Marius Jasok Nesset

Evaluating Performance And Security
Characteristics Of Service Mesh
Technologies In A Rancher 2.X
Environment

Service Mesh Evaluation

Bachelor’s project in IT-Operations and Information Security
Supervisor: Erik Hjelmas
May 2021

2
4
=
P

°
o
C

c
]

'_

©
C
(8]
[0}
9]
C

o
(&)

(V2]

Y
o

2
(%]
—
[}

2
C

o)
C

ke
Bo
:
o

zZ

258
.59
032
£ cc
[=]
c c O
=
©
=)
=
5
(9]
Q
w
°
c
©
o
<)
c
<
o}
'_
c
S
=]
©
€
_
L
=
[
o
=]
(9]
©
[N

C
S
2
[0}
-
c
=}
£
£
(o)
(W)
©
C
T
2
—_
=}
(W)
()]
wv
C
S
2
[0}
£
—
e
£
Y
o
—
Q.
[
[a)]

@ NTNU

Norwegian University of
Science and Technology

Marius Josok Nesset

Evaluating Performance And Security
Characteristics Of Service Mesh
Technologies In A Rancher 2.X
Environment

Service Mesh Evaluation

Bachelor’s project in IT-Operations and Information Security
Supervisor: Erik Hjelmas
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

@ NTNU

Norwegian University of
Science and Technology

Evaluating Performance And Security
Characteristics Of Service Mesh Technologies
In A Rancher 2.X Environment

Marius Jgsok Nesset

May 20, 2021

Abstract

With today’s operations trends tending towards more and more (micro-)services
and containers, many feel the need to employ service mesh technologies to man-
age all these services.

This thesis serves to measure and evaluate the performance and security char-
acteristics of some of these service mesh technologies; Allowing the reader to
potentiality use it to aid their decision making on which service mesh to select.

iii

Sammendrag

Dagens IT-drifing trender mot stadig flere (micro-)serviser og konteinere, mange
derfor enten vurder-eller allerede har tatt i bruk service mesh teknologier for a
handtere alle disse servisene.

Denne bacheloroppgaven gnsker a vere en hjelp i dette valget ved a evaluere
ytelse and sikkerhets karakteistiker ved hvisse utvalgte service mesh technologier.

Acknowledgements

First of all I want to thank Thilo Fromm from Kinvolk for their previous work bench
marking the performance of Linkerd and Istio; While none of their benchmarks
was used for this thesis, they were instrumental in giving me an early understand-
ing of the nature of the problem.

I wanna thank Buypass not only for being an amazing and very vocal client, but
also for giving me an jump start on the practical part of this thesis by organizing
a private lab-session with one of their engineers, which taught me the basics of
Rancher and K3S.

The diagrams in this thesis depicting Kubernetes resources and their relationships,
makes use of the open source Kubernetes icon set made by the amazing Kuber-
netes community; The icon set is released under the Apache-2 License and can be
found on the Kubernetes’ community Github: https://github.com/kubernetes/
community/tree/master/icons

I wanna thank NTNU for providing me with an amazing mentor Erik Hjelmas,
and for providing me with an large Openstack environment where I could con-
duct my tests in.

Lastly I wanna thank former Amazon Ring NetOps-team lead, Katie 'Fusl’ Holly;

for aiding me in the selection process of loadgenerator and for giving me a crash
course in Grafana.

vii

https://github.com/kubernetes/community/tree/master/icons
https://github.com/kubernetes/community/tree/master/icons

Contents

Abstract L iii
Sammendrag e e e \
Acknowledgements vii
ContentsS ittt e e e ix
Figures e xi
Tables xiii
Acronyms e e XV
Glossary e xvii
1 Introduction 1
1.1 Task . ..o 1
1.2 Scope and Limitationst 1
1.3 Service Mesh Technologies 2
1.3.1 What Is A Service Mesh Technology 2

1.3.2 Selected Service Mesh Technologies 3

1.3.3 How trafficismeshed 3

2 Performance 5
2.1 Tooling selection. 5
2.1.1 Targetapplicationo uuneenn.. 5

2.1.2 Load generatoru ottt 6

2.1.3 Monitoring e e 6

2.2 Testing environment vttt 7
2.2.1 Low Latency Testing Environment 8

2.2.2 High availability environment 9

2.3 Visualizing meshed trafficof target 11
2.3.1 With no service mesh installed 11

2.3.2 With Traefik Meshinstalled 11

2.3.3 With Istio or Linkerd installed 12

2.4 Measuring Latencies At Various Constant Loads. 13
2.4.1 Methodology 13

242 MEITiCS « v v v v vt e e e e e e e e e e e e 13

25 ResultS. 15
2.6 RESOUICE USAZE . . v v v v v it it et et et e et et e e e 19
2.6.1 Methodology, 19

2.6.2 Results 19

ix

X Marius J Nesset: Service Mesh Evaluation

3 Security 21
3.1 Mutual TLS e e e e e 21
3.1.1 TraefikMesh 21

3.1.2 Istio . . . o n i e e 22

3.1.3 Linkerd2 22

3.2 AccessControl e e 23
321 Istio . . v ot e e e 23

3.2.2 LinkerD 25

3.2.3 TraefikMesh 25

3.3 MONitoring v v vt i e e e e e 26
331 IStio . . vt e e 26

3.32 Linkerd 28

3.3.3 TraefikMesh, . 30

4 Conclusion 33
4.1 Istio’s Strengths and Weaknesses 33
4.2 Traefik Mesh’s Strengths and Weaknesses 33
4.3 Linkerd’s Strengths and Weaknesses. 34

Bibliography 35

Figures

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8

Traffic flow from Web pod when not in a service mesh. 11
Traffic flow from Web pod when using Traefik Mesh. 11
Traffic flow from Web pod with sidecar proxy based service meshes. 12
P99th response times for various RPSrates. 15

Figure showing a meshed service being able to bypass Traefik mesh’s

access control by using the normal clusterlocal DNS. 26
Kali dashboard highlighting a configuration issue in a Destination-
Routeconfig. e 27
Kali dashboard showing traffic flow generated by /api/leaderboard. 27
Jaeger showing antrace. 28
Linkerd dashboard displaying live metrics for the emojivoto web
deployment. e 28
Linkerd dashboard showing a diagram over the network flow to
and from the web deployment. 29
Linkerd dashboard showcasing the tap feature, showing informa-
tionforalivecall. 29
Traffic flow from Web pod when using Traefik Mesh. 30

Xi

Tables

2.1 Manager Node Specifications 7
2.2 Low latency Environment node specifications 9
2.3 Latency-test node SPECS ittt 9
2.4 Node type specifications for high availability environment cluster. . 10
2.5 Example showing how bucket size selection can mask data 14
2.6 P95 latenciesintable 15
2.7 Heatmaps of Istio showing response buckets at loads from 100RPS

to 2000RPS. e e 16
2.8 Heatmaps of Linkerd showing response buckets at loads from 100RPS

to 2000RPS. 17
2.9 Heatmaps of Traefik Mesh showing response buckets at loads from

100RPS to 2000RPS. o 18
2.10 Resource usage of Traefik Mesh 19
2.11 Resource usage of Istio 20
2.12 Resource usage of Linkerd 20
3.1 Arguments to control Linkerd 2 proxy 22
3.2 Optional positive match fields for source 24
3.3 Optional positive match fields for destination 24

xiii

Acronyms

ACL Access Control List. 23, 25

CNCF Cloud Native Computing Foundation. 3, 33

CRD Custom Resource Definition. 21, 25, Glossary: Custom Resource Definition
RPS Requests Per Second. 6, 13, 14, 19, 33, Glossary: Requests Per Second

SMI The Service Mesh Interface Specification. 21, 25, Glossary: Service Mesh In-
terface

XV

Glossary

Custom Resource Definition An extension to kubernetes which defines a new
resource kind.. 21

Requests Per Second A metric of how many requests are being sent or received
every second, i.e. A request rate of 100 RPS means 100 requests are being

sent every second.. 6

Service Mesh Interface A specification defining a set of standard resources for
service meshes in Kubernetes. 21

Xvii

Chapter 1

Introduction

1.1 Task

The client wants a datacenter agnostic assessment and evaluation done of a cer-
tain service mesh technologies’ performance and security characteristics in a rancher
2.X environment, with focus on:

e Access control policies e Performance
1. Scoping granularity level 1. Scaleability
2. Ease of configuration 2. Overhead

e Operational overhead 3. Resource usage

1. Difficulty learning ¢ Monitoring
2. Documentation . Mutua‘l TLS
e Maturity

The selection of service mesh technologies to investigate was made by the client
and consists of the following three service mesh technologies:

e Rancher’s version of Istio
e LinkerD 2
e Traefik Mesh

1.2 Scope and Limitations

Due to the complexity of these systems, this thesis will only be directly evaluating
the service mesh technologies themselves. Their components, such as their prox-
ies, are out of scope. However, where it is clear that the feature being evaluated
is implemented in the proxy’s configuration and not the mesh’s, further reference
for the reader will be given.

2 Marius J Nesset: Service Mesh Evaluation

Rancher environment

As this thesis is about evaluating in a Rancher 2.X environment, integration with
Rancher is prioritized before all; for example, even though the latest version of
Istio at the time of writing is 1.10, the latest supported by Rancher officially is
1.9.3; Thus it is the version of Istio evaluated.

Not an comparison

While this document is meant to be a potential aid in the selection process of a
service mesh technology, it is not meant to make that selection for the reader.
Therefore, particular emphasis is put on evaluating the technologies, not directly
comparing them towards each other.

Stock configuration

While it is possible to achieve better performance on all the service meshes by
tweaking them, it was decided not to tweak the meshes favouring keeping the
configuration as close to stock as possible. By keeping the stock configuration, the
performance measurements reflect a general use case, not that of a tailor-tuned
one.

1.3 Service Mesh Technologies

This section gives a brief description of service mesh technologies, how one works,
some relevant terminology, and a brief introduction to each of the selected service
mesh technologies.

1.3.1 What Is A Service Mesh Technology

A service mesh technology is a dedicated infrastructure layer that controls traffic
flow between services. It may also serve to monitor the services health, perform-
ance and traffic usage. [1]

Brief terminology

A service is an application or part of an application that has its traffic managed by
a service mesh technology, for example, a Kubernetes service or pod.

More formally, a distinction between meshed and non-meshed services might
be made, where meshed services referrer to those whose traffic is managed by the
service mesh technology. Similarly, a distinction between meshed and non-meshed
traffic can be made.

The term service mesh can depending on the context, refer to the overlaying
service mesh technology or the collection of meshed services within a particular
domain.

Chapter 1: Introduction 3

1.3.2 Selected Service Mesh Technologies

This section serves as a brief introduction to each of the service mesh technologies
to be investigated, as selected by the client in Section 1.1.

Istio

Istio was announced on the 24th of May 2017 as a joint effort between Google,
IBM, and Lyft [2]. It is the most popular service mesh in production, with a 47%
market share according to the Cloud Native Computing Foundation (CNCF)’s 2020
survey [3]. It was designed to be extensible [4] and it utilizes an extended version
of Envoy as a sidecar proxy [5].

Linkerd

Linkerd is widely considered to be the oldest service mesh [6], it began develop-
ment in 2015 [7] with version 1.0 releasing on the 25th of April 2017 [8]. It was
originally developed by Buoyant but has since changed hands to the CNCF. Like
Istio, it has a sidecar proxy-based architecture; however, it utilizes its own micro
proxy instead of a pre-existing one [9]. It aims to be lightweight and fast.

Please note that the terms LinkerD and LinkerD 2 are used interchangeably and
both refer to the rewritten version 2 of LinkerD known formally as LinkerD 2.

Traefik Mesh

Originally introduced as Maesh by Containous on the 4th of September 2019 [10],
and later renamed to its current name Traefik Mesh on the 1st of October 2020
[11] as part of a company wide rebranding [12]. Traefik mesh aims to be a non-
invasive service mesh, it achieves this goal by not using sidecar proxies or rewriting
IPTables inside of PODs [13], instead it makes its own DNS zone traefik.mesh,
which serves as a drop-in replacement for cluster.local [14]; More on how this
works is described in Section 1.3.3.

1.3.3 How traffic is meshed

When we say meshed traffic, we mean traffic managed by a service mesh. This
management is achieved by routing the traffic through a proxy. In other words,
meshed traffic just means traffic being routed through the service mesh’s proxy.
Within the scope of the service mesh technologies being evaluated, there are two
approaches to achieve this, both of which are described below.

