
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Gaute Hiis-Hauge
Magnus Walmsnæss Refsnes
Nick Zakharov
Raymond Aardalsbakke

Out-of-Band Management with
Redfish and Ansible

Bachelor’s project in IT-drift og informasjonssikkerhet
Supervisor: Ernst Gunnar Gran

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

Gaute Hiis-Hauge
Magnus Walmsnæss Refsnes
Nick Zakharov
Raymond Aardalsbakke

Out-of-Band Management with Redfish
and Ansible

Bachelor’s project in IT-drift og informasjonssikkerhet
Supervisor: Ernst Gunnar Gran
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Abstract

The Idun high performance computing group at NTNU is in charge of an ever
growing cluster of servers which forms a high performance computing envir-
onment. These servers are managed through a small piece of hardware named
the baseboard management controller (BMC). The BMC allows the Idun group
to manage and monitor the servers hardware and BIOS remotely, independent
from any operation system (OS). To interface and manage the BMC a specifica-
tion known as Intelligent Platform Management Interface (IPMI) and its related
tools are used. This specification is rather dated, and with limited functionality
across vendors. The Idun group has started to look for new tools and specifica-
tions which scale better in a growing environment, and they have become curious
about a new specification named Redfish. The Idun group commissioned a study
into the possibilities of Redfish alongside Ansible to solve several remote server
management tasks.

This thesis is a dive into the Redfish specification, and the functionality which
is available to it. It presents a Proof of Concept (PoC) on the functionality and
ability of Redfish in the remote management of BMCs, it also incorporates the
orchestration tool Ansible to show how this specification can be used in auto-
mating server management. The PoC and later demonstration illustrates how the
tasks presented by the Idun group can be solved using Redfish and Ansible. Es-
sentially the PoC provides a reference for the functionalities of Redfish both alone
and when used with Ansible, and how it can be implemented to manage a more
diverse server environment.

iii

Sammendrag

Iduns operatørgruppe ved NTNU styrer et voksende samling av høy-ytelses med
servere som former et ’high performing computing’ (HPC) miljø. Disse serverene
styres gjennom en baseboard management controller (BMC) - en maskinvare som
er innebygd i de fleste serverne. BMC’en tillater Idun-gruppen å fjernstyre og mon-
itorere serverens maskinvare og BIOS uavhengig av hvilket operativsystem (OS)
som er installert. Som grensesnitt for håndtering av BMC’en, blir Intelligent Plat-
form Management Interface (IPMI) brukt. Spesifikasjonen er ganske utdatert, og
med begrenset funksjonalitet på tvers av leverandører. Idun-gruppen har startet
å se på andre verktøy og spesifikasjoner som skalerer bedre i et voksende miljø,
og har dermed begynt å bli nysjerrige på en ny spesifikasjon som heter Redfish.
Idun-gruppen kommisjonerte en studie om mulighetene til Redfish sammen med
orkestrerings-verktøyet Ansible for å gjennomføre flere arbeidsoppgaver som in-
nebærer fjernstyring av servere.

Denne rapporten er en fordypelse inn i Redfish spesifikasjonen, og dens funk-
sjonalitet. Den presenterer et ’Proof of Concept’ (PoC) på funksjonaliteten og
evnene til Redfish ved fjernstyring av BMC, og knytter inn orkestrerings verktøyet
Ansible for å vise hvordan denne funksjonaliteten kan bli automatisert. PoC’et og
andre demonstrasjoner illustrerer hvordan oppgavene presentert av Idun gruppen
kan bli løst ved hjelp av Redfish og Ansible. PoC’et brukes for fremstille en refer-
anse av funksjonalitetene til Redfish både alene, ved hjelp av Ansible, og hvordan
det kan bli implementert for å håndtere et server miljø med flere produsenter.

iv

preface

We would like to acknowledge and extend our deepest gratitude to our super-
visor Ernst Gunnar Gran, who helped guide us on the right track throughout the
project and provided thorough and valuable input on reviews of the thesis drafts.
We would also like to thank our employer, the Idun HPC group at NTNU, for the
assignment, and for providing and setting up the equipment needed to build a
testing-environment for this thesis. Thanks to Einar Næss Jensen for being our con-
tact person throughout this project, and meeting with us regularly, being available
for technical question, and together with Pavlo Khmel running to the data center
to bring up connectivity again after we brought it down due to (unintentional)
misconfigurations.

v

Contents

Abstract . iii
Sammendrag . iv
preface . v
Contents . vi
Acronyms . ix
Figures . xi
List of Listings . xii
1 Introduction . 1

1.1 Background . 1
1.2 Problem area . 1
1.3 Project goals . 2

1.3.1 Effect goals . 2
1.3.2 Result goals . 2

1.4 Target audience . 3
1.5 Scope . 3

1.5.1 Delimitation . 4
1.5.2 Limitations . 4

1.6 The Project group . 4
1.6.1 Other parties . 5
1.6.2 Thesis structure . 5

2 Background . 6
2.1 Configuration Management . 6
2.2 Infrastructure as Code . 7
2.3 Intelligent Platform Management Interface 8
2.4 Redfish . 10

2.4.1 The Redfish API . 10
2.4.2 Redfish examples . 11

2.5 Automated OOB management with Ansible 13
2.5.1 Modules . 13
2.5.2 Inventory files . 13
2.5.3 Playbooks and plays . 14
2.5.4 Roles . 16
2.5.5 Ansible Galaxy . 16
2.5.6 Ansible Vault . 18

vi

Contents vii

2.6 Alternative technology . 18
2.7 Security . 18

2.7.1 IPMI security . 18
2.7.2 Redfish security . 19
2.7.3 Comparison . 20

3 Development Environment . 22
3.1 High Level Overview . 22
3.2 Dell Poweredge servers . 22

3.2.1 iDRAC . 23
3.2.2 SCP files . 24

3.3 Ansible . 25
3.4 Ansible directory structure . 25

3.4.1 ansible.cfg . 25
3.4.2 host_vars . 26
3.4.3 inventory . 26
3.4.4 playbooks . 26
3.4.5 plugins . 26
3.4.6 roles . 26
3.4.7 tests . 27
3.4.8 .travis.yml . 27
3.4.9 .ansible-lint . 27

3.5 File storage . 29
3.5.1 Git . 29

4 Implementation . 30
4.1 High-level overview . 30
4.2 Proof of Concept specification . 31
4.3 Lab environment . 32

4.3.1 iDRAC . 32
4.3.2 DHCP . 33
4.3.3 Prerequisites . 34

4.4 Demonstrations . 35
4.4.1 Reading and saving iDRAC settings from one compute node

with Redfish . 35
4.4.2 Write BIOS settings with Redfish 38
4.4.3 Write IDRAC settings with Redfish 40
4.4.4 Collect support data with Redfish 40

4.5 Demonstrating Redfish and Ansible . 42
4.5.1 Server Health Check with Ansible 42
4.5.2 Export server configuration . 43
4.5.3 Import server configuration . 44
4.5.4 Discovery . 44
4.5.5 Importing host variables . 46
4.5.6 Playbook and roles . 47
4.5.7 Modules . 52

Contents viii

5 Security . 56
5.1 Best practices . 56
5.2 Comparison of IPMI and Redfish . 57

5.2.1 IPMI vulnerability . 58
5.2.2 Redfish . 60

5.3 Reflections . 61
6 Deployment . 62

6.1 Configuration . 62
6.2 Vendor specific attribute names . 63
6.3 Demonstration . 64
6.4 Deployment . 65

6.4.1 Extracting then deploying server configuration 65
6.4.2 Deploying BIOS and iDRAC configuration against a single

server . 66
6.4.3 Deploying BIOS and iDRAC configurations against two serv-

ers simultaneously . 67
7 Testing . 69

7.1 Testing Ansible playbooks . 70
7.2 Continuous integration . 71
7.3 Testing Ansible modules . 72
7.4 Testing summary . 72

8 Discussion . 74
8.1 iDRAC limitations and challenges . 74
8.2 Expansions . 75

8.2.1 Expanding to security . 75
8.2.2 Expanding to module-development 76

8.3 Future work . 76
8.3.1 Future work in general . 77
8.3.2 Future work for the HPC group 77

9 Conclusion . 78
9.1 Redfish & IPMI . 78
9.2 Project results . 79
9.3 Final words . 79

Bibliography . 80
A Referat . 89

A.1 Ernst referat . 90
A.2 Einar referat . 108

B Code . 124
C Other . 157
D Project plan . 159
E Group agreement . 173

Acronyms

API Application Programming Interface.

BIOS Basic Input/Output System.

BMC Baseboard Management Controller.

CA Certificate Authority.

CI Continuous Integration.

CIFS Common Internet File System.

CLI Command Line Interface.

CM Configuration Management.

CSDL Common Schema Definition Language.

DHCP Dynamic Host Configuration Protocol.

DMTF Distributed Management Task Force.

GPU Graphics Processing Unit.

GUI Graphical User Interface.

HPC High Performance Computing.

HPE Hewlett Packard Enterprise.

HTTPS Hypertext Transfer Protocol Secure.

IaC Infrastructure as Code.

ICMB Intelligent Chassis Management Bus.

iDRAC Integrated Dell Remote Access Controller.

IETF Internet Engineering Task Force.

ix

Contents x

IPMI Intelligent Platform Management Interface.

LAN Local Area Network.

LDAP Lightweight Directory Access Protocol.

NEC Nippon Electric Company.

NFS Network File System.

NIC Network Interface Controller.

NTNU Norwegian University of Science and Technology.

OData Open Data Protocol.

OEM Original Equipment Manufacturer.

OMSDK OpenManage Python Software Development Kit.

OOB Out-of-Band.

OS Operating System.

PCI Peripheral Component Interconnect.

PoC Proof of Concept.

RAKP RMCP+ Authenticated Key-Exchange Protocol.

REST Representational State Transfer.

RFC Request for Comments.

RMCP Remote Management Control Protocol.

SCM Software Configuration Management.

SCP Server Config Profile.

SoL Serial over LAN.

TLS Transport Layer Security.

UDP User Datagram Protocol.

URI Uniform Resource Identifier.

VPN Virtual Private Network.

Figures

2.1 Redfish URI . 11
2.2 Dell EMC OpenManage pre-requsities 17
2.3 Dell EMC OpenManage Supported Platforms 17

3.1 Lab environment network topology . 23
3.2 High-level view of OOB . 23
3.3 iDRAC firmware requirement for Redfish usage 24
3.4 Example of system attributes . 24

4.1 High-level overview of PoC . 31
4.2 List of hardware used in the lab . 33
4.3 IP addresses . 33
4.4 Completion of Bios Job . 50

5.1 Cipher 0 disabled . 58
5.2 Attempt to use Cipher 0 through command line 58
5.3 Metasploit module revealing information 59
5.4 IPMI disclosing password hash for user root 59
5.5 John the Ripper Cracking the Password for 198.168.0.123 59
5.6 IPMI traffic from Bachelor login machine to 192.168.0.123 60
5.7 Cutout from Wireshark showing Redfish traffic with credentials . . 60

6.1 Bios Attributes . 63
6.2 iDRAC Attributes . 64

7.1 A figure showing the testing workflow of this project 73

C.1 Google Trends the last 12 months. 157
C.2 Google Trends the last 5 years. 158

xi

List of Listings

1 Example of a command using ipmi tool 9
2 Example of IPMI extracting chassis status (Shortened) 9
3 Example of raw input using ipmitool on iDRAC 9
4 Example of raw input using ipmitool on Lenovo 9
5 Example of redfish extracting health status 12
6 Example of turning off a system with Redfish 12
7 Example of an INI inventory file . 14
8 Example of a YAML play file . 15
9 Example of a playbook being run . 16
10 Example of encrypting a file with Ansible Vault 18

11 Example of system attributes in an XML SCP-file 25
12 Tree graph of the Ansible project directory structure 28

13 GET request to find the resource id of a Manager instance 36
14 GET request to the manager instance and an excerpt of the response 37
15 Redirecting standard output to a file 38
16 GET request to the system instance . 38
17 PATCH request to disable hyperthreading, and the response-body . 39
18 Clear pending configurations . 39
19 Force system restart using Redfish . 40
20 Changing iDRAC settings using Redfish 41
21 Summarized health information of a ’Systems’ instance 42
22 Ansible-vault variables for iDRAC3 . 43
23 Ansible playbook YAML file for exporting server configurations . . . 44
24 Ansible playbook YAML file for importing server configurations . . . 45
25 Ansible task for identifying the type of BMC 46
26 Example task which includes host-specific variables 47
27 Example tasks which includes the common task ’include_host_vars’

from the ’common’-role . 47
28 Example playbook. Includes roles for configuration of different vendor

BMC implementations. 48
29 Ansible tasks for BIOS configuration 49
30 iDRAC Attributes . 50

xii

List of Listings xiii

31 Output of running the bios_settings playbook 51
32 iDRAC Attributes . 52
33 Example task calling a custom module for previewing the import

of server configuration profiles . 54

34 Example play which previews the import of a server configuration
profile, and retries the ’get_job_id_details’ module 10 times or until
the job is complete . 55

35 Export playbook successfully ran against iDRAC 66
36 Import playbook successfully ran against iDRAC 67

37 Playbook for deploying a default iDRAC bios and server config . . . 68

B.1 Results for server health Check - 4.5.1 124
B.2 Import SCP Profile Preview - Referenced in - 132
B.3 health_check.py - Referenced in 4.4.4 - 4.5 - 4.5.1 134
B.4 health check output - Referenced in 4.4.4 138
B.5 DHCP config . 140
B.6 Pseudo Code - Referenced in 4.4.4 . 141
B.7 The Ansible playbook YAML file for server health check using Red-

fish - Referenced in 4.5.1 . 143
B.8 Ansible Module for Import Configuration Preview - Referenced in

4.5.7 . 144
B.9 Ansible Module Get_Job_Details - Referenced in 4.5.7 146
B.10 Output from running preview SCP config file - Referenced in 6.4.1 149
B.11 Output from Server_Setup.yml - Referenced in 6.4.2 150
B.12 Output from Server_Setup.yml against two servers - Referenced in

6.4.3 . 151
B.13 Excerpt of a GET request to the biosregistry resource - Referenced

in 4.4.2 . 154
B.14 GET request to confirm pending BIOS configuration changes - Ref-

erenced in 4.4.2 . 155
B.15 travisYML - Referenced in 7.2 . 156

Chapter 1

Introduction

1.1 Background

NTNU hosts the Idun cluster, which is a combination of computing resources to
provide a testing environment for high performance computing (HPC) [1] soft-
ware for faculties at NTNU [2]. A HPC cluster is essentially several servers work-
ing as one, complex, very fast computer, which is capable of processing computing
tasks like no ordinary computer can. The Idun cluster itself is built up from 100
separate servers, while in the rest of NTNU there are about 600 other servers
which are also used for HPC purposes. Additionally the HPC group manages sev-
eral other HPC environments at the national level. Those consist of about 3000 to
4000 servers in total [A].

All of the mentioned HPC environments above are managed by the IT Depart-
ment’s HPC group using the Intelligent Platform Management Interface (IPMI)
[3] - which provides an interface to Baseboard Management Controller (BMC).
The BMC is a piece of hardware which is most often integrated into the server,
which allows to interact with other hardware components to monitor the server
status, such as temperature, voltage, power state, etc.

The HPC group regularly receives new servers which are to be added to the
Idun cluster. These come with a very basic configuration from the manufacturer.
The IT department has to update the firmware of the servers, and set predefined or
custom profiles of configurations to enable and optimize the performance needed
for high performance computing [4]. After the server is added to the cluster, it
also needs to be monitored for performance and maintenance.

1.2 Problem area

Up until now the process of setting-up, configuring, and adding a server to the
cluster is handled manually by the administrators of the group. They have to loc-

1

Chapter 1: Introduction 2

ally configure these new server additions for the HPC cluster, though subsequent
updates can be done remotely. The standard utilized for configuration is IPMI 2.0
[5], which dates back to 2004, not counting revisions. This makes it an almost
two decades old standard, which was designed for a very different period of com-
puting.

To ensure cross-vendor functionality, the IPMI specification commands are lim-
ited to the least common denominator such as power off, power on, and temper-
ature. More complex BMC interactions are unique, and does not function across
vendor types. Essentially this makes it more difficult to manage diverse server en-
vironments made up of different vendor servers.

Setting up and managing servers is therefore a time-consuming exercise. The
HPC group receive new servers each month, and configurations are done in an
ad-hoc manner. It steadily becomes more difficult to maintain a consistent config-
uration across servers, resulting in configuration drift.

This is where technology such as Redfish [6] comes in. Redfish is a standard
which offers greater functionality than IPMI and can be paired with the preferred
automation tool of the IT department, Ansible [7]. Though this presented the
department with another problem, as they were unfamiliar with the capabilities
of Redfish and its compatibility with their environment. They wanted a greater
understanding of the Redfish standard and to uncover the compatibility before
implementing any changes in the infrastructure management.

To address these challenges of the IT department, this thesis explores the usage
of the functionalities of Redfish and its usage in combination with Ansible.

1.3 Project goals

The goals of this project is divided into effect goals and result goals.

1.3.1 Effect goals

The effect goals describes the desired long term effects on the HPC environment.

• Reduce the amount of time spent on setting up newly arrived servers both
to the HPC environment and also possibly to the IT Department as a whole.

• Reduce configuration drift in the production environment.

1.3.2 Result goals

The result goals describes the achievements which the project and thesis are to
achieve by the end of the project timeline.

Chapter 1: Introduction 3

• A study of the viability of using Redfish and Ansible in an HPC environment
for the setup and configuration of new server additions to the cluster.

• A Proof of Concept of secure configuration of servers for an HPC environ-
ment using Redfish and automated with Ansible.

1.4 Target audience

The main target audience of this thesis is the Idun HPC group at NTNU, as they are
the employers of this project. Though it is also of interest to the other parts of the
IT department [A], as the findings could be used for their benefit as well. Other
system administrators that manage IPMI-based servers may also be interested in
this thesis for the theory surrounding Redfish; and to see a Proof of Concept be-
fore testing the transition to Redfish and automating management with Ansible
themselves.

1.5 Scope

The scope for this project is to provide the NTNU Idun group with a Proof of
Concept (PoC) of Redfish and Ansible for configuration management. This PoC is
intended to demonstrate the capabilities and functions of the Redfish specification,
and also how it can be used alongside Ansible in the management of servers. This
thesis is to present the ability of Redfish alongside Ansible to do the following
tasks as requested by the employer:

• Read and save Integrated Dell Remote Access Controller1 (iDRAC) settings
from one server to another using Redfish

• Write settings to iDRAC and BIOS with Redfish
• Collect support data with Redfish
• Deploy a default iDRAC based on previously gathered settings using Redfish
• Simulate a deployment of iDRAC settings from "out of the box" server
• Investigate and if possible show how Redfish and Ansible can be used to-

gether to automate the iDRAC setup
• Change the settings of multiple servers simultaneously using Redfish and

Ansible
• Demonstrate the “Read, Write and Deploy” settings with Ansible and Redfish

Should Redfish and Ansible be proven to be incapable or incompatible with
these types of tasks, the thesis should document the findings, and propose altern-
atives to achieve the aforementioned tasks.

1The iDRAC is Dell’s proprietary technology BMC integration to their servers. It is further intro-
duced in chapter 3 subsection 3.2.1

Chapter 1: Introduction 4

1.5.1 Delimitation

The project is tackling multiple technologies, with the purpose of achieving the
set goals. It is necessary to clarify the different restrictions that have been decided
upon, which are set to limit the project scope to a reasonable degree.

• The use of Redfish has been tailored to the needs of the Idun group
at NTNU, and does not cover all aspects and uses of Redfish.

• The PoC has been created and tested on the provided Dell
Poweredge servers using iDRAC. Some Redfish functions are Ori-
ginal Equipment Manufacturer (OEM) implementations that will
not be usable on all firmware versions or on other vendor equip-
ment, further details are specified where it is applicable.

• Specific iDRAC/BIOS configurations for a production environment
(e.g HPC optimizations, LDAP authentication), is out of scope for
this project. This is due to the project being a Proof of Concept, and
is meant to show the possibilities, not apply specific configurations.

• Open-source Redfish-modules in Ansible are to be used to automate
the processes.

• This project and thesis has focused solely on the server functional-
ity of Redfish, instead of touching its other networking equipment
functionality. Additionally network and IP address management is
also considered out of scope for this project.

• The PoC source code is to be open-source.

1.5.2 Limitations

Due to the ongoing Covid-19 pandemic the project group has been unable to travel
to Trondheim to meet with the employer. This also extends to physically interact-
ing with any of the hardware, as it is stationed in Trondheim. This has also meant
that all interaction with the hardware which has required physical access has been
done by the employer.

1.6 The Project group

The project group consists of four third year students at the BITSEC (IT-Operations
and Information Security) course at NTNU Gjøvik. They have all taken the same
elective subjects, the most relevant for this project being ‘Infrastructure as Code’,
where together, they worked with the automation of infrastructure deployment
with Openstack HEAT [8] and Puppet [9] to make an automatically scaling ser-
vice based on set metrics. They also have general knowledge about networking,
operating systems, Linux, programming, and IT operations/methodologies.

Chapter 1: Introduction 5

Magnus Walmsnæss Refsnes - Project Leader
Nick Zakharov - Deputy Project Leader
Gaute Hiis-Hauge - LaTeX Expert
Raymond Aardalsbakke - Secretary

1.6.1 Other parties

The two other related parties are the employer, which is an employee at the NTNU
IT department and is our liaison to the Idun group. The project supervisor desig-
nated by NTNU helps guide the student group through the thesis and project.

Einar Næss Jensen - Employer
Ernst Gunnar Gran - Project Supervisor

1.6.2 Thesis structure

A short explanation of each chapters contents:

1. Introduction - An introduction to the project explaining the case,
goals, scope and involved parties.

2. Background - A chapter detailing relevant theory required for un-
derstanding subsequent chapters.

3. Technical Design - An overview of the development environment,
its components, and how they interact.

4. Implementation - A chapter demonstrating how Redfish and Ansible
playbooks can accomplish out-of-band management tasks.

5. Security - A security chapter detailing best practices for BMC man-
agement and a review of the security of IPMI and Redfish.

6. Deployment - Building on the findings of chapter 4 and 5, this
chapter simulates a deployment of an out of the box server using
Ansible and Redfish.

7. Testing - A look into the theory behind testing and its relevance to
this project. This chapter also details the testing methods used, and
the reasoning behind them.

8. Discussion - Reflections on the development process, encountered
challenges and possible future work.

9. Conclusion - Final thoughts on the project
10. Bibliography - A typical bibliography
11. Appendix - An appendix which contains minutes of meetings with

the employer and supervisor, code that is too long for the main doc-
ument and other miscellaneous files referenced in the thesis.

Chapter 2

Background

This chapter explains the theory, terms and technologies which are needed to un-
derstand when reading this thesis. At the centre of these terms and technologies is
out-of-band (OOB) management. OOB management refers to the remote manage-
ment and/or monitoring of servers and other network equipment on a separate
management interface and network.

2.1 Configuration Management

Generally, when the thesis writes about configuration in this report, it means a
specific or a set of properties in the server BMC or BIOS settings. This thesis uses
the term ’configuration management’ to describe that this report is going to relate
to the management of server settings and other information exposed by the BMC
and its application programming interface (API). Software Configuration Man-
agement (SCM) [10] is a different, but closely related topic to this project.

In his book, “Software Engineering (10th edition)“ [11], Sommerville de-
scribes configuration management (CM) as the policies, processes and tools for
managing change in software systems. He argues that as software systems are
becoming more complex, keeping track of changes is crucial to not waste efforts
trying to modify the wrong version, delivering the wrong version of a system to
customers, or even forgetting where the source code of a particular version is
stored. The term ’configuration’ in ’configuration management’ refers to all data
or information which describes the functional characteristics of a software system,
i.e., source code, build data, compiler version, design and testing requirements
[12].

6

Chapter 2: Background 7

Sommerville describes 4 activities that are closely related in configuration
management of a software system [11]:

1. Version control – The process of keeping track of changes to a system
by different versions, and ensuring any changes made by another
developer does not cause any conflicts.

2. Change management – Involves keeping track of the requests for
changes by customers and developers and deciding whether they
should be implemented or not.

3. System building - The process of assembling program components,
data and libraries into an executable system

4. Release management – Preparing software for release and keeping
track of which versions have been released for public and/or cus-
tomer use.

These activities are a more abstract way to describe CM best practices as they
are defined in standards such as ISO10007 – “Quality Management - Guidelines
for configuration management” [13] and IEEE 828-2012 [12].

Essentially the Idun HPC is a growing cluster of servers with new additions
every month. There is a need for time efficient, practical, and secure configuration
management. This thesis revolves around the technologies and tools which can
make this possible, specifically the Redfish standard and the orchestration tool
Ansible.

2.2 Infrastructure as Code

Software configuration management becomes relevant in IT operations because
of an approach in infrastructure management called Infrastructure as Code (IaC)
[14]. IaC is an approach to infrastructure automation and provisioning with the
use of code, and it is enabled by modern tools and services that treats infrastruc-
ture as if it was software and data.

An example of this is cloud computing, where you can define and provision
system resources (compute, storage, network) by declaring them in text-files with
a standard format such as JSON, YAML or XML [14] which is treated like the
project source code. Their deployment is often automated by well-known orches-
tration tools such as Ansible and Puppet [9].

The principles of IaC revolves around how systems should be easily reprodu-
cible, disposable, and consistent [14], and becomes relevant to this project as they
can be applied when automating server management with Ansible and the Redfish
standard.

Chapter 2: Background 8

2.3 Intelligent Platform Management Interface

It would be impossible for system administrators in datacenters with hundreds or
thousands of servers to personally manage each and every server if they had to be
physically present on each of them. Instead, a standardized sub-system is embed-
ded in the servers to enable OOB management. The most common system is called
Intelligent Platform Management Interface (IPMI) [15]. IPMI is led by Intel and
was released in 1998, it has been supported and developed in collaboration with
a number of vendors such as Dell [16], Hewlett Packard Enterprise[17] and NEC
[18][19]. The main component is the baseboard management controller (BMC) -
a specialized service processor responsible for monitoring and controlling all the
manageable components in the system [20].

IPMI solved the problem system administrators had at the time; there was no
common model for system management, and OOB management was proprietary
implementations from vendors (e.g. Dell Remote Access Card) [19].

In practice, IPMI provides an API to hardware components, using a message-
based system. The following interfaces are supported for communication:

• System interfaces (local)
• Serial/modem
• Local Area Network (LAN)
• Intelligent Chassis Management Bus (ICMB) [21] and PCI Manage-

ment Bus [22].

Each interface uses different protocols for communication, requiring specific
message-formats, and is therefore categorized in individual channel numbers for
configurations allowing the direct communications between the BMC and the in-
terface. For example, the LAN interface will often (specific to implementation) be
on channel 1, specifying how IPMI messages can be transmitted in the Remote
Management Control Protocol (RMCP/RMCP+) UDP datagrams [20]. A subsys-
tem with a separate power connection and network interface card (NIC), will
allow remote management through the LAN channel even if the host system is
powered off or does not have an operating system installed yet.

System administrators can use tools like ipmitool, ipmiutil, freeipmi, or openipmi
[23] to query information from the IPMI-based system over a command-line in-
terface on a master node. The most popular tool for this purpose is ‘ipmitool’ (ref
app. C.1), which is provided as an independent package in a number of Linux-
distributions [23].

Chapter 2: Background 9

After installing the package through a distributions package-provider, a stand-
ard command will follow the format as shown in listing 1.

ipmitool -I interface -H ipaddress -U username -P password command

Listing 1: Example of a command using ipmi tool

An example of this type of command is shown in listing 2 which shows the
usage of the ’chassis status’ command. This command provides information about
the chassis, which includes information about the system power, the state of the
different buttons, and if there is an issue with the power.

[redfish@bachelor ~]$ ipmitool -I lanplus -H 192.168.0.123 -U root -P redfish
chassis status,→

System Power : on
Power Overload : false
Power Interlock : inactive
Main Power Fault : false
Power Control Fault : false

Listing 2: Example of IPMI extracting chassis status (Shortened)

IPMI is becoming an old specification, and because it follows the least common
denominator its functionality is very limited, meaning it only has a few sets of
commands such as setting a LAN IP, power on/off/reboot, and temperature checks.
OEM extensions are not interoperable, for example, if you wish to change the NIC
settings of an iDRAC to ’shared’, you must issue the raw command in listing 3 to
access that type of functionality [24].

ipmitool raw 0x30 0x24 0

Listing 3: Example of raw input using ipmitool on iDRAC

While on a Lenovo server one would have to instead utilize the raw command
in listing 4 for the same result. This would set the NIC to shared for both IPv4 and
IPv6. Replacing the last hex-argument from 0x03 to either 0x01 or 0x02 would
respectively change it to shared only for IPv4 or IPv6 [25].

ipmitool raw 0x32 0x71 0x00 0x00 0x03

Listing 4: Example of raw input using ipmitool on Lenovo

Chapter 2: Background 10

This archaic, non-human readable bit-mapped architecture requires data centres
with a diverse, multi-vendor inventory to either develop their own tools (often re-
lying on in-band management software), or using third-party solutions to manage
all the vendor-specific extensions [26].

2.4 Redfish

As a solution to the problems and difficulties with the continued usage of IPMI,
the group DMTF [27] (formerly known as Distributed Management Task Force)
began to set the basis for what would be its successor, Redfish [6]. The idea was
to specify models needed for a model-driven architecture as opposed to IPMI’s
bit-map oriented architecture [28]. The purpose was to reduce the complexity of
systems through layers of abstractions.

Redfish is an open source and open standard specification for hardware man-
agement. It provides an API that can be used to obtain information and manage
servers through an OOB controller. Redfish uses HTTPS for communication, which
is both generally well understood and also a secure way of transferring data. The
Redfish schema is defined in three formats, those being JSON schema[29], Open
Data Protocol (Odata) Common Schema Definition Language (CSDL) [30], and
in YAML [31][32].

The JSON representation, makes it easier for Redfish to integrate with other
programming environments such as Python scripts, JavaScript code, and visualiz-
ations. While the OData CSDL, is adopted for naming conventions for descriptions,
URL conventions, and definitions to provide a comparability for APIs to work to-
gether. Finally it is provided in Yaml as specified by OpenAPI. OpenAPI is an open
specification on API services, and provides with a plethora of tools for users [33].

2.4.1 The Redfish API

Redfish uses a Representational state transfer application programming interface
(REST API) which is an architectural style for distributed hypermedia systems
[34]. It is a client to server architecture where the client uses HTTP methods
(such as POST, GET, PATCH) to make requests towards the server which then an-
swers with a response. REST is also stateless which means that each request must
contain all the information that the server requires to understand and respond
meaningfully.

“The key abstraction of information in REST is a resource. Any information
that can be named can be a resource: a document or image, a temporal service
(e.g. "today’s weather in Los Angeles"), a collection of other resources, a non-
virtual object (e.g. a person), and so on.” [35].

Chapter 2: Background 11

For Redfish these resources are what comes at the end of the requested Uni-
form Resource Identifier(URI), e.g “https://192.168.0.20/redfish/v1/Systems”.
In this request the resource that is requested is “Systems”, which contains informa-
tion about the logical system view of the computer system as seen by the operating
system (processors, storage, BIOS, etc.).

In a RESTful API the resource is transferred using HTTP(s), and it can be
in several formats like JSON, XLT, Python, PHP, and plain text [36]. The most
commonly used format is JSON which is readable by both humans and machines.
The Redfish specification uses JSON for transferring data.
A Universal Resource Identifier is a unique sequence of characters that is used to
identify a logical or physical resource. The Redfish API follows a specific hierarchy
for simple viewing and navigation in the following format [37]:
https://{host IP}/redfish/v1/{Resource Path}

Figure 2.1 gives a more practical example and explains how to read the URI:
https://192.168.0.123/redfish/v1/Systems/System.Embedded.1

Component part Example
The scheme for transfer, in this case https https//:

Where to delegate the URI to, in this case an IP address 192.168.0.123/
The service root and version redfish/v1/
The "Systems" resource path Systems/

Unique id of an instance of the resource System.Embedded.1

Figure 2.1: Redfish URI

In Redfish, a URI can also represent a collection of similar resources. Redfish has
something called a ’resource collection’ which can describe a group of Systems,
Managers and Chassis, amongst others. This is essentially an array of its members
and if the array is empty, the returned JSON object will be empty.

2.4.2 Redfish examples

Following are some simple examples showcasing the simplicity of OOB manage-
ment with Redfish, and giving an insight into its possibilities. Both of these ex-
amples are tested on a Dell Poweredge R720 server with iDRAC version 2.65.65.65,
as well as the Poweredge C6420 server with iDRAC version 4.32.10.00.

Querying the server for information

Listing 5 contains an example that shows a GET HTTP(s) request on the iDRAC
Redfish interface requesting information about the system state. The response

Chapter 2: Background 12

is filtered using the command-line JSON processor tool ‘jq’ [38] with the filter
‘.Status’. This returns information about the system status like health and state.

[root@bachelor]# curl -sX GET -u root:calvin
https://192.168.0.124/redfish/v1/Systems/System.Embedded.1 -k | jq
'.Status'

,→

,→

{
"Health": "OK",
"HealthRollup": "OK",
"State": "Enabled"

}

Listing 5: Example of redfish extracting health status

Running command against server

Action on a resource instance of a system is done using the HTTP POST method.
For example in listing 6 there is first a GET request for the powerstate of the
system, this returns that the system is currently ’On’. Then a POST request on
the resource /ComputerSystem/ with the ResetType ’GracefulShutdown’ is sent.
Repeating the first GET request now reveals that the powerstate is ’Off’.

[root@bachelor]# curl -sX GET -u root:calvin
https://192.168.0.124/redfish/v1/Systems/System.Embedded.1 -k | jq
'.PowerState'

,→

,→

"On"

[root@bachelor]# curl -k -u root:calvin -X POST https://192.168.0.124/red c
fish/v1/Systems/System.Embedded.1/Actions/ComputerSystem.Reset
-H "Content-type: application/json" -d '{"ResetType":
"GracefulShutdown"}'

,→

,→

,→

[root@bachelor]# curl -sX GET -u root:calvin
https://192.168.0.124/redfish/v1/Systems/System.Embedded.1 -k | jq
'.PowerState'

,→

,→

"Off"

Listing 6: Example of turning off a system with Redfish

HTTP requests like in the examples above, can be written in script-languages
like Python [39] to perform more advanced series of tasks. Automation tools like
Ansible uses modules written in Python which accept parameters defined in text-
files to perform such managerial tasks. These modules can run on all defined hosts,
bringing reliable, consistent, and automated OOB management to IT operations.

Chapter 2: Background 13

2.5 Automated OOB management with Ansible

Ansible is an IT automation engine meant for managing and automating tasks in
IT infrastructures. It does not require any installation of agents on the managed
nodes, only the master node is required to have a version of Ansible.

Ansible was chosen on the request of the employer as part of the initial project
description, this is due to Ansible being the primary automation tool utilized by
the department. In addition, Ansible has several working Redfish based modules
[40][41]which can be used to solve the different tasks presented by the employer.

2.5.1 Modules

Ansible [7] manages its nodes through a concept known as modules, which are
units of code executed through the command line or through a playbook. Modules
support arguments and are also referred to as ‘task plugins’ or ‘library plugins’. A
module is essentially a small program usually pushed and/or executed through
SSH by Ansible which deletes itself after running. Redfish modules instead uses
the local connection of the master node to make HTTP(s) requests on the target
hosts REST API. Ansible does not require a dedicated database or server, as its
library of modules can reside on any machine within the network infrastructure
[42].

2.5.2 Inventory files

Inventory files exist to keep track of all your known hosts while also grouping and
assigning variables to said hosts. Inventory files also allow for groups to define
values by inheritance from a parent group to a child. Multiple inventory files can
be used at the same time, which is useful when dealing with a fluctuating en-
vironment. The most used file formats are INI and YAML [43]. Listing 7 is an
example that shows an inventory file in the INI file format. The first line declares
a group, named ’myhosts’, followed by two hosts with a declared URI. After the
group is defined, host-variables are set, in this case user_name is set to ’root’ and

user_password is set to ’calvin’.

Chapter 2: Background 14

[myhosts]
host1 baseuri=”192.168.0.123”
host2 baseuri=”192.168.0.124”

[myhosts:var]
username=”root”
password=”calvin”

[all:children]
myhosts

Listing 7: Example of an INI inventory file

2.5.3 Playbooks and plays

The modules are utilized by an Ansible playbook, which is a configuration file
written in YAML. This file has the sequence of instructions needed to bring the
target host configuration to the desired state. Ideally playbooks are supposed to
be short and readable as most of the work is handled by the modules, however
they can be rather complex with variables and conditions. Playbooks are applic-
able to multiple machines, repeatable, and reusable [44].

Playbooks consist of plays which in turn consist of tasks. A play has a name,
followed by applicable hosts and values. After the play related values are set,
tasks are defined. Tasks are given appropriate names and one or several mod-
ules with the required parameters. In the case of listing 8 the task ’Shutdown
system power gracefully’ is using the redfish_command module which is a part
of the community.general collection, more on this in subsection 2.5.5. The inden-
ted lines after redfish_command: are parameters used by the redfish_command
module. Variables in a YAML file are used with a double curly brackets as such {{
variable }}, and in this case the variables URI, username and password which was
defined in the inventory file and passed to the module.

Listing 8 is an example of a play detailing a shutdown through Redfish. A
YAML file always starts with ’---’, which is a document separator. In this specific
example the play and task has the same name: ’Shutdown system power grace-
fully’, names does not need a specific value, but will be printed when running a
play. Hosts are set to ’all’, meaning all hosts in an inventory file will run said play.
’Connection: local’ is used to run the playbook locally instead of connecting over
SSH. If ’gathering_facts’ is set to true it will gather various information about the
remote host. Some playbooks depend on up-to-date information, in this case it is
set to ’false’ as the extra information is not required.

