
Self-Healing after Security
Incidents

June 2020

M
as

te
r's

 th
es

is

M
aster's thesis

Ingvild Løes Nilsson

2020
Ingvild Løes N

ilsson

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f I

nf
or

m
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Self-Healing after Security Incidents

Ingvild Løes Nilsson

Communication Technology
Submission date: June 2020
Supervisor: Danilo Gligoroski
Co-supervisor: Felix Leder

Norwegian University of Science and Technology
Department of Information Security and Communication
Technology

Self-Healing after Security Incidents

Ingvild Løes Nilsson

Submission date: June 2020
Responsible professor: Danilo Gligoroski, ITEM
Supervisor: Felix Leder, NortonLifeLock

Norwegian University of Science and Technology
Department of Telematics

Title: Self-Healing after Security Incidents
Student: Ingvild Løes Nilsson

Problem description:

Over the past years, both the frequency of cyberattacks, as well as the sophisti-
cation of the attackers, have increased. Every day, enterprises are struck by digital
espionage, data loss and system hijacking. With the growing threat landscape and
highly complex computer systems, the maintenance and administration of these
structures have become unmanageable for humans. As the threat landscape widens
with the development of new technology, it becomes alarmingly difficult to control all
risks associated with these new advancements. The consequences are demonstrated
through consistent, successful cyberattacks launched towards vulnerable systems.
Hence, the ability to identify the shortcomings of these systems is deficient. The
necessity for automated approaches discovering susceptibilities and weaknesses in
infected, complicated infrastructures is greater than ever.

Since IBM released its manifesto in 2001, claiming that automated software shall
be the resolution to the software complexity crisis, the interest in systems possessing
certain self-* properties have escalated. If the systems were able to monitor, optimize
and heal by themselves without human intervention, the benefits would be tremendous.
A self-healing system would be able to detect the error, bug or vulnerability which
allowed an intrusion to happen, as well as removing this susceptibility autonomously.
Even though the excitement towards autonomic computing is present, the research
area is fairly hard and new, and therefore limited.

Motivated by the increasing interest in the topic, the potential benefits of such
self-* systems and the scarce research within the field, this master thesis will explore
the status of today’s self-healing systems and examine self-healing techniques.

The main tasks of the thesis include:

– Explore literature related to self-healing systems, discuss the self-healing tech-
niques used in the previous work and what the shortcomings of such systems
are.

– Investigate how to create an autonomous self-healing system with the use of
Docker containers and vulnerability tools.

Responsible professor: Danilo Gligoroski, ITEM
Supervisor: Felix Leder, NortonLifeLock

Abstract

As services become increasingly digitalized, the attack surface is also
expanding for criminals operating digitally. Modern systems have reached
a level of complexity that is difficult to maintain and secure; today’s
solutions with anti-malware programs and perimeter security fail to keep
up with hackers’ attacks and methods. The need for aware machines that
can detect attacks themselves, and correct vulnerabilities in their systems
without human interaction emerges. Self-healing machines is perceived
as a viable option in order to handle the overwhelming complexity of
modern digital systems, as well as protecting against malicious attacks.

In this master thesis, the topic self-healing machines is explored
through a theoretical and a practical approach. The theoretical approach
includes a literature study, where existing literature in the field of research
is mapped and presented. In the practical approach, a self-healing script
is developed. Appropriate tools and platforms are selected, which include
a vulnerable network application, an intrusion detection system, and a
vulnerability scanner. In addition, five healing techniques are defined.
The results from the thesis indicate that the development of systems with
self-healing properties is severely complicated. The degree of self-healing
is at the expense of non-functional and functional requirements, such as
availability and functionality. The uniform healing mechanisms have a
greater healing range, but at the cost of other application requirements.
The more specified healing functions entailed greater complexity in devel-
opment, but retained better non-functional and functional requirements.
The results from the literature study show that the research topic is still
immature, with limited research.

Sammendrag

Ettersom tjenester blir stadig mer digitalisert, ekspanderer også angreps-
flaten til digitale forbrytere. Moderne systemer har nådd et nivå av
kompleksitet som er vanskelig å vedlikeholde og sikre; dagens løsninger
med antiskadevareprogrammer og perimetersikring klarer ikke holde tritt
med hackernes angrepsmetoder. Det har utartet seg et behov for bevisste
maskiner som selv kan detektere angrep og korrigere sårbarheter i sine sys-
temer uten menneskelig interaksjon. Selvhelbredende maskiner blir snart
en nødvendighet for å kunne håndtere den overveldende kompleksiteten
til moderne, digitale systemer, samt beskytte mot ondsinnede angrep.

I denne masteroppgaven blir temaet selvhelbredende maskiner un-
dersøkt gjennom en teoretisk og en praktisk tilnærming. Den teoretiske
tilnærmingen inkluderer en litteraturstudie, der eksisterende litteratur
innen forskningsfeltet blir kartlagt og presentert. I den praktiske til-
nærmingen blir et selvhelbredende skript utviklet. Passende verktøy og
plattformer blir valgt ut, hvilket inkluderer en sårbar nettapplikasjon,
et inntrengingsdeteksjonssystem og en sårbarhetsskanner, samt fem hel-
bredingsteknikker blir definert. Resultatene fra oppgaven indikerer at
utvikling av systemer med selvhelbredende egenskaper er svært kompli-
sert. Grad av selvhelbreding går på bekostning av ikke-funksjonelle og
funksjonelle krav, som eksempelvis tilgjengelighet og funksjonalitet. De
uniforme helbredingsmekanismene har en større helbredingsrekkevidde,
men på bekostning av andre krav til applikasjonen. De spesifiserte helbre-
dingsfunksjonene innebar større kompleksitet i utviklingen, men bevarte
til gjengjeld ikke-funksjonelle og funksjonelle krav bedre. Resultatene fra
litteraturstudien viser at forskningsemnet fremdeles er umodent, med
begrenset forskning.

Preface

This master thesis completes my five years study as a student of Com-
munication Technology at the Department of Information Security and
Communication Technology at the Norwegian University of Technol-
ogy and Science (NTNU). The thesis is written in collaboration with
NortonLifeLock.

I would like to thank my supervisors Danilo Gligoroski and Felix Leder
for their guidance. I would also like to thank Ina Rekk Bjørnestad for
proofreading my thesis, and for being my companion throughout these
years in Trondheim.

Trondheim, Thursday 4th June, 2020
Ingvild Løes Nilsson

Contents

List of Figures ix

List of Tables xv

1 Introduction 1
1.1 Motivation . 1
1.2 Specialization project . 3
1.3 Research questions . 3
1.4 Outline . 4

2 Background and Related work 5
2.1 Self-healing . 5

2.1.1 Definition and Classification 5
2.1.2 The concept of Self-healing 6
2.1.3 Related terminology . 7

2.2 Cybersecurity . 9
2.2.1 The basics of cyberattacks . 10
2.2.2 Principles for managing security 12
2.2.3 Common web vulnerabilities 12

2.3 PHP . 14
2.4 Docker Containers . 15

2.4.1 What is a Docker container? 15
2.4.2 Immutability . 17

2.5 Related work . 17
2.6 Literature review findings . 20

2.6.1 The research status of self-healing software systems 20
2.6.2 Classification of self-healing literature 21

3 Methodology 25
3.1 Literature review . 25

3.1.1 Selecting a review topic . 26
3.1.2 Searching the literature . 27

v

3.1.3 Gathering, reading and analysing the literature 28
3.1.4 Writing the review . 28
3.1.5 References . 28

3.2 Selection of tools and platforms . 28
3.2.1 Test server . 29
3.2.2 Vulnerability scanners . 29

3.3 Healing technique for web vulnerabilities 31
3.3.1 5 steps . 32
3.3.2 Evaluation criteria of healing techniques 33

3.4 Implementation and measurement of self-healing 36
3.4.1 Software testing . 36
3.4.2 Healing criteria . 37
3.4.3 Availability criteria . 37
3.4.4 Functional Completeness criteria 37

4 Experimental Setup 39
4.1 Selection of tools . 40

4.1.1 Testbed . 40
4.1.2 Scanners . 41
4.1.3 A summary for used tools . 43

4.2 Set up of tools during testing . 44
4.3 Overview of code . 45

4.3.1 Detecting and responding to breaches 45
4.3.2 Using PHPIDS and phpcs-security-audit scanner 47
4.3.3 Evaluating the self-healing techniques 50

5 Experiments and Results 55
5.1 Step 1 - Power off web server . 55
5.2 Step 2 - Remove susceptible PHP file 59
5.3 Step 3 - Remove susceptible line of code in PHP file 72
5.4 Step 4 - Add sanitization to input 85
5.5 Step 5 - Correct susceptible code causing vulnerability 105
5.6 Chapter summary . 118

6 Discussion 121
6.1 RQ1: Pre-existing self-healing techniques 121
6.2 RQ2: Patching and immunising vulnerabilities autonomously 121
6.3 RQ3: Correlation between self-healing techniques 122
6.4 Limitations . 123

6.4.1 Generalizability . 123
6.4.2 Evaluation execution and results 123
6.4.3 Vulnerability coverage and dependability on external tools . . 124

6.4.4 Proof of Concept . 124
6.5 Further work . 124

7 Conclusion 125

References 127

A Appendix 131
A.1 Self-healing script . 131
A.2 Example output from phpcs-security-audit 157

List of Figures

2.1 Five steps to ensure security, whereas self-healing takes part in the fifth
step. 7

2.2 Example scenario of who conducts cyberattacks, how it is performed and
what is attacked; a script kiddie performs an SQL-injection towards the
database which possesses the grades of school courses. 11

2.3 Loading the page with specially crafted user input containing JavaScript
in order to check whether the server contains an XSS vulnerability. . . . 13

2.4 If the web page is vulnerable to JavaScript injections, the illustrated
popup will appear when the page is run with the input from figure 2.3. 14

2.5 Illustration of Docker containers and virtual machines. 16
2.6 Key features used to categorize researched literature from the literature

review. 22

3.1 Illustration of characteristics and associated subcharacteristics from ISO/IEC
25010:2011. 34

4.1 Example of RIPS interface. 42
4.2 Example of SonarQube with SonarScanner interface. 43
4.3 Figure of self-healing script and its components. The IDS monitors the

server, and whenever events happen that trigger the IDS, the script is
notified. One of the self-healing procedures is chosen, and the vulnerability
scanner is potentially invoked. The result from the healing technique is
applied to the server. 46