An in-depth example of meshed traffic alongside figures visualizing traffic flow
can be found in Section 2.3

4 Marius J Nesset: Service Mesh Evaluation

Istio and LinkerD both use what is called the sidecar proxy approach [5] [15],
where an admission hook is installed [16]; The hook triggers when a pod be-
longing to a meshed service is created, and injects an extra container containing
a proxy application into the pod, as well as an initialization container which re-
writes the [PTables inside the application container to route all traffic through the
proxy container [16]. The injected proxy container is referred to as the sidecar
proxy, and is where most of the features are implemented as it’s where all traffic
to and from the pod will now flow through.

As all pods deployed will trigger the admission hook, Istio and Linkerd use
a label and an annotation, respectively, on either the pod, service or namespace
to denote which pods should be injected into [17]. They both offer a command-
line tool to automatically add these annotations/labels, in the form of istioctl and
linkerdctl, respectively. Though note that for any pod to get meshed, it must be
redeployed as the admission hook is only then fired [17]

Traefik Mesh deploys a stock Traefik Proxy on every host instead of a sidecar

proxy alongside every pod [11]. It then creates a new DNS zone called trae-
fik.mesh, which serves as a drop-in replacement for cluster.local, this DNS zone re-

turns records of the traefik proxy deployed on the current host. Note that with this
approach no IPTables are rewritten; Thus, it is non-invasive. However, a downside

is that it does not support automatic service meshing as it requires you to change

the domain of endpoints, being called by the applications to service.namespace.traefik.mesh
instead of service.namespace.cluster.local [14].

Chapter 2

Performance

This chapter is dedicated to measuring the performance characteristics of the ser-
vice mesh technologies. It details the tooling selection, methodology, test envir-
onments used to measure various performance characteristics. The results can be
found towards the end of each test. Note that that the final evaluation happens
in Chapter 4 and that no direct comparison will be drawn here as stated in the
limitations found in Section 1.2.

2.1 Tooling selection

This section serves to introduce the tools used for measuring the performance
characteristics of the service meshes.

2.1.1 Target application

The open-source example application Emojivoto by Buoyant was selected to be the
target application for the performance tests. It was selected due to its common-
ality and because it contains both HTTP REST and gRPC services, allowing the
performance of both protocols to be tested. You can find the original Emojivoto on
Github.!

Note that the vote-bot deployment typically found in Emojivoto has been re-
moved in favour of the load generator described in Section 2.1.2. You can find the
modified deployment files used for the performance tests on Gitlab.?

"https://github.com/BuoyantI0/emojivoto.git
2https://gitlab.com/DCSG2900/workspace/ - /tree/master/apps/emojivoto

https://github.com/BuoyantIO/emojivoto.git
https://gitlab.com/DCSG2900/workspace/-/tree/master/apps/emojivoto

6 Marius J Nesset: Service Mesh Evaluation

2.1.2 Load generator

In order to measure the performance of something, a stimulus is often required;
within the scope of web services, this stimulus often takes the form of a load
generator. The selection of which was done based on the following criteria, I came
up with based on previous experience:

1. What data they can record.

2. How precise they can record it (particularly response times).

3. The ability to issue requests at a constant Requests per second (RPS) rate.
4. Must not suffer from Coordinated Omission as described in 2.1.2.

The Coordinated Omission Problem

Coordinated Omission is a fault with how some load generators with constant RPS
capabilities schedule their requests. It occurs when a load generator only issues
new requests after the previous ones have completed, instead of at the point in
time needed to maintain the requested RPS rate [18].

This behaviour becomes problematic if response times become higher than
the needed request rate, as then the effective RPS rate will become lower than
requested [18] resulting in inconsistent data. Worse still is that this behaviour can
be masking out lousy performance; since subsequent requests, after a slow one,
will wait until the slow request completes, resulting in the severity of periodic
slowness being under-reported as fewer requests than usual will be issued in such
a situation.

The open source load generator Vegeta by Tomas Senart was selected as it
fufills all the criteria including not suffering from coordinated omission [19], the
source code for Vegeta can be found on its Github. 3

Target Endpoint Selection

The /API/leaderboard endpoint of Emojivoto’s web-svc was selected as the target
for Vegeta, as it causes web-svc to request further information from sve-voting and
svc-emoji, these calls are done over GRPC; Thus, a total of three service calls, of
which two are GRPC calls are issued by per GET request to the web-svc service’s
endpoint /API/leaderboard. A visualization of this can be found in Section 2.3.

2.1.3 Monitoring

A monitoring application is needed to record metrics not already recorded by Ve-
geta, of particular concern is the collection of resource usages. While many monit-
oring solutions exists; The selection of a monitoring solution was greatly reduced
by the fact offical Rancher chart for Istio depends on the rancher-monitoring chart

3https://github.com/tsenart/vegeta

https://github.com/tsenart/vegeta

Chapter 2: Performance 7

[20], resulting in the rancher-monitoring chart needing to have been installed re-
gardless.

As rancher-monitoring comes with Grafana, Prometheus, node-exporter and
prom-operator, no additional monitoring tools were required. The rancher-monitoring
chart was present for all performance tests for all service meshes. Specifically ver-
sion 14.5.100 of the rancher-monitoring chart is used.

Note that Traefik Mesh and Linkerd 2 both come with their own instances of
Prometheus and Grafana, meaning that when testing these meshes two instances
of Grafana and Prometheus were present in the cluster.

It is possible to disable these instances and configure Traefik Mesh and Linkerd
2 to use the prometheus found in rancher-monitoring directly [21]; However this
was not done in favour of running the service meshes as close to stock as possible,
it was also deemed to be a none-issue as the impact is negigable due to their
relatively low scrape intervals of 10s for Traefik Mesh [22] and 30s for Linkerd 2
[23].

2.2 Testing environment

In order to create a consistent test environment an Openstack HEAT template
that automatically deploys the testing environment was developed for this thesis,
it can be found alongside other tools made for this thesis on Gitlab.*

The template is configured and deployed as an Openstack stack in NTNU’s
Openstack Environment. In order to ensure a fresh slate before every test, the en-
tire stack is redeployed before every test and every test re-run.

The template deploys a Manager node and configures it to host a bind9 DNS
server and a K3S version 1.19.7 cluster where Rancher is then installed. The nodes
needed by the high availability environment described in Section 2.2.2 are also
deployed and configured by the template. The specifications for the Manager node
are listed in Table 2.1.

Manager Node
CPU Dual-vCPU; 2C 1T
RAM 16 GiB
Platform | NTNU Openstack
Flavor m1.large
(O Ubuntu 18.04 LTS
Kernel 4.15.0-76-generic

Table 2.1: Manager Node Specifications

“https://gitlab.com/DCSG2900

https://gitlab.com/DCSG2900

8 Marius J Nesset: Service Mesh Evaluation

Rancher is configured in multicluster mode managing three clusters, the local
cluster, the high availability dcsg2900ha cluster and the low latency dcsg2900l1
cluster. The local cluster is where rancher itself runs, being the K3S cluster running
on the Manager node.

The low latency and high availability clusters are specialized test environ-
ments running version 1.1.17 of RKE and are both imported into and managed by
Rancher. They are described in Section 2.2.1 and Section 2.2.2 respectively. Each
test describes in its methodology section which test environment it utilizes.

2.2.1 Low Latency Testing Environment

This section describes the low latency test environment, which makes up the
dcsg29001l RKE cluster as stated earlier in Section 2.2. This environment is not
designed to accurately simulate a real-world scenario, but instead allows for con-
sistent and accurate latency measurements by removing as many "black box" vari-
ables as possible.

The problems with measuring a black box

Idealistically we would be able to describe the performance of all systems in a
manner not tied to the variable performance of the medium it is run on; An con-
crete example of this is expressing the performance of sorting algorithms using
Big-O notation. Unfortunately, this approach becomes unfeasible at the complex-
ity level of service mesh technologies. Instead, we resort to essentially measure a
black box’s latency to process some input in a controlled environment.

However, designing such an environment suitable to measure latencies ac-
curately is a crucial but none trivial task; As many variables can attribute to a
system’s overall latency, many of which are intermittent and overlooked by many
when designing test environments.

For example, the response times between two services not only reflect how
fast the services processed the request but also:

e How fast the network infrastructure between the two servers could transmit
the data between them.

e What the availability of CPU time was at the time of arrival.

e How fast the CPU could process it and create a response

e Finally, the networking infrastructures time again to send the response.

All of these variables can change over time; Thus, it is crucial to remove as many of
these variables as possible in order to get accurate and consistent measurements.

Design decisions behind the low latency environment

Therefore a special environment was needed. This section serves to describe the
measures taken to reduce these aforementioned variables as much as possible.

Chapter 2: Performance 9

In order to remove latencies associated with networking between nodes run-
ning the latency tests, a single node called latency-test runs all the processes asso-
ciated with the test, including monitoring, the test application and load generator.
This removes latencies associated with cross-node networking, as all communic-
ation between services occurs internally.

To reduce variable processing availability associated with virtualization the
latency-test node runs directly on bare metal hardware and is not virtualized like
the other nodes, the specifications to this node is found in Table 2.3. Using a
bare-metal node not only removes the associated overhead with virtualization
and hypervisors but also reduces the inherent volatility of processing power that
can occur in virtualized environments with shared resources. The hardware node
is also underutilized in order to further ensure no resource availability problems.

Table 2.2: Low latency Environment node specifications

Latency Test Node
CPU AMD EPYC 7402P 24-Core Processor @ 2.8GHz
RAM 64GB
Platform Equinix Metal
RKE Roles Worker
(01 Flatcar Linux 2765.2.3 Stable
Kernel 5.10.32

Table 2.3: Latency-test node specs

2.2.2 High availability environment

For tests less concerned with latencies and more concerned with reflecting opera-
tional costs such as resource consumption and utilization, an environment reflect-
ing a more standard setup was needed. A High availability environment per RKE’s
recommendations [24] is therefore set up. The OpenStack template deploys all
nodes in this environment.

10 Marius J Nesset: Service Mesh Evaluation

The High availability environment consists of three etcd nodes, two control-
plane nodes and four worker nodes. Each node only have a single RKE role as
recommended for downstream user application clusters [24], the RKE role as-
signed is the same as their name, i.e etcd nodes have the etcd role. The specs of
each node type is found in table 2.4

The worker nodes are where the workload associated with a test are scheduled
to; how the test workload is dispersed among these nodes is documented in the
tests using this environment.

Etcd Nodes Worker Nodes
CPU Dual vCPU; 2C 1T CPU Dual vCPU; 4C 1T
RAM 16 GiB RAM 16 GiB
Platform | NTNU Openstack Platform | NTNU Openstack
Flavor ml.large Flavor cl.tiny
RKE Role | etcd RKE Role | worker
Count 3 Count 4
(0 Ubuntu 18.04 LTS oS Ubuntu 18.04 LTS
Kernel 4.15.0-76-generic Kernel 4.15.0-76-generic
(a) Specifications for etcd nodes. (b) Specifications for worker nodes.
Controlplane Nodes
CPU Dual vCPU; 2C 1T
RAM 16 GiB
Platform | NTNU Openstack
Flavor m1.large
RKE Role | controlplane
Count 2
(O} Ubuntu 18.04 LTS
Kernel 4.15.0-76-generic

(c) Specifications for controlplane nodes.

Table 2.4: Node type specifications for high availability environment cluster.

Chapter 2: Performance 11

2.3 Visualizing meshed traffic of target
This section serves to visualize the flow of network traffic from Emojivoto’s web-
svc pod when the endpoint /api/leaderboard has been called; being the endpoint

selected to be the target for the tests as described in Section 2.1.2. Note that the
responses to these calls is not visualized.

2.3.1 With no service mesh installed

The web-svc calls a function in svc/voting and svc/emoji over gRPC, this call is
directed towards the service, which then resolves to the pod.

@ Emojivoto namespace
grpe://sve-voting @ @
‘ svc/voting Voting pod
‘ grpiisve-emoji @ @

svc/emoji Emoji pod

Figure 2.1: Traffic flow from Web pod when not in a service mesh.

