis participants have
taken while studying at NTNU.

• IMT1031 - Fundamental Programming
• IMT1003 - Introduction to IT-Operations and Information Security
• REA1101 - Mathematics for computer science
• IMT2006 - Computer Networks
• IMT2243 - Software Engineering
• IMT1082 - Object-oriented Programming
• IMT2007 - Network Security
• IMT2571 - Data Modelling and Database Systems
• IMT2021 - Algorithmic Methods
• IMT2008 - ITSM, Security and Risk Management
• IMT2282 - Operating Systems
• IMT3003 - Service Architecture Operations
• IMT3673 - Mobile/Wearable Programming
• IMT3004 - Incident Response, Ethical Hacking and Forensics
• IMT3005 - Infrastructure as Code
• IMT3104 - Artificial Intelligence
• IMT4116 - Reverse Engineering and Malware Analysis
• IMT2291 - Web Technology
• IMT3501 - Software Security

1.6 Project process and Thesis layout

The reader will be approached with theories that intend to solve the problem
statement, followed by the design and implementation carried out to achieve the
final results. Initially, the project consist of a requirement specification, followed
by a theory chapter explaining various concepts and technologies used through-
out the thesis.

A secure sandbox environment for analysing potential malware in ELF-files has
been designed and implemented according to requirement specification. Tests of
real-world malware samples have also been conducted to verify that the solution
meets the requirements set by the project description.
This section briefly describes how the thesis report is structured for the reader’s
simplicity.

Chapter 1: Introduction 5

Introduction

Chapter 1 gives the reader an overall overview of the thesis, introducing the pur-
pose and goals of the project.

Requirements

Chapter 2 specifies requirements regarding the thesis implementation. This in-
cludes functional, operational and external requirements.

Theory and technology

Chapter 3 will explain the theory behind the different aspects and technologies
used in this thesis. This includes aspects relevant for malware analysis and de-
scriptions of the different tools used to implement the solution.

Design

Taking into consideration the specified requirements from chapter 2, chapter 4
covers how the solution has been designed for further implementation.

Implementation

Chapter 5 covers the technical implementation of the solutions designed in chapter
4.

Analysis and testing

Chapter 6 covers testing the implementation described in chapter 5, as well as
describing achieved results during this thesis.

Discussion

Chapter 7 further discusses the findings and results from chapter 6, along with
describing measures of improvements and further work.

Conclusion

Chapter 8 will provide a short overview of the thesis project, describing how things
were carried out, learning outcome and things to consider in the future.

Chapter 2

Requirements

This chapter describes the functional, operational and external requirements which
need to be met in order to complete the project and achieve desired results.

2.1 Functional requirements

The functional requirements describes the different functionalities that the solu-
tion needs to provide. The project description presented desired functionalities in
order to solve the task, which are further discussed throughout this section.

The framework is created with the target audience in mind, the information se-
curity analysts which needs to test ELF-files. It is important that the user of this
framework has experience in information security analysis in order to use the out-
put that is returned.

The main functional requirements for the framework are:

• Returning information regarding how ELF-files behaves during execution.
More specifically information regarding network access, disk-access, library
calls, detection of potential packers, and logging of executed code or As-
sembly instructions.
• Returning output in human-readable format.
• Return output to the command line as well as to file.
• Creating an isolated environment which securely and stealthy allows for

execution of ELF-malware.

2.2 Operational requirements

Operational requirements refers to requirements which must be met in order to
run the implementation. The project description does not specify any operational
requirements, but there has been certain measures taken in order to make the
analysis process as seamless as possible.

7

8 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

• The framework needs to be developed for Linux platforms considering the
ELF-file format.
• The sandbox must support both x86 and x86-64 architectures to run differ-

ent types of malware samples.

2.3 External requirements

The external requirements describe the requirements which appear outside of the
system framework. The environment depends on external resources for fetching
malware samples in order to conduct accurate system tests. Network access is also
necessary in order to connect to the API used by certain tools in the framework,
which is done during the static analysis portion of the analysis process.

Chapter 3

Theory and technology

This chapter will describe different theoretical concepts and technologies relevant
for this thesis. The overall purpose of this chapter is to prepare the reader for the
coming chapters by discussing fundamental aspects of importance.

3.1 Malware and reverse engineering

Malware or malicious software is a huge threat to everyone, and are mainly re-
sponsible for most computer intrusions and incidents [49]. A malware identifies as
something that has ability harm or damage a computer or a network. Malware is
usually identified as type of malicious software, regardless of how it works, how
it’s distributed or it’s intent. Examples of malware types include Trojan Horses
[50], rootkits [51], scareware [52], spyware [53], and worms [54]. A virus is a
specific type of malware. A computer virus is designed to copy itself and spread to
other devices whenever it gets the chance [41]. Reverse engineering is all about
disassembling and breaking down a binary file to investigate how it’s built. In the
case of a malware sample, reverse engineering might help identifying the pro-
grams intent and how it works [55].

3.2 The Executable Linkable Format

The following section addresses theoretical aspects regarding the Executable Link-
able Format (ELF), including definitions and the file structure. While an in-depth
understanding of this format is out of scope for this thesis implementation, the
reader is encouraged to posses some information on the subject.
as seen in figure 3.1 this is a simplified version of the structure of an ELF-file. An
ELF-file consist of an ELF-header and file data. File data is composed of program
headers, section headers and data.

9

10 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

ELF

ELF Header File Data
· Class
· Data
· Versions
· OS/ABI
· ABI version
· Machine
· Type

Program header table Sec�on header table

Data

· GNU_EH_FRAME
· GNU_STACK

· .text
· .data
· .rodata
· •.bss

Figure 3.1: Simplified topology of an ELF-file

3.3 Definition

ELF stands for Executable Linkable Format. The ELF-file defines structures for
binaries, libraries and core files. It is used for executable files, relocatable object
files, shared libraries, and core dumps. Many operating systems today are heav-
ily dependant on ELF-files, as for example Linux, Solaris/Illumos, Android. The
file format is also used within several game consoles, such as PlayStation portable,
Dreamcast and Wii [56]. The structure of an ELF-file consist of the ELF-header and
file data. These structure components is further described throughout this chapter.

The ELF-header, as shown in figure 3.2, is 32 bytes long and provides file inform-
ation. The header starts with a sequence of four unique bytes which as you can
see above, translates to E, L, F. With the prefixed 7f value. [57]

• 0x45 = E
• 0x4c = L
• 0x46 = F

Chapter 3: Theory and technology 11

Figure 3.2: ELF header

3.3.1 Class

Class determines if the architecture of the ELF-file is either 32-bit(=01) or 64-
bit(=02). (=01) and (=02) are translated by the Readelf command as either
ELF32 or ELF64. As seen in figure 3.2, this file is a 32-bit file(=01)

3.3.2 Data

The Data field can be two different options. 01 stands for LSB (Least Significant
Bit), which is refers to as Little-endian [58]. The other possible option is 02 which
defines MSB (Significant Bit) which refers to as big-endian [58].

3.3.3 Versions

The version field provides us with which version number the ELF-file has. There
are only two possible versions numbers: Current and None. These values are dis-
played as "1" or "0" in the ELF-header. "1" translates to current, while "0" translates
to none. Figure 3.2 displays an ELF-file with version set as current. [57].

3.3.4 OS/ABI

Every OS may come across overlaps in terms of duplicate functions, hence some
functions are identical and some has minor differences [56]. The definition of the
relevant set is done with an Application Binary Interface (ABI). This mitigates the
chance for overlaps, and supports the OS ABI to know how functions are forwar-
ded [59].

12 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

3.3.5 ABI version:

This section can provide information regarding which version of the ABI is spe-
cified for the file.

3.3.6 Machine

This field shows which expected machine type (CPU-architecture) and specifies
what CPU-architecture is required running the ELF-file. Figure 3.2 specifies "Intel
80386" for this particular file [60].

3.3.7 Type

This field identifies what object type the file has [57]. Examples of object types
include:

• REL Relocatable file (value 1)
• Executable file (value 2)
• Shared object file (value 3)
• Core file (value 4)

3.3.8 Program headers and section headers in the ELF-header

An ELF-file can consist of multiple program headers and section headers [61]. The
list below describes other important fields within the ELF-header, which are also
displayed in figure 3.2

• Number of program headers: Identifies how many program headers there
is in the ELF-file.
• Number of section headers: Identifies how many section headers there is in

the ELF-file.
• Start of program headers: Identifies the start of the program headers with

bytes into the ELF-file.
• Start of section headers: Identifies the start of the section headers with bytes

into the ELF-file.
• size of section headers: Identifies the size of the section headers that is in

the ELF-file.
• size of program headers: Identifies the size of the program headers that is

in the ELF-file.

3.3.9 Static and dynamic binaries

There are two types of ELF binaries: Either static or dynamic, which refers to its
respectable library. [58]

• Dynamic binaries: Needs external components to be executed correctly, and
commonly contains functions such as creating network socket, or opening

Chapter 3: Theory and technology 13

files etc.
• Static binaries: Has all libraries included within the file.

3.4 File Data

As seen in figure 3.3. The file data area consist of three parts, as seen in figure
3.3.

• Program Headers: Or Segments (describes zero, or more segments)
• Section Headers: Or Sections (describes zero, or more sections)
• Data: (referred to by entries in the program header, or section header table)

Every segment contains information that is important for the file’s run-time ex-
ecution, while sections contain important data for linking and relocation. To get
a better understand of how an ELF-file structure looks like, figure 3.3 represents
everything that has been discussed.

Program Header:

describes zero or more
segments

Section Headers:

describes zero or more
sections

Data:

referred to by entries in
the program header table

or section header
Table

.text, .data, .rodata etc.

SEGMENTS:

SECTIONS:

DATA:

Figure 3.3: File data illustrated schematically. [61]

14 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

3.4.1 Program Header

An ELF-file can consist of zero or more segments, and it shows the segments which
are used in run-time execution to create a process/memory image. The kernel can
access the segments and map them into a virtual address space by using mmap sys-
tem calls [58]. It converts predefined instructions to a memory image. An ELF-file
needs a program header table in order to be executed if it is a normal binary, if not
it will not run. These headers are used along with its underlying data structures
to create a process.

Figure 3.4: The program header of an ELF-file [58]

As seen in figure 3.4, there are 9 program headers within the ELF.

• GNU_EH_FRAME: Within a segment there is a GNU_EH_FRAME, as seen
in figure 3.4. GNU_EH_FRAME shows how the segment uses the GNU C
compiler (gcc) as sorted queues to sort exception handlers. If something
were to go wrong, the debug information can be displayed here [58].
• GNU_STACK: There is also a GNU_STACK within a segment. This field stores

information about the stacks. The stack is a buffer where the items are
stored, such as variables. The sorting method that is used is LIFO (Last In,
First Out). Stacks should not be executable, therefor this may introduce se-
curity vulnerabilities by manipulation of memory [58].

Chapter 3: Theory and technology 15

3.4.2 Section headers

The section headers define all the sections within an ELF-file. In the section header
the data is linked and relocated. The section header table describes zero or more
sections that are followed by data which are referred to by entries from the pro-
gram header table, or section header table [56]. The following table illustrates
the four main sections in the section header table:

• .text contains executable code, which will be packed into a segment with
read and execute access rights. Which is only loaded once, as the contents
will not change.
• .data: Initialized data with read/write access rights
• .rodata: Initialized data with read access rights only
• .bss: initialized data with read/write access rights

3.5 Malware in ELF-files

ELF-malware are ELF-files which contain code that serves a malicious purpose.
Infected ELF-files or processes might in some cases behave abnormally, having
contents that the victim cannot detect nor see.
Most ELF-malware are based on the "Silvio Cesare File Virus"[62]. Silvio Cesare is
an Australian security researcher known for his work with ELF-virus for UNIX-like
operating systems. [63]
ELF-malware can be sorted into two categories: [62]

• First: where a malicious code can attach itself to the start of Innocent ex-
ecutable.
• Second: where a malicious code can injects itself into text or data segment

of innocent executable.

3.6 Malware analysis methods

This section describes different methods for analysing malware samples. Three
analysis methods will be covered here: Static analysis, dynamic analysis and memory
analysis. The reader is encouraged to possess knowledge regarding all of these
methods, especially dynamic analysis since this concept is crucial for this thesis.

3.6.1 Static analysis

Static analysis is performed in a non-runtime environment, which involves stat-
ically analysing software without execution the program. This is done through
examining the source code, byte code and application binary for indicators of
compromise. This is most easily achieved by using different static analysis tools.
When statically analysing a binary file, the internal structure of the file, such as in-
structions, addressing, is checked rather than observing the behaviour by running

16 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

the program. [55]

3.6.2 Dynamic analysis

Unlinke static analysis, dynamic analysis involves executing the binary file and ex-
amining its behavior in a run-time environment. Dynamically analysing the mal-
ware allows the analyst to debug and observe the malware’s behaviour during
execution while examining the impact on the different system components and
network. An analyst can debug the process while it is running to examine the
malware in a running state for observing potential outcomes, getting a better un-
derstanding regarding the intentions of the malware. [55]

3.6.3 Memory Analysis

Memory analysis may be referred to as memory forensics. Memory analysis is con-
ducted in order to investigate whether malware exists within the computers
memory after being compromised. Volatile data captured from a computers memory
dump is analysed in order to find or identify most malicious behaviors which are
hard to detected on the computer’s storage device. Volatile data is referred to as
temporary memory stored on a computer at run-time. Once the computer is shut
down, the volatile data is gone. Examples of volatile data includes chat messages,
clipboard contents and running processes [64].

3.7 Virtualisation

Virtualization is the process of creating a virtual instance or environment which
is separate from the hardware on a physical machine. The VM is run by the hy-
pervisor which creates and monitors the VM [13]. A virtual machine provides the
same functionalities as a physical machine, and will have its own systems and
programs detached from the host machine. The virtual machine will also have a
virtual network interface and limited access to the host machine’s CPU. Virtual
machines usually have a set of functionalities which can be accessed by the host
machine in order to manipulate, recover or modify the virtual machine. Using vir-
tual environments reduces the amount of equipment needed since a single piece
of infrastructure can run multiple virtual instances.

These are some of the typical functionalities of a VM:

• Snapshots: Saving the current state of a virtual machine in order to return
to said state if it becomes necessary. [30]
• Migration: The process of moving a virtual machine instance or snapshot

from one physical machine to another is known as migration. [65]
• Nested virtualization: Running a virtual machine within another virtual ma-

chine is known as nested virtualisation. [21]

Chapter 3: Theory and technology 17

3.8 Obfuscation

Obfuscation is a programming technique used to intentionally obscure code in
order to make reverse engineering more difficult, and to make code unclear for
anyone except the programmer. Reverse engineering techniques rely on the clar-
ity of the code when copying a program. There are certain methods available that
make it possible to analyze obfuscated code, one of these methods being slicing.
Slicing is a method used to simplify obfuscated code in order to make it compre-
hensible, and makes the functionalities of a program easier to find. [66]

3.9 Sandboxing

A sandbox is an isolated testing environment for malware analysts. This envir-
onment allows an analyst to run and execute suspicious files without the risk of
harming the application, system, network, or underlying platform. By using virtu-
alisation software, the sandbox can revert back to a clean state for each analysis
in order to understand the malware’s purpose while the malware is running or
after it has been run. This is also done in order to avoid alerting the creator of the
malware since the malware is being tested in an isolated environment without
direct internet access. [29]

3.10 The Limon sandbox

Limon is a sandbox solution designed to analyse ELF-files for potential malware
before (static analysis), during (dynamic analysis), and after (memory analysis)
execution, as seen in figure 3.5 [16].

Figure 3.5: Types of analysis in Limon

In fact, Limon itself is a script [67] that utilizes other open source malware analysis
tools, and automates the process. It was created by Monnappa K A using Python
and was presented on Black Hat 2015 [68]. The concept has received little atten-
tion since it’s presentation. The Limon script is installed and configured on a Linux
host machine. The host machine runs a VMware Workstation guest machine, also
known as the sandbox. Please be advised that through this thesis, the sandbox
will also be referred to as the analysis environment and the guest OS. Table 3.1

18 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

describes the different functionalities and tools used by Limon, along with their
role and purpose in the analysis phase. Note that this thesis will not fully imple-
ment all of the functionalities used by Limon. Only the most relevant features for
solving the problem description will be implemented. This is further discussed in
chapter 4 Design.

3.10.1 Dynamic analysis tools

Limon relies on several open source tools to conduct malware analysis. This sub-
section will shortly describe some of the dynamic analysis tools which Limon is
dependent on. Only tools relevant for this thesis implementation is discussed be-
low.

INetSim and Remnux

InetSim is a malware analysis tool used to simulate common network services in
a lab environment [69]. The software makes it possible to analyse network be-
haviour of malware samples in environments without a network connection. This
is useful in order for analyst to remain stealthy when analysing malware which
relies on external resources, such as Command and Control Server servers for in-
stance.

While InetSim is a standalone tool, Remnux is a reverse engineering toolkit con-
sisting of multiple tools used for malware analysis [28]. There are several ways
to setup Remnux. It can be installed as a virtual machine or added to an exist-
ing Ubuntu system. If preferred, Remnux also offers containers which the analysis
tools are able to run in. InetSim is included in the Remnux distribution by default,
and thus installing Remnux are considered an alternative for installing InetSim if
desired.

TCPdump

TCPdump is a CLI packet analyser which displays network packets received or
transmitted over a network interface in the computer [37]. It utilizes a library
called libpcap [37] to capture network packets and dump the results to a pcap-file.
The pcap-file can be opened in a packet analyser software GUI, for instance wire-
shark, for further analysis of captured network traffic. In order to capture network
packets residing from the Limon analysis environment, TCPdump sniffs traffic on
the virtual network adapter of the VM. This is further described in chapter 5, Im-
plementation.

Strace

One of the functional requirements defined in chapter 2, Requirements, describes
that the system should be capable of recording the malware’s I/O activity. Execut-

Chapter 3: Theory and technology 19

ing a malware sample using Strace, enables tracing of system calls carried out by
the sample. A system call is described as a way for programs to interact with the
operating system [70]. It is performed when a program makes a request to the op-
erating system kernel. System call examples includes operations such as write()
(input), read() (output), and wait() (sleep for a given amount of time).

Strace itself is a tool for recording such kernel interactions, and is widely used
by system administrators and trouble-shooters to find problems in their programs
[34]. Malware analysts can benefit from Strace as it provides useful information
regarding which system calls are carried out during execution on a low level.
When executing a malware sample with Strace using Limon, output reports re-
garding executed system calls are generated for further analysis.

Ltrace

While Strace records system calls, Ltrace is another debugging tool used to trace
and record dynamic library calls carried out by a program [17]. These are more
high-level function calls from shared libraries. Ltrace is also able to record system
calls such as Strace, in addition to library calls. However, system call tracing in
Ltrace is not as accurate as it is in Strace.

VMware Workstation

VMware Workstation is a host hypervisor for creating and running virtual ma-
chines [44]. In short, virtual machines are virtual computer instances running on
a physical host machine. The host OS are able to communicate with the virtual
machines managed by the hypervisor, also known as the guests. Running a vir-
tual machine inside another virtual machine, known as nested virtualisation, is
also possible. This usually reduces the performance of the guest machine [21],
and are not compatible for all types of system or hardware.

Pillow

Pillow is a Python imaging library which is capable of capturing screen images,
whereas several image file formats are supported [25]. Limon uses Pillow for cap-
turing a desktop screenshot in the analysis environment desktop before execution
of the running malware sample has ended. Although most malwares probably runs
stealthy in the background (not visually), there are cases where samples created
additional files on the desktop or leaves terminal windows open.

3.10.2 Static analysis tools

The following subsection describes the different static analysis tools used by Li-
mon to analyse malware samples without execution. Every static analysis tool

20 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

mentioned in the Limon documentation [16] are relevant for this thesis imple-
mentation.

Yara

Yara is a open source tool for malware analysts to identify and/or classify malware
samples [46]. The tool utilizes patterns, rules and expressions from common mal-
wares, statically comparing these to the sample of choice. Limon uses Yara rules to
determine the category of the malware and whether the sample has been packed
with a packer.

Virustotal API

VirusTotal is a threat intelligence platform used to share and search suspicious
files and domains [42]. One of its most useful features, is the ability to display
suspicious detections from other security firms based on the file’s hash. Using
VirusTotal’s public API, Limon is able to fetch these detections through the ter-
minal by automatically submitting the hash value of a malware sample.

Ssdeep

Ssdeep is a program for computing context triggered piecewise hashes (CTPH) [31],
also called fuzzy hashes. The program utilizes this to compare similarities in mal-
ware samples. For each analysis, Limon will use Ssdeep to compare the current
sample to previously analysed samples. Data regarding previous samples are stored
in a Ssdeep master file.

Strings

Strings is a program included by default in Linux distributions, determining the
contents of and extracting text from binary files [35]. The tool is useful for mal-
ware analyst to quickly identify possible indicator of compromise. Limon always
initiates an analysis by running Strings on the sample.

ldd

LDD, short for List Dynamic Dependencies, is a utility for printing shared library
dependencies for each program or shared library specified [15]. The output of
LDD is part of the static analysis results when conducting an analysis with Limon.

Readelf

Readelf display information about ELF-files and their header [27]. Figure 3.2
shows the output of running Readelf on an ELF-file. Limon always outputs the
header information of an ELF-file using Readelf at the start of an analysis.

Chapter 3: Theory and technology 21

Functionality Description Tool
System call tracing Records low level system

calls carried out by the
malware

Strace, Sysdig

Network simulation Simulates various network
services to replicate a real
world scenario in a secure
way

InetSim

Network packet sniffing Records network activity
in the analysis environ-
ment by sniffing traffic on
the virtual network inter-
face

TCPdump, tshark

Analyse memory Captures and analyses
memory image after
malware execution.

Volatility

Fuzzy hash Used to determined
whether two inputs (mal-
ware samples) are similar,
rather than identical [8]

Ssdeep

Malware engine detections Reports malware detection
by other engines through
open sources based on the
sample’s hash value.

VirusTotal public
API.

Print hexdump Prints hexdump as part of
the call trace

Strace

Extract strings Dumping the binary’s
strings to a txt-file

Strings

Detections of packers and
capabilities

Benefits from Yara-rules in
order to detect malware
behaviour and possible use
of packers.

Yara.

Print ELF-header informa-
tion

Displays in-depth static in-
formation regarding the
header of the ELF-file

Readelf.

Printing shared library de-
pendencies

Displays the shared lib-
raries that the malware
sample requires

LDD.

Internet mode Connects the sandbox to
the internet, allowing the
malware sample to com-
municate with external re-
sources

N/A.

Capture screenshot Captures a desktop screen-
shot of the analysis envir-
onment upon ended ana-
lysis

Python Pillow.

Table 3.1: Features provided by Limon, according to default configuration.

Chapter 4

Design

This chapter outlines how the entire framework for the project is designed. A
description of the tools used as well as the network infrastructure, application
design, and an overview of the entire system with a sequence diagram will be
provided in this chapter.

4.1 Researching available solutions

In order to meet the desired requirements for this thesis, a design phase has been
carried out before conducting the actual implementation. There are already sev-
eral sandbox technologies for malware analysis available. When conducting the
implementation design, avoiding re-creating the wheel is preferable. Thus, exist-
ing technology combined with custom modifications is of interest. The following
sandboxes and/or malware analysis frameworks are considered relevant towards
solving the problem description:

• Cuckoo Sandbox [3].
• IRMA: Incident Response and Malware Analysis [71].
• R2pipe: API for scripting Radare2 with Python [72].
• Remnux: Linux toolkit for malware analysis [28].
• Limon sandbox [16].

In this particular case, Limon became the sandbox solution of choice, because of
it’s simplicity and the fact that it is tailored for analysing ELF-files within Linux
distributions.

4.2 Functionality Design

As some of the features included in Limon’s default configuration are out of scope
for this thesis, some functionality will not be implemented. On the other hand,
there are functionalities required to solve the task that are not a part of Limon by
default, e.g. the ability to trace library calls and logging of packed code. These are

23

24 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

features that needs to be integrated with the Limon tool manually.
This thesis focuses on dynamic analysis of malware, and thus, features related
to memory analysis will be excluded. Although static analysis methods are out
of scope as well, static functionalities will be implemented, as Limon always per-
forms static analysis regardless of chosen arguments.

