
Katrine W
ist and M

alene H
elsem

An Extensive Analysis of the Current Vulnerability Landscape in D
ocker H

ub Im
ages

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Katrine Wist
Malene Helsem

An Extensive Analysis of the
Current Vulnerability Landscape
in Docker Hub Images

Master’s thesis in Communication Technology

Supervisor: Danilo Gligoroski

June 2020

Katrine Wist
Malene Helsem

An Extensive Analysis of the
Current Vulnerability Landscape
in Docker Hub Images

Master’s thesis in Communication Technology
Supervisor: Danilo Gligoroski
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Title: An extensive analysis of the current vulnerability landscape in
Docker Hub images

Students: Katrine Wist and Malene Helsem

Problem description:

Container technology could be seen as a new paradigm shift that started a few
years ago. Since then, its popularity has rapidly increased and the use of container
technology, especially in enterprises, is replacing virtual machines at a quick rate.
Containers offer a lightweight, flexible, and portable virtualization solution. As
opposed to virtual machines, containers virtualize at the operating system level. This
technique creates an isolated environment for applications to run without the need
for a separate virtual machine for each application.

As of today, Docker is the leading container platform with most of the container
market. Docker offers an online repository called Docker Hub for distribution of
Docker images, where a container is a running instance of an image. One could
say that Docker Hub is contributing to the expansion of container technology usage
by making it easy to maintain and distribute images between users. However, a
drawback is that it makes it hard for Docker to enforce control regarding how often
software patching should happen since anyone can maintain images. The result is
that outdated and vulnerable software exist in Docker Hub images. Docker Hub is
at the time of writing the world’s largest platform for sharing container images and
hosts over 3 million Docker images.

This massive popularity comes at the cost of a definite need for security to be
prioritized. A problem is that most of the previous studies focus on security related to
the actual Docker implementation, whereas research done on the present vulnerability
landscape in Docker images is less investigated. With that said, the research that
has been done revealed that many Docker Hub images contain vulnerabilities. This
situation makes it essential to investigate further and look at what the situation is
like today.

The aim of our master thesis is, therefore, to investigate the current vulnerability
landscape in Docker Hub images by conducting an analysis of approximately 2,500
images. By looking for publicly known vulnerabilities in the images, we want to
categorize and collect statistics about the vulnerabilities, inspect what images and
packages are affected, and look at the correlation between several different image
attributes and vulnerabilities. We are also going to take a more in-depth look at
the images, packages and vulnerabilities that are the most exposed. Finally, we will
present and discuss our findings in a structured and transparent way in order to

contribute to the research community by raising awareness.

Responsible professor: Danilo Gligoroski, IIK
Supervisor: Danilo Gligoroski, IIK

Abstract

The use of container technology has skyrocketed during the last few
years, with Docker as the leading container platform. Docker’s online
repository for publicly available container images, called Docker Hub,
hosts over 3.5 million images at the time of writing. This makes it the
world’s largest community of container images. Some of the positive
traits of using containers, as advertised by Docker Inc., is that they are
standard, lightweight, and secure. However, previous research reveals
that Docker Hub images actually contain a large number of vulnerabilities
on average.

In this thesis, we investigate the current vulnerability landscape of
Docker Hub images. By analyzing approximately 2,500 images from
Docker Hub, we uncover that Docker containers are not as secure as
advertised. Our main findings reveal that (1) the number of newly
introduced vulnerabilities on Docker Hub is rapidly increasing; (2) certified
images are the most vulnerable; (3) official images are the least vulnerable;
(4) there is no correlation between the number of vulnerabilities and image
features (i.e., number of pulls, number of stars, and the days since the
last update); (5) the most severe vulnerabilities originate from two of
the most popular scripting languages, JavaScript and Python; and (6)
Python 2.x packages and jackson-databind packages contain the highest
number of severe vulnerabilities. We use an open-source vulnerability
scanner to perform the analysis of such a large number of images and
develop our own scripts and tools. We perceive our study as the most
extensive vulnerability analysis of Docker images published during the
last couple of years in the open literature.

It is of particular interest to perform this kind of analysis for several
reasons. Firstly, the vulnerability landscape is rapidly changing; secondly,
the vulnerability scanners are constantly developed and updated, and
new vulnerabilities are discovered. Lastly, the volume of images on
Docker Hub is increasing every day. Our work contributes to the research
community by shining light upon the current status of vulnerabilities in
Docker images. The main contribution of this thesis is, thus, to raise
awareness and understanding of the vulnerability landscape of Docker
Hub, and to provide automated vulnerability scanning software and tools
for others in the community to use. Our work is a stepping stone towards
the ultimate goal of securing the Docker Hub ecosystem.

Sammendrag

I løpet av de siste årene har bruken av containerteknologi skutt til værs
med Docker som den ledende containerplattformen. Dockers plattform for
offentlig deling av containerbilder (images), kalt Docker Hub, inneholder
i skrivende stund over 3.5 millioner bilder. Dette gjør Docker Hub til
verdens største plattform for deling av containerbilder. Som annonsert av
Docker Inc., er noen av de positive sidene ved containerteknologi at den
er standardisert, lettvektig og sikker. Imidlertid kan tidligere forskning
avsløre at Docker Hub-bilder faktisk inneholder et gjennomsnittlig høyt
antall sårbarheter.

I denne masteroppgaven undersøker vi sårbarhetsbildet knyttet til
Docker Hub-bilder. Gjennom en grundig analyse av omtrent 2,500 bilder
fra Docker Hub, avslører vi at bilder fra Docker Hub ikke er så sikre som
annonsert. Våre hovedfunn er at (1) antall nye introduserte sårbarheter
på Docker Hub er raskt økende; (2) sertifiserte bilder er de mest sårbare;
(3) offisielle bilder er de minst sårbare; (4) det er ingen korrelasjon mellom
antall sårbarheter og bildeattributter (slik som antall nedlastninger, antall
sjerner og antall dager siden siste oppdatering); (5) de mest alvorlige
sårbarhetene stammer fra to av de mest populære skriptingspråkene,
JavaScript og Python; og (6) pakker av typen Python 2.x og jackson-
databind inneholder det høyeste antallet alvorlige sårbarheter. For å
kunne gjennomføre analysen av såpass mange bilder har vi tatt i bruk en
sårbarhetsskanner med åpen kildekode og har videre utviklet våre egne
kodeskript og verktøy. Vi ser på vår studie som den mest omfattende
sårbarhetsanalysen av Docker-bilder som er publisert de siste par årene.

Det er av spesiell interesse å utføre denne typen analyse av flere
grunner. For det første er sårbarhetsbildet i kontinuerlig forandring. For
det andre blir sårbarhetsskannere utviklet og oppdatert fortløpende, og
nye sårbarheter blir oppdaget. I tillegg øker volumet av bilder på Docker
Hub hver eneste dag. Vårt arbeid bidrar til forskningsmiljøet ved å
tydeliggjøre den nåværende situasjonen av sårbarheter i Docker-bilder.
Hovedbidraget fra denne masteroppgaven er derfor å øke bevisstheten
og forståelsen rundt sårbarhetsbildet knyttet til Docker Hub, i tillegg
til å levere programvare for en automatisert sårbahetsskanner som kan
brukes av andre i forskningsmiljøet. Vårt arbeid bidrar til å komme et
steg nærmere det endelige målet om å sikre økosystemet til Docker Hub.

Preface

This thesis is finalizing our Master of Science Degrees in Communication
Technology, with a specialization in Information Security, at the Norwe-
gian University of Science and Technology (NTNU). The work on this
master thesis started in January 2020 and was completed in June 2020.

We want to thank our responsible professor and supervisor, Danilo
Gligoroski, for valuable input and feedback throughout the work on this
thesis. Our five years at NTNU has gone with the blink of an eye, and
we would like to thank the university for providing us with valuable and
rewarding education, and new insights. We would also like to give a special
thanks to everyone who has made the time in Trondheim memorable and
special.

Katrine Wist and Malene Helsem
Trondheim, June 5th 2020

Contents

List of Figures xi

List of Tables xiii

List of Acronyms xvii

1 Introduction 1
1.1 Project motivation . 2
1.2 Research scope . 3

1.2.1 Research questions . 4
1.2.2 Contributions . 4

1.3 Thesis outline . 4

2 Background and related work 7
2.1 Virtual machines and container technology 7
2.2 Docker overview . 8

2.2.1 Docker daemon . 9
2.2.2 Docker engine . 9
2.2.3 Dockerfile . 10
2.2.4 Docker image . 10
2.2.5 Docker container . 10
2.2.6 Docker registries . 11

2.3 Vulnerability database and categorization method 11
2.3.1 Common Vulnerabilities and Exposures (CVE) 12
2.3.2 Common Vulnerability Scoring System (CVSS) 13

2.4 Related work . 15

3 Methodology 17
3.1 Research questions . 17
3.2 Research design . 18

3.2.1 Quantitative descriptive and correlational research 18
3.2.2 Project phases . 19

3.3 Data set . 20

vii

3.4 Tools and resources . 21
3.4.1 Selenium and Geckodriver . 21
3.4.2 Docker Registry HTTP API V1 21
3.4.3 Docker Registry HTTP API V2 22
3.4.4 Anchore Engine . 22
3.4.5 Matplotlib and Seaborn . 24
3.4.6 MySQL . 24
3.4.7 CSV file format . 24
3.4.8 Statistical concepts . 25
3.4.9 Machine specification . 26

4 Implementation and data acquisition 29
4.1 Implemented scripts . 29

4.1.1 Web scraper . 29
4.1.2 Scripts for accessing the Docker Registry API’s 31
4.1.3 Automatic analyzer . 31

4.2 Data collection . 33
4.3 Import data into database . 34
4.4 Data analysis . 37
4.5 Visualization of results . 41

5 Results 43
5.1 Data set . 43

5.1.1 Images on Docker Hub . 43
5.1.2 Image information and failed images 44
5.1.3 Vulnerability information . 48

5.2 The vulnerability landscape of Docker Hub 49
5.2.1 Distribution of vulnerabilities in each severity category 49
5.2.2 Central tendency of the vulnerability distribution 51
5.2.3 Vulnerabilities in each image type 53
5.2.4 Density distribution . 54
5.2.5 Images that contain the most critical vulnerabilities 56
5.2.6 Percentage of images with critical and high vulnerabilities . . 57
5.2.7 Vulnerabilities in Microsoft images 58
5.2.8 Images with no vulnerabilities 60
5.2.9 The trend in CVE vulnerabilities 61
5.2.10 Days since last update . 62

5.3 Correlation between image features and vulnerabilities 63
5.4 The most severe vulnerabilities . 66

5.4.1 The most represented critical vulnerabilities 66
5.4.2 Vulnerability characteristics 67

5.5 Vulnerabilities in packages . 68

5.5.1 The most vulnerable packages 68
5.5.2 Vulnerabilities in popular packages 70

6 Discussion 73
6.1 Interpretation of results in relation to research questions 73

6.1.1 RQ1: How can vulnerabilities found in Docker images be
systemized in order to investigate the current vulnerability
landscape of Docker Hub? . 73

6.1.2 RQ2: How do image features and the number of vulnerabilities
correlate in images? . 78

6.1.3 RQ3: Which types of vulnerabilities are the most severe? . . 79
6.1.4 RQ4: Which packages contain the most severe vulnerabilities? 80

6.2 Limitations and validity of this study 81
6.2.1 The impact of false positives and false negatives 81
6.2.2 The CVSS score . 82
6.2.3 Restraints of the data set . 83
6.2.4 Inconsistency in Docker Hub 83

6.3 Comparison between our results and previous studies 84
6.4 Future work . 87

7 Conclusion 89

References 91

Appendices

A Scripts prerequisites 97
A.1 Web scraper . 97
A.2 API scripts . 98
A.3 Automate analysis script . 98

B Script for web scraper 101

C Script for accessing the Docker Registry HTTP API V1 103

D Script for accessing the Docker Registry HTTP API V2 105

E Script for automate analysis 107

F SQL imports 109

G SQL for data analysis 111

H Conference paper draft 125

List of Figures

2.1 Architecture of virtual machine and container 8
2.2 Docker ecosystem components. Inspired by figure found on [Docb]. . . . 9
2.3 Docker engine architecture . 9
2.4 Docker image layers . 10
2.5 CVSS Base Metric Group. Inspired by figure from [FIR19]. 14

3.1 Project phases . 19
3.2 Data flow . 20
3.3 Anchore Engine output . 22
3.4 Anchore Engine vulnerability data gathering. Figure from [Hil19]. . . . 23

4.1 Screenshot from Docker Hub of the Auditbeat image. Note that it is
marked as both a certified and a verified image. 30

4.2 Content vulnerability file . 32
4.3 Some of the available tags in casanode/lnapi repository on Docker Hub.

The tag is specified is specified after the docker pull command to the right. 34
4.4 ER diagram of the MySQL database . 35

5.1 The evolution in quantity of images on Docker Hub 44
5.2 Image type distribution . 45
5.3 Analyzed and failed images . 47
5.4 Distribution of failed images . 47
5.5 Vulnerability distribution in severity levels 50
5.6 Average and median of the number of vulnerabilities in each image . . . 52
5.7 Median values of vulnerabilities for each severity category and image type 54
5.8 Density distribution plots for number of vulnerabilities in each image type 55
5.9 Percentage of images that contain at least one high or critical rated

vulnerability . 57
5.10 Distribution of analyzed and failed Microsoft images 58
5.11 Number of vulnerabilities per image in each severity level 60

xi

5.12 CVE trend from 2010 to 2019. (a) displays all reported CVEs and unique
CVEs from our analysis, (b) displays the observed CVEs in each image
type from our analysis. Inspiration from [SGE17]. 62

5.13 Last update dates for images of each image type 63
5.14 Number of pulls and number of vulnerabilities for each image 65
5.15 Number of stars and number of vulnerabilities for each image 65
5.16 Number of days since last update and number of vulnerabilities for each

image . 66
5.17 Most vulnerable packages and the number of images that use them . . . 70

List of Tables

2.1 Distribution of repository types on Docker Hub (February 3rd, 2020) . . 12
2.2 Mapping between severity rating and CVSS score [FIR19] 15

3.1 Distribution of successful and failed images in each image type 21

5.1 Number of analyzed images of each type and column information with
number of images with data. The percentages are based on the total
number of images of each image type from the Images column. 46

5.2 Column information for the vulnerability table in the database 49
5.3 Vulnerability ratio in severity levels . 51
5.4 Statistical values for vulnerabilities per image type, disregarding negligible

and unknown vulnerabilities. Inspiration from [SGE17]. 53
5.5 Top 10 most vulnerable images (sorted by critical count) 56
5.6 Vulnerabilities found in Microsoft images 59
5.7 Comparison of attributes of images with and without vulnerabilities. . . 60
5.8 Percentages of images that are not updated for more than 400, 200, and

less than 14 days . 63
5.9 Top 10 most represented vulnerabilities (based on critical severity level) 67
5.10 Top 10 most vulnerable packages (based on critical severity level) 69
5.11 Vulnerabilities in the top 10 most used packages 71

6.1 Percentages of images with at least one high rated vulnerability. Based
on data from [GDT15] [SGE17] and the results presented this thesis. . . 85

6.2 The average number of vulnerabilities found in each image type (the
latest image version). Based on data from [SGE17] [SL19] and the results
presented in this thesis. 87

xiii

List of Listings

1 SQL query for creating a table . 36
2 SQL query for joining two tables . 36
3 Number of non-empty values for each column in image_info 37
4 Number of analyzed and failed images of each image type 38
5 Median value of number of vulnerabilities per image 38
6 Statistical values for vulnerabilities per image for each image type . 39
7 Number of unique vulnerabilities in each image type, grouped by year 40
8 Finding the most vulnerable packages in images 40
9 Counting number of vulnerabilities, pulls, stars and days since last

update in each image . 41

xv

List of Acronyms

API Application Programming Interface.

CI/CD Continuous Integration/Continuous Delivery.

CLI Command Line Interface.

CNAs CVE Numbering Authorities.

CPE Common Platform Enumeration.

CPU Central Processing Unit.

CSV Comma Seperated Values.

CVE Common Vulnerabilities and Exposures.

CVSS Common Vulnerability Scoring System.

CWE Common Weakness Enumeration.

ER Entity-Relationship.

GUI Graphical User Interface.

KDE Kernel Density Estimation.

LXC Linux Containers.

NVD National Vulnerability Database.

OS Operating System.

PCC Pearson Correlation Coefficient.

RAM Random-Access Memory.

xvii

RDBMS Relational Database Management System.

REST Representational State Transfer.

SQL Structured Query Language.

VM Virtual Machine.

Chapter1Introduction

Container technology has been around for a long time in Linux systems through
Linux Containers (LXC), but it was not commonly used until this last decade. It was
with the introduction of Docker in 2013 that the containerization popularity exploded.
Container technology has revolutionized the development of software and could be
seen as a new paradigm shift. Containerization is proven beneficial for Continuous
Integration/Continuous Delivery (CI/CD) pipelines, it is providing an effective way
of organizing microservices, it is making it easy to move an application between
different environments, and, in general, it simplifies the whole system development
life cycle. Virtual machines are being replaced by container technology continuously,
and the trend is that an increasing number of companies are choosing to containerize
their applications. Gartner predicts that more than 70% of global companies will
have more than two containerized applications in production by 2023, this is an
increase up from less than 20% in 2019 [Hew19].

Software containers got its name from the shipping industry, as the concepts
are fundamentally the same. A software container is code wrapped up with all its
dependencies so that the code can run reliably and seamlessly in any computer
environment, isolated from other processes. This concept tackles the problems that
occur when moving software from one environment to another. To give an example,
code can run correctly on the developer’s machine, but fails to work properly on
the test server. Hence, containers are a favorable technology to achieve isolation,
portability, and scalability, as well as its characteristics of being lightweight and fast.

There are a few alternatives to Docker, such as LXC, rkt, Apache Mesos and,
Vagrant.1 However, as of today, Docker is the most popular and one of the most
acknowledged containerization platforms. There is no doubt that Docker started the
container revolution, and its popularity has had a steady growth. Statistics from
2018 show that Docker was running on 20% of hosts, and that 25% of companies

1LXC: https://linuxcontainers.org/ , rkt: https://coreos.com/rkt/ , Apache Mesos:
http://mesos.apache.org/ and Vagrant: https://www.vagrantup.com/

1

https://linuxcontainers.org/
https://coreos.com/rkt/
http://mesos.apache.org/
https://www.vagrantup.com/

2 1. INTRODUCTION

had adopted Docker at that time [Dat18].2 One of the contributors to Docker’s
popularity is Docker Hub, which is a registry service for sharing of Docker images.3
It currently hosts over 3.5 million container images, and the number is continuously
increasing.4 There are four different image repository types: official, verified, certified,
and community. Images can be uploaded and maintained by anyone, which creates
an innovative environment for anyone to contribute and participate. However,
on the downside, this makes it challenging for Docker to ensure that packages
and applications are correctly implemented and up to date to avoid outdated and
vulnerable software.

The terms cyber security and information security are closely related and often
used interchangeably when considering security in computer systems. The work in
this thesis is based on the perspective of cyber security rather than information
security. Information security is concerning the protection of information, while
cyber security is about the protection of information systems. Cyber security is by
Schatz et al. [SBW17] defined as,

“... the protection of information systems from theft or damage to the
hardware, the software, and to the information on them, as well as from
disruption or misdirection of the services they provide.”

The securing of software is the foundation of this thesis, and thus, we would like to
point out that throughout this thesis, the word security is used as a synonym for
cyber security.

1.1 Project motivation

When looking into the security of Docker, there are two aspects that need to be
considered: the security of the Docker software at the host, and the security of the
Docker containers. Docker Inc. claims that “Docker containers are, by default, quite
secure; especially if you run your processes as non-privileged users inside the container”
[Docc]. However, some people are not aware that Docker (the Docker daemon and
container processes) runs with root privileges by default, which exposes a huge attack
surface [FO19]. There are multiple scenarios in which a container could be a threat.
The first scenario is that a container contains malicious code deliberately placed
there by an adversary. Secondly, the container holds instructions that configure
insecure settings, potentially making the whole computer system vulnerable. Thirdly,
the container contains flaws and vulnerable software, which will be the focus area
of this thesis. A single vulnerable container is enough for an adversary to achieve

2Numbers based on data from Datadog customers, a monitoring service for cloud-scale applica-
tions with thousands of companies from a big span of industries as customers.

3Docker Hub: https://hub.docker.com/
4A Docker container is a running instance of a Docker image.

https://hub.docker.com/

1.2. RESEARCH SCOPE 3

privilege escalation. Hence, it is essential to raise awareness towards the vulnerability
landscape of Docker images. This is because the securing of the Docker ecosystem is
highly related to discovering what the vulnerability landscape in Docker images is
like.

It does exist some previous research in the field of addressing the vulnerability
landscape of Docker Hub. The studies have been conducted with some years apart.
In 2015, BanyanOps presented results that revealed that 40% of Docker images
contained high rated vulnerabilities [GDT15]. Further, in 2017, Shu et al. found
that, on average, an image contains more than 180 vulnerabilities [SGE17]. Finally,
in 2019, Socchi and Luu could reveal that the majority of official, community, and
certified images hold less than 75 vulnerabilities and that the majority of verified
images contain less than 180 vulnerabilities [SL19]. To read about the related work
in more detail, see Section 2.4. With the previous findings in mind, it is clear that
Docker Hub consists of a vast number of vulnerable images that could expose a
serious threat to any computer system. As the Docker Hub ecosystem is continuously
changing, it is unquestionable that this also applies to the vulnerability landscape.
These observations make it important to address what the vulnerability landscape of
Docker Hub is like today. In addition, we will use a different scanner, which could
give a new and nuanced view of what the vulnerability landscape is like. With that
said, the aim of our master thesis is to provide an important contribution in the field
of security in the Docker ecosystem. More specifically, by raising awareness of the
situation in today’s vulnerability landscape.

1.2 Research scope

In this thesis, we perform an extensive vulnerability analysis of Docker images. We
conduct a vulnerability scanning of approximately 2500 Docker images, including
most official, and a portion of verified, certified, and community images. Vulnerability
data is gathered, systemized, and presented to reveal the current situation.

We do not see it as convenient to replicate previous research, as a direct com-
parison is rather difficult to do. There are several reasons for this: the vulnerability
landscape is rapidly in change, the vulnerability scanners are constantly developed,
new vulnerabilities are discovered, and the volume of images on Docker Hub changes
from day to day. Thus, we perform an independent analysis instead. We implement
our own software for conducting the analysis, and use a well-respected vulnerability
scanner not previously used in related research to gather the desired data. However,
we do include a discussion regarding the trends on vulnerabilities based on our results
compared to the results of previous research, but it will not be included in our main
research scope.

4 1. INTRODUCTION

1.2.1 Research questions

Based on the introduction, the project motivation, and the previous comments, our
research questions are explicitly defined below. The research questions are partially
based on the research questions defined in our project report [HW19].

RQ1: How can vulnerabilities found in Docker images be systemized in order to
investigate the current vulnerability landscape of Docker Hub?

RQ2: How do image features and the number of vulnerabilities correlate in images?

RQ3: Which types of vulnerabilities are the most severe?

RQ4: Which packages contain the most severe vulnerabilities?

1.2.2 Contributions

Our main contribution is new insights into the vulnerability landscape of Docker Hub
images. Our software deliveries are considered as an extra contribution. Thus, all
implemented software is provided in an open source repository on GitHub.5 As such,
our implemented tools are publicly available for the community to use and for our
research to be reproducible. As an extra contribution, a summary of the work done
in this thesis has been written as a conference paper, which is found in Appendix
H. The paper was submitted to The 2020 International Conference on Security and
Management (SAM2020).6 It has now been accepted for publication.

1.3 Thesis outline

The following structure is used in this thesis.

Chapter 1 - Introduction introduces the research topic by presenting the project
motivation, research scope, and research questions.

Chapter 2 - Background and related work provides necessary theory about
the research topic, such as information about container technology, the Docker
ecosystem, and vulnerability categorization. The chapter also presents related
research.

Chapter 3 - Methodology explains how this project was carried out by describing
the research questions in more detail, the research design used, and the applied

5Repository containing all implemented software: https://github.com/katrinewi/Docker-image-
analyzing-tools

6SAM2020: http://sam.udmercy.edu/sam20/

https://github.com/katrinewi/Docker-image-analyzing-tools
https://github.com/katrinewi/Docker-image-analyzing-tools
http://sam.udmercy.edu/sam20/

1.3. THESIS OUTLINE 5

methodology structured as phases. It also presents the data set we were working
with, as well as tools and resources used.

Chapter 4 - Implementation and data acquisition is also a part of the method-
ology. This chapter thoroughly describes each project phase and how they
were conducted in order to obtain the results of our analysis. The first sections
explain the implementation of software for data gathering, followed by the
process of analyzing the data and visualizing the results.

Chapter 5 - Results presents all findings from the data analysis. First, the ob-
tained data set is introduced. Then, the results are presented for each research
question by dividing the results into areas of interest for answering the respective
research question.

Chapter 6 - Discussion discusses the results in relation to the research questions,
as well as limitations and validity of this study. Further, a comparison between
our results and previous studies is presented, and we give our recommendations
for future work.

Chapter 7 - Conclusion answers each research question of this thesis and presents
the conclusions, including a summary of our research contribution.

Chapter2Background and related work

To get an adequate understanding of the scope of this thesis, this chapter will
present the relevant background needed to understand the research area. Container
technology will first be presented and compared to virtual machines. Then, all
relevant parts in the Docker ecosystem will be explained, followed by aspects related
to the categorization method of vulnerabilities. Lastly, this chapter presents the
related work previously done in this area of research.

2.1 Virtual machines and container technology

Virtualization is the technique of creating a virtual abstraction of some resources
to make multiple instances run isolated from each other on the same hardware
[BK10]. There are different approaches to achieve virtualization. One approach is
using Virtual Machines (VMs), see Figure 2.1a for VM architecture. A VM is a
virtualization of the hardware at the host. Hence, each VM has its own kernel, and
in order to manage the different VMs, a software called hypervisor is required. The
hypervisor emulates the Central Processing Unit (CPU), storage, and Random-Access
Memory (RAM), among others, for each VM. This allows multiple VMs to run as
separate machines on a single physical machine.

In contrast to VMs, containers virtualize at the Operating System (OS) level,
see Figure 2.1b. In essence, this means that every container running on the same
machine share the same underlying kernel, where only bins, libraries and other run
time components are executed for a single container exclusively. In short, a container
is a standardized unit of software that contains all code and dependencies [Doce].
Thus, containers require less memory and achieve a higher level of portability than
VMs. Container technology has simplified the software development process as the
code is portable. Hence, what is run in the development environment will be the
same as what is run in the production environment [And15].

7

8 2. BACKGROUND AND RELATED WORK

(a) Virtual machine
(b) Container

Figure 2.1: Architecture of virtual machine and container

2.2 Docker overview

Docker is a container technology platform used to create, deploy, and run applications.
The Docker ecosystem consists of several components that, as a whole, delivers a
containerization service that is lightweight and offers an isolated and standardized
computer environment for execution of applications. In essence, Docker is a capability
extension of LXC. LXC is a method for virtualizing the OS and running multiple
Linux containers on a single host using the Linux kernel [Arc20]. Docker is a container
engine that uses the LXC, as well as the namespaces and the cgroups features of the
Linux kernel to achieve isolation between processes. In short, Docker utilized already
existing container technology.

With Docker, multiple components were introduced: a local daemon, a Repre-
sentational State Transfer (REST) Application Programming Interface (API) for
communication between the Docker Command Line Interface (CLI) client and the
Docker daemon, an image specification standard, and registries for image distribution.
By creating a lightweight and easy-to-use service, Docker has contributed to the
rapid growth and usage of the container technology. Docker is written in the Go
language and was released in 2013 as an open-source project. As of today, Docker
Inc. is responsible for developing Docker.

An overview of the Docker ecosystem architecture is shown in Figure 2.2, where
the colored arrows correspond to the color of the commands to the left. The Docker
client is interacting with the Docker daemon at the host to run commands. The
docker build command is called to build a Docker image from a Dockerfile (the
purple arrows). When the docker pull command is run, the Docker daemon is
interacting with the Docker registry to pull an image to the host (the yellow arrows).
The image is executed as a container by running the docker run command (the
green arrows). These concepts will be described in more detail in the next sections.

2.2. DOCKER OVERVIEW 9

Figure 2.2: Docker ecosystem components. Inspired by figure found on [Docb].

2.2.1 Docker daemon

The Docker daemon is at the core of the Docker ecosystem. By interacting with the
host OS, it is responsible for managing the containers, and performing tasks such
as launching containers, controlling their isolation level, and monitoring them to
trigger required actions. The Docker daemon is also interacting with remote registries
to pull or push images, and performs the building of images [CMDP16]. It is by
default running with root access on the host and communicates with the Docker
client through a REST API.

2.2.2 Docker engine

The Docker engine is an application with server-client architecture. It contains three
components: the Docker daemon, a REST API, and a CLI to let the user interact
with the Docker daemon [Docb]. The CLI lets the user run commands such as docker
build to build an image from a Dockerfile, docker pull to pull a specific version of
an image from a registry and docker run to launch a container from an image. The
relationship between these components is shown in Figure 2.3.

Figure 2.3: Docker engine architecture

10 2. BACKGROUND AND RELATED WORK

2.2.3 Dockerfile

The Dockerfile is a text file containing specific build instructions used to create a
Docker image automatically using the API. It contains all dependencies in a humanly
readable format. The build process is done using the docker build command.

2.2.4 Docker image

A Docker image, from here on out referred to as an image, is created from a Dockerfile.
It consists of different layers and metadata, where each command in the Dockerfile
will create a new, separate layer. This layer-wise architecture makes it easy for
different images to share the same layers between them, where each layer could be
containing, for example, a component or a dependency [ZTA+19]. Only the top layer
of an image is writable, and the other layers are read-only, see Figure 2.4. This
means that the lower layers of the image are unchanged throughout the lifetime of
the image. Each time a new container is started or changes to the image is done,
a new writable top layer is added to the image. This is called the copy-on-write
concept [And15]. In such a way, an image could be seen as a static snapshot of the
Dockerfile at a specific time.

Figure 2.4: Docker image layers

2.2.5 Docker container

A Docker container is a running instance of an image, and hence, the execution
environment of Docker. The namespaces and cgroups Linux kernel features are the
fundamental concepts of containers, and thus also of Docker containers. Namespaces
permits isolation between processes. At a conceptual level, it is organizing relevant
elements into groups based on identifiers [Mic17]. This way, elements in such a
group will only see other elements in that same group. Moreover, the cgroups, or
control groups, is what allows for dedicating, limiting, and isolating resources between
processes.

2.3. VULNERABILITY DATABASE AND CATEGORIZATION METHOD 11

2.2.6 Docker registries

To make it easy to store and distribute images between users, Docker introduced
Docker registries. Simply put, a Docker registry is a storing and content delivering
system for Docker images [Doca]. Images are organized into repositories, where each
repository hosts every version of an image with corresponding tags. For example,
most images have the latest tag, which corresponds to the newest version of the
image. As of today, Docker Hub is the most popular Docker registry and is also
the default registry that the Docker daemon interacts with. Using the API, users
can pull images to download them locally and push images to upload them to the
Docker Hub. This is done by using the commands, docker pull <image>:<tag>
and docker push <image>:<tag> , respectively.

On Docker Hub, image repositories are divided into different categories, or types.
Repositories are either private or public, and can further be either official, community
or a verified repository. Also, repositories can be certified, which is a subsection of
the verified category. The official image repositories are maintained and reviewed
by Docker. The verified ones are reviewed by Docker, but developed by third-party
developers. Besides being verified, certified images are also fulfilling additional
requirements related to quality, support, and best practices [Mor18]. Community
images could be uploaded and maintained by anyone. The distribution of the image
repository types on Docker Hub can be seen in Table 2.1, where the numbers were
gathered on February 3rd, 2020. The community repository category is by far the
most dominant one and makes up ~99% of all Docker Hub repositories.

The different categories of Docker repositories were introduced at different times.
The official repositories were included when Docker Hub was introduced in 2014
[Gol14], and verified and certified repositories were included in 2018 when Docker
Store and Docker Cloud were merged into Docker Hub [Mor18]. In addition to image
type, the image repositories on Docker Hub have additional features, such as the
number of times they have been pulled (downloaded), and the date the image was
last updated. These can be used as measures to see how popular image repositories
are and how frequently they are maintained. Docker Hub also supports a starring
system, where users can give stars to image repositories that they like and is often
used as a way to bookmark repositories.

