
DCSG2900 - BACHELOR THESIS BACHELOR OF SCIENCE IN
DIGITAL INFRASTRUCTURE AND CYBER SECURITY 2021

Security within a multi-tenant
Kubernetes cluster

Authors:
Simen Asplund Kjeserud

Vemund Rahm
Sonja Yoosuk Sanden

Eirik Tobiassen

19th May 2021

Sammendrag

Multi-tenancy er et konsept som begynner å bli mer populært, ettersom det er
lettere å vedlikeholde og kan være kostnadsbesparende om det blir opprettet
riktig. Geodata har utviklet et multi-tenant Kubernetes cluster som kjører i Amazon
Web Services (AWS) som brukes til å drifte kundeløsningene deres. Denne rap-
porten forsøker å samle cloud-hosting industriens anbefalinger og "best practices"
til hvordan sette opp og sikre et multi-tenant cluster for så å sammenligne det
med arbeidet Geodata har gjort i sin plattform.

i

Abstract

Multi-tenancy is a concept that has become increasingly popular because it is
easier to maintain and can be cost-effective if set up correctly. Geodata has de-
veloped a multi-tenant Kubernetes cluster that runs in Amazon Web Services (AWS)
and is used to host their services. This report will attempt to collect the industries
recommendations and "best practices" in regards to cloud-hosting and how to set
up and secure a multi-tenant cluster, and then compare it to Geodata’s platform.

ii

Contents

Sammendrag . i
Abstract . ii
Contents . iii
Figures . v
Acronyms . vi
Glossary . vii
1 Introduction . 1

1.1 Background . 1
1.2 Scope . 1

1.2.1 Subject Areas . 1
1.2.2 Task Description . 2

1.3 Limitations . 2
1.4 Purpose . 3
1.5 Target Group . 3
1.6 The Groups Background . 3
1.7 Roles . 4
1.8 Methodology . 4

1.8.1 Research Methods . 4
1.8.2 Types of Data . 4
1.8.3 How the Data is Used . 5

1.9 Structure . 5
2 Background Theory . 6

2.1 Amazon Web Services . 6
2.1.1 What is Amazon Web Services? 6
2.1.2 Background . 6

2.2 Kubernetes . 7
2.2.1 What is Kubernetes? . 7
2.2.2 Objects . 7
2.2.3 Why Kubernetes is Right for Geodata 8
2.2.4 Multi-tenancy . 9

2.3 Architecture . 11
2.3.1 Infrastructure . 11
2.3.2 Kubernetes Addons . 14

3 Secure Multi-Tenancy . 16

iii

Contents iv

3.1 A Secure Cluster . 16
3.2 Findings . 18

3.2.1 List of Best Practices . 18
3.2.2 Tenant separation (T) . 19
3.2.3 Policies (P) . 22
3.2.4 Monitoring and Logging (ML) 25
3.2.5 Development and Maintenance (DM) 27
3.2.6 Storage (S) . 33

4 Implementation Analysis . 35
4.1 Geodata Security Measures . 35

4.1.1 List of Security Measures . 35
4.1.2 Tenant Separation (Geo-T) . 36
4.1.3 Policies (Geo-P) . 37
4.1.4 Monitoring and Logging (Geo-ML) 37
4.1.5 Development and Maintenance (Geo-DM) 38
4.1.6 Storage (Geo-S) . 39

5 Implementation Assessment . 41
6 Recommended Changes . 51
7 Conclusion . 56

7.1 Results . 56
7.2 Further Research . 57
7.3 Project Review . 57
7.4 Review of Project Focus Areas . 58

Bibliography . 60
A Project plan . 63
B Addons . 82
C Geodata PowerPoint Slide . 84

Figures

2.1 A visualization of one cluster per tenant. 10
2.2 A multi-tenant Kubernetes cluster. 11
2.3 GDO Infrastructure Map. 12
2.4 AWS Infrastructure Map. 13
2.5 A visualization of the relationship between Grafana, Prometheus,

Loki and Graphout. 14

3.1 A secure and healthy Kubernetes cluster. 17

C.1 Slide from a Geodata PowerPoint . 84

v

Acronyms

Amazon EB Amazon EventBridge. 39

Amazon EBS Amazon Elastic Block Store. 40

Amazon EC2 Amazon Elastic Compute Cloud. 13

Amazon ECR Amazon Elastic Container Registry. 15, 39

Amazon IAM Amazon Identity and Access Management. 15, 36, 39

Amazon S3 Amazon Simple Storage Service. 15, 39, 40

Amazon VPC Amazon Virtual Private Cloud. 13

AWS Amazon Web Services. i, ii, v, 2, 6, 8, 13–15, 37, 57–59

CNCF Cloud Native Computing Foundation. 39

GDO Geodata Online. v, 1–3, 6, 9, 12, 35, 56, 59

NTNU Norwegian University of Science and Technology. 3, 4

PSP Pod Security Policy. 24, 57

RBAC Role-based access control. 20, 36

SaaS Software as a Service. 9, 33, 56

vi

Glossary

data at rest Data stored in persistent storage (e.g. disk, tape, etc.).. 34

delegated creation The possibility to create and manipulate subnamespaces without
cluster-level privileges.. 41

Deployment A Kubernetes object that allows defining a desired state for Pods.
The Deployment will maintain the correct number of Pods, so long as it is
possible.. vii, 38

DevOps A philosophy for combining software development and IT operations..
25

kubeconfig kubeconfig is a file used by kubectl to configure access to a Kuber-
netes cluster. It can define such things as where to connect to the Kubernetes
API and access authentication.. 41

kubectl A command line tool for interacting with Kubernetes clusters.. vii

mixed methods research design Mixed methods research design is a methodo-
logy design that combines quantitative and qualitative methods [1].. 4

policy inheritance In a hierarchical namespace structure, this is when subnamespaces
are automatically given the policies of the parent namespace.. 41, 51

subnamespaces A namespace that is the child of another namespace.. vii, 41, 51

vii

Chapter 1

Introduction

1.1 Background

Geodata is a company working with geographic data processing and custom map
solutions for various customers in the Norwegian private and public sector.

One of their main products is their self developed platform, Geodata Online (GDO).
It is used for hosting and operating custom solutions developed for their custom-
ers. GDO is built on the industry-standard application deployment platform Kuber-
netes.

All of Geodata’s development teams host their solutions inside the same Kuber-
netes cluster. One of the main challenges with GDO and this setup is the separation
and segregation of the different teams, or tenants, in Kubernetes.

1.2 Scope

1.2.1 Subject Areas

The main focus of this project is researching multi-tenant Kubernetes clusters and
the security between tenants. The thesis will focus on these subject areas:

• Container orchestration
• Software and infrastructure security
• Infrastructure as code
• Infrastructure operation

1

Chapter 1: Introduction 2

1.2.2 Task Description

Look at general solutions for multi-tenant services, consider how security can be ef-
fectively maintained in such an environment, compare our findings with Geodata’s
experiences and make recommendations based on this.

Project focus areas:

1. Overview of the platform and its components
2. Security analysis of Geodata’s platform

a. How is the security and separation between projects (tenants) achieved
and maintained

b. List of existing security measures

3. Look at how Geodata’s platform is set up on Amazon Web Services (AWS),
and replicate this setup ourselves (on a smaller scale)

4. Research best security practices for a generalized multi-tenant Kubernetes
environment

5. Based on our findings, make recommendations for Geodata to consider

1.3 Limitations

The project has been limited to focusing exclusively on security inside the Kuber-
netes cluster. As with all security, it is only as strong as its weakest link. This
means that the rest of the architecture must be secured as well - something that
falls outside the scope of this thesis. In particular the underlying infrastructure
that the cluster runs on must be secured from outside access, and limited only
to the persons who require access. This is true whether the cluster is hosted in
the cloud and online access must be regulated or if the cluster is on bare-metal
and proper, physical, access control must be implemented. In Geodata’s case this
means securing the AWS infrastructure they use to host their cluster. This will not
be discussed in this thesis, because of the aforementioned reasons. In a similar
manner, container security is important to maintain integrity within a Kubernetes
cluster. Specific measures related to container security also fall out of scope.

The research environment is a close replication of the GDO platform, but it is miss-
ing some components (some visualizations and inconsequential configurations),
and it is only used by us - not hundreds of people working on different projects. It
is not as easy as it seems to implement large-scale changes in the real world when
multiple factors have to be considered.

Chapter 1: Introduction 3

1.4 Purpose

The purpose of this thesis is to research how to create and secure multi-tenant
Kubernetes clusters. It is of high importance that safety is maintained when sep-
arate groups of people work inside the same environment. Furthermore, this thesis
will address how Geodata have chosen to create and secure their own multi-tenant
infrastructure and cluster. The recommendations given to Geodata in this thesis,
as detailed in chapter 6, may be used to improve Geodata’s current infrastructure
and to help visualize the foundations needed for future iterations of GDO.

1.5 Target Group

The primary target group of this project is Geodata, who are hosting a multi-tenant
cluster, and wish to make sure it is adequately secured. They also wish to know
which measures should be considered before developing a newer version of GDO.
Assessment and analysis of their implementations can be found in chapter 4, 5
and 6. Other audiences who are looking into creating a multi-tenant cluster, may
be interested in reading chapter 2 and 3, which detail what measures to consider
before moving to a multi-tenant infrastructure.

1.6 The Groups Background

All members of the group study IT-Operations and Information Security at Nor-
wegian University of Science and Technology (NTNU) Gjøvik. Throughout these
studies the group has acquired experience within several fields that are relevant
to this report. The group has had courses that relate to, amongst others:

• Infrastructure as Code
• Service Architecture Operations
• Containerization
• Linux
• Programming
• Software security

The course has not provided any significant experience with Kubernetes itself, but
the group has used other container orchestration technologies. No group member
has used or navigated a multi-tenant cluster before working on this thesis, and
as such, this thesis will require familiarizing ourselves with the technologies and
infrastructures in use by Geodata.

Chapter 1: Introduction 4

1.7 Roles

The three organizations involved in this project and their roles are:

• Geodata:

◦ Joachim Eckbo Juell - Director for product development at Geodata
and thesis contact person.
◦ Pål Kristensen - Department manager System operations at Geodata

and thesis liaison.
◦ Anders Østhus - Senior developer at Geodata and thesis liaison.