Internet mode is excluded by choice in this case. The problem description states
the requirement for a secure and isolated sandbox environment. A sandbox envir-
onment designed this way, should be isolated both from the underlying OS and
networks. Isolating the sandbox from the internet is crucial to prevent executed
malware from reaching malicious networks, domains or Command and Control
Server server. Failing to do so, might also impact other devices on the local net-
work in case of propagation, e.g. worm. From an incident response team or threat
hunter perspective, isolating network traffic is key to avoid detecting when ana-
lysing sophisticated malwares. As most malware nowdays relies on an internet
connection, simulation of such services is still required to replicate a real-world
scenario. Limon utilizes InetSim in order to to simulate these services without ac-
tually connecting to the internet.

Table 4.1 displays the tools and functionalities designed and implemented in this
thesis based on the above discussion. The table also includes custom functionalit-
ies which are needed in order to cover the functional requirements. Text colored
in blue indicates custom functionality manually integrated.

Tool / Functionality Method Implementation
Internet mode Dynamic No
Network simulation (InetSim) Dynamic Yes
Network packet capture (TCP-
dump/tshark)

Dynamic Yes

Sysdig Dynamic No
Strace Dynamic Yes
Volatility Memory No
Strings utility Static Yes
Hexdump Static Yes
Fuzzy hashing (Ssdeep) Static Yes
VirusTotal detection Static Yes
Readelf Static Yes
LDD (Shared library dependencies Static Yes
Python Pillow (Screenshot grabber) Dynamic Yes
Yara-rules Static Yes
ltrace (for tracing library calls) Dynamic Yes

Table 4.1: Tools and functionalities planned for implementation.

Chapter 4: Design 25

4.3 Application design

Figure 4.1, Application interaction diagram, briefly displays the interaction between
Limon and the different tools that the script is dependent on. The host machine
takes care of all static analysis operations, since execution of the malware sample
is not necessary at this stage. Thus, all of the static analysis tools are installed on
the host. The VirusTotal public API is the only application requiring an internet
connection in order to work properly.

Regarding dynamic analysis, VMware Workstation is used as hypervisor for the
analysis environment. Strace and Ltrace are installed within this environment in
order to trace and record system and library calls during execution of the malware
sample. InetSim and TCPdump however, is installed in the host OS. This way, TCP-
dump might sniff network packets on the virtual network interface, while InetSim
simulates network services for traffic transmitted on it.

Ltrace

INetSim
ssdeep

strings

LDD

readELF

strace

ScriptLimon Sandbox

Figure 4.1: Application interaction diagram

4.4 Architecture design

Figure 4.2, shows how the architecture of the project is set up. This framework is
built on a virtual machine in Open Stack and uses nested virtualisation in order
to create a sandbox within Open Stack. In the Open Stack instance the Limon
script initiates a VMware Workstation instance, which is the sandbox used in this
project, where all the testing of the ELFs is done. The Limon script returns the
results from the ELF-file activity and creates output-files which will be stored on
the Open Stack instance.

26 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

User

Openstack instance/
Limon machine

Limon script

The circle represents the virtual environment

NTNU VPN

Internet

Vmware instance

Sandbox

Openstack

Vmware

Figure 4.2: Architecture design

4.5 Network design

In the internal virtual network, shown in figure 4.3, the Open Stack instance is the
default gateway for the VMware Workstation instance. The Open Stack machine
has a connection to the Internet and can communicate outside of the internal net-
work. This is necessary because Limon uses VirusTotal to calculate the threat level
of a virus during the static analysis phase. Network traffic from the Open Stack

Chapter 4: Design 27

instance will be routed via the Open Stack network, and the network from the
VMware Workstation instance need to be isolated. InetSim on the host machine
will simulate network services for the VMware Workstation instance. TCPdump is
used in order to sniff network traffic residing from the virtual network, recording
the traffic between the host machine and the guest machine.

Openstack instance
Vmware instance

192.168.102.1 192.168.102.128

Vmnet10: 192.168.102.0/24

Default gateway: 192.168.102.1

DNS server: 8.8.8.8

Internet

Figure 4.3: Network design

4.6 Sequence diagram

The diagram, 4.4, describes how the framework will operate while running, and
how different components in the framework work to complete the analysis pro-
cess. The diagram focuses mainly on the dynamic analysis aspects of the project

28 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

framework, although the framework also performs static analysis of the uploaded
ELF. The results and outputs returned have been illustrated as a single arrow in
the diagram, but the outputs will also be available separated by each tool as well.

Below is a description of the steps taken in the sequence diagram. The numbers
correspond to an arrow in the sequence diagram:

• 1: The user uploads the Executable Linkable Format (ELF) to the Host OS.
• 2: The Host OS runs the Limon script which analyses the uploaded ELF.
• 3: Begin the static analysis.
• 4: After the static analysis the script initiates the dynamic analysis process.
• 5: The Limon script reverts the VMware Workstation instance to a clean

snapshot before initiating the test.
• Limon transfer the ELF to the VMware Workstation instance
• 7: Starts TCPdump and InetSim. These tools then begin sniffing packets and

monitoring the network activity of the ELF-file.
• Points 8 to 10 happen in parallel but are displayed as sequential for read-

ability purposes.
• 8: In the VMware Workstation instance the Strace monitors the system calls

made by the ELF-file. Ltrace is also initiated to monitor the ELF library calls.
• 9: The ELF-file generates network traffic which then is tracked and mon-

itored by InetSim and TCPdump
• 10: The Limon script takes screenshots of the VMware Workstation desktop

in order to detect creation of files or started programs.
• 11, 12, 13, 14: When the testing phase is completed the Limon script ends

the sandbox and returns the results to the host machine. Each tool returns
output to a file which is located on the Host machine where the user can
then inspect the results.

Chapter 4: Design 29

Analyst

Host OS

1. Uploads ELF-file to

Limon script Sandbox

2. executes

4. Initiates

11. Collect outputs

14. Read results

12. End sandbox
13. Get results

5. Reverts snapshot

6. Transfer file

3. Static analysis

8. starts Strace/Ltrace
and executes ELF-file

7. Starts INetSim
and Tcpdump

9. Network traffic

10. Get screenshot

Figure 4.4: Sequence diagram

Chapter 5

Implementation

This chapter will explain the implementation process of the architecture designed
in the previous chapter. The chapter is mostly focused on the practical aspects to-
wards answering the research question, but the methodology strategy used dur-
ing this thesis project will be briefly touched. Furthermore, the implementation
regarding the different tools and solutions used will be shown and discussed. Each
tool is explained in detail along with a justification on why the chosen tool con-
tributes to solve the problem in question.

5.1 Methodology

The pre-project period, as seen in appendix A, introduced the use of Kanban meth-
odology in combination with a Gantt schema [73] that describes the different
phases of the thesis project. Figure 5.1 shows a snippet of the Kanban board in
use can be seen in use.

Figure 5.1: Trello Kanban board

31

32 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

5.2 Implementation repository

A BitBucket repository containing this thesis implementation has been created,
and is available for cloning [74]. The repository includes an installation script.
When ran, it automatically configures Limon on the host OS and configures the
guest OS, including the different tools required. Please be advised that references
regarding the BitBucket repository refers to this thesis development of Limon [74]
F. Instructions on how to install Limon from this script is further described in
chapter 5.6.

5.3 Infrastructure Configuration

The implementation of Limon may take place on a infrastructure of interest. This
could for instance be a physical computer or a VM if nested virtualisation is sup-
ported. Regardless of underlying infrastructure, VMware Workstation Workstation
is required as hypervisor for the guest OS. As NTNU’s Open Stack infrastructure
SkyHigh [75] offers plenty of available resources and ease of accessibility, this
became the natural choice of infrastructure to implement this thesis. Naturally,
as Open Stack is a VM manager [23], nested virtualisation will be required for
implementation. The nested virtualisation feature was enabled in SkyHigh after
requesting this to the DevOps team.

5.3.1 Initial configuration

In order to use SkyHigh as the underlying infrastructure, initial configuration is
required according to the SkyHigh documentation [75]. This includes creating a
subnet, configuring a router for external access, a firewall with appropriate secur-
ity rules and creation of SSH key-pairs for authentication. In this case, security
rules allowing egress and ingress IPv4 and IPv6 traffic were created allowing in-
coming and outgoing traffic to the internet. Internet connection is required in
order to download necessary tools and packages. Creating ingress security rules
for SSH and ICMP traffic enables remote administration and ensures that the vir-
tual machines in SkyHigh are able to ping each other. Prerequisites needed in
other infrastructures may vary from one to another. When implementing using a
physical computer, an internet connection and sufficient hardware (as describes
in chapter 2, Requirements) is required.

5.3.2 Instance deployment

According to the Limon documentation [16], Limon is configured on an Ubuntu
operating system. This is also the case regarding the analysis environment. The
Ubuntu versions mentioned in the documentation, 15.04 LTS for the host OS and
12.04 LTS for the guest OS, are outdated. To replicate a real-world scenario as
close as possible, a more updated version of the OS should be considered. Ubuntu

Chapter 5: Implementation 33

18.04 LTS was chosen for the analysis environment for this thesis implementation,
as 18.04 LTS is widely used at the time of writing. 18.04 LTS was also chosen as
the operating system for the host OS for simplicity.

5.4 Installing cuckoo

Primarily, Cuckoo became the sandbox solution of choice for this thesis, because
of it’s popularity and recommendation from the client. Cuckoo was installed ac-
cording to their documentation [3], along with VirtualBox [76] to host the guest
OS for malware analysis.
After successfully installing Cuckoo, all of its dependencies and the virtual en-
vironment, it came clear that Cuckoo only supported Windows as the analysis
environment of malware by default. Thus, the decision was made to implement
Limon instead of Cuckoo.

5.5 Limon setup

As mentioned earlier in the report, the Limon sandbox solution is a project presen-
ted at BlackHat Europe 2015 [68]. The project is open source and documented
to a certain extent. One of the bigger challenges regarding the project is the fact
that is has been discontinued since 2016. No commits has been performed since
that year. This causes some risk, as the Limon script might not work properly if
the dependant tools used by the script aren’t compatible with their updated ver-
sions. This section describes how Limon and the dependant tools are configured.
Code listings with commands and small scripts used in the configuration will be
shown throughout this section. Setting up Limon and the dependant tools is a
tedious process. Therefore, a Bash-script wrapping up the whole installation has
been created, and found in are found in appendix E.1 and E.2 . The reader is still
encouraged to read through the whole implementation chapter, in order to gain
proper understanding regarding the underlying technology.

5.5.1 Sandbox outline

Figure 5.2 Architecture design, displays the overall architecture to be implemented.
This figure was initially shown in chapter 4, and is repeated here for the reader’s
convenience. The overall construction consists of a host system with Limon, VM-
ware Workstation and some monitoring tools installed. When analysing a mal-
ware sample with Limon, this machine will conduct static analysis on the sample.
Memory analysis will also be performed from this machine if memory forensic
tools are installed. However, memory analysis methods is out of scope this thesis
project. The analysis environment VM will receive the malware sample from the
host OS to perform dynamic analysis, generating reports for further study upon
ended execution. A more detailed description on how an analysis is conducted
with Limon can be seen in figure 4.4, Sequence diagram.

34 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

User

Openstack instance/
Limon machine

Limon script

The circle represents the virtual environment

NTNU VPN

Internet

Vmware instance

Sandbox

Openstack

Vmware

Figure 5.2: Architecture design

5.5.2 Host OS configuration

This sub chapter will explain how the host machine was implemented, document-
ing the installation of the tools required. As previously mentioned, the host OS is
running Ubuntu 18.04 Server. The tools listed below might be downloaded to the
directory of choice. For simplicity, all of the tools required were downloaded to
the /home/current-user directory in this case.

Chapter 5: Implementation 35

Installing desktop environment

A graphical user interface is required to properly complete the implementation of
Limon. If the host system is a server distribution without a GUI, a light weight
desktop environment needs to be installed. This could for instance be Lubuntu
desktop, which is very simple to install [77]. Other popular desktop environments
includes, for instance, KDE and Mate Core [77].

VMware Workstation and guest operating system

Limon is pre-configured to use VMware Workstation as the hypervisor for analysis,
as the script is dependent on vmrun for executing commands and transferring files
between the host OS and guest OS. vmrun is VMware Workstation’s command
line utility for managing VMs [43]. The installation script developed during this
thesis, as shown in appendix E.1 and E.2, automatically installs the Linux version
of VMware Workstation. Code listing 5.1 displays how the installation is carried
out. The installation script E.1 also downloads an Ubuntu 18.04 LTS image from
TrendSigma [78] to be used as the guest OS.

Code listing 5.1: Installing VMware on Linux

#!/bin/bash
sudo ./VMware-Workstation-Full-16.0.0-16894299.x86_64.bundle --console

To verify that the VMware Workstation image is working properly, the reader is
encouraged to run the sudo vmrun start <path_to_vmx-file> command. This will
start the downloaded virtual instance in VMware Workstation, ensuring that it is
working properly.

Static analysis tools

Some of the tools mentioned in chapter 3, Theory and technology, used in Limon’s
static analysis process are already included in Ubuntu by default. These tools in-
cludes LDD, Readelf, TCPdump, and the strings utility. Others require manual
installation.

Limon relies on Yara and Yara-Python for detecting packers and further detect
capabilities of the executed malware. The Limon documentation [16] dictates the
installation of Yara version 1.7.2. Since this version is outdated, a newer version
should be considered. This implementation relies on Yara version 4.0.5, which is
installed according to their updated documentation [46].

Yara-rules are red by Limon from the /root/yara_rules directory, and thus this dir-
ectory should be created to store these rules. Rules are available from this GitHub
repository [79]. By default, Limon is configured to detect malware capabilities and
packers, by applying corresponding rules. However, which rules to match, might

36 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

be changed by applying other rule sets if needed.

The fuzzy hashing tool, Ssdeep, are available for download using the command
apt-get install ssdeep.

INetSim

Limon relies on InetSim to simulate network services for the sandbox. The Li-
mon documentation [16] refers to the official InetSim documentation page [69]
for downloading and installing the software. The installation and configuration
of InetSim is poorly documented, and might therefore appear as challenging. As
an alternative approach, Remnux CLI can be downloaded [28], considering the
fact that InetSim is included in Remnux. Remnux is an open source toolkit for mal-
ware-analysis. This eases the installation process of InetSim, as Remnux is straight
forward to setup. It also ensures that InetSim is correctly configured, as the pro-
cess is automated. For the sake of simplicity and security, Remnux CLI has been
implemented to ensure correct configuration of InetSim in this thesis project. The
reader should bear in mind that installing Remnux includes a lot of other tools
not need for this implementation, using unnecessary storage space.

Volatility

Limon depends on Volatility [20] for performing memory analysis. Memory ana-
lysis is out of scope for this thesis, and thus, Volatility is not implemented.

Analysis directory

Limon requires a directory for storing outputted reports upon ended analysis. Ac-
cording to the Limon configuration file, conf.py, reports are stored within /root/linux_reports,
and thus, this directory needs to be created. If a non-root directory is preferable,
conf.py needs to be updated with the appropriate directory.

5.5.3 Guest OS configuration

This sub section focuses on configuring the guest OS analysis environment (also
referred to as the sandbox). According to the Limon documentation [16], root lo-
gin should be enabled for executing malware samples in this environment. How-
ever, as requested by the project client, it is desired that malware samples are
executed with lower privileges, in order to fully observe what the executed mal-
ware sample might achieve.

As mentioned in the host OS configuration, Ubuntu 18.04 will be used as the guest
OS for this implementation. If implementing is done through the automated setup
scripts E.1E.2, the guest OS configuration below is part of the automated process.

Chapter 5: Implementation 37

Strace

Strace is a tool that traces system calls [34]. The Limon documentation [16]men-
tions that some Strace versions included in Ubuntu by default might not work
properly with Limon. To ensure proper functionality, Strace should be re-installed
as version 5.11, as referred to in code listing 5.2.

Code listing 5.2: Reinstallation of Strace

Strace
echo "password" | sudo -S apt-get remove -y strace
wget https://strace.io/files/5.11/strace-5.11.tar.xz
tar -xf strace-5.11.tar.xz
cd strace-5.11
./configure --disable-mpers
make
make install
cd ..
rm strace-5.11.tar.xz

PHP CLI

Limon does support analysis of PHP-scripts. This is out of scope for this thesis
project. If the reader wishes to implement this feature, this can easily be done by
running the command apt-get install -y php-cli.

Running 32 bit executables on 64 bit Ubuntu

There are cases where one might need to run and analyse 32bit executable ELF-
files, which might not work by default on a 64bit architecture. The following lib-
rary packages should be installed according to the Limon documentation to ensure
proper functionality in these cases, as specified in code listing 5.3

Code listing 5.3: Library packages for executing 32bit binaries on 64bit architec-
tures

sudo dpkg --add-architecture i386
sudo apt-get update
sudo apt-get install libc6:i386 libncurses5:i386 libstdc++6:i386

Volatility profile creation

Memory analysis is, as mentioned earlier, out of scope for this thesis and will not
be implemented. In cases where memory analysis is preferred, a Volatility profile
of the guest OS needs to be created and transferred to the host OS. This is further
described in the documentation [16], and will not be elaborated on in this report.

Miscellaneous

malware samples transferred to the sandbox needs to be stored inside the /home/
your_user/malware_analysis directory. In the default Limon source code, samples

38 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

are stored under /root/malware_analysis. However, since this implementation fo-
cuses on executing malware with lower privileges, the directory should be created
somewhere with proper user permissions, such as the path mentioned above. The
malware_analysis directory should also be added to the end of PATH in /etc/en-
vironment, as shown in code listing 5.4.

The /home/your_user/logdir directory needs to be created for the sandbox to
store analysis result reports. Strace and Ltrace output will be stored here upon
ended analysis, before being transferred to the host system.

The guest OS configuration is completed by clearing the Bash history, which is
done by running the command history -c && history -w. This will clear both the
Bash history residing in memory and on the disk.

Code listing 5.4: Adding malware_analysis directory to /etc/environment
mkdir malware_analysis
mkdir logdir
PATH=$PATH:~/home/user/malware_analysis
touch path.txt
echo -n ’PATH="’ >> path.txt
echo -n $PATH >> path.txt
echo ’"’ >> path.txt
cat path.txt > /etc/environment
rm path.txt

5.5.4 Sandbox network configuration

As VMrun networking commands are only supported in VMware Fusion Pro for
MacOSX, network configuration has to be performed through the VMware Work-
station GUI. To ensure that the sandbox is completely isolated, it should be placed
on a custom virtual network without access to the internet. Network traffic ori-
ginating from the sandbox will be routed to the host OS, which runs InetSim to
simulate network services. A more detailed step-by-step explanation of the net-
work configuration is described in appendix E.

Creating a custom virtual network

A custom virtual network can be created within the Virtual Network Manager in
the VMware Workstation GUI. A new host-only-network with a subnet mask of
255.255.255.0 should be created, as seen in figure 5.3. The Subnet IP field will be
blank when the network is created, and should be filled with the network address
of choice (e.g. 192.168.102.0). A static IP address for the VM will be assigned
further on in the configuration process.

Next, the newly created network needs to be added to the sandbox instance. This
is done by entering the instance settings and selecting the newly added custom

Chapter 5: Implementation 39

network, as shown in figure 5.4.

Figure 5.3: Adding a host-only-network (vmnet10).

Figure 5.4: Assigning the custom vmnet to the virtual instance.

40 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

Setting default gateway and preferred DNS on guest instance

As mentioned previously, network traffic originating from the sandbox are to be
routed to the host OS. To achieve this, the default gateway of the sandbox in-
stance is statically set as the IP address of the host OS on the custom vmnet.
This is achieved by running the command route add default gw <IP address>
<INTERFACE-NAME>, where IP address represents the host OS IP address and
INTERFACE-NAME is the name of the guest network interface (this can be checked
by running the command ip addr on the sandbox instance), e.g. route add default
gw 192.168.102.1 ens33. The action might be verified by running the command
/sbin/route -n, as shown in figure 5.5.

Figure 5.5: Confirming that host OS acts as default gateway for the guest OS
sandbox

Next, the preferred DNS address will be statically set. Since the virtual network
that the sandbox is connected to is isolated from the internet, the IP address of
the host OS should be set as the preferred DNS. This is achieved by editing the
network settings visually in the guest OS, as seen in figure 5.6. Verification of up-
dated DNS resolvers may be performed by running the command systemd-resolve
–status | grep ’DNS Servers’ -A2, as seen in figure 5.7. If the system’s DNS settings
are cached on the system itself, a reboot might be required to verify these changes.

Assigning static IP address to guest instance

A static IP address for the guest OS sandbox running on the custom virtual net-
work must be specified. This is important as the IP address of the sandbox instance
needs to be set manually in the Limon configuration file, conf.py. Since Limon re-
verts snapshot for each analysis, the IP address of the sandbox might change if
done otherwise. This will result in the configuration not being able to listen to
network traffic correctly.

This has to be changed in the VMware Workstation dhcpd configuration file on the
host OS: /etc/vmware/vmnet<YOUR_VMNET>/dhcpd/dhcpd.conf. There should
be an entry for the custom vmnet previously created in this file. Below this entry, a
new entry (also with the name of the custom vmnet) needs to be added. Inside this
entry, hardware ethernet should be equal to the sandbox instance’s MAC-address,
and fixed-address equal to the IP address of choice within the previously defined
subnet. An example is shown in figure 5.8.

Chapter 5: Implementation 41

Figure 5.6: Setting preferred DNS visually.

Figure 5.7: Confirming changes in preferred DNS.

Figure 5.8: Adding static IP address to the sandbox instance.

After the above configuration has been implemented, VMware Workstation’s DHCP
service should be restarted using the commands net stop vmnetdhcp and net start
vmnetdhcp on the host OS.

Lastly, one should configure InetSim in /etc/inetsim/inetsim.conf on the host OS.
Uncomment the network services of choice to be simulated by InetSim, as shown
in figure 5.9. The options for service_bind_address and dns_default_ip needs to be
uncommented, and the value of these two options should be set equal to the host
OS IP address on the custom VM network.

42 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

Figure 5.9: Choosing network services to be simulated by INetSim.

This concludes the network configuration for the Limon architecture. Figure 5.10,
Network Architecture, is repeated here for the sake of simplicity.

Code listing 5.5: Assigning appropriate variables for Limon in conf.py
##############[general variables]################################
py_path = r’/usr/bin/python’
report_dir = r’/home/ubuntu/linux_reports’
virustotal_key = "my_VirusTotal_API_key"

###############[vm variables]#####################################
host_analysis_vmpath = r’/home/ubuntu/Ubuntu1804/Ubuntu.vmx’
host_vmrunpath = r’/usr/bin/vmrun’
host_vmtype = r’ws’
analysis_username = "user"
analysis_password = "password"
analysis_clean_snapname = "cleansnapshot"
analysis_mal_dir = r"/home/user/malware_analysis"
analysis_py_path = r’/usr/bin/python3’
analysis_perl_path = r’/usr/bin/perl’
analysis_bash_path = r’/bin/bash’
analysis_sh_path = r’/bin/sh’
analysis_insmod_path = r’/sbin/insmod’
analysis_php_path = r’/usr/bin/php’

################[static analyis variables]##########################
yara_packer_rules = r’/home/ubuntu/yara_rules/packers_index.yar’
yara_rules = r’/home/ubuntu/yara_rules/capabilities/capabilities.yar’

#################[network variables]#################################
analysis_ip = "192.168.102.128"
host_iface_to_sniff = "vmnet10"
host_tcpdumppath = "/usr/sbin/tcpdump"

#######################[memory anlaysis variables]##################

vol_path = ’’

Chapter 5: Implementation 43

mem_image_profile = ’’

######################[inetsim variables]#########################
inetsim_path = r"/usr/bin/inetsim"
inetsim_log_dir = r"/var/log/inetsim/"
inetsim_report_dir = r"/var/log/inetsim/report"

######################[monitoring varibales]##########################
analysis_sysdig_path = ’’
host_sysdig_path = ’’
analysis_capture_out_file = ’’

analysis_strace_path = r’/usr/local/bin/strace’

strace_filter = r"-etrace=fork,clone,execve,chdir,open,creat,close,socket,connect,
accept,bind,read,write,unlink,rename,kill,pipe,dup,dup2"

analysis_strace_out_file = r’/home/user/logdir/trace.txt’
analysis_ltrace_path = r’/usr/bin/ltrace’
analysis_ltrace_out_file = r’/home/user/logdir/ltrace.txt’
analysis_log_outpath = r’/home/user/logdir’

5.5.5 Configuring the Limon script

The Limon script itself needs to be downloaded to the host OS. Everything needed
is included in the implementation’s BitBucket repository [74]. The Limon config-
uration file, conf.py, needs to be configured properly for the script to work. This
process consists of updating variables in conf.py with relevant parameters and
paths to the tools installed above on both the host OS and guest OS. Code list-
ing 5.5 contains all the variables that needs to be updated and set in conf.py (the
configuration file has several other entries than listed in code listing 5.5. Only
variables requiring assignment has been included). Calling the Bash command
which on a program, e.g. which strace, is useful in order to identify path of the
programs.