2.3 Vulnerability database and categorization method

A vulnerability is defined as a flaw within a computer system that could potentially
be exploited and result in unauthorized actions to be performed so that the system
is compromised [Nat20a]. The severity of a vulnerability depends on a variety of

12 2. BACKGROUND AND RELATED WORK

Repository type Number of
images

Official 160
Verified 250
Certified 51
Community 3,064,454
Total 3,064,915

Table 2.1: Distribution of repository types on Docker Hub (February 3rd, 2020)

variables, and it is highly complex to compare vulnerabilities due to the diversity
of different technologies and solutions. Already in 1997, National Vulnerability
Database (NVD) started working on a database that would contain publicly known
software vulnerabilities to provide a means of understanding future trends and
current patterns [ZCO11]. The database is useful in security management when
deciding what software is safe to use, and predicting whether or not software contains
vulnerabilities that have not yet been discovered.1

2.3.1 Common Vulnerabilities and Exposures (CVE)

NVD contains Common Vulnerabilities and Exposures (CVE) entries, and provides
details about each vulnerability, like vulnerability overview, Common Vulnerability
Scoring System (CVSS) score, references, Common Platform Enumeration (CPE)
and Common Weakness Enumeration (CWE) [NKK17].

CVE is widely used as a method for referencing vulnerabilities that are publicly
known in released software packages. At the time of writing, it exists over 130,000
entries in the CVE list.2 The CVE list was created by MITRE Corporation in 1999,
whose role is to manage and maintain the list.3 They work as a neutral and unbiased
part in order to serve in the interest of the public. Examples of vulnerabilities
found in the CVE list are common errors, faults, flaws, and loopholes that can
be exploited by a malicious user to get unauthorized access to a system or server.
The loopholes can also be used as propagation channels for viruses and worms that
contain malicious software [CZC09]. Over the years, CVE has become a recognized
building block for various vulnerability analysis and security information exchange
systems, and is considered as the industry standard. This is much because it is

1NVD website: https://nvd.nist.gov
2The number of entries in the CVE list was retrieved on January 28th, 2020 from the official

website: https://cve.mitre.org
3MITRE Corporation is a non-profit US organization with the vision to resolve problems for a

safer world: https://www.mitre.org

https://nvd.nist.gov
https://cve.mitre.org
https://www.mitre.org

2.3. VULNERABILITY DATABASE AND CATEGORIZATION METHOD 13

continuously maintained and updated, and because the information is stored with
accurate enumeration and orderly naming.

There are three parts that constitute a CVE entry; CVE ID number, description,
and references [MIT19]. The CVE ID number has the following structure: CVE-
YYYY-NNNNN, for example, CVE-2020-12345. All CVE IDs start with the CVE
prefix, followed by the year and a sequence number. The year does not indicate when
the vulnerability was discovered; it indicates the former of either the year the CVE
ID was assigned, or the year the vulnerability was made public. As of January 1st,
2014, the sequence number can be four or more digits. The original syntax from
1999 only allowed four digits, limiting the number of vulnerabilities to be uniquely
identified each year to 9,999. This would not be sufficient today due to the rapid
growth of the annual number of reported vulnerabilities [MIT19].

The description part of the CVE should be unique to each vulnerability, and is
written by CVE Numbering Authorities (CNAs), the CVE Team or an individual
wanting to create a new CVE ID [MIT19]. The description contains information like
the specification of the software that is affected (including the products, vendors,
and affected versions), the vulnerability type, the possible consequences of the
vulnerability, and a description of how an attacker might exploit the vulnerability.
However, not all descriptions include all necessary details. The reason is that it has
to be reviewed by the CVE Team before publication, and they are only allowed to
access publicly available information. Therefore, it might exist details about some
vulnerabilities that cannot be officially published in the CVE entry.

The last part of the CVE entry is a list of references where additional information
about the vulnerability, and related software, products, and technology can be found,
like vulnerability reports, advisories, and other sources.

2.3.2 Common Vulnerability Scoring System (CVSS)

As mentioned in the previous section, the entries in the NVD database include a
CVSS score. This is a numerical score indicating the severity of the vulnerability
on a scale from 0 to 10, based on a variety of metrics. The following sections that
describe CVSS are based on the CVSS v3.1 specification document.4 The CVSS
metrics are divided into three metric groups: the Base Metric Group, the Temporal
Metric Group, and the Environmental Metric Group. A Base Score is calculated by
the metrics in the Base Metric Group, and is independent of the user environment
and does not change over time. The Temporal Metrics take in the base score and
adjusts it according to factors that do change over time, such as the availability of
exploit code. Environmental Metrics adjust the score yet again, based on the type

4See the CVSS v3.1 specification document: https://www.first.org/cvss/specification-document

https://www.first.org/cvss/specification-document

14 2. BACKGROUND AND RELATED WORK

of computing environment. This allows organizations to adjust the score related to
their IT assets, taking into account existing mitigations and security measures that
are already in place in the organization.

In our analysis, it would not be practical to take into account the Temporal
or Environmental Metrics as we want to discuss the vulnerability landscape inde-
pendently of the exact time and environment. Therefore, only the Base Metric
group will be described in more detail. It is composed of two sets of metrics: the
Exploitability metrics and the Impact metrics, as can be seen in Figure 2.5. The
first set takes into account how the vulnerable component can be exploited, and
includes attack vector and complexity, what privileges are required to perform the
attack, and whether or not user interaction is required. The latter set reflects on
the consequence of a successful exploit and what impact it has on the confidentiality,
integrity, and availability of the system.5 The last metric is scope, which considers if
the vulnerability can propagate outside the current security scope.

Figure 2.5: CVSS Base Metric Group. Inspired by figure from [FIR19].

When the Base Score of a vulnerability is calculated, the eight different metrics
from Figure 2.5 are considered. Each metric is assigned one out of two to four
different values that are used to generate a vector string. The vector string is then
used to calculate the CVSS score, which is a numerical value between 0 and 10. In
many cases, the numerical value is mapped to a textual value for convenience, where
the severity is categorized as either critical, high, medium, low, or none, as can be
seen in Table 2.2.

5Known as the CIA triad

2.4. RELATED WORK 15

Rating CVSS score
None 0.0
Low 0.1 - 3.9
Medium 4.0 - 6.9
High 7.0 - 8.9
Critical 9.0 - 10.0

Table 2.2: Mapping between severity rating and CVSS score [FIR19]

The above sections are based on CVSS v3.1, which was introduced in June 2019.
The second version of CVSS was widely used at its time; however, there was a
definite need for improvement. One of the main issues about CVSS v2.0 was that it
lacked granularity of metrics such that vendors experienced the CVSS v2.0 score as
inaccurate. Therefore, the new version did several changes on the metrics used to
calculate the CVSS score, as well as adding more severity categories, and changing
the ranges of them. More specifically, CVSS v2.0 only contains the ratings low
(0.0-3.9), medium (4.0-6.9) and high (7.0-10.0) [Nat20b], whereas CVSS v3.x contains
the ratings as already described as already described in Table 2.2.

2.4 Related work

This section will summarize the most relevant research previously done concerning
the vulnerability landscape of Docker Hub images.

One of the first to explore the vulnerability landscape of Docker Hub was
BanyanOps [GDT15]. In 2015, they published a technical report revealing that
36% of official images on Docker Hub contained high priority vulnerabilities [GDT15].
Further, they discovered that this number increased to 40% when community images
(or general images as they call it in the report) were analyzed. BanyanOps built their
own vulnerability scanner based on CVE scores, and analyzed all official images (~75
repositories with ~960 unique images) and 1700 randomly chosen community images.
However, at that time, Docker Hub only consisted of ~95,000 images. As of now,
Docker Hub hosts over 3.5 million images, which has been a massive increase since
the time of their analysis.

In 2017, Shu et al. published a new vulnerability analysis of Docker Hub images
[SGE17]. With the aim of revealing the Docker Hub vulnerability landscape, they
created their own analysis framework called DIVA (Docker Image Vulnerability
Analysis). The DIVA framework discovers, downloads, and analyses official and
community images. It is based on the Clair scanner and uses random search strings
to discover images on Docker Hub. In total, they analyzed 356,218 unique images.

16 2. BACKGROUND AND RELATED WORK

The analysis revealed that an image (official and community) on average contained
more than 180 vulnerabilities. They also found that many images had not been
updated for hundreds of days, which is problematic from a security point of view.
Further, it was observed that vulnerabilities propagate from parent to child images.

To our knowledge, the most recent vulnerability analysis of Docker Hub images
was performed during spring 2019 by Socchi and Luu [SL19]. They investigated
whether the security measures introduced by Docker Inc. (more precisely, the
introduction of verified and certified image types) improved the security of Docker
Hub. In addition, they inspected the distribution of vulnerabilities across repository
types, and whether vulnerabilities are still inherited from parent to child images. To
perform their analysis, they implemented their own analyzing software using the Clair
scanner. They used the results from Shu et al. [SGE17] from 2017 as a comparison.
The data set they successfully analyzed consisted of 757 images in total. Whereas
128 were official, 500 were community, 98 were verified, and 31 were certified. They
only analyzed the most recent image in each repository and skipped all Microsoft
repositories. The thesis concludes that the security measures introduced by Docker
Inc. did not improve the overall Docker Hub security. They stated that the number
of inherited vulnerabilities had dropped since the analysis of Shu et al.; however,
they also found that the average number of new vulnerabilities in child images had
highly increased. Moreover, they found that the majority of official, community, and
certified repositories contain less than 75 vulnerabilities and that the majority of
verified images contain less than 180 vulnerabilities.

Chapter3Methodology

In this chapter, the research questions will first be described in detail, and then the
requirements for answering them will be pointed out. The specific choice of research
design is stated and argued for, and the applied methodology is presented. Figures
will be used to explain all project phases and the data flow explicitly. Further, the
obtained data set is introduced, and all the required tools and resources are presented.

3.1 Research questions

Our research questions, as defined in Section 1.2.1, formed the basis of this thesis.
Several aspects need to be considered to answer each research question sufficiently.

RQ1 How can vulnerabilities found in Docker images be systemized in order to
investigate the current vulnerability landscape of Docker Hub? is considered as our
main research question, and of the most importance. In order to answer this, we first
investigated the number of vulnerabilities in each severity category (critical, high,
medium, low, negligible, and unknown). Then, we looked at the central tendency
(average and median) and other statistical measures describing the data set, such
as maximum, minimum, and standard deviation of the number of vulnerabilities in
images. We examined how many vulnerabilities that exist in each of the four image
types (official, verified, certified, and community), as well as the density distribution of
the number of vulnerabilities for each image type. Next, we determined what images
that contain the most critical vulnerabilities. We also examined the percentage
of images that contain high and critical vulnerabilities, and we determined how
vulnerable Microsoft images are compared to other images, as proposed by Socchi
and Luu in their thesis’ future work section [SL19]. Moreover, the number of images
that do not contain any vulnerabilities was inspected. Then, we investigated what
the CVE trend is like in all image types, as well as in the number of newly discovered
CVE vulnerabilities each year. The final discovery used to answer RQ1 was how
often images on Docker Hub are updated.

17

18 3. METHODOLOGY

When considering RQ2 How do image features and the number of vulnerabilities
correlate in images?, we applied Spearman’s rank correlation to see whether or not
the number of vulnerabilities is affected by features of the images we gathered. The
features that were evaluated are the number of pulls, the number of stars, and the
number of days since the last update. We also inspected scatter plots to identify
other relationships in the data than correlation.

To comply with RQ3 Which types of vulnerabilities are the most severe?, we
investigated the most threatening vulnerabilities by looking at the most represented
critical vulnerabilities in our data set. Further, we took a more in depth look at the
most represented ones by determining what characterizes them and describing their
common features.

Finally, the most vulnerable packages in images were identified to answer RQ4
Which packages contain the most severe vulnerabilities?. We determined what pack-
ages contain the most critical vulnerabilities and looked at the number of images
that use the most vulnerable packages. Lastly, we found out how vulnerable the
most used packages on Docker Hub are.

3.2 Research design

This thesis follows a quantitative research design. Quantitative research is a type of
research that involves collecting and analyzing data in order to describe the behavior
and trends reflected in the data [Suk96]. The data, which is represented as numeric
values, has been analyzed by using mathematical and statistical techniques. These
will be elaborated on later in this chapter. The results are presented using tables,
graphs, and other visuals. The goal of our analysis is to answer the research questions,
as explicitly explained in the previous section (Section 3.1). Out of the different
categories of quantitative research, our project falls under the descriptive research
category and the correlational research category. These terms are further explained
in the next section.

3.2.1 Quantitative descriptive and correlational research

All our research questions are related to quantitative research; however, there are
differences in the applied research type. RQ1, RQ2 and RQ4 falls under the
category of descriptive research, while RQ3 is classified as correlational research.

The objective of descriptive research is to describe how something is, rather than
to determine the cause and effect. The core of descriptive research is, according to
Fox and Bayat, to describe what a situation is like through a process of collecting
data. It further aims at bringing attention to problems or issues in a more complete

3.2. RESEARCH DESIGN 19

way than what was possible without employing this method [FB08]. On the other
hand, correlational research focuses on the relationship between two or more variables,
without controlling them [McC20]. The goal of correlational research is, thus, to
determine the correlation between two or more variables.

3.2.2 Project phases

The methodology applied in this project has enabled us to carry out the work through
a systematic approach so that the obtained results were used to answer our research
questions successfully. The project was divided into five phases, which are based
on the use of quantitative descriptive and correlational research, as already defined.
The phases are stated below, and a comprehensive explanation of each phase is given
in Chapter 4 Implementation and data acquisition.

Phase 1: Implementation of scripts
Phase 2: Data collection
Phase 3: Import data into database
Phase 4: Data analysis
Phase 5: Visualization of results

The workflow of the project phases is visualized in Figure 3.1 for clarity. As
seen in the figure, we carried out the implementation phase in an iterative approach
(Phase 1), where we tested the scripts on a subset of the data and implemented
necessary changes. We performed the other phases in succession. After the scripts
were working as required, the process of collecting the data was started (Phase 2).
Then, we imported the collected data into the database (Phase 3), and conducted
the data analysis on the data in Phase 4. Lastly, we visualized the results in Phase 5.

Figure 3.1: Project phases

20 3. METHODOLOGY

Figure 3.2 shows the different data sources and how the data traverses the various
components. The web scraper utilizes tools specified in Section 3.4.1 and collects
2540 images from Docker Hub. We use the collected image names as input in both
API scripts, and in the automatic analyzer. The collected image information is
inserted into the MySQL database (see Section 3.4.6). The API scripts gather
image metadata from the Docker Registry web APIs (see Sections 3.4.2 and 3.4.3),
which is inserted into the database. The automatic analyzer analyzes all images
using the Anchore Engine vulnerability scanner (see Section 3.4.4), and returns the
results in Comma Seperated Values (CSV) format (see Section 3.4.7). We insert the
resulting vulnerability data and the information about failed images into the database.
SQL queries are run on the data and the outputted results are then visualized by
using the Matplotlib and Seaborn Python libraries (see Section 3.4.5). The machine
environment described in Section 3.4.9 was used throughout the project, and the
final results are presented in Chapter 5 Results.

Figure 3.2: Data flow

3.3 Data set

The data set used in this analysis consisted of 2540 images in total, where 2412 were
successfully analyzed, and 128 failed. Details regarding the data set can be seen in
Table 3.1. We included all official, and a portion of the verified and certified images
on Docker Hub in this analysis, in addition to the ~2000 most popular community

3.4. TOOLS AND RESOURCES 21

Image type Successful count Failed count Total count
Official 157 3 160
Verified 60 57 117
Certified 22 27 49
Community 2,173 41 2,214
Total 2,412 128 2,540

Table 3.1: Distribution of successful and failed images in each image type

images. Due to time constraints, it was decided to analyze one image in each analyzed
repository. Images with the latest tag were preferred, as this is the newest and most
patched version of the image. Therefore, vulnerabilities found in these versions are
more significant because vulnerabilities in previous versions may already be fixed in
the latest version. We see it as a better approach to analyze one image from many
repositories instead of analyzing all images in a smaller number of repositories. This
is because it is likely that there are similarities in the vulnerabilities present in images
from the same repository, and choosing to analyze a larger variety of repositories will
give a broader perspective of what the vulnerability landscape actually is like. We
present the database structure and all data attributes in our data set in Section 4.3.

3.4 Tools and resources

We have applied a variety of tools and resources in this thesis. This section will
present and describe each one.

3.4.1 Selenium and Geckodriver

Selenium and Geckodriver are tools that were utilized in the web scraper to navigate
around on the Docker Hub web page to gather the desired images and their image
repository type. Selenium is a testing tool for web applications that support Python
through a Python API. Geckodriver is a web browser engine for the Firefox web
browser that allows loading and navigating on web pages remotely. Geckodriver is
what connects Selenium and the Firefox browser, and thus, it is a necessity in order
to make Selenium tests run in the Firefox browser.

3.4.2 Docker Registry HTTP API V1

The Docker Registry API V1 is a REST API which returns JSON data and accepts
HTTP requests. The API interacts with the Docker engine and makes image
distribution possible [Docd]. Docker Inc. has announced that pushing and pulling to
the first version of the API has been deprecated in order to migrate to the second
version of the API [San19]. Indeed, it is still possible to use the API. We have used

22 3. METHODOLOGY

this API to gather metadata about verified and certified images. The following HTTP
request shows how to interact with the API to gather metadata about images, such
as the number of pulls, the number of stars, and when the image was last updated.
Note that our scripts access the web APIs.

GET https://<registry-URL>/api/content/v1/products/images/
<repository-name>↪→

3.4.3 Docker Registry HTTP API V2

The second version of the API was released with the introduction of the Docker
Registry 2.0 and is an updated implementation of the first version. This API is
similar to the first version, but with some architectural changes. In addition, it has
enhancements when it comes to performance and security [CSR17]. This version of
the API gives access to official and community images and is used to gather data
about them. The HTTP request for retrieving image data is shown below.

GET https://<registry-URL>/v2/repositories/<repository-name>

3.4.4 Anchore Engine

Out of many currently available container scanners, Anchore Engine is one of the most
favored ones in the community.1 It is an open-source static scanning tool that offers
a lot of functionality for inspecting and analyzing container images. Anchore Engine
can be used as a stand-alone program, or within another orchestration platform
[Off19]. It is either accessed by its CLI, or directly through a REST API. Anchore
Engine also allows for custom user-defined policies to be determined in terms of
what to accept or reject. A screenshot of the output of a vulnerability scanning with
Anchore Engine is shown in Figure 3.3.

Figure 3.3: Anchore Engine output

Anchore Engine gathers vulnerability information from multiple sources such
as RedHat, Debian, and NIST, as illustrated in Figure 3.4. The Feed Service is
responsible for collecting the vulnerability data and normalize the data. Anchore

1For Anchore Engine source code, see https://github.com/anchore/anchore-engine

3.4. TOOLS AND RESOURCES 23

Engine is periodically fetching vulnerability data from the Feed Service and then
saves it into its PostgreSQL database (Anchore Database in the figure) to always stay
up-to-date [Hil19]. The vulnerability scanning works by checking image layers up
against this vulnerability database. Each found vulnerability is in one of the following
severity categories: critical, high, medium, low, negligible, unknown, or no severity.
Anchore Engine matches vendor packages with vendor vulnerability records (e.g.,
Debian packages will map to Debian vulnerability data and RPM packages will map
to RedHat vulnerability data), and then draws the severity level from the matched
vulnerability record. If a package is not a vendor package (e.g., npm, ruby, pip and
java), then the match is made up against NVD data. The severity is again drawn
from the vulnerability record that is part of the match. The negligible and unknown
categories occur when the vendor has not yet made a decision on the vulnerability
and labels the vulnerability as “not yet assigned”.

Figure 3.4: Anchore Engine vulnerability data gathering. Figure from [Hil19].

It is trivial that the results from a vulnerability scanning will depend highly on
what scanner is used. Both Shu et al. [SGE17] and Socchi and Luu [SL19] used the
Clair scanner (see Section 2.4 for related work). As we do not intend to replicate
previous research, but rather give a new perspective on the vulnerability landscape
in Docker Hub images, we have chosen a different, but still a well-respected scanner
in the community.

24 3. METHODOLOGY

3.4.5 Matplotlib and Seaborn

We used the Python plotting library Matplotlib to generate graphs, bars, and charts
so that we could present our results in a transparent way. The Seaborn library is
another visualization library based on Matplotlib, which we used when Matplotlib
was not sufficient. Matplotlib provides a lot of functionality and makes it possible to
conduct changes at a low detail level compared to other considered plotting tools.

3.4.6 MySQL

MySQL is a database system owned by Oracle Corporation that is based on the
Structured Query Language (SQL). As our data set is considerably large, it was
beneficial to use queries to retrieve results quickly. Thus, the choice was to go for
a SQL database, which is also called a Relational Database Management System
(RDBMS). A RDBMS is a database where the values in a table are related to each
other, and where tables are related to each other through primary and foreign keys.
The MySQL database system is one of the most commonly used database systems,
and besides, it is open-source and free. Hence, it was a natural choice for this project.
MySQL is versatile and can be used with most operating systems, applications,
and programming languages. The MySQL database server is well suited for large
databases because it is easy to use, very fast and reliable, and also scalable [Ora20a].

There are multiple options for ways of working with MySQL databases. It can
be done directly in the machine terminal or using most programming languages, like
Python, Java, C, and C++, via different APIs. Another option, which is what we
opted for, is MySQL Workbench. It is a Graphical User Interface (GUI) application
that provides a graphical tool for communicating with and managing MySQL servers
and databases [Ora20b]. In this thesis, we used MySQL Workbench for creating
tables in the database, importing data into them, join tables into new ones, and
doing queries on the data. It was the option we found the most intuitive, easy to set
up, easy to work with, and it provided the required functionality.

3.4.7 CSV file format

The CSV file format is a text file where commas separate the values. Every line
in the file constitutes a data record. This file format is commonly used for data
exchange between applications, and most databases support it. Due to its seamless
integration with the MySQL database system and low overhead, we chose it as the
format for saving the gathered data before importing it into the database.

3.4. TOOLS AND RESOURCES 25

3.4.8 Statistical concepts

As a part of our research design that was described in Section 3.2, we have utilized
several mathematical and statistical concepts when analyzing our data. The following
sections give a brief description of each one.

Average: The average measure summarizes all values and divide the sum by the
total number of values, see Equation 3.1. It was used as a measure of central tendency,
for example, when calculating the average number of vulnerabilities in each image.

x = 1
N

N∑
i=1

xi (3.1)

Median: The median is the middle value in a set where all values are sorted. In
cases where the data set has extreme values, the median will be more representative
in terms of the central tendency. In our project results, we used the median as
another measure to determine the central tendency related to the vulnerability count
in images. Formally speaking, the median of a list x = {x1, . . . , xn} that consists of
n elements can be seen in Equation 3.2:

median(x) =
sorted(x)b n+1

2 c + sorted(x)d n+1
2 e

2 (3.2)

sorted(x) is a sorted list of the values of the list x, and the notations bn+1
2 c and

dn+1
2 e denote the middle index (or the average value of the middle two indexes) of a

list of n elements.

Standard deviation: The standard deviation is used to investigate the dispersion
of a data set by calculating the average distance to the average value of the data
set. A high standard deviation value indicates that the data is varied and spread
over a large interval, while a low standard deviation indicates that most values are
close to the average. See the mathematical formula for sample standard deviation in
Equation 3.3.

s =

√√√√ 1
n− 1

n∑
i=1

(xi − x̄)2 (3.3)

Pearson correlation coefficient: Correlation is used to determine how strong
two variables are related to each other. The Pearson Correlation Coefficient (PCC)
is a number between -1 and 1. A positive value indicates that there is a positive

26 3. METHODOLOGY

linear correlation, 0 indicates no correlation, and a negative value means that it is a
negative linear correlation. A positive correlation means that both variables move
in the same direction, and a negative correlation indicates that they move in the
opposite direction. PCC should be used on normally distributed data. The PCC
formula for a sample is stated below in Equation 3.4, where x and y are two variables
(for example, the vulnerability count in images and image star count). x and y are
the average values for these variables.

rxy =
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2

√∑n
i=1(yi − y)2

(3.4)

Spearman’s correlation coefficient: In cases where the data set is not related
through a linear relationship, the Spearman’s correlation coefficient rs can be used
to investigate if there is a monotonic relationship between values [LOHS05]. A
positive monotonic relationship means that the values have an increasing relationship,
while a negative monotonic relationship means the opposite. Just like the PCC,
the correlation coefficient is a value between -1 and 1, where -1 represents a perfect
negative correlation, 0 means no correlation, and 1 means perfect positive correlation.
The formula for Spearman’s correlation is similar to Pearson’s; however, before using
Equation 3.4 on the data, the relative rank of the data is calculated. In statistics,
this approach is normally used when the data is not following a distribution, such as
a normal distribution. The rank is calculated by ordering the data and assign them
ranked values from 1 to n, where n is the number of values. For cases where multiple
values are identical, the average ranking of the values will be used. For example, a
data set with distinct values, such as [2, 16, 27, 28, 42], will be ranked [1, 2, 3, 4, 5].
A data set with multiple identical values, such as [2, 2, 6, 6, 6], will be ranked [1.5,
1.5, 4, 4, 4].

Density distribution plot: To see how a variable is distributed in a data set,
a density distribution plot can be used. It displays all different values along the
x-axis and the probability density along the y-axis. The probability density for a
value is the probability that a random value has this exact value. In the case where
the data is distinct, for example when looking at the number of vulnerabilities in
each image, the density plot needs to be estimated. This will be done by plotting a
histogram with the data values, and then use Kernel Density Estimation (KDE) on
the data. KDE will smooth out any outliers and extreme values, and give a more
even representation of the data set. We used this approach when investigating the
density distribution for number of vulnerabilities in each image type.

3.4.9 Machine specification

To perform our analysis, we have used a machine with the following specifications:

3.4. TOOLS AND RESOURCES 27

− Operating system: Ubuntu 18.04.3 LTS

− CPU: Intel® Core™ i7-8700 CPU @ 3.20GHz × 12

− RAM: 31.2 GiB

− Storage: 245.1 GB

− OS-type: 64-bit

Chapter4Implementation and data
acquisition

In this chapter, all project phases, as presented in Section 3.2.2, will be explained in
detail. First, the implementation phase is described by presenting all implemented
scripts at a conceptual level. Four scripts were implemented to achieve our objectives:
a web scraper, two scripts for accessing the Docker Hub APIs, and a script for
automating the image analysis process. Then, the rest of the project phases is be
presented consecutively. These phases consist of the data collection phase, the import
data into database phase, the data analysis phase, and the visualization of results
phase. This chapter will also comment on factors that limit the project scope.

4.1 Implemented scripts

We aim to do an independent analysis of Docker images and not to reproduce previous
research. Thus, we have implemented four scripts to perform our analysis. These will
be explained in this section, as well as limiting factors. We present the prerequisites
needed for our scripts to work are in Appendix A. Our implemented scripts are also
provided in a public repository on GitHub: https://github.com/katrinewi/Docker-
image-analyzing-tools

4.1.1 Web scraper
We found web scraping as the appropriate method to gather images because the
APIs (Sections 3.4.2 and 3.4.3) provided by Docker Inc. have shortcomings when
it comes to consistency, documentation, and ease of use. Simply put, we see it as
beneficial to gather all images from a single source, which would not be possible by
using the APIs, and also, to only gather the images that appear as the most popular
on the Docker Hub web page. However, we want to mention that the APIs were used
to gather additional information about the images by executing independent calls to
the APIs, which will be explained later in this chapter.

29

https://github.com/katrinewi/Docker-image-analyzing-tools
https://github.com/katrinewi/Docker-image-analyzing-tools

30 4. IMPLEMENTATION AND DATA ACQUISITION

We implemented a scraper in Python 3, which can be seen in Appendix B. The
actual implementation happened in multiple iterations, where the code was tested at
a small scale before the required changes were done. Since the HTML code on the
Docker Hub web page is rendered in the browser using JavaScript code, an approach
where the web page was loaded before attempting to scrape it had to be used. To
handle this, two different tools were utilized: Selenium and Geckodriver. These tools
are explained explicitly in Section 3.4.1.

The script opens the URL of the Docker Hub explore page, and extracts the name
of each image along with what type of image repository it belongs to (official, verified,
certified or community). The script iterates through all pages by incrementing the
page count from 1 to 100 and extracts image information about each image on the
page. The reason why the script only iterates through 100 pages is that Docker Hub
does only allow navigation to page 100 (as a sidenote, it is not possible to access any
more images using the APIs). There are 25 images per page, which makes the total
number of repositories accessible through navigation 2500. The script outputs two
files: one text file with all image names separated with a line shift and one CSV-file
that contains image name and image type for each image. See Figure 3.2 for the
general data flow. It needs to be pointed out that all certified images on Docker Hub
are also considered as verified images because the certified image type is a subgroup
of the verified type, see Figure 4.1 for an example. To clarify, images in the certified
category will only be considered as certified images in our database, not as verified.
To summarize, the goal of the scraper is to gather the 2500 most popular images
along with their image types from Docker Hub.

Figure 4.1: Screenshot from Docker Hub of the Auditbeat image. Note that it is
marked as both a certified and a verified image.

Limitations

It would have been desirable to analyze even more images, but as already explained,
Docker Hub does not allow navigation any further than page 100. A solution similar
to Shu et al.[SGE17] could have been used, where they search for random strings
with lengths between 1 to 20 characters to discover images. However, it was left as
future work.

4.1. IMPLEMENTED SCRIPTS 31

4.1.2 Scripts for accessing the Docker Registry API’s

The image metadata that is possible to extract from scraping the Docker Hub web
page is inadequate. Hence, there was a need to access the Docker Registry APIs for
additional information about each image. We implemented two Python scripts for
accessing the first and second versions of the Docker Registry API (see Sections 3.4.2
and 3.4.3, respectively). Both APIs were used because the Docker Registry API V2
only gives access to official and community images. In order to retrieve metadata
about verified and certified images, the first version of the API was required. The
APIs make it possible to gather information such as the exact number of image pulls,
the number of stars, and the date the image was last updated. However, it should
be mentioned that the verified and certified images don’t contain star-ratings, and
many of them lack data about number of pulls. The scripts for accessing the Docker
Registry API V1 and V2 can be seen in Appendix C and Appendix D, respectively.
The two scripts are similar, so only the script that is accessing the Docker Registry
API V2 will be explained in detail. The outputted files from the two scripts were
merged into two new files with information from both APIs. The CSV file with image
information from both APIs was used in the next phases with the format: image
name, pulls, stars, and last update.

The script (API V2) accesses two different URLs depending on the image reposi-
tory type. If it is a library, the URL https://hub.docker.com/v2/repositories/library/image-
name has to be used, otherwise the URL https://hub.docker.com/v2/repositories/image-
name is used. The script takes a txt-file with image names separated with newline
as input. The output of the script is a CSV-file with image information as specified
in the previous paragraph. Additionally, it outputs a text-file with the images that
could not be found.

4.1.3 Automatic analyzer

With the aim of running the analysis automatically, we have implemented a bash
script to perform the analysis with the Anchore Engine scanner (see Section 3.4.4 to
read about Anchore Engine). The actual code can be further inspected in Appendix
E.

The script takes the outputted CSV file from the web scraper that contains all
image names as input (see Figure 3.2 to see the general data flow in this project). It
iterates through the names and tries to start the Anchore Engine scanning on each
image. In some cases, images fail to be analyzed for different reasons. These are
identified and written to a separate file that contains only the failed images. Then, if
the image scanning is successful, the script checks whether the image contains any
vulnerabilities. If it does, these are written to the vulnerability file in the appropriate
format for CSV. If the image did not contain any vulnerabilities, it moves on to

32 4. IMPLEMENTATION AND DATA ACQUISITION

the next image. There are two output files: one CSV file containing information
about all found vulnerabilities, and one CSV file with the images that failed to be
analyzed and the failure reason. The format of the vulnerability file is: image name,
vulnerability name, package, severity level, fix, CVE-reference and vulnerability URL.
An excerpt from the vulnerability file can be seen in Figure 4.2. The format of the
failed file is: image name, cause of failure.

Figure 4.2: Content vulnerability file

In order to perform the scanning of images, we used some of the commands
provided by the Anchore Engine CLI in our bash script. Note that these commands
in the actual script (Appendix E) contain some extra command line parameters.
These are needed to authenticate and connect the Anchore CLI to the Anchore Engine
to be able to run the commands. However, they are not needed if the parameters are
stored as environment variables instead, and thus, for readability, they are excluded
from the following code examples. The relevant commands are listed below, where
the <image> attribute indicates the image name.

