
Title: Fuzzing the Pacemaker Home Monitoring Unit
Students: Jakob Stenersen Kok & Bendik Aalmen Markussen

Problem description:

Medical devices are not only products whose function is to simply assist in everyday
life. In fact, some medical devices provide life-critical functionality, and certain
patients are entirely dependent on such devices to live long and healthy lives. The
pacemaker is an excellent example of one such device. However, modern technology
has had a significant impact on pacemakers. They are no longer standalone devices
but take part in a larger ecosystem of both medical and non-medical devices. It has
become increasingly important that the entire pacemaker ecosystem is sufficiently
secured. If not, the very device that keeps patients alive and well, could be utilized in
a targeted cyberattack to breach their privacy or inflict physical harm upon patients.

Specifically, we set out to research the security of the network interface of the latest
Home Monitoring Unit (HMU) from a specific vendor. The HMU is an embedded
device that relays private patient data from the pacemaker to the backend servers of
the vendor. From there, medical professionals can access the patient data, thereby
minimizing the patient’s number of visits to the hospital. The HMU is a convenient
device. It can even be critical for patients that have conditions that require close
follow up. Since the HMU is physically accessible and easily available to purchase
on second-hand online markets, it is crucial that it is sufficiently secured against
hacking. We will in this master thesis perform a security evaluation, to uncover and
report potential security vulnerabilities in the HMU.

Our contributions are two-folded. First, we will examine whether a range of vulnera-
bilities found in research into older HMUs, also exists in the latest device. This will
lay a foundation for our next stage - which is our main focus and contribution in our
thesis. Research has uncovered that the latest HMU is also capable of receiving data,
and we wish to research if remotely exploitable vulnerabilities exist in the HMU.
This portion of our research entails the development of a fuzzer to automate attacks
against the HMU through its networking interface. The goal is any attack which
interferes with the HMU’s normal operation. To assess the security level of the HMU,
we will be using a Black-Box testing methodology.

Responsible professor: Marie Elisabeth Gaup Moe, NTNU and Mnemonic
Supervisor: Guillaume Bour & Ravishankar Borgaonkar, SINTEF

Abstract

With the advent of Internet of Things (IoT)-devices, an increasing
number of devices are connected to the Internet. Within the medical world,
this is no different. New technology is used to ensure the best possible
treatment for patients. However, with this proliferation of Internet-
connected devices, a broad attack-surface is opened. Cybercriminals can
potentially leverage new attack vectors to monetize on illegal activities.
In this thesis work, we set out to investigate whether the newest version
of the pacemaker HMU from the German vendor Biotronik, contains
vulnerabilities that can be exploited by an attacker wanting to compromise
either the safety or the privacy of a patient. In the first scope of this
research, by incorporating a black-box methodology, we found that the
HMU, and its corresponding firmware version, has inherent hardware
security deficits. These can possibly aid an attacker having physical
access in developing sophisticated malware that impacts patients’ safety
or privacy. In the second scope of this thesis, we scrutinized the SMS
interface of the HMU. To uncover vulnerabilities in the SMS interface,
we have developed a universally applicable SMS fuzzer framework. It can
be used to fuzz the SMS interface of any device that implement the SMS
protocol, with monitoring implemented at the network side. The code
is made open source and is a contribution to the cybersecurity research
community. Our research confirmed that the SMS interface is vulnerable,
and we uncovered several SMS-messages that crashes the modem of the
HMU. Moreover, we outline how these findings can be used to launch a
remote Denial of Service (DoS) attack on the HMU. Our contributions
include techniques for mitigation of the identified risks. The offending
SMSs we uncovered are not unique to the HMU, but affects all IoT-devices
with the same modem. The affected vendor has been contacted according
to a coordinated vulnerability disclosure process.

Sammendrag

Ved introduksjonen av IoT-teknologi har vi sett en økning av antall
enheter som er koblet på internett. Det preger også den medisinske verden,
hvor denne teknologien blir benyttet for å sikre best mulig pasientbehand-
ling. Med det økende antallet enheter som er koblet på nett, følger det også
et større trusselbilde. Hackere kan potensielt utnytte nye angrepsvektorer
med mål om å skade pasientens liv og helse, eller utnytte informasjonen
til økonomisk vinning. I denne masteroppgaven gjør vi en sikkerhetsana-
lyse av den siste generasjonen hjemme-monitoreringsenhet (HMU) for
pacemakere fra den tyske produsenten Biotronik. Arbeidet redegjør for
enhetens sårbarheter som kan utnyttes av en angriper som ønsker å skade
pasientens helse eller personvern. Masteroppgaven er todelt. Ved å følge
en black-box metode for sikkerhetstesting, avdekkes det at HMUen har
iboende mangler hva angår sikkerhet. Potensielt kan dette utnyttes til
å utvikle mer omfattende angrep av angripere som har fysisk tilgang til
HMUen. I det andre prosjektområdet testes SMS-implementasjonen til
HMUen. For å avdekke sårbarheter i SMS-implementasjonen har vi utvik-
let et universelt SMS fuzzer-rammeverk. Dette verktøyet kan brukes til å
teste SMS-implementasjoner til alle enheter som kan sende og motta SMS,
hvor vi monitorerer fra nettverkets perspektiv. Koden for rammeverket
er open source og bidrar til videre forskning innen cybersikkerhet. Våre
funn bekrefter at SMS-implementasjonen har vesentlige sårbarheter. En
rekke SMS-er viste seg å være i stand til å krasje modemet til HMUen. I
sin tur kan dette brukes i et DoS-angrep på enheten. Til slutt presenterer
vi teknikker og metoder for skadebegrensning av de identifiserte risikoom-
rådene. SMS-meldingene vi avdekket er ikke spesifikke til HMUen, men
kan krasje alle IoT-enheter som benytter samme modem. De påvirkede
leverandørene er, i tråd med prinsippet om ansvarlig sårbarhetsformidling,
blitt informert om funnene i studien.

Preface

This Masters’s Thesis is the final deliverable of Jakob Stenersen Kok
and Bendik Aalmen Markussen of their Master of Science degrees in
Communication Technology and Digital Security, with a specialization in
Information Security, at the Department of Information Security and Com-
munication Technology, Norwegian University of Science and Technology
(NTNU).

Acknowledgements

This work would not have been possible without the help of a handful
of people. We would like to express our deepest gratitude to those directly
involved with the project at SINTEF. Marie Elisabeth Gaup Moe has been
our responsible professor and has always shown interest in our project and
contributed with great guidance, reviews, and comments. Ravishankar
Borgaonkar has been our supervisor and contributed with his substantial
knowledge on mobile network security and experimental setup and testing
techniques within the field. The results of this project would have looked
very different if it was not for him. Lastly, we would like to give a special
thanks to Guillaume Bour, who is also our supervisor, for his considerable
involvement throughout the project. He has continuously provided his
profound expertise on every subject and always been easily available.
Furthermore, he has been responsible for the acquisition of necessary
testing equipment, for which we are very thankful.

We would also like to express gratitude to a few individuals, who are
not directly involved, but contributed positively to the quality of this
project. Martin Lima, a friend and fellow student at NTNU, took time to
help out with the extraction of the flash memory and later proofread our
thesis unsolicited. Altaf Shaik, a PhD student at the Technical University
of Berlin, offered his assistance towards properly configuring the simulated
mobile network. We very much appreciate these contributions.

Lastly, due to the outbreak of the Covid-19 virus, we were forced to
work from home the majority of this semester. Thanks to our flatmates
Aleksander Walde, Eivind Høydal, Nils Folvik Danielsen, and Per Krisitan
Gravdal for maintaining a healthy working environment at home and
keeping spirits high.

Contents

List of Figures v

List of Tables vii

List of Acronyms ix

1 Introduction 1
1.1 Definitions of medical devices . 1
1.2 The pacemaker ecosystem . 2

1.2.1 Security considerations . 4
1.2.2 Regulatory bodies . 5

1.3 Scope of our project . 6
1.3.1 Hypotheses, research questions, and research objectives . . . 8

1.4 Motivation . 9
1.5 Outline of thesis report . 11

2 Technical Background 13
2.1 Security concepts and terms . 13
2.2 Threat model . 14

2.2.1 Assets . 14
2.2.2 Threat actors . 14
2.2.3 Attacks . 15

2.3 Hardware terminology . 16
2.4 UART . 17
2.5 SPI . 18
2.6 JTAG . 18
2.7 Short message service (SMS) . 19

2.7.1 The SMS formats . 20
2.7.2 The SMS protocol stack . 20
2.7.3 Fields in the SMS_DELIVER format 21
2.7.4 SMS modes . 22

2.8 Fuzzing . 23

i

2.9 3G jamming - downgrade attack . 24

3 Related Work 25
3.1 The pacemaker ecosystem . 25
3.2 SMS-fuzzing and mobile communication security 27

4 Methodology 29
4.1 Preliminary considerations . 29
4.2 Black-box testing . 30

4.2.1 Black-box hardware testing 31
4.2.2 Fuzzing . 32

4.3 Intersection between research objectives 35
4.4 Limitations of methodology . 35
4.5 Research guidelines . 36

5 Tools and software 37
5.1 Black-box hardware testing . 37
5.2 Fuzzing . 41

6 Hardware Security testing of the Cardiomessenger 3G Smart 43
6.1 Preliminary HMU security testing 43

6.1.1 The Cardiomessenger II-S T-Line 43
6.1.2 The Cardiomessenger II-S GSM 46
6.1.3 Summary of preliminary security testing 48

6.2 The Cardiomessenger 3G Smart as a standalone device 49
6.2.1 Hardware analysis . 50
6.2.2 Finding relevant documentation 52
6.2.3 Testing Scenarios . 55
6.2.4 Summary of findings . 65

7 Fuzzing the SMS-interface of the Cardiomessenger 3G Smart 69
7.1 Architecture . 69

7.1.1 Initial Considerations . 70
7.1.2 Setting up an simulated GSM network 70
7.1.3 Automated packet delivery and manipulation 71
7.1.4 Modifying OpenBTS to accommodate fuzzing 72

7.2 Establishing monitoring capabilities 72
7.2.1 Filtering the feedback from the HMU 74

7.3 Input generation . 74
7.3.1 Targeting header fields for fuzzing 75

7.4 Summary of the framework capabilities 78
7.5 Fuzzing test cases . 79

7.5.1 Combinations of TP-PID, TP-DCS, and TP-UD 79

7.5.2 Fuzzing the TP-UDH . 81
7.6 Testing . 87

7.6.1 Preliminary SMS testing . 87
7.6.2 Setting up the modem . 88
7.6.3 Implementing health checker and emptying SMS memory . . 90
7.6.4 Procedure for executing test cases 91

7.7 Results and Analysis . 92
7.7.1 Results of random TP-PID and semi-random TP-UD, regular

7-bit TP-DCS . 93
7.7.2 Results of random TP-PID, TP-DCS and semi-random TP-UD 93
7.7.3 Results of random TP-PID, semi-random TP-UD, and common

TP-DCS values . 96
7.7.4 Results flash SMS . 96
7.7.5 Results generic TP-UDH . 96
7.7.6 Results concatenated SMS . 97
7.7.7 Results EMS SMS . 98
7.7.8 Results (U)SIM data download 98
7.7.9 Validation . 98
7.7.10 Summary . 98

8 Discussion and mitigation 101
8.1 Discussion on findings from hardware security testing 101

8.1.1 Implications for patients . 103
8.1.2 Implications for the vendor 104

8.2 Mitigation of findings from hardware security testing 105
8.2.1 Tamper-resistant hardware 106
8.2.2 PCB obfuscation . 106
8.2.3 Disabling JTAG . 106
8.2.4 Removing debugging strings and encrypting firmware 106

8.3 Discussion on findings from fuzzing 108
8.3.1 SMS applicability . 108
8.3.2 Strengths of fuzzing framework 108
8.3.3 Input from hardware testing to fuzzer development 109
8.3.4 Answering research questions 110
8.3.5 Implications for patients . 111
8.3.6 Limitations of fuzzing framework 112

8.4 Mitigation of findings from fuzzing 113
8.5 Future work . 114
8.6 Ethical considerations . 115

9 Conclusion 117

References 119

Appendices
A OpenOCD Scripts 123

A.1 Simple connection using OpenOCD 123
A.2 Dump memory using OpenOCD 123

B Installing modified version of OpenBTS 125

C Fuzzer framework 129
C.1 Parent class for different fuzzing cases 129
C.2 Implementing the actual sending of PDUs via OpenBTS 131
C.3 Monitoring . 132

C.3.1 Health checker . 132
C.3.2 Parsing resulting Pcap file 133

C.4 Various fuzzing of PID, DCS and UD 134
C.4.1 Fuzzing PID, DCS and UD 134
C.4.2 Fuzzing PID and UD, with 7 bit DCS 135
C.4.3 Fuzzing PID and UD, with common DCS 135
C.4.4 Flash SMS . 136

C.5 Various fuzzing of UDH features 136
C.5.1 Fuzzing generic UDH . 136
C.5.2 Fuzzing concatenated SMS 138
C.5.3 Fuzzing EMS . 141
C.5.4 Fuzzing (U)SIM Data Download 142

C.6 Utilities . 143
C.6.1 Import fuzz payload . 143
C.6.2 DCS length mapping . 144
C.6.3 Hex converter . 145

List of Figures

1.1 The pacemaker ecosystem . 4

2.1 UART communication . 17
2.2 SPI communication . 18
2.3 A simplified GSM protocol stack . 20
2.4 The three layers of the SMS protocol in GSM. 21
2.5 Dissected TPDU . 23

4.1 Visualization of Black-box testing. 30
4.2 The different phases of black-box hardware testing 32
4.3 The different phases of black-box fuzzing 35

5.1 The Raspberry Pi Zero. 38
5.2 The PCBite . 39
5.3 The JTAGulator. 40
5.4 The Shikra. 40
5.5 The Ettus Research N200 USRP. 41
5.6 The Signal Shield w-40 jammer. 42

6.1 Setup during preliminary testing . 44
6.2 JTAG connection on the HMU GSM version. 47
6.3 The Cardiomessenger 3G Smart as it is shipped from Biotronik. 49
6.4 The PCB of the Cardiomessenger 3G Smart. 50
6.5 The inner PCB of the Cardiomessenger 3G Smart. 51
6.6 Labelled JTAG and UART pins . 52
6.7 STM32 chip memory map . 53
6.8 A detailed memory map of AHB3 . 54
6.9 Extracted memory sections from the microcontrollers internal memory. . 57
6.10 Extracted memory sections from the first FSMC, in AHB3. 57
6.11 The flash pinout of the peripheral flash chip. 59
6.12 Connecting to the SPI of the flash directly. 60

7.1 A simplified overview of the envisioned SMS fuzzing architecture. 69

v

7.2 Dissected TPDU . 75
7.3 The TP-User-Data-Header . 78
7.4 An architecture diagram of the fuzzing framework. 79
7.5 A screenshot of a fuzzed flash SMS captured in Wireshark. 80
7.6 The structure of the TP-UDH that was created within our generic TP-UDH

test case. 81
7.7 The IED field within each header chunk has a length of 2-8 bytes and

takes any value. 81
7.8 A screenshot of a fuzzed Short Message Service (SMS) in Wireshark,

targeting random TP-UDH headers. 82
7.9 An example of a concatenated SMS session. 83
7.10 An example of concatenated SMS captured in Wireshark. 84
7.11 An example of a EMS SMS captured in Wireshark. 85
7.12 An example of a (U)SIM Data Download SMS packet in Wireshark. . . 86
7.13 The setup of the modem in its developer board, with antennas connected

onto it. 89
7.14 Complete architecture of fuzzer framework 91
7.15 Unackowledged SMS - fuzz TP-PID, TP-DCS, and TP-UD 93
7.16 Several disconnection requests from OpenBTS that are never ackowledged

from the modem of the HMU. 94
7.17 A proper message sequence of the GSM detach procedure. 94
7.18 The dissected TPDU. 95
7.19 USB monitoring. The modem does not respond to any AT-commands. . 95
7.20 Unackowledged SMS - generic UDH . 96
7.21 The dissected SMS in Wireshark. 97

List of Tables

1.1 Hypothesis deemed true for previous versions of HMUs 10

2.1 Threat model . 15
2.2 The TAP pins of JTAG. 19
2.3 The fields in the SMS_DELIVER format. 22

5.1 The Raspberry Pi pinout for both JTAG and SPI connection. 38
5.2 The Shikra pinout for UART connection. 40

6.1 Hardware analysis of the Cardiomessenger 3G Smart 51
6.2 Summary of our findings on the Cardiomessenger 3G Smart. 65
6.3 Correspondence between hypotheses and our findings. 66

7.1 Summary of results . 99

vii

List of Acronyms

3G Third Generation.

AHB Advanced High-Performance Bus Architecture.

API Application Programming Interface.

APN Access Point Name.

APT Advanced Persistent Threat.

AT ATtention.

BTS Base Transceiver Station.

CIA Confidentialty, Integrity and Availability.

CM Connection Management.

COTS Commercial Off-The-Shelf.

CPU Central Processing Unit.

CS Chip Select.

CVS Concurrent Version System.

DoS Denial of Service.

EMS Enhanced Messaging Service.

EU European Union.

FCC Federal Communication Commission.

FSMC Flexible Static Memory Controller.

GSM Global System for Mobile Communication.

ix

HMU Home Monitoring Unit.

ICD Implantable Cardioverter Defibrillator.

IMSI International Mobile Subscriber Identity.

IoT Internet of Things.

IP Internet Protocol.

JTAG Joint Test Action Group.

LTE Long Term Evolution.

MISO Master In/Slave Out.

MitM Man in the Middle.

MM Mobility Management.

MOSI Master Out/Slave In.

NTNU Norwegian University of Science and Technology.

OS Operating System.

OWASP Open Source Web Application Security Project.

PCB Printed Circuit Board.

PDU Protocol Data Unit.

RAM Random Access Memory.

RDP Readout Protection.

RPDU Relay Protocol Data Unit.

RRM Radio Resource Management.

SDR Software Defined Radio.

SM-AL Short-Message Application Layer.

SME Short Message Entity.

SM-RL Short-Message Relay Layer.

SMS Short Message Service.

SMSC Short Message Service Center.

SM-TL Short-Message Transfer Layer.

SPI Serial Peripheral Interface.

TAP Test Access Port.

TCP Transmission Control Protocol.

TPDU Transfer Protocol Data Unit.

TP-UDH TP-User-Data-Header.

UART Universal Asynchronous Receiver/Transmitter.

UDP User Datagram Protocol.

UE User Equipment.

ULPAMI Ultra Low Power Active Medical Implant Systems.

USRP Universal Software Radio Peripheral.

Chapter1Introduction

1.1 Definitions of medical devices

Medical devices is a term coined to encompass a broad set of benign technological
innovations and products. Overall, medical devices are made to benefit humans, and
in one way or another, provide functions related to our health. While some medical
devices function as mere assistants in monitoring or improving upon the health of
their users, other medical devices provide critical functions towards maintaining
human life itself. Therefore, multiple formal definitions of what a medical device is,
exists today.

The formal definition of a medical device provided by Norwegian authorities is:
"Any instrument, apparatus, piece of equipment, material or other object, that is to
be used alone or in combination, intended for use on humans, which has diagnosis,
prevention, monitoring, treatment or alleviation of disease or compensation for an
injury or handicap as its purpose" [Lov05]. Furthermore, the formal definition of an
active medical device by Norwegian authorities is: "Any medical device dependent on
an energy source, electrical or other, excluding energy sources which arise from the
human body or gravity" [Lov05]. In addition to active medical devices, the Norwegian
government also defines active implantable medical devices. Such devices are defined
as: "Any active medical device which is intended to be totally or partially introduced,
surgically or medically, into the human body or by medical intervention into a natural
orifice, and which is intended to remain after the procedure" [Lov05].

Clearly, these definitions provide classifications, separating trivial and mundane
products from more high-end products, which are implanted into their users. Also,
these definitions correspond to how critical it is that the medical device performs its
functionality. Active implantable medical devices provide functions that the users
might be entirely dependent on, as opposed to devices encompassed by the broader
definition of medical devices.

1

2 1. INTRODUCTION

For this thesis report, the relevant definition of medical devices is the one defining
active implantable medical devices. More specifically, we are focusing on pacemakers
and Implantable Cardioverter Defibrillators (ICDs), which are devices encompassed by
this definition. Both pacemakers and ICDs are battery-powered, surgically implanted
into the patient’s body, and physically wired to their heart. Patients with pacemaker-
implants or an ICD suffer from certain heart conditions in which implanting the
device is the settled upon treatment. These devices continuously monitor the heart
rhythm and are capable of pacing the heart by issuing electrical stimuli if it is beating
too slowly or too rapidly, thereby ensuring a normal heart rhythm. ICDs are also
capable of providing a higher voltage shock to the heart of the patient if necessary.
As these devices are so highly similar, throughout this thesis, they will be solely
referred to as pacemakers.

1.2 The pacemaker ecosystem

Although implanting pacemakers in patients with certain heart conditions is a settled-
upon treatment, it is not exempt from technological challenges. Advancements
in technology have had a significant impact on pacemakers. Their battery lasts
for several years, minimizing the number of surgical procedures required. Besides,
to ensure the best possible treatment for pacemaker patients, they are no longer
standalone devices. In fact, pacemakers take part in a broader ecosystem of both
medical and non-medical devices. These devices, except for the pacemaker itself, are:

The programmer is an active medical device itself, although not implantable.
It is essentially a computer that typically resides in hospitals or clinics. It wirelessly
communicates with the pacemaker and is used to configure/program individual
settings of the pacemaker. This requires that the pacemaker is in close proximity to
the programmer, which is operated by a medical professional.

The Home Monitoring Unit (HMU) is also an external active medical device.
It indeed resides in a patient’s home, given that the patient has received a HMU,
and wirelessly communicates with the patient’s pacemaker. By utilizing wireless
communication, the HMU extracts patient data from the pacemaker and forwards
this to the vendor’s backend server over a different communication interface. This
enables medical professionals to access patient data remotely, and the patient can
visit the hospital less frequently.

The vendor’s backend servers is a cluster of non-medical devices within the
ecosystem. The HMU forwards it’s retrieved patient data via the operator’s network,
to the vendor’s backend servers where it is stored. Medical professionals can access
patient data from these servers by utilizing an online platform.

1.2. THE PACEMAKER ECOSYSTEM 3

The operator network is also a non-medical part of the ecosystem. The
operator network is the communication network that the HMU utilizes to forward it’s
retrieved patient data to the vendor’s backend servers. Different HMUs utilize different
communication technologies. Typical examples include a telephone line, a wireless
mobile communications network such as Global System for Mobile Communication
(GSM), or the Third Generation (3G) of mobile networks.

Clearly, pacemakers take part in a complex ecosystem of different devices and
technologies. Also, several different stakeholders are implicitly involved in the
ecosystem. These stakeholders are:

Patients naturally constitute stakeholders in the pacemaker ecosystem, as they
are implanted with the pacemakers themselves, and the ecosystem’s primary function
is to provide them with the possible care.

Medical professionals are also stakeholders in the pacemaker ecosystem. Doc-
tors and practitioners constitute users of the ecosystem as they implant and configure
the pacemakers. Besides, they also review patient data.

The vendor manufactures pacemakers, HMUs, and programmers.Therefore, the
vendor constitutes an essential stakeholder in the pacemaker ecosystem. The quality
of the products and services in the ecosystem, or lack thereof, is due to activities
made by the vendor.

Regulatory bodies also constitute important stakeholders. As active im-
plantable medical devices give rise to challenges within health care, products and
services in the pacemaker ecosystem are strictly regulated by various authorities.

Researchers constitute the ultimate stakeholders within the pacemaker ecosys-
tem. Research into various aspects such as cardiology, electrical engineering, and
cybersecurity of the pacemaker ecosystem is crucial to ensure sufficient quality in
products and services.

A figure depicting the pacemaker ecosystem is included below. The figure consists
of all the active medical devices, as well as non-medical devices. Also, the pacemaker,
which is an active implantable medical device, is included. The figure also depicts
patients and medical professionals as stakeholders in the ecosystem.

4 1. INTRODUCTION

Figure 1.1: 1) The programmer operated by a medical professional. 2) The patient
with an implanted pacemaker. 3) The HMU. 4) The operator network. 5) The
back-end servers of the vendor. 6) The medical professional reviewing patient data
remotely.

1.2.1 Security considerations

As previously mentioned, in this thesis, we are concerned with pacemakers, which are
active implantable medical devices. More specifically, since pacemakers take part in
the complex infrastructure that is the pacemaker ecosystem, we are concerned with
the cybersecurity of this ecosystem. Since the pacemaker ecosystem entails patient
care and private patient data, security is of utmost importance. The consequences of
a successful attack could lead to the disclosure of private patient data, or even worse,
physical harm to the patient. Moreover, a security breach could potentially impact a
high number of people. An estimate for Norway alone is that approximately 23 000
patients have pacemakers implanted [SP18]. Globally the estimates are 1.14 million1.

Based on the severity of potential consequences, one would believe that the
cybersecurity of pacemakers and the pacemaker ecosystem has been an important
objective and a real concern for the vendors. However, recent research has shown that
vulnerabilities do exist within the ecosystem [HHR+08] [RB17] [MSG+16] [KW18]
[NB19] [WL19]. A common finding in these reports is the tendency to secure
the products by attempting to hide and conceal their technical details. Within the
cybersecurity community, this phenomenon is referred to as security through obscurity
and is generally considered to be an insufficient effort in securing data associated
with a patient in the pacemaker ecosystem.

1According to www.statista.com, accessed on 29.01.2020

www.statista.com

1.2. THE PACEMAKER ECOSYSTEM 5

The security through obscurity phenomenon is characterized by when vendors
attempt to camouflage the inner workings and technical specifications of their devices
and services. By keeping such information secret, vendors remain confident that it
cannot be exploited for malicious purposes. After all, malicious adversaries cannot
use information they do not possess. However, this is considered a bad practice,
since secrecy alone is susceptible to brute-force attacks and reverse-engineering.
An example is the work by Marin et al. [MSG+16], who reverse-engineered the
proprietary communication protocol between a pacemaker and the programmer.
Security through obscurity is the opposite of security by design, which considers
security aspects from an early stage within the design process of devices, thereby
ensuring a sufficient security level. This is in line with Kerckhoff’s principle, which
experts advocate to follow when designing systems that need to be secure. The
principle states that "a system must remain secure if everything about the it except
the key is known to the adversary" [Doe19a].

Physically harming people through digital means is no longer a fictional scenario.
Recently, there have been several cyber-attacks whose aim was to cause physical
destruction and harm. To illustrate, Ukraine experienced a flood of digital attacks
back in 2015 [LC16]. Several power companies were struck, and the malware left
many households without electricity, affecting thousands of people. Another example
was the ransomware known as WannaCry, which spread reached a global level. In the
UK, the ransomware disrupted a range of medical devices and hospitals. According to
The Times, estimates state that 70 000 devices were rendered unavailable [UTHG17].
Among these devices were MRI scanners, blood-storage refrigerators, and computers.
Furthermore, according to the National Health Services in the UK, almost 20 000
appointments were canceled [Par18].

Since the pacemaker is no longer a standalone device, but in fact, part of a
bigger ecosystem, a broad attack surface is opened. A compromise of any of the
components in the ecosystem could have severe implications for the patient. Exposing
the ecosystem to the internet will inevitably - through sending data between HMUs
and the backend servers - open the opportunity for a remote attack on a patient.

1.2.2 Regulatory bodies

A variety of public authorities regulates medical device security. These are specific to
nations or unions of nations. If a vendor wishes to sell their medical devices within
the jurisdiction of a regulatory authority, it is required by law to comply with current
regulations.

The European Union (EU) has recently renewed its regulations of medical devices.
Previous regulations dated back to the 1990s, and since there have been significant
advancements in technology since then, a renewal was imminent. These new regu-

6 1. INTRODUCTION

lations, which will be in full effect as of May 2020, impose stricter control over the
quality, safety, and reliability of medical devices. Besides, enhanced mechanisms
intended to ensure sufficient information towards patients will be required from
vendors. Lastly, the new EU regulations will impose stricter post-market surveillance
on the performance of medical devices [Eur17a].

The new EU regulations specifically mention cybersecurity related to medical
devices. Electronic programmable systems are explicitly covered in section 17 of
chapter 1 since many medical devices also fall within this category. Subsection 17.2
states that: "For devices that incorporate software or for software that are devices
in themselves, the software shall be developed and manufactured in accordance with
the state of the art taking into account the principles of development life cycle, risk
management, including information security, verification and validation" [Eur17b].
Also, subsection 17.4 states: "Manufacturers shall set out minimum requirements
concerning hardware, IT networks characteristics and IT security measures, including
protection against unauthorized access, necessary to run the software as intended"
[Eur17b].

These new regulations are a measure taken to compensate for the fact that many
medical devices, such as pacemakers, are not standalone devices anymore. They
are interconnected with a variety of other devices and technologies, which leads to
new implications in cybersecurity for these devices. The responsible authority for
medical device regulations in Norway is The Norwegian Medicines Agency2. They
are currently in the process of incorporating the renewed EU regulations into the
Norwegian law and aim at completing this process by the EU deadline [The20]. The
Norwegian Medicines Agency is also the authority that oversees medical devices in
Norway. More specifically, they evaluate side-effects and safety-related incidents of
medical devices, in addition to verifying whether a vendor complies with current
regulations [The18].

1.3 Scope of our project

Our project considers explicitly the security of the most recent version of HMU
manufactured by the German vendor Biotronik, namely the Cardiomessenger 3G
Smart. Although this is the most recent HMU from Biotronik, older versions are also
still in use. Previous research by Bour [NB19] and Lie [WL19] involved testing the
security of older versions of HMUs from Biotronik. Notably, the Cardiomessenger
II-S, both the T-line and GSM version, were thoroughly tested.

Our project is a continuation of this previous research and will contribute to
the overall knowledge that exists concerning HMU security by performing similar

2https://legemiddelverket.no/english/about-us, accessed on 05.02.2020

https://legemiddelverket.no/english/about-us

1.3. SCOPE OF OUR PROJECT 7

research on the most recent version. Furthermore, our project will extend the security
research that has previously been performed by utilizing fuzzing as a security testing
technique and applying it to the most recent HMU.

Bour and Lie were successful in sending SMSs to the Cardiomessenger II-S
from a fake base station. Moreover, when reverse engineering the firmware of the
Cardiomessenger II-S, Bour obtained references to code in the firmware, which
seemed to parse incoming SMS. This opens up for using SMS as an attack vector.
We believe that the most recent HMU is also capable of receiving SMS and that it
also contains code in its firmware that parses incoming SMS, as were the case for
the previous HMUs from the same vendor. Besides, as its name implies, the most
recent HMU is capable of 3G communication. This means that the device is capable
of communicating using the Transmission Control Protocol (TCP)/Internet Protocol
(IP) software stack.

Thus, the Cardiomessenger 3G Smart implements two different communication
technologies towards the vendor’s backend servers. Initially, we envisioned to fuzz
both these interfaces as that would allow us to obtain the most knowledge on the
security of its networking capabilities. However, as we deemed such a scope too
extensive, we chose to solely scrutinize the SMS interface of the HMU. An important
note is that when fuzzing is used as a testing technique, it will happen in a closed
environment and not affect the vendor in any way. We are performing our research
without crossing ethical boundaries, meaning that we will not do any active probing
of the vendor’s infrastructure without their consent.

The following two scopes have been defined. They constitute our two primary
focuses throughout this thesis project.

Scope 1: The most recent version of HMU, the Cardiomessenger 3G Smart, as a
standalone embedded medical device.

Scope 2: The implementation of SMS capabilities within the HMU, considering it
as an endpoint in a network.

Given that the Cardiomessenger 3G Smart is an embedded device, the implementa-
tions of its communication capabilities are, in fact, the device’s cellular modem and the
modem’s separate firmware - which is developed by another manufacturer. Through-
out this thesis, when referring to the implementations of communication capabilities,
we will use terminology such as cellular modem, SMS- and data-communication
interface, baseband processor and firmware, interchangeably.

Noteworthy, there is a clear link that exists between the scopes above. They
are linked in the sense that security research within scope 1, might prove to be

8 1. INTRODUCTION

valuable for the security research into scope 2. The idea is that it could become less
challenging to perform security research on the implementation of the HMU’s SMS
capabilities, given that valuable security-related properties are uncovered within the
hardware of the HMU itself.

1.3.1 Hypotheses, research questions, and research objectives

To generate new knowledge within our two scopes of the pacemaker ecosystem, we
have formulated hypotheses, research questions, and research objectives. The research
questions and research objectives were first formulated in our pre-project [KM19],
but they were revised and reformulated for this thesis report.

We will work according to two main hypotheses. Each hypothesis relates to one
of the scopes that are defined above. For the security testing of the Cardiomessenger
3G Smart as a standalone embedded medical device, we will try to examine whether
the following hypothesis is true:

H1 The Cardiomessenger 3G Smart HMU contains vulnerabilities as a standalone
embedded medical device that can be exploited by an attacker having physical
access to the device to compromise a patient’s privacy or safety.

Next, when we examine the SMS interface towards the vendor’s backend server,
we will try to answer whether the following hypothesis is true:

H2 The implementation of SMS within the HMU is insecure and contains vulnera-
bilities that can be exploited by an attacker determined to compromise either
the safety or the privacy of a patient.

The following research questions are derived to verify our two main hypotheses:

RQ1 Is the Cardiomessenger 3G Smart sufficiently secured against attackers, and if
not, how can the confidentiality, integrity, and availability of patient data be
compromised?

RQ2 Are there any vulnerabilities in the cellular modem’s firmware that parses the
incoming SMSs?

RQ3 Is it feasible to use the SMS interface as an attack vector, considering attackers
with varying resources?

1.4. MOTIVATION 9

RQ4 Are there any security mechanisms in the firmware of the HMU to protect
against vulnerabilities in the cellular modem used for SMS communication?

