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Abstract

Mobiles have gained an important role in society and everyday life in
recent decades. Today, mobiles are used in several critical functions,
such as health, banking, and work tasks. This trend has also meant
that malware authors have paid more attention to the mobile platform
as a counterpart to the traditional PC. Android is the most popular
mobile operating system, with almost 80% of the market. In addition to
its popularity, Android also has a far more open system than its most
prominent opponent, iOS. The popularity and openness make Android
an attractive target for malware authors.

Academic literature has offered numerous solutions to prevent and pro-
tect mobile users from harmful products. Besides, the antivirus industry
generates billions annually to protect against mobile malware. Neverthe-
less, new research and solutions are still required to keep pace with the
constant development of malware.

The most common methods of analyzing malware are static and dynamic
analysis. While static analysis reviews the code without running the
application, dynamic analysis inspects the application’s behavior. Both
methods have their advantages and disadvantages. In this master’s thesis,
we have used a hybrid detection system, which means that we have
combined static and dynamic analysis. The main advantage of such an
approach is that we include both methods’ benefits and, at the same time,
equalize the disadvantages. But this is a very resource-intensive method,
which we also had to consider. We have also included reputation-based
analysis in our hybrid model, an approach that has not been widely
researched. Reputation-based analysis works by gathering and pursuing
several attributes such as signature, source, age, and usage statistics. Our
hybrid solution consists of several existing tools combined into a pipeline.
We selected the tools based on various criteria, and we emphasized, among
other things, that the tools should be scalable, automatic, and updated.

We have conducted several experiments with the selected tools. Primarily,
we have experimented with both a pre-generated data set and real-time
data. Our findings show that including reputation-based analysis can
yield better results. In our case, static and dynamic analysis correctly
detected 91.58% of our data. By including reputation-based analysis,



98.61% of the data was identified correctly, with a false-positive rate of
less than 1%. Our method is fully automated, but not very scalable as
it is now. Through the project, we have had a major focus on keeping
the solution updated to today’s threat landscape. Based on results from
experiments with real-time data, we have managed to achieve this goal.

Throughout the work, we observed that there is a need for a universal
method for evaluating different detection systems. This is necessary to
compare different systems easily. We also noted that there is a need
for new tools with open-source code in malware analysis. Both of these
observations can be a basis for future work.



Sammendrag

Mobiler har de siste tiårene fått en viktig i rolle i samfunnet og i hver-
dagslivet. I dag blir mobiler brukt i samtlige kritiske funksjoner, som
blant annet helse, bank og arbeidsoppgaver. Denne utviklingen har også
medført at skadevareforfattere har viet mer oppmerksomhet til den mobile
plattformen som et motstykke til den tradisjonelle PCen. Android er det
mest populære mobile operativsystemet med nesten 80% av markedet. I
tillegg til populariteten, har Android også et langt mer åpent system enn
dens største motstander, iOS. Dette gjør Android til et attraktivt mål
for skadevareforfattere.

Den akademiske litteraturen har foreslått utallige løsninger for å hindre
og beskytte mobilbrukere fra skadevare. Dessuten genererer antivirusind-
sustrien milliarder årlig for å tilby beskyttelse mot skadevare på mobil.
Likevel kreves det stadig ny forskning og løsninger for å holde tritt med
skadevarens konstante utvikling.

De mest vanlige metodene for å analysere skadevare er statisk- og dyna-
misk analyse. Statisk analyse gjennomgår koden uten å kjøre applikasjo-
nen, mens dynamisk analyse inspiserer applikasjonens oppførsel. Begge
metodene har sine fordeler og ulemper. I denne masteroppgaven har vi
brukt et hybrid detekteringssystem, som innebærer at vi har kombinert
statisk- og dynamisk analyse. Den største fordelen ved en slik tilnærming
er at vi inkluderer fordelene ved begge metodene og samtidig utjevner
ulempene. Men dette en svært ressurskrevende metode, noe som vi også
har måttet vurdere. Vi har også inkludert rykte-basert analyse i vår
hybride modell, en metode som ikke er særlig brukt i den akademiske
sirkel. Rykte-basert analyse fungerer ved å samle og følge flere attributter
som signatur, kilde, alder og bruksstatistikk. Vår hybride løsning består
av flere eksisterende verktøy. Disse ble valgt ut i fra en rekke kriterier, og
vi la blant annet vekt på at verktøyene skulle være skalerbar, automatisk
og oppdaterte.

Vi har gjennomført flere eksperimenter med de valgte verktøyene. I
hovedsak har vi eksperimentert med både et pre-generert datasett og
sanntidsdata. Våre funn viser at en rykte-basert analyse potensielt kan
erstatte den tradisjonelle signaturtilnærmingen. Dessuten viser våre funn
at å inkludere rykte-basert analyse kan gi bedre resultater. I vårt tilfelle



detekterte statisk- og dynamisk analyse 91.58% av dataen vår riktig. Ved
å inkludere rykte-basert analyse, ble 98.61% av dataen detektert riktig,
med en falsk-positiv rate på under 1%. Vår metode er helt automatisert,
men ikke særlig skalerbar slik den er nå. Gjennom prosjektet har vi hatt
et stort fokus på at løsningen skal være oppdatert til dagens trusselbilde.
Ut i fra resultater på sanntidsdata har vi klart å nå dette målet.

I løpet av arbeidet observerte vi at det er et behov for en universell
metode for å evaluere ulike detekteringssystem. Dette er nødvendig for å
enkelt kunne sammenligne ulike systemer. Vi observerte også at det er et
behov for nye verktøy med åpen kildekode innen skadevareanalyse. Begge
disse observasjonene kan være et grunnlag for fremtidig arbeid.
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Chapter1Introduction

This chapter presents the motivation behind the master thesis, outlines the purpose
of the project, and present the research questions that we aim to answer throughout
the thesis. We give the remaining structure of the thesis at the end of the chapter.

Keywords: Android malware, static analysis, dynamic analysis, reputation-based
analysis, hybrid analysis, tools

1.1 Motivation and justifications

According to DataReportal [Dat19], there are 5.11 billion unique mobile users in
the world today, with a 2% increase in the past year. As a percentage of the
total population, 52% are mobile internet users. Additionally, smartphones are
becoming increasingly important in everyday life, such as banking, health, and
personal life. This mobile evolution gives rise to new attack vectors for malware
writers supplementary to traditional computer malware.

The first reported computer malware occurred in 1981-1982 and targeted games on
Apple II [SZ03]. The computer malware was already evolving and persistent when
the first mobile malware named Carbir occurred in 2004, targeting the Symbian
operating system [Car19]. Android was launched in 2008, and its popularity has
been exploding ever since. Today, Android has almost 80% of the market share and
is thus the most targeted mobile operating system for malware writers [Sta19].

After researchers discovered the first malware on Android in 2010 [Ken15], the total
amount of malware has been increasing rapidly. As of May 2019, the total number
of Android malware detections amounted to over 10.5 million programs [Cle19b].
Equally important, malware has gotten extremely sophisticated. Academics and

1



2 1. INTRODUCTION

industries have launched and proposed abundant solutions to enable detection of
malware on Android. The anti-virus industry has generated billions of dollars in the
past decade by commencing protection against malware. However, with a continually
changing threat landscape, detection systems must regularly evolve and update to
reflect the recent changes.

The most common detection techniques for malware are static- and dynamic analysis.
While static analysis examines an application’s code without running it, dynamic
analysis executes the app and observes its behavior. The purpose of this thesis is to
investigate and propose a hybrid solution for detecting malware on Android. The
hybrid solution consists of reputation-based analysis, static- and dynamic analysis. A
reputation-based analysis is based on an application’s intrinsically collected reputation.
It functions by gathering and pursuing several attributes such as signature, source,
age, and usage statistics. Although reputation-based analysis is commonly used
among anti-virus providers [ZRN10], it is rarely used in the research industry. To the
best of our knowledge, no public research project has incorporated reputation-based
analysis in their hybrid malware detection system.

As reported by Statista, an average of 6,140 mobile apps were released through
Android’s official market place Google Play Store every day, measured from the third
quarter of 2016 to the first quarter of 2018 [Cle19a]. In addition to those applications
released on Android’s official market place, many third-party markets exist, for
example, anzhi and appchina. Because of this enormous volume of applications, we
aim at building a fully automated up-to-date system. To do so, we integrate existing
tools into a pipeline. The pipeline is evaluated with realistic data.

Specialization project
During the specialization project fall 2019, we researched malware analysis on both
Android and iOS. Other mobile operating systems, such as Windows, have a small
fragment of the market share and was therefore not considered. Malware rarely
emerges on iOS, especially compared to Android. Conducting malware analysis on
iOS is a very cumbersome task, as iOS is a far more restricted and closed system
than Android. Thus, Android became the operating system of choice for the master
thesis. We conducted a literature review on Android malware analysis and found that
there is a need for more recent data samples to evaluate malware detection solutions.
Current research projects tend to use old and outdated data that do not reflect the
current situation. We also found that hybrid solutions are the most promising option
for malware analysis, as it can combine benefits and minimize the drawbacks of the
most common malware analysis techniques. Therefore, it was decided to implement
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a hybrid detection system.

1.2 Research questions

The overwhelming number of malware on Android poses a threat to the user’s mobile
security. Even though abundant research projects exist, the protection and detection
against Android malware have to continually improve and evolve to keep track of
the ever-evolving threat landscape. The goal with this thesis is to solve a part of
the puzzle, and hopefully improve the future detection of malware. To do so, we
investigate the following research questions:

RQ1: What should be the trade-off between static- and dynamic analysis to identify
mobile malware efficiently?
Determining appropriate measures to decide the trade-off between reputation-based,
static, and dynamic analysis is a subtask.

RQ2: How can the selected tools be incorporated into a toolchain, and where is
reputation-based analysis useful?

RQ3: To what extent does the effectiveness of the solution differ on old files compared
to recent files?

RQ4: How can the performance of hybrid analysis systems be improved by combining
it with results from reputation-based analysis?

1.3 Thesis outline

• Chapter 2: Background describes relevant concepts and background infor-
mation for the remaining thesis. The chapter includes Android operating system
fundamentals, aspects from Android’s security model, malware characterization
and evolution, and malware detection techniques.

• Chapter 3: Related Work gives a throughout examination of related re-
search in the area.

• Chapter 4: Methodology explains the methods that we used to collect data,
select tools, build our pipeline, and evaluate the results.

• Chapter 5: Experiments and Tools Selection presents the tested tools
and discuss their advantages and limitations. The chapter also explains how
experiments were conducted on the proposed tool-chain.
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• Chapter 6: Results and Discussion presents the results obtained from
the developed pipeline of tools. We discuss the results in terms of selected
evaluation metrics, requirements, and research questions.

• Chapter 7: Conclusion and Future Work concludes and summarizes
the thesis. In the end, future work is suggested based on the findings and
limitations.



Chapter2Background

This chapter presents a brief but essential background on Android Operating System
(OS) fundamentals and presents relevant concepts from its security model. Then, a
characterization of malware and distribution on Android is conferred. Finally, the
different techniques for malware analysis are explained. Android Security Internals
[Ele14], and Android Malware Analysis [Ken15] are used throughout the chapter for
relevant background information, unless other sources are given. Interested readers
are encouraged to access these books for more details.

2.1 Android Operating System fundamentals

Android is a mobile operating system developed by Google and was first released
in 2008. As can be observed from Figure 2.1, Android is based on the Linux kernel.
The Linux kernel provides drivers for hardware, networking, file-system access, and
process management. Traditional OSs divides into two spaces: user space and kernel
space. User-space is where the user processes and applications persist, and kernel
space is where the actual operating system lives.

5



6 2. BACKGROUND

Drivers for hardware, networking, file-system access, and 

process management

Application Framework

Binder IPC proxy

Android System Services

Android Run-Time (ART)

Linux Kernel

Audio Flinger, Camera Service, Media 

Player Service, other media services

Activity Manager, Window Manager, 

Packet Manager, other system 

services

Media Server System Server

Camera HAL, Audio 

HAL, other HALs

System ServerNative user-space

Init
Native 

Daemons
Native Libraries

Figure 2.1: Android’s architecture.

The native user-space remains on top of the Linux kernel. It consists of the Init
binary, which is the first process started and starts all other processes. The native
user-space also consists of native daemons and a few hundreds of native libraries.
Hardware abstraction layer (HAL) also persist above the Linux kernel, and defines a
standard interface for hardware vendors to implement. HAL enables Android to be
agnostic about lower-level driver implementations [HAL20].

Android Runtime (ART) is an application runtime environment used explicitly for
Android. Dalvik was the original virtual machine used by Android, but ART replaced
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it in Android 5.0 "Lollipop." In replacing Dalvik, ART translates the application’s
byte code into native instructions. The device’s runtime environment later executes
these instructions.

The components described until now are the fundamental building blocks necessary
to implement System Services. System Services make up all the essential features on
Android, including network connection, activities, display, and touchscreen support.
Like other Unix-like systems, a process cannot access another process’s memory.
However, the kernel has control over all processes and therefore, can expose an
interface that enables Inter-process communication (IPC). IPC occurs through Binder.
An Android process can call a routine in another Android process using Binder to
identify the method to invoke and pass the arguments between processes, as shown
in Figure 2.2.

User space

Kernel space

Binder driver

IPC

Process 1 Process 2

Binder client Binder server

Linux kernel

Service 
manager

Figure 2.2: Binder allows for Inter-Process Communication (IPC).

Higher level components such as Intents, Messengers and ContentProviders are built
on top of Binder.

Applications can be either user-installed (from a third-party application store) or
system applications. System apps are included in the OS image and cannot be
modified or deleted by a user. Therefore, these apps are considered more secure and
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thus given more privileges than user-installed apps. User-installed apps, on the other
hand, can be changed or uninstalled by the user. Each user-installed app lives in a
dedicated security sandbox to prevent them from affecting other apps.

The main application components are Activities, Content Providers, Broadcast
Receivers, and Services. Activities are the main building blocks of Android GUI
applications. An application can have multiple activities, which can start indepen-
dently. If allowed, another application can trigger the activities to start. Services
runs in the background without user interaction. They are generally used to perform
some long-running operations such as file downloads. Content providers use IPC to
provide an interface to the application data. Content providers are generally used to
share an application’s data with another application. Broadcast receivers responds
to system-wide events, named broadcasts. They originate from either an application
or from the system itself.

2.2 Android Security Model

Android is a privilege separated operating system, where each application has its
own Linux user ID (Linux UID) and persists in a security sandbox. The sandbox
provides the system with standard Linux process isolation and restricted file-system
permissions. Higher-level system functions are implemented as a set of collaborating
system services that are communicating through Binder.

Permissions

By default, applications have very few privileges and thus must request permission
to interact with system services (for example, camera and internet), access sensitive
user data (for instance, contacts and SMSs), or communicating with other apps.
Depending on the feature, the system might grant permissions automatically or might
prompt the user to approve the request. Permissions divide into three security levels:

1. Normal permissions are granted automatically at install time. These covers
areas were there is a little security risk, like setting the timezone.

2. Dangerous permissions needs to be explicitly granted by the user, and cover
areas where the app wants data or resources that involve the user’s private
information, or could potentially affect the user’s stored data or the operation
of other apps.
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3. Signature permissions are granted at install time, but only when the same
certificate signs the app that attempts to use permission as the app that defines
the permission.

There are a few permissions, such as SYSTEM_ALERT_WINDOW and WRITE_
SETTINGS, which do not behave as the permissions described above. These are
called special permissions and are particularly sensitive. Permissions are defined in
the application’s manifest and granted at install time. The system uses the UID to
determine which permissions the application has been granted and enforce them at
runtime.

Key signing

All apps, which run on Android devices, have to be signed with a certificate identifying
the author of the app. Nonetheless, Android allows applications to be self-signed,
which has a fundamental flaw. All Android applications and updates must include
a digital signature. However, vendors are allowed to use the same certificate in
different applications. Besides, the application updates can be signed with the same
certificate. Therefore a certificate does not uniquely identify any given application.
Thus, an Android developer can claim to be anyone they want to be, including Bank
of America, for instance. Compared to iOS, this would be a much harder achievement,
as Apple does not allow for self-signed certificates.

2.3 Android Application Package

Android Application Package (APK) is the distribution format used for Android to
distribute and install applications. The files are a type of archive file based on the
JAR file format with the extension .apk. They typically contain the following:
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APK

META-INF

MANIFEST.MF

CERT.RSA

CERT.SF

lib

armeabi

armeabi-v7a

armeabi-v8a

x86

x86_64

mips

classes.dex

res

AndroidManifest.xml

resources.arsc

MANIFEST.MF is the manifest file containing metadata about the application.
CERT.RSA is the certificate of the application. CERT.SF holds the list of resources
and an SHA-1 digest of the corresponding lines in the MANIFEST.MF file. lib is
the directory containing the compiled code dependent on the library. It is divided
into several directories, where each directory is compiled code for the specific proces-
sor. AndroidManifest.xml is an additional manifest file that contains information
about intents, names, versions, external reference libraries, and permissions. It is
frequently used within static malware analysis to extract permissions, intents, or
others. classes.dex contains the classes compiled in .dex format, understandable by
the Dalvik Virtual Machine and Android runtime. The res folder consists of the
resources in the application that is not compiled into resources.arsc. resources.arsc
are the precompiled resources.



2.4. CHARACTERIZING MALWARE ON ANDROID 11

2.4 Characterizing malware on Android

2.4.1 Taxonomy

Malware (Malicious software) is explained and defined by several researchers. Other
terms used as an alternative to malware include malicious code, malicious software,
or malcode. The original definition of malware in [Fre84] was: "a program that can
infect other programs by modifying them to include a possible copy of itself," but was
later updated [DMAS16]. Its objective has later explained malware: malware intends
to be destructive [CJS+05] or cause sabotage to the system [MM00].

Malware is also commonly used to refer to a group of malicious software: Viruses,
Worms, and Trojans. A virus is a self-replicating program. It needs to attach itself
to a host program to be able to reproduce itself. A worm is also a self-replicating
program, but indifference from a virus, a worm does not need to attach itself to
a host program. Besides, worms tend to repeat itself over network connections,
while viruses replicate on the host computer. A trojan is a program that mimics
a legitimate program. Without user awareness, the trojan may perform unwanted
actions [Kar03].

Further, the antivirus industry frequently uses the term "Potentially Unwanted Ap-
plications (PUAs)". The term is used to describe software that is located somewhere
between malware and benign applications. For this reason, PUAs are also referred
to as "grayware" [SMJ16]. PUAs includes applications such as adware and spyware.
Adware is primarily aiming to make money through advertising. It may collect
personal information about users for this purpose. Mobile adware is particularly
aggressive and can gather sensitive information such as geo-location, explode the
device with advertisements, or be costly in terms of data usage and messaging charges.
Spyware intends to track and records the user’s behavior and send it to a third party.
It commonly gathers sensitive information without the user’s knowledge. Similar to
malware, PUAs can consume large amounts of memory, CPU, or other resources,
causing a performance degradation of the device [SMJ16].

Another term from the gray zone is "Riskware." Riskware is legitimate apps that can
be exploited by a person with malicious intent [Rey20]. They are not designed with
malicious intent but contain weaknesses that can be exploited. There is a fine-grained
line of whether or not we should include such applications in a definition of malware,
and application within the category should be considered from its context.

Throughout the remaining parts of this project, we use the term malware for any
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software with destructive or malicious intent. Defining malware in terms of its intent
is the most describing one, and captures the different types of malware, including
those in the gray zone. Note that we could have divided it into more fine-grained
terms, but for simplicity, we use malware unless otherwise stated.

2.4.2 Evolution

Android’s popularity makes it the preferred target for malware. Since Android was
released in 2008, its popularity has been expanding significantly, as can be seen in
Figure 2.3. Apart from the popularity, Android is open-source, making it an easier
target for malware. Besides, Android suffers from the fragmentation problem: unlike
iOS, the Android operating system can be implemented on hardware provided by
different vendors. Although the fragmentation has contributed to its popularity, it
also gives rise to security flaws. Vendors might provide a different level of security,
and the security updates are received at various times. Unofficial app stores also
exist. In general, these have a higher malware infection rate than the official play
store [TFA+17]. Some countries do not have access to the official app store and are
thus forced to use the unofficial stores.