5.6 Scripting the Limon setup

The above installation is a tedious process that involves installing several indi-
vidual open source tools that together shapes the foundation of Limon. Thus, the
reader might run the custom Limon setup script developed in this thesis to ease
the implementation process. Running the setup script, limon_setup.sh E.1, installs
all of the tools which Limon is dependent on, along with creating appropriate
directories for analysis. All scripting material are also provided in the BitBucket
repository developed through this thesis [74].

5.6.1 Installing Limon from the thesis repository

To install Limon by using the installation script developed through this thesis,
clone the BitBucket repository [74] on the host OS. The following files are relevant

44 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

Openstack instance
Vmware instance

192.168.102.1 192.168.102.128

Vmnet10: 192.168.102.0/24

Default gateway: 192.168.102.1

DNS server: 8.8.8.8

Internet

Figure 5.10: Network design

for the installation:

• limon_setup.sh: Configures the host OS
• analysis_host_setup.sh Configures the analysis machine (guest OS). Auto-

matically invoked by limon_setup.sh.

The configuration is initiated by running limon_setup.sh. This will configure the
host OS and install the dependent tools, including VMware Workstation and the
Ubuntu VM image needed for the guest OS. Using VMrun, analysis_host_setup.sh,
are copied and executed within the guest OS, configuring this machine as well.
Lastly, the Sysdig scripts are transferred to the guest OS. These are not executed
in the installation, and are used when running an analysis. The Volatility image
from the guest OS are also created and copied to the host OS. When execution
of the script has ended, the host OS is rebooted in order for changes to take effect.

Chapter 5: Implementation 45

Please be advised: As seen in code listing 5.5, configuring the Limon configur-
ation file, conf.py, has to be done manually. This applies for the network con-
figurations shown in chapter 5.5.4 as well. When these configurations are con-
sidered completed, a snapshot of the analysis environment needs to be created.
This is achieved in VMware Workstation’s snapshot manager menu. The name of
the snapshot created should also set in the conf.py file.

5.7 Limon modifications

In order to accomplish all of the required functionalities for this thesis implement-
ation, some modifications deviating from the official documentation took place.
The documentation does encourage the reader to run root as default in the sand-
box. This implementation runs analysis as a normal low privileged user in order
to fully capture the capabilities of analysed malware. In addition, the ability to
trace malware library calls is not a feature in the official Limon implementation
[67]. Thus, this particular Limon implementation is modified and able to record
library calls using the ltrace tool [17].

For the sake of security, internet mode have been excluded. As the various tools
mentioned through this chapter has the ability to record both system and network
activity, the implementation of Sysdig has been excluded as well. Approaches and
argumentation regarding excluded tools and functionalities are further discussed
in chapter 7.

Chapter 6

Analysis and testing

This chapter will describe results from some analysis tests, as well as the different
outputs being produced when conducting an analysis.

6.1 Limon usage

Table 6.1 shows the options that can be given when running Limon. Each flag
(except the timeout flag) uses a tool which will impact how the analysis is con-
ducted. If the Ltrace flag is not added to the command when running Limon, then
the Strace tool will be used instead for the testing process. The script is simply
executed by running the following command from inside the cloned directory:

sudo python limon.py -t 60 <args> <path-to-malware-sample> <malware-args>

6.2 Analysis output

After successfully conducting an analysis of an ELF-sample, Limon produces out-
put files containing the reported results. This includes reports related to system
activities, network activities, static analysis data and a summary. A screenshot of
the sandbox desktop is also captured. Depending on the chosen arguments, differ-
ent output files might also be produced. Table 6.2 describes the output files along
with their relation to the corresponding tools.

6.3 Performance

This section briefly covers different performance aspects regarding the implement-
ation of Limon in this thesis. Performance regarding malware execution, accuracy
and mass testing are considered.

47

48 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

Script Description Tool
–timeout, -t Set desired timeout N / A
–libtrace, -l Traces library calls. Ltrace
–libstrace, -L Traces library calls and sys-

tem calls.
Ltrace

–printhexdump, -x Limon prints the hex dump
in call trace.

Hexdump

–python, -P Additional python script to
run in the sandbox.

python

–perl, -p Additional perl script to
run in the sandbox.

perl

–shell, -s Runs additional shell
script.

shell

–php, -z Runs additional php script. php
–Bash, -b Runs additional bash

script.
bash

–ufctrace, -C Unfiltered call trace (full
trace).

Strace

Table 6.1: Features used by Limon.

6.3.1 Execution performance

When analysing a malware sample with Limon, the user chooses a timeout which
defines the amount of seconds for the sandbox to run. After the desired amount of
seconds has been reached, associated processes are killed and the sandbox is sus-
pended. The sandbox continues to run until the desired timeout has been reached,
regardless of whether execution of the malware sample has finished or not. This
allows recording of post execution network activities.

6.3.2 Functionality testing

In order to ensure proper functionality and performance of the implementation
over time, a mass-test was conducted. This test sequentially carried out malware
analysis of 100 unique samples G from VirusShare [80]. Each sample was ran with
the -L parameter in Limon for tracing both library and system calls with Ltrace.

Listing 6.1 displays how such a test might be carried out with Limon. The scripts
loops through the malware sample directory on the host machine, running an
analysis with Limon for each sample. Please be advised that this test should not
be considered as a "heavy load" test. The test was conducted in order to observe
Limon’s functionality in different scenarios, ensuring that the script is working
properly along the way.

Chapter 6: Analysis and testing 49

Output-file Description Tool
final_output.txt This file contains a sum-

mary of both the dynamic
and static analysis as well
as the network traffic and
the system calls.

Ssdeep, InetSim,
TCPdump, Strace

ltrace.txt Contains output from the
Ltrace tool.

Ltrace

trace.txt Contains output from
Strace tool which is used
when the Ltrace is not
used.

Strace

desktop.png Takes screenshot of the
desktop to see whether the
malware sample has cre-
ated files on the desktop.

Pillow

output.pcap Dump of the network
traffic.

TCPdump

strings_unicode.txt,
strings_ascii.txt

Extracts the texts strings
embedded in the program
by using the Strings soft-
ware. Both ascii and uni-
code output is produced.

Strings

Table 6.2: Description of output-files and which tools generate them.

For this functionality test, a timeout of 60 seconds was set. More precisely: The
sandbox will run for 60 seconds per malware sample before being suspended and
reverted for analysing the next sample. 1 minute of execution should make room
for plenty of time for the malware samples to carry out its actions, and should be
enough margin for observing potential network activities after execution.

Taking into consideration the timeout (t), additional time (a) and the amount of
malware samples to analyse (m), please consider the following time calculation
formula for the functionality test:

minutesInTotal =
(t + a)m

60
(6.1)

Considering equation 6.1 above, the amount of time it takes to conduct the per-
formance test is calculated in equation 6.2:

minutesInTotal =
(60+ 15)100

60
= 125 (6.2)

50 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

As shown above, a functionality test for 100 malware samples using a 60 second
timeout would take approximately 2 hours in total. The functionality test car-
ried out in this thesis implementation was considered successful. No errors or
abnormalities were encountered during the performance test, and reports were
generated for each sample tested.

Code listing 6.1: Simple Python script for running Limon with several malware
samples.

import os

for i in os.listdir("/home/ubuntu/malware_samples/VirusShare_samples/"):
os.system(’sudo python limon.py -L -t 60
/home/ubuntu/malware_samples/VirusShare_samples/’+str(i))
print("\n")

6.3.3 Successful to unsuccessful sample execution ratio

Although no errors were raised during the functionality test, there were some mal-
ware samples that did not execute properly during the analysis. The subject area
of ELF-files is complex, compared to other binary file types in terms of strcture.
Thus, there are several reasons for why an ELF-file might not execute properly
when analysing with Limon. Figure 6.1 shows an overview of the different reas-
ons regarding failed executions observed in the functionality test. In total, 38%
executed successfully, while the remaining 62% were considered as failures. Suc-
cessfully executed malware samples are considered as sample which executed
without returning any errors in the call trace activity, potentially achieving de-
sired results. The aspects regarding failed sample execution are further discussed
below. It is important to investigate these aspects, in order to fully understand
factors that might affect proper dynamic analysis of ELF-files.

Root permissions required

As described in the previous chapters, the sandbox in this thesis implementation
runs as a normal user with standard privileges. Software needing root permissions
are not able to run unless the correct password is specified using sudo. A lot of
malware samples require root permissions in order to execute properly, resulting
in failed execution if otherwise. The user should bear this in mind when analys-
ing a malware sample using this particular implementation of Limon. 11% of the
failed samples during the functionality test failed based on this.

Faulty usage

One of the major factors regarding unsuccessful sample execution had to do with
faulty "user interaction" with the sample. When running a program from the CLI,
the user often has to pass arguments along with the command in order to select

Chapter 6: Analysis and testing 51

Unsuccessfull sample execution

11.3%

19.4%

8.1%

6.5%

54.8%

Root permission required Usage fault Segmentation fault Not vulnerable

Unknown reasons

meta-chart.com

Figure 6.1: Reasons regarding failed execution of samples during performance
test.

desired program functionality.

There are several ways to display the arguments of a program. For instance, when
running a program without arguments, it might display the arguments available
along with required usage, before terminating entirely. In other cases when ex-
ecuting a program, the user is able to choose arguments while the program is
hanging and waiting for further input.

Consider comparing figure 6.2 and figure 6.3. Figure 6.2 shows and example of
a malware sample which terminated since the amount of arguments required to
proceed execution were not met. However, Limon are able to handle arguments
from the user when running an analysis. Listing 6.2 shows how analysing the
sample shown in 6.2 with Limon using the correct amount of arguments might be
carried out. Figure 6.3 shows the output of this sample when executed correctly
with arguments. Since different malware samples in many cases requires differ-
ent amounts of arguments, this has not been possible to demonstrate through the
functionality test. Analysing concrete and individual malware-samples are recom-
mended.

52 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

Code listing 6.2: Running a malware sample along with required arguments in
Limon.

#!/bin/bash
sudo python limon.py -t 60 /home/ubuntu/malware_samples/mole_scanner.elf 5 8080 3

Figure 6.2: Mole scanner sample terminated because of missing arguments.

Figure 6.3: Mole scanner sample executed successfully passing required argu-
ments when running Limon.

Malware comes in various variants with different use cases. Some are used to ex-
ploit the system [81], while others are used to penetrate further into an already
compromised system. This is also known as post-exploitation [82]. Post-exploitation
malware often requires input from the threat actor to run desired options after
being deployed on the compromised system. This might for instance be options
such as attempting privilege escalation, start enumeration/scanning, or establish-
ing Command and Control Server communication. Upon analysing results from
the functionality test, this seemed to be the cause in many cases based on obser-
vations of functions printing these options during execution.

Some popular examples of such post-exploitation software include Cobalt Strike
[83] and Mimikatz [84].

System not vulnerable

In order for a malware to successfully exploit a system, the system needs to be
vulnerable. If otherwise, the exploitation attempt will fail. This was the case for
at least 6,5% of the samples executed during the functionality test. These cases
were identified from print functions in the call trace activities. Please be advised
that these numbers might not be exact, as this cause might be the case for other
malware samples which failed execution as well. Only cases where this fact is
certain are considered in this calculation.

Segmentation fault

Approximately 8% of analysed samples failed execution because of a segmentation
fault error, which were specified in the call trace activities. A segmentation fault,

Chapter 6: Analysis and testing 53

also known as segfault, is described as a memory error in a program which tries
to access a memory address that does not exist, or without proper access rights
[85]. The most common causes for the error includes poor programming, incorrect
pointer manipulation or invalid assumptions regarding shared libraries [86]. In
some cases, a segfault might also occur if a vulnerability has been patched in the
operating system.

Unknown failure reasons

Over 54% of the malware samples that executed incorrectly produced empty call
trace outputs, resulting in troubles regarding determining the cause. However,
re-running an analysis for some of these samples using Strace instead of Ltrace
produced the same segfault error as mentioned earlier. It is thus possible that
some of these samples experienced segfault issues, which Ltrace was not able to
properly detect. This also proves the fact that Strace is more accurate on system
call tracing than it’s brother, Ltrace, which is mainly for tracing library calls.

The static analysis part proved to be useful in determining possible unknown ex-
ecution issues. Figure 6.4 displays an error message from Readelf, which was fre-
quently encountered for these samples. This might indicate that the ELF-file is
corrupt, either as a result of poor programming or as a measure to slow down
analysts. It might also indicate that the sample is stripped. A sample compiled
with a strip flag instructs the compiler to discard debugging symbols, reducing
disk size and making it harder to debug or reverse engineer [87]. As shown in fig-
ure 6.5, this might be verified by running the command file on the sample. Based
on this intelligence, this is most likely the case for the analysis results where Ltrace
were not able to produce any output.

Figure 6.4: Readelf reading past end of file for section headers.

Figure 6.5: Stripped ELF-binary without call trace output.

54 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

There is also a chance that these samples were obfuscated using packers. How-
ever, Yara did not indicate detection of any packers for these particular malware
samples. Please be advised that the possibility of packed malware is still existing,
regardless of Yara-detection. This thesis implementation of Limon does not have
the ability to trace Assembly instructions or to log executed code. Some solutions
to this are further discussed in chapter 7 Discussion.

Unsuccessful sample execution summary

As discussed above, there are several discovered failure reasons for the malware
samples tested in the functionality test. These findings has been elaborated on in
detail in order to enlighten the reader as much as possible on these topics. Un-
known reasons and Segfaults are considered the most serious failure reasons to-
wards the technical implementation. However, there are measures towards these
problems which is further described in chapter 7. Please be advised that these
encounters might also be dependant on the sample that is analysed, in terms of
poor programming or memory based reasons.

Cases regarding usage faults, required root permissions or the system not being
vulnerable, are considered less serious as these encounters are individual and
sample specific errors. It is possible that some of the samples falling under the
"segfault" or "unknown reasons" category would have fallen under other categories
if more output were produced. Since there are so many factors affecting how an
ELF-file is properly executed, mass-testing of ELF-samples in a real-world scenario
is a challenging task.

6.4 Examples

This section describes examples from some of the analysis results to illustrate
achieved functionality with Limon. All of the malware samples described below
were executed with Ltrace for 60 seconds, providing output about library calls and
system calls. The purpose of this section is not to illustrate knowledge within mal-
ware analysis, but to demonstrate how Limon output might be used in practical
scenarios by security analysts or researchers.

6.4.1 Tsunami malware execution

As seen in figure 6.6, Tsunami VirusTotal detection, this sample was identified as
Tsunami trojan/backdoor by several engines on VirusTotal. Yara also detects the
sample as network irc.

Chapter 6: Analysis and testing 55

Figure 6.6: Tsunami VirusTotal detection

Moving on to the dynamic analysis results, the call trace activity recorded by Ltrace
shows interesting finds which illustrates how Limon might be used to inspect mal-
ware behaviour. Figure 6.7 indicates creation of a file called cron in the /tmp/ dir-
ectory, followed by some string compare operations and memory allocation. This
figure also illustrates how Ltrace accurately traces high level library calls.

Figure 6.7: Possible file creation of /tmp/cron, string comparisons and memory
allocation.

56 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

Several interesting observations from Ltrace are observed in the output report. As
seen in figure 6.8, the malware sample tries to tamper with cron, which is a time-
based job scheduler in Linux [88]. Based on the above observations, the sample ap-
parently attempts to schedule a weekly download from the domain stablehost[.]us.
Searches in open sources indicates that this domain is related to malicious activ-
ity. Further Ltrace observations indicates that the attempt of writing a scheduled
task to cron failed, since root permissions are required to perform this operation.
Figure 6.9 indicates removal of the created cron file in the /tmp/ directory. This
is likely a part of clearing tracks.

Figure 6.8: Possible tampering with crontab to schedule downloads from mali-
cious domain.

Figure 6.9: Deletion of previously created file.

A password, authenticationpassword, along with the username NICK, are further
observed written to disk in 6.10. These credentials are also observed within the
recorded network activity. The InetSim log data, as shown in figure 6.11, shows
communication on port 25 (SMTP). Figure 6.12 shows a snippet from the out-
put.pcap file, which might be used to further analyse captured network activity in
wireshark.

Figure 6.10: Observed credentials are written to disk.

Figure 6.11: SMTP network activity logged by inetsim.

Chapter 6: Analysis and testing 57

Figure 6.12: Inspecting network activities in wireshark output.

6.4.2 Rootkit

As seen in figure 6.13, this sample was identified as Trojan.Linux.Rootkit by sev-
eral engines on VirusTotal:

Figure 6.13: RootKit VirusTotal detection

In the dynamic analysis section, as shown in figure 6.14, the file outputs four
options. This indicates that the file requires user input. The options given by the
file are as follows:

• (L)ocal port configuation
• (R)emote configatuin
• (B)ackdoor password
• (H)idden program configuation
• (E)XIT

In figure 6.14 there is also the output "invalid option" and "system unfinished"
which may occur due to the file not receiving any input from a user. There is also
no indication of an internet connection being established. This sample does not
act independently which means that a user needs to establish a remote connection
to access the device with the file sample, or to access a device directly.

58 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

Figure 6.14: Options for Root Kit

Rootkit no connection to host

The creator of the malware has removed the creator of the configuration tool,
as seen at the top of figure 6.14. The rootkit configuration tool sample is called
"FuckIt". No external IP addresses was in the logs, this may be because the malware
was unsuccessful since this malware did not receive any valid input which may
have resulted in the output "Invalid option" and "System("clear" <unfinished...>,
as seen in the bottom of figure 6.14.

RootKit Loop

This malware has repeated itself 176 times in a run-time of 60s after not receiving
any input, as shown in figure 6.15

Figure 6.15: The FucKit RK script repeated itself 176 times

6.4.3 Privilege escalation

In the static analysis section VirusTotal, as seen in figure 6.16, returns the malware
samples vulnerability details. The details described by the CVE returned by Virus-
Total, CVE-2010-3301, are how the file attempts to manipulate an error which
exists in the Linux kernel by triggering an out-of-bounds access to the system call
table.

Chapter 6: Analysis and testing 59

Figure 6.16: The figure shows the VirusTotal output from the static analysis

As seen in the dynamic analysis section, in figure 6.17, under call trace activit-
ies, which records the program activity using Ltrace, the activities performed by
the file can be inspected. Here the program starts by allocating memory with the
malloc function. That a file allocates memory is normal, but in this instance there
is an abnormal amount of lines designated to memory allocation, the sequence
shown in figure 6.17 repeats several times in the dynamic analysis section.

Figure 6.17: malloc function example from call trace

At the end of the call trace section of the dynamic analysis the file exits without
any errors. By inspecting the Ltrace outputs at the end of the file it is possible
that the program finishes successfully. In this case the possibility of getting an
indication regarding the program gaining any escalated privileges is low, but since
the program prints "Process finished" at the end of the call trace output it is possible
that it has finished successfully.

Chapter 7

Discussion

This chapter further discusses the results and findings from chapter 6 Analysis and
testing. Further work and recommended measures will be discussed, along with
recommended additions, modifications and fixes that might improve the imple-
mentation.

7.1 Unmet functional requirements

As specified in chapter 2 Requirements, several functional requirements are re-
quired in order to successfully solve the task and answer the problem statement.
Table 7.1 repeats these requirements, stating which ones are considered covered.

Functional requirement Achieved
Internet access Yes
Disk access (I/O) Yes
Library call tracing Yes
Packer detection Yes
Output in human-readable format Yes
Display analysis output in the terminal Yes
Store analysis output in files Yes
Creating an isolated sandbox envir-
onment for secure and stealthy ELF-
malware execution.

Yes

Logging of executed code or Assembly
instructions

No

Table 7.1: Representation of whether functional requirements has been covered.

Considering table 7.1 above, one of the functional requirements has not been
implemented as part of the final solution. Research and concepts regarding this
requirement will be further discussed throughout this section.

61

62 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

7.1.1 Logging of executed code or Assembly instructions

Obfuscating malware is done in order to confuse analysts or victims by making
textual and binary data more difficult to read and understand [24]. The term is
further discussed in chapter 3. Obfuscation techniques might make static analysis
useless, as the analyst is not able to properly extract static information regarding
the software in human-readable format. In some cases, obfuscation might lead to
difficulties in debugging malware during run-time (dynamic analysis) as well.

The principle of malware packing is a subset of obfuscation. A packer is a piece
of software that compresses a malware sample in order to make its code and data
unreadable [24]. At run-time, the packed program is decompressed in memory us-
ing a wrapper program. Please be advised that packers have legitimate use cases
as well, for instance compressing software to more acceptable sizes [24]. Threat
actors often abuse these packers to avoid detection and behaviour identification.
There are several packer software available, as for instance UPX, Themida or The
Enigma Protector.

Conducting dynamic analysis on packed malware samples introduces difficulties,
as debugging tools analysing the sample (e.g. Strace) might fail executing a com-
pressed sample. Packed samples need to be unpacked in order to be analysed
properly, and might only be unpacked by using the same software which packed
it. This introduces the need for identifying which packer has been used to pack
the sample. This implementation of Limon does have the ability to detect potential
known packers using Yara-rules. If the packer used to pack the sample is correctly
identified, the malware analyst might manually unpack the sample using the iden-
tified packer software (e.g. UPX). Thus, the analyst might run a new analysis in
Limon using the unpacked sample to get accurate run-time results.

Please be advised that sophisticated malware might benefit custom developed
packers not publicly available. In such cases, the security analyst must manually
reverse engineer the binary in order to identify how it has been packed. [24].
Thus, logging of executed code or Assembly instructions being carried out might
be useful in order to determine what is happening behind the curtains. Success-
fully obtaining this knowledge in such cases are key to unpack the sample for
further analysis.

In some cases, sophisticated malware might also combine the usage of a custom
developed software packer in addition to a popular one (e.g. UPX) [24]. Limon
lacks the ability to automatically unpack packed malware samples. Implementa-
tion of such functionality has been attempted in this thesis without success. Sug-
gestions for how this might be implemented are briefly discussed down the line
in chapter 7.3, Improvements and further work.

Chapter 7: Discussion 63

7.2 Useful malware indicators in ELF-files

This section will further discuss indicators of importance regarding malware in
ELF-files. Both static and dynamic parameters useful to identify malware are con-
sidered.

7.2.1 Symbols

Symbols describe data types such as functions and variables stored in the source
code, which might be exported for debugging and linking purposes [87]. By in-
specting symbols, an analyst might uncover which functions and variables has
been created by the developer, thus gaining a better understanding regarding the
binary’s functionality. Some of these findings might also be searched online in
open sources to find existing indicators. The Readelf command combined with the
-s argument is useful for examining an ELF-file’s symbol information.

When inspecting symbol information, one will most likely come across tables
called .dynsym and .symtab. .dynsym contains dynamically linked symbols, while
the .symtab table contains all symbols, including the dynamically linked ones [87].
The difference between statically- and dynamically-linked binaries are defined in
chapter 3.3.9. It is important to inspect these symbol tables, as they may reveal
function calls or variables of importance which might substantiate a hypothesis of
potential malware. Some of the most important symbol types include the follow-
ing:

• OBJECT: Declared global variables.
• FUNC: Declared functions.
• FILE: Source files compiled into the library. This is also a debug symbol,

meaning that stripped binaries won’t contain these symbol types.

The analyst should also bear in mind that statically linked binaries are usually
bigger in file size, as they most likely contain larger amounts of code related to
the dependant libraries and not the actual logic of the file [87]. This may make
it harder to understand the malware’s purpose and functionality, compared to
dynamically linked binaries where most of the file’s contents are related to it’s
logic.