2.3.2 With Traefik Mesh installed

Note that the endpoint has been appended with traefik.mesh in order to route the
traffic through the mesh as described in Section 1.3.2. They are now resolved to a
set of services created by Traefik Mesh which forwards the request to the Traefik
proxy pod deployed on each host; The Traefik proxy then forwards it to the real
services in emojivoto which forwards it to the destination pods.

_@ Emojivoto namespace

Traefik-Mesh Namespace

grpe://sve-voting traefik. mesh @ @ @ @

voting service and pod

Traefik proxy forwards

grpc://svc-emoji.traefik. mesh @

emoji service and pod

web pod

Figure 2.2: Traffic flow from Web pod when using Traefik Mesh.

12 Marius J Nesset: Service Mesh Evaluation

2.3.3 With Istio or Linkerd installed

Since both Linkerd and Istio both use a sidecar proxy, their traffic flow is virtually
identical except for which proxy they utilize as their sidecar. Note that since we
are not concerned with multiple containers inside the same pod, the visualization
of pods has changed to show the containers running inside of them.

Inside the web pod, the web container has had its IP tables rewritten and sends
its requests to the sidecar proxy container running along side it. The sidecar proxy
then forwards the request to the sve/voting and sve/emoji services, who forward
it to the voting and emoji pods, respectively; The request is then fetched by the
sidecar containers for these pods, before finally being forwarded to the destination
containers.

_@ Emojivoto namespace
@Voting pod

grpc://sve-voting @) @
@ Web pod ’ WY Envoy sidecar proxy
: svc/voting
gﬁvoy sidecar pro [@ emoji pod

’ grpc://svc-emoji
&
eIy Envoy sidecar proxy

svc/emoji
_@ Emojivoto namespace
@ Voting pod
grpc://sve-voting ‘ @
@ Web pod ’ @ linkerd

. LinkerD sidecar proxy
svc/voting

@é o o

LinkerD sidecar proxy :

’ grpc://svc-emoji rriﬁ
linkerd

" LinkerD sidecar proxy
svc/emoji

(a) Istio traffic flow

(b) LinkerD 2 traffic flow

Figure 2.3: Traffic flow from Web pod with sidecar proxy based service meshes.

Chapter 2: Performance 13

2.4 Measuring Latencies At Various Constant Loads

As mentioned in 1.3.3, and visualized in 2.3; Traffic flowing through the mesh
flows through a proxy, where most of their features are implemented. From a
latency standpoint, going through the proxy of these service meshes is not without
cost as it not only goes through an extra hop, but time will be spent processing it
as well.

Therefore, the latencies introduced by these proxies are an important metric
to investigate, as it affects all traffic going through the service mesh. Especially
with LinkerD 2 and Istio, due to them having one proxy per pod, if both sides of
the connection are part of the service mesh, traffic will flow through 2 proxies and
not just one.

2.4.1 Methodology

The low latency environment described in Section 2.2.1 is used for this test. All
resources related to the test are deployed to the bare-metal latency-test worker
node, including the service mesh being tested. Each service mesh is individually
installed, tested and cleaned up; this is repeated three times.

For each test

All the services belonging to the target application described in Section 2.1.1 and
the load generator itself described in Section 2.1.2 are meshed.

An automated script testandfetch.sh is then used to run the test, it configures
Vegeta to apply a load starting at 100RPS and increasing in discrete steps every
minute by another 100RPS ending with a 2000 RPS run. For each discrete step
the results of that run are pulled down before the next one is launched, the target
of the load is always that described in Section 2.1.2, being the /api/leaderboard
endpoint of the web-svc service. The script can be found on Gitlab.”

2.4.2 Metrics

What is measured here is the response time of calls to /api/leaderboard at various
constant loads. There are two popular ways to display and interpret this data:
percentiles and heatmap histograms.

Percentiles

Percentiles are a popular method of interpreting a large data set, they are a form
of averages which denotes a value which that X percent of your data is either less
or equal to, X being the percentile often prefixed by the capital letter 'P’. [25]

Shttps://gitlab.com/DCSG2900/workspace/-/blob/master/Latency/testandfetch.sh

https://gitlab.com/DCSG2900/workspace/-/blob/master/Latency/testandfetch.sh

14 Marius J Nesset: Service Mesh Evaluation

For example, a P99 response time of 2ms means that of 99% of all requests
completed within 2ms; alternatively, one could say the 99th percentile of the ap-
plication is 2ms.

To calculate a precentile Sort your dataset by the metric you wanna calculate
the percentile for, then discard the inverse to the percentile being calculated pre-
cent of the worst-performing datapoint; the remaining worst data point is now
your percentile.

Heatmap

A more modern interpretation is heatmaps; unlike percentiles which discards a
set of data and gives you an upper bound for your response times, heatmaps can
reveal behavioural relationships in the data set.

A heatmap is essentially a table with an discrete X and Y axis. The X-axis is
often either time or increasing RPS load, while the Y-axis is split into ranges often
called buckets or bins. The entire dataset is then categorized into the cells where
they fit the X and Y-axis criteria. A program was written for this thesis to generate
the heatmaps from CSV encoded Vegeta output, and it can be found on Gitlab.®

To aid readability the cells are coloured based on a percentage calculated for
each cell; the percentage is also shown in parentheses behind the count for each
cell.

The percentage is calculated based on the count in that cell and the total count
for that discrete step of the X-axis. A grayscale colourmap where perfect black is
0% and perfect white is 100% is used for the cell colour.

> 5ms K] 0 (0%) > 2.5 ms PR 0 (0%)
5-7 ms 0 (0%) 0 (0%) 2-2.5 ms 7 (46%) 6 (40%)
3-5 ms 0 (0%) 0 (0%) 1.5-2 ms 0 (0%) 0 (0%)
1-3 ms 1-1.5 ms [ENEEIZ NN ERTTY
< 1ms RN 4 (27%) < 1ms 3 (20%) 4 (27%)
Now -5m | Now Now -5m | Now
(a) Bucket size of 2ms reveals no behavi- (b) Bucket size of 0.5ms reveals an behavi-
oural pattern. oural pattern.

Table 2.5: Example showing how bucket size selection can mask data

The range covered by a bucket or bin is called the bucket size, and it should
be constant between all buckets except for the last and first buckets, which catch
the bounding extremities.

6h‘ctps ://gitlab.com/DCSG2900/heatmap-generator

https://gitlab.com/DCSG2900/heatmap-generator

Chapter 2: Performance 15

The selection of bucket size is important as it can hide or reveal relationships
in the dataset.

For example, a behaviour where every other request took an extra 1ms to
respond due to a problem with the cache only living for a short while, can easily
be revealed with a small enough bucket size as seen in Table 2.5b, but masked by
a larger bucket size as seen in Table 2.5a.

2.5 Results

As the heatmaps are to large to display horizontally, they have been split in two
and are displayed vertically. Please see Table 2.7, Table 2.8 and Table 2.9 for the
results displayed as heatmaps. P95 and P99 percentiles are depicted in Table 2.6
and Figure 2.4 respectively.

Table 2.6: P95 Latencies in table

rps traefik | linkerd | istio

200 | 717us | 1086us | 1354us
400 | 681us | 1063us | 1362us
600 | 634us | 879us 1239us
800 | 622us | 876us | 1259us
1000 | 627us | 868us | 1323us
1200 | 697us | 875us | 1466us
1400 | 636us | 943us 1525us
1600 | 660us | 989us | 1479us
1800 | 732us | 1023us | 1626us

B traefik [linkerd istio

1.5
1
) JI II II II II
0
100 500 900

1500 1900

s

Figure 2.4: P99th response times for various RPS rates.

on

. 0 (0.0%) 0 (0.0%) | 0(0.0%) | 0(0.0%) | 0(0.0%) 0 (0.0%) | 0(0.0%) | 0(0.0%) 0 (0.0%) | 0(0.0%)

3 37 (0.6%) 37(03%) | 61(0.3%) | 77 (0.3%) | 82 (0.2%) 98 (0.2%) | 135(0.3%) | 168 (0.3%) 190 (0.3%) | 280 (0.4%)
lw 488 (8.4%) 409 (3.5%) | 1040 (5.9%) | 851 (3.6%) | 819 (2.8%) 1021 (2.9%) | 1157 (2.8%) | 1509 (3.2%) 1733 (3.3%) | 2253 (3.8%)
= 798 (13.7%) 404 (3.4%) | 1654 (9.4%) | 1075 (4.6%) | 498 (1.7%) EECED) 332 (0.8%) 364 (0.7%) 926 (1.7%) 742 (1.2%)
M 1355 (23.3%) 899 (7.7%) | 2391 (13.7%) | 1491 (6.4%) | 1419 (4.8%) 963 (2.7%) 1031 (2.5%) | 1281 (2.7%) 1337 (2.5%) | 16012 (27.4%)
3 2809 (48.4%) 5061 (43.5%) | 7731 (44.3%) | 9526 (40.9%) |"EZZFAGITIZON] 13461 (38.6%) | 16538 (40.6%) | 18288 (39.3%) 22233 (42.3%) 23522 (40.3%)
= 315 (5.4%) [4806 (41:3%)" | 4559 (26.1%) |110220/(43:9%)"| 10573 (36.2%) LN DML DN ZEE NGO NN260201(4916%)) 15473 (26.5%)
8 0 (0.0%) 1 (0.0%) 3 (0.0%) 4 (0.0%) 0 (0.0%) 2 (0.0%) 1 (0.0%) 7 (0.0%) 3 (0.0%) 2 (0.0%)

s 0 (0.0%) 0 (0.0%) | 0 (0.0%) | 0(0.0%) | 0(0.0%) 0 (0.0%) | 0(0.0%) | 0(0.0%) 0 (0.0%) | 0(0.0%)

S 0 (0.0%) 0 (0.0%) | 0 (0.0%) | 0(0.0%) | 0(0.0%) 0 (0.0%) | 0(0.0%) | 0(0.0%) 0 (0.0%) | 0(0.0%)

i 0 (0.0%) 0 (0.0%) | 0(0.0%) | 0(0.0%) | 0(0.0%) 0 (0.0%) | 0(0.0%) | 0(0.0%) 0 (0.0%) | 0(0.0%)

2 0 (0.0%) 0 (0.0%) | 0(0.0%) | 0(0.0%) | 0(0.0%) 0 (0.0%) | 0(0.0%) | 0(0.0%) 0 (0.0%) | 0(0.0%)

b 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Z 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

~ 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

2

~

W (a) Heatmap showing response times from Istio and varying loads from 100PRS to 1000RPS.

0 (0.0%)

2013 (3.1%)
7 (0.0%)

0 (0.0%)
0 (0.0%)
0 (0.0%)
0 (0.0%)
0 (0.0%)
0 (0.0%)
1100 RPS

16

0 (0.0%)

17268 (21.1%)
11833 (14.5%)
0 (0.0%)
0 (0.0%)
0 (0.0%)
0 (0.0%)
0 (0.0%)
0 (0.0%)

6743 (9.1%)
119 (0.1%)
0 (0.0%)

0 (0.0%)

0 (0.0%)

0 (0.0%)

0 (0.0%)

0 (0.0%)

0 (0.0%)

0 (0.0%)
1300 RPS

0 (0.0%)
1400 RPS

5030 (5.7%)
2615 (2.9%)
1 (0.0%)
0 (0.0%)

0 (0.0%)

0 (0.0%)

0 (0.0%)
1500 RPS

38475 (41.6%) 32591 (32.8%)
20938 (22.6%))]

0 (0.

0%)

21161 (21.3%
1 (0.0%)

0 (0.0%)

0 (0.0%)
0 (0.0%)
0 (0.0%)

0 (0.

0%)
1600 RPS

0 (0.0%)

1700 RPS 1800 RPS

29076 (27.8%)
10353 (9.9%)

13102 (11.8%)
6353 (5.7%)

3 (0.0%)

0 (0.0%)

7457 (6.4%)
987 (0.8%)

0 (0.0%)
0 (0.0%)

0 (0.0%)
1900 RPS

0 (0.0%)
2000 RPS

(b) Heatmap showing response times from Istio and varying loads from 1100PRS to 2000RPS.

Table 2.7: Heatmaps of Istio showing response buckets at loads from 100RPS to 2000RPS.