Chapter 2: Background 15

- name: Shutdown system power gracefully

hosts: all
connection: local
gather_facts: False

tasks:
- name: Shutdown system power gracefully

community.general.redfish_command:
category: Systems
command: PowerGracefulRestart
baseuri: "{{ baseuri }}"
username: "{{ username }}"
password: "{{ password }}"

Listing 8: Example of a YAML play file

Listing 9 shows the output of running the play in listing 8. It shows that the task
in the play has been successful on all hosts. [root@bachelor] is the master node

that runs the ’ ansible-playbook ’-command, ’playbooks/shutdown_system_power.yml’
is path to the play being executed and ’-i inventory’ defines the inventory that is
being used. Below the command which executed the play is the output. The out-
put shows the name of the play that is being executed, as well as the task(s). The
module returns ’changed’ because the power state of the system has been changed.
The play recap shows a summary per host, returning ’ok=1’ to signal its success
and ’changed=1’ to signal that a change on the system has been applied.

The ’ ansible-playbook ’-command is run from the same directory as the Ansible
configuration file (ansible.cfg), which should be located at the root directory of
the Ansible project. It defines project-specific variables like relative paths to the
roles-directory.

Chapter 2: Background 16

[root@bachelor redfish-ansible]# ansible-playbook -i inventory
playbooks/shutdown_system_power.yml,→

PLAY [Shutdown system power gracefully]
**

TASK [Shutdown system power gracefully]
**
changed: [host2]
changed: [host1]

PLAY RECAP
**
host1 : ok=1 changed=1 unreachable=0 failed=0 skipped=0

rescued=0 ignored=0,→

host2 : ok=1 changed=1 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0,→

Listing 9: Example of a playbook being run

2.5.4 Roles

To help manage complex playbooks, the concept of roles can be used. Roles is
an Ansible functionality which groups a set of tasks, variables, and other Ansible
artifacts based on a known file structure [45] to perform a specific, independent,
reusable function. A role is created by creating the "roles/{rolename}" director-
ies in the same directory as the Ansible configuration file. The relative path to
the ’roles’-directory should be added to the configuration file. The minimum re-
quirement of a role is a tasks directory with a main.yml file containing the list of
tasks suitable for the role. In subsection 4.5.6 of this thesis, the complexity of a
playbook is anticipated to grow when BIOS and BMC configuration has to be ex-
ecuted on multiple vendor servers. To help reduce that complexity, the concept of
roles is used to split up the tasks based on vendor and component configurations.
Another use case for roles is to group together common tasks which can then be
called from other plays without having to use relative paths to include arbitrary
tasks in the project-directory.

2.5.5 Ansible Galaxy

Ansible Galaxy [46] is a website for sharing collections and roles. These pre-
packed roles and collections are community driven and cover a wide variety of
modules. Adding roles or collections from the galaxy hub is simple and easily done
with a single command. Installation is performed by either specifying one or more
roles(ansible-galaxy role install {username}.{role}), alternatively one or more col-

lections(ansible-galaxy collection install {username}.{collection}). Once installed,

Chapter 2: Background 17

the role/collection can be used in any playbook by specifying either {username}.{role}.{module}
or {username}.{collection}.{module}.

Ansible community general

Ansible community general is a collection of modules, which contains a wide vari-
ety of the most used modules in Ansible Galaxy. Below is a full list of Redfish
related modules within the general collection [40]:

• redfish_command
• redfish_config
• redfish_info
• idrac_redfish_command
• idrac_redfish_config
• idrac_redfish_info
• xcc_redfish_command

The modules which starts with Redfish are general modules which are usable
on any Redfish supported systems, while those starting with iDRAC are Dell [47]
specific modules, and those starting with xcc are Lenovo [48] specific.

Dell EMC OpenManage

The OpenManage module [49] is written and managed by Dell EMC. With ’Open-
Manage’ being Dells brand name for system management applications. The Open-
Manage module has a few prerequisites, and a limited amount of platforms which
are supported, as seen in figure 2.2 and 2.3. OMSDK is a Python library written
by Dell for automation of Dell servers which is required to run OpenManage.

Software Version
Ansible >= 2.10.0
Python >=2.7.17 or >=3.6.5
OMSDK any

Figure 2.2: Dell EMC OpenManage pre-requsities

Platform Version
iDRAC 7/8 2.70.70.70 and above
iDRAC 9 4.32.10.00 and above

Dell EMC OpenManage Enterprise versions 3.4 and above
Dell EMC OpenManage Enterprise-Modular versions 1.20.00 and above

Figure 2.3: Dell EMC OpenManage Supported Platforms

Chapter 2: Background 18

2.5.6 Ansible Vault

Ansible vault serves the purpose of encrypting sensitive content, for example files,
variables, passwords, keys, etc [50]. An encrypted file or variable would only be
editable with the correct password and vault. Encryption is fairly easy and can
be done with a single command such as in listing 10. Ansible vault can also be
used for encrypting strings which can replace plaintext variables in an Ansible-
file. Such encrypted strings are detected by Ansible at playbook run-time, and
can be decrypted by either entering a password or passing a file containing the
decryption password.

[root@bachelor]# ansible-vault create foo.yml

Listing 10: Example of encrypting a file with Ansible Vault

2.6 Alternative technology

The goal of this project, as required by the employer, is to utilize Redfish and Ans-
ible for the setup and configuration of servers. However, alternative technology
exists to both of these solutions, such as IPMI and Puppet. IPMI was never relevant
to the project due to Redfish being the technology which the employer requested
a thesis on.

Puppet on the other hand is a management and automation tool, though it
differs from Ansible in using agents in their management. This essentially means
that the managed nodes needs software in the form of a Puppet ’agent’ to func-
tion. This differs to the Ansible approach which is agentless. Though this too was
excluded due to Ansible being both the preferred and required automation tool
by the employer.

2.7 Security

When implementing any new service or software it is important to take a look at
the security of the new software, and if applicable compare it to the one in use
already. IPMI is an old standard and has been revealed to have several security
issues and challenges. It is therefore important to take a look at Redfish, and the
security features which it utilizes and compare it to the features of IPMI.

2.7.1 IPMI security

As previously stated, IPMI is a rather old standard and though it has been revised
several times, there have been multiple security issues related to it through the
years. Specifically issues discovered by security researcher Dan Farmer [51], and

Chapter 2: Background 19

the metasploit module and pentesting guide written by the Rapid7 Group [52].
Though both of these write-ups were written in 2013, Farmer took another, albeit
short, look at IPMI in 2021 [53]. In this writeup he addressed that not much had
changed with the standard in the last 8 years except from IPMI 2.0 adding support
for SHA256 in their Remote Management Control Protocol (RMCP) Authenticated
Key-Exchange Protocol (RAKP).

Some of the issues with the standard have been listed in the US Cybersecur-
ity and Infrastructure Security Agency’s Alert (TA13-207A) [54], which is largely
based on the findings of Farmer. Amongst these security issues are:

1. IPMI passwords being saved in plaintext, and knowledge of one
password giving access to all computers in a managed group.

2. Root access on IPMI BMC granting complete control over the sys-
tem.

3. Certain types of traffic from and to the BMC are not encrypted.
4. Sanitizing passwords documentation is unclear.
5. Options which are enabled by default have large security issues,

such as cipher 0 which allows authentication to be bypassed if the
attacker knows the username and user id 1 allowing anonymous
login [54].

6. Due to the way IPMI 2.0 negotiates a secure connection it allows an
anonymous user to remotely get the password hash from the BMC.

7. Information leaking in the form of revealing information about the
system and users to anonymous users.

With the IPMI standard having several glaring security issues, it has been up to
the vendors to implement the standard differently and more securely. An example
of this is the Dell’s iDRAC, where they have by default disabled cipher 0, disabled
the ability to login anonymously with user id 1 and with no option to enable it,
and removed the support for the use of null passwords [55].

Finally a joint message [56] was published by Intel alongside Dell, Hewlett
Packard Enterprise, and NEC. This message specifies that the 2013 2.0 specifica-
tion is the last update to the specification, and that there is not planned another
update nor should one be expected. Finally they encourage to move towards other
specifications, mentioning Redfish as an alternative.

2.7.2 Redfish security

Redfish supports the use of TLS v1.1 and later versions, which lets the clients and
servers send these requests encrypted instead of in plaintext. TLS is used by the
specification in the form of HTTPS, and this adds a layer of protection for traveling
packets in the network. Using HTTPS for transfering traffic also has another bene-

Chapter 2: Background 20

fit which is that the traffic can be inspected by the firewall or an administrator by
decrypting the traffic and then recrypting it [57]. This could significantly increase
the chance of discovering an infected device, though it could also impact security
if implemented poorly [58].

Redfish requires all write requests to Redfish objects to be authenticated ex-
cept from the initial post operation on the service root. There are two ways of
authenticating using Redfish, the first being HTTP Basic Authentication following
the practices of IETF’s RFC 7235 [59], in which the username and password is
added to the request itself.

The second way of authentication is through the Redfish Session Login Au-
thentication. This type of authentication lets the user send a post request to the
“SessionService/Sessions”-resource using basic authentication. The response will
contain an X-Auth-Token header which has a session authentication token. This
token can then be used by the client to authenticate their subsequent requests
[37].

Redfish also supports using LDAP and Active Directory [60] as external ac-
count providers.

Redfish also has an inbuilt privilege model for authorization, and this sys-
tem uses roles with assigned privileges to control the access of the user. Essen-
tially a role contains several privileges e.g login, ConfigureSelf, ConfigureUsers,
and so on, these privileges control which resources the role is able to access and
write to. In Redfish there are three predefined roles; Administrator, Operator, and
ReadOnly. In addition to this one may also create custom roles and assign priv-
ileges to them. When a new user is created it must be assigned a role from either
the three predefined or a custom role.

2.7.3 Comparison

IPMI was created and developed in a time period in which cyber security was less
of a consideration. Through many iterations the security has been improved by
both new releases of the specification, and the alterations made by the different
vendors. This has not changed the fact that there are several issues with the stand-
ard. In addition to this the specification will most likely never be updated again,
which means the security issues will remain. This will continue to be a debt on
either the vendors or the IT administrators in disabling and repairing these func-
tionalities and vulnerabilities.

Redfish on the other hand is a new specification which was developed with
modern security practices in mind. It also does not have the same vulnerability

Chapter 2: Background 21

debt which IPMI carries, and with it being actively developed one can expect vul-
nerabilities which are discovered to be patched. There are some issues with a
new specification, for instance, finding information on both troubleshooting and
best practices for implementation is difficult. Vendors such as Dell have their own
best practices for implementation of their servers, and DMTF has mockups for
developers.

Chapter 3

Development Environment

The following chapter details the physical lab environment as well as the Ans-
ible project directory structure and content.This is where the reader should get
an impression of what type of environment the PoC has been developed in, and
detailed information about the files in the Ansible directory to tie up the theory
from chapter 2.7 with the Proof of Concept demonstration in the coming chapter
(4).

3.1 High Level Overview

The development environment, as shown in figure 3.1, consists of a Dell N3048
switch, two Dell R720 running iDRAC version 7, and lastly Dell C6420 servers with
iDRAC version 9. These are reachable through a login server, ’bachelor-server’,
which is reachable using a VPN to connect to the NTNU campus network.

As shown in figure 3.1, the login node labeled "bachelor-server" works as the
master node. The master node locally stores a version of the project repository
with all the produced Ansible files. Logging into the master node requires a client
on to the NTNU network. A VPN connection can be used for remote connection.
The master node has direct access to the iDRAC NIC-interface through a switch
which connects all the nodes to be managed. This allows the use of IPMI or the
Redfish API for OOB management. Ansible playbooks which automate OOB man-
agement tasks is run on the master node. Figure 3.2 shows a high-level view of
the interactions between a master node running Ansible Redfish modules and the
nodes to be managed.

3.2 Dell Poweredge servers

The servers which have been provided are part of Dell’s Poweredge server line
[61], and the lab environment is composed of these types of servers. The employer

22

Chapter 3: Development Environment 23

Figure 3.1: Lab environment network topology

Figure 3.2: showcasing a high-level view of OOB management with Redfish

has provided the project with four Poweredge servers, two of which are of the type
R720, and two of which are of the newer C6420 server line.

3.2.1 iDRAC

The Integrated Dell Remote Access Controller (iDRAC) is Dell’s proprietary imple-
mentation of the BMC - a controller card which is embedded into the motherboard
[62] of the Poweredge R720 and C6420 servers. This piece of hardware lets an ad-

Chapter 3: Development Environment 24

ministrator deploy, update and monitor the servers remotely [6]. The iDRAC has
a web-gui which can be accessed by an administrator for management, but later
versions such as the iDRAC 7-9 also utilizes the Redfish standard. This essentially
means that the administrator can utilize automation software such as Ansible to
make Redfish HTTPS calls, and automate processes such as deployment, updating
and monitoring.

Although new releases of iDRACs come with Redfish pre-enabled, older firm-
ware needs to be update to a firmware supporting Redfish. The firmware require-
ment can be seen in figure 3.3. If the appropriate firmware version is installed, the
only thing that needs to be done is to enable Redfish. Redfish is enabled through
either iDRACs web interface, iDRAC RACADM [63] or WSMAN [64]. However
the focus of this thesis is Redfish, which is enabled by default on new hardware,
which is the reason the process of enabling Redfish is not further explained.

iDRAC Version Firmware Requirement
iDRAC7/8 2.40.40.40 or newer
iDRAC9 3.0.0.0 or newer

Figure 3.3: iDRAC firmware requirement for Redfish usage

3.2.2 SCP files

A feature specific to iDRAC is the Server Config Profile, which is a file containing
parts of or a complete set of iDRAC, BIOS, NIC and RAID settings. The iDRAC
settings shown in figure 3.4 are formatted as such in listing 11 when in an XML
file format, additionally an SCP file can also have the JSON file format. An SCP
file can be either exported or imported to an iDRAC, through web GUI or through
Redfish. Model, ServiceTag and TimeStamp are values recorded at the time of
export.

Component Name Attribute Value
iDRAC.Embedded.1 Users.2.UserName root
iDRAC.Embedded.1 Users.2.Password calvin

Figure 3.4: Example of system attributes

Chapter 3: Development Environment 25

<SystemConfiguration Model="PowerEdge C6420" ServiceTag="BWX5WC3"
TimeStamp="Thu Mar 18 21:04:09 2021">,→

<Component FQDD="iDRAC.Embedded.1">
<Attribute Name="Users.2#UserName">root</Attribute>
<Attribute Name="Users.2#Password">calvin</Attribute>

</Component>
</SystemConfiguration>

Listing 11: Example of system attributes in an XML SCP-file

3.3 Ansible

Ansible is the primary orchestration tool of the project, and it allows for interac-
tions with one or multiple servers simultaneously. Ansible substitutes the manual
construction of API calls by automating the process by listing a sequence of tasks
in YAML-files. The tasks usually calls modules, which are either locally developed
or downloaded through Ansible Galaxy [46]. Most modules require a specific set
of parameters, Redfish modules usually require a host, credentials to said host and
a module-specific commands with corresponding required variables.

3.4 Ansible directory structure

The PoC produced is an Ansible project directory stored in a maintained git-
repository which lays the groundwork for future work with Redfish and Ansible by
showcasing their OOB management possibilities. It is organized following Ansible
best practises [65], but tailored to suit the needs of the project. For example, the
Ansible documentation suggest a group-vars directory to store inventory group
variables. Because only host-specific variables are needed for this project, this dir-
ectory was not included. The directories and files can be modified and expanded
as seen fit when adding new OOB management functionality.

Listing 12 shows a tree-graph of the current Ansible project directory named
’redfish-ansible’. The following subsections describe elements of this tree-graph to
get a better understanding for the rest of the thesis.

3.4.1 ansible.cfg

Default Ansible settings can be overridden by adding an entry in the ’ansible.cfg’
file. A list of settings which can be changed can be found in the official Ansible
documentation [66]. In this project, the most notable entries include a path to
the Ansible vault password file so that the vault-password does not have to be
entered by the user on each test-run. A relative path to the roles directory is also
defined so that Ansible can locate roles called from a playbook. This is the reason

Chapter 3: Development Environment 26

that ’ ansible-playbook ’-commands must be run from the root ’redfish-ansible’ dir-

ectory. The ’ ansible-playbook ’-command will look for a configuration file in the
current working directory before executing playbooks, and if it is not found it will
run with the default Ansible settings. As specified in the documentation, the de-
fault roles paths are ’ /.ansible/roles:/usr/share/ansible/roles:/etc/ansible/roles . Un-
less roles are copied over to one of those locations or the relative ’.roles/’ path is
defined, playbooks calling roles stored in the ’redfish-ansible/roles’-directory will
fail.

3.4.2 host_vars

Host variables are defined in files in this directory in the following format: ’{in-
ventory_hostname}.yml’. The reason for this format is so that host-specific vari-
ables can be dynamically loaded during playbook-runtime. ’inventory_hostname’
is a unique global variable defined on a per host basis in the inventory file.

Currently the only host-variables needed is the username and password for the
BMC. The password-variable is encrypted using Ansible vault so that it is secure
to keep in a public git-repository.

3.4.3 inventory

The inventory directory contains one file named ’static_inventory.yml’ which con-
tains all hosts in the lab-environment. The hosts gets assigned a hostname which
can be referenced in ansible-playbooks, as well as the host-variable ’ansible_host’
which contains the IP address of the host. Several testing-groups were created
to test playbooks on specific hosts instead of running the playbooks on all hosts
every time.

3.4.4 playbooks

This folder contains all playbooks referenced in this thesis.

3.4.5 plugins

Locally developed modules have to be stored in ’plugins/modules’ so that Ansible
can find them when they are referenced in a playbook.

3.4.6 roles

Directory containing all roles used in this project. The ’bios_idrac_settings’ and
’idrac_settings’ roles work to seperate functionality limited to only iDRAC to im-
prove the readability of playbooks which will apply BIOS and BMC configurations
on an inventory of multiple vendors. The ’common’ role groups together common
tasks such as ’include_host_vars.yml’ which includes host-specific variables during
playbook run-time.

Chapter 3: Development Environment 27

3.4.7 tests

The tests directory is used when running automated tests in the CI-tool travisCI.
The ’test-requirements.txt’ file contains tools needed to be downloaded in the CI-
system, and the inventory file defines a ’localhost’ host which the playbooks are
ran against in the testing-environment.

3.4.8 .travis.yml

This is the configuration file for the travisCI tool. It defines what type of system
the tool shall build to test the playbooks.

3.4.9 .ansible-lint

This is the configuration file for the ’ansible-lint’ tool which checks the playbooks
for code quality and bugs. In this project some errors are ignored because they
are intended functionality of the playbooks.

Chapter 3: Development Environment 28

redfish-ansible
|-- ansible.cfg
|-- host_vars |--tests
| |-- idrac1.yml | |--inventory
| |-- idrac2.yml | |--test-requirements.txt
| |-- idrac3.yml |--.travis.yml
| |-- idrac4.yml |--.ansible-lint
|-- inventory
| |-- static_inventory.yml
|-- LICENSE
|-- playbooks
| |-- bios_settings.yml
| |-- bmc_settings.yml
| |-- export_server_config_profile.yml
| |-- import_scp_preview.yml
| |-- import_server_config_profile.yml
| |-- server_health_check.yml
| |-- server_setup.yml
| |-- test_playbook.yml
|-- plugins
| |-- modules
| |-- get_job_details_redfish.py
| |-- import_idrac_scp_preview.py
|-- README.md
|-- roles
| |-- bios_idrac_settings
| | |-- tasks
| | |-- main.yml
| |-- common
| | |-- tasks
| | |-- create_output_file.yml
| | |-- get_redfish_info.yml
| | |-- include_host_vars.yml
| |-- idrac_settings
| | |-- tasks
| | |-- main.yml
| | -- restart_idrac

Listing 12: Tree graph of the Ansible project directory structure

Chapter 3: Development Environment 29

3.5 File storage

Files are an integral part of several IPMI and Redfish commands. Unless a BMC
is connected to the Internet, a file is either accessed locally or from a network
share. For instance, one of the core features of a BMC is to install an OS remotely
which requires an installation file which can be stored in the network share. Server
configuration profiles can also be stored here. iDRACs are compatible with both
CIFS [67] and NFS [68] type file shares. In this project, the share type used is
NFS because this is Linux-only environment. This has been located on the master
node.

3.5.1 Git

Git is an open source tool which streamlines version control. Features such as
branches make it possible for multiple users to work on the same project without
affecting others, repositories can be publicly shared and versions can easily be
rolled back if something breaks.

All files relevant to the PoC are kept within a public Git repository created
by the project group [69]. Included amongst these files are playbooks, scripts,
modules, etc.

Chapter 4

Implementation

This chapter is separated into several parts, which shows how Redfish can be used
to solve the tasks presented in section 1.5 - "Scope" in chapter 1. The first part of
the demonstration sticks to simple demonstrations in how the Redfish API can be
used from the command line or together with scripting languages such as Python.
The second part shows how Ansible Redfish modules and playbooks can be used
to execute these tasks on a larger scale. The PoC consists of several created play-
books, plays and tasks in addition to two custom modules.

These demonstrations have been developed for and tested on Dells BMC im-
plementation the iDRACs in accordance with the Dell Poweredge based lab en-
vironment provided by the Idun HPC group. However, only a few iDRAC specific
implementations have been used, an example being Server Configuration Pro-
files (SCP), which uses a Dell-specific, OEM Redfish resource extension to import,
export, or preview configuration settings as an XML file or JSON file. Though,
with some modifications and research into other vendor implementations, the
same principles as seen in this chapter can be applied to expand the functionality
and practicality of this PoC. Otherwise, basic configuration or functionality shown
should, unless otherwise noted, work on any BMC that supports and has imple-
mented the Redfish specification version 1.6.0 with OpenAPI 3.0 support, which
is the basis for our PoC.

4.1 High-level overview

The figure 4.1 is a high-level overview on how the different parts and technolo-
gies in the project environment interact when using Ansible together with Red-
fish. When Ansible is ran from the master node using the command line tool
’ ansible-playbook ’, two parameters are included. The first being the playbook,
and the second being the inventory file. It then fetches the modules required -
either from a previously downloaded Ansible community module, or using mod-
ules locally developed and added to the ’plugins/modules’-directory. In this PoC

30

Chapter 4: Implementation 31

the host-groups are hard coded into the playbooks for testing purposes, and during
playbook execution it looks up the group in the inventory file, fetches the correct
host details, and then retrieves the host credentials from the relevant host-variable
file. Then using the parameters included in the modules it crafts Redfish URIs and
forms the destination of the HTTP(s) requests to the iDRAC hosts specified in the
inventory file. These requests are received by the RESTful API which either per-
forms actions on the BIOS and/or iDRAC configurations or collects information
from it, and the result of the play is returned to the master node in the form of a
JSON response.

Figure 4.1: High-level overview of PoC

4.2 Proof of Concept specification

The following tasks serves as the specification for the PoC, and the remainder
of this chapter shows the projects solution to them. The last task, changing the

Chapter 4: Implementation 32

settings of multiple servers simultaneously using Redfish and Ansible, is demon-
strated in the later chapter 6 - "Deployment".

• Read and save Integrated Dell Remote Access Controller (iDRAC) settings
from one server to another using Redfish

• Write settings to iDRAC and BIOS with Redfish
• Collect support data with Redfish e.g. a health check
• Deploy a default iDRAC based on previously gathered settings using Redfish
• Simulate a deployment of iDRAC settings from "out of the box" server
• Investigate and if possible show how Redfish and Ansible can be used to-

gether to automate the iDRAC setup
• Change the settings of multiple servers simultaneously using Redfish and

Ansible
• Demonstrate the “Read, Write and Deploy” settings with Ansible and Redfish

In addition, the Ansible modules ’Import Server Configuration Profile Preview’
(iDRAC specific) and ’Get Job Details’ has been developed to complement the
workflow of certain Ansible playbooks which will be discussed later in this chapter.
These are in an early stage of development, but work as an example of how to
develop modules when there are no public modules for a use-case.

4.3 Lab environment

This section details the lab environment in which the demonstrations of the PoC
was ran, and is included for the purpose of being able to reproduce the results
presented below.

4.3.1 iDRAC

All iDRAC versions from v2.40.40.40 support the Redfish standard, but when up-
grading from a version before 2.40.40.40, manually enabling the service is neces-
sary. As seen in figure 4.2, all the models in the lab environment except node 2
supports Redfish. Originally ’node 2’ was updated to firmware version 2.65.65.65
but the group requested a reset so that one could observe its default state. Dell
PowerEdge C6420 is one of the newer models used in the production environment
by the employer today, and comes with iDRAC9 v4.32.10.00 out of the box which
has the Redfish specification version 1.6.0 implemented. ’Node 1’ works as a ref-
erence to older or different versions of iDRAC. The latest version at the time of
writing is v4.40.00.00. For full summary of the differences between the versions
an excel-sheet was created [70].

redfish@bachelor.hpc.ntnu.no is the hostname of the master node, which is
used as a gateway to connect to nodes 1-4, where all nodes share the same internal
network. Nodes 3 and 4 has Centos8 installed to work as a backdoor in case of
configuration errors which could result in loss of connectivity to the iDRAC.

Chapter 4: Implementation 33

Hostname OS
redfish@bachelor.hpc.ntnu.no Centos7

Switch Model
Dell N3048

Node iDRAC Version Model Firmware Version OS
1 iDRAC7 R720 2.65.65.65
2 iDRAC7 R720 2.10.10.10
3 iDRAC9 C6420 4.32.10.00 Centos8
4 iDRAC9 C6420 4.32.10.00 Centos8

Figure 4.2: List of hardware used in the lab

4.3.2 DHCP

In the beginning, the lab environment consisted of two Dell R720 (iDRAC7) serv-
ers which were assigned a static IP configuration by the employer. Adding new
servers or resetting their configurations would require additional manual iDRAC
configuration to grant the group remote access through the bachelor-server. How-
ever, since DHCP is enabled by default, a DHCP server was installed so that an IP
configuration is automatically assigned to the iDRAC, removing the requirement
of locally configuring the network settings on the iDRAC on resets or new install-
ments.

The configuration file as well as the commands used for installation can be
found in appendix B.5. It was decided to use the IP-range 192.168.0.0/24, re-
serving the first 10 addresses in case some static IP addresses were needed. To
avoid manually updating the static inventory files when working with Ansible,
the lease time is set to be equivalent to the remaining duration of the project. As
an alternative, IP-addresses can be reserved in the DHCP-configuration by binding
them to a specific MAC address so that each server will receive the same IP-address
even if the lease expires. However, the temporary solution of just extending the
lease-time was found to be a sufficient for this lab environment because of the few
amount of servers and the short-term nature of this project. The figure 4.3 shows
an overview of the IP ranges and the address types.

IP-Range Address Type
192.168.0.1-10 Static

192.168.0.11-254 DHCP Pool

Figure 4.3: IP addresses

Chapter 4: Implementation 34

4.3.3 Prerequisites

This subsection includes a few prerequisites which are needed for attempting to
test any of the Redfish or Ansible demonstrations below, including any of the pro-
ject made plays, tasks or modules. Lastly it describes where and how to get the
PoC.

Host operating system

The master node uses the operating system Centos7. This was pre-installed by the
employer and is the go-to operating system for the HPC group.

Python

Ansible and its modules should be compatible with both Python versions 2 and 3,
however, this implementation is only tested on a host with Python version 3.6.8.

OMSDK

Some Ansible modules relating to iDRAC implementations of Redfish require the
DellEMC OpenManage Python Software Development Kit (OMSDK). It is a Py-
thon library for developers working with PowerEdge servers. For example, the
playbooks which demonstrates the import and export of iDRAC Server Configura-
tion Profiles, uses Ansible Modules which requires this library. It is an open-source
project, and installation steps can be found in its official repository [71].

Ansible

The PoC was tested with the latest Ansible version at the time, version 2.10.7. Be-
cause of backwards-compatibility, installing the latest released version on a sup-
ported operating system should have no effect on the functionality of this PoC.

Ansible collections

The community.general v2.5.1 collection includes many modules and plugins which
is supported by the Ansible community. The latest documentation can be found
in Ansible official documentation [40], and any changes in newer versions should
provide backwards-compatibility so no changes have to be made to the module or
collection references in the PoC. It is installed using the Ansible Galaxy CLI with
the command ansible-galaxy collection community.general . This is an open-source
project on GitHub [72], and in some cases the files containing the code for the
Ansible-modules provide better documentation than Ansibles official documenta-
tion.

Chapter 4: Implementation 35

File share

A network file share is required for only one locally developed module in this PoC:
’Import Configuration Profile Preview’. Currently only Network File System (NFS)
is supported by this module. The installation steps and configuration file used for
this PoC can be found in the appendix B.2.

Git and cloning the PoC repository

The repository [69] contains all code, templates, playbooks, roles, and tasks refer-
enced in this thesis. Running the playbooks which are located in the PoC repository
requires cloning or forking the repository to a controller machine with root access
and direct access to the OOB controllers. The repository is cloned using the git
tool [73] and the command git clone . Keep in mind that there would be a need
to configure the lab environment specific files such as the inventory file, and the
host files. These files contains information which is specific to the lab environment,
and without editing these files the PoC would fail to reproduce results.

4.4 Demonstrations

The following demonstrations are made on a node with iDRAC9 version 4.32.10.00.
They mostly consist of simple curl commands to the Redfish RESTful API, but when
appropriate a Python script is used instead.

4.4.1 Reading and saving iDRAC settings from one compute node
with Redfish

iDRAC instances are found in the Managers collection: /redfish/v1/Managers . To
get the specific resource ID of the iDRAC, a GET request is sent using the tool ’curl’,
which returns the body of the response in a JSON format. In this response the ID
of the instance can be found in the ’Members’ array. To pretty-print the response
it is possible to pipe the command to the Python module json.tool, which makes
the response more human readable. An example of this is shown in listing 13.
The response shows one instance in the Members array in the Managers collec-

tion with the ID iDRAC.Embedded.1 . When developing tools for Redfish clients,
one can never assume that this ID is the same across all vendors. For example,
Lenovo and HPE implementations uses integers as the instance ID [74] [75]. An
additional GET request to /redfish/v1/iDRAC.Embedded.1 will return all proper-
ties/attributes of the iDRAC which is exposed by the implemented Redfish spe-
cification, as shown in listing 14. This is also documented in Dells API guide [76].

The response is a JSON object containing information about the instance itself
(iDrac.Embedded.1), as well as the modifiable attributes (settings). The attributes
are stored as a list in the "Attributes"-key of the response. The example in listing

Chapter 4: Implementation 36

[root@bachelor redfish-ansible]# curl -sX GET -u root:redfish -k
https://192.168.0.123/redfish/v1/Managers | python -m json.tool,→

{
"@odata.context":

"/redfish/v1/$metadata#ManagerCollection.ManagerCollection",,→

"@odata.id": "/redfish/v1/Managers",
"@odata.type": "#ManagerCollection.ManagerCollection",
"Description": "BMC",
"Members": [

{
"@odata.id": "/redfish/v1/Managers/iDRAC.Embedded.1"

}
],
"Members@odata.count": 1,
"Name": "Manager"

}

Listing 13: GET request to find the resource id of a Manager instance

14 shows an excerpt of the response as the attributes-list is very long, though a
complete list of all attributes is documented by Dell in their iDRAC 9 Attribute
Registry [77]

Because of the length of the list it can be an advantage to save the response to
a file. It is possible to redirect the standard output to a file using the > operator,
as shown in the listing 15. This will store the output of the command to a file in
the path specified. If the file does not exist it will be created.

Chapter 4: Implementation 37

[root@bachelor redfish-ansible]# curl -sX GET -u root:redfish -k
https://192.168.0.123/redfish/v1/Managers/iDRAC.Embedded c
.1/Attributes | python -m
json.tool

,→

,→

,→

{
"@Redfish.Settings": {

"@odata.context": "/redfish/v1/$metadata#Settings.Settings",
"@odata.type": "#Settings.v1_2_2.Settings",
"SettingsObject": {

"@odata.id": "/redfish/v1/Managers/iDRAC.Embedded c
.1/Attributes/Settings",→

},
"SupportedApplyTimes": [

"Immediate",
"AtMaintenanceWindowStart"

]
},
"@odata.context":

"/redfish/v1/$metadata#DellAttributes.DellAttributes",,→

"@odata.id": "/redfish/v1/Managers/iDRAC.Embedded.1/Attributes",
"@odata.type": "#DellAttributes.v1_0_0.DellAttributes",
"AttributeRegistry": "ManagerAttributeRegistry.v1_0_0",
"Attributes": {

"SupportAssist.1.DefaultProtocolPort": 0,
"SupportAssist.1.HostOSProxyPort": 1,
"CurrentNIC.1.DedicatedNICScanTime": 5,
"CurrentNIC.1.MTU": 1500,
"CurrentNIC.1.NumberOfLOM": 3,
"CurrentNIC.1.SharedNICScanTime": 30,
"CurrentNIC.1.VLanID": 1,
"CurrentNIC.1.VLanPriority": 0,
"CurrentIPv6.1.IPV6NumOfExtAddress": 0,
"CurrentIPv6.1.PrefixLength": 64,
"SysInfo.1.LocalConsoleLockOut": 1,
"SysInfo.1.POSTCode": 127,
"SysInfo.1.SystemRev": 0,
"GpGPUTable.1.TierEncoding": 1,
"GpGPUTable.2.TierEncoding": 1,
"GpGPUTable.3.TierEncoding": 1,
"GpGPUTable.4.TierEncoding": 1,

Listing 14: GET request to the manager instance and an excerpt of the response

Chapter 4: Implementation 38

[root@bachelor redfish-ansible]# curl -sX GET -u root:redfish -k
https://192.168.0.123/redfish/v1/Managers/iDRAC.Embedded c
.1/Attributes | python -m json.tool >
fileincurrentdirectory.json

,→

,→

,→

Listing 15: Redirecting standard output to a file

4.4.2 Write BIOS settings with Redfish

BIOS settings are found in the ’Attributes’-key of the system instance in the Systems

collection resource. In listing 16, one can see an example curl command for re-
trieving these settings.

[root@bachelor redfish-ansible]# curl -X GET -u root:redfish -k
https://192.168.0.123/redfish/v1/Systems/System.Embedded.1,→

Listing 16: GET request to the system instance

Writing settings requires a PATCH request to the bios/settings resource with
the attributes that will be changed as the payload in a JSON format. A POST re-
quest is not supported as that would overwrite all settings that were not included
in the payload, while a PATCH request will only change the specified attributes,
leaving the others as they were.

For example, to disable hyper-threading, the relevant attribute name is called
’LogicalProc’. Additional information about the resource and allowed values can
be found in the bios/biosregistry resource. An excerpt of the response can be seen
in appendix B.13, showing the details of the ’LogicalProc’ attribute.

From this information one can gather that the current value is ’null’, and ac-
cepted values are enabled and disabled. A restart would be required after a BIOS
change.

The listing 17 shows a PATCH request to disable hyper-threading by setting
the the value of the ’LogicalProc’ attribute to disabled.

The response body message responds that the operation was completed. This
can be confirmed with a GET request to the bios/settings resource of the instance
as shown in appendix B.14. The attribute(s) to be changed is in the "Attributes"-
key of the response, and signifies the attributes which will be changed on next
system reboot.

Chapter 4: Implementation 39

[root@bachelor redfish-ansible]# curl -sX PATCH -u root:redfish -k
https://192.168.0.123/redfish/v1/Systems/System.Embedded c
.1/Bios/Settings\

,→

,→

--data '{"Attributes": {"LogicalProc": "Disabled" }}' \
-H "content-type: application/json"

{"@Message.ExtendedInfo":[
{"Message":"Successfully Completed Request",
"MessageArgs":[],
"MessageArgs@odata.count":0,
"MessageId":"Base.1.5.Success",
"RelatedProperties":[],
"RelatedProperties@odata.count":0,
"Resolution":"None",
"Severity":"OK"
},
{"Message":"The operation successfully completed.",
"MessageArgs":[],
"MessageArgs@odata.count":0,
"MessageId":"IDRAC.2.2.SYS413",
"RelatedProperties":[],
"RelatedProperties@odata.count":0,
"Resolution":"No response action is required.",
"Severity":"Informational"}]

}

Listing 17: PATCH request to disable hyperthreading, and the response-body

If any errors with the pending configuration is discovered, they can be cleared
by making a POST request on the DellManager.ClearPending action, this can be
seen in listing 18.

curl -X POST -u root:redfish -k
https://192.168.0.123/redfish/v1/Systems/System.Embedded c
.1/Bios/Settings/Actions/Oem/DellManager.ClearPending

,→

,→

Listing 18: Clear pending configurations

A restart of the computer system can be evoked with a POST command on
the Actions/ComputerSystem.Reset resource. The ’ForceRestart’ option will shut
down the computer system immediately and restart the system. For a full list of

Chapter 4: Implementation 40

options and their description, reference the Dell Redfish API guide [76].

curl -X POST -u root:redfish -k
https://192.168.0.123/redfish/v1/Systems/System.Embedded c
.1/Bios/Settings/Actions/ComputerSystem.Reset

,→

,→

--data '{"ResetType": "ForceRestart" }' \
-H "content-type: application/json"

Listing 19: Force system restart using Redfish

4.4.3 Write IDRAC settings with Redfish

iDRAC settings are found in the ’Attributes’ key of the manager instance. In this
case, the manager instance is ’iDRAC.Embedded.1’, making the full redfish URI
https://{IP}/redfish/v1/Managers/iDRAC.Embedded.1/Attributes . A PATCH request can

be made on the URI, containing attributes to be changed. Listing 20 shows how
Redfish is used to change the password of the default iDRAC user which is defined
in the ’Users.2.Password’-attribute as well as the sample output which confirms
that the attribute has been changed.

4.4.4 Collect support data with Redfish

As shown in the previous examples in subsection 2.4.2, it is possible to gather sum-
marized health information about all instances of a System, Chassis and Managers,
but gathering details about all the components of a subsystems is better accom-
plished using a script because it requires iterating over a number of links to an
unknown number of components.

As mentioned before, a summarized health information, a ’curl’ command can
be used on this template URL: https://{ip}/redfish/v1/{collection}/{instance id} .
Retrieving the "Status" key of the response will give summarized health informa-
tion about the instance of the collection. This is shown in listing 21.

The information in listing 21 is usually not enough for most use-cases. To be
able to troubleshoot and potentially fix a problem requires more information, an
administrator for example would want to known which components are respons-
ible for the ’critical’ status. The pseudo code in appendix listing B.6 is derived from
manually navigating the Redfish API and is written to guide the development of
vendor and instance agnostic Redfish scripts (requires minimum Redfish v1.6.0
OpenAPI 3.0 support on target host). It may seem a bit complex, but all it does
is show the necessary data traversal when writing vendor and instance-agnostic
scripts to gather health information about the system, subsystems and their com-
ponents.