7.2.2 Segments

Segments (also known as program headers [87], further described in chapter 3)
are important to examine for potential anomalies. If anomalies are discovered in
the segment structure, it might indicate that the file has been modified, infected
or packed. Figure 6.4 displays an example of such a case which was discovered
during the Limon functionality test. The dynamic analysis process for this partic-
ular malware sample were not successful as no call trace activity were recorded.
This substantiates the hypothesis that the sample potentially is packed, or that the

64 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

segments structure has been tampered with.

In short, information about sections might be useful for an analyst to examine in
order to determine knowledge regarding the following:

• Identifying entry points and other useful information regarding the execut-
able code.
• Mapping between segments and sections.
• Discover anomalies in the ELF-header structure.
• Identify whether the file has been stripped.
• Identify whether the file has been infected or potentially packed.

7.2.3 Run-time indicators

There are also certain run-time indicators to be aware of when analysing ELF-
malware. The /tmp/ directory in Linux is widely used by malicious programs as a
directory for creating or downloading files from the internet. As the directory has
global read and write permissions regardless of which user carries out the desired
operation, /tmp/ is a natural directory for performing malicious operations. A
threat actor having obtained a foothold in the system, might abuse this directory
for his or hers advantage.

Abnormal network activities should also be examined if suspicion regarding ELF-
malware has been raised. In enterprise infrastructure, on-premise Linux servers
often serve specific services, as for instance a mail server, web server or storage.
Depending on the internal configuration, a mail server might only expect com-
munication over SMTP port 25. If a running ELF-process on the mail server sys-
tem starts transmitting abnormal network traffic on other network ports, it might
indicate potential malicious activity residing from the process. Malicious activ-
ity might also take place in the expected service, and thus proper monitoring of
network services in Linux are necessary in order to track down potential ELF-
compromises.

ELF-malware often tends to tamper with Linux’s task scheduled system, also known
as crontab. Abnormalities in crontab might indicate that a Linux-malware has
scheduled malicious tasks, such as retrieving commands from a Command and
Control Server-server or perform other malicious operations regularly. Figure 6.8
shows how a malware sample from the functionality test, mentioned in chapter
6, tries to tamper with crontab in order to weekly perform downloads from a ma-
licious website.

7.3 Improvements and further work

The following section covers recommended further work for this thesis imple-
mentation and mentions potential for improvements. The technical suggestions

Chapter 7: Discussion 65

mentioned are divided in three parts: Additions, Modifications and Fixes.

7.3.1 Additions

Several additions to improve Limon and this thesis implementation has been spe-
cified below. These include additions to cover unmet functional requirements and
features considered as relevant to support the project in general.

Unpacking function

Limon lacks the feature to unpack potentially packed malware samples. The im-
plementation does, however, have the ability to detect potential packers using
Yara. To further extend Limon’s capabilities, the packer detection results might
be used to unpack the sample for further analysis. By installing the most popular
packers on the host OS, a Python switch statement might unpack the sample based
on the detection returned from Yara. Thus, if the packed sample is unpacked suc-
cessfully using the detected packer software, Limon can continue with it’s normal
procedures. Code listing 7.1 suggests a pseudo-code example which may be used
to implement this functionality.

Code listing 7.1: Pseudo-code for automatic unpacking solution for Limon in
statan.py

statan.py

...

def check_for_packer(malware_sample):
packer = run_yara_comparison(malware_sample)
return packer

if (result = check_for_packer(malware_sample)):
unpacked_sample = ""
if (result == "UPX"):

unpacked_sample = upx_unpack(malware_sample)
if (result == "Themida"):

unpacked_sample = themida_unpack(malware_sample)

...

if (unpacked_sample):
run_analysis(unpacked_sample)

else:
print("Potential unknown packer detected")

else:
print("No packer detected")

...

During the functionality test, packer detection using Yara delivered mixed res-
ults. This might for instance occur as a results of an outdated Yara rule-set. To

66 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

ensure proper packer detection, it is advisable to implement an additional packer
detection technique. Detect It Easy (DiE) [89] is a signature-based packer detec-
tion tool which detects a file’s compiler, linker and packer. The tool is available
for Linux and can be downloaded from their official GitHub repository [90]. By
implementing another packer detection method, such as DiE, the likelihood for Li-
mon to detect potential packing of samples is greatly increased by using different
sources.

Logging of executed code or Assembly instructions

Logging the Assembly instructions that a malware carries out might be useful in
cases were the malware sample is packed with an unknown packer in order to
successfully unpack the sample. The feature might also provide more enrich ana-
lysis output to support a hypothesis regarding what the malware is doing.

The Radare2 framework [91], as further described in chapter 4, might be used
to conduct analysis on Assembly level. The R2pipe [72] API makes it possible to
script Radare2 operation, thus making it possible to perform dynamic analysis
automatically. This requires an in-depth understanding of Assembly, and R2pipe
is also poorly documented.

Please be advised that this thesis implementation do have some approaches con-
sidered relevant for this functional requirement. Strace and Ltrace does record
information regarding executed code in terms of system and library codes. These
logging techniques illustrates system and program operations accurately on their
own. Based on this, one might argue that the functional requirement for logging
executed code is covered to some extent.

Visual indicators and GUI

This implementation of Limon provides output from several analysis tools and
methods, which helps security analyst to form a hypothesis and investigate mal-
ware behaviour. Although the analysis output files provides useful and informa-
tional results, there are no visual or concrete malware classifier such as graphs,
entropy or "confidence score". As mentioned in chapter 1.4.2 Delimitations, this is
out of scope for this thesis. However, this might become a handy feature in Limon
when implemented in a SOC for instance.

7.3.2 Modifications

Running Strace and Ltrace simultaneously

As mentioned repeatedly throughout this thesis, both Strace and Ltrace has been
implemented in order to trace both system- and library calls that the malware
carries out during execution. However, currently there are no way for executing

Chapter 7: Discussion 67

a malware sample with both tools simultaneously. Please consider the use case
below:

Jim wants to analyse a malware sample with Limon using a 60 second timeout, tra-
cing both system- and library calls. Jim is aware that Ltrace is able to trace both call
types, but wishes to use Strace to trace system calls for accuracy reasons. In order to
retrieve both types of results, Jim must run two separate analysis on the same sample,
doubling the conduction time.

The problem exists since the sample is ran using one of the tools within the sand-
box. The sample to analyse acts as an arguments for either Strace or Ltrace. There
are several approaches to this issue. For instance, an additional sandbox instance
might be added, which runs simultaneously with the already existing one. Using
duplicate instances, one could have been configured to run Ltrace while the other
one conducts analysis using Strace, thus generating reports from both tools in one
analysis. However, this is more resource heavy and reserves more storage space
in terms of snapshots and VM images.

The more suitable approach for this case, is probably to eliminate the ability for
Ltrace to trace system calls. Thus, a Limon argument entered by the user might be
used to determine whether to use both Ltrace and Strace. Based on whether this
argument is chosen, an if-statement might sequentially perform both operations if
desired. This doubles the time it takes to conduct dynamic analysis, but decreases
the amount of required resources and user interaction.

Hardware and virtualisation

Throughout this thesis implementation, nested virtualisation have been used as
the underlying system infrastructure. Many computers does not have hardware
support for nested virtualisation, while others might need to enable this feature
in the computer’s BIOS settings. The latter option might also be considered as a
policy breach on work computers in some organisations.

The hardware used for the host system in this thesis includes the following:

• 8 Virtual CPU cores.
• 40 GB of disk space.
• 16 GB of RAM.

There are no specified hardware requirements for Limon to run properly. In the
case of nested virtualisation, sufficient hardware should be ensured. The recom-
mended approach for setting up Limon is to use a dedicated desktop with Ubuntu
as the operating system. This will ensure proper performance for the sandbox, and
is less dependant on the physical hardware. Having Limon installed on a physical
laptop might also be the most convenient alternative in an incident response or
digital forensics case.

68 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

Migrating from Python2 to Python3

Limon is written in Python2, which is discontinued and obsolete. In terms of build-
ing new functionalities on top of Limon, re-writing the code to Python3 might be
more convenient for future development. As most analysis tools built with Python
today are built with version 3, interference in interaction between Limon and an
analysis tool is possible. Updating to Python3 is also important in order to mitigate
risk regarding potential vulnerabilities in older versions of Python.

A safer internet mode

As described in 4, Limon includes an internet mode functionality by default. This
feature was not implemented in this thesis implementation in order to create the
safest and most isolated sandbox environment possible. Allowing sophisticated
malware samples to access the internet during dynamic analysis might expose the
threat actor to information about the analyst.

If internet mode is to be implemented, there are measures that might help mitigat-
ing the risk of exposure. For instance, by configuring proxy chains in the sandbox,
internet traffic residing from the malware are routed through several proxy serv-
ers before reaching the end destination. This adds some layers of anonymity for
the analyst compared to the default internet mode in Limon. An alternative might
also be to route all internet traffic redesign from the malware through the TOR-
network [92]. Regardless of which, performing dynamic analysis of sophisticated
malware in an offline environment is always recommended if possible.

Changing default sudo password

As mentioned in chapter 5, an Ubuntu 18.04 LTS .vmx image from TrendSigma
[78] was used as the guest OS. This particular image’s default user and password
consisted of user:password, which in many cases are typical default credentials.
Such credentials are easily guessed by some malware to run programs with higher
privileges. Depending on the scenario the analyst wishes to simulate, changing
default credentials might be key to avoid this outcome. However, this might not
be the case if the analyst wishes to recreate a scenario where default credentials
has been used.

7.3.3 fixes

This section will describe recommended fixes regarding the Limon implementa-
tion. This includes fixes for this particular thesis implementation, as well as Limon
in general.

Chapter 7: Discussion 69

Sysdig implementation

Sysdig, which is a system monitoring tool for Linux, is not part of this particu-
lar thesis implementation of Limon. As a system monitoring tool, it records both
system and network activity at a detailed level. Since other tools in this imple-
mentation also records such activities, Sysdig is considered as a good to have tool.
Thus, the lack of Sysdig’s presence does not affect any functional requirement. In
some digital forensics or incident response scenarios, the implementation of Sys-
dig might be considered relevant, as verification of malware behaviour by several
tools are required in order to conduct a valid hypothesis.

Volatility implementation

Memory analysis is out of scope for this thesis, and thus no tool for conducting
analysis of memory images has been implemented. In an incident response or
digital forensics scenario, memory analysis becomes highly relevant. A majority
of malware involves processes running in memory without leaving traces on the
disk, such as meterpreter shells. Implementing Volatility to conduct memory ana-
lysis might support the findings from the static- and dynamic analysis processes
in terms of hypothesis conduction in these scenarios.

Analysis reporting directories

When conducting an analysis with Limon, a directory named after the analysed
sample is created, containing the results and output files. If an analysis of the
same sample is conducted, the previous directory and all containing files will be
removed and replaced with the new analysis results. This becomes an issue in
cases where the analyst wishes to produce results from both Ltrace and Strace.
Since this has to be performed in two separate operations, the results from the
second analysis will overwrite the results from the first one. This leaves the ana-
lyst with either Ltrace or Strace report, based on which one was conducted prior
to the other.

In order to solve this issue, an if-statement might be added to dynan.py, checking
whether the Strace or Ltrace output file exists within the directory already. If so, it
might be copied to another directory (e.g. /tmp/) before the analysis is conducted.
Upon ended analysis, the file can be copied back to the newly created results
directory, and the analyst thus possess both Strace and Ltrace output.

Updating analysis tools

Since Limon has not been updated since 2016, the version of the analysis tools
mentioned in the documentation [16]. This involves that some installation instruc-
tions are obstacle, as some tools have been updated along the way individually.
The BitBucket repository developed in this thesis automatically installs newer ver-

70 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

sions of the necessary tools needed for Limon function properly. The user might
clone this repository to automatically install the prerequisites needed. Please be
advised that this repository will not be maintained, and the user needs to manually
update the individual analysis tools if preferred. However, since the installation
has been scripted, the implementation should work regardless as long as the re-
spective tool-versions are not taken down by their developers.

7.4 The importance of combined analysis

The main focus of this thesis evolves around dynamically analysing ELF-files dur-
ing execution to observe run-time behaviour and identify possible malware in-
dicators. Although dynamic analysis is considered the main focus area, it is also
important to stress the importance of combining different analysis methods and
comparing the results. This is necessary in order to conduct an accurate hypothesis
regarding what the potential ELF-malware sample undertakes. While dynamic
analysis might be one of the most accurate analysis methods, considering the
fact that the malware is actually executed, static- and memory analysis provides
useful information to confirm these observations. This is especially important for
malware analysis in Linux systems, as this is still a relatively new concept [81].

7.5 Protecting systems against ELF-malware infection

The ELF-file format is most used within Linux clients and servers. Thus these
devices are naturally the most vulnerable systems in terms of ELF-malware. To
avoid having a Linux system infected by ELF-malware, one must firstly secure the
system for initial vectors of compromise. In Windows systems, malware is often
delivered through Phishing emails as an attachment. This type of malware deliv-
ery is not as important when it comes to Linux system, because of the lack of GUIs.
Therefore, other initial attack vectors should be considered when mitigating the
risk regarding ELF-malware. The most important initial infection methods include
the following [81]:

• Known vulnerabilities or zero-days on publicly faced components.
• Default software credentials.
• Breached or compromised credentials.
• Supply chain attacks or trusted third party relationship abuse.

Chapter 8

Conclusion

The following chapter will give the reader an overview of the thesis project. Fur-
thermore, the chapter shortly describes achievements, how these achievements
were reached, followed by an overall learning outcome.

8.1 Project assessment

The project task started out as an open project description with the possibility to
make adjustments before it was finalised. Project client Lasse Øverlier at NTNU
wanted us to create a solution capable of conducting automated dynamic ana-
lysis of ELF-files, producing relevant output which might help identify potential
indicators of malware. The requirements regarding which output that was relev-
ant were clearly specified. Apart from this, the task was very flexible in terms of
what we as a group consider relevant for solving the problem.
The thesis project started out by investigating the ELF-file in detail. We learned
about it’s structure and area of usage through various articles, Youtube videos
and Capture the Flag challenges. Although technical knowledge regarding how
the ELF-file is structured is considered out of scope for this thesis, we felt that this
was a nice to know approach of some importance when creating the solution.
Requirement specification were carried out, and we early decided to angle this
thesis against analysis of sophisticated malware samples, as malware in Linux sys-
tems are still in an early stage. We learned about some best practices in dynamic
malware analysis in general, and decided to create a sandbox isolated from both
the host system and the internet. Thus the hunt began for finding existing tech-
nologies which would help us along the way. Several existing frameworks were
visited, some were also tested. After some research we stumbled across Limon,
which turned out to be one of the few sandbox solutions capable of conducting
malware analysis of ELF-files.
After designing the systems infrastructure, the technical implementation was car-
ried out. Being discontinued since 2016, implementing Limon proved to be a tedi-
ous and cumbersome process. Thus, the whole process was scripted and uploaded
to our own BitBucket repository, which is publicly available for anyone to use. To

71

72 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

test the implementation, project client Lasse Øverlier handed us a handful of ELF-
malware samples. A functionality test of 100 samples was conducted, providing
useful results which were further discussed at the end of the report.

8.2 Learning outcome and evaluation

During the thesis project period we have gained knowledge regarding several top-
ics within information security, especially malware analysis and Linux binaries. We
have learned about how malicious files threaten the Linux landscape, and which
classifiers are important in order to determine the possibility of malware in an
ELF-binary. Furthermore, we have gained more experience in debugging suspi-
cious programs using different tools, which we consider relevant for our future
work life.

When looking at the outcome in retrospect, we have several things in mind re-
garding what we could have done better. For instance, we could have arranged
more continuous meetings with the project client during the project period. The
group working sessions should have been arranged more frequently. Working to-
gether as a group turned out to be challenging during the COVID-19 pandemic,
combined with other factors such as different working hours. Despite these facts,
the Kanban methodology has worked great for this type of project affected by a lot
of individual work. The decision to choose Limon as the analysis solution should
have happened earlier, in order to successfully implement more of the features
mentioned in chapter 7.3

8.3 Results

Throughout this thesis we have developed a solution to conduct both static- and
dynamic analysis in an isolated sandbox environment. The solution is capable of
collecting information on how an ELF-file behaves during execution, in terms of
system calls, I/O, library calls, and network activities. We have also discussed com-
mon observations in ELF-malware. The time frame was unfortunately a little bit
too short to implement all of the features requested by the project client. However,
some features do arguably cover some of the missing requests.

We have certainly learned a lot through this thesis, both in terms of technical
knowledge and self-knowledge. In total, we are satisfied about the achieved res-
ults in regards to the problem statement. Lastly, we hope that the outcome of this
thesis might contribute towards important malware research in an area that is still
considered young in the cyber threat landscape.

Bibliography

[1] (2021). ‘Assembly language,’ [Online]. Available: https://techterms.
com/definition/assembly_language (visited on 16/05/2021).

[2] (2021). ‘Command and control [cc] server,’ [Online]. Available: https:
//www.trendmicro.com/vinfo/us/security/definition/command-and-
control-server (visited on 09/05/2021).

[3] (2020). ‘Cuckoo sandbox book,’ [Online]. Available: https://cuckoo.sh/
docs/ (visited on 09/05/2021).

[4] (2021). ‘Definition of ’debugging’,’ [Online]. Available: https://economictimes.
indiatimes.com/definition/debugging (visited on 08/05/2021).

[5] B. Lutkevich. (2021). ‘Embedded system,’ [Online]. Available: https://
internetofthingsagenda.techtarget.com/definition/embedded-system
(visited on 08/05/2021).

[6] ‘What is an exploit?,’ [Online]. Available: https://www.cisco.com/c/
en/us/products/security/advanced-malware-protection/what-is-
exploit.html (visited on 20/05/2021).

[7] Cisco, ‘Firewall,’ [Online]. Available: https://www.cisco.com/c/en/us/
products/security/firewalls/what-is-a-firewall.html (visited on
08/05/2021).

[8] M. Kassner. (2011). ‘Fuzzy hashing helps researchers spot morphing mal-
ware,’ [Online]. Available: https://www.techrepublic.com/blog/it-
security/fuzzy-hashing-helps-researchers-spot-morphing-malware/
(visited on 07/04/2021).

[9] R. Lanigan. (2016). ‘Guest operating system,’ [Online]. Available: https:
//searchservervirtualization.techtarget.com/definition/guest-
OS (visited on 09/05/2021).

[10] (2021). ‘Hash,’ [Online]. Available: https://techterms.com/definition/
hash (visited on 09/05/2021).

[11] S. Kenlon, ‘How hexdump works,’ 2019-08-12. [Online]. Available: https:
//linux- audit.com/elf- binaries- on- linux- understanding- and-
analysis/ (visited on 20/05/2021).

73

https://techterms.com/definition/assembly_language
https://techterms.com/definition/assembly_language
https://www.trendmicro.com/vinfo/us/security/definition/command-and-control-server
https://www.trendmicro.com/vinfo/us/security/definition/command-and-control-server
https://www.trendmicro.com/vinfo/us/security/definition/command-and-control-server
https://cuckoo.sh/docs/
https://cuckoo.sh/docs/
https://economictimes.indiatimes.com/definition/debugging
https://economictimes.indiatimes.com/definition/debugging
https://internetofthingsagenda.techtarget.com/definition/embedded-system
https://internetofthingsagenda.techtarget.com/definition/embedded-system
https://www.cisco.com/c/en/us/products/security/advanced-malware-protection/what-is-exploit.html
https://www.cisco.com/c/en/us/products/security/advanced-malware-protection/what-is-exploit.html
https://www.cisco.com/c/en/us/products/security/advanced-malware-protection/what-is-exploit.html
https://www.cisco.com/c/en/us/products/security/firewalls/what-is-a-firewall.html
https://www.cisco.com/c/en/us/products/security/firewalls/what-is-a-firewall.html
https://www.techrepublic.com/blog/it-security/fuzzy-hashing-helps-researchers-spot-morphing-malware/
https://www.techrepublic.com/blog/it-security/fuzzy-hashing-helps-researchers-spot-morphing-malware/
https://searchservervirtualization.techtarget.com/definition/guest-OS
https://searchservervirtualization.techtarget.com/definition/guest-OS
https://searchservervirtualization.techtarget.com/definition/guest-OS
https://techterms.com/definition/hash
https://techterms.com/definition/hash
https://linux-audit.com/elf-binaries-on-linux-understanding-and-analysis/
https://linux-audit.com/elf-binaries-on-linux-understanding-and-analysis/
https://linux-audit.com/elf-binaries-on-linux-understanding-and-analysis/

74 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

[12] N. Martin. (2016). ‘Host operating system,’ [Online]. Available: https:
//searchvmware.techtarget.com/definition/host-operating-system
(visited on 09/05/2021).

[13] V. Inc. (2021). ‘Hypervisor,’ [Online]. Available: https://www.vmware.
com/topics/glossary/content/hypervisor (visited on 08/05/2021).

[14] N. Lord, ‘What are indicators of compromise?,’ 2020. [Online]. Available:
https://digitalguardian.com/blog/what-are-indicators-compromise
(visited on 09/05/2021).

[15] M. Kerrisk. (2021). ‘Ldd - list dynamic dependencies,’ [Online]. Available:
https://man7.org/linux/man- pages/man1/ldd.1.html (visited on
02/05/2021).

[16] M. K. A. (2015). ‘Setting up limon sandbox for analyzing linux malwares,’
[Online]. Available: http://malware-unplugged.blogspot.com/2015/
11/setting-up-limon-sandbox-for-analyzing.html (visited on 10/05/2021).

[17] J. Cespedes. (2019). ‘Ltrace lystem call debugger tool,’ [Online]. Available:
https://man7.org/linux/man-pages/man1/ltrace.1.html (visited on
04/04/2021).

[18] (2020). ‘Lubuntu - about,’ [Online]. Available: https://lubuntu.net/
about/ (visited on 09/05/2021).

[19] ‘What is malware?,’ [Online]. Available: https://www.cisco.com/c/
en/us/products/security/advanced-malware-protection/what-is-
malware.html (visited on 09/05/2021).

[20] Volatility. (2021). ‘Volatility workbench,’ [Online]. Available: https://
www.osforensics.com/tools/volatility-workbench.html (visited on
08/05/2021).

[21] (2016). ‘Run hyper-v in a virtual machine with nested virtualization,’ [On-
line]. Available: https://docs.microsoft.com/en-us/virtualization/
hyper-v-on-windows/user-guide/nested-virtualization (visited on
09/05/2021).

[22] (2021). ‘What is open source?’ [Online]. Available: https://opensource.
com/resources/what-open-source (visited on 08/05/2021).

[23] (2021). ‘Understanding openstack,’ [Online]. Available: https://www.
redhat.com/en/topics/openstack/ (visited on 16/05/2021).

[24] T. Appleby. (2019). ‘Analysing packed malware,’ [Online]. Available: https:
//resources.infosecinstitute.com/topic/analyzing-packed-malware/
(visited on 16/05/2021).

[25] A. Clark. (2021). ‘Pillow - python imaging library,’ [Online]. Available:
https://pillow.readthedocs.io/en/stable/ (visited on 04/04/2021).

[26] C. I. S. AGENCY. (2021). ‘Ransomware,’ [Online]. Available: https://www.
cisa.gov/ransomware (visited on 09/05/2021).

https://searchvmware.techtarget.com/definition/host-operating-system
https://searchvmware.techtarget.com/definition/host-operating-system
https://www.vmware.com/topics/glossary/content/hypervisor
https://www.vmware.com/topics/glossary/content/hypervisor
https://digitalguardian.com/blog/what-are-indicators-compromise
https://man7.org/linux/man-pages/man1/ldd.1.html
http://malware-unplugged.blogspot.com/2015/11/setting-up-limon-sandbox-for-analyzing.html
http://malware-unplugged.blogspot.com/2015/11/setting-up-limon-sandbox-for-analyzing.html
https://man7.org/linux/man-pages/man1/ltrace.1.html
https://lubuntu.net/about/
https://lubuntu.net/about/
https://www.cisco.com/c/en/us/products/security/advanced-malware-protection/what-is-malware.html
https://www.cisco.com/c/en/us/products/security/advanced-malware-protection/what-is-malware.html
https://www.cisco.com/c/en/us/products/security/advanced-malware-protection/what-is-malware.html
https://www.osforensics.com/tools/volatility-workbench.html
https://www.osforensics.com/tools/volatility-workbench.html
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/nested-virtualization
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/nested-virtualization
https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source
https://www.redhat.com/en/topics/openstack/
https://www.redhat.com/en/topics/openstack/
https://resources.infosecinstitute.com/topic/analyzing-packed-malware/
https://resources.infosecinstitute.com/topic/analyzing-packed-malware/
https://pillow.readthedocs.io/en/stable/
https://www.cisa.gov/ransomware
https://www.cisa.gov/ransomware

Bibliography 75

[27] F. S. Foundation. (2009). ‘Readelf man page,’ [Online]. Available: https:
//linux.die.net/man/1/readelf (visited on 02/05/2021).