4.4 Monitoring the IDS log for new attacks. 46
4.5 Command injection vulnerability example in DVWA. 47
4.6 Message displayed when an attack attempt has been detected. 47
4.7 Response to hacking attempt in the self-healing script. 47
4.8 Example output form phpcs-security-scanner in the self-healing script. . 48
4.9 Self-healing test in self-healing script. 50
4.10 Example of content in path_to_files.txt 51
4.11 Example of content in files containing HTTP response codes. 51
4.12 Expected output in functionality test of /vulnerabilities/sqli/. . . 52

ix

4.13 Expected output in functionality test of /vulnerabilities/fi/.
. 53

4.14 Expected output in functionality test of /vulnerabilities/fi/ when
choosing file1.php. 53

4.15 Expected output in functionality test of /vulnerabilities/exec/. . . 53

5.1 Command injection detected and step 1 is chosen as the self-healing
technique. 56

5.2 Self-healing initiated and availability test launched in step 1. 57
5.3 Availability test and self-healing test in step 1. 57
5.4 Result from self-healing test in step 1. 58
5.5 Results from running and testing self-healing technique step 1. 58
5.6 Command injection detected and step 2 is chosen as the self-healing

technique in experiment 1 step 2. 60
5.7 phpcs-security-audit scanning results and self-healing procedure of experi-

ment 1 step 2. 61
5.8 Availability test results in experiment 1 step 2. 61
5.9 Self-healing test in experiment 1 step 2. 62
5.10 Browser display after executing self-healing approach experiment 1 step 2. 62
5.11 Functionality test results in experiment 1 step 2. 63
5.12 Results from the self-healing approach in experiment 1 step 2. 63
5.13 File inclusion detected and step 2 is chosen as the self-healing technique

in experiment 2 step 2. 64
5.14 Browser with file inclusion attack string experiment 2 step 2. 64
5.15 Results from phpcs-security-audit, the self-healing procedure is performed

and the availability testing is initiated in experiment 2 step 2. 65
5.16 Results from availability test when healing file inclusion in experiment 2

step 2. 66
5.17 Results from self-healing test and functionality test when healing file

inclusion in experiment 2 step 2. 66
5.18 Web page presented in a browser after initiating self healing technique

experiment 2 step 2. 67
5.19 Results from testing in experiment 2 step 2. 67
5.20 SQL injection detected and step 2 is chosen as the self-healing technique

in experiment 3 step 2. 68
5.21 Browser with SQL injection attack string in experiment 3 step 2. 68
5.22 Results from phpcs-security-audit and the self-healing procedure is per-

formed in experiment 3 step 2. 69
5.23 Availability test results from SQL injection experiment after healing in

experiment 3 step 2. 70
5.24 Results from self-healing test when healing SQL injection in experiment 3

step 2. 70

5.25 Results from functionality test in experiment 3 step 2. 71
5.26 Results from testing in experiment 3 step 2. 71
5.27 Command injection detected and step 3 is chosen as the self-healing

technique in experiment 1 step 3. 74
5.28 phpcs-security-audit results when scanning the identified, attacked filepath

in experiment 1 step 3. 74
5.29 First example output for self-healing script when healing vulnerabilities

in experiment 1 in step 3. 75
5.30 Second example output for self-healing script when healing vulnerabilities

in experiment 1 in step 3. 75
5.31 Results from availability test in experiment 1 in step 3. 76
5.32 Self-healing test in experiment 1 in step 3. 77
5.33 Browser showing internal error experiment 1 in step 3.

. 77
5.34 Browser showing internal error for page high.php in experiment 1 in step

3. 77
5.35 Availability results before healing in experiment 1 step 3. 77
5.36 Availability result after healing in experiment 1 step 3. 78
5.37 Functionality results in experiment 1 step 3. 78
5.38 Results from experiment 1 step 3. 78
5.39 File inclusion attempt detected and step 3 is chosen as the self-healing

technique in experiment 1 step 3. 79
5.40 phpcs-security-audit results when scanning the identified, attacked filepath

in experiment 2 step 3. 79
5.41 File low.php healed in experiment 2 step 3. 80
5.42 File medium.php healed in experiment 2 step 3. 80
5.43 Results from availability test in experiment 2 step 3. 81
5.44 Availability results before healing in experiment 2 step 3. 81
5.45 Availability result after healing in experiment 2 step 3. 81
5.46 Self-healing test in experiment 2 step 3. 82
5.47 Testing if the file inclusion susceptibility is removed after healing in

experiment 2 in step 3. 82
5.48 Functionality test results for experiment 2 step 3. 83
5.49 Example of reachable page with distorted functionality in experiment 2

step 3. 83
5.50 Results after testing in experiment 2 step 3. 83
5.51 SQL injection detected and step 3 is chosen as the self-healing technique. 84
5.52 Results from experiment 3 step 3. 84
5.53 Example input of reflected XSS in experiment 1 step 4. 87
5.54 Reflected XSS detected and self-healing initiated in experiment 1 step 4. 87

5.55 phpcs-security-audit results for reflected XSS exploit in experiment 1 step
4. 88

5.56 Self-healing procedure of reflected XSS in experiment 1 step 4. 88
5.57 Browser result from relaunching exploit after healing in experiment 1 step

4. 90
5.58 Results from experiment 1 step 4. 90
5.59 SQL injection detected by self-healing script in experiment 2 step 4. . . 91
5.60 phpcs-security-audit results in experiment 2 step 4. 91
5.61 Self-healing low.php in experiment 2 step 4. 92
5.62 Example in browser after healing in experiment 2 step 4. 94
5.63 Functionality results in experiment 2 step 4. 94
5.64 Example in browser for functionality test after healing in experiment 2

step 4. 95
5.65 Results in experiment 2 step 4. 95
5.66 Self-healing script initiated by command injection attempt in experiment

3 step 4. 96
5.67 phpcs-security-audit results in experiment 3 step 4. 96
5.68 Example from healing procedure in step 3 step 4. 97
5.69 Launched command injection attack before healing in step 3 step 4. . . 98
5.70 Launched command injection attack after healing in step 3 step 4. . . . 98
5.71 Second command injection attack after healing in step 3 step 4. 99
5.72 Functionality test results in step 3 step 4. 99
5.73 Results from tests in step 3 step 4. 100
5.74 File inclusion attempt after healing in experiment 4 step 4. 101
5.75 Second file inclusion attack after healing in experiment 4 step 4. 101
5.76 Launching file inclusion attack in experiment 5 step 4. 102
5.77 Error in apache2 error log from file inclusion attempt in experiment 5

step 4. 103
5.78 Stored XSS functionality deviation in experiment 5 step 4. 103
5.79 SQL injection detected and healing technique 5 is selected in experiment

1 step 5. 106
5.80 phpcs-security-audit results in experiment 1 step 5. 106
5.81 Healing of all vulnerable files in experiment 1 step 5. 107
5.82 Browser output from SQL injection attack before healing in experiment 1

step 5. 109
5.83 Browser output from SQL injection attack after healing in experiment 1

step 5. 109
5.84 Functionality test results in experiment 1 step 5. 109
5.85 Results from experiment 1 step 5. 110
5.86 Reflected XSS detected by self-healing script in experiment 2 step 5. . . 110
5.87 Self-healing process in experiment 2 step 5. 111

5.88 Browser output from reflected XSS attack before healing in experiment 1
step 5. 112

5.89 Browser output from reflected XSS attack after healing in experiment 1
step 5. 112

5.90 Browser output from stored XSS attack before healing in experiment 1
step 5. 113

5.91 Browser output from stored XSS attack after healing in experiment 1 step
5. 113

5.92 Results from experiment 2 step 5. 113
5.93 Self-healing script initiated in experiment 3 step 5. 114
5.94 phpcs-security-audit results in experiment 3 step 5. 114
5.95 Self-healing process in experiment 3 step 5. 115
5.96 Ping fail when executing attack after healing in experiment 3 step 5. . . 117
5.97 Results from experiment 3 step 5. 117

List of Tables

2.1 Definitions of self-* properties. 8

2.2 Presentation and comparison of the main characteristics of the related
work. 21

3.1 Sources of publications and definitions. 27

3.2 Brief summary of relevant scanners. 30

4.1 Machine specifications, Ubuntu. 39

4.2 Machine specifications, macOS. 39

4.3 Evaluation matrix of testbeds. 44

4.4 Evaluation matrix of scanners. 44

5.1 Summary of results for step 1. The self-healing test achieved full score,
whereas the availability and functionality test performed poorly. 59

5.2 Summary of results for step 2. The first three rows give the results from
each experiments, including the average performance of each experiment
in the final column. The last row gives the average results from all
experiments, and the bottom right cell gives an idea of how well the
self-healing technique performed concerning the evaluation criteria. Each
experiment achieves similar results, where the only diversity is caused
by the availability results. Even though the functionality was not kept
(0 as the result) in either experiment, these results were expected and
necessary for the self-healing to be a success. However, it is preferable to
keep the functionality after healing. 72

xv

5.3 Summary of results for step 3. The first three rows give the results from
each experiments, including the average performance of each experiment
in the final column. The last row gives the average results from all
experiments, and the bottom right cell gives an idea of how well the self-
healing technique performed concerning the evaluation criteria. As this
table illustrates, each experiment has the same result for each performance
test. Even though the functionality was not kept (0 as the result) in either
experiment, these results were expected and necessary for the self-healing
to be a success. However, it is preferable to keep the functionality after
healing. 85

5.4 Table summarizing attacks to trigger scenario four of step four. 102
5.5 Summary of results for step 4. The first five rows give the results from each

experiments, including the average performance of each experiment in the
final column. The fifth experiment includes the result from the average
of each subexperiments. The last row gives the average results from all
experiments, and the bottom right cell gives an idea of how well the self-
healing technique performed concerning the evaluation criteria. The table
shows that there was some differences in performance. However, according
to the given evaluation criteria, the self-healing technique achieved the
best scores for experiment 1, 2 and 5. 104

5.6 Summary of results for step 5. The first three rows give the results from
each experiments, including the average performance of each experiment
in the final column. The last row gives the average results from all
experiments, and the bottom right cell gives an idea of how well the
self-healing technique performed concerning the evaluation criteria. The
table shows that healing technique 5 showed significant performance in
all the three experiments. 118

5.7 Summary of results for all self-healing techniques. The table includes the
average result from each healing technique in the rows. It clearly indicates
that, according to the set evaluation criteria, step 1 performs the poorest,
while step 5 has the best scores. 119

Chapter1Introduction

With more than 3 billion Internet users as of 2016 [MROO20], the world has never
been more digitized. Digital services have gained foothold in people’s everyday
lives, and have become essential for communication, transport, public services, and
more. These services are dependent on secure solutions, but as new technologies are
implemented, the threat horizon expands. Attackers grow more sophisticated, and
both end users and businesses are being targeted.

Monitoring, identifying and blocking malicious activities towards computer sys-
tems are becoming increasingly complicated, while maintaining a vulnerability free-
system is nearly impossible. Today’s computer systems are highly complex, which is
one of the causes of why traditional detection and prevention mechanisms are unable
to ensure secure digital infrastructure and platforms. Currently, cyberincidents often
require manual inspection, which is neither scalable nor sustainable. Having the
machines autonomously recover from cyberattacks by "self-healing," without the
need for human intervention would increase the overall efficiency and security of the
system.

1.1 Motivation

The approach to handling security incidents have gone through significant changes
over the years, and are reflected in the NIST Cybersecurity Framework1. It contains
five stages involved with preventing, detecting, and recovering from cyberattacks.
Whereas identification of risk and threat actors, and means of protecting information
systems, were the main research areas some decades ago, detection of anomalies and
events, as well as how to respond to unwanted cyber incidents, have become hot
research topics over the recent years. The final stage of the framework, which is to
recover from cyberattacks, has minimal research as of today in contrast to the prior
four stages. Automated self-recovery and self-healing are fields with tremendous

1https://www.nist.gov/cyberframework

1

2 1. INTRODUCTION

potential, and have the opportunity to make considerable changes to areas of incident
response.

Self-healing, and closely related terms like automated remediation, self-recovery,
self-repairing, fault-tolerance and rapid recovery, all aim to enable a system to, without
human interaction, remediate to a safe state autonomously after detecting malicious
activity. This is closely related to cells’ biological ability to repair themselves after
being exposed to damage automatically, and have inspired the same phenomenon in
computer science. Using the analogy of an ill patient, in order to restore a person
to a healthy state, options like amputation and surgery act as permanent solutions,
while sedatives and antidotes may be sufficient to keep the disease restrained.

As Ghosh et al. state in their survey of self-healing systems [GSRU07], increased
system complexity will in return make rectification of system faults and destructive
attacks more "difficult, labor-intensive, expensive, and error-prone". The idea of a self-
healing system being able to autonomously restore a system and repair vulnerabilities
would reduce these difficulties, since human interaction with the system is kept to
a minimum. A practical example would be if a web server had an SQL injection2

exploited, and the contents of the database were erased. Rather than having to
remediate the system and manually look for the vulnerability, the self-healing system
would perform these actions automatically as well as reconfiguration of input handling.
Despite the simpleness of this example, there is interest in investigating if such line
of thought can be applied to more intricate scenarios.