• Students:

◦ Simen Asplund Kjeserud - Substitute project leader
◦ Vemund Rahm - Project leader
◦ Sonja Yoosuk Sanden - Group member
◦ Eirik Tobiassen - Group member

• NTNU:

◦ Erik Hjelmås - Thesis supervisor.

1.8 Methodology

The research section of this project will be based on various online resources on
multi-tenant clusters. Alongside this, data will be collected by analyzing a Kuber-
netes cluster functionally identical to the one Geodata runs in their own produc-
tion and development environment. These two will then be compared.

1.8.1 Research Methods

This dissertation will use mixed methods research design, where both qualitative
and quantitative methods are used to gather data. Some examples of data col-
lection methods for this thesis include interviews, sandbox experimentation, and
published articles.

1.8.2 Types of Data

• Geodata’s own experiences and setup.

◦ What experiences Geodata has had when dealing with multi-tenant
clusters.
◦ Experimenting with a sandbox setup based on their design.

• Websites, articles and research papers concerning best practices surround-
ing multi tenancy and its security.
• Websites and articles about experiences others have had with multi tenancy

and its security.

Chapter 1: Introduction 5

• News articles about breaches concerning multi tenant setups and Kuber-
netes.

1.8.3 How the Data is Used

The collected data will be used for:

• Understanding the security challenges surrounding multi-tenancy hosting
in Kubernetes
• Understanding the difficulties of operating a multi-tenant Kubernetes cluster
• Finding common challenges in the design, development, and deployment

of a multi-tenant Kubernetes cluster.
• Identifying which measures are most effective for operating a healthy and

secure multi-tenant infrastructure.
• Identifying common mistakes when operating a multi-tenant Kubernetes

infrastructure.

1.9 Structure

This thesis will have some of the main content separated out into appendices due
to confidentiality. These appendices will be referenced in the report and removed
from the published version.

The report has the following structure:
Chapter 1: Introduction - An introduction to the project including a task descrip-
tion and methodology.
Chapter 2: Background Theory - A background on the technologies that are used
in the project.
Chapter 3: Secure Multi-Tenancy - A list of best practices, including their ad-
vantages and disadvantages.
Chapter 4: Implementation Analysis - A list of Geodata’s security measures.
Chapter 5: Implementation Assessment - Assessment of Geodata’s security meas-
ures.
Chapter 6: Recommended Changes - Recommended changes and why they should
be implemented.
Chapter 7: Conclusion - Discussion of results, further research and conclusion.

Chapter 2

Background Theory

This chapter will explain the basic theory behind the technologies used in GDO.
It will also include explanations given by Geodata as to why they made the de-
cisions they did while designing and developing the platform. The end of the
chapter introduces the parts of Geodata’s infrastructure that are relevant to the
GDO platform. Describing the entire Amazon Web Services (AWS) infrastructure
falls outside of the scope of this thesis.

2.1 Amazon Web Services

2.1.1 What is Amazon Web Services?

Amazon Web Services is a cloud computing platform that charges customers on a
pay-as-you-go basis. Using a cloud platform is often preferable to purchasing and
maintaining your own physical hardware due to high operational and mainten-
ance cost, at least in the first few years of operation [2]. Using a cloud provider
also allow for rapid scalability in situations where system load may vary. AWS also
provides an interface to deploy and scale infrastructures.

2.1.2 Background

In 2008 when Geodata decided to move their services to the cloud, AWS was the
natural choice as Google Cloud Platform had just been released [3] and Microsoft
Azure did not exist at the time [4]. From 2008-2016 Geodata built their online
platform directly on top of AWS, and in 2016 they decided to make their services
less dependent on AWS by using Kubernetes, which allows for abstraction between
the applications and the underlying hardware. This can make moving from one
cloud provider to another easier. Running Kubernetes, Geodata was also able to
adapt their infrastructure to enable use of the Spot [5] marketplace for unused
capacity in AWS Cloud. Doing this resulted in total EC2 instance expenditures
going down by 70%.

6

Chapter 2: Background Theory 7

2.2 Kubernetes

2.2.1 What is Kubernetes?

Kubernetes can be used for many purposes, but at its essence it is a way to ab-
stract away an entire underlying infrastructure of complicated inter-connecting
components and their resources, and expose them as a single unit that can be
utilized by running applications [6]. Because Kubernetes manages the underlying
infrastructure, the job of developing and deploying an application or service is
simplified.

Kubernetes uses containerization technologies to realize this task. This means each
computer process related to the application runs in its own ecosystem, oblivious
to everything else that is running on a particular physical machine. When an app
is deployed to Kubernetes, the deployment team never decides which specific ma-
chine should run the process, only how many replications of the app is needed
along with other specifying data, and Kubernetes manages the rest [7]. Adding
machines to the Kubernetes system only represents additional computational re-
sources, it does not, and should not, mean a developer needs to think about how
to redistribute the application to utilize resources in the most efficient manner.

Throughout this thesis, the terms resource and object are used interchangeably. In
the Kubernetes documentation these terms have specific meaning, but this falls
outside the scope of this thesis. For this reason, any time these terms are in use,
they should be interpreted according to their context. In this thesis, resource and
objects are used any time some definition that can be posted to the Kubernetes
API is being discussed, or when something is a part of the Kubernetes ecosystem
in general.

2.2.2 Objects

Describing how Kubernetes works falls outside the scope of this thesis, however
this section will describe some of the resources most commonly referred to in this
thesis [8, p. 5-10].

Kubernetes control plane:
The Kubernetes control plane (sometimes called master) is the global decision
maker in Kubernetes, consisting of several components, such as the scheduler and
the API server. It is the part of the cluster that everything else communicates with,
and is responsible for actions such as restarting Pods when they fail.

Chapter 2: Background Theory 8

Pods:
A Pod is a collection of co-related containers that represent one "process" or "task".
Often this can be just one container, but if a task is represented by more than one
container, they are grouped together into a Pod. The Pod is the smallest deploy-
able unit in Kubernetes, it is not possible to deploy a container directly.

Nodes:
A Node represents some amount of computational resources that can be consumed
by other Kubernetes Resources. It can be either a virtual or physical machine, de-
pending on the underlying infrastructure. A Node needs to be running certain
components to be qualified as a functional Node, including a container runtime.

Service:
A service exposes a group of Pods that provide an application at one consistent,
reachable point, even though Pods are, by nature, ephemeral. Usually this is used
so that a group of Pods performing one task can reach another group of Pods
providing some necessary functionality, without the need of a service discovery
application. Services can also be used to expose an application to an external IP,
i.e. the Internet.

Namespaces
Namespaces segregate a cluster into multiple smaller, virtual clusters. Most other
resources (e.g. Pods and Services), created in Kubernetes live inside a namespace,
though some are global (e.g. Nodes).

2.2.3 Why Kubernetes is Right for Geodata

Background

In 2016, Geodata realized the large amount of data and services used to host cus-
tomer solutions in AWS required them to optimize their resource usage. They also
had a need for ways to make small and quick changes to their products, especially
the deployment of services. This led to Geodata researching whether Kubernetes
would be a good solution for these rising issues.

Geodata started building the first version of the Geodata Online platform that
ran on Kubernetes in 2017, and around the summer of 2018 the development of
the second generation of the platform was started. This second iteration started
seeing use in 2019. It is the basis for the system that is still in use today, and is
being continuously developed. Geodata are looking at developing and moving to
a third generation of their platform.

Chapter 2: Background Theory 9

What Kubernetes Brings to GDO, According to Geodata:

• Optimization of server resource utilization
• Better self-healing and automated solutions (Infrastructure as code)
• Abstract away the underlying infrastructure
• Methods, tools and programs the development-teams create for the Geodata

Online platform can be reused, with only small changes needed for custom-
ers who want the system to run on their own Kubernetes clusters
• The possibility of moving to, or expanding the platform to Microsoft Azure

without making large changes to solutions/services.

2.2.4 Multi-tenancy

Tenants

When creating multiple workloads in Kubernetes, it can be difficult to separate
out the work into different logical sections. This logical separation is commonly
created in a way where each workload or team is called a tenant.

A tenant can be defined in multiple different ways, but several leading cloud com-
puting providers separate tenants into one of two categories: Enterprise tenancy
(soft multi-tenancy) or Software as a Service (SaaS) tenancy (hard multi-tenancy)
[9, 10].

In enterprise tenancy the tenants are separate teams inside an organization. These
tenants are assumed to be relatively non-hostile, and the main concerns with
multi-tenancy therefore becomes fair resource sharing.

In a SaaS tenant situation, it can not be guaranteed that all end-users are non-
adversarial. Some services may be facing the public Internet, or the end-users will
be in organizations outside the cluster administrators control. In such a scenario,
secure segregation of tenants must become a main focus, alongside resource shar-
ing. It is necessary that all tenants are properly separated, so that one tenant can
not interfere with another.

Geodata operate a cluster that lay somewhere in between these two definitions.
Their development teams are the tenants in the cluster, but several of their de-
veloped solutions face the public Internet as well. In future iterations of the GDO
platform, Geodata plan to move further toward a SaaS platform.

Chapter 2: Background Theory 10

Managing tenants

Technically separating the tenants in a manner that is clear and secure is a large
challenge when hosting a multi-tenant cluster. One natural solution is to host
one cluster per tenant, but this can have unnecessary overhead, because even the
smallest of projects would require at least one or two Nodes all to itself. It can also
be difficult for the cluster administrators to manage, since there is no centralized
place to view all the current running resources. Figure 2.1 shows how a cluster
administrator has to manage multiple clusters.

Cluster-1
Tenant-1

dev-
namespace

Cluster-2
Tenant-2

test-
namespace

prod-
namespace

dev-
namespace

test-
namespace

prod-
namespace

Cluster
administrator

Figure 2.1: A visualization of one cluster per tenant. Here, separation of tenants
is implied, since they have their own separate cluster.