17

: Performance

Chapter 2

‘SAY000T 01 SAUOOT Woij speof e s1eydng asuodsar Suimoys pioqur] jo sdeunesH :8'g 9[qeL

*SdY000T 01 SYJOOT T Woij speo| 3uldieA pue pIoyUur] woij sswrn asuodsar 3uimoys deunesy (q)

Sdyd 0061 Sdy 0081
(%0°0) 0 (%0°0) 0
(%0°0) 0 (%0°0) 0
(%0°0) 0 (%0°0) 0

(%1°0T) ¥6STT | (%L'1T) SLYET
(%1°69) €598Z | (%E°LS) 60819

(%¥°ST) 86591
(%9°T) 18T
(%I°D) €TT

(%9°0) ¥99
(%9°0) 1S4
(%1°1) 8221
(%1°0) 861
(%0°0) 0

(%0°€T) 848¥T
(%9°€) 9T
(%0°'T) ThTT
(%6°0) $201T
(%9°0) 02L
(%T'T) €6€1
(%1°0) STT

(9%0°0) 0

Sd¥ 0001
(%00 0
(%0°0) 0 (%0°0) 0
(%0°0) 0 | (%0°0) 0 |
(%0°0) 0 | (%0°0) 0 |
(%0°0) € | (%0°0) T |

(%9°'59) 9426€ | (%8'29) ¥68EE€ | (%L°SS) 9049C
(%S°0b) 6ZH61
(%' 1) 149 (%€°1) 985 (%9°1) +8S
(%€°0) TLT (%€°0) 1ST (%¥°0) ¥¥1
(%€°0) 8ST (%€°0) SPT (%z°0) SOt
(%5°0) 94T (%S°0) 02T (%t°0) LLT

(%8°08) L8YST | (%L'€E) TLIST
(%1°T) 899 (%0°1) SLS
(%+°0) ¥92 (%b°0) 022
(%€°0) 96T (%€°0) £0T
(%+°0) €92 (%€°0) 98T
(%S0) ¥SE | (%S°0) 667 |
(%+°0) 167 | (%S°0) SLT |

(%1°0) 69 | (%1°0) +9 |

(%0°0) 0 (%0°0) 0

Sd¥ 0041
(%0°0) 0
(%0°0) 0
(%0°0) 0
(%0°0) 0
(%0°0) 0

(%¥°L€) 9E€18€

(%0°0%) STLOY
(%L°LT) 0608T
(%1°1) 81¢T
(%6°0) L66
(%L£°0) SEL
(%9°0) 029
(%0°T) ¥+01
(%2°0) T€T
(%0°0) 0

(%0°0) 0
(%0°0) 0
(%0°0) 0

(%¥°0) ¥2T
(%¥°0) 01T
(%T1°0) 6S

(%8°0v) 61TLT

Sd¥ 0091
(%0°0) 0
(%0°0) 0
(%0°0) 0
(%0°0) 0

(%9°L) 60€L
(%€°T) 90€T
(%8°0) 86L
(%8°0) S8
(%S°0) 88%
(%6°0) 868
(CANOR)H
(%0°0) 0

(%0°0) 0 |
(%0°0) 0 |
(%0°0) T |

(%+°0) ¥8T |
(%€°0) 59T |
(%1°0) S |

(%8'6€) 9TEVT

Sd¥ 00S1
(%0°0) 0
(%0°0) 0

(%8°€) 9S¥€
[CAIY QR
(%9°0) 209

(%9°0) 129
(%1°0) Th
(%0°0) 0

(%0°0) 0 (%0'0) 0 (%0°0) 0
(%0°0) 0 (%0°0) 0 (%0°0) 0

(%0°0) 0 |
(%00 0 |
(%0°0) 0 |

Sdd 00¥1 Sdd 00€1 Sd¥ 00¢C1

(%0°0) 0 (%0°0) 0
(%0°0) 0 (%00) 0

(%0°0) 0 (%0°0) 0 (%0°0) 0

(%I¥9) ¥066v

(%€°L€) 16TTE (%9°0€) €88€T | (%L0E) ¥80TT

(%8°11) ¥166 (%1 (%0°1) 89

(%L
(%S

(%9
(%1

'0) TH9 (%9°0) S€S (%.£°0) TTS
'0) 6€¥ (%S°0) ¥O¥ (%€°0) S9T
(%%°0) 92€ (%S°0) LT¥

'0) £9S (%S°0) 0S¥ (%S°0) 92¥
'0) 9¢1T (%1°0) 00T (%1°0) 86

(%0°0) 0 (%0°0) 0 (%0°0) 0

(%0°0) 0
(%0°0) 0
(%0°0) 0
(%0°0) 0
(%0°0) 0

(%5°SS) 662€T | (%E'9S) £520T | (%9°LS) TSTLI
(%T°LE) EETTT
(%172) ¥+9
(%8°0) 2¥T
(%5°0) ST
(%L°0) 0€T

@%H0) 8¥T | (%h°0) 62T
%E0) svT | (%H0) 02T

%1°0) b |

(%0°0) 0 (%0°0) 0 (%0°0) 0

(%1°0) LE

(%0°0) 0

(%0°0) 0 (%0°0) 0 (%0°0) 0
(%0°0) 0 (%0°0) 0 (%0°0) 0
(%0°0) 0 | (%0°0) 0 (%00 0 |
(%0°0) 0 | (%0°0) 0 (%0°0) 0
(%0°0) 0 | (%0°0) 0 (%0°0) 0 |
| (us¥1) 029z | (%9°€€) EE0F |
(%€9€) 0048 | (%8°EE) ££09 | (%L'Sh) 9LkS
(%€'S) 9821 | (%0'61) TThE (%6'0T) 90T
(W1'S) svL | (WY'ED) ¥Tbe (%T'S) 929
(%6'D) Ly | (WT11) S20C (%T'T) ¥iT
0T 0vT | (WESD+96 (%6°0) STT
(%+'0) 20T | (%2'1) TET (%#°0) LS |
(%5°0) ST | (%0°'T) 181 (%5°0) TZ
(%1°0) 22 | (%1°0) ¥ (%1°0) 81 |

(%0°'0) 0 (%0°0) 0 (%0°0) 0

Sd¥ 0011
(%0°0) 0
(%0°0) 0
(%0°0) 0

(%T'1) 9€8
(%€°0) ¥ST
(%t°0) ¥LT
(%9°0) 60
(%t°0) TOE
(%S°0) ¥LE
(%T1°0) S6
(%0°0) 0

(%0°0) 0

(%0°0) 0

(%0°0) 0
©%0°0) 0
(%0'0) T
(%S°91) 166

(%€°S€) 611T
(%9°'12) 6621

(%T°€T) 06L

(%0°8) 08

(%¥°€) 90T
(%9°0) 6€
(%8°0) €S

(%T1°0) TT

(%0°0) 0

ion

Service Mesh Evaluat

Marius J Nesset

18

0 (0.0%) 0 (0.0%) | 0(0.0%) | 0(0.0%) | 0(0.0%) 0 (0.0%) | 0(0.0%) | 0(0.0%) 0 (0.0%) | 0(0.0%)
9 (0.1%) 13(0.1%) | 15(0.0%) | 15 (0.0%) 31 (0.1%) 33 (0.0%) | 32 (0.0%) 43 (0.0%) 46 (0.0%) | 50 (0.0%)

29 (0.4%) 32.(0.2%) 73 (0.4%) 96 (0.4%) 106 (0.3%) 127 (0.3%) 149 (0.3%) 188 (0.3%) 221 (0.4%) 228 (0.3%)
12 (0.2%) 35 (0.2%) 36 (0.2%) 53 (0.2%) 64 (0.2%) 69 (0.1%) 91 (0.2%) 98 (0.2%) 135 (0.2%) 153 (0.2%)
21 (0.3%) 26 (0.2%) 55 (0.3%) 72 (0.3%) 84 (0.2%) 110 (0.3%) 134 (0.3%) 188 (0.3%) 158 (0.2%) 221 (0.3%)
13 (0.2%) 42(03%) |47 (0.2%) | 87 (0.3%) 86 (0.2%) 148 (0.4%) 182 (0.4%) 193 (0.4%) 223 (0.4%) 209 (0.3%)

15 (0.2%) 25 (0.2%) 47 (0.2%) 77 (0.3%) 94 (0.3%) 143 (0.3%) 187 (0.4%) 217 (0.4%) 239 (0.4%) 262 (0.4%)
184 (3.0%) 92 (0.7%) 261 (1.4%) 95 (0.3%) 131 (0.4%) 106 (0.2%) 126 (0.3%) 108 (0.2%) 187 (0.3%) 248 (0.4%)
656 (10.9%) 433 (3.6%) 1889 (10.4%) | 429 (1.7%) 379 (1.2%) 222 (0.6%) 241 (0.5%) 211 (0.4%) 328 (0.6%) 397 (0.6%)
1678 (27.9%) 1968 (16.4%) | 4973 (27.6%) | 2334 (9.7%) 2450 (8.1%) 1766 (4.9%) 1751 (4.1%) 1851 (3.8%) 1998 (3.7%) 2013 (3.3%
Sy G 7051 (58.7%) | sk e 16455 (68.5%) | 22320 (74.4%) | 25999 (72.2%) | 29382 (69.9%) | 33893 (70.6%) | 37877 (70.1%) | 40886 (68.1%)

607 (10.1%) 2256 (18.8%) | 1596 (8.8%) | 4241 (17.6%) | 4159 (13.8%) 7136 (19.8%) | 9566 (22.7%) 10833 (22.5%) 12376 (22.9%) | 15061 (25.1%)

0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.0%)

0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

| 7 7

18 (0.3%) 27 (0.2%) 7 52 (0.2%) 7 46 (0.1%) 96 (0.3%) 141 (0.3%) 159 (0.3%) 177 (0.3%) 212 (0.3%) 7 271 (0.4%)
| | |
| | |

(a) Heatmap showing response times from Traefik Mesh and varying loads from 100PRS to 1000RPS.
0 (0.0%) | 0(0.0%) 0 (0.0%) 0 (0.0%) | 0(0.0%) 0 (0.0%) 0 (0.0%) | 0(0.0%) 0 (0.0%) 0 (0.0%)

53 (0.0%) 1205 (1.6%) 70 (0.0%) 94 (0.1%) 78 (0.0%) 117 (0.1%) 117 (0.1%) 117 (0.1%) 125 (0.1%) 175 (0.1%)
305 (0.4%) 7 407 (0.5%) 435 (0.5%) 495 (0.5%) 516 (0.5%) 600 (0.6%) 732 (0.7%) 793 (0.7%) 861 (0.7 959 (0.7%)

180 (0.2%) 150 (0.2%) 193 (0.2%) 239 (0.2%) 271 (0.3%) 275 (0.2%) 237 (0.2%) 321 (0.2%) 402 (0.3%) 440 (0.3%)
255 (0.3%) 218 (0.3%) 288 (0.3%) 292 (0.3%) 380 (0.4%) 387 (0.4%) 434 (0.4%) 446 (0.4%) 460 (0.4%) 587 (0.4%)

307 (0.4%) 7 272 (0.3%) 362 (0.4%) 416 (0.4%) 463 (0.5%) 497 (0.5%) 554 (0.5%) 672 (0.6%) 701 (0.6%. 725 (0.6%)
290 (0.4%) 260 (0.3%) 485 (0.6%) 540 (0.6%) 632 (0.7%) 670 (0.6%) 756 (0.7%) 823 (0.7%) 872 (0.7%) 1035 (0.8%)
301 (0.4%) 7 316 (0.4%) 412 (0.5%) 586 (0.6%) 703 (0.7%) 734 (0.7%) 753 (0.7%) 886 (0.8%) 1008 (0.8%) 1054 (0.8%)
312 (0.4%) 7 286 (0.3%) 493 (0.6%) 446 (0.5%) 500 (0.5%) 580 (0.6%) 700 (0.6%) 830 (0.7%) 951 (0.8%) 979 (0.8%)
459 (0.6%) 405 (0.5%) 450 (0.5%) 428 (0.5%) 506 (0.5%) 471 (0.4%) 511 (0.5%) 722 (0.6%) 901 (0.7%) 1116 (0.9%)
1898 (2.8%) 7 2881 (4.0%) 1844 (2.3%) 1836 (2.1%) 2217 (2.4%) 2227 (2.3%) 2371 (2.3%) 2612 (2.4%) 2466 (2.1%) 2659 (2.2%)
46183 (69.9%) | 51210 (71.1%) | 52117 (66.8%) | 55402 (65.9%) | 57241 (63.6%) | 61004 (63.5%) | 64823 (63.5%) | 67530 (62.5%) | 70993 (62.2%) | 77736 (64.7%)
15457 (23.4%) | 14390 (19.9%) 20851 (26.7%) 23227 (27.6%) | 26492 (29.4%) 28437 (29.6%) 30012 (29.4%) | 32249 (29.8%) 34260 (30.0%) 32535 (27.1%)
0 (0.0%) 7 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.0%) 1 (0.0%) 1 (0.0%) 0 (0.0%) 1 (0.0%) 0 (0.0%)

0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

1100 RPS 1200 RPS 1300 RPS 1400 RPS 1500 RPS 1600 RPS 1700 RPS 1800 RPS 1900 RPS 2000 RPS

(b) Heatmap showing response times from Traefik Mesh and varying loads from 1100PRS to 2000RPS.