In August 2010, the first Android Trojans, FakePlayer and DroidSMS, were discovered
in the wild [Ken15]. The former was a Trojan horse that attempted to send premium-
rate SMSs to a hard-coded phone number. Similarly, DroidSMS was a classic SMS
fraud app that sent SMSs to premium rate phone numbers. Since then, the amount
of mobile malware has been exploding, and Kaspersky reported a doubling of mobile
malware in 2018 [Kas19]. Malware has not only been growing in terms of amount,
but it has also gotten more sophisticated within the years. A recent malware named
"Agent Smith" managed to infect around 25 million devices worldwide [Sip20]. It was
disguised as a Google-related application that users were willing to install. Without
the user knowing, Agent Smith was able to replace legit apps that the user had
installed with malicious versions. Agent Smith is only one example of recent malware,
but it shows how sophisticated and intelligent mobile malware may be at this point.

Malware development can be very lucrative, and a report from 2013 showed that
malware writers could earn up to 12,000 USD per month [TFA+17]. An increase in
black markets1 have also provided more incentives for profitable malware writing.

1Black markets are markets were stolen information, system vulnerabilities, malware source
code, malware development tools, and similar are sold.
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Figure 2.3: Market shares for mobile operating systems from January 2012 -
November 2019. The data was collected from StatCounter [Sta19].

2.4.3 Current threat landscape

The current threat landscape of Android is enormous and hard to define correctly.
To get an idea of the current situation, we use public reports published by antivirus
companies.

According to McAfee’s mobile threat report for the first quarter of 2019, "FakeApp"
was one of the greatest threats of 2018 [SD19]. FakeApp is a family of malware that
mimics real applications, such as the game Fortnite, and can appear to be very real.
In the same report, McAfee announced that mobile banking trojans and spyware is
one the raise. Spyware, sometimes called stalkerware, was also reported as a growing
threat by MalwareBytes [Mal20] and Kaspersky [Che20]. A threat that has been
growing significantly in 2019 is adware [Che20]. Kaspersky Lab disclosed that four
out of ten places in their top 10 mobile threats list was reserved for adware. The
main increase was due to the sharp growth in the "HiddenAdd" family. The same
family was also the second most detected malware family by MalwareBytes in 2019
[Mal20]. The HiddenAdd family vitally displays ads in a very aggressive way. In
addition to adware, Kaspersky saw an increase in riskware, specifically in risk tools.
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In this category, the sharp escalation came from the family SMSreg. The SMSreg
family is primarily characterized by money transfers via SMS, which the user is not
explicitly informed of.

Figure 2.4 demonstrates the current situation of mobile threats, reported by Kaspersky.
As can be observed, there was a considerable increase in adware from late 2019 to
the first part of 2020. In general, the percentage of mobile trojans decreased from
2019 to 2020.

2.4.4 Distribution of malware

Repackaging

Repackaging is one of the most common ways to distribute malware [ZJ12]. Attackers
piggyback their malicious payload in a popular application and redistribute it.
Generally, they download an attractive application, disassemble it, and re-assemble
it with a malicious payload enclosed. Finally, they distribute the new, malicious
version on Google Play or other third-party stores.

Update attack

Indifference from repackaging, an update attack distributes the malicious payload
dynamically. In an update attack, the attacker might still repackage popular applica-
tions. However, instead of including the malicious payload as a whole, they include
an update component that downloads or fetch the malicious payload at run-time.
Because this happens dynamically, a static analysis might be evaded and fail to catch
the malicious payload.

Drive-by download

In this context, a drive-by download happens without a user’s knowledge. It may
occur when a user visits a web site, opens an e-mail attachment, or is lured into
clicking a link. Note that this attack is not specific to mobile platforms, but are
primarily attracting users into downloading "valuable" and "impressive" apps.
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Figure 2.4: Mobile threats in the quarter of 2019 compared to the third quarter of
2020, detected by the antivirus company Kaspersky [Che20].
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2.4.5 Market places

Google Play

Google Play2 is the official app store for Android apps. While the majority of the
malware persists at third-party app stores, many have found their way into Google
Play. When Google is alerted by crook apps, they take the apps down, but not
always as fast as necessary. For example, in early 2011, Google pulled more than 50
apps infected with DroidDream but chose not to trigger automatic uninstalls from
users’ devices [MD12].

Third party app stores

Third-party app stores are unofficial market places. They are less restricted than
Google Play, so developers can tweak apps as they want. They are often used to offer
hacked versions of a paid app. Nonetheless, fewer restrictions also make it easier for
malware writers to distribute their malicious code.

2.5 Malware detection techniques

Static analysis and dynamic analysis are the main methods for detecting malware.
Static analysis examines artifacts in the executable without running it, while dynamic
analysis monitors the runtime behavior of the executable. Both methods have their
advantages and disadvantages.

2.5.1 Static analysis

Static analysis examines applications without running them. One of the most
significant advantages of this method is the possibility of obtaining full code coverage.
Static analysis is also the most flexible part of malware analysis, as it can be conducted
from a multitude of operating systems. The process of static analysis of Android
malware is similar to traditional Windows or Linux malware. The difference between,
for instance, Windows and Android are how APKs are packaged and compiled
compared to a Windows binary. Windows binaries are compiled to executables with
an MZ header. Android applications are compiled as an APK that can be unpacked
into separate files, including the source code, a manifest, and other files. Typically,
static analysis collects file hashes, metadata, and strings. Commonly collected
static features specific to Android include permissions, services, providers, receivers,
activities, Application Programming Interface (API) calls, and others. A challenge

2https://www.play.google.com
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Table 2.1: The most frequent approaches within static analysis.

Method Advantages Limitations

Signature-based
detection

Efficient against
known malware. Fails to detect new malware.

Code obfuscation may circum-
vent the detection method.

Permission-based
detection

Only one file is
scanned. Limited difference between

malware and benign.
Bytecode-based
analysis Can capture behavior. More resource-intensive.

with static analysis is that the code might be obfuscated or encrypted, making the
analysis troublesome. Code obfuscation is the process of hiding application logic
during compilation so that the logic of an application is difficult to follow. It is
commonly applied by industries to protect intellectual property, but also by malware
writers to evade detection. The static analysis does not inherently capture the full
runtime behavior, in which dynamic analysis must be applied.

The static analysis further divides into three commonly used methods for malware
detection: signature-based detection, permission-based detection, and bytecode based
detection [ASKA16][GO18]. In a signature based detection method, patterns are
extracted from the code to create unique signatures. The app is categorized as
malware if the extracted signatures match one of a known malware family. Code
obfuscation is an obvious drawback of this method as it can circumvent the detection.
Another drawback is the inability to detect unknown malware ("zero-days"), although
the method is very efficient against known malware. Permission-based detection
examines the permissions in the application and search for any anomalies. It is an
easy way to scan the application as it only scans the application’s manifest. However,
there is a minimal difference between malicious and benign in terms of permissions
requested by applications[ASKA16][GO18]. Bytecode-based analysis facilitates the
recognition of the application’s behavior. Control and data flow analysis can help
detect suspicious functionalities performed by the application. Nevertheless, since
this analysis method operates at the instruction level, it is also the most resource-
consuming method in terms of power and memory.

Open source tools

Academics and industries have proposed various tools for static analysis. Unfortu-
nately, only a few of them are available to the public. Within the tools available,
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ApkTool3 is frequently used to decompile an application executable. It enables read-
ing the Android Manifest and the smali, extracted from Dalvik Bytecode. dex2jar4

is used to decompile the dex source files to JAR, which can be read later by the
jd-gui. jadx5 converts the dex files to java files. If the conversion works properly,
it enables reading the original code as java. AndroGuard6 is a Python library that
can extract various features from an APK file by applying static analysis. Other
open-source tools widely leverage AndroGuard. Among others, MobSF, AndroPyTool
[MGLCC18], VirusTotal, and CuckooDroid use AndroGuard. More specified tools
also exist. For instance, FlowDroid [ARF+14] is a tool that runs taint analysis to
follow the information flow.

Online scanners

Online scanners also exist, to let users scan a suspicious file. Unfortunately, online
scanners are often very limited in terms of allowed file sizes, long processing times,
and freedom of choice. Available static scanners for Android files are AVCUndroid7,
Dr. Web Online8, VirScan9, and Kaspersky10.

2.5.2 Dynamic analysis

Indifference from static analysis, dynamic analysis observes the behavior of the
application when it is executed and can identify malicious behavior in the runtime
environment. Dynamic analysis can include observing system calls, tracking data
stream, tracing directions, and detaching function parameters [GO18]. It is frequently
executed within a sandbox - a mechanism for separating running programs, or on a
real device. Although dynamic analysis captures the application’s behavior better, it
cannot capture full code coverage, and it is far more resource-intensive than static
analysis.

Anomaly-based detection, taint analysis, and emulation based detection are the
most frequently used techniques within dynamic analysis [ASKA16][GO18]. Anomaly
based detection is the process of comparing definitions of what activity is considered
normal against observed events to identify significant deviations. Indifference from
a signature-based approach, this method can detect unknown malware. However,

3https://ibotpeaches.github.io/Apktool/
4https://github.com/pxb1988/dex2jar
5https://github.com/skylot/jadx
6https://github.com/androguard/androguard
7https://undroid.av-comparatives.org/
8https://vms.drweb.com/online/
9https://www.virscan.org/

10https://www.kaspersky.no/
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Table 2.2: Commonly used techniques within dynamic analysis.

Method Advantages Limitations

Anomaly-based
detection

Can detect unknown
malware. Erroneous when benign apps

show the same behaviour as
malware.

Taint analysis Capture the
information flow. Not suitable for real-time anal-

ysis.
Emulation-based
detection

Less resource intensive
than a sandbox. Resource intensive compared

to other approaches.

the method fails when benign apps behave similarly to what is defined as malicious
behavior, for example, more API invocations or higher resource consumption. Taint
analysis is a type of information flow tracking which, for instance, can track sources
of sensitive information. This method is not suitable for real-time analysis and
downgrades performance significantly [ASKA16]. Emulation based detection executes
within an emulator, which is more lightweight compared to a full-featured sandbox.
An emulator only emulates the execution of the sample itself. It creates temporary
objects that interact with the samples.

Sandbox Security

A sandbox is an isolated environment that imitates end-user operating environments.
It is used to run potentially harmful samples in a safe environment, without risking
damage to the host or network. Thus, the dynamic analysis of malware is frequently
performed within a sandbox. However, malware writers are always working to
evade detection, and several evasion techniques exist. One common technique is to
detect the sandbox. Because the sandbox is somewhat different from a real host
environment, malware can detect the differences and terminate immediately or stall
the execution of malicious activities. Malware can also take advantage of the sandbox
by implementing context-aware triggers. For instance, by implementing logic bombs,
the malware writer can delay code execution for a certain period or until a particular
event is triggered. Another common trick is to exploit the sandbox’s weaknesses
and gaps, for example, by using obscure file-formats or huge files that the sandbox
cannot process.
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Open source tools

As with static analysis, only a few existing tools are publicly available. DroidBox11 is
one such tool, which connects to an Android emulator to perform dynamic analysis.
Unfortunately, the last update was received four years ago. Consequently, the highest
SDK version it supports is version 16.

Online sandboxes

Online sandboxes let the user scan and execute a doubtful file in a safe environment.
Accessible online sandboxes for Android are Joe Sandbox12 and AMAaaS13.

2.5.3 Hybrid analysis

Hybrid analysis means that both static- and dynamic analysis is combined. The
apparent benefit of such an approach is that the advantages of both analysis types
are included. However, this type of approach is also the most resource-intensive.

Open source tools

AndroPyTool [MGLCC18] is one of the more recent advanced tools. It combines
AndroGuard, FlowDroid, DroidBox, AVClass, VT, or Strace to perform advanced
static and dynamic analysis. MobSF [Abr16] is a tool for mobile penetration testing
and malware analysis. It is a fully automated, cross-platform tool that works on
Android, Windows, and iOS. MobSF uses AndroGuard for static analysis, and
the dynamic analysis is performed in an Android VM named Genymotion. In the
dynamic analysis part, it provides support for dynamic instrumentation using Frida14.
CuckooDroid15 is an extension of the Cuckoo Sandbox16 that enables automated
hybrid analysis. However, it is not maintained anymore, with the last update 3
years ago. Currently, it only supports Android 4.1, which is too old to reflect recent
changes.

2.5.4 Reputation-based analysis

Reputation-based analysis is a mechanism typically implemented in anti-virus engines,
such as in Norton’s security products [ZRN10]. In a reputation-based security

11https://github.com/pjlantz/droidbox
12https://www.joesecurity.org/
13https://amaaas.com/
14https://www.frida.re/
15https://github.com/idanr1986/cuckoo-droid
16https://cuckoo.readthedocs.io/en/latest/
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system, an executable file or an application is classified as unsafe or safe based on its
intrinsically collected reputation. It enables predictable file safety, depending on its
overall use and reputation from a vast user community. Reputation-based analysis
works by gathering various file attributes, such as signature, age, source, number of
downloads, and global usage statistics. It can also consider the vendor’s reputation
[TBA12]. Applications from Google’s official application store will, for example, have
a much better reputation than an application downloaded from an unknown, third
party application store. A reputation engine typically analyzes the gathered data by
using statistical analysis. This approach works very well for prevalent malware and
is the least resource-consuming method.

2.6 Existing datasets

Generally, pre-generated datasets are used to evaluate malware detection systems.
Pre-generated datasets are often well-labeled and structured, making the process
of evaluation less cumbersome. A summary of the available datasets for Android
malware is shown in Table 2.3.

The most popular pre-generated datasets in literature are the Android Malware
Genome Project [ZJ12] and Drebin [ASH+14]. MalGenome was the most studied
and well-labeled dataset for an extended period but was discontinued in 2015 due
to resource limitations. The data samples in Drebin were collected from 2010 until
2012. The Contagio Minidump17 is a smaller dataset observed in the literature, and
consists of 189 malware samples seen in the wild. It was downloaded on October
26th, 2011. Wei et al. [WLR+17] discuss the need for more up to date datasets and
the need for more trustworthy, complete information. Therefore, they constructed
and published a more reliable, recent dataset named AMD. AMD consists of 24,650
labeled Android malware samples that are classified in 135 varieties within 71 families,
whose discovery dates range from 2010 to 2016. AMD is still the most recent public
pre-generated dataset containing general Android Malware.

Datasets containing both malware samples and benign apps also exist. Li et al. present
AndroZoo [Li,17], a growing collection of Android applications. The applications
originate from various sources, including GooglePlay and AppChina, among others.
It currently contains 10,577,653 different APKs, including both malware and benign
apps, but are not labeled. Android Adware and General Malware (AAGM) [LAG+17]
is another mixed data set containing 1900 (1500 benign and 400 malware) applications

17http://cgi.cs.indiana.edu/ nhusted/dokuwiki/doku.php?id=datasets
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Table 2.3: Summary of available malware datasets.

Database Variety Time interval

Android Malware
Genome Project 1,200 Malware samples 2010 - 2011

Drebin 5,560 Malware samples 2010 - 2012
AMD 24,553 Malware samples 2010 - 2016
AAGM Dataset 1900 Mixed samples 2008 - 2016
AndroZoo 10,165,192 Mixed samples 2010 –
Kharon 7 Malware samples totally

reversed and documented
2011 - 2015

Android ProGuard
Dataset 10479 Obfuscated malware

samples
2011 - 2015

The Contagio
Minidump 189 Malware samples 2011

UpDroid 2,479 Malware samples 2015 - 2019

from a selected variety of adware and general malware families. The AAGM dataset
is captured by installing Android apps on real smartphones semi-automated.

More specialized datasets include Kharon [KLLT16], UpDroid [AS18], and the An-
droid ProGuard Dataset [MAC+15]. Kharon is a small dataset containing 7 malware
samples that are completely reversed and documented. The dataset was constructed
to help researchers evaluate their work. UpDroid is specialized in the update tech-
nique; it consists of 2,479 malware samples that use the update technique to evade
detection. The Android ProGuard Dataset contains 10479 samples, obtained by
obfuscating the MalGenome and the Contagio Minidump datasets with seven different
obfuscation techniques.
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Android has almost 80% of the global market share today [Sta19]. Within the last
years, Android has increased its features with more advanced ones, for example, more
health features, mobile banking, and mobile wallet. As the features are becoming
more sophisticated, they are becoming a more exciting target for malware writers.
Consequently, the total number of malware has been steadily increasing in recent
years, according to Kaspersky [Kas19]. As expected, malware researchers across
industries and academics have put enormous effort into designing novel solutions
to detect different kinds of malware. This chapter will present some of the work
done in the area. The related work is further divided into three categories: static
approaches, dynamic approaches, and hybrid approaches. We focus on extracting
relevant information related to building a hybrid detection system for Android
malware. In particular, we examine how the static- and dynamic analysis was
performed in terms of extracted features and tools. We also observe where the data
was collected, how well the proposed solution performs, and potential limitations.

3.1 Static approaches

Arp et al. [ASH+14] presents a lightweight system that utilizes static analysis and
machine learning, named Drebin. Drebin gathers features from the application’s
manifest and code to perform deep static analysis. Features include hardware
components, restricted- and suspicious API calls, network addresses, app components,
and used- and requested permissions. They then combine the extracted features into
a joint vectored space, where patterns and combinations are analyzed geometrically.
They employ 23,453 applications and 5,560 malware samples in their evaluation.
The authors collect their samples from various sources in the range 2010 - 2012,
including Google PlayStore, numerous Chinese and Russian markets, malware forums,
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security blogs, and Genome. The detection rate was measured to be 93%, with 1%
false positives on average. Nonetheless, their approach cannot disclose samples from
unknown malware families spontaneously but is dependent on several files to learn
their nature.

Fereidooni et al. [FCYS16] propose Anastasia, a system for detecting Android
malware. They develop a tool named uniPDroid to extract features from applications,
including intents, permissions, malicious activities, and system commands. They
conduct the classification of malware and benign apps by utilizing different machine
learning techniques. Their dataset consists of well-labeled applications collected from
Genome, Drebin, M0droid, and VirusTotal (2009 - 2015). Finally, their detection
system achieves an accuracy of 97% with a 5% false-positive ratio and a 2.7% false-
negative ratio. As for future work, they suggest extracting more features from
applications, such as memory and CPU consumption, Inter-process communications,
and system calls.

Arzt et al. [ARF+14] developed FlowDroid, a static taint analysis. FlowDroid works
as follows: first, it parses the Android manifest, the dex files, and XML files to
identify sources, sinks, and entry points. Second, it generates the primary method
which it uses to build a call graph for the application. Finally, it runs a taint analysis.
Their results show that FlowDroid achieves 93% recall ratio and 86% precision ratio.

3.2 Dynamic approaches

Burguer et al. [BZNT11] present a behavioral-based malware detection system,
based on the idea of crowd-sourcing applications. They develop a client, CrowDroid,
which users can download from GooglePlay. CrowDroid is responsible for monitoring
system calls at kernel-level, and send the data to a centralized server. Users can also
submit non-personal, behavioral related data from the applications they use. The
remote server parses the data and creates a system call vector for each interaction
within each application submitted by a user. They create a dataset for behavioral
data for each app. Finally, they apply a clustering algorithm to cluster each dataset.
Their analysis showed that open(), read(), access(), chmod() and chown() are the
most used system calls by malware.