RQ1 relates to H1, while RQ2, RQ3 and RQ4 relates to H2. Furthermore, to
answer the research questions stated above, we will pursue the following research
objectives:

RO1 To verify whether the hypotheses in table 1.1 are true for the Cardiomessenger
3G Smart as a standalone medical device.

RO2 To investigate potential vulnerabilities in the SMS interface of the Cardiomes-
senger 3G Smart through fuzzing.

RO1 refers to a set of pre-defined hypotheses. Hence an elaboration is required.
These hypotheses are the same hypotheses that were deemed true during the testing
of the Cardiomessenger II-S HMUs, which can be found in Bour’s thesis [NB19].
Naturally, a successful validation of these hypotheses corresponds to vulnerabilities
and a lack of security. We will test whether we can find the same vulnerabilities
in the Cardiomessenger 3G Smart as the ones found in the previous versions of
the HMUs, when pursuing RO1. That way, we can describe the evolution and
development of security features of Biotronik’s HMUs. Validating these hypotheses
for the Cardiomessenger 3G Smart will also ultimately validate H1. Therefore, in
table 1.1 they are denoted H1.X.

As previously mentioned, when working towards RO2, we are extending the
security testing performed on HMUs by utilizing fuzzing as a means to discover
potential vulnerabilities in the implementations of the Cardiomessenger 3G Smart’s
SMS capabilities.

1.4 Motivation

Since medical devices are devices that perform functions that alleviate diseases,
possibly to a life-saving extent, they indeed lead to a higher quality of life for the
affected patients. Patients can suffer from chronic diseases, but by the utilization
of a medical device, they can still lead long and fulfilling lives. Medical devices
can transform the way we treat individual patients, and since their overall quality
is potentially of such a high level, they are most welcome into modern healthcare.
Performing research within the field of medical device security is highly motivating.

However, by entrusting medical devices with the responsibility of treating indi-
vidual patients, several technological and ethical challenges arise. An example of a

10 1. INTRODUCTION

Hypothesis number Hypothesis

H1.1 An attacker can open the device, and there is no obfuscation of the
electronics that would harden the identification of components.

H1.2 Both JTAG and UART interfaces are identifiable and enabled on
the HMU.

H1.3 The memory is unencrypted, and an attacker can obtain cleartext
credentials, debug strings and the data that is sent to the backend
server.

H1.4 The firmware is unencrypted and not obfuscated, easing the reverse-
engineering process for an attacker.

H1.5 The use of debug/log strings in the firmware, ease to process of
reverse-engineering the communication protocol.

H1.6 The AES-key used for encryption of patient data, is hardcoded in
the HMU’s memory.

H1.7 The Access Point Name (APN)’s credentials can be gathered in
cleartext from eavesdropping on the communication between the
modem and the microcontroller.

H1.8 There is no mutual authentication between the microcontroller
and the backend server of the vendor.

H1.9 Data is sent from the HMU to the backend servers of the vendor
over a TCP-service, and credentials are sent in cleartext.

H1.10 Credentials used to connect to the APN is reused to connect to
the TCP-service.

H1.11 A proprietary communication protocol is used to send data to the
backend server.

Table 1.1: Hypothesis deemed true by Bour [NB19] for previous versions of HMUs,
namely the different versions of the Cardiomessenger II-S.

challenge related to medical devices, which is both technical and ethical, is whether
medical devices are sufficiently secured and cannot be exploited to harm the affected
patients. This challenge is mainly present for patients whose medical device is im-
planted into their bodies and not removable. Researching whether various responsible
stakeholders meet this challenge is highly rewarding work as it can potentially make
a significant difference within the field of medical device security.

If medical devices are not sufficiently secured and can be the very thing that an
attacker can make use of to harm patients, it would negatively affect human lives
in our digital society. In such a case, one could argue that vendors are primarily
focused on making profits, and not the safety and security of the end-users of their
products. In the end, the vendors of medical devices are also regular companies that
aim to make a profit for their shareholders and are met by the inherent trade-off
between security and cost. Most companies do not directly monetize from security

1.5. OUTLINE OF THESIS REPORT 11

investments. Hence, gaps between security and costs might be present in today’s
products. Products may be cheap, but if they are insecure, such gaps should be filled.
Our research could contribute to revealing this fact. Thus, our work can highlight
this issue and contribute positively to securing medical devices.

As mention in section 1.2.1, cyber-attacks that give rise to physical harm are no
longer a fictional scenario. It is reasonable to assume that exploiting medical devices
to inflict harm on patients is a highly relevant threat. Again, this is particularly
relevant for patients whose medical device is implanted into their bodies, as they are
left with no choice. These patients simply have to accept the threat level imposed
on them because of insecure medical devices, since surgically removing their device
leaves them with a significantly worsened health condition.

We feel strongly about the need for secure medical devices and believe that users
should be able to trust their device fully. Thus we are highly motivated to research
within the field.

1.5 Outline of thesis report

The remainder of this thesis report is structured as follows:

Chapter 2 provides the necessary technical knowledge, in addition to familiar-
ization with security concepts and terminology, necessary for the understanding of
the remainder of this thesis report.

Chapter 3 presents relevant research previously conducted within the fields of
both pacemaker security and of fuzzing an SMS interface. Our work is primarily
based on this research.

Chapter 4 presents and argues for our choice of research methodology, as well
as outlines the details of which phases the methodology contains.

Chapter 5 presents the most essential and specialized tools and software utilized
within our research.

Chapter 6 presents how we obtained our results and findings from our research
within scope 1, and consequently, our research into RO1. Results and findings
themselves are also detailed.

Chapter 7 presents how we obtained our results and findings from our research
within scope 2, and consequently, our research into RO2. Results and findings
themselves are also detailed.

Chapter 8 provides a thorough discussion on our results and findings from both

12 1. INTRODUCTION

chapter 6 and 7, and what they imply. Techniques that mitigates our findings are
also presented.

Chapter 9 concludes this thesis.

Chapter2Technical Background

This chapter provides adequate theoretical background knowledge for readers of
this thesis. Such background knowledge is necessary to fully comprehend how we
conducted our research, in addition to our final contribution related to the security
of pacemaker HMUs.

2.1 Security concepts and terms

This section defines essential terminology within cybersecurity that is important to
clarify before continuing to read this thesis. The terminology will be used frequently,
and to substantiate our claims. Conventionally, in the world of cybersecurity, the
terms Confidentialty, Integrity and Availability (CIA) are mostly used. An extension
includes the Non-repudiation and Authentication security properties. Definitions
provided by the Norwegian government is given below [Reg15]:

Confidentiality entails the protection against disclosure of information such that
unauthorized people cannot access it. An example in the context of the pacemaker
ecosystem could be that only healthcare professionals should be able to access patient
data.

Integrity ensures that a receiver of data can be sure of its legitimacy, meaning
that it has not been altered/manipulated in any way by an unauthorized party. A
breach of integrity could be that a healthcare professional reads patient data that
have been tampered with by an adversary.

Availability ensures that the services and the information are available to
authorized personnel whenever needed. A breach of availability could be a DoS-
attack on the backend servers of the vendor. If so, attackers successfully drain the
resources of those backend servers, yielding the service and information unavailable.

Non-repudiation is closely related to integrity and ensures that someone cannot

13

14 2. TECHNICAL BACKGROUND

deny that an event, a transaction, or that some communication took place. More
specifically, it means that a party cannot deny the authenticity of their signature.
An example of breaching this property is the logging of data on the programmer on
behalf of someone else.

Authentication refers to the process of verifying the identity of a user or process.
An example of an authentication breach could be to be able to somehow login as a
medical professional without knowing their password.

2.2 Threat model

Threat modeling plays a crucial role in security research. According to the Open
Source Web Application Security Project (OWASP), is a procedure defined as: "To
identify, communicate, and understand threats and mitigations within the context of
protecting something of value." [OWAa]. Thus, it is important to understand the
threat model for the pacemaker in order to grasp the complexity of potential attacks
and to identify adequate security mechanisms. Threat modeling should also be a
part of the development of a product, preferably in the earlier stages, such that it
can influence the design.

Consequently, we will create a threat model, which will help us to identify and
assess possible threats and attacks against stakeholders of the ecosystem. Mitigation
mechanisms will be provided in the later chapters once we confirm whether vulner-
abilities exist. Furthermore, it is essential to emphasize that we will only outline
threats against assets within our defined scopes.

2.2.1 Assets

Firstly, we identify which assets that might be interesting to an attacker. Below is a
list of our identified assets:

1. Patient safety.

2. Private patient information.

3. Biotronik’s reputation.

4. Biotronik’s backend servers.

2.2.2 Threat actors

Next, we present different adversaries that might be interested in attacking the
pacemaker ecosystem, and their respective motivations and likelihood. We use the

2.2. THREAT MODEL 15

often classified stereotypes of different threat profiles to distinguish the different
threat actors that are relevant for the pacemaker ecosystem [Doe19b], which can be
seen in table 2.1 below. In the table, we provide estimates for likelihood based on
the corresponding incentives.

Role Likelihood Incentives

Organized Crime Moderate The main motivation behind why
organized crime would be inter-
ested in attacking an asset in the
ecosystem is monetary gain. Such
monetary gain could be achieved
through either blackmailing pa-
tients/Biotronik, or through sell-
ing valuable personal information
regarding patients.

Advanced Persistent Threat (APT) Low This threat actor is normally en-
gaged in political, economical or
military matters. Biotronik itself,
or users of their equipment, are
thus unlikely targets.

Insider Threats Low/moderate Insider threats can have devastat-
ing consequences. This threat ac-
tor may be motivated by money
or they might wish to ruin the
reputation of their employer.

Hacktivists Low Normally this actor operates to
bring attention to an issue, of-
ten politically motivated, and tar-
get controversial organizations or
groups. Hence, Biotronik as a
vendor of medical equipment is
not a typical target.

Script Kiddies Low Script kiddies do not have enough
skills do perform such a task nor
any incentives do to so.

Table 2.1: The threat model for the pacemaker, including various threat actors, their
likelihood, and incentives.

2.2.3 Attacks

There exist multiple hypothetical attacks that an adversary could carry out within the
pacemaker ecosystem. If we assume that an attacker has successfully compromised the
communication channel between the HMU and the backend servers of the vendor in a
passive attack1, eavesdropping is possible. Such an attack breaches the confidentiality
of patient data. In an active attack2, different Man in the Middle (MitM) attacks are
possible. Depending on the absence/presence of mutual authentication and integrity

1An attack where the adversary does not interact with the communicating parties
2An attack where the adversary makes changes to data an interacts with systems or users

16 2. TECHNICAL BACKGROUND

schemes on the communication channel, replay attacks, and modification of data en
route is possible. Moreover, merely blocking traffic towards the vendor’s backend
servers is possible, which will also constitute a MitM attack.

More intrusive attacks are also possible and must be accounted for in the devel-
opment process. An attacker who has physical access to a HMU might retrieve data
from memory, modify existing firmware, or establish a connection to the vendor’s
backend servers. Data retrieved from memory could, for example, be medical records,
encryption keys, PINs, and passwords. Assuming an advanced attacker who can
modify firmware, it might be able to install malicious code designed to threaten
the patient’s safety on the HMU. If, for example, the HMUs are designed with the
capability of prompting the pacemaker, a battery-draining attack of the pacemaker
is possible by continuously requesting data from it. Lastly, an attacker might be able
to access the vendor’s private network through the HMU and inflict damage to it.

Finally, given that the HMU receives data, various remote attacks might be
possible. If the implementation of the data communication interfaces contains
vulnerabilities, a range of different exploits such as memory leaks, remote code
execution, and DoS, could be triggered. Ultimately, the attacker could exploit
vulnerabilities in the networking interfaces of the HMU to modify the firmware in
order to manipulate the pacemaker itself.

2.3 Hardware terminology

Throughout this thesis, we will frequently use terminology which is specific to
hardware. Therefore a brief definition of those terms is included below:

1. Printed Circuit Board (PCB), refers to the board that electronically con-
nects different physical components together. The components are soldered
onto the PCB and connected by lines and pads that allow for electrical current
to flow through.

2. Microcontrollers are small computers. This typically encompasses Random
Access Memory (RAM), Central Processing Unit (CPU), input/output periph-
erals and memory. Microcontrollers are dedicated to run one specific application
and are not general-purpose devices like microprocessors. The microcontroller
of the Cardiomessenger 3G Smart, for example, is dedicated to run the firmware
that is developed by Biotronik.

3. Modem refers to the component that implements the modulation/demodu-
lation process and converts signals from digital to analog (and vice versa),
preparing data for transmission/reception over the air. Modern modems in
embedded systems typically implement the cellular software stack.

2.4. UART 17

4. Firmware refers to the software that controls the hardware of a vendor-specific
embedded system.

5. Embedded systems are systems that serve a dedicated function, consisting
of a combination of hardware modules and software.

2.4 UART

Universal Asynchronous Receiver/Transmitter (UART) is a hardware technology that
enables serial communications between hardware entities. In general, there are two
methods in digital communications for transmitting data between components: serial
and parallel. In parallel communications, multiple wires/data buses can transmit data
simultaneously. In contrast, serial devices communicate by transmitting one bit at a
time, using a single wire. It is customary in a microcontroller design to incorporate
UART functionality, because it is rather simplistic method for a microcontroller to
communicate with other UART-compatible devices. Furthermore, UART is realized
through three different pins. These pins are Tx, Rx, and GND (Ground). A typical
UART connection between two components is shown in the figure below.

Figure 2.1: UART communication. Data is transmitted on the Tx pin and is received
on the Rx pin of the other device.

UART has a simplistic design because of the absence of a clock signal. The
communicating entities transfer data asynchronously and rely on start and stop bits
encoded in the packet structure to detect correct information, contributing to much
overhead. Another concept within UART is the baud rate. The baud rate defines the
speed at which symbols transfer over the wire, and this rate needs to be equal for
both entities to be able to decode correctly. For UART, one symbol is equal to one
bit. Therefore the baud rate corresponds to bits per second.

Identifying the UART pins on a PCB can be of enormous advantage for a security
researcher. It can provide debugging information, or even provide a means for
communicating with chips and components on the board directly.

18 2. TECHNICAL BACKGROUND

2.5 SPI

The Serial Peripheral Interface (SPI) provides a full-duplex synchronous method for
a microcontroller to communicate with different peripherals such as RAM and flash
chips. In comparison to UART, SPI is master-slave oriented and relies on the rising
or falling edge of the clock signal to synchronize between the entities, where UART
is asynchronous. Thus, SPI enables for less overhead in the communication channel.
When the receiver detects a rising/falling edge on the clock wire, it immediately
looks for data on the data wire. To be able to communicate over a SPI interface,
the entity must have the following wires, illustrated in figure 2.2. The entity which
constitutes the master is responsible for generating the clock signal.

Figure 2.2: SPI communication. Data is transmitted between master and slave
entities.

The Chip Select (CS) is used to select the desired peripheral on a shared data
bus. It indicates the beginning of a communication session. Hence, the master sends
CS at the beginning of data transmission, along with the clock signal. Moreover,
data going from master to slave is sent over the Master Out/Slave In (MOSI) wire,
whereas data sent in the opposite direction is sent over the Master In/Slave Out
(MISO) wire. GND and CLK are the ground and clock signals.

2.6 JTAG

Because of the rapid increase in the complexity of PCBs, verifying, and testing
designs have become difficult. Electrical engineers in the late 1980’s saw the need
for a standard way to verify their designs. Hence, JTAG was developed as the new
industry standard by the Joint Test Action Group (JTAG) and later entitled IEEE
Standard 1149.x Standard Test Access Port and Boundary-Scan Architecture [IEE13].

Essentially, JTAG is the standard architecture for manufacturers to design de-
bugging features and verification mechanisms on embedded systems. It enables a
computer to interact with its integrated chips on the PCB directly. By using a
technique commonly known as boundary scanning, engineers can test if the con-

2.7. SHORT MESSAGE SERVICE (SMS) 19

nection between chips on the board works as specified in the designs. What JTAG
fundamentally does is to provide the developer with the capabilities to write and
read single bits directly of pins. JTAG enables, for example, to test whether pin X
on chip X has a working connection to pin Y on chip Y.

The test logic and functionality provided by JTAG are realized mainly by three
building blocks; the Test Access Port (TAP) controller, the instruction register, and
the test data register [MT90]. The TAP contains four (and a fifth optional) pins,
listed in the table below. These pins need to be identified on the PCB before a JTAG
connection can be made on the Cardiomessenger 3G Smart.

Pin Acronym Description

Test Clock Input TCK The system clock that synchro-
nizes the time between the vari-
ous chips on the PCB

Test Mode Select TMS The operation of test logic is con-
trolled by this input

Test Data Input TDI The test data input that goes in
the system

Test Data Output TDO The resulting output data from
the system

Test Reset Input TRST The signal indicating to reset sys-
tem state

Table 2.2: The TAP pins of JTAG.

Researchers often use a connection to JTAG ports because it yields multiple
advantages during a security test. Some handy features it can provide are, for
instance, reading and writing of memory, fine-grained control over the CPUs registers
without halting the ongoing processes, and provide access to both hardware and
software breakpoints on the device under investigation. Using JTAG in security
testing relies on its ports not being blocked after production. Even though JTAG is
the industry’s standard architecture guideline, we will address the debug features
commonly associated with this architecture only as JTAG throughout this thesis.

2.7 Short message service (SMS)

Arguably, the most prevalent text messaging service in telecommunications has, for
many decades, been the SMS technology. This technology was presented during
the development of the GSM series of standards. Simply put, SMS is a protocol
for exchanging simple messages between entities on a mobile network. It traverses
intermediary components in a GSM network on the way to the receiver. At last, the

20 2. TECHNICAL BACKGROUND

SMS reaches a Short Message Service Center (SMSC), which stores the SMS and
ensures successful delivery to the receiving mobile station.

2.7.1 The SMS formats

Different formats of SMS exist to support exchanges of messages between different
entities. The two message formats that are most relevant for this thesis are the
SMS_DELIVER and SMS_SUBMIT format. These message formats are used
depending on whether the SMS is mobile-terminated or mobile-oriented [3rd02]. As
the name implies, SMS_DELIVER is used when a SMS is delivered from the SMSC
to the mobile station. SMS_SUBMIT is therefore used when the message is sent from
a mobile station and forwarded to the SMSC. In the SMSC, the message changes
format, from SUBMIT to DELIVER, and is then forwarded to its destination. SMS
responses, which have a different encoding, are then generated by the recipient. These
are based on the two message formats described above and are similar in structure.
All SMS messages are sent within the SMS protocol stack.

2.7.2 The SMS protocol stack

The SMS protocol resides within layer 3 of the GSM protocol stack. It is, in fact, a
sub-protocol of the Connection Management (CM) protocol, which in turn, is one
of the three main protocols that constitute the third and topmost layer in GSM.
The other two being the Radio Resource Management (RRM) protocol and the
Mobility Management (MM) protocol. We are only concerned with layer 3 of GSM
protocol stack, and more specifically, the SMS protocol within the CM protocol. The
simplified figure below depicts the GSM protocol stack, including only the relevant
protocols in layer 3 for our project.

Figure 2.3: A simplified GSM protocol stack, including only the relevant protocols in
layer 3 for our project.

2.7. SHORT MESSAGE SERVICE (SMS) 21

Furthermore, the SMS-protocol itself divides into three separate sub-layers. These
are, in descending order, the Short-Message Application Layer (SM-AL), Short-
Message Transfer Layer (SM-TL) and the Short-Message Relay Layer (SM-RL).
These layers of the SMS protocol are included in figure 2.4 below. The SM-RL
layer exists to hold state between delivered SMSs and their acknowledgments. It
also ensures error reporting. SM-TL manages transfer information and contains
information that determines how the SMS should be interpreted. The SM-AL
interfaces with the different applications.

Figure 2.4: The three layers of the SMS protocol in GSM.

When an SMS_DELIVER message first arrives in a mobile station, it is trans-
mitted from the SMSC as CP-Data, which is a message within the CM protocol. It
is encapsulated in this header to counter the losses caused by changing the dedicated
channels and ensures successful delivery. This message contains an Relay Protocol
Data Unit (RPDU), which is interpreted by the SM-RL layer in the SMS protocol. In
turn, the RPDU contains a Transfer Protocol Data Unit (TPDU), which is interpreted
by the SM-TL layer of the SMS protocol. The payload of the TPDU can then be
interpreted in the SM-AL by an appropriate application, depending on the use case
[3rd00].

2.7.3 Fields in the SMS_DELIVER format

We are mostly concerned with the SMS_DELIVER message format in this project.
The reason for this is that the messages that originate in the network must have this
format. Hence, solely SMS_DELIVER is further described. Table 2.3 is taken from
the original GSM specification [3rd02] and shows the fields of a SMS_DELIVER
message.

22 2. TECHNICAL BACKGROUND

Abbr. Reference M/O Representation Description

TP-MTI TP-Message-Type-Indicator M 2b Parameter describing the message type.
TP-MMS TP-More-Messages-to-Send M b Parameter indicating whether or not there are

more messages to send.
TP-RP TP-Reply-Path M b Parameter indicating that Reply Path exists.
TP-UDHI TP-User-Data-Header-Indicator O b Parameter indicating that the TP-UD field

contains a Header.
TP-SRI TP-Status-Report-Indication O b Parameter indicating if the Short Message En-

tity (SME) has requested a status report.
TP-OA TP-Originating-Address M 2-12o Address of the originating SME.
TP-PID TP-Protocol-Identifier M o Parameter identifying the above layer protocol,

if any.
TP-DCS TP-Data-Coding-Scheme M o Parameter identifying the coding scheme

within the TP-User-Data.
TP-SCTS TP-Service-Centre-Time-Stamp M 7o Parameter identifying time when the SC re-

ceived the message.
TP-UDL TP-User-Data-Length M I Parameter indicating the length of the TP-

User-Data field to follow.
TP-UD TP-User-Data O (*) User data

Table 2.3: The fields in the SMS_DELIVER format.

In table 2.3, M stands for mandatory, indicating that the field is required. O stands
for optional, indicating that this field can be omitted. The different values of the
Representation column are: I is an integer, b is a bit, 2b is 2 bits, o is an octet,
7o is 7 octets, and 2-12o is 2-12 octets. Lastly, the user data length (TP-UDL) is
dependent on the coding scheme declared in TP-DCS.

2.7.4 SMS modes

The SMS_DELIVER message format can be sent to the modem of a device in two
different modes. That is, through ATtention (AT) commands, which is referred to as
text mode, or through Protocol Data Unit (PDU) mode. Only PDU mode is relevant
for this thesis, meaning that AT command mode will not be explained further. The
PDU mode is a hexadecimal encoded message format and is more flexible compared
to text mode as it can be used to express binary and compressed data as well.

As previously mentioned in 2.7.2, within the SMS protocol, different PDUs exist
in the different layers. A TPDU in the SM-TL layer of the SMS protocol typically
looks like the hexadecimal string below. The TPDU contains default values on all
fields and is set with sender address, recipient and payload to "12345678", "87654321"
and "Hello World", respectively.

000891214365870000023032315272000BC8329BFD065DDF723619

Based on table 2.3, we can dissect the TPDU above and map the hexadecimal
to the header fields of the SMS_DELIVER message format. Figure 2.5 shows the

2.8. FUZZING 23

exact mapping between header fields and the hexadecimal TPDU. The first octet is
0x00 and represents that this TPDU is of type DELIVER. It is an ordinary SMS
without extra features and no user data header. Next, the six following octets are the
address of the sender, corresponding to "12345678" in the GSM default 7-bit encoding.
TP-Protocol-Identifier and TP-Data-Coding-Scheme have default 0x00 values,
which are followed by 7 octets of the TP-Service-Center-Time-Stamp. At last,
there is the octet corresponding to the length of the user data and the actual payload.

Figure 2.5: The dissected TPDU containing the payload "Hello World". Mapping
between hexadecimals and header fields of the SMS SMS_DELIVER message format.

2.8 Fuzzing

Fuzzing is a testing technique that involves injecting malformed or semi-malformed
data into a target system in an automated fashion. Examples of targets can be
software applications, protocols, and file-formats. The idea is that injecting random
input will cause the behavior of the target system to deviate from what is usually the
case. Thereby, it is possible to conclude that a particular input leads to particular
abnormal behavior. This will correspond to having detected a bug in the target
system, as it does not handle such input appropriately. The main advantage of
fuzzing a system is that it is relatively easy to implement, as it does not require
in-depth knowledge of the system’s internals to uncover vulnerabilities. Also, due
to its random approach, fuzzing often uncovers vulnerabilities that are missed by
developers and engineers. Because fuzzing uncovers vulnerabilities that developers
often miss, researchers often incorporate it into the development process of a system.

Since researchers commonly employ fuzzing on closed systems, a significant
challenge is related to the assessment of how a given input affected the target.
Overcoming this challenge entails that some means of monitoring the system while
fuzzing has to be part of the fuzzer framework. Thereby, knowledge can be inferred
from how the system behaved. The need for monitoring capabilities is indeed a
limitation of fuzzing, as it is commonly the most difficult to implement within a
fuzzer framework [OWAb].

24 2. TECHNICAL BACKGROUND

2.9 3G jamming - downgrade attack

An attacker’s motivation behind a downgrade attack is based on the fact that older
mobile networks are generally less secure than newer versions. In GSM, for example,
there is no mutual authentication between mobile stations and the network. Only
the network authenticates the mobile station, not visa versa. This means that
mobile stations will connect to an attacker’s fake GSM network if the attacker
performs jamming on other networks in the area. Thereby, the attacker can force a
mobile station to use the GSM network instead of newer versions of mobile networks,
such as 3G and Long Term Evolution (LTE). Since the different generations of
mobile technology utilize different parts of the radio spectrum, an attacker has the
opportunity to jam a network’s frequency range. By transmitting noise to those
channels, an attacker can effectively deny all communication on those frequencies.
Because mobile stations have the inherent design issue of supporting older networks,
if no connection to a new network is possible, mobile stations will connect to the
GSM network if it currently provides the strongest signal to a mobile station.

Chapter3Related Work

This chapter familiarizes readers with related research that has previously been
carried out. Both research related to the security of the pacemaker ecosystem and
fuzzing of mobile communication interfaces are presented.

3.1 The pacemaker ecosystem

The first published security assessment of pacemakers, and their ecosystem, was
done in 2008 by D. Halperin et al. [HHR+08]. The researchers demonstrated how to
partially reverse-engineer the wireless communication protocol between the pacemaker
and the programmer, using tools such as software-based radios and oscilloscopes.
Their work disclosed insufficient privacy and security properties of the communication
protocol. Moreover, they implemented several attacks against a pacemaker and
demonstrated that confidentiality, integrity, and availability mechanisms were either
broken or non-existing. Lastly, they introduced new mitigation techniques aiming to
improve the security of pacemakers.

More recently, in a paper from 2016, Marin et al. [MSG+16] described how they
fully reverse-engineered the proprietary wireless communication protocol between a
pacemaker of the latest generation and its programmer. They realized this by using
only Commercial Off-The-Shelf (COTS) equipment and by following a black-box
testing methodology, implying that a weak adversary with limited resources could
perform similar work. Next, they demonstrated privacy-compromising and DoS
attacks against the pacemaker, among which were replay and spoofing attacks. The
authors emphasize that security-by-obscurity is an alarming design paradigm, and
they advocate for the industry to migrate to standard protocols that are well-examined
and approved by security experts. Furthermore, they proposed both short-term and
long-term countermeasures.

Also, in 2016, the short-selling firm Muddy Waters Capital LLC published a
report regarding vulnerabilities in the pacemakers and HMUs manufactured by St.

25

26 3. RELATED WORK

Jude Medical (now Abbot), in the U.S. [Blo16]. The research was carried out by the
cybersecurity research firm MedSec Inc. The vulnerabilities found could be exploited
in several ways, among which included a battery-draining attack of pacemakers, as
well as forcing pacemakers to pace at a dangerous rate. These attacks were possible
due to vulnerabilities in the St. Jude Medical HMU, which was, in turn, used to
compromise pacemakers. There have been no reports of these attacks being actively
carried out, and they were only demonstrated in a lab. Muddy Waters and MedSec
also argued that St. Jude Medical was indifferent to cybersecurity, and put profits
over patients. At the time, St Jude Medical had deployed 260,000 HMUs in patients’
homes. Thus, the research by Muddy Waters and MedSec had a severe impact.
Consequently, St. Jude Medical issued a firmware update, which was reviewed by the
U.S. regulatory authority, at the beginning of 2017. The firmware update patched
the vulnerabilities in their HMU [A+17].

In 2017, the cybersecurity firm Whitescope performed an exhaustive security
analysis and evaluation of the pacemaker ecosystem. The researchers, Rios and
Butts [RB17], had acquired multiple devices from four major pacemaker vendors and
revealed vulnerabilities in all of them. Their findings implied that the architecture,
and the implementation of the devices, are susceptible to hypothetical cyberattacks
that could breach the confidentiality, integrity, and availability of the pacemaker
ecosystem. Some of the discoveries they made were related to vulnerabilities in third-
party software, lack of authentication mechanisms between devices, unencrypted
file systems and firmware, removable hard-drives, and unsigned firmware. Rios and
Butts point out that the whole industry is quite immature in its workings with
cybersecurity, and therefore has a challenge with securing its ecosystem against cyber
threats. Moreover, the authors stress the fact that similar vulnerabilities existed
in devices from different vendors, implying industry-wide cross-pollination. This
implies that an attacker might leverage an already identified vulnerability in the
products of one specific vendor when carrying out attacks on a different one. Lastly,
the author’s main contribution is a list of questions regarding cybersecurity designs
that should guide developers of pacemaker ecosystems to implement fully secure
systems. These questions might prove useful within our research as we wish to test
the latest generation of the HMU.

NTNU and SINTEF have collaborated and researched a range of Biotronik’s
pacemakers and their ecosystem for multiple years. These contributions have laid
the foundation of work that is necessary for us to start working within the field.
Their work has left us with a broad range of vendor-specific information regarding
security properties, and our project constitutes yet another contribution within the
collaboration between NTNU and SINTEF.

The first contribution of their collaboration project is a master thesis done by

3.2. SMS-FUZZING AND MOBILE COMMUNICATION SECURITY 27

Kristiansen et al. [KW18] in 2018. They examined the security level of one specific
pacemaker programmer and revealed several vulnerabilities that could potentially
breach confidentiality, integrity, and availability. In short, the vulnerabilities can
be placed in the following categories; the operating system, lack of physical access
defenses, authentication, commercial third-party software, data export and import,
and encryption.

In 2019, Bour [NB19] examined the security level of several HMUs from Biotronik.
In his work, he showed that a physical compromise of the HMU could be used as an
attack vector against the pacemaker, potentially harming a patient’s life. He realized
this by using COTS equipment and open-source software. His work, in particular,
will serve as a baseline for research within our first scope.

Lastly, in her master thesis from 2019, Lie [WL19] investigated the security
properties of the communication link between the HMU and the vendor’s backend
servers. Her research showed multiple weak implementations and insufficient security
mechanisms that could impact a patient’s safety and privacy. However, her results
show that Biotronik has made some effort to implement basic security mechanisms
and that their security level tends to increase with newer generations of HMUs. This
work will also serve as a baseline for our research.

3.2 SMS-fuzzing and mobile communication security

Some research papers are of greater interest for this thesis than others, as they might
share a similar methodology, use the same technology, or have similar setup and
environment.

One such example is the work of Mulliner et al. [MGS11] from 2011. The authors
investigated the security of feature phones, and the possibility of a large scale attack
through exploiting potential vulnerabilities in the SMS-client software. Initially, this
research started as a master thesis, which was published in the same year [Gol11].
The master thesis contains a more in-depth explanation of the implementation. In the
paper, however, a novel approach to test closed-system implementations is described.
It encompasses sending fuzzed SMS messages over a software-based GSM network
that is enhanced with monitoring capabilities, for the device under investigation.
The monitoring capabilities are based on response messages from the handsets.
It is noteworthy that the framework the authors propose is platform-independent
and can be used for all devices that are capable of receiving SMSs. Parts of this
work will constitute a foundation for our thesis. A plethora of different bugs was
discovered that could lead to sophisticated attacks against mobile users. Among
the vulnerabilities that they discovered was the opportunity for an attacker to send
malformed SMSs to receivers that could result in the phone disconnecting from the

28 3. RELATED WORK

mobile network, forcing reboot or white-screening the device. Conclusively, these
SMSs could effectively carry out DoS-attacks. These messages could also be sent
over a legitimate mobile network. Since the testing was based on automated test
generation (fuzzing), it can be applied to many use-cases. The testing generalizes
well and therefore suits a system such as the HMU.

Weinmann [Wei12] conducted similar work, but rather than focusing on the SMS-
interface, the entire cellular baseband stack of widely deployed phones was scrutinized.
Reverse engineering of firmware was performed to discover implementation flaws. In
this research, the same setup and environment were used as in Mulliner’s experiments.
The setup involved setting up an illegitimate base station and sending malicious
payload in the form of layer three messages within the GSM protocol. In the
modern architecture of smartphones and IoT devices, it is not uncommon to run
baseband stacks and applications on separate processors. This is also true for the
Cardiomessenger 3G Smart. Baseband stacks typically run on baseband processors,
which has its own Operating System (OS) and memory. This paper demonstrated
the risk involved with having vulnerabilities residing in the baseband processors. The
authors managed to remotely launch several attacks exploiting memory corruptions in
the baseband firmware, completely compromising the integrity of the handsets. Their
work shed light on how bugs in the baseband processor could impact the security of
the entire device, resulting in extensive code reviews of many manufacturers. This
work shows the importance of hardening all segments of a device to ensure security.

Another fuzzed-based approach to SMS security testing was proposed by Mulliner
et al. [MM09b] in 2009. They altered the respective operating systems for Windows,
Android, and Apple phones such that they were able to inject fuzzed SMSs directly
without traversing a mobile network. Their fuzzing lead to the discovery of multiple
bugs in smartphones. Some bugs triggered system crashes and could be exploited in
a DoS-attack, whereas others could potentially be used in remote code execution.
When fuzzing the devices, the authors leveraged that they had full access to debug
tools and system logs to monitor. Unfortunately, to the best of our knowledge, we do
not have the same access to the debug features on HMU, which makes this fuzzing
approach impossible.