Running a cluster in this manner can inhibit the resource inefficiencies Kubernetes
and container technologies hope to rectify. This is why, in recent years, operating
multi-tenant clusters has become significantly more popular. This is where several
tenants all live inside the same Kubernetes cluster, running their containers on the
same physical machines. Figure 2.2 shows this scenario. The proper separation
of tenants living inside the same cluster in this manner is the main focus of the
research part of this thesis.

Chapter 2: Background Theory 11

Cluster
Tenant-1

dev-
namespace

test-
namespace

prod-
namespace

Cluster
administrator

Tenant-2

dev-
namespace

test-
namespace

prod-
namespace

Figure 2.2: A multi-tenant Kubernetes cluster. In this scenario, measures must be
taken to ensure that tenants are separated.

2.3 Architecture

2.3.1 Infrastructure

Geodata have a large, varied and modern infrastructure. A full overview of all their
components can be seen in figure 2.3. This thesis will focus on the components in
the Orchestration section and some parts of the Storage section. Any components
higher up than the Orchestration level in the infrastructure fall outside the scope
of this thesis.

Chapter
2:

Background
Theory

12

Figure 2.3: GDO Infrastructure Map.
Source: Provided by Geodata

Chapter 2: Background Theory 13

A deeper view into how the Amazon VPC private and public subnets communic-
ate can be seen in figure 2.4. This figure reflects how Geodata have set up their
infrastructure. All of Geodata’s Amazon EC2 machines run in the private subnets.

User

Internet

HTTPS / TCPInternet Gateway

Nat GatewayNat Gateway

API Server 2
Private IP: 172.16.2.**

API Server 1
Private IP: 172.16.1.**

Private Subnet
172.16.2.0/24

Private Subnet
172.16.1.0/24

Public Subnet
172.16.0.0/24

Public Subnet
172.16.3.0/24

TCP Network Load
Balancer

VPC 172.16.0.0/14

AZ us-east-b AZ us-east-a

Figure 2.4: AWS Infrastructure Map.
Source: Based on a slide from a Geodata PowerPoint (Figure C.1)

Chapter 2: Background Theory 14

2.3.2 Kubernetes Addons

Geodata use several addons on top of Kubernetes to make sure the platform has all
the functionality required, some of which is not provided by Kubernetes natively.
These addons are responsible for both simplifying deployment and for keeping
the system healthy following the "architecture as code" principle. The addons are
also responsible for making and showing analytics, helping with dynamic storage,
keeping resources to a minimum, security, and more.

These are the thesis-relevant addons in use by Geodata (Other addons in use by
Geodata can be found in Appendix B):

Grafana

Grafana is an open source visualization and analytics software. It is used for query-
ing and visualizing metrics collected by other processes like Prometheus.

Grafana

Prometheus Loki

Node2

AWS analytics

Node1

Graphout

Monitoring metrics

Alerts Logs M
on

ito
rin

g
m

et
ric

s

Figure 2.5: A visualization of the relationship between Grafana, Prometheus, Loki
and Graphout.

Graphout

This is a component that can query metrics made by Prometheus and similar tools
and forward it to external services such as Amazon analytics. The data can be used
for auto scaling in AWS.

Chapter 2: Background Theory 15

Kiam

Kiam is used for giving Amazon IAM roles to Pods. Amazon has their own offi-
cial version, but Geodata use Kiam. Kiam runs as an agent on each Node in a
Kubernetes cluster. Using kiam, one can access AWS services from Pods running
in Kubernetes without putting AWS secret keys in the code [11]. This follows the
security principle of least privilege.

Loki

Loki is a type of logging monitor which can be used with Grafana, to make it
possible to show logs for a specific time period. This is very useful if, for example,
some servers lose connection and you want to see the logs for the period of time
the servers were down. This makes it possible to get a better view over an incident
or if you want to see what caused a spike of resource usage.

Prometheus

Prometheus is a tool used for performing unit testing and collecting monitoring
data about health, uptime, etc, from each Node in the infrastructure.

Prometheus has a ’single binary’ installed alongside with it, called Alertmanager.
Alertmanager handles alerts sent by client applications such as the Prometheus
server.

Rook.io (Ceph)

Rook is a storage solution which sets up a storage cluster using Ceph and provides
redundant storage.

This means it can, for example, automatically repair itself if one of the engines
is gone. In other words, it is a form of storage solution with automatic healing
capabilities.

Reloader

The Reloader is a small controller that runs in the cluster and is responsible for
restarting the Pods whenever a new update is made to the config map to make
sure they are always using the latest configuration available.

Project-controller

An addon written by Geodata which controls the creation of Amazon S3 buckets,
Amazon ECR images and, Amazon IAM users and roles. It can also discover these
resources if they already exist. This addon is triggered whenever someone creates
an object in a namespace.

Chapter 3

Secure Multi-Tenancy

This chapter will describe the details, best practices and recommendations that
must be considered when hosting a multi-tenant cluster. The best practices are
based on written guides, articles and previous attacks. Sources are linked in each
best practice. Geodata’s cluster has not been considered for this part of the thesis.

3.1 A Secure Cluster

If multiple tenants reside inside the same cluster without proper separation, a se-
curity breach stemming from one tenant can propagate to the entire cluster [12,
13]. In cases where tenants are not from the same organization, this can be espe-
cially dangerous.

By default, a Kubernetes cluster has essentially no separation measures for ten-
ants, considering that any Pods or resources deployed:

• Are on a flat network, if following the Kubernetes networking model [14].
• As such, can hook onto the same services and see and communicate with

each other.

To secure and effectivize a multi-tenant cluster, measures must be taken to control
access to the cluster, and separate tenants from each other. Figure 3.1 shows the
key parts of this process.

16

Chapter 3: Secure Multi-Tenancy 17

A secure and healthy
Kubernetes cluster

Self-healing and
automated tasks

Auto reload nodes to
always use latest

configurations

Recreate broken
nodes and pods

Monitoring and alerts

Security practices

RBAC

Pod security policies

Network policies

Components

Pods

Addons

Nodes

Isolation and
limitation

Resource quotas

Pod
affinity / anti-affinity

Node affinity

Tenant seperationAuto scaling

Figure 3.1: A secure and healthy Kubernetes cluster. This visualization is based
on the best practices in chapter 3.2.

Chapter 3: Secure Multi-Tenancy 18

The core unit that enables most of the separation in Kubernetes is namespaces. A
namespace is a logical virtual cluster inside the main cluster. Other measures such
as policies are enabled on a per-namespace basis. Each tenant should have their
own namespace, which should be isolated to the degree required by the multi-
tenant implementation (hard or soft). If using a hard implementation, each tenant
should, at the very least, be unable to see other tenants and have their own stor-
age and network planes. Furthermore, no matter which implementation is used,
access to the Kubernetes API should be on a "need-to-use" basis, in that each ten-
ant must have access to read and modify resources only in their own namespace,
and access to the cluster control plane must be given only to the cluster adminis-
trators, not the tenants.

3.2 Findings

3.2.1 List of Best Practices

T-1: Namespaces
T-2: Role-Based Access Control (RBAC)
T-3: Affinity
P-1: Resource Quotas
P-2: Network Policies
P-3: Pod Security Policies (PSP)
ML-1: Monitoring and alerts
ML-2: Per-tenant monitoring
DM-1: Automatically update Pods with the latest configurations
DM-2: Dependency tracker
DM-3: Set up consistent time windows for maintenance
DM-4: Continuous active vulnerability scanning
DM-5: Container security
DM-6: Only use trusted code in the infrastructure
S-1: Storage segregation
S-2: Data encryption

Chapter 3: Secure Multi-Tenancy 19

3.2.2 Tenant separation (T)

T-1: Namespaces

Description:
Every tenant should have a separate namespace, which gives them access
to a logical partition inside the cluster. In addition, all namespaces should
use a hierarchical structure [15].

Reasoning:
Namespaces or virtual clusters can be used to split a cluster into logical
partitions. By giving each tenant their own namespace it is possible to
isolate resources that are spread across teams and projects, isolate tenants
from each other and set up different policies and constraints for each
tenant; E.g.: Resource quotas, network policies, etc.

Advantages

• Logical separation of tenants.
• Each tenant have their own

logs that can be used to
troubleshoot.
• Resources created in one

namespace are not visible
from other namespaces

Disadvantages

• Requires consistent naming
convention.
• Requires further separation to

ensure security and mitigate
risk of data leakage.

Source:

https://aws.github.io/aws-eks-best-practices/security/docs/multitenanc
y/#namespaces

https:
//kubernetes.io/blog/2020/08/14/introducing-hierarchical-namespaces/

https://aws.github.io/aws-eks-best-practices/security/docs/multitenancy/#namespaces
https://aws.github.io/aws-eks-best-practices/security/docs/multitenancy/#namespaces
https://kubernetes.io/blog/2020/08/14/introducing-hierarchical-namespaces/
https://kubernetes.io/blog/2020/08/14/introducing-hierarchical-namespaces/

Chapter 3: Secure Multi-Tenancy 20

T-2: Role-Based Access Control (RBAC)

Description:
Restrict system and resource access to only authorized users by setting up
RBAC.

Reasoning:
By using RBAC one can give a user a specific set of permissions within a
namespace. RBAC can be used not only within individual namespaces as
an RBAC Role, but also across all namespaces in a cluster as an RBAC
ClusterRole. Further one can use RoleBinding or ClusterRoleBinding to
grant a role to users, where RoleBinding grants permissions within a
namespace and ClusterRoleBinding grants cluster-wide permissions.

Advantages

• Enables user separation.
• Easier management of user

access.

Disadvantages

• Easy to misuse if grants are
given unnecessarily.
• Inactive users can be used as

an attack vector.

Source: https://aws.github.io/aws-eks-best-practices/security/docs/mul
titenancy/#role-based-access-control-rbac

https://aws.github.io/aws-eks-best-practices/security/docs/multitenancy/#role-based-access-control-rbac
https://aws.github.io/aws-eks-best-practices/security/docs/multitenancy/#role-based-access-control-rbac

Chapter 3: Secure Multi-Tenancy 21

T-3: Affinity

Description:
Regulate Pods so they can only run on certain Nodes with Pod affinity and
Pod anti-affinity.