Saracino et al. [SSDM18] developed an anomaly detection system named MADAM.
MADAM monitor features at four different levels: system calls (kernel level), crit-
ical API calls and SMS (application level), user activities (user level), and static
application metadata (package level). MADAM estimates an initial security risk by
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evaluating the requested permissions and reputation metadata at install time. If
MADAM evaluates the application as risky, it inserts it in a suspicious list, which
is monitored at runtime. MADAM evaluates these apps against known behavioral
patterns in a per-app monitor. Additionally, MADAM preserves a global monitor
that collects behavioral data at three levels to learn the current behavior of the
device itself. The authors explain the behavioral patterns they use in detail. They
collect data from Contagio Minidump, Genome, and VirusShare (2012 - 2015). Their
system achieves an accuracy of 96.9% with a false positive ratio of 0.26 at most.
However, their solution is not able to detect generic attacks, and botnets can evade
it.

3.3 Hybrid approaches

Camacho et al. developed AndroPyTool [MGLCC18] to integrate several popular
tools into one single framework. Their resulting tool is a Python framework for
extracting features from Android applications in three phases: pre-static, static, and
dynamic. The integrated projects in the process include AndroGuard, Droidbox,
FlowDroid, VT, and Strace. AndoPyTool was used by the same authors to construct
the OmniDroid dataset [MLCC19].

Martinelli et al. [MMS17] present a hybrid tool for detecting malware on Android
precisely, named BRIDEMAID. Their tool consists of three steps: static-, metadata-
and dynamic analysis. They use static analysis based on n-grams classification, where
the frequency of opcodes calculates from the decompiled application. They discard
the app if it identifies as malware after this step. Otherwise, the next step executes.
The metadata analysis extracts features such as the number of downloads, rating,
developer rating, and permissions at install time. Finally, the dynamic analysis
derives suspicious activities related to text messages, installed packages, opened
connections, and admin authorizations. The dataset they used for experiments
consists of 9804 apps from Google Play and 2794 malware samples, belonging to 123
different malware families. The malware samples are from the Genome dataset and
the Contagio minidump. They find that their dynamic approach detects malware
more accurately than the static method. Overall, they achieve a detection accuracy
of 99.7%, which is 2.5% more accurate than the dynamic approach alone and 31%
more accurate than the standalone static analysis.

Tong et al. [TY17] suggest a hybrid method where they extract dynamic features and
analyze them statically. They obtain individual and sequential system calls from both
malware and benign applications, which they use to build patterns of normal and
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malicious behavior. For this purpose, they use malware from the Genome project and
benign apps from Xi’an JiaoTong University, respectively. They achieve an overall,
slightly better on identifying benign apps than malware. However, their approach
has two disadvantages. Firstly, their computations execute on a real smart-phone,
which is not scalable because of the limited space and capacity. Secondly, they need
to update their patterns with newer malware and benign apps regularly.

Arshad et al. [ASW+18] present a 3-level hybrid malware detection model named
SAMADroid. Their model consists of static- and dynamic analysis, local and remote
hosts, and machine learning. They use a similar approach as in Drebin [ASH+14] for
static analysis with a few modifications. As for dynamic analysis, they extract system
calls to overcome the limitations of static analysis. Classification of applications
utilizes machine learning and executes at a remote server, which then delivers the
results to the Android device. To evaluate their solution’s performance, they use
Drebin’s dataset. As stated by the authors, their solution needs newer data to reflect
the most recent malware better.

Fratantonio et al. developed Andrubis [LNW+14], an automated hybrid analysis
framework. Andrubis consists of three stages: static analysis, dynamic analysis,
and auxiliary analysis. The static analysis extracts features from the manifest and
the bytecode, while the dynamic analysis monitors the application at the system-
and Dalvik level. The auxiliary analysis is used to capture network traffic from
outside the operating system and conduct protocol analysis at post-processing.
Andrubis was offered to the public as a malware-scanning service (now deprecated).
In the period June 12, 2012 – June 12, 2014, the authors received 1,778,997 unique
submissions. Andrubis was able to analyze 91.67% of them. As for scalability,
Andrubis could analyze 3,500 applications daily. The samples submitted to Andrubis
was collected into a dataset and divided into malware and benign. The dataset was
further processed to collect statistical information such as file activities performed
by malware versus benign apps.

Wong et al. [WL16] propose targeted analysis, which uses static analysis combined
with information about the dynamic tool to generate a modest set of inputs that
trigger malicious behavior to be detected by the dynamic analyzer. They build a
prototype named IntelliDroid1 that uses a list of targeted API calls specializing in
the dynamic analysis tool. This approximation is motivated by the observation that
API calls execute the most malicious behavior. The authors demonstrate the possible
usage of IntelliDroid by integrating it with TaintDroid [Wil14]. They evaluate it

1https://github.com/miwong/IntelliDroid
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with malware from Genome and Contagio and show that their solution can detect all
privacy leaking malware with no false positives. Compared to FlowDroid [ARF+14],
IntelliDroid performs better-considering the detection ratio and false positives. The
authors also test IntelliDroid’s capability to trigger targeted APIs derived from a
hypothetical tool with good results: 70 out of 75 instances were successfully triggered.
IntelliDroid is potentially limited by call-graph generation, unrealistic constraints,
and malware obfuscation.

3.4 Summary

Table 3.1 presents a summary of the related work.

Table 3.1: Summary of related work.

Ref. Approach Limitations Evaluation

Static analysis

[ASH+14]

Deep static analysis.
Utilizes machine
learning for
classification.

Cannot capture new
malware easily.

Detection ratio
of 93% and 1%
false positives.

[FCYS16]

Static analysis.
Utilizes machine
learning for
classification.

High false positive
ratio.

Accuracy of
97%, 5%
false-positives
and 2.7%
false-negatives.

[ARF+14] Taint analysis
Not suitable for
real-time analysis.

Recall ratio of
93% and 86%
precision ratio.

Dynamic analysis

[BZNT11]
Creates behavioral
data for each
application.

Dependent on network
connection. Erroneous
when benign apps
behave as malware.

Detection ratio
100% on
self-written
malware. 100%
and 85%
detection ratio
on two real-time
malwares.
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[SSDM18]

Anomaly detection
system that monitors
the application at four
different levels.

Cannot detect generic
malware. Evaded by
botnets.

Accuracy of
96.9%,
false-positive
ratio of 0.26.

Hybrid analysis

[MGLCC18]

The authors built a
hybrid malware
analysis tool of
existing open-source
tools.

No evaluation of the
tool. The tool only
supports Android
version 4.1.

[MMS17]
Static-, metadata- and
dynamic analysis.

Outdated data.

Accuracy of
99.7%. Various
benchmark
tests.

[TY17]
Build patterns of
normal and malicious
behavior.

Not scalable. Hard to
determine the
difference between
malware and benign
apps. Needs regular
updates.

Accuracy of
90%.

[ASW+18]

Static analysis as in
[ASH+14]. Collects
system calls from
dynamic analysis. Uses
machine learning for
classification of apps.

Needs more recent
data.

Measures true
positive ratio,
false-positive
ratio, and
accuracy of
many machine
learning
classifiers, in
addition to
various
benchmarking
tests.
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[LNW+14]

Static analysis,
dynamic analysis, and
off-device network
analysis. Collects data
by offering their
service as a public
scanning service.

Submissions from
public sources lack
metadata and origin.
Their submission
system was limited by
8 MB. The dynamic
analysis is triggered
randomly, while a
more intelligent
approach could cover
more behavior.

[WL16]
Extracts targeted API
calls related to the
dynamic tool.

Potentially limited by
call-graph generation,
unrealistic constraints
and malware
obfuscation

Compares to
FlowDroid.

In our study of related work, we focused on several elements. Firstly, we studied
how different authors collected their data. We noticed that most of the authors use
pre-generated datasets. Pre-generated datasets are beneficial because they are well-
labeled, but many of them are outdated. Another possibility is to collect data similar
to Fratantonio et al. [LNW+14], but this approach is significantly time-consuming.
Therefore, we decided to construct the dataset ourselves.

Secondly, we focused on system architecture, tools, and approaches. We studied
the benefits and drawbacks of different methods and considered tools that we could
use further. The hybrid approaches are outperforming static analysis or dynamic
analysis alone. In this project, we aim to build a hybrid tool-chain. Thus, we mostly
studied hybrid works. Building a pipeline of tools is similar to what Camacho et
al. [MGLCC18] did. However, we are also going to use a reputation engine in our
pipeline. Unfortunately, we could not find any other work that used a reputation
engine in combination with other tools. Nonetheless, both Martinelli et al. [MMS17]
and Saracino et al. [SSDM18] have used metadata as a part of their detection system.
Metadata is not the same as a full reputation engine, but it has similarities. Thus,
we can get inspiration from their architecture when we combine our selected tools.
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Finally, we focused on the evaluation of the detection systems. In this case, we
studied which evaluation metrics the different authors used. We did this so that we
can be sure to include some standard parameters. Using common metrics can ease
inter-system comparison. Besides, we studied how well they score so that we can
determine if our solution is precise or not.



Chapter4Methodology

In this chapter, we explain the overall methodology for answering the research
questions. Firstly, we explain how we collect data and how we construct the dataset.
We then elaborate on our method for analyzing malware in detail. Evaluating the
results is an intrinsic part of the work, and the last section explains different measures
for this purpose. Figure 4.1 shows an overview of the methodology.

4.1 Choice of methods

Generally, research is characterized by quantitative- and qualitative methods [Gal08].
While quantitative researchers focus on numbers, descriptive statistics, figures, and
illustrations, to show the results of the study, the qualitative researchers deal with
descriptions of concepts and perceptions, mainly through interpretations. When we
evaluate our system, we will use quantitative measures. It is necessary to include
quantitative measures to enable comparisons between diverse malware detection
systems. Unfortunately, no universal methodology exists for evaluating malware
detection systems to the best of our knowledge. Therefore, we study different
evaluation metrics and related work to determine appropriate quantitative malware
detection measures for evaluating our system. We select evaluation metrics from the
confusion matrix and select relevant resource-related parameters.

To test, verify, and evaluate our pipeline, we need to gather data. Similar to evaluation
metrics, data collection has no general procedure or universal requirements. The
collected data can have a significant impact on the validity of the pipeline because the
threat landscape is under constant change and development. Therefore, we require
our data to be recent and general and select an appropriate dataset according to this
requirement. We study the literature when we make decisions about the structure of
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Data collection

Used to test and evaluate the proposed pipeline

Selection of tools to pipeline 

Mix of quantitative and qualitative measures

Experiments with pipeline

Qualitative experiments

Evaluation

Confusion matrix metrics and resource metrics

Figure 4.1: Methodology overview.

the dataset.

In the selection of tools, we use a combination of qualitative and quantitative measures.
For practical reasons, we observe the tool before we test it with quantitative measures.
Some of the tools might have limitations that are better captured through observation.

After appropriate tools are selected, they are combined in a pipeline. However, we
do not know the best order of these tools. Besides, the output of the tools might be
manipulated or combined in diverse ways. Thus, we may find it necessary to conduct
several experiments to determine how it affects the performance of our pipeline.
We plan these experiments with experimental design. The goal with experimental
design is to obtain maximum information with a minimum number of experiments
[Jai91]. Planning our experiments is a crucial task, considering the limited time of
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this project.

Below follows the overall method that is used to answer each research question:

RQ1: What should be the trade-off between static- and dynamic analysis to efficiently
identify mobile malware?
To answer this question, we first need to decide our evaluation metrics. These are
agreed by studying evaluation metrics used in related work and determining which
metrics can capture the overall performance and effectiveness. Then, we measure the
metrics by conducting real data experiments.

RQ2: How can the selected tools be incorporated into a toolchain, and where is
reputation-based analysis useful?
The selection of tools is based on the requirements for the final pipeline. We
experiment with different tools to observe if they can fulfill the requirements. We
then try different combinations of the pipeline to determine where reputation-based
security is useful.

RQ3: To what extent does the effectiveness of the solution differ on old files compared
to recent files?
We evaluate the pipeline on a live input stream of data. As soon as the data arrives,
we analyze it. Then we wait 20 days and re-evaluate it. Finally, we compare the
results from the two analyses.

RQ4: How can the performance of hybrid analysis systems be improved by combining
it with results from the reputation-based analysis?
We answer this question by measuring the evaluation metrics with and without the
reputation engine results. We experiment with different combinations to determine
if the reputation-based analysis can improve any of our evaluation metrics.

4.2 Dataset

4.2.1 Data collection

High quality, reliable and representative data sets are essential in research activities.
In general, there are two ways of collecting malware: setting up a honey-pot or
downloading the files from online collections provided by others. A honey-pot is a
real or simulated system designed to attract attacks on itself. Because setting up a
honey-pot is very time-demanding, the second option is used further.
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As Wei et al. [WLR+17] discuss, it is essential that the datasets can meet today’s
threat landscape. Therefore, the collection of malware samples must meet the
following criteria:

• The samples must be collected within at least two years and contain the
most recent malware samples. As malware is constantly evolving, the threat
landscape is changing over time. To achieve a result that meets today’s threat
landscape, the malware samples must be as recent as possible.

• The samples must be general, i.e., not belonging to a specific problem area.

Although the AMD dataset1 is very well-labeled and reliable, we want to include more
recent malware samples. However, the authors have published and explained their
procedure for collecting this dataset in detail. Thus, we can use a similar method.
Since AndroZoo [Li,17] contains a wide variety of applications and continuously
updates its database, it is the preferred data set for collecting APKs. Moreover,
AndroZoo is not tied to one specific problem area for malware. Hence, it does
also provide the opportunity to construct an appropriate dataset for this particular
project.

4.2.2 Dataset construction

After accessing AndroZoo, we are given a CSV file containing entries for 10,165,192
mixed samples. Because we require the data to be recent, we begin by extracting all
samples in the time interval 2017 - 2020 (as of March 2020). After the initial filtering,
we are left with 1,190,420 samples. Most of the applications are unlabeled, meaning
that we do not know if they are benign, malware, or from which malware families
they belong. However, each file has an entry for "vt_detections" and "vt_date". The
value in "vt_detections" means how many antivirus companies that detected the
application to be harmful at the time it was submitted ("vt_date"). Unfortunately,
these values are mostly outdated or even non-existent for newer files.

A natural next step would be to use VirusTotal reports directly. VirusTotal is
a website for scanning hashes, files, or URLs with results from various antivirus
companies2. For each submitted hash, if it has been scanned earlier by an antivirus
tool, we obtain the full VirusTotal report, which includes the first and last time
the app was seen, as well as the results from the individual antivirus scans. If the

1http://amd.arguslab.org/
2https://www.VirusTotal.com/
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individual scan was positive, it includes a label, which indicates the malware family.
However, the antivirus labels are well-known to be inconsistent [BOA+07][CZR16].
To illustrate this, we select a random hash from our collection. When we submit the
hash, seven different antivirus companies detect the application to be potentially
unsafe, as shown in Table 4.1. It can be observed that the AV labels are highly
incompatible. The remaining 48 antivirus companies did not detect the application
to be harmful.

Table 4.1: We selected a random hash and submitted it to VirusTotal. The table
shows the different labels that were given by diverse antivirus providers.

Detected by Label

Cyren AndroidOS/Trojan.CVIY-3
ESET-NOD32 a variant of Android/Packed.Tencentprotect.B poten-

tially unsafe
Fortinet Riskware/PackedTencent!Android
Ikarus Packed.PUA.AndroidOS.Tencent
Jiangmin AdWare.AndroidOS.gidq
K7GW Adware ( 0052b8d61 )
SymantecMobileInsight AdLibrary:Generisk

Re-labelling is a common practice in the academics. Tools and methods exist to
gather the various antivirus labels to rename them to a common family name. We
have two main options for re-labeling the malware: doing it manually, or by using a
tool. Wei et al. [WLR+17] developed a method themselves for doing so. Nonetheless,
their approach was very similar to the one used in AVclass [SRKC16]. AVclass is
automatic, open-source, and scalable. However, AVclass is limited by the labels it
receives as input. In particular, it cannot label samples if at least two antivirus
engines do not agree on a non-generic family name. Due to this project’s limited time,
we use AVclass for labeling and filtering out the non-labeled applications. Another
tool for re-labeling is Euphony [Hur17], but it is not as widely used as AVclass.
We use Euphonhy as a part of the dataset construction to compare the differences
between these two tools.

To proceed, we need to decide the threshold α, which indicates that a sample is a
malware if at least α antivirus engines detected it as malware. Unfortunately, there
are no rules or standards on deciding this threshold to our awareness. Wei et al.
[WLR+17] set this threshold to 50% (28), which gave them a reduction from 1,216,885
applications to 52,520. This means that only 4,32% of the applications passed the
filtering. Kakbus et al. [AS18] set the threshold to 20 detections from VirusTotal.
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They only lost 7.1% of their collected applications, but they applied other filtering
techniques and manual analysis before submitting to VirusTotal. Fratantonio et al.
[LNW+14] used a threshold of 5 VirusTotal detections. Others, such as [ASH+14],
have selected a subset of antivirus companies based on popularity. They consider
an app to be malware when two of their selected antivirus engines agree to say so.
This approach was later criticized by [CZR16], which found that selecting a subset
of antivirus engines to build a ground truth dataset may lead to more disagreement.
Another study [MA14] revealed that multiple antivirus engines are necessary to
obtain complete and accurate detections of malware.

Because VirusTotal’s Academic API is limited by 20 000 requests each day, we have
to rely on the previously fetched detections from AndroZoo. Setting a threshold at
all will affect the number of potentially malware samples. The effect for different
thresholds is shown in Table 4.2. These values are outdated in some cases, and left
undiscovered by some antivirus engines. We observe that 217,872 samples are not
yet scanned by any antivirus engine.

Table 4.2: Remaining samples for different values of α.

α Remaining samples

0 631,883
1 340,667
2 243,548
5 143,062
10 31,788
15 12,301
20 7,191
25 4,003
30 1,709

None 217,871

The detections can be affected by new malware which is not yet recognized by all
antivirus engines, or it can be affected by advanced patterns not easily recognized
[CZR16]. Figure 4.2 illustrates the number of samples left with an increasing number
of VirusTotal detections. We observe that there is no obvious drop that would
simplify our decision. Nonetheless, with a higher value of α, we can also have more
confidence, although many samples will be lost. Therefore, we chose to set α to 15
detections for our dataset.
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Figure 4.2: The number of samples left with an increasing number of VirusTotal
detections.

We further collect benign applications from AndroZoo. We extract applications
with zero positive detections. As already stated, some of these detections can be
outdated. Therefore, we fetch the most recent reports from VirusTotal to ensure
that the applications are benign.

Real-time data

In addition to data collected from AndroZoo, we perform experiments with real-time
data. To do so, we receive a live input stream of files recently submitted to Norton
LifeLock. To answer RQ3, we analyze the files as soon as we receive them, and then
wait 20 days and re-analyze them. Then, we compare the results from these two
analyses.

4.3 A hybrid malware detection approach

Static solutions are becoming more robust against obfuscated code, but many appli-
cations and malware are already using more sophisticated methods for obfuscation
[TFA+17]. At the same time, static analysis is effective, scalable, and provides full
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code coverage in ways that dynamic analysis cannot. A reputation-based analysis
is not affected by code obfuscation and is even more efficient and scalable than
static analysis. Nonetheless, reputation-based analysis inherently does not capture
any behavior or code coverage. On the other hand, the dynamic analysis does
capture an application’s behavior, but as with static analysis, malware writers have
their techniques to avoid detection. Dynamic analysis is also much more resource-
consuming than static- and reputation-based analysis. An overview of the benefits
and drawbacks for each method is illustrated in Table 4.3

Table 4.3: Advantages and disadvantages of reputation-based analysis, static
analysis and dynamic analysis.

Method Advantages Disadvantages

Static analysis Fast and safe. Can give
full code coverage.

Might be evaded by code
obfuscation, encryption
and packing.

Dynamic analysis Captures application be-
haviour. Cannot be es-
caped by code obfuscation,
encryption or packing.

Slow and resource absorb-
ing. Cannot capture the
full code. Different evasion
techniques exist, such as
logic bombs.

Reputation-based
analysis Quick and the least re-

source consuming method.
Depends on knowledge
around or about the app.