– $ anchore-cli image add <image>:latest
To pull an image with the latest tag from Docker Hub and start the vulnerability
scanning.

– $ anchore-cli image vuln <image>:latest all
To output the vulnerability data of an image.

The output of the last command is in plain text where the different columns are
separated with an arbitrary number of spaces, see Figure 3.3. To clean this data
and translate it into CSV format, with the same number of commas in each entry,
different command-line tools were used. To specify: sed, egrep and awk.

Limitations and skipped images

The script fails on some images, which will be further elaborated in Section 4.2.
There are four different failure reasons; permission denied, not found, unknown and
time out. The first two are autogenerated by Anchore Engine, while unknown, and
time out is added by us. Permission denied occurs when pulling an image is not
generic, such as when it requires the user to be authenticated. Not found happens
when the image name we try to pull is not in accordance with a real image, or that
the latest tag does not exist. To achieve some efficiency, a time out error is triggered
when images do not finish analyzing after one hour of running. Lastly, the unknown
error happens when the failure reason does not fit in any of the other categories, and
hence, is unknown.

4.2. DATA COLLECTION 33

4.2 Data collection

The data collection phase constituted of three steps; running the web scraper,
extracting image information from the two APIs, and running the automatic analyzer.
The web scraper took approximately 15 minutes to run, and created the files image-
names.txt and image-info.csv with the contents as described in Section 4.1.1. Data
was collected about 2540 unique images in total. Further, the scripts that extract
information from the APIs ran for approximately 10 minutes. Lastly, the automatic
analyzer took the image-names.txt file as input and analyzed all 2540 images during
February 2020. The experienced run time depended highly on the images to be
analyzed. For example, an image with no vulnerabilities took a few seconds, an
image with many vulnerabilities took tens of minutes, and an image that took more
than one hour would be considered failed. The complete analysis of all 2540 images
was started on February 25th and took approximately 72 hours. The automatic
analyzer outputs the files failed.csv with information about the failed images, and
vuln.csv with vulnerability data about the images that were analyzed. In total, 2412
images were successfully analyzed.

Manual inspection of image tags

After a test run of the automatic analyzer, as many as 583 images failed (22.95%).
Due to difficulties in automating the analyzing process for these images, they needed
to be manually inspected to find the correct way to pull the image. There are different
reasons why the analysis fails on some images. Some of the verified images have
a specified way of pulling the images, while other images cost $0.00 and require a
registration process, both of which make it hard to pull them automatically. Also, the
script only pulls images with the latest tag, which makes some images fail because
they are missing this tag. Lastly, we found that some images fail because the image
name from the URL (which is what the automatic analyzer uses), is different from
the image name used in the pull command.

As pointed out, we observed that the tag values and the way images are pulled
from Docker Hub are inconsistent. In Figure 4.3, a screenshot of the casanode/lnapi
repository on Docker Hub shows how tags are structured in some repositories, which
is making it extremely hard to automate the process because image tags are irregular
in some repositories. Our approach in cases like this was to choose the uppermost
tag in order to get the newest release or to just go with a version. It was decided
that it would take too much time to analyze all versions of images, so to choose a tag
was better than leaving out the repository as a whole. After manual inspection of
the image tags and rerunning the analysis, the number of failed images was reduced
from 583 to 128, which is only 5% of the entire image set.

34 4. IMPLEMENTATION AND DATA ACQUISITION

Figure 4.3: Some of the available tags in casanode/lnapi repository on Docker Hub.
The tag is specified is specified after the docker pull command to the right.

Challenges

It was discovered that the data set from the web scraper included duplicate rows,
meaning that one image was included more than one time in the files. This propagated
to the other two scripts because they both use the output file of the web scraper as
input. Initially, there were 22 duplicate images from the web scraper resulting in
9,574 duplicate rows in the vulnerability file. The scraper created duplicate rows
when an image was present on multiple pages of the Docker Hub websites during the
execution of the scraper. The images on Docker Hub are ordered by popularity, and
when the popularity order is updated, some images will change the page number they
are present on. When this happens during the execution of our script, the name of
the image will be scraped both times. Because Docker Hub is continuously updated,
this issue was inevitable.

As the scraper only accesses 2500 images for each run, the way to overcome this
issue was to run the scraper multiple times with some time apart. The result was
multiple files with 2500 images each. By removing duplicate rows in these files, the
final image file contained 2540 unique images, and this file was then used in the two
other scripts.

4.3 Import data into database

When importing the data into the MySQL database in MySQL Workbench, the
overall process was first to create appropriate tables and then import the outputted
files from the previous project phases into them. Also, we generated a new table by

4.3. IMPORT DATA INTO DATABASE 35

joining two of the tables so that the data was merged. This new table replaced the
two old ones. The resulting database structure is presented as an Entity-Relationship
(ER) diagram in Figure 4.4. It shows the three tables that we have used in the data
analysis phase, including column names and types, primary and foreign keys, and
the relation between them. Image_info has a one-to-many relationship with the
vuln table, since one image can contain multiple vulnerabilities. With the failed
table, image_info has a one-to-one relationship, indicating that one image can only
fail once with one failure reason. The primary key in image_info (image_id) is the
foreign key in both vuln and failed.

Figure 4.4: ER diagram of the MySQL database

Four database tables were created initially, one for the web scraper data, one
for the API data, one for information about vulnerabilities, and one for information
about failed images. After merging the tables with web scraper data and API data,
the database consisted of three tables, as seen in Figure 4.4. We used SQL queries
to create tables, and Listing 1 gives an example of how this was done. The example
shows how the vulnerability data table was created, called vuln in Figure 4.4. All
other tables were created similarly, see Appendix F for the complete SQL query
script used in this phase.

36 4. IMPLEMENTATION AND DATA ACQUISITION

Listing 1 SQL query for creating a table
CREATE TABLE vuln (

vuln_id INT AUTO_INCREMENT PRIMARY KEY,
image_id INT,
image VARCHAR(255) NOT NULL,
vuln_name VARCHAR(255),
package VARCHAR(255),
severity VARCHAR(255),
fix VARCHAR(255),
cve_refs VARCHAR(800),
vuln_url VARCHAR(255),
FOREIGN KEY (image_id) REFERENCES image_info(image_id));

After the tables were created, we used the Data Import Wizard tool in MySQL
workbench to import the CSV data files and insert the data in appropriate columns
as defined when creating the table.

Lastly, it was practical to merge the image information gathered from the web
scraper and the APIs into one table. This was done to simplify the queries in the
next phase. We used the JOIN function in SQL to merge the tables, as seen in
Listing 2. The image_info table was created similarly as Listing 1 with the columns
as specified in Figure 4.4, and then the result of the join query was inserted into the
image_info table.

Listing 2 SQL query for joining two tables
INSERT INTO image_info
SELECT

A.image_id,
A.image,
A.i_type,
COALESCE(B.pulls, ''),
COALESCE(B.stars, ''),
COALESCE(B.last_updated, '')

FROM image_info_scraper A
LEFT JOIN image_info_api B USING (image);
#COALESCE is used to change empty values from NULL to ''

After this phase, the resulting environment was the base ground for the SQL
queries used in the data analysis phase. The complete SQL script used in the data
import phase can be found in Appendix F.

4.4. DATA ANALYSIS 37

4.4 Data analysis

The data analysis phase consisted mainly of writing and executing SQL queries in our
MySQL database environment. The goal of this phase was to restructure and analyze
our gathered data to answer our research questions. The results are thoroughly
presented in Chapter 5. In this section, we present the most important SQL queries
that were used and describe their purpose. The complete SQL script can be found in
Appendix G. Throughout this section, we will refer to the exact parts of the results
chapter where the queries have been used.

To see how many empty values existed in the images that were successfully
analyzed, the SQL query in Listing 3 was used. A similar query was used for the
vuln table as well. It groups the data by image type (verified, certified, official, and
community) and counts the number of non-empty values for each column. The result
of this particular query was used in Table 5.1 in Section 5.1.2.

Listing 3 Number of non-empty values for each column in image_info
SELECT

i_type,
COUNT(DISTINCT image_id) AS number_of_images,
COUNT(DISTINCT IF(NOT image_id='',image_id,Null)) AS image_id,
COUNT(DISTINCT IF(NOT A.image='',image_id,Null)) AS image,
COUNT(DISTINCT IF(NOT i_type='',image_id,Null)) AS i_type,
COUNT(DISTINCT IF(NOT pulls='',image_id,Null)) AS pulls,
COUNT(DISTINCT IF(NOT stars='',image_id,Null)) AS stars,
COUNT(DISTINCT IF(NOT last_updated='',image_id,Null)) AS last_updated

FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id FROM
failed)) A↪→

LEFT JOIN vuln B USING (image_id)
GROUP BY i_type;
'' indicates empty field

Several of our queries contain the JOIN function because we want to extract
information about images across multiple tables. For example, when counting the
number of vulnerabilities in each image type, the number of vulnerabilities is in the
vuln table, and the image type is in the image_info table. Listing 4 shows a query
for extracting the data that was used in Figure 5.3a in Section 5.1.2. It displays the
number of analyzed and failed images, and in order to count both in the same query,
the image_info and failed tables were joined.

38 4. IMPLEMENTATION AND DATA ACQUISITION

Listing 4 Number of analyzed and failed images of each image type
SELECT

i_type,
COUNT(DISTINCT IF(NOT A.image_id IN (SELECT image_id FROM failed),

A.image_id, Null)) AS analyzed_images,↪→

COUNT(DISTINCT B.image_id) AS failed_images
FROM image_info A LEFT JOIN failed B USING (image_id)
GROUP BY i_type;

For statistical calculations, MySQL contains multiple built-in functions, like
average, maximum and minimum values, and standard deviation. However, there
are no built-in function for calculating the median. Therefore, we used the query in
Listing 5. The query extracts all images and the number of vulnerabilities for each
image, then orders this list by the number of vulnerabilities in descending order, and
outputs the vulnerability count of the image that is placed in the middle of the list.
The median value is calculated by taking the average value of the two middle values
to take into account when the number of rows in the data is odd. Median has been
used in Sections 5.2.2 and 5.2.3 of the results.

Listing 5 Median value of number of vulnerabilities per image
SET @rowindex := -1;
SELECT AVG(D.vuln_count) AS median
FROM

(SELECT @rowindex:=@rowindex + 1 AS rowindex, C.vuln_count
FROM

(SELECT
A.image_id,
COUNT(vuln_name) AS vuln_count

FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id
FROM failed)) AS A↪→

LEFT JOIN vuln B USING (image_id)
GROUP BY A.image_id
ORDER BY vuln_count DESC) AS C) AS D

WHERE D.rowindex IN (FLOOR(@rowindex / 2) , CEIL(@rowindex / 2));

We also used the built-in functions that were mentioned in the previous paragraph.
Listing 6 shows how we extracted the data that was used in Table 5.4 in Section 5.2.2.
It calculates the average number of vulnerabilities per image, the maximum and
the minimum number of vulnerabilities, and the standard deviation for each image
type. For this query, we count the vulnerabilities with severity degrees negligible and
unknown as zero.

4.4. DATA ANALYSIS 39

Listing 6 Statistical values for vulnerabilities per image for each image type
#average, max, min and standard deviation of number of vulnerabilities in

each image↪→

SELECT
i_type,
AVG(vuln_count) AS average,
MAX(vuln_count) AS max_,
MIN(vuln_count) AS min_,
STDDEV_SAMP(vuln_count) AS stddev_

FROM
(SELECT

A.image_id,
MIN(i_type) AS i_type,
COUNT(IF(NOT vuln_name='' AND (NOT severity='negligible' AND NOT

severity='unknown'), 1, Null)) AS vuln_count↪→

FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id
FROM failed)) AS A↪→

LEFT JOIN vuln B USING (image_id)
GROUP BY A.image_id) AS C

GROUP BY i_type;

In some cases, we needed to extract rows based on a substring of a column value.
An example of this is found in Listing 7, where we use the SUBSTR() function
of SQL to extract substrings from specific positions from the column values. The
vuln_name column is on the following format: “[type]-[year]-[seq no]”, where type is
either CVE, RHSA, ELSA or ALAS (for example “CVE-2020-12345”). We wanted to
group distinct vulnerabilities based on the year they were released, so SUBSTR() was
used to extract only the year of that string. In our queries, we also used the INSTR()
function of SQL to find a substring inside a specific column value. The result of the
query in Listing 7 was used for Figure 5.12b in Section 5.2.9. The INSTR() function
was also used in Section 5.2.7 for extracting data about Microsoft images.

40 4. IMPLEMENTATION AND DATA ACQUISITION

Listing 7 Number of unique vulnerabilities in each image type, grouped by year
SELECT

DISTINCT IF(INSTR(vuln_name,'cve'),SUBSTR(vuln_name, 5, 4),
SUBSTR(vuln_name,6,4)) AS year,↪→

COUNT(*) AS total_count,
COUNT(IF(i_type='verified', vuln_name, Null)) AS verified_count,
COUNT(IF(i_type='certified', vuln_name, Null)) AS certified_count,
COUNT(IF(i_type='official', vuln_name, Null)) AS official_count,
COUNT(IF(i_type='community', vuln_name, Null)) AS community_count

FROM (SELECT DISTINCT vuln_name, i_type FROM vuln A LEFT JOIN image_info B
USING(image_id)) AS A↪→

GROUP BY year
ORDER BY year;

Another statistical concept that is not incorporated as a built-in function in SQL
is correlation. Correlation was used when answering the second research question
in order to detect whether or not there is correlation between image features and
the number of vulnerabilities. The SQL queries that we used for calculating the
Spearman’s correlation coefficient between the number of vulnerabilities, and the
number of pulls, stars and days since last update, can be found in Appendix G (from
line 398). The query calculates the ranked values of the variables using the RANK()
function in SQL, and then uses built-in functions like average and standard deviation
for calculating the Pearson correlation coefficient (see Equation 3.4 from Section
3.4.8) on the ranked values. The result is the Spearman correlation coefficient as a
value between -1 and 1.

Listing 8 shows a simple query that is used in Section 5.5.1 when finding what
packages that are the most vulnerable. The query groups the data by package, counts
the number of critical vulnerabilities in each package, and orders the result by the
critical count in descending order. Additionally, the query counts the number of
images that contain the specific package. Similar queries was used in a number of
other sections, such as Sections 5.2.5, 5.4.1 and 5.5.2.

Listing 8 Finding the most vulnerable packages in images
SELECT

package,
SUM(severity='Critical') AS critical_count,
(SELECT COUNT(DISTINCT image_id)) AS number_of_images

FROM vuln
GROUP BY package
ORDER BY critical_count DESC;

4.5. VISUALIZATION OF RESULTS 41

The last SQL query is presented in Listing 9. It groups the data by image, and
counts the number of vulnerabilities, pulls stars and days since last update for each
image. This query is not used to display any result directly. However, several of our
other queries use this query (or parts of it, especially the vulnerability count) as
a subquery in the FROM clause. Examples from this section are Listings 5 and 6,
however, there are more examples in the full SQL script in Appendix G.

Listing 9 Counting number of vulnerabilities, pulls, stars and days since last update
in each image
SELECT

A.image,
COUNT(vuln_name) AS vuln_count,
AVG(IF(NOT pulls='',pulls,Null)) AS pulls,
AVG(IF(NOT stars='',stars,Null)) AS stars,
AVG(IF(NOT last_updated='',DATEDIFF('2020-02-25', last_updated),Null)) AS

days_since↪→

FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id FROM
failed)) AS A↪→

LEFT JOIN vuln B USING (image_id)
GROUP BY A.image;

In addition to using SQL queries in the data analysis phase, we used Google Sheets
and Python for simple calculations on the results from SQL queries. Spreadsheets
were used to temporarily store important results from SQL queries, structuring tables
and calculating sums, percentage, and ratios that were not necessary to incorporate
in the SQL queries.

4.5 Visualization of results

The final project phase was about visualizing the results obtained in the previous
phases. We have used numerous methods of visualization, and this section explains
them briefly. All tables in Chapter 5 are created directly in Latex, using built-in
functionality. The figures in Chapter 5 are all created by using the Matplotlib and
Seaborn libraries in Python, which support most types of charts, plots, and graphs.
We have utilized line graphs, pie charts, bar charts, histograms, and scatter plots.

Chapter5Results

This chapter presents all results needed to answer the research questions of this thesis
(see Section 3.1). First, the evolution of images on Docker Hub is investigated, and
then, our obtained data set is explained in detail. Further, the results are divided
into four sections that present results so that they, as a whole, address each research
question extensively.

5.1 Data set

To understand the results of the analysis, it is necessary to describe the data set that
has been used. This section will first look at the evolution in the quantity of images
on Docker Hub, then explain the content of the three database tables that were used
in the data analysis phase (Section 4.4).

5.1.1 Images on Docker Hub

We present Figure 5.1, which displays the number of images on Docker Hub measured
one week apart from February 3rd, 2020 to March 30th, 2020. The figure is included
to make the reader aware of the continuous growth in the volume of Docker Hub
images.

43

44 5. RESULTS

Figure 5.1: The evolution in quantity of images on Docker Hub

The number of images is increasing by approximately 25,000 images each week and
follow a linear growth. This means that the Docker Hub ecosystem is continuously
changing, especially considering that this increase in images is only reflecting approx-
imately two months. To see the evolution in a longer time perspective, the number
of images was only 95,000 at the time of BanyanOps’ analysis in 2015 [GDT15].

5.1.2 Image information and failed images

In our database, the image_info table contains 2450 image entries. Out of these,
2,412 images were successfully analyzed. The distribution of images in the four types
(verified, certified, official, and community) can be seen in Figure 5.2. It is worth
noting that the community images represent by far the most substantial portion of
the data set by 90%. Following are official images with 6.5%, verified images with
2.5%, and certified images with 1%.

5.1. DATA SET 45

Figure 5.2: Image type distribution

The database table consists of six columns, where some of the columns contain
null values because it was not possible to collect data about all images. Table 5.1
shows the number of analyzed images for each image type. For each column in the
image_info database table, the table shows how many analyzed images have data
in the column and the respective percentage of non-null values. The percentage
is based on the total number of analyzed images of each image type (the Images
column), not the total number of analyzed images. For instance, looking at the pulls
column for verified images, the percentage is based on the total number of analyzed,
verified images (60) and how many of these images that have the pulls attribute (53).
The columns image_id (unique numerical value), image (name), and i_type (image
type) are all complete and contain no null values. The remaining columns have
96-99% data. Note that official and community images have very few entries with
null values in pulls and stars compared to verified and certified images. For certified
images, there are neither pulls nor stars data, but all images have last_updated
data. For verified images, 88% have pulls data, only one has stars data, and all have
last_updated data.

46 5. RESULTS

Image type Images

Column name
image_id,

pulls stars last_updatedimage,
i_type

Verified 60 60 (100%) 53 (88.3%) 1 (1.7%) 60 (100%)
Certified 22 22 (100%) 0 (0.0%) 0 (0.0%) 22 (100%)
Official 157 157 (100%) 156 (99.4%) 156 (99.4%) 156 (99.4%)
Community 2173 2173 (100%) 2170 (99.9%) 2170 (99.9%) 2169 (99.8%)
Total 2412 2412 (100%) 2379 (98.6%) 2327 (96.5%) 2407 (99.8%)

Table 5.1: Number of analyzed images of each type and column information with
number of images with data. The percentages are based on the total number of
images of each image type from the Images column.

Failed images

Out of the 2540 images that were collected, 128 images failed. Figure 5.3a shows
the distribution between analyzed and failed images in the four image types, and in
total. As the majority of the images are community images, this bar is prominent in
the chart. Note that, despite the large difference in the number of images between
community and verified images, there are fewer community images that failed to be
analyzed than verified images (41 failed community images versus 57 failed verified
images). Also, note that only three of the official images failed, and that certified is
the only image type where the number of failed images is higher than the number of
analyzed images. To take the large variations in the number of images in each type
into account, Figure 5.3b is presented. It shows the percentage of analyzed versus
failed images in the four image types, and in total. A little over half of the verified
images were analyzed, and less than half of the certified images were analyzed. For
official and community images, 98.1% were analyzed. In total, 95% were analyzed,
and 5% failed.

5.1. DATA SET 47

(a) Number of analyzed and failed images
in each image type, and in total.

(b) Percentage of analyzed and failed im-
ages each image type, and in total.

Figure 5.3: Analyzed and failed images

The failed table in the database contains 128 entries where all entries have a
failed_id, image_id, image (name) and failure_reason, and no null values. There are
four different failure reasons; permission denied, not found, time out, and unknown
error. The distribution of images in the different failure categories can be seen in
Figure 5.4. Almost half of the images fail due to permission denied error, which
is likely to correspond with the high number of failed verified and failed certified
images. Indeed, many verified and certified images require authentication, which will
lead to a permission denied failure, as explained in Section 4.1.3.

Figure 5.4: Distribution of failed images

48 5. RESULTS

As an additional delivery, we have created a separate document called “Additional
appendices: An Extensive Analysis of the Current Vulnerability Landscape in Docker
Hub Images”. It includes two appendices. Appendix A includes a list of all analyzed
images grouped by each image type. Each entry in the list have the image name
and the number of detected vulnerabilities. Appendix B includes a list of the failed
images, with image name and failure reason. The document is an attachment to our
master thesis delivery on the NTNU submission page.

5.1.3 Vulnerability information

The last table in the database is the vuln table, which contains all vulnerability data.
It consists of as many as 918,792 entries, and there are nine different columns. Table
5.2 shows the column names, the number of values, the number of unique values,
and the number of null values for each column. Vuln_id is a unique integer for each
entry in the table. Image_id is a unique integer for each image, and image is the
name of the image. Our data contains 1,982 images with at least one vulnerability.
The vuln_name values are the names of the vulnerabilities found, meaning that
the data set includes 9,408 unique vulnerabilities. There are four categorizations of
vulnerabilities in the data set; CVE, RHSA, ALAS, and ELSA. However, 98% of the
entries are CVE vulnerabilities.

Further, the package column states in which package the vulnerability is found,
where the data set consists of 13,381 unique package values. There are six severity
levels (critical, high, medium, low, negligible, and unknown), as explained in Section
3.4.4. The fix value typically indicates the name of a newer version of the package
that the vulnerability is found in. 35% of the fix values are “none”, meaning there is
no known fix to the vulnerability. The cve_refs column works as a mapping between
the vulnerability names and CVEs from NVD. So, for every entry with a none-CVE
vuln_name, the reference is a CVE value or a list of CVE values. For every entry
with a CVE vulnerability as vuln_name, the reference is the same as the vulnerability
name or a null value. That is why this is the only column with null values. Lastly,
the vuln_url column contains a URL to a web page with more information about
the vulnerability.

5.2. THE VULNERABILITY LANDSCAPE OF DOCKER HUB 49

Column name Number of Number of Number of
values unique values null-values

vuln_id 918,792 918,792 0
image_id 918,792 1,982 0
image 918,792 1,982 0
vuln_name 918,792 9,408 0
package 918,792 13,381 0
severity 918,792 6 0
fix 918,792 4,661 0
cve_refs 913,285 9,085 5,507
vuln_url 918,792 14,233 0

Table 5.2: Column information for the vulnerability table in the database

Throughout the rest of Chapter 5 Results, it is essential to state the difference
between a vulnerability and a unique vulnerability. From now and throughout, a
vulnerability is an entry from the vuln table. There are 918,792 such values, meaning
this is the total number of vulnerabilities in the data set. A unique vulnerability is
a vulnerability with a unique value in the vuln_name column, which means that
a unique vulnerability can be found in multiple images. There are 9,408 unique
vulnerabilities in the data set.

5.2 The vulnerability landscape of Docker Hub

This section will present the results gathered to answer RQ1: How can vulnerabilities
found in Docker images be systemized in order to investigate the current vulnerability
landscape of Docker Hub?

5.2.1 Distribution of vulnerabilities in each severity category

The number of vulnerabilities found in each severity category is presented in Figure
5.5. The vulnerabilities found in total and the number of unique vulnerabilities are
both defining the vulnerability landscape, and therefore, both of these perspectives
are investigated.

In Figure 5.5a, all found vulnerabilities are included. Thus, in this data set, the
same vulnerability could potentially have multiple entries in the result. This is, for
instance, because a particular vulnerability could be found in multiple images, and a
single image could contain the same vulnerability in multiple packages. In Figure
5.5b, only unique vulnerabilities are shown. It should be pointed out that some

50 5. RESULTS

(a) Distribution of all 918,792
vulnerabilities

(b) Distribution of 14,032 unique
vulnerabilities

Figure 5.5: Vulnerability distribution in severity levels

vulnerabilities are present in several severity categories, depending on which image it
is found in. In cases like this, all versions of the vulnerability are included, which
makes up a total of 14,032 vulnerabilities. This is why the total number of unique
vulnerabilities here is higher than what is described in Section 5.1.3.

The negligible and unknown categories clearly stand out in Figure 5.5a, with a
total of 315,102 and 240,132 vulnerabilities, respectively. When considering unique
vulnerabilities (Figure 5.5b), the medium category is the most dominant one with
5,554 unique vulnerabilities. By examining the relation between Figure 5.5a and
Figure 5.5b, one can observe the ratio of vulnerabilities in each severity category. The
negligible category contains few unique vulnerabilities represented in many Docker
images, whereas the medium category has many unique vulnerabilities represented
at a lower ratio. The vulnerability ratio will be explained in detail in the next
paragraph.

5.2. THE VULNERABILITY LANDSCAPE OF DOCKER HUB 51

Severity Number of Number of unique Ratio (A/B)
vulnerabilities (A) vulnerabilities (B)

Critical 10,378 206 50.4
High 44,058 1,313 33.6
Medium 171,832 5,554 30.9
Low 137,290 2,326 59.0
Negligible 315,102 959 328.6
Unknown 240,132 3,674 65.4
Total 918,792 14,032 65.5

Table 5.3: Vulnerability ratio in severity levels

Table 5.3 shows the total number of vulnerabilities, the number of unique vul-
nerabilities, and the ratio, which is measured as the total number of vulnerabilities
divided by the number of unique vulnerabilities. So, for each unique vulnerability,
there are a certain number of occurrences of the specific vulnerability in the data
set. For example, for each unique vulnerability in the critical category, there are
50 occurrences of this vulnerability in the data set on average. For each unique
negligible vulnerability, there are as many as 329 occurrences on average. This is
significantly larger than the other values. Despite medium having the highest number
of unique vulnerabilities, it has the lowest ratio. To read about how the Anchore
Engine determines the different severity categories, see Section 3.4.4.

5.2.2 Central tendency of the vulnerability distribution

We present the central tendency of our data set to emphasize the high variations
of vulnerabilities in images. Figure 5.6 shows the number of vulnerabilities (y-axis)
found in each image (x-axis) in descending order. Less than 50 images have more than
4,000 vulnerabilities, and approximately 1,000 images have less than 50 vulnerabilities.
Therefore, we take a look at both the average number of vulnerabilities and the
median. The average is 381 vulnerabilities per image, while the median is 82. In cases
like this, where the distribution is skewed, the median will give a better representation
of the central tendency than the average. This is because the extreme values pull
the average away from the center.

52 5. RESULTS

Figure 5.6: Average and median of the number of vulnerabilities in each image

We have looked at the average and median values of the number of vulnerabilities
in images when disregarding the vulnerabilities that are categorized as negligible
and unknown. Looking at Table 5.3 from the previous section, one can see that
negligible and unknown vulnerabilities together make up 555,234 out of the 918,792
vulnerabilities (which is 60% of all vulnerabilities). As vulnerabilities in these two
categories are considered to contribute with little threat when investigating the
current vulnerability landscape, it gives a more accurate result to exclude these.
Also, they have to be excluded to comply with CVSS v3.1. Therefore, we calculated
the average and the median value of vulnerabilities in images when disregarding
negligible and unknown vulnerabilities (counting them as zero). The result was 150.7
for the average and 25.5 for the median, which is significantly lower.

To investigate the data when disregarding the negligible and unknown vulnera-
bilities further, we created Table 5.4 that shows statistical values of the number of
vulnerabilities for each image type. The results show that community images have
the highest average, maximum and standard deviation values (158, 6,509 and 391,
respectively). A high standard deviation value means that the average distance from
the center of the data to each data point is big, indicating that the data is sparse
and varied. This is also reflected in the fact that the maximum value for community
images is significantly larger than the average and the median, which is the case for
the other three image types as well.

The image type that is considered as the least vulnerable is official. It has the
lowest average of 73 and the lowest median value of 9. Further, the maximum
and standard deviation values for official images are the second lowest. The lowest

5.2. THE VULNERABILITY LANDSCAPE OF DOCKER HUB 53

Image type
Number of
analyzed
images

Number of
vulnerabilities

Number of vulnerabilities

Average Median Max Min Standard
deviation

Verified 60 6,073 101.2 13 1,128 0 225.9
Certified 22 1,987 90.3 37 428 0 121.3
Official 157 11,489 73.2 9 1,615 0 214.4
Community 2,173 344,009 158.3 28 6,509 0 391.1

Table 5.4: Statistical values for vulnerabilities per image type, disregarding negligible
and unknown vulnerabilities. Inspiration from [SGE17].

maximum value belongs to certified and is only 428. Although certified has the
lowest maximum value, it has the highest median value. This indicates that a larger
portion of the images has many vulnerabilities. The standard deviation of 121 for
this image type is the lowest, meaning that the data is less sparse. As a final note,
all four image types contain at least one image with zero vulnerabilities.

5.2.3 Vulnerabilities in each image type

There are significant differences in the number of analyzed images in each image
category. To mention an example, there are 2,173 analyzed community images, and
only 22 analyzed certified images (Figure 5.3a). This has to be accounted for in order
to compare the number of vulnerabilities in each image type. Hence, the result is
presented as the median value of vulnerabilities per image for each image type (see
Figure 5.7). As described in the previous section, the median describes the central
tendency better than the average when the data is skewed and is therefore chosen.
Note that only critical, high, medium, and low vulnerabilities are included in the
figure. The negligible and unknown vulnerabilities are not included.

54 5. RESULTS

Figure 5.7: Median values of vulnerabilities for each severity category and image
type

The results show that the median of critical vulnerabilities is almost the same for
all four image types. For the other severity categories, the median is more varied
across the image types. The high severity category is the most represented in certified
images, while the medium category is the most represented in the community images.
For verified, official and community images, the medium severity has the highest
median, while the certified images have the most low vulnerabilities. Overall, the
certified images are the most vulnerable.

5.2.4 Density distribution

As the vulnerability count in the images in our data set is varied, we present the density
distribution for each image type. Figure 5.8 shows the density distribution plots for
all four image types. We have disregarded negligible and unknown vulnerabilities in
these plots.

5.2. THE VULNERABILITY LANDSCAPE OF DOCKER HUB 55

(a) Community images (b) Official images

(c) Verified images (d) Certified images

Figure 5.8: Density distribution plots for number of vulnerabilities in each image
type

The density of community images (Figure 5.8a) is highly left-skewed, and the
majority of images have between none and 1,000 vulnerabilities. Despite that the
maximum number of vulnerabilities is 6,500, there are practically no images with over
2,000 vulnerabilities. The density is the highest for values under 250 vulnerabilities.
We want to point out that the density range along the y-axis in community images
(from 0 to 0.006) is much smaller than for the other three image types (from 0 to
around 0.03). This means that the overall density of official images is significantly
lower and that the values are more spread over the value range along the x-axis.
For official images (Figure 5.8b), the histogram is also highly right-skewed, with a
significantly higher density of values below 50. Almost all values range from 0 to 200
vulnerabilities.

When looking at the verified images in Figure 5.8c, the highest density is below
100 vulnerabilities, and the density estimation line is more leveled compared to

56 5. RESULTS

community and official. There are higher densities around 200 vulnerabilities, around
350-400 vulnerabilities, and on 600, 990, and 1100 vulnerabilities, indicating that the
distribution of vulnerabilities is spread. Lastly, the certified images (Figure 5.8d) are
the most even out of the four image types. The majority of images hold less than 50
images, while the other values are spread across the x-axis with equal densities.

5.2.5 Images that contain the most critical vulnerabilities

Out of all 2,412 successfully analyzed images, this section presents the most vulnerable
ones. Table 5.5 displays the top 10 most vulnerable images based on the number of
critical vulnerabilities in each image. In cases where the critical count is the same,
the image with the highest number of high rated vulnerabilities is considered as the
most vulnerable one. The number of pulls column denotes the total number of pulls
(downloads) for each image.