Chapter 4: Implementation 41

[root@bachelor ~]# curl -X PATCH -u root:redfish -k
https://192.168.0.123/redfish/v1/Managers/iDRAC.Embedded c
.1/Attributes -H "content-type: application/json" --data '{"Attributes":
{"Users.2.Password": "redfish_new"}}' | python -m json.tool

,→

,→

,→

{
"@Message.ExtendedInfo": [

{
"Message": "Successfully Completed Request",
"MessageArgs": [],
"MessageArgs@odata.count": 0,
"MessageId": "Base.1.5.Success",
"RelatedProperties": [],
"RelatedProperties@odata.count": 0,
"Resolution": "None",
"Severity": "OK"

},
{

"Message": "The operation successfully completed.",
"MessageArgs": [],
"MessageArgs@odata.count": 0,
"MessageId": "IDRAC.2.2.SYS413",
"RelatedProperties": [],
"RelatedProperties@odata.count": 0,
"Resolution": "No response action is required.",
"Severity": "Informational"

}
]

}

Listing 20: Changing iDRAC settings using Redfish

The appendix listing B.3 shows a script written in Python. The Python lan-
guage was chosen because it is well documented, easy to learn if you have some
previous programming experience, and comes with many libraries for different
tasks. The code is is based on the pseudo-code in appendix B.6, and uses the ’re-
quests’ library for HTTP(s) requests and the ’json’ library for parsing JSON data
from Redfish API responses to gather health information about a host. Modifica-
tions could be made to print all categories. It could also be modified to only print
components with a different health-status than "OK". A sample output from this
Python script can be found in the appendix listing B.4.

Chapter 4: Implementation 42

curl -X GET -u root:redfish -k
https://192.168.0.123/redfish/v1/Systems/System.Embedded.1/| python
-m json.tool

,→

,→

Excerpt:
"Status": {

"Health": "Critical",
"HealthRollup": "Critical",
"State": "Enabled"

},

Listing 21: Summarized health information of a ’Systems’ instance

4.5 Demonstrating Redfish and Ansible

Redfish tasks as demonstrated in the previous listings in this chapter can be scaled
to work on multiple hosts and automated with the tool Ansible. Ansible primarily
uses Python modules which are very similar to the example in appendix B.3, ex-
cept that they always return a JSON-structure and uses Python-libraries for Ans-
ible to accept parameters in addition to following a set of coding principles for
quality and backwards compatibility. The Ansible modules for Redfish which was
used in this project are all open-source and available in the community.general

collection [72]. The following modules was used: redfish_info [78], redfish_config

[79], redfish_command [80], and idrac_redfish_command [47]. These modules
are called from Ansible tasks.

In addition, the redfish_utils [81] module was used when developing local
modules to cover functionality which was not yet developed or pushed to the
above mentioned modules. The local modules developed were for previewing im-
port configuration profiles (iDRAC specific) and getting job details (all vendors).

4.5.1 Server Health Check with Ansible

In a server environment one could potentially use several Python scripts run-
ning using Crontab or in other ways automated for performing continuous health
checks on the environment. Though this is also possible to accomplish using Ans-
ible in a more structured and clear way. The file server_health_check.yml is a
playbook which contains tasks to accomplish the same goal as the Python script
in appendix listing B.3. It gathers server health information on hosts specified by
a host-group at the top of the file. This group is defined in the static inventory
file. During this test it was a single iDRAC, the same which the previous Python
script was ran on. Though this host list could be expanded, and be used for active
health monitoring of larger infrastructure when integrated with other systems or
scripts.

Chapter 4: Implementation 43

The Ansible Playbook for checking the health of one to several servers is shown
in appendix listing B.7, and it consists of 6 tasks which together gathers health
information about the server. The first task in this playbook is a task which in-
cludes host-specific variables, which are required if it is to access the Redfish API
on the managed servers. This is because the password-variable is encrypted in the
host-variable files as shown in listing 22. The encrypted string would then be de-
crypted at run time, and normally the Ansible-playbook command would prompt
the user to enter the Ansible-vault password which would be used to decrypt the
host-password. This is not the case for this PoC as in the ansible.cfg file there is
a pointer to a text-file on the Master-node. This file contains the vault password
in plaintext, which realistically is not considered good practice. It was found that
for this PoC this was sufficient, and there are other technologies such as Ansible
Tower [82] which offers better solutions to this.

After importing the variables, a common task is included from the ’playbook-
s/tasks’-directory which creates an empty file to store the output from the play-
book in. Following that are three tasks which gather health information from the
system by using the Ansible Redfish module Redfish_info from the community
generals collection. As per the requirements of this module, parameters such as
category, command, URL, and credentials are included, and finally the result is
stored in a variable which is then printed to the previously created file. A sample
of the output of this playbook can be found in the appendix B.1.

ansible_user: "root"
ansible_password: !vault |

$ANSIBLE_VAULT;1.1;AES256
30326464393536373931613566393932386231636365663364376334636235376264366331616666
6238373330336363306165313233636261623630363763310a333965303939316663623936396639
63363438613964626664356562653837653365623666363132333034613432666134363238633263
3865316336616131380a666361643237646339316332373338316138346464333066353665656236
6164

Listing 22: Ansible-vault variables for iDRAC3

4.5.2 Export server configuration

Another playbook which was created is shown in listing 23, this details a play
which extracts the current configurations on the server and exports it to a JSON
file and saves this file in the ’tmp’-folder. This playbook was created on the request
of the employer to achieve the task ’Read and save iDRAC settings from one server
to another’, and was made as an example in how OEM functionality of the Redfish
implementation can be used just as easily as standard Redfish functionality. It is a
further development of the simple demonstration in subsection 4.4.1, and it uses
the iDRAC Ansible module ’iDRAC server config profile’. This module is using

Chapter 4: Implementation 44

resources which are specific for the iDRAC and would not function on any other
BMC implementation.

Export server configuration profile, stores in /tmp/

- hosts: idrac3
connection: local
gather_facts: no
name: Export server configuration profile
vars:

test_mode: 0
ansible_python_interpreter: /usr/bin/python3.6

tasks:

- name: Include task for including host specific variables.
include_tasks: tasks/include_host_vars.yml
when: not test_mode

- name: Export Server Configuration Profile to local path
idrac_server_config_profile: # since general collection v2.3.0, this

redirects to dellemc-openmanage-ansible-modules,→

idrac_ip: "{{ ansible_host }}"
idrac_user: "{{ ansible_user }}"
idrac_password: "{{ ansible_password }}"
share_name: "/tmp/"
export_use: "Default"
export_format: "JSON"
job_wait: "False"

Listing 23: Ansible playbook YAML file for exporting server configurations

4.5.3 Import server configuration

The listing 24 shows a playbook made for importing the JSON file exported using
the Ansible playbook in listing 23. In this case the configuration file is hardcoded
to ’192.168.0.123_20210516_180020_scp.json’, and would import the configura-
tions which are present within this file. It uses the same module as listing 23, and
is an iDRAC specific playbook. This playbook fulfills the task of deploying a default
iDRAC based on previously gathered settings, and based on the hosts specified it
can push this configuration to several servers simultaneously.

4.5.4 Discovery

The Redfish specification supports the Simple Service Discovery Protocol (SSDP),
which allows for location of devices which conforms to the Redfish specification.

Chapter 4: Implementation 45

Import server configuration profile exported by
"export_server_config_profile.yml".,→

- hosts: idrac3
connection: local
gather_facts: no
name: Import server configuration profile
vars:

test_mode: 0
ansible_python_interpreter: /usr/bin/python3.6

tasks:
- name: Include task for including host specific variables.

include_tasks: tasks/include_host_vars.yml
when: not test_mode

- name: Import Server Configuration Profile
idrac_server_config_profile:

idrac_ip: "{{ ansible_host }}"
idrac_user: "{{ ansible_user }}"
idrac_password: "{{ ansible_password }}"
command: "import"
share_name: "/tmp/"
scp_file: "192.168.0.123_20210516_180020_scp.json"
scp_components: "ALL"
job_wait: "True"

Listing 24: Ansible playbook YAML file for importing server configurations

Redfish is also investigating other (e.g DHCP-based) approaches for service entry
point discovery [83]. However, SSDP is an optional implementation which means
it does not need to be implemented by the vendors. This is the case for the iDRAC.
Dell’s iDRAC uses their own implementation of automatic discovery[84], which
would require setting up a remote management console which hosts a provision-
ing server. This was found to be out of scope, as it is not part of Redfish, and it
would only be functional for the iDRAC.

For this PoC, it is assumed that all BMCs have DHCP enabled, so that any new
connected servers are automatically assigned IP addresses. These BMCs are then
able to be identified by querying the DHCP server for new leases, and these servers
can then be identified using HTTPS GET requests on the Redfish API, and then ad-
ded to the static inventory file in the Ansible directory. This could be accomplished
utilizing either infrastructure management tools such as Ansible which either uses
tasks with custom modules for managing files, or through calling upon custom
scripts. However, IP address management, which involves the planning and man-
agement of the assignment and use of IP addresses are not within the scope of

Chapter 4: Implementation 46

this project.

Assuming a list of IP addresses is already in the inventory file, but the vendor
or other product information is unknown, a part of auto-discovery would require
their identification before pushing them. To demonstrate this functionality, an Ans-
ible playbook has been written which makes a HTTP(s) GET request towards the
Redfish API which can be seen in listing 25. This request queries the service root
at the redfish/v1/ URL and specifically checks the ’product’ attribute of the return

content. By adding a condition for product == ’iDRAC’ , the role which applies the
iDRAC configuration settings can be called on the newly discovered BMC.

- name: Get server information

ansible.builtin.uri:
url: "https://{{ ansible_host }}/redfish/v1"
method: GET
headers:

Accept: "application/json"
Content-Type: "application/json"

validate_certs: no

Listing 25: Ansible task for identifying the type of BMC

4.5.5 Importing host variables

The only needed host-variables for these demonstrations are user credentials to
the OOB controllers. Accessing the Redfish API of the OOB controllers requires
user credentials which can be stored and organized in Ansible in a number of
ways. A possible solution is to include them as host-variables in the inventory file,
however this removes the option of encrypting the password with Ansible Vault.
Variables can also be assigned to the groups specified in the inventory file, so
for example, if there is a group named "Dell" in the inventory file, variables can
be assigned in the ’group_vars/dell.yml’ file. Single variables like the password
to the BMC can then be encrypted with Ansible vault, and the variables can be
included in a playbook using the Ansible built-in "include_vars" functionality. A
downside of organizing variables in this way, is that all hosts in the group has
to have the same password, which is not consired best practise security-wise. To
assign variables for each host, a file for each inventory entry can be created in
the ’host_vars’ directory. If the naming-scheme for these files is consistent (same
file name as the host name defined in the inventory file), the relevant host vari-
ables can be called during playbook runtime by including the variable file using
the global Ansible ’inventory_hostname’ variable. This allows the administrator to
have unique passwords per machine, but increases the demand for maintenance,
especially since password-changes would require encrypting the new password

Chapter 4: Implementation 47

using Ansible vault and editing the relevant host-variable file.
In this demonstration, host variables are organized on a per-host basis in the

’host_vars’ directory. This works great in a PoC and other small environments, but
might not be a scalable solution in a production environment. Theoretically, this
solution is the most secure of the mentioned host-variables methods because it al-
lows unique, encrypted passwords on each node. But as always, security requires
a cost-benefit approach where the administrative consequences of following the
security best practise of unique passwords may be too large compared to the con-
venience of having one, strong password as a group-variable. Figure 22 shows
an example host-variable file in the ’host_vars’ directory. It contains the variables
’ansible_user’ and ’ansible_password’ where the ’ansible_password’ variable has
been encrypted with Ansible vault.

Because the host-variable files have a fixed location and filename, they can be
included with a relative pathname and the global ’inventory_hostname’ variable,
as seen in figure26. This task will need to be called from multiple playbooks, so it
is placed in the "common" role so that it can included in other playbooks with little
effort. Figure 27 shows an example of how the "include host variables" is included
in a playbook by calling the "common" role and specifying the task which should
be included.

- name: Include host specific Ansible Vault encrypted variables

include_vars:
file: "{{ playbook_dir }}/../host_vars/{{ inventory_hostname }}.yml"

Listing 26: Example task which includes host-specific variables

tasks:
- name: Include host specific variables

include_role:
name: common
tasks_from: include_host_vars

when: not test_mode

Listing 27: Example tasks which includes the common task ’include_host_vars’
from the ’common’-role

4.5.6 Playbook and roles

Because BIOS attributes vary widely across server types and BIOS revisions, the
tasks which set the configurations are split up and organized as Ansible Roles.
When applying BIOS or BMC configurations on different vendors, a new role
should be created, and the pre-defined configurations can be applied to the dif-
ferent hosts simultaneously by calling them on the correct hosts -group in the

Chapter 4: Implementation 48

main main.yml playbook. Listing 28 shows how to call multiple roles on different
groups of hosts.

- hosts: idrac

roles:
- idrac_bios_settings
- idrac_settings

- hosts: XCCLenovo
roles:

- xcc_bios_settings
- xcc_settings

Listing 28: Example playbook. Includes roles for configuration of different vendor
BMC implementations.

Both the role that configures BIOS settings, as well as the role that config-
ures iDRAC settings are implementations of Ansible roles, containing the tasks-
directory with a ’main.yml’ file which contains a set of tasks specific for the inten-
ded role functions. Other Ansible role-artifacts like default variables or handlers
are not needed, as the host credential variables are imported with a separate task,
and handler-functionality (rebooting system after a change) is handled by an in-
dividual task. For all intents and purposes, the two roles could be merged into
one which is just called "Dell configuration". There is no wrong way to organize
roles as long as the the minimum requirements for a role is met. The advantage
of splitting them up in in this PoC is that they can be called and tested separately,
as well as distinguishing the iDRAC configuration from the BIOS configuration at
the playbook-level, which helps with readability for users of the playbook.

Role: BIOS_idrac_settings

The purpose of this role is to group together tasks which are related to BIOS
configuration with iDRAC. These tasks involves the host-specific variables (creden-
tials), calling the ’ redfish_config ’ module to apply the BIOS attributes listed in fig-

ure 6.1, scheduling a BIOS configuration job for next system reboot(" idrac_redfish

_config " module), and if the attributes were applied prompt a system reboot

(" redfish_command ").

The scheduling of a BIOS configuration job is a Dell specific requirement to
apply the BIOS configurations, otherwise the configuration is never applied. The
’ idrac_redfish_config ’ module contains the logic required to schedule the job so
that the configuration is applied on next system reboot. At the time of writing,
the module does not return a job-id which can be extracted by the role at play-
time. It is therefore not possible to track the progress of the job during playbook

Chapter 4: Implementation 49

#redfish-ansible/roles/bios_idrac_settings/tasks/main.yml

- name: Include host specific Ansible Vault encrypted variables

include_tasks: ../../../playbooks/tasks/include_host_vars.yml
when: not test_mode

- name: Set BIOS settings
community.general.redfish_config:

category: Systems
command: SetBiosAttributes
resource_id: "System.Embedded.1"
bios_attributes:

SysProfile: "Custom"
EnergyPerformanceBias: "MaxPower"

baseuri: "{{ ansible_host }}"
username: "{{ ansible_user }}"
password: "{{ ansible_password }}"

register: settings

- name: Create BIOS configuration job (schedule BIOS setting update)
community.general.idrac_redfish_command:

category: Systems
command: CreateBiosConfigJob
resource_id: System.Embedded.1
baseuri: "{{ ansible_host }}"
username: "{{ ansible_user }}"
password: "{{ ansible_password }}"

when: settings.changed

- name: Restart system
community.general.redfish_command:

category: Systems
command: PowerForceRestart
resource_id: "System.Embedded.1"
baseuri: "{{ ansible_host }}"
username: "{{ ansible_user }}"
password: "{{ ansible_password }}"

when: settings.changed

Listing 29: Ansible tasks for BIOS configuration

runtime, however, a comment in the code [47] implies a patch is coming soon.
If this is discovered to be s necessity, and the patch is still absent, a fork of the
module can be created to modify the returned JSON object to include the job-
id which will be located in the response-header of the POST request which cre-
ates the job. The module can then be added to the ’plugins/modules’ directory
of the PoC collection and called with the new module name instead of "com-
munity.general.idrac_redfish_command". Tasks which extract the job-id and mon-

Chapter 4: Implementation 50

itors the progress can then be created. In this PoC, the creation of the job is con-
firmed if the task returns as ’changed’ in the Ansible output. Further details can be
observed by connecting to the iDRAC GUI and inspecting the job queue, as seen
in figure 4.4.

Figure 4.4: Completion of a BIOS job as seen in the iDRAC GUI

- hosts: idrac

roles:
- idrac_bios_settings

Listing 30: iDRAC Attributes

This role is included as a play in the ’bios_idrac_settings.yml’ playbook as
seen in listing 30. The playbook is then executed in an ad-hoc manner with the
’ ansible-playbook ’ command as seen in figure 31.
Figure 31 also shows the output of a successful run, returning either "OK" or
"Changed" to indicate its success. The condition "when: settings.changed" on the
last two tasks in listing 29 ensure they only run if the configuration has changed.
If the condition fails, the tasks will be skipped, because there is no need to create
a BIOS configuration job or restarting the system if no changes were made to the
system. Listing 29 shows how this described functionality is implemented as an
Ansible role.

Role: iDRAC configuration

The role that applies iDRAC configuration makes use of the community
’idrac_redfish_config’ module because the ’redfish_config’ does not support the
change of manager (BMC) attributes. Because the ’idrac_redfish_config’ module
existed, there was no need to develop a new module, but because it was mainly
developed for iDRAC there is no guarantee from the developers that it will work on

Chapter 4: Implementation 51

[root@bachelor redfish-ansible]# ansible-playbook -i inventory/
playbooks/bios_settings.yml,→

PLAY [Apply BIOS settings]
**,→

TASK [bios_idrac_settings : Include host specific Ansible Vault encrypted
variables] ************************************included:
/home/redfish/test/git/bachelor_repo/redfish-ansible/roles/bios_id c
rac_settings/tasks/../../../playbooks/tasks/include_host_vars.yml for
idrac3

,→

,→

,→

,→

TASK [bios_idrac_settings : Include host specific Ansible Vault encrypted
variables],→

********************************ok: [idrac3]

TASK [bios_idrac_settings : Set BIOS settings]
*******************************changed: [idrac3]

TASK [bios_idrac_settings : Create BIOS configuration job (schedule BIOS
setting update)] *******************************changed: [idrac3],→

TASK [bios_idrac_settings : Restart system]
*******************************changed: [idrac3]

PLAY RECAP**************************************
idrac3: ok=5 changed=3 unreachable=0 failed=0 skipped=0

rescued=0 ignored=0,→

Listing 31: Output of running the bios_settings playbook

other vendors than Dell. However, on closer inspection of the code [85], because
the module finds the the manager instance id automatically instead of hardcoding
it into the code, the module command ’ SetManagerAttributes ’ should work on
vendor implementations of Redfish versions later than 1.6.0. This is however not
tested.

The reason behind creating a role for applying iDRAC configurations is the
same as for BIOS configurations. Separating vendor specific functionality makes
logical sense, and helps reduce playbook complexity and improve readability. The
attributes that is seen applied in the playbook (ref. listing 32) can be changed or
added based on business needs, and correct attribute-names can be found with the
curl command: ’ curl -X GET -u username:password -k https://{host_ip}/redfish/v1/

Managers/{resource_id}/Attributes | jq ’.Attributes’ ’. This return information about
all iDRAC or other BMC implementation attributes and values.

Chapter 4: Implementation 52

- name: Set iDRAC settings
community.general.idrac_redfish_config:

category: Manager
command: SetManagerAttributes
resource_id: iDRAC.Embedded.1
manager_attributes:

IPMISOL.1.Enable: "Enabled"
Users.2.SolEnable: "Enabled"
SerialRedirection.1.Enable: "Enabled"
NIC.1.VLanEnable: "Enabled"
NIC.1.VLanID: "1"
NIC.1.Selection: "LOM1"
Users.2.UserName: "root"
Users.2.Password: "redfish"
Telnet.1.Enable: "Disabled"
SNMP.1.AgentEnable: "Disabled"
WebServer.1.HttpsRedirection: "Enabled"
WebServer.1.TLSProtocol: "TLS 1.2 Only"
IPBlocking.1.BlockEnable: "Enabled"
IPBlocking.1.BlockEnable: "Enabled"
IPBlocking.1.FailCount: "3"
IPBlocking.1.FailWindow: "60"
IPBlocking.1.PenaltyTime: "60"
SSHCrypto.1.KexAlgorithms:

"curve25519-sha256,curve25519-sha256@libssh.org,ecdh-sha2-
nistp256,ecdh-sha2-nistp384,ecdh-sha2-nistp521,diffie-hellman-
group-exchange-sha256,diffie-hellman-group16-sha512,diffie-
hellman-group18-sha512,diffie-hellman-group14-sha256"

,→

,→

,→

,→

SSHCrypto.1.MACs:
"umac-128-etm@openssh.com,hmac-sha2-256-etm@openssh.com,hmac-
sha2-512-etm@openssh.com,hmac-sha1-etm@openssh.com,umac-
128@openssh.com,hmac-sha2-256,hmac-sha2-512,hmac-sha1"

,→

,→

,→

SSHCrypto.1.Ciphers:
"chacha20-poly1305@openssh.com,aes128-ctr,aes192-ctr,aes256-
ctr,aes128-gcm@openssh.com,aes256-gcm@openssh.com"

,→

,→

SSHCrypto.1#HostKeyAlgorithms: "ssh-rsa,rsa-sha2-512,rsa-sha2-
256,ecdsa-sha2-nistp256,ssh-ed255",→

baseuri: "{{ ansible_host }}"
username: "{{ ansible_user }}"
password: "{{ ansible_password }}"

Listing 32: iDRAC Attributes

4.5.7 Modules

There was developed two modules for this project, these were both related to
testing ’server configuration profile’ files before importing them to a server. The
modules also serve as demonstration to how one could go about creating custom

Chapter 4: Implementation 53

modules to cover missing functionalities. A demonstration of how these modules
are used at the playbook-level is covered in chapter 6 - "Deployment".

Server Configuration Profile Preview

One of the purposes of a server configuration profile is to define a server con-
figuration template which can be applied to Dell servers. This process may fail
if the configuration is pushed to an older firmware version than the template be-
cause some configuration attributes may not have been supported or implemented
yet. SCP preview is an alternative to pushing SCP files onto a server which is not
guaranteed to support all attributes. The ’preview’ action will only check if the
import would have been successful if it had been imported, but will not make any
changes on the system. This makes it a safe option compared to blindly attempt-
ing an import of a configuration from one server to another of a different model
or firmware version. This action requires that the configuration file is stored in a
network share on the master node.

Pre-existing Python libraries for Redfish functionality and Ansible modules can
be used to help the module development process. The Python library "rf_utils"
contains a class with a number of common Redfish utility functions used to in-
teract with the Redfish API, like making GET requests. The advantage of this ar-
chitecture is that developers can import a library, create a class which inherits all
the functionality, and use these functions to achieve the intended module results
without having to "reinvent the wheel" with basic Redfish functionality. The "Ans-
ibleModule" library helps abstract the interactions with the module and Ansible
playbook. It abstracts the passing of module parameters, as well as the program
exit which always has to return a JSON response.

In summary, the ’server configuration profile preview’ module will import the
aforementioned Python-libraries, define a set of accepted parameters like host cre-
dentials, network share information, and which components of the configuration
(all, BIOS, iDRAC, etc) should be attempted to be imported. It will then build
and do a POST request on the Redfish URI of the SCP preview action, and return
a response on whether it was successful. In contrast to the pre-existing "Import
SCP"-module, this module will also return the job-id of the created task. This job-
id can be used to query the task-service of the Redfish API to gather more in-depth
information in case of failure. Appendix B.8 contains the code for the aforemen-
tioned functionality.

This module is stored in the "plugins/modules" directory, and to help Ansible
find the module during playbook-execution, an entry to the Ansible configuration
file is made. The entry contains the relative path to the modules directory. List-
ing 33 shows an example task which calls this module to preview the import of
a previously exported SCP located in the network share "/nfs" folder. The success

Chapter 4: Implementation 54

or failure of this task can be used to determine further playbook execution, for
example, if an "Import SCP" task should be run which will apply the configuration
to the server.

This module was developed for the purpose of being able to check if any im-
ported SCP files would be successful instead of making any partial or failed im-
ports. This is especially useful when making any edits to the previously exported
file before importing it, and the module serves as a good example to how Ansible
Redfish modules can be created for missing functionalities.

- name: Import server configuration preview
import_idrac_scp_preview:

idrac_ip: "{{ ansible_host }}"
idrac_user: "{{ ansible_user }}"
idrac_password: "{{ ansible_password }}"
share_ip: "129.241.21.201"
share_name: "/nfs"
share_type: "NFS"
scp_file: "192.168.0.125_20210518_170529_scp.json"
scp_components: "ALL"

Listing 33: Example task calling a custom module for previewing the import of
server configuration profiles

Get job id details

If the SCP preview task shown in listing 33 fails, a system administrator might be
interested in which attributes in the template configuration are not supported on
the target host. The job-id returned in the response of this module can be used to
query the task-service of the Redfish API to gather detailed information about the
task. However, this requires a separate module - ’get_job_id_details’, the code of
which can be found in the appendix listing B.9.

’get_job_id_details’ complements the ’SCP preview’ module by querying the
Redfish task-service to get more details about the initiated ’SCP preview’ task.
The module will accept an IP, username, password, job-id, and the instance-ID of
the manager resource (ex. iDRAC.Embedded.1) as parameters. The Redfish URI
to the task-service resource is then built and a GET request is made. Information
about the state of the task (e.g. complete or running), as well as the body of the
response is then returned to Ansible. The use of this module is demonstrated in
the play "Import SCP preview", shown in listing 34. The job-id returned from the
"SCP preview" task is queried multiple times until the task is complete. The Ansible
debug-module is used to print the response which will contain information about
whether the preview was a success, or which attributes would fail to import.

Chapter 4: Implementation 55

- name: Preview server configuration profiles and get job details

hosts: test1
connection: local
vars:

test_mode: false
tasks:
- name: Include host specific variables

include_role:
name: common
tasks_from: include_host_vars

when: not test_mode

- name: Preview server configuration profile
import_idrac_scp_preview:

idrac_ip: "{{ ansible_host }}"
idrac_user: "{{ ansible_user }}"
idrac_password: "{{ ansible_password }}"
share_ip: "129.241.21.201"
share_name: "/nfs"
share_type: "NFS"
scp_file: "192.168.0.125_20210518_170529_scp.json"
scp_components: "ALL"

register: testout

- name: Get job details
get_job_details_redfish:

ip: "{{ ansible_host }}"
username: "{{ ansible_user }}"
password: "{{ ansible_password }}"
job_id: "{{ testout.job_id }}"

register: output
until: output.JobState != "Running"
retries: 10

- name: print job details output to console
debug:

msg: "{{ output }}"

Listing 34: Example play which previews the import of a server configuration
profile, and retries the ’get_job_id_details’ module 10 times or until the job is
complete

Chapter 5

Security

This chapter was added as an expansion to the project, and was not part of the re-
quirement specification for the PoC. It was found natural to expand into this area
of IT, due to security being a vital consideration in any modern IT organization
or project. This chapter presents a short summary of the best security practices
published for the iDRAC, a demonstration on the vulnerabilities of the IPMI spe-
cification, and a short summary and reflection on these findings.

5.1 Best practices

This section is a short summary of the best security practices for setup and config-
uration of the iDRAC. As mentioned in section 2.7 - "Security" in chapter 3, there
is a lack of best security practices for Redfish easily available online. Additionally,
most of the best security practices are surrounding the environment which Redfish
is utilized. The reason these best practices revolving around the iDRAC is simply
that this is the equipment was provided for the project.

This best practice section is a shortened summary of two sources of informa-
tion, one being the Dell iDRAC9 white paper [62] and the other being the iDRAC9
Security Configuration Guide [86]. Though most of these recommendations are
quite universal, and should be considered for other types of BMCs.

• The iDRAC is not intended to be exposed to the Internet, it was created
to be on a separate management network. This is also the case for other
BMCs, with both Intel and Supermicro having this as a best practice for
BMC [87][88]. Should this not be possible then a dedicated and separate
VLAN is recommended.

• It is recommended to use the ’Dedicated Gigabit Ethernet’ port on the tower
and rack servers to connect the iDRAC to the management network.

• The BMC management network should be isolated from the rest of the in-
ternal network using technologies such as firewalls, and limiting access only
to authorized administrators.

56

Chapter 5: Security 57

• The iDRAC has a function for IP blocking which allows an administrator to
set the amount of allowable login failures, time frame for these failures, and
the amount of time which the IP address is blocked. Additionally IP filtering
can be enabled and set to only allow a small amount of preconfigured IP
addresses to access the BMC. This would severely limit the ability of an un-
authorized attacker gaining access through brute-force attacks. IP blocking
and filtering are functions which are present on most other types of BMCs.

• Security configurations for the web server: Redirecting all HTTP requests
to HTTPS, enable 256-bit encryption strength, configure TLS 1.2, limit the
cipher suites to the strongest possible, use CA signed SSL/TLS certificates,
and finally to enable Simple Certificate Enrollment Protocol.

• Additional security authentication such as LDAP or Microsoft Active Direct-
ory can and should be used.

• The BMC firmware should be continuously updated to the latest version as
this reduces the chance of a known vulnerability attack.

• Disable any unused network interfaces, protocols, or modes of communica-
tion. This includes IPMI over LAN, Serial over LAN, SNMP, and Telnet. This
limits the attack surface of the iDRAC, as it is only as secure as the least
secure protocol used.

• Redfish specific: Dell recommends to utilize the Session-based authentica-
tion for Redfish, this is due to the Basic Authentication having the password
and username in every API request.

5.2 Comparison of IPMI and Redfish

As a comparison and to test the different vulnerabilities mentioned in subsection
2.7.1 - "IPMI Security" in chapter 3, the penetration guide posted by the Rapid7
group for IPMI was utilized [89]. This guide is based on the previously mentioned
work of security researcher Dan Farmer.

The limits of this short security test was to utilize only penetration testing and
command line tools which are free and openly available. There was also no at-
tempts to uncover any new vulnerabilities, the focus was only on known vulnerab-
ilities. The server which the test was run against was the server on ’192.168.0.123’
which is a Dell PowerEdge C6420 running iDRAC9 on the BMC. The attacks were
ran from the Bachelor HPC login server provided by the employer which is on the
same network, though the Wireshark [90] traffic was piped over SSH to a local
virtual Kali Linux machine [91] using an image[92] provided by Offensive Secur-
ity [93].

The tools used were Metasploit [94] and wireshark. Metasploit was used for
the easily available IPMI modules, while Wireshark was used to minotor the net-
work traffic and attempt to sniff the packages. The iDRAC did not have any secur-
ity hardening past the default configuration provided.

Chapter 5: Security 58

5.2.1 IPMI vulnerability

Before any testing was made there was passed a command, ’lan print’, to check
the current configuration of the IPMI interface using IPMItool. As shown in figure
5.1 it revealed information such as cipher 0 being disabled on the interface, MD5
being used for encryption, as well as some other configuration information. This
though is a legitimate and authorized command used with IPMItools, which had
the correct credentials. An unauthorized user without credentials would not have
access to this command, and would require to find this information otherwise.

Figure 5.1: Cipher 0 disabled

The first attempt was to uncover if the cipher 0 protocol was in use on the
server, and it was attempted to authenticate through a regular command line.
The input ’ -C 0 ’ means that it attempts to authenticate using cipher 0, which if
enabled only requires a legitimate user account and disregards the password. As
shown in the figure 5.2 this fails as the cipher suite is not enabled.

Figure 5.2: Attempt to use Cipher 0 through command line

Furthermore the Metasploit module: ’ auxiliary/scanner/ipmi/ipmi_version ’ was
used. This module is able to be used against an IP address range, which would
reveal if there are any machines running IPMI on port 623 in a network. It will
in addition extract the information regarding the IPMI version being ran on the
machine, as well as which forms of supported authentication[89]. In the figure 5.3
just a single iDRAC is scanned and this reveals that IPMI 2.0 is the only version

Chapter 5: Security 59

supported, as well as the password being hashed in MD5, and there being no null
user available.

Figure 5.3: Metasploit module revealing information

Then the module for exporting hashes from the machine running IPMI was
used, as mentioned by Farmer [95] there is a vulnerability in the IPMI specific-
ation. Essentially the BMC will give the hashed password for any user requested
prior to any authentication, and this is a core part of the specification which means
there is no good workaround other than properly isolating the BMC. Simply by
using the ’ IPMI_Dumphashes ’ module on metasploit towards an IP range with a
legitimate user name it will freely disclose the password hash. This is shown in
the figure 5.4, as well as the hash for the password being returned.

Figure 5.4: IPMI disclosing password hash for user root

This hash can then be attempted brute forced offline without any more inter-
action with the BMC required. In the figure 5.5 this hash is given to the password
cracker tool ’John the Ripper’, and the password is quickly returned. The speed of
the password being cracked due to it being a single word ’redfish’, which is both
simple and short. A more complex password would take longer, the time elapsed
rising with the complexity. Though with the hash extracted this means essentially
only the computational power of the attacker and the complexity of the password
itself stands as hindrances.

Figure 5.5: John the Ripper Cracking the Password for 198.168.0.123

Chapter 5: Security 60

In the figure 5.6 Wireshark was being ran in an attempt to sniff the pack-
ets being transferred on the network. In this case the password and username
was passed in the IPMItool traffic, though this is not visible to an attacker as the
traffic is encrypted using RMCP+. Additionally on a properly configured network
infrastructure this type of traffic would most likely not be readily available for
Wireshark, as the traffic is directly routed or switched between the master node
and the BMC.

Figure 5.6: IPMI traffic from Bachelor login machine to 192.168.0.123

5.2.2 Redfish

Redfish itself is a rather new technology, and there are few to none easily avail-
able exploits or known vulnerabilities about the specification. A few searches for
vulnerabilities on the Internet did not reveal any which were relevant or easily
accessible. Neither did Metasploit have any inbuilt modules for Redfish available.

The few Redfish related vulnerabilities found in the iDRAC had already been
patched and were no longer relevant to a modern and updated iDRAC.

The only security consideration which was relevant to Redfish itself was the
usage of HTTP, as when API calls using basic authentication would reveal creden-
tials in a sniffed package as shown in figure 5.7. In this image Wireshark has been
used to capture a Redfish API call towards the iDRAC at 192.168.0.123, and both
of the credentials are clearly visible in the package.

Figure 5.7: Cutout from Wireshark showing Redfish traffic with credentials

Chapter 5: Security 61

This traffic is intended to run on an internal management network for the
BMCs itself, and is not meant to be exposed to the internet or any external users.
Though it is considered best practice to use HTTPS as these credentials alongside
the rest of the traffic would then be encrypted. In case of an infected machine on
the network or a malicious actor gaining access - at the very least the password and
username for the Redfish interface would not be freely available in the network
packets. In addition, as previously mentioned in section 5.1 it is considered best
practice to use session-based authentication, which alongside with HTTPS would
both reduce the amount of credentials being passed and also encrypt them when
they do.

5.3 Reflections

There are several blatant security issues prevalent in the IPMI standard, and these
are vulnerabilities which have been present since at least 2013. In the previous
subsection 5.2.1 it was shown how simple it is to launch attacks against this out-
dated specification. When one considers that the IPMI specification is no longer
developed, and with the developers recommending a switch to newer specifica-
tions such as Redfish it becomes difficult to defend not making this switch.

IPMI has several legacy functions, such as cipher 0, which must always be
disabled either by the vendor themselves or the administrator. It also though has
other vulnerabilities such as the hash exposure, which is part of how the specific-
ation operates and cannot be disabled.

Redfish as opposed to IPMI is a specification which is actively developed, and
is rather new to the market. There was not found any unremedied vulnerabilities
in the specification, and new ones will be patches as they are uncovered. This is
not an option for IPMI as it is no longer being developed, and Dell recommends
to disable IPMI over LAN [86] as there are "known security limitations inherent
in the protocol". When taking security into consideration there are several strong
reasons to switch to Redfish and disable IPMI for good.

In section 5.1 - ’Best Practices’, several best practice security configurations
were listed. Some of these practices are on the networking or organizational level,
which are out of scope for this project. Though the ones found related to the iDRAC
itself are usable for creating a iDRAC template which is more secure than the
one currently in use. Several of these more secure practices are simply to disable
unused protocols, and in a live environment one would have to identified those
which are required and those which are unnecessary.

Chapter 6

Deployment

Chapter 4 - "Implementation" served to demonstrate how Redfish can be used to
accomplish common OOB management tasks in an ad-hoc manner, in addition
to demonstrating the execution of Ansible playbooks. In chapter 5 - "Security",
a number of best practises for the configuration of iDRAC servers were presen-
ted. This chapter builds on both of these chapters to demonstrate how Ansible
playbooks, roles, and modules can be combined to perform larger and more com-
plicated tasks using Redfish. The two combinations presented are exporting and
importing server configuration from one server to another, and demonstrating de-
ployment of a predefined BIOS and best practice iDRAC configurations on an out
of the box Dell C6420 server using Ansible with open-source Redfish modules and
custom playbooks.

6.1 Configuration

There are two lists beneath this paragraph. Both of the lists are based on the most
commonly applied BIOS attributes applied by the employer. While second list is
named ’iDRAC’ also incorporates the best practice findings in chapter 5 - "Security"
section 5.1. The Employer originally specified that Serial over LAN (SoL) was a
functionality which was commonly enabled. SoL is an IPMI specific function which
allows for the redirection of BMC traffic over an IPMI session [15]. It was decided
to disable this function in order to follow the best practices, as it is not part of the
Redfish specification or in other ways required for Redfish to function.