[28] Z. S. Corp. (2020). ‘Remnux: A linux toolkit for malware analysis,’ [On-
line]. Available: https://docs.remnux.org/ (visited on 20/02/2021).

[29] L. Rosencrance, ‘Sandbox (software testing and security),’ December 2018.
(visited on 20/03/2021).

[30] M. Courtemanche. (2012). ‘Vmware snapshot,’ [Online]. Available: https:
//searchvmware.techtarget.com/definition/VMware-snapshot/ (vis-
ited on 16/05/2021).

[31] J. Kornblum. (2018). ‘Ssdeep - fuzzy hashing program,’ [Online]. Available:
https://ssdeep-project.github.io/ssdeep/index.html (visited on
07/04/2021).

[32] (2021). ‘Ssh (secure shell),’ [Online]. Available: https://www.ssh.com/
academy/ssh (visited on 09/05/2021).

[33] (2021). ‘Static application security testing,’ [Online]. Available: https://
www.synopsys.com/glossary/what-is-sast.html (visited on 09/05/2021).

[34] (2021). ‘Strace system call debugger tool,’ [Online]. Available: https://
linux.die.net/man/1/strace (visited on 02/05/2021).

[35] T. O. Group. (2018). ‘Strings utility,’ [Online]. Available: https://pubs.
opengroup.org/onlinepubs/9699919799/utilities/strings.html (vis-
ited on 02/05/2021).

[36] (2021). ‘About sysdig,’ [Online]. Available: https://sysdig.com/about/
(visited on 08/05/2021).

[37] T. T. Group. (2021). ‘Tcpdump/libpcap public repository,’ [Online]. Avail-
able: https://www.tcpdump.org/index.html#documentation (visited on
20/02/2021).

[38] N. I. of Standards and T. S. P. 800-150. (2016). ‘Threat actor,’ [Online].
Available: https://doi.org/10.6028/NIST.SP.800- 150 (visited on
09/05/2021).

[39] C. Edu. (2020). ‘Threat intelligence defined,’ [Online]. Available: https:
//www.forcepoint.com/cyber-edu/threat-intelligence (visited on
09/05/2021).

[40] tshark. (). ‘Tshark - dump and analyze network traffic,’ [Online]. Available:
https://www.wireshark.org/docs/man-pages/tshark.html (visited on
20/05/2021).

[41] A. Grace. (2020). ‘What is a computer virus?’ [Online]. Available: https:
//us.norton.com/internetsecurity-malware-what-is-a-computer-
virus.html (visited on 23/07/2021).

https://linux.die.net/man/1/readelf
https://linux.die.net/man/1/readelf
https://docs.remnux.org/
https://searchvmware.techtarget.com/definition/VMware-snapshot/
https://searchvmware.techtarget.com/definition/VMware-snapshot/
https://ssdeep-project.github.io/ssdeep/index.html
https://www.ssh.com/academy/ssh
https://www.ssh.com/academy/ssh
https://www.synopsys.com/glossary/what-is-sast.html
https://www.synopsys.com/glossary/what-is-sast.html
https://linux.die.net/man/1/strace
https://linux.die.net/man/1/strace
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/strings.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/strings.html
https://sysdig.com/about/
https://www.tcpdump.org/index.html#documentation
https://doi.org/10.6028/NIST.SP.800-150
https://www.forcepoint.com/cyber-edu/threat-intelligence
https://www.forcepoint.com/cyber-edu/threat-intelligence
https://www.wireshark.org/docs/man-pages/tshark.html
https://us.norton.com/internetsecurity-malware-what-is-a-computer-virus.html
https://us.norton.com/internetsecurity-malware-what-is-a-computer-virus.html
https://us.norton.com/internetsecurity-malware-what-is-a-computer-virus.html

76 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

[42] Virustotal. (). ‘Virustotal - how it works,’ [Online]. Available: https://
support.virustotal.com/hc/en-us/articles/115002126889-How-it-
works (visited on 08/05/2021).

[43] (2016). ‘Controlling vmware virtual machines from the command line with
vmrun,’ [Online]. Available: https://www.virtuatopia.com/index.php?
title=Controlling_VMware_Virtual_Machines_from_the_Command_
Line_with_vmrun (visited on 16/05/2021).

[44] (2019). ‘Vmware,’ [Online]. Available: https://searchvmware.techtarget.
com/definition/VMware (visited on 16/05/2021).

[45] ‘About wireshark,’ [Online]. Available: https://www.wireshark.org/ (vis-
ited on 20/05/2021).

[46] VirusTotal. (2021). ‘Yara - the pattern matching swiss nife for malware
researchers,’ [Online]. Available: https://yara.readthedocs.io/en/
stable/ (visited on 10/03/2021).

[47] C. Cimpanu. (2020). ‘Linux version of ransomexx ransomware discovered,’
[Online]. Available: https://www.zdnet.com/article/linux-version-
of-ransomexx-ransomware-discovered/ (visited on 13/03/2021).

[48] S. Gatlan. (2021). ‘Chinese state hackers target linux systems with new
malware,’ [Online]. Available: https://www.bleepingcomputer.com/
news / security / chinese - state - hackers - target - linux - systems -
with-new-malware/ (visited on 13/03/2021).

[49] F. International, ‘Malware is a massive risk and it’s everyone’s problem!,’
2020-01-30. [Online]. Available: https://linux-audit.com/elf-binaries-
on-linux-understanding-and-analysis/ (visited on 10/03/2021).

[50] ‘What is a trojan? - definition and explanation,’ [Online]. Available: https:
//www.kaspersky.com/resource-center/threats/trojans (visited on
22/04/2021).

[51] D. Rafter, ‘What is a rootkit? and how to stop them,’ [Online]. Available:
https://us.norton.com/internetsecurity- malware- what- is- a-
rootkit-and-how-to-stop-them.html (visited on 22/04/2021).

[52] ‘What is scareware?,’ [Online]. Available: https://www.kaspersky.com/
resource-center/definitions/scareware (visited on 22/04/2021).

[53] ‘What is spyware? and how to remove it,’ [Online]. Available: https://
us.norton.com/internetsecurity-how-to-catch-spyware-before-
it-snags-you (visited on 22/04/2021).

[54] F. Hofmann, ‘Understanding the elf file format?,’ [Online]. Available: https:
//us.norton.com/internetsecurity-malware-what-is-a-computer-
worm.html (visited on 22/04/2021).

[55] M. Sikorski and A. Honig, ‘Practical malware analysis,’ 2012. [Online].
Available: http://venom630.free.fr/pdf/Practical_Malware_Analysis.
pdf (visited on 15/02/2021).

https://support.virustotal.com/hc/en-us/articles/115002126889-How-it-works
https://support.virustotal.com/hc/en-us/articles/115002126889-How-it-works
https://support.virustotal.com/hc/en-us/articles/115002126889-How-it-works
https://www.virtuatopia.com/index.php?title=Controlling_VMware_Virtual_Machines_from_the_Command_Line_with_vmrun
https://www.virtuatopia.com/index.php?title=Controlling_VMware_Virtual_Machines_from_the_Command_Line_with_vmrun
https://www.virtuatopia.com/index.php?title=Controlling_VMware_Virtual_Machines_from_the_Command_Line_with_vmrun
https://searchvmware.techtarget.com/definition/VMware
https://searchvmware.techtarget.com/definition/VMware
https://www.wireshark.org/
https://yara.readthedocs.io/en/stable/
https://yara.readthedocs.io/en/stable/
https://www.zdnet.com/article/linux-version-of-ransomexx-ransomware-discovered/
https://www.zdnet.com/article/linux-version-of-ransomexx-ransomware-discovered/
https://www.bleepingcomputer.com/news/security/chinese-state-hackers-target-linux-systems-with-new-malware/
https://www.bleepingcomputer.com/news/security/chinese-state-hackers-target-linux-systems-with-new-malware/
https://www.bleepingcomputer.com/news/security/chinese-state-hackers-target-linux-systems-with-new-malware/
https://linux-audit.com/elf-binaries-on-linux-understanding-and-analysis/
https://linux-audit.com/elf-binaries-on-linux-understanding-and-analysis/
https://www.kaspersky.com/resource-center/threats/trojans
https://www.kaspersky.com/resource-center/threats/trojans
https://us.norton.com/internetsecurity-malware-what-is-a-rootkit-and-how-to-stop-them.html
https://us.norton.com/internetsecurity-malware-what-is-a-rootkit-and-how-to-stop-them.html
https://www.kaspersky.com/resource-center/definitions/scareware
https://www.kaspersky.com/resource-center/definitions/scareware
https://us.norton.com/internetsecurity-how-to-catch-spyware-before-it-snags-you
https://us.norton.com/internetsecurity-how-to-catch-spyware-before-it-snags-you
https://us.norton.com/internetsecurity-how-to-catch-spyware-before-it-snags-you
https://us.norton.com/internetsecurity-malware-what-is-a-computer-worm.html
https://us.norton.com/internetsecurity-malware-what-is-a-computer-worm.html
https://us.norton.com/internetsecurity-malware-what-is-a-computer-worm.html
http://venom630.free.fr/pdf/Practical_Malware_Analysis.pdf
http://venom630.free.fr/pdf/Practical_Malware_Analysis.pdf

Bibliography 77

[56] F. Hofmann, ‘Understanding the elf file format?,’ [Online]. Available: https:
//linuxhint.com/understanding_elf_file_format (visited on 19/02/2021).

[57] https://refspecs.linuxfoundation.org/, ‘Elf header,’ [Online]. Available: https:
//refspecs.linuxfoundation.org/elf/gabi4+/ch4.eheader.html (vis-
ited on 02/03/2021).

[58] M. Boelent, ‘He 101 of elf files on linux: Understanding and analysis,’ 2019-
05-15. [Online]. Available: https://linux-audit.com/elf-binaries-
on-linux-understanding-and-analysis/ (visited on 21/02/2021).

[59] ‘Unix system v,’ 12.04.2021. [Online]. Available: https://en.wikipedia.
org/w/index.php?title=UNIX_System_V&oldid=1017325059 (visited on
15/03/2021).

[60] S. Microsystems, ‘Cddl header start,’ [Online]. Available: https://opensource.
apple.com/source/dtrace/dtrace-90/sys/elf.h (visited on 15/03/2021).

[61] ‘Executable and linkable format,’ 2020-09-29. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=Executable_and_Linkable_
Format&oldid=1017977721 (visited on 27/03/2021).

[62] H. Arora, ‘Elf virus, part i,’ 2012-01-x. [Online]. Available: https://johnvidler.
co.uk/linux-journal/LJ/213/11185.html (visited on 12/02/2021).

[63] Yobot, ‘Silvio cesare,’ 2021-01-15. [Online]. Available: https://en.wikipedia.
org/w/index.php?title=Silvio_Cesare&oldid=1000477430 (visited on
21/02/2021).

[64] N. Lord, ‘What are memory forensics? a definition of memory forensics),’
2020-09-29. [Online]. Available: https://searchsecurity.techtarget.
com/definition/sandbox (visited on 27/02/2021).

[65] (2021). ‘Virtual machine migration (vm migration),’ [Online]. Available:
https://www.techopedia.com/definition/15033/virtual-machine-
migration-vm-migration (visited on 20/05/2021).

[66] T. Inc. (2021). ‘Obfuscation,’ [Online]. Available: https://www.techopedia.
com/definition/16375/obfuscation (visited on 13/05/2021).

[67] M. K. A. (2015). ‘Limon github repository,’ [Online]. Available: https:
//github.com/monnappa22/Limon (visited on 18/03/2021).

[68] M. K. A. (2015). ‘Automating linux malware analysis using limon sand-
box,’ [Online]. Available: https://www.blackhat.com/eu-15/briefings.
html#automating-linux-malware-analysis-using-limon-sandbox (vis-
ited on 10/05/2021).

[69] T. H. M. Eckert. (2020). ‘Inetsim information page,’ [Online]. Available:
https://www.inetsim.org/about.html (visited on 29/03/2021).

[70] C. P. (2019). ‘System call definition,’ [Online]. Available: https://techterms.
com/definition/system_call (visited on 02/05/2021).

https://linuxhint.com/understanding_elf_file_format
https://linuxhint.com/understanding_elf_file_format
https://refspecs.linuxfoundation.org/elf/gabi4+/ch4.eheader.html
https://refspecs.linuxfoundation.org/elf/gabi4+/ch4.eheader.html
https://linux-audit.com/elf-binaries-on-linux-understanding-and-analysis/
https://linux-audit.com/elf-binaries-on-linux-understanding-and-analysis/
https://en.wikipedia.org/w/index.php?title=UNIX_System_V&oldid=1017325059
https://en.wikipedia.org/w/index.php?title=UNIX_System_V&oldid=1017325059
https://opensource.apple.com/source/dtrace/dtrace-90/sys/elf.h
https://opensource.apple.com/source/dtrace/dtrace-90/sys/elf.h
https://en.wikipedia.org/w/index.php?title=Executable_and_Linkable_Format&oldid=1017977721
https://en.wikipedia.org/w/index.php?title=Executable_and_Linkable_Format&oldid=1017977721
https://en.wikipedia.org/w/index.php?title=Executable_and_Linkable_Format&oldid=1017977721
https://johnvidler.co.uk/linux-journal/LJ/213/11185.html
https://johnvidler.co.uk/linux-journal/LJ/213/11185.html
https://en.wikipedia.org/w/index.php?title=Silvio_Cesare&oldid=1000477430
https://en.wikipedia.org/w/index.php?title=Silvio_Cesare&oldid=1000477430
https://searchsecurity.techtarget.com/definition/sandbox
https://searchsecurity.techtarget.com/definition/sandbox
https://www.techopedia.com/definition/15033/virtual-machine-migration-vm-migration
https://www.techopedia.com/definition/15033/virtual-machine-migration-vm-migration
https://www.techopedia.com/definition/16375/obfuscation
https://www.techopedia.com/definition/16375/obfuscation
https://github.com/monnappa22/Limon
https://github.com/monnappa22/Limon
https://www.blackhat.com/eu-15/briefings.html#automating-linux-malware-analysis-using-limon-sandbox
https://www.blackhat.com/eu-15/briefings.html#automating-linux-malware-analysis-using-limon-sandbox
https://www.inetsim.org/about.html
https://techterms.com/definition/system_call
https://techterms.com/definition/system_call

78 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

[71] (2018). ‘Irma: Incident response & malware analysis,’ [Online]. Available:
https://irma.readthedocs.io/en/latest/ (visited on 15/02/2021).

[72] ‘R2pipe official website,’ [Online]. Available: https://rada.re/n/r2pipe.
html.

[73] Gantt.com. (). ‘What is a gantt chart?’ [Online]. Available: https://www.
gantt.com/ (visited on 05/03/2021).

[74] E. T. Vestad. (2021). ‘Thesis bitbucket repository,’ [Online]. Available: https:
//bitbucket.org/espur/dynamisk-elf-analyse/src/master/.

[75] ‘Skyhigh documentation,’ [Online]. Available: https://www.ntnu.no/
wiki/display/skyhigh (visited on 09/02/2021).

[76] ‘Oracle vm virtualbox,’ [Online]. Available: https://www.virtualbox.
org/ (visited on 09/02/2021).

[77] D. Tucakov. (2019). ‘Installing desktop gui on an ubuntu server,’ [Online].
Available: https://phoenixnap.com/kb/how-to-install-a-gui-on-
ubuntu (visited on 22/02/2021).

[78] ‘Ubuntu 18.04 lts vmware image,’ [Online]. Available: http://www.trendsigma.
net/vmware/ubuntu1804t.html (visited on 09/02/2021).

[79] ‘Yara-rules repository,’ [Online]. Available: https://github.com/Yara-
Rules/rules (visited on 10/03/2021).

[80] ‘Virusshare malware samples,’ [Online]. Available: https://virusshare.
com/ (visited on 06/04/2021).

[81] A. Mechtinger, ‘Elf malware analysis 101: Linux threats no longer an af-
terthought,’ 2020-06-16. [Online]. Available: https://www.intezer.com/
blog/malware-analysis/elf-malware-analysis-101-linux-threats-
no-longer-an-afterthought/ (visited on 24/02/2021).

[82] Rapid7, ‘About post-exploitation,’ [Online]. Available: https://docs.rapid7.
com/metasploit/about-post-exploitation/ (visited on 19/05/2021).

[83] ‘Cobalt strike official website,’ [Online]. Available: https://www.cobaltstrike.
com/.

[84] (2021). ‘Mimikatz official github repository,’ [Online]. Available: https:
//github.com/gentilkiwi/mimikatz/wiki (visited on 19/05/2021).

[85] A. Viescas. (). ‘Linux segmentation faults,’ [Online]. Available: https://
smallbusiness.chron.com/segmentation- fault- linux- 27699.html
(visited on 08/05/2021).

[86] (2010). ‘What is a segmentation fault on linux?’ [Online]. Available: https:
//stackoverflow.com/questions/3200526/what-is-a-segmentation-
fault-on-linux (visited on 08/05/2021).

[87] malware.news. (2020). ‘Elf malware analysis 101 part 2: Initial analysis,’
[Online]. Available: https://malware.news/t/elf-malware-analysis-
101-part-2-initial-analysis/42520 (visited on 14/05/2021).

https://irma.readthedocs.io/en/latest/
https://rada.re/n/r2pipe.html
https://rada.re/n/r2pipe.html
https://www.gantt.com/
https://www.gantt.com/
https://bitbucket.org/espur/dynamisk-elf-analyse/src/master/
https://bitbucket.org/espur/dynamisk-elf-analyse/src/master/
https://www.ntnu.no/wiki/display/skyhigh
https://www.ntnu.no/wiki/display/skyhigh
https://www.virtualbox.org/
https://www.virtualbox.org/
https://phoenixnap.com/kb/how-to-install-a-gui-on-ubuntu
https://phoenixnap.com/kb/how-to-install-a-gui-on-ubuntu
http://www.trendsigma.net/vmware/ubuntu1804t.html
http://www.trendsigma.net/vmware/ubuntu1804t.html
https://github.com/Yara-Rules/rules
https://github.com/Yara-Rules/rules
https://virusshare.com/
https://virusshare.com/
https://www.intezer.com/blog/malware-analysis/elf-malware-analysis-101-linux-threats-no-longer-an-afterthought/
https://www.intezer.com/blog/malware-analysis/elf-malware-analysis-101-linux-threats-no-longer-an-afterthought/
https://www.intezer.com/blog/malware-analysis/elf-malware-analysis-101-linux-threats-no-longer-an-afterthought/
https://docs.rapid7.com/metasploit/about-post-exploitation/
https://docs.rapid7.com/metasploit/about-post-exploitation/
https://www.cobaltstrike.com/
https://www.cobaltstrike.com/
https://github.com/gentilkiwi/mimikatz/wiki
https://github.com/gentilkiwi/mimikatz/wiki
https://smallbusiness.chron.com/segmentation-fault-linux-27699.html
https://smallbusiness.chron.com/segmentation-fault-linux-27699.html
https://stackoverflow.com/questions/3200526/what-is-a-segmentation-fault-on-linux
https://stackoverflow.com/questions/3200526/what-is-a-segmentation-fault-on-linux
https://stackoverflow.com/questions/3200526/what-is-a-segmentation-fault-on-linux
https://malware.news/t/elf-malware-analysis-101-part-2-initial-analysis/42520
https://malware.news/t/elf-malware-analysis-101-part-2-initial-analysis/42520

Bibliography 79

[88] (2019). ‘Crontab in linux with examples,’ [Online]. Available: https://
www.geeksforgeeks.org/crontab-in-linux-with-examples/ (visited
on 08/05/2021).

[89] ‘Die - detect it easy,’ [Online]. Available: https://horsicq.github.io/.

[90] (2021). ‘Die engine repository,’ [Online]. Available: https://github.com/
horsicq/DIE-engine/releases.

[91] ‘Radare2 official website,’ [Online]. Available: https://rada.re/n/radare2.
html.

[92] ‘The tor project,’ [Online]. Available: https://www.torproject.org/.

https://www.geeksforgeeks.org/crontab-in-linux-with-examples/
https://www.geeksforgeeks.org/crontab-in-linux-with-examples/
https://horsicq.github.io/
https://github.com/horsicq/DIE-engine/releases
https://github.com/horsicq/DIE-engine/releases
https://rada.re/n/radare2.html
https://rada.re/n/radare2.html
https://www.torproject.org/

Appendix A

Project plan

81

Department of Information Security and Communication Technology
DCSG2900 - Bachelor i digital infrastruktur og cybersikkerhet

Automatisert dynamisk analyse av
ELF-filer

Skrevet av:
Abdulfatah Abdi-Salah

Espen Taftø Vestad
Amar Licina

Dato: Februar 1, 2021

Innhold

Liste av figurer ii

Liste av tabeller ii

1 Informasjon 1

2 Innledning 1

2.1 Bakgrunn og orientering . 1

2.2 Effektm̊al . 1

2.3 Resultatm̊al . 2

3 Omfang 2

3.1 Fagomer̊ade . 2

3.2 Oppgavebeskrivelse . 2

3.3 Problemstilling . 2

3.4 Avgrensning . 2

4 Prosjektorganisering 3

4.1 Ansvar og roller . 3

4.2 Rammer . 4

4.2.1 Tidsforløp: . 4

4.2.2 Rutiner: . 4

4.2.3 Spr̊ak: . 4

4.2.4 Verktøy for system og utvikling: . 4

4.2.5 Andre verktøy for gjennomføring: . 4

4.2.6 Økonomi: . 4

4.2.7 Levering: . 4

4.3 Grupperegler og rutiner . 5

5 Planlegging, oppfølging og rapportering 5

5.1 Hovedinndeling og utviklingsmodell . 5

5.2 Plan for statusmøter . 6

6 Organisering av kvalitetssikring 6

6.1 Dokumentasjon, standardbruk og konfigurasjonsstyring 6

7 Plan for gjennomføring 7

i

7.1 Risikoanalyse . 7

8 Gjennomføring 9

8.1 Milepæler (Milestones) . 9

8.2 Hovedaktiviteter . 9

Bibliography 10

Appendix 11

Liste av figurer

1 Matrise for risikokalkulering. 7

2 Gantt-skjema (Gantt chart) . 11

3 Timeliste . 12

Liste av tabeller

1 Risikoanalyse . 8

2 Milepæler . 9

ii

1 Informasjon

Title:
Dynamic analysis of ELF-filer

Gitt dato:
11. Januar 2021
Innleveringsdato
20. mai 2021

Gruppedeltakere

Abdulfatah Abdi-Salah
abdulfaa@stud.ntnu.no

Amar Licina
amarl@stud.ntnu.no

Espen Taftø Vestad
espenves@stud.ntnu.no

Veileder:

Ernst Gunnar Gran
ernst.g.gran@ntnu.no

Oppdragsgiver:

NTNU

Kontaktperson hos oppdragsgiver:

Lasse Øverlier
lasse.overlier@ntnu.no

2 Innledning

2.1 Bakgrunn og orientering

Dynamisk analyse av skadevare er spesielt aktuelt n̊a om dagen, da trusselaktører gjerne benytter
mer avanserte metoder for å utvikle skadevare. Obfuskering, varierende oppførsel under kjøring
og sletting av spor begrenser nyttigheten vi f̊ar av statiske analyser. Dynamisk-skadevare analyse
er en tidkrevende prosess som krever gode forkunnskaper med disassembly av programvare og
kjennskap til potensielle trussel-indikatorer under eksekvering. Automatisering av slike analyser
kan bidra til å effektivisere denne prosessen. Det finnes allerede flere tilgjengelige systemer som
tilbyr dynamisk-skadevare analyse for ulike filtyper.