Image Critical High Medium Low Number of pulls
1 pivotaldata/gpdb-pxf-dev 822 698 576 132 139,246,839
2 cloudera/quickstart 571 2,155 1,897 158 6,892,856
3 silverpeas 341 264 397 226 828,743
4 microsoft-mmlspark-release 184 428 264 252 1,509,541
5 anchorfree/hadoop-slave 168 636 797 107 5,375,424
6 saturnism/spring-boot-helloworld-ui 133 217 112 2 12,686,987
7 pantsel/konga 133 39 169 0 12,431,685
8 renaultdigital/runner-bigdata-int 127 335 691 103 4,787,745
9 springcloud/spring-pipeline-m2 125 293 2,027 1,357 8,359,973
10 raphacps/simpsons-maven-repo 122 271 399 2 36,136,733

Table 5.5: Top 10 most vulnerable images (sorted by critical count)

Out of the top 10 most vulnerable images, there are 8 community images, 1 official
image (silverpeas), and 1 verified image (microsoft-mmlspark-release). There are big
variations in the number of vulnerabilities in all presented severity levels. The most
vulnerable image, pivotaldata/gpdb-pxf-dev, has ~250 more critical vulnerabilities
than the second most vulnerable image. However, the second most vulnerable image,
cloudera/quickstart, contains as many as 2,155 high rated vulnerabilities, which is
~1500 more vulnerabilities than the one rated as the most vulnerable image. We
decided to focus on the critical vulnerabilities in the ranking of the most vulnerable
images. This is because it is the highest possible ranking, and hence, the most
severe vulnerabilities are found in this category. The other severity categories are
included in the table as extra information to give a clear view of the distribution
of vulnerabilities. From the number of pulls column, one can observe that the most
vulnerable image is also the most downloaded one out of the top 10, with almost 140
million pulls. This is approximately 100 million more pulls than the second most
pulled image on this list (the raphacps/simpsons-maven-repo image). There is no

5.2. THE VULNERABILITY LANDSCAPE OF DOCKER HUB 57

immediate correlation that could be observed between the number of pulls and the
number of vulnerabilities in these images.

5.2.6 Percentage of images with critical and high vulnerabilities

It is enough with a single vulnerability for a system to be compromised. Thus, we
determine what percentage of images that contain at least one high or critical rated
vulnerability for each image type, as shown in Figure 5.9.

Figure 5.9: Percentage of images that contain at least one high or critical rated
vulnerability

Our results in Figure 5.9 reveal that the certified image type, which is a subsection
of the verified image type, is the most vulnerable with this measure. 82% of all
certified images contain at least one vulnerability with high severity level, and 73%
of them contain at least one critical vulnerability. Community images come out as
the second most vulnerable image type. 67% have high vulnerabilities, and 45% have
critical vulnerabilities. The third most vulnerable image type is verified, followed by
official.

When combining these results, to investigate what amount of the image types
that contain either at least one critical or high rated vulnerability, the results are as
follows: 82% for certified images, 68% for community images, 57% for verified images
and 46% for official images.1 Hence, the official images are the least vulnerable. Still,

1Vulnerabilities that are given both critical and high severity in the same image are only included
once in this calculation.

58 5. RESULTS

it should be emphasized that almost half of the official images contain critical or
high rated vulnerabilities, as presented in this section.

5.2.7 Vulnerabilities in Microsoft images

There are variations in vulnerabilities that are present in different operating systems;
thus, we seek to discover how vulnerable Microsoft images are compared to other
images. In total, 115 Microsoft images were gathered.2 Out of these, 67 were
successfully analyzed, and 48 failed to be analyzed, as shown in Figure 5.10. Out of
the successfully analyzed images, 52 were verified, and 15 were community images.
The high number of failures is a combination of permission denied errors, special
procedures for downloading, and the fact that many Microsoft repositories contain
references to other repositories, instead of containing any actual images.3

Figure 5.10: Distribution of analyzed and failed Microsoft images

The distribution of vulnerabilities in each severity category

Table 5.6 displays the number of vulnerabilities and the unique vulnerabilities found
in Microsoft images in each severity category, as well as the vulnerability ratio. By
comparing this table with Table 5.3 that shows the equivalent numbers for the whole
data set, we observe that Microsoft images have a much lower vulnerability ratio in
general. This means that the number of unique vulnerabilities in Microsoft images
are represented fewer times in the data. To directly compare, unique vulnerabilities
found in Microsoft images are on average found 10 times each, and this number
increases to 66 when all images are considered. Most of the vulnerabilities are found

2Includes all found Microsoft based images, both verified images maintained by Microsoft, and
community images.

3E.g. the Windows Base OS images repository: https://hub.docker.com/_/microsoft-windows-
base-os-images?tab=description

https://hub.docker.com/_/microsoft-windows-base-os-images?tab=description
https://hub.docker.com/_/microsoft-windows-base-os-images?tab=description

5.2. THE VULNERABILITY LANDSCAPE OF DOCKER HUB 59

in the negligible and unknown categories, similar to the results when considering the
whole data set, as presented in Section 5.2.1.

Severity Number of
vulnerabilities (A)

Number of unique
vulnerabilities (B) Ratio (A/B)

Critical 368 39 9.4
High 915 99 9.2
Medium 3,151 419 7.5
Low 3,308 466 7.1
Negligible 8,676 415 20.9
Unknown 4,732 634 7.5
Total 21,150 2,072 10.2

Table 5.6: Vulnerabilities found in Microsoft images

By investigating the number of vulnerabilities in Microsoft images further, there
is an average of 315.7 vulnerabilities per analyzed image. This number includes the
negligible and unknown categories; however, it is of more interest to look at the
critical and high rated vulnerabilities separately. When only considering the critical
and high rated vulnerabilities, there are, on average, 19.2 vulnerabilities found in each
analyzed Microsoft image. When considering all other analyzed images, excluding
Microsoft images, this number is 22.7. This means that, on average, Microsoft images
contain a lower number of critical and high rated vulnerabilities than other images.

In order to compare the number of vulnerabilities per image in each of the six
severity levels between Microsoft images and other images, we present Figure 5.11.
The vulnerabilities per image value (y-axis) is computed by dividing the total number
of found vulnerabilities in that category by the total number of analyzed images (67
for Microsoft images and 2,345 for all other images). On average, Microsoft images
contain slightly more critical vulnerabilities, while the other images, on average, have
a higher number of vulnerabilities in all other severity categories.

60 5. RESULTS

Figure 5.11: Number of vulnerabilities per image in each severity level

5.2.8 Images with no vulnerabilities

From our analysis, 430 images did not contain any vulnerabilities. This makes up
17.8% of the total number of analyzed images. 393 images were community, 29
images were official, only 6 were verified, and 2 were certified. For these images, the
average number of pulls is 90,766,525, the average number of stars is 93.6 and the
average number of days since the last update is 279 (approximately nine months).
In Table 5.7, the average number of pulls is almost twice as big for images without
vulnerabilities, while the average number of stars is lower. The average number of
days since the last update is also lower for images without vulnerabilities, meaning
they are more frequently updated.

Images with
vulnerabilities

Images without
vulnerabilities

Number of images 1982 430
Average number of pulls 48,785,918 90,766,525
Average number of stars 118 94
Average number of days since last update 334 279

Table 5.7: Comparison of attributes of images with and without vulnerabilities.

Additionally, we also looked at the number of images that only contain vulnerabil-
ities with negligible and unknown severities. There are 93 such images, and if these
are considered as images with no vulnerabilities, the number of images increases to
523 (21.7%).

5.2. THE VULNERABILITY LANDSCAPE OF DOCKER HUB 61

5.2.9 The trend in CVE vulnerabilities

The number of reported CVEs each year is highly varying. The variations are ex-
pected to be reflected in the vulnerabilities found in our analysis as well. Thus, we aim
to identify the overall trend in CVE vulnerabilities, compared to the unique vulnera-
bilities found throughout our analysis. Data gathered from the CVE Details database
[CVE19a] is used to display the number of newly reported CVE vulnerabilities each
year.

In Figure 5.12a the reported CVE vulnerabilities each year is presented together
with the unique CVE vulnerabilities found in our analysis each year from 2010 to
2019. The orange line shows how the number of newly discovered CVE vulnerabilities
varies by a few thousand vulnerabilities each year. However, there is a significant
increase in 2017. This increase is not reflected in our analysis data, which is following
a steady increase between 2014 and 2017. This increase can be explained by the
introduction of Docker Hub in 2014, making new vulnerabilities more represented in
images. As a final observation, the number of newly reported vulnerabilities from
MITRE between 2018 and 2019 is decreasing, while our results show an increase.

Figure 5.12b shows the number of unique vulnerabilities found in each image type
(i.e., community, official, verified, and certified) in our analysis from 2010 to 2019.
This figure gives an insight into how the overall changes are reflected in each image
type. Verified and certified images have had an increase in the number of unique
CVE vulnerabilities each year from 2015. Community and official images, however,
have had a significant decrease in unique vulnerabilities from 2017 to 2018. It is
noteworthy to point out that the curves are affected by the time of introduction of
the different image types. Official images were introduced in 2014, whereas verified
and certified images were introduced in 2018.

62 5. RESULTS

(a) (b)

Figure 5.12: CVE trend from 2010 to 2019. (a) displays all reported CVEs and
unique CVEs from our analysis, (b) displays the observed CVEs in each image type
from our analysis. Inspiration from [SGE17].

5.2.10 Days since last update

There is a high variation in how often Docker Hub images are updated. Intuitively,
this affects the vulnerability landscape of Docker Hub. We have gathered data about
when images were last updated, and calculated the number of days since the images
were last updated, counting back from February 25th, 2020. The data set consists of
last updated data for all analyzed images, except five.

The numbers from our database revealed that 31.4% of images have not been
updated in 400 days or longer, and 43.8% have not been updated in 200 days or
longer. The percentage of images that have been updated during the last 14 days is
29.8%. This implies that if these numbers are representative for all images on Docker
Hub, a third of the images (31.4%) on Docker Hub have not been updated in the
last 400 days or longer.

To go into more detail, Table 5.8 presents how often images in each of the image
types are updated. Community and certified images are the least updated image
categories, where 47.0% of community images and 36.4% of certified images have
not been updated for the last 200 days or more. The verified images are the most
frequently updated category, where 83.3% of images have been updated during the
last 14 days.

5.3. CORRELATION BETWEEN IMAGE FEATURES AND VULNERABILITIES 63

Image type More than 400 days More than 200 days Less than 14 days
Community 33.9% 47.0% 27.0%
Official 9.6% 14.7% 51.3%
Certified 18.2% 36.4% 13.6%
Verified 1.7% 5.0% 83.3%

Table 5.8: Percentages of images that are not updated for more than 400, 200, and
less than 14 days

Figure 5.13 shows the exact update frequency for images of each type. Each mark
in the plot represents the last update time for an image. Stapled vertical lines are
inserted on 400, 200, and 14 days from the latest date (February 25th, 2020) to easily
see the correspondence between the figure and Table 5.8. One can observe how the
last update times of community images are evenly spread, but with a higher density
in the last few years. Further, a handful of certified images are highly affecting the
percentages from Table 5.8, because the overall number of certified images is small.
Official images contain a large portion of images that have been updated recently
(January 2020 to March 2020) and some more spread values with images that have
not been updated since 2016. The verified images are clearly, from this plot also, the
most updated image type, where there is only one image with the last updated time
earlier than May 2019.

Figure 5.13: Last update dates for images of each image type

5.3 Correlation between image features and vulnerabilities

We investigate whether or not the number of vulnerabilities in an image is affected
by a specific image feature. The reviewed image features are the number of times the
image has been pulled, the number of stars an image has been given, and the number
of days since the image was last updated. The following sections present the results
required to answer RQ2: How do image features and the number of vulnerabilities
correlate in images?

64 5. RESULTS

To compute the correlation, we used Spearman’s rs correlation coefficient [LOHS05]
(described in Section 3.4.8). Spearman’s correlation was chosen because our data
set contain skewed values and are not normally distributed. When handling entries
that contained empty values, we chose the approach of complete case analysis, which
means omitting incomplete pairs. The alternative would be to impute missing values,
which means to create an estimated value based on the other data values. However,
this approach was not chosen because the values in our data set are independent of
each other, and it would therefore not make sense to compute an estimated value.
The number of entries for each image feature is presented in Table 5.1 (in Section
5.1.2), and it shows that as many as 96-99% of the entries are complete. This means
that omitting empty values will not affect our results significantly.

Correlation between pulls and vulnerabilities

There is a common perception that: images with the most pulls generally have few
vulnerabilities, and images with the most vulnerabilities generally have few pulls. To
investigate this particular perception, we created a scatter plot given in Figure 5.14.
We calculated the Spearman correlation coefficient between the number of pulls and
the number of vulnerabilities for the whole set of investigated images, and the result
was rs = −0.1115. This is considered as no particular correlation. To explain this,
we refer to the meaning of having a high negative correlation: the markers would
gather around a decreasing line (not necessarily linear), indicating that images with
more pulls have fewer vulnerabilities. In the case of a high positive correlation, the
opposite would apply, i.e., the line would be increasing. There is not enough evidence
to conclude that there is any correlation between the number of pulls and the number
of vulnerabilities. However, we do observe a trend where images with the most
vulnerabilities generally have a low number of pulls and images with the most pulls
generally have few vulnerabilities. Also, images with less than 1000 vulnerabilities
are roughly spread along the x-axis.

5.3. CORRELATION BETWEEN IMAGE FEATURES AND VULNERABILITIES 65

Figure 5.14: Number of pulls and number of vulnerabilities for each image

Correlation between stars and vulnerabilities

The common perception mentioned above can be rephrased and applied for the
correlation between stars and vulnerabilities. The following findings are of interest.
Spearman’s correlation coefficient between the number of stars and the number of
vulnerabilities is rs = −0.0335, indicating no particular correlation. Figure 5.15
shows the scatter plot when including the number of stars instead of the number of
pulls. The plot is similar to Figure 5.14, but the correlation is even weaker. The
majority of the markers are gathered on the lower range of the x-axis, and along the
y-axis, indicating that images with a high number of vulnerabilities generally have
few stars. Also, images with a high number of stars have few vulnerabilities.

Figure 5.15: Number of stars and number of vulnerabilities for each image

66 5. RESULTS

Correlation between the time since last update and vulnerabilities

This correlation is calculated by computing the number of days since the last update
counting back from the day we gathered the data (February 25th, 2020). The
correlation is rs = 0.1075, which shows a positive correlation as opposed to the other
two results. However, it is too weak to conclude that there is any correlation. We
present the scatter plot in Figure 5.16. The markers slightly approach an increasing
line, indicating a weak tendency that there are more vulnerabilities in images that
have not been updated for a long time. Still, the distribution of markers is relatively
even along the x-axis with the most markers in the lower part of the y-axis, supporting
that there is no correlation.

Figure 5.16: Number of days since last update and number of vulnerabilities for each
image

5.4 The most severe vulnerabilities

This section will present which vulnerabilities that are the most severe, as stated in
RQ3: Which types of vulnerabilities are the most severe?

5.4.1 The most represented critical vulnerabilities

The most represented severe vulnerabilities are, intuitively, the ones having the highest
impact on the vulnerability landscape. Table 5.9 presents the most represented critical
rated vulnerabilities in descending order. The results are obtained by counting the
number of occurrences for each vulnerability ID in the critical severity level. The
critical count column is the number of occurrences for a specific vulnerability. Lastly,
the type(s) column presents the vulnerability type. This data is gathered from the
CVE Details database [CVE20] by looking at the Vulnerability Type(s) attribute for

5.4. THE MOST SEVERE VULNERABILITIES 67

each vulnerability. In cases where no vulnerability type is assigned, the name of the
CWE ID is used instead, as each CWE represents a single vulnerability type.

Vulnerability ID Critical count Type(s)
1 CVE-2019-10744 466 Improper Input Validation
2 CVE-2017-1000158 464 Execute Code, Overflow
3 CVE-2019-9948 378 Bypass a restriction or similar
4 CVE-2019-9636 374 Credentials Management Errors
5 CVE-2018-16487 365 Security Features
6 CVE-2018-14718 354 Execute Code
7 CVE-2018-11307 337 Deserialization of Untrusted Data
8 CVE-2018-7489 318 Execute Code, Bypass a restriction or similar
9 CVE-2016-5636 302 Overflow

10 CVE-2017-15095 295 Execute Code

Table 5.9: Top 10 most represented vulnerabilities (based on critical severity level)

5.4.2 Vulnerability characteristics

This section elaborates on the top five most represented vulnerabilities presented
in Table 5.9 regarding their characteristics and common features.4 As a general
observation, the execute code is the most common vulnerability type, followed by
overflow.

The most represented critical vulnerability is found 466 times throughout our
scanning. It has vulnerability ID CVE-2019-10744, and a base score of 9.8, which is in
the upper range of the critical category (to examine how base scores are determined,
see Section 2.3.2). The vulnerability is related to the JavaScript library Lodash, which
is commonly used as a utility function provider in relation to functional programming.
This particular vulnerability is related to improper input validation and makes the
software vulnerable to prototype pollution. It is affecting versions of Lodash lower
than 4.17.12 [Nat19a]. In short, this means that an adversary can execute arbitrary
code by modifying the properties of the Object.prototype. This is possible as most
JavaScript objects inherit the properties of the built-in Object.prototype object. The
fifth vulnerability on the list, CVE-2018-16487, is also related to Lodash and the
prototype pollution vulnerability.

Further, the second, third, and fourth most represented critical vulnerabilities
are related to Python vulnerabilities. The second vulnerability with vulnerability
ID, CVE-2017-1000158, is related to versions of Python up to 2.7.13. The base

4Information about all vulnerabilities could be found by visiting
https://nvd.nist.gov/vuln/detail/<vulnerability ID>

68 5. RESULTS

score is rated 9.8, and the vulnerability enables arbitrary code execution to happen
through an integer overflow leading to a heap-based buffer overflow [Nat]. Overflow
vulnerabilities could be of different types, such as heap overflow, stack overflow, and
integer overflow. Heap overflow and stack overflow are related to overflowing a buffer,
whereas integer overflow could lead to a buffer overflow. A buffer overflow is related
to overwriting a certain allocated buffer, causing adjacent memory locations to be
overwritten. Any exploitation of these kinds of vulnerabilities is typically related
to the execution of arbitrary code, where the adversary is taking advantage of the
buffer overflow vulnerability to run malicious code.

The third presented vulnerability with vulnerability ID CVE-2019-9948 is affect-
ing the Python module urllib in Python version 2.x up to 2.7.16. It is rated with a
base score of 9.1. This vulnerability makes it easier to get around security mechanisms
that blacklist the file:URIs syntax, which in turn could give an adversary access to
local files such as the /etc/passwd file [Nat19c]. The fourth vulnerability is found
374 times with vulnerability ID CVE-2019-9636. It is affecting both the second and
the third version of Python (versions 2.7.x up to 2.7.16, and 3.x up to 3.7.2). This
vulnerability is also related to the urllib module, more precisely, incorrect handling
of unicode encoding. The result is that information could be sent to different hosts
than intended if it was parsed correctly [Nat19b]. It has a base score of 9.8.

5.5 Vulnerabilities in packages

To investigate the origin of the most severe vulnerabilities, we seek to determine
the top 10 most vulnerable packages, as well as how many images that use these
packages. We will also determine the number of vulnerabilities in the most used
packages. This is in accordance with RQ4: Which packages contain the most severe
vulnerabilities?

5.5.1 The most vulnerable packages

Table 5.10 presents the packages that contain the most critical vulnerabilities. The
critical count column is obtained by counting the total number of occurrences of
critical vulnerabilities in each package. The image count column displays the number
of images that use each package.

5.5. VULNERABILITIES IN PACKAGES 69

Package Critical count Image count
1 jackson-databind-2.4.0 710 15
2 Python-2.7.5 520 207
3 jackson-databind-2.9.4 354 4
4 lodash-3.10.1 312 76
5 silverpeas-6.0.2 280 1
6 Python-2.7.13 248 141
7 Python-2.7.16 224 117
8 jackson-databind-2.6.7.1 215 13
9 jackson-databind-2.9.6 192 12
10 Python-2.7.12 185 107

Table 5.10: Top 10 most vulnerable packages (based on critical severity level)

Number of images that use the most vulnerable packages

To be able to get a better view of the security impact of these packages, we present
Figure 5.17. It displays the number of images that use each of the packages from
Table 5.10. There is a clear relation between the most vulnerable packages and
the most represented vulnerabilities from Section 5.4, as expected. For example,
vulnerabilities found in Python version 2.x packages and the Lodash package are
both presented in Section 5.4.

70 5. RESULTS

Figure 5.17: Most vulnerable packages and the number of images that use them

From Figure 5.17, it is observable that the Python packages are by far the most
used, and therefore they expose the biggest impact regarding the threat landscape.
The lodash-3.10.1 package is found in 76 images. This package contains the prototype
pollution vulnerability affecting JavaScript code, which also is the most represented
vulnerability in Table 5.9. Further, the jackson-databind package is represented with
four different versions in Table 5.10 (entries 1, 3, 8, and 9). This package is used to
transform JSON objects to Java objects (e.g., Lists, Numbers, Strings and Booleans),
and vice versa. In total, these packages are used by 44 images, which is relatively
low compared to the usage of the Python packages. The silverpeas-6.0.2 package
contains 280 critical vulnerabilities and is only used by a single image: the Silverpeas
image on Docker Hub.5

5.5.2 Vulnerabilities in popular packages

When considering the packages that have the most critical vulnerabilities (Table 5.10),
some of the packages are only used by a few images (like the Silverpeas package).
Therefore, Table 5.11 is presented, as it is desirable to see what the vulnerability
distribution is like in the most popular packages. The table shows the most used
packages and the number of vulnerabilities in them, considering all severity levels.
The image count column contains the number of images that use this package.

5The Silverpeas image: https://hub.docker.com/_/silverpeas

https://hub.docker.com/_/silverpeas

5.5. VULNERABILITIES IN PACKAGES 71

Package Critical High Medium Low Negligible Unknown Image
count

1 tar-1.29b-1.1 0 0 0 0 482 0 241
2 coreutils-8.26-3 0 0 0 0 240 0 240
3 libpcre3-2:8.39-3 0 0 0 0 956 0 239
4 login-1:4.4-4.1 0 0 0 0 714 0 238
5 passwd-1:4.4-4.1 0 0 0 0 708 0 236
6 sensible-utils-0.0.9 0 0 103 0 0 111 214
7 libgcrypt20-1.7.6-2+deb9u3 0 0 0 0 211 0 211
8 libgssapi-krb5-2-1.15-1+deb9u1 0 0 0 0 621 0 207
9 libk5crypto3-1.15-1+deb9u1 0 0 0 0 621 0 207
10 libkrb5-3-1.15-1+deb9u1 0 0 0 0 621 0 207

Table 5.11: Vulnerabilities in the top 10 most used packages

As observable from Table 5.11, the most used packages are not containing any
critical, high, medium, or low vulnerabilities (except for one entry). However, they
do contain a vast number of negligible vulnerabilities, which is of less significance
from a security point of view, as mentioned in previous sections.

Chapter6Discussion

In this chapter, our results will first be put in relation to the respective research
question they are related to by being thoroughly interpreted and discussed. Further,
the limitations and validity of this study will be evaluated. Our obtained results and
results from previous research will be compared in order to say something about the
trend. Finally, we propose our recommendations for future work.

6.1 Interpretation of results in relation to research questions

The obtained results from Chapter 5 will be put in a broader perspective in this
section, and used to answer each research question, as presented in Section 1.2.1,
sufficiently. This will be achieved by interpreting, discussing, and explaining the
results in relation to the research questions.

6.1.1 RQ1: How can vulnerabilities found in Docker images be
systemized in order to investigate the current vulnerability
landscape of Docker Hub?

Several measures and systematizations are presented in Section 5.2 as results to
answer RQ1. In order to be specific enough, a single measure is not sufficient to say
something about the vulnerability landscape as a whole. However, we do consider
some of the results as of more importance when addressing the vulnerability landscape.
As pointed out, the vulnerability landscape of Docker Hub is complex, but we consider
the central tendency of our data set as one of the most important characteristics.
The values in our data set are skewed and contain some extreme values that influence
the average, which could be seen from Table 5.4, where the standard deviation for
all image types is high. This is an indication that the median value of our data
set gives the best view on the actual characteristics of the data. As Section 5.2.2
reveals, the median value, when omitting the negligible and unknown vulnerabilities,
is 26 vulnerabilities per image. These vulnerabilities are spread across all severity

73

74 6. DISCUSSION

levels, where most of the vulnerabilities were found in the medium severity category,1
both when considering unique vulnerabilities and the total number of vulnerabilities,
as presented in Section 5.2.1. The ratio indicates that a relatively small number
of unique vulnerabilities are found in a vast number of images, for example, there
are 206 unique critical vulnerabilities found 10,378 times (Table 5.3). As additional
information about the vulnerability landscape, we would like to emphasize that 430
images (17.8%) in the data set do not contain any vulnerabilities, and as many
as 523 images if we are considering negligible and unknown vulnerabilities as no
vulnerability.

Vulnerabilities in image types

Images on Docker Hub are categorized in one of the following categories: official,
verified, certified, or community. Thus, it is of importance to address how vulnerable
these image types are. Especially since official, verified, and certified images are
images that are reviewed by Docker, meaning they are said to fulfill requirements
concerning quality, best practices, and security. As presented in Table 5.4 in Section
5.2.2, there are differences when considering the average and when considering the
median value in the different image types. Surprisingly, certified images are the
most vulnerable when considering the median value. However, when considering the
average, community images are the most exposed. Hence, community images have
more spread values, whereas certified images have values centered around the average.
This is also reflected in Section 5.2.5, where 8 out of the top 10 most vulnerable
images are community images.2 Official images come out as the most secure image
type.

These results should be seen in conjunction with the results presented in Section
5.2.3, where the vulnerabilities in each severity category in the different image types
are investigated. The median value of the number of critical vulnerabilities in images
is almost identical for all four image types, so the ranking of the image types is
primarily based on the other vulnerability severities. The certified images come
out as the most vulnerable image type, as these results are based on median value,
with the most high and low rated vulnerabilities overall. Also, when considering the
results from Section 5.2.6, certified images are the most vulnerable, where as many
as 82% of certified images contain at least either one high or critical vulnerability.
Interestingly, this number is 57% for verified images, making it the second most
secure image type. Moreover, verified images also hold a significantly lower number
of vulnerabilities when looking at the results from Section 5.2.3 again.

1When not considering the negligible and unknown vulnerabilities.
2Based on the total number of critical vulnerabilities in images.

6.1. INTERPRETATION OF RESULTS IN RELATION TO RESEARCH QUESTIONS
75

Based on the fact that certified images are a subgroup of verified images that
are claimed to fulfill even more requirements, these results are highly unexpected.
It could be discussed whether some of the introduced image types on Docker Hub
provide a false sense of security. Some of the vulnerable images could, however, be
explained by the fact that the vendor deliberately keeps the software from being
updated to ensure backward compatibility. There is no reason why this would affect
certified images more however, other than the fact that the total number of certified
images is low, and therefore, changes in the vulnerabilities will have a big impact on
the results.

Contextualization with the CVE trend

In Section 5.2.9, the overall evolution in CVE vulnerabilities is shown. From Figure
5.12b, one can observe an increase of unique vulnerabilities found in verified and
certified image types in 2018, whereas it is a significant decrease for community
images and official images. Generally, the number of newly introduced vulnerabilities
on Docker Hub is rapidly increasing between 2012 and 2020. Certified and verified
images were introduced on Docker Hub in 2018, so the fact that these types became
more publicly available could be the reason for the increase. Moreover, one can
observe how the community and official image types follow somewhat the same curve
as the overall evolution of the reported CVEs each year. The fact that the certified
image type seems to follow a steep curve the last few years matches well with our
obtained results previously explained. From our analysis, official images generally
come out as the least vulnerable image type and certified come out as the most
vulnerable image type. However, Figure 5.12b shows that official images have a
higher number of unique vulnerabilities than certified. The explanation for this could
be that there are more official images and that the vulnerability ratio in certified
images is higher.

It needs to be pointed out that the data presented in Section 5.2.9 (and generally
in this thesis), is not concerning zero-days vulnerabilities, which are vulnerabilities
that are still unknown or unaddressed. It is clear that the discoveries in these kinds
of analyses address only a small part of the actual vulnerability landscape, as there
are a large number of vulnerabilities that are not yet known to the public. Moreover,
it could be discussed what impact these vulnerabilities actually have, as Gartner
predicts that 99% of vulnerabilities exploited by the end of 2020 will continue to be
publicly known vulnerabilities [Moo17].

The frequency of software updating

Another important measure regarding the vulnerability landscape of Docker Hub
is how often images are updated. There is no doubt that the way to make Docker
Hub more secure and reduce the number of vulnerable images is to make sure that

76 6. DISCUSSION

software is patched, and always up to date. Section 5.2.10 reveals that 31% of images
have not been updated in the last 400 days or longer, which is problematic in terms
of security. We expect to see this trend (potentially even stronger) if the rest of the
images on Docker Hub were to be considered. This is due to the fact that the rest of
the repositories on Docker Hub that we have not analyzed are mostly community
repositories, which we have observed to be one of the least updated types, overall.
Also, this thesis has focused on the latest version of images, which is expected to
be the most updated version of an image. The reason that a significant portion of
images is not maintained could be that many images are created for serving a specific
purpose, and never maintained afterwards. This applies especially to community
images. Additionally, the backward compliance, as previously mentioned, could be
another reason that images are not frequently updated. Verified and official images
are the most frequently updated, and community and certified images are the least
frequently updated image types. Thus, these results correlate well with our previous
results regarding the most vulnerable image types.

The vulnerability landscape in Microsoft images

This thesis has also investigated the vulnerabilities found in Microsoft images, as
presented in Section 5.2.7. The execution and overflow vulnerabilities of the Windows
operating system are known for more than two decades [SGGK07]. Those types
of vulnerabilities continued to be present even in the latest versions of Microsoft
Windows [Tun18]. However, the results revealed that Microsoft images contain a
lower number of high and critical vulnerabilities on average and that Microsoft images
have a lower vulnerability ratio. It is challenging to identify the reason for these
results. This is because even though the vulnerabilities that exist in, for example,
a Windows OS and in a Linux OS will be different, most of the vulnerabilities are
introduced by third party software independently from the vulnerabilities introduced
by the OS. However, this could be too generalizing to state, as the third party
software for different OSs will not be identical, and thus, different vulnerabilities
could exist. Another reason could be that most of our analyzed Microsoft images
are verified images, which is also one of the most updated image types, as already
mentioned.

Propagation of vulnerabilities

To understand why there are so many vulnerable images found on Docker Hub,
we will discuss some of the problems with the way the Docker ecosystem works
concerning the vulnerability landscape. Firstly, it is a common practice to create
an image based on another image by using the FROM syntax in the Dockerfile. This
saves the developer much time not having to rewrite already existing code. It is,
for example, usual to build an image from an existing base image that provides

6.1. INTERPRETATION OF RESULTS IN RELATION TO RESEARCH QUESTIONS
77

some functionality. However, not everyone is aware that the images they use as base
images potentially could be extremely vulnerable. Thus, all vulnerabilities in the
parent image will be introduced in the child image. As a result, a cascading effect
where vulnerabilities propagate from parent to child images will arise. Secondly, the
Docker principle known as copy-on-write [And15] could be seen as problematic from
a security point of view. This principle is based on new layers being added to the
image when changes are conducted, and the older layers are unchanged. This means
that the older versions of an image with vulnerabilities that are patched in a newer
version will still exist because the content of an image is immutable after building
[Kar20]. Hence, it is desirable to occasionally create a whole new image instead of
updating an old one.

Concluding remarks

This section has summarized and reflected upon the most important findings in order
to answer RQ1. This is the main research question of this thesis, and thus, the
most comprehensive. In terms of how vulnerabilities found in Docker images can be
systemized to investigate the current vulnerability landscape, this section has argued
for the following findings as of most importance:

− When considering the median value, there are 26 vulnerabilities in each image,
where we have observed a relatively small number of unique vulnerabilities
found at a high ratio.

− There are 430 images that do not contain any vulnerabilities.

− The certified images are the most vulnerable image type when considering
the number of vulnerabilities based on the median, and when considering the
percentage of images with at least one high or critical vulnerability.

− Community images are the second most vulnerable image type based on most
of the results.3

− Verified images are the second most secure image type.

− Official images are the most secure image type, with the least number of
vulnerabilities, both based on median and average.

− Approximately 30% of images have not been updated for the last 400 days.

− Verified and official images are the most updated, and community and certified
images are the least updated.

− Microsoft images are less vulnerable than other images.
3Community images are the most vulnerable based on the average number of vulnerabilities,

but this measure is considered of less importance as previously discussed.