BIOS

• Performance Mode: Performance

iDRAC:

• Changing VLAN settings
• BMC Interface: Shared

62

Chapter 6: Deployment 63

• Change user and password
• IPMI over LAN: Disabled
• Serial over LAN console redirection: Disabled
• Telnet: Disabled
• SNMP: Disabled
• Redirect all web-server HTTP requests to HTTPS
• Configure TLS 1.2
• Enable 256-bit encryption strength
• Limit cipher suites to strongest possible
• IP blocking on failed attempts
• IP address filtering

6.2 Vendor specific attribute names

The two lists in section 6.1 - "Configurations" have been mapped to the equivalent
iDRAC specific attribute names and accepted values. For this demonstration, the
iDRAC9 attribute registry documentation [77] was used to find the specific values
as well as their dependencies. The employer requires the performance mode to be
set to ’Performance’, which requires the ’SysProfile’ attribute to be set to ’PerfOp-
timized’. Relevant BIOS attribute names and values are shown in 6.1, while the
iDRAC attributes and values are shown in 6.2.

Bios Attributes Value
SysProfile PerfOptimized

Figure 6.1: Bios Attributes

Chapter 6: Deployment 64

iDRAC Attributes Value
IPMISOL.1.Enable Disabled
Users.2.SolEnable Disabled
SerialRedirection.1.Enable Enabled1

NIC.1.VLanEnable Enabled
NIC.1.VLanID 1
NIC.1.Selection LOM1
Users.2.UserName root
Users.2.Password redfish
Telnet.1.Enable Disabled
SNMP.1.AgentEnable Disabled
WebServer.1.HttpsRedirection Enabled
WebServer.1.TLSProtocol TLS 1.2 Only
IPBlocking.1.BlockEnable Enabled
IPBlocking.1.FailCount 3
IPBlocking.1.FailWindow 60
IPBlocking.1.PenaltyTime 60
SSHCrypto.1.KexAlgorithms curve25519-sha256,curve25519-

sha256@libssh.org,ecdh-sha2-nistp256,ecdh-
sha2-nistp384,ecdh-sha2-nistp521,diffie-hellman-
group-exchange-sha256,diffie-hellman-group16-
sha512,diffie-hellman-group18-sha512,diffie-
hellman-group14-sha256

SSHCrypto.1.MACs umac-128-etm@openssh.com,hmac-
sha2-256-etm@openssh.com,hmac-
sha2-512-etm@openssh.com,hmac-
sha1-etm@openssh.com,umac-
128@openssh.com,hmac-sha2-256,hmac-sha2-
512,hmac-sha1

SSHCrypto.1.Ciphers chacha20-poly1305@openssh.com,aes128-
ctr,aes192-ctr,aes256-ctr,aes128-
gcm@openssh.com,aes256-gcm@openssh.com

SSHCrypto.1.HostKeyAlgorithms ssh-rsa,rsa-sha2-512,rsa-sha2-256,ecdsa-sha2-
nistp256,ssh-ed25519

Figure 6.2: iDRAC Attributes
1. NIC.1.VlanEnable is disabled in the Proof of Concept, and in the demonstrations as to not interfere with any of the VLAN settings.

6.3 Demonstration

The configuration specified in 6.1 (BIOS), and 6.2 (iDRAC), are applied by run-
ning Ansible playbooks which uses the following Ansible modules:

Chapter 6: Deployment 65

Redfish config[79]: A module for managing BIOS and OOB controller settings
by building Redfish URIs locally and sending HTTP(s) requests to the Redfish API
of specified host(s). Part of the community general collection (v2.5.1)[40].

Redfish command[80]: A module for sending commands to OOB controller
(Reboot, power on/off, etc) by building Redfish URIs locally and sending HTTP(s)
requests to the Redfish API of specified host(s). Part of the community general col-
lection (v2.5.1) [40].

iDRAC Redfish command[47]: A module for scheduling a BIOS setting update
by building Redfish URIs locally and sending HTTP(s) requests to the Redfish API
of specified host(s). Part of the community general collection (v2.5.1) [40]. Only
required for Dell servers.

6.4 Deployment

Within this section is a demonstration of how the different playbooks demon-
strated in chapter 4 - "Implementation" can be used together for managing a BMC
environment. As previously mentioned in subsection 4.5.4 - "Discovery", IP ad-
dress management is outside of scope. This demonstration does not take into con-
sideration how the IP address has been discovered, nor how it has been managed.
It assumes that the IP has somehow been discovered and added to the inventory
file, and that the machine is an out of the box Dell server with iDRAC9. The longer
outputs have been placed within the appendix for ease of reading, with references
linking them back.

6.4.1 Extracting then deploying server configuration

The first demonstration is using the playbooks for extracting and importing server
configurations which can be found in the subsections: 4.5.2 - "Export Server Con-
figuration" and 4.5.3 - "Import Server Configuration". First the
export_server_config_profile playbook is ran against one of the iDRAC9 servers,

and as can be seen in listing 35 is successful. This creates a JSON file with the
configuration details of the first iDRAC server in the ’/tmp/’ folder.
The preview SCP module from section 4.5.7 - "Server Configuration Profile Pre-
view" is then used to check if the previously exported file is compatible with the
server it is being pushed towards. This returns the output which can be found in
the appendix B.10, showing that imported configuration is compatible and should
be successful. With this information the playbook from subsection 4.5.3 - "Import
Server Configuration" is ran against the server, and in listing 36 is shown to have
been successful. These playbooks are set up with hardcoded values, and would
require some changes for implementation in a different environment.

Chapter 6: Deployment 66

[root@bachelor redfish-ansible]#ansible-playbook -i inventory/
playbooks/export_server_config_profile.yml,→

PLAY [Export server configuration profile]
**

TASK [Include task for including host specific variables]
**
included: /home/redfish/test/git/bachelor_repo/redfish-

ansible/playbooks/tasks/include_host_vars.yml for
idrac4

,→

,→

TASK [Include host specific Ansible Vault encrypted variables]
**
ok: [idrac4]

TASK [Export Server Configuration Profile to local path]
**
ok: [idrac4]

PLAY RECAP
**
idrac4 : ok=3 changed=0 unreachable=0 failed=0

skipped=0 rescued=0 ignored=0,→

Listing 35: Export playbook successfully ran against iDRAC

6.4.2 Deploying BIOS and iDRAC configuration against a single server

In this demonstration it uses the roles and related playbooks shown in the subsec-
tion 4.5.6 - "Playbook and roles" from chapter 4. For this demonstration a custom
playbook named ’server_setup.yml’ has been created which uses both of the roles
in the ’Playbook and Roles’ subsection. This can be seen in listing 37, the playbook
first runs a pre-task which gathers information about the BMC, and registers this
to a variable called ’result’. It then runs the role for setting up the BIOS on the
server, both of which the code and role description can be found in subsection
4.5.6 - "Role: BIOS_idrac_settings" and its listing 29.

The next role, ’idrac_settings’, is only ran when the ’product’ from the ’result’
variable is equal to ’Integrated Dell Remote Access Controller’. This example shows
that with more such conditions one could have several additional roles within the
Ansible Playbook, and use it for configuring new devices as they are discovered.
In this example this is an iDRAC, so the playbook continues. It changes the iDRAC
attributes to those shown in figure 6.2. The successful output from this playbook
can be found in the appendix B.11.

Chapter 6: Deployment 67

[root@bachelor redfish-ansible]# ansible-playbook -i inventory/
playbooks/import_server_config_profile.yml,→

PLAY [Import server configuration profile]
**

TASK [Include task for including host specific variables.]
**
included: /home/redfish/test/git/bachelor_repo/redfish-

ansible/playbooks/tasks/include_host_vars.yml for
idrac3

,→

,→

TASK [Include host specific Ansible Vault encrypted variables]
**

TASK [Import Server Configuration Profile]
**
changed: [idrac3]

PLAY RECAP
**
idrac3 : ok=3 changed=1 unreachable=0 failed=0

skipped=0 rescued=0 ignored=0,→

Listing 36: Import playbook successfully ran against iDRAC

6.4.3 Deploying BIOS and iDRAC configurations against two servers
simultaneously

In this example the same playbook from the previous subsection 6.4.2 is ran with
some slight changes. These changes are to target the two iDRAC hosts instead of
one, and that one of the iDRACs has an already correctly configured BIOS. The
output from this playbook being ran can be found in the appendix B.12, the output
shows that the configurations are successfully launched against both servers. It
also shows how simple it is to scale upwards with Ansible and Redfish to target
more hosts. In this case the unconfigured server has its BIOS changed, while the
one with the already correct BIOS configuration skips this step. Additionally both
of the servers have their iDRAC settings changed correctly.

Chapter 6: Deployment 68

- hosts: test1

connection: local
gather_facts: false
name: Apply BMC settings
vars:

test_mode: False
pre_tasks:

- name: Get server information
ansible.builtin.uri:

url: "https://{{ ansible_host }}/redfish/v1"
method: GET
headers:

Accept: "application/json"
Content-Type: "application/json"

validate_certs: false
register: result

roles:
- role: bios_idrac_settings
- role: idrac_settings

when: result.json['Product'] == "Integrated Dell Remote Access
Controller",→

Listing 37: Playbook for deploying a default iDRAC bios and server config

Chapter 7

Testing

Sommerville describes testing in his book "Software Engineering" as the practise of
demonstrating that the software meets its requirements. This can be done by test-
ing the product in two ways; validation and verification testing. Validation testing
is the process of testing if the right product is being built. This is a more general
process, where the goal is to ensure that the product meets the customer expect-
ations [11]. In the context of the Proof of Concept, this is a continuous process
where missing functionality as specified by the employer is tracked in the product
backlog. Biweekly meetings with the employer is used to discuss the progress and
to gauge if there are any expectations of the system that is not reflected by the
the requirements. For each iteration of the development process (sprint meetings),
the project group meets to discuss if the right product (PoC) is actually being built.

Verification testing on the other hand, is concerned with if the product is be-
ing built right [11]. These are tests to ensure that the product meets its functional
and non-functional requirements. As mentioned previously, such software engin-
eering principles are a core part of the infrastructure-as-code approach to IT in-
frastructure management. Integrating manual and/or automated verification tests
to the development workflow, makes it possible to achieve the IaC core principle
of embracing frequent changes and improvements. Testing keeps the quality of
the system high by identifying errors as soon as they are made so they can be
immediately fixed, and any changes can be made frequently with accuracy and
confidence. By testing frequently and while still working on changes, Morris ar-
gues that everything is still fresh in mind, making small problems quick to find
and fix. Morris continues by describing how testing can be integrated in agile pro-
cesses which strive to be flexible to be able to adapt to changing requirements.
He describes it as a change-test-fix loop, which is adopted in figure 7.1, to show
that testing takes places continuously as changes are made. There is no formula
to what type of tests should be used in an infrastructure code base, so to get star-
ted, it is best to begin by a minimum amount of tests which is required, and then
introduce new types of tests as they are needed. [14].

69

Chapter 7: Testing 70

The rest of this chapter describes the tests implemented or not implemented
to test the PoC, and the reasoning behind them. The reader may notice a lack
of focus non-functional requirements (system performance, memory utilization,
etc.). This is because there were no non-functional requirements to this PoC.

7.1 Testing Ansible playbooks

According to their own documentation, Ansible is designed to be a "fail-fast" and
ordered system[96]. This means that tests can be embedded into the playbooks by
declaring a desired state, such as if a service should be enabled, started, installed,
etc. If a desired state is not reached during task execution, the task will return
as failed. Some tasks in this project defines a desired state by defining which at-
tributes should be applied to a server configuration. A successful execution of this
task should call a new task which reboots the system to apply these changes. In-
stead of having to check the return codes of the request before reboot, adding a
condition that checks if the task which applies the configuration was successful
is sufficient, as Ansible is checking return codes automatically. In other words, no
external testing tools should be necessary to validate the workings of an Ansible
playbook.

The syntax of the playbooks and tasks themselves however, can be verified by
checking for syntax-errors and code quality. The Ansible CLI tool
ansible-playbook [97] has the –syntax-check option which performs a syntax-

check on the playbook(s) specified without executing them.

Code quality is tested using static code analysis tools. The tool ansible-lint is
a command-line tool used to parse playbooks, roles or collections and checks for
common errors or bad habits which can lead to bugs or just code that is harder to
maintain [98]

In software testing, and therefore by extension Infrastructure as Code, unit
tests are often used to execute small subsections of a program to make sure they
run correctly [99]. As mentioned in section 2.5 about Ansible, playbooks consist
of a series of tasks. These tasks can be seen as the small units (subsections) that
can be tested, but because of the Ansible mechanics described in the beginning of
this section, no external tools are needed to perform such unit testing. Independ-
ent, common tasks can be separated into different files and included at runtime
in playbooks, and its functionality and code quality can be tested with methods
described above.

The purpose of the lab-environment described in earlier in section 4.3, is to
be able to verify that the playbooks and tasks behave as they should by running
them on one or multiple hosts in that environment. These tests are done con-
tinuously and manually. By observing the CLI output while running the Ansible

Chapter 7: Testing 71

playbooks, the developer is quickly able to determine if a task failed or succeeded
and continue the workflow as pictured in figure 7.1.

7.2 Continuous integration

Continuous integration is the practise of frequently integrating and testing all
changes to a system as they are being developed [99]. For the development of the
PoC, the CI tool ’ TravisCI ’ [100] was used to enable this practise. Each commit
to the git repository will trigger a CI process which builds a Linux Python envir-
onment, installs Ansible and ansible-lint and performs syntax and code quality
tests on all playbooks or tasks in the branch, giving relatively quick feedback to
the developer if the pushed changes succeeded or failed. The full configuration
can be found in B.15.

Because the whole purpose of the lab environment is be the testing ground of
the PoC, a complete, virtual, testing environment was not considered to be neces-
sary for this project. However, DMTF has developed two tools which can help in
cases where such environment is necessary. The "Redfish mockup creator" [101]
creates a mockup of a live Redfish service by saving all resources it finds on the
specified target host. This mockup can then be used to create a web server with
the tool "Redfish mockup server" [102] to simulate Redfish API requests and re-
sponses on an identical, but virtual machine. These tools could be used to improve
the testing suite of a Redfish client development project by integrating them in CI
tools such as TravisCI so tests can be run in a virtual environment instead of bare-
metal servers.

A problem can arise when a CI tool, in this case, TravisCI, tries to run play-
books that calls variables which are encrypted using Ansible Vault. Since the CI
tool does not possess the decryption key, the tests will fail before any syntax or lint
testing can be done. Author of "Ansible for devops", Jeff Geerling, wrote a blog-
post discussing the possible solutions to this problem. Like anyone else thinking
of security as a continuous process, he did not feel comfortable storing the de-
cryption key in a third-party system, where he could not guarantee its security
[103]. The solution used in this project is based on Geerling’s blog-post. By adding
the variable check_mode and adding the check when not test_mode to the task
which includes the encrypted variables to the play, it is possible to avoid import-
ing those variable all together by setting the variable to true and passing it to the
task when running it in a CI system. Because the encrypted variables will not be
imported, the tests can proceed, and the decryption key never have to be stored
in a third-party CI system.

Chapter 7: Testing 72

7.3 Testing Ansible modules

This project has shown the development of two Ansible modules which did not
exist before: "Get job details", and "Import server configuration profile preview".
If such modules were to be developed for a real production environment, a more
comprehensive testing-process could and should be implemented into the devel-
opment process. This involves writing testing-requirements and unit-tests based
on those requirements found in subsection 8.2.1, as well as performing sanity-
tests to make sure the code conforms to the Ansible coding standards require-
ments [104].

Because the nature of a PoC is to merely show the principle and the feasibility
of the end result, as well as to spare the limited project resources, such a large task
was taken out of consideration for this project. Some error-handling like failed
HTTP requests was embedded into the code, so the success or failure of the module
is observed when running the Ansible tasks which calls the PoC modules.

7.4 Testing summary

Summarized, the testing workflow for the development of this PoC, is described in
figure 7.1. The local feedback loop is the practise of integrating testing into the de-
velopment workflow as described in the beginning of this chapter. The functional
requirements, playbook/task syntax and behaviour is manually tested, and fre-
quently committed to the code-repository to trigger an automated universal test.
For the moment, these tests include syntax and code quality tests, and if accep-
ted, the developer can merge the testing and main branches and move on to a
new task from the product backlog, repeating the process. Validation is a continu-
ous process not showed in figure 7.1, but is continuously revised and discussed
throughout the project period.

Chapter 7: Testing 73

Figure 7.1: A figure showing the testing workflow of this project

Chapter 8

Discussion

This chapter contains the groups reflections on the development process and dif-
ficulties encountered during the project with the different technologies. It also
contains the groups thoughts about future work related to this thesis, some of
which is relevant for the employer while the other is more general in nature.

8.1 iDRAC limitations and challenges

From start to finish, the thesis group has had no physical access to the hardware in
the development environment. The setup of the servers, switch and cables were all
done by the employer. There are both pros and cons related to delegating setup of
the development environment to a group located elsewhere, the biggest pro being
the ability to focus on Redfish and Ansible rather than setup and troubleshooting
of hardware. The largest con on the other hand was that new configurations could
not be freely deployed, as to not crash or render the server unreachable. This was
due to having to contact the employer and request for them to remediate such
issues, which especially outside of regular working hours would have to wait for
the next workday.

Initially only one BMC was provided to the group in the form of a Poweredge
R720 server with the iDRAC7, when this was found to not be sufficient a second
identical server was provided. The iDRAC7 R720 has Redfish functionality with
firmware version 2.40.40.40 and beyond, however the R720 model was released
in March of 2012. Although it is still a good machine, 9 years is a lot of time in the
technology industry and when one considers that the first Redfish specification
was published in 2015 there are some factors that come into play. These factors
are as follows; the R720 is no longer being updated, which makes it incompat-
ible with multiple Ansible modules. In addition, there are less Redfish related
documentations compared to the iDRAC9. Initially this delayed the development
as there was a lack in the iDRAC7 Redfish implementation, and time was spent
troubleshooting iDRAC7 specific issues. Specifically there was considerable time
spent troubleshooting an issue with importing configurations. This issue was fixed

74

Chapter 8: Discussion 75

in a later firmware version [105], a version not supported by the iDRAC7 model.
This made the iDRAC7 unable to deliver one of the tasks set by the employer,
which caused the group to eventually reach the decision that the iDRAC7 was un-
suited for the end goal of this project.

The iDRAC9 on the C6420 server on the other hand supports most Redfish
functionality and implementations. In addition, existing public Ansible modules
for Redfish management are compatible with the iDRAC9, with the exception of
a few vendor specific modules. The documentation provided by Dell pertaining
to the iDRAC9 was overall sufficient, and both the server and iDRAC9 firmware
are actively updated. It would have been better to start with the iDRAC9 from
the beginning as it has a full implementation of Redfish, meaning less time would
have been spent troubleshooting the iDRAC7. Once the iDRAC9 was provided and
it was found to have better compatibility to the project, the decision to focus the
development solely on the iDRAC9 was made. Though with Redfish being an open
source specification we did not and could not rule out the possibility that other
vendors might have had a better implementation, better documentation, and/or
better product support, all of which are important factors to acknowledge.

The one limitation which was found to be present on both of the iDRAC ver-
sions was that the Redfish simple service discovery protocol was not implemen-
ted, and that Dell instead has their own proprietary service discovery protocol.
This made it so that the group did not attempt any implementation of automatic
service discovery and deployment into the Proof of Concept to fully automate con-
figuration of out-of-the-box servers, as this would have been very vendor specific
and not Redfish related. The thesis did however investigate how Redfish could be
incorporated into a parts of the service discovery. This was presented in 4.5.4 -
"Discovery" chapter 4, and it showed how the API could be used for identifying
if Redfish is present on a arbitrary IP address and what type of product it is. The
part which has been left untouched is the IP discovery and management of ser-
vice discovery, and a possible continuation or future work of this thesis could be
to research and incorporate open source alternatives to IP address discovery and
management, and combine those with the presented PoC.

8.2 Expansions

The group decided to expand the thesis a bit further than the original assign-
ment provided by the Idun HPC group. Amongst these expansions was a chapter
on security relevant for the project, and development of two modules related to
configuration testing.

8.2.1 Expanding to security

It was decided to expand the project into security, this was natural as half of the
study program is related to information security, and there was an interest to delve

Chapter 8: Discussion 76

a bit deeper into this particular aspect of the task. IT security is a rather broad
subject, and it was decided to narrow it down to a single chapter within the thesis.
Therefore the group limited the contents of this chapter to mainly two things; A
summary of the most important security best practices for BMCs and a slight delve
into vulnerabilities of the two BMC specifications. Finally it was narrowed further
by limiting it to known vulnerabilities, and using exploits provided by open source
penetration testing tools. This was to make it possible to complete the tasks in a
reasonable time, and also as the group wanted to check for themselves if the
security vulnerabilities in IPMI discovered by Farmer were still relevant.

8.2.2 Expanding to module-development

All Redfish functionality that the employer needed a Proof of Concept of was avail-
able as modules in the Ansible community collection "General". There could how-
ever be cases where modules for a specific action or task in the day to day man-
agement of servers does not exist yet.

While looking for a way to test configurations on a server without the fear of
losing connectivity, it was discovered that the function for previewing the import
of server configuration profiles on Dell PowerEdge servers was not implemented
in any open-source Ansible modules. Although simply using the built-in Ansible
functionality for creating HTTP-requests could have dissolved the need for an own
module, this was seen as an opportunity to demonstrate how an Ansible module
could be developed, tested, and used in a local environment for cases where simple
or more complex Redfish-tasks need to be automated.

The task was added to the project backlog, defining the functionalities needed:
accept a set of defined parameters, and do a GET request to a Redfish URI. The
Redfish resource in question could only accept configuration files from a net-
work file-share, and a decision was made to focus the implementation on module-
functionality for NFS. This was because of time-constraints, and NFS is the go-to
network share for linux-based environments. The result serves its purpose as a
Proof of Concept module to demonstrate the possibilities when a Redfish func-
tionality is not present in any open source modules.

8.3 Future work

The group has compiled two lists for future work, the first is a more general list for
the furtherment of this type of study. This list is based on areas which the group
has found BMC research to lack, areas which the group was unable to delve into
due to scope, and due to the limitations of the project. The second list on the other
hand is recommendations for future work for the HPC group in Idun in their use
of Redfish.

Chapter 8: Discussion 77

8.3.1 Future work in general

• Redfish is a rather young specification which has just recently seen more
widespread use. This project has mostly looked at the known vulnerabilities
of the IPMI specification, and the security options of Redfish. Future work
should take this into consideration, and attempt to uncover any security
issues with the specification or vendor implementation of Redfish.

• A look into the best practices both for optimization and security in the usage
of Redfish and Ansible in the HPC environment.

• BMCs are an area of computing which have been left relatively vulnerable
for several years, and most vendors do not recommend having them con-
nected to the internet in any way. IT systems are only becoming more con-
nected, and working remotely is becoming more common. More expansive
work should be taken to uncover and test the security and vulnerabilities
of the different BMC implementations, as a proper mapping could lead to
better security as a whole.

• The project itself has been developed using Dell servers, and has not had
access to any other vendor equipment. This has naturally meant that most
of the focus has been on this line of servers. Future work should take this
into consideration and use a more diverse set of vendors for their servers.
This will help to thoroughly test the ability of Redfish across vendors.

• Service discovery of Redfish devices is an important part of automating BMC
configurations. In the cases that the vendors choose not to implement SSDP,
there is a need to find other ways to discover new Redfish devices. Research
into what other open source tools could be utilized for discovery is a pos-
sible future work which could aid in making BMC management simpler for
diverse server environments.

8.3.2 Future work for the HPC group

• Specifically future work for the HPC group should be to map the exact cur-
rent use cases for IPMI, and then translate these over to Redfish. This will let
them eventually phase IPMI completely out of their environment. In addi-
tion there should be more work set to see what other functionalities Redfish
has to offer that might be beneficial, such as Redfish functionality for net-
work devices.

• The PoC presented in this thesis is just that, a Proof of Concept. It should
not be used for direct implementation into the HPC environment. The HPC
group should use this as a reference on the capabilities of Redfish alongside
Ansible, and expand on their knowledge. The HPC group should read and
understand the best practices for both server settings using Redfish as well
as Ansible.

Chapter 9

Conclusion

This chapter contains the conclusion of this thesis. It presents the ending words
about Redfish and IPMI, the project result, and the final words of the thesis.

9.1 Redfish & IPMI

IPMI is an aged specification which was developed with little to no consideration
of security, and with very little functionality across all vendors. It is limited to the
least common denominator, and more specific actions with it are made with the
archaic and non-intuitive raw commands which are vendor specific. Vendors such
as Dell, Intel, and HP no longer recommends using IPMI and rather recommends
more modern technology such as Redfish.

The specification and its adaptations have outlived their usefulness in modern
server environments. When looking at the sheer functionality that Redfish offers
across vendors it becomes hard to justify not making the switch. When one con-
siders the multitude of security issues which are easily exploited, and the fact that
it is no longer developed, it no longer stays hard to justify, it becomes reckless.
After all, computer systems are only as secure as the weakest link. This weakest
link just happens to be embedded on the motherboard of any servers with OOB
management capabilities. In the case of a successful attack on this link it would
be as if the attacker had physical access to the server, and as the BMC operates at
a level lower than the OS, this becomes difficult to discover and handle.

Redfish on the other hand is a more modern type of OOB management spe-
cification. It was developed with both ease of learning, security, and well known
and used protocols in mind. It offers this functionality across vendors with its
standardized URL API calls, making it easier to manage a diverse environment
consisting of different server vendors. This is done by specifying a RESTful in-
terface that follows OData conventions, which allows for ease of learning as it is
human readable, as well as creating the possibility for clients to do or automate

78

Chapter 9: Conclusion 79

tasks in any programming language without knowing the details of the imple-
mentation. Generic libraries, like the one used in in this project (’redfish_utils’),
can be created to help system administrators create internal or open-source tools
for OOB management. Additionally the specification supports TLS v1.2 through
the use of HTTPS when making API calls and transferring data. Essentially Red-
fish is a specification which has far greater functionality across vendors, better
security, and is easier to learn. In combination with Ansible, it becomes possible
to automate and orchestrate these configurations across vast environments.

9.2 Project results

The NTNU Idun HPC group wanted a PoC concerning the use of Redfish together
with Ansible. They wanted to gather information about the use of Redfish and
its capabilities before making any sort of switch from IPMI. They provided the
bachelor group with a requirement specification containing specific tasks which
they needed Redfish to be able to do. The thesis demonstrates all of the required
tasks using Redfish and Ansible. In addition the thesis was expanded to include
security considerations, as well as showcasing how Ansible-modules for Redfish
can be developed if an OOB management use-case is not covered by any public
open-source projects.

9.3 Final words

At the very start of this project, the authors of this thesis assigned themselves
to watch a video presentations presented by the system architect Bruno Cornec
[106]. The presentation gave a good summary of Redfish and its capabilities which
helped a fresh group get started on their work. The title of the presentation is
rather fitting as the final words of this thesis:

"IPMI is dead, long live Redfish!"

Bibliography

[1] insidehpc, What is high performance computing? Accessed on 31.01.2021,
2021. [Online]. Available: https://insidehpc.com/hpc-basic-training/
what-is-hpc/.

[2] N. H. P. C. Group, Idun, Accessed on 31.01.2021, 2021. [Online]. Avail-
able: https://www.hpc.ntnu.no/idun.

[3] Techopedia, Intelligent platform management interface (ipmi), Accessed on
31.01.2021, 2021. [Online]. Available: https://www.techopedia.com/
definition/2219/intelligent- platform- management- interface-
ipmi.

[4] Dell, Dell - bios characterization for hpc with intel cascade lake processors,
Accessed on 27.03.2021, 2021. [Online]. Available: https://www.dell.
com/support/kbdoc/en-no/000176921/bios-characterization-for-
hpc-with-intel-cascade-lake-processors.

[5] Wikipedia, Intelligent platform management interface (-2021), Accessed
on 27.03.2021, 2021. [Online]. Available: https://en.wikipedia.org/
w/index.php?title=Intelligent_Platform_Management_Interface&
oldid=1011016%059.

[6] DMTF, Dmtf - redfish standard®, Accessed on 31.01.2021, 2021. [Online].
Available: https://www.dmtf.org/standards/redfish.

[7] O. source, What is ansible? Accessed on 31.01.2021, 2021. [Online]. Avail-
able: https://opensource.com/resources/what-ansible.

[8] Openstack, Heat, Accessed on 19.04.2021, 2021. [Online]. Available: https:
//wiki.openstack.org/wiki/Heat.

[9] Puppet, Puppet homepage, Accessed on 19.04.2021, 2021. [Online]. Avail-
able: https://puppet.com/.

[10] Guru99, Software configuration management in software engineering, Ac-
cessed on 19.04.2021, 2021. [Online]. Available: https://www.guru99.
com/software-configuration-management-tutorial.html.

[11] I. Sommerville, "software engineering, global edition", Accessed on 27.03.2021,
2015. [Online]. Available: https :/ /www .pearson .com /us / higher-
education/program/Sommerville-Software-Engineering-10th-Edition/
PGM35255.html.

80

https://insidehpc.com/hpc-basic-training/what-is-hpc/
https://insidehpc.com/hpc-basic-training/what-is-hpc/
https://www.hpc.ntnu.no/idun
https://www.techopedia.com/definition/2219/intelligent-platform-management-interface-ipmi
https://www.techopedia.com/definition/2219/intelligent-platform-management-interface-ipmi
https://www.techopedia.com/definition/2219/intelligent-platform-management-interface-ipmi
https://www.dell.com/support/kbdoc/en-no/000176921/bios-characterization-for-hpc-with-intel-cascade-lake-processors
https://www.dell.com/support/kbdoc/en-no/000176921/bios-characterization-for-hpc-with-intel-cascade-lake-processors
https://www.dell.com/support/kbdoc/en-no/000176921/bios-characterization-for-hpc-with-intel-cascade-lake-processors
https://en.wikipedia.org/w/index.php?title=Intelligent_Platform_Management_Interface&oldid=1011016%059
https://en.wikipedia.org/w/index.php?title=Intelligent_Platform_Management_Interface&oldid=1011016%059
https://en.wikipedia.org/w/index.php?title=Intelligent_Platform_Management_Interface&oldid=1011016%059
https://www.dmtf.org/standards/redfish
https://opensource.com/resources/what-ansible
https://wiki.openstack.org/wiki/Heat
https://wiki.openstack.org/wiki/Heat
https://puppet.com/
https://www.guru99.com/software-configuration-management-tutorial.html
https://www.guru99.com/software-configuration-management-tutorial.html
https://www.pearson.com/us/higher-education/program/Sommerville-Software-Engineering-10th-Edition/PGM35255.html
https://www.pearson.com/us/higher-education/program/Sommerville-Software-Engineering-10th-Edition/PGM35255.html
https://www.pearson.com/us/higher-education/program/Sommerville-Software-Engineering-10th-Edition/PGM35255.html

Bibliography 81

[12] S. Association, Ieee 828 ieee standard for configuration management in sys-
tems and software engineering, Accessed on 27.03.2021, 2012. [Online].
Available: https://standards.ieee.org/standard/828-2012.html.

[13] S. Norge, Iso 10007 quality management - guidelines for configuration man-
agement, Accessed on 27.03.2021, 2017. [Online]. Available: https://
www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/
?ProductID=911000.

[14] SamGu, M. Jacobs and D. Hellem, What is infrastructure as code? Accessed
on 19.04.2021, 2021. [Online]. Available: https://docs.microsoft.
com/en-us/azure/devops/learn/what-is-infrastructure-as-code.

[15] Intel, Intel intelligent platform management interface specification second
generation, Accessed on 27.03.2021, 2013. [Online]. Available: https:
//www.intel.com/content/www/us/en/products/docs/servers/ipmi/
ipmi-second-gen-interface-spec-v2-rev1-1.html.

[16] Dell, Accessed on 27.03.2021, 2021. [Online]. Available: https://www.
dell.com/no-no.

[17] HP, Accessed on 27.03.2021, 2021. [Online]. Available: https://www8.
hp.com/no/no/home.html.

[18] NEC, Accessed on 27.03.2021, 2021. [Online]. Available: https://www.
nec.com/.

[19] J. Hargrave, An introduction to the intelligent platform management inter-
face, Accessed on 27.03.2021, 2021. [Online]. Available: https://www.
dell.com/downloads/global/power/ps2q04-019.pdf.

[20] W. Fischer, Ipmi basics, Accessed on 27.03.2021, 2021. [Online]. Avail-
able: https://www.thomas-krenn.com/en/wiki/IPMI_Basics#Intelligent_
Platform_Management_Bus_.28IPMB.29.

[21] Intel, Intelligent chassis management bus bridge specification, Accessed on
27.03.2021, 2003. [Online]. Available: https://www.intel.com/content/
www/us/en/servers/ipmi/icmb-spec-v1-rev1-3.html.

[22] PC/104, Pci-104 specification, Accessed on 27.03.2021, 2003. [Online].
Available: https://resources.winsystems.com/specs/PCI-104Spec_
v1_0.pdf.

[23] W. Fischer, Overview of software utilities for ipmi, Accessed on 27.03.2021,
2021. [Online]. Available: https://www.thomas-krenn.com/en/wiki/
Overview_of_Software_Utilities_for_IPMI.

[24] S. Compxtreme, Configuring drac with ipmitool, Accessed on 27.03.2021,
2015. [Online]. Available: https://sysadmin.compxtreme.ro/configuring-
drac-with-ipmitool/.

[25] Lenovo bmc command list, Accessed on 03.05.2021, 2020. [Online]. Avail-
able: https://download.lenovo.com/servers_pdf/bmc_command_list_
specification_v0.1.1.pdf.

https://standards.ieee.org/standard/828-2012.html
https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=911000
https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=911000
https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=911000
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-infrastructure-as-code
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-infrastructure-as-code
https://www.intel.com/content/www/us/en/products/docs/servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-1.html
https://www.intel.com/content/www/us/en/products/docs/servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-1.html
https://www.intel.com/content/www/us/en/products/docs/servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-1.html
https://www.dell.com/no-no
https://www.dell.com/no-no
https://www8.hp.com/no/no/home.html
https://www8.hp.com/no/no/home.html
https://www.nec.com/
https://www.nec.com/
https://www.dell.com/downloads/global/power/ps2q04-019.pdf
https://www.dell.com/downloads/global/power/ps2q04-019.pdf
https://www.thomas-krenn.com/en/wiki/IPMI_Basics#Intelligent_Platform_Management_Bus_.28IPMB.29
https://www.thomas-krenn.com/en/wiki/IPMI_Basics#Intelligent_Platform_Management_Bus_.28IPMB.29
https://www.intel.com/content/www/us/en/servers/ipmi/icmb-spec-v1-rev1-3.html
https://www.intel.com/content/www/us/en/servers/ipmi/icmb-spec-v1-rev1-3.html
https://resources.winsystems.com/specs/PCI-104Spec_v1_0.pdf
https://resources.winsystems.com/specs/PCI-104Spec_v1_0.pdf
https://www.thomas-krenn.com/en/wiki/Overview_of_Software_Utilities_for_IPMI
https://www.thomas-krenn.com/en/wiki/Overview_of_Software_Utilities_for_IPMI
https://sysadmin.compxtreme.ro/configuring-drac-with-ipmitool/
https://sysadmin.compxtreme.ro/configuring-drac-with-ipmitool/
https://download.lenovo.com/servers_pdf/bmc_command_list_specification_v0.1.1.pdf
https://download.lenovo.com/servers_pdf/bmc_command_list_specification_v0.1.1.pdf

Bibliography 82

[26] DMTF, Distributed management task force, technical note, Accessed on 27.03.2021,
2015. [Online]. Available: https://www.dmtf.org/sites/default/
files/standards/documents/Redfish%20Tech%20Note.pdf.

[27] DMTF, About dmtf, Accessed on 19.04.2021, 2021. [Online]. Available:
https://www.dmtf.org/about.

[28] H. Bruning, Scaling ipmi to the data center: Object building blocks, Ac-
cessed on 27.03.2021, 2013. [Online]. Available: https://dzone.com/
articles/scaling-ipmi-data-center.

[29] json-schema-org, Json schema homepage, Accessed on 19.04.2021, 2021.
[Online]. Available: https://json-schema.org/.

[30] OData, Common schema definition language (csdl) (odata version 3.0), Ac-
cessed on 19.04.2021, 2021. [Online]. Available: https://www.odata.
org/documentation/odata-version-3-0/common-schema-definition-
language-csdl/.

[31] O. Ben-Kiki, C. Evans and I. d. Net, Yaml™ specification index, Accessed
on 19.04.2021, 2009. [Online]. Available: https://yaml.org/spec/.

[32] DMTF, Redfish - simple and secure management for converged, hybrid it,
Accessed on 11.03.2021, 2018. [Online]. Available: https://www.dmtf.
org/sites/default/files/Redfish_Tech_Note-November_2018.pdf.

[33] DMTF, Redfish - simple and secure management for converged, hybrid it,
Accessed on 26.04.2021, 2018. [Online]. Available: https://www.dmtf.
org/sites/default/files/Redfish_Tech_Note-November_2018.pdf.

[34] restfulapi, What is rest, Accessed on 27.03.2021, 2021. [Online]. Avail-
able: https://restfulapi.net/.

[35] R. T. Fielding, Architectural styles and the design of network-based soft-
ware architectures, Accessed on 20.04.2021, 2000. [Online]. Available:
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_
arch_style.htm#sec_5_2_1_1.

[36] R. Hat, What is a rest api? Accessed on 27.03.2021, 2021. [Online]. Avail-
able: https://www.redhat.com/en/topics/api/what-is-a-rest-api.

[37] DMTF, Redfish specification 1.8.0, Accessed on 27.03.2021, 2019. [On-
line]. Available: https://www.dmtf.org/sites/default/files/standards/
documents/DSP0266_1.8.0.pdf.

[38] JQ, Accessed on 30.03.2021, 2021. [Online]. Available: https://stedolan.
github.io/jq/.

[39] P. S. Foundation, Python homepage, Accessed on 19.04.2021, 2021. [On-
line]. Available: https://www.python.org/.