Table 2.9: Heatmaps of Traefik Mesh showing response buckets at loads from 100RPS to 2000RPS.

Chapter 2: Performance 19

2.6 Resource usage

An important factor to consider when evaluating any technology is its cost, here
we are specifically interested in its resource usage as that will be a driving factor
for scaleability and operation costs. This test serves to measure the resource re-
quirements of the service mesh technologies, in particular their proxies as that is
what will scale the most with load.

2.6.1 Methodology

To depict a real world scenario the high availability environment described in Sec-
tion 2.2.2 is utilized for this test, the target application and loadgenerator are also
deployed in a high availability manner; Specifically a pod for each of Emojivoto’s
components: Web, voting and emoji pods are run on each worker node, the same
is true for the Vegeta loadgenerator described in Section 2.1.2; In total 4 instances
of vegeta, web, emoji and voting alongside the service mesh being tested exists in
the cluster. Each service mesh is individually installed, tested and cleaned up.

A test run starts with configuring each of the vegeta instances to generate a
load of 200 RPS (thus a total of 800 RPS, since there are 4 replicas each sending
200 each) for 20 minutes towards the target endpoint described in Section 2.1.2.
Prometheus collects resource usage information during the test from all containers
including the sidecar proxies and Traefik’s proxies, these are then displayed in
Grafana. Once the CPU usage has stabilized (on average around 4 minutes into
the run), the following data is recorded for each (sidecar-)proxy:

e Average CPU quote over 10 minutes.
e Highest CPU in the same 10 minute frame.
e Highest Ram usage.

2.6.2 Results

Traefik mesh

IT seems that Traefik Mesh distributed the load mainly between node 2 and node
4, while barely utilizing node 1. Node 2 was sporadically used. Its worth noting
that Traefik Mesh had the lowest total resource usage of all the service meshes.

Table 2.10: Resource usage of Traefik Mesh

Proxy | Ram CPU Max | CPU Avg
Node 1 | 18.23 MiB | 0.175 0.15
Node 2 | 21.18 MiB | 2.02 2.02
Node 3 | 19.77 MiB | 0.846 0.38
Node 4 | 20.61 MiB | 1.85 1.81
Total 79.79 MiB | 4.89 4.36

20 Marius J Nesset: Service Mesh Evaluation

Istio

Istio is clearly very memory hungry, having upwards of a GiB in total memory
usage, 10 times more then the other meshes. It also does not seem to have done
a great job load balancing with its default behaviour.

Table 2.11: Resource usage of Istio

Sidecar | Ram CPU Max | CPU Avg
Web 1 63.75MiB | 0.617 0.613
Web 2 69.28 MiB | 0.507 0.504
Web 3 68.72 MiB 0.519 0.507
Web 4 244.32 MiB | 1.23 1.21
Voting 1 | 53.37 MiB | 0.137 0.133
Voting 2 | 55.31 MiB | 0.136 0.134
Voting 3 | 55.14 MiB | 0.406 0.403
Voting 4 | 54.98 MiB 0.166 0.163
Emojil | 57.27 MiB | 0.312 0.306
Emoji 2 | 57.55MiB | 0.386 0.382
Emoji 3 | 68.03 MiB | 0.984 0.944
Emoji 4 | 60.04 MiB | 0.304 0.300
Vegeta 1 | 43.32 MiB 0.120 0.117
Vegeta 2 | 43.01 MiB | 0.144 0.141
Vegeta 3 | 45.45 MiB | 0.350 0.345
Vegeta 4 | 44.47 MiB | 0.126 0.120
Total: 1084 MiB 6.444 6.322

Linkerd

Linkerd seems to have done the best when it comes to balancing the load across
the services, especially with the web service, it used barely over 100MiB in total
of Ram, and had very consistent CPU utilization.

Table 2.12: Resource usage of Linkerd

Sidecar | Ram CPU Max | CPU Avg
Web 1 9.41 MiB 0.725 0.706
Web 2 9.27 MiB 0.723 0.710
Web 3 9.01 MiB 0.700 0.696
Web 4 9.28 MiB 0.688 0.685
Voting 1 | 4.73 MiB 0.137 0.130
Voting 2 | 4.91 MiB 0.0978 0.0955
Voting 3 | 4.83 MiB 0.128 0.120
Voting 4 | 4.95 MiB 0.122 0.119
Emoji 1 | 4.95 MiB 0.501 0.483
Emoji 2 | 4.99 MiB 0.485 0.481
Emoji 3 | 4.80 MiB 0.559 0.545
Emoji 4 | 4.91 MiB 0.461 0.448
Vegeta 1 | 8.39 MiB 0.271 0.266
Vegeta 2 | 7.41 MiB 0.0981 0.0951
Vegeta 3 | 7.50 MiB 0.0963 0.0940
Vegeta 4 | 7.71 MiB 0.0867 0.0852
Total 107.05 MiB | 5.879 5.759

Chapter 3

Security

In this chapter i will discuss how certain security features are implemented in
the service meshes, and how they are configured. A common trend that will be
seen is that istio has its own Custom Resource Definition (CRD) for security called
security.istio.io while Traefik Mesh and Linkerd 2 both mainly use the Service Mesh
Interface (SMI) specification to configure security options.

3.1 Mutual TLS

Using mutual TLS (mTLS) is an essential step of zero-trust networking. It allows
both sides of a communication tunnel to authenticate each other, and therefore
mTLS is sometimes referred to as mutual authentication. When we talk about
mTLS within the scope of service meshes, we generally mean automatic mTLS.
The service mesh automatically upgrades plaintext traffic to tls and automatically
mTLS to authenticate the services as they talk together.

We might want to force communication to require mTLS, and this is referred
to as mTLS enforcement.

Generally, we want to use mTLS as much as possible; however, it does in-
troduce a delay and an inevitable resource cost. Thus it might be advantageous
in very low resource/latency environments/applications to turn mTLS by default
off. There are also cases where mTLS would be excessive; for example, it generally
does not make sense to have mTLS on port 443 of a web server that serves traffic
over HTTPS already, particularly for ingress traffic from the outside world.

3.1.1 Traefik Mesh

Traefik mesh does not at the time of writing support mutual TLS [26]. However, as
of version 1.4, Traefik Mesh uses stock Traefik Proxy as its underlying proxy [11],
Traefik Proxy does support mTLS [27] so that would be a possible route to go if
mTLS is needed.

Please note that as Traefik proxy is outside the scope of this thesis, I have not
explored this possible route but felt it was still worth a mention.

21

22 Marius J Nesset: Service Mesh Evaluation

3.1.2 Istio

Istio lets you control mTLS through its PeerAuthentication resources, which defines
what traffic is allowed/denied from being tunneled through the sidecar [28]. As
mTLS is implemented in the sidecar this allows you to specify the mTLS level and
requirement of your workloads, the following 4 modes of mTLS is supported:

1. UNSET: Mode is inherited from parent.

2. DISABLE: Disables mTLS and tunneling.

3. PERMISSIVE: (Effective default [29]) Opertunistic mTLS with no enforce-
ment.

4. STRICT: mTLS enforcement, connection must be TLS with a valid client cert
present.

Istio has an impressive scope feature for this. The peer authentication re-
source is only applied to workloads within the namespace the PeerAuthentica-
tion resource is in, with one important and helpful exception: if applied to the
istio-root namespace, it applies globally [28].

If a WorkloadSelector is specified the policy is only applied to matching work-
loads, if no workload selector is used, the policy applies to all workloads within
the namespace. Istio even allows you to set a mode of operation on a port level
using optional the portLevelMtls field.

Istio, by default uses an autogenerated self-signed root cert; you can configure
Istio to use any specific cert or to use a secret store such as Hashicorp Vault [30].

3.1.3 Linkerd 2

Linkerd 2 supports automatic mTLS through its identity component [31]. Cur-
rently, mTLS cannot be turned off globally without turning the identity component
off as well, and this also disables features such as tap, which rely on identity [32].

There are some inject flags supported by Linkerd 2 that allow you to manage
what traffic is routed through the proxy which in turn manages what traffic has
identity (and thus eligible for mTLS) [33] [34], please see the following table 3.1.

Table 3.1: Arguments to control Linkerd 2 proxy

Inject cmd arg Annoatation Description

—skip-inbound-ports config.linkerd.io/skip-inbound-ports Skip the proxy on the specified
ports when trafic is inbound, and
send directly to application.

—skip-outbound-ports config.linkerd.io/skip-outbound-ports Skip the proxy on the specified
ports when traffic is outbound.

-require-identity-on-inbound-ports | config.linkerd.io/proxy-require-identity-inbound-ports | Require inbound traffic on the
specified ports to have an valid
identity.

Chapter 3: Security 23

There is no official mTLS enforcement in Linkerd 2 [35], requiring identity on
an inbound port is the closest you will get to mTLS enforcement.

Linkerd 2, like Istio generates a cert by default and supports bringing your
own certificates. The automatic certificate will expire after 365 days and require
manual reissuing [36], alternatively automatic control-plane certificate rotation
can be configured [37] using third party services such as Vault or cert-manager.
The only requirement for a third-party solution to function is the ability to write
to Kubernetes secrets of type kubernetes.io/tls [38].

3.2 Access Control

We often want to limit access to certain parts of our infrastructure to only a select
few identities, this is where access control comes in handy. This section covers
what scoping features and actions are supported by Access Control List (ACL) in
the different service meshes.

3.2.1 Istio

Istio uses the AuthorizationPolicy resource to define access control between work-
loads [39], the scoping support is identical to that of PeerAuthentication de-
scribed in 3.1.2, except for the fact there is no per port override. We now instead
have rules, which allows us to within the same policy define several mini scopes
depending on the source, destination and conditionals. Its worth noting that UDP
traffic will bypass the proxy and therefore any AuthorizationPolicy [40]
Requests are matched based on the rules in the policy; the matching is OR-
based, meaning that a request will ignore the other rules once matched to one.
If no rules are specified, the policy applies to all requests within the scope. All
fields of the rules are optional, and all accept multiple values for sources, des-
tinations and conditionals. Strings in rules support a form of regex, for example
"/api/* /hello" will match "/api/1/hello" and "/api/2/hello" but not "/api/hello".

There are four supported actions Allow (default) and Deny actions define
whether to allow or deny matched requests, respectively. They also inversely define
the behaviour of non matched requests within the same scope; an Authorization-
Policy with its action set to Deny will implicitly allow non matched requests. The
AUDIT action marks matched requests to be logged. It does not have any effect
on whether requests are allowed or not. The AUDIT action requires a supported
plugin to be installed, and at the time of writing, the only supported plugin is the
StackDriver plugin [39].

Lastly, the CUSTOM action allows extensions to evaluate the matched re-
quests, and they are evaluated before the native actions Allow and Deny.

24 Marius J Nesset: Service Mesh Evaluation

You can specify source on a granular level There are five optional fields that
positively match requests; based on the criteria described in the table 3.2. There
is also an accompanying negative field for each positive field (prefixed by not) that
disallow matched sources (i.e. negative field of IpBlocks is notIpBlocks).

Table 3.2: Optional positive match fields for source

Field name Matches to Description

principals source.principal attrib- | List of allowed identities such as
ute service accounts.

requestPrincipals | request.auth.principal A list of allowed request identit-
attribute ies i.e "iss/sub" claims.

namespaces source.namespace List of Kubernetes namespaces
attribute the request is allowed to origin-

ate from.
ipBlocks source.ip attribute List of allowed IP addresses and

CIDR notated IP Address blocks
for the request to originate from.

remotelpBlocks X-Forwarded-For header | Same as ipBlocks but using X-
or proxy protocol Forwarded-For header or similar
for other proxy protocols, usu-
ally this is for remote end users.