Finally, an exciting contribution to the field of GSM security and SMS-fuzzing is
the master thesis by Hond from 2011 [Hon11]. He utilized specific tools and developed
a framework capable of fuzzing several parts of the GSM protocol stack in mobile
phones, among which were SMS. The goal of his research was to provoke strange
behavior in the receiving mobile phones, due to the reception of fuzzed SMSs and call
control messages. This was indeed successful, as fuzzed SMSs caused several phones
to reboot. Given that it would be interesting to provoke similar strange behavior in
the HMU, the approach to SMS-fuzzing by Hond is highly interesting.

Chapter4Methodology

This chapter will present and detail our choice of research methodology, as well
as elaborate on why our research methodology is suitable for our research. The
methodology itself will serve as a baseline in decision-making and provide a way to
structure our work.

4.1 Preliminary considerations

Our research into the security of Biotronik’s Cardiomessenger 3G Smart HMU,
is divided in two. Referring back to section 1.3, we have determined one scope
considering the HMU as a standalone embedded medical device (scope 1), and
another considering the implementations of its SMS capabilities towards the backend
servers (scope 2). These scopes are, however, not entirely distinct. Research into
scope 1 might provide valuable input into the research of scope 2, as it can reveal
valuable properties of the HMU’s SMS interface. Due to the semi-distinct scopes, it
is reasonable to consider that a single research methodology cannot be sufficient for
the entirety of our master thesis project, but instead, that two methodologies can
benefit from each other.

The Cardiomessenger 3G HMU is a proprietary device, and there exists little
available information regarding its technical specifications. The only information
revealed by the device’s user-manual is necessary information related to how properly
use the device, and not information about its inner workings1. Specifically, no
information about the HMU’s security, or implemented security mechanisms, is
obtainable from the vendor. This is commonly the case for most electronic products,
however, it is particularly problematic for medical devices.

We have also defined a research objective for each scope, namely RO1 and RO2.
When working towards RO1, the only vendor-specific knowledge we possess is that

1https://manuals.biotronik.com/emanuals-professionals/?country=US&product=HomeMon
itoring/CardioMessenger/CardioMessengerSmart_US, accessed on 18.02.2020

29

https://manuals.biotronik.com/emanuals-professionals/?country=US&product=HomeMonitoring/CardioMessenger/CardioMessengerSmart_US
https://manuals.biotronik.com/emanuals-professionals/?country=US&product=HomeMonitoring/CardioMessenger/CardioMessengerSmart_US

30 4. METHODOLOGY

produced by Bour [NB19] and Lie [WL19]. However, this knowledge is valid only for
the previous versions of HMUs from the vendor. Thus it is not directly transferable
to the most recent version. Nonetheless, it will serve as a basis as we set out test
whether the hypotheses in table 1.1 are also valid for the Cardiomessenger 3G Smart,
as RO1 states. When working towards RO2, we do not possess any vendor-specific
knowledge. We do, however, possess general knowledge of how to use fuzzing as a
means to uncover potential vulnerabilities in the SMS interface, as RO2 states.

To us, the security level of the Cardiomessenger 3G Smart itself, or the security
of its implementation of the SMS technology, is unknown. Thus, we consider
the device to essentially conform to a black-box. Therefore, we need a research
methodology suitable for this kind of challenge. Our research methodology must
provide a structured way to carry out our work since we know so little about the
HMU, initially.

4.2 Black-box testing

Black-box testing is a testing approach that concludes on the behavior of a system
based on the relationship between specific inputs and their corresponding outputs.
What specifically happens internally within the system is not of interest. A given
input can, for example, cause the system to output an unexpected value, which
corresponds to unpredictable behavior provoked by that input. Another example is if
a given input causes the system to crash. The absence of output can be considered an
output in itself, and the conclusion could then be that the input provoked a system
crash.

Figure 4.1: Visualization of Black-box testing.

There exist several different techniques that we can employ within black-box
testing. Some of these techniques are highly suitable for a hardware device like
the HMU, where no knowledge regarding its technical specification, or security, is
obtainable. Therefore, our two research methodologies constitute a selection from the
black-box testing methodology, where we have chosen to employ the most suitable
testing techniques from within the methodology. The chosen testing techniques will
differ depending on which research objective we are currently working on. For RO1,
we will be using black-box hardware testing, while for RO2, we will make use of
black-box fuzzing, as our testing techniques.

4.2. BLACK-BOX TESTING 31

4.2.1 Black-box hardware testing

For RO1, the black-box hardware testing is structured in different phases. Each
phase is intended to gradually push our research forward, and ultimately uncover
vulnerabilities in the hardware of the Cardiomessenger 3G Smart. The phases in
black-box hardware testing are depicted in figure 4.2, and are detailed in the following.

Hardware analysis

Given that we have physical access to the HMU, the first phase is naturally to
analyze and inspect the device itself. The motivation behind thoroughly examining
the device is that we might be able to determine various properties of the device.
Determining such properties could, in turn, provide an insight that forms a basis
for further hardware analysis. For example, if we can determine that is is possible
to open the device, we gain access to its PCB. Having access to the PCB yields
the possibility to identify components such as a microcontroller, modem, and RAM.
Also, if we acquire access to the PCB, we might discover labels identifying debug
ports such as JTAG and UART, which are typical for embedded systems. Indeed,
a hardware analysis of the HMU is the natural first phase of our hardware testing,
but it is also a critical phase. Without knowledge regarding the hardware itself,
it becomes virtually impossible for us to acquire a basis for further research into
the device. There is simply no way for us to assess the security of the device itself
without knowing more about how it functions on a technical level.

Investigation

The investigation phase consists of building upon our acquired knowledge from
the hardware analysis. In this phase, we further investigate what the hardware
analysis revealed. By obtaining some form of documentation of identified hardware
components, we will necessarily acquire more knowledge concerning how the device
functions, and which security mechanisms are implemented. From there, we can
deduce how the hypotheses in 1.1 can be tested. For example, if we identify a typical
microcontroller on the PCB, we might be able to acquire its datasheet. Such a
datasheet will necessarily contain a high volume of technical information related to
how the microcontroller functions. Any such information might aid us in deducing
testing scenarios.

Hypothesis testing

In the hypothesis testing phase, we carry out a test aiming at validating one or
more of the hypotheses in table 1.1, based on our preliminary findings from the
two previous phases. Thereby, we rely on the previous two phases to have returned
something interesting, worth putting to the test. Furthermore, we must construct

32 4. METHODOLOGY

a test that ensures that the hypothesis under test is indeed tested. If not, we will
not achieve reproducible findings. The outcome of a hypothesis test is either true
or false. Regardless of the result, either outcome is of interest. If the hypothesis is
validated, then we will consequently have produced a finding. If not, and we are fully
confident in having carried out the hypothesis test successfully, we will also have
produced a finding. Also, the work carried out throughout a hypothesis test might
yield further insight into other aspects worth investigating further.

Figure 4.2: The different phases of black-box hardware testing, and how they are
linked.

Documentation

In the documentation phase of the black-box hardware testing, we write up our find-
ings in the appropriate result chapter in this thesis report. As previously mentioned,
before doing so, we must ensure to have produced undeniable results. Also, it is
worth pointing out that when working in the documentation phase, it is essential
to present our findings in a structured and understandable manner. In this way, it
becomes clear how others, for example, the vendor can reproduce our findings and
verify our contributions within the field.

4.2.2 Fuzzing

When working towards RO2, we employ fuzzing as our black-box testing technique.
Fuzzing is a testing technique which in and of itself, considers its target to be a
black-box. Therefore, it is a highly suitable approach for testing the security of
the HMU’s SMS interface. However, each fuzzing case is somewhat unique, and we
cannot utilize particular types of fuzzing tools out-of-the-box. The fuzzing case is
dependent on which system is to be fuzzed, as well as which interface of that system.

4.2. BLACK-BOX TESTING 33

Therefore, we are required to build our own fuzzing framework, specifically targeting
the Cardiomessenger 3G Smart, and its SMS interface. In our case, the fuzzing
framework consist of a suitable architecture, some means of input generation, an
executable computer program that forwards the input to the HMU, and some means
of monitoring capabilities. Also, we are required to analyze the results and properly
document them. To develop a fuzzing framework, we will carry out the phases of
fuzzer development and execution, depicted in figure 4.3. The phases are further
detailed in the following.

Architecture setup

Firstly, we need to realize some mechanism which enables us to provide input to the
interface that is to be fuzzed. This entails a setup of an appropriate architecture
of components and configuring them to work together. The goal is to automate
the process of sending input to the HMU. As we wish to fuzz the SMS interface of
the HMU, our architecture must include a controllable access point to which the
HMU connects. This access point will enable us to forward semi-malformed and
malformed data to the HMU. Since an access point implies that there is a network
in place, we are also required to simulate parts of a mobile network to ensure that
the HMU indeed connects to our access point. Furthermore, we must provide the
strongest signal available for the HMU. Therefore, a jammer will also be part of our
architecture.

Establish monitoring capabilities

The next phase in our fuzzer development is establishing some means of monitoring.
Indeed, we are dependent on acquiring knowledge regarding how the HMU reacts
to receiving the malformed input. If not, there is no way for us to conclude that a
specific input leads to a particular output. There are several ways of implementing
monitoring capabilities, and it can be implemented at different endpoints. We can
either implement monitoring capabilities at the receiver’s edge (the HMU), or at the
sender’s edge (the access point, or simulated network). Both of these options have
their pros and cons. The superior option would be to have monitoring capabilities at
the receiver’s edge since this would yield the most sincere results regarding what is
happening inside the HMU when it receives an input. However, this option is more
difficult to realize than its counterpart as it would require control of both endpoints
in the communication. Implementing monitoring capabilities at the sender’s edge is,
by far, the most comfortable option, as a lot of network monitoring software exists.
However, this implementation of monitoring might not provide as detailed output
as its counterpart because it would be based on response messages triggered by the
input SMSs.

34 4. METHODOLOGY

Input generation

Thirdly, if our fuzzing framework is to be successful, we are dependent on some
means of input generation. This involves the development of a computer program,
which, in our case, generates the test cases. The input generation is a crucial phase in
the development of our fuzzing framework, as the outcome of the fuzzing experiment
is directly dependent on the test cases. It is also important to emphasize that we can
conduct input generation at different levels of intelligence. In the most unintelligent
case, input generation is only generating completely random input and forwarding it
to the HMU. While this approach could yield results, we base our input generation
on the fact that we know which communication technologies the HMU is capable
of utilizing. Since the incoming SMS interface is our target, we can generate input
in a much smarter way, addressing the SMS technology specifically. Then, input
generation would involve generating input in a semi-random way which considers
how the SMS packet is constructed, and which header fields that should be mutated.
Within our framework, we aim for the latter semi-random approach.

Analysis

Naturally, performing an analysis of the output from our monitoring implementation
is necessary. This phase is carried out after an iteration of fuzzing is performed. The
analysis phase might uncover vulnerabilities in the HMU’s implementation of the
SMS interface. Another outcome of the analysis phase might be some output which
is not a result in itself, but worthy of further investigation. If so, this initiates a
new iteration of fuzzing, where the input in the next iteration is a slightly mutated
test case based on the previously provided input. The output can also indicate
the presence of a bug, when there is, in fact, no bug present. The analysis face is,
therefore, vital when validating our findings. Therefore, it is reasonable to claim that
it is within the analysis phase that new knowledge is generated.

Documentation

Lastly, as for the black-box hardware testing, the final phase is proper documentation
of our results. Again, it is essential to ensure that those results are undeniable before
documenting them, as it must be completely transparent and reproducible by others.
Therefore, it is of great importance to document the results in an understandable and
structured manner. Only then can the affected vendor confirm that their product
contains a vulnerability that might affect the users, and consequently patch it.

4.3. INTERSECTION BETWEEN RESEARCH OBJECTIVES 35

Figure 4.3: The different phases of black-box fuzzing, and how they are linked.

4.3 Intersection between research objectives

As mentioned in the introduction, this thesis centers on examining two research
objectives. In the context of that, two different methodologies are created and applied,
which is described in detail above. However, these methodologies are not entirely
distinct. They are complementary, and the fuzzer-methodology dramatically benefits
from the output of the hardware testing. Specifically, findings and information
from the black-box hardware testing can have enormous implications for the fuzzer
development. For example, if the hardware testing reveals that we can obtain a
privileged execution mode on the device, debugging can be conducted at a higher
level on the device and thus provide detailed output. Generally, any valuable input
to the fuzzer development from the hardware testing will reduce the "size of the black
box". In other words, depending on the outcome of RO1, we are moving towards
more of a white-box testing scenario in RO2.

4.4 Limitations of methodology

Although black-box testing is the most suitable methodology for our hardware testing
and fuzzing, black-box testing comes with several limitations. We must be aware of
these limitations when conducting our work as it can aid us in thinking critically
regarding the results we obtain.

36 4. METHODOLOGY

Related to the black-box hardware testing, the main limitation of the methodology
is the fact that certain properties of the device might remain uninvestigated. This is
because, to us, the device is a black-box. If we do not find something that indicates
the presence of an interesting property, which in turn could lead to a test which
validates one or more hypotheses from table 1.1, we will simply not look into it. This
does not automatically mean that the property is not present on the device. The
case can be that the vendor has successfully implemented mechanisms that obfuscate
the property, making it unnoticeable. Another alternative is that the vendor has
implemented sufficient security mechanisms that remove the property altogether.
There is no way for us to tell confidently.

The limitations of black-box fuzzing is strongly related to which monitoring
capability we can implement. If we are not able to implement monitoring capabilities
at the edge of the receiver (the HMU), we are left with a less detailed error log. In
turn, this implies that certain information related to vulnerabilities could remain
undisclosed. One example is if a system crash is triggered in the HMU by a fuzzing
test case, the software bug that produced the system crash remains unknown. We
can only infer its presence. From the network point of view, we cannot fully detail
why the system crashed. It has to be based on either a response code produced by
our test case, or the absence of response altogether.

4.5 Research guidelines

Although not a specific phase in either of our methodologies, we will adhere to a few
ethical guidelines throughout our research. When we conduct experiments within
our defined scopes, this will happen in a closed environment. By doing so, we ensure
that we are not in conflict with the vendor’s infrastructure or interfere with the
treatment of a patient. Since the acquired HMUs has once been active devices in
patients’ home, we will systematically redact any sensitive information we might find.
Furthermore, any offending SMS that might cause trouble to the modem in scope 2
will also be redacted.

If we obtain findings which we believe to be severe, we will responsibly disclose
our findings to the affected vendor. This will be done in a coordinated vulnerability
disclosure process, in accordance with ISO/IEC 29147:2018 [ISO18]. Biotronik
might not be the only affected vendor, as components within the HMU are possibly
manufactured by other vendors. This is indeed the case for the HMU’s modem.

Lastly, given that we wish to contribute to the community that is researching
cybersecurity in medical devices, we will publish our code and fuzzer framework,
making it available for future researchers to utilize. The code will be open source
and available to anyone.

Chapter5Tools and software

This chapter presents the tools and software utilized in our research. Being familiar
with these tools and software is important for grasping how we carried out our work.
The tools and software are structured based on whether they are relevant for RO1
or RO2. That is, they are structured based on whether they are relevant for the
black-box hardware testing, or the fuzzing of the HMU.

5.1 Black-box hardware testing

OpenOCD

OpenOCD (Open On-Chip Debugger) is a free, open source software project, de-
veloped by Dominic Rath in 20051. Since then, the software has grown into a rich
open-source project, and its latest release was in 2017. OpenOCD is dependent on
a debug adapter, which in turn has to support a debugging protocol. This is what
will enable a connection to the debug ports on the actual hardware. Thankfully,
OpenOCD supports a wide range of JTAG adapters, which in turn supports the
JTAG protocol, which can be used for boundary scanning and debugging of hardware.
Also, OpenOCD supports a variety of different microcontrollers, through various
included configuration files. Thereby, OpenOCD can be applied to several different
hardware devices.

Raspberry Pi Zero as JTAG and SPI adapter

The Raspberry Pi Zero is a fairly cheap single-board computer released in 20152. It
is highly convenient for several different use cases. In order to access the device, one
connects to the wireless network it sets up and makes use of an SSH-client on an
ordinary laptop to connect to the device. In our research into RO1, we made use of a
Raspberry Pi Zero as JTAG adapter, as the device supports the JTAG protocol. To

1http://openocd.org/doc/pdf/openocd.pdf, accessed on 03.02.2020
2https://www.raspberrypi.org/products/raspberry-pi-zero/, accessed on 02.03.2020

37

http://openocd.org/doc/pdf/openocd.pdf
https://www.raspberrypi.org/products/raspberry-pi-zero/

38 5. TOOLS AND SOFTWARE

achieve a JTAG connection using the Raspberry Pi Zero, correctly mapping the pins
of the device is important. The left table below shows which pins on the Raspberry
Pi Zero that corresponds to which of JTAG’s TAP pins. The Raspberry Pi Zero
also supports the SPI protocol. Therefore, also within our research towards RO1,
we made use of the device as an SPI-adapter. Again, this depends on a correct pin
mapping on the Raspberry Pi Zero. Below to the right is a table that shows which
pins on the Raspberry Pi correspond to which SPI pins, as well as a photo of the
Raspberry Pi Zero.

RPi Zero pins JTAG TAP
pins

24 TRST
23 TCK
22 TMS
21 TDO
19 TDI

RPi Zero pins SPI Flash
pins

25 GND
24 CS
23 SCK
21 DO
19 DI
17 VCC 3.3V

Table 5.1: The Raspberry Pi pinout for both JTAG and SPI connection.

Figure 5.1: The Raspberry Pi Zero.

PCBite

The PCBite by Sensepeek3 is a very useful piece of equipment. The PCBite effectively
replaces soldering as a means to physically connect to hardware devices. Soldering
requires a specific skillset and is difficult to reverse. The PCBite, on the other hand,
is easy to use. Anyone can set up a connection to hardware debug ports in a matter

3https://www.sensepeek.com/, accessed on 25.02.2020

https://www.sensepeek.com/

5.1. BLACK-BOX HARDWARE TESTING 39

of minutes, and the connection easily tears down. The PCBite works by placing its
flexible yet steady probes onto the hardware debug ports. The probes will remain in
their position, which ensures connectivity.

Figure 5.2: The PCBite. By attaching wires to the probes, a physical connection to
the hardware is realized.

Flashrom

Flashrom is a software utility that can perform identification, reading, writing,
erasing, and verification of flash chips4. It comes with support for several chips,
among which are several different SPI flash chips. It is a highly convenient tool for a
black-box hardware test, as SPI flash chips are quite common. It is easy to install
and works in an out-of-the-box fashion, given that the software supports the flash
chips under test. Flashrom is dependent on a stable SPI connection to the flash chips
under test.

JTAGulator

The JTAGulator is an open-source hardware hacking tool. Its primary function is to
assist in identifying debugging interfaces from various test points on a device5. The
idea is that when a candidate debugging interfaces is located, the JTAGulator can
be used to test which pins of that debugging interface correspond to the five TAP
pins of JTAG. It does so by trying all possible permutations, so the correct pinout
will be determined if the candidate interface was indeed the JTAG interface. The
JTAGulator can be seen below.

4https://flashrom.org/Flashrom, accessed on 04.03.2020
5http://www.grandideastudio.com/jtagulator/, accessed on 04.03.2020

https://flashrom.org/Flashrom
http://www.grandideastudio.com/jtagulator/

40 5. TOOLS AND SOFTWARE

Figure 5.3: The JTAGulator.

Shikra

The Shikra is a hardware tool manufactured by Xipiter intended to provide an
interface between a USB-port and several other lower-level data interfaces6. The
Shikra supports JTAG, SPI and UART. Since we chose to use the Raspberry Pi Zero
as an adapter for both JTAG and SPI, the Shikra was solely used to interface with
UART. In order to do so, the correct pins on the Shikra had to be determined. The
table below shows which pins on the Shikra correspond to which UART pins.

Shikra pins UART pins

18 GND
1 Tx
2 Rx

Table 5.2: The Shikra pinout for UART connection.

When these pins are used on the Shikra, it is essential to remember what is
depicted in section 2.1. The Tx pin has to be connected to Rx, and the Rx pin has
to be connected to Tx on the device one attempts to interface with. The Shikra can
be seen below.

Figure 5.4: The Shikra.

6https://int3.cc/products/the-shikra, accessed on 04.03.2020

https://int3.cc/products/the-shikra

5.2. FUZZING 41

5.2 Fuzzing

OpenBTS 5.0

OpenBTS 5.0 is a free, open-source software project developed by Range Networks7,
which implements most of the GSM protocol stack on top of a radio modem. Thus,
it can be used to simulate a 2G mobile network. The software operates together with
a Software Defined Radio (SDR). The radio will then function as a Base Transceiver
Station (BTS), that User Equipment (UE) can connect to. OpenBTS is highly
configurable, and several parameters related to mobile networks can be set. It also
includes a command-line interface, enabling specific functionality such as sending
SMSs from the network to a connected device.

Ettus research N200 USRP

A Universal Software Radio Peripheral (USRP) serves as a hardware platform for
a SDR. A SDR is a radio communication system that realizes components such as
filters, amplifiers, and modulation/demodulation in software. These components
have traditionally been realized through hardware. Specifically, we make use of the
N200 USRP sold by the company Ettus Research8. In our research towards RO2,
the USRP is intended to function as an illegitimate base station within a mobile
network, to which the HMU will connect.

Figure 5.5: The Ettus Research N200 USRP.

Signal Shield W-40 jammer

The Signal Shield W-40 jammer is capable of blocking out 3G signals. Thereby, it is
a necessary tool for our research into RO2, as this will force the HMU to connect to

7https://github.com/RangeNetworks/openbts, accessed on 05.03.2020
8https://www.ettus.com/all-products/un200-kit/, accessed on 05.03.2020

https://github.com/RangeNetworks/openbts
https://www.ettus.com/all-products/un200-kit/

42 5. TOOLS AND SOFTWARE

the GSM network which provides the strongest signal. This is further explained in
section 2.9. A photo of the jammer can be seen below.

Figure 5.6: The Signal Shield w-40 jammer.

Chapter6Hardware Security testing of the
Cardiomessenger 3G Smart

This chapter presents and details our findings and results from our research into
the first scope of this thesis project. Initially, we performed preliminary hardware
security testing on older HMUs, followed by the hardware security testing on the
Cardiomessenger 3G Smart. Our results constitute vulnerabilities that are present
at the physical level.

6.1 Preliminary HMU security testing

Our initial experiments was centered around acquiring sufficient knowledge and
experience with the tools and methodology that we were going to use on the Car-
diomessenger 3G Smart. By doing so, we would familiarize ourselves with the
environment and be well prepared for future experimentation. In turn, this yields a
more significant probability for success in our security testing of that device.

Previous research by Bour [NB19] validated a set of security-related hypotheses on
older Biotronik HMUs. Specifically, the security of the Cardiomessenger II-S HMU,
both the T-Line and GSM version, were thoroughly tested. Therefore, a natural
starting point for us would be to attempt to replicate the results of his research on
the same devices.

6.1.1 The Cardiomessenger II-S T-Line

Connection to debugging interfaces

In his thesis, Bour located and performed soldering on the JTAG pins of this
PCB. Hence, we were able to connect to the JTAG pins swiftly, and by use of the
JTAGulator hardware hacking tool, which is described in 5.1, we were also able to
determine which of the JTAG connections corresponded to the five TAP pins. This
was achieved by first launching a idcode scan and subsequently a bypass scan using
the JTAGulator. A partial excerpt of the JTAGulator process is listed below.

43

44 6. HARDWARE SECURITY TESTING OF THE CARDIOMESSENGER 3G SMART

. . .
JTAGulating ! P r e ss any key to abort . . .

−−−−−−−−−
TDI : 11
TDO: 10
TCK: 9
TMS: 12
TRST#: 7
Number o f d e v i c e s d e t e c t e d : 1
−
BYPASS scan complete .
. . .

Code Listing 6.1: JTAGulator determining the TAP pins of JTAG.

A picture showing the lab setup can be found in figure 6.1 below.

Figure 6.1: The basic setup required for connecting to JTAG on the T-Line version
of the Cardiomessenger II-s HMU.

Firmware dump and analysis

From there, we successfully dumped the firmware of the device. This was possible
due to the utilization of OpenOCD and corresponding configuration-files written by
Bour, in addition to the Raspberry Pi Zero as a JTAG adapter. Both OpenOCD and
the Raspberry Pi Zero is explained further in section 5.1. We also performed a brief
analysis of the obtained files. Our analysis revealed identical results as those obtained
within Bour’s research. Listings 6.2 and 6.3 shows the successful reproduction of
dumping and analyzing the firmware of the device.

6.1. PRELIMINARY HMU SECURITY TESTING 45

. . .
I n f o : at91rm9200 . cpu : hardware has 2 b r e a k p o i n t / watchpoint u n i t s

TargetName Type Endian TapName S t a t e
−− −−−−−−−−−−−−−−−−−− −−−−−−−−−− −−−−−− −−−−−−−−−−−−−−−−−− −−−−−−−−−−−−

0∗ at91rm9200 . cpu arm920t l i t t l e at91rm9200 . cpu h a l t e d
Dumping b o o t l o a d e r . . .
dumped 1048576 bytes i n 51.357815 s (1 9 . 9 3 9 KiB/ s)
Done !
Dumping SRAM . . .
dumped 104576 bytes i n 5.105570 s (2 0 . 0 0 3 KiB/ s)
Done !
Dumping Flash content . . .
dumped 4194304 bytes i n 205.016098 s (1 9 . 9 7 9 KiB/ s)
Done !
Dumping RAM. . .
dumped 2097152 bytes i n 102.836449 s (1 9 . 9 1 5 KiB/ s)
Done !

Code Listing 6.2: Dumping firmware of the T-Line version using OpenOCD, and
Raspberry Pi Zero.

s i n t e f @ l o c a l h o s t : ~ / tmp/memory_dumps$ s t r i n g s sdram . img | grep − i g et
. . .
GetDataFromEncryptionLayer : too many padding bytes

GetDataFromTransportLayer s a n i t y
CRC check i n GetDataFromTransportLayer

GetDataFromTransportLayer : s t a r t
TransportLayerToFifo : GetDataFromTransportLayer ()

GetDataFromEncryptionLayer : s t a r t
TransportLayerToFifo : GetDataFromEncryptionLayer ()

GetDataFromCompressionLayer : s t a r t
TransportLayerToFifo : GetDataFromCompressionLayer ()
GetDataFromMessageLayer : s t a r t
TransportLayerToFifo : GetDataFromMessageLayer ()
. . .
GetContainerFromGroup : i n v a l i d s o u r c e or a d d r e s s f o r message c o n t a i n e r
GetDataFromEncryptionLayer : wrong ID byte (%02Xh) : expected TRIPLE_DES_CBC (%02Xh)
or AES_CBC (%02Xh) !
GetDataFromEncryptionLayer : wrong ID byte (%02Xh) : expected DES (%02Xh) ,
TRIPLE_DES_CBC (%02Xh) or AES_CBC (%02Xh) !
. . .

Code Listing 6.3: Looking for debug strings in the firmware of T-Line version.

Network interfaces

Next, Bour performed multiple tests related to the networking interfaces of the device.
Since the HMU ultimately sends patient data to the vendor’s servers, experimenting
with its network interface could reveal vulnerabilities that compromise patient privacy.
In his thesis, Bour found the documentation for the modem on PCB, which was
removable from the PCB. He also identified the UART pins of the modem on the
PCB. By connecting to the UART pins using the Shikra, he was able to launch a
passive eavesdropping attack on the communication channel between the modem
and the microcontroller, and a attack which spoofs the modem.

46 6. HARDWARE SECURITY TESTING OF THE CARDIOMESSENGER 3G SMART

When connecting to the modem’s UART pins ourselves, using the Shikra, we
were able to reproduce the results of Bour. The Shikra is further explained in section
5.1. By adapting the scripts that he developed as part of his thesis, we effectively
carried out the different attacks without much effort. Listings 6.4 and 6.5 show the
resulting communications that were captured.

python . \cm−s e r i a l −monitor . py COM4 115200

. . .
[2020−02−04 1 5 : 3 4 : 4 2] a t a t i i 5#vversionAT#MCOUNTRY?
at
AT+WOPEN=1
AT#DIALSELECT=1
AT#AUTHENT=PAP
at#atcmd=0,"−STE=7"
at#atcmd=1,"+A8E= 6 , 5 , 0 , 1 , 0 , 0 "
at#atcmd =2 ,"X3"
at
AT#DIALN1="[REDACTED] "
AT#ISPUN="[REDACTED] @cm3−homemonitoring . de "
AT#ISPPW="[REDACTED] "
at#atcmd=0,"−STE=7"
[2020−02−04 1 5 : 3 4 : 4 4] AT#CONNECTIONSTART
. . .

Code Listing 6.4: Passive eavesdropping of network communication.

. . .
< [2020−02−04 1 5 : 1 8 : 0 3] [REDACTED] @cm3−homemonitoring . de [REDACTED]
343830303537373640636 d332d686f6d656d6f6e69746f72696e672e64650d514f376f487668364c350
INFO : [REDACTED] @cm3−homemonitoring . de [REDACTED] Command not r e g i s t e r e d
< [2020−02−04 1 5 : 1 8 : 0 3] aa00050dde020000 [REDACTED] 0 8 0 9 f61488d9a
. . .

Code Listing 6.5: Communication when spoofing the modem.

For an in-depth explanation of these results and what they imply, we encourage
the reader to visit the thesis of Bour [NB19], as we will not cover any details of
the results. However, we can confirm that the username and password are sent in
cleartext over UART, and can be accessed by an attacker without much effort.

6.1.2 The Cardiomessenger II-S GSM

Connection to debugging interfaces

Due to the complexity of soldering on these devices’ JTAG pins, only the Cardiomes-
senger II-S T-Line version had its firmware fully dumped and analyzed, during the
research by Bour [NB19]. The firmware of the GSM version was only partially
dumped, largely due to an unstable connection to the device’s JTAG interface. How-
ever, thanks to new lab equipment, we managed to establish a stable connection

6.1. PRELIMINARY HMU SECURITY TESTING 47

with the JTAG interface of the GSM version. Instead of soldering on the pins, we
simply connected to it using the PCBite, which is further explained in section 5.1.
Since Bour [NB19] had determined which pins of the JTAG interface on the PCB
corresponded to the five TAP pins, we did not make use of the JTAGulator on the
GSM version.

A picture of the lab setup can be found in figure 6.2 below.

Figure 6.2: JTAG connection on the HMU GSM version.

Firmware dump and analysis

Given that both the T-Line and GSM version had identical microcontrollers, we used
OpenOCD and Bour’s configuration-files identically as for the T-Line version. We
were successful in dumping the entire firmware of the GSM version.

When looking for the same debug strings in the firmware of the GSM version, like
those found in the firmware of the T-Line version, we can observe many similarities.
Those similarities imply that they might have reused most of their firmware between
the two version. Listing 6.6 below show the output of a search for the same debug
strings as the those found on the T-Line version.

s i n t e f @ l o c a l h o s t : ~ / tmp/memory_dumps/gsm$ s t r i n g s sdram . img | grep − i g et
. . .
GetDataFromEncryptionLayer : too many padding bytes

GetDataFromTransportLayer s a n i t y
CRC check i n GetDataFromTransportLayer

48 6. HARDWARE SECURITY TESTING OF THE CARDIOMESSENGER 3G SMART

GetDataFromTransportLayer : s t a r t
TransportLayerToFifo : GetDataFromTransportLayer ()

GetDataFromEncryptionLayer : s t a r t
TransportLayerToFifo : GetDataFromEncryptionLayer ()

GetDataFromCompressionLayer : s t a r t
TransportLayerToFifo : GetDataFromCompressionLayer ()
GetDataFromMessageLayer : s t a r t
TransportLayerToFifo : GetDataFromMessageLayer ()
. . .

Code Listing 6.6: Looking for the same debug strings in the firmware of GSM version,
as those found on the T-Line version.

6.1.3 Summary of preliminary security testing

In summary, we were able to reproduce and confirm the results of Bour [NB19], in
addition to obtain a full firmware dump of the Cardiomessenger II-S GSM. Through
trial-and-error, we familiarized ourselves with the necessary tools and software
extensively. Our motivation behind this preliminary testing was to acquire experience
and knowledge, something that we indeed achieved.

6.2. THE CARDIOMESSENGER 3G SMART AS A STANDALONE DEVICE 49

6.2 The Cardiomessenger 3G Smart as a standalone device

In this section, we delve into the first scope of this master thesis, namely "The
Cardiomessenger 3G Smart as a standalone embedded medical device". We will
conduct experiments that aim to validate our first main hypothesis H1, which is
again included below.

The Cardio messenger 3G Smart HMU contains vulnerabilities as a standalone
embedded medical device that can aid an attacker having physical access to the device
to compromise a patient’s privacy or safety.

As stated in section 1.3.1, in order to validate H1, we will aim to validate the
hypotheses in table 1.1. Those hypotheses have previously been confirmed for previous
versions of HMUs from the same vendor, and by testing them on the most recent
version, we will be able to conclude whether H1 is true or false. Also, we will be able
to describe the evolution of security in HMUs from Biotronik. Our approach when
testing the device is the black-box hardware testing methodology, further detailed in
section 4.2.1.

The Cardiomessenger 3G was initially approved for market in the U.S. by the
Federal Communication Commission (FCC) in 20131, and is the only HMU that is
shipped from the vendor today. Thus, if a malicious adversary would want to utilize
a patient’s Biotronik HMU in an attack to compromise either their privacy or safety,
she would most likely be forced to look for vulnerabilities in the Cardiomessenger
3G Smart. The Cardiomessenger 3G differs from previous versions of HMU in its
use of 3G mobile technologies when establishing a connection to Biotronik’s backend
servers. The figure below depicts both the front and back of the device.