[40] Ansible, Community general collection, Accessed on 27.03.2021, 2021.
[Online]. Available: https://galaxy.ansible.com/community/general.

https://www.dmtf.org/sites/default/files/standards/documents/Redfish%20Tech%20Note.pdf
https://www.dmtf.org/sites/default/files/standards/documents/Redfish%20Tech%20Note.pdf
https://www.dmtf.org/about
https://dzone.com/articles/scaling-ipmi-data-center
https://dzone.com/articles/scaling-ipmi-data-center
https://json-schema.org/
https://www.odata.org/documentation/odata-version-3-0/common-schema-definition-language-csdl/
https://www.odata.org/documentation/odata-version-3-0/common-schema-definition-language-csdl/
https://www.odata.org/documentation/odata-version-3-0/common-schema-definition-language-csdl/
https://yaml.org/spec/
https://www.dmtf.org/sites/default/files/Redfish_Tech_Note-November_2018.pdf
https://www.dmtf.org/sites/default/files/Redfish_Tech_Note-November_2018.pdf
https://www.dmtf.org/sites/default/files/Redfish_Tech_Note-November_2018.pdf
https://www.dmtf.org/sites/default/files/Redfish_Tech_Note-November_2018.pdf
https://restfulapi.net/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2_1_1
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2_1_1
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.8.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.8.0.pdf
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://www.python.org/
https://galaxy.ansible.com/community/general

Bibliography 83

[41] Dell, Dell emc openmanage ansible modules, Accessed on 27.03.2021, 2021.
[Online]. Available: https://galaxy.ansible.com/community/general.

[42] Ansible, How ansible works, Accessed on 08.03.2021, 2021. [Online]. Avail-
able: https://www.ansible.com/overview/how-ansible-works.

[43] A. Community, How to build your inventory, Accessed on 10.05.2021, 2021.
[Online]. Available: https://docs.ansible.com/ansible/latest/
user_guide/intro_inventory.html.

[44] Ansible, Intro to playbooks, Accessed on 27.03.2021, 2021. [Online]. Avail-
able: https : / / docs . ansible . com / ansible / latest / user _ guide /
playbooks_intro.html#about-playbooks.

[45] A. community, Ansible roles documentation, Accessed 14.05.2021, 2021.
[Online]. Available: https://docs.ansible.com/ansible/latest/
user_guide/playbooks_reuse_roles.html.

[46] Ansible, Ansible galaxy, Accessed on 27.03.2021, 2021. [Online]. Avail-
able: https://galaxy.ansible.com/home.

[47] A. Community, Community general idrac_redfish_command.py, Accessed
on 04.05.2021, 2021. [Online]. Available: https://github.com/ansible-
collections/community.general/blob/main/plugins/modules/remote_
management/redfish/idrac_redfish_command.py.

[48] Y. Pan, Community.general.xcc_redfish_command, Accessed 15.05.2021, 2021.
[Online]. Available: https://docs.ansible.com/ansible/latest/
collections/community/general/xcc_redfish_command_module.html#
ansible- collections- community- general- xcc- redfish- command-
module.

[49] OpenManageAnsible, Dell emc openmanage ansible modules, Accessed 15.05.2021,
2021. [Online]. Available: https://galaxy.ansible.com/dellemc/
openmanage.

[50] Ansible, Encrypting content with ansible vault, Accessed on 27.03.2021,
2021. [Online]. Available: https://docs.ansible.com/ansible/latest/
user_guide/vault.html.

[51] D. Farmer, Ipmi: Freight train to hell, Accessed on 30.03.2021, 2013. [On-
line]. Available: http://fish2.com/ipmi/itrain.pdf.

[52] rapid7, A penetration tester’s guide to ipmi and bmcs, Accessed on 30.03.2021,
2013. [Online]. Available: https://blog.rapid7.com/2013/07/02/a-
penetration-testers-guide-to-ipmi/.

[53] D. Farmer, Farmer jan 2021 blog post about ipmi, Accessed on 12.05.2021,
2013. [Online]. Available: http://fish2.com/ipmi/.

https://galaxy.ansible.com/community/general
https://www.ansible.com/overview/how-ansible-works
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html#about-playbooks
https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html#about-playbooks
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://galaxy.ansible.com/home
https://github.com/ansible-collections/community.general/blob/main/plugins/modules/remote_management/redfish/idrac_redfish_command.py
https://github.com/ansible-collections/community.general/blob/main/plugins/modules/remote_management/redfish/idrac_redfish_command.py
https://github.com/ansible-collections/community.general/blob/main/plugins/modules/remote_management/redfish/idrac_redfish_command.py
https://docs.ansible.com/ansible/latest/collections/community/general/xcc_redfish_command_module.html#ansible-collections-community-general-xcc-redfish-command-module
https://docs.ansible.com/ansible/latest/collections/community/general/xcc_redfish_command_module.html#ansible-collections-community-general-xcc-redfish-command-module
https://docs.ansible.com/ansible/latest/collections/community/general/xcc_redfish_command_module.html#ansible-collections-community-general-xcc-redfish-command-module
https://docs.ansible.com/ansible/latest/collections/community/general/xcc_redfish_command_module.html#ansible-collections-community-general-xcc-redfish-command-module
https://galaxy.ansible.com/dellemc/openmanage
https://galaxy.ansible.com/dellemc/openmanage
https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://docs.ansible.com/ansible/latest/user_guide/vault.html
http://fish2.com/ipmi/itrain.pdf
https://blog.rapid7.com/2013/07/02/a-penetration-testers-guide-to-ipmi/
https://blog.rapid7.com/2013/07/02/a-penetration-testers-guide-to-ipmi/
http://fish2.com/ipmi/

Bibliography 84

[54] U. C.
bibinitperiod I. S. Agency, Risks of using the intelligent platform manage-
ment interface (ipmi), Accessed on 30.03.2021, 2013. [Online]. Available:
https://blog.rapid7.com/2013/07/02/a-penetration-testers-
guide-to-ipmi/.

[55] Dell, Dell response to cve (common vulnerabilities and exposures) id’s, Ac-
cessed on 30.03.2021, 2021. [Online]. Available: https://downloads.
dell.com/manuals/all-products/esuprt_software/esuprt_remote_
ent_sys_mgmt/esuprt_rmte_ent_sys_rmte_access_cntrllr/integrated-
dell-remote-access-cntrllr-6-for-monolithic-srvr-v1.95_faq3_
en-us.pdf.

[56] Intel, Joint message from the ipmi promoters, Accessed on 21.04.2021,
2021. [Online]. Available: https://www.intel.com/content/www/us/
en/products/docs/servers/ipmi/ipmi-home.html.

[57] P. K. B.E., Validation of redfish - the scalable platform management standard,
Accessed on 29.03.2021, 2017. [Online]. Available: https://ttu-ir.
tdl.org/bitstream/handle/2346/72726/KUMARI-THESIS-2017.pdf?
sequence=1&isAllowed=y.

[58] M. L., What is ssl inspection and how does it work? quit wondering if your
server is being bogged down by requests from illegitimate sources — here’s
what to know about https inspection and how it works, Accessed on 30.03.2021,
2020. [Online]. Available: https://ttu-ir.tdl.org/bitstream/handle/
2346/72726/KUMARI-THESIS-2017.pdf?sequence=1&isAllowed=y.

[59] F. R. and R. J., Hypertext transfer protocol (http/1.1): Authentication, Ac-
cessed on 07.03.2021, 2014. [Online]. Available: https://www.ietf.
org/rfc/rfc7235.txt.

[60] DMTF, Redfish specification 1.8.0, Accessed on 30.03.2021, 2018. [On-
line]. Available: https://www.dmtf.org/sites/default/files/Redfish_
2018_Release_1_Overview.pdf.

[61] Dell, Poweredge rack servers, Accessed 15.05.2021, 2021. [Online]. Avail-
able: https://www.dell.com/en- us/work/shop/dell- poweredge-
servers/sc/servers/poweredge-rack-servers.

[62] Dell, Idrac 9 white paper, Accessed on 26.04.2021, 2017. [Online]. Avail-
able: https : / / downloads . dell . com / manuals / common / dell - emc -
idrac9-lc-overview.pdf.

[63] Softpanorama, Racadm command line interface for drac on linux, Accessed
16.05.2021, 2019. [Online]. Available: http://www.softpanorama.org/
Hardware / Dell / Servers / DRAC / racadm _ command _ line _ interface .
shtml.

[64] DMTF, Web services management, Accessed 16.05.2021, 2021. [Online].
Available: https://www.dmtf.org/standards/ws-man.

https://blog.rapid7.com/2013/07/02/a-penetration-testers-guide-to-ipmi/
https://blog.rapid7.com/2013/07/02/a-penetration-testers-guide-to-ipmi/
https://downloads.dell.com/manuals/all-products/esuprt_software/esuprt_remote_ent_sys_mgmt/esuprt_rmte_ent_sys_rmte_access_cntrllr/integrated-dell-remote-access-cntrllr-6-for-monolithic-srvr-v1.95_faq3_en-us.pdf
https://downloads.dell.com/manuals/all-products/esuprt_software/esuprt_remote_ent_sys_mgmt/esuprt_rmte_ent_sys_rmte_access_cntrllr/integrated-dell-remote-access-cntrllr-6-for-monolithic-srvr-v1.95_faq3_en-us.pdf
https://downloads.dell.com/manuals/all-products/esuprt_software/esuprt_remote_ent_sys_mgmt/esuprt_rmte_ent_sys_rmte_access_cntrllr/integrated-dell-remote-access-cntrllr-6-for-monolithic-srvr-v1.95_faq3_en-us.pdf
https://downloads.dell.com/manuals/all-products/esuprt_software/esuprt_remote_ent_sys_mgmt/esuprt_rmte_ent_sys_rmte_access_cntrllr/integrated-dell-remote-access-cntrllr-6-for-monolithic-srvr-v1.95_faq3_en-us.pdf
https://downloads.dell.com/manuals/all-products/esuprt_software/esuprt_remote_ent_sys_mgmt/esuprt_rmte_ent_sys_rmte_access_cntrllr/integrated-dell-remote-access-cntrllr-6-for-monolithic-srvr-v1.95_faq3_en-us.pdf
https://www.intel.com/content/www/us/en/products/docs/servers/ipmi/ipmi-home.html
https://www.intel.com/content/www/us/en/products/docs/servers/ipmi/ipmi-home.html
https://ttu-ir.tdl.org/bitstream/handle/2346/72726/KUMARI-THESIS-2017.pdf?sequence=1&isAllowed=y
https://ttu-ir.tdl.org/bitstream/handle/2346/72726/KUMARI-THESIS-2017.pdf?sequence=1&isAllowed=y
https://ttu-ir.tdl.org/bitstream/handle/2346/72726/KUMARI-THESIS-2017.pdf?sequence=1&isAllowed=y
https://ttu-ir.tdl.org/bitstream/handle/2346/72726/KUMARI-THESIS-2017.pdf?sequence=1&isAllowed=y
https://ttu-ir.tdl.org/bitstream/handle/2346/72726/KUMARI-THESIS-2017.pdf?sequence=1&isAllowed=y
https://www.ietf.org/rfc/rfc7235.txt
https://www.ietf.org/rfc/rfc7235.txt
https://www.dmtf.org/sites/default/files/Redfish_2018_Release_1_Overview.pdf
https://www.dmtf.org/sites/default/files/Redfish_2018_Release_1_Overview.pdf
https://www.dell.com/en-us/work/shop/dell-poweredge-servers/sc/servers/poweredge-rack-servers
https://www.dell.com/en-us/work/shop/dell-poweredge-servers/sc/servers/poweredge-rack-servers
https://downloads.dell.com/manuals/common/dell-emc-idrac9-lc-overview.pdf
https://downloads.dell.com/manuals/common/dell-emc-idrac9-lc-overview.pdf
http://www.softpanorama.org/Hardware/Dell/Servers/DRAC/racadm_command_line_interface.shtml
http://www.softpanorama.org/Hardware/Dell/Servers/DRAC/racadm_command_line_interface.shtml
http://www.softpanorama.org/Hardware/Dell/Servers/DRAC/racadm_command_line_interface.shtml
https://www.dmtf.org/standards/ws-man

Bibliography 85

[65] A. Community, Best practices, Accessed 20.05.2021, 2021. [Online]. Avail-
able: https://docs.ansible.com/ansible/2.8/user_guide/playbooks_
best_practices.html.

[66] A. Community, Ansible configuration settings, Accessed 20.05.2021, 2021.
[Online]. Available: https://docs.ansible.com/ansible/latest/
reference_appendices/config.html#ansible-configuration-settings-
locations.

[67] V. Systems, All about cifs, Accessed 20.05.2021, 2021. [Online]. Available:
https://cifs.com/.

[68] J. Whitaker, What is linux nfs server? Accessed 20.05.2021, 2020. [On-
line]. Available: https://cloud.netapp.com/blog/azure-anf-blg-
linux-nfs-server-how-to-set-up-server-and-client.

[69] M. W. Refnes, R. Aardalsbakk, G. Hiis-Hauge and N. Zakharov, Bachelor
bitbucket repository, Accessed on 03.05.2021, 2021. [Online]. Available:
https://bitbucket.org/nkzk/bachelor_repo/src/master/.

[70] M. W. Refnes, R. Aardalsbakk, G. Hiis-Hauge and N. Zakharov, Redfish
api differences across idrac versions, summary, Accessed on 05.03.2021,
2021. [Online]. Available: https://docs.google.com/spreadsheets/d/
1eYII-d8R6Cr0W6mQA9sauDJi6iKNkcWGTifeEbaKQ9o/edit?usp=sharing.

[71] OpenManageSDK, Dell emc openmanage python sdk git repository, Accessed
on 04.05.2021, 2021. [Online]. Available: https://github.com/dell/
omsdk.

[72] A. community, Community general collection, github repository, Accessed
on 04.05.2021, 2021. [Online]. Available: https://github.com/ansible-
collections/community.general.

[73] Git, Download for linux and unix, Accessed on 04.05.2021, 2021. [Online].
Available: https://git-scm.com/download/linux.

[74] Lenovo, Lenovo xclarity controller rest api guide, Accessed 20.05.2021,
2020. [Online]. Available: https://sysmgt.lenovofiles.com/help/
topic / com . lenovo . systems . management . xcc . restapi . doc / xcc _
restapi_book.pdf.

[75] H. P. Enterprise, Hewlett packard enterprise ilo5 restful api documentation,
Accessed 20.05.2021, 2021. [Online]. Available: https://hewlettpackard.
github.io/ilo- rest- api- docs/ilo5/?shell#find- the- ilo- 5-
management-processor.

[76] Dell, Idrac9 redfish api guidefirmware version 4.20.20.20, Accessed on 04.05.2021,
2020. [Online]. Available: https://dl.dell.com/topicspdf/idrac9-
lifecycle-controller-v4x-series_api-guide_en-us.pdf.

https://docs.ansible.com/ansible/2.8/user_guide/playbooks_best_practices.html
https://docs.ansible.com/ansible/2.8/user_guide/playbooks_best_practices.html
https://docs.ansible.com/ansible/latest/reference_appendices/config.html#ansible-configuration-settings-locations
https://docs.ansible.com/ansible/latest/reference_appendices/config.html#ansible-configuration-settings-locations
https://docs.ansible.com/ansible/latest/reference_appendices/config.html#ansible-configuration-settings-locations
https://cifs.com/
https://cloud.netapp.com/blog/azure-anf-blg-linux-nfs-server-how-to-set-up-server-and-client
https://cloud.netapp.com/blog/azure-anf-blg-linux-nfs-server-how-to-set-up-server-and-client
https://bitbucket.org/nkzk/bachelor_repo/src/master/
https://docs.google.com/spreadsheets/d/1eYII-d8R6Cr0W6mQA9sauDJi6iKNkcWGTifeEbaKQ9o/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1eYII-d8R6Cr0W6mQA9sauDJi6iKNkcWGTifeEbaKQ9o/edit?usp=sharing
https://github.com/dell/omsdk
https://github.com/dell/omsdk
https://github.com/ansible-collections/community.general
https://github.com/ansible-collections/community.general
https://git-scm.com/download/linux
https://sysmgt.lenovofiles.com/help/topic/com.lenovo.systems.management.xcc.restapi.doc/xcc_restapi_book.pdf
https://sysmgt.lenovofiles.com/help/topic/com.lenovo.systems.management.xcc.restapi.doc/xcc_restapi_book.pdf
https://sysmgt.lenovofiles.com/help/topic/com.lenovo.systems.management.xcc.restapi.doc/xcc_restapi_book.pdf
https://hewlettpackard.github.io/ilo-rest-api-docs/ilo5/?shell#find-the-ilo-5-management-processor
https://hewlettpackard.github.io/ilo-rest-api-docs/ilo5/?shell#find-the-ilo-5-management-processor
https://hewlettpackard.github.io/ilo-rest-api-docs/ilo5/?shell#find-the-ilo-5-management-processor
https://dl.dell.com/topicspdf/idrac9-lifecycle-controller-v4x-series_api-guide_en-us.pdf
https://dl.dell.com/topicspdf/idrac9-lifecycle-controller-v4x-series_api-guide_en-us.pdf

Bibliography 86

[77] Dell, Integrated dell remote access controller 9attribute registry, Accessed on
12.05.2021, 2020. [Online]. Available: https://dl.dell.com/topicspdf/
idrac9-lifecycle-controller-v4x-series_reference-guide_en-
us.pdf.

[78] A. Community, Community general redfish_info.py, Accessed on 04.05.2021,
2021. [Online]. Available: https://github.com/ansible-collections/
community.general/blob/main/plugins/modules/remote_management/
redfish/redfish_info.py.

[79] A. Community, Community general redfish_config.py, Accessed on 04.05.2021,
2021. [Online]. Available: https://github.com/ansible-collections/
community.general/blob/main/plugins/modules/remote_management/
redfish/redfish_config.py.

[80] A. Community, Community general redfish_command.py, Accessed on 04.05.2021,
2021. [Online]. Available: https://github.com/ansible-collections/
community.general/blob/main/plugins/modules/remote_management/
redfish/redfish_command.py.

[81] A. Community, Community general redfish_utils.py, Accessed on 04.05.2021,
2021. [Online]. Available: https://github.com/ansible-collections/
community . general / blob / main / plugins / module _ utils / redfish _
utils.py.

[82] R. H. Ansible, Red hat ansible tower, Accessed 15.05.2021, 2021. [Online].
Available: https://www.ansible.com/products/tower.

[83] DMTF, Redfish scalable platforms management api specification, Accessed
on 03.05.2021, 2018. [Online]. Available: https : / / www . dmtf . org /
sites/default/files/standards/documents/DSP0266_1.6.0.pdf.

[84] Dell, Enabling auto-discovery, Accessed 18.05.2021, 2021. [Online]. Avail-
able: https://www.dell.com/support/manuals/no-no/integrated-
dell-remote-access-cntrllr-7-v1.50.50/idrac7ug1.50.50-v1/
enabling-auto-discovery?guid=guid-1b945426-efb5-42ca-8d0f-
2243d20ecb0c.

[85] A. Community, Community general idrac_redfish_config.py, Accessed on
04.05.2021, 2021. [Online]. Available: https://github.com/ansible-
collections/community.general/blob/main/plugins/modules/remote_
management/redfish/idrac_redfish_config.py.

[86] Dell, Idrac9 security configuration guide, Accessed on 13.05.2021, 2017.
[Online]. Available: https://downloads.dell.com/manuals/all-products/
esuprt_software_int/esuprt_software_ent_systems_mgmt/idrac9-
lifecycle-controller-v4x-series_reference-guide_en-us.pdf.

https://dl.dell.com/topicspdf/idrac9-lifecycle-controller-v4x-series_reference-guide_en-us.pdf
https://dl.dell.com/topicspdf/idrac9-lifecycle-controller-v4x-series_reference-guide_en-us.pdf
https://dl.dell.com/topicspdf/idrac9-lifecycle-controller-v4x-series_reference-guide_en-us.pdf
https://github.com/ansible-collections/community.general/blob/main/plugins/modules/remote_management/redfish/redfish_info.py
https://github.com/ansible-collections/community.general/blob/main/plugins/modules/remote_management/redfish/redfish_info.py
https://github.com/ansible-collections/community.general/blob/main/plugins/modules/remote_management/redfish/redfish_info.py
https://github.com/ansible-collections/community.general/blob/main/plugins/modules/remote_management/redfish/redfish_config.py
https://github.com/ansible-collections/community.general/blob/main/plugins/modules/remote_management/redfish/redfish_config.py
https://github.com/ansible-collections/community.general/blob/main/plugins/modules/remote_management/redfish/redfish_config.py
https://github.com/ansible-collections/community.general/blob/main/plugins/modules/remote_management/redfish/redfish_command.py
https://github.com/ansible-collections/community.general/blob/main/plugins/modules/remote_management/redfish/redfish_command.py
https://github.com/ansible-collections/community.general/blob/main/plugins/modules/remote_management/redfish/redfish_command.py
https://github.com/ansible-collections/community.general/blob/main/plugins/module_utils/redfish_utils.py
https://github.com/ansible-collections/community.general/blob/main/plugins/module_utils/redfish_utils.py
https://github.com/ansible-collections/community.general/blob/main/plugins/module_utils/redfish_utils.py
https://www.ansible.com/products/tower
https://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.6.0.pdf
https://www.dell.com/support/manuals/no-no/integrated-dell-remote-access-cntrllr-7-v1.50.50/idrac7ug1.50.50-v1/enabling-auto-discovery?guid=guid-1b945426-efb5-42ca-8d0f-2243d20ecb0c
https://www.dell.com/support/manuals/no-no/integrated-dell-remote-access-cntrllr-7-v1.50.50/idrac7ug1.50.50-v1/enabling-auto-discovery?guid=guid-1b945426-efb5-42ca-8d0f-2243d20ecb0c
https://www.dell.com/support/manuals/no-no/integrated-dell-remote-access-cntrllr-7-v1.50.50/idrac7ug1.50.50-v1/enabling-auto-discovery?guid=guid-1b945426-efb5-42ca-8d0f-2243d20ecb0c
https://www.dell.com/support/manuals/no-no/integrated-dell-remote-access-cntrllr-7-v1.50.50/idrac7ug1.50.50-v1/enabling-auto-discovery?guid=guid-1b945426-efb5-42ca-8d0f-2243d20ecb0c
https://github.com/ansible-collections/community.general/blob/main/plugins/modules/remote_management/redfish/idrac_redfish_config.py
https://github.com/ansible-collections/community.general/blob/main/plugins/modules/remote_management/redfish/idrac_redfish_config.py
https://github.com/ansible-collections/community.general/blob/main/plugins/modules/remote_management/redfish/idrac_redfish_config.py
https://downloads.dell.com/manuals/all-products/esuprt_software_int/esuprt_software_ent_systems_mgmt/idrac9-lifecycle-controller-v4x-series_reference-guide_en-us.pdf
https://downloads.dell.com/manuals/all-products/esuprt_software_int/esuprt_software_ent_systems_mgmt/idrac9-lifecycle-controller-v4x-series_reference-guide_en-us.pdf
https://downloads.dell.com/manuals/all-products/esuprt_software_int/esuprt_software_ent_systems_mgmt/idrac9-lifecycle-controller-v4x-series_reference-guide_en-us.pdf

Bibliography 87

[87] Intel best practices fir bmc and bios security white paper, Accessed on 03.05.2021,
2020. [Online]. Available: https : / / www . intel . com / content / dam /
support/us/en/documents/server-products/bmc-bios-security-
bestpractices.pdf.

[88] Supermicro, Best practices for managing servers with ipmi features enabled
in datacenters, Accessed on 30.03.2021, 2013. [Online]. Available: https:
//www.supermicro.com/products/nfo/files/IPMI/Best_Practices_
BMC_Security.pdf.

[89] H. Moore, A penetration tester’s guide to ipmi and bmcs, Accessed on 02.05.2021,
2013. [Online]. Available: https://www.rapid7.com/blog/post/2013/
07/02/a-penetration-testers-guide-to-ipmi/.

[90] W. Foundation, Wireshark homepage, Accessed on 02.05.2021, 2021. [On-
line]. Available: https://www.wireshark.org/.

[91] O. Services, Kali linux homepage, Accessed on 03.05.2021, 2021. [Online].
Available: https://www.kali.org/.

[92] O. Security, Download kali linux images, Accessed on 02.05.2021, 2021.
[Online]. Available: https://www.offensive- security.com/kali-
linux-vm-vmware-virtualbox-image-download/.

[93] O. Services, Offensive security home page, Accessed on 03.05.2021, 2021.
[Online]. Available: https://www.offensive-security.com/.

[94] Rapid7, Metasploit homepage, Accessed on 02.05.2021, 2021. [Online].
Available: https://www.metasploit.com/.

[95] D. Farmer, Leaky hashes in the rakp protocol, Accessed on 02.05.2021,
2013. [Online]. Available: http://fish2.com/ipmi/remote-pw-cracking.
html.

[96] A. Community, Testing strategies, Accessed on 10.05.2021, 2021. [Online].
Available: https://docs.ansible.com/ansible/latest/reference_
appendices/test_strategies.html.

[97] A. Community, Ansible-playbook, Accessed on 10.05.2021, 2021. [Online].
Available: https://docs.ansible.com/ansible/latest/cli/ansible-
playbook.html.

[98] A. Community, Ansible lint documentation, Accessed on 10.05.2021, 2021.
[Online]. Available: https://ansible-lint.readthedocs.io/en/latest/.

[99] K. Morris, Infrastructure as code, 2nd ed. Released December 2020, Ac-
cessed on 12.05.2021, 2020. [Online]. Available: https://www.oreilly.
com/library/view/infrastructure-as-code/9781098114664/.

[100] TravisCI, Core concepts for beginners, Accessed on 12.05.2021, 2021. [On-
line]. Available: https://docs.travis-ci.com/user/for-beginners/.

https://www.intel.com/content/dam/support/us/en/documents/server-products/bmc-bios-security-bestpractices.pdf
https://www.intel.com/content/dam/support/us/en/documents/server-products/bmc-bios-security-bestpractices.pdf
https://www.intel.com/content/dam/support/us/en/documents/server-products/bmc-bios-security-bestpractices.pdf
https://www.supermicro.com/products/nfo/files/IPMI/Best_Practices_BMC_Security.pdf
https://www.supermicro.com/products/nfo/files/IPMI/Best_Practices_BMC_Security.pdf
https://www.supermicro.com/products/nfo/files/IPMI/Best_Practices_BMC_Security.pdf
https://www.rapid7.com/blog/post/2013/07/02/a-penetration-testers-guide-to-ipmi/
https://www.rapid7.com/blog/post/2013/07/02/a-penetration-testers-guide-to-ipmi/
https://www.wireshark.org/
https://www.kali.org/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/
https://www.metasploit.com/
http://fish2.com/ipmi/remote-pw-cracking.html
http://fish2.com/ipmi/remote-pw-cracking.html
https://docs.ansible.com/ansible/latest/reference_appendices/test_strategies.html
https://docs.ansible.com/ansible/latest/reference_appendices/test_strategies.html
https://docs.ansible.com/ansible/latest/cli/ansible-playbook.html
https://docs.ansible.com/ansible/latest/cli/ansible-playbook.html
https://ansible-lint.readthedocs.io/en/latest/
https://www.oreilly.com/library/view/infrastructure-as-code/9781098114664/
https://www.oreilly.com/library/view/infrastructure-as-code/9781098114664/
https://docs.travis-ci.com/user/for-beginners/

Bibliography 88

[101] P. V. (contribution) et al., Redfish mockup creator, Last updated April 2021,
Accessed 04.05.2021, 2016. [Online]. Available: https://github.com/
DMTF/Redfish-Mockup-Creator.

[102] P. V. (contribution) et al., Redfish mockup server, Last updated February
2018, Accessed 04.05.2021, 2016. [Online]. Available: https://github.
com/DMTF/Redfish-Mockup-Server.

[103] J. Geerling, Ci for ansible playbooks which require ansible vault protec-
ted variables, Published Sep. 29, 2017, Accessed on 12.05.2021, 2017.
[Online]. Available: https://www.jeffgeerling.com/blog/2017/ci-
ansible-playbooks-which-require-ansible-vault-protected-variables.

[104] A. Community, Sanity tests, Accessed 13.05.2021, 2021. [Online]. Avail-
able: https://docs.ansible.com/ansible/latest/dev_guide/testing_
sanity.html.

[105] Dell, Idrac with lifecycle controller v.,2.75.75.75, Accessed on 03.05.2021,
2020. [Online]. Available: https://www.dell.com/support/home/en-
us/drivers/driversdetails?driverid=krcxx.

[106] T. L. Foundation, Ipmi is dead, long live redfish cornec bruno, hpe, Ac-
cessed 05.05.2021, 2019. [Online]. Available: https://www.youtube.
com/watch?v=nBCjuuOjxRQ.

https://github.com/DMTF/Redfish-Mockup-Creator
https://github.com/DMTF/Redfish-Mockup-Creator
https://github.com/DMTF/Redfish-Mockup-Server
https://github.com/DMTF/Redfish-Mockup-Server
https://www.jeffgeerling.com/blog/2017/ci-ansible-playbooks-which-require-ansible-vault-protected-variables
https://www.jeffgeerling.com/blog/2017/ci-ansible-playbooks-which-require-ansible-vault-protected-variables
https://docs.ansible.com/ansible/latest/dev_guide/testing_sanity.html
https://docs.ansible.com/ansible/latest/dev_guide/testing_sanity.html
https://www.dell.com/support/home/en-us/drivers/driversdetails?driverid=krcxx
https://www.dell.com/support/home/en-us/drivers/driversdetails?driverid=krcxx
https://www.youtube.com/watch?v=nBCjuuOjxRQ
https://www.youtube.com/watch?v=nBCjuuOjxRQ

Appendix A

Referat

89

Januar
21.01.21

-------------------- Preparasjon --------------------
hva er godkjent av digital signatur fra oppdragsgiver
(Signere, scanne, sende, laste ned pdf og skrive ut?)
(Holder det med å ta screenshot av signatur?)

Plan framover?

Tips til å strukturere jobbinga utover det som ble sagt i lynkurset (hvis han fulgte med på
det)?

Personlig anbefaling til rapport å lese? (I tilfelle Ernst har eit anna svar, som Tom ikkje
foreslo)

Personleg erfaring med redfish, og/eller Ansible?

Prosjektplan:
Problemstilling, noko spesielt viktig å tenkje på?

Tenkte kanban, sprint eller scrum

Referat - 21.01

Ernst oppgaver vs våre oppgaver

Vi driver/Eiger prosjektet (vi er prosjektledere)
Ernst er veiledere - skal stille spørsmål - sparringpartner - skal ikkje komme med svar:)

må sette opp plan og tidsfrister sjølv:(- ikkje vent på kverandre(!)

sende epost etter møte:
stikkord:
poenget blir en ekstrasjekk for å passe på at vi begge har forstått kverandre riktig

redfish og ansible - to overordna teknologier

formulere problemstilling og kva vi skal jobbe med
kartlegge litt kva som er gjort med redfish og ansible

Chapter A: Referat 90

A.1 Ernst referat

justere oppgaven litt så vi har noko nytt,
prøve å ikkje berre realisere noko som allereie er gjort

meir spennande om vi kjem med noko som tar det eit steg vidare

ta med kamera til neste møte:)

signatur ang avtale
relativt fleksibelt
printer ut, sender, scanner
kopi av signatur, sendt bilde og lage ny pdf

Anbefalt rapport å lese
Eurekaprisen i fjor - Security score card(?)
søk på ntnuopen - apacheoppgaver evt
Authentication of Network Components
Måling av Informasjonssikkerhet ved hjelp av Scorecard (eureka)

Søk etter ansible (ang rapport)
Machine goes bling, raspberry pi cluster

Bruk tid på å formulere
enten som forskningsspørsmål eller problemstilling
gjerne involvere oppdragsgiver

Om vi skal ha møte med både Ernst og Einar,
ønsker Ernst veldig gjerne hans tid (torsdag 1600)

Ernst har ikkje noko imot eit møte med Einar,
kjem til å kontakte han i Mai uansett, om hans formeininger.

innspill til planlegging av prosjekt
påske, start av april
ha mykje på plass til påske
det som er gjort då er dokumentert då er tidleg start av oppgåve
kom tidleg i gang med skriving.
fint om vi kan sende det vi har så langt i påska til Ernst

kan komme med tilbakemeldinger, og har tid igjen til endringer

start skriveprosessen tidleg.

ta notater, ta notater om avgjerelser,
frykteleg vanskeleg å ta opp igjen det man sa i februar f.eks
pass på å ikkje gå i smellen “ja dette var jo selvfølgeleg”,

dokumenter alt, anta at lesaren ikkje veit noko

Chapter A: Referat 91

-------------------- Preparasjon --------------------

Møte 28?.01.21

Husk å markere (i fet eller med farge) viktigare ting ~

Høre med Ernst
Har cisco-laben eller andre områder tilgang til BMC-utstyr

Referat 28.01.2021

problemstilling OK

risikoanalyse
f.eks tilgang på utstyr
teknologien fungerer slik som forventa (eller uforventa)

^-tenke litt på
bruke virtuelt utstyr
vinkling
kan hende teknologien ikkje fungerer

kan skrive om
(problem) med utstyr
vinklingsendring
skissere bredt kva oppdragsgiver ynskjer
avgrensing (snakk med og - bytte om til server, istedenfor switch osv)

kan seinare sjå på (å ta med)
ethernetswitch o.l.

ikkje nødvendigvis i prosjektplan

om tidleg ferdig (sei april)
sjå heller på å utbreie, og å ta prosjektet vidare, f.eks teknologi o.l.

huske å sende mail til Ernst etter møte med OG i morgon
for å bekrefte at utstyr o.l. er i orden
avklaring

egne tanker

Chapter A: Referat 92

Februar
Referat 04.02.2021

Sjekker gjennom plan ila. lørdag

Har inkl grupperegler
Eget dokument som vi dokumenterer
Sjekk opp det
(ha det som eit eige dokument og levere inn) (?)

prosjektplan - skal kun godkjennast

Ikkje vere redd for å stille harde krav til hardware til OG
(om vi føler det stopper opp fordi vi ikkje har det vi trenger)

Prosjektmål
muligens skille mellom effekt- og prosjekt-mål
effektmål = langtid, noko og ønsker å få balanse i, effekt - noko dei ønsker på sikt
resultatmål = resultatet vi får ila. semesteret
kan tenke på om vi vil ha det med (VALG!! :))

er på en måte “resultatmålene”

Ang 1. prosjektmål
kva gjer man om det ikkje fungerer i det heile tatt (åpent spørsmål) (plan B?)

Oppdragsgiver har nok en ide om teknologien funker, men veit ikkje før man
har prøvd

om 1. ikkje fungerer, fungerer ikkje proof-of-concept

risikodel av prosjektplan - Innafor
fornuftig løsning

Kommentar
Alle kan lage generell regler
alle tabeller og figurer burde(må :D) ha tittel (eks table/figure 1.) (5.3.1 i plan f.eks)

introduserast og forklarast i teksten
korleis den skal lesast og forstås

Bytte av møte til fredag
kl 10 på fredager

Referat 04.02.2021

Chapter A: Referat 93

Husk å vere kritisk til Ernst!!!!
bruke tida fornuftig

Spesifikasjoner
Intel? “Opprinnelege” kilde (Spesifikt IPMI)
Opprinneleg dokumentasjon

To ting å huske mtp referanse
gi leser mulighet til å finne meir informasjon
gi credit til dei som har komt opp med løsninga
(om det er noko tilleggsinformasjon, kanskje annerleis strukturert, gjerne fleire kilder)

Seinare f.eks snakker om host-specifications kan heller referere direkte til punktet i
dokumentasjonen, eller ein heilt ny kilde igjen (Redfish)

Ang grupperegler
trenger ikkje signere noko meir på blackboard e.l.
huske å signere (grupperegler) i eit faktisk dokument

om man legger det i prosjektplan eller som eit nytt dokument igjen er opp til
oss

Chapter A: Referat 94

Referat 19.02.2021

løfte oppgave
forskning, ta det litt vidare, “gå litt fra oppskrifta”
kanskje vanskelig oppfordring, spes. for programmering - men, ekstra funksjonalitet?

“kva fant dykk på sjølv?”
ta utgangspunkt i det dei ynskjer først
skriv om utfordringer som dukker opp
igjen, komme med noko i tillegg, løft opp oppgåva.

eksempel
kode forbedring
meir elegant
meir funksjoner

detaljert spesifikasjon
følg den, på ein kritisk måte
ha alltid i bakhovudet, er det noko som kan forbedrast her?

om alt skal gå smertefritt
ville ha sett på noko å legge til

men handler ikkje strengt tatt om “ekstra funksjonalitet”

passe på å få med i endeleg rapport
korleis var det? utfordringer? var det hardt løp?
alltid husk å addressere (spesielt vansker!)

mulig rapportforbedring:
fortsette med iDRAC7

sette seg inn i iDRAC9 - endringer, moglegheiter det kunne gitt
(iDRAC9 er nok) meir sikkerhet

(om iDRAC9) kan hende syntax o.l. er annerleis.
kva er annerleis, moglege forbedringer
Mykje blir nok oppklart når vi begynner å jobbe med stoffet, ideer kjem nok sakte
men sikkert naturleg (forhåpentligvis;))

reflektere rundt
ting man gjer undervegs
det å skrive en god rapport TAR TID.

Chapter A: Referat 95

Referat 26.02.2021

Møte kl 10

ang kode
nevne i teksten og referere til github

kode laga av Dell, iDRAC er dell
klart i tekst kor koden kjem i fra

Bidragsyter :)
Unngå å finne opp hjulet om man kan!

Tenk framover korleis man kan ta det vidare i så fall om man har funne kode.