A hybrid solution can, therefore, combine reputation-based, static- and dynamic
analysis in ways that their added strengths mitigate each other’s weaknesses. We set
the following requirements for the hybrid pipeline:

• Scalable. The solution must be capable of analyzing hundreds of applications
each day.

• Reflect the current threat landscape. The solution must up-to-date and detect
the most recent malware.

• Fully automated. Manual analysis in the final solution is not realistic in terms of
resources, scale, and time. Hence, we require the solution to be fully automated.

• Precise. The solution must be able to detect malware precisely. Metrics from
the confusion matrix is used to evaluate the preciseness of the solution.
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We design a solution that consists of a pipeline of reputation-based, static- and
dynamic analysis tools. The input to our system is an APK or a folder of APKs. For
each analyzed application, the system outputs either benign application or malware.

4.3.1 Selection of tools

Analyzing malware is a time-consuming process, especially when it is conducted
manually. Because we require the solution to be automated and scalable, tools must
be incorporated in the solution. However, using tools can give a false sense of safety.
When using tools, the results are never better than the tool itself. Further, tools can
give false positives or false negatives. That means that a benign app is detected as
malware, or that malware was left undetected, respectively. Nonetheless, we have to
rely on tools to achieve a realistic solution that can fulfill our requirements.

The selection of tools is based on the requirements for our solution and evaluated
with both quantitative measures and qualitative measures. We evaluate the tools
with the following metrics:

1. Can the tool be automated, either alone or in combination with other tools?
This is a crucial metric for our tools. Otherwise, we cannot fulfill our overall
requirements. However, automating the tool may be a time-consuming process.
Thus, this metric is tested at last, unless it makes sense otherwise.

2. Is the tool scalable? The scalability of the tools will only be assessed through
free-versions of the tool. We measure the scalability in average time per sample
when it is possible.

3. Is the tool able to analyze recent samples? Note that we distinguish between
recent and new. In this context, new malware is malware that has never been
discovered before and a so-called zero-day malware. We define recent malware
as malware that has been seen recently, i.e., in the last year. The objective of
this metric is to exclude tools that are outdated or discontinued.

4. Can it give applications a verdict? A verdict in this context is anything that
can help us recognize the sample as either malware or benign. This can be a
string, a number, a figure, or others.

5. Are there any other limitations, for example, file size limitations, the maximum
number of files, or others?
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Procedure for finding tools

We start by investigating open-source tools as they are the preferred choice. Open-
source tools are the better option in terms of reproducibility and allow us to be aware
of the tool’s internal workings. Also, we can edit and tweak the code as desired.
The open-source tools we evaluate must be maintained projects, or at least updated
in the last year. Thus, we ensure that the tool can reflect the current landscape.
To find open-source tools, we search on GitHub with a search string built with OR
and AND gates. If the tool is a match, we further consider it by reading eventual
documentation or other information.

To find scanners and sandboxes, we use various search engines and build a search
string. We also read articles and references in the academics, such as in Android
Malware Analysis [Ken15]. We only assess tools that are free of use. Additionally,
we will investigate commercial tools given by Norton LifeLock. The inconvenience
with these tools, compared to open-source tools, are the lack of awareness of their
internal workings, and that we cannot change or tweak anything.

4.3.2 Planning our experiments

After we have selected appropriate tools, we combine them into a pipeline. We
perform experiments with different combinations of the pipeline and measure how
it affects the outcome. We aim at performing a minimum number of experiments
with maximum obtained information. Firstly, the individual result of each selected
tool is studied. When we recognize the weaknesses and strengths of these tools, we
can combine them in ways that make sense. All the experiments are qualitative and
measured in our selected evaluation metrics.

4.4 Evaluation metrics

We need to determine appropriate evaluation metrics to decide the trade-off be-
tween reputation-based-, static- and dynamic analysis. Unfortunately, no universal
agreement on evaluation metrics exists, to the best of our knowledge. Therefore, we
study related works and the metrics themselves to decide how we can capture our
system’s performance in the best way. We include metrics related to effectiveness and
efficiency. The effectiveness of a system measures the ability to distinguish between
malware and benign applications, and efficiency deals with resource allocation, such
as memory and CPU [KA15].
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4.4.1 Metrics from the confusion matrix

Firstly, we know that our detection system deals with two distinct cases: malware
and benign applications. Therefore, our detection system needs to build a Table of all
available cases, which is usually called a confusion matrix [HDK17]. The confusion
matrix is naturally a 2 × 2 matrix illustrating whether each instance (malware or
benign) has been given a verdict correctly, as shown in Table 4.4.

Table 4.4: Confusion matrix built by a malware detection system.

Actual class
Malware Benign

Predicted class Malware True positive (TP) False negative (FN)
Benign False positive (FP) True negative (TN)

True positives (TP): the number of malware samples that are correctly detected.
False positives (FP): the number of benign applications that are erroneously
detected as malware.
True negatives (TN): the number of benign applications that are correctly classified.
False negatives (FN): the number of malware samples that are erroneously detected
as a benign application.

The most well known evaluation metrics drawn from the confusion matrix are as
follows:

Detection ratio
The detection ratio, also named sensitivity or true positive ratio, is one of the main
requirements in the design of malware detection solutions [MMF19]. Detection ratio
consider malware samples only, and measures how many of them that were actually
detected.

Detection ratio =
∑
TP∑

TP +
∑
FN

(4.1)

Accuracy
Accuracy measures how often the classifier is correct, in total. As with the detection
ratio, it is also one of the most common evaluation metrics in malware detection
systems.

Accuracy (ACC) =
∑
TP +

∑
TN

N
(4.2)

Precision
Precision considers how many samples that were malware, given that a detection
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system verdicts malware.

Precision =
∑
TP∑

TP +
∑
FP

(4.3)

False positive ratio
False positives are not directly a risk for the security on the device. However, it
can be troublesome if the user is required to interact whenever there is an alarm,
and they appear to be false. Hence, a low number of false positives is essential to
ensure usability. It is also vital to establish trust between the user and the detection
system. If a detection system verdicts known, trusted applications as malware, it is
not trustworthy.

The false positive ratio can be measured by using the confusion matrix:

False positive ratio (FPR) =
∑
FP∑

FP +
∑
TN

(4.4)

False negative ratio
The false-negative ratio represents how many malware samples that went undetected.
Contrary to a false positive ratio, it does pose a security risk to the device.

False negative ratio (FPR) =
∑
FN∑

FN +
∑
TP

(4.5)

4.4.2 Resource metrics

Time
Rapid detection and prevention are essential for efficient detection of malware.
It affects the complete system performance and is also critical to supply service
previously agreed upon (Quality of Service). As can be seen from Table 4.4 this is
also the most common resource metric in the related works studied.

Memory, CPU, disk I/O and 2D- and 3D graphics
It is a common practice to benchmark the proposed solution on a real device
because malware detection solutions are generally intended for the end-user. Memory,
CPU, disk I/O, 2D, and 3D graphics are standard benchmarking tests on Android.
Nonetheless, performing these tests requires a full on-device implementation.

Online and offline device
Mobile malware researchers often strive to create a detection system that can run on
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a device without an internet connection. But Android devices are still very resource-
limited compared to desktop computers, and efficient offline malware detection
remains an open research problem.

4.4.3 Evaluation metrics used in related work

Table 4.5: Evaluation metrics from related work divided into metrics from the
confusion matrix and resource metrics. The related work was presented in Chapter 3.

Metric Used by

Confusion matrix
Accuracy [FCYS16], [SSDM18], [MMS17], [TY17], [ASW+18]
Detection ratio [ASH+14], [BZNT11]
False positives [ASH+14], [FCYS16], [SSDM18], [ASW+18], [ARF+14],

[MMS17]
False negatives [FCYS16], [ASW+18], [ARF+14]
Precision [ARF+14]
Recall [ARF+14]

Resource metrics
Time [WL16], [ASH+14], [FCYS16], [ARF+14], [LNW+14]
Memory [SSDM18], [MMS17], [ASW+18]
CPU [SSDM18], [MMS17], [ASW+18]
Battery consumption [SSDM18], [MMS17], [ASW+18]
I/O [SSDM18], [MMS17], [ASW+18]
2D [SSDM18], [MMS17], [ASW+18]
3D [SSDM18], [MMS17], [ASW+18]

Table 4.5 gives an overview of evaluation metrics used by related work from Chapter 3.
As already stated, there are no general methods for evaluating malware detection
systems. To ease inter-system comparison, we attempt to include some of the most
common evaluation metrics.

4.4.4 Conclusion

As for performance metrics, we want to include accuracy, detection ratio, and false-
positive ratio. Accuracy covers the overall correctness of the system, the detection
ratio measures the ability to detect malware, and the false-positive ratio includes the
usability of the system. Besides, accuracy and false positives are the most frequently
used evaluation metrics in academics. Thus, including these metrics in our project
can alleviate the comparison between different systems.





Chapter5Experiments and Tools Selection

This chapter explains how we conduct practical work. Firstly, we elaborate on the
procedure for data collection. Secondly, we explain the selection of relevant tools
that we combine into a final pipeline.

All experiments are conducted on an Ubuntu 18.04 LTS 64-bit as shown in Table 5.1.
If any of the tools that we investigate cannot run on an Ubuntu operating system,
we use a Windows VM.

Table 5.1: PC specifications.

Main PC VM
Operating
system

Ubuntu 18.04 LTS
64-bit Windows 10 64-bit

Memory 31,3 GiB 4048 MB base memory

Processor Intel R© CoreTM i7-6700
CPU @ 3.40GHz 8 1 CPU

Disk 503 GB

Figure 5.1 shows an overview of the scripts we used to conduct the practical work.
These are attached in the appendix.

45
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Data collection

Selection of tools to pipeline 

update_detections_from_v
t.py

andro_zoo_download.py

Dataset construction

get_reports_from_vt.py

AVclass

Euphony

filter_min_sdk.py
automate_mobsf_dynamic.

py

file_events.py

eset_scanner.sh get_reputation.sh

Experiments with pipeline

dynamic_analysis.py

upload_to_bluecoat.
py

individual_methods_
and_pipeline_1.py

pipeline_with_limits.
py

Figure 5.1: An overview of the scripts used to conduct the practical work.

5.1 Data collection

The pre-generated dataset consists of benign applications and malware collected
from AndroZoo. We explain the construction of the dataset below. Additionally, we
use real-time data collected from Norton LifeLock, which we analyze with the final
pipeline.
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5.1.1 Dataset construction

We first filter out the applications with 15 or more detections in the time interval
2017 – 2020 from the csv file provided by AndroZoo [Li,17]. After our initial filtering,
we were left with 12,301 samples. As previously stated, the VirusTotal detections in
the csv file provided by AndroZoo are mostly outdated. Thus, we used Appendix A.3
to update the number of detections and download VirusTotal reports for these
samples. This left us with 10,644 samples. To re-label the malware, we used AVclass
[SRKC16]. However, a considerable part of the applications was labeled as Potentially
Unwanted Applications (PUAs). To ensure diversity, a part of these samples were
filtered out with AVClass. Finally, we did some manual analysis of each label to
verify its existence and assure that it was a malware family. We did this for each
family with more than ten samples. Finally, we were left with the dataset shown
in Table 5.2, a total of 2,493 malware samples within 33 different malware families.
The samples were downloaded with Appendix A.1.

Table 5.2: Malware families in the pre-generated dataset.

Malware family Samples Category

FakeApp 318 Trojan dropper
Piom 295 Trojan
Wroba 235 Banking trojan
SmsSpy 230 Spyware
HiddenAds 228 Adware
Syringe 180 Trojanized Adware
Ramnit 153 Trojan dropper
Triada 126 Backdoor
Shedun 109 Trojanized Adware
Trojandldr 59 Trojan
Virut 45 Virus
Sprovider 44 Adware
FakeInst 42 SMS trojan
Nimda 38 Worm
LockScreen 32 Ransomware
Hqwar 33 Banking trojan
SilentInstaller 32 Riskware
SmsAgent 30 Trojan
Blouns 29 Trojan
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Tekwon 24 Trojan
Rootnik 22 Trojan
RemoteCode 21 Trojan
HiddApp 21 Trojan
DroidRooter 19 Riskware
Locker 18 Ransomware
Scar 15 Trojan
Fobus 15 Backdoor
Xiny 14 Trojan
Remco 14 Downloader trojan
Gatf 14 Riskware
Cynos 13 Backdoor
Ztorg 12 SMS trojan
GinMaster 12 Backdoor

We also download benign applications from AndroZoo [Li,17]. These were filtered by
extracting applications with zero detections from the csv file from AndroZoo and
updated with Appendix A.2. In total, we obtained 2,749 benign applications from
various sources, but mainly Google Play. The origins of these applications are as
demonstrated in Figure 5.2.
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Figure 5.2: Benign applications sources.

5.1.2 Non-filtering of malware samples and challenges with
malware labeling

We want to shed light on some of the many challenges with malware labeling. Besides,
we want to show that we do not attempt to select samples that our system can easily
detect. To do so, we randomly select 2800 samples from our list of sha256s in the
time interval 2017 – 2020 with more than 15 detections. Similar to the other dataset,
we update the VirusTotal detections with Appendix A.2 and remove apps with less
than 15 detections. We do not filter the data anymore. Instead, we show the labels
for the data as it is. We use two different tools for this purpose: AVclass [SRKC16]
and Euphony [Hur17]. The labels are demonstrated in Table 5.3. We notice that
these labels are mostly inconsistent. The most frequent name given by Euphony is
"Artemis." Artemis is commonly used by the antivirus company McAfee to name
unknown, potential risks 1. SMSreg is defined as a Potentially Unwanted Application

1We read several sample reports and found that McAfee commonly used the name Artemis.
We also found it on their support site: https://community.mcafee.com/t5/Malware/What-is-quot-
Artemis-quot-trojan-Artemis-502632079A97/td-p/371135



50 5. EXPERIMENTS AND TOOLS SELECTION

(PUP) by MalwareBytes2 and Zemana3, and riskware by f-secure4 and Sophos5. In
this case, the label given by AVclass appears to be more consistent. Nonetheless,
without a manual inspection, we do not have a clear interpretation of whether it
should be, for instance, 206 or 217 samples belonging to "Piom." We include this to
demonstrate that the antivirus labels are not reliable and very inconsistent. As a
result, using a tool to re-label the malware samples might be erroneous or unreliable.
It has also been widely studied and stated in the literature [MA14] [MALM14].

Table 5.3: Top 10 malware families in the non-filtered selected
dataset. We show the labels given by both Euphony [Hur17] and
AVclass [SRKC16]. We also include the category for each family
given by AVclass.

Euphony label Samples AVclass label Samples Category

Artemis 811 SmsReg 731 Riskware
Dnotua 284 Piom 206 Trojan
Cooee 252 SmsPay 178 Riskware
Piom 217 Dnotua 115 Riskware
FakeApp 78 SmsSpy 86 Spyware
SmsSpy 77 Ramnit 71 Trojan dropper
Triada 73 Triada 70 Backdoor
Ramnit 71 FakeApp 67 Trojan dropper
HiddAd 49 Shedun 59 Trojanized adware
Shedun 45 HiddAd 51 Adware

5.1.3 Real time data

We get access to a live input stream of data from Norton LifeLock. The data is
filtered such that only files seen the first time in the last 12 hours are passed to us.
We fetch the data from a bucket on Amazon Web Services. When the file arrives,
we analyze it with the pipeline and save the results to a file. We fetch this data for
three days. Then, we wait 20 days and analyze the same files again.

2https://blog.malwarebytes.com/threats/mobile-pup/
3https://www.zemana.com/removal-guide/smsreg-malware-removal
4https://www.f-secure.com/sw-desc/riskware_android_smsreg_online.shtml
5https://www.sophos.com/en-us/threat-center/threat-analyses/adware-and-

puas/Android%20Riskware%20SmsReg/detailed-analysis.aspx
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5.2 Selection of tools

Initially, we perform experiments on different tools and scanners to evaluate its
effectiveness.

5.2.1 Open-source tools

Challenges

Most of the malware detection open-source tools are outdated. For example, Cuck-
ooDroid used to be a popular tool for automated malware analysis. It has 475 stars
on GitHub and 120 forks. Unfortunately, it was last updated three years ago and
currently has 63 reported issues. Newer tools exist. However, most of them are proof
of concepts or tied to a specific problem area or data. The initial filtering left us with
MobSF, droidefense, and AndroPyTool. These tools are built on other open-source
tools to enable automatic malware analysis. MobSF is a popular tool maintained by
many active developers. Even though AndroPyTool is not managed anymore, and
far less popular, we still chose to test it considering our limited options. Droidefense
looks like a promising project but has no official release yet. The master branch
was last updated four years ago, and the develop branch has not been updated in 6
months, but we still chose to download the alpha-release of the project.

AndroPyTool

An overview of AndroPyTool is illustrated in Figure 5.3. It consists of three stages:
pre-static-, static- and dynamic analysis. The first step extracts features from the
application without deep inspection. If we provide a VirusTotal key, the tool can
fetch VirusTotal reports and classify the application by using AVClass. The next
step includes deeper static analysis by using the Python Framework AndroGuard6

for selecting various static features, and FlowDroid [ARF+14] to run taint analy-
sis to follow the information flow. The last step is the dynamic analysis, where
AndroPyTool uses DroidBox7 and Strace8. AndroPyTool can be downloaded from
GitHub/AndroPyTool. It is easy to install and deployed through a Docker container.
This is beneficial because it can run on any operating system.

Pre-static analysis. The pre-static analysis outputs the file hash, the number of
detections from the downloaded VirusTotal report, and the AVclass label. Unfortu-
nately, the labeling does not work as intended, since it outputs "android" for almost

6https://github.com/androguard/androguard
7https://github.com/pjlantz/droidbox
8https://linux.die.net/man/1/strace

https://github.com/alexMyG/AndroPyTool
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Figure 5.3: An overview of AndroPyTool [MGLCC18].
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all files. Two reasons can cause this problem: either there is a bug in AndroPyTool,
or AVclass is not able to recognize the labels from VirusTotal. Nonetheless, since we
used AVclass to label the dataset, we conclude that the bug is in AndroPyTool.

Static analysis. The static analysis collects class name, opcodes, declared permis-
sions, API calls, strings, API packages, system commands, intents, activities, services,
and receivers. However, a drawback with AndroPyTool is the time it uses to analyze
applications statically. FlowDroid runs taint analysis, which is not applicable for
real-time analysis. FlowDroid alone spent almost 43 hours analyzing 1498 apps, or
1.715 minutes per application.

Dynamic analysis. As mentioned, DroidBox is the underlying tool for dynamic
analysis in AndroPyTool. DroidBox runs applications in an Android emulator to
monitor events such as file access, network traffic, SMS activities, cryptography usage,
started services, and dynamically loaded dex files. It uses Monkeytool9 to generate
pseudo-random streams of user events such as clicks, touches, or gestures, and several
system-level events. Unfortunately, Droidbox was built for Android 4.1. This level
corresponds to SDK version 16. The minimum SDK is decided by the developer
and express an application’s compatibility with one or more versions of the Android
platform, utilizing an API Level integer. Despite its name, minimum SDK is used to
specify the API level and not the SDK version [SDK19]. As AndroPyTool does not
automatically filter out applications, we filter out the apps with a SDK lower than 16.
This corresponds to removing 978 applications out of 5467. We use AndroGuard to
conduct the filtering, see appendix B.1. Figure 5.4 shows the minimum SDK versions
for the dataset.

Another drawback with Droidbox is the fixed bugs. Currently, it has 24 reported
issues in Github, and it is no longer maintained. We experience several of these bugs
while testing it, which causes it to crash unexpectedly. The crashes make it less
applicable for large-scale automated analysis of applications.

9https://developer.android.com/studio/test/monkey



54 5. EXPERIMENTS AND TOOLS SELECTION

Minimum SDK version

N
um

be
r o

f A
P

K
s

0

2000

4000

6000

0 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Figure 5.4: Minimum SDK versions for the dataset.