Within fields, matches are OR-Based, while the source requires at least one match
per specified positive field. Meaning for a request to match, it must match at least
one of the specified values in each field, specified in the source and none of the
negative fields. Fields not specified its ignored during evaluation.

Destinations can also be specified on a granular level they function identity
to sources with how they match requests and how they have a negative field per
positive fields, the only difference is the fields they have as seen in table 3.3

Table 3.3: Optional positive match fields for destination

Field name | Matches to Description
hosts request.host attribute HTTP only, the target host / do-
main.
ports destination.port attrib- | Allowed destination ports for the
ute request.
methods request.method attrib- | HTTP only, the allowed REST re-
ute quest methods, i.e GET, POST,
ect.
paths request.url_path For HTTP its the path url sege-
ment, for gRPC its the fully qual-
ified domain of the method.

Chapter 3: Security 25

Conditional matching is supported conditionals have a required field key which
specifies where to get the value from; it then matches against a set of allowed or
disallowed values. For example, you can specify to the request needs a valid JWT
token issued by a vendor of choice.

3.2.2 LinkerD

LinkerD 2 has authorization policies planned for version 2.11 [41]. The current
version of LinkerD at time of writing is 2.10; thus, I could not verify LinkerD 2’s
authorization capabilities.

3.2.3 Traefik Mesh

Traefik Mesh provides access control as an opt-in feature, meaning access control
is not supported by default [42]. To opt-in one has to set the ACL flag to true dur-
ing installation [42], enabling what Traefik refferres to as ACL. mode [43]. When
enabled all traffic through the service mesh is implicitly denied [44], and support
for version vlalpha2 [45] of the Traffic Access Control(access.smi-spec.io) SMI
component is enabled [43]; It contains a single CRD called TrafficTarget, which
associates a set of rules to a destination and set of sources excplicitly allowing
matching traffic. TrafficTarget resource requires the destination, atleast one rule
and atleast one source to be set [46].

The destination and sources are service identities currently the only way to
provision service identities are through Kubernetes ServiceAccounts, the SMI spe-
cification is planning to support other ways to provision service identities at a later
date.

Rules are evaluated in an AND-based relationship and are defined through
the Traffic Spec(specs.smi-spec.io) SMI component, at the time of writing Traffic
Mesh supports version vlalpha3 of this component. This version has two CRDs
called HTTPRouteGroup and TCPRoute, for defining HTTP and TCP traffic re-
spectively. A HTTPRouteGroup consists of one or multiple routes, each route can
define a name, a set of allowed REST methods, a set of regexes for allowed Head-
ers and a regex for its path. When a HTTPRouteGroup is used as a rule in a Traf-
ficTarget all routes defined in the group are allowed in a OR-Based relationship,
meaning traffic must only match one of the routes. It is possible to select which
routes must match by specifying the optional matches field.

Note that UDP traffic was only first supported in version vlalpha4 of the Traffic
Spec component; Thus its not possible to use UDP within the mesh as its not
possible to write a rule allowing it.

26 Marius J Nesset: Service Mesh Evaluation

Its possible to specify which port the rules should apply to through the op-
tional field ports on the destination. By default rules apply to all ports and proto-
cols of the destination. This means that to for example allow only traffic on port
443 and 80, two TrafficTarget resources are required. This issue will likely be re-
solved once Traefik Mesh supports vlalpha4 of the Traffic Spec component, as it
allows specify ports for TCPRoutes and UDPRoutes.

Non-meshed traffic is allowed to meshed services due to its non-invasive
design, traffic that does not opt-in to go through the proxy is not effected by ac-
cess control as seen in Figure 3.1. It is therefore important to disallow non-meshed
traffic through other means for security critical pods.

/ # #Accessing through traefik is blocked

/ # curl server.test.traefik.mesh

Forbidden/ #

/ # #HHowever accessing through the normal cluster.local still works
/ # curl server.test.svc.cluster.local

Hostname: server-59b865fcc9-pk845

IP: 127.0.0.1

IP: 10.42.4.15

RemoteAddr: 10.42.6.10:57006

GET / HTTP/1.1

Host: server.test.svc.cluster.local
User-Agent: curl/7.64.0

Accept: */*

Figure 3.1: Figure showing a meshed service being able to bypass Traefik mesh’s
access control by using the normal cluster.local DNS.

3.3 Monitoring

As mentioned in Section 2.1.3 all of the service meshes either depend on or
provide their own Prometheus by default. They also all virtually provide the same
"golden" metrics meaning its little point in comparing the metrics recorded. There-
fore this section instead serves to briefly describe the various dashboards and doc-
umentation surrounding their monitoring capabilities.

3.3.1 Istio

Note that as Grafana technically belongs to its dependency rancher-monitoring it
wont be talked about in this section. By default Rancher’s Istio 1.9.3 chart only
comes with the Kali dashboard, however Jaeger can also be optionally enabled in
the options of the chart.

Chapter 3: Security 27

The Kali dashboard allows you to not only view what services are meshed, but
also the relationship between them. It also allows you to view your configura-
tion and will point out configuration errors and suggestions to your as seen in
Figure 3.2. It can also generate a diagram of your traffic flow, Figure 3.3 depicts
such a diagram generated when sending a load to the target /api/leaderboard
endpoint as described in Section 2.1.2.

Figure 3.2: Kali dashboard highlighting a configuration issue in a Destination-
Route config.

B—0
vegeta web-sve grpe
(5] latest vl
(loadgen) ' ‘

voting-svc
vil

Figure 3.3: Kali dashboard showing traffic flow generated by /api/leaderboard.

Access logs

Envoy can generate access logs for each request, or selectively through a AUDIT
action rule as described earlier in Section 3.2.1. There is however no central loc-
ation by to access these logs, by default they are not sent anywhere. The format
of the access logs can be customized [47], and Istio has an tutorial on configuring

Envoy to log to stdout, in their documentation.!.

https://istio.io/latest/docs/tasks/observability/logs/access-1log/

https://istio.io/latest/docs/tasks/observability/logs/access-log/

28 Marius J Nesset: Service Mesh Evaluation

Jaeger allows you to access the distributed traces recorded by Envoy, these are
far more detailed than Kali’s traffic flow graph, an example of a trace can be seen
in Figure 3.4. In addition to Jaeger Istio also supports: Zipkin, Lightstep, and
Datadog, as tracing backends. [48]

Figure 3.4: Jaeger showing an trace.

3.3.2 Linkerd

Linkerd has split its monitoring and telemetry features into the Viz extension;
It not only contains Grafana and Prometheus, but also Linkerd Viz’s dashboard
and tap [49]. Note that by default the Prometheus instance only stores metrics
for 6 hours [50], though this is configurable. Linkerd can also be configured to
use rancher-monitoring’s Grafana and Prometheus instance as stated earlier in
Section 2.1.3.

Outbound =

Figure 3.5: Linkerd dashboard displaying live metrics for the emojivoto web de-
ployment.

Chapter 3: Security 29

The dashboard gives you an overview over all services in your cluster, including
none meshed ones. Clicking on a meshed service allows you to see live calls to it,
both globally for the service and per route; an example of this is seen in Figure 3.5.
The dashboard can also generate a graph over the traffic flow in the mesh, as seen
in Figure 3.6.

LINKERD

® paces

& coniolPlane doployipromethaus

deployment/web

El 100.00%
EmouNoTO

deploysemol
El 100005

Deployments Rps 4028
doploytap deploy/web

Replea Sets Res 207 Rps 9275

Reslcation Contollers pog 2ms poo ms

]
o
®
-]
° El 100.00% El 100.00%
-]
<]
-]

StateflSets

rsivegota
T st eoo Sme
El 100.00%

Res 19923

Pog a7ms

vEcaLs ROUTENETRICS

Ye @ X W

Figure 3.6: Linkerd dashboard showing a diagram over the network flow to and
from the web deployment.

Tap allows you to tap into the proxy to see live traffic flowing through it, not
only from the dashboard but also through the linkerdctl command line tool [51],
the dashboard version is depicted in Figure 3.7.

Request Details

Figure 3.7: Linkerd dashboard showcasing the tap feature, showing information
for a live call.

30 Marius J Nesset: Service Mesh Evaluation

Distributed tracing can be enabled by installing the linkerd-jaeger extension,
which consists of a Jaeger backend, a trace collector and a Jaeger injector, the lat-
ter being responsible for configuring the sidecar proxy to emit traces [52]. Linkerd
can be configured to use your own Jaeger backend [53].

Linkerd also has a thorough tutorial> on how to enable, configure and access
call tracing.

Access logs Linkerd allows configuring various log levels of the sidecar proxy
[54]; The log level can either be specified globally applying to all proxies, or for
a particular Linkerd rust module [55]. Five log levels are available, trace being a
more traditional access log level [55].

3.3.3 Traefik Mesh

Traefik mesh comes with Grafana, Prometheus and Jaeger, the monitoring is im-
plemented in Traefik Proxy. As mentioned in Section 2.1.3 Traefik Mesh can be
configured to use Grafana and Prometheus from rancher-monitoring. The Grafana
dashboard is depicted in Figure 3.8

Figure 3.8: Traffic flow from Web pod when using Traefik Mesh.

Jaeger can be used to access network traces of meshed services, Traefik Mesh
also has OpenTracing support, and alongside Jaeger also supports: Zipkin, Datadog,
Instana, Haystack and Elastic as tracing backends [56].

Zhttps://linkerd.io/2.10/tasks/distributed-tracing/

https://linkerd.io/2.10/tasks/distributed-tracing/

Chapter 3: Security 31

Access logs

Traefik Mesh supports access logs through Traefik proxy, the log level as well as
the format of the logs can be formatted [43]. The logs aren’t collected in a central
location on a cluster scale, but since only one proxy exists per node, the logs
belonging to a node are centralized in one pod. Traefik proxy supports a lot of
filters for whether to log a request or not, however as its outside the scope of
this thesis, they wont be covered here, for more info please see the Traefik Proxy
documentation. 3

3https://doc.traefik.io/traefik/observability/access-logs/

https://doc.traefik.io/traefik/observability/access-logs/

Chapter 4

Conclusion

To conclude I wanna summarize the strengths and weaknesses of each service
mesh, and share how my experience was using them.

4.1 Istio’s Strengths and Weaknesses

Istio was by far the most configurable technology that was looked at, particularly
when it came to access control. Its security features are very robust and it has
official rancher integration. It is also the most popular service mesh according to
the CNCF as mentioned in the introduction.

However it also by far had the worst performance, both in terms of introduced
latency and resource usage, particularly RAM, using an entire gibibyte for 800
RPS. Its configurability is also a double edged sword as I found it personally very
easy to get overwhelmed within its documentation; It all hits you like a brick wall
at first.

4.2 Traefik Mesh’s Strengths and Weaknesses

Traefik Mesh ended up being the lightest on resource usage, which makes sense
considering it only deploys one proxy per host instead of a sidecar alongside each
pod. However by default it comes with a very low CPU limit, which needed to be
increased for this thesis in order to complete any test above 300 RPS.

Traefik Mesh’s most unique trait is that its non-invasive, this makes it more
predictable which is nice, but also makes it lack auto inject capabilities and as
demonstrated in Figure 3.1; makes it trivially easy to bypass the access control.
Furthermore it itself does not have any mechanism to solve this issue, therefore it
must be done via a 3rd party solution.

Another issue with the ACL mode is that since UDPRoutes aren’t supported
yet, thus UDP traffic doesn’t work at all if ACL mode is enabled.

33

34 Marius J Nesset: Service Mesh Evaluation

Another clear weakness of Traefik Mesh is its documentation. While it was the easi-
est to get started with, I quickly found its documentation lacking when it came to
more advanced features; I learned more from reading issues on its Github repos-
itory then I did from its documentation.

4.3 Linkerd’s Strengths and Weaknesses

Linkerd’s command line tool was a great help getting started. It was in the middle
of the pack when it came to performance, not to far behind Traefik Mesh, it also
seemed to load balance quite well on its own. Its latencies are however closer to
that of Istio then to Traefik due to it having more hops along the way for meshed
traffic to go through.

An issue I encounted with Linkerd is that with kubernetes batch/jobs, the
Linkerd sidecar proxy can fail to recognize the main container has finnished exe-
cution, and keeps the job from finnishing.