In 1984, the creation of the first packet inspection technology, named IDES,
occurred [Bru01] and was the beginning of a new security mechanism targeting
network traffic. Despite the fact that the development of intrusion detection systems
(IDSs) and intrusion prevention systems (IPSs) since then have greatly improved and
are essential components in security infrastructure, there is reason for concern to
whether they will provide satisfying results in today’s and the future’s virtual threat
landscape. Keromytis predicted in his paper published in 2007 [Ker07] that network-
based reactive protection mechanisms were likely to be inadequate in the future. He
anticipates so since firewalls tend to become congestion points due to the increasing
use of computation-intensive protocols like IPsec, the complexity of protocols makes
packet inspection more advanced, encryption of packets renders inspection useless,
and malware use cloaking techniques like polymorphism to bypass the inspection
technologies. It is therefore a demand for new, autonomous mechanisms to ensure
security for these systems, when both detection and prevention procedures are not
impenetrable.

2Injection of SQL statements which unknowingly run on the database. An attacker may make
modifications to the database like deletion or creation of rows, retrieve data from the database, etc.

1.2. SPECIALIZATION PROJECT 3

1.2 Specialization project

During the fall of 2019, approximately 12 weeks were spent preparing for this thesis
in a specialization project. Preparatory work such as researching the field of self-
healing, planning which tools and platforms to use, which methodology to follow and
performing preliminary experiments were conducted. The goal of the specialization
project is, in general, to prepare for the master thesis by narrowing down and
specifying the problem tasks. From the specialization project, we were able to decide
that web vulnerabilities in PHP would be the main problem area to focus on in
the master thesis, in addition to achieving a greater understanding of self-healing
systems. The research questions from the specialization project are given below:

RQ1 What are the potential benefits of using Docker containers in the goal of
achieving self-healing systems rather than using non-virtual systems?

RQ2 What kind of self-healing techniques already exist, what are the shortcomings
of these and how can one overcome these?

RQ3 Which vulnerabilities that enables attacks will the system be able to patch
autonomously?

RQ4 Which vulnerabilities that the system were unable to autonomously patch, will
the system be able to immunize?

RQ5 If vulnerabilities are able to heal, is there a correlation between the self-healing
techniques?

However, the research questions have been modified throughout the project and
are precisely stated in the following section.

1.3 Research questions

There has been conducted limited research in the field of self-healing with regards to
automatic remediation of intentional cyberattacks, and to an even smaller extent on
self-healing with regards to automatic healing of vulnerabilities after cyberincidents.
In this thesis, investigation of existing self-healing research is performed, as well as
developing a self-healing script to investigate certain, self-healing techniques with
regards to cyberincidents. The research questions form the basis of the research area
and shall be answered throughout the thesis. The following research questions will
be addressed:

RQ1 What kind of self-healing techniques already exist, what are the shortcomings
of these and how can one overcome these?

4 1. INTRODUCTION

RQ2 Which vulnerabilities that enable attacks will the system be able to patch
autonomously, and which ones will it be able to immunize autonomously?

RQ3 If vulnerabilities are able to heal or be immunized, is there a correlation between
the self-healing techniques?

1.4 Outline

The structure of the master thesis is presented below:

– Chapter 2: Background and Related work. Presentation of relevant termi-
nology, technologies and definitions, along with related work to the research
topic.

– Chapter 3: Methodology. Introducing research methodology, including how
and why tools and approaches were chosen and how they shall be used.

– Chapter 4: Experimental setup. Presents which tools and platforms are
chosen, and how they are used in the technical experiments.

– Chapter 5: Experiments and Results. Demonstrates execution of technical
experiments using the developed script, and their associated results.

– Chapter 6: Discussion. Gives a discussion of the results, taking the research
questions into account and discusses future work on the topic.

– Chapter 7: Conclusion. Concludes and summarizes the thesis.

Chapter2Background and Related work

In this chapter, we present terminology related to self-healing, other topics related
to the thesis and related work in the field. The chapter is structured as follows;
the term self-healing is examined in-depth, as well as cybersecurity principles, the
programming language PHP, and Docker containers are reviewed. Further, related
work is presented, and the corresponding key findings from the literature review.

2.1 Self-healing

The term "self-healing" is a broad term, associated with a plethora of definitions and
appliances. In the following section, we present definitions, concepts, and similar
terminology of the topic, such as fault tolerance and autonomic computing.

2.1.1 Definition and Classification

Self-healing is defined in several ways, and we present some of the following definitions
from other literature:

"Self-healing is an approach to detect improper operation of software
applications and transactions, and then to initiate corrective action without
disrupting users." [RRS11]

"Self-healing can be defined as the property that enables a system to
perceive that it is not operating correctly and, without (or with) human in-
tervention, make the necessary adjustments to restore itself to normalcy."
[GSRU07]

"The term self-healing for software is inspired from the biological healing
process for human and animals, where the body heals itself by repairing the

5

6 2. BACKGROUND AND RELATED WORK

affected tissue or bone, the process of healing is carried out internally from
inside the body, the cells will gather in the place that has been affected (ex.
Tissue insured or bold vessel cut) and the heal process retain the affected
place to its original health status." [HFAAF17]

A self-healing system can be described in various ways. With respect to computer
systems, self-healing is the ability to remediate unintentional or malicious actions
done to the system. From the given definitions and other related work, it becomes
clear that use cases, implementations, concepts, research, and appliances of self-
healing differs. Examples of different interpretations of self-healing procedures and
concepts are presented below:

Example 1 The system’s healing mechanism acts based on the assumption that
unwanted behavior is a result of either bugs, attacks, or both.
Example 2 The system’s healing mechanism is inspired by biological phenomenons
in cells’ regenerative properties.
Example 3 The system’s healing mechanism assumes that healing of symptoms
that cause unintentional actions, rather than healing the root cause of these actions,
is sufficient.
Example 4 The system’s healing mechanism heals by remediating the system to a
safe state when unexpected changes happen in the system.

2.1.2 The concept of Self-healing

Self-healing is the ability of a system to be able to remediate malicious actions done
to it. A crucial distinction which is of importance in this thesis is the contrast
between self-healing systems, which remediate or restore the system to a known, safe
state, and self-healing systems, which remove the vulnerability that allowed the attack
to happen. Whereas the first type of self-healing contains much of the functionality
of the latter type like self-monitoring and self-recovery, the second type aims to
self-harden and self-repair itself.

The self-healing process, or life cycle, varies based on the system it is applied and
the thresholds of the system. Ghosh et al. state that a "healthy/broken"-scale can be
implemented in self-healing systems [GSRU07]. When the system reaches a broken
state, the self-healing mechanism needs to regulate the system in such a way that
it becomes healthy again. An example is resource allocation; if one server receives
an overwhelming load of traffic and reaches a broken state, the self-healing system
must allocate traffic to another server to restore the healthy state. With regards to
this master thesis and using this scale in an attack scenario, the self-healing system
would announce the system as broken if, for instance, there are findings of an attack
like spyware on the server.

2.1. SELF-HEALING 7

Figure 2.1: Five steps to ensure security, whereas self-healing takes part in the fifth
step.

Following a modern approach to securing digital infrastructure, there are a few
necessary steps which need to be fulfilled, illustrated in figure 2.1. According to
NIST’s Cybersecurity Framework1, the first step is to identify threats by doing risk
assessments and asset management. The second step ensures security by protection
of data, which is classical data security like access control, implementing protection
technologies, and awareness training. IDSs and IPSs often provide the detection
of cyberattacks. If there has been a breach, the response often includes incident
response teams and remediation of malignant modifications. Self-healing plays a part
in the fifth and final part, which is to recover. Within this step, self-diagnosis must
be made in order to evaluate what happened to the system and what vulnerabilities
are present. The result from this phase is used to self-harden the system, to ensure
that an equivalent exploit cannot be made. Whereas the first four steps are highly
automated, the remediation step is still mostly manually managed.

2.1.3 Related terminology

The self-* properties of reliable computer systems

There is a plethora of self-* properties which are closely related to self-healing, yet
not equivalent. Self-* systems refer to systems able to self-manage and suggests
methods for developing highly-reliable, self-managed, complex computer systems
[She08]. Table 2.1 summarizes Hudaib et al. definitions of eight self-* properties
[HFAAF17].

The definitions are clearly not mutually exclusive, and become intertwined with
each other. One could say that self-healing is composed of multiple of these definitions.
In the self-healing system STING by Brumley et al. [BNS07], self-monitoring,
self-diagnosis, self-hardening and self-recovery make up the main components of
self-healing.

1https://www.nist.gov/cyberframework

8 2. BACKGROUND AND RELATED WORK

Self-* Properties Definition
Self-Adaption The ability to enhance its current status and evaluate it.
Self-Optimisation Finding the optimal solution to meet its goals.
Self-Monitoring Being able to monitor its internal functions and performance.
Self-Testing The ability to test oneself and evaluate if malfunctions are present.
Self-Diagnosis Identification and diagnosis of oneself to reduce errors.
Self-Management Managing its own functions without human intervention.
Self-Control The process of controlling the state and behaviour of the agent.
Self-Configuration A process by which components are configured by themselves

or by a dedicated configuration component.

Table 2.1: Definitions of self-* properties.

Fault-tolerance

"A fault-tolerant system should be able to handle faults in individual hard-
ware or software components, power failures, or other kinds of unexpected
problems and still meet its specification." [Dub13]

Fault-tolerance and self-healing have similarities in their definition, where both
should be applied in systems that need to be robust and reliable. Fault-tolerance often
does so by adding redundancy to the architecture to resist failures, while self-healing
tries to repair the system when exposed to unintended behavior. However, self-healing
aims to identify, mitigate, and, preferably, eliminate the root cause of unwanted
actions, whereas fault-tolerant design principles’ primary objective is remediation
to a state where it can continue execution [Ker07]. Based on the difference in these
characteristics, one could say that fault-tolerance is targeted towards rare and mostly
unintentional failures, which are hard to mitigate, whereas self-healing should protect
systems from intentional attacks from adversaries. Viewing the two terms from an
autonomic computing perspective, self-healing is a modern approach to handling
system failure [Per13].

Biology and Autonomic Computing

Organisms’ have the ability to self-repair after being prone to illnesses and wounds.
When someone breaks their leg or catches a cold, the human body automatically heals
itself to the best of its ability. The human nervous system is considered the most
intricate autonomic structure existing in today’s nature [PH04]. The brain acts as
the controller of a large network, which monitors changes and responds appropriately
to events. This phenomenon has inspired computer systems to implement self-healing
systems similar to the ones running in our bodies. The humane immune system

2.2. CYBERSECURITY 9

(HIS) can distinguish between its own benign molecules ("self") from malignant ones
("non-self"), which is an essential feature. Comparing an animal to a machine, an
animal may act unconsciously to an event due to its autonomic nervous system. The
machine, on the other hand, is currently not in possession of this ability.

Implementing similar biological abilities which the brain and nervous system
possesses, is called Autonomic Computing Systems (ACS) [HFAAF17]. Like with
the human body, the computer systems should have the properties self-configuration,
self-optimization, self-healing, and self-protection [KC03]. A concrete example of
such implementations are malware, like viruses, and remedies, like antivirus software.

Prevention systems

When speaking of vulnerabilities and susceptibilities towards computer systems,
there exists several technologies and concepts trying to prevent, mitigate and detect
malicious actions. These are similar to self-healing ideas and might be easy to mistake
for one another, when they in reality use diverse techniques and approaches.

Intrusion Detection Systems (IDS) IDSs use methods in real-time to detect
attempts or actual access to systems by unauthorized parties [Row02]. The IDS
usually alerts the system administrator of the malicious actions which have taken or
take place.

Intrusion Protection Systems (IPS) IPSs are identical to IDSs with the excep-
tion that these systems prevents the malignant operations by for instance blocking
detected, harmful pieces of code [Lim06]. Both IDSs and IPSs are commonly used in
protection against network-based, destructive actions.