MobSF

MobSF is an all-in-one cross-platform tool for security assessment and malware
analysis, which downloads from GitHub/MobSF. It is somewhat more work to install
MobSF compared to AndroPyTool. For static analysis, it is possible to run it in a
Docker container, but not for dynamic analysis. Therefore, we install it from the
source. MobSF uses Genymotion10 as a virtual runtime environment for dynamic
analysis, which enables higher Android versions compared to AndroPyTool. Currently,
MobSF supports Android 9. Figure 5.5 demonstrates an overview of MobSF.

Static analysis. MobSF uses jadx to decompile the dex files of the application java
files and AndroGuard to extract various features. As with AndroPyTool, MobSF
fetches detections from the VirusTotal reports if the key is present. Nonetheless, it
does not provide labeling. A local web interface can be accessed where the user can
read reports and upload files. Access through API is also possible, which enables
mass static analysis.

10https://www.genymotion.com/

https://github.com/MobSF/
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Figure 5.5: MobSF architecture.
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MobSF already provides a script for mass static analysis. The script automatically
uploads all the applications in a provided folder and then scans them. The report
for each scan shows overall security scores, VirusTotal detections, average Common
Vulnerability Scoring System score, tracker detection, and details about what it
found. Although the tool provides details specific to malware detection, such as
VirusTotal detections, it is more specified on finding security vulnerabilities. It does
not classify the application as benign or malware automatically.

Dynamic analysis. The dynamic analysis provided by MobSF is alleged to be user-
assisted, and not automated by default. Therefore, we write a script to automate
it, see Appendix B.2. With this automation, the dynamic analysis performs a
malware domain check for each URL used by the app and monitors API calls. The
dynamic analysis does not fetch features such as system calls, installed packages,
or suspicious activities. System calls, for instance, is a commonly used feature for
dynamic malware analysis, such as in [BZNT11], [TY17], [ASW+18], [SSDM18].
Overall, the dynamic analysis alone does not provide us with enough details to decide
whether the application is a malware or not.

Droidefense

We download droidefense from its GitHub repository. It provides scripts for building
and compiling, but these result in errors. We try to edit the project settings, but the
project is dependent on old modules, and some do not exist anymore. Thus, we do
not test the tool further.

5.2.2 Scanners

In this section, we assess different free scanners against our evaluation criteria. The
scanners must be possible to run on a desktop, either through a web interface or
in a desktop application. Therefore, we did not test scanners available in Google
PlayStore.

Online scanners

AVCUndroid11 is a fast, online, static scanner. It accepts a maximum of 7 MB files,
which would exclude almost all the data samples. Therefore, we do not test it further.
The same reasoning applies to Dr. Web Online12, which only allows for 10 MB files.
Further, the online static analyzer VirScan13 accepts a maximum of 20 MB files and

11https://undroid.av-comparatives.org/
12https://vms.drweb.com/online/
13https://www.virscan.org/
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is particularly slow. Finally, Kaspersky14 offers static analysis online. It is fast and
limited by a file size of 50 MB, adequate for all the collected samples. Unfortunately,
mass-scale assessments are not achievable with the scanner, as the analysis cannot
be automated.

Desktop scanners

We are given a license to Norton LifeLock’s commercial desktop scanner, Norton
Security15. Norton Security is a powerful scanner with no strict limitations in terms
of filesize, processing time, or others. It runs on OSX and Windows. Initially, we
try it on OSX, but the application does not provide any possibility for command
line integration after the latest OSX update (Catalina). Command-line integration
is necessary for automation and fetching the results. Therefore, we try it further
on Windows, as the scanner does provide a few options for execution through the
command line on Windows. However, even if it is executed from the command
prompt, it still renders a graphical interface where user interaction is needed. To
overcome this issue, we try to use AutoIt16, a powerful scripting language to automate
Windows applications. To finish the scan and export the results, we need to click
"export" in the graphical interface. Unfortunately, the buttons are invisible, which
means that they cannot be clicked. We try other tools for automation as well, which
gives the same result. Another possibility is to export the full security history from
the command line. The results from the security history provide fewer details, but
enough to make a decision. However, for the most recent scan to be included in the
security history, the graphical interface still requires user interaction.

We also try Eset’s desktop scanner17, which is free within the first 30 days. Eset runs
on any operating system, including Ubuntu. Similarly to Norton’s scanner, it does
not have any strict limitations. Also, Eset offers extensive command-line integration,
which enables full automation. It keeps a signature database locally and performs
signature-based detection. It regularly updates the signature database whenever it
has an internet connection. Although this method is efficient against known malware,
it cannot recognize new malware and may be circumvented by obfuscated code. We
tested the tool with and without an internet connection to determine if the results
were different. We expected that it might fetch pre-calculated results from dynamic
analysis from a database, but the results were the same. Concerning execution time,

14https://www.kaspersky.no/
15https://no.norton.com/norton-security-antivirus
16https://www.autoitscript.com/site/
17https://www.eset.com/



58 5. EXPERIMENTS AND TOOLS SELECTION

the scanner is fast enough. It uses 3.55 seconds per application on average, which is
way faster than, for instance, Flowdroid’s 1.75 minutes per application.

Indifference from AndroPyTool and MobSF, all the scanners were automatically
giving samples a verdict, so the samples were differentiated as either malicious or
normal. Another difference from the open-source tools is that we are not aware of
these scanners’ underlying technology. Hence, giving an explanation of the inner
workings or fixing bugs is not possible.

5.2.3 Sandboxes

A sandbox provides a safe and isolated environment to execute suspicious code and
is thus the preferred way of conducting a dynamic analysis.

AMAaaS

AMAaaS18 is an online sandbox that provides both static- and dynamic analysis. It
allows for larger files than AVCUndroid and Dr. Web Online, with a limitation of
20 MB. Still, this would exclude many files. Additionally, AMAaaS deploys a queue
system for analyzing files, which is very slow, and therefore not adequate for efficient
analysis.

Joe sandbox

Joe Sandbox19 is another sandbox that provides both static- and dynamic analysis.
It does not suffer from a strict file size limitation and enables up to 100 MB files,
which is enough for all the collected samples. Unfortunately, the free subscription
is limited to ten submissions each day, and it does not allow us to use their API or
chose either static- or dynamic analysis. To answer the research questions, we need
to be able to distinguish the different analysis methods. Because of the limited time
of this project, we also have to analyze more than ten samples each day.

Norton LifeLock’s sandbox

We get access to Norton LifeLock’s sandbox. The sandbox performs dynamic
analysis, and reputation-based analysis on the URLs the application attempts to visit.
Figure 5.6 demonstrates an overview of the architecture. Note that the internals
are trade secret and that we only extracted the available information. The dynamic
analysis is based on DroidBox, but with custom modifications. To determine if an

18https://amaaas.com/
19https://www.joesecurity.org/
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Figure 5.6: An overview of Norton LifeLock’s sandbox. The internals are trade
secret, and the figure only demonstrates the information we were able to extract.

application is malware, it attempts to match the behavior of the application against
pre-determined patterns. If no patterns match, it returns a security score of one. If
patterns belonging to the most severe group are found, it returns ten. Applications
are considered as malware if the score is above seven. For example, if the application
connects to sites that are known for advertisement, the application will receive a
security score of five. If the application contains a high priority SMS receiver, it will
obtain a security score of eight.

We access the sandbox through a remote API. It easily allows for automatic, mass-
scanning of files. For each file, we upload the APK, create a task, and fetch the
results once it finishes. The only limitation is the processing capacity. Unfortunately,
we cannot decide how many apps that are analyzed simultaneously. For each app,
we have to wait at least two minutes. We can only run a few of them in parallel.
However, we do expect the dynamic analysis to be more time consuming than static
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analysis.

5.2.4 Reputation-based analysis

We assess Norton LifeLock’s commercial reputation engine. It is accessed through an
API and fetches stored reputations for the samples we submit. Only one request is
necessary for each sample, and the response is fast (< 1 second). The reputation
engine returns a score between -120 and 120. According to Norton LifeLock, score
mapping is as follows:

• Scores above 110 are defined as "high good."

• Scores above 30 are "medium good."

• Scores from 10 to 30 are "low good."

• Scores between 0 and 10 are "neutral."

• Scores from -30 to 0 are "low good."

• Scores lower than -30, but higher than -110 are "medium bad."

• Scores lower than -110 are "high bad."

The output score is based on different aspects that either contribute to a high or
low reputation. For example, applications within the gaming category with poor
performance, that leaks information through SMSs, obtains a low score. On the
other side, a productivity app with no leaks and excellent performance will receive a
high score.

We did not assess more reputation-based analysis tools, as there were no other tools
available for free. However, the reputation engine from Norton LifeLock fulfills all of
our requirements. It is scalable, automatable, outputs a score for each application,
and can analyze the files we give it.

5.2.5 Conclusion

We tested several open-source tools, scanners, sandboxes, and commercial tools, and
evaluated its effectiveness against metrics explained in Chapter 4. A summary of
these tools and their capabilities are given in Table 5.4. None of the tested tools
fulfills these requirements perfectly. AndroPyTool is an automatic tool for malware
detection, but it cannot dynamically analyze applications with a higher API level
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than 16 because of its underlying technology. It is also slow and erroneous. MobSF
can dynamically analyze newer versions of Android and can be automated. Another
benefit of MobSF is that it is still being maintained, in contrast to the other open-
source tools within automatic malware analysis. However, it does not provide us
with enough relevant information to decide whether the app is malware. Instead, it
is a more suitable tool for penetration testing.

With regards to sandboxes, Norton LifeLock’s sandbox is the best option. The
other sandboxes we tested are too limited. Norton LifeLock does fulfill the main
requirements but does not score very well on scalability caused by its long execution
time. Nonetheless, we still include it in our pipeline.

Scanners are the best option concerning verdicts. However, the difficulty with these
scanners is the strict limitations, either in terms of file size, automation, or little
flexibility. In general, the online-scanners are better suited for a one-time scan
rather than a mass-scale analysis. The desktop scanners are far less restricted. They
still suffer from little flexibility and the fact that we do not know the underlying
technology. Thus, we cannot tweak or modify any code. Neither can we perform
debugging to solve potential problems. The most suitable scanner was Eset’s scanner.
As it is the tool that is closest to fulfill the main requirements, it will be used further
for static analysis.

We include Norton LifeLock’s reputation engine in addition to Esets’s scanner and
Norton LifeLock’s sandbox. We did not have many options for reputation-based
analysis, but Norton’s reputation engine does fulfill our requirements.

Table 5.4: Summary of the tested tools and their capabilities. The
selected tools are highlighted.

Tool Automat-
able

Verdict Scalable Recent
samples

Limitations

Open-source tools

AndroPyTool 3 7 7 7

Dynamic
analysis limited
by API level 16.

MobSF 3 7 3 3

More suitable
for penetration
testing.

Scanners
AVCUndroid – 3 7 3 7 MB filesize.
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Dr. Web
Online

– 3 7 3 10 MB filesize.

Kaspersky 7 3 7 3

Norton
Security

7 3 3 3

Eset 3 3 3 3

Cannot detect
new malware, or
obfuscated
malware.

VirScan – 3 7 3
20 MB filesize.
Slow.

Sandboxes

Norton’s
sandbox

3 3 3 3

Cannot
paralelize more
than three
instances.

AMAaaS – 3 7 3
20 MB filesize.
Slow.

Joe Sandbox – 3 7 3

Can’t
distinguish
static- and
dynamic
analysis.

Reputation engines
Norton’s
reputation
engine

3 3 3 3

5.3 Final pipeline

The final pipeline consists of Norton’s reputation engine, Eset’s scanner, and Norton’s
sandbox. We are receiving a live input stream of data, and thus, we write a python
script that can listen to new files in a folder. The data samples were directly
downloaded to that folder. The script contains an observer, which observes the
changes, and an event handler that handles the file event. We use the Python library
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Watchdog20 for this purpose. Once the event handler is called, it uses the tool
AndroGuard21 to compute the sha256 of the file. The sha256 is needed to request
results from the reputation engine. Then, it runs the reputation-based analysis,
static analysis, and dynamic analysis with our selected tools. Because the processing
of data is a time-consuming process, we use three threads to process the files. It
would be faster to parallelize the tasks even more, but we are limited by our allowed
processing capacity on the sandbox. Finally, the results are written to a CSV file
holding the scores for each method, the sha256 and filename, and the execution times.
For our pre-generated dataset, we write the results for the benign applications to
one file, and similarly one file for the malware. We use the result files to experiment
with different combinations and save the combined results in new files, together with
a summary. The exact combinations are decided after we have studied the individual
performance of the tools, which is explained and illustrated in Section 6.1.1. The
scripts for the full pipeline can be seen in Appendix C.

20https://pythonhosted.org/watchdog/
21https://github.com/androguard/androguard





Chapter6Results and Discussion

This chapter presents the results of the experiments. We begin by presenting the
results from our experiments on the generated dataset and discuss our observations.
Then, we show results from the non-filtered dataset and compare the results. Finally,
we introduce and discuss results derived from real-time data experiments. We
also include limitations of our pipeline and discuss the requirements as defined in
Chapter 4.

6.1 Filtered dataset

Table 6.1 show the calculated evaluation metrics for each analysis method alone. We
have included the analysis method by itself to determine individual performance.

Table 6.1: Results for each analysis method alone. The results are from experiments
with the pre-generated filtered dataset.

Method Accuracy Detection ratio False positive ratio Time (s)

Reputation-
based
analysis only

0.9588 0.9146 1.092 × 10−3 0.8478

Static
analysis only 0.8954 0.7806 3.639 × 10−4 4.333

Dynamic
analysis only 0.6300 0.2314 8.370 × 10−3 330.0

As can be observed, the reputation-based analysis is the method with the lowest
execution time. It simply fetches the result from a remote database in one request. On
the other side, it is always dependent on an internet connection, reducing scalability.

65
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Further, the reputation-based analysis has very few false-positives, but the accuracy
is not impeccable, which is mainly caused by its detection ability. A possible reason
for the lower detection ratio is that the reputation engine does not have enough
reputation data on some files. Therefore, it will give the file a neutral score. As
we have set the limit for malware to below zero (neutral), this will result in some
undetected files. Figure 6.1 demonstrates the scores returned from the reputation-
based analysis. We observe that 1859 samples are in the neutral category. For the
2284 apps with a score lower than zero, only three of them are false alarms. All
samples belonging to the malware families "Nimda" and "DroidRooter" were left
undetected by the reputation engine.
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Figure 6.1: Reputation scores for the filtered pre-generated data set.

Its signature-based approach causes the lower detection ratio for the static analyzer.
A signature-based method performs very well for known malware but fails to detect
unknown malware. It can also be affected by obfuscated code. Besides, the approach
results in almost zero false-positives (one false positive occurred for the entire data
set). When a sample’s signature matches the signature of known malware, we can
almost be entirely sure that it is malware. The malware families that were poorly
detected by the signature approach were "Piom," "Syringe," "DroidRooter," and
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"LockScreen." Further, the execution time of the static analyzer is dependent on a
single database search. The signature database exists locally, and when the static
analyzer receives a data sample, it merely searches for that signature in its database.
Hence, the average execution time for benign applications is higher than for malware
because it has to search through all entries in the database.

Indifference from the reputation-based- and static analysis, the dynamic analysis
has a very high execution time. We expect an extensive execution time because
the dynamic analysis is a more resource-intensive task. Besides, it is necessary to
run the application for a while to capture its behavior. Others, like Lalande et
al., found that they had to use 312 seconds on average for each sample to conduct
dynamic analysis [LTLG18]. Unfortunately, the dynamic analyzer does not perform
any better than the reputation-based engine or the signature-based approach. We
expect the dynamic analyzer to have some strict rules, causing the low detection
ratio. When rules are defined, it is always a cumbersome task to find the balance
between too rigid and too slack rules. Immensely strict rules will result in a lower
detection ratio, while overly loose rules will give many false positives. In this case,
the dynamic analyzer’s strategy may be to keep the false positives to a minimum,
i.e., by setting strict rules. Another cause of the meager detection ratio is that some
malware may apply evasion strategies to prevent getting caught by the dynamic
analyzer. However, because the detection ratio is extremely low, another explanation
may be that the sandbox crashes. We extracted the families that it cannot detect to
understand why the dynamic analysis results in a poor detection ratio. We derive
that none of the samples belonging to "FakeApp," "GinMaster," "Gatf," "Scar," and
"Remco" is identfied as malware by dynamic analysis. Very few of the samples in
the family "Piom" (5 of 295), HiddAd (7 of 228), SmsSpy (44 of 230), Ramnit (3
of 150), SilentInstaller (3 of 30) is detected by dynamic analysis. The only family
the dynamic analyzer can identify with good results is "Wroba," where it caught
234 samples out of 235. The poorly detected malware families did not give us any
clear indication about the meager detection ratio. Thus, it strengthens our suspicion
about system crashes.

6.1.1 Combining the tools

The dynamic analysis is by far the most resource-consuming approach and consumes
significantly more time than the other methods. It is also the method with the
lowest detection ratio by far. However, in a few cases, it may be a better method for
detecting malware. Therefore, we place it at the end of the pipeline in all cases.
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Table 6.2 shows results from different combinations of the pipeline. We include
results for two out of three analysis methods and one where all of the approaches
are included, named P#1. The architecture is inspired by Martinelli et al. [MMS17].
P#1 is defined as follows: If the reputation engine outputs a security score of less
than 0, we assume that the app is malware and does not process it further. If the
score is above 0, the static analyzer further process the application. Provided that
the output from the static analyzer is not malware, it is finally processed by the
dynamic analyzer. Otherwise, the file is categorized as malware. For an overview,
see Figure 6.2.

Reputation-based analysis Dynamic analysisStatic analysis

Score < 0 Threats Score > 7 

Malware Malware Malware

Benign
.apk

else else else

Figure 6.2: P#1: Pipeline architecture.

As for the results where only two analysis methods are included, it works similar
to P#1 but with one less step. Note that we could have placed the static analyzer
before the reputation-based analyzer, but the result would be the same. Because the
reputation-based analyzer is faster than the static analyzer, it is first in order when
it does not affect the results.

Table 6.2: Results for different combinations of the analysis methods when the
malware samples are filtered.

Method Accuracy Detection ratio False positive ratio Time (s)

Reputation-
based- and
static analysis

0.9834 0.9663 1.092 × 10−3 3.801

Reputation-
based- and
dynamic
analysis

0.9655 0.9374 9.0976 × 10−3 226.2

Static- and dy-
namic analysis

0.9158 0.8327 8.734 × 10−3 242.0

P#1 0.9861 0.9807 9.098 × 10−3 221.7
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P#1 performs slightly better than reputation-based- and static analysis only. The
dynamic analyzer is able to detect 36 samples, mainly from the "Syringe" family, that
the other tools cannot detect. Thus, detection ratio is so far the best. With P#1,
only the samples shown in Table 6.3 are left undetected. On the other hand, the false
positive ratio is increased, and the average execution time is also particularly higher
than with reputation-based- and static analysis. This is mainly because samples that
are benign have to undergo all the analysis methods.

Table 6.3: Samples left undetected by P#1. P#1 is the option with the highest
detection ratio.

Family Number of samples left undetected

DroidRooter 19
SilentInstaller 11
LockScreen 10
RemoteCode 4
Xiny 2
Triada 1
Remco 1

Further, we observe that the pipeline is mostly erroneous when analyzing samples
from the families "DroidRooter," "SilentInstaller," and "LockScreen." The DroidRooter
family are applications that can perform binary exploits to gain root access. Although
it is classified as an exploit, it can also include apps that users deliberately download
to achieve root-access of their device. Therefore, we would have to perform manual
analysis to determine whether it has malicious intent or not. The LockScreen
family is a category of ransomware that can lock the user’s screen and display some
personal information collected from the device, and then ask the user to pay. We
submitted a few of the undetected samples of LockScreen to VirusTotal and found
that there was significant disagreement about the naming of these samples. Still,
several of them contain suspicious requests, permissions, and bundled executables.
Although the naming might not be correctly identified, these should still have been
detected, at least as potentially unwanted applications (PUPs). As for the last family,
"SilentInstaller," the naming is generic. Nevertheless, a common observation of all
the samples belonging to that family, is that they contain one or more executables
hidden in the code.
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6.1.2 Limit sensitivity

With P#1, benign applications have to undergo all the analysis steps, causing an
excessive execution time. Although this approach results in a high detection ratio, we
experiment with different combinations to reduce the number of false positives and
to reduce the execution time, while maintaining a high detection ratio. Expressly, we
have experimented with different limits for the score returned from the reputation-
based analysis. In P#1, we only used a limit for malware. We now present results
where we also set a constraint for benign applications. In this case, we also tried
combinations where the static analyzer is placed first.