(a) The front. (b) The back.

Figure 6.3: The Cardiomessenger 3G Smart as it is shipped from Biotronik.

1https://fccid.io/QRICMSMART/Letter/30-CMsmart3G-Class-II-Perm-Change-Letter-sign
ed-3320541 accessed: 24.02.2020.

https://fccid.io/QRICMSMART/Letter/30-CMsmart3G-Class-II-Perm-Change-Letter-signed-3320541
https://fccid.io/QRICMSMART/Letter/30-CMsmart3G-Class-II-Perm-Change-Letter-signed-3320541

50 6. HARDWARE SECURITY TESTING OF THE CARDIOMESSENGER 3G SMART

6.2.1 Hardware analysis

The first phase in our methodology is to analyze the hardware components of
the device. To do so, we needed to open the device, hence remove the plastic
cover to obtain access to the PCB. Luckily, this was already done on one of the
Cardiomessenger 3G Smart HMUs by Bour, in his previous thesis work [NB19]. Since
there are a total of three Cardiomessenger 3G Smart’s available at our disposal in the
SINTEF lab, we tried to open one ourselves and managed to get access to the PCB.
We had to be careful not to damage the electronics of the device when removing the
plastic.

Once we had removed the plastic, we discovered that the PCB was partially
covered by a metal shield. The metal shield intends to protect against electromagnetic
interference. In figure 6.4b, highlighted in red, one can see how the PCB was partially
concealed due to the metal shield. It was removable as well since it was not soldered
onto the PCB, but rather attached with small steel clips.

In comparison with the previous HMUs from the same vendor, there have been
several enhancements regarding PCB design. The PCB of the Cardiomessenger 3G
Smart consists of small chips and modules, none of which are detachable from the
PCB. Additionally, the PCB conceals most pins of the various chips and components,
and most communication busses are seemingly integrated into the plastic of the PCB
itself. In general, such enhancements in PCB design make it less practical to security
test the hardware of the device. Typical and well-known hardware vulnerabilities
might be harder to uncover, or might not be present anymore, due to more advanced
PCBs.

(a) The front. (b) The back.

Figure 6.4: The PCB of the Cardiomessenger 3G Smart.

6.2. THE CARDIOMESSENGER 3G SMART AS A STANDALONE DEVICE 51

Finding 1

The plastic cover of the device can be removed without damaging the PCB.

After we removed the metal plate which partially concealed the PCB of the HMU,
the entire design and architecture were exposed. This can be seen in figure 6.5 below.

(a) The front. (b) The back.

Figure 6.5: The inner PCB of the Cardiomessenger 3G Smart.

As shown in figure 6.5, we could retrieve quite a lot of information regarding
the HMU’s design and architecture. Table 6.1 summarizes the different chips and
modules identified on the inner PCB.

Number Description

1 The microcontroller. It has an ARM processor, and the model
number is STM32F4173196.

2 USB-mini port.
3 A 2MB SRAM from Jeju semiconductor. Product number is

EM7164SP.
4 A programmable logic device from Lattice semiconductor. Product

number is LC4064ZE.
5 A removable SIM card.
6 The modem. It is a Telit product and the model is He910-d.
7 External flash. The manufacturer is Giga Device and the product

number is GD25Q32C. It has 4MB storing capacity.

Table 6.1: Identified components within the hardware analysis of the Cardiomessenger
3G Smart.

52 6. HARDWARE SECURITY TESTING OF THE CARDIOMESSENGER 3G SMART

Finding 2

All the chips and modules of the HMU are identifiable.

Furthermore, the vendor has labeled the debugging interfaces, hence both the
JTAG and UART pins were easy to identify. This removed the need for an iden-
tification process, as were required for the previous models of HMUs. We did not
have to guess which pins corresponded to the debugging interfaces, and did not have
to use the JTAGulator to determine the TAP pins of JTAG. Figure 6.6 shows the
labelled pins, where (1) is the JTAG pins (described in section 2.6), (2) is the ground
reference and (3) is the UART pins (described in section 2.4).

Figure 6.6: The labelled JTAG and UART pins on the PCB of the HMU.

Finding 3

Both JTAG and UART debugging interfaces are labelled on the PCB, and
thus easily identifiable.

6.2.2 Finding relevant documentation

The next phase involved scouting the web for documentation and information related
to the identified chips and modules that are summarized in table 6.1. The desired
output from this phase was an insight into how to test the hypotheses in table 1.1
on the Cardiomessenger 3G Smart.

6.2. THE CARDIOMESSENGER 3G SMART AS A STANDALONE DEVICE 53

Luckily for us, the STM32-series is a rather popular and well-documented mi-
crocontroller for embedded devices, with active online forums. The datasheet for
the microcontroller was found online2. It contains the memory mapping of the
microcontroller, which can be seen in figure 6.7 below.

Figure 6.7: The memory map of the STM32F4 microcontroller.

Naturally, some parts of the memory are likely to be of more interest than others.
Firstly, the sections which are given familiar names in the memory map, such as
flash, CCM RAM, system memory OPT and SRAM, were all of immediate interest.
We guessed that these memory sections would constitute the firmware of the HMU,
and thereby also its bootloader. If so, obtaining the firmware could, in turn, prove

2https://www.alldatasheet.com/view.jsp?Searchword=STM32F415&sField=2 accessed on
25.02.2020

https://www.alldatasheet.com/view.jsp?Searchword=STM32F415&sField=2

54 6. HARDWARE SECURITY TESTING OF THE CARDIOMESSENGER 3G SMART

to assist us in uncovering further vulnerabilities. An important note is that these
memory sections are physically placed within the microcontroller.

Secondly, as detailed in figure 6.8 below, if we look at what resides in the
Advanced High-Performance Bus Architecture (AHB) banks, we see that AHB3 maps
to multiple Flexible Static Memory Controllers (FSMCs). A FSMC’s main feature
is that it interfaces with static memory-mapped devices like flash and RAM. We
guessed that the vendor uses these controllers to interface with the peripheral flash
and RAM chips on the board. It is noteworthy that each FSMC bank is 256MB, and
that each bank again splits up in four different banks of 64MB each.

Figure 6.8: A detailed memory map of AHB3, depicting how it maps multiple FSMCs.

Furthermore, the respective datasheets of all the identified chips and modules in
table 6.1 were collected from the Internet and constitute the basis of information
when we deduce testing scenarios for the hypotheses in table 1.1.

Finding 4

Datasheets of the microcontroller, as well as all other chips and modules on
the PCB, are obtainable online.

6.2. THE CARDIOMESSENGER 3G SMART AS A STANDALONE DEVICE 55

6.2.3 Testing Scenarios

Connecting to JTAG

The first hypothesis that we tested was naturally whether the JTAG interface was
enabled after production on the most recent HMU, given that this was indeed the
case for previous versions. If so, it provides a potential attacker with means to control
the microcontroller and the ability to execute code. We used OpenOCD and the
Raspberry Pi Zero to interface with JTAG. An advantage of using OpenOCD was the
opportunity to build upon the connection script that was developed by Bour [NB19].
We had already had familiarized ourselves with those scripts, as detailed in section
6.1. This helped speed up the entire process. It was also our motivation behind
choosing the Raspberry Pi Zero as a JTAG adapter, which was already specified as
the JTAG adapter in Bour’s scripts. In comparison to system-specific software that
interfaces JTAG, OpenOCD provides the user with less specific functionality and
pre-made test cases. However, such system-specific software is often quite expensive,
while OpenOCD is free of charge.

In order to use the Raspberry Pi as a JTAG adapter, we had to connect its pins
according to table 5.1. We established a connection to the JTAG interface by simply
doing a minor change to the existing connection script in Bour’s thesis [NB19]. That
is, we specified the correct microcontroller as the target. Listing 6.7 below shows the
successful output of this. In appendix A.1 the entire script used to connect to the
Cardiomessenger 3G Smart’s JTAG interface, using OpenOCD and the Raspberry
Pi Zero, can be found.

s i n t e f @ s h a r p : ~ / t o o l s / hardware−hacking / openocd−c o n f i g /3 gTest ing / : $ Open On−Chip
Debugger 0 . 1 0 . 0
L i c e n s e d under GNU GPL v2
For bug r e p o r t s , read

http : / / openocd . org / doc / doxygen / bugs . html
BCM2835 GPIO c o n f i g : tck = 11 , tms = 25 , t d i = 10 , tdo = 9
BCM2835 GPIO c o n f i g : s r s t = 24
s r s t _ o n l y s e p a r a t e s r s t _ g a t e s _ j t a g srst_push_pull c o n n e c t _ d e a s s e r t _ s r s t
adapter speed : 500 kHz
adapter speed : 2000 kHz
adapter_nsrst_delay : 100
j t a g _ n t r s t _ d e l a y : 100
s r s t _ o n l y s e p a r a t e s r s t _ n o g a t e srst_push_pull c o n n e c t _ d e a s s e r t _ s r s t
cortex_m r e s e t _ c o n f i g s y s r e s e t r e q
s r s t _ o n l y s e p a r a t e s r s t _ n o g a t e srst_push_pull c o n n e c t _ d e a s s e r t _ s r s t
adapter_nsrst_delay : 100
adapter_nsrst_assert_width : 100
I n f o : BCM2835 GPIO JTAG/SWD bitbang d r i v e r
I n f o : JTAG only mode enabled (s p e c i f y swclk and swdio gpio to add SWD mode)
I n f o : c l o c k speed 2030 kHz
I n f o : JTAG tap : stm32f4x . cpu tap / d e v i c e found : 0 x4ba00477 (mfg : 0x23b

(ARM Ltd .) , part : 0xba00 , ver : 0x4)
I n f o : JTAG tap : stm32f4x . bs tap / d e v i c e found : 0 x06413041 (mfg : 0 x020

(S T M i c r o e l e c t r o n i c s) , part : 0 x6413 , ver : 0x0)
I n f o : stm32f4x . cpu : hardware has 6 bre akp oin ts , 4 watchpoints

TargetName Type Endian TapName S t a t e
−− −−−−−−−−−−−−−−−−−− −−−−−−−−−− −−−−−− −−−−−−−−−−−−−−−−−− −−−−−−−−−−−−

56 6. HARDWARE SECURITY TESTING OF THE CARDIOMESSENGER 3G SMART

0∗ stm32f4x . cpu cortex_m l i t t l e stm32f4x . cpu h a l t e d

Code Listing 6.7: Successful JTAG connection using OpenOCD and Raspberry Pi
Zero.

Once we established the connection, OpenOCD hosts a GDB server that interfaces
with JTAG, which can we accessed through a TCP/IP socket. Throughout this
thesis, netcat has been used to establish such a socket, which involves executing the
command nc 127.0.0.1 4444 on the Raspberry Pi. By establishing such a socket,
we can pipeline OpenOCD commands to be executed on the target.

Finding 5

JTAG is enabled on the Cardiomessenger 3G Smart, and provides an attacker
with fine-grained control over memory and the CPU registers, and the ability
to execute code on the device.

Furthermore, we made attempts to interact with the HMU’s UART interface. This
was carried out via an appropriate UART connection, using the Shikra. Although
we attempted to interact the HMU’s UART both during boot, and during regular
operation, it appears that UART has been disabled on the HMU after production.

Finding 6

UART is not enabled on the device.

Dumping different parts of memory

One of the many advantages JTAG access provides is the ability to read and write
to memory. If one knows the specific memory address of something to extract, and
the size of it, it is possible to query this through OpenOCD with the dump_image
command. Naturally, if we are interested in dumping the peripheral flash or RAM,
the memory addresses of these chips must be found.

Based on the available memory map for the STM32F417 microcontroller, we
extracted the previously mentioned interesting parts of its internal memory sections.
Noteworthy, depending on the boot mode, the microcontroller loads different binaries
in 0x0000 0000. However, the entire memory block from 0x0000 0000 - 0x3FFF
FFFF was, as expected, the microcontroller’s internal memory, which includes the
HMU’s firmware and thus also its bootloader.

Because there were no signs of any peripheral memory modules in these dumps,
it left us guessing where the vendor could have mapped, for instance, the peripheral

6.2. THE CARDIOMESSENGER 3G SMART AS A STANDALONE DEVICE 57

RAM - as that is of major interest. We initially thought that the memory sections
labeled "SRAM" could have been the main RAM chip, but further inspection convinced
us otherwise. One observation was key to determine that we had not collected the
peripheral RAM chip. The size of the SRAM memory block did not align with the
documentation of the peripheral RAM chip found in the previous phase. Thus, the
peripheral RAM chip had to be mapped elsewhere. As already mentioned, the FSMC
banks were a natural next guess. This turned out to be correct, and the contents
of the peripheral RAM chip was extracted from within the first FSMC in AHB3.
Figures 6.9 and 6.10 below depict which memory sections we successfully extracted
through JTAG.

Listing 6.8 shows the output in OpenOCD when we successfully executed our
dump script, which is built on Bour’s original dump script [NB19]. Only the memory
addresses of the chips needed to be changed. Using the Linux command diff, we
discovered that the memory blocks labeled "Flash" and "Aliased to Flash, system
Memory or SRAM depending on the BOOT pins" were identical.

Figure 6.9: Extracted memory sections from the microcontrollers internal memory.

Figure 6.10: Extracted memory sections from the first FSMC, in AHB3.

58 6. HARDWARE SECURITY TESTING OF THE CARDIOMESSENGER 3G SMART

. . .
Dumping f l a s h . . .
dumped 1048575 bytes i n 9.338343 s (1 0 9 . 6 5 5 KiB/ s)
Done !
Dumping CCM RAM. . .
dumped 65535 bytes i n 0.596915 s (1 0 7 . 2 1 6 KiB/ s)
Done !
Dumping system memory OTP . . .
dumped 31247 bytes i n 0.278609 s (1 0 9 . 5 2 5 KiB/ s)
Done !
Dumping SRAM . . .
dumped 131071 bytes i n 1.166101 s (1 0 9 . 7 6 7 KiB/ s)
Done !
Dumping RAM. . .
dumped 2097152 bytes i n 18.758638 s (1 0 9 . 1 7 6 KiB/ s)
Done !

Code Listing 6.8: The successful execution of the memory dump script in OpenOCD.

Finding 7

The entire firmware, including the bootloader, and the contents of the periph-
eral RAM, can be extracted from the device using JTAG and OpenOCD.

Reading the external flash directly

However, at this point, it was not evident whether the memory addresses in the
microcontroller’s memory map encompass the peripheral flash. It would be interesting
to read, as it might store sensitive data. We guessed that the peripheral flash chip
would map somewhere within an FSMC since this was the case for the peripheral
RAM.

Thus, we made attempts to read the peripheral flash chip, although it was not
obvious where it maps to, from the microcontroller’s memory map. Since we never
found the correct memory address by inspecting the documents, we pulled chunks
equalling the size of the peripheral flash chip in the different FSMCs memory sections.
According to the documentation of the flash chip, when the microcontroller wants
to access the contents of the flash, it first sets the CS pin high and subsequently
oscillate clock signals to synchronize. By coupling an oscilloscope to the CS pin of
the external flash chip, we would, therefore, expect that it went from either high
to low or vice-versa, if it indeed was read. However, this was never observed, and
our brute-force approach gave no results. Thereby, we could conclude that the
microcontroller did not map the peripheral flash chip, but accessed it by other means.

Two more options remained. The first was to somehow extract the data of the
peripheral flash chip, through the JTAG interface of the PCB, using OpenOCD. The
second was to connect to the peripheral flash chip via SPI since the chip’s pins are
exposed on the PCB. Although OpenOCD comes with some functionality to interface

6.2. THE CARDIOMESSENGER 3G SMART AS A STANDALONE DEVICE 59

peripheral flash chips, its complexity left us discouraged. A direct SPI connection to
the flash chip could also be established by the use of the PCBite, which we now feel
comfortable with, due to its exposed pins. The latter option was, therefore, chosen.

The Raspberry Pi Zero that was previously used as a JTAG adapter supports SPI
communication as well, which is what was utilized in this experiment. In addition
to the Pi, we needed some software to simulate the microcontroller’s behavior by
querying a read of the entire chip. Luckily, this already exists in the Flashrom
package, which runs on all Linux distributions, including our Raspberry Pi image.
Flashrom is further explained in section 5.1.

First, we had to couple the correct pins of the Raspberry Pi with jumper wires,
and its SPI interface had to be enabled. The exact mapping can be found in table
5.1. The pins of the peripheral flash chip are not labeled on the PCB, so the correct
pins were found in the datasheet of the peripheral flash chip. A figure depicting
those can be seen in figure 6.11 below.

Figure 6.11: The flash pinout of the peripheral flash chip.

Listing 6.9 shows the interaction with the flash chip when using Flashrom to act
as the microcontroller, after setting up the probes of the PCBite as shown in figure
6.12. Noteworthy, several tutorials that we found on the Internet which use Flashrom
to extract data from flash chips via SPI do not involve the VCC pin. However, this
experiment was only successful when we used this pin to induce a current through
the chip, while the HMU was powered off.

s i n t e f @ s h a r p : ~ / t o o l s / hardware−hacking / : $ sudo f l ashr om −p \
l i n u x _ s p i : dev=/dev / s p i d e v 0 . 0 , s p i s p e e d =1000 −r f l a s h . bin

f l ash rom on Linux 4.19.93+ (armv61)
f l ash rom i s f r e e software , ge t the s o u r c e code at h t t p s : / / f la shr om . org

Using clock_gett ime f o r de lay l o o p s (c lk_id : 1 , r e s o l u t i o n 1 ns) .
Found GigaDevice f l a s h chip "GD25Q32(B) " (4096 kB , SPI) on l i n u x _ s p i .
Reading f l a s h . . . done .

Code Listing 6.9: Using Flashrom to read peripheral flash chip.

60 6. HARDWARE SECURITY TESTING OF THE CARDIOMESSENGER 3G SMART

Figure 6.12: Connecting to the SPI of the flash directly.

Finding 8

The contents of the peripheral flash chip can be extracted from the device
using SPI and Flashrom.

Investigating the memory dumps

Initially, we made attempts at searching for something as trivial as the word "pin"
in the contents of the peripheral RAM chip, hoping to retrieve the pin-code of the
SIM-card in the HMU. For this, the command strings was used, which will print
strings in any file that are printable. Listing 6.10 shows the resulting output, and it
appeared that the pin code was indeed stored in cleartext in the peripheral RAM as
part of an AT-command. The fact that these strings could be retrieved implies that
the peripheral RAM is unencrypted. In turn, this implies that all data the HMU
forwards to the backend server will, at some point, be located unencrypted in RAM.

r o o t @ k a l i : ~ / Desktop / Master# s t r i n g s ram . img | grep − i pin
AT+CPIN?
+CPIN : SIM PIN
AT+CPIN="[REDACTED] "
AT+CPIN?
AT+CPIN="[REDACTED] "

Code Listing 6.10: Searching for the word ’PIN’.

6.2. THE CARDIOMESSENGER 3G SMART AS A STANDALONE DEVICE 61

Using the strings command once again on the contents of the internal flash
memory, where the firmware is stored, revealed more information. It seemed that
the protocol that interfaces with the pacemaker is called Ultra Low Power Active
Medical Implant Systems (ULPAMI). Thus, we attempted to search for "ulpami"
in the firmware. Listing 6.11 shows parts of the output. It is not obvious what
these strings are used for, but they are probably meant for debugging and logging
for the developers. Again, if an attacker was interested in reverse-engineering the
protocol between the pacemaker and the HMU, accessing these debug strings and
mapping them to their respective functions in the binaries, will aid in the process.
Searching for other strings such as "GSM" gave similar results and could be helpful
when reverse-engineering the interface towards the mobile network.

r o o t @ k a l i : ~ / Desktop / Master# s t r i n g s f l a s h . img | grep − i ulpami
. . .
UlpamiInitRx : ERROR! ! Length f o r RX s t r i n g i s too long ! Turncated to

ULPAMI_MAXSTRINGLENGTH
Ulpami_low/ s i n g l e s t r i n g e n d e : Cal lback FATAL ERROR: r e t u r n e d UlpamiRxLen too l a r g e :

RxString−b u f f e r o v e r f l o w !
Ulpami_low/RxDone : Cal lback FATAL ERROR: r e t u r n e d UlpamiRxLen too l a r g e :

RxString−b u f f e r o v e r f l o w !
ULP: CM − UlpStatDat−>TxEDP == 1 | UlpamiDLMsgCnt == %d | UlpTxBytes2go = %d
. . .

Code Listing 6.11: Searching for the word "ULPAMI".

Finding 9

The use of debug/log strings in the firmware greatly eases the reverse engi-
neering process of the communication protocols towards both the backend
server and the pacemaker.

Reading up on the documentation from the microcontroller, we have reason to
believe that the first section within the internal flash is, in fact, the bootloader of
the firmware. The fact these strings are retrievable in the internal flash memory of
the microcontroller means that the entire firmware is unencrypted.

Finding 10

The firmware of the HMU is not encrypted, which eases the process of reverse
engineering.

Next, we searched for multiple words that could be of interest in the different
memory-dumps that we collected. Although none of the memory-dumps were
encrypted, not everything resulted in a hit. In Lie’s thesis [WL19], she found the

62 6. HARDWARE SECURITY TESTING OF THE CARDIOMESSENGER 3G SMART

APN and the username that the HMU uses when authenticating to the APN. Also,
she identified the IP address of Biotronik’s server and its port number. As it would
be interesting to search for these strings in the memory-dumps that we collected and
check if the Cardiomessenger 3G Smart also stores those credentials, we performed
several different searches in all the different memory-dumps, using strings. We can
thereby confirm that the APN, the IP address, the port number, and the username
are all stored unencrypted on the Cardiomessenger 3G Smart. This information
could potentially help an attacker to establish a connection to the backend servers of
the vendor.

Finding 11

None of the memory-dumps, including the peripheral flash and RAM, are
encrypted. Credentials (PIN, IP, port number, APN) are stored in cleartext.

Finally, by searching for the word "src", a list of what appears to be source
files in the HMU is shown. This is included in listing 6.12. A similar listing was
produced by Bour [NB19] when he researched previous versions of HMUs from the
same vendor. We share his belief that these source files are not physically stored
on the HMU. These strings come from the "keyword substitution" feature of the
Concurrent Version System (CVS). This feature is probably used to generate the
logging strings automatically.

r o o t @ k a l i : ~ / Desktop / Master# s t r i n g s f l a s h . img | grep − i s r c
Src B u f f e r Address 0x%p
$Source : s r c / v a r i a b l e s . c $ $ R e v i s i o n : 1 . 1 $
$Source : s r c / v a r i a b l e s . h $ $ R e v i s i o n : 1 . 2 $
Src B u f f e r Address 0x%p
$Source : s r c / UlpamiLow_nonsh_config . h $ $ R e v i s i o n : 1 . 4 7 $
$Source : s r c / UlpamiLow_nonsh_config . c $ $ R e v i s i o n : 1 . 6 6 $
$Source : s r c /UlpamiLow_nonsh_debug . c $ $ R e v i s i o n : 1 . 4 3 $
$Source : s r c /UlpamiLow_nonsh_debug . h $ $ R e v i s i o n : 1 . 4 2 $
$Source : s r c / v a r i a b l e s . c $ $ R e v i s i o n : 1 . 4 0 $
$Source : s r c / v a r i a b l e s . h $ $ R e v i s i o n : 1 . 4 0 $
$Source : s r c /UlpamiLow_nonsh_debug . h $ $ R e v i s i o n : 1 . 4 2 $
$Source : s r c /UlpamiLow_nonsh_Hw . h $ $ R e v i s i o n : 1 . 3 9 $
Src B u f f e r Address 0x%p

Code Listing 6.12: Searching for the word "src".

When using the binwalk command, which locates executable code in binary
files, the only noteworthy discovery was in the contents of the internal flash of the
microcontroller. Specifically, listing 6.13 shows the output of this command. The
output indicates where known binaries are located in the firmware, and also outputs
the header of those pieces of code. The output shows that code written by Jean-loup
Gailly and Mark Adler, is used in the firmware. After a brief search online, it was

6.2. THE CARDIOMESSENGER 3G SMART AS A STANDALONE DEVICE 63

quickly determined that Jean-loup Gailly has written and copyrighted compression
algorithms. Mark Adler has also written and copyrighted compression algorithms, as
well as checksum algorithms. This coincides with the fact that the HMU forwards
data, where such mechanisms are commonly employed. Also, the output shows that
CRC32 is used, which is a mechanism used for correcting bit-errors. This coincides
with the fact that the HMU receives data from the pacemaker, where bit-errors could
take place.

r o o t @ k a l i : ~ / Desktop / Master# binwalk f l a s h . img

DECIMAL HEXADECIMAL DESCRIPTION
−−
219932 0x35B1C CRC32 polynomial t a b l e , l i t t l e endian
224028 0x36B1C CRC32 polynomial t a b l e , b ig endian
228139 0x37B2B Copyright s t r i n g : " Copyright 1995−2003 Jean−loup

G a i l l y "
230535 0 x38487 Copyright s t r i n g : " Copyright 1995−2003 Mark Adler "
463731 0 x71373 Copyright s t r i n g : " Copyright 1995−2003 Mark Adler "
464016 0 x71490 CRC32 polynomial t a b l e , l i t t l e endian
468112 0 x72490 CRC32 polynomial t a b l e , b ig endian
477087 0x7479F Copyright s t r i n g : " Copyright 1995−2003 Jean−loup

G a i l l y "
842708 0xCDBD4 CRC32 polynomial t a b l e , l i t t l e endian
846804 0xCEBD4 CRC32 polynomial t a b l e , b ig endian
850915 0xCFBE3 Copyright s t r i n g : " Copyright 1995−2003 Jean−loup

G a i l l y "
853311 0xD053F Copyright s t r i n g : " Copyright 1995−2003 Mark Adler "

Code Listing 6.13: Output using Binwalk on flash.img file.

It is interesting to attempt to identify the exact firmware version of the HMUs
in our lab. If we manage to pinpoint the exact version, future work can look at the
evolution of security features in different firmware versions. Looking for the string
"SMARTAPP" in the memory dumps, they all revealed the number 1.20, which listing
6.14 shows. Considering the HMU is named Cardiomessenger 3G Smart, we assume
this is the firmware version of this device. However, Cardiomessenger 3G Smart’s
that are shipped today might employ a newer firmware version.

r o o t @ k a l i : ~ / Desktop / Master# s t r i n g s e x t e r n a l _ f l a s h . bin | grep − i smartapp
SMARTAPP 1 . 2 0
SMARTAPP 1 . 2 0
SMARTAPP 1 . 2 0
. . .

Code Listing 6.14: Identifying the firmware version of the HMU.

The same rationale applies to the firmware version of the modem, considering
that it runs its own OS and firmware. Looking in the memory dumps for the string
"HE910-D", which is the modem’s product number, we hoped to reveal the exact

64 6. HARDWARE SECURITY TESTING OF THE CARDIOMESSENGER 3G SMART

firmware version. The result of this is shown in listing 6.15. Interestingly, the
string "#CGMR: 12.00.024" is printed to the terminal if we asked for some additional
context with the grep command. This particular string is a command that asks the
modems for the software revision number. Conclusively, the modem that is used on
the HMU is running firmware version 12.00.024.

r o o t @ k a l i : ~ / Desktop / Master# s t r i n g s ram . img | grep − i −A5 −B5 " HE910−D"
AT\V1
AT+CMEE=2
AT&D0
AT&K3
AT+GMM
HE910−D
AT#CGMM
#CGMM: HE910−D
AT#CGMR
#CGMR: 1 2 . 0 0 . 0 2 4
AT+CREG=2
AT#RXDIV=0
AT#CGSN

Code Listing 6.15: Identifying the firmware version running of the HMU’s modem.

Naturally, it would be interesting to further investigate the obtained memory-
dumps in some reverse engineering software like Ghidra or IDA-pro and try to
understand its structure, while potentially identifying vulnerabilities. However, given
that reverse engineering is outside of the scope of this master thesis, our investigation
of the obtained memory dumps stops here.

6.2. THE CARDIOMESSENGER 3G SMART AS A STANDALONE DEVICE 65

6.2.4 Summary of findings

To summarize, when working towards RO1, aiming at validating our first main
hypothesis H1, we have successfully carried out different testing scenarios. Our testing
scenarios have yielded a set of findings, which in turn correspond to vulnerabilities
in the Cardiomessenger 3G Smart HMU. Below, table 6.2 includes a summary of our
findings.

Number Finding

1 The plastic cover of the device can be removed without damaging
the PCB.

2 All the chips and modules of the HMU can be identified.
3 Both JTAG and UART debugging interfaces are labelled on the

PCB, thus easily identifiable.
4 Datasheets of the microcontroller, as well as all other chips and

modules on the PCB are obtainable online.
5 JTAG is enabled on the Cardiomessenger 3G Smart, and provides

an attacker with fine-grained control over memory and the CPU
registers, and the ability to execute code on the device.

6 UART is not enabled on the device.
7 The entire firmware, including the bootloader, and the contents

of the peripheral RAM, can be extracted from the device using
JTAG and OpenOCD.

8 The contents of the peripheral flash chip can be extracted from
the device using SPI and Flashrom.

9 The use of debug strings in the firmware greatly eases the reverse
engineering process of the communication protocols towards both
the backend server and the pacemaker.

10 The firmware of the HMU is not encrypted, which eases the process
of reverse engineering.

11 None of the memory-dumps, including the peripheral flash and
RAM are encrypted. Credentials (PIN, IP, port number, APN)
are stored in cleartext.

Table 6.2: Summary of our findings on the Cardiomessenger 3G Smart.

The testing scenarios we carried out were specifically constructed to validate the
hypotheses found in table 1.1, as such a validation would indeed validate H1. In
table 6.3 on the next page, a summary of which of our findings that validate the
hypotheses in table 1.1 can be found.

66 6. HARDWARE SECURITY TESTING OF THE CARDIOMESSENGER 3G SMART

Hypothesis number Hypothesis Finding(s) True/false

H1.1 An attacker can open the device, and there is
no obfuscation of the electronics that would
harden the identification of components.

1 True

H1.2 Both JTAG and UART interfaces are identifi-
able and enabled on the HMU.

3, 5 and 6 Partly true

H1.3 The memory is unencrypted, and an attacker
can obtain cleartext credentials, debug strings
and the data that is sent to the backend server.

11 True

H1.4 The firmware is unencrypted and not obfus-
cated, easing the reverse-engineering process
for an attacker.

10 True

H1.5 The use of debug/log strings in the firmware,
ease to process of reverse-engineering the com-
munication protocol.

9 True

H1.6 The AES-key used for encryption of patient
data, is hardcoded in the HMU’s memory.

Unknown

H1.7 The APN’s credentials can be gathered in clear-
text from eavesdropping on the communication
between the modem and the microcontroller.

Unknown

H1.8 There is no mutual authentication between the
microcontroller and the backend server of the
vendor.

Unknown

H1.9 Data is sent from the HMU to the backend
servers of the vendor over a TCP-service, and
credentials are sent in cleartext.

Unknown

H1.10 Credentials used to connect to the APN is
reused to connect to the TCP-service.

Unknown

H1.11 A proprietary communication protocol is used
to send data to the backend server.

Unknown

Table 6.3: Hypothesis deemed true by Bour [NB19] for previous versions of HMUs,
and which of our findings potentially validate those hypotheses.

As can be seen in table 6.3, our findings validated a subset of the hypotheses
from table 1.1. Given that the device could be opened, and that the metal plate
which partially concealed the PCB could easily be removed, H1.1 is fully validated.
The introduction of the metal plate is not an obfuscation mechanism, but intended
as protection against electromagnetic interference. H1.2 is however, partly validated.
Both JTAG and UART are labelled on the PCB, however, UART is disabled on the
device. H1.3, H1.4 and H1.5 are completely validated, as our findings confirm that
these hypotheses are indeed true, also for the Cardiomessenger 3G Smart.

Given that it is still unknown whether the remaining hypotheses, H1.6 through
H1.11, are true for the Cardiomessenger 3G Smart, an elaboration is required. The
reason for that is two-folded. Due to PCB enhancements in the 3G version, we were

6.2. THE CARDIOMESSENGER 3G SMART AS A STANDALONE DEVICE 67

not able to eavesdrop on the UART communication bus between the microcontroller
and the modem - as were the case in the previous versions. Since the pins of the
modem are not exposed anymore, this testing scenario was deemed infeasible. Thus,
these hypotheses needed to be tested otherwise. One solution, which Bour and Lie
conducted in their projects, was to emulate the vendor’s server by setting up a fake
base station and spoofing the server’s IP address and port number. However, since
we are only concerned with the HMU as a standalone embedded device, this falls out
of scope. Conclusively, there was no apparent testing scenario that we could carry
out. Instead of altering our scope to accommodate this, we chose to focus on our
second scope instead.

Lastly, we will summarize the evolution of security features from the previous
HMU compared to the Cardiomessenger 3G Smart. One could argue that the vendor
has improved upon their security on the hardware level from previous versions of
HMUs. The fact that UART is disabled is a step in the right direction. However,
JTAG and UART debugging interfaces are now labeled, which was not the case in
previous versions of HMUs. This is indeed a step in the wrong direction. Therefore,
it is difficult to believe that the improvement was rooted in security, but rather a
mere consequence of the specific PCB design. As most of the validated hypotheses
turned out to be true, we do not see excellent security improvement from previous
versions.

Chapter7Fuzzing the SMS-interface of the
Cardiomessenger 3G Smart

In this chapter, we will examine the second scope of this thesis project will. We will
describe the process and design decisions that we made when developing our fuzzer
framework, followed by an analysis of the produced results. More generally, we will
attempt to answer our second main hypothesis H2, namely:

The implementation of SMS within the HMU is insecure and contains vulnerabili-
ties that can be exploited by an attacker determined to compromise either the safety
or the privacy of a patient.