Antivirus Software (AV Software) AV Software is a piece of software installed
on a computer in order to give better protection than what the underlying operating
system can provide. It is most commonly a preventive solution, but it may also try
to remove infected programs or software [KB15].

2.2 Cybersecurity

Due to the increase in cyberattacks and the fear of cyberwarfare, the investment
and research in cybersecurity has accelerated over the past few years. More than 50
nations have created and published strategic documents stating their official stance on
cyberspace, cybercrime and cybersecurity [20112]. The Merriam Webster dictionary
defines the cybersecurity as:

10 2. BACKGROUND AND RELATED WORK

"Measures taken to protect a computer or computer system (as on the
Internet) against unauthorized access or attack."

Cybersecurity is a vital component of any digital system to be able to ensure the
required non-functional requirements of a computer system. The National Institute
of Technology: https://www.nist.gov (NIST)2 defines cybersecurity as:

"Prevention of damage to, protection of, and restoration of computers,
electronic communications systems, electronic communications services,
wire communication, and electronic communication, including information
contained therein, to ensure its availability, integrity, authentication,
confidentiality, and nonrepudiation."

Cybersecurity is often confused with information security. Whereas cybersecurity
focuses on protecting computer systems from unauthorized access, information
security is more comprehensive, including the protection of both digital and analog
assets.

2.2.1 The basics of cyberattacks

Cyberattacks are intentional, malignant acts towards a cyberservice and stand out
from unintentional bugs or misconfigurations, which may cause disruptions. NIST
defines cyberattacks as:

"An attack, via cyberspace, targeting an enterprise’s use of cyberspace for
the purpose of disrupting, disabling, destroying, or maliciously controlling
a computing environment/infrastructure; or destroying the integrity of
the data or stealing controlled information."

Following the methodology of Liu et al. [LC09], the concept of cyberattacks will
be further delved into. An example of a cyberattack is illustrated in figure 2.2.

Why? With the existence of software bugs, configuration defects and design flaws,
vulnerabilities become present. By taking advantage of this vulnerability, more
accurately named exploiting the vulnerability, an adversary can breach the system
and gain unauthorized access. The vulnerability can be remotely accessible, or might
require social engineering performed by the attacker.

2https://www.nist.gov

2.2. CYBERSECURITY 11

Figure 2.2: Example scenario of who conducts cyberattacks, how it is performed
and what is attacked; a script kiddie performs an SQL-injection towards the database
which possesses the grades of school courses.

What? Cybersecurity challenges can be analyzed from three perspectives, being
motive, means, and opportunity. Organized crime, hatred, terrorism and acts of
war have become motivations for several malicious hackers. The internet makes the
distribution of advanced cyberattack tools incredibly easy, as well as the attacks get
increasingly sophisticated. Hence, cyberattacks become very easy to perform despite
being hard to detect and defend. While the digitization escalates, the number of
exploitable vulnerabilities grows as well.

Who? A cyberattacker gain access to computer systems with either benign or
malicious intentions. The malicious attackers could be insiders, but the hacking often
takes place remotely from the outside. Examples of cyberattackers are script kiddies,
state actors, and hacker groups.

How? The adversaries usually utilize a range of hacking tools to execute attacks.
In order to conduct a successful breach, hackers often do reconnaissance, scan targets,
launch exploits on detected vulnerabilities, establish footholds by gaining access and
make some sort of profit of the attack.

12 2. BACKGROUND AND RELATED WORK

2.2.2 Principles for managing security

There are several guidelines one can follow and measures one can implement in
order to secure a system. In Grunnprinsipper for IKT-sikkerhet, versjon 1.1 [Nas18],
Nasjonal Sikkerhetsmyndighet (NSM)3 presents a set of principles to implement
for establishing ICT security in an enterprise. The four main steps in the cycle of
securing the computer systems are:

1 Identification and mapping of value chains, devices and software and users
and their privileges.

2 Protecting emails, browsers, and other data in transit, secure configurations
and design processes, establish suitable logging and control administrative
privileges.

3 Maintaining and detectingmalware and unauthorized changes by monitoring
the system with IDS/IPS software, verifying configurations, creating backup
solutions and performing penetration testing and red team exercises.

4 Managing and remediating cyberincidents by establishing strategies for
incident response.

Managing security for any enterprise is a continuous cycle, and needs to be
prioritized during all stages of development and production.

2.2.3 Common web vulnerabilities

As the internet, and services relying on this communication medium, become more
prevalent in people’s everyday lives, the more desirable the platform becomes for
hackers. Since services provided on the internet are accessible online, the attackers
can often execute attacks remotely. The Open Web Application Security Project
(OWASP) Foundation4 is an open-source organization with the goal of improving
software security, having all resources publicly available. Periodically, the association
publishes a report with the most common web vulnerabilities at the current time.
OWASP Top 10 - 2017 The Ten Most Critical Web Application Security Risks
[OWA17] contains the top 10 greatest risks of web applications present in 2017. The
vulnerabilities are summarized below:

Injection Untrusted data, often in the form of user input, is sent to a code
interpreter without validating or sanitizing the input.

3https://www.nsm.stat.no
4https://owasp.org

2.2. CYBERSECURITY 13

Broken Authentication Enables manual or automatic mediums to gain access
to a user account or admin account.

Sensitive data exposure Exposure of personally identifiable information (PII),
for example, data breaches or unencrypted data in transit.

XML External Entities (XXE) A weakly configured parser processes an input
containing a reference to an external entity.

Broken Access control Allows attackers to bypass authorization and often per-
form tasks as they were the administrator.

Security misconfigurations Using default configurations or displaying verbose
error messages are common examples of misconfigurations.

Cross-Site Scripting (XSS) Enables malicious JavaScript code to run in a
victim’s browser. The vulnerability is exemplified in figure 2.3 and 2.4.

Figure 2.3: Loading the page with specially crafted user input containing JavaScript
in order to check whether the server contains an XSS vulnerability.

14 2. BACKGROUND AND RELATED WORK

Figure 2.4: If the web page is vulnerable to JavaScript injections, the illustrated
popup will appear when the page is run with the input from figure 2.3.

Insecure Deserialization Deserializing data from untrusted sources, which may
result in DDoS attacks or remote code execution.

Using Components with Known Vulnerabilities Either using vulnerable com-
ponents or not updating/patching vulnerable components.

Insufficient Logging and Monitoring It is recommended to implement logging
and monitoring to detect attacks.

2.3 PHP

PHP (PHP Hypertext Preprocessor) is a free programming language created in 1994
for web development and runs on several operating systems, such as Linux, Windows,
and Macintosh machines [Atk00]. The developers of PHP describe the technology as:

"a popular general-purpose scripting language that is especially suited to
web development. Fast, flexible and pragmatic, PHP powers everything
from your blog to the most popular websites in the world."5

5https://www.php.net

2.4. DOCKER CONTAINERS 15

Even though the programming language is more than 25 years old, it is still
widely used. W3Techs declares that PHP is used by 78.3% of all websites in 20206,
where the programming language of the server is known. From the servers which use
PHP, 49.9% uses PHP version 5, and 49.7% uses PHP version 7. This makes PHP
still highly relevant, even though there are several other technologies available.

Like other programming languages, PHP is prone to security issues. CVE Details7

has registered 604 security vulnerabilities on PHP8, whereas 53 on Node.js9, 56 on
Ruby on Rails10 and 49 on Python11.

2.4 Docker Containers

With regards to this master thesis, the isolation, simplicity and adaptability of
Docker containers are the most compelling properties which will be utilized during
the project.

2.4.1 What is a Docker container?

Docker containers was introduced in 2013 and are today a popular virtualization
technology and microservice architecture introduced by Docker12. According to
the company, there are more than 105 billion container downloads and at least 750
Docker Enterprise Customers. Docker defines containers and images as:

"A container is a standard unit of software that packages up code and
all its dependencies so the application runs quickly and reliably from
one computing environment to another. A Docker container image is
a lightweight, standalone, executable package of software that includes
everything needed to run an application: code, runtime, system tools,
system libraries and settings."

The containers may appear similar to virtual machines, but they utilize the kernel
of the host’s operating system differently. Whereas virtual machines construct an
entire virtual operating system, multiple containers exploit the same kernel of the

6https://w3techs.com/technologies/details/pl-php
7https://www.cvedetails.com
8https://www.cvedetails.com/vulnerability-list/vendor_id-74/product_id-128/PHP-

PHP.html
9https://www.cvedetails.com/vulnerability-list/vendor_id-12113/Nodejs.html

10https://www.cvedetails.com/vulnerability-list/vendor_id-12043/product_id-
22568/Rubyonrails-Ruby-On-Rails.html

11https://www.cvedetails.com/vulnerability-list/vendor_id-10210/product_id-18230/Python-
Python.html

12https://www.docker.com/company

16 2. BACKGROUND AND RELATED WORK

host’s operating system. Since the applications share the kernel, the size of the
application is greatly reduced in combination with increased performance, illustrated
in figure 2.5.

Figure 2.5: Illustration of Docker containers and virtual machines.

Containers achieve isolation by using namespaces and assigning a network stack
to each container. The container is unable to see and interact with processes of
other containers, including no access to sockets and interfaces of other containers,
unless explicitly configured to do so. Also, with regards to isolation, control groups
equally distribute resources like memory and CPU to each container. Control groups
also prevents denial-of-service attacks such that one container cannot exhaust the
available resources and take down the whole system.

Docker is a heavily loaded term often associated with multiple meanings. Docker
uses a client-server architecture [JNS16]. Through the Docker Client, the user can
run a set of Docker commands through the Docker daemon to interact with the
Docker host. The daemon runs, builds and distributes Docker containers, in addition
to publishing Docker images to Docker registries. Docker containers are spin up from
docker images. An image is built locally, or pre-made images are downloaded using
instructions stored in a special file. The Dockerfile is triggered upon a build request,
where Docker reads the files for its instructions and returns the image. Docker
registries make distribution of images easy, and the Docker public registry is named
Docker Hub. The Docker container is an isolated environment which includes all
elements necessary for an application to run.

2.5. RELATED WORK 17

2.4.2 Immutability

To be able to make changes to a running Docker container or the Docker image, the
container needs to be brought down, the image of the container is modified, and
then the new version of the container is spun up. One could set up the container
with SSH13 to patch it, but building new images each time there is a need for an
update of source code or configurations could be a better idea. Often, multiple
instances of an image is run. When the containers require modifications, the original
image is rebuilt, and all new instances of the image are updated. Following this
methodology, one cannot apply authorized changes to a Docker container. This gives
Docker containers the property of immutability [MGK19]. The Merriam Webster
dictionary defines "immutable" as "not capable or susceptible to change", which agrees
with the properties of Docker containers.

Briefly, such immutability has the potential to make intrusion detection and
incident response easier. If there has been made modifications to the container, there
ought to have been a breach - the design approach of Docker containers does not
allow modifications to happen to a running instance.

2.5 Related work

In October 2001, IBM released a manifesto expressing that the greatest barrier in
IT industry advancement, is the software complexity crisis. Jeffrey O. Kephart and
David M. Chess summarizes the manifesto in The Vision of Autonomic Computing
[KC03]. It is stated that as systems become more diverse and entangled, system
developers will not be able to predict and design all actions among system parts.
Hence, upcoming issues are to be dealt with at runtime. The emergence of the
term "autonomic computing" occurs, which they briefly define as "... computing
systems that can manage themselves given high-level objectives from administrators",
and state that the term is deliberately chosen with biological connotation. It is
further examined what type of autonomic system might work in the future, and
self-management, comprising of self-configuration, self-optimization, self-healing, and
self-protection, are stated as elementary aspects of how autonomic computing will
be in the future. The self-healing feature in autonomic computing shall "... detect,
diagnose, and repair localized problems resulting from bugs or failures in software and
hardware", while the self-protection feature shall "... defend the system as a whole
against large-scale, correlated problems arising from malicious attacks or cascading
failures that remain uncorrected by self-healing measures. They also will anticipate
problems based on early reports from sensors and take steps to avoid or mitigate
them". For the purpose of this master thesis, IBM clearly separates the two aspects -

13The SSH (Secure Shell) protocol allows for secure system administration and file transmission
over insecure networks.