Another issue I encountered was that the main container would sometimes
start sending requests before the sidecar proxy had fully initialized, causing the
requests to be dropped. The final downside is that there is no mTLS enforcement
yet.

Bibliography

[1]

[2]

(3]

[4]

(5]

(6]

[7]

[8]

[9]

[10]

R. hat. (). ‘Microservices: What is a service mesh?’ [Online]. Available:
https://www. redhat. com/en/topics/microservices/what-is-a-
service-mesh. (accessed: 18.05.2021).

Istio. (May 2017). ‘Introducing istio,’ [Online]. Available: https://istio.
io/latest/news/releases/0.x/announcing-0.1/. (accessed: 17.05.2021).

C. N. C. Foundation, ‘Cloud native survey 2020, p. 16, Nov. 2020. [Online].
Available: https://www.cncf.io/wp-content/uploads/2020/11/CNCF
Survey Report 2020.pdf.

Istio. (). ‘What is istio?: Why use istio,” [Online]. Available: https: //
istio.io/latest/docs/concepts/what-is-istio/#why-use- istio.
(accessed: 17.05.2021).

Istio. (). ‘Istio architecture: Envoy,” [Online]. Available: https://istio.
io/latest/docs/ops/deployment /architecture/#envoy. (accessed:
17.05.2021).

G. Dury. (). ‘A kubernetes service mesh comparison: Linkerd review,” [On-
line]. Available: https://www.toptal.com/kubernetes/service-mesh-
comparison#linkerd- review. (accessed: 17.05.2021).

B. C. Gain. (Dec. 2018). ‘Buoyant ceo on how linkerd sprang from twit-
ter’s heady early days,” [Online]. Available: https://thenewstack.io/
buoyant-ceo-on-how- linkerd-sprang- from-twitters-heady-early-
days/. (accessed: 17.05.2021).

O. Gould. (Apr. 2017). ‘Announcing linkerd 1.0,”[Online]. Available: https:
//linkerd . io /2017 /04 /25/announcing - linkerd - 1- 0/. (accessed:
17.05.2021).

W. Morgan. (Dec. 2020). ‘Why linkerd doesn’t use envoy,” [Online]. Avail-
able: https://linkerd.io0/2020/12/03/why - linkerd - doesnt - use -
envoy/. (accessed: 17.05.2021).

D. Duportal. (Sep. 2019). ‘Announcing maesh, a lightweight and simpler
service mesh made by the traefik team,” [Online]. Available: https: //
traefik.io/blog/announcing - maesh-a- lightweight-and- simpler-
service-mesh-made-by-the-traefik-team- cb866edc6t29/. (accessed:
17.05.2021).

35

https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh
https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh
https://istio.io/latest/news/releases/0.x/announcing-0.1/
https://istio.io/latest/news/releases/0.x/announcing-0.1/
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://istio.io/latest/docs/concepts/what-is-istio/#why-use-istio
https://istio.io/latest/docs/concepts/what-is-istio/#why-use-istio
https://istio.io/latest/docs/ops/deployment/architecture/#envoy
https://istio.io/latest/docs/ops/deployment/architecture/#envoy
https://www.toptal.com/kubernetes/service-mesh-comparison#linkerd-review
https://www.toptal.com/kubernetes/service-mesh-comparison#linkerd-review
https://thenewstack.io/buoyant-ceo-on-how-linkerd-sprang-from-twitters-heady-early-days/
https://thenewstack.io/buoyant-ceo-on-how-linkerd-sprang-from-twitters-heady-early-days/
https://thenewstack.io/buoyant-ceo-on-how-linkerd-sprang-from-twitters-heady-early-days/
https://linkerd.io/2017/04/25/announcing-linkerd-1-0/
https://linkerd.io/2017/04/25/announcing-linkerd-1-0/
https://linkerd.io/2020/12/03/why-linkerd-doesnt-use-envoy/
https://linkerd.io/2020/12/03/why-linkerd-doesnt-use-envoy/
https://traefik.io/blog/announcing-maesh-a-lightweight-and-simpler-service-mesh-made-by-the-traefik-team-cb866edc6f29/
https://traefik.io/blog/announcing-maesh-a-lightweight-and-simpler-service-mesh-made-by-the-traefik-team-cb866edc6f29/
https://traefik.io/blog/announcing-maesh-a-lightweight-and-simpler-service-mesh-made-by-the-traefik-team-cb866edc6f29/

36 Marius J Nesset: Service Mesh Evaluation

[11] M. Zapf. (Oct. 2020). ‘Traefik mesh version 1.4, new name new features,’
[Online]. Available: https://traefik.io/blog/announcing- traefik-
mesh-1-4-new-name-new- features. (accessed: 15.04.2021).

[12] E. Vauge. (Sep. 2020). ‘Traefik labs: Incubating the future of cloud native
networking,” [Online]. Available: https://traefik.io/blog/traefik-
labs - incubating - the - future - of - cloud - native - networking/. (ac-
cessed: 17.05.2021).

[13] Traefik. (). ‘Traefik mesh: Non invasive service mesh,’ [Online]. Available:
https://doc. traefik.io/traefik - mesh/#non - invasive - service -
mesh. (accessed: 17.05.2021).

[14] Traefik. (). ‘Quickstart - traefik mesh: Using traefik mesh,” [Online]. Avail-
able: https://doc. traefik.io/traefik-mesh/quickstart/#using-
traefik-mesh. (accessed: 17.05.2021).

[15] LinkerD. (). ‘Overview: How it works,” [Online]. Available: https://linkerd.
io/2.10/overview/#how-it-works. (accessed: 18.05.2021).

[16] Linkerd. (). ‘Automatic proxy injection: Details,’ [Online]. Available: https:
//linkerd.io/2.10/features/proxy-injection/#details. (accessed:
18.05.2021).

[17] Linkerd. (). ‘Adding your service to linkerd: Meshing a service with annota-
tions,” [Online]. Available: https://linkerd.io/2.10/tasks/adding-
your - service / #meshing - a - service - with - annotations. (accessed:
18.05.2021).

[18] T Fromm. (May 2019). ‘Performance benchmark analysis of istio and linkerd,’
[Online]. Available: https://kinvolk.io/blog/2019/05/performance-
benchmark-analysis-of-istio-and-linkerd/. (accessed: 30.04.2021).

[19] T Senart. (). ‘Comment #642596847 on vegeta2’s github issue #520.’

[20] Rancher. (). ‘Rancher docs: Istio in rancher v2.3-v2.4: Architecture,” [On-
line]. Available: https://rancher.com/docs/rancher/v2.x/en/istio/
v2.3.x-v2.4.x#architecture. (accessed: 19.05.2021).

[21] Linkerd. (). ‘Bring your own prometheus,’ [Online]. Available: https://
linkerd.io/2.10/tasks/external-prometheus/. (accessed: 19.05.2021).

[22] T. M. D. Team. (). ‘Traefik mesh chart’s source code,” [Online]. Available:
https://github.com/traefik/mesh-helm-chart/blob/2542b19a6bfb17ab833e45dcb595db04a3es
mesh/ charts /metrics / templates /prometheus . yaml #L40. (accessed:

19.05.2021).

[23] Linkerd. (). ‘Exporting metrics,” [Online]. Available: https://Linkerd.io/
2.10/tasks/exporting-metrics/. (accessed: 19.05.2021).

[24] Rancher. (). ‘Rancher docs: Architecture recommendations,’ [Online]. Avail-
able: https://rancher.com/docs/rancher/v2.x/en/overview/architecture-
recommendations/#contrasting- rke-cluster-architecture-for-rancher-
server-and- for-downstream- kubernetes-clusters. (accessed: 8.05.2021).

https://traefik.io/blog/announcing-traefik-mesh-1-4-new-name-new-features
https://traefik.io/blog/announcing-traefik-mesh-1-4-new-name-new-features
https://traefik.io/blog/traefik-labs-incubating-the-future-of-cloud-native-networking/
https://traefik.io/blog/traefik-labs-incubating-the-future-of-cloud-native-networking/
https://doc.traefik.io/traefik-mesh/#non-invasive-service-mesh
https://doc.traefik.io/traefik-mesh/#non-invasive-service-mesh
https://doc.traefik.io/traefik-mesh/quickstart/#using-traefik-mesh
https://doc.traefik.io/traefik-mesh/quickstart/#using-traefik-mesh
https://linkerd.io/2.10/overview/#how-it-works
https://linkerd.io/2.10/overview/#how-it-works
https://linkerd.io/2.10/features/proxy-injection/#details
https://linkerd.io/2.10/features/proxy-injection/#details
https://linkerd.io/2.10/tasks/adding-your-service/#meshing-a-service-with-annotations
https://linkerd.io/2.10/tasks/adding-your-service/#meshing-a-service-with-annotations
https://kinvolk.io/blog/2019/05/performance-benchmark-analysis-of-istio-and-linkerd/
https://kinvolk.io/blog/2019/05/performance-benchmark-analysis-of-istio-and-linkerd/
https://rancher.com/docs/rancher/v2.x/en/istio/v2.3.x-v2.4.x#architecture
https://rancher.com/docs/rancher/v2.x/en/istio/v2.3.x-v2.4.x#architecture
https://linkerd.io/2.10/tasks/external-prometheus/
https://linkerd.io/2.10/tasks/external-prometheus/
https://github.com/traefik/mesh-helm-chart/blob/2542b19a6bfb17ab833e45dcb595db04a3e83582/mesh/charts/metrics/templates/prometheus.yaml#L40
https://github.com/traefik/mesh-helm-chart/blob/2542b19a6bfb17ab833e45dcb595db04a3e83582/mesh/charts/metrics/templates/prometheus.yaml#L40
https://Linkerd.io/2.10/tasks/exporting-metrics/
https://Linkerd.io/2.10/tasks/exporting-metrics/
https://rancher.com/docs/rancher/v2.x/en/overview/architecture-recommendations/#contrasting-rke-cluster-architecture-for-rancher-server-and-for-downstream-kubernetes-clusters
https://rancher.com/docs/rancher/v2.x/en/overview/architecture-recommendations/#contrasting-rke-cluster-architecture-for-rancher-server-and-for-downstream-kubernetes-clusters
https://rancher.com/docs/rancher/v2.x/en/overview/architecture-recommendations/#contrasting-rke-cluster-architecture-for-rancher-server-and-for-downstream-kubernetes-clusters

Bibliography 37

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

B. Schwartz. (Nov. 2016). ‘Why percentiles don’t work the way you think,’
[Online]. Available: https://orangematter.solarwinds.com/2016/11/
18 /why - percentiles - dont - work - the - way - you - think/. (accessed:
18.05.2021).

Traefik. (). ‘Traefik mesh docs: Scheme limitations,” [Online]. Available:
https://doc.traefik.io/traefik-mesh/configuration/#scheme. (ac-
cessed: 15.04.2021).

M. Zapf. (Jan. 2021). ‘Traefik proxy version 2.4 announcement,” [Online].
Available: https://traefik.io/blog/announcing- traefik-2-4. (ac-
cessed: 15.04.2021).

Istio. (). ‘Istio docs: Peerauthentication,” [Online]. Available: https://
istio.io/latest/docs/reference/config/security/peer_authentication.
(accessed: 19.04.2021).

Istio. (). ‘Istio docs: Globally enabling istio mutual tls in strict mode,” [On-
line]. Available: https://istio.io/latest/docs/tasks/security/
authentication/authn-policy/#globally-enabling-istio-mutual-
tls-in-strict-mode. (accessed: 19.04.2021).

Istio. (). ‘Istio docs: Plug in ca certificates,” [Online]. Available: https://
istio.io/latest/docs/tasks/security/cert-management/plugin-ca-
cert/#plug-in-certificates-and-key-into-the-cluster. (accessed:
19.04.2021).

Linkerd. (). ‘Linkerd2 documentation: Automatic mutual tls, how does it
work,” [Online]. Available: https://linkerd.io/2.10/features/automatic-
mtls/#how-does-it-work. (accessed: 20.04.2021).

T. Rampelberg. (Dec. 2019). ‘Comment #563402306 on linkerd2’s github
issue #2783, [Online]. Available: https://github.com/linkerd/linkerd2/
issues/2783#issuecomment-563402306. (accessed: 20.04.2021).