Reasoning:
Affinity can be used to determine where the Kubernetes scheduler
schedules Pods. In particular, Pod anti-affinity can be used to make sure
two Pods from different namespaces never run on the same Node, using
Pod labels.

Advantages

• Increases security between
tenants.
• Greatly expands the types of

constraints you can express.
[16]

Disadvantages

• Can be abused by adding or
changing a label.
• Anti-affinity alone can not

enforce security policies.
• Can lead to resource-usage

penalties.

Source: https://cloud.google.com/kubernetes-engine/docs/concepts/mul
titenancy-overview#pod_anti-affinity

https://cloud.google.com/kubernetes-engine/docs/concepts/multitenancy-overview#pod_anti-affinity
https://cloud.google.com/kubernetes-engine/docs/concepts/multitenancy-overview#pod_anti-affinity

Chapter 3: Secure Multi-Tenancy 22

3.2.3 Policies (P)

P-1: Resource Quotas

Description:
Set a resource quota to ensure that all tenants have access to a fair amount
of resources and avoid disproportionate resource usage across tenants.

Reasoning:
In a multi-tenant environment where all tenants share resources, a
resource quota can be used to avoid resource starvation, by defining the
minimal and maximal resources each tenant can have access to. This can
also increase security, because if an adversarial agent gets access to the
API, they can not starve the other tenants of all resources. Specific quotas
will depend on the use-case.

Advantages

• Prevents resource starvation.
• Better stability and

performance.

Disadvantages

• Requires calculation of
minimal needed resource for
each tenant.

Source: https://aws.github.io/aws-eks-best-practices/security/docs/mul
titenancy/#quotas

https://aws.github.io/aws-eks-best-practices/security/docs/multitenancy/#quotas
https://aws.github.io/aws-eks-best-practices/security/docs/multitenancy/#quotas

Chapter 3: Secure Multi-Tenancy 23

P-2: Network Policies

Description:
Create policies for restricting Pod communication within a namespace.

Reasoning:
Network policies are used as a basis for restricting network
communication between Pods in different namespaces. It is not enough to
have network policies to isolate Pods and therefore tenants in a cluster,
one would also need a policy engine to enforce network policies.

Advantages

• Control ingress/egress
connectivity between Pods.
• Mitigates leakage of data

between Pods.
• Ensures that only Pods who

are allowed to communicate
with each other are able to.

Disadvantages

• Requires a policy engine.
• Misconfiguration can hinder

Pod communication.

Source: https://aws.github.io/aws-eks-best-practices/security/docs/mul
titenancy/#network-policies

https://aws.github.io/aws-eks-best-practices/security/docs/multitenancy/#network-policies
https://aws.github.io/aws-eks-best-practices/security/docs/multitenancy/#network-policies

Chapter 3: Secure Multi-Tenancy 24

P-3: Pod Security Policy (PSP)

Description:
PSP should be added to restrict actions and privileges of Pods.

Reasoning:
Pod Security Policy (PSP) gives the opportunity to define a set of
conditions for creating and updating Pods. If a Pod does not run with the
given conditions, it will not be accepted into the system.

Advantages

• Better control over Pod
privileges.
• Stops misconfigured Pods

from being accepted into the
system.

Disadvantages

• Misconfiguration of the
policies can prevent Pods that
are correctly defined from
being created.

Source: https://kubernetes.io/docs/concepts/policy/pod-security-policy
/#what-is-a-pod-security-policy

https://kubernetes.io/docs/concepts/policy/pod-security-policy/#what-is-a-pod-security-policy
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#what-is-a-pod-security-policy

Chapter 3: Secure Multi-Tenancy 25

3.2.4 Monitoring and Logging (ML)

ML-1: Monitoring and alerts

Description:
Set up monitoring of the cluster and make use of automatic alerts to notify
the operational team of service irregularities in real time.

Reasoning:
Enabling monitoring and automatic alerts enables the DevOps team to
stay ahead of potential operational incidents through early detection and
mitigation. Having a dashboard to analyze metrics enables the team to
identify symptoms of issues rather than simply monitoring failure states.

Advantages

• Quicker response to incidents.
• Less downtime.

Disadvantages

• False positives may lead to
waste of resources.
• Can create a false sense of

security. Could potentially
lead to oversights if the
monitoring is not well
implemented or the alarm
system is misconfigured.
• Requires monitoring services

such as Grafana or
Prometheus.

Source: https://sysdig.com/blog/alerting-kubernetes/

 https://sysdig.com/blog/alerting-kubernetes/

Chapter 3: Secure Multi-Tenancy 26

ML-2: Per-tenant monitoring

Description:
When monitoring systems and resources, have one separate section for
each tenant.

Reasoning:
Monitoring on a per-tenant basis makes it clearer where certain issues
may be arising, such as unfair distribution of resources. It also makes it
significantly simpler for each development team to check their own
statistics.

Advantages

• Easier for tenants to see their
own resource usage.
• Simpler to troubleshoot a

specific tenant.

Disadvantages

• Cost of deploying multiple
monitoring services.

Source: https://cloud.google.com/kubernetes-engine/docs/best-practices
/enterprise-multitenancy#tenant-monitoring

https://cloud.google.com/kubernetes-engine/docs/best-practices/enterprise-multitenancy#tenant-monitoring
https://cloud.google.com/kubernetes-engine/docs/best-practices/enterprise-multitenancy#tenant-monitoring

Chapter 3: Secure Multi-Tenancy 27

3.2.5 Development and Maintenance (DM)

DM-1: Automatically update Pods with the latest configuration

Description: To ensure all Pods are always up to date and using the latest
configuration, make sure Pods are automatically updated whenever
changes to the configuration is made.

Reasoning: Making changes to the configuration files used by Kubernetes
for each Pod will not automatically update the Pod. To make sure that
Pods are always using the correct configuration, implement a system to
automatically update running Pods. Pods using old configurations can
cause instability in the infrastructure and security risks.

Advantages

• No need for manual Node
updates when there is a
configuration update.
• Improves security by always

having the latest version.

Disadvantages

• Configuration might have
issues that can cause Node
failure.

Source:
https://medium.com/@damien.marshall/using-reloader-for-configuratio
n-rollout-in-kubernetes-e0e988077dab

https://medium.com/stakater/stakater-reloader-4c985ac23e3b

https://medium.com/@damien.marshall/using-reloader-for-configuration-rollout-in-kubernetes-e0e988077dab
https://medium.com/@damien.marshall/using-reloader-for-configuration-rollout-in-kubernetes-e0e988077dab
https://medium.com/stakater/stakater-reloader-4c985ac23e3b

Chapter 3: Secure Multi-Tenancy 28

DM-2: Dependency tracker

Description:
Set up a system that keeps track of all dependencies in the infrastructure.

Reasoning:
Keeping track of dependencies in the infrastructure can provide valuable
insight into possible vulnerabilities and risks. The data from the
dependency tracker can be used to make periodic re-evaluations of
dependencies that the system is reliant upon. Dependencies that have
known vulnerabilities, or which are no longer supported can be properly
tracked and addressed.

Advantages

• Better control over which
dependencies needs to be
updated.
• Better control over which

dependencies are used in the
system.

Disadvantages

• If other systems that track
vulnerabilities are in place,
additional systems may be
excessive, and may contribute
to data overload

Source: https://www.bbva.com/en/vulnerability-management-in-depend
encies-in-ci-cd-environments-with-open-source-tools/

https://www.bbva.com/en/vulnerability-management-in-dependencies-in-ci-cd-environments-with-open-source-tools/
https://www.bbva.com/en/vulnerability-management-in-dependencies-in-ci-cd-environments-with-open-source-tools/

Chapter 3: Secure Multi-Tenancy 29

DM-3: Set up consistent time windows for maintenance

Description: Decide on a time period where maintenance and updates to
the infrastructure should be done.

Reasoning: By having a set time period for when maintenance and
updates should be applied to the infrastructure, it is possible to keep the
impact of a failed update relatively small. Having a consistent time
window for updates can also help identify security breaches, e.g. if a
significant change to the infrastructure is detected outside a maintenance
time window.

Advantages

• Members of the organization
can prepare for downtime.
• Updates can be scheduled

when someone is available to
respond, should an
unforeseen incident occur.
• Easier to spot unusual

changes to the infrastructure.

Disadvantages

• Small updates can not be sent
out immediately when they
are ready.
• Large updates can, in some

cases, make it more difficult
to discover which part of the
update is at fault if something
breaks.

Source: https://www.pktech.net/2019/01/picking-the-right-approach-to
-it-maintenance-windows/

https://www.pktech.net/2019/01/picking-the-right-approach-to-it-maintenance-windows/
https://www.pktech.net/2019/01/picking-the-right-approach-to-it-maintenance-windows/

Chapter 3: Secure Multi-Tenancy 30

DM-4: Continuous active vulnerability scanning

Description: Monitor running services for open vulnerabilities by
passively scanning the system.

Reasoning: In addition to keeping track of vulnerable dependencies and
images, actively scanning Pods for known vulnerabilities is a good way to
ensure patches are working as intended, policies are properly followed,
and quickly identify any accidental configuration changes before potential
vulnerabilities are exploited by third parties.

Advantages

• Potential discovery of
vulnerabilities before they can
be exploited.
• Patches can be applied before

anyone can fully exploit the
vulnerability.

Disadvantages

• False sense of security if the
scanning does not reveal
smaller vulnerabilities
• Running the software costs

resources and may have
additional licensing costs.

Source:
https://www.stackrox.com/post/2020/05/kubernetes-security-101/

https://www.stackrox.com/post/2020/05/kubernetes-security-101/

Chapter 3: Secure Multi-Tenancy 31

DM-5: Container security

Description:
Follow best practices specific to container images.

Reasoning:
Maintain security at the container level to restrict access to the physical
Nodes Pods are running on, thereby making sure no unauthorized API
access can be attempted. It is recommended to follow best practices
specifically made for container images. Which specific best practices to
follow are outside the scope of this thesis.

Advantages

• Prevent unauthorized access.
• Secure containers and their

content.

Disadvantages

• Requires resources to both
find best practices and cross
reference with each container
image
• Hosting a Container Registry

might be needed, which will
cost resources.