78 6. DISCUSSION

6.1.2 RQ2: How do image features and the number of
vulnerabilities correlate in images?

To answer RQ2, we calculated the correlation between the number of vulnerabilities
in each image and image features. When investigating the correlation, we opted for
Spearman’s correlation method. It could be discussed whether or not this method is
the optimal one for our data set. We considered using Pearson’s correlation, but it
works best on normally distributed data. This was not the case for us because of the
skewness of the data and extreme values. Pearson correlation only finds the linear
relationship of values, and the Spearman method can find nonlinear relationships.
Also, the values do not need to be normally distributed. It detects if sample data is
monotonically increasing or decreasing, and was the better option for our data set.

The results presented in Section 5.3 show that the correlation coefficients were
-0.1115 for the number of pulls, -0.0335 for the number of stars, and 0.1075 for the
number of days since the last update. None of these results are strong enough to
conclude that there is a correlation between the features. We also inspected the
relationship between variables by looking at the scatter plots presented in Figures
5.14, 5.15 and 5.16. There is also considering this measure, no correlation between
any of the image attributes, neither linear or nonlinear. As observable from the
plots for pulls and stars, the images with the most vulnerabilities have few pulls
and stars. This is a positive trait from a security perspective and an indication
that security awareness among the community of Docker users is relatively high.
We repeat the common perception, as stated in Section 5.3, images with the most
pulls/stars generally have few vulnerabilities, and images with the most vulnerabilities
generally have few pulls/stars. Even though there is no correlation between the
number of vulnerabilities in images and either of the image features, the common
perception seems to hold. On the other hand, when considering the scatter plot for
the time since the last update and the number of vulnerabilities (Figure 5.16), there
is no such evidence to be found. In this case, one could argue that the randomness
of the markers in this scatter plot is exposing a threat. This is because users might
intuitively think they are more secured by choosing a recently updated image. As this
is not the case, these images may create a false sense of security. As such, the results
from Section 5.2.10, which revealed that 31.4% of images had not been updated for
400 days or longer, represent a smaller security threat than previously anticipated.

It is difficult to determine if our analyzed data set fits the target population of
Docker Hub, especially since we have analyzed the most recognized images. Thus, we
want to point out that an analysis of a significantly larger number of images could
have revealed a correlation between the variables.

6.1. INTERPRETATION OF RESULTS IN RELATION TO RESEARCH QUESTIONS
79

Concluding remarks

As some concluding remarks to answer RQ2, we emphasize the following findings of
the most importance.

− There is no correlation between the number of vulnerabilities and the evaluated
image features (i.e., the number of pulls, the number of stars, and the last
update time).

− The images with many vulnerabilities generally have few pulls and stars.

− The images with many pulls and stars generally have few vulnerabilities.

− There is no significant relationship found between the number of vulnerabilities
and the time since the last update.

6.1.3 RQ3: Which types of vulnerabilities are the most severe?

It is highly relevant to address the most severe vulnerabilities when analyzing the
vulnerability landscape of Docker Hub, which relates to RQ3. As the data presented
in Sections 5.4.1 and 5.4.2 reveal, the most severe vulnerability is represented 466
times with critical severity level and is found in the Lodash library. Actually, two
out of the top five most represented vulnerabilities are found in the Lodash library.
Different conditions could explain this. Firstly, the Lodash library is an extremely
popular JavaScript library used by 4.35 million projects on GitHub [Tal19]. Secondly,
these two vulnerabilities are relatively newly discovered, as both were published for
the public in 2019. This can be seen in relation to the results presented in Figure
5.13, where a large number of images have not been updated since before 2019. These
observations explain why so many images contain the Lodash vulnerabilities.

The remaining three vulnerabilities out of the five most represented ones are
Python vulnerabilities. The second most represented vulnerability is found 464 times
(Section 5.4.1), meaning that there are only a couple occurrences that separate the
top two most represented vulnerabilities. The second and third most represented
vulnerabilities are affecting the second version of Python, which is not maintained
after April 2020 [Pyt19]. As a consequence, many vulnerabilities in older versions
of Python will not be fixed. Reasons such as policies, lack of resources, backward
compatibility, and company restrictions may stop developers from upgrading to
Python 3. The fact that Python is a widely used programming language is making
the attack surface huge.

The number of occurrences of critical rated vulnerabilities was used as a measure.
As an alternative measure, one could also include the high rated vulnerabilities.
However, when ordering the data based on the sum of critical and high vulnerabilities,

80 6. DISCUSSION

the high rated vulnerabilities profoundly dominated the result so that the top ten
vulnerabilities contained few critical values. Because the critical vulnerabilities
expose the highest impact if exploited, there is no doubt that they are the most
severe vulnerabilities. Indeed, this made is desirable to focus on the critical rated
vulnerabilities. As presented in Table 5.9, Execute Code is the most represented
vulnerability type with four occurrences, followed by Overflow, with two occurrences.
Data presented in the CVE Details database [CVE19b], reveals that execute code
is altogether the most common vulnerability type, where overflow is the third most
common vulnerability type. Based on these observations, and the results from our
analysis, we expect to see these types of vulnerabilities to be the most represented in
the rest of Docker Hub as well. These results are important in addressing what kind
of vulnerabilities that are considered the biggest threat, with the objective to raise
awareness and make both enterprises and other users aware of flaws in the software
they are using.

Concluding remarks

To properly answer RQ3, based on the results presented in Section 5.4 and the
aspects discussed here, there is no doubt that the most severe vulnerabilities are the
ones found in popular and much used software. The following findings are important.

− The most severe and represented vulnerabilities are found in the Lodash library
and in Python packages, and thus coming from two of the most popular scripting
languages, JavaScript and Python.

− Vulnerabilities related to execution of code and overflow are the most frequently
found critical vulnerabilities.

6.1.4 RQ4: Which packages contain the most severe
vulnerabilities?

When inspecting the results from Section 5.5 that answers RQ4, there is no surprise
that we found the most severe vulnerabilities, discussed in the previous section, to
be highly related to the most vulnerable packages. Moreover, as vulnerable packages
introduce severe vulnerabilities, this perspective is accordingly also of importance to
address.

As presented in Section 5.5, we found the most critical vulnerabilities in jackson-
databind packages, Python packages, in the Silverpeas package, and in the Lodash
package. Not surprisingly, both Python vulnerabilities and Lodash vulnerabilities
were found as the most severe vulnerabilities in the previous section. However, the
most vulnerable package is the jackson-databind-2.4.0 package, with overwhelming

6.2. LIMITATIONS AND VALIDITY OF THIS STUDY 81

710 critical vulnerabilities, followed by Python-2.7.5 with 520 critical vulnerabilities.
The Python 2.x packages are by far the most used ones, as seen in Figure 5.17. It is
expected that when a widely used programming language is ended, it will take much
time before all code is migrated to the newest version (i.e., Python version 3). The
ending of Python 2.x is, thus, a contributing factor to the high usage of vulnerable
Python packages.

Section 5.5.2 presents how vulnerable the most used packages are. These results
reveal that the most popular packages do not contain a large number of severe
vulnerabilities, which is positive when considering the security of Docker Hub. As
a final observation, many of the vulnerable packages might not be in use anymore,
but are still found in images. Hence, we want to stress that packages that are not
explicitly removed from an image, even though it is not in use anymore, is making
the image vulnerable.

Concluding remarks

The comments made in this section, as well as the results from Section 5.5, will be
used as a foundation to answer RQ4. We have made the following observations.

− The Python 2.x packages and jackson-databind packages were found to be the
most vulnerable packages.

− Out of the most vulnerable packages, the Python 2.x packages are the most
used.

− Widely used packages were generally discovered to be quite secure, containing
few severe vulnerabilities.

6.2 Limitations and validity of this study

The correctness of this study and factors limiting the results of this study need to be
evaluated. Hence, this section will present the factors that are considered the most
important in relation to limitations.

6.2.1 The impact of false positives and false negatives

There are issues related to how container scanners work and how the scanner’s output
might give false positive and false negative results. It is of high importance to see our
results in light of these issues. A false positive result is when a scanner incorrectly
reports a vulnerability, while a false negative result is when a present vulnerability is
not reported.

82 6. DISCUSSION

Anchore Engine works by collecting vulnerability data from sources like NVD,
RedHat, and Debian. The gathered vulnerability data is checked up against the
results from scanning each image layer. Concerning false positives, the problems occur
when the scanner does not have enough information to determine if the vulnerability
is present or not, this could be due to authentication issues making Anchore Engine
unable to get the correct software version. Moreover, false positives could also occur
when a vendor has fixed a vulnerability and also included other updates in the new
version. A user could choose to pick only the fix out of these updates and rename
this version of the packet to something else. This packet would therefore be found
vulnerable by the scanner because the packet is not of a certain version, even though
the vulnerability is fixed. Furthermore, a vulnerability could exist in software, but
only be exploitable in combination with some other functionality or component.
Thus, an existing vulnerability in software does not mean that it is a vulnerability
in this specific software, making the reporting of these kinds of vulnerabilities false
positives [Ric17]. These presented scenarios are just some examples of why container
scanners report false positive vulnerabilities in order to concretize for the reader.

One could argue that it is more critical not to report actual vulnerabilities than
to report vulnerabilities that are not actually exposing the system. Therefore, false
negatives could be considered even more important to avoid. There are different
reasons why a container scanner does not detect all vulnerabilities, for instance,
zero-day vulnerabilities, rapid updates from a vendor, authentication issues, and
network glitches [Tri17].

When tuning container scanners, it is essential to tune the scanners such that the
balance between false positives and false negatives is appropriate. As an explanation,
when accepting a lower number of false positives, the number of false negatives is
likely to go up. The fact that Anchore Engine (and other container scanners) is
a static analyzing tool4 contributes to a higher amount of false positives and false
negatives, because the runtime behaviour is something different. There is no doubt
that both false positives and false negatives are affecting our obtained results in this
project. Based on the previously discussed aspects, the results could be affected in
two ways. Either the number of reported vulnerabilities is higher than the actual
number, or there are vulnerabilities that are not reported. Nevertheless, it is expected
that the impact they have is limited due to the size of our data set.

6.2.2 The CVSS score

As all results presented in this thesis are based on the CVSS score system as ranking,
the correctness and implication of doing so are discussed. The main problem related
to using the CVSS score as a substitute for risk is that the vulnerability is taken out

4Code is analyzed before it is run.

6.2. LIMITATIONS AND VALIDITY OF THIS STUDY 83

of its context and given a rating, when in fact, the context is rather important for
determining the risk [SQ17]. The CVSS score is based on how easy something is to
exploit calculated up against the impact of exploiting. However, as the attacker’s
focus is to achieve their malicious goals, rather than exploiting what is easy, the CVSS
score should not be used as the only measure for determining what vulnerabilities
are the most severe.

We would like to point out that in analyses like the one performed in this thesis,
where the interest is to determine the vulnerability landscape as a whole, CVSS is the
most informative measure of risk. This is based on its structured way of categorizing
vulnerabilities in addition to its broad usage. Hence, we consider the CVSS score
as the most appropriate measure for categorizing vulnerabilities, but we want the
reader to be aware of the implications related to using the CVSS score as the only
measure of risk.

6.2.3 Restraints of the data set

Some characteristics of our obtained data set could affect the validity of the results.
To start with, we only analyzed a portion of all images on Docker Hub. It could be
problematic to generalize our results to apply for all images. Nevertheless, as our
analysis included the latest version of the most recognized images,5 it is expected
that the actual vulnerability landscape of Docker Hub is even worse than what is
presented in this thesis. Another aspect to consider is that we chose to go for the
uppermost version of the image when the latest tag was missing. Especially cases
where another version than the uppermost is more frequently updated would impact
the results. Further, the fact that an overall low number of verified images were
analyzed, and that most of them were Microsoft images, is of importance to mention.
One could argue that our results give a better view of how vulnerable Microsoft
images are, rather than how vulnerable verified images are.

In some of the presented results, we disregard the negligible and unknown cate-
gories to focus on the vulnerabilities with higher severity levels and to comply with
CVSS v3.1. It could be discussed if this has any impact on the obtained results.
However, as it is desirable to focus on the most severe vulnerabilities, the impact is
likely to be low.

6.2.4 Inconsistency in Docker Hub

Throughout the work on this thesis, we have found the inconsistency of Docker Hub
as highly problematic and as something that has limited our obtained results. Firstly,

5All official, a portion of verified and certified images, and more than 2000 of the most popular
community images.

84 6. DISCUSSION

Docker Inc. does not provide a complete and well documented endpoint with data
about all Docker Hub images. Hence, we needed to access several endpoints to gather
the desired information. This approach made it challenging to gather image data
at the exact same time, and in general, it is not ideal to gather the same data from
different sources. Secondly, not all image types contain all desired data (e.g., verified
and certified images do not contain star ratings, and many are lacking data about
the number of pulls), which means that some information is lacking from our data
set. Thirdly, on Docker Hub, it is only possible to navigate through the first 100
pages of images. This restriction makes it challenging to discover the rest of the
images on Docker Hub, as they have to be found through search words or using other
techniques. We tried contacting Docker Inc. about this, as well as asking in Docker
community forums; however, we received no response. Considering these remarks,
the high inconsistency in Docker Hub have affected the obtained image data, and
thus, affected the rest of the performed analysis.

6.3 Comparison between our results and previous studies

To be able to say something about trends in the vulnerability landscape of Docker
Hub, this section provides a comparison between our results and results obtained
in previous research. It is highly relevant to see in what direction Docker Hub is
heading in terms of its vulnerability landscape, and whether it is becoming more
secure. The previous research in this field that will be used as comparison is by
BanyanOps [GDT15] in 2015, Shu et al. [SGE17] in 2017 and Socchi and Luu [SL19]
in 2019, which all are explicitly described in Section 2.4. We want to emphasize that
their research, as well as our research, is difficult to compare directly, based on the
fact that there are many differences in the data set and applied methodology. We
still see it as interesting to do this kind of comparison in the discussion to discover
the trends, as briefly mentioned in the introduction of this thesis.

One essential difference to be aware of is that BanyanOps and Shu et al. use the
older CVSS v2.0 to categorize vulnerabilities in severity levels. However, Socchi and
Luu, and the research performed in this thesis, is based on the newer CVSS v3.1
to categorize vulnerabilities. The most apparent difference is the two new severity
categories in CVSS v3.1, named critical and none. In CVSS v2.0, the high severity
level has base score range from 7.0 to 10.0, while in CVSS v3.1, the high severity
level ranges from 7.0 to 8.9 and the critical ranges from 9.0 to 10.0. As such, our
high and critical vulnerabilities combined are equivalent to their (BanyanOps and
Shu et al.) high rated vulnerabilities. Additionally, our research includes negligible
and unknown as severity categories instead of the none category from CVSS v3.1
because of how our applied scanning tool, Anchore Engine, classifies vulnerabilities.

6.3. COMPARISON BETWEEN OUR RESULTS AND PREVIOUS STUDIES 85

The trend in the percentage of images with at least one high rated
vulnerability

All results regarding the percentage of images that contain at least one high rated
vulnerability are presented in Table 6.1.6 In 2015, BanyanOps found that 36% of
official images and 40% of community images contained high rated vulnerabilities.
Only two years later, in 2017, Shu et al. could report that more than 80% of both
official and community images contained high rated vulnerabilities, which is a massive
increase. Since their research, Docker Inc. has introduced two new image categories:
verified and certified. Our results, as presented in Section 5.2.6, show that since
2017 (the analysis of Shu et al.), the number of images with at least one high rated
vulnerability has decreased in both official and community images (see Table 6.1).
Generally speaking, there has been an increase in the number of vulnerabilities
since 2015 (BanyanOps’ analysis). Even when considering the improvements in
vulnerabilities found in official and community images today, compared to the results
from 2017 (study by Shu et al.), there still is a massive number of vulnerable images
on Docker Hub. It should be stressed that these are vulnerabilities that are potentially
easy to exploit, and that could have a high impact if exploited.

2015 2017 2020
Official 36% >80% 46%
Community 40% >80% 68%
Verified - - 57%
Certified - - 82%

Table 6.1: Percentages of images with at least one high rated vulnerability. Based on
data from [GDT15] [SGE17] and the results presented this thesis.

The days since last update

Further, Shu et al. found that 50% of all images had not been updated for the last
200 days, and 30% of images had not been updated in 400 days. Our results from
three years later, presented in Section 5.2.10, reveal that 44% of images have not
been updated in 200 days or more, and 31% of images have not been updated for the
last 400 days. Hence, there is no indication of any significant improvement in how
often images are updated. Shu et al. also investigated the more frequently updated
images. They found that 20% of all official images and 10% of community images
had been updated during the last 14 days. From our analysis, 51% of official images
and 27% of community images had been updated in the last 14 days. However, it is
important to mention that Shu et al. analyzed all versions of images, whereas we

6For clarity, high in the CVSS v2.0 format. For comparison, our analysis’ vulnerability severities
are converted from CVSS v3.1 to v2.0 by including both high and critical vulnerabilities.

86 6. DISCUSSION

have focused on the latest version of images. The latest version of images is usually
the most updated version, so these results are not entirely comparable. Additionally,
Shu et al. presented results for official images with the latest tag, and then the
percentage for images that had been updated for the last 14 days increased to 86%.7
Thus, the trend seems to be that official images are not as frequently updated as
before.

The tendency in the average number of vulnerabilities in different
image types

We examine the trend in the average number of vulnerabilities per image found in
the latest version of the different image types, and the results are presented in Table
6.2. The data is based on results from Shu et al. in 2017 [SGE17] and the data from
2019 is gathered from Table 7.1 on page 88 in [SL19]. Lastly, the data from 2020 is
based on the results presented in Section 5.2.2 of this thesis.8

To say something about the trend, the total average number of vulnerabilities
in the latest version of official images did heavily increase from 2017 to 2019 (from
an average of 70 vulnerabilities to an average of over 170 vulnerabilities). However,
based on our analysis, the average number of vulnerabilities in official images is
back at 70, which means that it has dropped with 100 vulnerabilities in just one
year. Since there only are ~160 official images on Docker Hub in total, small changes
in the vulnerability landscape will have a high impact on the result. Additionally,
the fact that we have analyzed more official images could also influence the result.
When considering community images, the number of vulnerabilities decreased from
2017 to 2019, where it went from more than 180 to more than 150 vulnerabilities
in each image on average. As found in our analysis, the average is still at 150
vulnerabilities. Moreover, verified images contain fewer vulnerabilities now than last
year, with a difference of ~60 vulnerabilities. Since Socchi and Luu did not analyze
Microsoft images, and most of our verified images are Microsoft images, these results
are problematic to compare directly. However, our results do reveal that Microsoft
images tend to contain fewer vulnerabilities than other verified images. Lastly,
certified images have become more vulnerable the last year based on this measure,
with an increase from more than 30 vulnerabilities to more than 90 vulnerabilities in
each image on average.

To summarize, the different image categories are heading in different directions
from a security point of view. Official images seem to be just as vulnerable as they
were three years ago. While community and verified images have had a decrease in

7This percentage is 51% from our analysis.
8The total number of vulnerabilities is disregarding the unknown and negligible categories.

6.4. FUTURE WORK 87

the average number of vulnerabilities, certified images are becoming more vulnerable
this last year.

2017 2019 2020
Official >70 >170 >70
Community >180 >150 >150
Verified - >150 >90
Certified - >30 >90

Table 6.2: The average number of vulnerabilities found in each image type (the latest
image version). Based on data from [SGE17] [SL19] and the results presented in this
thesis.

The median value

As some final comments, if median is considered as measure, our median value
(presented in Table 5.4 in Section 5.2.2) in all image types are significantly lower
than than the median from Shu et al. (presented in Table 3 in [SGE17]). Generally,
our obtained median values are also significantly lower than Socchi and Luu’s results,
as presented in Table 7.1 in [SL19]. The big differences between the average and the
median in our results are explained by extreme values that influence the average,
and because our values are more spread, as also seen from the standard deviation.
For example, the highest number of vulnerabilities in a single community image in
our results is 6,509, compared to 1,779 in the results from Shu et al., and 1,792
from Socchi and Luu. Also, many entries with a low number of vulnerabilities
contribute to lowering the median remarkably in our results. Hence, with regards to
the median value, the trend seems to be that most images contain a lower number of
vulnerabilities than before.

6.4 Future work

This thesis has presented a thorough analysis of the current vulnerability landscape
of Docker Hub images. For future work, we present our recommendations for
improvements and other research areas related to this field. First of all, we highly
recommend to analyze all 3.5 million images on Docker Hub to get a more realistic
view of the vulnerability landscape of Docker Hub in its entirety. One aspect that
needs to be addressed in regards to this is that the accessibility of a large number
of images on Docker Hub is not sufficient. We want to use this opportunity to
encourage two improvements: a complete and well-documented endpoint for image
data gathering, and an improvement on the Docker Hub web page to make it possible
to access all images through navigation.

88 6. DISCUSSION

Secondly, we suggest that future analysis should run over a more extended period.
The previous studies conducted in this field, as well as this thesis, have only analyzed
vulnerabilities in Docker Hub images captured from one single data gathering. Thus,
changes in the data set over time are still not investigated. As Docker Hub is in
constant change, we suggest that future work will focus on this aspect. This type of
analysis could reveal more in-depth details about the characteristics and evolution of
the vulnerability landscape.

Lastly, we suggest future work to be targeting the false positives and false negatives
in container scanners. Previous work has been done in the field of using machine
learning to reduce the number of false positive software vulnerabilities, as proposed
in [GPSG18]. We see it as beneficial to also integrate machine learning into container
scanners, and propose this research field as of importance in future work. The use of
machine learning would mainly contribute in reducing the amount of false negatives
and false positives, to get an improved analysis result.

Chapter7Conclusion

The scope of this thesis was to answer the following research questions:

RQ1: How can vulnerabilities found in Docker images be systemized in order
to investigate the current vulnerability landscape of Docker Hub?

RQ2: How do image features and the number of vulnerabilities correlate in
images?

RQ3: Which types of vulnerabilities are the most severe?

RQ4: Which packages contain the most severe vulnerabilities?

To answer our first research question, several findings are of importance. As
discussed in Chapter 6, the median value of vulnerabilities in each image is 26, where a
relatively small number of unique vulnerabilities are found at a high frequency. When
considering the newly introduced CVEs each year on Docker Hub, it is evident that
the trend from the last few years is that the number of new vulnerabilities is rapidly
increasing. If these discoveries are persistent, it indicates that the total number
of vulnerabilities in Docker images is increasing even faster. Our results further
show that certified is the most vulnerable image type, followed by community and
then verified. Official images are the most secure. Furthermore, we have discovered
that approximately 30% of images have not been updated for the last 400 days and
that Microsoft images are found to be less vulnerable compared to all other images.
Lastly, we observed that 430 analyzed images do not contain any vulnerabilities.
We conclude that these findings are the most important to describe the current
vulnerability landscape of Docker Hub.

The focus of the second research question is to investigate the correlation between
image features and the number of vulnerabilities. We conclude that there is, in fact, no
significant correlation between the vulnerability count and any of the image features

89

90 7. CONCLUSION

(i.e., the number of pulls, stars and days since last update). From the discussion
of the third research question, it is clear that vulnerabilities found in the Lodash
library and Python packages, originating from two of the most popular scripting
languages: JavaScript and Python, are the most severe. As such, vulnerabilities found
in frequently used software are the most severe, and more specifically, vulnerabilities
related to execution of code and overflow are the most frequently represented. The
following discoveries are of importance to answer the final research question of this
thesis. The Python 2.x packages and jackson-databind packages were found to hold
the highest number of severe vulnerabilities. Also, we discovered that the widely
used packages generally contain few severe vulnerabilities.

The discoveries and work done in this thesis are composed of several contributions.
The main contribution is the new insights into the vulnerability landscape of Docker
Hub. These findings aim to raise awareness in the community and have a preventive
impact on vulnerability management. The developed software is an additional
contribution. Our implemented software is thoroughly documented and explained
in this thesis, and also provided in a public repository on GitHub.1 These aspects
ensures that this research is fully reproducible. The software is adaptable and can
be used for future research. Lastly, as a final contribution, a conference paper
summarizing the work done in this thesis has been submitted and accepted to the
SAM2020 conference (Appendix H).

1Repository on GitHub: https://github.com/katrinewi/Docker-image-analyzing-tools

http://sam.udmercy.edu/sam20/
https://github.com/katrinewi/Docker-image-analyzing-tools

References

[And15] Charles Anderson. Docker. IEEE Software, 2015. Accessed: 3. Feb 2020.

[Arc20] ArchWiki, https://wiki.archlinux.org/index.php/Linux_Containers. Linux Con-
tainers, 2020. Accessed: 17. Apr 2020.

[BK10] Diane Barrett and Gregory Kipper. Virtualization Technique. ScienceDirect, https:
//www.sciencedirect.com/topics/computer-science/virtualization-technique, 2010.
Accessed: 17. Apr 2020.

[CMDP16] Theo Combe, Antony Martin, and Roberto Di Pietro. To Docker or Not to
Docker: A Security Perspective. IEEE Cloud Computing, 2016. Accessed: 24.
Jan 2020.

[CSR17] Jeeva S. Chelladhurai, Vinod Singh, and Pethuru Raj. Learning Docker, pages
96, 111. Packt Publishing, 2017.

[CVE19a] CVE Details, https://www.cvedetails.com/browse-by-date.php. Browse Vulnera-
bilities By Date, 2019. Accessed: 21. Apr 2020.

[CVE19b] CVE Details, https://www.cvedetails.com/vulnerabilities-by-types.php. Browse
Vulnerabilities By Type, 2019. Accessed: 5. May 2020.

[CVE20] CVE Details, https://www.cvedetails.com/. CVE Details, 2020. Accessed: 20.
Apr 2020.

[CZC09] Zhongqiang Chen, Yuan Zhang, and Zhongrong Chen. A Categorization Frame-
work for Common Computer Vulnerabilities and Exposures. Oxford University
Press on behalf of The British Computer Society, 2009. Accessed: 28. Jan 2020.

[Dat18] Datadog, https://www.datadoghq.com/docker-adoption/. 8 surprising facts about
Docker adaption, 2018. Accessed: 17. Apr 2020.

[Doca] Docker Inc., https://docs.docker.com/registry/introduction/. About Registry.
Accessed: 27. May 2020.

[Docb] Docker Inc., https://docs.docker.com/get-started/overview/. Docker overview.
Accessed: 17. Apr 2020.

91

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7093032
https://wiki.archlinux.org/index.php/Linux_Containers
https://www.sciencedirect.com/topics/computer-science/virtualization-technique
https://www.sciencedirect.com/topics/computer-science/virtualization-technique
https://ieeexplore.ieee.org/abstract/document/7742298
https://ieeexplore.ieee.org/abstract/document/7742298
https://www.cvedetails.com/browse-by-date.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/
https://academic.oup.com/comjnl/article/53/5/551/415583
https://academic.oup.com/comjnl/article/53/5/551/415583
https://docs.docker.com/registry/introduction/
https://docs.docker.com/get-started/overview/

92 REFERENCES

[Docc] Docker Inc., https://docs.docker.com/engine/security/security/. Docker security.
Accessed: 15. Apr 2020.

[Docd] Docker Inc., https://docs.docker.com/registry/spec/api/. HTTP API V2. Ac-
cessed: 18. Feb 2020.

[Doce] Docker Inc., https://www.docker.com/resources/what-container. What is a Con-
tainer? Accessed: 31. Jan 2020.

[FB08] William Fox and Mohamed Saheed Bayat. A Guide to Managing Research, page 8.
Juta and Company Ltd, 2008.

[FIR19] FIRST, https://www.first.org/cvss/specification-document. Common Vulnerabil-
ity Scoring System version 3.1: Specification Document, 2019. Accessed: 3. Feb
2020.

[FO19] David Fiser and Alfredo Oliveira. Why Running a Priv-
ileged Container in Docker Is a Bad Idea. Trend Micro
Inc., https://blog.trendmicro.com/trendlabs-security-intelligence/
why-running-a-privileged-container-in-docker-is-a-bad-idea/, 2019. Accessed: 15.
Apr 2020.

[GDT15] Jayanth Gummaraju, Tarun Desikan, and Yoshio Turner. Over 30% of Official
Images in Docker Hub Contain High Priority Security Vulnerabilities. Technical
report, BanyanOps, 2015. Accessed: 5. Mar 2020.

[Gol14] Ben Golub. Announcing Docker Hub and Official Repositories. Docker Inc., https:
//www.docker.com/blog/announcing-docker-hub-and-official-repositories/, 2014.
Accessed: 15. May 2020.

[GPSG18] S. Gowda, D. Prajapati, R. Singh, and S. S. Gadre. False Positive Analysis of
Software Vulnerabilities Using Machine Learning. IEEE International Conference
on Cloud Computing in Emerging Markets (CCEM), 2018. Accessed: 11. May
2020.

[Hew19] Jeffrey Hewitt. 3 Critical Mistakes That IO Leaders Must Avoid With Containers.
Gartner, The address of the publisher, 2019. Accessed: 15. Apr 2020.

[Hil19] Zach Hill. Feeds Overview. Anchore, https://docs.anchore.com/current/docs/
engine/usage/cli_usage/feeds/, 2019. Accessed: 17. Mar 2020.

[HW19] Malene Helsem and Katrine Wist. An extensive analysis of the current threat
landscape in Docker Hub images. Project report in TTM4502, Department
of Information Security and Communication Technology, NTNU – Norwegian
University of Science and Technology, Dec. 2019.

[Kar20] Dipto Karmakar. How to find and fix Docker container vulnera-
bilities in 2020. FreeCodeCamp, https://www.freecodecamp.org/news/
how-to-find-and-fix-docker-container-vulnerabilities-in-2020/, 2020. Accessed: 7.
May 2020.

https://docs.docker.com/engine/security/security/
https://docs.docker.com/registry/spec/api/
https://www.docker.com/resources/what-container
https://www.first.org/cvss/specification-document
https://blog.trendmicro.com/trendlabs-security-intelligence/why-running-a-privileged-container-in-docker-is-a-bad-idea/
https://blog.trendmicro.com/trendlabs-security-intelligence/why-running-a-privileged-container-in-docker-is-a-bad-idea/
https://blog.banyansecurity.io/blog/over-30-of-official-images-in-docker-hub-contain-high-priority-security-vulnerabilities
https://blog.banyansecurity.io/blog/over-30-of-official-images-in-docker-hub-contain-high-priority-security-vulnerabilities
https://www.docker.com/blog/announcing-docker-hub-and-official-repositories/
https://www.docker.com/blog/announcing-docker-hub-and-official-repositories/
https://ieeexplore.ieee.org/document/8648633
https://ieeexplore.ieee.org/document/8648633
https://www.gartner.com/account/signin?method=initialize&TARGET=http%253A%252F%252Fwww.gartner.com%252Fdocument%252F3955920%253Fref%253DTrackDBDailyEmail%2526refval%253D1565014105683%2526utm_source%253DGartnerTrack%2526utm_medium%253Demail%2526utm_campaign%253DTrackDashboard%2526utm_content%253DTSDaily
https://docs.anchore.com/current/docs/engine/usage/cli_usage/feeds/
https://docs.anchore.com/current/docs/engine/usage/cli_usage/feeds/
https://www.freecodecamp.org/news/how-to-find-and-fix-docker-container-vulnerabilities-in-2020/
https://www.freecodecamp.org/news/how-to-find-and-fix-docker-container-vulnerabilities-in-2020/

REFERENCES 93

[LOHS05] Ann Lehman, Norm O’Rourke, Larry Hatcher, and Edward Stepanski. JMP
for Basic Univariate and Multivariate Statistics: A Step-by-Step Guide. SAS
Institute, 2005.

[McC20] Shona McCombes. Correlational research. Scribbr, https://www.scribbr.com/
methodology/correlational-research/, 2020. Accessed: 25. May 2020.

[Mic17] Microsoft Corporation, https://docs.microsoft.com/en-us/cpp/cpp/
namespaces-cpp?view=vs-2019. Namespaces (C++), 2017. Accessed: 27.
May 2020.

[MIT19] The MITRE Corporation, https://cve.mitre.org/about/faqs.html#what_is_cve_
id. Frequently Asked Questions, 2019. Accessed: 3. Feb 2020.

[Moo17] Susan Moore. Focus on the Biggest Security Threats, Not the
Most Publicized. Gartner, https://www.gartner.com/smarterwithgartner/
focus-on-the-biggest-security-threats-not-the-most-publicized/, 2017. Accessed:
29. Apr 2020.