18 2. BACKGROUND AND RELATED WORK

self-protection and self-healing mechanisms as two separate research areas and, as of
today, require separate approaches. It is also necessary to be able to create a fully
autonomous system. As stated in the paper, autonomic computing offers multitudes
of benefits, but nevertheless significant engineering challenges. This is perhaps why
the field is still of substantial interest.

There has been conducted some research in self-healing with inspiration from
biological processes. Elsadig et al. present a model for both intrusion prevention and
self-healing for network security. [EA09] integrates an artificial immune system (AIS)
with intrusion prevention inspired by danger theory and adaptive immune systems
within immunology theory. The IPS triggers the self-healing mechanism in the event
of malicious events or attack profiles. The self-healing mechanism, named self-healing
agent (SHA), is an expert knowledge base trained to adapt to abnormal activities
inspired by cell regeneration. It does so by generating "fix candidates" for each fault
and repairs the damages. Afterward, it performs self-testing for the new component
before it deploys it. The paper contributes to research within the field of biologically
inspired intrusion prevention and self-healing systems. It does not involve a concrete
example of the mechanisms in practice. With regards to self-healing and this master
thesis, what is described has similarities to what is aimed to be done. However, the
proposed model is hard to grasp practically since there is no reference to the system
in deployment.

Joseph et al. propose an autonomic prediction model for automatic recovery of
attacked virtual machines in cloud [JM19]. Their prediction model shall secure and
recover the virtual machines by using a self-healing algorithm. The virtual machines
remediate to safe, stable snapshots to self-heal. The predictive algorithm predicts
which virtual machine and which of its snapshots are infected. From these results,
it will automatically restore itself using a saved snapshot and therefore remove all
infected parts. The result of the research showed that Support Vector Machine (SVM)
algorithm outperforms Gaussian Naïve Bayes and Decision tree algorithm with an
accuracy rate of 98.4% in determining the attacked virtual machine snapshots. Using
self-healing in a virtual environment with virtual machines to prevent adversaries has
similarities to what is explored during this master thesis. However, the self-healing
technique suggested in this paper does not patch or remove the vulnerability present,
like what this master thesis intends to do using Docker containers.

Redundancy in code, either it is due to the programmer’s coding style or present
unintentionally in the libraries or packages implemented, is often associated with
reduction in performance and is not a desirable characteristic in code. However,
fault tolerance techniques often incorporate redundancy to be able to withstand
unfortunate events and increase reliability. Nicolò Perino proposes an interesting
approach combining both redundancy in code and fault tolerance in order to self-

2.5. RELATED WORK 19

heal software systems [Per13]. By going back in the execution and replacing the
failing operations with redundant operations, allows the system to recover from
failure. Three key elements are introduced, namely a state handling mechanism,
a roll-back strategy, and a workaround selection criterion. A captivating property
of this approach is that the healing strategy mitigates the failures by eliminating
symptoms of the failure’s origin, rather than eliminating the actual root cause. With
that said, this approach is mainly targeted towards healing of unintentional software
bugs, whereas this master thesis will focus on intentional attacks. Nevertheless, this
is an innovative contribution to the field of self-healing, and it would be interesting to
investigate further if the concepts of fault-tolerance, redundancy, and healing based
on symptoms could be applied in self-healing systems targeted towards malicious
attackers.

As a result of vulnerable software, attacks over the web are increasing, and
this is mostly due to the lack of knowledge of software architects, developers, and
designers. Jaffar et al. use public vulnerabilities data to self-heal these vulnerabilities
in software systems automatically without human intervention [Jav]. Using input
from Common Weakness Enumeration (CWE), the framework provides suggestions
and auto-correction to remove present vulnerabilities in the code. Static analysis
tools check the source code for potential vulnerabilities towards attacks, while the
code transformation module applies necessary changes after scanning the source
code. Referring to their prototype example, they achieved a code accuracy of 83%
with a 6% syntax error. Scanning the source code for vulnerabilities in advance of
production, is a valuable approach to removing bugs and security weaknesses. As
to this master thesis focusing on the incident response part of security, it could be
possible to implement similar scanners using public vulnerability data after security
incidents have been identified.

Another contribution to the field of autonomic patching is the system "ClearView"
by Perkins et al., described in [PKL+09]. The system is able to automatically
patch stripped Windows x86 binaries without any other information about the
software, and without human interaction. The correction of errors and vulnerabilities
are based on the expected behavior of learned invariants, and the architecture
is composed of five main components. The model learns expected invariants by
observing normal executions using Daikon. Monitoring or observing executions and
determining whether they are normal or failed, is in their implementation done using
Heap Guard and Determina Memory Firewall. The system must also find a set
of correlated invariants that characterize normal and failed executions whenever
the monitors detect failures. ClearView generates a set of candidate repair patches
that enforce the invariant for each correlated invariant. It then evaluates and ranks
the patches as they execute. The process of learning improves the quality of the
patches over time, and the authors compare this process to a biological immune

20 2. BACKGROUND AND RELATED WORK

system. ClearView was tested in a Red Team exercise, where the results showed
that it automatically generated corrective patches for seven out of ten exploits. The
developers of ClearView make an interesting approach to self-healing with the use of
learned invariants. However, the system is limited by the fact that it only affects
Windows x86 binaries. Nevertheless, trying to apply similar strategies using learned
data about normal and failed executions to patch software could be extended to this
master thesis.

2.6 Literature review findings

In this section, we present the key findings from the literature review. The research
papers we targeted, are mainly practical and implemented systems.

2.6.1 The research status of self-healing software systems

As predicted by IBM in 2001, the road to completely autonomous systems will
be extremely challenging and will require innovative solutions by researchers and
developers. Since the release of their manifesto, the interest in self-healing systems has
dramatically increased. Self-healing systems have the ability to reduce operational
costs through less human intervention, and the time spent to detect, find and
repair damages will decrease. However, creating such systems have proven to be
significantly demanding. There exist examples of systems that behave autonomously,
hence possesses the ability to self-configure, self-protect, self-heal, and self-optimize.
Still, while conducting this literature review, there have not been made findings of
any such systems deployed in a large scale today. The bottleneck in the development
of these architectures is frequently the self-healing aspect.

Multiple factors are contributing to the hardness of creating self-healing systems.
When designing such architectures, it becomes evident that the systems need to
possess abilities of self-awareness. What has happened? Where is the breach? What
caused the breach? As one breach may have several root causes, it is difficult and
comprehensive to pinpoint where the vulnerability is located. Even for a trained
computer professional, finding and removing such susceptibilities is demanding.
Transferring these abilities to a system, and have it act as an autonomous being, have
proven to be greatly complex. Several solutions have been proposed in the literature
reviewed, including approaches using machine learning, knowledge base consulting,
exploitation of code redundancy, and systems inspired by biological approaches.

As summarized previously in the chapter, there are many self-* properties and
other terms being used when approaching topics such as self-healing and autonomous
systems. The ones that appear the most frequently, when speaking of self-healing
systems, are concepts such as self-recovery, self-protection, automated remediation,

2.6. LITERATURE REVIEW FINDINGS 21

and fault-tolerance. The words are used interchangeably, and the corresponding
definitions of the term self-healing differ from paper to paper.

2.6.2 Classification of self-healing literature

Developing self-healing, or pseudo self-healing, systems can be approached in numer-
ous ways, as described in the works in section 2.5. Even though there are significant
differences in their procedures, it is possible to extract a few common characteristics
from some of the literature. In this subsection, these key features will be highlighted,
and an attempt to classify the researched literature will be presented. As one of the
findings in this review, [HFAAF17] and [GSRU07] present some classifications and
summaries of existing literature on self-healing.

Papers Healing
approach

Incidents Healing technique

Elsadig et al.
(2009)

Remove
susceptibilities

Intentional

An expert knowledge base it trained to adopt to
abnormal activities, inspired by cell regeneration
mechanism, and generates fix candidates to repair
specific damages.

Joseph et al.
(2019)

Fault tolerance Intentional

Identifies malicious snapshots of virtual machines
using different machine learning algorithms, and
reverts to a safe snapshot whenever a snapshot is
predicted to be infected.

Perino
(2013)

Remove
susceptibilities

Unintentional
Combines self-healing and fault tolerance techniques
by using code redundancy operations to workaround
failing operations.

Javed et al.
(2019)

Remove
susceptibilities

Intentional Removes vulnerabilities in code by applying articles
from Common Weakness Enumeration (CWE).

Perkins et al.
(2009)

Remove
susceptibilities

Both

Observers normal execution to learn invariants in
which describe normal behavior, and whenever a
failure is present, the flow of control is changed until
the invariant is true.

Table 2.2: Presentation and comparison of the main characteristics of the related
work.

Main characteristics of self-healing literature

From figure 2.6, important features of covered literature are presented. First, the
research papers are separated based on their kind of research literature. For the
interest of the project, researching the functionality of existing systems was more
appealing than theoretic concepts, as reflected in the figure. The subsequent dif-
ferentiation is based on the stated definition of and approach to self-healing in the
researched papers. The third and final main divider is whether the specific systems

22 2. BACKGROUND AND RELATED WORK

are intended for intentional attacks, unintentional faults, or both. A summary of the
targeted papers is provided in table 2.2.

Figure 2.6: Key features used to categorize researched literature from the literature
review.

Theoretical concepts/Specific systems The paper either covers the theoretic
aspects of self-healing systems, for instance definitions, critical components, back-
ground and the life cycle procedure, or examples of developed and implemented
self-healing systems. For the interest of the project, researching the functionality of
existing systems was more appealing than theoretic concepts, as reflected in figure
2.6. The following listed papers are examples of specific self-healing systems being
investigated:

• "Biological inspired intrusion prevention and self-healing system for network
security based on danger theory" by Elsadig et al.

• "Securing and self recovery of virtual machines in cloud with an autonomic
approach using snapshots" by Joseph et al.

• "A framework for self-healing software system" by Perino.

• "Using public vulnerabilities data to self-heal security issues in software systems"
by Javed et al.

• "Automatically patching errors in deployed software" by Perkins et al.

2.6. LITERATURE REVIEW FINDINGS 23

Healing systems/Fault tolerance The systems presented all claim to be self-
healing, but it becomes apparent that the definitions of the topic varies. As for this
project, self-healing refers to the characteristic where a system is able to detect a
vulnerability in which caused a security incident and have it autonomously remove,
patch, or make the susceptibility unreachable for adversaries. Fault-tolerance, referred
to as self-healing in at least one of the papers (for instance [JM19]), on the other
hand, only brings the system to a condition from which it can proceed execution.
Keromytos states that fault-tolerant systems "can be viewed as primarily geared
against rarely occurring failures" [Ker07], but this is not always being practised.

Security/Safety The majority of the researched systems cover either intentional
cyberattacks (security) or unintentional faults (safety), such as software or hardware
bugs leading to system failures. One of the papers at hand ([PKL+09]), claims that
their system can handle both intentional and unintentional, disturbing incidents.

Self-healing techniques The five example systems listed previously, all use dis-
tinct techniques in order to achieve self-healing capabilities.

Chapter3Methodology

In order to conduct research in an efficient, sound and qualified manner, the approach,
measures and techniques used should be well documented and follow a purposeful
process. Kothari defines research methodology as [Kot04]:

"Research methodology is a way to systematically solve the research prob-
lem."

The methodology often consists of several research methods to answer the problems
in question. For this thesis, literature review is an example of a research method
used in the methodology. Kothari differentiates the two [Kot04]:

"... when we talk of research methodology we not only talk of the research
methods but also consider the logic behind the methods we use in the
context of our research study and explain why we are using a particular
method or technique and why we are not using others so that research
results are capable of being evaluated either by the researcher himself or
by others."