Det finnes derimot lite informasjon rundt automatisering av Skadevare-analyse for ELF-filer, ELF
st̊ar for for Executable and Linking Format ”ELF files on Linux” n.d. Skadevare for Linux systemer
(blant annet løspengevirus), har ogs̊a økt i relevans den siste tiden. P̊a bakgrunn av dette, har vi
f̊att i oppgave av Lasse Øverlier ved NTNU i Gjøvik å utvikle en løsning som utfører automatisert
dynamisk analyse av ELF-binærfiler i et trygt miljø. Løsningen skal komme frem til en metode for
å analysere ELF-binærfiler, slik at det blir enklere å kartlegge om filer av denne typen er legitime
eller skadelige.

2.2 Effektm̊al

Effektm̊al skal være en langsiktig virkning for virksomheten, ogs̊a potensielt ønsket endring fra
dagens situasjon. Gjerne ogs̊a utrykket i form av verdiskapning eller gevinst. ”Lindeman” ”Alt
om effektm̊al i prosjekt: Definisjon og eksempler” ”2018-09-20”

• Effektivisere analysering av ELF-filer for sikkerhetsanalytikere.

• Utvikle metodikk og konsept som p̊a sikt kan gi sikkerhetsanalytikere en pekepinn p̊a om
aktuelle ELF-fil det gjelder inneholder skadevare.

1

2.3 Resultatm̊al

Resultatm̊al er knyttet til løsning av v̊art prosjekt, og hva det skal frembringe innenfor v̊ar pros-
jektperiode. ”Lindeman” ”Alt om effektm̊al i prosjekt: Definisjon og eksempler” ”2018-09-20”

• Forst̊a hvordan ELF-filer fungerer og hvordan deres headere er bygd opp.

• Uthente informasjon om hva ELF-filen foretar seg under eksekvering.

• Implementere en automatisert metode for dynamisk analyse av ELF-filer.

• Utforske hvilke sandkasse-teknologier som kan benyttes for dynamisk ELF-analyse og hvordan
dette kan utføres i et trygt miljø.

• Drøfte nyttige parametre i dynamisk ELF-analyse for klassifisering av ELF-skadevare.

3 Omfang

3.1 Fagomer̊ade

Oppgavens fagomr̊ade ligger innenfor informasjonssikkerhet i programvare. Løsningen vil i stor
grad omhandle omr̊ader som reverse engineering, scripting, tekniske ELF-spesifikasjoner og in-
dikatorer.

3.2 Oppgavebeskrivelse

Oppgaven vil utforske hvordan man kan gjennomføre dynamisk analyse av Linux-binærfiler (ELF-
filer) i et trygt sandkasse-miljø. Det skal utvikles et miljø som tar i bruk en eller flere metoder
for å utføre dynamisk analyse og f̊a nyttig output p̊a hva binærfilen foretar seg under eksekvering.
Metodene som brukes kan være nye, eksisterende, kommersielle eller egenutvikledet. Hensikten er
å gi analytikeren en indikasjon p̊a om ELF-filen det gjelder kan være ondsinnet.

3.3 Problemstilling

Basert p̊a oppgavebeskrivelsen fra oppdragsgiver og gruppens planlegging av prosjektarbeidet, har
vi kommet frem til følgende problemstilling:

Målet med prosjektet er å etablere et sikkert analysemiljø som p̊a en automatisert m̊ate kan
analysere ELF-filer dynamisk. Løsningen skal gjennomføre en eller flere metoder for dette, og gi
relevant output for hva ELF-filen foretar seg under eksekvering. Gruppen skal ogs̊a utforske hvilke
parametre som kan være nyttig i identifisering av ELF-malware.

3.4 Avgrensning

• Metodene som brukes i analyseringen kan være b̊ade nye, eldre og egenutviklede metoder.

• Dersom gruppen finner kommersielt tilgjengelige metoder, kan funksjonaliteten til disse be-
skrives fremfor å implementeres i miljøet.

• Det er krav om at løsningen skal gi følgende output om den analyserte filen: bibliotekskall,
nettverksaksess, diskaksess, og logging av kode som kjøres. Gruppen st̊ar fritt til å imple-
mentere funksjonalitet som gir output av andre nyttige parametere hvis tid, men disse kan
ogs̊a drøftes i prosjektet fremfor å implementeres i miljøet.

2

• Prosjektet har hovedfokus p̊a dynamiske analysemetoder, ikke statiske. Noen statiske out-
puter kan likevel være aktuelle.

• Løsningen vil kun fokusere p̊a filtyper som kan klassifiseres som ELF-filer (Executable Link-
able Fileformat). Vi vil ikke fokusere p̊a andre typer binærfiler, som f.eks .exe. Dersom det
mot all formodning viser seg at utviklingen av analysemiljøet for ELF-filer blir for komplekst
og ugjennomførbart, kan prosjektet flytte hovedfokus mot MacOSX- eller Android-binærfiler
i stedet. Dette kan ogs̊a være aktuelt dersom gruppen f̊ar tid til overs.

• Løsningen skal ikke klassifisere om programvaren/filen(e) som analyseres er malware eller
ikke. Brukeren skal kun f̊a informasjon om hva binærfilen foretar seg, slik at han/hun f̊ar en
indikasjon p̊a om programvaren er skadelig eller ei. Visuelle metoder i analyseringsresultatet
som grafer, farger, tall-score og entropy kan benyttes for å gi brukeren en indikasjon p̊a dette.
Funksjonalitet er hovedfokus og trumfer visualisering, og visualisering forutsetter derfor at
vi f̊ar tid til dette.

4 Prosjektorganisering

4.1 Ansvar og roller

Gruppen har tatt en felles diskusjon p̊a hvilke roller som kan være hensiktsmessige for prosjekt-
perioden. Vi har dermed kommet frem til at følgende roller skal tildeles gruppemedlemmene for
prosjektperioden:

• Gruppeleder: Fungerer som et ledd som kan fastsl̊a en avgjørelse dersom det er uenigheter
innad i gruppen som ikke kan løses ved en flertallsavgjørelse. Gruppeleder har ikke noe annet
spesifikt hovedansvar utover dette, og gruppemedlemmene er selv ansvarlige for at arbeid blir
utført.

• Nestgruppeleder: Fungerer som et ledd som kan ta over rollen som leder dersom noe skulle
oppst̊a med Gruppeleder.

• Kontaktperson: Fungerer som et primært kontaktledd mot oppdragsgiver. Dette betyr
ikke at andre gruppemedlemmer ikke kan kontakte oppdragsgiver.

• Timefører: Ansvarlig for føring av arbeidstimer i eget timeføringsark. Hvert gruppemedlem
er selv ansvarlig for å rapportene inn sin timesbruk i Discord, slik at timefører kan sl̊a disse
sammen i timesarket.

• Sekretær: Ansvarlig for å ta notater/referat fra møter med veileder og oppdragsgiver. Not-
atene skal deles med resten av gruppen i intern Discord. I tillegg har sekretær ansvar for å
sende møtereferat til veileder etter hvert ukentlige veiledermøte.

• Fasilitator: Fungerer som en lenke som vil hjelpe gruppen til å samarbeide bedre ved å
hjelpe gruppene med arbeidsflyt og arbeidsdynamikk for å n̊a gruppens m̊al. Fasilitatoren vil
observere gruppen n̊ar de arbeider, under møter eller diskusjoner. Fasilitatoren vil gi nøytral
observasjon for gruppen å diskutere. Vanligvis skal ikke fasilitator være med p̊a gruppe
arbeid, men ettersom mye av arbeidet kommer til å være virtuelt p̊a grunn av COVID-19,
s̊a er det greit å ha denne rollen da vi kan ha en god gruppe dynamik og arbeidsflyt.

Vi har valgt å tildele følgende roller til følgende gruppemedlemmer:

• Gruppeleder, kontaktpunkt og timefører: Espen Taftø Vestad

• Sekretær: Abdifatah Abdi-Salah

• Sekretær og Nestgruppeleder: Amar Licina

3

To gruppemedlemmer har begge f̊att sekretærrollen. Dette er for å ha kvalitetssikring av møtereferatene,
slik at eventuell viktig info ikke forsvinner. Sekretærene sammensl̊ar sine referater etter møtene
før de sendes videre og postes i interne ressurser.

4.2 Rammer

4.2.1 Tidsforløp:

Tidsforløpet for prosjektperioden er definert i detalj i Gantt-skjemaet nedenfor (Figur 2). Vi vil
ogs̊a definere frister som er viktige å overholde under “milepæler” nedenfor.

4.2.2 Rutiner:

Da alle gruppemedlemmene jobber ved siden av universitetet (derav noen jobber turnus), vil vi ikke
kunne opprettholde faste møtetider hver uke. En felles kalenderløsning vil benyttes for å samkjøre
felles møtetider og arbeidsseanser. N̊ar det gjelder gjørem̊al og progresjon, vil vi fortløpende sette
ukentlige m̊al iht valgt utviklingsmodell som m̊a overholdes av gruppen. Grunnet situasjonen med
pandemien, vil møter ta sted b̊ade fysisk og virtuelt p̊a Discord. Møte med veileder vil opprinnelig
ta sted hver torsdag kl 09:00, men kan sløyfes eller flyttes ved behov. Møte med oppdragsgiver vil
skje etter behov. Foreløpig vil det ikke stiftes faste møtetidspunkt med oppdragsgiver, men dette
kan endre seg underveis.

4.2.3 Spr̊ak:

Forprosjektet skrives p̊a norsk, mens selve hovedprosjektet skal skrives p̊a engelsk.

4.2.4 Verktøy for system og utvikling:

Filtypene som skal analyseres er “Linux binærfiler”, alts̊a ELF-filer. Det vil derfor være naturlig
at eksekvering av filen det gjelder skjer i et Linux-miljø. Det er ikke satt noen spesifikke krav
til system eller programmeringsspr̊ak for å utvikle løsningen. I utgangspunktet, vil vi benytte
plattformen Cuckoo ”Cuckoo Sandbox Book” ”2020” som sandkasse. Det er ogs̊a mulig at andre
sandkasser blir benyttet underveis.

4.2.5 Andre verktøy for gjennomføring:

Vi benytter Latex i Overleaf n̊ar rapporten skrives, og Microsoft teams for å kommunisere med opp-
dragsgiver og veileder. Google calendar vil brukes som kalenderløsning. For intern kommunikasjon
og fildeling, vil gruppen benytte Discord.

4.2.6 Økonomi:

Foreløpig ser det ut til at vi ikke kommer til å støte p̊a utgifter eller har spesielle behov for
økonomisk støtte. Vi vil understreke at dersom komersielle behov er den eneste utveien, vil dette
forskes p̊a og drøftes, men ikke utvikles/implementeres.

4.2.7 Levering:

Levering av bachelor rapporten vil skje i NTNUs digitale eksamenssystem innen 20.05.2021 i form
av PDF. Alle vedlegg etc. skal ogs̊a leveres her.

4

4.3 Grupperegler og rutiner

Dette er reglene for hvordan bachelor-gruppen planlegger å jobbe. Disse reglene har gruppen avtalt
å følge gjennom arbeidsprosessen.

• Alle gruppemedlemmer skal jobbe sammen p̊a møter, og gruppen skal gjennomg̊a arbeidet
ukentlig (mer under ”Planlegging, oppfølging og rapportering”).

• Dersom et gruppemedlem ikke kan møte opp til et planlagt møte m̊a det si ifra til gruppen
senest 24 timer før møte.

• Hvis et gruppemedlem ikke kan gjennomføre en oppgave i tide m̊a det informere gruppen om
dette i god tid.

• Hvis et gruppemedlem ikke fullfører en tildelt ukesoppgave i løpet av uken m̊a gruppemed-
lemmet fullføre oppgaven den p̊afølgende uken parallellt med oppgavene for den kommende
uken. Det forventes ogs̊a at gruppemedlemmet investerer dobbel mengde arbeidstid denne
uken.

• Hvis et gruppemedlem ikke møter opp til det ukentlige møte, kan han eller hun f̊a deligert
ukesoppgaver fra resten av gruppen. Det er ikke snakk om å deligere noe ekstra p̊a grunn
av manglende oppmøte, men medlemmet det gjelder mister sjansen til å kunne ”prioritere”
oppgavevalg selv.

• Gruppemedlemmene m̊a føre opp de timene de jobber med prosjektet etter hver endt arbeidsøkt.
Dette føres s̊a inn i timelisten for total arbeidsmengde. Timelisten vil beskrive antall arbeidstimer
per person, og holde oversikt over arbeidsmengden som b̊ade gruppen og medlemmene indi-
viduelt har lagt ned. Et utdrag av timelisten s̊a langt ligger som vedlegg, figur 3.

• Ved uenigheter skal gruppen løse det med en flertallsavgjørelse.

• Gruppemedlemmene skal bruke ”Check-in”-chatten i gruppens Discord p̊a starten av hver
arbeidsøkt. Dette gjøres for å holde oversikt over hva gruppemedlemmene skal jobbe med
under denne økten, og hva som ble jobbet med sist.

• Forventet arbeidsmengde for bachelorprosjektet er 570-670 timer totalt per student. Tidsforløpet
tar sted over ca. 20 uker, og det er derfor forventet at hvert gruppemedlem nedlegger min-
imum 30 timers arbeid hver uke.

5 Planlegging, oppfølging og rapportering

5.1 Hovedinndeling og utviklingsmodell

Vi har valgt å bruke Kanban som v̊ar utviklingsmodell under prosjektet, kombinert med et Gantt
diagram for oversikt over tidsforløpet ”Gantt and Kanban: a killer combination product develop-
ment” 2020. Kanban vil hjelpe oss å dele et stort prosjekt inn i sm̊a overkommelige deler slik
at gruppen kan prioritere hvilke oppgaver de vil ta p̊a seg. Denne metoden hjelper oss å unng̊a
store oppgaver som er vanskelig å fullføre, ved å splitte dem opp i mindre deler som en enkelt
gruppemedlem kan fullføre p̊a egenh̊and.

Gantt-skjema, figur 3 vil hjelpe gruppen å overholde en langsiktig oversikt over hva som burde
fullføres til hvilken tid. Dette gir gruppen en ramme p̊a n̊ar ulike deler av prosjektet bør være

5

fullført. Planen gir gruppen en kronologisk rekkefølge p̊a hva som burde fullføres til hvilken tid,
slik at vi oppn̊ar m̊alene vi har satt. Noen prosjektfaser kan ogs̊a jobbes med parallelt. ”Gantt
and Kanban: a killer combination product development” 2020

Kanban delen gjør slikt at alle i gruppen kan se hva som trengs å gjøres (“to do”), progresjon
(progress) og hva som er fullført (“done”). I v̊art tilfelle benytter vi Trello som Kanban board.
Kanban boardet vil best̊a av følgende felter: “To do”, “In progress”, “testing”, “review”, “done”.
Oppgavene ligger opprinnelig i backlogen “To do”, og frem til andre felter ut i fra oppgavens
progresjon. N̊ar en oppgave er fullført flyttes den til “Review” delen. Her gjennomg̊ar gruppen
oppgaven for å vurdere hvorvidt den er fullført. Etter at gruppen har sett over oppgaven, flyttes
den til “Done” dersom den vurderes som ferdigstilt, eller tilbake til “In progress og testing” dersom
den krever endringer. Amanda ”How to Mix Kanban Gantt Project Management”

5.2 Plan for statusmøter

Vi har besluttet å arrangere to faste statusmøter i uken internt i gruppen, i tillegg til at vi har fast
møte med veileder 1 gang i uka:

• Søndag kl 09:00 - 11:00 (Internt ukesmøte)

• Torsdag kl 09:00 - 10: 00 (Møte med veileder)

• Torsdag kl 10:00 - 11:00 (Statusmøte)

Søndagsmøtene er besluttet å være et møte som definerer oppgaveprioriteringer for den kommende
uken i henhold til kanban boardet. Torsdager er det først statusmøte med veileder, etterfulgt av
et kort internt statusmøte i gruppen. I sistnevnte vil vi g̊a gjennom status for ukas oppgaver for å
estimere hvordan vi ligger an for ukas m̊al. Dette er ogs̊a en mulighet for å gjennomg̊a feedback
fra veileder.

Møter med oppdragsgiver tas etter behov, men ikke for sjeldent. Vi har fortløpende kommunikasjon
med oppdragsgiver p̊a teams, og har blitt enige i at avtaler kan opprettes n̊ar en eller begge av
partene ser at dette er hensiktsmessig.

6 Organisering av kvalitetssikring

6.1 Dokumentasjon, standardbruk og konfigurasjonsstyring

Overleaf tilknyttet v̊are NTNU-kontoer vil bli benyttet til å skrive bacheloroppgaven. Oppgaven
skal skrives i Latex, og NTNU’s bacheloroppgavemal skal benyttes.

Vi planlegger å bruke et git repository for kildekoden. Commit-meldinger skal være tydelige
og presise i henhold til endringer som har blitt gjort. All ulik funksjonalitet skal utvikles i egen
branch, og merges ikke med master branch før den er fullført. Ingen skal pushe kildekode direkte til
master branch. Dokumentasjon og krav for kode og scripts legges til i readme-filen. Git-løsningen
vi planlegger å benytte er Bitbucket, da NTNU har avtaleløsninger med dem. Bitbucket vil hjelpe
oss å opprettholde prinsippene av CIA-trekanten. Walkowski” n.d.

Vi benytter Skyhigh openstack. Dette er en multi-tenant virtualiseringsplattform der enhver
NTNU-student kan f̊a tilgang til virtualisering ressurser. I v̊art tilfelle har vi f̊att allokert:

• 16 instances

• 16 CPU’er

• 32GB RAM

6

• 10(50GB)Volumes

Basert p̊a research vi har gjort p̊a forh̊and, vil vi sannsynligvis benytte Python3 og Bash for
å utvikle løsningen. Dette kan endre seg underveis i prosjektperioden. I utgangspunktet, vil vi
benytte plattformen Cuckoo som sandkasse. Det er ogs̊a mulig at andre sanbox miljøer blir benyttet
underveis.

Discord vil bli benyttet til fil- og informasjonsdeling internt i gruppen. Her vil det ogs̊a være en
”check-in”-chat som skal benyttes p̊a starten av hver arbeidsøkt (ref. ”grupperegler og rutiner”).
Under en check-in, skal gruppemedlemmene poste følgende info:

1. Hva gjorde du sist gang du jobbet?
2. Hva gjør du i dag?
3. Andre ting som er nyttige å vite.

Dette gjøres for å opprettholde loggføring av arbeidsøkter, og for å holde oversikt over hva som
jobbes p̊a fra dag til dag.

Microsoft Teams benyttes for å opprettholde kontakt med veileder og oppdragsgiver. Google
Calendar bentytes som felles kalenderløsning for gruppemedlemmene for å holde orden p̊a ledige
dager. I tillegg vil gruppen benytte Google Sheets for timesføring.

7 Plan for gjennomføring

Vi benytter Gantt-skjema som man kan se p̊a figur 3 for å holde oversikt over hvilke faser prosjektet
er inndelt i. Slik f̊ar vi en langsiktig oversikt over n̊ar ulike faser av prosjektperioden bør være
ferdigstilte. Diagrammet vil ogs̊a hjelpe oss med å holde en kontinuerlig arbeidsflyt.

7.1 Risikoanalyse

Under er en tabell for v̊are identifiserte risikoer, samt risikoniv̊a før og etter eventuelle tiltak.
Risikoene er tilknyttet gruppens fullføring av bachelorprosjektet, og kan best̊a av følgende kategor-
ier:

• T: Teknologiske

• F: Forretningsmessige

• G: Gruppemessige

For å kalkulere risikoniv̊a (sannsynlighet x konsekvens) for de identifiserte risikoene, har vi brukt
følgende mal for risikokalkulering: som man kan se p̊a figur 1

Figur. 1: Matrise for risikokalkulering.

7

Risiko Beskrivelse Tidligere
matrise

Tiltak Ny
matrise

Sykdomsfravær
(G)

Et gruppemedlem blir ut-
satt for sykdom og blir
fraværende i en kort peri-
ode, noe som kan føre til
at ukentlige m̊al ikke blir
n̊add innen ukens slutt.

2:4 Gruppen omprioriterer
og omfordeler oppgaver
p̊a en hensiktsmessig
m̊ate under sykdoms-
fraværet. Gruppemed-
lemmet som rammes av
sykdom kan fortsatt ha
noen arbeidsoppgaver
dersom det er gjen-
nomførbart, eller ta igjen
noe arbeid n̊ar sykdom
opphever.

2:3

COVID-19
(G)

Et eller flere gruppemed-
lemmer blir smittet av
COVID-19 og blir utsatt
for et lengre sykdoms-
fravær.

1:5 Gruppen kontakter uni-
versitet og informerer om
forholdet. Oppgaver
omprioriteres og omfor-
deles p̊a lik linje med van-
lig sykdomsfravær, men
med lavere terskel der-
som sykdomsforløpet er
illebefinnende. Grup-
pen bør begrense fysisk
kontakt med for mange
eksterne personer for å
unng̊a spredning.

1:4

Høy opp-
gavekom-
pleksitet
(F)

Kompleksiteten p̊a opp-
gaven er for høy i henhold
til tidsfristen og truer
kvaliteten p̊a det ferdige
produktet.

2:3 Innsnevre scopet p̊a op-
pgaven og prioritere kun
de viktigste gjørem̊alene.
Eventuelt resterende
gjørem̊al kan drøftes i
rapporten.

1:2

Eksterne livs-
situasjoner
(G)

Et gruppemedlem opp-
lever en vanskelig familie-
eller livssituasjon (f.eks
samlivsbrudd, død o.l.)
og har behov for permit-
tering.

2:5 Kontakte veileder /
emneansvarlige / uni-
versitetet for å finne
en løsning ut i fra det
enkelte tilfellet.

2:4

Usikret sand-
box (T)

Et miljø som ikke er
skikkelig sikret kan
for̊arsake skade p̊a kon-
fidensialitet, integritet
eller tilgjengelighet
p̊a v̊are egne fysiske
systemer.

3:5 Bruke dokumentasjon og
best praksis til enhver tid
hvor det foreg̊ar kjøring
av faktisk malware.
Blokkere nettverksaksess
og benytte snapshots i
analysemiljøer.

2:4

Mangel p̊a
eksisterende
teknologi (T)

Det finnes allerede lite
cutting-edge teknologi p̊a
problemet vi skal løse,
som skaper faglige og
tekniske utfordringer for
fullføring.

3:3 Finne alternative tekno-
logiløsninger som kan
brukes eller improviseres.
Eventuelt utvikle egne
verktøy dersom dette er
utførbart.

3:2

Admin per-
missions p̊a
Discord (G)

Et eller flere gruppemed-
lemmer kan slette viktig
info ved uhell eller av
ondsinnede intensjoner,
da det er mulig å slette
andre sine meldinger.

1:3 Bruke loggføring p̊a an-
dre steder, eller gjen-
nomg̊a muntlig slik at
slike meldinger er hus-
ket. Det lagres ogs̊a p̊a
en ekstern harddisk som
backup dersom noe skulle
oppst̊a med Discord.

1:1

Tabell. 1: Risikoanalyse

8

8 Gjennomføring

8.1 Milepæler (Milestones)

Under er en liste med milepæler som vi skal oppn̊a med ulike frister. Dette er viktig slik at vi jobber
mot konkrete m̊al og frister. Dette er bare de overordnede og viktigste fristene. Mer detaljerte
frister er å finne i fremdriftsplanen/Gantt skjemaet.

Milepæl Frist / Dato
Innlevering forprosjektrapport 31.januar
Implementasjon av analyseverktøy 06. mars
Løsning ferdig utviklet og fungerende, rapporten røfflig ferdig og klar til gjen-
nomgang fra veileder.

10. april

Innlevering av bachelor rapporten 20. mai
Presentasjon av bacheloroppgaven Uke 22

Tabell. 2: Milepæler

8.2 Hovedaktiviteter

Hovedaktivitetene er til for å definere klare oppgaverammer for å kvalitetssikre den ferdigstilte
oppgaven. Aktivitetene er viktige for å sikre riktige beslutninger og vurderinger i henhold til
oppgaven. Det er i utgangspunktet ønskelig at aktivitetene gjøres gruppemessig. P̊a den m̊aten
kommer alle meninger frem, som bidrar til ytterligere kvalitetssikring av oppgaven.