[Mor18] Jeff Morgan. Introducing the New Docker Hub. Docker Inc., https://www.docker.
com/blog/the-new-docker-hub/, 2018. Accessed: 15. May 2020.

[Nat] National Institute of Standards and Technology (NIST), https://nvd.nist.gov/
vuln/detail/CVE-2017-1000158, year = 2019, note = Accessed: 27. Mar 2020.
CVE-2017-1000158 Detail.

[Nat19a] National Institute of Standards and Technology (NIST), https://nvd.nist.gov/
vuln/detail/CVE-2019-10744. CVE-2019-10744 Detail, 2019. Accessed: 27. Mar
2020.

[Nat19b] National Institute of Standards and Technology (NIST), https://nvd.nist.gov/
vuln/detail/CVE-2019-9636. CVE-2019-9636 Detail, 2019. Accessed: 27. Mar
2020.

[Nat19c] National Institute of Standards and Technology (NIST), https://nvd.nist.gov/
vuln/detail/CVE-2019-9948. CVE-2019-9948 Detail, 2019. Accessed: 27. Mar
2020.

[Nat20a] National Institute of Standards and Technology (NIST), https://csrc.nist.gov/
glossary/term/vulnerability. Glossary - vulnerability, 2020. Accessed: 28. May
2020.

[Nat20b] National Institute of Standards and Technology (NIST), https://nvd.nist.gov/
vuln-metrics/cvss. NVD - Vulnerability Metrics, 2020. Accessed: 27. May 2020.

[NKK17] Sarang Na, Taeeun Kim, and Hwankuk Kim. A Study on the Classification of
Common Vulnerabilities and Exposures using Naïve Bayes. Springer International
Publishing AG, 2017. Accessed: 28. Jan 2020.

[Off19] Official Anchore Engine Github Repository, https://github.com/anchore/
anchore-engine. Anchore Engine, 2019. Accessed: 12. Feb 2020.

https://www.scribbr.com/methodology/correlational-research/
https://www.scribbr.com/methodology/correlational-research/
https://docs.microsoft.com/en-us/cpp/cpp/namespaces-cpp?view=vs-2019
https://docs.microsoft.com/en-us/cpp/cpp/namespaces-cpp?view=vs-2019
https://cve.mitre.org/about/faqs.html#what_is_cve_id
https://cve.mitre.org/about/faqs.html#what_is_cve_id
https://www.gartner.com/smarterwithgartner/focus-on-the-biggest-security-threats-not-the-most-publicized/
https://www.gartner.com/smarterwithgartner/focus-on-the-biggest-security-threats-not-the-most-publicized/
https://www.docker.com/blog/the-new-docker-hub/
https://www.docker.com/blog/the-new-docker-hub/
https://nvd.nist.gov/vuln/detail/CVE-2017-1000158
https://nvd.nist.gov/vuln/detail/CVE-2017-1000158
https://nvd.nist.gov/vuln/detail/CVE-2019-10744
https://nvd.nist.gov/vuln/detail/CVE-2019-10744
https://nvd.nist.gov/vuln/detail/CVE-2019-9636
https://nvd.nist.gov/vuln/detail/CVE-2019-9636
https://nvd.nist.gov/vuln/detail/CVE-2019-9948
https://nvd.nist.gov/vuln/detail/CVE-2019-9948
https://csrc.nist.gov/glossary/term/vulnerability
https://csrc.nist.gov/glossary/term/vulnerability
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://link.springer.com/chapter/10.1007/978-3-319-49106-6_65
https://link.springer.com/chapter/10.1007/978-3-319-49106-6_65
https://github.com/anchore/anchore-engine
https://github.com/anchore/anchore-engine

94 REFERENCES

[Ora20a] Oracle Corporation, https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.
html. MySQL 8.0 Reference Manual - 1.3.1 What is MySQL?, 2020. Accessed:
21. Feb 2020.

[Ora20b] Oracle Corporation, https://dev.mysql.com/doc/refman/8.0/en/workbench.html.
MySQL 8.0 Reference Manual - Chapter 31 MySQL Workbench, 2020. Accessed:
21. Feb 2020.

[Pyt19] Python.org, https://www.python.org/psf/press-release/pr20191220/. Python
Software Foundation: Press Release 20-Dec-2019, 2019. Accessed: 27. Mar 2020.

[Ric17] Liz Rice. Three Overlooked Lessons about Container Security. The New Stack,
https://thenewstack.io/three-overlooked-lessons-container-security/, 2017. Ac-
cessed: 7. May 2020.

[San19] Nandhini Santhanam. Registry v1 API Deprecation. Docker Inc., https://www.
docker.com/blog/registry-v1-api-deprecation/, 2019. Accessed: 21. Feb 2020.

[SBW17] Daniel Schatz, Rabih Bashroush, and Julie Wall. Towards a More Representative
Definition of Cyber Security. The Association of Digital Forensics, Security and
Law (ADFSL), 2017.

[SGE17] Rui Shu, Xiaohui Gu, and Willian Enck. A Study of Security Vulnerabilities on
Docker Hub. CODASPY ’17: Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy, 2017. Accessed: 5. Mar 2019.

[SGGK07] Nenad Stojanovski, Marjan Gusev, Danilo Gligoroski, and Svein J Knapskog.
Bypassing data execution prevention on Microsoft Windows XP SP2. In The Sec-
ond International Conference on Availability, Reliability and Security (ARES’07),
pages 1222–1226. IEEE, 2007.

[SL19] Emilien Socchi and Jonathan Luu. A Deep Dive into Docker Hub’s Security
Landscape - A story of inheritance? Master’s thesis, University of Oslo (UiO),
2019. Accessed: 5. Mar 2019.

[SQ17] Brook Schoenfield and Damian Quiroga. Don’t Substitute CVSS for
Risk: Scoring System Inflates Importance of CVE-2017-3735. McAfee
Labs, https://www.mcafee.com/blogs/other-blogs/mcafee-labs/dont-substitute-
cvss-for-risk-scoring-system-inflates-importance-of-cve-2017-3735/, 2017. Ac-
cessed: 11. May 2020.

[Suk96] Suphat Sukamolson. Fundamentals of quantitatice research. PhD thesis, Chula-
longkort University, Language Institute, 1996. Accessed: 10. Feb 2020.

[Tal19] Liran Tal. Snyk research team discovers severe prototype pollution security
vulnerabilities affecting all versions of lodash. Snyk, 2019. Accessed: 4. May 2020.

[Tri17] Tripwire, https://www.tripwire.com/state-of-security/vulnerability-management/
myth-false-positives-vulnerability-assessments/. The Myth of “False Positives”
in Vulnerability Assessments, 2017. Accessed: 8. May 2020.

https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html
https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html
https://dev.mysql.com/doc/refman/8.0/en/workbench.html
https://www.python.org/psf/press-release/pr20191220/
https://thenewstack.io/three-overlooked-lessons-container-security/
https://www.docker.com/blog/registry-v1-api-deprecation/
https://www.docker.com/blog/registry-v1-api-deprecation/
https://dl.acm.org/doi/pdf/10.1145/3029806.3029832
https://dl.acm.org/doi/pdf/10.1145/3029806.3029832
https://www.duo.uio.no/bitstream/handle/10852/69632/A-Deep-Dive-into-Docker-Hubs-Security-Landscape.pdf?sequence=1&isAllowed=y
https://www.duo.uio.no/bitstream/handle/10852/69632/A-Deep-Dive-into-Docker-Hubs-Security-Landscape.pdf?sequence=1&isAllowed=y
https://snyk.io/blog/snyk-research-team-discovers-severe-prototype-pollution-security-vulnerabilities-affecting-all-versions-of-lodash/
https://snyk.io/blog/snyk-research-team-discovers-severe-prototype-pollution-security-vulnerabilities-affecting-all-versions-of-lodash/
https://www.tripwire.com/state-of-security/vulnerability-management/myth-false-positives-vulnerability-assessments/
https://www.tripwire.com/state-of-security/vulnerability-management/myth-false-positives-vulnerability-assessments/

REFERENCES 95

[Tun18] Liam Tung. Windows security: Microsoft issues fix for critical Docker tool flaw, so
patch now. ZDNet, https://www.zdnet.com/article/windows-security-microsoft-
issues-fix-for-critical-docker-tool-flaw-so-patch-now/, 2018. Accessed: 4. june
2020.

[ZCO11] Zu Zhang, Doina Caragea, and Xinming Ou. An Empirical Study on Using the
National Vulnerability Database to Predict Software Vulnerabilities. Springer,
Berlin, Heidelberg, 2011.

[ZTA+19] Nannan Zhao, Vasily Tarasov, Hadeel Albahar, Ali Anwar, Lukas Rupprecht,
Dimitrios Skourtis, Amit S. Warke, Mohamed Mohamed, and Ali R. Butt. Large-
Scale Analysis of the Docker Hub Dataset. 2019 IEEE International Conference
on Cluster Computing (CLUSTER), 2019. Accessed: 27. Jan 2020.

https://link.springer.com/chapter/10.1007/978-3-642-23088-2_15
https://link.springer.com/chapter/10.1007/978-3-642-23088-2_15
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8891000
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8891000

AppendixAScripts prerequisites

In order to use our scripts, a few requirements need to be met. This appendix will
explain how to get started. Please note that these steps are based on how to install
dependencies on a Unix system.

A.1 Web scraper

The code for the web scraper is presented in Appendix B and the script is written
in Python 3. The next section presents the needed software for the web scraper to
work.

Prerequisites

− Selenium: An explanation of how to to install Selenium is given here:
https://pypi.org/project/selenium/

− Geckodriver: The Geckodriver executable can be downloaded from the
following page: https://github.com/mozilla/geckodriver/releases. In our scraper
script, we specify the driver on line 34. The path must be changed to the
location of the Gecodriver executable on the user’s computer. Alternatively,
it can be added to the PATH by placing it in the /usr/bin or /usr/local/bin
folder, and remove everything inside the brackets on line 34 in the script. It
is important to use versions of Selenium, Geckodriver, and Firefox that are
compatible.

Behavior

The scraper creates two files: image-names.txt and image-info.csv, and writes the
gathered data to them. If these files already exist, the content inside will be
overwritten.

97

https://pypi.org/project/selenium/
https://github.com/mozilla/geckodriver/releases

98 A. SCRIPTS PREREQUISITES

A.2 API scripts

The scripts for accessing the Docker Registry HTTP API V1 and V2 is found in
Appendix C and in Appendix D. The scripts are written in Python 3. The API script
for the first version of the API supports verified and certified images (Appendix
C), where the API script for the second version of the API supports official and
community images (Appendix D).

Prerequisites

urllib.request, urllib.error, and json are built in packages in Python 3, so there are
no required installations needed to run the API scripts.

Behavior

The API scripts create two files each: results_apiv1.csv and failed_apiv1.txt, and
results_apiv2.csv and failed_apiv2.txt. The gathered data is written to these files.
If they already exist, the content inside will be overwritten. Additionally, the scripts
take the image_names.txt file as input, which constitutes of image names separated
by line shift. If this file is not to be found, the scripts will not run.

A.3 Automate analysis script

The bash script for automating the analysis with the Anchore Engine scanner is
found in Appendix E.

Prerequisites

− Anchore Engine: For installation instructions of Anchore Engine, visit
https://github.com/anchore/anchore-engine. To install Anchore Engine, Docker
and Docker Compose is required.

− Anchore Engine CLI: The following page shows the installation guide for the
command line interface for Anchore Engine: https://github.com/anchore/anchore-
cli

− Docker: For installation instructions of Docker, visit https://docs.docker.com/get-
docker/

− Docker Compose: For installation instructions of Docker Compose, visit
https://docs.docker.com/compose/install/

https://github.com/anchore/anchore-engine
https://github.com/anchore/anchore-cli
https://github.com/anchore/anchore-cli
https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/
https://docs.docker.com/compose/install/

A.3. AUTOMATE ANALYSIS SCRIPT 99

Behavior

In order to run the script, Docker Compose is required to run. Docker Compose is
started with the following command: docker-compose up -d. The script will first
try to rename the vuln.csv and the failed.txt files. Because of the possible long run
time of the script, it is important that this content is not overwritten by mistake.
Thus, an error will be outputted if these files are not found, but the script will
continue to run as expected. The script takes the image_names.txt file as input,
which constitutes of image names separated by line shift. If this file is not to be
found, the script will not run. As a final notice, Docker is by default running as
root, and thus, needs to be run using the SUDO command. We highly recommend
running Docker as a non-root user.

AppendixBScript for web scraper

1 ###
2 #
3 # Web scraper for gathering images with their image type from the Docker Hub website
4 # Copyright (C) 2020 Katrine Wist and Malene Helsem
5 #
6 # This program is free software: you can redistribute it and/or
7 # modify it under the terms of the GNU General Public License as
8 # published by the Free Software Foundation, either version 3 of the
9 # License, or (at your option) any later version.

10 #
11 # This program is distributed in the hope that it will be useful, but
12 # WITHOUT ANY WARRANTY; without even the implied warranty of
13 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 # General Public License for more details.
15 #
16 # You should have received a copy of the GNU General Public License
17 # along with this program. If not, see http://www.gnu.org/licenses/.
18 #
19 ###
20

21 from selenium import webdriver
22 import time
23

24 urlpage = 'https://hub.docker.com/search/?q=&type=image&page={}'
25 page_count = 0
26 print("Scraping started ...")
27 image_names = open("./image-names.txt","w")
28 image_info = open("./image-info.csv", "w")
29

30 while page_count < 100:
31 page_count +=1
32 url = urlpage.format(page_count)
33 #Run the firefox webdriver, this is where you need to specify the path to

Geckodriver↪→

34 driver = webdriver.Firefox(executable_path = '/path-to-geckodriver-here')
35 #Get web page
36 driver.get(url)

101

102 B. SCRIPT FOR WEB SCRAPER

37 #Sleep for 10s, to let the page fully load
38 time.sleep(10)
39 #Find elements by xpath
40 results = driver.find_elements_by_xpath("//*[@class='imageSearchResult

styles__searchResult___EBKah styles__clickable___2bfia']")↪→

41

42 print('Scraping page: ', page_count)
43 for info in results:
44 image_type = ""
45 #Set the image type
46 if('OFFICIAL' in info.text):
47 image_type = "official"
48 elif('Certified' in info.text):
49 image_type = "certified"
50 elif('VERIFIED' in info.text):
51 image_type = "verified"
52 else:
53 image_type = "community"
54

55 #Gather the image name from URL, different procedure for each image type
56 image_link = info.get_attribute('href')
57 if(image_type == "official"):
58 tmp = image_link.split("/")[-1] + "," + image_type + "\n"
59 image_names.write(image_link.split("/")[-1]+"\n")
60 image_info.write(tmp)
61 elif(image_type == "community"):
62 tmp = image_link.split("/")[-2] + "/" + image_link.split("/")[-1] + "," +

image_type + "\n"↪→

63 image_names.write(image_link.split("/")[-2] + "/" +
image_link.split("/")[-1] + "\n")↪→

64 image_info.write(tmp)
65 else:
66 tmp = image_link.split("/")[-1] + "," + image_type + "\n"
67 image_names.write(image_link.split("/")[-1]+"\n")
68 image_info.write(tmp)
69

70 time.sleep(5)
71 driver.close()
72

73 #Close driver
74 driver.quit()
75 #Close files
76 image_names.close()
77 image_info.close()

AppendixCScript for accessing the Docker
Registry HTTP API V1

1 ###
2 #
3 # Gather information (pull count and last updated time) about verified and certified

Docker images↪→

4 # Copyright (C) 2020 Katrine Wist and Malene Helsem
5 #
6 # This program is free software: you can redistribute it and/or
7 # modify it under the terms of the GNU General Public License as
8 # published by the Free Software Foundation, either version 3 of the
9 # License, or (at your option) any later version.

10 #
11 # This program is distributed in the hope that it will be useful, but
12 # WITHOUT ANY WARRANTY; without even the implied warranty of
13 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 # General Public License for more details.
15 #
16 # You should have received a copy of the GNU General Public License
17 # along with this program. If not, see http://www.gnu.org/licenses/.
18 #
19

20 ###
21

22 import urllib.request, json
23 from urllib.error import HTTPError
24

25 names_file = open("./image_names.txt")
26 image_names = [line.rstrip('\n') for line in names_file]
27 names_file.close()
28 print("Finished reading image names")
29

30 results = open("./results_apiv1.csv","w")
31 failed = open("./failed_apiv1.txt","w")
32 results.write("image_name,pull_count,star_count,last_updated" + "\n")
33

34 print("Starting data gathering ...")
35 for i in image_names:
36 print("Gathering data about: " + i)

103

104 C. SCRIPT FOR ACCESSING THE DOCKER REGISTRY HTTP API V1

37 url_page = 'https://hub.docker.com/api/content/v1/products/images/{}'
38 try:
39 with urllib.request.urlopen(url_page.format(i)) as url:
40 data = json.loads(url.read().decode())
41 popularity = str(data['popularity'])
42 if(str(data['popularity']) == str(0)):
43 popularity = ""
44 results.write(i + "," + popularity + "," + "," + str(data['updated_at'])

+ "\n")↪→

45 except HTTPError as e:
46 failed.write(i + "\n")
47 print(e.reason)
48 continue
49

50 results.close()
51 failed.close()

AppendixDScript for accessing the Docker
Registry HTTP API V2

1 ###
2 #
3 # Gather information (pull count, star count, last updated time) about official and

community Docker images↪→

4 # Copyright (C) 2020 Katrine Wist and Malene Helsem
5 #
6 # This program is free software: you can redistribute it and/or
7 # modify it under the terms of the GNU General Public License as
8 # published by the Free Software Foundation, either version 3 of the
9 # License, or (at your option) any later version.

10 #
11 # This program is distributed in the hope that it will be useful, but
12 # WITHOUT ANY WARRANTY; without even the implied warranty of
13 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 # General Public License for more details.
15 #
16 # You should have received a copy of the GNU General Public License
17 # along with this program. If not, see http://www.gnu.org/licenses/.
18 #
19 ###
20

21 import urllib.request, json
22 from urllib.error import HTTPError
23

24 names_file = open("./image_names.txt")
25 image_names = [line.rstrip('\n') for line in names_file]
26 names_file.close()
27 print("Finished reading image names ...")
28

29 results = open("./results_apiv2.csv","w")
30 failed = open("./failed_apiv2.txt","w")
31 results.write("image_name,pull_count,star_count,last_updated" + "\n")
32

33 print("Starting data gathering ...")
34 for i in image_names:
35 print("Gathering data about: " + i)
36 if ("/" in i):

105

106 D. SCRIPT FOR ACCESSING THE DOCKER REGISTRY HTTP API V2

37 url_page = 'https://hub.docker.com/v2/repositories/{}'
38 else:
39 url_page = 'https://hub.docker.com/v2/repositories/library/{}'
40 try:
41 with urllib.request.urlopen(url_page.format(i)) as url:
42 data = json.loads(url.read().decode())
43 results.write(i + "," + str(data['pull_count']) + "," +

str(data['star_count'])+ "," + str(data['last_updated']) + "\n")↪→

44 except HTTPError as e:
45 failed.write(i + "\n")
46 print(e.reason)
47 continue
48

49 results.close()
50 failed.close()

AppendixEScript for automate analysis

1 ###
2 #
3 # Automate the process of analyzing Docker images with the latest tag using the

Anchore Engine vulnerability scanner↪→

4 # Copyright (C) 2020 Katrine Wist and Malene Helsem
5 #
6 # This program is free software: you can redistribute it and/or
7 # modify it under the terms of the GNU General Public License as
8 # published by the Free Software Foundation, either version 3 of the
9 # License, or (at your option) any later version.

10 #
11 # This program is distributed in the hope that it will be useful, but
12 # WITHOUT ANY WARRANTY; without even the implied warranty of
13 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 # General Public License for more details.
15 #
16 # You should have received a copy of the GNU General Public License
17 # along with this program. If not, see http://www.gnu.org/licenses/.
18 #
19 ###
20

21 #!/bin/bash
22

23 mv vuln.csv vuln_"$(date +%Y-%m-%d_%H-%M-%S)".csv
24 touch "vuln.csv"
25 mv failed.txt failed_"$(date +%Y-%m-%d_%H-%M-%S)".txt
26 touch "failed.txt"
27

28 for image in $(cat ./image-names.txt)
29 do
30 echo "Adding $image..."
31 success=true
32 SECONDS=0
33 while true
34 do
35 output=$(anchore-cli --url "http://localhost:8228/v1" --u "admin" --p

"foobar" image add "$image:latest")↪→

107

108 E. SCRIPT FOR AUTOMATE ANALYSIS

36 echo "$output" | grep "error_code=REGISTRY_PERMISSION_DENIED'}" -q && echo
"Permission denied to scan image." && echo "$image,permission_denied" >>
failed.txt && success=false && break

↪→

↪→

37 echo "$output" | grep "error_code=REGISTRY_IMAGE_NOT_FOUND'}" -q && echo
"Image not found."&& echo "$image,not_found" >> failed.txt &&
success=false && break

↪→

↪→

38 echo "$output" | grep "HTTP Code: 400" -q && echo "Unknown error occured." &&
echo "$image,unknown_error" >> failed.txt && success=false && break↪→

39 if ["$SECONDS" -gt "3600"]
40 then
41 echo "Timeout"&& echo "$image,timeout" >> failed.txt && success=false &&

break↪→

42 fi
43 echo "$output" | grep "Analysis Status: analyzed" -q && break || (echo "Not

finished, sleeping..." && sleep 20)↪→

44 done
45 if $success
46 then
47 echo "Finished, writing result to file..."
48 if [[$(anchore-cli --url "http://localhost:8228/v1" --u "admin" --p "foobar"

image vuln "$image:latest" all)]]↪→

49 then
50 anchore-cli --url "http://localhost:8228/v1" --u "admin" --p "foobar"

image vuln "$image:latest" all | sed -r 's/,/;/g' |sed -r 's/
+/,/g'| sed 's/,$//' | egrep -v '^Vulnerability ID' | awk '{ print
"'"$image"',"$1 }' | awk -F, -v OFS=, '{ if(NF==6) { k=$NF; $6="";
$7=k; print } else { for (i=NF; i<=7; i++) { $i=$i"" } print }}' >>
vuln.csv

↪→

↪→

↪→

↪→

↪→

51 else
52 echo "No found vulnerabilities"
53 fi
54

55 fi
56 done

AppendixFSQL imports

1 USE master_db;
2 ---
3 #process for creating image_info table
4

5 CREATE TABLE image_info_scraper (
6 image_id INT AUTO_INCREMENT PRIMARY KEY,
7 image VARCHAR(255) NOT NULL,
8 i_type VARCHAR(255));
9 #content is image_info_scraper.csv

10

11 CREATE TABLE image_info_api (
12 image VARCHAR(255) NOT NULL,
13 pulls VARCHAR(255),
14 stars VARCHAR(255),
15 last_updated VARCHAR(255));
16 #content is image_info_api.csv
17

18 CREATE TABLE image_info (
19 image_id INT NOT NULL PRIMARY KEY,
20 image VARCHAR(255) NOT NULL,
21 i_type VARCHAR(255),
22 pulls VARCHAR(255),
23 stars VARCHAR(255),
24 last_updated VARCHAR(255));
25 #content is result of join on tables image_info_scraper and image_info_api
26

27 #join two tables and insert into table
28 INSERT INTO image_info
29 SELECT
30 A.image_id,
31 A.image,
32 A.i_type,
33 COALESCE(B.pulls, ''),
34 COALESCE(B.stars, ''),
35 COALESCE(B.last_updated, '')
36 FROM image_info_scraper A
37 LEFT JOIN image_info_api B USING (image);

109

110 F. SQL IMPORTS

38 #COALESCE is used to change empty values from NULL to ''
39

40 ---
41 #process for creating vuln table
42

43 CREATE TABLE vuln (
44 vuln_id INT AUTO_INCREMENT PRIMARY KEY,
45 image_id INT,
46 image VARCHAR(255) NOT NULL,
47 vuln_name VARCHAR(255),
48 package VARCHAR(255),
49 severity VARCHAR(255),
50 fix VARCHAR(255),
51 cve_refs VARCHAR(800),
52 vuln_url VARCHAR(255),
53 FOREIGN KEY (image_id) REFERENCES image_info(image_id));
54

55 #update the image_id column with correct values
56 UPDATE vuln A LEFT JOIN image_info B USING(image) SET A.image_id=B.image_id;
57

58 ---
59 #create failed table
60

61 CREATE TABLE failed (
62 failed_id INT AUTO_INCREMENT PRIMARY KEY,
63 image_id INT,
64 image VARCHAR(255) NOT NULL,
65 failure_reason VARCHAR(255),
66 FOREIGN KEY (image_id) REFERENCES image_info(image_id));
67 #content is failed.csv
68

69 #update the image_id column with correct values
70 UPDATE failed A LEFT JOIN image_info B USING(image) SET A.image_id=B.image_id;

AppendixGSQL for data analysis

1 USE master_db;
2 ---
3 #image information and failed images
4

5 #number of images, pulls, stars and last updated of each image type
6 SELECT
7 i_type,
8 COUNT(DISTINCT image_id) AS number_of_images,
9 COUNT(DISTINCT IF(NOT image_id='',image_id,Null)) AS image_id,

10 COUNT(DISTINCT IF(NOT A.image='',image_id,Null)) AS image,
11 COUNT(DISTINCT IF(NOT i_type='',image_id,Null)) AS i_type,
12 COUNT(DISTINCT IF(NOT pulls='',image_id,Null)) AS pulls,
13 COUNT(DISTINCT IF(NOT stars='',image_id,Null)) AS stars,
14 COUNT(DISTINCT IF(NOT last_updated='',image_id,Null)) AS last_updated
15 FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id FROM failed)) AS

A↪→

16 LEFT JOIN vuln B USING (image_id)
17 GROUP BY i_type;
18 # '' indicates empty field
19

20 #number of analyzed vs failed images of the each image type
21 SELECT
22 i_type,
23 COUNT(DISTINCT IF(NOT A.image_id IN (SELECT image_id FROM failed), A.image_id,

Null)) AS analyzed_images,↪→

24 COUNT(DISTINCT B.image_id) AS failed_images
25 FROM image_info A LEFT JOIN failed B USING (image_id)
26 GROUP BY i_type;
27

28 #number of images of each failure reason
29 SELECT
30 failure_reason,
31 COUNT(*)
32 FROM failed
33 GROUP BY failure_reason;
34

35 ---

111

112 G. SQL FOR DATA ANALYSIS

36 #vulnerability information
37

38 # number of values of each column in vuln
39 SELECT
40 (SELECT COUNT(IF(NOT vuln_id='', vuln_id, Null))) AS vuln_id,
41 (SELECT COUNT(IF(NOT image_id='', image_id, Null))) AS image_id,
42 (SELECT COUNT(IF(NOT image='', image, Null))) AS image,
43 (SELECT COUNT(IF(NOT vuln_name='', vuln_name, Null))) AS vuln_name,
44 (SELECT COUNT(IF(NOT package='', package, Null))) AS package,
45 (SELECT COUNT(IF(NOT severity='', severity, Null))) AS severity,
46 (SELECT COUNT(IF(NOT fix='', fix, Null))) AS fix,
47 (SELECT COUNT(IF(NOT cve_refs='', cve_refs, Null))) AS cve_refs,
48 (SELECT COUNT(IF(NOT vuln_url='', vuln_url, Null))) AS vuln_url
49 FROM vuln;
50

51 #distinct number of values of each column in vuln
52 SELECT
53 COUNT(DISTINCT vuln_id) AS vuln_id,
54 COUNT(DISTINCT image_id) AS image_id,
55 COUNT(DISTINCT image) AS image,
56 COUNT(DISTINCT vuln_name) AS vuln_name,
57 COUNT(DISTINCT package) AS package,
58 COUNT(DISTINCT severity) AS severity,
59 COUNT(DISTINCT fix) AS fix,
60 COUNT(DISTINCT cve_refs) AS cve_refs,
61 COUNT(DISTINCT vuln_url) AS vuln_url
62 FROM vuln;
63

64 #number of empty values of each column in vuln (null values are empty string '')
65 SELECT
66 (SELECT COUNT(IF(vuln_id='', vuln_id, Null))) AS vuln_id,
67 (SELECT COUNT(IF(image_id='', image_id, Null))) AS image_id,
68 (SELECT COUNT(IF(image='', image, Null))) AS image,
69 (SELECT COUNT(IF(vuln_name='', vuln_name, Null))) AS vuln_name,
70 (SELECT COUNT(IF(package='', package, Null))) AS package,
71 (SELECT COUNT(IF(severity='', severity, Null))) AS severity,
72 (SELECT COUNT(IF(fix='', fix, Null))) AS fix,
73 (SELECT COUNT(IF(cve_refs='', cve_refs, Null))) AS cve_refs,
74 (SELECT COUNT(IF(vuln_url='', vuln_url, Null))) AS vuln_url
75 FROM vuln;
76

77 ---
78 # distribution of vulnerabilities in each severity category
79

80 SELECT
81 severity,
82 COUNT(*) AS num_of_vulns,
83 COUNT(DISTINCT vuln_name) AS num_of_unique_vulns,
84 COUNT(*) / COUNT(DISTINCT vuln_name) AS ratio
85 FROM vuln
86 GROUP BY severity;
87

113

88 ---
89 #central tendency
90

91 #number of vulnerabilities for each image, used for plotting histogram
92 SELECT
93 A.image_id,
94 COUNT(vuln_name) AS vuln_count
95 FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id FROM failed)) AS

A↪→

96 LEFT JOIN vuln B USING (image_id)
97 GROUP BY A.image_id;
98

99 #average number of vulns per image
100 SELECT AVG(vuln_count)
101 FROM
102 (SELECT
103 image_id,
104 COUNT(vuln_name) AS vuln_count
105 FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id FROM

failed)) AS A↪→

106 LEFT JOIN vuln B USING (image_id)
107 GROUP BY image_id) AS C;
108

109 #median number of vulns per image
110 SET @rowindex := -1;
111 SELECT AVG(D.vuln_count) AS median
112 FROM
113 (SELECT @rowindex:=@rowindex + 1 AS rowindex, C.vuln_count
114 FROM
115 (SELECT
116 A.image_id,
117 COUNT(vuln_name) AS vuln_count
118 FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id FROM

failed)) AS A↪→

119 LEFT JOIN vuln B USING (image_id)
120 GROUP BY A.image_id
121 ORDER BY vuln_count DESC) AS C) AS D
122 WHERE D.rowindex IN (FLOOR(@rowindex / 2) , CEIL(@rowindex / 2));
123

124

125 #average and median when disregarding unknown and negligible vulns
126

127 #average number of vulns per image, disregarding unknown and negligible vulns
128 SELECT AVG(C.vuln_count)
129 FROM
130 (SELECT
131 A.image_id,
132 COUNT(IF(NOT severity='negligible' AND NOT severity='unknown', 1, Null)) AS

vuln_count↪→

133 FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id FROM
failed)) AS A↪→

134 LEFT JOIN vuln B USING (image_id)

114 G. SQL FOR DATA ANALYSIS

135 GROUP BY A.image_id) AS C;
136

137 #median number of vulns per image, disregarding unknown and negligible vulns
138 SET @rowindex := -1;
139 SELECT AVG(D.vuln_count) AS median
140 FROM
141 (SELECT @rowindex:=@rowindex + 1 AS rowindex, C.vuln_count
142 FROM
143 (SELECT
144 A.image_id,
145 COUNT(IF(NOT severity='negligible' AND NOT severity='unknown', 1, Null))

AS vuln_count↪→

146 FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id FROM
failed)) AS A↪→

147 LEFT JOIN vuln B USING (image_id)
148 GROUP BY A.image_id
149 ORDER BY vuln_count DESC) AS C) AS D
150 WHERE D.rowindex IN (FLOOR(@rowindex / 2) , CEIL(@rowindex / 2));
151 #insert WHERE i_type = verified, certified, official or community before GROUP BY

clause to find median for each image type↪→

152

153

154 #queries for table about statistical values:
155

156 #number of images in each type and number of vulnerabilities, not counting negligible
and unknown↪→