In this chapter, we present the research methodology and methods used in the
thesis. This includes literature review to research the current status of self-healing,
selection of tools and platforms to use in the practical approach to self-healing,
presentation of healing techniques for web vulnerabilities, and implementation and
measurement of self-healing in the developed script.

3.1 Literature review

Literature review is an objective, critical analysis of published literature on a certain
topic. By summarizing multiple studies in the field, inadequate research in the

25

26 3. METHODOLOGY

problem area becomes present. For this project, literature review serves multiple
purposes. It is essential in answering RQ1, but also lays a foundation for the
remaining research questions. According to Chris Hart in Doing a literature review:
Releasing the research imagination [Har18], the definition of a literature review is:

The selection of available documents (both published and unpublished) on
the topic, which contain information, ideas, data and evidence written
from a particular standpoint to fulfil certain aims or express certain views
on the nature of the topic and how it is to be investigated, and the effective
evaluation of these documents in relation to the research being proposed.

The motivation for conducting a literature review when researching a topic is
diverse. Iivari et al. state that an essential first step for any research project is
knowing current status of the body of knowledge (BoK)1 in the research field [IHK04].
Levy and Ellis give five motivations and means for achieving this step through a
proper literature review [LE06]:

1 The researcher becomes informed of the current BoK, hence where excess
research exists and where new research is needed.

2 Provides a theoretical foundation for the research area.

3 Confirms the presence of the research problem.

4 Justifies the proposed research as a contribution to the BoK.

5 Shapes valid research methodologies, approaches, goals and research questions
for the proposed study.

The literature review carried out in this project follows the principles of Cronin
et al. [CRC08], and is further described detailed.

3.1.1 Selecting a review topic

When selecting the topic to be reviewed, it is wise to refine the topic to such an
extent that the final amount of literature and papers produced is manageable. If
the volume of information gets too large, the review will be either too long or too
superficial. It might be tempting to choose broad search words to cover a great load
of material related to the review topic, nevertheless it is not advisable.

1Body of knowledge: The set of concepts, terms and activities comprising a domain or field of
profession

3.1. LITERATURE REVIEW 27

Despite the research questions not being carved in stone at the beginning of the
project, the review topic was decided early in the process. Relevant topics for the
assignment are "self-healing computer systems", "self-recovery computer systems",
"self-repairing computer systems", "auto remedation computer systems", and other
variations of self-* properties (2.1.3).

3.1.2 Searching the literature

After having narrowed down the review topic, it is necessary to examine the topic
in a structured way to acquire satisfying information. Literature searches have
become easier to conduct due to electronic databases containing heaps of articles. In
this literature study, the search engines Google Scholar2, IEEE Xplore3, Microsoft
Academic4, Semantic Scholar5 and CORE6 are used.

When searching, Boolean operators like "AND", "NOT" and "OR" explicitly
decide which search words to be included or not in the information generated. A
relevant search phrase for this project is ("self-healing" OR "self healing")
AND ("computer system" OR "software").

The time frame from which the search is performed is also important; for some
review topics, elderly information might be obsolete. For the research area examined
in this literature, the research is scarce, and therefore the papers included ranges
from publications from 2003 to 2020.

When undertaking a literature search, deciding if publications should be included
in the literature review can be based on the type of source. Table 3.1 summarizes
the four kinds of sources. For this review, mainly primary source, secondary source,
and conceptual/theoretical sources have been used.

Source Definition
Primary source A report by the original researchers of the paper.
Secondary source Ex. a review article, summary of the paper written by someone else than

the original researcher.
Conceptual/theoretical Description or analysis of theories or concepts associated with the topic.
Anecdotal/opinion/clinical Views and opinions about the field that are not research, reviews

or theoretical. Clinical embodies case studies or reports from clinical settings.

Table 3.1: Sources of publications and definitions.

2https://scholar.google.no
3https://ieeexplore.ieee.org
4https://academic.microsoft.com
5https://www.semanticscholar.org
6https://core.ac.uk

28 3. METHODOLOGY

As with all research, searching for relevant literature must be limited with regard
to the time aspect. For some tasks, investing lots of time in finding relevant papers
is crucial to the result of the project, whereas for other tasks, it is not necessary. In
this project, there has been devoted a considerable amount of time to research the
problem field.

3.1.3 Gathering, reading and analysing the literature

There are useful strategies for analysis and gathering of information that will help
with the writing of the review. At first, the number of articles might be overwhelming;
therefore, it is advisable to start categorizing them after reading their abstract or
summary. When the papers have been sorted by type, it is necessary to read them
more systematically and critically. Typically, one is concerned with the title, author,
motivation, methodology, findings, and outcomes of the research papers. It is also
recommended to read the articles, with the problem question(s) in mind.

3.1.4 Writing the review

When writing the review, the findings must be presented objectively in a clear and
consistent way. The literature review of this project is represented in Background
and Related work (chapter 2). The most interesting, diverse, and relevant articles
found during the search have been more thoroughly described in section 2.5.

3.1.5 References

References to the papers in the literature review is an essential part of the process.
For this project, all references are located at the end of the report in the References
chapter.

3.2 Selection of tools and platforms

In order to carry out the project, choosing appropriate tools and platforms is necessary.
First of all, a platform in which contains vulnerabilities must be chosen. Such a
testbed must be compatible with one or more vulnerability scanners. The vulnerability
scanner is used to discover vulnerabilities in which may have caused a security breach.
Such scanners will be selected carefully based on the stated evaluation criteria. Since
the healing should preferably be performed autonomously, the tools chosen must
possess functionality in which can be automated. When selecting suitable tools
and platforms for the thesis, the research and evaluation of such assets are critical
concerning the achievement of desirable results. Section 4.1 describes the results
from the selection in depth.

3.2. SELECTION OF TOOLS AND PLATFORMS 29

3.2.1 Test server

The platform in which hosts vulnerabilities to be exploited and healed is the testbed
of the project. The testbed acts as an isolated environment where vulnerabilities
are present, attacks are launched, and the experimentation of different self-healing
techniques takes place. Since this project targets healing of web vulnerabilities
using PHP, having a vulnerable web server based on PHP as the testbed becomes a
reasonable choice.

Generating the testbed

When creating a web server as the testbed, the researcher may either develop a
suitable server for the experiments by themselves or explore whether there exists
open-source code of servers possessing characteristics such as vulnerabilities caused by
faulty PHP use. The former option has the researcher creating, designing, and coding
the web server from scratch, while the latter option has the researcher implement a
pre-made construction of a web server.

Evaluation criteria

When designing and choosing the testbed of the project, there are several desirable
traits in which the web server should have. In order to evaluate the testbed candidate,
a few criteria must be considered:

1 Does the platform cover a variety of web vulnerabilities in which can be
exploited?

2 Does the platform cover web vulnerabilities of multiple complexities?

3 Is the platform, or can the platform be, written in PHP?

4 Is the platform easy to manage, make modifications to, and integrate with
other tools?

5 Can the platform be implemented within a reasonable time frame?

There is no clear weighting between the criteria, but the conditions concerning PHP
as a programming language and the time frame will be considered the most important
criteria.

3.2.2 Vulnerability scanners

After having exposed the test server to a security incident, a static vulnerability
scanner is needed to reveal susceptibilities in the code. These revelations will further

30 3. METHODOLOGY

Tool Description

graudit8 Applies script and signature sets using the GNU utility grep to find security flaws in source code.
phpcs-security-audit9 Is a set of PHP_CodeSniffer rules that finds security vulnerabilities in source code.
progpilot10 A static analyzer of source code based on a constructed control flow graph.
RIPS11 Tokenizes and parses source code files into a model to detect vulnerabilities during program flow.
SonarQube12 with
SonarScanner13 Offers 189 rules for static source code analysis.

VisualCodeGrepper14 An automated code security review tool which identifies erroneous and insecure code.

Table 3.2: Brief summary of relevant scanners.

be used to heal the server. The scanner is necessary in order to automate the process
of patching vulnerabilities in the PHP code.

Use of scanners

Vulnerability scanners are automated tools in which scans the given source code and
looks for coding practices which may lead to security vulnerabilities and bugs. They
are often useful because of their ability to scale well, can be run multiple times and
gives precise, often verbose, feedback. However, the coverage and results from most
scanners are limited. Intricate susceptibilities such as access control problems could
be severe vulnerabilities, but are too complex for a scanner to detect. The scanner
will also provide false positives and false negatives, which reduce the overall efficiency
and performance of the self-healing system.

Available scanners

When researching available scanners for source code analysis, OWASP’s list of source
code analysis tools7 was used. The list includes a plethora of analysis tools ranging
from open-source to commercial tools, and some of these will be explored further.
Nonetheless, there exists scanners which are not covered in this list and will not be
covered in this project due to time constraints. Examples of relevant PHP-compatible
scanners are briefly presented in table 3.2.

Evaluation criteria

The scanner is one of the main components in the self-healing process, and must
therefore be selected cautiously. When exploring the assortment of scanners available,

7https://owasp.org/www-community/Source_Code_Analysis_Tools
8https://github.com/wireghoul/graudit/
9https://github.com/FloeDesignTechnologies/phpcs-security-audit

10https://github.com/designsecurity/progpilot
11http://rips-scanner.sourceforge.net
12http://www.sonarqube.org
13https://docs.sonarqube.org/latest/analysis/scan/sonarscanner/
14http://sourceforge.net/projects/visualcodegrepp/

3.3. HEALING TECHNIQUE FOR WEB VULNERABILITIES 31

these must be evaluated based on stated criteria. For this project, the features
coverage, integration and management, cost, and PHP support are of importance in
order to achieve desirable results and remain within scope. Each criteria is equally
weighted (25%), hence each feature is equally essential for the selection of a scanner.

Coverage The scanner must be able to discover a range of vulnerabilities to
fulfill criteria with regards to coverage. It should be able to detect less complex
vulnerabilities such as SQL injections, stored and reflected XSS, and remote executions
using the function shell_exec(). More sophisticated security matters, such as
authentication issues, cannot be expected to be detected by the scanner.

Integration and management As a means to achieve an autonomous system
through the aspect of self-healing, the scanner must be integratable with the chosen
testbed and other software. Therefore, it is also required that the tool can be run
from the command line, without having to manage a graphical user interface, to
automate the system. It should preferably be easy to set up and use, as well as being
regularly maintained and updated.

Cost/availability It is a necessity that the tool is either open-source, free to use,
or has a trial subscription with unlimited or a large number of scan runs.

PHP support Since the thesis investigates web vulnerabilities caused by unfortu-
nate PHP scripting, the scanner must support static source code analysis of PHP
files.

With regards to performance metrics such as false positive rates, false negative
rates, detection rates, accuracy rates, and precision rates, these are difficult to
measure in this thesis since the sample of vulnerabilities is quite small, and several of
the vulnerabilities present are too complex to be detected. Therefore, these metrics
are not considered explicitly in any feature.

3.3 Healing technique for web vulnerabilities

Self-healing systems are hard to comprehend, and therefore also to design. Such
problems may be approached by dividing and conquering, that is, dividing a composite
problem into two or more smaller, less hard problems. By solving these subproblems
individually and combining each subsolution, a solution to the original problem is
produced. For the project, five subproblems, or steps, are addressed in order to
achieve self-healing characteristics on the testbed. Each step is a healing mechanism,
having various consequences for the testbed based on the technique and means of
healing. Following the principle of dividing and conquering, each subproblem should

32 3. METHODOLOGY

be approached and solved. However, unlike this algorithm, the fifth step is the
ideal solution to the original problem, and the previous steps are iterated through
to evaluate whether the fifth step is reachable for the given vulnerability. The five
healing approaches do not rely on or build on top of each other. In order to evaluate
how well each step and healing mechanism performs, evaluation criteria must be
established and considered for each step.