Diskutere korleis/om vi kan ta det vidare innen neste møte med Einar.
Forvent at det er stikker i hjulet, ikkje ta for gitt at koden vi har funne fungerer “som
reklamert”

Chapter A: Referat 96

Mars
Referat 05.03.2021

Oppgava er litt enkel
Kunne trengt å gjere noko nytt

Diskuter litt meir med oppdragsgiver - høre hans tanker
Inkludere andre einheiter - switsjer, ethernet, infiniband.

switch - dell har ikkje heilt på plass enda
infiniband - mellanox, kjøpt opp av nvidia

infiniband har redfish støtte
HCA - host channel adapter, nettverkskort

Venter akkurat no på server
Til write-funksjoner bl.a
HPC

Snakke med oppdragsgiver - Høre hans tanker om å utvide oppgåva
Har kontroll på det vi har moglegheit til å gjere
Lufte at vi nærmer oss det vi har lyst å gjere, kanskje han trenger å lufte det vidare

Kanskje prøvd å sydd alt heilt sammen før vi tar kontakt med oppdragsgiver
Ta kontakt snarast mogleg uansett, greit å formidle kor vi står

Neste steg sette opp plan for kva vi kan gjere vidare.
Prøve å få en åpen oppgave, så vi kan sette en strek om det trengst

Få en utvidelse av oppgava snarast mogleg, trenger å få svar
så vi ikkje bruker all tida på å vente på svar, plutseleg er det påske

Chapter A: Referat 97

Referat 11.03.2021

Fekk ikkje server før onsdag

Ut av boks har ikkje støtte for Redfish
Må vere ein viss versjon
Unngår å gå på webinterface

Venter på svar oppdragsgiver for no

Kan prøve å ta det vidare til Dell (høre om firmware o.l.) - Høre med Dell - Før hadde dei
store kunder i alle fall, har som regel en kontaktperson der osv.

Kommentar: Veit at rapporten ikkje er ferdig til påske - om større avsnitt/kapitler er uskrevet,
sei ifra i dokumentet/rapporten, slik at Ernst er obs på det og kan komme med
tilbakemelding på andre steder.

Kan merke av kapitler som kladd

Førsteutkast innen 26. Mars - evt ila den helga. Ønsker helst ikkje å få 3 rapporter på
skjærtorsdag!

Kan evt sende dokument på fredag, og sei det kjem en oppdatert versjon av kapittel X
etterpå.

Chapter A: Referat 98

Referat 26.03.2021
// Prøver ut nytt format \\

Oss:
Har hatt nok å gjere, har hatt litt tekniske problem o.l.
Ha med utfordringer? Kodefeil?
Alternative teknologier

Ernst:
Ila søndag går bra, ser på rapporten på mandag.
Lurte på om vi har spurte OG om ekstraoppgaver.

Nei, inkl meir utfordringer som er spennande, noko som mange intuitivt tenker mange kan
gjere. Fort nevne at dette er noko mange tenker man, intuitivt, gjer det på “denne” måten,
men skyldes feil man har misforstått, eller skrevet feil.
Lett å drukne i detaljer, spes. med å inkludere alle config-tabber.

Alt.Tek. - I starten, bakgrunn for å inkl for forståelse for teksten seinare. Eit eller anna sted i
teksten (Gjerne tidlig) nevner det for oversiktens skyld. Viser bredere kunnskap (halv-> en
side)

Chapter A: Referat 99

April
Referat 09.04.2021

Rapport

Husk å finne mal på bachelor

Restrukturere innholdsoversikt
Bakgrunn/Teori/Teknologi separert fra “oppgaven” ->gjennomgangen skal ha en

naturlig kobling mot oppgavens tematikk og teknologier etc.
Beskrivelse av teknologiene osv
Hjelp leseren dypt inn!
Om det blitt for langt og for mange tekniske detaljer, mister man leseren litt
Testing (demonstrert at det funker o.l.)

om det kun blir en side ish kan det vere på slutten av kap 4 (implemen.)
Kan dele sikkerhet i spesifikke deler i kap 2 og kanskje summere i større kappitel
lengre nede.
KONKLUSJON SKAL IKKJE INNEHOLDE NOKO NYTT:)

[2] Referanser skal ikkje vere til nettside i rapport-teksten
Det skal linkest ned til bibliografien.

(1.1) Unødvendig å ha med cores and GPUs. Gi leseren inntrykk av mange maskiner, ikkje
mange kjerner.

IT-Department’s HPC → IT Department’s HPC

referanse 3 og 8 er generelle om IPMI. kanskje holde oss til en

Flytte kapittel 1.6 til å komme etter 1.2

SMÅ forklarande setninger for goals, og resten av rapport.
(PKI?)

Under 1.6 Scope (Vurder å ikkje bruke iDRAC betegnelse.
Skrive generelt, og la det stå.

Unngå å dokumentere ting som “Vi ser om vi får tid, --generelt virker det rart å snakke om
ting som er i framtidsform når rapporten er skreve når rapporten er ferdig.”

Chapter A: Referat 100

Referat 16.04.2021
Oss:
Ang teori-delen, flytte det til to deler? (Bryte opp av del 2)
Ang krav: Krav som blei satt av oppdragsgiver. Egne krav satt seinare.

Sette opp CI-testing i Git f.eks. Følge best practice - Ansible struktur, setter opp Vault. Må jo
ha brukernavn og passord på ein eller anna plass, men må bli håndtert sikkert.
Meir naturleg i scope eller implementasjon/design?

Ang sikkerhet: Redfish er meir sikkert enn IPMI. Veldig få steder det er dokumentert korleis
det er sikrare. Veldig få “korleis, eller kor mykje sikrare”-dokumentasjoner ute.

Om vi ikkje får tid, legge det til i vidare arbeid. Kva vi har planlagt o.l.
Såg på avklaring av presentasjonsdager. 7. Juni? (Ser riktig ut)
Figurer, utviklermiljø o.l. ser fornuftige ut?

Ernst:
Mange av førstepunkta, begrepa, f.eks Redfish, Ansible o.l. Når eg kjem til Proof-of-concept,
så lurer eg litt på kva proof-of-concept ER, og når eg ser på rapporten deres, lurer eg på om
det burde bli definert eit anna sted. Flytte til design. Bunnpunktet er å flytte det ut av
teori-delen.

Sikkerhet var skrevet veldig generelt. -> Moglegheit til å plukke det opp seinare, hadde vert
hyggeleg.

Husk å alltid sjå på kommentarane med kritiske blikk!

Litt forstyrrende å lese om prosjektgruppa der det blei skrevet, blei avbrutt litt. Leser om
problemområdet osv, også hopper det litt med prosjektgruppa, også går rapporten tilbake til
problemet. Flytt om litt.

Det er ikkje galt å skrive om krav, kanskje tydeliggjere det litt meir. Prøve å la vere å bruke
begrep som iDRAC sida leseren ikkje er så kjent med det. I alle fall spesifisere leverandør i
så fall.

Det at dåke utvider meir enn dei spesifikke krava. Kan legge om strukturen litt, klart
tydeliggjere at det er tilleggsoppgaver dykk har lagt til.
implementasjon/design - kan gjere - men presiserer at det er ekstraarbeid som er tatt opp,
kanskje legge en setning under scope, tar det litt vidare. Nevne til sensor at “hei vi har gjort
litt meir enn vi har fått beskjed om” tidleg.

Supert å gjere ein vurdering av comparison, kan begynne litt tidleg på det i oppgaven. Kan
sjå på det etterpå om man skal legge til i scope om man er klar over det.

Hoppa litt over figurer, sida det ikkje var introduserande tekst. Husk å ALLTID forklare figurer
og evt. diagram som blir brukt. Poenget, roller, kort intro o.l.

Chapter A: Referat 101

Inkscape - for vector og bitmap o.l.
Referat 23.04.2021

Presentere-/Vise demo --- Vise kva vi jobber på
3-Technical Design - struktur, kva vi burde ha med. Trenger vi kravspesifikasjon osv?
Implementasjon - Finne ut kva vi vil ha med?
Om vi har forstått implementation og deployment
ang 5. Lurer på bruk av tid er effektiv

Oss:
i en xml fil det er en linje er attributer - ca tusen linjer
Tenkte å vise demo på tirsdag til oppdragsgiver
Kanskje viktigst å få fram i rapporten - kor mykje det er å sette seg inn i
Prøve å fange opp packets, gå litt djupare, og gjerne vise sikkerhetsfeature som redfish har.
Liste features, og liste kor/kva vi har gjort, og vår drøfting av evalueringa.
Kor ting bør bli bedre, og kor ting er ganske opp til standard.

Kva vi skal gjere med Technical Design - kravspec? Mappestruktur?
Mulighet til å lese rapporten på nytt? Etter vi har komt litt lengre --

Ernst:
no som dykk har lagd noko sjølv, pass på å få det skikkelig fram i rapporten. Om dykk ikkje
skriver om det, er det vanskelig for sensor å vite det. Ikkje regn med at sensor sjekker og
setter seg inn i git-repoet.

Litt vanskelig å sei kor man skal legge innsatsen - syns det er viktig å ha grundig
sikkerhetsbit i oppgaven.
konklusjonen, best practice forsåvidt - ganske langt ned i stacken. det fundamentale i
stacken, potensielt det som styrer alt, så det hørest fornuftig ut.
Må ikkje vere redd for å avsløre områder der man ikkje har fulgt best-practice. Nevne det til
oppdragsgiver som vidare arbeid o.l. Viser berre at vi har kunnskap om det mangler, så det
går bra.
Ha kontroll på det mest fundamentale først, kravspecen, før vi går vidare på det andre i så
fall. Ha det slik som oppdragsgiver ynskjer, men dykk er 4 så det går an å ha 4 ting i
parallell.

(Technical design) det viktige er kort og konsis beskrivelse av det som er gjort, har på plass
litt allereie, men kontroll på det lesaren - oss som forfattere er trygge på det lesaren kan,
bygd en felles grunnmur før man leser resten av oppgaven. Ha med dei aspektene som er
viktige for det vi gjer. Tenke at det er naturleg å presentere korleis vi har løst design og
sjølve implementasjonen.
Development environment gir meining.
Sikkert greit å ha litt om enheitene, som forklarer KVA det er. (Tabell kan holde)
Forskjell på utstyr (iDRAC 7 og 9 f.eks)
Implementasjon og design -
5 - Deployment viser en test - viser kommando, output o.l. Ser korleis det fungerer i praksis.
For å lese rapporten skikkelig må (Ernst) en ha tid, og dykk tid til å endre på.

Chapter A: Referat 102

20. Mai - siste frist. ----- Kan lese i.l.a 04. Mai - Dykk sender i.l.a Mandag natt
Husker ikkje om har sagt det før, men smart å få nokon andre til å lese. To kategorier.

Noken som har informatikk-bakgrunn -> litt forutsetning for å skjønne det.
Nokon som er flink i språk -> Til å sjå på språket i rapporten

Referat 30.04.2021
Oss:
Venter på default-config (ang Ansible)
Ila. mandags natt?
Lurer på om vi har gjort nok?
Sikkerhetsdel: Best Practice av korleis sette opp for en iDRAC - universelt -
En chapter om andre vendorer og kanskje korleis deira miljø er annerleis?
Snakka om rundt ca 400 servere, for deira skuld hadde det vert fint å ha med andre
vendorer om korleis andre vendorer har tatt med iDRAC.

Ernst:
Hadde vert fint å få rapporten før 9-tida (tirsdag 04.05)
Lurer på om man har fylt opp forventningane ila. en bachelor, gjort nok jobb.
Mellom 50-80 sider er ganske vanleg. Då er man greit plassert.
Så lenger unna 50 eller så lenger unna 80 man har destod viktigare blir sjølve innhaldet.
Om man ikkje har noko å gjere, sjå på rapporten, er det noko meir å gjere, vurdering av
videre arbeid, vurdering av servere eller switcher, har dykk nokon betraktninger? Føler at
man er ferdig med det man fekk som hovedoppdrag.

Om man føler man har gjort en god jdobb tidlegare, kan ein utvide til andre vendorer -
Kor legger man det inn? Kjem nok mot slutten - Kapittel etterpå som tar for seg (ubestemt
navn), andre vendorer. Det er nok ryddigare å ha det litt mot slutten. - Burde vere mot
slutten, er jo ganske tydelig kva dykk skulle bruke.
Noter det dykk måtte ynskje med early draft o.l. så eg veit.

Chapter A: Referat 103

Mai
Referat 11.05.2021

Oss: //Ellers referert som (“ tekst “)
Såg på feedback, mykje bra, tenkte å flytte sikkerhet til etter PoC del. Deployment kjem litt
etterpå som tar ting fra PoC som viser at det vi har. Har fått liste av dei mest vanlege
tinga/settingsa HPC gruppa gjer.
Du skriver at høynivås-forklaring burde komme før man kjem nitty-gritty inn i forklaringane.
No gjer vi på ein måte det motsatte.
Tenkte på slutten av kap 4- figur eller kapittel som forklarer kva vi har gjort og korleis det
heng sammen.
Er kodesnuttene for mykje?
Figurer - LaTeX legger figurer der det er plass,
Bilder - må dei vere rett under der man snakker om det
Er det en anna mal vi tenkte å bruke?
Korleis passa sikkerheitsdelen inn?
Ka som er fornuftig å ha med i testing-kapittelet, Ansible playbooks o.l. Ansible moduler.
Testing der blir ein heilt anna greie. I eit skikkelig environment hadde man hatt ordentlege
tester - konkluderte med at det blir litt for omfattende for oppgaven. Ganske stor oppgave,
for Ansible-moduler egentlig var ein ettertanke. Har skreve litt om korleis moduler burde ha
vert med i ein slik produksjon, men kor mykje meining det betyr å ha med eit slikt kapittel om
man ikkje har gjort det sjølv.

Ernst:
Mangler en høynivås forklaring av korleis ting henger sammen. Moglegheit at lavnivå kjem
først. Men lesaren må tidleg skjønne, kva akkurat dykk har bidratt med. Den som leser ikkje
leser mykje uten å tenke på kva dykk har gjort og kva som er “standard oppsett” osv. Tenkte
at det er lettare for lesaren at høynivå kjem først så ein får ein forståelse først. Liten bit som
mangler,, ein overordna oversikt over korleis alt henger sammen, korleis komponenter
henger sammen. Har høynivå modell i bakhovudet, men er ikkje sikkert det er beste måte å
gjere det på heller.
Ofte fint med figur, slik at det gjerne er enklare å sette seg inn i det. I kapittel 3 har vi figur
som begynner med maskinene, kan ha ein versjon av denne figuren kanskje lagt til nokre
piler for å vise korleis det fungerer litt nærmere, danne eit bedre bilde for den som leser.
Dei kortere er fine for å eksemplisere det, men dei lengre - der må man passe på, sjå pent ut
bl.a, det som strekker seg ut fleire side om en snutt av det heller hadde vert bedre, og
referere til appendix, der ligger heile koden. -(“Pseudo? er det bedre?) Ja kanskje det, tenkte
(s. 37-39), output av vifte bl.a, for det er tre forskjellige, pseudo, python så output? Kanskje

Chapter A: Referat 104

komt litt bedre fram, kunne vert litt kortere. Litt usikker sjølv, må spør om lesaren har
interesse av å lese alt. Går ikkje gjennom koden i teksten og forklarer det som skjer.
Referer alltid til figur 11 below o.l. f.eks. Introduser figuren i teksten
Bilder/Figurer - gylden regel er at figuren kjem etter teksten introduserer. Ikkje alltid det er
mulig, men om man gjer det konsekvent trenger man ikkje sjå på figuren før det blir nevnt.
Om latex krangler mtp referanser, at man klipper ut og limer inn seinare, for å få det der man
vil.

Sjekka andre rapporter og gjenkjente ikkje heilt malen, så var litt nysjerrig på malen.
Usikker om det er formelle krav ang. mal, så burde kanskje sjekke det opp først.
Er ikkje noko problem sånt sett med malen, men pass på at det er lov.
Sikkerhetsdelen passa inn fint, tenker at dykk selger dykk sjølv litt ned, fekk ikkje tid til dette
osv, prøve å vinkle det litt annerleis, at dykk gjerne har brukt meir tid her f.eks. Formulere det
på ein måte som er “allmenngyldig”.

Litt usikker på kapittel 3.
Trudde først at det initialt var lab environment, men så kjem det litt meir teori, som kanskje
gjerne burde ha vert i kapittel 2. Side 25, står det generelt om Redfish relaterte ting, god
intensjon, de generelle tingene om Redfish og Ansible burde kanskje ha flytta til kapittel 2.
Kapittel 3 burde vere meir om lab environment og litt korleis ting henger sammen før man
hopper rett inn i ting. Kjem først kanskje på side 24, føler at man hopper litt tilbake til kapittel
2, så kjem det litt om Ansible, så kjem det litt oppsummering av det som har komt tidlegare
og føles litt unødvendig. Knytt gjerne meir opp mot figur 2 og 3 her. File storage, kor er ting
plassert, moduler, Ansible Redfish (relatert til figur 2 og 3), overordna design over korleis
proof-of-concept skal sjå ut. “-Intensjonen med kap 3 var å knytte sammen tingene for å vise
meir korleis ting hører til”
Mista litt den tråden når eg leste det kapittelet.

Kap 2 heiter no OOB - management. Dette burde kanskje heite Background. Men etter eg
leste handler det jo om OOB management så det gjer jo meining. Technologies? Det store
delkapittelet hadde fortsatt vert OOB management, men ein side om software-management
og testing. Ikkje stor, men skriv gjerne ein halv side-side om korleis man burde gå fram når
man skal - skriv generelt, det er introduksjon for at lesaren forstår resten av oppgaven. Etter
man har skreve om dette generelle, kan man knytte det opp seinare. I siste avsnittet, dette
knytter opp mot management blablabla - veldig bra. Seie f.eks dette blir utvikla og blir testa
etter desse rammene. Kan godt hende at testing er eit eget kapittel, eller delkapittel i PoC,
litt avhengig av kor mykje det blir. “Godt å ikkje skrive om alt, og forklare at dette vi ikkje har
gjort” - Etter kap 2 å bruke det man har snakka om tidlegare. Sikkerheit fungerte dog sjølv
som ein egen komponent. På ein måte ein analyse av det dykk hadde gjort- best practices
o.l. Reagerte ikkje at det var for mykje teori der. Det eg savna litt (fra security) var kanskje

Chapter A: Referat 105

gjerne retningslinjer - kanskje vanskeleg uten repetisjon, men en kort oppsummering av kva
som er viktig om man skal implementere, Redfish, Ansible, sjølv.
Det er en PoC, det er ikkje uproblematisk at det er satt opp til alle best-practices punktene,
men det er viktig å tydeliggjere at dette er viktig i eit produksjonsmiljø. Har vist at vi har fylt
måla, men understreke at dykk ikkje har gjort det sida det er ein prototyp, PoC.

Kap 8 og 9 - Syns det var fint, begynte å bli seint på kveld. Tenkte det var greit, er ingen
fasitsvar.
“Har ikkje noko krav om sikkerheit-” Når eg leste om expansion - Ansible modulen var noko
eg ikkje fekk inntrykk av dykk hadde gjort. At kap 8.3.2 blir kortare.
(“Future work inndelinga?”) - Fint, tenkte litt på om det skulle stå academia, eller vidare
begrep, Redfish Community o.l. Gjelder jo industrien eller alle som prøver Redfish, bedrifter
o.l. som gjerne har lyst til å gjere implementasjonane.

(“konklusjon? fungerer den? Prøvde å halde oss til ei side”) Fint. Konklusjonen burde vere
kort. Fungerte bra, var eit par småplukk men ingen grøvere!
Snakka om TLS versjon 1.2 - Den er vel på veg ut -
(“Trur dokumentasjonen deira v1.2 er det laveste de supporter kanskje.”)
Tenkte feil. Eg blanda 1.2 og 1.1.
(“Redfish har moglegheiter for 1.0, 1.1 og 1.2, ikkje 1.3.”)
Har ikkje moglegheit til å lese heile rapporten på nytt. Har litt mykje arbeid for tida. Om det er
kort, f.eks testing-kap. Verste som skjer er at eg seier eg ikkje rekker det. Då får dykk gjerne
ein gjennomlesing som er kortare. No fekk dykk kanskje litt meir tid, sida påskeinnleveringa
var litt kortare.

“Korleis ligger det ann” - Artig oppgave, er subjektiv, syns driftsbiten er interessant, er spent
på - ingen dårleg oppgave, om man klarer å få fram det dykk har produsert, om man har
komt med noko nytt, kva som er satt opp, sensor er mest relevant i denne sammenheng.
Har fått fram sikkerheitsbiten o.l. nå, burde ikkje vere ein bekymring sånt sett. Men kva er
det ein med friske auger ser?
Kunst å få fram at man har gjort en god innsats uten å skryte eksplisitt av seg sjølv.
Kap - pass på at det er klar sammenheng mellom 1.5 lista (scope) og tilsvarande liste under
4.1 - og den er ikkje heilt lik, den er litt annerleis. Pass på at det er tydelig om det er endra.
Om det er en del av opprinnelege oppgava eller ekstra jobb.
Snakkes på fredag! Før fredag kjem eg ikkje til å få lest noko nytt.

Chapter A: Referat 106

Referat 14.05.2021

Planlegge tredjepart til å lese. Begynner å bli kort med tid, dei trenger tid til å lese og
vi trenger evt tid til å endre.

Trello-board, tid til endring?
Sjekk blackboard om det er formelle krav. Tidligere har det vert variert, fra
møtereferat til ingenting.. Har eigentleg aldri sjekka formelle krav til kva man skal ha
med. Fra sensor side tviler eg på at at h*n kjem til å pirke på det. Sjekk om det er
noko som er nødvendig.

Høre med oppdragsgiver om det er greit å legge til møtereferatene
Dobbelsjekke kryssreferanser - usikker om det skal i bibliografi eller adskilt
kryssreferanser.
Fint at det er section A.9 - ingen krise om det ikkje er med (I tilfelle han ønskjer at
referat ikkje skal vere med)
Trur det er greit å kun spør. Meir høflighet enn mandatory signatur o.l.

Greit å ha med dine referat? Hyggeleg at du spør *nervøs latter* - det skal gå bra

Technical design -
PoC - klarare på kva demonstreringane er, har med klarare kva vi har gjort og viser
til det.
Deployment - Demonstrasjon, viser eit basic oppsett

Har ikkje satt opp fleire møter - Om dykk ønskjer møte før presentasjon sei ifra
7. Juni presentasjonsdato i alle fall

Uke 22- er foreløbig ganske åpen. foreløbig tirsdag onsdag og fredag rel. åpen
4. Juni - presentasjon for oppdragsgiver
Om dykk sender melding i Teams, tag gjerne med navn så det er større
sannsynlighet for at eg ser det!

Chapter A: Referat 107

15. Desember

Møte med Einar Ness Jensen

Slack - kanskje discord som møtemiljø

HPC - high performance computing

provisjonering av compute-noder

trondhjem - tre systemer -

idun - som er ntnu sin lokale klynge/cluster

to nasjonale maskiner

saga og betsy

ncna top 500 liste? av superdatamaskin-liste

bakgrunn for oppgave -

maskinene våres har compute-noder

de virkelige store systemene som betsy, så er det ikkje noke problem for den er ganske skreddersydd

det kjem fra en leverandor og har admin.verktøy som er tilpassa den maskina

fungera ganske greit for den maskina, men kan ikkje bruke det noke særlig anna sted.

har lokal klynge (idun)

komponenter av server (hardware)

er jo berre en pc, har ram pcu osv,

men en server ofte har I tillegg noko som heiter baseboard management console (bmc) (controller)

kalles for idrack, bvo (lenovo?)

kan konfigurere alt av hardware på serveren med bmc, har en egen nettverksport, er en liten cpu

med os.

kan styrast (bmc) med ipmi 2.0 - problemet er at det er veldig gammalt. type 90- talet.

I dei siste åra har det komt noko som heiter RedFish-

Målet med å pitche oppgåva,

vi ønsker at nokon finner ut om redfish for oss, både teoretisk og kva det eigentleg er for noko, men

også I praktiske eksempler - på korleis vi kan bruke det

tanken og håpet er å ha management på bmc modulene på alle serverene vi har, på ein litt meir

automatisert måte vi har I dag.

per I dag - får en server

pakker ut og putter I racket, putter I kabler,

ideelle når vi setter inn strøm og kabler, så burde ting konfigurerast automatisk.

Chapter A: Referat 108

A.2 Einar referat

I dag, når vi kobler server må vi konfigurere masse ting I BIOS. Må normalt sett konfigurerast

gjennom bios.

Første gang man skrur den på, må den konfigurerast. Må sette opp ip, passord osv.

Hadde vunne ganske mykje om vi hadde gjort dette automatisk, og ikkje stå manuelt med konsollen

for å konfigurere. Gjer det ein del. I alle fall I løpet av dei to siste vekene har vi fått rundt 20 servere å

konfigurere. Ikkje kun for HPC men også IT-drift.

Skulle gjerne møte fysisk, men korona.

Begynner 12. eller 13. Januar. Då begynner vi med lynkurs I akademisk skriving, problemstilling osv.

Sluttdato er ikkje heilt bestemt, men slutten av Mai/starten av Juni skal vi vere ferdig.

Kan veldig lite om redfish

Kan mykje om BMC og ipmi, og servere generelt.

Bruker Ansible som konfigurasjonsverktøy.

Berre send mail, latency på mail kan vere stor -

sende melding på teams, skikkelig dårleg på teams, men klarer å lese meldinger!

Kan godt sette opp Teams, sida vi alle er del I NTNU.

Antageligvis to andre som kjem til å vere involverte.

Pavlo Khmel

Anders [RETRACTED]

SSH til server.

Kan sjå vidare på litt det med switcher. Kan ta det etterkvert. Om det finnest switcher som støtter

redfish.

Hovedmål er BMC på server, switcher kjem etterpå (liten bonus)

Switcher har som regel en BMC, tilsvarande som server har.

Tanken er å sette opp nokon noder, her I Trondheim, som vi kan få tilgang til BMC'en på.

Annakver veke fra 20. Januar.

Tirsdager 12.30- halvtime

Ekstramøte om det er noko spesifikt.

Chapter A: Referat 109

Januar
================== 20/1-21 11:00 Referat ==================

Brukernavn
● Gautehi
● Raymonpa
● Magnuswr
● nikitaiz

Tema
1. Møtetid, passer fortsatt annenhver tirsdag 12.30? Setter opp fra 2.februar?
2. Ble nevnt at planen var å sette opp noen noder i trondheim vi kunne få ssh-tilgang til.

Ordnet det seg eller trenger du litt mer tid?
3. Prosjektavtalen, vi kommer til å sende en kopi på mail iløpet av dagen, men hvis det

er noen egne krav til konfidensialitet må vi inngå en ny avtale som spesifiserer det.

--
Referat:
20/1-21 11:00

Opprettet gruppe i LDAP “”

Gruppe: itea_lille-bachelor
Ssh idun-login[1-3].hpc.ntnu.no
https://www.hpc.ntnu.no/idun

Tirsdag 12.30 - Sett opp på teams - så hadde Einar blitt veldig veldig glad:)
To maskiner mulig fleire ->
Muligens allereie konfigurert som dei vil ha det.
Poenget er å bruke redFish til å konfigurere for dei. (Gjerne med ansible)
(innlogget på hpc er berre for å sjå bruker-perspektiv)

Neste møte tirsdag 26. -> annakver etter det

--
Mål for oppgaven
I dei siste åra har det komt noko som heiter RedFish-

Målet med å pitche oppgåva,

vi ønsker at nokon finner ut om redfish for oss, både teoretisk og kva det eigentleg er for noko, men

også I praktiske eksempler - på korleis vi kan bruke det

Chapter A: Referat 110

tanken og håpet er å ha management på bmc modulene på alle serverene vi har, på ein litt meir

automatisert måte vi har I dag.

Minimumsinnhold er prosjektets mål, tema med avgrensning,
ansvarsforhold, deltakere, ressursbehov, fremdriftsplan og
prosjektavtalen.

Tilgang til testmiljø // SSH tilgang

1. 1. Feb - prosjektplan
2. 1. Feb - prosjektavtale (ja det er to separate)
3. 20. Mairs - Sluttrapport

[[[[25. Feb - malware innlevering 1]]]]]

Oppdatering på om de andre to som kom til å vere med?
(Pavlo Khmel, og Anders [REDACTED]) // ikke særlig relevant, i dunno

pakker ut og putter I racket, putter I kabler,

ideelle når vi setter inn strøm og kabler, så burde ting konfigurerast automatisk.

(hovedmål er BMC på server, switcher som kjem etterpå (liten bonus)

Liste over det som
må konfigureres på servere eller er det noe vi må finne ut av selv?

Chapter A: Referat 111

================== 26/1-21 12:30 Referat ==================

Møte 26. Januar
Husk å markere ting i fet, eller i farge
--

Ingen tilgang til HPC, noe vi gjør feil? ssh, skolenett, ntnu-servern.

Spurte forrige gang: Liste over det som må konfigureres på servere eller er det noe vi finner
ut av selv?

Helt til slutt: signatur?
skal få fikset det idag

maskinene var for gamle
dell 710-servere -1.gen for gammalt

burde vere (dell) 620, 630

Vente på svar-

idrack,

sjekke cisco-lab om det er bmc-utstyr
Kan høre med Ernst på torsdag

prat på fredag igjen
alt etter halv 10 går fint

~ møte 14:00

------------------- Til neste gang ----------------------

Clarify forklare kvifor vi gjer det vi gjer
Kva er hensikten med oppgåva

Chapter A: Referat 112

================== 29/1-21 14:00 Referat ==================

Møte 29.01 Fredag

Clarify forklare kvifor vi gjer det vi gjer
Kva er hensikten med oppgåva

Fått egen login-server

server
har fått inn to med støtte for redfish atm (som vi må vente på)
den vi har no (per 29.01) er usikker om har støtte for redfish

bachelor.hpc.ntnu.no ikke støtte for redfish med mindre idrac minst v7, finn ut av det selv.
installer hva dere vil, ipmi tools for å kommunisere med switchen.

google drive
gitt epost og fått tilgang til egen drive

diagram
redfish - to nederste
dell switch, 4 porter

em1
burde ha idrac 7
er en r720

direkteport fra hpc til switch
konfigurere sjølv og finne ut av ting

vente på svar - må koble til først

passord på begge r720 (er gitt)
skal vere samme som vi allereie har fått (ligger i teams)

signert prosjektavtale
ligger i teams .docx fila

IPMI
Kan snakke IPMI lokalt med loginboksen
interessert i redfish for å ERSTATTE ipmi
trenger “ipmi tools” for å begynne

ikkje endre nøkler:)
burde dokumentere nøklene i tilfelle situasjon oppstår

neste møte tirsdag 02.02 - 12:30

Chapter A: Referat 113

Februar
================== 02/2-21 12:30 Referat ==================

Møte 02.02 Tirsdag

-

-

Nytt dokument fra Einar, ligger i delt mappe, inneholder bilder av iDrac, og instruks til ssh
port forwa rding

skal vere redfish compliant

skal muligens få opptil 1-2 servere til.

loginserver kobla opp med seriekabel/port til switchen
em1-sjekk sjølv

bruker til switch (?)
user: calvin

bruke screen på seriedevicen
screen /dev/<console_port> 115200
baudrate 9600 115200

Chapter A: Referat 114

to veker fra i dag, 16.02 - neste møte

================== 16/2-21 12:30 Referat ==================

Møte 16.02 Tirsdag
Request:
Flytte møtet til klokka 14:00 framover

Kravspec:
Ikkje meir enn opprinnelige oppgaveteksten per no
Bruke redfish
Heilt blank server som kjem inn
Skal kunne bruke redfish til å konfigurere idrack(eller kva leverandøren kaller det)
Visst det er tid -> Bruke Ansible til å automatisere
Hoved: Bruke redfish til å konfigurere BMC

Får ny server: prosedyre:
Liten smørbrødliste over ting som skal endrast
Manuell prosess
Funker på Idun-kluster, som er lokal
gjennomsnitt 2 servere i måneden i klusteret

tar fort en times tid ++
om ny modell kjem inn, kanskje litt annerleis, ta punkt til det

interessant for resten av IT-avdelingen
har 100 noko maskiner
for det første

litt usikker kva configen faktisk er på ulike noder

hadde vert interessant: config/inventory management
full oversikt over servere og faktisk sjå config: kan ikkje garantere at alle er like, så hadde
vert interessant å sjå individuell forskjell på configs.

Oppdatering av system:
Semi-manuelt
HPC har nokre verktøy for å oppdate (DSU)
Har også brukt iDRAC direkte

om mogleg på redfish:
mogleg å oppdatere direkte med redfish?

18. Februar 15:00-16:00
melding fra dell, presentasjon av nye idrac versjon 9. (Vi jobber med idrac v.7)

webinar, kan vere interessant
einar skal videresende til oss

Skal få sendt en ny kravspec, litt meir detalj, men er stort sett det samme som før.

Chapter A: Referat 115

Test ut idrac 7 først (det vi har), sei ifra om det mangler redfish funksjonaliteter
Dei har allereie eit ansible oppsett av OS på maskiner (fra før av)

Kun OS - Gjelder ikkje idrac!
Skal sende gitrepo om mogleg, men ikkje ta det som eit sjølvfølge

Sjekk idrac på nodene vi har tilgjengelege (om idrac7 er godt nok, kan evt få nyere
maskiner med idrac9 fra produksjonsmiljøet)

Chapter A: Referat 116

Mars
================== 02/3-21 14:00 Referat ==================

Møte 02.03 Tirsdag
Spm:

Clarification på storage
/ *** \
Med Storage, meinte Einar lagring av konfigurasjonen.

Ansible config til NTNU -

Ang en server til
Kun tilgang til en atm
Burde vere tilgang til 2, men kan hende har glømt å gi beskjed (lik iDRAC, så 2.65-)

Skal sjekke opp, får tilbakemelding når den andre serveren er satt opp

Var i grunn 2.40.40.40 vi fekk tildelt
Med oppgradering fekk vi 2.65.65.65

Med iDRAC9 kan vi få firmware updates, og wipe config med redfish.

Skal vere mogleg å få en iDRAC9 for nokon dager.
Ang oppdatering skal det berre vere å logge på dell og få det man trenger.
Lisens er knytta til funksjonalitet på iDRACn (i alle fall hos Dell)

Chapter A: Referat 117

================== 16/3-21 14:00 Referat ==================

Møte 16.03 Tirsdag

Likte Redfish og webløsning mest
Skal eigentleg bruke Redfish (interface) til å connecte, istedenfor CLI

Brukest hovedsakleg til å fikse IPMI - (kommandolinje)

Ang Rapporten (Technical Report)
Engelsk eller norsk går fint
Så lenge engelsken er forståelig!
(Engelsk)

Visst du enabla DHCP -måten å få tilbake
sette opp en DHCP server på den interfacen som er kobla til samme nettet. (På
loginserveren vårest)

(Kan sjå på sjølv eller vente på at Einar fikser) Installere en DHCP server på
jumpnoden vi bruker - interface på samme iDRAC - då vil iDRACn få ein ip adresse (om satt
opp med DHCP) og IPn vil visest

(DHCP er enabla som default når dei får inn iDRACsa nye.)
interessant å sjå kva som skjer ved å sette DHCP og resette

EM3 - Kan sette opp DHCP server på

Regner med å få den andre serveren i relativt nær framtid. Blir samme modell som dei
andre.

Chapter A: Referat 118

================== 23/3-21 14:00 Referat ==================

Møte 23.03 Tirsdag
For copy

Oss som snakker:
Einar som snakker:

Oss som snakker:
Har rota til nokon credentials - lurer på om det er enkel workaround.
192.168.0.120
.122 - finner ingenting særlig
.124 Student/R
DHCP config fil - har kun satt range
.123 blei det importert en config. Skulle importere en SCP, hadde ikkje eksportert
ip’en, så den hadde fått .122 av config-filen.
Har ikkje bytta passord, i config er det default C- passord.
Har ikkje prøvd Student/R på .120 → Var ikkje riktig
Har sett at Dell kan levere default brukernavn/passord på iDRAC - lurer på om
credentials har blitt resatt til dette.

Einar som snakker:
Var .122 den vi snakka om sist gang?
Og .120 - default
De to med iDRAC9 som sliter?
.121 - Der finnest noko - Root / C
.122 - finnest ingenting
.123 - Var noko der før, ingenting no.
kan hende .123 har fått ein default ip-adresse.
Har ikkje bytta passord?
Til og begynne med hadde vi eit anna passord på BMC, kan det stemme?
Interessant, må reise bort å sjå på konsollet.
Kan vere når ein resetter iDRAC at den får default credentials.
Skal reise bort å sjå på det fysisk, skal seie ifra etter eg har sett på det.

Chapter A: Referat 119

April
================== 13/4-21 14:00 Referat ==================

Møte 13.04 Tirsdag

Samtaletema:
Briefing over kva vi har gjort
Forventninga/Ønskjer til rapportstruktur

Kor generell eller detaljert

nick / evt oss
kor mykje teori om redfish og ansible (o.l.) skal vi ha med
om det strengt tatt er implementasjon
Fikser opp litt i playbooks. Roller for andre leverandører bl.a.
Skal fikse draft en draft før innleveringsfrist.
1-2-3 og en med statisk. Alle har samme IP som før.

einar
ta med det dykk kan.
ta med så mykje om redfish som mogleg - ansible er ikkje prioritert, trenger ikkje i
grunn. Executive Summary om Ansible, litt meir detaljert om Redfish.
Mogleg å få ein draft av rapporten? (som skal til Einar, ikkje bachelor)

//Tilleggs-interesse-spørsmål om nettverkskort
kombinert BMC og NIC node.
tillegg skal ha 2x10gb nettverkskort på compute-nodene

(Var ikkje tidlegare, var feilbestilling)
1gb for BMC og provisjoneringssystem
10gb og 25gb for infiniband, o.l.

Chapter A: Referat 120

================== 27/4-21 14:00 Referat ==================

Møte 27.04 Tirsdag
Antall servere / CPU osv
Sikkerhet (nmap, wireshark)
rutiner rundt ipmi
server hardening?
> Gjennomgang av demo

Oss:
Fekk tilbakemelding på første draft, fekk antall på cores o.l.
Har dykk eit “ish” antall servere i HPC miljøet?

Sikkerhetsdelen - går det fint å laste ned verktøy som nmap + wireshark?

Rutiner - fekk nye servere og satt pop, mange funksjonar dykke måtte manuelt inn og
disable?
Med redfish er det mykje fleire ting som er legacy så å sei.

Sett litt på dynamisk inventory, men blir litt avansert
kan bruke nmap for å discovere - men må fortsatt holde oversikt på en eller anna måte i en
database eller liknande. korleis hold dykk styring på server?

Noken tanker?

Einar:
For NTNU sin del har vi rundt 100 servere for HPC-miljøet.
For heile NTNU er det vel ca 600.
På nasjonalt nivå ligger vi oppe i tre eller fire tusen.
HPC styrer også nasjonalt, og det er oppe i fire tusen.