Source: https://thenewstack.io/container-security-multitenant/

Chapter 3: Secure Multi-Tenancy 32

DM-6: Only use trusted code in the infrastructure

Description:
Before using a program, addons and other types of code in the
infrastructure, evaluate whether the developers behind the code or the
code itself can be trusted.

Reasoning:
Any code added to the infrastructure can directly impact its performance
and security. For that reason it is imperative that anything that gets added
does not pose any danger to the security and are not malicious. Malicious
code may have threats such as backdoors, viruses, ransomware or simply
not function as they should. The only way one can be somewhat sure code
is safe to use is by looking at the source code. Evaluating if the developers
behind the code itself are trustworthy is also important, since malicious
code may be hidden or the developers may push an update with malicious
code at a later date. An example of this was when the research team at
Aqua Security found 23 container images with Potentially Unwanted
Application (PUA) hidden either within their image layers or downloaded
into their instantiated containers during runtime [17].

Advantages

• More control over what is
running in the infrastructure.
• Less likelihood of having

malicious code in the
infrastructure.

Disadvantages

• Using any new third party
code requires manpower to
do the evaluation.
• Developers will not be able to

use code made by unknown
developers or companies
unless the code is open
source.

Source: https:
//www.whitesourcesoftware.com/resources/blog/kubernetes-security/

https://www.whitesourcesoftware.com/resources/blog/kubernetes-security/
https://www.whitesourcesoftware.com/resources/blog/kubernetes-security/

Chapter 3: Secure Multi-Tenancy 33

3.2.6 Storage (S)

S-1: Storage segregation

Description:
Ensure tenant storage spaces are properly segregated to avoid information
leakage

Reasoning:
By properly segregating tenants so they can not access another tenants
data, the security of a multi-tenant cluster is greatly increased. This is
especially important when working with a SaaS infrastructure, where
tenants should be completely isolated.

Advantages

• Each tenant can only access
their own data.

Disadvantages

Source: https://d0.awsstatic.com/whitepapers/Multi_Tenant_SaaS_Stora
ge_Strategies.pdf

https://d0.awsstatic.com/whitepapers/Multi_Tenant_SaaS_Storage_Strategies.pdf
https://d0.awsstatic.com/whitepapers/Multi_Tenant_SaaS_Storage_Strategies.pdf

Chapter 3: Secure Multi-Tenancy 34

S-2: Data encryption

Description:
Encryption of customer data at rest.

Reasoning:
All customer data at rest should be encrypted. This provides increased
data protection in case of security incidents, preventing data leakage from
customers. Encrypting data at rest also provides a security mechanism to
limit the exposure in a lateral attack including previously unknown
threats, so long as the actor also has access to the key management system.

Advantages

• Ensures security of customer
data in case of a data breach
• Provides an extra layer of

privacy by protecting
sensitive data

Disadvantages

• Requires resources to encrypt
and decrypt data
• Requires an encryption key

management system to
manage the encryption keys
• If encryption keys are lost, the

data may also be permanently
lost unless there are backups
of the keys.

Source:
https://aws.github.io/aws-eks-best-practices/security/docs/data/

https://aws.github.io/aws-eks-best-practices/security/docs/data/

Chapter 4

Implementation Analysis

This chapter will go through the actions Geodata has taken to securely and effect-
ively enable multi-tenancy in their cluster. These actions are directly mapped to
our findings in chapter 3. The data gathered is based on workshops and meetings
with Geodata along with source code analysis from our simulated GDO cluster.

4.1 Geodata Security Measures

4.1.1 List of Security Measures

Geo-T-1: Namespaces
Geo-T-2: Role-Based Access Control (RBAC)
Geo-P-1: Resource Quotas
Geo-ML-1: Monitoring and alerts
Geo-ML-2: Per-tenant monitoring
Geo-DM-1: Automatically update Pods with the latest configuration
Geo-DM-2: Maintenance policy
Geo-DM-3: Image Vulnerability Scanning
Geo-DM-4: Only use trusted code
Geo-S-1: Storage segregation
Geo-S-2: Data encryption

35

Chapter 4: Implementation Analysis 36

4.1.2 Tenant Separation (Geo-T)

Geo-T-1: Namespaces

Description:

Geodata use namespaces to separate tenants and their resources.

How it is implemented:

Geodata have one separate namespace for each of their tenants (prefixed
gdonline-{projectname}) and any addons that requires running Pods.

Geo-T-2: Role-based access control (RBAC)

Description:

Geodata uses role-based access control to regulate access to create and
view resources.

How it is implemented:

Geodata have multiple roles in each of the namespaces, e.g.:

1. An operator role to manage resources
2. A role to manage addons and service accounts.

Geodata have implemented RBAC by using both Kubernetes RBAC and
Amazon IAM, where Kiam is used to connect Amazon IAM roles with
Kubernetes roles. RBAC users are made by the project-controller addon.

Chapter 4: Implementation Analysis 37

4.1.3 Policies (Geo-P)

Geo-P-1: Resource Quotas

Description:

Resource Quotas are used by Geodata to ensure that all tenants always
have access to resources.

How it is implemented:

Geodata have specified how many requests on CPU, memory and local
ephemeral storage Pods can make.

4.1.4 Monitoring and Logging (Geo-ML)

Geo-ML-1: Monitoring and alerts

Description:

Geodata uses a combination of addons to monitor the health and other
metrics of their cluster.

How it is implemented:

To monitor their multi-tenant cluster, Geodata uses a collection of
different addons.

Geodata use Prometheus to gather metrics, Grafana for visualization of
the data, while Graphout is used to send the data to AWS. Loki is used for
log aggregation, and Alertmanager is used to manage alerts.

Prometheus is self hosted by Geodata and the other addons are used on
top or alongside Prometheus.

Chapter 4: Implementation Analysis 38

Geo-ML-2: Per-tenant monitoring

Description:

Geodata has monitoring on a per-tenant basis.

How it is implemented:

Geodata performs monitoring on a namespace basis, which can be viewed
through Grafana.

4.1.5 Development and Maintenance (Geo-DM)

Geo-DM-1: Automatically update Pods with the latest
configuration

Description:

Pods get updated whenever an update to the configurations are made.

How it is implemented:

Geodata use the reloader addon to automatically perform a manually
specified update strategy for Pods (or more correctly, a Deployment)
whenever an update is made to the configuration files, so all Pods are in
accordance with the latest configuration changes. If no update strategy is
specified, rolling update is used.

Geo-DM-2: Maintenance policy

Description:

A policy on how and when maintenance can be done.

How it is implemented:

Maintenance or updates are only done when there is a need for new
versions or patches. Low risk updates are often done in work hours, while
high risk updates are made during the evening, night, and weekends.
Geodata require that no update should result in downtime of the system.
If downtime is unavoidable, there will be a notice given internally at least
a week before pushing the update.

Chapter 4: Implementation Analysis 39

Geo-DM-3: Image Vulnerability Scanning

Description:
Geodata have vulnerability scanning on their docker repository.

How it is implemented:
Every time Geodata push an image to their docker repository, Amazon
Elastic Container Registry (Amazon ECR) will do a vulnerability scan of
the image and send events to Amazon EventBridge [18].

Geo-DM-4: Only use trusted code

Description:
Geodata only use code from trusted sources and code they have reviewed.

How it is implemented:
Geodata have chosen to trust the Cloud Native Computing Foundation
(CNCF) because they have strict policies when it comes to the conduct of
their project maintainers [19]. Geodata also use code from other sources
which they review and fork to their own project repository before using.

4.1.6 Storage (Geo-S)

Geo-S-1: Storage segregation

Description:

Geodata separate tenant storage to ensure security of information.

How it is implemented:

Amazon Simple Storage Service (Amazon S3) ensures by default that
users only have access to resources they create. If a tenant has multiple
users, access can be regulated using Amazon IAM. However, there are
certain cases where tenant storage may not be completely segregated, see
section 5.5.2.

Chapter 4: Implementation Analysis 40

Geo-S-2: Data encryption

Description:

Encryption of tenants data.

How it is implemented:

Geodata use Amazon S3 to store and encrypt their data. Amazon S3 store
resources in buckets that get encrypted and Amazon Elastic Block Store
(Amazon EBS) volumes makes sure that the Ceph storage is encrypted.
Amazon S3 buckets are created by project-controller when a tenant
creates a bucket object (CRD) in their namespace. The keys are renewed
every 6 months.

Chapter 5

Implementation Assessment

This chapter is confidential, see Appendix_Bacheloroppgave_multi_tenancy.pdf
in attachments.

41

Chapter 6

Recommended Changes

This chapter is confidential, see Appendix_Bacheloroppgave_multi_tenancy.pdf
in attachments.

51

Chapter 7

Conclusion

7.1 Results

The thesis has broadly discussed what steps a cluster administrator should con-
sider before allowing multiple tenants inside their Kubernetes cluster. Several dif-
ferent sources, mostly consisting of cloud providers, were used to determine a
secure and effective way to host a multi-tenant Kubernetes cluster. Where applic-
able, the best practices are discussed in light of whether they are necessary when
hosting an enterprise multi-tenant cluster, or a Software as a Service multi-tenant
cluster. The results are listed in section 3.2, where each best practice is detailed
with a reasoning, and advantages and disadvantages. The thesis subject area was
inspired by Geodata’s request to get an external opinion on how secure their multi-
tenant cluster configuration is.

Geodata’s request was also to consider what they could do to further improve
security, especially for their next iteration of GDO. An assessment and analysis
of their current infrastructure is located in chapter 4 and 5. The findings of this
thesis have been that they have an infrastructure that is working, stable and se-
cure given the context, but there are some improvements to the security measures
that should be implemented before moving to a SaaS architecture. These recom-
mendations are detailed in chapter 6, where each recommendation is discussed,
with advantages and disadvantages of implementing the recommendation.

The findings and recommendations provided mainly consist of steps to further
isolate tenants within the cluster, with the theoretical end-goal of completely sep-
arating tenants, to the degree possible with the technologies that currently exist.
The thesis attempts to provide clear, concise steps for Geodata to consider for
moving towards this goal. The recommendations are written with the intent to
target the next version of GDO.