The development of the fuzzer framework is an iterative process, as described
in section 4.2.2. The steps in the process will guide our development of a fuzzing
framework towards the end result.

7.1 Architecture

Figure 7.1 shows a simplified overview of what we aim to build and accomplish within
this scope. It involves setting up an illegitimate base station that delivers fuzzed
SMSs to the HMUs. The remainder of this section will describe the choices that we
made in order to realize this.

Figure 7.1: A simplified overview of the envisioned SMS fuzzing architecture.

69

70 7. FUZZING THE SMS-INTERFACE OF THE CARDIOMESSENGER 3G SMART

7.1.1 Initial Considerations

There exists a broad range of different tools, equipment, techniques and approaches to
create a fuzzer framework targeting the SMS interface of a device [Hon11] [MM09a]
[Gol11] [DD12] [MSP20]. Preferably, a choice of technologies and tools that would
lead to the most fine-grained control of the entire process would be the best choice
and produce the most sound results. However, a choice like that oftentimes comes
with a trade-off in complexity. This is certainly also true for the development of our
framework. The monitoring capabilities, in particular, can be implemented in a lot
of different ways, where each approach has its pros and cons. Choosing the adequate
tools and methods when developing the fuzzer framework is a critical part of this
project. Therefore, the following aims to weigh the pros and cons of different design
decisions. The end result exhibits the previously described features and also contains
trade-offs we are comfortable with.

When scrutinizing the SMS interface of the Cardiomessenger 3G Smart, a dis-
tinction between what segment of the HMU is affected by this must be established.
When fuzzing the SMS interface in this thesis, we are targeting the baseband pro-
cessor/modem of the HMU (and the baseband firmware), not the microcontroller
and the application layer. The modem runs its own OS and has its own memory.
When our fuzzer framework sends semi-malformed SMSs to the HMU, it is indeed
the baseband processor that parses and handles the incoming messages before the
payload is potentially sent to an application. Due to their semi-malformed formats,
most SMSs within our test cases will be misinterpreted, and are likely to be dropped
already in the modem. Therefore, potential vulnerabilities like memory corruptions
and buffer overflow that may arise will happen in the modem. Previous work con-
ducted by Weinmann [Wei12], showed the importance of secure baseband firmware
and the implications it can have on the security of a system as a whole.

It is necessary to clarify what targeting the modem implies for the security test
and potential uncovered vulnerabilities in a bigger picture. When targeting the
modem of the HMU, any vulnerabilities that we might find are not specific to the
HMU itself. On the contrary, all devices that have the same modem will have the
same vulnerabilities. Vulnerabilities found in this thesis can, therefore, be exploited
in other wireless devices that requires cellular connection and has the same modem.
This can, for instance, be modern cars or other IoT-devices.

7.1.2 Setting up an simulated GSM network

Initially, we needed to establish the realization of a GSMmobile network for developing
a SMS-fuzzer. Since we do not want to send SMSs over a real mobile network, we
simulate our test GSM network. The reason for this is to avoid the risk of harming
any telecommunication infrastructure when processing fuzzed messages and the

7.1. ARCHITECTURE 71

possible costs of sending thousands of them. There exist multiple free, open source
software implementations of the GSM stack, and in literature, authors seem to be
indifferent about their choice. Therefore the OpenBTS project was chosen, which is
described in section 5.2. To give grounds for this choice, both Hond [Hon11], and
Gorenc et al. [GM14] have already developed fuzzers on top of the OpenBTS source
code targeting the SMS interface of mobile devices - thus it is already proven to be a
compatible GSM network.

7.1.3 Automated packet delivery and manipulation

The next step was how to set up the architecture for our framework. Especially
two facets of the fuzzer development showed to be crucial for the completion of the
framework. The first was the automation of sending packets to the HMU from an
Application Programming Interface (API), and the second was being able to control
the entirety of the packet being sent. By controlling the entirety of a packet, we
imply that possibly every bit will be manipulated, not only the payload, but also
the SMS headers and layers further down in the SMS stack. OpenBTS does come
with a pre-installed command called sendsms. However, this only allow users to set
the payload equal to some string. Thus far from sufficient. After researching what
opportunities that already exist to meet our requirements, it seemed like a viable
solution existed in previous versions of OpenBTS.

This specific feature in previous versions of OpenBTS is called testcall, and it
opens a GSM layer 3 channel to a specific International Mobile Subscriber Identity
(IMSI) and forwards packets over this channel. Testcall simultaneously opens a User
Datagram Protocol (UDP) server on the local machine - providing us with a API from
which we can properly transmit and receive packets. Layer 3 is also the layer wherein
the SMS service exists, hence a promising feature. The testcall feature has even been
used previously by security researchers to fuzz SMS interfaces over OpenBTS [DD12].
Unfortunately for us, the developers of OpenBTS removed the testcall feature in
release 2.8 because of safety reasons, claiming that they would not want to be liable
in a possible attack where someone used testcall for malicious purposes. For the
interested reader, a forum containing a discussion on testcall between the developers
and security researchers can be found online1. Despite their removal of this feature,
it has been implemented by independent developers and published online at Github.
The original version can be found in Fairwaves Git repository2 under the testcall
branch. Also, another Git repository containing the testcall feature in the latest
version of OpenBTS can be found3.

1https://sourceforge.net/p/openbts/mailman/openbts-discuss/thread/026f01ce30e8%24
bf12f680%243d38e380%24%40schmid.xxx/#msg30679550, accessed on 15.03.2020

2https://github.com/fairwaves/openbts-2.8, accessed on 15.03.2020
3https://github.com/Djimmer/obts?fbclid=IwAR3XidP2DqT3q-AMGfXCHFo6Bw-lisCwLNvv5UP1

h8HgDO0p6vvgrPwGOTo, accessed on 20.03.2020

https://sourceforge.net/p/openbts/mailman/openbts-discuss/thread/026f01ce30e8%24bf12f680%243d38e380%24%40schmid.xxx/#msg30679550
https://sourceforge.net/p/openbts/mailman/openbts-discuss/thread/026f01ce30e8%24bf12f680%243d38e380%24%40schmid.xxx/#msg30679550
https://github.com/fairwaves/openbts-2.8
https://github.com/Djimmer/obts?fbclid=IwAR3XidP2DqT3q-AMGfXCHFo6Bw-lisCwLNvv5UP1h8HgDO0p6vvgrPwGOTo
https://github.com/Djimmer/obts?fbclid=IwAR3XidP2DqT3q-AMGfXCHFo6Bw-lisCwLNvv5UP1h8HgDO0p6vvgrPwGOTo

72 7. FUZZING THE SMS-INTERFACE OF THE CARDIOMESSENGER 3G SMART

We then made attempts to install these versions in our lab. The latest version of
OpenBTS, containing the additional testcall feature, was installed and built without
errors. However, no traces of layer 3 connection establishment could be seen in the
corresponding packet traces when issuing testcall - indicating that this extension
probably contained bugs. We guess that it might be related to hardware. Specifically,
we use different transceivers than what the developers have stated in their README.
For the original old version (pre 2.8) containing testcall, we did not manage to install
and build it because of old software dependencies. The package relied on several
outdated software libraries that are not maintained anymore, hence challenging to
acquire.

Despite testcall being a promising feature, we decided not to follow that route
anymore. Rather than debugging someone else’s code, which could lead nowhere,
we decided to build our own modification to OpenBTS. The modification extends
OpenBTS with the exact functionality we envisioned was required for fuzzing the
SMS interface of the HMU.

7.1.4 Modifying OpenBTS to accommodate fuzzing

Having determined that we wanted to modify the existing source code of OpenBTS
to accommodate fuzzing, we placed efforts in understanding the structure and
components of the software. After investigating the files and having tried multiple
different modifications to it, we successfully created a modification of OpenBTS. Our
version contains two additional functions to send raw SMS PDUs. One function
sends raw PDUs to a specified IMSI, and the other sends all PDUs from a text file
to an IMSI. In combination with the default API provided in OpenBTS, the pipeline
could be fully automated.

Moreover, the modified version of OpenBTS takes as input the entire RPDU layer,
which has the TPDU layer encapsulated - enabling full control over both layers. The
complete control over both layers is required as the fuzzer framework should be able
to create a multitude of different SMSs. The entire process of installing the modified
OpenBTS version on an Ubuntu 16.04 computer can be found in Appendix B.

7.2 Establishing monitoring capabilities

When considering the different alternatives for establishing monitoring capabilities,
there were five different approaches that we considered.

One method to monitor for system crashes at the receiver’s edge would be to
utilize the enabled JTAG interface on the device. In theory, after each SMS is
sent, we could look for traces of system crashes by reading the CPU registers or the

7.2. ESTABLISHING MONITORING CAPABILITIES 73

RAM. However, using JTAG in such an approach would not provide insight into
the baseband processor, only the microcontroller. Far from all the produced crashes
are going to be visible in the microcontroller’s registers [Wei12]. Thus, we did not
pursue this approach further.

Another method to implement monitoring capabilities at the receiver’s edge could
be through UART. However, since this is disabled in the HMU, it would have been
necessary to reverse engineer its firmware, such that it could be enabled again. Since
reverse engineering firmware is not within the scope of this thesis, we did not attempt
this method.

Relevant literature describes more creative methods that could realize extensive
debugging. In the paper by Mulliner et al. [MM09b], they modified the firmware of
phones to both inject SMSs and debug responses directly. Realistically this option is
unsuitable for our scenario, as we do not have a similar type of access to the device.

A benefit of having conducted a hardware analysis in the first scope of this thesis
is that we have acquired knowledge of the HMU’s components. In section 6.2.1, we
discovered that the cellular baseband processor that is used on the HMU is a Telit
HE910-d chip. An option to achieve more fine-grained debugging from this chip could
be to order it online and then connect it to another device that we are in control
over - for instance, a Raspberry Pi. However, connecting to such debug/diagnostic
ports assumes that the vendor of the modem enables these ports after shipping it.
Ordering the modem would introduce the additional benefit of controlling which
access point to which the device connects.

If we cannot achieve any of the alternatives described above, the last option
is to look at response messages from the sender’s edge (the attacker’s terminal).
Each sent SMS from a mobile network to a recipient triggers some kind of response.
Responses can either be an acknowledgment or an error code, or neither, indicating
that something went wrong. The apparent disadvantage of choosing this method is
that system crashes must be inferred based on mere response codes or their absence.
On the other hand, the main advantage of this method is that we can implement all
intelligence at the sender’s side.

Since the other alternatives were not applicable or had implications we were not
comfortable with, we chose network side monitoring as the monitoring method for
the development of our fuzzer framework. This is not all bad news, as the fuzzer
framework can then be utilized on other devices as well since it does not consist of
any HMU-specific implementation. Network side monitoring makes it universally
applicable since every handset is required to reply to SMSs with the same response
codes. However, we realize that our monitoring implementation can be extended
given that we acquire the modem of the HMU. The tcpdump tool was used to capture

74 7. FUZZING THE SMS-INTERFACE OF THE CARDIOMESSENGER 3G SMART

ongoing traffic between the HMUs and the base station during fuzzing sessions.
A filter was applied to tcpdump to target only the GSM related processes. The
resulting command was: "sudo tcpdump -i lo udp port ’port’ and not icmp
-w ’filename’.pcap".

In order to parse and filter the resulting pcap files, the python library Pyshark4

was used. It is a python library that allows for parsing and filtering using Wireshark
dissectors. This makes it highly convenient for establishing the triggered response,
or lack thereof, for each sent SMS.

7.2.1 Filtering the feedback from the HMU

Upon reception of a SMS message from the network, in practice, three things can
happen. Either the SMS conforms to a known format and gets appropriately parsed
by the modem. This results in an acknowledgment back to the network. If not, the
SMS does not pass sanity checks in the modem, producing an error message, or
an unexpected case is triggered. In this scope of this thesis work, we aim for the
latter. There are multiple reasons why an SMS can trigger unwanted behavior in a
receiving entity. For instance, the SMS can crash the modem due to logical errors in
the software, thereby forcing system reboots, among many others.

To accurately detect crashes or unwanted behavior in the HMU, we had to devise
intelligent heuristics that distinguish such behavior based on response codes or lack
thereof. The desired outcome of this process would be a script that filters the pcap
file after a fuzzing session and flag SMSs that potentially caused harm to the device.
This means that legitimate error messages and acknowledgments produced by the
HMU are of no interest and should be filtered out. Thus, in our monitoring script,
we only flag unacknowledged SMS.

Several error messages are defined in the original GSM specification that needs
to be filtered out [3rd00]. During our testing, the errors that were most frequently
observed are Protocol Error, Memory Exceeded Error and Invalid Mandatory
Information. When a Memory Exceeded Error occurs, we needed to take preemp-
tive measures, which are described in section 7.6.3.

7.3 Input generation

Once we had finalized the setup of the appropriate architecture for sending arbitrary
SMSs to the target IMSI, the next step was to generate test cases. To generate
candidate test cases that are more likely to trigger bugs in the modem of the HMU,
we have to revisit section 2.7.3. In general, we can conduct fuzzing in different degrees

4https://kiminewt.github.io/pyshark/, accessed on 22.04.2020

https://kiminewt.github.io/pyshark/

7.3. INPUT GENERATION 75

of "intelligence". A dumb approach with regards to SMS fuzzing would be to draw
random values to construct a SMS PDU uniformly. However, for the most part, this
would generate SMSs that do not conform to any known format or feature, and the
OpenBTS software itself will likely drop them. Thus, there are more clever ways to
construct these SMS PDUs.

Luckily, a library that can create arbitrary SMS PDUs already exist. The Smspdu5

tool is a python implementation that offers full support of all data formats of the
SMSs protocol and allows for the creation of virtually any SMS PDU. We created
generic SMS packets from this library, and they served as a baseline for the subsequent
fuzzing procedure.

7.3.1 Targeting header fields for fuzzing

Once we had decided upon the appropriate packet generating library, the next
step was to decide which fields should be targeted for fuzzing. In Golde’s master
thesis from 2011 [Gol11] (which also formed the basis for the paper by Mulliner et
al. [MGS11]), they developed a SMS fuzzing framework that could deliver fuzzed
messages to feature phones. Golde’s framework required SMS_SUBMIT formats,
which differs slightly from the SMS_DELIVER format that we are working with.
Nonetheless, we could take advantage of his findings when constructing fuzzing logic
for our framework. Thus, based on his work, several header fields could already
be ruled out from our fuzzer framework without conducting experiments ourselves.
Most of the headers that we ignored are related to the delivery of the SMS, not the
interpretation of it. To help visualize the explanation of the different header fields
below, the example TPDU from section 2.7.4 is again presented in figure 7.2.

Figure 7.2: The dissected TPDU containing the payload "Hello World". Mapping
between hexadecimals and header fields of the SMS SMS_DELIVER message format.

5https://pypi.org/project/smspdu/, accessed on 25.03.2020

https://pypi.org/project/smspdu/

76 7. FUZZING THE SMS-INTERFACE OF THE CARDIOMESSENGER 3G SMART

Initially, the TP-Message-Type-Indicator (TP-MTI) is used to indicate what
type of message we are constructing. Since we want to deliver SMS_DELIVER
formatted messages. It does not make sense to fuzz this. Consequently, in our
experiments, this field is set to 0.

TP-Reply-Path (TP-RP) is used to tell the Short Message Entity (SME) that
any reply for a specific message must use the same path as the original message,
which can be useful if the originator and recipient networks are different. This field
typically helps a mobile operator managing cost, but from a fuzzing perspective, it is
irrelevant.

The TP-Status-Report-Indication (TP-SRI) bit is used to provide visual feed-
back of successful delivery to the sending entity [Gol11]. TP-Originating-Address
(TP-OA) simply tells the terminating SME the address of the originating SME.
TP-Service-Centre-Time-Stamp (TP-SCTS) is a timestamp of when the SMSC re-
ceived the message. These fields will also be ignored in our experiments as we deem
them unlikely to trigger vulnerabilities.

Theoretically, the TP-User-Data-Length (TP-UDL) field would be a natural
candidate for fuzzing. However, in practice, it is not. According to Golde [Gol11],
setting a different length indicator than the actual length of the data will only cause
the GSM modems to discard the SMSs altogether. We later confirmed this ourselves,
OpenBTS did not forward SMS that had invalid TP-UDL.

TP-More-Messages-To-Send (TP-MMTS) indicates whether the SME should ex-
pect more SMSs. As we do not believe altering this field can trigger any bug, this is
set to the default value of 0.

TP-User-Data (TP-UD), TP-Protocol-Identifier (TP-PID) and
TP-Data-Coding-Scheme (TP-DCS)

Based on the above discussion, the only fields that are interesting to fuzz is the TP-UD,
TP-PID and TP-DCS. Firstly, the TP-PID is referring to which protocol that is running
in the layer above. Telefax and SIM-data download are only a few examples of the
protocols that can be used. A value of 0 indicates a plain SMS message. TP-DCS
defines the encoding of the user data field, the alphabet used, and the language.
Moreover, it may also indicate a message class, which simply states if the message
should be stored in the SME’s storage or the SIM card. For SMSs, there exist the
default 7-bit encoding, an 8-bit encoding, a 16-bit encoding, and reserved values. As
there exists a variety of different coding schemes, the specific technicalities can be
found in the original GSM specification [3rd99]. Based on the combination of these
fields, the receiving SME will try to reassemble the SMS and potentially pass the
user data to the right application.

7.3. INPUT GENERATION 77

For the TP-UD itself, we wanted to create payloads that are more likely to cause
unusual behavior. Instead of sending purely random data, we leveraged the fact
that there are many resources online to generate appropriate payloads. Therefore, a
collection of specially crafted payloads known to be problematic to interpreters and,
in general, poorly formatted, were imported from a Github repository6.

The TP-User-Data-Header (TP-UDH)

All the different combinations of the three previously addressed fields are, however, not
the entire SMS suite. To cover all features of SMS, the TP-User-Data-Header-Indic-
ator (TP-UDHI) bit indicates whether or not the TP-User-Data-Header (TP-UDH)
is present. This header is added to enrich the standard SMS formats, and it can be
used to, for example, construct concatenated SMSs, add music, animations, colors,
apply text formatting and much more. If the TP-UDHI bit is set to 1, the TP-UD
contains a header following the layout presented in figure 7.3 (for default 7 bit
encoding, that is). Furthermore, TP-UDH content and headers can be chained. This
header greatly increases the complexity of the SMS service and SMS interpreters,
thus a prime target for fuzzing.

The first field in the TP-UDH is the length field (TP-UDHL), indicating the total
length of the header. As we can see from figure 7.3, TP-UDHL is followed by a sequence
of one, possibly up to n, additional headers called Tag-Length-Value triplets. The
triplets consist of an identifier, a length field, and the associated data (IEI, IEIDL,
IED). The IEI number indicates what type of header it is, and how the associated
data should be processed. For instance, an IEI value of 0x00 indicates concatenated
SMS delivery and the resulting data contains transport-related information.

Since the TP-UDH feature introduces a vast range of additional functionality, it
is not possible to target everything within this thesis project. Therefore, only the
following TP-UDH features are targeted in this thesis project:

1. Concatenated SMS.

2. Enhanced Messaging Service (EMS).

3. (U)SIM data download.

6https://github.com/1N3/IntruderPayloads, accessed on 28.03.2020

https://github.com/1N3/IntruderPayloads

78 7. FUZZING THE SMS-INTERFACE OF THE CARDIOMESSENGER 3G SMART

Figure 7.3: The layout of the TP-UDH in the TP-UD when the TP-UDHI bit is set to 1.
This picture is taken from the original technical specification [3rd02].

7.4 Summary of the framework capabilities

At this point, a summary of what the framework is capable of is necessary. Firstly, we
have built a fuzzing framework on top of a modified OpenBTS version. By running
a simultaneous packet capture from the base station during ongoing communications
with the HMU, we have established monitoring capabilities in the sender’s edge.
Based on the packet capture, we can filter out SMSs that might have triggered
unusual behavior in the HMU. An overview of the outcome from the descriptions
so far can be found in figure 7.4 on the next page, which is a diagram showing the
architecture of the fuzzing system. In summary, our framework is capable of:

1. Injection of pre-encoded SMSs.

2. Delivery to any IMSI, thus not specific fuzzing to a HMU.

3. Delivery of malformed and semi-malformed formats.

4. High rate delivery of these SMS, which significantly outperforms what a regular
phone is capable of.

5. Substantial monitoring capabilities in the sender’s edge based on response codes
and acknowledgments, or the lack thereof.

6. Fine-grained control of both the RPDU and TPDU layers.

7. Easy delivery through an appropriate API.

7.5. FUZZING TEST CASES 79

Figure 7.4: An architecture diagram of the fuzzing framework.

7.5 Fuzzing test cases

Based on the discussion in section 7.3 and inspiration from relevant literature [Gol11]
[MGS11], multiple fuzzing test cases have been constructed. We group our test cases
into two different categories, those aiming at fuzzing variations of TP-UD, TP-PID,
and TP-DCS, and those aiming at targeting the TP-UDH.

7.5.1 Combinations of TP-PID, TP-DCS, and TP-UD

Random TP-PID, varying TP-DCS and semi-random TP-UD

The three test cases below aim to target combinations of random protocols and
coding schemes that is supported by the SMS protocol, with semi-random payload,
based on the work of Golde [Gol11].

1. A combination of random TP-PID, default TP-DCS (7-bit encoding, value of
zero) and semi-random payloads.

2. A combination of random TP-PID/TP-DCS and semi-randomly generated pay-
loads.

3. A combination of random TP-PID, TP-DCS using commonly used values in SMSs
(0x00, 0x04, 0xF1, 0xF5)7 and semi-random payload.

7Regular 7-bit encoding, regular 8-bit encoding, class 1 regular 7-bit encoding and class 1 regular
8-bit encoding. All encodings use default alphabets.

80 7. FUZZING THE SMS-INTERFACE OF THE CARDIOMESSENGER 3G SMART

The code for these three test cases can be found in appendix C.4.

Flash SMS

Flash SMS, also called silent SMS or short message type 0, is a specific feature of the
SMS suite and is indicated by a TP-PID value of 0x40 or a TP-DCS value of either
0xF0 or 0xF4. These types of SMSs are special in the sense that they are not stored
on the receiving cellular device. Also, on a normal smartphone, the content of the
SMS would be displayed without user interaction, unless privacy settings are enabled.
The primary use of flash SMSs is to check whether a subscriber’s mobile phone
is turned on or not. However, it is also used to deliver messages that require the
recipients’ immediate attention, for example, emergency messages from governmental
agencies.

Flash SMS offers two advantages in a fuzzing experiment. Firstly, the SMSs
are not stored on the device, circumventing the Memory Capacity Exceeded error.
Additionally, according to Golde[Gol11], the code that renders flash SMSs could
be different from the one displaying normal SMSs. This means another code-base
with potential implementation flaws. However, since the HMU does not display any
received SMS, we were not sure whether flash SMSs were parsed by a different code
base, compared to normal SMSs.

Different combinations of the aforementioned values of TP-PID and TP-DCS,
combined with semi-random payload, were constructed to create flash SMSs that
were then delivered to the HMU. The code for this test case can be found in appendix
C.4, and an example packet displayed in Wireshark can be found in figure 7.5.

Figure 7.5: A screenshot of a fuzzed flash SMS captured in Wireshark.

7.5. FUZZING TEST CASES 81

7.5.2 Fuzzing the TP-UDH

As previously explained, the rationale for targeting the user data header in a fuzzing
test is the broad range of additional features offered by this header. Many of the
features are seldomly used and could trigger code paths not thoroughly tested.

Generic TP-UDH

First, we attempted to fuzz this header in a generic sense, not targeting any specific
service delivered by it. Having the structure of a potentially valid TP-UDH in mind
(see figure 7.3), the idea was to add up to 15 random header chunks in one SMS,
which we based on previous work [Gol11]. The headers’ chunks themselves had the
following structure: the IEI identifiers took any random value between 0x00-0xFF,
and the IED data was constructed by adding between 2 and 8 random bytes, as
portrayed in figure 7.7. A visualization of the final TP-UDH in our generic TP-UDH test
case can be found in figure 7.6. For each header chunk, the IEIDL length indicator
was set to the actual length of the data, as we do believe it is necessary to set it
correctly for the receiver to parse the packet appropriately. Lastly, a random amount
of bytes were appended as payload in the TP-UD. The code for this fuzzer can be
found in appendix C.5.1, and a picture of an example packet in Wireshark can be
seen in figure 7.8.

Figure 7.6: The structure of the TP-UDH that was created within our generic TP-UDH
test case.

Figure 7.7: The IED field within each header chunk has a length of 2-8 bytes and
takes any value.

82 7. FUZZING THE SMS-INTERFACE OF THE CARDIOMESSENGER 3G SMART

Figure 7.8: A screenshot of a fuzzed SMS in Wireshark, targeting random TP-UDH
headers.

Concatenated SMS

Originally, SMSs were restricted to a maximum of 160 characters with 7-bit encoding
and 140 characters with 8-bit encoding. Due to the multipart, or concatenated SMS
feature, SMSs could be chained to send longer messages. We realized this through
TP-UDH by splitting up longer payload to several messages and keeping track of
transport information such as session identifiers and sequence numbers - not too
different from how TCP works. At the receiver’s end, the packets are reassembled.
Concatenated SMS may consist of up to 255 unique SMSs to form longer messages.
To illustrate, an example of a concatenated SMS session is highlighted in figure
7.9, presented in PDU format. A concatenated SMS is defined within the TP-UDH,
conforming to the format below [3rd02].

1. UDHL equal to 0x05.

2. IEI equal to 0x00.

3. IEIDL equal to 0x03.

4. IED data consisting of a one byte session identifier, one byte indicating the total
number of SMSs in this session and one byte indicating the sequence number
of the current SMS.

7.5. FUZZING TEST CASES 83

Figure 7.9: An example of a concatenated SMS session.

There exist multiple varieties of concatenated message sequences where the
delivery and interpretation of the messages can cause odd behavior in the HMU. Our
concatenated SMS test case aims to cover a wide range of problematic sequences and
trigger edge cases. To realize that, this test case creates SMS sequences within the
same multipart session, that consists of:

1. Different encodings (TP-DCS).

2. Different protocol identifiers (TP-PID).

3. Semi-random payload (TP-UD).

4. Missing sequence numbers.

5. Duplicate sequence number.

6. Sequence numbers exceeding the declared total number of multipart SMS.

7. Sequences of random size (up to 30 because of memory capacity at HMUs).

8. Out of order delivery.

The code for this test case can be found in appendix C.5.2. A screenshot from
how it looks in Wireshark can be found in figure 7.10.

84 7. FUZZING THE SMS-INTERFACE OF THE CARDIOMESSENGER 3G SMART

(a) SMS message fragments.

(b) The content of one message fragment.

Figure 7.10: An example of concatenated SMS captured in Wireshark.

Enhanced Messaging Service (EMS)

EMS was first defined in the GSM specification as an extension to SMS, offering the
SMS suite new formatting [3rd19]. This extension "may permit the message to contain
animations, pictures, melodies, formatted text, and vCard and vCalendar objects".
[3rd19]. The EMS extension is extensive and is implemented via the TP-UDH within
the TP-UD. Since EMS itself offers vastly different formats, 31 different identifiers
(IEIs) exists to accommodate EMS. The different headers (IEIs) follows separate
formats which often must be combined with other headers, such as the concatenation

7.5. FUZZING TEST CASES 85

header. Considering the vastly different formats within EMS and the rapid growth
of complexity when constructing correctly formatted packets, this thesis attempted
to fuzz EMS in a more generic sense. An example of such a fuzzed packet can be
seen in figure 7.11, captured in Wireshark. Within this test case, we create EMS
packets in the following manner:

1. Randomly selects an IEI indicating EMS (0x0a-0x1f).

2. IEIDL between 1-7 bytes.

3. IED data consisting of random bytes. Number of bytes indicated by IEIDL.

4. Payload equal to 10-120 random bytes.

5. Random TP-PID.

6. Random TP-DCS.

The code for this test case can be seen in C.5.3.

Figure 7.11: An example of a EMS SMS captured in Wireshark.

(U)sim data download

(U)SIM8 Data Download is another feature of SMS that can be interesting from
a fuzzing perspective as they interface directly with the SIM cards. According to
the original specification, (U)SIM Data Download is a "facility whereby the ME
must pass the short message in its entirety including all SMS elements contained in

8The character "U" is an abbreviation for universal.

86 7. FUZZING THE SMS-INTERFACE OF THE CARDIOMESSENGER 3G SMART

the SMS deliver to the (U)SIM" [3rd02]. In other words, the SMS is passed to the
(U)SIM-card without any processing of the SME itself. This feature of SMS is used
to, for example, read or write data such as the IMSI of the SIM-card. The rationale
of targeting this feature is thus to target another code base than the rest of the test
cases.

The data in the request/responses from (U)SIM data downloads can be crypto-
graphically secured, and follows the format of SIM Toolkit Security Headers [3rd20],
which is present at the start of the TP-UD field. The details of the security header
will not be explained in this thesis. To construct a correctly formatted SMS with
such a header is not feasible, nor important for this thesis. Therefore the (U)SIM
Data Download test case simply fills the TP-UD with random data, which is inspired
by Golde [Gol11]. An example packet from Wireshark is shown in figure 7.12. In
this project, the (U)SIM Data Download packets are created with the following:

1. IEI equal to 0x70.

2. IEIDL equal to 0x00.

3. IED is null.

4. TP-PID equal to 0x7F, indicating (U)SIM Data Download.

5. TP-DCS equal to 0xF6, indicating 8 bit encoding.

6. Random payload equal to 10-120 bytes.

The code for this test case can be found in appendix C.5.4.

Figure 7.12: An example of a (U)SIM Data Download SMS packet in Wireshark.

7.6. TESTING 87

7.6 Testing

7.6.1 Preliminary SMS testing

Relating back to RO2, given that it states: "To investigate potential vulnerabilities
in the SMS interface of the Cardiomessenger 3G Smart through fuzzing", the natural
first step in this security test is to look online for already published vulnerabilities.
Since we found the exact version of the modem during our first scope of this thesis,
this part was straightforward. If there indeed existed vulnerabilities in the firmware
of the modem, we would attempt to exploit it on the HMU itself. However, there
were no vulnerabilities related to this modem published on the internet.

Next, we conducted experiments where arbitrary SMSs were sent to the HMU to
look at the responses it created. The tests indicated that the HMU acknowledges
messages on the relay layer instead of the transport layer, within the SMS protocol
stack. Moreover, the HMU appeared to conform to the response scheme defined
within the original GSM-specification [3rd02]. An interesting finding done in the
initial phases of the security test revealed that after 30 consecutive SMS-deliveries,
the memory of the HMU is exhausted. Thus, the subsequent response codes generated
by the HMU, were all Memory Exceeded Error. We found that in practice, this
means that the modem does not parse the incoming message, but simply discards
it. This constitutes a major hindrance to the effectiveness of the fuzzer framework.
Since only 30 SMSs can be sent consecutively, the throughput is severely restricted.

We then conducted several tests on the stability and robustness of our pipeline.
After establishing a radio channel between our base station and the HMU, our
framework immediately started to send fuzzed messages. This continued for roughly
one minute before the radio channel tore down. Seemingly, the stability issues
are more related to the HMU than our setup and lab environment, as tests done
on other devices continued for virtually unlimited time. In general, this behavior
is symptomatic of problems beyond our control. It also drastically reduces the
effectiveness of our testing. In practice, this opens a small one minute time frame
where fuzzed messages can be delivered to the HMU. A physical reboot of the device
is required for a consistent reconnection to our base station and is, therefore, a large
bottleneck for the entire fuzzing project. There could be multiple reasons why the
HMU tears down the radio channel after being connected for only one minute. We
believe that it is battery conservative due to its limited capacity and consequently
would not waste energy by staying connected more than strictly necessary.

As sending hundreds of thousands of fuzzed messages to the HMU is not realisti-
cally feasible in a consistent manner due to the short time window described above
and due the memory capacity problem, we decided to order a copy of the modem
directly from a modem supplier. Since this is the same chip as what is integrated on

88 7. FUZZING THE SMS-INTERFACE OF THE CARDIOMESSENGER 3G SMART

the HMU, the same baseband stack/firmware will be scrutinized when fuzzed. Hence,
if we find a vulnerability by testing the modem directly, the same vulnerability may
exist on the HMU. Because the exact product number was retrieved during the first
scope of our thesis, ordering the right modem was straightforward. When equipped
on a specially designed developer board, which we also ordered, we are in complete
control of both sides of the communication channel. The stability and robustness
issues are, therefore, alleviated. However, the memory problem remains.

7.6.2 Setting up the modem

The ordered version of the modem is not technically identical to the one found
on the HMU. The Telit HE910-D, which is integrated on the Cardiomessenger 3G
Smart, was out of stock at the time. Due to time restrictions, we decided to order
the Telit HE910-G, which is a very similar modem. They both belong to the same
product family, and the difference in functionality is that the Telit HE910-G offers
GPS functionality. It is common for manufacturers to reuse their code-bases on
similar products, and we hypothesize that the entire SMS-stack is identical for the
two products. If we are correct, testing on a slightly different product will have no
implications for our project. The Telit HE910-G chip used in our experiments was
running firmware version 12.00.006. Ideally, the firmware should be updated to that
running on the HMU’s modem, which was identified in section 6.2.3 as 12.00.024.
However, we were unsuccessful in updating it.

Additionally, a suitable adapter was ordered, which enables a connection from the
modem to a laptop using a standard USB connection. To interact with the connected
modem, the USB-driver intended for the operating system on the laptop, has to be
installed. Thereby, we could use any software which is capable of interacting with
a serial connection. The baud rate of the modem is 115200. In the experiments in
this thesis, we used Telit’s own software to interact with their modem over a USB
connection, namely the Telit AT Controller.

To realize a connection between the modem and our GSM-network, we had to
insert a SIM-card. Given that the SIM-card of the Cardiomessenger 3G Smart did
not fit, the SIM-card of the Cardiomessenger II-S GSM-version was inserted into our
modem.