The reputation engine returns an integer between -220 and 220. Thus, if we were going
to test every possible combination, it would require 57,840 experiments. However,
we can apply the same principals as explained in [Jai91]. Instead of having each
integer as a score level, we chose to reduce them to 22 levels, where each level is an
interval of ten. Further, from Figure 6.1, we observe that very few samples obtain
a score between -1 and -30. We also know that the files with a reputation score
lower than zero mostly are malware, with a reasonable false positive ratio. The
most considerable uncertainty in the verdict from the reputation engine derives from
the samples with a score above zero. Therefore, we set the limit for malware to a
constant < 0. We are then left with 22 experiments. Although this is a considerable
reduction, we believe that it will not affect the results significantly.

Figure 6.3 presents the accuracy, detection ratio and 1− false positive ratio for the
different limits. The number of false positives is the same for both orders, but the
number of false negatives is lower when we place the static analyzer first. This
observation holds until the limit reaches 110, where the results are the same. In
both cases, the best accuracy and detection ratio is reached when the limit is set to
110. Then we achieve the same result as with P#1. The flaw with P#1 and high
limits, is the increasing number of false positives. Besides, the time increases when
we increase the limit, which is illustrated in Figure 6.4. The differences between the
orders are not significant. The increased run-time is because more samples need to
be analyzed by the dynamic analyzer.

We have also included a table with the results for the different limits in Appendix D,
Table D.1.
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Figure 6.3: Accuracy, detection ratio and 1− false positive ratio for different limits.
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Figure 6.4: Average time per sample for the different limits.
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6.2 Non-filtered samples

Table 6.4 show the calculated evaluation metrics for each analysis method alone when
the malware samples are selected without any filtering.

Table 6.4: Results for each analysis method alone when the malware samples are
not filtered.
Method Accuracy Detection ratio False positive ratio Time (s)

Reputation-
based
analysis only

0.8760 0.7805 1.092 × 10−3 0.8745

Static
analysis only 0.8156 0.6314 3.636 × 10−4 4.333

Dynamic
analysis only 0.8371 0.6809 8.370 × 10−3 292.0

Compared to the filtered dataset, the dynamic analysis seems to perform much better
on this dataset. Nonetheless, we note that it detects almost all samples from the
"SmsReg" family (668 out of 731). It does not recognize the other families any better
than in the previous dataset. This scrutiny demonstrates why it is crucial to balance
datasets.

Both the reputation engine and the static analysis perform worse on this dataset than
the filtered one. The reputation engine fails to detect 436 out of 731 samples in the
"SmsReg" family, while the static analysis cannot recognize 512 out of 731 samples
from the same family. The static analyzer is also particularly bad at detecting the
"Piom" family, where it missed 193 out of 206 samples. However, the non-filtered
dataset contains a considerable fraction of families in the "gray zone," including
riskware and Potentially Unwanted Applications (PUAs). For example, the SmsReg
family is in the riskware category, which constitutes 27% of the malware samples.
Gray zone applications might be harder to detect because there is a more delicate
line between malware and non-malware. As already stated, a manual inspection
would be necessary to confirm the correct verdict of these applications.

Table 6.5 demonstrates the same combinations that we included in the previous section.
Note that the malware samples are the difference and not the benign samples, which
remains the same. Thus, the false-positive ratios are identical to previously. Results
from experiments with the filtered dataset implied that the dynamic analysis might
be skipped, considering the meager detection ratio and excessive time-consumption.
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Table 6.5: Results for different combinations of the analysis methods when the
malware samples are not filtered.

Method Accuracy Detection ratio False positive ratio Time (s)

Reputation-
based- and
static
analysis

0.8915 0.7830 1.092 × 10−3 3.584

Reputation-
based- and
dynamic
analysis

0.9925 0.9941 9.098 × 10−3 186.2

Static- and
dynamic
analysis

0.9484 0.9051 8.734 × 10−3 206.0

P#1 0.9929 0.9949 9.098 × 10−3 181.7

The results from this dataset imply otherwise; the reputation engine and the scanner
are not efficient in detecting gray zone applications, the "SMSreg" family in particular.
Although the reputation engine and the scanner perform worse than previously, we
observe that the full pipeline, P#1, achieves a higher accuracy on this dataset than
the filtered dataset. This is mainly because the sandbox was able to detect samples
that the other tools could not recognize.

We do not consider these results as valid because of the considerable imbalance in
the dataset. However, it demonstrates the potential of such an approach. If we could
find a dynamic analysis that can perform reasonably well on all datasets, the pipeline
would be able to detect samples with very high accuracy.

6.3 Real time data

We now present results from experiments on real-time data. The goal of these
experiments was to determine how our pipeline performs on recent files compared to
older files. To achieve our goal, we initially analyzed samples seen for the first time
in the last 12 hours by Norton LifeLock. The same data were re-analyzed 20 days
later. This section presents and discusses differences in results from the two analyses.

6.3.1 VirusTotal detections and malware families

Figure 6.5 demonstrates the number of VirusTotal detections derived from the real-
time data for the first- and the second analysis. We observe that on the second
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analysis, more anti-virus engines detected the files that already were detected. We
further use the VirusTotal detections when we discuss the results.
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Figure 6.5: VirusTotal detections for the real-time dataset, including both the first
result (N) and the second result (N + 20) for the same dataset. It is 20 days between
the two results.

Table 6.6 presents the 15 most frequent malware families extracted from the real-time
data with AVclass [SRKC16]. We have also included the original year of development
of each malware family. We observe that most of the malware from the real-time
data are belonging to older families than for the pre-generated dataset. In fact,
the samples in the pre-generated dataset seems to match the description of the
current threat landscape we gave in Section 2.4.3 better than the real-time data.
Unfortunately, we were not able to understand why this is the case.
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Table 6.6: Top 15 malware families derived from the real-time
data. The families were derived during the secondary analysis.

Malware family Samples Category Year Developed

FakeInst 353 SMS Trojan 2010 [Ken15]
Shedun 309 Trojanized adware 20151

DroidKungFu 266 Trojan 2011 [Ken15]
Opfake 166 SMS trojan 20112

BaseBridge 153 SMS trojan 2011 [Ken15]
Boxer 122 SMS trojan 2012 [Ken15]
GingerMaster 95 Trojan 2011 [Ken15]
Plankton 80 Backdoor 2011 [Ken15]
HiddenAds 63 Adware 2014 [FMCB16]
Kmin 55 Trojan 20113

DroidDreamLight 46 Backdoor 2011 [Ken15]
Batterydoctor 41 Trojan 2011 [Ken15]
Iconosys 39 SMS trojan 20124

FakeAdBlocker 39 Adware [Che20] –
Lotoor 34 Risk tool5 –

6.3.2 Pipeline results

Table 6.7 shows the results from the pipeline, divided into VirusTotal detections.
Overall, the tool-chain performed similarly in the two analyses. The applications
that had zero VirusTotal detections from the first analysis also had zero VirusTotal
detections from the second analysis. However, one of the applications that had zero
VirusTotal detections was judged as malware by the pipeline. The verdict was given
from dynamic analysis in both cases. We conducted some manual analysis on that
particular application to understand why. Then, we observed that it matched a
malicious pattern defined by the dynamic analyzer related to SMS receivers. It does
not necessarily mean that the application was malicious, but rather, it demonstrates
the drawback of this approach. Defining perfect patterns of malicious behavior is

1https://en.wikipedia.org/wiki/Shedun
2https://www.f-secure.com/v-descs/trojan_android_opfake.shtml
3https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-

description?Name=Trojan:AndroidOS/Kmin.A
4https://www.juniper.net/security/auto/includes/mobile_signature_descriptions.html
5https://threats.kaspersky.com/en/threat/Exploit.AndroidOS.Lotoor/
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Table 6.7: Results from the pipeline for the first and second analyses. We show the
output from the pipeline, considering the number of VirusTotal detections.

VirusTotal
detections Pipeline results, first analysis Pipeline results, second analysis

0 131 benign, 1 malware 131 benign, 1 malware
1–14 23 benign, 63 malware 25 benign, 54 malware
15 or more 3 benign, 2649 malware 5 benign, 2654 malware
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Figure 6.6: Reputation scores for the real-time data set. The graph includes results
from the first analysis (N) and the second analysis (N + 2) of the same dataset.

impossible. With a pattern-matching approach, a benign application that includes
behavior similar to malware can be falsely judged as malware.

Further, we also did some manual analysis on the applications that went undetected
(benign) by our pipeline but had more than 15 VirusTotal detections. The files that
were undetected by our pipeline in the first analysis were also left undetected in the
secondary analysis. Besides, two more files were undetected in the secondary analysis.
The three files that went undetected in both cases were identified as "riskware." Recall
that riskware are legitimate apps that can be exploited by a person with malicious
intent [Rey20]. They are not designed with malicious intent but contain weaknesses
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that can be exploited. In Section 2.4.1, we defined malware as any application
with malicious intent. However, we also stated that applications that are in the
riskware category should be considered by its context. Thus, filtering out riskware
may be correct, following our definition. As for the two new undetected files from the
secondary analysis, one of them was recognized as riskware. The other was identified
as a variant of Droidsheep. Droidsheep is the equivalent of the desktop hacking tool
Firesheep [Ken15]. It is capable of hijacking social networking sessions on services
such as Facebook and Twitter [Gol12]. Thus, the pipeline produced one more false
negative in our secondary analysis.

The results from the reputation-based analysis alone are shown in Figure 6.6. We
notice that fewer applications belong to the neutral category in the second analysis
compared to the first analysis. This demonstrates that reputation-based analysis
functions better when it has more knowledge about a sample.

6.4 Requirements discussion

Scalability. Our implemented solution is not scalable. The time spent in the queue
for dynamic analysis would increase significantly with a growing number of users. It
is necessary to drastically increment the number of simultaneous tasks performed
at the dynamic analyzer to improve the scalability of our system. We could also
store the results from the dynamic analyzer for a specific time, such that only new
applications and applications with updates would go through this step. Another
aspect is the dependency on an internet connection. Many potential users may not
have an internet connection at all times or a fragile connection. We have not tried to
implement the whole system at an Android device. However, the device’s capacity
would probably be reduced if we were going to apply it on a mobile device. Device
capacity is a common problem with anti-virus on mobile phones, as they are far more
restricted than a desktop computer [TFA+17].

Reflect the current threat landscape. We have included recent malware in our
pre-generated dataset and a live input stream of apps first seen in the last 12 hours.
Our results show that the tool-chain can detect recent malware with reasonably
good results. However, from Figure 6.6, we saw that the reputation-based analysis
performed better when it had more knowledge about the applications. We also know
that the signature-based approach used in the static analysis only can recognize
known malware. Our sandbox defines patterns of malicious behavior, which also
requires updates to keep track of changes in the threat landscape. Therefore, we do
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not fulfill this requirement perfectly. To improve, we could have included a machine
learning approach.

Fully automated. Our solution is fully automatic, and therefore fulfills our require-
ment on automation.

Precise. We have measured the preciseness of our solution in metrics from the
confusion matrix, specifically accuracy, detection ratio, and false-positive ratio. We
achieve the best accuracy and detection ratio with P#1, or with P#2 when the limit
is > 110. Then, we accomplish an accuracy of 98.61%, which is not perfect, but
reasonably good. However, the lowest false positive ratio was obtained with static
analysis alone. Nonetheless, the overall results with the static analyzer alone are
not acceptable. We have to consider the preciseness from the overall results, where
all of our chosen metrics are examined. With P#1, or with P#2 when the limit is
> 110, the false positive ratio is still beneath 1%. Note that we achieved a higher
detection ratio and thus accuracy when we tested the pipeline on the randomly
selected samples. However, we do not consider this an utterly valid result because
27% of the entire malware dataset belongs to one family.

6.5 Limitations

Unbalanced dataset. As addressed in [RDG+12], malware families should be
balanced over the dataset. The most frequent malware family in the filtered dataset
contains 318 samples, while the least common malware family includes only 11
samples. Nonetheless, the dataset was left unbalanced not to loose too many samples.

Evasion. We used Eset’s scanner for static analysis. It is based on a signature-based
approach, which is efficient for known malware, but not capable of detecting new
malware and can be evaded by obfuscated code. Further, dynamic analysis is based
on pattern matching. Thus, it can be evaded by malware that behaves differently
than already defined. Also, malware writers can apply different evasion techniques
against it. For example, malware can detect that it is being run within a sandbox
environment.

Reproducability. Because we included commercial tools in the pipeline, exper-
iments with the same tools are challenging to reproduce. Nevertheless, we have
explained our procedures for collecting data, selecting tools, and performing experi-
ments.

Dynamic analysis. The selected sandbox performs notably worse than the other
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tools that we selected. We can only try to estimate why it gives such a low detection
ratio because we do not have full insight into the tool. Some of the false negatives
are probably caused by sandbox evasion and too strict pattern matching. However,
because the detection ratio is significantly low, we believe that DroidBox is also a
part of the problem. We evaluated DroidBox in Section 5.2.1 and found that it causes
the system to crash in a substantial amount of cases. Besides, it supports a maximum
of Android version 4.1. Norton’s sandbox is based on DroidBox, which might be a
reason for the low detection ratio. The meager detection ratio was not recognized
when we tested it because we did not calculate the evaluation metrics for each tool.
Nonetheless, we were left with very few options for dynamic analysis. Therefore, we
believe that there is a great need for a new open-source tool for dynamic analysis of
malware on Android.

Reliability. We used VirusTotal as an oracle for determining if a sample is a
malware or not. Lalande et al. [LTLG18] found that this is not entirely reliable,
especially for recent data. The anti-virus detections we rely on tends to use machine
learning or signature-based approaches. Although machine learning provides scalable
mechanisms for detecting malware, its success relies on accurate training data [Bac15].
The best option is to conduct manual analysis as a part of the work during dataset
construction, but this is not feasible with thousands of samples. Our study found
several apps that we could not positively determine if it was malware or not without
manually inspecting it. Therefore, we realized that manual examination should have
been a part of the work when we constructed our dataset. Zhou et al. [ZJ12] did a
manual inspection of the malware when they formed the Malware Genome project.
The Genome dataset is one of the most trusted and used datasets that exist, but it
is now deprecated. Wei et al. [WLR+17] performed a manual analysis of samples
within each variety after their automated filtering. Although this is not utterly
reliable, it is a good alternative. We leave a manual review as a future task.

6.6 Comparison with related work

Compared to BRIDEMAID [MMS17], their method resulted in much higher accuracy
for the dynamic analysis alone (0.9720), than ours. However, their malware was
gathered from different, older sources (Genome [ZJ12] and Contagio), and they had
a much higher fraction of benign apps than us. With a significant part of benign
apps, each analysis method would perform much better, considering that they are
more erroneous when detecting malware. Therefore, the comparison is not entirely
fair. This also demonstrates the need for more universal evaluation methods. The
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authors of BRIDEMAID [MMS17] also found that the dynamic analysis was the most
accurate analysis method. We found that the reputation-based analysis outperforms
both static- and dynamic analysis on our data set. Nonetheless, the dynamic analysis
that we used may have caused the system to crash.

The best option for comparing with related work would be to use tools from similar
work directly. Specifically, we could try other authors’ implementation with our
dataset and environment. This would ensure the same surroundings for both projects
and allow for an impartial comparison. Wong et al. did this when they evaluated
their tool, IntelliDroid [WL16]. The difficulty with such an approach is that the
implementations often are owned by a company, or one can face technical issues
[ARF+14]. Thus, it can be surprisingly time-consuming. Unluckily, we did not have
additional time to perform experiments with other implementations in this project.



Chapter7Conclusion and Future Work

7.1 Conclusion

Malware is an ever-evolving threat to security on Android devices. Research on
Android malware is not new, and various solutions and products to detect and protect
from malware exist. However, there is a constant need to build solutions that can
keep track of the changing threat landscape. Android is the most popular mobile
operating system, making it the favorable target for malware writers. Compared to
its most significant opponent, iOS, Android is also far more open and less restricted.
Besides, third-party market stores make malware distribution easier.

During this project, we built a hybrid tool-chain for detecting malware on Android.
Hybrid solutions appear to be the more prominent approach, which was why we
built a hybrid pipeline. We selected tools from several criteria, and we evaluated
open-source tools, free scanners and sandboxes, and commercial tools. The final
tool-chain included Norton LifeLock’s reputation engine and sandbox, and Esets’s
scanner. Including a reputation engine in a hybrid approach has not gained attention
from the academics before, at least not to our knowledge.

We performed experiments with both real-time data and pre-generated data. The
pre-generated data was collected from recent years to ensure that our pipeline was up-
to-date. We collected malware samples and divided them into two different datasets.
For one of the datasets, we filtered the samples so that we could ensure diversity. For
the other dataset, we collected 2800 applications, updated the VirusTotal detections,
and analyzed them. Without filtering, we saw that the dataset included a family that
constituted 27% of the dataset. The pipeline performed better on the non-filtered
dataset than the filtered dataset. The increased performance was mainly due to the
sandbox, which could better analyze the largest family of the non-filtered dataset.
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Nonetheless, we did not consider the results from the non-filtered dataset as valid.

Further, we also received real-time data from Norton LifeLock. The data were filtered
such that files first seen in the last 12 hours were delivered to us. We analyzed the data
as soon as it arrived. Then, we waited for 20 days and re-analyzed it. Overall, the
pipeline results from the two analyses were similar. The most considerable difference
was from the reputation engine, which got more confidence in the secondary analysis
of the files. Compared to the first analysis, fewer files were in the neutral category in
the second analysis.

We evaluated the tool-chain with chosen metrics from the confusion matrix, explicitly
false positive ratio, accuracy, and detection ratio. Besides, we included time as a
resource metric. We observed that with an increasing detecting ratio, the number
of false positives and the run-time also increased. For the pre-generated filtered
dataset, our best effort in terms of detectability gave a detection ratio of 98.08% and
an accuracy of 98.61%. In that case, the false-positive ratio was still below 1%, and
the average time per sample was 221 seconds.

The project encompassed several challenges. One of the most significant challenges
was to collect and construct the dataset. For example, deciding the threshold α,
which indicates that a sample is a malware if at least α antivirus engines detected
it as malware, was a hard task. We had no clear understanding of which value α
should have been. Besides, labeling the malware was also a cumbersome task, as the
antivirus labels tend to be highly incompatible. In the end, we realized that the way
we collected and constructed the data was not utterly reliable.

7.1.1 Answer to research questions

RQ1: What should be the trade-off between reputation-based, static- and dynamic
analysis to identify mobile malware efficiently?

The exact trade-off depends on the agreement with potential users. If run-time is
crucial to the user, then we should choose a pipeline with static analysis first and
limit >= 10. With these conditions, a more significant trade-off is given to static
analysis and reputation-based analysis, which are the faster methods.

On the other side, our best effort in terms of detectability resulted in a detection
ratio of 98.08% for the pre-generated filtered dataset. If security is more critical to
the user, this is the preferred approach. In this case, 93.2% of the malware samples
were detected during the reputation-based analysis, 5.2% during static analysis, and



7.1. CONCLUSION 83

1.5% during dynamic analysis, which is by far the most time-consuming approach.
For the real-time data, all the malware samples were detected during static- and
reputation-based analysis. However, in a few cases, the dynamic analysis should
receive a more significant trade-off. For example, the dynamic analyzer detected the
"SmsReg" family much better than the other tools. Nonetheless, this approach is
fast and accurate for a higher fraction of malware and slower for benign applications.
When an application is harmless, it has to go through all the analysis methods.