56

Chapter 7: Conclusion 57

7.2 Further Research

Multi-tenancy in Kubernetes is a relatively new subject, but it is being adopted
by companies all over the world who want to utilize the resource efficiencies of
Kubernetes and the cloud, but who either have teams that work on fundament-
ally separate projects, or are providing a hosted Kubernetes cluster for others to
use. Currently, scientific research into the security concerns that arise when host-
ing a multi-tenant setup are very limited. This was the inspiration for this thesis,
however, this means there was very little previous research to base our recom-
mendations on. Potential further research into the subject matter at hand could
be:

• Consider all Kubernetes resources, such as secrets
• Perform a risk-to-return analysis of multi-tenancy.
• Further practical penetration testing, beyond the networking practical that

was implemented in 5.2.1. E.g. attempting to abuse access to the Kubernetes
API, or gain access to other tenants data.
• As mentioned in 6.3, Pod Security Policy is being deprecated. As of the pub-

lishing of this thesis, multiple solutions are being developed or are available,
and these could be compared.

Further, creating an all-in-one multi-tenant addon to Kubernetes would be bene-
ficial to all the future adaptors of multi-tenancy, but this would be an immense
undertaking, and not all use-cases for multi-tenancy require the same guidelines
and restrictions.

7.3 Project Review

During the project period, all meetings and project work has been done remotely
because of Covid-19. The group cooperation has been adequate; We have had
weekly meetings, following a scrum model, where workloads are divided and dis-
cussed based on what needs to be done before the next meeting. We had a weekly
meeting with our supervisor, where we gave updates and received feedback on
work that had been done the preceding week. This has allowed us to receive con-
structive feedback without bias. We also had bi-weekly meetings with Geodata to
discuss progress and ask any questions that came up between meetings. During
this project we got to receive hands on experience with a real-world infrastruc-
ture used in production. This has allowed us to learn a lot about multi-tenancy,
Kubernetes, Amazon Web Services (AWS) and team work.

Chapter 7: Conclusion 58

7.4 Review of Project Focus Areas

The goal of this project was to make improvement recommendations to Geodata
based on general best-practices and Geodata’s existing cluster. The project was
divided into focus areas to break down the work that had to be done.

Project focus areas and how they were accomplished:

1. Overview of the platform and its components

A brief overview of Geodata’s platform and its components are de-
scribed in chapter 2.3, where there is an infrastructure overview and
description of addons. Geodata’s platform also consist of many AWS
components which are mentioned throughout this thesis. The platform
components were found by researching Geodata’s shared source code
on GitHub and our workshops with Geodata.

2. Security analysis of Geodata’s platform

• How is the security and separation between projects (tenants) achieved
and maintained
• List of existing security measures

Security measures by Geodata that correspond with best-practices are
listed in chapter 4, and how Geodata secure and separate tenants is
detailed in chapter 5, where we discuss measures that are implemen-
ted, but also measures that are missing in Geodata’s infrastructure.
Geodata’s security measures were found by analysing the replicated
cluster, source code on GitHub and meetings with Geodata. In the pro-
ject plan there were also a focus area 2c, but this was removed as it
was practically the same as focus area 5.

3. Look at how Geodata’s platform is set up on AWS, and replicate this setup
ourselves (on a smaller scale)

To set up the replica of Geodata’s cluster we had a couple of work-
shops with Geodata, where they showed us how things were set up
and shared their source code with us through GitHub. These work-
shops were quite useful as Geodata not only showed us how they have
set up their cluster, but they also described what each component was
and did in their cluster.

Chapter 7: Conclusion 59

4. Research best security practices for a generalized multi-tenant Kubernetes
environment

A list of all best-practices the group found is listed in chapter 3. All best-
practices were found using reliable and trusted sources, such as AWS
and Google Cloud. Many best-practices were found, of which Geodata
has implemented most of them.

5. Based on our findings, make recommendations for Geodata to consider

All recommendations that Geodata should consider implementing are
mentioned in chapter 5 and further detailed in chapter 6, along with
how they can implement some of the recommendations. All recom-
mendations are based on which best-practices Geodata have not yet
followed or implemented, with extra weighting being put on hard vs.
soft multi-tenancy, where applicable.

All focus areas of this thesis are covered quite thoroughly. The group hope that the
work we have done is useful to Geodata, and that they will consider implementing
our recommendations in their next iterations of GDO.

Bibliography

[1] G. D. Caruth, ‘Demystifying mixed methods research design: A review of
the literature.,’ Online Submission, vol. 3, no. 2, pp. 112–122, 2013.

[2] C. Fisher, ‘Cloud versus on-premise computing,’ American Journal of Indus-
trial and Busi-ness Management, no. 8, pp. 1991–2006, 2018.

[3] Google cloud computing, [(Accessed 08/03/2021)]. [Online]. Available: ht
tps://en.wikipedia.org/w/index.php?title=Google_Cloud_Platform&oldi
d=1010715672.

[4] Microsoft azure, [(Accessed 08/03/2021)]. [Online]. Available: https://en
.wikipedia.org/w/index.php?title=Microsoft_Azure&oldid=1009248064.

[5] Amazon, Spot, (Accessed 16/04/2021). [Online]. Available: https://aws.a
mazon.com/ec2/spot.

[6] Kubernetes team, What is kubernetes? [(Accessed 07/03/2021)]. [Online].
Available: https://kubernetes.io/docs/concepts/overview/what-is-kuber
netes/.

[7] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune and J.
Wilkes, ‘Large-scale cluster management at Google with Borg,’ in Proceed-
ings of the European Conference on Computer Systems (EuroSys), Bordeaux,
France, 2015.

[8] G. Sayfan, Mastering Kubernetes: Level up your container orchestration skills
with Kubernetes to build, run, secure, and observe large-scale distributed apps,
3rd Edition. Packt Publishing, 2020, ISBN: 9781839213083. [Online]. Avail-
able: https://books.google.no/books?id=ZK7uDwAAQBAJ.

[9] AliBaba cloud, Practices of kubernetes multi-tenant clusters, (Accessed 09/03/2021).
[Online]. Available: https://www.alibabacloud.com/blog/practices-of-ku
bernetes-multi-tenant-clusters_596178.

[10] Google cloud, Cluster multi-tenancy, (Accessed 09/03/2021). [Online]. Avail-
able: https://cloud.google.com/kubernetes-engine/docs/concepts/multit
enancy-overview.

[11] Alexander Brand, Using kiam to access aws resources from kubernetes pods,
(Accessed 21/04/2021). [Online]. Available: https://alexbrand.dev/post
/using-kiam-to-access-aws-resources-from-kubernetes-pods/.

60

https://en.wikipedia.org/w/index.php?title=Google_Cloud_Platform&oldid=1010715672
https://en.wikipedia.org/w/index.php?title=Google_Cloud_Platform&oldid=1010715672
https://en.wikipedia.org/w/index.php?title=Google_Cloud_Platform&oldid=1010715672
https://en.wikipedia.org/w/index.php?title=Microsoft_Azure&oldid=1009248064
https://en.wikipedia.org/w/index.php?title=Microsoft_Azure&oldid=1009248064
https://aws.amazon.com/ec2/spot
https://aws.amazon.com/ec2/spot
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://books.google.no/books?id=ZK7uDwAAQBAJ
https://www.alibabacloud.com/blog/practices-of-kubernetes-multi-tenant-clusters_596178
https://www.alibabacloud.com/blog/practices-of-kubernetes-multi-tenant-clusters_596178
https://cloud.google.com/kubernetes-engine/docs/concepts/multitenancy-overview
https://cloud.google.com/kubernetes-engine/docs/concepts/multitenancy-overview
https://alexbrand.dev/post/using-kiam-to-access-aws-resources-from-kubernetes-pods/
https://alexbrand.dev/post/using-kiam-to-access-aws-resources-from-kubernetes-pods/

Bibliography 61

[12] Z. Feng, B. Bai, B. Zhao and J. Su, ‘Shrew attack in cloud data center
networks,’ in 2011 Seventh International Conference on Mobile Ad-hoc and
Sensor Networks, 2011, pp. 441–445. DOI: 10.1109/MSN.2011.71.

[13] T. Ristenpart, E. Tromer, H. Shacham and S. Savage, ‘Hey, you, get off of
my cloud: Exploring information leakage in third-party compute clouds,’ in
Proceedings of the 16th ACM conference on Computer and communications
security, 2009, pp. 199–212.

[14] Kubernetes team, Cluster networking, (Accessed 11/05/2021). [Online].
Available: https://kubernetes.io/docs/concepts/cluster-administration/n
etworking/.

[15] Kubernetes team, Introducing hierarchical namespaces, (Accessed 25/04/2021).
[Online]. Available: https://kubernetes.io/blog/2020/08/14/introducing
-hierarchical-namespaces/.

[16] Kubernetes team, Assigning pods to nodes, (Accessed 19/04/2021). [On-
line]. Available: https://kubernetes.io/docs/concepts/scheduling-evictio
n/assign-pod-node/.

[17] Assaf Morag, Threat alert: An attack against a docker api leads to hidden
cryptominers? [Article (Accessed 09/03/2021)]. [Online]. Available: https
://blog.aquasec.com/container-vulnerability-dzmlt-dynamic-container-a
nalysis.

[18] Joel Brandenburg, Amazon ecr image scanning, (Accessed 03/05/2021).
[Online]. Available: https://docs.aws.amazon.com/AmazonECR/latest/u
serguide/image-scanning.html.

[19] Cncf code of conduct, (Accessed 19/05/2021). [Online]. Available: https:
//github.com/cncf/foundation/blob/master/code-of-conduct.md.

[20] Kubernetes team, Network policies, (Accessed 18/05/2021). [Online]. Avail-
able: https://kubernetes.io/docs/concepts/services-networking/network
-policies/.

[21] Flannel github, (Accessed 09/05/2021). [Online]. Available: https://githu
b.com/flannel-io/flannel.

[22] X. Nguyen et al., Network isolation for kubernetes hard multi-tenancy, 2020.

[23] L. Chen, R. DeJana and T. Nassar, Sharing enterprise cloud securely at ibm,
2021. DOI: 10.1109/MITP.2020.2977029.