Interacting with the modem is virtually the same as issuing AT-commands
directly to it and obtaining their output. AT-commands are modem-specific exe-
cutable commands, which enable network connection, SMS, dialing, and hanging up.
Typically, higher-level applications of embedded devices are responsible for issuing
AT-commands to the modem, thereby commanding the modem to perform specific
actions. Before conducting any fuzzing attempts, we instruct the modem directly to
connect to our GSM network. We execute the following sequence of AT-commands

7.6. TESTING 89

in order to realize the network connection. The AT-commands are taken from the
AT-command reference guide for the specific Telit product family [Sol16].

AT+CREG? #Check the c u r r e n t s t a t u s o f network c o n n e c t i o n
CREG: 0 ,0 #Networking not enabled , not connected
AT+CREG=1 #Enable networking
CREG: 1 ,0 #Networking enabled , not connected
AT+WS46=12 #S p e c i f y GSM as a c c e s s t e c h n o l o g y
AT+COPS? #Check c u r r e n t network s e l e c t i o n method
COPS: 1 #Manual s e l e c t i o n enabled
AT+COPS=? #L i s t a v a i l a b l e networks , i n c l u d i n g ours
AT+COPS=1 ,2 ,90170 #Manually connect to our network , by s p e c i f y i n g MCCMNC
AT+CREG? #Check the c u r r e n t s t a t u s o f network c o n n e c t i o n
CREG: 1 ,2 #Networking enabled , attempting to connect
AT+CREG? #Check the c u r r e n t s t a t u s o f network c o n n e c t i o n
CREG: 1 ,1 #Networking enabled , connected

Code Listing 7.1: AT-command sequence for registration to our network.

Initially, a challenge was that the AT-command sequence in listing 7.1 above did
not result in a successful connection. The modem did detect our network but was
repeatedly unsuccessful in connecting to it. As it turned out, the signal strength
of our network did not align with the capacity of the antenna of the modem. This
was remediated by connecting a peripheral antenna to the modem, increasing its
receiving and transmission power. Figure 7.13 shows how the setup and how the
antennas are connected onto the modem.

Figure 7.13: The setup of the modem in its developer board, with antennas connected
onto it.

90 7. FUZZING THE SMS-INTERFACE OF THE CARDIOMESSENGER 3G SMART

7.6.3 Implementing health checker and emptying SMS memory

Being in complete control of both sides of the communication channel brings addi-
tional benefits to the fuzzing framework. Since the current implementation of the
fuzzer framework does not have any means of detecting unusual behavior before an
entire fuzzing session is completed (which can span several hours), we implemented
functionality to send health checks regularly to OpenBTS from the modem. Such
health checks were not obtained through the debug/diagnostic ports of the modem,
as we were not successful in connecting to those ports, implying that they might
be disabled after production. Thus, we had to infer the condition of the modem
otherwise. The health check is based on issuing an AT-command to the modem on
the serial port and consequently checking whether it replies as expected or not.

The computer that has the modem attached using the development board sends
TCP/IP packets containing the health status of the modem to the computer running
OpenBTS. Hence OpenBTS can stop sending packets when it is notified of unusual
behavior. This shifted the capabilities of OpenBTS from being insensitive to the
recipient’s status during a fuzzing session to a live health checker. The code for this
can be found in Appendix C.3.1. Implementing a health checker of the modem within
our fuzzing framework, effectively extends our network side monitoring capabilities,
as mentioned in section 7.2.

Another advantage of controlling the recipient’s modem was that SMSs could
be deleted once they filled up the memory on the SIM-card. Like for the HMU, a
maximum of 30 SMSs could be stored on the modem. Therefore, in the experiments
conducted in this thesis, the memory was regularly emptied on the modem whenever
it reached maximum capacity by issuing the AT-command AT+CMGD=1,4. This
countered the problem of exhausting the memory. Figure 7.14, shows the final
architecture of our fuzzing framework, now targeting the modem of the HMU in
isolation. In order to complete the fuzzer framework, additional utilities and helping-
functions have been implemented. These are found in appendix C.6.

7.6. TESTING 91

Figure 7.14: The complete architecture of our final fuzzing framework. The numbers
indicate the logical execution order of our fuzzer framework.

7.6.4 Procedure for executing test cases

In this section, the exact procedure we followed when executing the different test
cases is described. This procedure was the same for all test cases. The list below
was followed for each case:

1. Run traffic capture with tcpdump with the following filter: "sudo tcpdump -i
lo udp port ’port’ and not icmp -w ’testcase’.pcap".

2. Run the script to send all PDUs within a test case, which can be found in
Appendix C.2. Simultaneously start health-checker at receiver side.

3. After the script is finished, run the analysis/monitoring script, which flags
potentially offending SMSs based on the pcap file provided from step 1. This
script can be found in Appendix C.3.2. It outputs a text file containing the
flagged PDUs.

4. Reiterate steps 2-3, now with the output file containing possible offending
PDUs as input to the send script.

5. If the results are consistent for both iterations, force the HMU to connect to
your network, using the jammer. Send the flagged PDUs to the HMU while
running a traffic capture and analyze the result.

92 7. FUZZING THE SMS-INTERFACE OF THE CARDIOMESSENGER 3G SMART

Because of the general instability of the software used, some SMSs might never
receive an acknowledgment. These SMSs are going to be flagged as potential offending
packets in our analysis script, but in reality, they are more likely to be false-positives.
Step 4 is thus of great importance and ensures the validity of our results. We will
generate knowledge concerning the HMU itself in step 5.

7.7 Results and Analysis

This section provides an analysis of the experiments we conducted within scope 2
of this master thesis. Below, we present each test case, with their corresponding
results. The analysis is largely based on the monitoring method that was established
in section 7.2, and further extended in section 7.6.3. Due to unknown software bugs,
OpenBTS seems to drop a few packets before they reach the air-interface. That
is the reason why not all test cases sent an equal amount of SMSs. This problem
is not a real issue, and it simply results in that some PDUs are never sent. Since
our fuzzing framework send thousands of packets, losing a couple of them does not
drastically reduce the probability of success.

In summary, we stumbled upon certain odd behaviors that turned out to have
implications for our testing. We discovered that whether a SMS is stored on the
SIM-card or not, could influence the way the recipient interprets it. Effectively, this
meant that some PDUs only triggered bugs when the modem had available memory
capacity. This behavior implies that when a SMS is stored on a SIM-card, it reaches
other parts of the firmware - which might also contain bugs. This could also imply
that the modem simply discards the SMS before parsing it all together when the
memory is full. Hence, for the effectiveness of this project, emptying the memory
buffer once it was full, turned out to be essential.

Even more surprisingly, for certain PDUs, the SIM-card itself could be a decisive
factor. During preliminary testing, a Sysmocom SIM-card was used, which is a SIM-
card that is not affiliated with any operator. A handful of bugs were triggered for
many types of SMS PDUs when using this specific SIM-card. However, almost none
of these bugs were present in the HMU. This forced us to rethink our experiments.
Inserting one of the HMUs’ SIM-card into the modem turned out to be key. In
subsequent testing, bugs that were found in the modem had a much larger probability
of being present in the HMUs as well. Apparently, the way the SIM-cards are
programmed seems to have some implications for how the modem interprets each
message.

In total, 14 different SMSs were found during our testing that interferes with the
HMU’s regular operation. All the produced crashes were tested multiple times using
different SIM-cards - confirming that it is the firmware of the modem and not the

7.7. RESULTS AND ANALYSIS 93

SIM-card, that suffers from lousy input validation.

7.7.1 Results of random TP-PID and semi-random TP-UD,
regular 7-bit TP-DCS

In all, 13900 PDUs that belonged to this test case was sent to the modem. All the
messages were either acknowledged or got an error. The errors seem to conform to
the standard formats of the GSM-specification. Hence, none of the sent SMSs were
flagged as potential offending SMS by our monitoring script. To this end, we believe
that the SMS-interface of the HMU is capable of receiving such fuzzed messages
without it interfering with its regular operation.

7.7.2 Results of random TP-PID, TP-DCS and semi-random
TP-UD

Our monitoring script flagged three SMSs from this test case. After sending them
to the HMU, we could confirm that they also crashed it. One of the offending
SMSs-messages can be seen in PDU format below:

018603a100000097000891214465879c2a02500201841500864d6f7a696c6[REDACTED]

In figure 7.15, part of the network capture between the mobile network and the
HMU is displayed. The offending SMS never receives an acknowledgment, and the
subsequent frames simply show OpenBTS broadcasting different system information.
After numerous system information broadcast messages, OpenBTS tries to issue
several disconnection requests because the data channel is no longer active [3rd08],
as seen in figure 7.16. However, this request never receives any acknowledgment,
and after some time, OpenBTS stops sending these requests and assumes that the
recipient went offline.

Figure 7.15: Network traffic capture showing that the SMS never receives an acknowl-
edgement from the HMU and that the HMU does not send any data afterwards.

94 7. FUZZING THE SMS-INTERFACE OF THE CARDIOMESSENGER 3G SMART

Figure 7.16: Several disconnection requests from OpenBTS that are never ackowledged
from the modem of the HMU.

After sending this particular SMS, the HMU is effectively forced off our network
and thus denied in receiving or sending any further information. Figure 7.17 shows
how an actual detach procedure from the network should occur, which looks nothing
like the traces in figure 7.15 and 7.15.

Figure 7.17: A proper message sequence of the GSM detach procedure.

The dissected TPDU of the offending packet is shown in figure 7.18. It consists
of a random protocol identifier, a random coding scheme, and semi-random payload
as described in section 7.5.1. The payload is equal to the string: "Mozilla/5.0
(Linux; U; Android 2.0; en-us; [Redacted]".

7.7. RESULTS AND ANALYSIS 95

Figure 7.18: The dissected TPDU.

To check if the microcontroller of the HMU could get any response from the
modem at all, we tried to simulate a similar testing scenario on the purchased modem.
After sending the offending SMS, we launched a sequence of AT-commands to the
modem over serial communication. By monitoring the USB interface of the port that
the modem is connected to, we could infer how the modem behaved. Figure 7.19
shows this message sequence, captured in Wireshark. After issuing AT-commands,
the modem never replies, indicating a potential full crash of the chip. Under normal
conditions, we would expect to see URB_BULK in as responses to our requests. It was
first when we reinserted the USB stick that the modem responded again.

Figure 7.19: USB monitoring. The modem does not respond to any AT-commands.

During our experiments, we observed that the HMU did reassociate itself again
with the network after 15-20 minutes. This observation was slightly surprising as
the modem we ordered had to be physically rebooted for it to read and execute
AT-commands again. Following that rationale, the microcontroller might issue the
modem to be active only for specific time intervals and shut down for the rest.
This substantiates our assumptions regarding the HMU’s conservative battery usage,
which we described in detail as a severe bottleneck in the preliminary testing section
(7.6.1). It is thus likely that the modem of the HMU is shut down for the most part
and only maintains network connectivity for specific periods after the microcontroller
issues a reboot.

96 7. FUZZING THE SMS-INTERFACE OF THE CARDIOMESSENGER 3G SMART

7.7.3 Results of random TP-PID, semi-random TP-UD, and
common TP-DCS values

In total, 13900 SMSs were sent within this test case. Our monitoring script flagged
23 SMSs as potentially offending test cases. After re-sending them to the modem,
they were handled according to the GSM-specification. Hence, in reality, they were
false-positives, and we can conclude that the modem is capable of handling this type
of fuzzed SMSs.

7.7.4 Results flash SMS

In this test case, all SMS-messages triggered either an acknowledgment or an error.
We sent a total of 11491 SMSs, and they all got responses. Considering that flash
SMS-messages are used to attract the user’s immediate attention by displaying
them directly on the screen, they are perhaps not ideal fuzzing candidates on typical
IoT-devices - as they typically do not have displays. Since neither the modem coupled
on the development board nor the HMU have any way of displaying SMS-messages,
we believe that the modem discards flash SMSs directly after parsed them.

7.7.5 Results generic TP-UDH

After running our analyze script on the network capture during this fuzzing session,
there were several SMSs that seemingly caused trouble to the modem. Following
step 4-5 in the procedure described in 7.6.4, it was evident that all of the flagged
SMSs also caused crashed the HMU’s modem, identical to how it is described in
section 7.7.2. After sending 1000 SMSs, 11 crashes were detected. Conclusively, this
test case is by far the most challenging for the modem of the HMU. We decided to
not search for further vulnerabilities in this section, as the SMSs that crashed the
modem of the HMU are symptomatic of fundamentally weak input validation when
multiple TP-UDHs are chained. Figure 7.20 shows the corresponding traffic dump.

Figure 7.20: Network traffic capture showing that the SMS never receives an ac-
knowledgement from the HMU.

7.7. RESULTS AND ANALYSIS 97

Below in figure 7.21, the one of the offending TPDUs is dissected in Wireshark.
It consists of a random protocol identifier, a random coding scheme, and multiple
random user data headers, as described in section 7.5.2. The payload itself is of zero
length. In PDU format, it looks like the following:

014903a100000035400891214365870cfb02500201641000241ec002a637[REDACTED]

Figure 7.21: The dissected SMS in Wireshark.

7.7.6 Results concatenated SMS

In total, we sent 400 concatenated SMS sequences. Each message sequence consisted
of between 2-30 SMS fragments, amounting to a total of 6300. A single fragment
was not acknowledged by the modem, and the remaining SMSs fragments either got
an acknowledgment or an error. After resending the unacknowledged SMS, it was
acknowledged and did not result in any odd behavior. Consequently, based on the
sample test cases, the firmware of the modem handled concatenated SMS without
troubles.

98 7. FUZZING THE SMS-INTERFACE OF THE CARDIOMESSENGER 3G SMART

7.7.7 Results EMS SMS

Within this test case, we sent 13238 SMSs, and two of them did not receive an
acknowledgment. After reiterating the test, we found that they were false-positives as
they properly got acknowledged in the second test. Since the formats of the different
EMS features are vastly different from each other, we attempted to fuzz EMS in a
generic sense that did not take any of its structures into account. That could be the
reason why this test case did not uncover any vulnerabilities. Based on the random
generation of packet payloads, the testing has probably not triggered typical edge
cases that are more likely to contain bugs.

7.7.8 Results (U)SIM data download

A total of 13932 (U)SIM data download SMSs were sent to the modem within this
experiment. All the messages were acknowledged. Thus no bugs were found nor
any false-positives. This finding indicates that the SIM-Toolkit Security Header is
a feature within the cellular firmware that is implemented with security in mind,
properly handling malformed input. Considering this is a feature that can offer
integrity verification and encryption, this is not very surprising. Likewise, for EMS,
the structure of the SIM-Toolkit Security Header was not explicitly taken into account
in the generation of the packets. Therefore, we can question how effective this test
case was in reality.

7.7.9 Validation

Because we do not have access to diagnostic ports on the modem, it is essential to
ensure the validity of our findings by other means. It is equally crucial to document
our findings in a reproducible and transparent manner, such that the vendor has the
opportunity to reproduce and confirm our findings. To ensure that the bugs found in
this project are not contingent, we tested all the flagged SMSs on the three different
Cardiomessenger 3G Smarts at our disposal. Similarly, we utilized four different SIM-
cards within our testing. All the devices behaved similarly and did not acknowledge
the offending SMSs. This removed the probability that specific configurations or
settings within each HMU or SIM-card trigger the bug: consequently, the firmware
of the modem is the real culprit.

7.7.10 Summary

In general, after an entire fuzzing session, it was frequently observed that the modem
did not run as smooth as before the session - independent on whether a bug was
triggered or not. Moreover, we can extrapolate a slight trend from the test runs. The
modem tends to handle the simplest test cases adequately, whereas more intricate
headers and features of the SMS-suite tend to cause more problems. By simple test

7.7. RESULTS AND ANALYSIS 99

cases, we mean the features and coding schemes of the SMS-protocol that are popular
and heavily used. These test cases never influenced the HMU’s regular operation.
Table 7.1 shows the number of sent SMSs within each test case and the corresponding
number of offending SMSs. In total, our experiments entailed sending 87713 SMSs
to the purchased modem and uncovered 14 SMSs that caused the modem of HMU
to crashed.

On the other hand, intricate features and headers are more likely to cause
irregularities. These features are typically offered by the TP-UDH, which rapidly
increases the complexity of the SMS structure. Besides, these features are seldomly
used. Especially combining different TP-UDHs that were typically not designed to be
combined seems to be problematic. Thus, we hypothesize that features and coding
schemes of the SMS-protocol that are less common are more likely to contain bugs.

Testcase Number of sent SMS Number of offending SMS

Random TP-PID, semi-random
TP-UD, reuglar 7-bit TP-DCS

13900 0

Random TP-PID, random TP-
DCS and semi-random TP-UD

13952 3

Random TP-PID, common TP-
DCS and semi-random TP-UD

13900 0

Flash SMS 11491 0
Generic TP-UDH 1000 11
Concatenated SMS 6300 0
EMS SMS 13238 0
(U)SIM data download 13932 0

Table 7.1: Summary of results from the constructed test case in the second scope of
this master thesis.

Chapter8Discussion and mitigation

This chapter aims to address and elaborate on the findings produced within chapters
6 and 7. Based on the results, we will describe which vulnerabilities these findings
give rise to. Additionally, this chapter will provide a thorough discussion on what
those vulnerabilities imply for patients and the vendor, and elaborate on which
attacks are feasible when those vulnerabilities are exploited. The threat model, which
is further outlined in section 2.2, will be used to contextualize the discussion.

8.1 Discussion on findings from hardware security testing

The initial research carried out was within RO1, where we conducted a thorough
hardware security test of the Cardiomessenger 3G Smart HMU. We knew that the
hypotheses in table 1.1 were true for previous versions of HMUs from the same
vendor. Consequently, by incorporating our black-box hardware testing methodology,
which is further outlined in section 4.2.1, we constructed testing scenarios for all the
hypotheses in table 1.1 that lie within our scope.

Our initial finding was that the device could be opened. Meaning that both the
plastic cover and the metal plate partially concealing the PCB, could be removed
without inflicting damage to the PCB itself. Although this may not seem like
a groundbreaking finding within hardware security testing, this is where the bad
security practices in the HMU start. Due to this finding, a magnitude of other
testing possibilities opened up for us, which in turn, yielded findings of their own.
All subsequent findings and misconfigurations would not have been obtained if the
hardware of the HMU was tamper-proof. For a potential malicious attacker that has
physical access to the HMU, the case is no different. A broader attack-surface opens
up when the device can be easily opened, since the PCB is not damaged afterward.

Next, we identified all components and chips on the PCB, and by searching online
for their serial numbers, which are written onto the components and chips themselves,
we obtained the datasheet of all of them. The fact that all components and chips

101

102 8. DISCUSSION AND MITIGATION

on the PCB were identifiable, and that their respective datasheets were obtained, is
quite reasonable. Biotronik is not a manufacturer of microcontrollers, modems, RAM
or flash chips, so naturally, they will purchase such hardware from other companies.
From a security perspective, this is not a bad practice in itself. However, this finding
goes to show that a variety of information regarding the hardware of the HMU is
easily obtainable. A malicious attacker can gather such information, and possibly
utilize it to uncover further vulnerabilities, which in turn can be exploited in potential
attacks which compromise the most critical assets within the pacemaker ecosystem.

In addition, we quickly located JTAG and UART interfaces, as they are labelled
on the PCB. The labelling of JTAG and UART interfaces on the PCB, is a very
bad practice from a security perspective. This completely rules out the need for a
trial-and-error approach when locating the debugging interfaces, and we were quickly
able to test if those interfaces were enabled on the HMU. Here, Biotronik seems to
have taken a step backward, since the debugging interfaces are not labeled on the
previous version of their HMUs. Only the JTAG debugging interface was enabled
on the Cardiomessenger 3G Smart, in our version of the firmware which is not the
latest, which we assume is 1.20. Nonetheless, disabling both debugging interfaces
after production would have increased the hardware security of the device drastically.

The fact that the HMU can be easily opened, that its hardware components are
identifiable, that its debugging interfaces are labeled and that its JTAG interface
is enabled, are not findings which correspond to vulnerabilities in themselves. Nev-
ertheless, these findings function as stepping stones that further enables attackers
to compromise patients’ safety or privacy potentially. Given that this is a medical
device responsible for handling private patient data and interaction with the patients’
pacemaker, we deem these findings as severe.

Using JTAG and Flashrom, we were able to extract the firmware of the HMU
along with all other memory modules. Everything we extracted from the HMU turned
out not to be obfuscated or encrypted in any way. The use of logging functionalities
within the firmware also gave several hints regarding its structure. In addition to
that, credentials were obtained in cleartext. Moreover, the lack of encryption, in
combination with the use of logging functionalities in the firmware, dramatically
eases the process of reverse engineering. This opens the possibility for an attacker to
gain in-depth knowledge and to further disclose vulnerabilities in the protocols used.

Unencrypted firmware in a device which handles private patient data, and which
communicates with patients pacemakers, is a critical finding. This finding directly
corresponds to a vulnerability which is pivotal in the context of developing a suf-
ficiently secure pacemaker ecosystem. From previous security research on HMUs,
for example, the work by Muddy Waters and MedSec Inc [Blo16], multiple attacks

8.1. DISCUSSION ON FINDINGS FROM HARDWARE SECURITY TESTING 103

have been demonstrated against devices like this. In their research, they launched a
battery-draining attack against a pacemaker, among other attacks, such as increasing
the pacing rate of the pacemaker to dangerous levels by utilizing vulnerabilities
in the HMU. Taking our findings on the Cardiomessenger 3G into consideration,
whether Biotronik secures their products more extensively than other manufacturers,
is unknown. Having access to the firmware and logging functionalities in their HMU
would significantly reduce the amount of work required for an attacker to implement
attacks like that.

8.1.1 Implications for patients

Within our threat model in section 2.2, we identified several assets and threat actors
within the pacemaker ecosystem. Also, we outlined potential attacks, which a threat
actor might wish to carry out, in order to compromise an asset. The most important
assets within our threat model are arguably patient privacy and safety. After all,
the entire pacemaker ecosystem is ultimately concerned with patient care. The
most significant threat actor within our treat model is organized crime, as other
threat actors lack the necessary motivation or knowledge to carry out attacks on
the ecosystem. Consequently, the following discussion gives grounds for what the
vulnerabilities might entail for patient privacy and safety when organized crime is
the most significant threat actor.

First and foremost, to fully ensure that patient privacy and safety is protected
when the HMU takes part in the pacemaker ecosystem, the vendor should guarantee
the hardware security of the device. Our findings clearly show that this is not the
case. If a potential malicious attacker were to acquire physical access to a patient’s
HMU, she could open the device, acquire a variety of information regarding its design,
and connect to its enabled JTAG interface. Thereby, the attacker can easily dump
the unencrypted firmware of the device and other memory modules, which contains
debugging strings and cleartext credentials. Relating back to research question RQ1,
it is apparent that when our findings are used in combination, the Cardiomessenger
3G Smart not sufficiently secured.

Since it is not sufficiently secured, the confidentiality, integrity, and availability
of patient data are at risk. Given that our findings encompass having access to
the HMUs unencrypted memory, it is very likely that a potential attack breaches
the confidentiality of patient data. When considering the unencrypted firmware in
combination with our other findings, it is unlikely that proper encryption mechanisms
are in place on all segments within the HMU, from the data arrives until it leaves. This
leads to that data sent from a patient’s pacemaker is most likely stored unencrypted
in the HMU’s memory at some point. An attacker who has acquired physical access
to a HMU could thereby obtain such confidential patient data by making use of our

104 8. DISCUSSION AND MITIGATION

memory access finding.

Furthermore, the integrity of patient data is also at risk, given that our findings
encompass an enabled JTAG interface. We deem it likely that a malicious attacker
that can set up a JTAG connection to the device can also modify data that is to
be sent to the vendor’s backend servers, as JTAG has the functionality of writing
individual bits to memory addresses and CPU registers at any given time. This
would indeed interfere with the integrity of the data and could potentially inflict
harm upon the patient if their doctor is led to believe that the patient is in good
health when this is not the case.

In summary, our findings undoubtedly show that the hardware security of the
Cardiomessenger 3G Smart is not ensured, and subsequently that the device is not
sufficiently secured. Although we have not confirmed the scenarios described above,
where potential attackers utilize our findings to breach confidentiality, integrity, or
availability of patient data, there is reason to suspect that these properties of patient
data are at risk. This is indeed an issue for the patients themselves. Consequently, it
becomes increasingly important that patients are aware of the security risks involved
within the pacemaker ecosystem and what those risks might entail for their data and
treatment.

8.1.2 Implications for the vendor

Within our threat model in section 2.2, we also identified the vendor’s backend servers
as an asset. The vendor’s backend servers constitute a vital part of the data flow
from patients’ pacemakers, via their HMUs, to practitioners and doctors. These
servers stores private data from a large number of patients, and consequently, they
should also be sufficiently secured. Arguably, the vendor’s backend servers are not as
critical an asset as patients’ privacy and safety when considered in isolation. However,
the vendor’s backend servers and patient privacy are tightly linked, as a breach of
those servers will most likely entail a breach of private patient information as well.
Regarding the vendor’s backend servers, the most significant threat actor is, again,
organized crime.

One of our findings entailed obtaining cleartext credentials from debugging
strings within the unencrypted firmware. The APN, IP address, port number and
the username of the HMU are all obtainable credentials. For previous versions of
HMUs, such credentials were used to authenticate with the APN and communicate
with the backend server [WL19]. It is highly likely that similar authentication and
communication is possible with the available credentials from the Cardiomessenger
3G Smart. An attacker that obtains physical access to a HMU can obtain these
credentials without much effort. Once these are in the hands of an attacker, a
range of attack vectors open up. Firstly, an attacker might abuse the credentials to

8.2. MITIGATION OF FINDINGS FROM HARDWARE SECURITY TESTING 105

gain a foothold within their private network. From there, the attacker can launch
reconnaissance attacks, mapping their servers and infrastructure. This could lead
to a massive breach, compromising confidentiality, integrity, and availability of the
servers. In turn, this could lead to a breach of the confidentiality, integrity, and
availability for all patients associated with the pacemaker ecosystem of the vendor.
Naturally, this would also impact the vendor’s reputation.

Although we have not confirmed the scenario described above, our findings put the
confidentiality, integrity, and availability of the vendor’s backend servers slightly at
risk. Consequently, since this also puts the confidentiality, integrity, and availability
of private patient data at risk, the vendor’s backend servers are an asset within the
pacemaker ecosystem worth sufficiently securing. Specifically, security concerning
how the backend servers can be accessed is of utmost importance.

As stated previously in section 1.2.2, medical devices are regulated by public
authorities. The vendor is required by law to comply with the latest regulations. In
this case, it falls under EU and Norwegian jurisdiction. The new EU regulations
explicitly cover cybersecurity and will be in full effect as of May 2020. The reg-
ulation states the following regarding hardware security: Manufacturers shall set
out minimum requirements concerning hardware, IT networks characteristics and
IT security measures, including protection against unauthorised access, necessary
to run the software as intended [Eur17b]. Considering the findings from this thesis,
the question arises whether the vendor fails to comply with the newest regulation.
Since the legal aspect is outside the scope of this thesis and that our findings might
have been mitigated in newer firmware updates, we will not speculate whether the
vendor complies with regulations or not. However, the vendor must ensure that in
future firmware releases, they do comply with these regulations to not face legal
ramifications for not securing their assets adequately.

8.2 Mitigation of findings from hardware security testing

All the produced findings from our research towards RO1, and the vulnerabilities
they give rise to, are possible to mitigate. Proper mitigation mechanisms could
potentially reduce the risks that arise due to the HMU not being sufficiently secured,
if not remove the risks entirely. In this section, we provide suggestions on what such
mitigation mechanisms could entail, and how to implement them, to enhance the
hardware security of the HMU. Our suggestions are largely based on the best security
practices outlined by Joe Grand [Gra04].

106 8. DISCUSSION AND MITIGATION

8.2.1 Tamper-resistant hardware

Developers of embedded systems cannot neglect the fact that attackers can get their
hands on these devices and compromise them at the physical level. Thus, for the next
generation of HMU, we advocate the use of tamper-resistant hardware to harden the
process of opening the device. In the best case, tamper-resistant hardware could
entail that opening the device also meant inflicting damage to the PCB. However,
we are unsure as to whether developing a HMU with such hardware is feasible. If
not, we suggest that the plastic cover of the HMU is at least fastened using special
screws, which can only be unscrewed using a proprietary tool.

8.2.2 PCB obfuscation

The lack of obfuscation mechanism on the PCB is apparent. Such obfuscation
mechanisms can potentially function as a hindrance for attackers who are not very
advanced and will thereby assist in securing the device. The JTAG and UART
debugging interfaces should have their labels removed, and the serial numbers of
hardware components on the PCB should also be removed after production. This
would significantly harden the process of setting up a working JTAG connection and
identifying the hardware components.

8.2.3 Disabling JTAG

The JTAG debugging interface should be disabled after production. This would
entail adding some kind of protection on the TAP pins of JTAG, on the PCB itself.
There are several ways to add protection to the TAP pins, ranging from quite
straightforward to quite complex. One straightforward example of how to realize
this is via adding fuses to the pins after production, leading to that nothing can be
read of transmitted from those pins. A more complex example is to make use of a
specific security feature in the STM32F4 microcontroller, namely Readout Protection
(RDP). RDP is classified as a static protection mechanism, as it is enabled using
option bytes. In the STM32F4, this mechanism offers protection against reading
the main flash and SRAM memory through the JTAG interface [STM20]. However,
RDP might not be enough to fully secure the debugging interface, as researches have
recently proven that it offers no real protection[OT17]. Anyhow, enabling RDP will
impede attempts from less advanced threats. Regardless of the complexity of the
mechanism that is employed, we strongly recommend disabling the JTAG debugging
interface using state of the art techniques.

8.2.4 Removing debugging strings and encrypting firmware

The use of logging functionalities within the firmware dramatically eases the process
of reverse engineering for potential attackers, which naturally leads to that such

8.2. MITIGATION OF FINDINGS FROM HARDWARE SECURITY TESTING 107

debugging strings should not be used. Despite this, it would still be possible to
reverse engineer the firmware as it is unencrypted. To fully secure the HMU, we
suggest that the firmware of the device is encrypted.

108 8. DISCUSSION AND MITIGATION

8.3 Discussion on findings from fuzzing

The final research we carried out was within RO2, where we developed a framework
capable of fuzzing the HMU’s SMS interface. Fuzzing as a security testing technique
is outlined in section 2.8, and by incorporating our black-box fuzzing methodology,
which is further outlined in section 4.2.2, we were successful in the development of a
working framework.

8.3.1 SMS applicability

Ideally, a security test should target all the networking interfaces, but realistically
that scope turned out to be too wide for this thesis. Hence, for this thesis we chose
to target the SMS interface, rather than the TCP/IP data-communication interface.
The rationale for making such a choice is grounded in previous research and its
applicability. The SMS interface can be attacked remotely and does not require
physical access to the target HMU. Hence, the SMS interface is critical from a risk
and impact perspective. Besides, SMS offers no real authentication mechanisms.
In related work, researchers have developed SMS-fuzzers to disclose vulnerabilities
with large success [Hon11][MGS11][MM09b][Gol11], showing its feasibility as a tool
in security analysis. Furthermore, we knew that the HMUs could communicate
with SMSs from previous thesis work [NB19][WL19], opening the SMS interface as a
possible attack vector.

8.3.2 Strengths of fuzzing framework

Although our developed fuzzing framework is not exempt from limitations, the
framework possesses three essential attributes that strengthen our contribution.

Firstly, the fuzzer framework generalizes well. The framework is not device-
dependent, meaning that it can be used to fuzz all kinds of embedded systems, IoT
devices or mobile phones, given that they have an SMS interface. Regardless of
what kind of device, our framework is capable of fuzzing it, as long as it speaks the
SMS protocol. In turn, this can potentially uncover vulnerabilities in any devices’
SMS interface. Also, the framework is vendor-independent, meaning that it can be
used to fuzz devices from any vendor. What this means is that the SMS-protocol is
highly standardized, and all devices wishing to communicate via SMS must use the
standardized protocol, not an altered proprietary version of it. It does not matter
which manufacturer developed the product or if it is closed-source or not. The device
can be fuzzed utilizing our software and the monitoring method relies on standardized
responses from the network’s perspective.

Secondly, the fuzzer framework offers great usability. Future researchers do not
have to spend much time familiarizing themselves with our framework, as it can be

8.3. DISCUSSION ON FINDINGS FROM FUZZING 109

set up in a matter of hours. A USRP, installing and configuring the modified version
of OpenBTS, and downloading and running the remaining code, is all it takes. This
yields approximately 100,000 SMSs, within eight different test cases - which can
be easily extended. Thus, our fuzzing framework provides future researchers with
everything necessary for thorough testing of SMS interfaces, in a highly convenient
manner. Since the fuzzer framework is open source, it is also easy for contributors to
add additional functionality, as the foundation of the work is already implemented.

Lastly, and perhaps the most significant, the third strength of our contribution
is related to the vulnerabilities our fuzzer framework uncovered. The fact that the
framework uncovered several SMSs that triggered bugs in the Telit HE910 modem-
series is indeed a strength. The vulnerabilities are not limited to the HMU itself,
but rather to all devices that make use of the same kinds of modems, with the same
firmware version. Thus, the vulnerabilities uncovered by our fuzzing of the HMU
generalizes well, and are present on a variety of other devices possibly in use today.