1. Estimere behov, trusselbilde, problemomr̊ade og bakgrunn.
For at hele gruppen skal forst̊a oppgavebeskrivelsen, oppgavens bakgrunn, og videre arbeidsflyt, er
det viktig å definere behovet som oppgaven utlyser. Her er det viktig å stille kritiske spørsm̊al til
oss selv. Hva er problemomr̊ade og hvem kan vi løse dette for? I tillegg er det viktig å se p̊a andre
relevante faktorer for oppgaven, som trusselbildet i det digitale rom.

2. Definere scope, rammer, grupperegler.
N̊ar gruppen har oppn̊add felles forst̊aelse for gruppen, defineres oppgavens scope, avgrensninger,
regler og rammer. Dette for å forsikre tydelighet i oppgavens omfang gjennom prosjektperioden.

3. Utforske ulike løsninger, konsept og teknologier som kan løse eller bidra positivt
til problemstillingen.
Etter etablering av rammer og omfang, er det klart for å forske videre p̊a hvilke løsninger, konsept
og teknologier som kan være relevante for gjennomføring. Dette for å finne ting å forholde oss til
p̊a forh̊and av utviklingen.

4. Videreutvikle relevante konsept, løsninger og teknologier.
Videreutvikling av v̊are funn i forrige punkt for å finne svar p̊a problemstillingen. Utvikling vil
skje innenfor rammer og omfang tidligere definert.

5. Avslutte utvikling, drøfte resultater og besvare problemet.
Utviklingen avsluttes og resultatene fra fasen drøftes. Dette for å forsørge kvalitetssikring av v̊are
funn og hva de bidrar til.

6. Resultatevaluering og presentasjon.
V̊are funn og resultater vurderes og blir klargjort for presentering.

9

Bibliography

”Cuckoo Sandbox Book” (”2020”). url: https://cuckoo.sh/docs/ (visited on 9th May 2021).
”ELF files on Linux”, ”The 101 of (n.d.). ”Michael Boelen”. url: https://linux- audit.com/elf-

binaries-on-linux-understanding-and-analysis/.
”Gantt and Kanban: a killer combination product development” (2020). url: https://medium.com/

@playbookhq/gantt-and-kanban-a-killer-combination-product-development-75c650a301d4 (visited
on 21st Jan. 2020).

”Lindeman”, ”Kristine (”Alt om effektm̊al i prosjekt: Definisjon og eksempler” ”2018-09-20”). url:
https://www.prosjektbloggen.no/alt-om-effektmal-i-prosjekt-definisjon-og-eksempler.

Amanda (”How to Mix Kanban Gantt Project Management”). 2020. url: https://www.ganttic.
com/blog/kanban-gantt-project-management (visited on 9th May 2021).

Walkowski”, ”Debbie (n.d.). ”What Is the CIA Triad?” url: https://www.f5.com/labs/articles/
education/what-is-the-cia-triad.

10

Appendix

Figur. 2: Gantt-skjema (Gantt chart)
11

Figur. 3: Timeliste

12

Appendix B

Project agreement

97

Chapter B: Project agreement 99

100 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

Chapter B: Project agreement 101

Appendix C

Meeting schedule

103

Møte 07.01.2020:
- Ernst skal veilede indirekte, ikke si direkte hva vi skal gjøre. VI er

prosjektledere
- Ha viktige roller i grupper, ta det seriøst og dette skal nevnes i rapporten

seriøs kontrakt
- Kontakte lasse om 1 side oppgave fordi det eneste vi har er tittelen (send kopi

til Ernst)
- (prøv å bli så mye som ferdig før påsken, da kan ernst se igjennom iløpet av

ferien) Inkluder alt som er verdt å nevne i prosjektet.

Møte 09.01.2020:
Forslag til endringer i oppgavebeskrivelse

- Forutsetninger
- Sette et scope
- Liste med krav/målsetninger/forventninger
- Hva er konkret fokus på oppgaven?
- Hvor åpent er det med fritt bruk av forskjellig verktøy/språk osv
- Litt mer tydeligere/punktvis hva mål, forventing, krav osv er. Ser litt ut som et

utkast atm

Første møte med Lasse 11.01.2020:
Hva går oppgaven ut på/hva forventes/hva skal vi gjøre:

- Implementere automatiserte metoder for dynamisk malware analyse av
ELF-filer (Linux Executables) i sandbox aka trygt miljø.

- Logging av kildekoden kan være aktuelt
- Finne metoder som kan antyde malware i dynamisk kjøring. Vi skal altså

implementere metodikk som antyder malware, ikke som nødvendigvis
IDENTIFISERER malware.

- Bruk av sandbox teknologi (Cuckoo?)
- Prøve å få ut info om det nevnte (nettverk aksess, funksjonskall api-all etc) for

logging av koden er målet for oppgaven.
- Få opp sandbox for trygg kjøring og uthenting
- MacOS/Android på langsiktig basis hvis man får tid eller dersom

hovedoppgaven skulle «gå galt».
- Drøfting av andre nyttige/hjelpsomme/viktige metoder (som ikke nødvendigvis

trengs å implementeres av oss) er også relevant.

Møte 14.01.2021:
- Overblikk over oppgaveteksten og hvorvidt denne var utfyllende nok.
- Prat rundt hva som skal leveres i før-perioden 1 feb.
- Prat angående tilganger til SkyHigh. Ble enige om å kontakte Lars Erik

angående dette (Detaljer på https://www.ntnu.no/wiki/display/skyhigh/).

Møte 21.01.2021:
- Poenget med intruduksjonen, for frem contexten altså problemstillingen.
- En setning eller to om man skal ha avgrensninger, Relatert til tidsaspektet.

Man kan ikke velge alt.
- Litt viktig: Den problemstilling definerer prosjektet, og det hvis vi endrer

problemstillingen så har vi endret prosjektet.
- Entydig problemstilling: Ikke gi en problemstilling som peker alle veier mer vi

ute etter. Hva er det vi egentlig ser etter? Vi skal finne ut en måte / en
betydning. Bruk tid på problemstillingen.

- Konfigurasjonssystemet: Administrere dokumentet, hvilket verktøy som skal
brukes, Ernst er usikker i hva som legges i det her, og spør om vi ser på
andre rapporter hva de har skrevet. Det er ikke noe fasit på hvordan dette
skal se ut: Ernst mener "CVS eller GIT" om han skulle tenke spontant.

- Hvilke planning modell: Ingen som slår oss i huet om vi velger en metode som
er relevant.< Ernst mener ikke det er galt.

- Innholdet i rapporten er mye mer viktigere enn modell vi bruker.
- Nye plan for gjennomføring, alle i gruppa bør notere ting underveis.

Møte 28.01.2021:
- Referer til figurer i teksten og gi dem navn f.eks figur 1 osv.
- Kravspesifikasjon bør skrives opp som en plan, forklar hvilke man gjorde og

hvilke ting man vurderte ikke var nødvendig/mulig.
- Referere eventuelle kilder for figurer.
- Nøye på "hjelper leseren for å forstå, som vi forstår".
- Ikke nødvendig med forklaring bak tallene i risikomatrisen, men blir det i

hovedrapporten (hvis det blir nødvendig med risikoanalyse i hovedrapporten).
- Bruk setning eller to for å forstå hvordan risk matrisen.
- "Naturlig" innledende øvelsen, introdusere rapporten. Her kaller vi tabellen,

den viser sannsynlighet x konsekvens.
- Send Lasse forprosjektet. - flere roller for gruppa, ikke "delt ansvar"
- Se på andre prosjekter som ideer - Problemstilling: vanskelig å si noe om hvor

ambisiøs den er. Ikke den perfekte automatiserte metoden, men en metode
- Spørre Lasse om ambisjonsnivået / realismen i dette, om dette er det han

tenker seg.
- Lett å skrive om hva man gjorde og hvorfor, men også interessant å skrive om

hva man vurderte å gjøre som f eks ikke virket og hvorfor dette ikke virket. "Vi
vurderte også denne metoden her, men fant ut at....".

Møte 11.02.2021:
- Fiks forprosjektet: Husk å bruk det som vedlegg, men ikke bruk flere dager på

å rette den.

Møte 18.02.21:
- Skriv om hvorfor vi ikke kan bruke cuckoo.
- Spør lars-erik om det er mulig å pushe opp malware til openstack.
- Snakk med Lasse om hva mener om "limon" , mulig alternative løsninger

Møte 25.02.2021:
- Snakk med lars erik om løsning for limon i openstack.

Møte 26.02.2021:
- OpenStack og nestet virtualisering kan være vanskelig.
- Limon scriptet er gammelt, og verktøy som depender på det kan ha utdaterte

versjoner.
- Abdi henter muligens fysisk PC hvis virtualisering blir vanskelig.
- Lese på Jon Everett sin masteroppgave for læringens del.
- Lese litt opp på Vmrun og hva det tilbyr.

Møte 11.03.2021:
- Kilder / referanse.
- Ta med underkapitler selv om vi bare leverer 3 første kapitlene.

Møte 18.03.2021:
- Statusoppdatering
- Mandag 29/ 3. ha ting klart
- Hva er neste steg, er det noe rom for automatisering
- Yara regler
- Hva programvaren gjør. hva den er ute etter, hva skal man bruke resultatet til
- Gjennomgang praksisdelen
- gitt av kjekke Espen

Møte 08.04.2021:
- Svar her mer rettet til hva oppgaven spør etter, enn å forklare ting nøye som

ikke er relevant.
- Rapporten er svaret
- Vektorgrafikk (figurer)
- Metodikken
- Skriver og utformer som gir mening for oss. Ernst sine kommentarer er der for

veiledning, etter hans mening
- Unngå hyperlinker, legg inn på kilder. Dytt den inn i bibliography
- Se om Lasse har mulighet til å se på rapporten

Møte 15.04.2021:
- Få tilbakemelding fra noen andre enn veileder som ikke har lest teksten.

Møte 22.04.2021:
- Velge hvordan vi skal håndtere kilder (fotnoter eller alt i bibliografi)
- Sørge for at limon kan kjøre 32b malware samples på 64b system

Møte 29.04.2021:
- Finne forskjell mellom resultat fra malware test. Vise antall suksess/feil i

prosent.(Bare forslag fra Ernst).
- Levere ferdig rapport til Ernst den 9 mai.

Møte 06.05.2021:
- Så lenge dynamisk analyse er hovedfokus så kan man bruke statisk analyse

resultat i rapporten.
- Å nevne ubrukte funksjonaliteter er greit, men ikke skriv noe om ubrukte

funksjonaliteter.

Møte 15.05.2021:
- Skriv mer om andre sandbox løsninger, 0,5
- 1 side om hvorfor man bruker/ikke bruker en løsning
- Skrive om relevant parametere for malware analyse for ELF-filer
- Mange av filene avslutter med seg-fault, dette kan være forårsaket av

exploiten malwaren vil utnytte er patched
- Finn andel stripped med script? - Få frem at vi har et git-repository
- Pass på ordlegging av hva man ikke rakk å få med på prosjektet
- Pass på sidetall, ikke passer 80-90 sider - Innledende setning for kapitler og

delkapitler - Fiks forfatternavn i bibliografi

Appendix D

Working hours

109

Måned Uke Dato Ukeda
g

Espen Detaljer Amar Detaljer Abdulfatah Detaljer Ukestimer

Januar 1 05.01.21 Tirs

06.01.21 Ons

07.01.21 Tors 2 Møte med ernst
og gruppemøte

2 Møte med ernst
og gruppemøte

2 Møte med ernst
og gruppemøte

08.01.21 Fre

09.01.21 Lør

10.01.21 Søn 6

Måned Uke Dato Ukeda
g

Espen Detaljer Amar Detaljer Abdulfatah Detaljer Ukestimer

Januar 2 11.01.21 Man 2 Møte med Lasse
og gruppemøte

2 Møte med
Lasse og
gruppemøte

2 Møte med Lasse
og gruppemøte

12.01.21 Tirs

13.01.21 Ons 2 Kickstart/lynkurs
og spørretime

2 Kickstart/lynku
rs og
spørretime

2 Kickstart/lynkurs
og spørretime

14.01.21 Tors

15.01.21 Fre

16.01.21 Lør

17.01.21 Søn 7 Signering av
prosjektavtale,
jobbing på
forprosjekt

7 Signering av
prosjektavtale,
jobbing på
forprosjekt

7 Signering av
prosjektavtale,
jobbing på
forprosjekt

33

Måned Uke Dato Ukeda
g

Espen Detaljer Amar Detaljer Abdulfatah Detaljer Ukestimer

Januar 3 18.01.21 Man

19.01.21 Tirs 5 Jobbing på
forprosjekt

5 Jobbing på
forprosjekt

5 Jobbing på
forprosjekt

20.01.21 Ons 7 Jobbing på
forprosjekt

7 Jobbing på
forprosjekt

7 Jobbing på
forprosjekt

21.01.21 Tors 8 Veileder møte
med Ernst,
gruppemøte og
forprosjekt

8 Veileder møte
med Ernst,
gruppemøte og
forprosjekt

8 Veileder møte
med Ernst,
gruppemøte og
forprosjekt

22.01.21 Fre 5 Jobbing på
forprosjekt (Gantt,
finpuss etc.)

5 Jobbing på
forprosjekt
(Gantt, finpuss
etc.)

5 Jobbing på
forprosjekt
(Gantt, finpuss
etc.)

75

23.01.21 Lør

24.01.21 Søn

Måned Uke Dato Ukeda
g

Espen Detaljer Amar Detaljer Abdulfatah Detaljer Ukestimer

Januar 4 25.01.21 Man

26.01.21 Tirs 8 Riskanalyse,
hovedaktiviteter,
milestones, konfig

8 Riskanalyse,
hovedaktiviteter,
milestones,
konfig

8 Riskanalyse,
hovedaktiviteter,
milestones, konfig

27.01.21 Ons

28.01.21 Tors 5,5 Forprosjekt, Intern
møte & møte med
Ernst

5 Internt møte og
møte med ernst

5,5 Jobbing på
forprosjekt

29.01.21 Fre 6 Formatering i latex 5 Internt møte og
møte med ernst

30.01.21 Lør 6 Finpuss i latex,
grupperoller, utdrag
sendt til lasse

31.01.21 Søn 8 Review av rapport,
formatering,
levering

6 Gantt chart og
kilder

6 kilder, tabell og
figurliste, og
informasjons
beskrivelse

77

Måned Uke Dato Ukedag Espen Detaljer Amar Detaljer Abdulfatah Detaljer Ukestimer

February 5 01.02.21 Man

02.02.21 Tirs

03.02.21 Ons

04.02.21 Tors 3,5 Møte m Ernst og
jobbing

3,5 Møte m Ernst og
jobbing

3,5 Møte m Ernst og
jobbing

05.02.21 Fre

06.02.21 Lør 3 Oppsett nettverk,
subnett, ruter og
FW rules i
openstack

07.02.21 Søn 5,5 Planlegging for
uka + mekking av
ssh i openstack

5,5 Planlegging for
uka + mekking
av ssh i
openstack

5,5 Planlegging for
uka + mekking av
ssh i openstack

30

Måned Uke Dato Ukedag Espen Detaljer Amar Detaljer Abdulfatah Detaljer Ukestimer

February 6 08.02.21 Man

09.02.21 Tirs 8 Gjennomgang
av kommentarer
forprosjekt,
oppsett av vbox

8 Gjennomgang av
kommentarer
forprosjekt,
oppsett av vbox

8 Gjennomgang av
kommentarer
forprosjekt,
oppsett av vbox

10.02.21 Ons 5 Startet på
introduksjon

11.02.21 Tors 10 videre oppsett
av cuckoo,
scriptet noe av
installasjonen

8 jobbet med retting
i forprosjekt,
startet på
introduksjonen

6 Møte med Ernst
og jobbet med
intro

12.02.21 Fre

13.02.21 Lør 6 timer rettet
forprosjektet og
lagt til
oppdateringer

14.02.21 Søn 8 oppsett av
dependencies
for Limon,
ukesmøte

67

Måned Uke Dato Ukedag Espen Detaljer Amar Detaljer Abdulfatah Detaljer Ukestimer

February 7 15.02.21 Man 4 fortsettelse på
Limon setup
(ssdeep, sysdig
og inetsim)

16.02.21 Tirs 6 Limon oppsett
(måtte starte på
nytt fordi jeg
oufet)

17.02.21 Ons 6 Satt opp VMware
på egen maskin
for å fortsette
Limon lokalt

5 Fikset
forprosjektet.Sett
på inspo i tidligere
bachlor prosjekter

18.02.21 Tors 7 møte med ernst,
oppsett av Limon
og Remnux i
VMware

5 Møte med Ernst
og jobbing videre
på intro

5 scripting med
radare2 i python +
møte med Ernst

19.02.21 Fre 5 Gjorde ferdig
remnux oppsett
og startet på
analyse-VM
oppsett

5 lagd et forslag på
struktur på
rapporten

9 scripting av
radare2 i python

20.02.21 Lør 7 oppsett av
analysemaskin i
VMware

5 jobbed med
introduction og
funn på oppsett

21.02.21 Søn 2 ukentlig møte 2 ukentlig møte 2 ukentlig møte 75

Måned Uke Dato Ukedag Espen Detaljer Amar Detaljer Abdulfatah Detaljer Ukestimer

February 8 22.02.21 Man 8 oppsett av
remote desktop i
open stack

5 Scripting radare2

23.02.21 Tirs

24.02.21 Ons 8 fullførte gui i
openstack, mer
vmoppsett,
kontaktet lasse
og lars-erik

25.02.21 Tors 5 møte med Ernst,
og med gruppen,
leting etter
alternative
løsninger på
limon

4 møte med Ernst,
og med gruppen,
leting etter
alternative
løsninger på
limon

26.02.21 Fre 7 Møte med Lasse,
og gruppen, så
litt mer på
alternative
løsninger

7 Møte med Lasse,
og gruppen, så litt
mer på
alternative
løsninger

7 Møte med Lasse,
og gruppen, så litt
mer på alternative
løsninger

27.02.21 Lør

28.02.21 Søn 51

Måned Uke Dato Ukedag Espen Detaljer Amar Detaljer Abdulfatah Detaljer Ukestimer

Mars 9 01.03.21 Man 7 Utvidet
rapportstruktur,
addet kapitler til
overleaf, testet
software

02.03.21 Tirs 6 Jobbet mer med
på introduksjonen

03.03.21 Ons

04.03.21 Tors 5 Møte med Ernst
og jobbing

5 Møte med Ernst
og jobbing

5 Møte med Ernst
og jobbing

05.03.21 Fre

06.03.21 Lør

07.03.21 Søn 5 Møte meg
gruppen
ELF-beskrivelse

5 Møte meg
gruppen
ELF-beskrivelse

5 Møte meg
gruppen
ELF-beskrivelse

43

‘’

Måned Uke Dato Ukedag Espen Detaljer Amar Detaljer Abdulfatah Detaljer Ukestimer

Mars 10 08.03.21 Man 8 Konfigurering av
Limon

7 ELF-beskrivelse

09.03.21 Tirs 8 Limon og
nettverkskonfig.
Frodes
forelesning.

10.03.21 Ons 7 Satte opp
nettverk og
INetSim

11.03.21 Tors 6 Gjennomgang
Limon, møte med
Ernst, finpuss på
script

6 Gjennomgang
Limon, møte med
Ernst

7 Gjennomgang
Limon, møte med
Ernst

12.03.21 Fre 8 "Fulførte"/satte
under review
avgrensninger,
effektmål,
resultatmål,
målgruppe, og
ryddet opp i
strukturen på intro

13.03.21 Lør 7 skrev på intro, div
review, testet
sample

7 "Fulførte"/satte
under review
motivation

14.03.21 Søn 8 møte med
gruppa, testet
sample

6 møte med
gruppen og ELF
beskrivelse

8 møte med gruppen 93

Måned Uke Dato Ukedag Espen Detaljer Amar Detaljer Abdulfatah Detaljer Ukestimer

Mars 11 15.03.21 Man 5 Konfigurering av
Limon

5 ELF-beskrivelse

16.03.21 Tirs 7 Limon og
nettverkskonfig.
Frodes
forelesning.

17.03.21 Ons 5 Satte opp
nettverk og
INetSim

3 Gjennomgang
Limon, møte med
Ernst

5 jobbet med
requirements (Use
case/high-level/fun
ksjonalitet)

18.03.21 Tors 4 Gjennomgang
Limon, møte med
Ernst, finpuss på
script

2 Gjennomgang
Limon, møte med
Ernst

19.03.21 Fre 2 "Fulførte"/satte
under review
motivation

20.03.21 Lør 6 skrev på intro, div
review, testet
sample

21.03.21 Søn 6 møte med
gruppa, testet
sample

1 møte med
gruppen

1 møte med
gruppen

52

Måned Uke Dato Ukedag Espen Detaljer Amar Detaljer Abdulfatah Detaljer Ukestimer

Mars 12 22.03.21 Man 5 implementation,
sendte
oppsummering
til lasse på
teams

2 2 leste gjennom
tidligere bachelor
oppgaver og
begynte på
operasjonelle krav

23.03.21 Tirs 1 malware i
ELF-filer

24.03.21 Ons 1 leste litt på
rapporten, svarte
Lasse

8 Div skriving og
finpuss på teori
om ELF

1 Leste gjennom
andre rapporter
og forklaringer om
"External
requirements"

25.03.21 Tors 7 Fortsatte på
implementation

4 Fulførte/"satte
under review"
sekvensdiagram,
functional,
operational,
external
requirements

26.03.21 Fre 7 fortsatte på
implementation,
addet nye ord til
glossary

6 Fulførte/"satte
under review"
arkitektur design
og netverksdesign

27.03.21 Lør 3 retting generelt i
3x, Malware i elf
filer

28.03.21 Søn 9 rettet
introduction,
fullførte
implementation

3 retting generelt i
3x, Malware i elf
filer

59

Måned Uke Dato Ukedag Espen Detaljer Amar Detaljer Abdulfatah Detaljer Ukestimer

Mars/April 13 29.03.21 Man

30.03.21 Tirs

31.03.21 Ons

01.04.21 Tors

02.04.21 Fre

03.04.21 Lør 5 implementerte
ltrace i limon

04.04.21 Søn 7 møte, så videre
på sysdig, jobbet
med design

4 Møte, retting 4, retting 20

Måned Uke Dato Ukedag Espen Detaljer Amar Detaljer Abdulfatah Detaljer Ukestimer

April 14 05.04.21 Man 6 Skrev videre
på design

06.04.21 Tirs

07.03.21 Ons 6 overføring av
nye samples,
svart lasse
på teams,
skrev videre
på design

3 Skrev ferdig
previous
knowledge,
virtualization,
startet på
analysis

08.04.21 Tors 5 møte,
begynte på
retting i
implementati
on

3 Sett over
komentarer
rettet og
deltok på
møte

3 Møte, rettet
opp
kommentarene
på
requirements
og design

09.04.21 Fre

10.04.21 Lør

11.04.21 Søn 1 møte 1 møte 28

Måned Uke Dato Ukedag Espen Detaljer Amar Detaljer Abdulfatah Detaljer Ukestimer

April 15 12.04.21 Man 2 la til innledende
avsnitt der det
manglet på
design og
requirements +
retting av
sequence
diagram og intro

13.04.21 Tirs 5 rettet videre
på
implementati
on

14.03.21 Ons 7 rettet og
skrev om i
implementati
on

4 retting 3 Retting av intro
(mine deler)

15.04.21 Tors 5 møte,
jobbing med
test av
malware
samples

5 retting

16.04.21 Fre

17.04.21 Lør 5 prøvde å
teste
samples

18.04.21 Søn 3 møte og
review

3 møte og
review

3 møte og review 45

Måned Uke Dato Ukedag Espen Detaljer Amar Detaljer Abdulfatah Detaljer Ukestimer

April 16 19.04.21 Man

20.04.21 Tirs 6 reconfiga
sandboxen

6 lagd en
forenklet
topologi av
instratrukturen
til ELF, rettet
3x

3 Start på
analyse bit +
omskriving av
avsnitt på
"implemented
functionality"

21.03.21 Ons

22.04.21 Tors 6 møte, fikset
error for 32
bit
executables

6 lagd en
forenklet
topologi av
instratrukturen
til ELF, rettet
3x

2 møte + La til
descriptions
under glossary

23.04.21 Fre

24.04.21 Lør

25.04.21 Søn 5 Finpuss,
skrev om
sandbox,
previous
knowledge
etc.

5 Finpuss, skrev
om sandbox,
previous
knowledge etc.

4 Finpuss, skrev
om sandbox,
previous
knowledge etc.

43

Måned Uke Dato Ukedag Espen Detaljer Amar Detaljer Abdulfatah Detaljer Ukestimer

April/Mai 17 26.04.21 Man 5 sendte
samples til
Lasse og så
på
de-obfuskerin
g av kode