RQ2: How can the selected tools be incorporated into a tool-chain, and where is
reputation-based security useful?

After we selected our tools, we were left with Norton LifeLock’s reputation engine
and sandbox, and Eset’s scanner.

Experiments with the filtered dataset show that reputation-based analysis, together
with only the static analysis, performs almost as good as any solution with all the
methods. The difference in accuracy is only 0.27%. However, the dynamic analysis
scored particularly low on the detection ratio. We suspect that it caused the system
to crash for many of the samples. Therefore, we do not believe that this is a general
observation. For the non-filtered dataset, the findings were otherwise. Then, the
dynamic analysis was able to detect more samples, and we found reputation-based
analysis and dynamic analysis to be the more useful methods.

In any case, we found the reputation-based analysis to be useful. It increased the
detection ratio and accuracy, produced very few false-positives, and is incredibly fast.
Therefore, the tools should be incorporated with reputation-based analysis and static
analysis first, and dynamic analysis at the end. The dynamic analysis is the most
resource-consuming approach, and it is therefore conducted at last, only when the
other methods cannot detect samples.

RQ3: To what extent does the effectiveness of the pipeline differ on old files compared
to recent files?

We received a live input stream of data from Norton LifeLock, which we analyzed
directly. Then, we waited for 20 days and re-assessed the same files. Overall, our
results show that the pipeline does not differ significantly in these two analyses. We
recognized one sample as a false positive for both analyses, which was the same file
in both cases. Also, we got one more false negative in the second analysis than the
first, but also one less false positive. However, most of the samples from the real-time
data belong to known malware families, as shown in Table 6.6. Thus, we expect that
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the tools recognize the malicious code and behavior from previous samples.

RQ4: How can the performance of hybrid detection systems be improved by combining
it with results from reputation-based security?

Experiments with the static- and dynamic analysis only resulted in an accuracy of
0.9158, a detection ratio of 0.8327, and a false-positive ratio of 8.734 × 10−3. When
we combine these with results from the reputation-based analysis, the accuracy is
increased by 7.03%, and the detection ratio is increased by 14.8%. Additionally, the
run-time is decreased with more than 20 seconds on average. On the other side, the
false positive ratio is also slightly increased. Thus, we conclude that the performance
of a hybrid detection system can be improved in terms of accuracy, detection ratio,
and decreased run-time. However, we cannot guarantee that our results generally
hold, as is may differ for other tools and approaches. Again, we state that the
dynamic analysis performed much worse than expected, which may cause the results
to be distinct for other systems.

7.2 Future work

Most importantly, we believe that there is a considerable need for updated, open-
source malware analysis tools. In particular, a framework for automated malware
analysis is needed. Making such a tool is an immense task that would require enormous
effort. Such frameworks do exist but are either deprecated or not maintained in
the last years. As Android is continually pushing new features and APIs, and the
threat landscape is changing, these tools are too outdated. The existing frameworks
are mostly based on other open-source tools. Within dynamic analysis, there has
not been a new extensive tool for years. Some tools can be used in static analysis
to simplify the process, such as AndroGuard. Therefore, we believe that a new
open-source tool within dynamic analysis is the prioritized task in future work.

There is also a need for a universal evaluation method. It is a cumbersome task
to compare systems when inter-systems use various evaluation metrics and gathers
data with distinct approaches. Thus, we hope someone can take on the difficult but
essential task to define a comprehensive evaluation method.

As previously stated, we also believe that it is necessary to generate a new, reliable
dataset for researchers. We did create a dataset in this project, but it was realized
that manual inspection of the malware samples should have been a part of the work.
Thus, we leave this as a future task.
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ChapterAData collection and construction

A.1 andro_zoo_download

1 # Input : a set of hashes
2 # Output : apks
3

4 import requests
5 import csv
6 import os.path
7 import common
8 import sys
9

10 zoo_url = ’https :// androzoo .uni.lu/api/ download ’
11 malware_path = ’/home/ inarb /exp1/ malware /’
12 benign_path = ’/home/ inarb /exp1/ benign /’
13

14 zoo_api_key = common . zoo_api_key
15

16 apks_to_download_hashes = sys.argv [ -1]
17

18 def get_apk_from_zoo ( sha256 ):
19 file_to_write = local_apk_path + sha256 + ’.apk ’
20 if not os.path. exists ( file_to_write ):
21 params = (
22 (’apikey ’, zoo_api_key ),
23 (’sha256 ’, sha256 ))
24 response = requests .get(zoo_url , params = params )
25 if " error " in str( response . content ):
26 print (" error ")
27 with open(’exp2_shas_not_found .csv ’, ’a’) as not_found :
28 writer = csv. writer (not_found , delimiter =’,’)
29 writer . writerow ([ sha256 ])
30

31 not_found . close ()
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32 else:
33 open( file_to_write , ’wb ’). write ( response . content )
34

35

36 def main ():
37 with open( apks_to_download_hashes ) as apks_to_download :
38 csv_reader = csv. reader ( apks_to_download )
39 for sha256 in csv_reader :
40 print (" Downloading .. " + sha256 [0])
41 get_apk_from_zoo ( sha256 [0])
42

43

44 if __name__ == " __main__ ":
45 main ()

A.2 update_detections_from_vt.py
1 import requests
2 import common
3 import csv
4

5 virus_total_url = ’https :// www. virustotal .com/ vtapi /v2/file/ report ’
6

7 virus_total_api_key = common . virus_total_api_key
8

9

10 def get_detections_from_virus_total ( sha256 ):
11 count_detects = 0
12

13 params = {’apikey ’: virus_total_api_key , ’resource ’: sha256 }
14 response = requests .get( virus_total_url , params = params ).json ()
15

16 if response [’response_code ’] == 0:
17 return None
18

19 else:
20 scans = response [’scans ’]
21

22 for scanner in scans :
23 detected = scans [ scanner ][ ’detected ’]
24 if detected :
25 count_detects += 1
26

27 return count_detects
28

29

30 def main ():
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31 samples_from_androzoo = ’/home/ inarb / benign .csv ’
32

33 reader = csv. reader (open( samples_from_androzoo ))
34 lines = list( reader )
35

36 for line in lines :
37 sha256 = line [0]
38

39 updated_detections = get_detections_from_virus_total ( sha256 )
40 line [7] = updated_detections
41

42 writer = csv. writer (open(’/home/ inarb / benign_updated .csv ’, ’w’))
43 writer . writerows ( lines )
44

45

46 if __name__ == " __main__ ":
47 main ()

A.3 get_reports_from_vt.py
1 import requests
2 import json
3 import common
4 import os
5

6 virus_total_url = ’https :// www. virustotal .com/ vtapi /v2/file/ report ’
7

8 virus_total_api_key = common . virus_total_api_key
9

10

11 def get_full_reports ( sha256 ):
12 count_detects = 0
13

14 if not os.path. exists (f’virus_total_reports_all15 /{ sha256 }. json ’):
15 try:
16 params = {’apikey ’: virus_total_api_key , ’resource ’: sha256

}
17 response = requests .get( virus_total_url , params = params ).

json ()
18 scans = response [’scans ’]
19

20 for scanner in scans :
21 detected = scans [ scanner ][ ’detected ’]
22 if detected :
23 count_detects += 1
24

25 if count_detects >= 15:
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26 with open(f’virus_total_reports_all15 /{ sha256 }. json ’, ’
w’) as report_file :

27 json.dump(response , report_file )
28 except Exception as e:
29 print (e)
30 pass
31

32

33 def main ():
34 hash_file = ’15 _pluss_detections_shas .txt ’
35

36 with open(hash_file , ’r’) as hash_file :
37 for sha256 in hash_file :
38 get_full_reports ( sha256 )
39

40

41 if __name__ == " __main__ ":
42 main ()
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B.1 filter_min_sdk.py
1 import os
2 import androguard .core. bytecodes .apk as apk
3 import common
4

5 max_sdk_AndroPyTool = 16
6

7

8 def remove_files_with_sdks_greater_16 ():
9 for file in os. listdir ( common . APK_folder ):

10 file_path = common . APK_folder + file
11

12 app = apk.APK( file_path )
13

14 min_sdk = app. get_min_sdk_version ()
15

16 if min_sdk is None:
17 min_sdk = 999
18

19 if int( min_sdk ) > 16:
20 os. remove ( file_path )
21 print ("[-] Removed file " + file )
22

23

24 if __name__ == " __main__ ":
25 remove_files_with_sdks_greater_16 ()

B.2 automate_mobsf_dynamic.py
1 import requests
2 from selenium import webdriver
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3 from bs4 import BeautifulSoup
4 import time
5

6 MobSF_base_URL = ’http :// localhost :8000/ ’
7 dynamic_analysis_page = requests .get( MobSF_base_URL + ’dynamic_analysis

/’)
8

9 soup = BeautifulSoup ( dynamic_analysis_page .content , ’html. parser ’)
10

11 uploaded_apps = soup. find_all (’a’, class_ ="btn btn - success ")
12

13 driver = webdriver . Firefox ()
14

15 for app in uploaded_apps :
16 link = app[’href ’]
17 start_dynamic_page = driver .get( MobSF_base_URL + link. replace (’../ ’

, ’’))
18

19 checkbox_enumerate_loaded_classes = driver . find_element_by_id ("
enum_class ")

20 checkbox_enumerate_loaded_classes . click ()
21 checkbox_capture_strings = driver . find_element_by_id (" string_catch "

)
22 checkbox_capture_strings . click ()
23 checkbox_enumerate_class_methods = driver . find_element_by_id ("

enum_methods ")
24 checkbox_enumerate_class_methods . click ()
25 checkbox_capture_string_comparisons = driver . find_element_by_id ("

string_compare ")
26 checkbox_capture_string_comparisons . click ()
27

28 start_instrumentation_button = driver . find_element_by_id ("
frida_spawn ")

29 start_instrumentation_button . click ()
30

31 print (" starting dynamic analysis ...")
32 time. sleep (60) # Run dynamic analysis for 60 sec
33

34 generate_report_button = driver . find_element_by_id ("stop")
35 generate_report_button . click ()
36 print ("[+] Generated report for " + link. replace (’../

android_dynamic /? ’, ’’))
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C.1 file_events.py

1 import os
2 import subprocess
3 import json
4 import csv
5 import time
6 import logging
7 import requests
8 import threading
9 import queue

10

11 from watchdog . observers import Observer
12

13 from androguard .core. bytecodes .apk import APK
14 from androguard . session import Session
15

16 from watchdog . events import FileSystemEventHandler
17

18 import dynamic_analysis
19 import common
20

21 logging . basicConfig ( level =os. environ .get(" LOGLEVEL ", "INFO"))
22

23

24 def get_info ( filename ): # for debugging
25 p = subprocess . Popen ([ ’file ’, filename ], stdout = subprocess .PIPE)
26 response , err = p. communicate ()
27 logging .info( response )
28

29 try:
30 apk = APK( filename )
31
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32 logging .info("APK is signed : {}". format (apk. is_signed ()))
33

34 if apk. is_signed ():
35 logging .info("APK is signed with: {}". format ("both" if apk.

is_signed_v1 () and apk. is_signed_v2 ()
36 else "v1" if

apk. is_signed_v1 () else "v2"))
37

38 except Exception as exception :
39 logging . error (str( exception ))
40 pass
41

42

43 def get_dynamic_analysis_score (file):
44 sample_id = dynamic_analysis . create_new_sample (file)
45 dynamic_analysis . create_new_task_from_sample ( sample_id )
46 global_risk_score = dynamic_analysis . get_global_risk_score (

sample_id )
47 dynamic_analysis . cleanup ( sample_id )
48

49 return global_risk_score
50

51

52 def get_static_score (file):
53 threat = None
54

55 p = subprocess . Popen (["/bin/bash", " esetScanner .sh", file], stdout =
subprocess .PIPE)

56 response , err = p. communicate ()
57 response . decode (’utf -8 ’)
58 response = str( response )
59

60 if " threat =" in response :
61 response = response . split (" threat =")
62 threat = response [1]. split (",")[0]
63

64 return threat
65

66

67 def get_reputation_score ( sha256 ):
68 p = subprocess . Popen (["/bin/bash", " get_reputation .sh", sha256 ],

stdout = subprocess .PIPE)
69 response , err = p. communicate ()
70 response . decode ()
71 response_json = json. loads ( response )
72

73 reputation_score = response_json [’reputation ’][ sha256 ][ ’security ’][
’score ’]
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74

75 return reputation_score
76

77

78 def get_detections_from_virus_total ( sha256 ):
79 virus_total_url = ’https :// www. virustotal .com/ vtapi /v2/file/ report ’
80 count_detects = 0
81

82 params = {’apikey ’: common . virus_total_api_key , ’resource ’: sha256 }
83 response = requests .get( virus_total_url , params = params ).json ()
84 scans = response [’scans ’]
85

86 for scanner in scans :
87 detected = scans [ scanner ][ ’detected ’]
88 if detected :
89 count_detects += 1
90

91 return count_detects
92

93

94 def process_load_queue ( __queue ):
95 while True:
96 if not __queue . empty ():
97 event = __queue .get ()
98 filename = os.path. abspath ( event . src_path )
99

100 logging .info(" received new file: " + filename )
101 get_info ( filename )
102

103 total_start_time = time.time ()
104 reputation_time = 0
105 static_time = 0
106 dynamic_time = 0
107

108 try:
109 s = Session ()
110 sha256 = s.add( filename )
111

112 try:
113 start_time = time.time ()
114 reputation_score = get_reputation_score ( sha256 )
115 end_time = time.time ()
116 reputation_time = end_time - start_time
117 except Exception as exception :
118 logging . error (" reputation error ")
119 logging . error (str( exception ))
120 reputation_score = ""
121 pass
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122

123 try:
124 start_time = time.time ()
125 dynamic_score = get_dynamic_analysis_score ( filename

)
126 end_time = time.time ()
127 dynamic_time = end_time - start_time
128 except Exception as exception :
129 logging . error (" dynamic error ")
130 logging . error (str( exception ))
131 dynamic_score = ""
132 pass
133

134 try:
135 start_time = time.time ()
136 static_score = get_static_score (file)
137 end_time = time.time ()
138 static_time = end_time - start_time
139 except Exception as exception :
140 logging . error (" static error ")
141 logging . error (str( exception ))
142 static_score = ""
143 pass
144

145 total_end_time = time.time ()
146 elapsed_time = total_end_time - total_start_time
147

148 virus_total_detections =
get_detections_from_virus_total ( sha256 )

149

150 with open(’first_results_exp3 .csv ’, ’a’) as
results_file :

151 writer = csv. writer ( results_file , delimiter =’,’)
152 writer . writerow ([ filename , sha256 , reputation_score

, reputation_time , static_score , static_time ,
153 dynamic_score , dynamic_time ,

elapsed_time , virus_total_detections ])
154

155 results_file . close ()
156

157 logging .info(f’Finished sample { sha256 }’)
158

159 except Exception as exception :
160 logging . error (str( exception ))
161 pass
162 else:
163 time. sleep (1)
164
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165

166 class NewFilesEventHandler ( FileSystemEventHandler ):
167 def __init__ (self , __queue ):
168 super (). __init__ ()
169 self. __queue = __queue
170

171 def on_created (self , event ):
172 self. process ( event )
173

174 def process (self , event ):
175 self. __queue .put( event )
176

177

178 if __name__ == " __main__ ":
179 src_path = ’/home/ inarb / listen /’
180

181 watchdog_queue = queue . Queue ()
182

183 for i in range (1, 3):
184 worker = threading . Thread ( target = process_load_queue , args =(

watchdog_queue ,))
185 worker . setDaemon (True)
186 worker . start ()
187

188 event_handler = NewFilesEventHandler ( watchdog_queue )
189 observer = Observer ()
190 observer . schedule ( event_handler , path= src_path )
191 observer . start ()
192

193 try:
194 while True:
195 time. sleep (2)
196 except KeyboardInterrupt :
197 observer .stop ()
198

199 observer .join ()

C.2 eset_scanner.sh

1 #!/ bin/bash
2

3 file=$1
4

5 /opt/eset/ esets /sbin/ esets_scan --no - quarantine " $file "
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C.3 get_reputation.sh
1 #!/ bin/bash
2

3 sha256 =$1
4

5 curl -k --data ’{" sha256_list ": [" ’" $sha256 "’"]} ’ --cert client .crt --
key client .key https :// cloudberry -elb -dev - c0f24215e489f3df .elb.eu -
west -1. amazonaws .com :8443/ v1/hash |

6 python -m json.tool

C.4 dynamic_analysis.py
1 import subprocess
2 import json
3 import requests
4 import time
5 import common
6 import logging
7

8 requests . packages . urllib3 . disable_warnings ()
9

10 api_key = common . bluecoat_api_key
11

12 headers = {
13 ’X-API - TOKEN ’: api_key ,
14 }
15

16

17 def create_new_sample (file):
18 p = subprocess . Popen (["/bin/bash", " upload_to_bluecoat .sh", file],

stdout = subprocess .PIPE)
19 response , err = p. communicate ()
20 response . decode ()
21 response_json = json. loads ( response )
22 sample_id = response_json [" results " ][0][ " samples_basic_sample_id "]
23 return sample_id
24

25

26 def create_new_task_from_sample ( sample_id ):
27 data = {
28 ’sample_id ’: sample_id ,
29 ’env ’: ’ivm ’
30 }
31

32 requests .post(’https :// research01 .osl. bluecoat .com/rapi/ tasks ’,
headers =headers , data=data , verify = False )
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33

34

35 def get_global_risk_score ( sample_id ):
36 response = requests .get(f’https :// research01 .osl. bluecoat .com/rapi/

samples /{ sample_id }/ tasks ’, headers =headers ,
37 verify = False ).json ()
38

39 state = response [’results ’][0][ ’task_state_state ’]
40 while " CORE_COMPLETE " not in state :
41 logging .info( state )
42 response = requests .get(f’https :// research01 .osl. bluecoat .com/

rapi/ samples /{ sample_id }/ tasks ’, headers =headers ,
43 verify = False ).json ()
44 state = response [’results ’][0][ ’task_state_state ’]
45 if " CORE_INTASKQUEUE " in state :
46 time. sleep (2)
47 else:
48 time. sleep (1)
49

50 global_risk_score = response [’results ’][0][ ’tasks_global_risk_score
’]

51 return global_risk_score
52

53

54 def cleanup ( sample_id ):
55 response = requests . delete (f’https :// research01 .osl. bluecoat .com/

rapi/ samples /{ sample_id }’, headers =headers ,
56 verify = False )
57 if response . status_code == 200:
58 logging .info(f’Successfully deleted sample { sample_id } from

bluecoat ’)
59 else:
60 logging . warning (" Could not delete . Response code: " + str(

response . status_code ))

C.5 upload_to_bluecoat.sh
1 #!/ bin/bash
2

3 source ../ api_key .txt
4

5 file=$1
6

7 curl -k -X POST --form upload =@" $file " --form " owner = iinusen7 " --form "
extension =apk" https :// research01 .osl. bluecoat .com/rapi/ samples /
basic -H "X-API - TOKEN : $bluecoat "
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C.6 individual_methods_and_pipeline_1.py

1 import csv
2 import re
3

4 malware_results = ’results_done / exp1_with_family .csv ’
5 # sha256 , reputation_score , reputation_time , static_verdict ,

static_time , dynamic_score , dynamic_time , family
6

7 benign_results = ’/’ \
8 ’results_done / benign_results_exp1_updated .csv ’
9 # sha256 , rep_score , rep_time , stat_score , stat_time , dyn_score ,

dyn_time
10

11

12 def reputation_static_dynamic_alone ( lines_malware , lines_benign ):
13 false_positives_rep = 0
14 true_positives_rep = 0
15 false_negatives_rep = 0
16 true_negatives_rep = 0
17 total_time_rep = 0.0
18