8.3.3 Input from hardware testing to fuzzer development

As stated in section 1.3, the fact that we developed a fuzzing framework targeting the
HMU’s SMS interface, after we conducted a hardware security analysis of the HMU
itself, is not a coincidence. The intention was that the hardware testing was to return
valuable insight into how the HMU communicates with the backend servers of the
vendor. This was indeed also the case, as the hardware testing yielded information
regarding the HMU’s modem. The manufacturer of the modem, as well as its model
number, was consequently used to obtain further information. This information
includes the datasheet and the AT-command reference guide of the modem. These
documents were helpful throughout our work and turned out to be crucial when
we realized that the fuzzer framework could not be utilized effectively on the HMU
directly. In addition, the hardware security testing revealed JTAG and UART debug
ports, which were both potential candidates for establishing monitoring capabilities
at the receiver’s side. With more effort - and a bit of luck, perhaps - it could have
provided us with a more in-depth analysis of the crashes. Naturally, we were hoping
that we could profit even more from the first scope when developing our fuzzing
framework. However, we would not have been as successful in our second scope
without completing the hardware security test.

Given that we quickly determined that the HMU would not stay connected to
our fake base station for longer than approximately one minute, it became infeasible
to utilize our fuzzing framework directly on the HMU. Consequently, we ordered a
highly similar modem as the HMU uses, which brought several advantages. Having
control over both sides of the communication channel, we could maintain a persistent,
stable, and long-lasting connection to our network from the modem. Thereby, we

110 8. DISCUSSION AND MITIGATION

were able to run all test cases within our fuzzing framework, resulting in a thorough
test of the security of the modem’s SMS interface. As stated in section 7.1.1, there
is no practical difference between testing the modem in isolation and targeting the
HMU directly. Since the HMU utilizes the cellular baseband implemented on the
modem chip when communicating over a cellular network, the same code base will
be targeted. Therefore, once our fuzzing framework produced findings on the modem
that was ordered, it was very plausible that the same finding could be observed on
the HMU.

8.3.4 Answering research questions

Our main finding from fuzzing the HMU’s SMS interface are several PDUs that
denies the HMU’s communication services. After sending this PDU to the HMU,
it does not respond to subsequent messages and disconnects from our network. It
requires that the microcontroller issues a reboot of the modem for it to return to
normal operation. The modem of the HMU had seemingly crashed, which reflects the
behavior we observed when we fuzzed the purchased modem directly. An interesting
note is that when we sent the PDU to the HMU, nothing could be observed on its
screen, leading to that the patient is left unaware of its network disconnection.

The fact that there exists a SMS PDU that can crash the modem of the HMU
demonstrates a lack of appropriate security measures. The modem’s firmware does
not include proper edge case handling, and consequently crashed when it receives
an input it is not capable of handling. This finding does directly correspond to a
vulnerability that malicious adversaries can exploit. Therefore, relating to RQ2, we
can confidently state that there are indeed vulnerabilities in the modem’s firmware
that parses the incoming SMSs.

In this thesis, it has been clearly shown that it is indeed feasible to use the SMS
interface as an attack vector since an attack on the SMS interface can leave the HMU
incapable of fulfilling its function - effectively crashing the modem. The capabilities
and resources of an adversary for conducting such an attack do not have to be at
a government-funded level or organized crime. On the contrary, this attack can be
launched using COTS-equipment and does not require highly competent adversaries.
An adversary does not even have to possess in-depth knowledge of reverse engineering
- proving the strength of fuzzing as a testing method. To answer RQ3: it is indeed
feasible to use the SMS interface as an attack vector. Moreover, we can assume that
adversaries with limited resources can take advantage of this attack vector.

After sending any of the SMSs that causes the HMU to crash, it reconnects again
after 15-20 minutes. We believe that this is related to that the HMU is trying to
limit its battery usage by keeping the modem shut down for the majority of the time.
Arguably, this is not an intended security mechanism in the firmware of the HMU

8.3. DISCUSSION ON FINDINGS FROM FUZZING 111

to protect against such vulnerabilities in the cellular modem. On the contrary, we
believe that this was a design choice to reduce energy consumption. Nonetheless, it
effectively resets the state of the modem and, thus, protects against the exploitation
of bugs that renders the modem useless - to a certain degree. This mitigation strategy
would offer no real security, however, since an attacker would still be able to maintain
a crashed state by sending such offending SMSs every time it reconnected.

Based on that, we can partly validate and provide an answer to RQ4. For the
uncovered vulnerabilities within our research, which leads to a DoS-attack, there are
no real security mechanisms in the firmware of the HMU that protects against any
practical exploitation of this. Whether the same is true for more advanced attacks
remains unknown.

8.3.5 Implications for patients

Similar to the hardware security testing of the HMU, the findings obtained from
fuzzing the HMU’s SMS interface also has implications for patients. Compared to
previous findings, these findings can potentially be more severe, as they put patients’
safety slightly more at risk. Patient safety is arguably the most important asset
identified within our threat model in section 2.2. Also, within our threat model, we
identified organized crime as the most significant threat actor.

A difference between the findings obtained from the hardware testing lies in
how potential attackers would go about exploiting the vulnerabilities. The findings
uncovered by fuzzing do not require having physical access to a HMU, but can be
launched remotely. This does, in turn, lead to different implications for patients’
safety. A remote attack is more likely to remain undetected since attackers do not
need to acquire physical access. Additionally, a remote attack is generally easier to
set up. Given the low complexity of the following hypothetical attack, it is reasonable
to imagine that not only organized criminals can launch such an attack. We can
assume that the other identified threat actors from within our threat model in section
2.2 might possess the appropriate funding and skill set necessary to complete the
attack successfully. However, the success of the following hypothetical attack relies
on a banal assumption. We must assume that the backend server has no monitoring
method to detect that a HMU does not send its data.

If a potential attacker were to set up a fake base station close to a patient’s home
and subsequently utilize a jammer to make sure that the attacker’s network offers
the strongest signal in the area, the patient’s HMU would connect to the attacker’s
network. Then, the attacker can send the offending SMS, which crashes the modem
of the patient’s HMU, causing it to disconnect from the attacker’s network. The
HMU will reconnect after 15-20 minutes after the modem is rebooted. However,
an attacker can make sure to send the same offending SMS instantly - denying it

112 8. DISCUSSION AND MITIGATION

transmission and reception of messages. This effectively constitutes a DoS-attack,
in which the HMU does not fulfill its function. To the best of our knowledge, the
attack is unlikely to be detected by the patient. Since the HMU gives no indication
of this, the patient would still believe that their data is relayed from the HMU to
their doctor, when it is, in fact, not. If the patient’s heart condition were to worsen
after a successful attack, the patient’s doctor would never receive data indicating a
worsening in health condition. This hypothetical attack might prove critical for the
patient’s health, as their doctor remains unaware of their worsened condition, and
the patient takes no medical countermeasures. Patient safety is consequently at risk
given the successful completion of the DoS-attack, which is made possible due to the
offending PDUs we uncovered.

Although we believe that the patient will remain unaware of the hypothetical
attack described above, it is very likely that the attack is detected by the backend
server. If the HMU does not send any messages over a certain time interval, the
server could give an indication of a possibly malfunctioning HMU to the patient’s
doctor. Consequently, the doctor could contact the patient and the attack on patient
safety fails. Also, a noteworthy point, since the HMU is not designed to alleviate
sudden worsening of health condition for pacemaker patients, a compromise of the
device will likely not lead to loss of human life.

8.3.6 Limitations of fuzzing framework

Although we were successful in developing a working fuzzing framework, targeting
an SMS interface, our framework is not exempt from certain limitations. Firstly,
a limitation is related to coverage of the test space within each test case. Since
we decided to create fuzzed SMSs within eight different test cases, and given time
restrictions, we had to limit the number of SMSs within each test case. Consequently,
our framework does not cover all possible combinations within our test cases. For
example, when fuzzing PID and DCS, which can take 256 different values each, the
total number of SMSs we could craft with different combinations of PID and DCS
becomes 65536. As this number is impractically large - considering the transmission
rate of SMS from our network, we chose to limit the number of SMSs to approximately
14000, which amounts to roughly 20%. We made the same choice for all eight test
cases, and for some of them, the total number of combinations of fuzzed fields is
indefeasibly large nonetheless. In order to further develop our framework, we realize
that the number of test cases could better cover the total test space within each test
case. However, we made this trade-off since we wanted to fuzz a variety of different
features of the SMS technology, thus, covering the entire test space for each test case
was deemed infeasible.

Another limitation is not related to our development specifically, but rather to

8.4. MITIGATION OF FINDINGS FROM FUZZING 113

fuzzing the SMS interface of a HMU itself. Given that the SMS interface exists in the
modem, there is no guarantee that the sent SMS will ever reach the microcontroller
of the HMU. We do not currently know how the firmware of the HMU manages
incoming SMSs, that is, how the firmware extracts the payload from stored messages,
and how often. Thereby, it becomes challenging to address the probability that a
fuzzed SMS is capable of inflicting damage in the firmware of the HMU.

A third limitation is related to the fact that we chose to implement network side
monitoring. Although network side monitoring has its benefits, it is far from perfect.
Ideally, we would have preferred to implement some kind of receiver side monitoring
mechanism, as it would yield a more detailed log of what happens inside the modem
of the HMU when we trigger a bug. Since we did not implement such monitoring, we
are unable to state why the bug was triggered when it receives our offending PDUs.
Network side monitoring is indeed a limitation, as it leaves us unable to transform
bugs to exploits by crafting specific SMS PDUs. With receiver side monitoring, we
could potentially add such malicious content. For example, we could be able to craft
SMSs that leverage buffer overflow bugs within the modem to gain code execution
or read sections of memory. Exploiting such buffer overflows on mobile phones
has been done in similar work conducted by Weinmann [Wei12], which completely
compromised the integrity of the targets. We chose network side monitoring due to
its low complexity. However, we realize that receiver side monitoring would be the
most beneficial option.

8.4 Mitigation of findings from fuzzing

As mentioned earlier, due to the limitation of not having receiver side monitoring,
we have not obtained logs which explicitly state why the modem crashes when it
receives the offending PDU we uncovered. Consequently, it becomes challenging to
be specific when proposing potential techniques to mitigate the vulnerability that
exist in the modem.

Nonetheless, there is no doubt that the vulnerabilities should be mitigated
somehow. Firstly, the bugs found in our experiments that caused the HMU’s modem
to crash should be identified in the firmware and patched with proper edge-case
handling. An extensive review of the modem’s firmware should then be carried out,
as it might uncover pieces of code that contain vulnerabilities - as it is unlikely that
the firmware only contains the bugs that were disclosed by us.

Also, as mentioned in section 8.3.5, we deem it likely that an attack exploiting
the uncovered vulnerabilities in the modem will be detected by the backend server.
If this is not the case as of now, a possible mitigation mechanism is to implement
such functionality, which leads to a rapid detection of a compromised HMU.

114 8. DISCUSSION AND MITIGATION

8.5 Future work

Although we have performed extensive research on both the hardware security and the
SMS interface of the Cardiomessenger 3G Smart HMU, several aspects of the device
remain uninvestigated. These aspects might also be vulnerable to cyber-attacks.
Therefore, we propose the following as future work within the field of pacemaker
HMU security.

Enhancements on our SMS fuzzing framework is likely to produce even
more findings, and possibly yield more knowledge about the security level of the SMS
interface within the HMU. Enhancements can include new test cases, more granular
monitoring, and smarter input generation. New test cases can uncover whether the
SMS interface of the HMU is vulnerable to other features of the SMS technology.
Improved monitoring, such as receiver side monitoring, would provide more knowledge
regarding the security of the HMU’s communication capabilities and could be used as
a technique to develop exploits from the identified bugs. Exploiting bugs in a more
advanced fashion could potentially demonstrate attacks on the pacemaker ecosystem
with devastating consequences. Attackers can also use reverse engineering as a
method to construct malicious input. By reverse engineering the HMU’s firmware to
understand better how different input can inflict damage not only in the modem but
on the application layer, can be used to form smarter input.

Fuzzing of the data-communication capabilities of the HMU proved to be
too extensive for this thesis project. Thus, future work can research the TCP/IP
interface of the HMU, which might uncover other vulnerabilities. The architecture of
such an experiment would be very similar to that of the SMS fuzzing. Future work
can thus benefit from our simulated network and fuzzing generation. Hence, part of
the foundation for this work is already laid by our work.

A validation of the untested hypotheses on the Cardiomessenger 3G Smart
would provide the necessary information to affirm the complete evolution of security
features from the previous versions of HMUs. This work could be carried out by
setting up an illegitimate base station and spoof the vendor’s backend server, which
is possible since we retrieved the IP address and port number from the memory
dumps.

USB fuzzing could also be a promising research area. The HMU has a USB-
micro port, which it charges through. Attempting to fuzz that port could also uncover
vulnerabilities, and interfere with the HMU’s normal operation.

8.6. ETHICAL CONSIDERATIONS 115

8.6 Ethical considerations

Finally, we need to address some ethical boundaries concerning our findings. As
stated previously, we want to disclose our findings to the affected vendor responsibly.

Throughout this thesis project, there has been an ongoing coordinated vulnera-
bility disclosure process with Biotronik as a consequence of the findings from last
year’s thesis projects [WL19] [NB19]. Because of this, SINTEF and NTNU have
additional knowledge related to the vendor’s systems and devices that we would not
have without several meetings. Due to this new knowledge, we know that the vendor
claims to have taken the findings and hypothetical attacks described in this thesis
into account when developing their newest version of the firmware. Therefore, there
is no reason for us to initiate a new coordinated vulnerability disclosure process with
the vendor. The fact that these findings have been accounted for could imply that
the vendor was not comfortable with the exposed attack vectors described in section
8.1. This substantiates our discussion on the hardware security testing of the device
and the outlined implications for both vendor and patients.

For the modem manufacturer, we are going to initiate a coordinated vulnerability
disclosure process such that they are aware of the vulnerabilities uncovered in this
thesis. Hopefully, they will recognize that these findings constitute potential attack
vectors against IoT-devices that have their modem integrated, with the same firmware
version, and fix them accordingly.

Chapter9Conclusion

This master thesis defined two scopes regarding the security of the most recent HMU
from Biotronik, namely the Cardiomessenger 3G Smart. A hypothesis, research
questions and research objectives were formulated within each scope, and this chapter
will address whether we achieved our research objectives and were successful in
validating each of those hypotheses.

Within scope 1, we incorporated a black-box hardware testing methodology and
thoroughly tested the hardware security of the HMU. We were indeed successful in
achieving RO1, as we successfully tested whether a set of security related hypotheses
that had been proven true for older HMUs, also were true for the most recent
version. We obtained a set of findings, some of which directly corresponded to
vulnerabilities, while others were stepping stones that would lay the foundation
for other attacks and vulnerabilities. Mitigation techniques were then proposed to
counter the vulnerabilities. This leads to the confirmation of our main hypothesis
within scope 1 of this thesis project, which was:

H1 The Cardiomessenger 3G Smart HMU contains vulnerabilities as a standalone
embedded medical device that can be exploited by an attacker having physical
access to the device to compromise a patient’s privacy or safety.

Within scope 2, we incorporated a black-box fuzzing methodology, and successfully
developed a framework capable of fuzzing the SMS interface of the HMU. The
framework is universally applicable and can target the SMS interface of any device.
We achieved RO2, as we thoroughly investigated potential vulnerabilities in the
HMU’s SMS interface through fuzzing. The fuzzing successfully uncovered several
SMSs that crashes the HMU’s modem, effectively resulting in a DoS-attack, which
puts patient safety at risk. Then, countermeasures were identified for this vulnerability.
The offending SMSs we uncovered are not unique to the HMU, but affects all IoT-
devices with the same modem. To disclose our findings in a responsible manner to

117

118 9. CONCLUSION

the affected vendor, we chose to follow a coordinated vulnerability disclosure process.
This leads to the confirmation of our hypothesis within scope 2 of this thesis project,
which was:

H2 The implementation of SMS within the HMU is insecure and contains vulnera-
bilities that can be exploited by an attacker determined to compromise either
the safety or the privacy of a patient.

References

[3rd99] 3rd Generation Partnership Project. Alphabets and language-specific information
(GSM 03.38), June 1999.

[3rd00] 3rd Generation Partnership Project. Point-to-Point (PP) Short Message Service
(SMS) support on mobile radio interface (GSM 04.11), October 2000.

[3rd02] 3rd Generation Partnership Project. Technical realization of the Short Message
Service (SMS)Point-to-Point (PP) (GSM 03.40), January 2002.

[3rd08] 3rd Generation Partnership Project. Mobile Station - Base Station System (MS -
BSS) interface; Data Link (DL) layer specification (GSM 04.06), December 2008.

[3rd19] 3rd Generation Partnership Project. 3GPP TS 23.040; Technical realization of
the Short Message Service (SMS), March 2019.

[3rd20] 3rd Generation Partnership Project. 3GPP TS 31.115; Secured packet structure
for (Universal) Subscriber Identity Module (U)SIM Toolkit, March 2020.

[A+17] US Food and Drug Administration et al. Cybersecurity vulnerabilities identified
in St. Jude Medical’s implantable cardiac devices and Merlin@ home transmitter:
FDA safety communication. https://www.fda.gov/medical-devices/safety
-communications/cybersecurity-vulnerabilities-identified-st-jude-m
edicals-implantable-cardiac-devices-and-merlinhome, January 2017.

[Blo16] Carson C. Block. Muddy waters capital is short st. jude medical, inc. (stj us).
Research report, Muddy Waters Capital LLC, August 2016.

[DD12] Sebastien Dudek and Guillaume Delugré. Fuzzing the gsm protocol stack, 2012.
http://archive.hack.lu/2012/Fuzzing_The_GSM_Protocol_Stack_-_Sebas
tien_Dudek_Guillaume_Delugre.pdf.

[Doe19a] Christian Doerr. Network Security in Theory and Practice, chapter Cryptographic
Building Blocks, page 214. Christian Doerr, 2019.

[Doe19b] Christian Doerr. Network Security in Theory and Practice, chapter Introduction,
page 38. Christian Doerr, 2019.

119

https://www.fda.gov/medical-devices/safety-communications/cybersecurity-vulnerabilities-identified-st-jude-medicals-implantable-cardiac-devices-and-merlinhome
https://www.fda.gov/medical-devices/safety-communications/cybersecurity-vulnerabilities-identified-st-jude-medicals-implantable-cardiac-devices-and-merlinhome
https://www.fda.gov/medical-devices/safety-communications/cybersecurity-vulnerabilities-identified-st-jude-medicals-implantable-cardiac-devices-and-merlinhome
http://archive.hack.lu/2012/Fuzzing_The_GSM_Protocol_Stack_-_Sebastien_Dudek_Guillaume_Delugre.pdf
http://archive.hack.lu/2012/Fuzzing_The_GSM_Protocol_Stack_-_Sebastien_Dudek_Guillaume_Delugre.pdf

120 REFERENCES

[Eur17a] European Commission - Press Release. New eu rules on medical devices to
enhance patient safety and modernise public health. https://ec.europa.eu/c
ommission/presscorner/detail/en/IP_17_847, April 2017.

[Eur17b] European Parliament, Council of the European Union. Regulation (eu) 2017/745
of the european parliament and of the council of 5 april 2017 on medical devices,
amending directive 2001/83/ec, regulation (ec) no 178/2002 and regulation (ec)
no 1223/2009 and repealing council directives 90/385/eec and 93/42/eec, May
2017.

[GM14] Brian Gorenc and Matt Molinyawe. Blowing up the celly! building your own
sms/mms fuzzer. https://www.defcon.org/images/defcon-22/dc-22-pres
entations/Gorenc-Molinyawe/DEFCON-22-Brian-Gorenc-Matt-Molinyawe
-Blowing-Up-The-Celly.pdf, 2014.

[Gol11] Nico Golde. Sms vulnerability analysis on feature phones. Master’s thesis,
Technische Universität Berlin, Germany, 2011.

[Gra04] Joe Grand. Practical secure hardware design for embedded systems. In Proceedings
of the 2004 Embedded Systems Conference, San Francisco, California, 2004.

[HHR+08] D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S. Clark, B. Defend,
W. Morgan, K. Fu, T. Kohno, and W. H. Maisel. Pacemakers and implantable
cardiac defibrillators: Software radio attacks and zero-power defenses. In 2008
IEEE Symposium on Security and Privacy (sp 2008), pages 129–142, 2008.

[Hon11] Brinio Hond. Fuzzing the gsm protocol. Master’s thesis, Radbound University
Nijmegen, The Netherlands, 2011.

[IEE13] IEEE Computer Society. Ieee standard for test access port and boundary-scan
architecture. IEEE Std 1149.1-2013 (Revision of IEEE Std 1149.1-2001), pages
1–444, 2013.

[ISO18] ISO Central Secretary. Information technology - security techniques - vulnera-
bility disclosure. Standard ISO/IEC 29147:2018, International Organization for
Standardization, Geneva, CH, 2018.

[KM19] Jakob Stenersen Kok and Bendik Aalmen Markussen. A security analysis of the
pacemaker ecosystem. Project report in ttm4502, Department of Information
Security and Communication Technology, NTNU – Norwegian University of
Science and Technology, Nov 2019.

[KW18] Eivind Skjelmo Kristiansen and Anders Been Wilhelmsen. Security testing of
the pacemaker ecosystem. Master’s thesis, Norwegian University of Science and
Technology, Norway, 2018.

[LC16] Robert Lipovsky and Anton Cherepanov. Blackenergy trojan strikes again:
Attacks ukrainian electric power industry. https://www.welivesecurity.com
/2016/01/04/blackenergy-trojan-strikes-again-attacks-ukrainian-ele
ctric-power-industry/, January 2016.

https://ec.europa.eu/commission/presscorner/detail/en/IP_17_847
https://ec.europa.eu/commission/presscorner/detail/en/IP_17_847
https://www.defcon.org/images/defcon-22/dc-22-presentations/Gorenc-Molinyawe/DEFCON-22-Brian-Gorenc-Matt-Molinyawe-Blowing-Up-The-Celly.pdf
https://www.defcon.org/images/defcon-22/dc-22-presentations/Gorenc-Molinyawe/DEFCON-22-Brian-Gorenc-Matt-Molinyawe-Blowing-Up-The-Celly.pdf
https://www.defcon.org/images/defcon-22/dc-22-presentations/Gorenc-Molinyawe/DEFCON-22-Brian-Gorenc-Matt-Molinyawe-Blowing-Up-The-Celly.pdf
https://www.welivesecurity.com/2016/01/04/blackenergy-trojan-strikes-again-attacks-ukrainian-electric-power-industry/
https://www.welivesecurity.com/2016/01/04/blackenergy-trojan-strikes-again-attacks-ukrainian-electric-power-industry/
https://www.welivesecurity.com/2016/01/04/blackenergy-trojan-strikes-again-attacks-ukrainian-electric-power-industry/

REFERENCES 121

[Lov05] Lovdata.no. Forskrift om medisinsk utstyr, kap 1, paragraf 1-5. https://lovd
ata.no/forskrift/2005-12-15-1690/\T1\textsection1-5, December 2005.

[MGS11] Collin Mulliner, Nico Golde, and Jean-Pierre Seifert. Sms of death: From
analyzing to attacking mobile phones on a large scale. In USENIX Security
Symposium, volume 168, 2011.

[MM09a] Collin Mulliner and Charlie Miller. Fuzzing the phone in your phone. Black Hat
USA, 25:31, 2009.

[MM09b] Collin Mulliner and Charlie Miller. Injecting sms messages into smart phones
for security analysis. In USENIX Workshop on Offensive Technologies (WOOT),
volume 29, 2009.

[MSG+16] Eduard Marin, Dave Singelée, Flavio D Garcia, Tom Chothia, Rik Willems,
and Bart Preneel. On the (in) security of the latest generation implantable
cardiac defibrillators and how to secure them. In Proceedings of the 32nd Annual
Conference on Computer Security Applications, pages 226–236, 2016.

[MSP20] Dominik Maier, Lukas Seidel, and Shinjo Park. Basesafe: Baseband sanitized
fuzzing through emulation, 05 2020.

[MT90] Colin M Maunder and Rodham E Tulloss. The test access port and boundary
scan architecture. IEEE Computer Society Press Los Alamitos/Washington, DC,
1990.

[NB19] Guillaume Nicolas Bour. Security analysis of the pacemaker home monitoring
unit: A blackbox approach. Master’s thesis, Norwegian University of Science and
Technology, Norway, 2019.

[OT17] Johannes Obermaier and Stefan Tatschner. Shedding too much light on a micro-
controller’s firmware protection. In Proceedings of the 11th USENIX Conference
on Offensive Technologies, WOOT’17, page 17, USA, 2017. USENIX Association.

[OWAa] OWASP. Application threat modeling. https://owasp.org/www-community/
Application_Threat_Modeling.

[OWAb] OWASP. Fuzzing. https://owasp.org/www-community/Fuzzing.

[Par18] The United Kingdom Parliament. Cyber-attack on the nhs. https://public
ations.parliament.uk/pa/cm201719/cmselec5/cmpubacc/787/78702.htm,
March 2018.

[RB17] Billy Rios and Jonathan Butts. Security evaluation of the implantable cardiac
device ecosystem architecture and implementation interdependencies. Technical
report, Whitescope, May 2017.

[Reg15] Regjeringen. Digital sårbarhet – sikkert samfunn — Beskytte enkeltmennesker
og samfunn i en digitalisert verden (Digital Vulnerabilities in Society). Norsk
Offentlig Utredning 2015: 13 (Official Norwegian Report 2015: 13), 2015.

https://lovdata.no/forskrift/2005-12-15-1690/\T1\textsection 1-5
https://lovdata.no/forskrift/2005-12-15-1690/\T1\textsection 1-5
https://owasp.org/www-community/Application_Threat_Modeling
https://owasp.org/www-community/Application_Threat_Modeling
https://owasp.org/www-community/Fuzzing
https://publications.parliament.uk/pa/cm201719/cmselec5/cmpubacc/787/78702.htm
https://publications.parliament.uk/pa/cm201719/cmselec5/cmpubacc/787/78702.htm

122 REFERENCES

[Sol16] Telit Wireless Solutions. He910/ue910/ul865/ue866 at commands reference guide.
https://www.telit.com/wp-content/uploads/2017/09/Telit_3G_Modules
_AT_Commands_Reference_Guide_r11.pdf, October 2016.

[SP18] Torkel Steen and Eivind S. Platou. Norsk pacemaker- og icd-statistikk for 2017.
Hjerteforum, 31(2), 2018.

[STM20] STMicroelectronics. Introduction to stm32 microcontrollers security. https:
//www.st.com/resource/en/application_note/dm00493651-introduction-
to-stm32-microcontrollers-security-stmicroelectronics.pdf, February
2020.

[The18] The Norewgian Medicines Agency. Our goals and tasks. https://legemiddel
verket.no/english/about-us/our-goals-and-tasks, January 2018.

[The20] The Norwegian Medicines Agency. About medical devices - new eu regulations.
https://legemiddelverket.no/english/medical-devices/about-medical-
devices#new-eu-regulations, January 2020.

[UTHG17] Jon Ungoed-Thomas, Robin Henry, and Dipesh Gadher. Cyber-attack guides
promoted on youtube. https://www.thetimes.co.uk/article/cyber-attac
k-guides-promoted-on-youtube-972s0hh2c, May 2017.

[Wei12] Ralf-Philipp Weinmann. Baseband attacks: Remote exploitation of memory
corruptions in cellular protocol stacks. In WOOT, pages 12–21, 2012.

[WL19] Anniken Wium Lie. Security analysis of wireless home monitoring units in the
pacemaker ecosystem. Master’s thesis, Norwegian University of Science and
Technology, Norway, 2019.

https://www.telit.com/wp-content/uploads/2017/09/Telit_3G_Modules_AT_Commands_Reference_Guide_r11.pdf
https://www.telit.com/wp-content/uploads/2017/09/Telit_3G_Modules_AT_Commands_Reference_Guide_r11.pdf
https://www.st.com/resource/en/application_note/dm00493651-introduction-to-stm32-microcontrollers-security-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00493651-introduction-to-stm32-microcontrollers-security-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00493651-introduction-to-stm32-microcontrollers-security-stmicroelectronics.pdf
https://legemiddelverket.no/english/about-us/our-goals-and-tasks
https://legemiddelverket.no/english/about-us/our-goals-and-tasks
https://legemiddelverket.no/english/medical-devices/about-medical-devices#new-eu-regulations
https://legemiddelverket.no/english/medical-devices/about-medical-devices#new-eu-regulations
https://www.thetimes.co.uk/article/cyber-attack-guides-promoted-on-youtube-972s0hh2c
https://www.thetimes.co.uk/article/cyber-attack-guides-promoted-on-youtube-972s0hh2c

AppendixAOpenOCD Scripts

A.1 Simple connection using OpenOCD

1 # S c r i p t used to e s t a b l i s h a s i m p le c o n n e c t i o n to a CardioMessenger 3g Smart
2
3 # INTERFACE
4 i n t e r f a c e bcm2835gpio
5 bcm2835gpio_peripheral_base 0 x20000000
6 bcm2835gpio_speed_coeffs 113714 28
7 bcm2835gpio_jtag_nums 11 25 10 9
8 bcm2835gpio_srst_num 24
9 r e s e t _ c o n f i g s r s t _ o n l y srst_push_pull

10 adapter_khz 500
11
12 # TRANSPORT
13 t r a n s p o r t s e l e c t j t a g
14
15 # TARGET
16 s e t WORKAREASIZE 0
17 s e t CHIPNAME stm32f4x
18 s o u r c e [f i n d t a r g e t / stm32f4x . c f g]
19 r e s e t _ c o n f i g s r s t _ o n l y s r s t _ n o g a t e
20 adapter_nsrst_delay 100
21 adapter_nsrst_assert_width 100
22
23 # EXEC
24 i n i t
25 t a r g e t s
26 h a l t

Code Listing A.1: Successful JTAG connection using OpenOCD

A.2 Dump memory using OpenOCD

1 # S c r i p t used to dump the firmware and RAM o f the Cardiomessenger 3G Smart
2
3 # INTERFACE
4 i n t e r f a c e bcm2835gpio
5 bcm2835gpio_peripheral_base 0 x20000000
6 bcm2835gpio_speed_coeffs 113714 28
7 bcm2835gpio_jtag_nums 11 25 10 9
8 bcm2835gpio_srst_num 24
9 r e s e t _ c o n f i g s r s t _ o n l y srst_push_pull

10 adapter_khz 500
11

123

124 A. OPENOCD SCRIPTS

12 # TRANSPORT
13 t r a n s p o r t s e l e c t j t a g
14
15 # TARGET
16 s e t WORKAREASIZE 0
17 s e t CHIPNAME stm32f4x
18 s o u r c e [f i n d t a r g e t / stm32f4x . c f g]
19 r e s e t _ c o n f i g s r s t _ o n l y s r s t _ n o g a t e
20 adapter_nsrst_delay 100
21 adapter_nsrst_assert_width 100
22
23 # EXEC
24 i n i t
25 t a r g e t s
26 h a l t
27
28
29 echo " Dumping f l a s h . . . "
30 dump_image f l a s h . img 0 x08000000 1048575
31 echo " Done ! "
32
33 echo " Dumping CCM RAM. . . "
34 dump_image ccm_ram . img 0 x10000000 65535
35 echo " Done ! "
36
37 echo " Dumping system memory OTP . . . "
38 dump_image system_memory_OTP . img 0x1FFF0000 31247
39 echo " Done ! "
40
41 echo " Dumping SRAM . . . "
42 dump_image sram . img 0 x20000000 131071
43 echo " Done ! "
44
45 echo " Dumping RAM. . . "
46 dump_image ram . img 0 x60000000 2097152
47 echo " Done ! "

Code Listing A.2: Successful memory dumping using OpenOCD

AppendixBInstalling modified version of
OpenBTS

Although OpenBTS is intended for use on a Ubuntu 12.04 distributions, we managed
to install OpenBTS on a Ubuntu 16.04 distribution properly. This appendix entails
a description on how to install OpenBTS version 5 with the extra feature of sending
raw PDUs to a specified IMSI on a clean installation of Ubuntu 16.04. This guide is
based on a mikrotechnia blog post1.

First install necessary dependencies.
$sudo apt-get install software-properties-common python-software-
properties
$sudo add-apt-repository ppa:git-core/ppa (press enter)

Then update and install git.
$sudo apt-get update
$sudo apt-get install git

Download OpenBTS, SMQueue, SIPauthserve, Asterisk and UHD drivers. First
install convenient scripts from Range Networks.
$cd
$git clone https://github.com/RangeNetworks/dev.git
$cd dev
$./clone.sh

Before building the package, we need to copy our code containing the functionality of
sending raw PDUs into the source code of OpenBTS. We implemented two varieties
of this. The first function sends one SMS PDU to a specified IMSI, whereas the
other function sends all PDUs from a file to a specified IMSI. This needs to be added
as functions in the CLICommands.cpp file inside dev/openbts/CLI folder.

1https://mikrotechnica.wordpress.com/2017/04/09/setting-up-openbts-on-national-in
struments-usrp-2922/?fbclid=IwAR2lwn8dqgDqo1GKjrORheWk_z73_osYKm75-S93iIgILO43qXlMFw
hpEUJU, accessed on 20.03.2020.