Linkerd. (). ‘Linkerd2 documentation: Inject,” [Online]. Available: https:
//linkerd.io/2.10/reference/cli/inject. (accessed: 20.04.2021).

Linkerd. (). ‘Linkerd2 documentation: Proxy configuration,’ [Online]. Avail-
able: https://linkerd.io/2.10/reference/proxy- configuration/.
(accessed: 20.04.2021).

Linkerd. (). ‘Linkerd2 documentation: Automatic mutual tls, caveats,’ [On-
line]. Available: https://linkerd.io/2.10/features/automatic-mtls/
#caveats-and- future-work. (accessed: 20.04.2021).

Linkerd. (). ‘Linkerd2 documentation: Automatic mutual tls, maintaince,’
[Online]. Available: https://linkerd.io/2.10/features/automatic-
mtls/#maintenance. (accessed: 20.04.2021).

https://orangematter.solarwinds.com/2016/11/18/why-percentiles-dont-work-the-way-you-think/
https://orangematter.solarwinds.com/2016/11/18/why-percentiles-dont-work-the-way-you-think/
https://doc.traefik.io/traefik-mesh/configuration/#scheme
https://traefik.io/blog/announcing-traefik-2-4
https://istio.io/latest/docs/reference/config/security/peer_authentication
https://istio.io/latest/docs/reference/config/security/peer_authentication
https://istio.io/latest/docs/tasks/security/authentication/authn-policy/#globally-enabling-istio-mutual-tls-in-strict-mode
https://istio.io/latest/docs/tasks/security/authentication/authn-policy/#globally-enabling-istio-mutual-tls-in-strict-mode
https://istio.io/latest/docs/tasks/security/authentication/authn-policy/#globally-enabling-istio-mutual-tls-in-strict-mode
https://istio.io/latest/docs/tasks/security/cert-management/plugin-ca-cert/#plug-in-certificates-and-key-into-the-cluster
https://istio.io/latest/docs/tasks/security/cert-management/plugin-ca-cert/#plug-in-certificates-and-key-into-the-cluster
https://istio.io/latest/docs/tasks/security/cert-management/plugin-ca-cert/#plug-in-certificates-and-key-into-the-cluster
https://linkerd.io/2.10/features/automatic-mtls/#how-does-it-work
https://linkerd.io/2.10/features/automatic-mtls/#how-does-it-work
https://github.com/linkerd/linkerd2/issues/2783#issuecomment-563402306
https://github.com/linkerd/linkerd2/issues/2783#issuecomment-563402306
https://linkerd.io/2.10/reference/cli/inject
https://linkerd.io/2.10/reference/cli/inject
https://linkerd.io/2.10/reference/proxy-configuration/
https://linkerd.io/2.10/features/automatic-mtls/#caveats-and-future-work
https://linkerd.io/2.10/features/automatic-mtls/#caveats-and-future-work
https://linkerd.io/2.10/features/automatic-mtls/#maintenance
https://linkerd.io/2.10/features/automatic-mtls/#maintenance

38 Marius J Nesset: Service Mesh Evaluation

[37] Linkerd. (). ‘Linkerd2 documentation: Automatically rotating control plane
tls credentials,” [Online]. Available: https://linkerd.io/2.10/tasks/
automatically- rotating-control-plane-tls-credentials. (accessed:
20.04.2021).

[38] Linkerd. (). ‘Linkerd2 documentation: Automatically rotating control plane
tls credentials, third party cert management solutions,” [Online]. Available:
https://linkerd.io/2.10/tasks/automatically- rotating- control-
plane-tls-credentials/#third- party- cert-management-solutions.
(accessed: 20.04.2021).

[39] Istio. (). ‘Istio docs: Authorizationpolicy,” [Online]. Available: https://
istio.io/latest/docs/reference/config/security/authorization-
policy. (accessed: 20.04.2021).

[40] Istio. (). ‘Istio docs: Protocol selection,” [Online]. Available: https://istio.
io/latest/docs/ops/configuration/traffic-management/protocol-
selection/. (accessed: 26.04.2021).

[41] O. Gould. (Dec. 2020). ‘Comment #749688453 on linkerd2’s github issue
#3342, [Online]. Available: https://github.com/linkerd/linkerd2/
issues/3342#issuecomment-749688453. (accessed: 21.04.2021).

[42] Traefik. (). ‘Traefik mesh docs: Installation: Access control lists,” [Online].
Available: https://doc.traefik.io/traefik-mesh/install/#access-
control-list. (accessed: 30.04.2021).

[43] Traefik. (). ‘Traefik mesh docs: Configuration: Static configuration,” [On-
line]. Available: https://doc.traefik.io/traefik-mesh/configuration/
#static-configuration. (accessed: 30.04.2021).

[44] Traefik. (). ‘Traefik mesh docs: Configuration: Access control,” [Online].
Available: https://doc. traefik.io/traefik - mesh/configuration/
#access-control. (accessed: 30.04.2021).

[45] Traefik. (). ‘Traefik mesh docs: Compatibility - smi specification support,’
[Online]. Available: https://doc.traefik.io/traefik-mesh/compatibility/
#smi-specification-support. (accessed: 30.04.2021).

[46] S. M. Interface. (). ‘Service mesh interface specification: Access vlalpha2,
[Online]. Available: https://github.com/servicemeshinterface/smi -
spec/blob/d17d048f88fc8e9bbd2069c6f5187f12eeb54fbb/apis/traffic-
access/vlalpha2/traffic-access.md. (accessed: 30.04.2021).

[47] Istio. (). ‘Getting envoy’s access logs: Default access log format,” [Online].
Available: https://istio.io/latest/docs/tasks/observability/
logs/access-log/#default-access-1log-format. (accessed: 19.05.2021).

[48] Istio. (). ‘Observability: Distributed traces,” [Online]. Available: https :
//istio.io/latest/docs/concepts/observability/#distributed -
traces. (accessed: 19.05.2021).

https://linkerd.io/2.10/tasks/automatically-rotating-control-plane-tls-credentials
https://linkerd.io/2.10/tasks/automatically-rotating-control-plane-tls-credentials
https://linkerd.io/2.10/tasks/automatically-rotating-control-plane-tls-credentials/#third-party-cert-management-solutions
https://linkerd.io/2.10/tasks/automatically-rotating-control-plane-tls-credentials/#third-party-cert-management-solutions
https://istio.io/latest/docs/reference/config/security/authorization-policy
https://istio.io/latest/docs/reference/config/security/authorization-policy
https://istio.io/latest/docs/reference/config/security/authorization-policy
https://istio.io/latest/docs/ops/configuration/traffic-management/protocol-selection/
https://istio.io/latest/docs/ops/configuration/traffic-management/protocol-selection/
https://istio.io/latest/docs/ops/configuration/traffic-management/protocol-selection/
https://github.com/linkerd/linkerd2/issues/3342#issuecomment-749688453
https://github.com/linkerd/linkerd2/issues/3342#issuecomment-749688453
https://doc.traefik.io/traefik-mesh/install/#access-control-list
https://doc.traefik.io/traefik-mesh/install/#access-control-list
https://doc.traefik.io/traefik-mesh/configuration/#static-configuration
https://doc.traefik.io/traefik-mesh/configuration/#static-configuration
https://doc.traefik.io/traefik-mesh/configuration/#access-control
https://doc.traefik.io/traefik-mesh/configuration/#access-control
https://doc.traefik.io/traefik-mesh/compatibility/#smi-specification-support
https://doc.traefik.io/traefik-mesh/compatibility/#smi-specification-support
https://github.com/servicemeshinterface/smi-spec/blob/d17d048f88fc8e9bbd2069c6f5187f12eeb54fbb/apis/traffic-access/v1alpha2/traffic-access.md
https://github.com/servicemeshinterface/smi-spec/blob/d17d048f88fc8e9bbd2069c6f5187f12eeb54fbb/apis/traffic-access/v1alpha2/traffic-access.md
https://github.com/servicemeshinterface/smi-spec/blob/d17d048f88fc8e9bbd2069c6f5187f12eeb54fbb/apis/traffic-access/v1alpha2/traffic-access.md
https://istio.io/latest/docs/tasks/observability/logs/access-log/#default-access-log-format
https://istio.io/latest/docs/tasks/observability/logs/access-log/#default-access-log-format
https://istio.io/latest/docs/concepts/observability/#distributed-traces
https://istio.io/latest/docs/concepts/observability/#distributed-traces
https://istio.io/latest/docs/concepts/observability/#distributed-traces

Bibliography 39

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Linkerd. (). ‘Telemetry and monitoring,” [Online]. Available: https://
linkerd.io/2.10/features/telemetry/. (accessed: 19.05.2021).

Linkerd. (). ‘Telemetry and monitoring: Lifespan of linkerd metrics,” [On-
line]. Available: https://linkerd.io/2 .10/ features/telemetry/
#lifespan-of-linkerd-metrics. (accessed: 19.05.2021).

Linkerd. (). ‘Tap,’ [Online]. Available: https://linkerd.io/2.9/reference/
cli/tap. (accessed: 19.05.2021).

Linkerd. (). ‘Distributed tracing with linkerd: Install the linkerd-jaeger ex-
tension,’ [Online]. Available: https://linkerd.io0/2.10/tasks/distributed-
tracing/#install-the-linkerd-jaeger-extension. (accessed: 19.05.2021).

Linkerd. (). ‘Distributed tracing with linkerd: Bring your own jaeger,” [On-
line]. Available: https://linkerd.i0/2.10/tasks/distributed-tracing/
#bring-your-own-jaeger. (accessed: 19.05.2021).

Linkerd. (). ‘Modifying the proxy log level,” [Online]. Available: https :
//linkerd.io/2.10/tasks/modifying- proxy- log- level/. (accessed:
19.05.2021).

Linkerd. (). ‘Proxy log level,” [Online]. Available: https://linkerd.io/2.
10/reference/proxy-log-level/. (accessed: 19.05.2021).

Traefik. (). ‘Tracing: Overview,” [Online]. Available: https://doc. traefik.
io/traefik/observability/tracing/overview/. (accessed: 19.05.2021).

https://linkerd.io/2.10/features/telemetry/
https://linkerd.io/2.10/features/telemetry/
https://linkerd.io/2.10/features/telemetry/#lifespan-of-linkerd-metrics
https://linkerd.io/2.10/features/telemetry/#lifespan-of-linkerd-metrics
https://linkerd.io/2.9/reference/cli/tap
https://linkerd.io/2.9/reference/cli/tap
https://linkerd.io/2.10/tasks/distributed-tracing/#install-the-linkerd-jaeger-extension
https://linkerd.io/2.10/tasks/distributed-tracing/#install-the-linkerd-jaeger-extension
https://linkerd.io/2.10/tasks/distributed-tracing/#bring-your-own-jaeger
https://linkerd.io/2.10/tasks/distributed-tracing/#bring-your-own-jaeger
https://linkerd.io/2.10/tasks/modifying-proxy-log-level/
https://linkerd.io/2.10/tasks/modifying-proxy-log-level/
https://linkerd.io/2.10/reference/proxy-log-level/
https://linkerd.io/2.10/reference/proxy-log-level/
https://doc.traefik.io/traefik/observability/tracing/overview/
https://doc.traefik.io/traefik/observability/tracing/overview/

@ NTNU

Norwegian University of
Science and Technology

	Abstract
	Sammendrag
	Acknowledgements
	Contents
	Figures
	Tables
	Acronyms
	Glossary
	Introduction
	Task
	Scope and Limitations
	Service Mesh Technologies
	What Is A Service Mesh Technology
	Selected Service Mesh Technologies
	How traffic is meshed

	Performance
	Tooling selection
	Target application
	Load generator
	Monitoring

	Testing environment
	Low Latency Testing Environment
	High availability environment

	Visualizing meshed traffic of target
	With no service mesh installed
	With Traefik Mesh installed
	With Istio or Linkerd installed

	Measuring Latencies At Various Constant Loads
	Methodology
	Metrics

	Results
	Resource usage
	Methodology
	Results

	Security
	Mutual TLS
	Traefik Mesh
	Istio
	Linkerd 2

	Access Control
	Istio
	LinkerD
	Traefik Mesh

	Monitoring
	Istio
	Linkerd
	Traefik Mesh

	Conclusion
	Istio's Strengths and Weaknesses
	Traefik Mesh's Strengths and Weaknesses
	Linkerd's Strengths and Weaknesses

	Bibliography