[24] Kops website, (Accessed 16/05/2021). [Online]. Available: https://kops.si
gs.k8s.io/.

[25] Kops networking overview, (Accessed 16/05/2021). [Online]. Available: ht
tps://kops.sigs.k8s.io/networking/.

[26] Kubernetes team, Pod security policies, (Accessed 18/05/2021). [Online].
Available: https://kubernetes.io/docs/concepts/policy/pod-security-polic
y/.

https://doi.org/10.1109/MSN.2011.71
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/blog/2020/08/14/introducing-hierarchical-namespaces/
https://kubernetes.io/blog/2020/08/14/introducing-hierarchical-namespaces/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://blog.aquasec.com/container-vulnerability-dzmlt-dynamic-container-analysis
https://blog.aquasec.com/container-vulnerability-dzmlt-dynamic-container-analysis
https://blog.aquasec.com/container-vulnerability-dzmlt-dynamic-container-analysis
https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-scanning.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-scanning.html
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://github.com/flannel-io/flannel
https://github.com/flannel-io/flannel
https://doi.org/10.1109/MITP.2020.2977029
https://kops.sigs.k8s.io/
https://kops.sigs.k8s.io/
https://kops.sigs.k8s.io/networking/
https://kops.sigs.k8s.io/networking/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/

Bibliography 62

[27] Kubernetes team, Podsecuritypolicy deprecation: Past, present, and future,
(Accessed 04/05/2021). [Online]. Available: https://kubernetes.io/blog
/2021/04/06/podsecuritypolicy-deprecation-past-present-and-future/.

[28] Dependencytrack github, (Accessed 29/04/2021). [Online]. Available: http
s://github.com/DependencyTrack/dependency-track.

[29] Karen Bruner, Container image security: Beyond vulnerability scanning, (Ac-
cessed 18/04/2021). [Online]. Available: https://www.openshift.com/bl
og/container-image-security-beyond-vulnerability-scanning.

https://kubernetes.io/blog/2021/04/06/podsecuritypolicy-deprecation-past-present-and-future/
https://kubernetes.io/blog/2021/04/06/podsecuritypolicy-deprecation-past-present-and-future/
https://github.com/DependencyTrack/dependency-track
https://github.com/DependencyTrack/dependency-track
https://www.openshift.com/blog/container-image-security-beyond-vulnerability-scanning
https://www.openshift.com/blog/container-image-security-beyond-vulnerability-scanning

Appendix A

Project plan

63

DCSG2900 - BACHELOR THESIS BACHELOR OF SCIENCE IN
DIGITAL INFRASTRUCTURE AND CYBER SECURITY 2021

Project Plan - Security within a
multi-tenant kubernetes cluster

Authors:
Simen Asplund Kjeserud

Vemund Rahm
Sonja Yoosuk Sanden

Eirik Tobiassen

8th March 2021

Contents

Contents . i
1 Goals and Limitations . 1

1.1 Background . 1
1.2 Goals of the project . 1
1.3 Limitations . 1

2 Scope . 2
2.1 Subject area . 2
2.2 Issue / Task description . 2

3 Project Organization . 3
3.1 Roles and responsibilities . 3
3.2 Group rules . 3

4 Planning, Follow-up and Reporting . 5
4.1 Progress plan . 5
4.2 System development model / Process model 5
4.3 Plan for status meetings and decision points in the period 6

5 Quality Assurance . 7
5.1 Documentation and source code . 7
5.2 Risk analysis . 7

6 Executive plan . 9
6.1 Gantt Chart . 9
6.2 Work breakdown structure . 10
6.3 Milestones . 10
6.4 Plan for time and resource spending 10

A Project contract . 11

i

Chapter 1

Goals and Limitations

1.1 Background

Geodata AS runs a kubernetes platform hosted in Amazon Web Services that is
used by their development teams to deploy applications and services for multiple
customers in a multi-tenancy configuration.
There are generally two different ways to run a kubernetes platform that hosts
multiple applications like this. One way, and perhaps the most obvious, is to run
multiple clusters in kubernetes, one for each tenant (different customers). Another
way is to implement multi-tenancy. In such a configuration, multiple tenants all
share resources deployed in a single cluster. Geodata AS runs a kubernetes plat-
form for multiple tenants, using the latter approach. It is important that these
tenants are separated properly, so that security and segregation between custom-
ers is well maintained.

1.2 Goals of the project

The goal of this project is to research the security in a multi-tenant kubernetes
cluster. The project will focus on access control between tenants, especially how
the information between tenants are secured.

1.3 Limitations

The project will have the following limitations:

• Research will be done on Amazon Web Services
• The research must have a reasonable spending
• The research environment will be a smaller scale version of Geodatas cluster
• Research has to be done on a multi-tenant kubernetes cluster

1

Chapter 2

Scope

2.1 Subject area

The main focus of this project is researching multi-tenant kubernetes clusters and
the security between tenants. We will be dealing with subject areas such as:

• Infrastructure as code
• Infrastructure operation
• Software development
• Software and infrastructure security

2.2 Issue / Task description

Look at general solutions for multi-tenant services, consider how security can be ef-
fectively maintained in such an environment, compare our findings with Geodata’s
experiences and make recommendations and best practices based on this.

Project focus areas:

1. Overview of the platform and its components (e.g: pipeline, DNS, CI/CD,
etc)

2. Security/project analysis of Geodata’s platform

a. How is the security and separation between projects (tenants) achieved
and maintained

b. List of existing security measures
c. Security measures that should be implemented

3. Look at how Geodata’s platform is set up on Amazon Web Services, and
replicate this setup ourselves (on a smaller scale)

4. Research best security practices for a generalized multi-tenant kubernetes
environment

5. Based on what we find, make recommendations for Geodata to consider

2

Chapter 3

Project Organization

3.1 Roles and responsibilities

3.2 Group rules

The group have outlined a rule structure as a separate document, that has been
signed by all members. The full document can be found in Appendix A (in Nor-
wegian), but a quick summary is provided here:

• Microsoft Teams will be used for communication, while overleaf will be used
to write the report.

3

Chapter 3: Project Organization 4

• The group will have one status meeting every week on Tuesdays, and a
summary meeting every other Friday.
• All work should be done within the agreed upon time, if this is not met, the

group leader should be informed.
• If a member cannot meet to an agreed time, a 12 hour notice must be given.
• If there are any academic disagreements, the groups supervisor should be

contacted.

Chapter 4

Planning, Follow-up and
Reporting

4.1 Progress plan

The project owner has expressed no specific needs in terms of the research, plan-
ning, testing or writing phases of the project. We will be supplied with the ne-
cessary resources to research and experiment with an infrastructure test envir-
onment, but the methodology for writing our paper is up to us. Considering the
current COVID pandemic our workflow will have to be fully digitized to be able to
quickly adapt to changes both internally in the group and external factors, such
as governmental restrictions to reduce the spread of the virus.

4.2 System development model / Process model

The paper we are writing is dependent on our ability to do research effectively.
For that reason, it is important that we don’t waste time while we also keep track
of what the other group members are doing to mitigate the chance of working on
something that is already done, in addition to helping out if someone are stuck.
It is also important for us to have a clear idea of what each of our tasks is, so
we don’t end up misunderstanding what we need to get done. As a consequence
of our group consisting of four people with no/little previous history working to-
gether it is also important that we have a way to know if someone has taken on
too much or too little responsibility.
Keeping all of this in mind we decided to settle on the agile process model called
Scrum.

Following the Scrum approach allows us to easily organize our project into smaller
and more manageable tasks, which allows us to prioritize tasks more effectively
and have a detailed schedule. This will also help us notice at an earlier stage if
we are behind the schedule and need to re-prioritize our tasks in the backlog. We

5

Chapter 4: Planning, Follow-up and Reporting 6

are using the tasks tool in Microsoft Teams to keep track of our tasks during each
sprint.

4.3 Plan for status meetings and decision points in the
period

The group have fixed meetings every week, some of which are mentioned in the
group rules as well. (There might be additional meetings based on the need):

• On every second Tuesday at 09:00 (bi-weekly) we have a meeting where
we plan the sprint that will happen for the next to weeks. At these meetings
we set up a backlog of tasks and prioritize them.
• At every Tuesday from 09:00 where there is not a sprint planning meeting,

we have a smaller meeting (mid-sprint review) that will just focus on re-
prioritizing tasks in the backlog if we notice that we are behind the schedule.
• There is meetings with our supervisor every Wednesday from 09:00 to 09:30
• There is meetings with our client Geodata every other Thursday from 13:00

to 13:30 (the day before sprint review)
• On every second Friday from 14:30 (about two weeks after the previous

sprint planning meeting) we have a sprint review meeting where we sum-
marize what we have done, and make sure that we finished everything we
had planned for that sprint, in addition to review whether or not we should
have done something different and this way improve our methods before
the next sprint.
• We have frequent meetings / stand-up meetings through the week where

we discuss:

◦ What was my contribution yesterday?
◦ What shall be my contribution today?
◦ Are there any problems I am stuck with / Do I need help from the other

group members?

These are planned during each sprint planning meeting, because there are
days where group members don’t have time because of other classes and
work.

Decisions will as mentioned in the group rules, be done by the whole group
and if the group can not find common ground, we will ask our supervisor for
input.

Chapter 5

Quality Assurance

5.1 Documentation and source code

All source code, scripts, and other items of such a nature, that do not contain
infrastructure-revealing code, or any other code that presents a security issue,
will be maintained in a version control system, so the group can more easily verify
who has written what, and see all changes made. Any such code is required to be
documented (i.e. commented) well.
The working and writing tools the group will use for the project are outlined in
the group rules in Appendix A.

5.2 Risk analysis

The group sees that there is a risk that the project may be inhibited by several
factors. Here we will list the ones we have identified, along with mitigating factors
we will take, if any.

• Long-term disease, student drop out, etc.
Mitigating factors:

◦ If this occurs, assess whether the work can be turned over to the other
members, or if the scope will have to be reduced.