125

https://mikrotechnica.wordpress.com/2017/04/09/setting-up-openbts-on-national-instruments-usrp-2922/?fbclid=IwAR2lwn8dqgDqo1GKjrORheWk_z73_osYKm75-S93iIgILO43qXlMFwhpEUJU
https://mikrotechnica.wordpress.com/2017/04/09/setting-up-openbts-on-national-instruments-usrp-2922/?fbclid=IwAR2lwn8dqgDqo1GKjrORheWk_z73_osYKm75-S93iIgILO43qXlMFwhpEUJU
https://mikrotechnica.wordpress.com/2017/04/09/setting-up-openbts-on-national-instruments-usrp-2922/?fbclid=IwAR2lwn8dqgDqo1GKjrORheWk_z73_osYKm75-S93iIgILO43qXlMFwhpEUJU

126 B. INSTALLING MODIFIED VERSION OF OPENBTS

1 /∗∗ Submit an SMS f o r d e l i v e r y to an IMSI . ∗/
2 s t a t i c CLIStatus sendsmspdu (i n t argc , char ∗∗ argv , ostream& os)
3 {
4 i f (argc <4) r e t u r n BAD_NUM_ARGS;
5
6 char ∗IMSI = argv [1] ;
7 char ∗ srcAddr = argv [2] ;
8 s t r i n g r e s t = " " ;
9 f o r (i n t i =3; i<argc ; i ++) r e s t = r e s t + argv [i] ; //+ " " ;

10 c o n s t char ∗ txtBuf = r e s t . c_str () ;
11
12 i f (! i sIMSI (IMSI)) {
13 os << " I n v a l i d IMSI . Enter 15 d i g i t s only . " ;
14 r e t u r n BAD_VALUE;
15 }
16
17 // We j u s t use the IMSI , dont t r y to f i n d a tmsi .
18 F u l l M o b i l e I d msid (IMSI) ;
19 Control : : TranEntry ∗ tran = Control : : TranEntry : : newMTSMS(
20 NULL, // No SIPDialog
21 msid ,
22 GSM: : L3CallingPartyBCDNumber (s r c
23 Addr) ,
24 s t r i n g (" a p p l i c a t i o n /vnd . 3 gpp .
25 sms ")) ;
26 Control : : gMMLayer .mmAddMT(tran) ;
27 os << " message submitted f o r d e l i v e r y " << endl ;
28 r e t u r n SUCCESS ;
29 }
30
31
32 // send a l l SMSs from a f i l e
33 s t a t i c CLIStatus sendsmspdus_from_file (i n t argc , char ∗∗ argv , ostream& os){
34 i f (argc <4) r e t u r n BAD_NUM_ARGS;
35
36 char ∗IMSI = argv [1] ;
37 char ∗ srcAddr = argv [2] ;
38 s t r i n g f i l e n a m e = " " ;
39 f o r (i n t i =3; i<argc ; i ++) f i l e n a m e = f i l e n a m e + argv [i] ; //+ " " ;
40 c o n s t char ∗ txtBuf = f i l e n a m e . c_str () ;
41
42 i f (! i sIMSI (IMSI)) {
43 os << " I n v a l i d IMSI . Enter 15 d i g i t s only . " ;
44 r e t u r n BAD_VALUE;
45 }
46
47 i f s t r e a m i n F i l e ;
48 s t r i n g path = " . . / . . / . . / Master−P r o j e c t / s r c /3 g/ Fuzzer / TestCases /"+ f i l e n a m e ;
49 i n F i l e . open (path . c_str ()) ;
50 s t r i n g l i n e ;
51
52 i f (! i n F i l e){
53 os <<"Error , could not open f i l e . " ;
54 r e t u r n BAD_VALUE;
55 }
56 w h i l e (g e t l i n e (i n F i l e , l i n e)) {
57 // We j u s t use the IMSI , dont t r y to f i n d a tmsi .
58 F u l l M o b i l e I d msid (IMSI) ;
59 Control : : TranEntry ∗ tran = Control : : TranEntry : : newMTSMS(
60 NULL, // No SIPDialog
61 msid ,
62 GSM: : L3Cal l ingParty
63 BCDNumber(srcAddr) ,
64 l i n e , // message body
65 s t r i n g (" a p p l i c a t i o n /
66 vnd . 3 gpp . sms ")) ;
67 Control : : gMMLayer .mmAddMT(tran) ;
68 os << " message submitted f o r d e l i v e r y " << endl ;
69 }
70 i n F i l e . c l o s e () ;

127

71 r e t u r n SUCCESS ;
72 }

Code Listing B.1: Function containing PDU contruction.

Additionally, we need to add the new command in the command parser. This is done
by adding the following line in the Parser function inside the same file.

1 addCommand (" sendsmspdu " , sendsmspdu , " IMSI s r c# PDU message . . . −− send PDU SMS
2 to IMSI , a d d r e s s e d from s o u r c e number s r c # . ") ;
3
4 addCommand (" sendsmspdus_from_file " , sendsmspdus_from_file , "<IMSI> <src >
5 <fi lename > −− send PDUs i n f i l e n a m e to s p e c i f i e d IMSI from s r c ") ;

Code Listing B.2: Adding command to parser.

Now in the dev folder run the build script with the wanted USRP. Since we used
Ettus research N200 we provide this as argument to the build script.
$./build.sh N200

Then we need to install the correct Debian packages.
$cd BUILDS/<your_build_timestamp>
$sudo dpkg -i *.deb
$sudo apt-get install -f

A separate tutorial on how to install the USRP can be found in this post2. Since we
are running Ubuntu 16.04 instead of 14.04, we must further perform some surgery
on the build for it to work. It appears that this build cannot find the installed
transceiver correctly, thus from inside openbts/apps/ folder, run the following to
create a symbolic link:
$sudo ln -s ../Transceiver52M/transceiver .

Next, Ubuntu changed its init daemon from Upstart to Systemd in the 16.04 version.
Therefore the SMQueue, SIPauthserve and Asterisk processes need to be started
directly.
$sudo /usr/local/sbin/smqueue
$sudo /usr/local/sbin/sipauthserve
$sudo /usr/sbin/asterisk -vvvv

Then start OpenBTS from openbts/apps/ folder:
$sudo ./OpenBTS

For the HMU to connect to our network, certain configurations needed to be applied.
The mobile country code (MCC) and operator name was changed to that of the

2https://kb.ettus.com/USRP_N_Series_Quick_Start_(Daughterboard_Installation),
accessed on 24.03.2020.

https://kb.ettus.com/USRP_N_Series_Quick_Start_(Daughterboard_Installation)

128 B. INSTALLING MODIFIED VERSION OF OPENBTS

SIM-card operator on the HMU. Additionally, TMSIS were assigned once connected
and GPRS was enabled. GSMTAP, which is used for network captures, was also
enabled. Inside the OpenBTS, the following commands: OpenBTS> config
Control.LUR.SendTMSIs 1
OpenBTS> config Control.GSMTAP.GPRS 1
OpenBTS> config Control.GSMTAP.GSM 1
OpenBTS> config GSM.Identity.ShortName Telekom
OpenBTS> config GSM.Identity.MCC 262

AppendixCFuzzer framework

C.1 Parent class for different fuzzing cases

import random
import smspdu
import Utils
import get_dcs_length_mapping
import get_fuzz_payload
import abc

class fuzzer :
rpdu_base = " 014803a1000000 "
test_cases = []
user_data =""
rpdu_counter = 0
i=0

def __init__ (self):
self. payloads = get_fuzz_payload . payloads
self. dcs_length_mapping = get_dcs_length_mapping .dic

def fuzz_pid (self , tpdu):
value = random . randint (0, 256)
tpdu. tp_pid = value

@abc. abstractmethod
def fuzz_dcs (self , tpdu):

return

def fuzz_ud (self ,tpdu):
if self.i < len(self. payloads):

dcs = tpdu. tp_dcs
max_payload_len = self. dcs_length_mapping [dcs]
if len(self. payloads [self.i]) <= max_payload_len :

tpdu. tp_ud = self. payloads [self.i]
tpdu. tp_udl = len(self. payloads [self.i])

self.i += 1

129

130 C. FUZZER FRAMEWORK

@abc. abstractmethod
def fuzz_tpdu (self ,tpdu):

return

def create_fuzzed_tpdu (self):
tpdu = smspdu . SMS_DELIVER . create (’12445678 ’,’recipient ’,self.

user_data)
self. fuzz_tpdu (tpdu)
tpdu_string = tpdu. toPDU ()
return tpdu_string

def pack_fuzzed_tpdu_in_rpdu (self ,tpdu):
Add length of the TPDU at the end of RPDU header
Divde by two because we group them in octets
len_in_hex = Utils . to_hex (len(tpdu)/2)
tmp = self. rpdu_base + len_in_hex

CreateMR - field of the RPDU , must be an octet
if self. rpdu_counter ==256:

self. rpdu_counter =0
rpdu_mr = str(Utils . to_hex (self. rpdu_counter))

Set MR - field of RPDU , increment the MR - field of RPDU by 1
ret = tmp[0] + tmp[1] + rpdu_mr + tmp[4:]
self. rpdu_counter += 1
ret += tpdu

Return TPDU packed in RPDU with set MR - field
return ret

def create_fuzzed_pdus (self):
Create final fuzzed PDUs , append to test_cases
for i in range (len(self. payloads)):

tpdu = self. create_fuzzed_tpdu ()
rpdu_with_tpdu = self. pack_fuzzed_tpdu_in_rpdu (tpdu)
self. test_cases . append (rpdu_with_tpdu)

def write_to_files (self , subfolder , filename_base):
Write final fuzzed PDUs to file , 2 PDUs per file
file_counter = 1
start = 0
step = 1000
total_number_of_pdus = len(self. test_cases)
while start < total_number_of_pdus :

current = self. test_cases [start :step]
with open (’TestCases /’ + subfolder + filename_base + str(

file_counter) + ’.txt ’,
’a’) as file :

for i in range (len(current)):
out = current [i]
file . write (out)
file . write ("\n")

C.2. IMPLEMENTING THE ACTUAL SENDING OF PDUS VIA OPENBTS 131

start += 1000
step += 1000
file_counter += 1

C.2 Implementing the actual sending of PDUs via OpenBTS

import subprocess
import time
from os import walk

test_cases = []
files = []
path = " TestCases /"

def load_files (testcase):
needed to make this slighty weird because walk method does not

give test cases in sorted order
for (dirpath ,dirname , filenames) in walk(path+ testcase):

for i in range (len(filenames)):
try:

filename = filenames [i]
numb = filename [len(testcase):]. split (".")[0]
files . append ((testcase + "/" + filenames [i],int(numb)))

except Exception as e:
print (e)

sorts the tuples such that RP_MR are sent in increasing order
def sort_files ():

sorted_files = sorted (files , key= lambda filename : filename [1])
return sorted_files

def send_sms (imsi ,src):
cmd_path = "/home/ jakob / Master /dev/ openbts /apps/ OpenBTSCLI "
filenames = sort_files ()
for file in filenames :

cmd = " sendsmspdus_from_file " + " " + imsi + " " + src + " " +
file [0]

a = subprocess . Popen ([cmd_path , "-c", cmd], stdout = subprocess .
PIPE)

(std_out , std_err) = a. communicate ()
print (std_out)
time. sleep (1)

def main ():
load_files ("NAME of TESTCASE ")
send_sms ("IMSI"," SOURCE ")

main ()

132 C. FUZZER FRAMEWORK

C.3 Monitoring

C.3.1 Health checker
import socket
import threading
import serial

set serial communication variables
ser = serial . Serial ()
ser. baudrate = 115200
ser.port = ’COM9 ’

configure socket
HOST = ’192.168.1.118 ’
PORT = 65432 # Port to listen on (non - privileged ports are >

1023)
s = socket . socket (socket .AF_INET , socket . SOCK_STREAM)
s.bind ((HOST , PORT))
s. listen (5)
print (" Binded to %s IP on port %d" %(HOST ,PORT))

def communicate_with_modem ():
ret = ""
cmd = "AT+CMGD=1,4\r\n"
try:

ser. open ()
except Exception :

print ("Can ’t establish connection to modem ..")
print ("Stop sending ")
ret = b"stop"

if ser. isOpen ():
ser. write (cmd. encode ())
reply = ser.read(17) # Number of bytes , varies depending on

command
print (" Reply from modem was: %s" % reply)
if "OK" in reply . decode ("utf -8"):

ret = b" continue "
else :

ret = b"stop"
ser. close ()
return ret

def on_new_client (clientsocket):
while True:

msg = clientsocket .recv(1024)
if not msg:

break
response = communicate_with_modem ()
clientsocket . sendall (response)

clientsocket . close ()

C.3. MONITORING 133

def main ():
while True:

conn , addr = s. accept ()
print (" Connected to: " + addr[0] + ":" + str(addr[1]))
t = threading . Thread (target = on_new_client ,args=(conn ,))
t. start ()

s. close ()
main ()

C.3.2 Parsing resulting Pcap file
import pyshark

def compare_reference_number (prev_pkt , pkt):
equal = False
if prev_pkt [" gsm_a .rp"]. rp_message_reference == pkt[" gsm_a .rp"].

rp_message_reference :
equal = True

return equal

def write_pdu_to_file (pkt , testcase):
filename = "../ ResendPDUs / resend_ " + testcase + ".txt"
with open (filename , ’a’) as file :

rpdu = pkt[" gsm_a .dtap"].rpdu
strip rpdu of : separators
line = ""
for character in rpdu:

if character != ":":
line += character

file . write (line + "\n")

def main ():
testcase = " fuzz_pid_7bit_dcs_ud "
target = "../ Pcaps / fuzz_pid_7bit_dcs_ud /" + testcase + ".pcap"
cap = pyshark . FileCapture (target)
sent = 0
responses = 0
previous_sms = None # Initialized to NONE , first SMS must arrive

before first response
previous_sms_got_response = False
last_packet_was_sms = False
for pkt in cap:

This means that there is an RPDU layer in this packet
if " gsm_a .rp" in pkt:

Network to MS RP - DATA
if pkt[" gsm_a .rp"]. msg_type == " 0x00000001 ":

if last_packet_was_sms and sent != 0:
print ("Last SMS with msg -ref %s never got reply "
% previous_sms [" gsm_a .rp"]. rp_message_reference)
write_pdu_to_file (previous_sms , testcase)

previous_sms = pkt

134 C. FUZZER FRAMEWORK

previous_sms_got_response = False
sent += 1
last_packet_was_sms = True
print (" Parsed this many SMS: " + str(sent))

else :
last_packet_was_sms = False
MS to Network RP - ACK
if pkt[" gsm_a .rp"]. msg_type == " 0x00000002 ":

responses += 1
Check if RP -ACK was for previous SMS
if compare_reference_number (previous_sms , pkt):

previous_sms_got_response = True
print ("SMS with msg -ref %s received an ACK"
% previous_sms [" gsm_a .rp"]. rp_message_reference

)
MS to Network RP - ERROR
if pkt[" gsm_a .rp"]. msg_type == " 0x00000004 ":

responses += 1
Check if RP - ERROR was for previous SMS
if compare_reference_number (previous_sms , pkt):

previous_sms_got_response = True
print ("SMS with msg -ref %s received an ERROR "
% previous_sms [" gsm_a .rp"]. rp_message_reference

)
If RP -ACK or RP - ERROR does not belong to previous SMS

, write PDU to file
if not previous_sms_got_response :

print ("SMS with msg -ref %s did not receive response
"

% previous_sms [" gsm_a .rp"]. rp_message_reference)
write_pdu_to_file (previous_sms , testcase)

print ("Sent %d" % sent)
print (" Responses %d" % responses)

main ()

C.4 Various fuzzing of PID, DCS and UD

C.4.1 Fuzzing PID, DCS and UD
from create_sms_cases import fuzzer
import random

class testcase1_fuzz_pid_dcs_ud (fuzzer):

def fuzz_dcs (self , tpdu):
value = random . randint (0, 256)
tpdu. tp_dcs = value

C.4. VARIOUS FUZZING OF PID, DCS AND UD 135

def fuzz_tpdu (self , tpdu):
self. fuzz_pid (tpdu)
self. fuzz_dcs (tpdu)
self. fuzz_ud (tpdu)

def main ():
fuzz = testcase1_fuzz_pid_dcs_ud ()
fuzz. create_fuzzed_pdus ()
fuzz. write_to_files (’fuzz_pid_dcs_ud /’, ’fuzz_pid_dcs_ud ’)

main ()

C.4.2 Fuzzing PID and UD, with 7 bit DCS
from create_sms_cases import fuzzer

class testcase2_fuzz_pid__7bit_dcs_ud (fuzzer):

def fuzz_dcs (self ,tpdu):
value = 0
tpdu. tp_dcs = value

def fuzz_tpdu (self , tpdu):
self. fuzz_pid (tpdu)
self. fuzz_dcs (tpdu)
self. fuzz_ud (tpdu)

def main ():
fuzz = testcase2_fuzz_pid__7bit_dcs_ud ()
fuzz. create_fuzzed_pdus ()
fuzz. write_to_files (’fuzz_pid_7bit_dcs_ud /’, ’fuzz_pid_7bit_dcs_ud ’

)

main ()

C.4.3 Fuzzing PID and UD, with common DCS
from create_sms_cases import fuzzer
import random

class fuzz_pid_common_dcs_ud (fuzzer):

i = 0
7 bit , 8 bit , 7 bit class 1, 8 bit class 1
common_dcs = [0,4,241 ,245]

def fuzz_dcs (self , tpdu):
value = self. common_dcs [random . randint (0,len(self. common_dcs)-1

)]
tpdu. tp_dcs = value

136 C. FUZZER FRAMEWORK

def fuzz_tpdu (self , tpdu):
self. fuzz_pid (tpdu)
self. fuzz_dcs (tpdu)
self. fuzz_ud (tpdu)

def main ():
fuzz = fuzz_pid_common_dcs_ud ()
fuzz. create_fuzzed_pdus ()
fuzz. write_to_files (’fuzz_pid_common_dcs_ud /’, ’

fuzz_pid_common_dcs_ud ’)

main ()

C.4.4 Flash SMS
from create_sms_cases import fuzzer
import random

class fuzz_pid_ud (fuzzer):

dcs_flash_values =[240 ,244]

def fuzz_dcs_pid (self ,tpdu):
a = random . randint (0,1)
if a == 0:

tpdu. tp_pid =64
tpdu. tp_dcs = random . randint (0,255)

else :
tpdu. tp_pid = random . randint (0,255)
b = random . randint (0,1)
tpdu. tp_dcs =self. dcs_flash_values [b]

def fuzz_tpdu (self , tpdu):
self. fuzz_dcs_pid (tpdu)
self. fuzz_ud (tpdu)

def main ():
fuzz = fuzz_pid_ud ()
fuzz. create_fuzzed_pdus ()
fuzz. write_to_files (’flash /’, ’flash ’)

main ()

C.5 Various fuzzing of UDH features

C.5.1 Fuzzing generic UDH

C.5. VARIOUS FUZZING OF UDH FEATURES 137

from create_sms_cases import fuzzer
import random
import Utils
import smspdu

class fuzz_generic_udh (fuzzer):

alphabet = " 0123456789ABCDEF "

def fuzz_udh (self ,tpdu):
tpdu. tp_udhi = 1
create up to 15 tag value triplets
number_of_headers = random . randint (1,15)
udh = ""
for i in range (number_of_headers):

header = ""
iei = Utils . to_hex (random . randint (0,255))
ied = ""
ied_length = random . randint (2,8)
for j in range (ied_length):

ied_byte = Utils . to_hex (random . randint (0,255))
ied+= ied_byte

ied_length = Utils . to_hex (ied_length)
header += iei + ied_length + ied
udh += header

payload = ""
for i in range (10):

payload += self. alphabet [random . randint (0, len(self.
alphabet) - 1)]

udh_len = Utils . to_hex (len(udh)/2)
udh = udh_len + udh
tpdu. tp_ud = ""
tpdu. tp_udl = len(udh+ payload)/2
tpdu_string = tpdu. toPDU () + udh + payload
return tpdu_string

def fuzz_pid (self , tpdu):
value = random . randint (0, 255)
tpdu. tp_pid = value

def fuzz_dcs (self , tpdu):
value = random . randint (0, 255)
tpdu. tp_dcs = value

def fuzz_tpdu (self , tpdu):
self. fuzz_pid (tpdu)
self. fuzz_dcs (tpdu)
pdu = self. fuzz_udh (tpdu)
return pdu

def create_fuzzed_tpdu (self):

138 C. FUZZER FRAMEWORK

tpdu = smspdu . SMS_DELIVER . create (’12345678 ’,’recipient ’,self.
user_data)

pdu = self. fuzz_tpdu (tpdu)
return pdu

def main ():
fuzz = fuzz_generic_udh ()
fuzz. create_fuzzed_pdus ()
fuzz. write_to_files (’generic_udh /’, ’generic_udh ’)

main ()

C.5.2 Fuzzing concatenated SMS
import random
import Utils
import smspdu
import get_dcs_length_mapping

class fuzz_udh_concat :

alphabet = " 0123456789ABCDEF "
i = 0
imsi = ""
src = ""
rpdu_base = " 014803a1000000 "
test_cases = []
user_data = ""
rpdu_counter = 0

padding_map = {6: 1, 5: 2, 4: 3, 3: 4, 2: 5, 1: 6}

def __init__ (self):
self . payloads = get_fuzz_payload . payloads
self. number_of_sequences = 70
self. dcs_length_mapping = get_dcs_length_mapping .dic

def fuzz_dcs (self , tpdu):
value = random . randint (0,255)
tpdu. tp_dcs = value

def fuzz_pid (self , tpdu):
value = random . randint (0,255)
tpdu. tp_pid = value

def fuzz_tpdu (self , tpdu):
self. fuzz_pid (tpdu)
self. fuzz_dcs (tpdu)

def insert_padding (self ,udh , payload):
insert up to 6 bits of 0’s at the start of payload , depending

on length of UDH

C.5. VARIOUS FUZZING OF UDH FEATURES 139

bits_in_udh = (len(udh) * 8)/2
mod = bits_in_udh % 7
numb_of_bits_to_add = self. padding_map [mod]
payload_in_binary = bin(int(payload ,16))[2:]
for i in range (numb_of_bits_to_add):

payload_in_binary = "0"+ payload_in_binary
decimal = int(payload_in_binary ,2)
payload_in_hex = str(hex(decimal). rstrip ("L"). lstrip ("0x"))
return payload_in_hex

def create_udh (self , tpdu , tot , seq , csms):
tpdu. tp_udhi = 1
udh_len = "05"

Header triplet
Indicates concat SMS
iei_a = "00"
iei_a_len = "03"
csms_ref_nr = Utils . to_hex (csms)
total_sms_in_csms = Utils . to_hex (tot)
sequence_numb = Utils . to_hex (seq)
udh = udh_len + iei_a + iei_a_len + csms_ref_nr +

total_sms_in_csms +
sequence_numb

payload = ""
if seq < tot:

for i in range (25):
payload += self. alphabet [random . randint (0,len(self.

alphabet)-1)]
else :

Just random string
payload += " 5E83229BFD06 "

padded_payload = self. insert_padding (udh , payload)
ud = udh + padded_payload
tpdu. tp_ud = ""
tpdu. tp_udl = len(ud)/2
tpdu_string = tpdu. toPDU () + ud
return tpdu_string
#ud/ message itself can only be 134 bytes with this header

def create_tpdu (self , tot , seq , csms_ref):
tpdu = smspdu . SMS_DELIVER . create (’32148567 ’,’recipient ’,self.

user_data)
self. fuzz_tpdu (tpdu)
tpdu_string = self. create_udh (tpdu ,tot ,seq , csms_ref)

return tpdu_string

def pack_tpdu_in_rpdu (self ,tpdu):
len_in_hex = Utils . to_hex (len(tpdu)/2)
tmp = self. rpdu_base + len_in_hex
if self. rpdu_counter == 256:

140 C. FUZZER FRAMEWORK

self. rpdu_counter = 0
rpdu_mr = Utils . to_hex (self. rpdu_counter)
ret = tmp[0]+tmp[1] + rpdu_mr + tmp[4:]
self. rpdu_counter += 1
ret += tpdu
return ret

def create_pdus (self):
current_index = 0
counter = 0
concat_counter = 1
csms_refnr = 0
total_sms_in_concat = random . randint (2, 255)
while counter < self. number_of_sequences :

if concat_counter > total_sms_in_concat :
total_sms_in_concat = random . randint (2,255)
concat_counter = 1
csms_refnr += 1
counter += 1

tpdu = self. create_tpdu (total_sms_in_concat , concat_counter ,
csms_refnr)

rpdu_with_tpdu = self. pack_tpdu_in_rpdu (tpdu)
drop random sms (4% chance)
a = random . randint (0,100)
b = random . randint (0,100)
if a > 5:

self. test_cases . append (rpdu_with_tpdu)

double sequences (5 % chance of happening)
if (1 <= b <= 5):

self. test_cases . append (rpdu_with_tpdu)

scramble delivery order (5 % chance of happening)
if (5 < b <= 10):

len_test_cases = len(self. test_cases)
if len_test_cases > 5:

c = random . randint (0, len_test_cases -2)
tmp = self. test_cases [current_index]
self. test_cases [current_index] = self.

test_cases [
c]

self. test_cases [c] = tmp
else :

current_index -=1
concat_counter += 1
current_index += 1

def write_to_files (self , subfolder , filename_base):
file_counter = 1
start = 0
step = 50
total_number_of_pdus = len(self. test_cases)

C.5. VARIOUS FUZZING OF UDH FEATURES 141

while start < total_number_of_pdus :
current = self. test_cases [start :step]
with open (’TestCases /’ + subfolder + filename_base + str(

file_counter) + ’.txt ’,
’a’) as file :

for i in range (len(current)):
out = current [i]
file . write (out)
file . write ("\n")

start += 50
step += 50
file_counter += 1

def main ():
fuzz = fuzz_udh_concat ()
fuzz. create_pdus ()
fuzz. write_to_files (’concat_sms /’, ’concat_sms ’)

main ()

C.5.3 Fuzzing EMS
from create_sms_cases import fuzzer
import random
import Utils
import smspdu

class fuzz_pid_ud (fuzzer):

alphabet = " 0123456789ABCDEF "

def fuzz_udh_ems (self ,tpdu):
tpdu. tp_udhi = 1
udh = ""
iei = Utils . to_hex (random . randint (10 ,31))
ied_length = random . randint (1,7)
ied = ""
for j in range (ied_length):

ied_byte = Utils . to_hex (random . randint (0,255))
ied += ied_byte

ied_length = Utils . to_hex (ied_length)
udh += iei + ied_length + ied

payload = ""
for i in range (random . randint (10 ,120)):

payload += self. alphabet [random . randint (0, len(self.
alphabet) - 1)]

udh_len = Utils . to_hex (len(udh)/2)
udh = udh_len + udh
tpdu. tp_ud = ""
tpdu. tp_udl = len(udh+ payload)/2
tpdu_string = tpdu. toPDU () + udh + payload

142 C. FUZZER FRAMEWORK

return tpdu_string

Not fuzzing of pid , change later ?
def fuzz_pid (self , tpdu):

value = 0
tpdu. tp_pid = value

Not fuzzing of pid , change later ?
def fuzz_dcs (self , tpdu):

value = 0
tpdu. tp_dcs = value

def fuzz_tpdu (self , tpdu):
self. fuzz_pid (tpdu)
self. fuzz_dcs (tpdu)
pdu = self. fuzz_udh_ems (tpdu)
return pdu

def create_fuzzed_tpdu (self):
tpdu = smspdu . SMS_DELIVER . create (’12345678 ’,’recipient ’,self.

user_data)
pdu = self. fuzz_tpdu (tpdu)
return pdu

def main ():
fuzz = fuzz_pid_ud ()
fuzz. create_fuzzed_pdus ()
fuzz. write_to_files (’ems/’, ’ems ’)

main ()

C.5.4 Fuzzing (U)SIM Data Download
from create_sms_cases import fuzzer
import random
import Utils
import smspdu

class fuzz_usim (fuzzer):

alphabet = " 0123456789ABCDEF "

def fuzz_udh_usim (self ,tpdu):
tpdu. tp_udhi = 1
udh = ""
iei = Utils . to_hex (112)
udh += iei
USIM does not require any IED data
payload = ""
for i in range (random . randint (10 ,120)):

payload += self. alphabet [random . randint (0, len(self.
alphabet) - 1)]

C.6. UTILITIES 143

udh_len = Utils . to_hex (len(udh)/2)
udh = udh_len + udh
tpdu. tp_ud = ""
tpdu. tp_udl = len(udh+ payload)/2
tpdu_string = tpdu. toPDU () + udh + payload
return tpdu_string

pid must be 127 for usim
def fuzz_pid (self , tpdu):

value = 127
tpdu. tp_pid = value

Dcs must be 246 for usim
def fuzz_dcs (self , tpdu):

value = 246
tpdu. tp_dcs = value

def fuzz_tpdu (self , tpdu):
self. fuzz_pid (tpdu)
self. fuzz_dcs (tpdu)
pdu = self. fuzz_udh_usim (tpdu)
return pdu

def create_fuzzed_tpdu (self):
tpdu = smspdu . SMS_DELIVER . create (’12345678 ’,’recipient ’,self.

user_data)
pdu = self. fuzz_tpdu (tpdu)
return pdu

def main ():
fuzz = fuzz_usim ()
fuzz. create_fuzzed_pdus ()
fuzz. write_to_files (’USIM/’, ’USIM ’)

main ()

C.6 Utilities

C.6.1 Import fuzz payload
from os import walk
import random

files = []
payloads = []
path = " FuzzLists "

def read_files ():
for (dirpath ,dirname , filenames) in walk(path):

for i in range (len(filenames)):
files . append (path+"/"+ filenames [i])

144 C. FUZZER FRAMEWORK

def get_payload ():
The entire FuzzLists have 153 795 fuzzing payload , which is

perhaps a bit much .
Since we want our payload to only be of 130 characters , we

exctract only those who have
130 of length or less

#As well , we take only take each 10 ’th element
j=10
random_index = random . randint (0,10)
for file in files :

with open (file ,’r’) as f:
lines = f. readlines ()
for i in range (len(lines)):

add random payload (from (0,10) + i) to list every 10 ’
th entry .

if len(lines [i]) < 160 and j>=10:
payloads . append (lines [i- random_index])

j += 1
if j == 11:

j=0
random_index = random . randint (0,10)

f. close ()

read_files ()
get_payload ()

C.6.2 DCS length mapping
import smspdu

dic holds maximum length allowed for user data when we use the
different encodings

dic = {}
default = 160
for j in range (257):

try:
tpdu = smspdu . SMS_DELIVER . create (’sender ’,’recipient ’,20*’Hello

World !’,tp_dcs =j)
program gets here if dcs encoding can handle 160 chars
dic[j] = default
tpdu. tp_dcs = j
tpdu_string = tpdu. toPDU ()

except Exception as inst:
stacktrace = str(inst.args)
if "140" in stacktrace :

dic[j] = 140
else :

Now we don ’t know the required max length because the
encoding is reserved ,
thus for safe measures
just set 120

C.6. UTILITIES 145

dic[j]=120

C.6.3 Hex converter
def to_hex (decimal):

hex_numb = hex(decimal)
ret = ""
for i in range (2,len(hex_numb)):

ret+=str(hex_numb [i])
if len(ret) != 2:

ret = "0"+ret
return ret

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Definitions of medical devices
	The pacemaker ecosystem
	Security considerations
	Regulatory bodies

	Scope of our project
	Hypotheses, research questions, and research objectives

	Motivation
	Outline of thesis report

	Technical Background
	Security concepts and terms
	Threat model
	Assets
	Threat actors
	Attacks

	Hardware terminology
	UART
	SPI
	JTAG
	Short message service (SMS)
	The SMS formats
	The SMS protocol stack
	Fields in the SMS_DELIVER format
	SMS modes

	Fuzzing
	3G jamming - downgrade attack

	Related Work
	The pacemaker ecosystem
	SMS-fuzzing and mobile communication security

	Methodology
	Preliminary considerations
	Black-box testing
	Black-box hardware testing
	Fuzzing

	Intersection between research objectives
	Limitations of methodology
	Research guidelines

	Tools and software
	Black-box hardware testing
	Fuzzing

	Hardware Security testing of the Cardiomessenger 3G Smart
	Preliminary HMU security testing
	The Cardiomessenger II-S T-Line
	The Cardiomessenger II-S GSM
	Summary of preliminary security testing

	The Cardiomessenger 3G Smart as a standalone device
	Hardware analysis
	Finding relevant documentation
	Testing Scenarios
	Summary of findings

	Fuzzing the SMS-interface of the Cardiomessenger 3G Smart
	Architecture
	Initial Considerations
	Setting up an simulated GSM network
	Automated packet delivery and manipulation
	Modifying OpenBTS to accommodate fuzzing

	Establishing monitoring capabilities
	Filtering the feedback from the HMU

	Input generation
	Targeting header fields for fuzzing

	Summary of the framework capabilities
	Fuzzing test cases
	Combinations of TP-PID, TP-DCS, and TP-UD
	Fuzzing the TP-UDH

	Testing
	Preliminary SMS testing
	Setting up the modem
	Implementing health checker and emptying SMS memory
	Procedure for executing test cases

	Results and Analysis
	Results of random TP-PID and semi-random TP-UD, regular 7-bit TP-DCS
	Results of random TP-PID, TP-DCS and semi-random TP-UD
	Results of random TP-PID, semi-random TP-UD, and common TP-DCS values
	Results flash SMS
	Results generic TP-UDH
	Results concatenated SMS
	Results EMS SMS
	Results (U)SIM data download
	Validation
	Summary

	Discussion and mitigation
	Discussion on findings from hardware security testing
	Implications for patients
	Implications for the vendor

	Mitigation of findings from hardware security testing
	Tamper-resistant hardware
	PCB obfuscation
	Disabling JTAG
	Removing debugging strings and encrypting firmware

	Discussion on findings from fuzzing
	SMS applicability
	Strengths of fuzzing framework
	Input from hardware testing to fuzzer development
	Answering research questions
	Implications for patients
	Limitations of fuzzing framework

	Mitigation of findings from fuzzing
	Future work
	Ethical considerations

	Conclusion
	References
	OpenOCD Scripts
	Simple connection using OpenOCD
	Dump memory using OpenOCD

	Installing modified version of OpenBTS
	Fuzzer framework
	Parent class for different fuzzing cases
	Implementing the actual sending of PDUs via OpenBTS
	Monitoring
	Health checker
	Parsing resulting Pcap file

	Various fuzzing of PID, DCS and UD
	Fuzzing PID, DCS and UD
	Fuzzing PID and UD, with 7 bit DCS
	Fuzzing PID and UD, with common DCS
	Flash SMS

	Various fuzzing of UDH features
	Fuzzing generic UDH
	Fuzzing concatenated SMS
	Fuzzing EMS
	Fuzzing (U)SIM Data Download

	Utilities
	Import fuzz payload
	DCS length mapping
	Hex converter