19 false_positives_static = 0
20 true_positives_static = 0
21 false_negatives_static = 0
22 true_negatives_static = 0
23 total_time_static = 0.0
24

25 false_positives_dyn = 0
26 true_positives_dyn = 0
27 false_negatives_dyn = 0
28 true_negatives_dyn = 0
29 total_time_dyn = 0.0
30

31 for line in lines_malware :
32 family = line [7]
33 try:
34 reputation_score = int(line [1])
35 reputation_time = float (line [2])
36 except :
37 reputation_score = 0
38 reputation_time = 0.0
39 pass
40

41 try:
42 static_score = line [3]
43 static_time = float (line [4])
44 except :
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45 static_score = ’’
46 static_time = 0
47 try:
48 dynamic_score = int(line [5])
49 dynamic_time = float (line [6])
50 except :
51 dynamic_score = 0
52 dynamic_time = 0
53

54 total_time_rep += reputation_time
55

56 if reputation_score < 0:
57 true_positives_rep += 1
58 else:
59 false_negatives_rep += 1
60

61 total_time_dyn += dynamic_time
62

63 if dynamic_score > 7:
64 true_positives_dyn += 1
65 else:
66 false_negatives_dyn += 1
67

68 total_time_static += static_time
69

70 if static_score is not None and re. search ("[a-zA -Z]",
static_score ):

71 verdict = ’malware ’
72 true_positives_static += 1
73 else:
74 verdict = ’benign ’
75 false_negatives_static += 1
76

77 if verdict == ’benign ’:
78 with open(f’/’
79 f’results_done / pipelines_exp1_new /

AAstatic_cant_detect .csv ’, ’a’) \
80 as results_file :
81 writer = csv. writer ( results_file , delimiter =’,’)
82 writer . writerow ([ line [0] , verdict , family ])
83

84

85 for line in lines_benign :
86 try:
87 reputation_score = int(line [1])
88 reputation_time = float (line [2])
89 except :
90 reputation_score = 0
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91 reputation_time = 0.0
92 try:
93 static_score = line [3]
94 static_time = float (line [4])
95 except :
96 static_score = ’’
97 static_time = 0
98 try:
99 dynamic_score = int(line [5])

100 dynamic_time = float (line [6])
101 except :
102 dynamic_score = 0
103 dynamic_time = 0
104

105 total_time_rep += reputation_time
106

107 if reputation_score < 0:
108 false_positives_rep += 1
109 else:
110 true_negatives_rep += 1
111

112 total_time_dyn += dynamic_time
113

114 if dynamic_score > 7:
115 false_positives_dyn += 1
116 else:
117 true_negatives_dyn += 1
118

119 total_time_static += static_time
120

121 if static_score is not None and re. search ("[a-zA -Z]",
static_score ):

122 false_positives_static += 1
123 else:
124 true_negatives_static += 1
125

126

127 calculate_and_write_results (’Reputation ’, true_positives_rep ,
false_negatives_rep , false_positives_rep ,

128 # true_negatives_rep , total_time_rep )
129

130 calculate_and_write_results (’Static ’, true_positives_static ,
false_negatives_static , false_positives_static ,

131 true_negatives_static ,
total_time_static )

132

133 calculate_and_write_results (’Dynamic ’, true_positives_dyn ,
false_negatives_dyn , false_positives_dyn ,
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134 true_negatives_dyn , total_time_dyn )
135

136

137 def pipeline_1 ( lines_malware , lines_benign ):
138 false_positives = 0
139 true_positives = 0
140 false_negatives = 0
141 true_negatives = 0
142 total_time = 0.0
143

144

145 for line in lines_malware :
146 family = line [7]
147 verdict = ’malware ’
148 try:
149 reputation_score = int(line [1])
150 reputation_time = float (line [2])
151 except :
152 reputation_score = 0
153 reputation_time = 0.0
154 try:
155 static_score = line [3]
156 static_time = float (line [4])
157 except :
158 static_score = ’’
159 static_time = 0
160 try:
161 dynamic_score = int(line [5])
162 dynamic_time = float (line [6])
163 except :
164 dynamic_score = 0
165 dynamic_time = 0
166

167 if reputation_score < 0:
168 stage = ’reputation ’
169 true_positives += 1
170 total_time += reputation_time
171 else:
172 if static_score is not None and re. search ("[a-zA -Z]",

static_score ):
173 stage = ’static ’
174 true_positives += 1
175 total_time += reputation_time + static_time
176 else:
177 total_time += reputation_time + static_time +

dynamic_time
178 if int( dynamic_score ) > 7:
179 stage = ’dynamic ’
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180 true_positives += 1
181 else:
182 verdict = ’benign ’
183 false_negatives += 1
184

185 if verdict == ’benign ’:
186 with open(f’/’
187 f’results_done / pipelines_exp1_new /

AApipeline1_cant_detect .csv ’, ’a’) \
188 as results_file :
189 writer = csv. writer ( results_file , delimiter =’,’)
190 writer . writerow ([ line [0] , verdict , family ])
191

192 if verdict == ’malware ’:
193 with open(f’/’
194 f’results_done / pipelines_exp1_new /

AApipeline1_detect_by .csv ’, ’a’) \
195 as results_file :
196 writer = csv. writer ( results_file , delimiter =’,’)
197 writer . writerow ([ line [0] , verdict , stage , family ])
198

199 for line in lines_benign :
200 try:
201 reputation_score = int(line [1])
202 reputation_time = float (line [2])
203 except :
204 reputation_score = 0
205 reputation_time = 0.0
206 try:
207 static_score = line [3]
208 static_time = float (line [4])
209 except :
210 static_score = ’’
211 static_time = 0
212 try:
213 dynamic_score = int(line [5])
214 dynamic_time = float (line [6])
215 except :
216 dynamic_score = 0
217 dynamic_time = 0
218

219 if reputation_score < 0:
220 false_positives += 1
221 total_time += reputation_time
222 else:
223 if static_score is not None and re. search ("[a-zA -Z]",

static_score ):
224 false_positives += 1
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225 total_time += reputation_time + static_time
226 else:
227 total_time += reputation_time + static_time +

dynamic_time
228 if int( dynamic_score ) > 7:
229 false_positives += 1
230 else:
231 true_negatives += 1
232

233 calculate_and_write_results (’Pipeline 1’, true_positives ,
false_negatives , false_positives , true_negatives ,

234 total_time )
235

236

237 def calculate_and_write_results (method , true_positives , false_negatives
, false_positives , true_negatives , total_time ):

238 total_samples = 2493 + 2748
239 average_exec_time = total_time / total_samples
240 detection_ratio = true_positives / ( true_positives +

false_negatives )
241 accuracy = ( true_positives + true_negatives ) / total_samples
242 false_positive_ratio = false_positives / ( false_positives +

true_negatives )
243

244 with open(f’results_done / pipelines_exp1_new /’
245 f’summary .txt ’, ’a’) as summary :
246 summary . write (f’* { method } * \n true_positives : { true_positives

}, false_negatives : ’
247 f’{ false_negatives }, false_positives : {

false_positives }, true_negatives : { true_negatives }, ’
248 f’DR: { detection_ratio }, accuracy : { accuracy },

FPR: { false_positive_ratio } ’
249 f’time: { average_exec_time } \n \n’)
250

251

252 def run ():
253 reader_results = csv. reader (open( malware_results ))
254 lines_malware = list( reader_results )
255

256 reader_benign = csv. reader (open( benign_results ))
257 lines_benign = list( reader_benign )
258

259 reputation_static_dynamic_alone ( lines_malware , lines_benign )
260

261 pipeline_1 ( lines_malware , lines_benign )
262

263

264 if __name__ == ’__main__ ’:
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265 run ()

C.7 pipelines_with_limits.py
1 import csv
2 import re
3

4 malware_results = ’results_done / exp1_with_family .csv ’
5 # sha256 , reputation_score , reputation_time , static_verdict ,

static_time , dynamic_score , dynamic_time , family
6

7 benign_results = ’results_done /’ \
8 ’benign_results_exp1_updated .csv ’
9 # sha256 , rep_score , rep_time , stat_score , stat_time , dyn_score ,

dyn_time
10

11

12 def pipeline_2_malware_static_first ( lines_results , limit ):
13 false_negatives = 0
14 true_positives = 0
15 total_time = 0.0
16 for line in lines_results :
17 family = line [7]
18 try:
19 reputation_score = int(line [1])
20 reputation_time = float (line [2])
21 except :
22 reputation_score = 0
23 reputation_time = 0
24 try:
25 static_score = line [3]
26 static_time = float (line [4])
27 except :
28 static_score = ’’
29 static_time = 0
30 try:
31 dynamic_score = int(line [5])
32 dynamic_time = float (line [6])
33 except :
34 dynamic_score = 0
35 dynamic_time = 0
36

37 if static_score is not None and re. search ("[a-zA -Z]",
static_score ):

38 verdict = ’malware ’
39 stage = ’static ’
40 true_positives += 1
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41 total_time += static_time
42 else:
43 if reputation_score < 0:
44 verdict = ’malware ’
45 stage = ’reputation ’
46 true_positives += 1
47 total_time += reputation_time + static_time
48 elif reputation_score >= limit :
49 verdict = ’benign ’
50 stage = ’reputation ’
51 false_negatives += 1
52 else:
53 total_time += reputation_time + static_time +

dynamic_time
54 if int( dynamic_score ) > 7:
55 verdict = ’malware ’
56 stage = ’dynamic ’
57 true_positives += 1
58 else:
59 verdict = ’benign ’
60 stage = ’dynamic ’
61 false_negatives += 1
62

63 with open(f’/’
64 f’results_done / pipelines_exp1_new / pipeline2_ { limit }

_malware_exp1_static_first .csv ’, ’a’) \
65 as results_file :
66 writer = csv. writer ( results_file , delimiter =’,’)
67 writer . writerow ([ line [0] , verdict , stage , family ])
68

69 results_file . close ()
70

71 return true_positives , false_negatives , total_time
72

73

74 def pipeline_2_benign_static_first ( lines_results , limit ):
75 false_positives = 0
76 true_negatives = 0
77 total_time = 0.0
78 for line in lines_results :
79 family = line [7]
80 try:
81 reputation_score = int(line [1])
82 reputation_time = float (line [2])
83 except :
84 reputation_score = 0
85 reputation_time = 0
86 try:
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87 static_score = line [3]
88 static_time = float (line [4])
89 except :
90 static_score = ’’
91 static_time = 0
92 try:
93 dynamic_score = int(line [5])
94 dynamic_time = float (line [6])
95 except :
96 dynamic_score = 0
97 dynamic_time = 0
98

99 if static_score is not None and re. search ("[a-zA -Z]",
static_score ):

100 verdict = ’malware ’
101 stage = ’static ’
102 false_positives += 1
103 total_time += static_time
104 else:
105 if reputation_score < 0:
106 verdict = ’malware ’
107 stage = ’reputation ’
108 false_positives += 1
109 total_time += reputation_time + static_time
110 elif reputation_score >= limit :
111 verdict = ’benign ’
112 stage = ’reputation ’
113 true_negatives += 1
114 else:
115 total_time += reputation_time + static_time +

dynamic_time
116 if int( dynamic_score ) > 7:
117 verdict = ’malware ’
118 stage = ’dynamic ’
119 false_positives += 1
120 else:
121 verdict = ’benign ’
122 stage = ’dynamic ’
123 true_negatives += 1
124

125 with open(f’/’
126 f’results_done / pipelines_exp1_new / pipeline2_ { limit }

_benign_exp1_static_first .csv ’, ’a’) \
127 as results_file :
128 writer = csv. writer ( results_file , delimiter =’,’)
129 writer . writerow ([ line [0] , verdict , stage , family ])
130

131 results_file . close ()
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132

133 return false_positives , true_negatives , total_time
134

135

136 def pipeline_2_malware_reputation_first ( lines_results , limit ):
137 false_negatives = 0
138 true_positives = 0
139 total_time = 0.0
140 for line in lines_results :
141 family = line [7]
142 try:
143 reputation_score = int(line [1])
144 reputation_time = float (line [2])
145 except :
146 reputation_score = 0
147 reputation_time = 0
148 try:
149 static_score = line [3]
150 static_time = float (line [4])
151 except :
152 static_score = ’’
153 static_time = 0
154 try:
155 dynamic_score = int(line [5])
156 dynamic_time = float (line [6])
157 except :
158 dynamic_score = 0
159 dynamic_time = 0
160

161 if reputation_score < 0:
162 verdict = ’malware ’
163 stage = ’reputation ’
164 true_positives += 1
165 total_time += reputation_time + static_time
166 elif reputation_score >= limit :
167 verdict = ’benign ’
168 stage = ’reputation ’
169 false_negatives += 1
170 else:
171 if static_score is not None and re. search ("[a-zA -Z]",

static_score ):
172 verdict = ’malware ’
173 stage = ’static ’
174 true_positives += 1
175 total_time += static_time
176 else:
177 total_time += reputation_time + static_time +

dynamic_time
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178 if int( dynamic_score ) > 7:
179 verdict = ’malware ’
180 stage = ’dynamic ’
181 true_positives += 1
182 else:
183 verdict = ’benign ’
184 stage = ’dynamic ’
185 false_negatives += 1
186

187 with open(f’/’
188 f’results_done / pipelines_exp1_new / pipeline2_ { limit }

_malware_exp1_reputation_first .csv ’, ’a’) \
189 as results_file :
190 writer = csv. writer ( results_file , delimiter =’,’)
191 writer . writerow ([ line [0] , verdict , stage , family ])
192 results_file . close ()
193

194 return true_positives , false_negatives , total_time
195

196

197 def pipeline_2_benign_reputation_first ( lines_results , limit ):
198 false_positives = 0
199 true_positives = 0
200 total_time = 0.0
201 for line in lines_results :
202 try:
203 reputation_score = int(line [1])
204 reputation_time = float (line [2])
205 except :
206 reputation_score = 0
207 reputation_time = 0
208 try:
209 static_score = line [3]
210 static_time = float (line [4])
211 except :
212 static_score = ’’
213 static_time = 0
214 try:
215 dynamic_score = int(line [5])
216 dynamic_time = float (line [6])
217 except :
218 dynamic_score = 0
219 dynamic_time = 0
220

221 if reputation_score < 0:
222 verdict = ’malware ’
223 stage = ’reputation ’
224 false_positives += 1
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225 total_time += reputation_time + static_time
226 elif reputation_score >= limit :
227 verdict = ’benign ’
228 stage = ’reputation ’
229 true_positives += 1
230 else:
231 if static_score is not None and re. search ("[a-zA -Z]",

static_score ):
232 verdict = ’malware ’
233 stage = ’static ’
234 false_positives += 1
235 total_time += static_time
236 else:
237 total_time += reputation_time + static_time +

dynamic_time
238 if int( dynamic_score ) > 7:
239 verdict = ’malware ’
240 stage = ’dynamic ’
241 false_positives += 1
242 else:
243 verdict = ’benign ’
244 stage = ’dynamic ’
245 true_positives += 1
246

247 with open(f’/’
248 f’results_done / pipelines_exp1_new / pipeline2_ { limit }

_benign_exp1_reputation_first .csv ’, ’a’) \
249 as results_file :
250 writer = csv. writer ( results_file , delimiter =’,’)
251 writer . writerow ([ line [0] , verdict , stage ])
252 results_file . close ()
253

254 return false_positives , true_positives , total_time
255

256

257 def run_pipeline_2 ():
258 reader_results = csv. reader (open( malware_results ))
259 lines_results = list( reader_results )
260

261 reader_benign = csv. reader (open( benign_results ))
262 lines_benign = list( reader_benign )
263

264 total_samples = 2493 + 2748
265

266 for limit in range (10 , 120 , 10):
267 results_reputation_first_malware =

pipeline_2_malware_reputation_first ( lines_results , limit )
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268 results_reputation_first_benign =
pipeline_2_benign_reputation_first ( lines_benign , limit )

269 true_positives = results_reputation_first_malware [0]
270 false_negatives = results_reputation_first_malware [1]
271 false_positives = results_reputation_first_benign [0]
272 true_negatives = results_reputation_first_benign [1]
273 malware_time = results_reputation_first_malware [2]
274 benign_time = results_reputation_first_benign [2]
275

276 average_exec_time = ( malware_time + benign_time ) /
total_samples

277 detection_ratio = true_positives / ( true_positives +
false_negatives )

278 accuracy = ( true_positives + true_negatives ) / total_samples
279 false_positive_ratio = false_positives / ( false_positives +

true_negatives )
280

281 with open(f’/’
282 f’results_done / pipelines_exp1_new / summary .txt ’, ’a’)

as summary :
283 summary . write (f’* Reputation first * \n Limit : { limit },

true_positives : { true_positives }, false_negatives : ’
284 f’{ false_negatives }, false_positives : {

false_positives }, true_negatives : { true_negatives }, ’
285 f’DR: { detection_ratio }, accuracy : { accuracy

}, FPR: { false_positive_ratio } ’
286 f’time: { average_exec_time } \n \n’)
287

288 results_static_first_malware = pipeline_2_malware_static_first (
lines_results , limit )

289 results_static_first_benign = pipeline_2_benign_static_first (
lines_benign , limit )

290 true_positives = results_static_first_malware [0]
291 false_negatives = results_static_first_malware [1]
292 false_positives = results_static_first_benign [0]
293 true_negatives = results_static_first_benign [1]
294 malware_time = results_static_first_malware [2]
295 benign_time = results_static_first_benign [2]
296

297 average_exec_time = ( malware_time + benign_time ) /
total_samples

298 detection_ratio = true_positives / ( true_positives +
false_negatives )

299 accuracy = ( true_positives + true_negatives ) / total_samples
300 false_positive_ratio = false_positives / ( false_positives +

true_negatives )
301

302 with open(f’/’
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303 f’results_done / pipelines_exp1_new / summary .txt ’, ’a’)
as summary :

304 summary . write (f’* Static first * \n Limit : { limit },
true_positives : { true_positives }, false_negatives : ’

305 f’{ false_negatives }, false_positives : {
false_positives }, true_negatives : { true_negatives }, ’

306 f’DR: { detection_ratio }, accuracy : { accuracy
}, FPR: { false_positive_ratio } ’

307 f’time: { average_exec_time } \n \n’)
308

309

310 if __name__ == ’__main__ ’:
311 run_pipeline_2 ()





ChapterDResults
Table D.1 gives the complete results that were explained in Section 6.1.2.

Table D.1: Results for different score limits returned from the
reputation-based analysis. We have included results from when the
reputation engine is placed first, and when the static analysis is
placed first.

Limit Accuracy Detection ratio False positive ratio Time (s)
Reputation-based analysis first

10 0.9658 0.9330 4.367 × 10−3 143.1
20 0.9664 0.9358 5.822 × 10−3 145.1
30 0.9727 0.9495 6.186 × 10−3 151.6
40 0.9727 0.9495 6.186 × 10−3 151.6
50 0.9775 0.9603 6.914 × 10−3 177.8
60 0.9815 0.9687 6.914 × 10−3 191.2
70 0.9836 0.9735 7.278 × 10−3 192.9
80 0.9836 0.9735 7.278 × 10−3 192.9
90 0.9838 0.9747 8.006 × 10−3 202.3
100 0.9845 0.9767 8.370 × 10−3 212.8
110 0.9861 0.9808 9.098 × 10−3 223.0

Static analysis first
10 0.9819 0.9667 4.367 × 10−3 142.9
20 0.9811 0.9667 5.822 × 10−3 144.9
30 0.9811 0.9671 6.186 × 10−3 151.3
40 0.9811 0.9671 6.186 × 10−3 151.3
50 0.9859 0.9779 6.914 × 10−3 177.6
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60 0.9859 0.9779 6.914 × 10−3 190.9
70 0.9859 0.9783 7.278 × 10−3 192.7
80 0.9859 0.9783 7.278 × 10−3 192.7
90 0.9854 0.9783 8.006 × 10−3 202.0
100 0.9853 0.9783 8.370 × 10−3 212.5
110 0.9861 0.9808 9.098 × 10−3 222.7
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