3.3.1 5 steps

The practical approach of self-healing has been divided into steps, on the basis of
making the problem more understandable and approachable. When a breach is
detected, the healing will take form as one of the five steps. The last four presented
steps will make use of the vulnerability scanner to identify the vulnerability. Following,
we present the five proposed healing mechanisms.

Step 1 - Power off web server

Since the definition of self-healing involves removing the vulnerability in which caused
the breach, powering off the machine or taking down the web server would prevent
the vulnerability from occurring again. Since the service becomes unavailable, it is
impossible to launch any attack successfully towards the target.

Step 2 - Remove susceptible PHP file

If it is possible to locate the PHP file in which contains vulnerable code, removing
this file would stop future, equivalent attacks as the vulnerability being exploited is
no longer present as the susceptible file have been removed.

Step 3 - Remove susceptible line of code in PHP file

The step resembles the previous one, whereas instead of deleting the susceptible PHP
file, the line of code containing vulnerable code being exploited in the security breach
is removed.

Step 4 - Add sanitization to input

Since the vulnerabilities often are triggered by specially, crafted user input, the step
applies general sanitization to all user input. It tries to use distinct filters based on
the indication of the detected vulnerability to customize the healing better.

3.3. HEALING TECHNIQUE FOR WEB VULNERABILITIES 33

Step 5 - Correct susceptible code causing vulnerability

The ideal step is where the vulnerability is completely healed in the PHP file. The
necessary modifications to the PHP code are made to ensure that the exploit launched
no longer is applicable to the server.

3.3.2 Evaluation criteria of healing techniques

In order to decide how suitable a healing mechanism is, evaluation criteria in which
each technique will be measured against must be established. The healing evaluation
criteria shall describe how well each step does when executed. The criteria include
both functional and non-functional requirements, which are commonly used to
describe vital quality characteristics and functionality of software systems [CN95].
For instance, although availability of the server is greatly reduced, turning off the
machine is highly effective with respect to healing. This approach satisfies the healing
criteria, but not the availability criteria. For the project, self-healing, healing or
automatic patching, is considered a functional requirement. Further definitions and
requirements for the evaluation criteria will be established in the next subsections.

Functional requirements

Functional requirements are functions "that a system (...) must be able to perform"
[15990], hence specific functionality that is critical for the system to work as intended.
They describe tasks and input/output behavior of the system. To have the self-
healing approaches described in subsection 3.3.1 be evaluated, the following functional
requirement is considered:

1 Healing: The self-healing procedure must remove the vulnerability or suscepti-
bility at hand in the testbed, and make it unreachable and/or unexploitable.

Non-functional requirements

Non-functional requirements are "used to delineate requirements focusing on “how
good” software does something as opposed to the functional requirements, which
focus on “what” the software does.” [PK04]. Therefore, the requirements describe
properties, qualities and behaviors of the system, rather than specific tasks and
functionality.

One can separate between basic and extra quality non-functional requirements
[Fre87]. Basic non-functional requirements include the most fundamental qualities,
such as functionality, reliability and safety, whereas extra non-functional requirements
includes flexibility, documentation and enhanceability.

34 3. METHODOLOGY

Figure 3.1: Illustration of characteristics and associated subcharacteristics from
ISO/IEC 25010:2011.

3.3. HEALING TECHNIQUE FOR WEB VULNERABILITIES 35

The NFR Framework [MCN92] introduces the concept of softgoals for non-
functional requirements and hardgoals for functionl requirements; softgoals are being
pursued in a "good-enough" sense, while hardgoals need to be addressed absolutely.
The NFR Framework defines the notion of "satisficing" to describe that a softgoal is
satisfied in the good-enough approach. The framework assigns a criticality value to
each softgoal as well.

As mentioned by Martin Glinz in [Gli07], several works classify non-functional
requirements into subcategories. The ISO/IEC 25010:2011 proposes a product
quality model with eight characteristics and associated subcharacteristics, which can
be applied to both software and computer systems [20113]. The product quality is
categorized into these characteristics. The non-functional requirements are illustrated
in figure 3.1.

When choosing which non-functional requirements to incorporate and base the
system development on, it is often desirable to incorporate all main characteristics,
such as performance, reliability, usability, and safety. For the project, only a few
selected, non-functional requirements are included in the evaluation criteria. These
are chosen based on the limited time scope, which characteristics are believed to
be measurable to some degree and are the most relevant for the testbed. Hence,
basic rather than extra characteristics are included in the evaluation criteria. Using
the terminology of softgoals and hardgoals, the non-functional requirements will be
approached as softgoals.

Based on the framework in [20113], the non-functional requirements being used
in the evaluation criteria is listed below:

2 Availability: "degree to which a system, product or component is operational
and accessible when required for use."

3 Functional Completeness: "degree to which the set of functions covers all the
specified tasks and user objectives."

The nature of the proposed self-healing approaches represents the reasoning for
the chosen non-functional requirements. Procedures such as steps 1 and 2 are drastic,
therefore we presume that both availability and functional completeness will be
affected. Evaluating their performance with regards to these aspects are therefore
highly relevant, and are furthermore fairly essential characteristics of operational
web servers. Referring to figure 3.1, availability and functional completeness are
subcharacteristics of respectively reliability and functional suitability. The remaining
six characteristics; performance efficiency, compatibility, usability, security, maintain-

36 3. METHODOLOGY

ability, and portability, are not prioritized because we believe that these are not as
relevant to the task.

The evaluation criteria are summarized below. With the notion of softgoals
and hardgoals, the functional requirement is formulated in such a way that the
measurement result is binary, whereas the non-functional requirements are formulated
such that the measurement results follow a scale.

1 Healing: The self-healing procedure must remove the vulnerability or suscepti-
bility at hand in the testbed, and make it unreachable and/or unexploitable.

2 Availability: To what degree is the web server operational and accessible after
being healed compared to before the healing process was initiated?

3 Functional Completeness: To what degree covers the set of functions all the
specified tasks and user objectives after being healed compared to before the
healing process was initiated?

3.4 Implementation and measurement of self-healing

To get a sense of how well the self-healing techniques perform, they must be measured
against the evaluation criteria. This can be done by applying certain types of testing
to witness how the changes affected the system. Having three main criteria, these
will be addressed individually.

3.4.1 Software testing

Software testing is "a process, or a series of processes, designed to make sure computer
code does what it was designed to do and, conversely, that it does not do anything
unintended" [MSB11]. For the purpose of measuring how well each self-healing
approach performs, applying such tests gives objective insight to the operation of
the web server. There is a variety of tests used in software testing, but the ones with
the most relevance for the thesis are further briefly described.

Functional testing

In functional testing, "tests are constructed from the functional properties of the
program that are specified in the program’s requirements" [How80]. The piece of
software being tested is treated as a mathematical function, having inputs and
corresponding outputs.

3.4. IMPLEMENTATION AND MEASUREMENT OF SELF-HEALING 37

Unit testing When testing individual subprograms, subroutines, classes, and
procedures in a program, unit testing is performed. Smaller parts of the program is
being tested rather than the program as a whole [MSB11].

Integration testing After having each unit or module tested, the parts are com-
bined, and integration testing is applied [LW90]. It focuses on the interaction between
the units as a group.

Regression testing If modifications have been made to a program, regression
tests ensures that the program performs according to its specification [LW89]. Test
cases are used to reveal potential errors that the alterations may have introduced.

Non-functional testing

Non-functional testing tests the behavior of a system or program, rather than specific
functional requirements. It assures that the system is in possession of certain non-
functional characteristics such as reliability and performance. The results from
testing are measurable, meaning that the results are not subjective. Non-functional
testing is performed after functional testing.

3.4.2 Healing criteria

The healing evaluation criteria measures whether the self-healing done was successful
or not, consequently whether the vulnerability is still present, reachable, and/or
exploitable. For this criteria to be measurable, the same attack which caused the
vulnerability to be exploited must be relaunched. It is possible to create a unit test,
either autonomously or manually, which checks if the same attack causes the same
responses from the system. Since each vulnerability and corresponding web page
probably has a distinctive behavior, each web page requires individual, specific tests.

3.4.3 Availability criteria

The availability evaluation criteria measures whether the self-healing mechanism
has caused downtime on one or more of the web pages. In order to check this, it is
possible to run a script that checks the availability of each vulnerable page. If the
page is available, the HTTP response code15 is OK 200, whereas it would be 40X if it
is unavailable.

3.4.4 Functional Completeness criteria

The functional completeness criteria measures to what degree the essential function-
ality of the web page is preserved. To enable this, a regression test must be made in

15HTTP response status codes indicate whether a HTTP request was successful.

38 3. METHODOLOGY

advance of the healing process, checking if the functionality is in accordance with
the specification. Hence, each path on the web server to be tested must have their
own, individual test, ensuring correct behavior.

Chapter4Experimental Setup

By the term "experimental setup" we understand the tools, platforms and settings
used to perform the practical experiments of the project. In pursuance of the most
appropriate setup, several appliances should be considered and evaluated according to
set criteria. In this chapter, the process of deriving the experimental setup, including
platforms, tools, and settings used in the experiments as well as details of the setup
used, will be presented. The specifications of the machines used throughout the
project are listed in table 4.1 and 4.2.

OS Ubuntu 18.04.4 LTS
Memory 31,3 GiB
Processor Intel®Core™i7-4790 CPU @ 3.60GHz x 8
Graphics Intel®Haswell Desktop
GNOME 3.28.2
OS type 64-bit
Disk 503,0 GB

Table 4.1: Machine specifications, Ubuntu.

OS macOS Catalina 10.15.3
Memory 8 GB 1867 MHz DDR3
Processor 2,7 GHz Dual-Core Intel Core i5
Graphics Intel Iris Graphics 6100 1536 MB
OS type 64-bit
Disk 250,8 GB

Table 4.2: Machine specifications, macOS.

39

40 4. EXPERIMENTAL SETUP

4.1 Selection of tools

Selection of tools includes the process of selecting the most optimal appliances for
a project based on the aims of the project. For this thesis, investigations of self-
healing web servers written in PHP are conducted, and it is therefore required both
a test server in which to heal and automated tools to find vulnerabilities to patch.
Evaluation criteria and methodology for validating testbeds and scanners are further
described, respectively, in sections 3.2.1 and 3.2.2.

4.1.1 Testbed

Two alternatives have been evaluated for selecting the testbed; developing the testbed
by oneself or implementing an open-source web server repository.

Developing the testbed

Having the testbed custom made for the project ensures flexibility towards modifica-
tions and management. It allows for implementations of numerous web vulnerabilities
with a diversity of flexibility levels. The platform can be written in any programming
language, hence PHP. However, implementing this alternative is expected to be more
time demanding than the option of using pre-made solutions.

Implementing existing solutions

Using pre-made solutions might provide less diversity in present vulnerabilities, the
programming language could differ from PHP, and the integration could be more
troublesome. Despite these drawbacks, the option is significantly better concerning
the time limitations.

The Damn Vulnerable Web Application (DVWA)1 is a PHP/MySQL based web
application developed with intentional web vulnerabilities. It is created for edu-
cational purposes, where the user can both learn about and teach common web
vulnerabilities. The platform is available in Docker, has a variety of vulnerabilities, it
is straightforward to implement and is very well documented. The user may choose
between four difficulty levels; low, medium, high, and impossible, whereas in this
thesis, low is the most appropriate level. The solution comes with an IDS (PHPIDS2),
and also has the advantage of being time-efficient since it is a complete product.

As documented in the pre-project (section 1.2) of the thesis, it was early in the
process suggested that the DVWA could be an appropriate choice for a testbed.