Laste ned går fint, men *nervøs latter*
Visst du holder deg til internnettverket til nodene (nettverk/IDUN) er det ok, visst dåke
begynner å scanne eksternt nettverk, vil det bli plukka opp.

Må heller inn for å enable funksjoner ved oppsett - helst det vi prøver å unngå.

På idun bruker vi noko som heiter xcat - er eit slags deployment system
om ein maskin booter på nettverket, vil den plukke opp det, vil då etter korleis vi har
konfigurert xcat boote noe som heiter genesis-image og prøve å sette BMC-nettverket riktig
for å få riktig ip-addresse, vlan, brukernavn og passord.

Chapter A: Referat 121

ip er definert i xcat - kva som er riktig ip.
har xcat og 4man. forskjellige måter å gjere det på.

Ønskjer å holde ein presentasjon, litt lengre for meg og mine kollegaer - på eit eller anna
tidspunkt som passer dykk.
kva dykk har gjort,
korleis det fungerer,
kva dykk trur vi må gjer for å implementere og
kva er forutsetningen for at det skal funke, korleis ein BMC må vere konfigurert fra en
leverandør for å gjere disse tingene. når vi kjøper server, har vi en mulighet til å få den
ferdigkonfigurert som vi vil ha den i iDRACn, så kva er minimum-konfigurasjonen vi må ha
for å kjøre desse redfish-configene uten å vere nær konsollene på den.

//Blei en del diskusjon dette møtet, så videre er kursiv oss, og vanleg refererer til Einar
oss: idrac9, redfish er enabled by default- dell prøver å bevege seg vekk fra å bruke ipmi,
dell hp osv har komt ut med statement at ipmi ikkje kjem til å bli vidareutvikla og nevner då
spesifikt Redfish som ein av dei standardane. Ein av konfigurasjonen eg har sett på med
iDRAC9 trur eg redfish skal komme pre-enabled.

Vet dere om seriekonsoll?
En av de viktigste tingene, med HPC, er at de har seriekonsoll. Det får vi via IPMI. Lurer på
om Redfish har den samme moglegheiten.

Redfish er Restful API som blir brukt med Curl kommandoer, så man har ikkje teknisk sett en
terminal for det. - Kobling til BMC, så skal man ha alle funksjonaliteter med Redfish. Den
standarden er ganske lik fra vendor til vendor, har kanskje nokon iDRAC-settings som er
unike - hovedsakelig alle vendorer som støtter Redfish.

Henger litt opp i at IPMI ikkje kjem til å bli vidareutvikla
IPMI sin standard kjem ikkje til å bli vidareutvikla.
Serial over LAN alternativ?
Vil veldig gjerne å få ein full demo- for meg og mine kollegaer
Kunne tenkt at dykk simulerer en server er blank.
Få den riktig konfigurert med settings o.l.
Kan vi anta at dei serverane vi har, er riktig default settings? eller noko meir dykk spesifikt
setter?
Kan finne på nokre ting, kan sette på f.eks

Skru av hyperthreading-
single root IO virtualization (SR-IOV) - kan ønske å skru på

kan sette opp fra default - einar har du brukt server_config_profile før? Kan spesifisere kun
dei settingsa man vil ha forandra også -

Har sett på det ein gang i tida, men var litt for mykje på den tida.
Kanskje det er Dell-spesifikt også, skal sjå på det
På NTNU er det omtrent kun Dell, vi har noko Lenovo. Poenget er at vi inngår årlige avtaler,
2 år sida var det Lenovo f.eks.

Chapter A: Referat 122

Dell endra på kommandoer så lenge man har fila, men om man har andre settings at det må
bli gjort en etter en.
På nasjonale maskiner har vi Dell, HP, Lenovo, (trur) Gigabyte-servere også
Slutten av Mai, begynnelsen av Juni?

Chapter A: Referat 123

Appendix B

Code

Code listing B.1: Results for server health Check - 4.5.1

{
"changed": false,
"failed": false,
"redfish_facts": {

"health_report": {
"entries": [

[
{

"system_uri": "/redfish/v1/Systems/System.Embedded.1"
},
{

"EthernetInterfaces": [
{

"Status": {
"Health": "OK",
"State": "Enabled"

},
"ethernetinterface_uri": "/redfish/v1/Systems/

System.Embedded.1/EthernetInterfaces/NIC.
Embedded.1-1-1"

}
],
"Memory": [

{
"Status": {

"Health": "OK",
"State": "Enabled"

},
"memory_uri": "/redfish/v1/Systems/System.Embedded

.1/Memory/DIMM.Socket.B5"
},
{

"Status": {
"Health": "OK",
"State": "Enabled"

},
"memory_uri": "/redfish/v1/Systems/System.Embedded

.1/Memory/DIMM.Socket.A5"
},
{

124

Chapter B: Code 125

"Status": {
"Health": "OK",
"State": "Enabled"

},
"memory_uri": "/redfish/v1/Systems/System.Embedded

.1/Memory/DIMM.Socket.A1"
},
{

"Status": {
"Health": "OK",
"State": "Enabled"

},
"memory_uri": "/redfish/v1/Systems/System.Embedded

.1/Memory/DIMM.Socket.B4"
},
{

"Status": {
"Health": "OK",
"State": "Enabled"

},
"memory_uri": "/redfish/v1/Systems/System.Embedded

.1/Memory/DIMM.Socket.B2"
},
{

"Status": {
"Health": "OK",
"State": "Enabled"

},
"memory_uri": "/redfish/v1/Systems/System.Embedded

.1/Memory/DIMM.Socket.A4"
},
{

"Status": {
"Health": "OK",
"State": "Enabled"

},
"memory_uri": "/redfish/v1/Systems/System.Embedded

.1/Memory/DIMM.Socket.A3"
},
{

"Status": {
"Health": "OK",
"State": "Enabled"

},
"memory_uri": "/redfish/v1/Systems/System.Embedded

.1/Memory/DIMM.Socket.B6"
},
{

"Status": {
"Health": "OK",
"State": "Enabled"

},
"memory_uri": "/redfish/v1/Systems/System.Embedded

.1/Memory/DIMM.Socket.B3"
},
{

"Status": {
"Health": "OK",
"State": "Enabled"

},

Chapter B: Code 126

"memory_uri": "/redfish/v1/Systems/System.Embedded
.1/Memory/DIMM.Socket.A6"

},
{

"Status": {
"Health": "OK",
"State": "Enabled"

},
"memory_uri": "/redfish/v1/Systems/System.Embedded

.1/Memory/DIMM.Socket.A2"
},
{

"Status": {
"Health": "OK",
"State": "Enabled"

},
"memory_uri": "/redfish/v1/Systems/System.Embedded

.1/Memory/DIMM.Socket.B1"
}

],
"NetworkDeviceFunctions": [

{
"Status": {

"Health": "OK",
"HealthRollup": "OK",
"State": "Enabled"

},
"networkdevicefunction_uri": "/redfish/v1/Chassis/

System.Embedded.1/NetworkAdapters/NIC.Embedded
.1/NetworkDeviceFunctions/NIC.Embedded.1-1-1"

},
{

"Status": {
"Health": "OK",
"HealthRollup": "OK",
"State": "Enabled"

},
"networkdevicefunction_uri": "/redfish/v1/Chassis/

System.Embedded.1/NetworkAdapters/InfiniBand.
Slot.4/NetworkDeviceFunctions/InfiniBand.Slot
.4-1"

}
],
"NetworkPorts": [

{
"Status": {

"Health": "OK",
"HealthRollup": "OK",
"State": "Enabled"

},
"networkport_uri": "/redfish/v1/Chassis/System.

Embedded.1/NetworkAdapters/NIC.Embedded.1/
NetworkPorts/NIC.Embedded.1-1"

},
{

"Status": {
"Health": "OK",
"HealthRollup": "OK",
"State": "Enabled"

},

Chapter B: Code 127

"networkport_uri": "/redfish/v1/Chassis/System.
Embedded.1/NetworkAdapters/InfiniBand.Slot.4/
NetworkPorts/InfiniBand.Slot.4-1"

}
],
"Processors": [

{
"Status": {

"Health": "OK",
"State": "Enabled"

},
"processor_uri": "/redfish/v1/Systems/System.

Embedded.1/Processors/CPU.Socket.2"
},
{

"Status": {
"Health": "OK",
"State": "Enabled"

},
"processor_uri": "/redfish/v1/Systems/System.

Embedded.1/Processors/CPU.Socket.1"
}

],
"SimpleStorage": [

{
"Status": {

"Health": null,
"HealthRollup": null,
"State": "Enabled"

},
"simplestorage_uri": "/redfish/v1/Systems/System.

Embedded.1/SimpleStorage/AHCI.Embedded.2-1"
},
{

"Status": {
"Health": null,
"HealthRollup": null,
"State": "Enabled"

},
"simplestorage_uri": "/redfish/v1/Systems/System.

Embedded.1/SimpleStorage/AHCI.Embedded.1-1"
}

],
"Storage": [

{
"Status": {

"Health": null,
"HealthRollup": null,
"State": "Enabled"

},
"storage_uri": "/redfish/v1/Systems/System.Embedded

.1/Storage/AHCI.Embedded.2-1"
},
{

"Status": {
"Health": null,
"HealthRollup": null,
"State": "Enabled"

},

Chapter B: Code 128

"storage_uri": "/redfish/v1/Systems/System.Embedded
.1/Storage/AHCI.Embedded.1-1"

}
],
"System": {

"Status": {
"Health": "Critical",
"HealthRollup": "Critical",
"State": "Enabled"

}
}

}
]

],
"ret": true

}
}

} {
"changed": false,
"failed": false,
"redfish_facts": {

"health_report": {
"entries": [

[
{

"chassis_uri": "/redfish/v1/Chassis/System.Embedded.1"
},
{

"Chassis": {
"Status": {

"Health": "Critical",
"HealthRollup": "Critical",
"State": "Enabled"

}
},
"Fans": [

{
"Status": {

"Health": "OK",
"State": "Enabled"

},
"fan_uri": "/redfish/v1/Chassis/System.Embedded.1/

Thermal#/Fans/0"
},
{

"Status": {
"Health": "OK",
"State": "Enabled"

},
"fan_uri": "/redfish/v1/Chassis/System.Embedded.1/

Thermal#/Fans/0"
},
{

"Status": {
"Health": "OK",
"State": "Enabled"

},
"fan_uri": "/redfish/v1/Chassis/System.Embedded.1/

Thermal#/Fans/1"
},

Chapter B: Code 129

{
"Status": {

"Health": "OK",
"State": "Enabled"

},
"fan_uri": "/redfish/v1/Chassis/System.Embedded.1/

Thermal#/Fans/1"
},
{

"Status": {
"Health": "OK",
"State": "Enabled"

},
"fan_uri": "/redfish/v1/Chassis/System.Embedded.1/

Thermal#/Fans/2"
},
{

"Status": {
"Health": "OK",
"State": "Enabled"

},
"fan_uri": "/redfish/v1/Chassis/System.Embedded.1/

Thermal#/Fans/2"
},
{

"Status": {
"Health": "OK",
"State": "Enabled"

},
"fan_uri": "/redfish/v1/Chassis/System.Embedded.1/

Thermal#/Fans/3"
},
{

"Status": {
"Health": "OK",
"State": "Enabled"

},
"fan_uri": "/redfish/v1/Chassis/System.Embedded.1/

Thermal#/Fans/3"
}

],
"PCIeDevices": [

{
"Status": {

"Health": "OK",
"HealthRollup": "OK",
"State": "Enabled"

},
"pciedevice_uri": "/redfish/v1/Systems/System.

Embedded.1/PCIeDevices/0-31"
},
{

"Status": {
"Health": "OK",
"HealthRollup": "OK",
"State": "Enabled"

},
"pciedevice_uri": "/redfish/v1/Systems/System.

Embedded.1/PCIeDevices/0-28"
},

Chapter B: Code 130

{
"Status": {

"Health": "OK",
"HealthRollup": "OK",
"State": "Enabled"

},
"pciedevice_uri": "/redfish/v1/Systems/System.

Embedded.1/PCIeDevices/0-23"
},
{

"Status": {
"Health": "OK",
"HealthRollup": "OK",
"State": "Enabled"

},
"pciedevice_uri": "/redfish/v1/Systems/System.

Embedded.1/PCIeDevices/94-0"
},
{

"Status": {
"Health": "OK",
"HealthRollup": "OK",
"State": "Enabled"

},
"pciedevice_uri": "/redfish/v1/Systems/System.

Embedded.1/PCIeDevices/3-0"
},
{

"Status": {
"Health": "OK",
"HealthRollup": "OK",
"State": "Enabled"

},
"pciedevice_uri": "/redfish/v1/Systems/System.

Embedded.1/PCIeDevices/0-0"
},
{

"Status": {
"Health": "OK",
"HealthRollup": "OK",
"State": "Enabled"

},
"pciedevice_uri": "/redfish/v1/Systems/System.

Embedded.1/PCIeDevices/4-0"
},
{

"Status": {
"Health": "OK",
"HealthRollup": "OK",
"State": "Enabled"

},
"pciedevice_uri": "/redfish/v1/Systems/System.

Embedded.1/PCIeDevices/0-17"
}

],
"PowerSupplies": [

{
"Status": {

"Health": "Critical",
"State": "Disabled"

Chapter B: Code 131

},
"powersupply_uri": "/redfish/v1/Chassis/System.

Embedded.1/Power#/PowerSupplies/0"
},
{

"Status": {
"Health": "OK",
"State": "Enabled"

},
"powersupply_uri": "/redfish/v1/Chassis/System.

Embedded.1/Power#/PowerSupplies/1"
}

]
}

]
],
"ret": true

}
}

} {
"changed": false,
"failed": false,
"redfish_facts": {

"health_report": {
"entries": [

[
{

"manager_uri": "/redfish/v1/Managers/iDRAC.Embedded.1"
},
{

"Manager": {
"Status": {

"Health": "OK",
"State": "Enabled"

}
}

}
]

],
"ret": true

}
}

}

Chapter B: Code 132

Code listing B.2: Import SCP Profile Preview - Referenced in -

#!/usr/bin/python
Copyright: (c) 2020,
GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl

-3.0.txt)
from __future__ import (absolute_import, division, print_function)
__metaclass__ = type

DOCUMENTATION = r'''

module: import_idrac_scp_preview

short_description: Import a given idrac server configuration profiles without
making any changes to target host (preview).

version_added: -

description: This module previews an idrac server configuration profile from a
network share on host(s) by utilizing Redfish API, specifically the OEM action
EID_674_Manager.ImportSystemConfigurationPreview. It returns an "Accepted" or "
Error" message. This can be used to test import of an SCP on multiple hosts
safely without making any changes. Currently only supports network share type
NFS.

options:
idrac_ip:

description: This is the message to send to the test module.
required: true
type: str

idrac_user:
idrac_password:
share_type:
share_name:
scp_file:
scp_components:

author:
- Your Name (@yourGitHubHandle)

'''

EXAMPLES = r'''
Pass in a message
- name: Test with a message
my_namespace.my_collection.my_test_info:
name: hello world

'''

RETURN = r'''
These are examples of possible return values, and in general should use other

names for return values.
original_message:

description: The original name param that was passed in.
type: str
returned: always
sample: 'hello world'

message:
description: The output message that the test module generates.
type: str

Chapter B: Code 133

returned: always
sample: 'goodbye'

my_useful_info:
description: The dictionary containing information about your system.
type: dict
returned: always
sample: {

'foo': 'bar',
'answer': 42,

}
'''

from ansible.module_utils.basic import AnsibleModule
from ansible.module_utils.urls import open_url
from ansible.module_utils.six.moves.urllib.error import URLError, HTTPError
from ansible.module_utils._text import to_native
import json
from ansible_collections.community.general.plugins.module_utils.redfish_utils

import RedfishUtils

class ExtendedRedfishUtils(RedfishUtils):
def import_config_preview(self):

result = {}
action_uri = "Actions/Oem/EID_674_Manager.ImportSystemConfigurationPreview"
full_uri = self.root_uri + self.resource + action_uri
postheader = {'content-type': 'application/json'}

payload = {
'ShareParameters':
{
'ShareType': module.params['share_type'],
'ShareName': module.params['share_name'],
'IPAddress': module.params['share_ip'],
'FileName': module.params['scp_file'],
'Target': module.params['scp_components']
}

}
response = self.post_request(full_uri, payload)

if response['ret'] is False:
return response

result['ret'] = True
response_output = response['resp'].__dict__
headers = response_output['headers']
return {'ret': True, 'msg': headers }

def run_module():
define available arguments/parameters a user can pass to the module
module_args = dict(

name=dict(type='str', required=True),
)

seed the result dict in the object
we primarily care about changed and state
changed is if this module effectively modified the target

Chapter B: Code 134

state will include any data that you want your module to pass back
for consumption, for example, in a subsequent task
result = dict(

ret=False,
failed=False,
error=False,
msg= {},

)

the AnsibleModule object will be our abstraction working with Ansible
this includes instantiation, a couple of common attr would be the
args/params passed to the execution, as well as if the module
supports check mode
module = AnsibleModule(

argument_spec = dict(

#idrac credentials
idrac_ip = dict(required=True, type='str'),
idrac_user = dict(required=True, type='str'),
idrac_password = dict(required=True, type='str', no_log=True),
network share
share_ip = dict(required=True, type='str'),
share_name = dict(required=True, type='str'),
share_type = dict(required=True, type='str'),

scp_file = dict(required=True, type='str'),
scp_components = dict(required=False, choices=['ALL', 'IDRAC', 'BIOS',

'NIC', 'RAID'], default='ALL'),
resource_id = dict(required=True, type='str'),

),
supports_check_mode=False)

Resource id TODO: ADD TO MODULE.PARAMS
resource_id = module.params['resource_id']

credentials
creds = {'user': module.params['username'],

'pswd': module.params['password'])
Build URL
root_uri = "https://" + module.params['idrac_ip'] + "/Managers/"

resource_id = idrac.embedded.1
rf_utils = ExtendedRedfishUtils(creds, root_uri, timeout,module, resource_id=

resource_id)

in the event of a successful module execution, you will want to
simple AnsibleModule.exit_json(), passing the key/value results
module.exit_json(**result)

def main():
run_module()

if __name__ == '__main__':
main()

Chapter B: Code 135

Code listing B.3: health_check.py - Referenced in 4.4.4 - 4.5 - 4.5.1

#!/usr/bin/python
import requests
import json
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

ip = "192.168.0.123"
basic_uri = "https://" + ip
username = "root"
password = "redfish"

category = "Chassis" # Systems | Chassis | Managers

VERBOSE = True

Functions to avoid code duplication
def verbose(text):

if VERBOSE:
print(text)

def console_msg_json(text1="", text2="", text3=""):
if text1:

print(json.dumps(text1, indent=4))
if text2:

print(json.dumps(text2, indent=4))
if text3:

print(json.dumps(text3, indent=4))

def GET(url):
response = requests.get(url, auth=(username, password), verify=False)
return response.text

def get_instance_status(instances):
for member in instances["Members"]:

member_url = basic_uri + member["@odata.id"]
element = json.loads(GET(member_url))
console_msg_json(element["@odata.id"], element["Status"])

Program

console_msg("Health report for host: " + ip)

if category == "Systems":
verbose("\n\n***********Systems***************\n\n")
URL = basic_uri + "/redfish/v1/" + category + "/"
response = json.loads(GET(URL))
members = response["Members"]
for member in members:

full_category_url = basic_uri + member["@odata.id"]
instance = json.loads(GET(full_category_url))

Memory:
verbose("Memory status summary:")
console_msg_json(instance["MemorySummary"])

Chapter B: Code 136

memory_resource_url = basic_uri + instance["Memory"]["@odata.id"]
memory_instances = json.loads(GET(memory_resource_url))
get_instance_status(memory_instances)

Processor
verbose("Processor status summary: ")
console_msg_json(instance["ProcessorSummary"])
processor_resource_url = basic_uri + instance["Processors"]["@odata.id"]
processor_instances = json.loads(GET(processor_resource_url))
get_instance_status(processor_instances)

Network interfaces
verbose("Network interfaces: ")
network_interfaces_url = basic_uri + instance["NetworkInterfaces"]["@odata.

id"]
network_interfaces_instances = json.loads(GET(network_interfaces_url))
get_instance_status(network_interfaces_instances)

PCIeDevices
verbose("PCIeDevices: ")
for device in instance["PCIeDevices"]:

PCIeDevices_url = basic_uri + device["@odata.id"]
PCIeDevices_instances = json.loads(GET(PCIeDevices_url))
console_msg_json(PCIeDevices_instances["@odata.id"], PCIeDevices_

instances["Status"])

Storage
verbose("Storage: ")
storage_url = basic_uri + instance["Storage"]["@odata.id"]
storage_instances = json.loads(GET(storage_url))
get_instance_status(storage_instances)

if category == "Managers":
verbose("\n\n***********Managers***************\n\n")
full_category_url = basic_uri + "/redfish/v1/" + category + "/"
response = json.loads(GET(full_category_url))
members = response["Members"]
for member in members:

manager_url = basic_uri + member["@odata.id"]
manager_instance = json.loads(GET(manager_url))
print("@odata.id:", member["@odata.id"])
console_msg_json(manager_instance["Status"])

if category == "Chassis":
verbose("\n\n***********Chassis***************\n\n")
URL = basic_uri + "/redfish/v1/" + category + "/"
response = json.loads(GET(URL))
members = response["Members"]
for member in members:

full_category_url = basic_uri + member["@odata.id"]
instance = json.loads(GET(full_category_url))
verbose("Chassis health summary: ")

Chapter B: Code 137

console_msg_json(instance["Status"])

Power
verbose("Power supplies: ")
power_url = basic_uri + instance["Power"]["@odata.id"]
power = json.loads(GET(power_url))
for powersupply in power["PowerSupplies"]:

console_msg_json(powersupply["@odata.id"], powersupply["Status"])

Thermal
verbose("Thermal: ")
thermal_url = basic_uri + instance["Thermal"]["@odata.id"]
thermal = json.loads(GET(thermal_url))
Thermal - Fans
for fan in thermal["Fans"]:

console_msg_json(fan["@odata.id"], fan["Status"])

Thermal - Temperatures
for temp in thermal["Temperatures"]:

console_msg_json(temp["@odata.id"], temp["Status"])

Network adapters
verbose("Network adapters: ")
network_adapters_url = basic_uri + instance["NetworkAdapters"]["@odata.id"]
network_adapters_instances = json.loads(GET(network_adapters_url))
get_instance_status(network_adapters_instances)

Chapter B: Code 138

Code listing B.4: health check output - Referenced in 4.4.4

[root@bachelor scripts]# ./health_check.py
***********Chassis***************

Chassis health summary:
{

"Health": "Critical",
"HealthRollup": "Critical",
"State": "Enabled"

}
Power supplies:
"/redfish/v1/Chassis/System.Embedded.1/Power#/PowerSupplies/0"
{

"Health": "Critical",
"State": "Disabled"

}
"/redfish/v1/Chassis/System.Embedded.1/Power#/PowerSupplies/1"
{

"Health": "OK",
"State": "Enabled"

}
Thermal:
"/redfish/v1/Chassis/System.Embedded.1/Thermal#/Fans/0"
{

"Health": "OK",
"State": "Enabled"

}
"/redfish/v1/Chassis/System.Embedded.1/Thermal#/Fans/0"
{

"Health": "OK",
"State": "Enabled"

}
"/redfish/v1/Chassis/System.Embedded.1/Thermal#/Fans/1"
{

"Health": "OK",
"State": "Enabled"

}
"/redfish/v1/Chassis/System.Embedded.1/Thermal#/Fans/1"
{

"Health": "OK",
"State": "Enabled"

}
"/redfish/v1/Chassis/System.Embedded.1/Thermal#/Fans/2"
{

"Health": "OK",
"State": "Enabled"

}
"/redfish/v1/Chassis/System.Embedded.1/Thermal#/Fans/2"
{

"Health": "OK",
"State": "Enabled"

}
"/redfish/v1/Chassis/System.Embedded.1/Thermal#/Fans/3"
{

"Health": "OK",
"State": "Enabled"

}
"/redfish/v1/Chassis/System.Embedded.1/Thermal#/Fans/3"
{

Chapter B: Code 139

"Health": "OK",
"State": "Enabled"

}
"/redfish/v1/Chassis/System.Embedded.1/Thermal#/Temperatures/InletTemp"
{

"Health": "OK",
"State": "Enabled"

}
"/redfish/v1/Chassis/System.Embedded.1/Thermal#/Temperatures/CPU1Temp"
{

"Health": "OK",
"State": "Enabled"

}
"/redfish/v1/Chassis/System.Embedded.1/Thermal#/Temperatures/CPU2Temp"
{

"Health": "OK",
"State": "Enabled"

}
Network adapters:
"/redfish/v1/Chassis/System.Embedded.1/NetworkAdapters/NIC.Embedded.1"
{

"Health": "OK",
"HealthRollup": "OK",
"State": "Enabled"

}
"/redfish/v1/Chassis/System.Embedded.1/NetworkAdapters/NIC.Mezzanine.3"
{

"Health": "OK",
"HealthRollup": "OK",
"State": "Enabled"

}
"/redfish/v1/Chassis/System.Embedded.1/NetworkAdapters/InfiniBand.Slot.4"
{

"Health": "OK",
"HealthRollup": "OK",
"State": "Enabled"

}

Chapter B: Code 140

Code listing B.5: DHCP config

Command used to install dhcp
yum -y install dhcp

/etc/dhcp/dhcpd.conf

dhcpd.conf

default-lease-time 3600;
max-lease-time 7200;

Use this to send dhcp log messages to a different log file (you also
have to hack syslog.conf to complete the redirection).
log-facility local7;

A slightly different configuration for an internal subnet.
subnet 192.168.0.0 netmask 255.255.255.0 {
range 192.168.0.10 192.168.0.254;
option routers 192.168.0.1;
default-lease-time 1814400; #21 days
max-lease-time 3628800; #42 days

}

Chapter B: Code 141

Code listing B.6: Pseudo Code - Referenced in 4.4.4

If category == Systems

Get system instance(s)
Get contents of instance ['Members']

for each instance in instance['Members']
Memory health
Get memory status summary from instance["MemorySummary"]
Find memory instance url from instance['Memory']['@odata.id']
For each member in ['Members'] array of instance:

Print ['@odata.id']
Print ['Status']

Processor
Get processor status summary from instance['ProcessorSummary']
Find processor instance url from instance['Processors']['@odata.id']

For each member in ['Members'] array:
Print ['@odata.id']
Print ['Status']

Network interfaces
Get ['NetworkInterfaces'] resource url
For each element in ['Members']

Print ['@odata.id']
Print ['Status']

PCIeDevices
Get ['PCIeDevices'] resource url
For each device in ['PCIeDevices'] array

Get device URI
Print ['@odata.id']
Print ['@Status']

Storage
Get ['Storage'] resource url
For each member in storage['Members']

Get member URL
Print response['@odata.id']
Print response['Status']

If category == Managers
Build full URL
Get manager instance(s) url
For each member of manager instances ['Members']

Get member URL
Print response['Status']

If category == Chassis
Build full URL
Get chassis instance(s) url
Get chassis health summary from instance['Status']
#Power
#PowerSupplies
For each element in ['PowerSupplies']:

Print ['@odata.id']
Print ['Status']

#Thermal

Chapter B: Code 142

Get Thermal URL ['Thermal']['@odata.id']
#Thermal - fans
for each fan in thermal['Fans'] array

print ['@odata.id']
print ['Status']

Thermal - Temperatures
For each element in thermal['Temperatures'] array

print ['@odata.id']
print ['Status']

#Network adapters:
Get network adapters URL ['NetworkAdapters']['@odata.id']
For each network adapter instance in ['Members']

Get instance URL ['@odata.id]
print response ['@odata.id']
print response['Status']

Chapter B: Code 143

Code listing B.7: The Ansible playbook YAML file for server health check using
Redfish - Referenced in 4.5.1

Playbook for server health check using the redfish plugin in community.general

collection (version 2.2.0)
- hosts: test2
connection: local
gather_facts: yes
name: Get server health information
vars:
test_mode: 0
ansible_python_interpreter: /usr/bin/python3.6

tasks:
- name: Include host specific Ansible Vault encrypted variables
include_tasks: tasks/include_host_vars.yml
when: not test_mode

- name: Create output file
include_tasks: tasks/create_output_file.yml

- name: Get system health report
redfish_info:
category: Systems
command: GetHealthReport
baseuri: "{{ ansible_host }}"
username: "{{ vault_default_user }}"
password: "{{ vault_default_password }}"

register: systems_result

- name: Get chassis health report
redfish_info:
category: Chassis
command: GetHealthReport
baseuri: "{{ ansible_host }}"
username: "{{ vault_default_user }}"
password: "{{ vault_default_password }}"

register: chassis_result

- name: Get manager health report
redfish_info:
category: Manager
command: GetHealthReport
baseuri: "{{ ansible_host }}"
username: "{{ vault_default_user }}"
password: "{{ vault_default_password }}"

register: manager_result

- name: Save results to output file
copy:
content: "{{ systems_result | to_nice_json }} {{ chassis_result | to_nice_

json }} {{ manager_result | to_nice_json }}"
dest: "{{ template }}.json"

Chapter B: Code 144

Code listing B.8: Ansible Module for Import Configuration Preview - Referenced
in 4.5.7

#!/usr/bin/python
Copyright: (c) 2020,
GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl

-3.0.txt)
from __future__ import (absolute_import, division, print_function)
__metaclass__ = type

DOCUMENTATION = r'''

module: import_idrac_scp_preview

short_description: Import a given idrac server configuration profiles without
making any changes to target host (preview).

version_added: -

description: This module previews an idrac server configuration profile from a
network share on host(s) by utilizing Redfish API, specifically the OEM action
EID_674_Manager.ImportSystemConfigurationPreview. It returns an "Accepted" or "
Error" message. This can be used to test import of an SCP on multiple hosts
safely without making any changes. Currently only supports network share type
NFS.

options:
idrac_ip:

description: This is the message to send to the test module.
required: true
type: str

idrac_user:
idrac_password:
share_type:
share_name:
resource_type:

scp_file:
scp_components:

author:
- Your Name (@yourGitHubHandle)

'''

EXAMPLES = r'''
Pass in a message
- name: Test with a message
my_namespace.my_collection.my_test_info:
name: hello world

'''

RETURN = r'''
These are examples of possible return values, and in general should use other

names for return values.
original_message:

description: The original name param that was passed in.
type: str
returned: always
sample: 'hello world'

Chapter B: Code 145

message:
description: The output message that the test module generates.
type: str
returned: always
sample: 'goodbye'

my_useful_info:
description: The dictionary containing information about your system.
type: dict
returned: always
sample: {

'foo': 'bar',
'answer': 42,

}
'''

from ansible.module_utils.basic import AnsibleModule
from ansible.module_utils.urls import open_url
from ansible.module_utils.six.moves.urllib.error import URLError, HTTPError
from ansible.module_utils._text import to_native
import json
from ansible_collections.community.general.plugins.module_utils.redfish_utils

import RedfishUtils
import re
import time

class ExtendedRedfishUtils(RedfishUtils):

def import_config_preview(self):
result = {}
action_uri = "iDRAC.Embedded.1/Actions/Oem/EID_674_Manager.

ImportSystemConfigurationPreview"
full_uri = self.root_uri + action_uri

post_payload = {
'ShareParameters':
{
'ShareType': self.module.params['share_type'],
'ShareName': self.module.params['share_name'],
'IPAddress': self.module.params['share_ip'],
'FileName': self.module.params['scp_file'],
'Target': self.module.params['scp_components']
}

}
response = self.post_request(full_uri, post_payload)
result['ret'] = response['ret']
if response['ret'] is False:

result['Message'] = response['msg']
return result

Identify job id
response_output = response['resp'].__dict__
headers_loc = response_output["headers"]["Location"]
job_id = re.search("JID_.+", headers_loc).group()

Fill result dict
result['Message'] = "Import SCP preview job created"
result['job_id'] = job_id

return result

Chapter B: Code 146

def run_module():

define result dict
result = {}
the AnsibleModule object will be our abstraction working with Ansible
module = AnsibleModule(

argument_spec = dict(
defaults
timeout = dict(required=False, type='int', default = 10),
#idrac credentials
idrac_ip = dict(required=True, type='str'),
idrac_user = dict(required=True, type='str'),
idrac_password = dict(required=True, type='str', no_log=True),
network share
share_ip = dict(required=True, type='str'),
share_name = dict(required=True, type='str'),
share_type = dict(required=True, type='str'),
scp_file = dict(required=True, type='str'),
scp_components = dict(required=False, choices=['ALL', 'IDRAC', 'BIOS',

'NIC', 'RAID'], default='ALL'),
),
supports_check_mode=False)

credentials
creds = {'user': module.params['idrac_user'],

'pswd': module.params['idrac_password']}
Build URL
root_uri = "https://" + module.params['idrac_ip'] + "/redfish/v1/Managers/"

create RedfishUtils object
rf_utils = ExtendedRedfishUtils(creds, root_uri, module.params['timeout'],

module)

result = rf_utils.import_config_preview()

Return #TODO: Error handling
if result['ret'] is True:

module.exit_json(msg=to_native(result),job_id=to_native(result['job_id']))

else:
module.fail_json(msg=to_native(result))

def main():
run_module()

if __name__ == '__main__':
main()

Code listing B.9: Ansible Module Get_Job_Details - Referenced in 4.5.7

#!/usr/bin/python
Copyright: (c) 2020,
GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl

-3.0.txt)
from __future__ import (absolute_import, division, print_function)
__metaclass__ = type

DOCUMENTATION = r'''

Chapter B: Code 147

module: get_job_details_redfish

short_description: Get details about an asynchronous Redfish job/task.

version_added: -

description: This is a PoC module which will return the body of the GET request on
the Redfish URI of the task, return value (true or false), and the state of the
task (complete, running).

notes:
- Run this module from a system that direct access to a BMC with implemented

Redfish specification > 1.6.0.
- Tested on DellEMC iDRAC fw version 4.32.10.00.

options:
ip:

description: IP address of the OOB controller
required: true
type: str

username:
description: Username for authentication with the OOB controller
required: true
type: str

password:
description: Password for authentication with the OOB controller
required: true
type: str

job_id:
description: Job id of the task to query
required: true
type: str

manager_id:
description: ID of the OOB manager instance
required: true
type: str

'''

EXAMPLES = r'''
Get details about the job, store return in output
- name: Get job details
get_job_details_redfish:
ip: "{{ ansible_host }}"
username: "{{ ansible_user }}"
password: "{{ ansible_password }}"
job_id "{{testout.job_id }}" # job_id is gotten from previous task that

starts a job and returns job_id
register: output

Get details about the job untill state is either failed or complete (!= running)
. Retry 10 times.

- name: Get job details
get_job_details_redfish:
ip: "{{ ansible_host }}"
username: "{{ ansible_user }}"
password: "{{ ansible_password }}"
job_id: "{{ testout.job_id }}"

register: output

Chapter B: Code 148

until: output.JobState != "Running"
retries: 10

Print response in console
- name: print
ansible.builtin.debug:
msg: "{{ output }}"

'''

RETURN = r'''
Return messages coming soon.
'''

from ansible.module_utils.basic import AnsibleModule
from ansible.module_utils.urls import open_url
from ansible.module_utils.six.moves.urllib.error import URLError, HTTPError
from ansible.module_utils._text import to_native
import json
from ansible_collections.community.general.plugins.module_utils.redfish_utils

import RedfishUtils

class ExtendedRedfishUtils(RedfishUtils):
def get_job_id_details(self, job_id):

result = {}
task_uri = "TaskService/Tasks/" + job_id
full_uri = self.root_uri + task_uri
response = self.get_request(full_uri)
if response['ret'] is False:

result['response'] = "fail url: %s" %full_uri
result['ret'] = False
return result

result['response'] = response
result['ret'] = response['ret']
result['JobState'] = response['data']['TaskState']
return result

def run_module():

define result dict
result = {}
the AnsibleModule object will be our abstraction working with Ansible
module = AnsibleModule(

argument_spec = dict(
defaults
timeout = dict(required=False, type='int', default = 10),
credentials
ip = dict(required=True, type='str'),
username = dict(required=True, type='str'),
password = dict(required=True, type='str', no_log=True),
module specifics
job_id = dict(required=True, type='str'),

),
supports_check_mode=False)

credentials
creds = {'user': module.params['username'],

'pswd': module.params['password']}
Build URL
root_uri = "https://" + module.params['ip'] + "/redfish/v1/"

Chapter B: Code 149

create RedfishUtils object
rf_utils = ExtendedRedfishUtils(creds, root_uri, module.params['timeout'],

module)
result = rf_utils.get_job_id_details(module.params['job_id'])

Return the result
if result['ret'] is True:

module.exit_json(msg=to_native(result), JobState=to_native(result['JobState
']))

else:
module.fail_json(msg=to_native(result))

def main():
run_module()

if __name__ == '__main__':
main()

Code listing B.10: Output from running preview SCP config file - Referenced in
6.4.1

[root@bachelor redfish-ansible]# ansible-playbook -i inventory/ playbooks/import_
scp_preview.yml

PLAY [test new module]
**

TASK [Gathering Facts]
**
ok: [idrac3]

TASK [Include task include_host_vars]
**
included: /home/redfish/test/git/bachelor_repo/redfish-ansible/playbooks/tasks/

include_host_vars.yml for idrac3

TASK [Include host specific Ansible Vault encrypted variables]
**
ok: [idrac3]

TASK [run new module]
**
ok: [idrac3]

TASK [dump test output]
**
ok: [idrac3] => {

"msg": "{'msg': \"{'ret': True, 'Message': 'Import SCP preview job created', '
job_id': 'JID_213488750785'}\", 'job_id': 'JID_213488750785', 'failed':
False, 'changed': False} -------------------------\n jobid: JID
_213488750785 "

}

TASK [Get job details]
**
FAILED - RETRYING: Get job details (10 retries left).