157 SELECT
158 i_type,
159 COUNT(DISTINCT image_id) AS num_of_images,
160 COUNT(IF(NOT severity='negligible' AND NOT severity='unknown', vuln_id, Null)) AS

num_of_vulns↪→

161 FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id FROM failed))AS
A↪→

162 LEFT JOIN vuln B USING (image_id)
163 GROUP BY i_type;
164 #average, max, min and standard deviation of number of vulnerabilities in each image
165 SELECT
166 i_type,
167 AVG(vuln_count) AS average,
168 MAX(vuln_count) AS max_,
169 MIN(vuln_count) AS min_,
170 STDDEV_SAMP(vuln_count) AS stddev_
171 FROM
172 (SELECT
173 A.image_id,
174 MIN(i_type) AS i_type,
175 COUNT(IF(NOT vuln_name='' AND (NOT severity='negligible' AND NOT

severity='unknown'), 1, Null)) AS vuln_count↪→

176 FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id FROM
failed)) AS A↪→

177 LEFT JOIN vuln B USING (image_id)
178 GROUP BY A.image_id) AS C

115

179 GROUP BY i_type;
180

181 ---
182 # median number of vulnerabilities for each image type
183

184 SET @rowindex := -1;
185 SELECT AVG(D.vuln_count) AS median
186 FROM
187 (SELECT @rowindex:=@rowindex + 1 AS rowindex, C.vuln_count
188 FROM
189 (SELECT
190 A.image_id,
191 COUNT(vuln_name) AS vuln_count
192 FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id FROM

failed)) AS A↪→

193 LEFT JOIN vuln B USING (image_id)
194 WHERE severity = 'critical' AND i_type = 'verified'
195 GROUP BY A.image_id
196 ORDER BY vuln_count DESC) AS C) AS D
197 WHERE D.rowindex IN (FLOOR(@rowindex / 2) , CEIL(@rowindex / 2));
198 #to get the median for all severities and all image types:
199 #change between severity = critical, high, medium and low AND
200 #change between i_type = verified, certified, official and community
201

202 ---
203 #density distribution plots
204

205 #creating output for tables with number of vulns per image in each image type - used
in density distribution↪→

206 SELECT
207 image_id,
208 COUNT(IF(NOT severity='negligible' AND NOT severity='unknown', 1, Null)) AS

vuln_count↪→

209 FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id FROM failed)) AS
A↪→

210 LEFT JOIN vuln B USING (image_id)
211 WHERE i_type='verified'
212 GROUP BY image_id;
213 #to get tables with the data for each image type:
214 #change between i_type = verified, certified, official and community
215

216 ---
217 #images that contain the most critical and high vulns
218

219 SELECT
220 A.image,
221 SUM(severity='Critical') AS critical_count,
222 SUM(severity='High') AS high_count,
223 SUM(severity='Medium') AS medium_count,
224 SUM(severity='Low') AS low_count,
225 AVG(pulls) AS no_of_pulls
226 FROM vuln A LEFT JOIN image_info B USING(image_id)

116 G. SQL FOR DATA ANALYSIS

227 GROUP BY A.image
228 ORDER BY critical_count DESC;
229

230 ---
231 #percentage of images with critical and high vulnerabilities
232

233 SELECT
234 i_type,
235 (COUNT(DISTINCT IF(severity='critical',image_id, Null)) / COUNT(DISTINCT

image_id))*100 AS percentage_critical,↪→

236 (COUNT(DISTINCT IF(severity='high',image_id, Null)) / COUNT(DISTINCT
image_id))*100 AS percentage_high,↪→

237 (COUNT(DISTINCT IF(severity='critical' OR severity='high',image_id, Null)) /
COUNT(DISTINCT image_id))*100 AS percentage_both↪→

238 FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id FROM failed)) A
239 LEFT JOIN vuln B USING (image_id)
240 GROUP BY i_type;
241

242 ---
243 #vulnerabilities in microsoft images
244

245 #number of analyzed and failed microsoft images
246 SELECT
247 (SELECT COUNT(DISTINCT IF(INSTR(A.image, 'microsoft'), image_id, Null))
248 FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id FROM

failed)) A↪→

249 LEFT JOIN vuln B USING (image_id)) AS analyzed_images,
250 (SELECT COUNT(DISTINCT IF(INSTR(image, 'microsoft'), image_id, Null))
251 FROM failed) AS failed_images;
252

253 #number of vulns and unique vulns in microsoft images for each severity
254 SELECT
255 severity,
256 COUNT(*) AS vulns,
257 COUNT(DISTINCT vuln_name) AS distinct_vulns,
258 COUNT(*) / COUNT(DISTINCT vuln_name) AS ratio
259 FROM vuln
260 WHERE INSTR(image, 'microsoft')
261 GROUP BY severity;
262

263

264 #comparing microsoft images and all other images:
265

266 #number of vulns in microsoft and in all other images, grouped BY severity
267 SELECT
268 severity,
269 COUNT(IF(INSTR(image, 'microsoft'), vuln_id, Null))AS vulns_microsoft,
270 COUNT(IF(NOT INSTR(image, 'microsoft'), vuln_id, Null))AS vulns_no_microsoft
271 FROM vuln
272 GROUP BY severity;
273 #number of images in microsoft and in all other images
274 SELECT

117

275 COUNT(DISTINCT IF(INSTR(A.image, 'microsoft'), image_id, Null)) AS
num_of_microsoft_images,↪→

276 COUNT(DISTINCT IF(NOT INSTR(A.image, 'microsoft'), image_id, Null)) AS
num_of_non_microsoft_images↪→

277 FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id FROM failed)) A
278 LEFT JOIN vuln B USING (image_id);
279

280 ---
281 #images with no vulnerabilities
282

283 #number of image with no vulns for each image type
284 SELECT i_type, COUNT(*)
285 FROM image_info
286 WHERE image_id NOT IN (SELECT image_id FROM vuln) AND image_id NOT IN (SELECT image_id

FROM failed)↪→

287 GROUP BY i_type;
288

289 #stats about images without vulnerabilities
290 SELECT
291 #number of images
292 (SELECT COUNT(*)
293 FROM image_info
294 WHERE image_id NOT IN (SELECT image_id FROM vuln) AND image_id NOT IN (SELECT

image_id FROM failed)) AS num_of_images,↪→

295 #average pulls
296 (SELECT AVG(pulls)
297 FROM image_info
298 WHERE image_id NOT IN (SELECT image_id FROM vuln) AND image_id NOT IN (SELECT

image_id FROM failed) AND NOT pulls='') AS avg_of_pulls,↪→

299 #average stars
300 (SELECT AVG(stars)
301 FROM image_info
302 WHERE image_id NOT IN (SELECT image_id FROM vuln) AND image_id NOT IN (SELECT

image_id FROM failed) AND NOT stars='') AS avg_of_stars,↪→

303 #average days since last update
304 (SELECT AVG(days_since)
305 FROM(
306 SELECT AVG(IF(NOT last_updated='',DATEDIFF('2020-02-25', last_updated),Null))

AS days_since↪→

307 FROM image_info
308 WHERE image_id NOT IN (SELECT image_id FROM vuln) AND image_id NOT IN (SELECT

image_id FROM failed) AND NOT last_updated=''↪→

309 GROUP BY image
310 ORDER BY days_since DESC) AS A) AS avg_of_days_since;
311

312 #stats about images with vulnerabilities
313 SELECT
314 #number of images
315 (SELECT COUNT(*)
316 FROM
317 (SELECT DISTINCT image_id, pulls
318 FROM vuln LEFT JOIN image_info USING(image_id)) AS A) AS num_of_images,

118 G. SQL FOR DATA ANALYSIS

319 #average pulls
320 (SELECT AVG(pulls)
321 FROM
322 (SELECT DISTINCT image_id, pulls
323 FROM vuln LEFT JOIN image_info USING(image_id) WHERE NOT pulls='') AS A) AS

avg_of_pulls,↪→

324 #average stars
325 (SELECT AVG(stars)
326 FROM
327 (SELECT DISTINCT image_id, stars
328 FROM vuln LEFT JOIN image_info USING(image_id) WHERE NOT stars='') AS A) AS

avg_of_stars,↪→

329 #average days since last update
330 (SELECT AVG(days_since)
331 FROM
332 (SELECT
333 DISTINCT image_id,
334 AVG(IF(NOT last_updated='',DATEDIFF('2020-02-25', last_updated),Null)) AS

days_since↪→

335 FROM vuln LEFT JOIN image_info USING(image_id) WHERE NOT last_updated=''
336 GROUP BY image_id
337 ORDER BY days_since DESC) AS A) AS avg_of_days_since;
338

339 #number of images that only contain vulnerabilities that are negiligible and unknown
340 SELECT COUNT(DISTINCT image_id)
341 FROM
342 (SELECT DISTINCT image_id, image, severity
343 FROM vuln
344 WHERE image_id NOT IN
345 (SELECT image_id
346 FROM vuln
347 WHERE severity IN ('critical', 'high', 'medium', 'low'))) AS A;
348

349 ---
350 #cve trend
351

352 #number of unique vulns grouped by year
353 SELECT
354 DISTINCT IF(INSTR(vuln_name,'cve'),SUBSTR(vuln_name, 5, 4),

SUBSTR(vuln_name,6,4)) AS year,↪→

355 COUNT(*) AS total_count,
356 COUNT(IF(i_type='verified', vuln_name, Null)) AS verified_count,
357 COUNT(IF(i_type='certified', vuln_name, Null)) AS certified_count,
358 COUNT(IF(i_type='official', vuln_name, Null)) AS official_count,
359 COUNT(IF(i_type='community', vuln_name, Null)) AS community_count
360 FROM (SELECT DISTINCT vuln_name, i_type FROM vuln A LEFT JOIN image_info B

USING(image_id)) AS A↪→

361 GROUP BY year
362 ORDER BY year;
363

364 ---
365 #days since last update

119

366

367 #number of images that have not been updated for 400, 200 or less than 14 days, and
percentage↪→

368 SELECT
369 i_type,
370 COUNT(IF(A.days_since>400, image, Null)) AS more_than_400,
371 COUNT(IF(A.days_since>200, image, Null)) AS more_than_200,
372 COUNT(IF(A.days_since<14, image, Null)) AS less_than_14,
373 COUNT(IF(NOT days_since IS Null, image, Null)) AS total,
374 (COUNT(IF(A.days_since>400, image, Null))/COUNT(IF(NOT days_since IS Null, image,

Null)))*100 AS more_than_400_percent,↪→

375 (COUNT(IF(A.days_since>200, image, Null))/COUNT(IF(NOT days_since IS Null, image,
Null)))*100 AS more_than_200_percent,↪→

376 (COUNT(IF(A.days_since<14, image, Null))/COUNT(IF(NOT days_since IS Null, image,
Null)))*100 AS less_than_14_percent↪→

377 FROM(
378 SELECT
379 A.image,
380 MIN(i_type) AS i_type,
381 AVG(IF(NOT last_updated='',DATEDIFF('2020-02-25', last_updated),Null)) AS

days_since↪→

382 FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id FROM
failed)) AS A↪→

383 LEFT JOIN vuln B USING (image_id)
384 GROUP BY A.image
385 ORDER BY days_since DESC) AS A
386 GROUP BY i_type;
387

388 #image type and last update for each image
389 SELECT
390 DISTINCT image_id,
391 i_type, SUBSTR(last_updated,1,10) AS last_update
392 FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id FROM failed)) AS

A↪→

393 LEFT JOIN vuln B USING (image_id)
394 ORDER BY last_update;
395 #the substring function extracts only the date on the format "yyyy-mm-dd"
396

397 ---
398 #correlation
399

400 ##Spearman for vulns and pulls
401 SET @n_x := 0;
402 SET @n_y := 0;
403 WITH
404 cte1 AS
405 (SELECT
406 @n_x := @n_x +1 AS n_x,
407 image_id,
408 RANK() OVER(ORDER BY vuln_count) AS vuln_count_rank,
409 COUNT(vuln_count) OVER (PARTITION BY vuln_count) AS vuln_count_count
410 FROM

120 G. SQL FOR DATA ANALYSIS

411 (SELECT
412 AVG(A.image_id) AS image_id,
413 COUNT(vuln_name) AS vuln_count,
414 AVG(IF(NOT pulls='',pulls,Null)) AS pulls
415 FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id FROM

failed)) AS A↪→

416 LEFT JOIN vuln B USING (image_id)
417 GROUP BY A.image_id) AS C WHERE NOT C.pulls IS Null),
418 cte2 AS
419 (SELECT
420 @n_y := @n_y +1 AS n_y,
421 image_id,
422 RANK() OVER(ORDER BY pulls) AS pulls_rank,
423 COUNT(pulls) OVER (PARTITION BY pulls) AS pulls_count
424 FROM
425 (SELECT
426 AVG(A.image_id) AS image_id,
427 COUNT(vuln_name) AS vuln_count,
428 AVG(IF(NOT pulls='',pulls,Null)) AS pulls
429 FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id FROM

failed)) AS A↪→

430 LEFT JOIN vuln B USING (image_id)
431 GROUP BY A.image_id) AS C WHERE NOT C.pulls IS Null),
432 cte3 AS
433 (SELECT
434 SUM(n_x) OVER (PARTITION BY vuln_count_rank) / AVG(vuln_count_count) OVER

(PARTITION BY vuln_count_rank) AS ranked_vuln_count,↪→

435 SUM(n_y) OVER (PARTITION BY pulls_rank) / AVG(pulls_count) OVER (PARTITION BY
pulls_rank) AS ranked_pulls↪→

436 FROM cte1 LEFT JOIN cte2 USING(image_id)),
437 cte4 AS
438 (SELECT
439 @ax := AVG(ranked_vuln_count) AS avg_x,
440 @ay := AVG(ranked_pulls) AS avg_y,
441 @div := (STDDEV_SAMP(ranked_vuln_count) * STDDEV_SAMP(ranked_pulls)) AS stddev
442 FROM cte3)
443 SELECT
444 (SELECT Null FROM cte4) AS null_,
445 (SELECT SUM((ranked_vuln_count - @ax) * (ranked_pulls - @ay)) / ((COUNT(*)

-1) * @div)↪→

446 FROM cte3) AS correlation;
447

448 ##Spearman for vulns and stars
449 SET @n_x := 0;
450 SET @n_y := 0;
451 WITH
452 cte1 AS
453 (SELECT
454 @n_x := @n_x +1 AS n_x,
455 image_id,
456 RANK() OVER(ORDER BY vuln_count) AS vuln_count_rank,
457 COUNT(vuln_count) OVER (PARTITION BY vuln_count) AS vuln_count_count

121

458 FROM
459 (SELECT
460 AVG(A.image_id) AS image_id,
461 COUNT(vuln_name) AS vuln_count,
462 AVG(IF(NOT stars='',stars,Null)) AS stars
463 FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id FROM failed)) AS

A↪→

464 LEFT JOIN vuln B USING (image_id)
465 GROUP BY A.image_id) AS C WHERE NOT C.stars IS Null),
466 cte2 AS
467 (SELECT
468 @n_y := @n_y +1 AS n_y,
469 image_id,
470 RANK() OVER(ORDER BY stars) AS stars_rank,
471 COUNT(stars) OVER (PARTITION BY stars) AS stars_count
472 FROM
473 (SELECT
474 AVG(A.image_id) AS image_id,
475 COUNT(vuln_name) AS vuln_count,
476 AVG(IF(NOT stars='',stars,Null)) AS stars
477 FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id FROM failed)) AS

A↪→

478 LEFT JOIN vuln B USING (image_id)
479 GROUP BY A.image_id) AS C WHERE NOT C.stars IS Null),
480 cte3 AS
481 (SELECT
482 SUM(n_x) OVER (PARTITION BY vuln_count_rank) / AVG(vuln_count_count) OVER

(PARTITION BY vuln_count_rank) AS ranked_vuln_count,↪→

483 SUM(n_y) OVER (PARTITION BY stars_rank) / AVG(stars_count) OVER (PARTITION BY
stars_rank) AS ranked_stars↪→

484 FROM cte1 LEFT JOIN cte2 USING(image_id)),
485 cte4 AS
486 (SELECT
487 @ax := AVG(ranked_vuln_count) AS avg_x,
488 @ay := AVG(ranked_stars) AS avg_y,
489 @div := (STDDEV_SAMP(ranked_vuln_count) * STDDEV_SAMP(ranked_stars)) AS stddev
490 FROM cte3)
491 SELECT
492 (SELECT Null FROM cte4) AS null_,
493 (SELECT SUM((ranked_vuln_count - @ax) * (ranked_stars - @ay)) / ((COUNT(*)

-1) * @div)↪→

494 FROM cte3) AS correlation;
495

496 ##Spearman for vulns and days since last update
497 SET @n_x := 0;
498 SET @n_y := 0;
499 WITH
500 cte1 AS
501 (SELECT
502 @n_x := @n_x +1 AS n_x,
503 image_id,
504 RANK() OVER(ORDER BY vuln_count) AS vuln_count_rank,

122 G. SQL FOR DATA ANALYSIS

505 COUNT(vuln_count) OVER (PARTITION BY vuln_count) AS vuln_count_count
506 FROM
507 (SELECT
508 AVG(A.image_id) AS image_id,
509 COUNT(vuln_name) AS vuln_count,
510 AVG(IF(NOT last_updated='',DATEDIFF('2020-02-25', last_updated),Null)) AS

days_since↪→

511 FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id FROM failed)) AS
A↪→

512 LEFT JOIN vuln B USING (image_id)
513 GROUP BY A.image_id) AS C WHERE NOT C.days_since IS Null),
514 cte2 AS
515 (SELECT
516 @n_y := @n_y +1 AS n_y,
517 image_id,
518 RANK() OVER(ORDER BY days_since) AS days_since_rank,
519 COUNT(days_since) OVER (PARTITION BY days_since) AS days_since_count
520 FROM
521 (SELECT
522 AVG(A.image_id) AS image_id,
523 COUNT(vuln_name) AS vuln_count,
524 AVG(IF(NOT last_updated='',DATEDIFF('2020-02-25', last_updated),Null)) AS

days_since↪→

525 FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id FROM failed)) AS
A↪→

526 LEFT JOIN vuln B USING (image_id)
527 GROUP BY A.image_id) AS C WHERE NOT C.days_since IS Null),
528 cte3 AS
529 (SELECT
530 SUM(n_x) OVER (PARTITION BY vuln_count_rank) / AVG(vuln_count_count) OVER

(PARTITION BY vuln_count_rank) AS ranked_vuln_count,↪→

531 SUM(n_y) OVER (PARTITION BY days_since_rank) / AVG(days_since_count) OVER
(PARTITION BY days_since_rank) AS ranked_days_since↪→

532 FROM cte1 LEFT JOIN cte2 USING(image_id)),
533 cte4 AS
534 (SELECT
535 @ax := AVG(ranked_vuln_count) AS avg_x,
536 @ay := AVG(ranked_days_since) AS avg_y,
537 @div := (STDDEV_SAMP(ranked_vuln_count) * STDDEV_SAMP(ranked_days_since)) AS

stddev↪→

538 FROM cte3)
539 SELECT
540 (SELECT Null FROM cte4) AS null_,
541 (SELECT SUM((ranked_vuln_count - @ax) * (ranked_days_since - @ay)) /

((COUNT(*) -1) * @div)↪→

542 FROM cte3) AS correlation;
543

544 ---
545 #the most represented critical vulns
546 SELECT
547 vuln_name,
548 SUM(severity='Critical') AS critical_count

123

549 FROM vuln
550 GROUP BY vuln_name
551 ORDER BY critical_count DESC;
552

553 ---
554 #vulnerabilities in packages
555

556 #the most vulnerable packages
557 SELECT
558 package,
559 SUM(severity='Critical') AS critical_count,
560 (SELECT COUNT(DISTINCT image_id)) AS number_of_images
561 FROM vuln
562 GROUP BY package
563 ORDER BY critical_count DESC;
564

565 #vulnerabilities in popular packages
566 SELECT
567 package,
568 SUM(severity='Critical') AS critical_count,
569 SUM(severity='High') AS high_count,
570 SUM(severity='Medium') AS medium_count,
571 SUM(severity='Low') AS low_count,
572 SUM(severity='Negligible') AS negligible_count,
573 SUM(severity='Unknown') AS unknown_count,
574 (SELECT COUNT(DISTINCT image)) AS number_of_images
575 FROM vuln
576 GROUP BY package
577 ORDER BY number_of_images DESC;
578

579 ---
580 #miscellaneous queries
581

582 #used to create a file with image, number of vulns, pulls, stars and days since last
update↪→

583 SELECT
584 A.image,
585 COUNT(vuln_name) AS vuln_count,
586 AVG(IF(NOT pulls='',pulls,Null)) AS pulls,
587 AVG(IF(NOT stars='',stars,Null)) AS stars,
588 AVG(IF(NOT last_updated='',DATEDIFF('2020-02-25', last_updated),Null)) AS

days_since↪→

589 FROM (SELECT * FROM image_info WHERE image_id NOT IN (SELECT image_id FROM failed)) AS
A↪→

590 LEFT JOIN vuln B USING (image_id)
591 GROUP BY A.image;

AppendixHConference paper draft

125

Vulnerability Analysis of 2500 Docker Hub Images

Katrine Wist
Dep. of Inf. Sec. and Comm. Techn.

Norwegian University of Science
and Technology (NTNU), Norway

katrinew0702@gmail.com

Malene Helsem
Dep. of Inf. Sec. and Comm. Techn.

Norwegian University of Science
and Technology (NTNU), Norway

malenehlsm@gmail.com

Danilo Gligoroski
Dep. of Inf. Sec. and Comm. Techn.

Norwegian University of Science
and Technology (NTNU), Norway

danilog@ntnu.no

Abstract—The use of container technology has skyrocketed
during the last few years, with Docker as the leading
container platform. Docker’s online repository for publicly
available container images, called Docker Hub, hosts over
3.5 million images at the time of writing, making it the
world’s largest community of container images. We perform
an extensive vulnerability analysis of 2500 Docker images.
It is of particular interest to perform this type of analysis
because the vulnerability landscape is a rapidly changing
category, the vulnerability scanners are constantly developed
and updated, new vulnerabilities are discovered, and the
volume of images on Docker Hub is increasing every day.
Our main findings reveal that (1) the number of newly
introduced vulnerabilities on Docker Hub is rapidly increas-
ing; (2) certified images are the most vulnerable; (3) official
images are the least vulnerable; (4) there is no correlation
between the number of vulnerabilities and image features
(i.e., number of pulls, number of stars, and days since the
last update); (5) the most severe vulnerabilities originate
from two of the most popular scripting languages, JavaScript
and Python; and (6) Python 2.x packages and jackson-
databind packages contain the highest number of severe
vulnerabilities. We perceive our study as the most extensive
vulnerability analysis published in the open literature in the
last couple of years.

Index Terms—Container technology, Docker, Virtual Ma-
chines, Vulnerabilities

1. Introduction

Container technology has been known for a long
time in Linux systems through Linux Containers (LXC),
but it was not commonly used until a decade ago. The
introduction of Docker in [1] made the popularity of
containerization rise exponentially. Container technology
has revolutionized how software is developed and is seen
as a paradigm shift. More concretely, containerization
is considered as a beneficial technique for Continuous
Integration/Continuous Delivery (CI/CD) pipelines; it is
providing an effective way of organizing microservices; it
is making it easy to move an application between different
environments; and in general, it is simplifying the whole
system development life cycle.

Software containers got its name from the shipping
industry since the concepts are fundamentally the same. A
software container is code wrapped up with all its depen-
dencies so that the code can run reliably and seamlessly in

any computer environment isolated from other processes.
Hence, containers are convenient, lightweight, and fast
technology to achieve isolation, portability, and scalability.

Container technology is replacing virtual machines
continuously, and the trend is that more companies are
choosing to containerize their applications. Gartner pre-
dicts that more than 70% of global companies will have
more than two containerized applications in production by
2023. This is an increase from less than 20% in 2019.1
Docker provides a popular registry service for the shar-
ing of Docker images, called Docker Hub.2 It currently
hosts over 3.5 million container images, and the number
keeps growing. Images could be uploaded and maintained
by anyone, which creates an innovative environment for
anyone to contribute and participate. However, on the
downside, this makes it hard for Docker to ensure that
packages and applications are up to date to avoid outdated
and vulnerable software.

When looking at the security of Docker, two aspects
need to be considered: the security of the Docker software
at the host, and the security of the Docker containers.
Docker Inc. claims that “Docker containers are, by de-
fault, quite secure; especially if you run your processes as
non-privileged users inside the container.” [2]. However,
it is a simple fact that Docker (the Docker daemon and
container processes) runs with root privileges by default,
which exposes a huge attack surface [3]. A single vul-
nerable container is enough for an adversary to achieve
privilege escalation. Hence, the security of the whole
Docker ecosystem is highly related to the vulnerability
landscape in Docker images.

Related work. One of the first to explore the vulner-
ability landscape of Docker Hub was BanyanOps [4].
In 2015, they published a technical report revealing that
36% of official images on Docker Hub contained high
priority vulnerabilities [4]. Further, they discovered that
this number increases to 40% when community images
(or general images as they call it in the report) are an-
alyzed. BanyanOps built their own vulnerability scanner
based on Common Vulnerabilities and Exposures (CVE)-
scores, and analyzed all official images (≈75 repositories
with ≈960 unique images) and some randomly chosen
community images. However, at that time, Docker Hub
consisted of just ≈95,000 images.

1. Gartner: 3 Critical Mistakes That I&O Leaders Must Avoid With
Containers

2. Docker Hub webpage: https://hub.docker.com/

In 2017, Shu et al. conducted a new vulnerability
analysis of Docker Hub images [5]. With the aim of re-
vealing the Docker Hub vulnerability landscape, they cre-
ated their own analysis framework called DIVA (Docker
image vulnerability analysis). The DIVA framework dis-
covers, downloads, and analyses official and community
images. It is based on the Clair scanner and uses random
search strings to discover images on Docker Hub. The
analysis revealed that, on average, an image (official and
community) contains more than 180 vulnerabilities. They
also found that many images had not been updated for
hundreds of days, which is problematic from a security
point of view. Further, it was observed that vulnerabilities
propagate from parent to child images.

To our knowledge, the most recent vulnerability anal-
ysis of Docker Hub images was performed during spring
2019 by Socchi and Luu [6]. They investigated whether
the security measures introduced by Docker Inc. (more
precisely, the introduction of verified and certified image
types) improved the security of Docker Hub. In addition,
they inspected the distribution of vulnerabilities across
repository types and whether vulnerabilities still are inher-
ited from parent to child image. They implemented their
own analyzing software using the Clair scanner, and used
the results from Shu et al. [5] from 2017 as a comparison.
The data set they successfully analyzed consisted of 757
images in total. Of these, 128 were official, 500 were
community, 98 were verified, and 31 were certified. They
only analyzed the most recent images in each repository
and skipped all Microsoft repositories. Their conclusion
was that the security measures introduced by Docker Inc.
do not improve the overall Docker Hub security. They
stated that the number of inherited vulnerabilities had
dropped since the analysis of Shu et al. However, they
also found that the average number of new vulnerabili-
ties in child images had increased significantly. Further,
they found that the majority of official, community, and
certified repositories contain up to 75 vulnerabilities and
that the majority of verified images contain up to 180
vulnerabilities.

Our contribution. This is an extended summary of our
longer and much more detailed work [7]. We scrutinized
the vulnerability landscape in Docker Hub images at the
beginning of 2020 within the following framework:
• Images on Docker Hub belong in one of the following
four types: "official", "verified", "certified", or "commu-
nity";
• We used a quantitative mapping of the Common Vulner-
ability Scoring System (CVSS) [8] (which is a numerical
score indicating the severity of the vulnerability in a scale
from 0.0 to 10.0) into five qualitative severity rating levels:
"critical", "high", "medium", "low", or "none" plus one
additional level "unknown".

For performing the analysis of a significant number
of images, we used an open-source vulnerability scanner
tool and developed our own scripts and tools. All our
developed scripts and tools are available from [7].

Our findings can be summarized as follows: 1. The
median value (when omitting the negligible and unknown
vulnerabilities) is 26 vulnerabilities per image. 2. Most
of the vulnerabilities were found in the medium severity
category. 3. Around 17.8% (430 images) do not contain

Image type 2015 [4] 2017 [5] 2019 [6] 2020
vuln avg vuln avg vuln avg vuln avg

Official 36% - 80% 75 - 170 46% 70
Community 40% - 80% 180 - 150 68% 150
Verified - - - - - 150 57% 90
Certified - - - - - 30 82% 90

TABLE 1: A summary comparison table of results re-
ported in 2015 [4], in 2017 [5] in 2019 [6] and in our work
(2020). The sub-columns "vuln" contain the percentage
of images with at least one high rated vulnerability and
the "avg" sub-columns contain the average number of
vulnerabilities found in each image type.

any vulnerabilities, and if we are considering negligi-
ble and unknown vulnerabilities as no vulnerability, the
number increase to as many as 21.6% (523 images). 4.
As intuitively expected, when considering the average,
community images are the most exposed. We found that 8
out of the top 10 most vulnerable images are community
images. 5. However, to our surprise, the certified images
are the most vulnerable when considering the median
value. They had the most high rated vulnerabilities as
well as the most vulnerabilities rated as low. As many as
82% of certified images contain at least either one high or
critical vulnerability. 6. Official images come out as the
most secure image type. Around 45.9% of them contain
at least one critical or high rated vulnerability. 7. The
median value of the number of critical vulnerabilities in
images is almost identical for all four image types. 8.
Verified and official images are the most updated, and
community and certified images are the least updated.
Approximately 30% of images have not been updated
for the last 400 days. 9. There is no correlation between
the number of vulnerabilities and the evaluated image
features (i.e., the number of pulls, the number of stars,
and the last update time). However, the images with
many vulnerabilities generally have few pulls and stars.
10. Vulnerabilities in the Lodash library and vulnera-
bilities in Python packages are the most frequent and
most severe. The top five most severe vulnerabilities are
coming from two of the most popular scripting languages,
JavaScript and Python. 11. Vulnerabilities related to ex-
ecution of code and overflow are the most frequently
found critical vulnerabilities. 12. The most vulnerable
package is the jackson-databind-2.4.0 package,
with overwhelming 710 critical vulnerabilities, followed
by Python-2.7.5 with 520 critical vulnerabilities.

Last but not least, when put in comparison with the
three previous similar studies [4]–[6], our results are sum-
marized in Table 1. Note that some of the cells are empty
due to differences in methodologies and types of images
when the studies were performed.

2. Preliminaries
Virtualization is the technique of creating a virtual

abstraction of some resources to make multiple instances
run isolated from each other on the same hardware [9].
There are different approaches to achieve virtualization.
One approach is using Virtual Machines (VMs). A VM is
a virtualization of the hardware at the host. Hence, each
VM has its own kernel, and in order to manage the dif-
ferent VMs, a software called hypervisor is required. The

Repository type Quantity
Official 160
Verified 250
Certified 51
Community 3,064,454
Total 3,064,915

TABLE 2: Repository type distribution on Docker Hub
(February 3rd, 2020

hypervisor emulates the Central Processing Unit (CPU),
storage, and Random-Access Memory (RAM), among
others, for each virtual machine. This allows multiple
virtual machines to run as separate machines on a single
physical machine.

In contrast to VMs, containers virtualize the Operat-
ing System (OS) level. Every container running on the
same machine shares the same underlying kernel, where
only bins, libraries, and other run time components are
executed exclusively for a single container. In short, a
container is a standardized unit of software that contains
all code and dependencies [10]. Thus, containers require
less memory and achieve a higher level of portability than
VMs. Container technology has simplified the software
development process as the code is portable, and hence
what is run in the development department will be the
same as what is run in the production department [11].

On the Docker Hub, image repositories are divided
into different categories. Repositories are either private
or public and could further be either official, community
or a verified repository. In addition, repositories could be
certified, which is a subsection of the verified category.
The official repositories are maintained and vetted by
Docker. Docker vets the verified ones that are developed
by third-party developers. Besides being verified, certified
images are also fulfilling some other requirements related
to quality, support, and best practices [12]. Community
images could be uploaded and maintained by anyone.
The distribution of the image repository types on Docker
Hub can be seen in Table 2. The community repository
category is by far the most dominant one and makes up
to ≈99% of all Docker Hub repositories.

2.1. Vulnerability databases and categorization
method

The severity of vulnerabilities depends on a variety of
different variables, and it is highly complex to compare
them due to the diversity of different technologies and
solutions. Already in 1997, the National Vulnerability
Database (NVD) started working on a database that would
contain publicly known software vulnerabilities to pro-
vide a means of understanding future trends and current
patterns [13]. The database can be useful in the field of
security management when deciding what software is safe
to use and for predicting whether or not software contains
vulnerabilities that have not yet been discovered.

Common Vulnerabilities and Exposures (CVE). Na-
tional Vulnerability Database (NVD) contains Common
Vulnerabilities and Exposures (CVE) entries and pro-
vides details about each vulnerability like vulnerability
overview, Common Vulnerability Scoring System (CVSS),

references, Common Platform Enumeration (CPE) and
Common Weakness Enumeration (CWE) [14].