27.04.21 Tirs 5 gikk gjennom
malware
samples 1 -
33 og noterte
ned de med
nyttige resultat

5 Finpuss, skrev
om sandbox,
previous
knowledge etc.

28.03.21 Ons 4 gjorde
endringer på
yara-deteksjo
n, rettet på
implementatio
n

29.04.21 Tors 7 så gjennom
resultater,
møte, retting
på design

6 sett på
malware
samples

6 så gjennom
testresultat fra
malware
samples,
finpusset tekst

30.04.21 Fre 6 Analysert filer

01.05.21 Lør

02.05.21 Søn 6 skrev på
application
design

50

Måned Uke Dato Ukedag Espen Detaljer Amar Detaljer Abdulfatah Detaljer Ukestimer

Mai 18 03.05.21 Man

04.05.21 Tirs

05.05.21 Ons 4 Finpusset/retting 4 Finpusset/retting 4 analyse + glossary

06.05.21 Tors 5 Retting 3 Retting 3 Retting

07.05.21 Fre 3 begynte på
performance

7 Fnpussing,
skrevet
analyseringsdelen

08.05.21 Lør 7 skrev videre på
performance, gikk
gjennom alle
samples og lagde
statistikk på antall
feilede /
suksessfulle

7 Finpusset, skrivet
analyseringsdelen

7 glossary og
analysis

09.05.21 Søn 10 retting og
kildehenvisning,
skriving på
performance

7 Finpusset, skrivet
analyseringsdelen

7 Analysis, retting,
glossary + kilder

78

Måned Uke Dato Ukedag Espen Detaljer Amar Detaljer Abdulfatah Detaljer Ukestimer

Mai 19 10.05.21 Man

11.05.21 Tirs 5 Finpussing og
ordne kilder på
plass, samtidig
rette forprosjektet

5 Analysis, retting,
glossary + kilder)

12.05.21 Ons

13.05.21 Tors 7 discussion 4 Retting 4 Analysis, retting,
glossary + kilder)

14.05.21 Fre 8 Useful
malware
indicators in
elf-files
(symbols,
segments,
run-time) og
further work
(forslag til
additions til
limon som kan
forbedre
implementasjo
nen, listings
etc

4 Diskutert med
Babdi, hvordan
ELF header kan
ha section
header, program
header men
samtidig ha den
også på file data,
forstå
sammenhengen,
og hvordan
toplogien
stemmer til
forklaringen, har
også oppdatert
visse
subsections.
derfor jeg lagde
en enda
subsection som
forklarer hvorfor
elf header
inneholder field
(program header
og section header

5 Analysis, retting,
glossary + kilder

15.05.21 Lør

16.05.21 Søn 2 Discussion /
conclusion /
retting

44

Måned Uke Dato Ukedag Espen Detaljer Amar Detaljer Abdulfatah Detaljer Ukestimer

Mai 20 17.05.21 Man 2 Discussion /
conclusion /
retting

18.05.21 Tirs 10 Discussion /
conclusion /
retting

4 Rettet på format
i kilder

4 Fikset feil i Kilder

19.05.21 Ons 8 Gjennomgang
av dokumentet,
Apendix,
retting av
forprosjekt

8 Gjennomgang
av dokumentet,
Apendix, retting
av forprosjekt

8 Gjennomgang av
dokumentet,
Apendix, retting av
forprosjekt

20.05.21 Tors 12 Gjennomgang
av dokumentet,
Apendix,
retting av
forprosjekt

12 Gjennomgang
av dokumentet,
Apendix, retting
av forprosjekt

12 Gjennomgang av
dokumentet,
Apendix, retting av
forprosjekt

80

Appendix E

Developed installation scripts

129

README

How do I get set up?

• Clone the repository

• chmod the “limon_setup.sh” file

• Run “limon_setup.sh” from /home/”user”/ directory

– “limon_setup.sh” will automatically invoke “analysis_host_setup.sh”
and configure the host machine

• Open the VMware GUI

• (Optional) Disable 3D acceleration for better performance

• Go to Edit -> “Virtual Network Editor”

– Choose “Add Network”
∗ Choose “host-only” and give it a fitting name.

∗ Click add.

– Make sure the DHCP and “Host virtual adapter” boxes are ticked.

– Enter appropriate subnet IP with netmask 255.255.255.0

– Press save.

• Right click on the virtual machine and choose “Settings” -> “Network
adapter”.

• Click “custom” and choose the VMnet you just created.

• Make sure the boxes “connected” and “connect at power on” are checked.

1

• Make sure that the Host serves is the default gateway and preferred DNS
for the guest. On the guest OS:

• Run the command: “route add default gw {IP-ADDRESS} {INTERFACE-
NAME}” where IP-address is the Host OS IP and interface-name is the
name of the guest network interface (this can be checked by running “ip
addr”).

• Verify that the Host serves as GW for guest by running the command:
/sbin/route -n

• To set preferred DNS:

– Open settings in ubuntu and choose network.

– Click the “cog-wheel” on your connection

– Select IPv4

– Disable the “Automatic” toggler under DNS. Enter the Host machine
IP. Secondary and thirdary DNS resolvers might also be set if wished.

– Press save.

– Updated DNS resolvers might be verified with the command:
“systemd-resolve –status | grep ‘DNS Servers’ -A2” (note that previ-
ous DNS resolvers might be cached by the system or applications).

• Make sure that the analysis machine has the same static IP-address at all
times. To achieve this, we need to modify vmware’s dhcp configuration.

• Open /etc/vmware/vmnet/dhcpd/dhcpd.conf

• You will see an entry for which includes the static IP and MAC-address of
the Host.

• Add a new entry right below.

– Set “hardware ethernet” entry to the MAC-address of the guest.

2

– Set “fixed-address” to the static IP of choice.

• Save the configuration

• Restart VMware’s DHCP service:

– net stop vmnetdhcp

– net start vmnetdhcp

• Create a snapshot of the guest machine using the Vmware Workstation
snapshot manager.

• Update the variables in “conf.py” with the appropriate values.

Usage

• Usage: limon.py [Options] {file} [args]

• Options:

– -h, –help show this help message and exit

– -t TIMEOUT, –timeout=TIMEOUT timeout in seconds, default is
60 seconds

– -p, –perl perl script (.pl)

– -P, –python python script (.py)

– -z, –php php script

– -s, –shell shell script

– -b, –bash BASH script

– -C, –ufctrace unfiltered call trace(full trace)

– -x, –printhexdump print hex dump in call trace (both filtered and
unfiltered call trace)

3

– -l, –libtrace trace library calls

– -L, –libstrace trace BOTH library and system calls

4

134 Espen, Amar & Abdi: Automated dynamic malware analysis of ELF-files

Code listing E.1: Limon installation script for configuring the host machine.
#!/ bin/bash

I n i t
sudo apt−get update −y && sudo apt−get upgrade −y

Desktop GUI
#sudo apt i n s t a l l −y t a s k s e l
#sudo t a s k s e l i n s t a l l −y lubuntu−core
#sudo s e r v i c e l ightdm s t a r t
#sudo passwd ubuntu

Dependencies
sudo apt−get −y i n s t a l l gcc make l inux−headers−$(uname −r) dkms
sudo apt i n s t a l l unzip
sudo apt−get −y i n s t a l l automake l i b t o o l make gcc pkg−con f i g
sudo apt i n s t a l l −y python−pip

VMware i n s t a l l
wget ht tp :// f o l k . ntnu . no/ espenves/VMware−Workstation−Ful l −16.0.0−16894299.x86_64 . bundle
sudo ./VMware−Workstation−Ful l −16.0.0−16894299.x86_64 . bundle −−console
wget ht tp ://www. trendsigma . net/vmware/ _dl /ubuntu1804t . zip
unzip ubuntu1804t . zip

Yara
wget h t tp s :// gi thub . com/V i ru sTo ta l / yara/ arch ive /v4 . 0 . 5 . zip
unzip v4 . 0 . 5 . zip
cd yara −4.0.5
./ boot s t rap . sh
./ con f igure
make
sudo make i n s t a l l
make check
cd . .
pip i n s t a l l yara−python
g i t c lone h t tp s :// gi thub . com/Yara−Rules/ r u l e s . g i t
mv r u l e s / ya ra_ ru l e s

Ssdeep
sudo apt−get −y i n s t a l l ssdeep

Sysdig
c u r l −s h t tp s :// s3 . amazonaws . com/download . d ra io s . com/ s t a b l e / i n s t a l l−sy sd ig | sudo bash

V o l a t i l i t y
#wget h t tp s :// gi thub . com/gdabah/distorm / arch ive /v3 . 5 . z ip
#unzip v3 . 5 . z ip
#cd distorm −3.5
#sudo python setup . py i n s t a l l
#cd . .
#wget h t tp s :// f t p . d l i t z . net/pub/ d l i t z / crypto /pycrypto /pycrypto −2.6.1. t a r . gz
#t a r −zxv f pycrypto −2.6.1. t a r . gz
#cd pycrypto −2.6.1/
#chmod +x setup . py
#sudo python setup . py bu i ld
#sudo python setup . py i n s t a l l
#cd . .
#pip i n s t a l l P i l l ow
#pip i n s t a l l openpyxl
#pip i n s t a l l u json
#wget ht tp :// downloads . v o l a t i l i t y f o u n d a t i o n . org/ r e l e a s e s /2.4/ v o l a t i l i t y −2.4. t a r . gz
#t a r −zxv f v o l a t i l i t y −2.4. t a r . gz
#cd v o l a t i l i t y −2.4/
#sudo chmod +x vo l . py
#cd . .

Misc
mkdir /home/ubuntu/ l i n u x _ r e p o r t s
rm pycrypto −2.6.1. t a r . gz
rm ubuntu1804t . zip
rm v3 . 5 . zip
rm v o l a t i l i t y −2.4. t a r . gz
rm v4 . 0 . 5 . zip

Remnux
wget h t tp s ://REMnux . org/remnux−c l i
mv remnux−c l i remnux
chmod +x remnux
sudo mv remnux /usr / l o c a l /bin
sudo remnux i n s t a l l −−mode=addon

S t a r t VMware machine , t r a n s f e r and execute setup s c r i p t s

Chapter E: Developed installation scripts 135

vmrun s t a r t /home/ubuntu/Ubuntu1804/Ubuntu . vmx
echo " S leeping fo r 30 sec a f t e r reboot "
s l eep 30
sudo vmrun −gu user −gp password CopyFileFromHostToGuest /home/ubuntu/Ubuntu1804/Ubuntu . vmx
/home/ubuntu/ ana l y s i s _ho s t _ s e tup . sh /home/user / ana l y s i s _ho s t _ s e tup . sh
sudo vmrun −gu user −gp password CopyFileFromHostToGuest /home/ubuntu/Ubuntu1804/Ubuntu . vmx
/home/ubuntu/ run_sysd ig . sh /home/user / run_sysd ig . sh
sudo vmrun −gu user −gp password CopyFileFromHostToGuest /home/ubuntu/Ubuntu1804/Ubuntu . vmx
/home/ubuntu/ r u n _ s y s d i g _ f u l l . sh /home/user / r u n _ s y s d i g _ f u l l . sh
sudo vmrun −gu user −gp password runProgramInGuest /home/ubuntu/Ubuntu1804/Ubuntu . vmx /bin/bash
/home/user / ana l y s i s _ho s t _ s e tup . sh

Create snapshot of a n a l y s i s environment
vmrun −gu user −gp password r e s e t /home/ubuntu/Ubuntu1804/Ubuntu . vmx s o f t
echo " S leeping fo r 20 sec a f t e r reboot "
s l eep 20
vmrun −gu user −gp password snapshot /home/ubuntu/Ubuntu1804/Ubuntu . vmx cleansnapshot

sudo reboot

Code listing E.2: Limon installation script for configuring the guest machine.
#!/ bin/bash

Dependencies
echo " password " | sudo −S apt−get update −y && sudo apt−get upgrade −y
echo " password " | sudo −S apt i n s t a l l −y c u r l
echo " password " | sudo −S apt i n s t a l l −y g i t
echo " password " | sudo −S apt i n s t a l l l i b e l f−dev
echo " password " | sudo −S apt−get i n s t a l l bui ld−e s s e n t i a l
echo " password " | sudo −S apt i n s t a l l net−t o o l s

Sysdig
#c u r l −s h t tp s :// s3 . amazonaws . com/download . d ra io s . com/ s t a b l e / i n s t a l l−sy sd ig | sudo bash

Strace
#echo " password " | sudo −S apt−get remove −y s t r a c e
#wget h t tp s :// s t r a c e . io / f i l e s /5.11/ s t race −5.11. t a r . xz
#t a r −x f s t race −5.11. t a r . xz
#cd s t race −5.11
#./ con f igure −−di sab le−mpers
#make
#make i n s t a l l
#cd
#rm st race −5.11. t a r . xz
echo " password " | sudo −S apt−get i n s t a l l −y s t r a c e

PHP
echo " password " | sudo −S apt−get i n s t a l l −y php−c l i

Packages f o r 32 b i t exec on 64 b i t system
echo " password " | sudo −S dpkg −−add−a r c h i t e c t u r e i386
echo " password " | sudo −S apt−get update
echo " password " | sudo −S apt−get −y i n s t a l l l i b c 6 : i386 l i b n c u r s e s 5 : i386 l i b s t d c++6:i386
echo " password " | sudo −S apt−get −y i n s t a l l mult iarch−support
echo " password " | sudo −S apt−get −y i n s t a l l gcc−m u l t i l i b
echo " password " | sudo −S apt−get −y i n s t a l l l ib32z1 l ibc6−i386 l i b 3 2 s t d c++6 l ib32gcc1 l ib32nc
echo " password " | sudo −S apt−get −y i n s t a l l l i b32ncurses5

D i r e c t o r i e s f o r a n a l y s i s
mkdir malware_analys is
mkdir l o g d i r
PATH=$PATH:~/malware_analys is
touch path . t x t
echo −n ’PATH=" ’ >> path . t x t
echo −n $PATH >> path . t x t
echo ’ " ’ >> path . t x t
Runs a sudo dummy command in order to make the next command run au tomat i ca l l y
echo " password " | sudo −S touch /tmp/temp . t x t
ca t path . t x t | sudo tee / e t c /environment
rm path . t x t

V o l a t i l i t y
#g i t c lone h t tp s :// gi thub . com/ v o l a t i l i t y f o u n d a t i o n / v o l a t i l i t y . g i t
#cd v o l a t i l i t y / t o o l s / l i nux / && make
#cd . . / . . / . . /

Clear h i s t o r y
h i s t o r y −c && h i s t o r y w

Appendix F

Thesis project repository

Please consider the following thesis repository for retrieving the developed imple-
mentation of Limon.

https://bitbucket.org/espur/dynamisk-elf-analyse/src/master/ [74]

137

Appendix G

Malware test samples

139

VirusShare_0034ebc8a85edbb507dd550952a2cb92
VirusShare_00744ba3546a01e8c2a3cb3711c3ca85
VirusShare_0086eced29d57421ec8778f1f3084915
VirusShare_0093fdcb12b6fb836495b7cd53d19ddb
VirusShare_009b3cc8dc9d3d16dc4c363bb573089d
VirusShare_00b522fe648eea24c3eb90b3d814ed72
VirusShare_00d051be54a70826b8d20645900c6c1a
VirusShare_00d0e365b421e81cd7205195199cd0a0
VirusShare_00f7adbe9895699b07a114e383787c74
VirusShare_0100a791cf0924db4d3e890d02e32b60
VirusShare_013acf2ce0515dc1d297d9ab764be847
VirusShare_014575e602cb2c1622c33a413ce2e009
VirusShare_015a2e7e8810fda0ece9dbf407c3e5ef
VirusShare_016550948bfe5f621d8109b30efced41
VirusShare_0167b8b07c83a6375ff467d16f0436a7
VirusShare_0181a556734500536c51159a2ac287fc
VirusShare_018ff2c8b70dc7534eed16c846c756ec
VirusShare_01c5791ee05d656b8c24067bd6bfb70f
VirusShare_01c5f86372a4f31e72675f8be9b4e6c7
VirusShare_01c9f9c35fa06e31662b9a607d8796c8
VirusShare_01e3196969078a89b853ada2b3c9eee6
VirusShare_02033432a69a38770c945a42efbd3b6b
VirusShare_023c291c905f8056e16a62dcc401b1e8
VirusShare_023c5d646b65b2127fa24b5b416e8317
VirusShare_02b5194ca19e6ba87c735e487ca65a2a
VirusShare_02b53285786714766d98bfd8946cde31
VirusShare_02c6a5ec6d06cb003c333a40966fb00d
VirusShare_02eb5393ce1a84b800c5f5d26833e02f
VirusShare_02ee0e4019e18fe3018180565aa822cc
VirusShare_03016755d810a713160f2e86a02735f5
VirusShare_0350e96784538cd11180047abab23dc3
VirusShare_035540dde404c9349963d86b009ddf6c
VirusShare_0367668dbd00eda7a3a81ea3748ad362
VirusShare_03766d86184f1bffc6535b9ef622d7c0
VirusShare_03ab73361885d188d31874dc0164068d
VirusShare_03c0e7e69211f93b9a6b7a8179e38430
VirusShare_03c730b6568a188cce18b826d79df2e4
VirusShare_03cd2f8a76ab98128b42c93a4f8f6d4a
VirusShare_03f1b84ef3c69e8a53be28efed8d326c
VirusShare_03f734c696b0280fdf2f77a5135ebe6a
VirusShare_03fb5f808f57736a6d15cb0a7f11c10f
VirusShare_0400ea2706c4eb5110cd9ab3106e4936
VirusShare_041e4fe0f8dcde038421bd560d2a4a13
VirusShare_041f12f539b38cee6e16bb24701766c3
VirusShare_04253544bdd1f485367cc14f3c00c73c
VirusShare_0440a5a6db8da7782b2d07ab86a7a645
VirusShare_0441dd25bb3b5914f09d1d44063f5389

VirusShare_044a41d1ce9a2f5a7de9559155456f88
VirusShare_0453ae2cac43ee1da908ca414c3e31e4
VirusShare_049874bf0b678b7824c61f9be244ed09
VirusShare_04a9e8116754afb5817ecda18e132fec
VirusShare_04ab137aca2e4ec0981c2bac34ed6126
VirusShare_04bbb03caa394e33718640611eefb869
VirusShare_0686a7459152174f821c8c635cfbda8a
VirusShare_0b855d8d6a3c3ac8d5fd6931570e02ae
VirusShare_10f5beac257a92665866cdc99550b7bb
VirusShare_11c489ddea858030b23f7ac184994439
VirusShare_1c2c9f1af3cd38775278dfc5712692e6
VirusShare_2154c7cdd8b1f44fda317a6ffbd776bf
VirusShare_27e700802c9b01ba5164d0974dd5b7b8
VirusShare_2ad28d994083eb88d56eded361d7e381
VirusShare_31c55141129151ee4728a40613b93eca
VirusShare_39d46a0cd60393e5571b720c915db30d
VirusShare_4087376ef72170f248eb2f0665a26796
VirusShare_4b1e9e8ccf91998393509290d436ede3
VirusShare_4b35f8b0a8dbc25ff6b5433ab48a4f30
VirusShare_52852ac955ba03e4ebb012c55550dca3
VirusShare_559169cd8167dcbaaf065d6a122a289d
VirusShare_58af33baf68feb637b59a20ba4ea0c03
VirusShare_664378d10f610552d17e97cc06ade139
VirusShare_6d5aaa20ea45eb247e483cc9c0519f63
VirusShare_705df7bc13a3fc1bbfc79735455fda68
VirusShare_7af5fe43c89670af8f866d599d1fd3e9
VirusShare_7eb2f5306e6f3acc764a22f5e0874766
VirusShare_81a1f8fe807d4631d548cd6a6d639116
VirusShare_81ea379c237724249c137fc83ef21e9a
VirusShare_8273c7634804f1bf345719f364ef33ce
VirusShare_83aa145f8b12365ca7ce37f0b03bf745
VirusShare_85e2b597de3a53124667d1a5f7863f97
VirusShare_8691a8e2228e160e2d43ec5ef03caf80
VirusShare_898dde6afb3142e607528359b0935e9e
VirusShare_8f194847387186899cc8d9f9ca903e07
VirusShare_942ea0c4cb729d4878eb5b8998981228
VirusShare_94c55f2a600446d6c698f42a4a7e3462
VirusShare_9bd1094c7ad96a5ba4de82173ec8c271
VirusShare_9fdf780ae2d88afb6b147944c3bf16a3
VirusShare_a0ed9cca11e77ed54bc9dc65c1d1f03b
VirusShare_b4088daeb311c24d8f9a20b5ec223bc9
VirusShare_b87e73448b181044996767c3cbca7e8e
VirusShare_bc5cef903c912af3ea8ac94ae77601e0
VirusShare_c0caa5138b067575dc19666370d650dd
VirusShare_c48dc5887d019b44efdef87e6fccdbd3
VirusShare_c76156aef8707a2071294a8d5b9cd974
VirusShare_cc29a224e327412e0db7f3ce5c4f4e00
VirusShare_d0b9d58f3a454ad6df2e4d055858c1e5

VirusShare_d21fb7ed52ba13294240354c1f528d2f
VirusShare_e7bc30e118b776f29541af936061f7de
VirusShare_ea0a4bafec4aad026b6549a83ef701de
VirusShare_f2b00b27e6e8d10d3c27525ecd9af120
VirusShare_f99c1d6cd8874aabedd0129cf592f5ed

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Autom
ated dynam

ic m
alw

are analysis of ELF-files

Espen Taftø Vestad, Amar Licina, Abdulfatah
Abdi-Salah

Automated dynamic malware
analysis of ELF-files

Bachelor’s project in Digital Infrastructure and Cyber Security
Supervisor: Ernst Gunnar Gran

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

	Abstract
	Sammendrag
	Foreword
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Glossary
	Introduction
	Project description
	Motivation
	Target audience
	Scope
	Problem statement
	Objective and goals

	Project Group
	Previous knowledge

	Project process and Thesis layout

	Requirements
	Functional requirements
	Operational requirements
	External requirements

	Theory and technology
	Malware and reverse engineering
	The Executable Linkable Format
	Definition
	Class
	Data
	Versions
	OS/ABI
	ABI version:
	Machine
	Type
	Program headers and section headers in the ELF-header
	Static and dynamic binaries

	File Data
	Program Header
	Section headers

	Malware in ELF-files
	Malware analysis methods
	Static analysis
	Dynamic analysis
	Memory Analysis

	Virtualisation
	Obfuscation
	Sandboxing
	The Limon sandbox
	Dynamic analysis tools
	Static analysis tools

	Design
	Researching available solutions
	Functionality Design
	Application design
	Architecture design
	Network design
	Sequence diagram

	Implementation
	Methodology
	Implementation repository
	Infrastructure Configuration
	Initial configuration
	Instance deployment

	Installing cuckoo
	Limon setup
	Sandbox outline
	Host OS configuration
	Guest OS configuration
	Sandbox network configuration
	Configuring the Limon script

	Scripting the Limon setup
	Installing Limon from the thesis repository

	Limon modifications

	Analysis and testing
	Limon usage
	Analysis output
	Performance
	Execution performance
	Functionality testing
	Successful to unsuccessful sample execution ratio

	Examples
	Tsunami malware execution
	Rootkit
	Privilege escalation

	Discussion
	Unmet functional requirements
	Logging of executed code or Assembly instructions

	Useful malware indicators in ELF-files
	Symbols
	Segments
	Run-time indicators

	Improvements and further work
	Additions
	Modifications
	fixes

	The importance of combined analysis
	Protecting systems against ELF-malware infection

	Conclusion
	Project assessment
	Learning outcome and evaluation
	Results

	Bibliography
	Project plan
	Project agreement
	Meeting schedule
	Working hours
	Developed installation scripts
	Thesis project repository
	Malware test samples