Chapter B: Code 150

FAILED - RETRYING: Get job details (9 retries left).
FAILED - RETRYING: Get job details (8 retries left).
ok: [idrac3]

TASK [dump job details output]
**
ok: [idrac3] => {

"msg": {
"JobState": "Completed",
"attempts": 4,
"changed": false,
"failed": false,
"msg": "{'response': {'ret': True, 'data': {'@odata.context': '/redfish/v

1/$metadata#Task.Task', '@odata.id': '/redfish/v1/TaskService/Tasks/JID
_213488750785', '@odata.type': '#Task.v1_4_2.Task', 'Description': '
Server Configuration and other Tasks running on iDRAC are listed here',
'EndTime': '2021-05-18T16:41:31+02:00', 'Id': 'JID_213488750785', '
Messages': [{'Message': 'A system reboot is required to apply
configuration changes.', 'MessageArgs': [], 'MessageArgs@odata.count':
0, 'MessageID': 'SYS087'}, {'Message': 'Successfully previewed Server
Configuration Profile import operation.', 'MessageArgs': [], '
MessageArgs@odata.count': 0, 'MessageId': 'SYS081'}], 'Messages@odata.
count': 2, 'Name': 'Preview Configuration', 'Oem': {'Dell': {'@odata.
type': '#DellJob.v1_0_4.DellJob', 'CompletionTime': '2021-05-18T
16:41:31', 'Description': 'Job Instance', 'EndTime': None, 'Id': 'JID
_213488750785', 'JobState': 'Completed', 'JobType': '
PreviewConfiguration', 'Message': 'Successfully previewed Server
Configuration Profile import operation.', 'MessageArgs': [], 'MessageId
': 'SYS081', 'Name': 'Preview Configuration', 'PercentComplete': 100, '
StartTime': 'TIME_NOW', 'TargetSettingsURI': None}}, 'PercentComplete':
100, 'StartTime': '2021-05-18T16:41:15+02:00', 'TaskState': 'Completed
', 'TaskStatus': 'OK'}, 'headers': {'date': 'Tue, 18 May 2021 14:41:33
GMT', 'server': 'Apache', 'link': '</redfish/v1/Schemas/Task.v1_4_2.
json>;rel=describedby', 'odata-version': '4.0', 'access-control-allow-
origin': '*', 'cache-control': 'no-cache', 'x-frame-options': 'DENY', '
strict-transport-security': 'max-age=63072000; includeSubDomains;
preload', 'content-length': '1200', 'connection': 'close', 'content-
type': 'application/json;odata.metadata=minimal;charset=utf-8'}}, 'ret
': True, 'JobState': 'Completed'}"

}
}

PLAY RECAP
**
idrac3 : ok=7 changed=0 unreachable=0 failed=0

skipped=0 rescued=0 ignored=0

Code listing B.11: Output from Server_Setup.yml - Referenced in 6.4.2

[root@bachelor redfish-ansible]# ansible-playbook -i inventory/ playbooks/server_
setup.yml

PLAY [Apply BMC settings]
**

TASK [Get server information]
**

ok: [idrac3]

Chapter B: Code 151

TASK [bios_idrac_settings : Include host specific Ansible Vault encrypted variables
]

**
included: /home/redfish/test/git/bachelor_repo/redfish-ansible/roles/bios_idrac_

settings/tasks/../../../playbooks/tasks/include_host_vars.yml for idrac3

TASK [bios_idrac_settings : Include host specific Ansible Vault encrypted variables
]

**
ok: [idrac3]

TASK [bios_idrac_settings : Set BIOS settings]
**
changed: [idrac3]

TASK [bios_idrac_settings : Create BIOS configuration job (schedule BIOS setting
update)]

**
changed: [idrac3]

TASK [bios_idrac_settings : Restart system]
**
changed: [idrac3]

TASK [idrac_settings : Include host specific Ansible Vault encrypted variables]
**
included: /home/redfish/test/git/bachelor_repo/redfish-ansible/roles/idrac_settings

/tasks/../../../playbooks/tasks/include_host_vars.yml for idrac3

TASK [idrac_settings : Include host specific Ansible Vault encrypted variables]
**
ok: [idrac3]

TASK [idrac_settings : Set iDRAC settings]
**
changed: [idrac3]

TASK [idrac_settings : debug output]
**
ok: [idrac3] => {

"msg": {
"changed": true,
"failed": false,
"msg": "SetManagerAttributes: Modified Manager attributes {'IPMISOL.1.

Enable': 'Disabled', 'NIC.1.VLanID': '1', 'Users.2.Password':
'********', 'IPBlocking.1.FailCount': '3', 'IPBlocking.1.FailWindow':
'60', 'IPBlocking.1.PenaltyTime': '60', 'SSHCrypto.1.HostKeyAlgorithms
': 'ssh-rsa,rsa-sha2-512,rsa-sha2-256,ecdsa-sha2-nistp256,ssh-ed255'}"

}
}

PLAY RECAP
**
idrac3 : ok=10 changed=4 unreachable=0 failed=0

skipped=0 rescued=0 ignored=0

Code listing B.12: Output from Server_Setup.yml against two servers - Refer-
enced in 6.4.3

Chapter B: Code 152

[root@bachelor redfish-ansible]# ansible-playbook -i inventory/ playbooks/server_
setup.yml

PLAY [Apply BMC settings]
**

TASK [Get server information]
**
ok: [idrac4]
ok: [idrac3]

TASK [Include host specific variables]
**

TASK [common : Include host specific Ansible Vault encrypted variables]
**
ok: [idrac3]
ok: [idrac4]

TASK [bios_idrac_settings : Set BIOS settings]
**
ok: [idrac3]
changed: [idrac4]

TASK [bios_idrac_settings : Create BIOS configuration job (schedule BIOS setting
update)]

**
skipping: [idrac3]
changed: [idrac4]

TASK [bios_idrac_settings : Restart system]
**
skipping: [idrac3]
changed: [idrac4]

TASK [Include host specific variables]
**

TASK [common : Include host specific Ansible Vault encrypted variables]
**
ok: [idrac3]
ok: [idrac4]

TASK [idrac_settings : Set iDRAC settings]
**
changed: [idrac3]
changed: [idrac4]

TASK [idrac_settings : debug output]
**
ok: [idrac3] => {

"msg": {
"changed": true,
"failed": false,
"msg": "SetManagerAttributes: Modified Manager attributes {'NIC.1.VLanID':

'1', 'Users.2.Password': '********', 'IPBlocking.1.FailCount': '3', '
IPBlocking.1.FailWindow': '60', 'IPBlocking.1.PenaltyTime': '60', '
SSHCrypto.1.HostKeyAlgorithms': 'ssh-rsa,rsa-sha2-512,rsa-sha2-256,
ecdsa-sha2-nistp256,ssh-ed255'}"

}

Chapter B: Code 153

}
ok: [idrac4] => {

"msg": {
"changed": true,
"failed": false,
"msg": "SetManagerAttributes: Modified Manager attributes {'NIC.1.VLanID':

'1', 'Users.2.Password': '********', 'IPBlocking.1.FailCount': '3', '
IPBlocking.1.FailWindow': '60', 'IPBlocking.1.PenaltyTime': '60', '
SSHCrypto.1.HostKeyAlgorithms': 'ssh-rsa,rsa-sha2-512,rsa-sha2-256,
ecdsa-sha2-nistp256,ssh-ed255'}"

}
}

PLAY RECAP
**
idrac3 : ok=6 changed=1 unreachable=0 failed=0

skipped=2 rescued=0 ignored=0
idrac4 : ok=8 changed=4 unreachable=0 failed=0

skipped=0 rescued=0 ignored=0

Chapter B: Code 154

Code listing B.13: Excerpt of a GET request to the biosregistry resource - Refer-
enced in 4.4.2

curl -sX GET -u root:redfish -k https://192.168.0.123/redfish/v1/Systems/System.
Embedded.1/Bios/BiosRegistry | python -m json.tool

#Excerpt:
"AttributeName": "LogicalProc",

"CurrentValue": null,
"DisplayName": "Logical Processor",
"DisplayOrder": 600,
"HelpText": "Each processor core supports up to two logical

processors. When set to Enabled, the BIOS reports all logical
processors. When set to Disabled, the BIOS only reports one
logical processor per core. Generally, higher processor
count results in increased performance for most multi-threaded
workloads and the recommendation is to keep this enabled.
However, there are some floating point/scientific workloads,
including HPC workloads, where disabling this feature may
result in higher performance.",

"Hidden": false,
"Immutable": false,
"MenuPath": "./ProcSettingsRef",
"ReadOnly": false,
"ResetRequired": true,
"Type": "Enumeration",
"Value": [

{
"ValueDisplayName": "Enabled",
"ValueName": "Enabled"

},
{

"ValueDisplayName": "Disabled",
"ValueName": "Disabled"

}
],
"WarningText": null,
"WriteOnly": false

},

Chapter B: Code 155

Code listing B.14: GET request to confirm pending BIOS configuration changes
- Referenced in 4.4.2

[root@bachelor redfish-ansible]# curl -X GET -u root:redfish -k https
://192.168.0.123/redfish/v1/Systems/System.Embedded.1/Bios/Settings| python -m
json.tool

{
"@odata.context": "/redfish/v1/$metadata#Bios.Bios",
"@odata.id": "/redfish/v1/Systems/System.Embedded.1/Bios/Settings",
"@odata.type": "#Bios.v1_1_0.Bios",
"Id": "Settings",
"Name": "BIOS Configuration Pending Settings",
"Description": "BIOS Configuration Pending Settings. These settings will be

applied on next system reboot.",
"AttributeRegistry": "BiosAttributeRegistry.v1_0_3",
"Attributes": {

"LogicalProc": "Disabled"
},
"Actions": {

"Oem": {
"DellManager.v1_0_0#DellManager.ClearPending": {

"target": "/redfish/v1/Systems/System.Embedded.1/Bios/Settings/
Actions/Oem/DellManager.ClearPending"

}
}

},
"Oem": {

"Dell": {
"@odata.context": "/redfish/v1/$metadata#DellManager.DellManager",
"@odata.type": "#DellManager.v1_0_0.DellManager",
"Jobs": {

"@odata.id": "/redfish/v1/Managers/iDRAC.Embedded.1/Jobs"
}

}
}

}

Chapter B: Code 156

Code listing B.15: travisYML - Referenced in 7.2

CI
Based, but expanded upon:
https://github.com/dell/redfish-ansible-module (Dell repository with sample

playbooks)
https://hobo.house/2019/08/05/how-to-setup-travis-for-quick-ansible-playbook-ci/

(Will Foster)

language: python

install ansible
addons:

apt:
packages:
- python-pip

install:
install requirements
- pip install -r redfish-ansible/tests/test-requirements.txt

before_script:
Dummy ansible vault file to pass the prompt for vault-password
- mkdir -p ~/.ansible/vault && echo "test-password" > ~/.ansible/vault/vaultpass

.txt
copy the modules and roles to Ansible default path
- mkdir -p ~/.ansible/plugins/modules
- cp redfish-ansible/plugins/modules/* ~/.ansible/plugins/modules
- mkdir -p ~/.ansible/roles/
- cp -r redfish-ansible/roles/* ~/.ansible/roles
change dir
- cd redfish-ansible

script:
basic syntax check
- ansible-playbook playbooks/*.yml --extra-vars "test_mode=true" -i /tests/

inventory --syntax-check
lint-test, ommit warnings with -x 303,701,601,206,602,403,301,502,306
- ansible-lint -x 503 playbooks/*.yml
- yamllint ~/.ansible/roles/

Appendix C

Other

IPMI tools and trends

System administrators can use tools like ipmitool, ipmiutil, freeipmi, openipmi
[23] to query information from the IPMI-based system over a command-line in-
terface. The employer recommended the use of "ipmitool", but no reason behind
the choice was given. To try to gauge which one of the tool for OOB management
with IPMI is generally the most used in the IT administration world, Google Trends
data was used. Google Trends measures the search-interest of user-specified terms
in a specific time period. This "interest" is represented as a number from 0-100,
where 100 is the most popular, and 50 is half as popular among the selected terms
in the different time periods.

Figure C.1: Google Trends the last 12 months.

157

Chapter C: Other 158

Figure C.2: Google Trends the last 5 years.

URL: https://trends.google.com/trends/explore?q=ipmitool,ipmiutil,freeipmi,openipmi
The data shows that ’ipmitool’ has by far the highest search interest, averaging 31
(last 5 years) and 51 (last 12 months), while no other single tool had an average
higher than 3 in neither time period. This could imply that ’ipmitool’ also is the
most used tool by administrators (by the ones mentioned) for OOB management
with IPMI, as it would be common to google-search the term for either download-
instructions or documentation. This is confirmed even more by adding the word
"download" behind each tool-name. The term "ipmitools download" had an aver-
age search interest of 11 over the last 5 years, while all other tools had an average
of 0. This could seem weird at first, 11/100 does not seem like a big number. If
"ipmitools" was in fact the "go-to"-tool for OOB management, a higher average
might be expected. This could however be explained by the fact that after the
tool has been downloaded on a controller/master-node, it does not have to be
downloaded again. This would reduce the reason for searching for the term for
an extended time-period, which again would reduce the average search interest.
The administrator that has to download the tool again might also remember the
simple command to do it on his or hers operating system. What we can observe
however, is that all other "{ipmi tool} download" terms has the average search
interest of 0, supporting the theory that "ipmitool" is the most popular tool for
OOB management with IPMI among the tools mentioned. This theory however
does not account for any other tools which might not have been included in the
"Software utilities for IPMI"[23] article which was used as basis for the overview
of this comparison. Since IPMI is a specific standard the aforementioned tools are
all ipmi related, and thus do not include monitoring and administration tools with
similar applications/uses.

Appendix D

Project plan

159

Project plan
Server configuration with Redfish and Ansible

DCSG2900 Bachelor Thesis Bachelor of Science in Digital Infrastructure and
Cyber Security

Magnus Walmsnæss Refsnes, Raymond Paradero Aardalsbakke, Gaute Hiis-Hauge and
Nick Zakharov

01.02.2021

1

Table of contents

Table of contents 2

1 Goals and Constraints 3
1.1 Background 3
1.2 Project goals 3
1.3 Constraints 4

2 Scope 4
2.1 Field of study 4
2.2 Delimitation 4
2.3 Problem Statement 4

3 Project organization 5
3.1 Roles and responsibilities 5
3.2 Internal rules for the project 6

3.2.1 Group Rules 6
3.2.2 Sanctions 6

4 Planning and reporting 6
4.1 Development model 6
4.2 Meeting Schedule and Decisions of Importance 7

5 Organization of Quality assurance 8
5.1 Documentation, standards, and source code 8
5.2 Configuration management 8
5.3 Risk Analysis 9

5.3.1 Risk Matrix before measures 9
5.3.2 Risk Matrix after measures 9
5.3.3 Scenario 10
5.3.4 Measures: 11

6 Implementation Plan 12

7 References 13

2

1 Goals and Constraints

1.1 Background
NTNU hosts the Idun cluster, which is a combination of computing resources to provide a
testing environment for high performance computing (HPC) software. Idun is a high
performance computer [1], meaning it is a complex, very fast computer, capable of
processing computing tasks like no ordinary PC can. This cluster is composed of servers,
which in turn is administered through a baseboard management controller(BMC) [2]. A BMC
is a processor that monitors internal variables about the computer through sensors. The
BMC also has remote capabilities, although a bit limited. Through this controller it can
configure the different hardware of the servers.

The BMC is part of the Intelligent Platform Management Interface (IPMI)[3]. IPMI is an
interface used to monitor a server’s physical health, such as temperature, voltage, humidity
and OS functions. It’s a useful tool used by administrators to gain remote management
capabilities for a server.

As it stands now; connecting a new server to the Idun cluster is manual labour. Everything
from unpacking, connecting the cables to the manual BIOS configuration. While we can’t do
much about the unpacking part of the job, we can save time and make the lives of the IT
staff a lot easier by automating the configuration using the Redfish standard [4] and Ansible.
[5]

The redfish standard is designed to be easy to read by both humans and machines. It’s a
management standard that defines protocols, behaviors and other components to deliver an
industry standard protocol.

Ansible is a software tool used to automate tasks. These tasks can range from simple scripts
to start a job, all the way to cloud provisioning and configuration management.

1.2 Project goals
● A study of the viability of using Redfish and Ansible in a hpc environment for the

setup and configuration of new server additions to the cluster.
● A prototype/proof-of-concept of secure automatic configuration of servers for a high

performance computing environment using Redfish and Ansible.
● A finished bachelor thesis containing the process, findings, and results of the project,

demonstrating the fulfillment of the learning outcome in the course DCSG2900 to a
good degree.

3

1.3 Constraints
We are asked to use the open-source tool, Ansible, to work on the infrastructure. We will
also be using DMTF’s standard Redfish. During the time period from start to end of our
report we are limited by regulations following the virus COVID-19, which in short limits our
ability to meet and work physically. VPN connection when we are working away from
campus is necessary to access the test-nodes set up for us in Trondheim.

2 Scope

2.1 Field of study
This project’s field of study is the automation of the configuration management of servers
making up the IDUN HPC-cluster at NTNU in Trondheim. It will also cover other areas in IT
operations like operating systems, networking, and security.

2.2 Delimitation
The project is tackling multiple technologies, with the purpose of achieving the goals set by
the project group. It is necessary to clarify the different restrictions that have been decided
upon, which are set to limit the project scope to a reasonable degree.
Limitations:

● The use of Redfish will be a demo tailored to NTNU’s needs and is not meant to
cover all aspects of Redfish

● The demo created will be a proof-of-concept
● Ansible in conjunction with a Redfish-module will automate the configuration process
● While redfish could be used on switches and other network equipment which support

it, this project will solely focus on server functionality.

2.3 Problem Statement
At the time of writing NTNU are locally and manually configuring servers and switches at the
initial setup in the IDUN cluster. Subsequent updates to the configuration can be done
remotely. The standard utilized for configuration is IPMI 2.0[6], which dates back to 2004, not
counting revisions. This makes IPMI 2.0 a more than a decade old standard where changes
are done through the BIOS. Out of bound management has become a time-consuming issue
when dealing with multiple servers or switches. This is where Redfish comes in, which
enables scalable configuration management.

However NTNU is not familiar with Redfish and wishes to explore its capabilities. That is why
our group has been tasked with creating a proof-of-concept that should provide insight and a
proposal for automating configuration management with the Redfish standard and Ansible.
Ansible has been specified as the automation software of choice, partly because of its
popularity and its supposed ease of use.

4

3 Project organization

3.1 Roles and responsibilities
The project group will work as the project owners(scrum) and leaders. Each group member
has the responsibility to work on their given assignments for the project. Other individual
roles are specified below.

Name: Einar Næss Jensen
Role: Client
Description: Communicates the grand vision of the project to the group. Provides technical
insight.

Name: Ernst Gunnar Gran
Role: Project supervisor
Description: Supervises the project-group (not the project). Provokes thoughts about
processes and decisions made by the group throughout the project, and fuels discussions.

Name: Magnus W. Refsnes
Role: Group leader
Description: The leader is responsible for the planning (trello) and holding meetings. The
leader also is responsible for distributing work each week, though this is done in council with
the other members of the group. The leader should attempt to resolve conflicts and
disagreements within the group, and if the group's opinion of what direction to take is in
disagreement then the leader is the deciding vote should the vote be even.

Name: Nick Zakharov
Role: Deputy project leader.
Description: The deputy project leader takes the responsibilities of the group leader should
the group leader be absent. In addition the deputy project leader is responsible for setting up
and maintaining the projects github repository.

Name: Raymond Aardalsbakke
Role: Secretary
Description: The secretary is responsible for writing a meeting summary during each
meeting held, and maintaining the structure of google drive.

Name: Gaute Hiis-Hauge
Role: LaTeX expert
Description: The LaTeX expert is responsible for keeping the latex document updated with
the project from the drive. The LaTeX expert is also responsible for creation of diagrams and
charts.

5

3.2 Internal rules for the project

3.2.1 Group Rules
1. Meet at the scheduled time
2. In case of absence you must inform the group as soon as possible with a valid

reason.
3. Every sunday from 13-16 is a mandatory meeting.
4. Update and maintain the trello board each sprint to reflect the current workload.
5. Each member is expected to spend on average 30 hours per week on furthering the

bachelor project.
6. Each member is to inform the others if they are unable to meet a deadline for their

workload in good time.
7. Members are to maintain civility when discussing the project.

3.2.2 Sanctions
● Should a member break three rules in a month then the group is to convene to figure

out a resolution to the situation.
● Should this not improve the situation then the group is to convene with the supervisor

of the thesis for possible resolvement or further actions.

4 Planning and reporting

4.1 Development model
We believe that a linear-sequential model is not a reasonable approach given the nature of
this project. While the end result is clear, the path towards the end is more obscured. Our
group needs to learn new technologies and frameworks, and plan and develop a solution for
the client, as well as limit or expand the scope based on milestones reached during the
project-period. We also might need to redesign or rewrite requirements several times as we
get more knowledge on the subject at hand, so it is therefore natural for us to pick an agile
methodology, with tools which the group is already familiar using, like scrum, kanban and
pair programming. We believe that picking tools the team is already well familiar with, has
experience, and is happy to work with, will have a huge benefit for the quality of our
workflow.

Based on the agile principle of learning from experience, we want to make some
adjustments based on our work together in the past. We will be doing short ‘daily meetings’
every other day to discuss our progress, and we will be borrowing the ‘pair
programming’-technique (originating from XP) to help, guide, and/or oversee each other's
work when working together while communicating and streaming our screens on the
'Discord' application. A sprint session of 1 week fits us well given the meeting-interval with
our supervisor, and the ‘sprint review’ meeting is set to be each sunday, followed by a ‘sprint
planning’ meeting.

6

We are responsible for both defining the scope and keep progressing, and we are directly
impacted by the results of the project (including the final report). We therefore view it as
appropriate to be our own project owners, and also manage our own backlog. The
supervisor and the client will therefore not have to be a part of the weekly sprint meetings.
We will instead prepare questions to discuss with our supervisor the coming Tuesday, and
the client will provide technical insight throughout the project in our bi-weekly meetings. The
'product backlog' will be organized as a kanban-board on the web-application 'Trello' to have
a clear view of progress and each member's tasks and contributions throughout the
sprint.The scrum master is decided to be the group leader.

4.2 Meeting Schedule and Decisions of Importance
We are having following meetings:

● A sprint review and planning meeting from 13:00 to 16:00 every sunday, in which the
previous week's progress is gone through and discussed and the next week's
workload is planned and distributed. In addition, questions for the supervisor and the
client are prepared at these meetings.

● Brief meetings (10-15 minutes every other day, starting Mondays) to discuss
progress or problems.

● A meeting with the project supervisor every Thursday at 16:00, the focus of these
meetings will be to clarify questions and ask for guidance.

● Lastly, a meeting is held bi-weekly with the client at Tuesday 12:30.

Decisions of importance are either taken at the Sunday meeting, or if needed then any
member can call for a council of the bachelor group at the earliest convenient time for all
members. If the decision is urgent and cannot wait for all members to meet digitally by voice,
then it can be held in the text-chat or in council with only three members. Should the meeting
be held with only three members then a manifest of the meeting should be made and
presented to the fourth.

If there is a difference in opinion then the disagreeing parts must present their case, and a
vote is held by the complete group. Should there be a tie, then the group leader breaks the
tie.

When necessary, group work sessions are planned with the other group members.

7

5 Organization of Quality assurance

5.1 Documentation, standards, and source code
The group has created a shared Google Drive[7] folder for articles such as meeting
summaries, shared work and other documents relevant to the project. In addition a shared
drive has been created with the client, where the client can share relevant information with
the group.

The source code for the project will be kept in a private bitbucket repository. When using
third-party libraries, the client has requested that we only make use of open-source projects.
The project could be taken over for further development. It is therefore mandatory to
comment all code, with separate documentation when deemed necessary to get a good
comprehension of its function.

5.2 Configuration management
The draft of the report will be created in Google Drive as this is the environment the group is
most familiar using. Using Google Drive also safeguards against loss of data due to
computer issues as it is saved in a cloud, though the bachelor thesis will also be kept locally
by members of the group in order to quickly restore the workflow in case of unforeseen
events. In addition to the Google Drive document, a LaTeX Overleaf[8] document will be
created and shared within the group. The report will be gradually translated over to LaTeX
during the project-period.

We are using Trello for time and task management of the group. In Trello we have a few
different tags being, to do, in progress, to be reviewed and complete. We are also keeping
track of each other's time schedule and mutual meetings through the use of a shared Google
Calendar.

Only the group is able to change, add or remove content from the platforms in use. All
platforms are kept private and not shared outside of the group.

8

5.3 Risk Analysis
We have conducted a short risk analysis of our project, where we have identified the risks
inherent with a project and found measures which we can take to mitigate these risks.

5.3.1 Scenario
This figure presents several risk scenarios which we either found possible to occur, or of
such risk that there should be a few measures to either minimize the probability or reduce
the consequence. Risk is calculated from the probability of a scenario occurring times the
consequence of that scenario.

Fig. 1

ID Scenario P C R

1 One or more of the group is infected by corona or a similarly
contagious disease causing them to be unable to meet with
other members of the team.

2 3 6

2 Dissenting opinions within the group causes disagreements
and arguments leading to a social fracture in the group which
hampers the project.

2 2 4

3 The client does not provide the group with proper access to
the environment or to the needed equipment causing us to be
unable to provide a proof of concept.

1 4 4

4 Sudden departure of a member causes us to be unable to
complete the project on time.

1 4 4

5 Poor time usage and procrastination of deadlines causes the
project to be delayed and possibly not completed in time.

2 3 6

6 A member of the group fails to deliver the work which has
been designated, or consistently delivers work of poor quality.

2 3 6

7 A member of the group repeatedly fails to meet at the
designated meeting times.

2 2 4

8 Lacking knowledge of redfish and Ansible causes failure to
complete the project.

1 3 3

9 Redfish and/or ansible is not compatible with the equipment
given by the client, or is not able to do the tasks set by the
client causing the group to be unable to complete the project.

2 4 8

9

5.3.2 Risk Matrix before measures
This matrix depicts the risk of the different scenarios before any measures are taken, with an
orange and red risk seen as an unacceptable risk to take.

Fig. 2: Risk matrix before measures

Probability
(p)

Consequence (C)

Low Moderate Severe Critical

Low 8 3,4

Moderate 2,7 1,5,6

High

Very high 9

5.3.3 Risk Matrix after measures
This matrix depicts the risk of the different scenarios after the measures are taken, with all
scenarios now being either yellow or green. This means they are all within acceptable levels
of risk.

Fig. 3 Risk matrix after measures

Probability
(p)

Consequence (C)

Low Moderate Severe Critical

Low 1,3,5,8 4

Moderate 2 6,7 9

High

Very high

10

5.3.4 Measures:
We have decided to focus the measures on things we are able to implement and which are
realistic that we can handle, or is of such risk that not having a measure would be
irresponsible. Using these measures we believe the remaining risk in the project is
acceptable and mostly unavoidable.

Fig. 4: Measures

Measure Scenario
ID

Effect Remaining Risk
PxC=R

All meetings are held digitally,
and the group is never gathered
together all at the same time for
the duration of the project.

1 Reduce probability
to 1

1 x 3=3

The group handles disputes
according to the rules within the
pre-project.

2 Reduce
consequence to 1

2 x 1=2

The group takes in use either
skyhiig or VMs in order to
provide a proof of concept.

3 Reduce
consequence to 3

1 x 3=3

Deadlines are set on the
workload each week, and the bar
for asking for assistance or
cooperation is set low. Trello is
used to track progress.

5 Reduce probability
to 1

1 x 3=3

The work done by each member
is peer reviewed at the end of
each week to make sure that the
quality is up to standards.
Repeated events of poor quality
work will be discussed with the
person responsible, before
eventually being brought up with
the supervisor.

6 Reduce
consequence to 2

2 x 2=4

Changing the scope of the
bachelor thesis to a study of
other available and feasible
technologies.

9 Reduce
consequence to 3

2 x 3=6

6 Implementation Plan

11

Fig. 5: Gantt Chart

The Gantt chart shows the outline of the general workflow of the entire project. Important
dates are marked as milestones while the different sprints should work as smaller but more
frequent milestones throughout the project.

Major milestones:
● Technical Finish - 9.04.2021:

○ All the required software and hardware should be completely configured,
tested and working. This step is required because some documentation
cannot be done until a finished proof-of-concept is made.

● First Draft - 26.03.2021:
○ An Initial draft consisting of documentation compiled so far. The First draft

serves the purpose of being reviewed by the supervisor as a source of
feedback.

● Report Deadline - 20.05.2021:
○ Hard deadline for the delivery of the final report, since no changes can be

done after this date it is the end of the project timeline.

12

7 References

[1] Inside HPC - What is high performance computing? (-2021) Available at:
https://insidehpc.com/hpc-basic-training/what-is-hpc/ (Accessed: 31.01.2021)

[2] SearchNetworking - Baseboard Management Controller (Last updated May 2007)
Available at:
https://searchnetworking.techtarget.com/definition/baseboard-management-controller
(Accessed 31.01.2021)

[3] Techopedia - Intelligent Platform Management Interface (IPMI) (Last updated July 26,
2016) Available at:
What is Intelligent Platform Management Interface (IPMI)? - Definition from Techopedia
(Accessed 31.01.2021)

[4] DMTF - Redfish standard® (2014-) Available at
https://www.dmtf.org/standards/redfish/ (Accessed at: 31.01.2021)

[5] Open source - What is Ansible? (2020) Available at:
https://opensource.com/resources/what-ansible (Accessed at: 31.01.2021)

[6] Intelligent Platform Management Interface Available at:
https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface (Accessed at:
10.02.2021)
[7] Google’s own information page for Google Drive Available at:
https://www.google.com/drive/ (Accessed at: 12.02.2021)

[8] NTNU Wiki - Overleaf Available at:
https://innsida.ntnu.no/wiki/-/wiki/English/Overleaf (Accessed at: 11.02.2021)

13

Appendix E

Group agreement

173

1 av 3

Norges
teknisk-naturvitenskapelige
universitet

Vår dato Vår referanse

Prosjektavtale

mellom NTNU Fakultet for informasjonsteknologi og elektroteknikk (IE) på Gjøvik (utdanningsinstitusjon), og NTNU IT,
Seksjon for IT-drift, servergruppa (oppdragsgiver), og Nick Zakharov, Gaute Hiis-Hauge, Raymond Aardalsbakke,
Magnus W. Refsnes (student(er)).

Avtalen angir avtalepartenes plikter vedrørende gjennomføring av prosjektet og rettigheter til anvendelse av de
resultater som prosjektet frembringer:

1. Studenten(e) skal gjennomføre prosjektet i perioden fra 11.Januar 2021 til 20.Mai 2021

Studentene skal i denne perioden følge en oppsatt fremdriftsplan der NTNU IE på Gjøvik yter veiledning.
Oppdragsgiver yter avtalt prosjektbistand til fastsatte tider. Oppdragsgiver stiller til rådighet kunnskap og materiale
som er nødvendig for å få gjennomført prosjektet. Det forutsettes at de gitte problemstillinger det arbeides med er
aktuelle og på et nivå tilpasset studentenes faglige kunnskaper. Oppdragsgiver plikter på forespørsel fra NTNU å gi
en vurdering av prosjektet vederlagsfritt.

2. Kostnadene ved gjennomføringen av prosjektet dekkes på følgende måte:
● Oppdragsgiver dekker selv gjennomføring av prosjektet når det gjelder f.eks. materiell, telefon, reiser

og nødvendig overnatting på steder langt fra NTNU i Gjøvik. Studentene dekker utgifter for
ferdigstillelse av prosjektmateriell.

● Eiendomsretten til eventuell prototyp tilfaller den som har betalt komponenter og materiell mv. som
er brukt til prototypen. Dersom det er nødvendig med større og/eller spesielle investeringer for å få
gjennomført prosjektet, må det gjøres en egen avtale mellom partene om eventuell kostnadsfordeling
og eiendomsrett.

3. NTNU IE på Gjøvik står ikke som garantist for at det oppdragsgiver har bestilt fungerer etter hensikten, ei heller
at prosjektet blir fullført. Prosjektet må anses som en eksamensrelatert oppgave som blir bedømt av intern og
ekstern sensor. Likevel er det en forpliktelse for utøverne av prosjektet å fullføre dette til avtalte spesifikasjoner,
funksjonsnivå og tider.

4. Alle beståtte bacheloroppgaver som ikke er klausulert og hvor forfatteren(e) har gitt sitt samtykke til
publisering, kan gjøres tilgjengelig via NTNUs institusjonelle arkiv NTNU Open.

Tilgjengeliggjøring i det åpne arkivet forutsetter avtale om delvis overdragelse av opphavsrett, se «avtale om
publisering» (jfr Lov om opphavsrett). Oppdragsgiver og veileder godtar slik offentliggjøring når de signerer denne
prosjektavtalen, og må evt. gi skriftlig melding til studenter og instituttleder/fagenhetsleder om de i løpet av
prosjektet endrer syn på slik offentliggjøring.

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk

Den totale besvarelsen med tegninger, modeller og apparatur så vel som programlisting, kildekode mv. som inngår
som del av eller vedlegg til besvarelsen, kan vederlagsfritt benyttes til undervisnings- og forskningsformål.
Besvarelsen, eller vedlegg til den, må ikke nyttes av NTNU til andre formål, og ikke overlates til utenforstående uten
etter avtale med de øvrige parter i denne avtalen. Dette gjelder også firmaer hvor ansatte ved NTNU og/eller
studenter har interesser.

5. Besvarelsens spesifikasjoner og resultat kan anvendes i oppdragsgivers egen virksomhet. Gjør studenten(e) i sin
besvarelse, eller under arbeidet med den, en patentbar oppfinnelse, gjelder i forholdet mellom oppdragsgiver
og student(er) bestemmelsene i Lov om retten til oppfinnelser av 17. april 1970, §§ 4-10.

6. Ut over den offentliggjøring som er nevnt i punkt 4 har studenten(e) ikke rett til å publisere sin besvarelse, det
være seg helt eller delvis eller som del i annet arbeide, uten samtykke fra oppdragsgiver. Tilsvarende samtykke
må foreligge i forholdet mellom student(er) og faglærer/veileder for det materialet som faglærer/veileder stiller
til disposisjon.

7. Studenten(e) leverer oppgavebesvarelsen med vedlegg (pdf) i NTNUs elektroniske eksamenssystem. I tillegg
leveres ett eksemplar til oppdragsgiver.

8. Denne avtalen utferdiges med ett eksemplar til hver av partene. På vegne av NTNU, IE er det
instituttleder/faggruppeleder som godkjenner avtalen.

9. I det enkelte tilfelle kan det inngås egen avtale mellom oppdragsgiver, student(er) og NTNU som regulerer
nærmere forhold vedrørende bl.a. eiendomsrett, videre bruk, konfidensialitet, kostnadsdekning og økonomisk
utnyttelse av resultatene. Dersom oppdragsgiver og student(er) ønsker en videre eller ny avtale med
oppdragsgiver, skjer dette uten NTNU som partner.

10. Når NTNU også opptrer som oppdragsgiver, trer NTNU inn i kontrakten både som utdanningsinstitusjon og som
oppdragsgiver.

11. Eventuell uenighet vedrørende forståelse av denne avtale løses ved forhandlinger avtalepartene imellom.
Dersom det ikke oppnås enighet, er partene enige om at tvisten løses av voldgift, etter bestemmelsene i
tvistemålsloven av 13.8.1915 nr. 6, kapittel 32.

12. Deltakende personer ved prosjektgjennomføringen:

NTNUs veileder (navn): Ernst Gunnar Gran

Oppdragsgivers kontaktperson (navn): Einar Næss Jensen

2

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk

Student(er) (signatur):

Oppdragsgiver (signatur):

dato 26.01.2021

Signert avtale leveres digitalt i Blackboard, rom for bacheloroppgaven.

Godkjennes digitalt av instituttleder/faggruppeleder.

Om papirversjon med signatur er ønskelig, må papirversjon leveres til instituttet i tillegg.

Plass for evt sign:

Instituttleder/faggruppeleder (signatur): ____________________________________ dato ____________

3

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Gaute Hiis-Hauge
Magnus Walmsnæss Refsnes
Nick Zakharov
Raymond Aardalsbakke

Out-of-Band Management with
Redfish and Ansible

Bachelor’s project in IT-drift og informasjonssikkerhet
Supervisor: Ernst Gunnar Gran

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

	Abstract
	Sammendrag
	preface
	Contents
	Acronyms
	Figures
	List of Listings
	Introduction
	Background
	Problem area
	Project goals
	Effect goals
	Result goals

	Target audience
	Scope
	Delimitation
	Limitations

	The Project group
	Other parties
	Thesis structure

	Background
	Configuration Management
	Infrastructure as Code
	Intelligent Platform Management Interface
	Redfish
	The Redfish API
	Redfish examples

	Automated OOB management with Ansible
	Modules
	Inventory files
	Playbooks and plays
	Roles
	Ansible Galaxy
	Ansible Vault

	Alternative technology
	Security
	IPMI security
	Redfish security
	Comparison

	Development Environment
	High Level Overview
	Dell Poweredge servers
	iDRAC
	SCP files

	Ansible
	Ansible directory structure
	ansible.cfg
	host_vars
	inventory
	playbooks
	plugins
	roles
	tests
	.travis.yml
	.ansible-lint

	File storage
	Git

	Implementation
	High-level overview
	Proof of Concept specification
	Lab environment
	iDRAC
	DHCP
	Prerequisites

	Demonstrations
	Reading and saving iDRAC settings from one compute node with Redfish
	Write BIOS settings with Redfish
	Write IDRAC settings with Redfish
	Collect support data with Redfish

	Demonstrating Redfish and Ansible
	Server Health Check with Ansible
	Export server configuration
	Import server configuration
	Discovery
	Importing host variables
	Playbook and roles
	Modules

	Security
	Best practices
	Comparison of IPMI and Redfish
	IPMI vulnerability
	Redfish

	Reflections

	Deployment
	Configuration
	Vendor specific attribute names
	Demonstration
	Deployment
	Extracting then deploying server configuration
	Deploying BIOS and iDRAC configuration against a single server
	Deploying BIOS and iDRAC configurations against two servers simultaneously

	Testing
	Testing Ansible playbooks
	Continuous integration
	Testing Ansible modules
	Testing summary

	Discussion
	iDRAC limitations and challenges
	Expansions
	Expanding to security
	Expanding to module-development

	Future work
	Future work in general
	Future work for the HPC group

	Conclusion
	Redfish & IPMI
	Project results
	Final words

	Bibliography
	Referat
	Ernst referat
	Einar referat

	Code
	Other
	Project plan
	Group agreement