CVE is widely used as a method for referencing
security vulnerabilities that are publicly known in released
software packages. At the time of writing, there were
130,094 entries in the CVE list.3 The CVE list was
created by MITRE Corporation4 in 1999, whose role is
to manage and maintain the list. They work as a neutral
and unbiased part in order to serve in the interest of
the public. Examples of vulnerabilities found in CVE are
frequent errors, faults, flaws, and loopholes that can be
exploited by a malicious user in order to get unauthorized
access to a system or server. The loopholes can also be
used as propagation channels for viruses and worms that
contain malicious software [15]. Over the years, CVE has
become a recognized building block for various vulnera-
bility analysis and security information exchange systems,
much because it is continuously maintained and updated,
and because the information is stored with accurate enu-
meration and orderly naming.

Figure 1: Common Vulnerability Scoring System structure
[8]

Common Vulnerability Scoring System (CVSS). The
Common Vulnerability Scoring System (CVSS) score is a
numerical score indicating the severity of the vulnerability
on a scale from zero to 10, based on a variety of metrics.
The metrics are divided into three metric groups: Base
Metric Group, Temporal Metric Group, and Environmen-
tal Metric group. A Base Score is calculated by the metrics
in the Base Metric Group, and is independent of the user
environment and does not change over time. The Temporal
Metrics take in the base score and adjusts it according to
factors that do change over time, such as the availability of
exploit code [8]. Environmental Metrics adjust the score
yet again, based on the type of computing environment.
This allows organizations to adjust the score related to
their IT assets, taking into account existing mitigations
and security measures that are already in place in the
organization.

In our analysis, it would not make sense to take into
account the Temporal or Environmental Metrics as we
wanted to discuss the vulnerability landscape indepen-
dently of the exact time and environment. Therefore, only

3. The number of entries in the CVE list was retrieved 28. Jan 2020
from the official website: https://cve.mitre.org

4. MITRE Corporation is a non-profit US organization with the vision
to resolve problems for a safer world: https://www.mitre.org

Rating CVSS Score
None 0.0
Low 0.1 - 3.9
Medium 4.0 - 6.9
High 7.0 - 8.9
Critical 9.0 - 10.0

TABLE 3: CVSS Severity scores

the Base Metric group will be described in more detail.
It is composed of two sets of metrics: the Exploitability
metrics and the Impact metrics, as can be seen in Figure
1 [8]. The first set takes into account how the vulnerable
component can be exploited and includes attack vector
and complexity, what privileges are required to perform
the attack, and whether or no user interaction is required.
The latter set reflects on the consequence of a successful
exploit and what impact it has on the confidentiality,
integrity, and availability of the system. The last metric is
scope, which considers if the vulnerability can propagate
outside the current security scope.

When the Base Score of a vulnerability is calculated,
the eight different metrics from Figure 1 are being con-
sidered. Each metric is assigned one out of two to four
different values, which is used to generate a vector string.
The vector string is then used to calculate the Common
Vulnerability Scoring System (CVSS) score, which is a
numerical value between 0 and 10. In many cases, it is
more beneficial to have a textual value than a numerical
value. The CVSS score can be mapped to qualitative
ratings where the severity is categorized as either critical,
high, medium, low, or none, as can be seen in Table 3 [8].

3. Docker Hub vulnerability landscape

3.1. The distribution of vulnerabilities in each
severity category

To determine what the current vulnerability landscape
is like in Docker Hub, the number of vulnerabilities found
in each severity category is presented in figure 2. As it is
interesting to see how many vulnerabilities that are found
in total (figure 2a) and how many unique vulnerabilities
(figure 2b) there are, both these results are presented in
this section.

In figure 2a, the results are based on vulnerability
scanning of the complete data set, meaning that this
result is based on all found vulnerabilities. The same
vulnerability could potentially have multiple entries in the
result. This is because a particular vulnerability could be
found in multiple images and a single image could contain
the same vulnerability in multiple packages. In figure 2b,
only unique vulnerabilities are shown. However, some
vulnerabilities are present in several severity categories,
depending on which image it is found in. In cases like
this, all versions of the vulnerability is included, which
makes up a total of 14,031 vulnerabilities.

In figure 2a, the negligible and unknown categories
clearly stands out, with a total of 315,102 and 240,132 vul-
nerabilities, respectively. When considering unique vul-
nerabilities (figure 2b), the medium category is the most
dominant one with 5,554 unique vulnerabilities. When
examining the relation between figure 2a and 2b, one

can observe the ratio of vulnerabilities between severity
categories. It becomes clear that the negligible category
contains a few number of unique vulnerabilities repre-
sented in many Docker images. Whereas the medium
category has many unique vulnerabilities represented at
a lower ratio. The vulnerability ratio will be explained in
detail in the next paragraph.

Severity Number of
vulnerabilities (A)

Number of unique
vulnerabilities (B)

Ratio
(A/B)

Critical 10,378 206 50
High 44,058 1,313 34
Medium 171,832 5,554 31
Low 137,290 2,326 59
Negligible 315,102 959 329
Unknown 240,132 3,674 65
Total 918,792 14,031 66

TABLE 4: Vulnerability frequency in severity levels

Table 4 shows the total number of vulnerabilities, the
number of unique vulnerabilities, and the ratio, measured
as the total number of vulnerabilities divided by the
number of unique vulnerabilities. So, for each unique
vulnerability, there are a certain number of occurrences
of the specific vulnerability in the data set. For example,
for each unique vulnerability in the critical category, there
are 50 occurrences of this vulnerability in the data set on
average. For each unique negligible vulnerability, there
are as many as 329 occurrences on average. This is
significantly larger than the other values. Despite medium
having the highest number of unique vulnerabilities, it has
the lowest ratio.

3.2. Central tendency of the vulnerability distri-
bution

We have looked at the average and median values of
the number of vulnerabilities in images when disregarding
the vulnerabilities that are categorized as negligible and
unknown. Looking at Table 4 from the previous section,
one can see that negligible and unknown vulnerabilities
together make up 555,234 out of the 918,792 vulner-
abilities (around 60%). As vulnerabilities in these two
categories are considered to contribute with little threat
when investigating the current vulnerability landscape, it
gives a more accurate result to exclude these. Therefore,
we calculated the average and median number of vul-
nerabilities in images when disregarding negligible and
unknown vulnerabilities (counting them as zero). The
result was 151 for the average and 26 for the median.

To investigate the data when disregarding the negligi-
ble and unknown vulnerabilities further, we created Table
5 that shows statistical values of number of vulnerabilities
for each image type. The results show that community
images have the highest average and maximum values
(158, and 6,509, respectively). The maximum value for
community images is significantly larger than the average
and the median, which is the case for the other three
image types as well. The image type that is considered as
the least vulnerable is official. It has the lowest average
of 73 and the lowest median value of 9. Further, the
maximum value for official images is the second lowest.
The lowest maximum value belongs to certified, and is
only 428. Although certified has the lowest maximum

(a) Distribution of all 918,792 vulnerabilities (b) Distribution of 14,032 unique vulnerabilities

Figure 2: Vulnerability distribution in severity levels

Image type

Number
of

analyzed
images

Number
of

vulnera-
bilities

Average Median Max

Verified 60 6,073 101.2 13 1,128
Certified 22 1,987 90.3 37 428
Official 157 11,489 73.2 9 1,615
Community 2,173 344,009 158.3 28 6,509

TABLE 5: Statistical values for vulnerabilities per image
type, disregarding negligible and unknown vulnerabilities.

value, it has the highest median value. This indicates that
a larger portion of the images have many vulnerabilities.
As a final note, all four image types contain at least one
image with zero vulnerabilities.

3.3. Vulnerabilities in each image type

Since the median describes the central tendency better
than the average when the data is skewed here we will
work with the median values (given in Figure 3). Note
that only critical, high, medium and low vulnerabilities
are included in the figure. The negligible and unknown
vulnerabilities are not included here because they do not
usually pose as significant threats, and therefore do not
contribute with additional information when investigating
the current vulnerability landscape.

The results show that the median of critical vulnera-
bilities is almost the same for all four image types (4.0
and 3.0). The other severity categories are more varied
across the image types. The high severity category is the
most represented in certified images, while the medium
category is the most represented in the community images.
For verified, official and community images, the medium
severity has the highest median, while the certified images
has the most low vulnerabilities. Overall, it is the certified
images that are the most vulnerable.

Figure 3: Median values of vulnerabilities for each sever-
ity category and image type

3.4. Images that contain the most critical vulner-
abilities

Out of all 2,412 successfully analyzed images, this
section will present the most vulnerable ones. Table 6
displays the most vulnerable images based on the number
of critical vulnerabilities in each image. In cases where
the critical count is the same, the image with the highest
number of high rated vulnerabilities is considered as the
most vulnerable one. The Number of pulls column denotes
the total number of pulls (downloads) for each image.

Out of the top 10 most vulnerable images, there are
8 community images, 1 official image (silverpeas) and
1 verified image (microsoft-mmlspark-release). There are
big variations in the number of vulnerabilities in all
presented severity levels. The most vulnerable image,
pivotaldata/gpdb-pxf-dev, has ~250 more critical vulnera-
bilities than the second most vulnerable image. However,
the second most vulnerable image, cloudera/quickstart,
contains as many as 2,155 high rated vulnerabilities,
which is ~1500 more vulnerabilities than the one rated as
the most vulnerable image. It was chosen to focus on the
critical vulnerabilities in the ranking of the most vulnera-

Image Critical High Medium Low Number of pulls
1 pivotaldata/gpdb-pxf-dev 822 698 576 132 139,246,839
2 cloudera/quickstart 571 2,155 1,897 158 6,892,856
3 silverpeas 341 264 397 226 828,743
4 microsoft-mmlspark-release 184 428 264 252 1,509,541
5 anchorfree/hadoop-slave 168 636 797 107 5,375,424
6 saturnism/spring-boot-helloworld-ui 133 217 112 2 12,686,987
7 pantsel/konga 133 39 169 0 12,431,685
8 renaultdigital/runner-bigdata-int 127 335 691 103 4,787,745
9 springcloud/spring-pipeline-m2 125 293 2,027 1,357 8,359,973
10 raphacps/simpsons-maven-repo 122 271 399 2 36,136,733

TABLE 6: The most vulnerable images sorted by critical count

Figure 4: The percentage of images that contain at least
one high or critical rated vulnerability.

ble images. This is because it is the highest possible rank-
ing and hence the most severe vulnerabilities will be found
in this category. The other severity categories are included
in the table as extra information and to give a clear view
on the distribution of vulnerabilities. From the number of
pulls column one can observe that the most vulnerable
image is also the most downloaded one out of the top 10,
with as many as 139,246,839 pulls. This is approximately
100 million more pulls compared to the second most
pulled image on this list (the raphacps/simpsons-maven-
repo image). There is no immediate correlation that could
be observed between the number of pulls and the number
of vulnerabilities in these images.

3.5. Percentage of images with critical and high
vulnerabilities

It is enough with a single vulnerability for a system
to be compromised. Thus, we determine what percentage
of images that contain at least one high or critical rated
vulnerability for each image type, as shown in Figure 4.

Our results (Figure 4) reveal that the certified image
type, which is a subsection of the verified image type, is
the most vulnerable by the means of this measure. 81.8%
of all certified images contain at least one vulnerability
with high severity level and 72.7% of them contain at least
one critical vulnerability. Community images come out as
the second most vulnerable image type. 67.4% have high
vulnerabilities and 45.1% have critical vulnerabilities. The
third most vulnerable image type is verified, followed by
official.

When combining these results, to investigate what
amount of the image types that contain either at least

one critical or high rated vulnerability, the results are as
follows: 81.8% for certified images, 68.4% for community
images, 56.7% for verified images and 45.9% for official
images. This makes the official images the least vulnerable
image type. However, it should be emphasized that still
almost half of the official images contain critical or high
rated vulnerabilities as presented in this section.

3.6. The trend in CVE vulnerabilities

This section will focus on the trend of all reported
Common Vulnerabilities and Exposures (CVE) vulnera-
bilities each year compared to the number of unique CVE
vulnerabilities found throughout our analysis. Data gath-
ered from the CVE Details database [16] is used to display
the number of new reported Common Vulnerabilities and
Exposures (CVE) vulnerabilities each year.

In Figure 5a the reported Common Vulnerabilities and
Exposures (CVE) vulnerabilities each year is presented
together with the unique CVE vulnerabilities found in our
analysis from 2010 to 2019. The orange line shows how
the number of new discovered CVE vulnerabilities varies
by a few thousand vulnerabilities each year. However,
there is a significant increase in 2017. This increase is not
reflected in the data from our analysis, which is following
a steady increase in the years from 2014 to 2017. This
increase can be explained by the introduction of Docker
Hub in 2014, making new vulnerabilities more represented
in images. As a final observation, the number of new
reported vulnerabilities from MITRE between 2018 and
2019 is decreasing, while there is an increase in our
results.

Figure 5b shows the number of unique vulnerabilities
found in each image type (i.e. community, official, verified
and certified) in our analysis from 2010 to 2019. This
figure gives an insight in how the overall changes are
reflected in each image type. Verified and certified images
have had an increase in the number of unique Common
Vulnerabilities and Exposures (CVE) vulnerabilities each
year from 2015. Community and official images, however,
have had a significant decrease of unique vulnerabilities
from 2017 to 2018. It is noteworthy to point out that
the curves are affected by the time of introduction of the
different image types. Official images were introduced in
2014, whereas verified and certified images were intro-
duced in 2018.

(a) (b)

Figure 5: CVE trend from 2010 to 2019, (a) displays all reported CVEs and all found, unique CVEs in our analysis,
(b) displays the CVEs in the different image types from our analysis.

Image type More than
400 days

More than
200 days

Less than
14 days

Community 33.9% 47.0% 27.0%
Official 9.6% 14.7% 51.3%
Certified 18.2% 36.4% 13.6%
Verified 1.7% 5.0% 83.3%

TABLE 7: The time since last update for all image types
presented in percentage

3.7. Days since last update

There is a high variation in how often Docker Hub
images are updated. Intuitively, this affects the vulnera-
bility landscape of Docker Hub. Hence, we have gathered
data about when images were last updated, and calculated
the number of days since the images were last updated,
counting back from February 25th, 2020. The data set
consists of last updated data for all analyzed images,
except five.

A brief analysis of the numbers from our database
revealed that 31.4% of images have not been updated in
400 days or longer and 43.8% have not been updated in
200 days or longer. The percentage of images that have
been updated during the last 14 days are 29.8%. This
implies that if these numbers are representative for all
images on Docker Hub, a third of the images (31.4%) on
Docker Hub have not been updated in the last 400 days
or longer.

To go into more detail, Table 7 presents how often
images in each of the image types are updated. Com-
munity and certified images are the least updated image
categories, where 47.0% of community images and 36.4%
of certified images have not been updated for the last
200 days or more. The verified images are the most
frequently updated category, where 83.3% of images have
been updated during the last 14 days.

A handful of certified images are highly affecting the
percentages from Table 7, because the overall number
of certified images is small. Official images contain a
high portion of images that have been updated recently

(January 2020 to March 2020), and some more spread
values with images that have not been updated since 2016.
The verified images are the most updated image type,
where there is only one image with the last updated time
earlier than May 2019.

4. Correlation between image features and
vulnerabilities

We investigate whether or not the number of vulnera-
bilities in an image is affected by a specific image feature,
such as the number of times the image has been pulled, the
number of stars an image has been given, or the number
of days since the image was last updated. In order to find
out whether there is a correlation, we used Spearman’s rs
correlation coefficient [17]. Spearman’s correlation was
chosen because our data set contain skewed values and
are not normally distributed. When handling entries that
contained empty values, we opted for the approach of
complete case analysis, which means omitting incomplete
pairs. The alternative would be imputation of missing
values, which means to create an estimated value based
on the other data values. However, this approach was not
chosen because the values of our data set are independent
of each other.

Correlation between pulls and vulnerabilities. To check
the folklore wisdom about the following correlation: im-
ages with the most pulls generally have few vulnerabil-
ities, and images with the most vulnerabilities generally
have few pulls, we created a scatter plot given in Figure
6. However, after calculating the Spearman correlation
coefficient between the number of pulls and number of
vulnerabilities for the whole set of investigated images
we got rs = −0.1115. This is considered as no particular
correlation. To explain this, we refer to the meaning of
having a high negative correlation: the markers would
gather around a decreasing line (not necessarily linear),
indicating that images with more pulls have less number
of vulnerabilities. In the case of high positive correlation,
the opposite would apply i.e. the line would be increasing.

Figure 6: Number of pulls and number of vulnerabilities
for each image

Correlation between stars and vulnerabilities. The
correlation coefficient between the number of stars and
number of vulnerabilities is rs = −0.0335. Figure 7
shows the scatter plot when including number of stars
instead of number of pulls. The plot is similar to Figure
6, but the correlation is even weaker.

Figure 7: Number of stars and number of vulnerabilities
for each image

Correlation between time since last update and vulner-
abilities. This correlation is calculated by computing the
number of days since the last update counting from the
day we gathered the data (which was February 25, 2020).
The correlation was rs = 0.1075, which shows a positive
correlation as opposed to the other two. Figure 8 shows
the scatter plot, and although the markers are approaching
an increasing line a tiny bit, this is minimal. The value of
0.1075 is still not enough to state that there is a strong
correlation between the number of vulnerabilities and time
since the last update. The markers slightly approach an
increasing line, indicating a weak tendency that there
are more vulnerabilities in images that have not been
updated for a long time. Still, the distribution of markers
is relatively even along the x-axis with the most markers

Figure 8: Number of days since last update and number
of vulnerabilities for each image

in the lower part of the y-axis, supporting that there is no
correlation.

5. The most severe vulnerabilities

5.1. The most represented critical vulnerabilities

The most represented severe vulnerabilities are, intu-
itively, the ones having the highest impact on the vulner-
ability landscape. Table 8 presents the most represented
critical rated vulnerabilities in descending order. The re-
sults are obtained by counting the number of occurrences
for each vulnerability ID in the critical severity level. The
critical count column is the number of occurrences for a
specific vulnerability. Lastly, the type(s) column presents
the vulnerability type of each of the vulnerabilities. This
data is gathered from the CVE Details database [18].

Vulnerability
ID

Critical
count Type(s)

1 CVE-2019-10744 466 Improper Input
Validation

2 CVE-2017-1000158 464 Execute Code, Overflow

3 CVE-2019-9948 378 Bypass a restriction or
similar

4 CVE-2019-9636 374 Credentials Management
Errors

5 CVE-2018-16487 365 Security Features
6 CVE-2018-14718 354 Execute Code

7 CVE-2018-11307 337 Deserialization of
Untrusted Data

8 CVE-2018-7489 318 Execute Code, Bypass a
restriction or similar

9 CVE-2016-5636 302 Overflow
10 CVE-2017-15095 295 Execute Code

TABLE 8: The most represented vulnerabilities (based on
critical severity level).

5.2. Vulnerability characteristics

We elaborate the top five most represented vulnerabil-
ities presented in Table 8 regarding their characteristics

and common features5. The top five severe vulnerabili-
ties are coming from two most popular script languages:
JavaScript and Python. As a general observation, the exe-
cute code is the most common vulnerability type, followed
by overflow.

The most represented critical vulnerability is found
466 times throughout our scanning. It has vulnerability
ID CVE-2019-10744, and a base score of 9.8, which is
in the upper range of the critical category (to examine
how base scores are determined, see Section 2.1). The
vulnerability is related to the JavaScript library lodash,
which is commonly used as a utility function provider
in relation to functional programming. This particular
vulnerability is related to improper input validation and
makes the software vulnerable to prototype pollution. It
is affecting versions of lodash lower than 4.17.12 [19]. In
short, this means that it is possible for an adversary to
execute arbitrary code by modifying the properties of the
Object.prototype. This is possible as most JavaScript ob-
jects inherit the properties of the built in Object.prototype
object. The fifth vulnerability on the list, CVE-2018-
16487, is also related to lodash and the prototype pollution
vulnerability.

Further, the second, third and fourth most represented
critical vulnerabilities are related to Python vulnerabilities.
The second vulnerability with vulnerability ID, CVE-
2017-1000158, is related to versions of Python up to
2.7.13. The base score is rated 9.8, and the vulnerability
enables arbitrary code execution to happen through an
integer overflow leading to a heap-based buffer overflow
[20]. Overflow vulnerabilities could be of different types,
for instance heap overflow, stack overflow and integer
overflow. Heap overflow and stack overflow are related
to overflowing a buffer, whereas integer overflow could
lead to a buffer overflow. A buffer overflow is related
to overwriting a certain allocated buffer, causing adja-
cent memory locations to be overwritten. Any exploit
of these kinds of vulnerabilities are typically related to
the execution of arbitrary code, where the adversary is
taking advantage of the buffer overflow vulnerability to
run malicious code.

The third presented vulnerability with vulnerability ID
CVE-2019-9948 is affecting the Python module urllib in
Python version 2.x up to 2.7.16. It is rated with 9.1 as base
score. This vulnerability makes is easier to get around se-
curity mechanisms that blacklist the file:URIs syntax,
which in turn could give an adversary access to local files
such as the /etc/passwd file [21]. The fourth vulnerability
is found 374 times and has vulnerability ID CVE-2019-
9636. It is affecting both the second and the third version
of Python (versions 2.7.x up to 2.7.16, and 3.x up to 3.7.2).
This vulnerability is also related to the urllib module,
more precisely, incorrect handling of unicode encoding.
The result is that information could be sent to different
hosts than intended if it was parsed correctly [22]. It has
a base score of 9.8.

5. Information about all vulnerabilities could be found by visiting
https://nvd.nist.gov/vuln/detail/

Package Critical count Image count
1 jackson-databind-2.4.0 710 15
2 Python-2.7.5 520 207
3 jackson-databind-2.9.4 354 4
4 lodash-3.10.1 312 76
5 silverpeas-6.0.2 280 1
6 Python-2.7.13 248 141
7 Python-2.7.16 224 117
8 jackson-databind-2.6.7.1 215 13
9 jackson-databind-2.9.6 192 12

10 Python-2.7.12 185 107

TABLE 9: The most vulnerable packages (based on crit-
ical severity level).

6. Vulnerabilities in packages

6.1. The most vulnerable packages

Table 9 presents the packages that contain the most
critical vulnerabilities. The critical count column is ob-
tained by counting the total number of occurrences of
critical vulnerabilities in each package, while the image
count column is the number of images that uses each
package.

There is a clear relation between the most vulnerable
packages and the most represented vulnerabilities (Section
5), as expected. For example, vulnerabilities found in
Python version 2.x packages and in the Lodash package
are both presented in Section 5.

From Table 9, one can observe that the Python pack-
ages are by far the most used packages, and therefore they
expose the biggest impact regarding the threat landscape.
The lodash-3.10.1 package is found in 76 images. This
package contains the prototype pollution vulnerability af-
fecting JavaScript code, which also is the most represented
vulnerability in Table 8. Further, the jackson-databind
package is represented with four different versions in
Table 9 (entry 1, 3, 8 and 9). This package is used to
transform JSON objects to Java objects (Lists, Numbers,
Strings, Booleans, etc.), and vice versa. In total, these
packages are used by 44 images: a relatively low amount
compared to the usage of the Python packages. Finally,
the silverpeas-6.0.2 package contains 280 critical vulner-
abilities and is only used by a single image: the silverpeas
image on Docker Hub.6

6.2. Vulnerabilities in popular packages
When considering the packages that have the most

critical vulnerabilities (Table 9), some of the packages are
only used by a few images (like the silverpeas package).
Therefore, Table 10 is presented, as it is desirable to
see what the vulnerability distribution is like in the most
popular packages. The table shows the most used packages
and the number of vulnerabilities that are present in them,
considering all security levels. The image count column
contain the number of images that use this package.

As observable from Table 10, the most used packages
are not containing any critical, high, medium or low
vulnerabilities (except for one entry). However, they are
containing a vast number of negligible vulnerabilities,
which is of less significance from a security point of view,
as mentioned in previous sections.

6. https://hub.docker.com/_/silverpeas

Package Critical High Medium Low Negligible Unknown Image
count

1 tar-1.29b-1.1 0 0 0 0 482 0 241
2 coreutils-8.26-3 0 0 0 0 240 0 240
3 libpcre3-2:8.39-3 0 0 0 0 956 0 239
4 login-1:4.4-4.1 0 0 0 0 714 0 238
5 passwd-1:4.4-4.1 0 0 0 0 708 0 236
6 sensible-utils-0.0.9 0 0 103 0 0 111 214
7 libgcrypt20-1.7.6-2+deb9u3 0 0 0 0 211 0 211
8 libgssapi-krb5-2-1.15-1+deb9u1 0 0 0 0 621 0 207
9 libk5crypto3-1.15-1+deb9u1 0 0 0 0 621 0 207

10 libkrb5-3-1.15-1+deb9u1 0 0 0 0 621 0 207

TABLE 10: Vulnerabilities in the most used packages.

7. Conclusions
This paper summarizes the findings that we reported

in a longer and much more detailed work [7]. We studied
the vulnerability landscape in Docker Hub images by
analyzing 2500 Docker images of the four image repos-
itory categories: official, verified, certified images, and
community. We found that as many as 82% of certified
images contain at least one high or critical vulnerability,
and that they are the most vulnerable when considering
the median value. Official images came out as the most
secure image type with 45.9% of them containing at least
one critical or high rated vulnerability. Only 17.8% of the
images did not contain any vulnerabilities, and we found
that the community images are the most exposed as 8
out of the top 10 most vulnerable images are community
images.

Concerning the technical specifics about the vulnera-
bilities, we found that the top five most severe vulnerabil-
ities are coming from two of the most popular scripting
languages, JavaScript and Python. Vulnerabilities in the
Lodash library and vulnerabilities in Python packages
are the most frequent and most severe. Furthermore, the
vulnerabilities related to execution of code and overflow
are the most frequently found critical vulnerabilities.

Our scripts and tools are available from [7].

References

[1] A. Avram, “Docker: Automated and consistent software deploy-
ments,” InfoQ. Retrieved, pp. 08–09, 2013.

[2] “Docker security,” https://docs.docker.com/engine/security/
security/, access date: 15. Apr 2020.

[3] T. Micro, “Why running a privileged container in docker is a bad
idea,” https://blog.trendmicro.com/trendlabs-security-intelligence/
why-running-a-privileged-container-in-docker-is-a-bad-idea/,
2019, access date: 15. Apr 2020.

[4] J. Gummaraju, T. Desikan, and Y. Turner, “Over 30% of official
images in docker hub contain high priority security vulnerabilities,”
May 2015, access date: 5. Mar 2020.

[5] R. Shu, X. Gu, and W. Enck, “A study of security vulnerabilities
on docker hub,” 2017, access date: 5. Mar 2019.

[6] E. Socchi and J. Luu, “A deep dive into docker
hub’s security landscape - a story of inheritance?”
https://www.duo.uio.no/bitstream/handle/10852/69632/
A-Deep-Dive-into-Docker-Hubs-Security-Landscape.pdf?
sequence=1&isAllowed=y, 2019, access date: 5. Mar 2019.

[7] K. Wist and M. Helsem, “An Extensive Analysis of the Current
Vulnerability Landscape in Docker Hub Images,” Master’s thesis,
Norwegian University of Science and Technology (NTNU), 2020.

[8] FIRST, “Common vulnerability scoring system version
3.1: Specification document,” https://www.first.org/cvss/
specification-document, 2019, access date: 3. Feb 2020.

[9] D. Barrett and G. Kipper, “Virtualization technique,”
https://www.sciencedirect.com/topics/computer-science/
virtualization-technique, 2010, access date: 17. Apr 2020.

[10] D. Inc., “What is a container?” https://www.docker.com/resources/
what-container, access date: 31. Jan 2020.

[11] C. Anderson, “Docker,” https://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=7093032, 2015, access date: 3. Feb 2020.

[12] J. Morgan, “Introducing the new docker hub,” https://www.docker.
com/blog/the-new-docker-hub/, 2018, access date: 3. Feb 2020.

[13] Z. Zhang, D. Caragea, and X. Ou, “An empirical study
on using the national vulnerability database to predict soft-
ware vulnerabilities,” https://link.springer.com/chapter/10.1007/
978-3-642-23088-2_15, 2011, access date: 27. Jan 2020.

[14] S. Na, T. Kim, and H. Kim, “A study on the classification of
common vulnerabilities and exposures using Naïve Bayes,” https:
//link.springer.com/chapter/10.1007/978-3-319-49106-6_65, 2017,
access date: 28. Jan 2020.

[15] Z. Chen, Y. Zhang, and Z. Chen, “A categorization framework for
common computer vulnerabilities and exposures,” https://academic.
oup.com/comjnl/article/53/5/551/415583, 2009, access date: 28.
Jan 2020.

[16] “Browse vulnerabilities by date,” https://www.cvedetails.com/
browse-by-date.php, 2019, access date: 21. Apr 2020.

[17] A. Lehman, JMP for basic univariate and multivariate statistics:
a step-by-step guide. SAS Institute, 2005.

[18] “Cve details,” https://www.cvedetails.com/, 2020, access date: 20.
Apr 2020.

[19] “Cve-2019-10744 detail,” https://nvd.nist.gov/vuln/detail/
CVE-2019-10744, 2019, access date: 27. Mar 2020.

[20] “Cve-2017-1000158 detail,” https://nvd.nist.gov/vuln/detail/
CVE-2017-1000158, 2019, access date: 27. Mar 2020.

[21] “Cve-2019-9948 detail,” https://nvd.nist.gov/vuln/detail/
CVE-2019-9948, 2019, access date: 27. Mar 2020.

[22] “Cve-2019-9636 detail,” https://nvd.nist.gov/vuln/detail/
CVE-2019-9636, 2019, access date: 27. Mar 2020.

Katrine W
ist and M

alene H
elsem

An Extensive Analysis of the Current Vulnerability Landscape in D
ocker H

ub Im
ages

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Katrine Wist
Malene Helsem

An Extensive Analysis of the
Current Vulnerability Landscape
in Docker Hub Images

Master’s thesis in Communication Technology

Supervisor: Danilo Gligoroski

June 2020

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Project motivation
	Research scope
	Research questions
	Contributions

	Thesis outline

	Background and related work
	Virtual machines and container technology
	Docker overview
	Docker daemon
	Docker engine
	Dockerfile
	Docker image
	Docker container
	Docker registries

	Vulnerability database and categorization method
	Common Vulnerabilities and Exposures (CVE)
	Common Vulnerability Scoring System (CVSS)

	Related work

	Methodology
	Research questions
	Research design
	Quantitative descriptive and correlational research
	Project phases

	Data set
	Tools and resources
	Selenium and Geckodriver
	Docker Registry HTTP API V1
	Docker Registry HTTP API V2
	Anchore Engine
	Matplotlib and Seaborn
	MySQL
	CSV file format
	Statistical concepts
	Machine specification

	Implementation and data acquisition
	Implemented scripts
	Web scraper
	Scripts for accessing the Docker Registry API's
	Automatic analyzer

	Data collection
	Import data into database
	Data analysis
	Visualization of results

	Results
	Data set
	Images on Docker Hub
	Image information and failed images
	Vulnerability information

	The vulnerability landscape of Docker Hub
	Distribution of vulnerabilities in each severity category
	Central tendency of the vulnerability distribution
	Vulnerabilities in each image type
	Density distribution
	Images that contain the most critical vulnerabilities
	Percentage of images with critical and high vulnerabilities
	Vulnerabilities in Microsoft images
	Images with no vulnerabilities
	The trend in CVE vulnerabilities
	Days since last update

	Correlation between image features and vulnerabilities
	The most severe vulnerabilities
	The most represented critical vulnerabilities
	Vulnerability characteristics

	Vulnerabilities in packages
	The most vulnerable packages
	Vulnerabilities in popular packages

	Discussion
	Interpretation of results in relation to research questions
	RQ1: How can vulnerabilities found in Docker images be systemized in order to investigate the current vulnerability landscape of Docker Hub?
	RQ2: How do image features and the number of vulnerabilities correlate in images?
	RQ3: Which types of vulnerabilities are the most severe?
	RQ4: Which packages contain the most severe vulnerabilities?

	Limitations and validity of this study
	The impact of false positives and false negatives
	The CVSS score
	Restraints of the data set
	Inconsistency in Docker Hub

	Comparison between our results and previous studies
	Future work

	Conclusion
	References
	Scripts prerequisites
	Web scraper
	API scripts
	Automate analysis script

	Script for web scraper
	Script for accessing the Docker Registry HTTP API V1
	Script for accessing the Docker Registry HTTP API V2
	Script for automate analysis
	SQL imports
	SQL for data analysis
	Conference paper draft