• Geodata loses the ability to work with us, due to external factors, e.g. they
cannot spare time due to lots of deadlines in their regular work.
Mitigating Factors: None
• The work is more complicated than the group assumes

Mitigating factors:

◦ Make sure we properly understand the underlying systems before
starting to write the core parts of the assignment.
◦ Reduce the scope, if the issue arises.

• The group loses the overleaf document, containing the work

7

Chapter 5: Quality Assurance 8

Mitigating factors:

◦ Overleaf stores all documents on their servers, and there is a history
section to see previous changes. Should their infrastructure completely
fail, we will use the regular updates that we have sent to our project
supervisor and client as a backup.

Chapter 6

Executive plan

6.1 Gantt Chart

9

Chapter : Executive plan 10

6.2 Work breakdown structure

• Introduction to existing platform

◦ Gather information on existing security mechanisms

− Platform infrastructure
− Dedicated Intrusion Detection- and Intrusion Prevention Systems
− Specific design considerations in their platform

◦ Risk analysis

− Establish acceptable risk levels

• Research existing multi-tenant configurations
• Finalize recommendations and best practices

◦ Analyze suitability for different security measures

6.3 Milestones

• When we have made an overview over the platform, components and se-
curity measures
• When the analysis of Geodata’s platform is done
• When the recommendations and best practices are completed
• When the project report is finished

6.4 Plan for time and resource spending

The group will initially spend their time according to the Gantt Chart outlined
earlier in this section, however estimating exactly how long the tasks in this as-
signment will take is imprecise, at best. No one in the group has worked with
multi-tenant clusters before, and we don’t know exactly what we will encounter.
We expect that we will find interesting parts of the platform to research, as we
begin to learn how the system works. We simply plan to compare our findings
through researching multi-tenant clusters, with what we see in Geodata’s imple-
mentation, and see what issues or areas of research result from these observations.

The group expects a need to familiarize ourselves more with Kubernetes, Amazon
Web Services (AWS), the cluster setup itself, and other technologies used by Geodata
in the first three weeks of the project. Geodata has kindly offered to host a smaller
scale version of their multi-tenant setup in AWS, which we will use to evaluate
the platform.

Appendix A

Project contract

11

Gruppenummer: 120

DCSG2900 - Bacheloroppgave Bachelor i digital infrastruktur og cybersikkerhet

Eirik Tobiassen, Simen Kjeserud, Sonja Yoosuk Sanden, Vemun Rahm

January 12, 2021

Contents

1 Beskrivelse 1

2 Organisering 1
2.1 Roller . 1
2.2 Ansvar . 1

3 Kommunikasjon- og arbeidsplatformer 1

4 Møter 2

5 Regler 2

6 Sanksjoner og konsekvenser ved regelbrudd 3

3 KOMMUNIKASJON- OG ARBEIDSPLATFORMER

1 Beskrivelse

Gruppen best̊ar av 4 medlemmer som har ulik erfaring innen IT-sikkerhet. Formålet med
dette dokumentet er å gjøre rede for regler alle gruppemedlemmene skal følge, roller til de
ulike medlemmer, gjøre rede for felles kommunikasjonsplatfrom og verdier, kriterier for møter,
arbeidskrav, og konsekvenser ved regelbrudd eller avvik fra kontrakten.

2 Organisering

2.1 Roller

Leder Vemund Rahm.

Vara Simen Kjeserud.

Sekretær G̊ar p̊a rundgang

Medlem Gjøre ting.

2.2 Ansvar

Leder

• Delegere arbeidsoppgaver ved behov.

• Ta faglige avgjørelser ved konflikter.

Vara

• Hjelpe gruppelederen med sine ansvar ved behov.

• Ta over leder-rollen hvis lederen svikter.

Sekretær

• Ta notater av hver møte i stikkordsform.

Gruppemedlemmer

• Gjøre arbeidsoppgaver som delegert av gruppelederen.

• Møte opp p̊a flest mulige gruppemøter.

3 Kommunikasjon- og arbeidsplatformer

Teams blir brukt til å delegere arbeidsoppgaver og til kommunikasjon innad i gruppen. Arbeidsplatformen
gruppen bruker er Overleaf.

1

5 REGLER

4 Møter

Organisasjon Minst én gang i uken skal det utføres et statusmøte internt i gruppen. Flere
møter kan bli organisert etter behov, og kan bli holdt over nettet via forh̊andsbestemt kommunikasjonskanal.
Det skal utføres et oppsummeringsmøte minst én gang annenhver uke, hvor gruppen diskuterer
og oppsummerer det som har blitt gjort.

Tidspunkt Statusmøter vil bli holdt hver tirsdag klokken 09:00. Oppsummeringsmøter vil bli
holdt annenhver fredag klokken 14:30.

Struktur Statusmøtene vil starte med en situasjonsrapport med varighet p̊a rundt fem minutter.
Deretter skal gruppen diskutere rundt hva agendaen for neste møtet skal være. Ved slutten av
statusmøtet skal det være bestemt hva som skal bli gjort til neste statusmøte, samt hva temaet
skal være.

5 Regler

§1 Arbeidskrav

a. Arbeid som suppleres til alle gruppemedlemmer skal utføres innen avtalt tid.

b. N̊ar og hvordan arbeid utføres er opp til den enkelte som har ansvar.

c. Hvis ikke arbeid utføres innen den bestemte tid skal det bli tatt opp med gruppeleder.

§2 Oppmøtekrav

a. Møter skjer ved avtalt tidspunkt.

b. Statusmøter tar sted hver tirsdag klokken 09:00, med mindre annet er avtalt.

c. Hvis et gruppemedlem ikke har mulighet til å møte opp skal det gis beskjed minst 12 timer
i forvei til gruppen.

§3 Møtereferat

a. Kort referat skal bli skrevet under hvert møte av daværende sekretær.

§4 Opplysning om avvik i §1 Arbeidskrav

a. Gruppemedlemmer er pliktig til å gi beskjed tidlig om de ligger bak med tildelt arbeid.

b. Hvis gruppemedlemmer oppdager brudd p̊a reglement skal dette bli tatt opp med gruppen
før en eventuell besluttelse blir vedtatt.

§5 Faglige uenigheter

a. N̊ar gruppen skal ta stilling til et problem skal alle medlemmers mening bli tatt i betrakning.

b. Ved faglige uenigheter, hvor gruppen ikke klarer å komme til noen form for enighet skal
veileder (Erik Hjelmås) involveres.

2

6 SANKSJONER OG KONSEKVENSER VED REGELBRUDD

6 Sanksjoner og konsekvenser ved regelbrudd

a. Ved første brudd p̊a reglementet vil det bli gitt muntlig advarsel fra gruppen, gjennom
gruppeleder til vedkommende.

b. Ved andre brudd p̊a reglementet vil det bli sendt en skriftlig klage fra gruppen, gjennom
gruppeleder til vedkommende.

c. Ved tredje brudd p̊a reglementet vil faglærer kontaktes ang̊aende problemstilling.

Medlemmers signatur

Navn: Simen Kjeserud

Signatur: Dato:

Navn: Vemund Rahm

Signatur: Dato:

Navn: Sonja Yoosuk Sanden

Signatur: Dato:

Navn: Eirik Tobiassen

Signatur: Dato:

3

12.01.2021

12.01.2021

Appendix B

Addons

Cert-manager

• All of the certificate handling is integrated.
• Uses Let’s Encrypt, which saves money.
• Let’s Encrypt is a free, automated, and open certificate authority (CA), run

for the public’s benefit.
• Digital certificates are needed in order to enable HTTPS (SSL/TLS) for web-

sites.

Cluster-AutoScaler

• Scaling and adjust the amount of nodes based on needs
• This helps the system run optimally and makes sure the system has enough

resources

Descheduler

• This addon is used for balancing clusters so they are more evenly distributed
among the node group.
• This is important for larger clusters.

efs-csi (AWS EFS file systems)

• Some pods are dependant on using the same storage as other pods; For ex-
ample if multiple pods needs to read the same file that is uniquely generated
by another pod.
• Geodata could also have used Rook for this, seeing that Rook also has sup-

port for a filesystem, but they decided that using efs-csi was a better solution
and simpler to use.

82

Chapter B: Addons 83

External-dns

• Creates DNS entries. Has a namespace filter and can control what domains
each project has access to.

Extras

• PodMonitor

nginx-ingress-controller

• Responsible for the Ingress in the Kubernetes cluster.
• Traffic management solution.

node-termination-handler (AWS)

• Responsible for making sure that nodes are terminated gracefully.

Postgres-operator

• Manages PostgreSQL clusters on Kubernetes.

RabbitMQ-operator

CloudFormation

• Amazon technology.
• Templating system.
• Can define resources, which Amazon will define and create for you.
• Very similar to yaml templates in Kubernetes.
• Used for building VPC (Amazon Virtual Private Cloud); Don’t have to use

GUI, etc.

Appendix C

Geodata PowerPoint Slide

Figure C.1: Slide from a Geodata PowerPoint

84

	Sammendrag
	Abstract
	Contents
	Figures
	Acronyms
	Glossary
	Introduction
	Background
	Scope
	Subject Areas
	Task Description

	Limitations
	Purpose
	Target Group
	The Groups Background
	Roles
	Methodology
	Research Methods
	Types of Data
	How the Data is Used

	Structure

	Background Theory
	Amazon Web Services
	What is Amazon Web Services?
	Background

	Kubernetes
	What is Kubernetes?
	Objects
	Why Kubernetes is Right for Geodata
	Multi-tenancy

	Architecture
	Infrastructure
	Kubernetes Addons

	Secure Multi-Tenancy
	A Secure Cluster
	Findings
	List of Best Practices
	Tenant separation (T)
	Policies (P)
	Monitoring and Logging (ML)
	Development and Maintenance (DM)
	Storage (S)

	Implementation Analysis
	Geodata Security Measures
	List of Security Measures
	Tenant Separation (Geo-T)
	Policies (Geo-P)
	Monitoring and Logging (Geo-ML)
	Development and Maintenance (Geo-DM)
	Storage (Geo-S)

	Implementation Assessment
	Recommended Changes
	Conclusion
	Results
	Further Research
	Project Review
	Review of Project Focus Areas

	Bibliography
	Project plan
	Addons
	Geodata PowerPoint Slide