1http://www.dvwa.co.uk
2https://github.com/PHPIDS/PHPIDS

4.1. SELECTION OF TOOLS 41

4.1.2 Scanners

In the following subsection, results from testing potential vulnerability scanners for
the thesis are presented. The tools are phpcs-security-audit, RIPS and SonarQube
with SonarScanner.

phpcs-security-audit

The tool is a set of PHP_CodeSniffer3 rules that finds security weaknesses in PHP
source code. The tool appears to be regularly maintained and is tolerably documented.
It is only command line accessible and is fairly easy to set up and implement. With
regards to cost and availability, the tool is open-source and therefore free to use for
an unlimited amount of scans. Its coverage is decent, being able to indicate and
detect vulnerabilities such as insecure SQL queries, use of file upload functions with
direct user input, and possible XSSs. The format of created vulnerability logs is fairly
documented, including which file raised the error or warning, which line number in
the code contains weaknesses and what kind of vulnerability is indicated. Listing 4.1
displays an example output from the scanner.

1 FILE: /var/www/html/DVWA/ vulnerabilities /csrf/ source /low.php
2 --
3 FOUND 0 ERRORS AND 8 WARNINGS AFFECTING 5 LINES
4 --
5 3 | WARNING | User input detetected with $_GET .
6 5 | WARNING | User input detetected with $_GET .
7 6 | WARNING | User input detetected with $_GET .
8 12 | WARNING | Crypto function md5 used.
9 16 | WARNING | MYSQLi function mysqli_query () detected with dynamic

parameter
10 16 | WARNING | HTML construction with (detected .
11 16 | WARNING | Possible XSS detected with . on die
12 16 | WARNING | HTML construction with mysqli_connect_error () detected .
13 --
14

15

16 FILE: /var/www/html/DVWA/ vulnerabilities /csrf/ source /high.php
17 --
18 FOUND 0 ERRORS AND 9 WARNINGS AFFECTING 6 LINES
19 --
20 3 | WARNING | User input detetected with $_GET .
21 5 | WARNING | User input detetected with $_REQUEST .
22 8 | WARNING | User input detetected with $_GET .
23 9 | WARNING | User input detetected with $_GET .
24 15 | WARNING | Crypto function md5 used.
25 19 | WARNING | MYSQLi function mysqli_query () detected with dynamic

parameter

3https://github.com/squizlabs/PHP_CodeSniffer

42 4. EXPERIMENTAL SETUP

26 19 | WARNING | HTML construction with (detected .
27 19 | WARNING | Possible XSS detected with . on die
28 19 | WARNING | HTML construction with mysqli_connect_error () detected .
29 --

Listing 4.1: Example output from phpcs-security-audit.

RIPS

The RIPS static source code analyzer offers two generations of scanners. The first
generation (RIPS 0.5), which has been tested in this project, is an open-source and
free version, whereas the new generation is directed towards commercial use with
greater functionality. The development of RIPS 0.5 has been abandoned since 2013,
and this generation does not support scans using the command line. Since it is not
maintained, the implementation was troublesome, and documentation as of today
appears outdated. Figure 4.1 illustrates the interface of the RIPS scanner.

Figure 4.1: Example of RIPS interface4.

SonarQube with SonarScanner

SonarQube displays the results from the scan in a systematic way, separating between
bugs, vulnerabilities and code smells, among other observations. There are four plans
available, whereas the free and open-source community edition is used during the
selection of tools. Several features are not available in this plan, including command

4http://rips-scanner.sourceforge.net/stats.jpg

4.1. SELECTION OF TOOLS 43

line support and being able to extract security logs into files. These drawbacks have
the potential of making automation, integration, and management significantly more
challenging. Figure 4.2 displays the user interface of the SonarScanner.

Figure 4.2: Example of SonarQube with SonarScanner interface5.

4.1.3 A summary for used tools

This subsection summarizes the use of testbeds and scanners as tools for this master
thesis in two tables: table 4.3 and 4.4. Even though neither candidates appear
optimal, some are more suitable than others. For the evaluation of testbeds, choosing
an already existing solution becomes the prevalent choice, mostly because of the
limited time frame. With regard to the scanners, there are several options with
multiple drawbacks and advantages. The options which have an additional premium,
enterprise, or next-generation version, often score worse than those who do not.
Based on the evaluation criteria, phpcs-security-audit is the best-fitted candidate out
of the scanners. However, even the scanners which perform the best with regards to
coverage are unable to detect slightly more complex vulnerabilities such as CSRF
and brute force prone forms.

5https://miro.medium.com/max/1400/1*ZrnUXbYQk0881qcLuNYC4g.png

44 4. EXPERIMENTAL SETUP

Other potential scanners, not tested in this thesis, are progpilot6, graudit7, and
VisualCodeGrepper8. These were not tested due to time constraints and unforeseen
changes in accessible machine equipment.

Platform Integratable Variety of
vulnerabilities

PHP based Time
efficient

Limitations

Developing the testbed Yes Yes Yes No
Might require a large
amount of time to develop
and implement

Implementing existing
solutions; DVWA

Yes Yes Yes Yes Less flexible than a
self-developed solution

Table 4.3: Evaluation matrix of testbeds.

Tool Coverage Integration and
management

Cost PHP support Comments

phpcs-security-audit Satisfying Satisfying Open-source Yes - False positives occur

RIPS Satisfying Not satisfying Open-source Yes - Only GUI
- Not maintained

SonarQube
with sonar-scanner

Satisfying Not satisfying Open-source Yes

- Only GUI
- Results from scans
not possible to extract to
file for further processing

Table 4.4: Evaluation matrix of scanners.

4.2 Set up of tools during testing

In this section, an overview of the technical set up is given including the tools
we have selected. Briefly, DVWA is run in a Docker container. The PHPIDS is
constantly enabled, and is the only source of breaches used in the self-healing script.
The vulnerability scanner, phpcs-security-audit, is launched for certain self-healing
procedures.

DVWA with PHPIDS The test server is always set to difficulty level "low".
The IDS is always enabled, except for when we do not want the IDS to block the
incoming attack. The DVWA runs in a container, and is launched with the following
command: docker run –rm -it -p 80:80 –name <name> dvwa:<latest tag>.

6https://github.com/designsecurity/progpilot
7https://github.com/wireghoul/graudit/
8https://github.com/nccgroup/VCG

4.3. OVERVIEW OF CODE 45

phpcs-security-audit The vulnerability scanner is installed in the Docker con-
tainer and is launched using the command: php PHP_CodeSniffer/bin/phpcs
–extensions=php,inc,lib,module,info –standard=/root/path/to/ruleset \
/phpcs-security-audit/example_drupal7_ruleset.xml /root/path/to/files. There
are two pre-existing rulesets, and for the thesis, ruleset example_drupal7_ruleset.xml
is used.

Even though the tools allows for modifications to the rulesets, changes have not
been made to either.

Container specifications The DVWA is installed as a Docker container, following
the instructions from the developers9. In addition to the pre-existing packages on the
container, the following list contains additional packages installed, excluding Python
libraries:

• Python 2

• pip

• PHP_CodeSniffer

• phpcs-security-audit

• nano

• curl

4.3 Overview of code

In this section, we present the script used (appendix A.1) to conduct self-healing
and explore self-healing capabilities. A brief explanation of the different components
comprising the script is included. This excludes the functionality of the five self-
healing procedures, which will be further delved into in section 5.1, 5.2, 5.3, 5.4 and
5.5. Figure 4.3 illustrates how the components interact with each other.

4.3.1 Detecting and responding to breaches

The self-healing procedure is initiated when the IDS detects an attack by logging it in
the log file, illustrated in figure 4.4. This is realized by monitoring phpids_log.txt
of PHPIDS for changes, hence if a security incident has taken place. PHPIDS is
implemented in DVWA, and is therefore used as the IDS in this project.

9https://github.com/ethicalhack3r/DVWA

46 4. EXPERIMENTAL SETUP

Figure 4.3: Figure of self-healing script and its components. The IDS monitors the
server, and whenever events happen that trigger the IDS, the script is notified. One
of the self-healing procedures is chosen, and the vulnerability scanner is potentially
invoked. The result from the healing technique is applied to the server.

Figure 4.4: Monitoring the IDS log for new attacks.

If the IDS is disabled, attacks and exploits will not get caught, since the IDS is
the only source of breaches in the system. Figure 4.5 illustrates a command injection
exploit with its corresponding response when the IDS is disabled.

4.3. OVERVIEW OF CODE 47

Figure 4.5: Command injection vulner-
ability example in DVWA.

Figure 4.6: Message displayed when an
attack attempt has been detected.

However, if the IDS is enabled, the browser will demonstrate that the attack
has been detected, and the self-healing process will start. Using the same attack
launched in figure 4.5, the response from the browser and the script are illustrated
in figure 4.6 and figure 4.7. At this point, the script expects the administrator to
choose which of the five self-healing techniques (3.3.1) to handle the incident.

Figure 4.7: Response to hacking attempt in the self-healing script.

4.3.2 Using PHPIDS and phpcs-security-audit scanner

The PHPIDS is not only used to detect the breach, but assists in determining
the cause of the breach. phpcs-security-audit uses the result from the PHPIDS

48 4. EXPERIMENTAL SETUP

in order to scan for vulnerabilities. The scanner is only invoked for steps 2, 3, 4,
and 5. An example of a log entry in PHPIDS, phpcs-security-audit output in the
self-healing script and parts of the corresponding phpcs-security-audit result are
given in respectfully listing 4.2, figure 4.8 and listing 4.3.

1 "172.17.0.1" ,2020 -05 -05 T17 :08:35+00:00 ,20 ," dt id lfi "," REQUEST .page
=..%2 F..%2F..%2F..%2 Fetc %2 Fpassw GET.page =..%2 F..%2F..%2F..%2 Fetc %2
Fpassw " ,"%2 Fvulnerabilities %2 Ffi %2F%3 Fpage %3D..%2F..%2F..%2F..%2
Fetc %2 Fpassw " ,"172.17.0.2"

Listing 4.2: Example entry in PHPIDS log from a directory traversal attempt.

Figure 4.8: Example output form phpcs-security-scanner in the self-healing script.

1 FILE: /var/www/html/ vulnerabilities /fi/ source /high.php
2 --
3 FOUND 0 ERRORS AND 2 WARNINGS AFFECTING 2 LINES
4 --
5 4 | WARNING | User input detetected with $_GET .
6 7 | WARNING | Filesystem function fnmatch () detected with dynamic

parameter
7 --

Listing 4.3: Parts of phpcs-security-audit scanning results.

When using phpcs-security-audit, the output is saved to a .txt-file, and reshaped
to a format which can be used for later. The code for calling phpcs-security-audit
and handling its output from the self-healing script are presented in listing 4.4.

4.3. OVERVIEW OF CODE 49

1 def phpcs (filepath ,date):
2 print " ******* "
3 print " ******* "
4 print (" Initiating phpcs to scan for vulnerabilities on filepath "+

filepath)
5

6 command = "php PHP_CodeSniffer /bin/ phpcs --extensions =php ,inc ,lib ,
module ,info --standard =/ Master / test_server_dir /phpcs -security - audit
/ example_drupal7_ruleset .xml /var/www/html"+ filepath

7 command_list = command . split (" ")
8 filepath_output = "/ Master / test_server_dir / phpcs_outputs /"
9 filename = filepath [len(" vulnerabilities ") +1:]+ "_"+date [:19]+ ".txt"

10 filename = filename . replace ("/", "")
11 f = open(filepath_output +filename ,"w")
12

13 subprocess .call(command_list , stdout =f)
14

15 return filepath_output + filename
16

17 def phpcs_file_loc (phpcs_results_txt):
18 fp = open(phpcs_results_txt , 'r')
19 files_loc =[]
20 while True:
21 line = fp. readline ()
22 locs_found =[]
23 full_error_message = []
24

25 if line [0:4] == "FILE":
26 vuln_file = line [6:]. rstrip ("\n")
27 while True:
28 locs=fp. readline ()
29 if len(locs) > 1:
30 if locs [1]. isdigit () == True or locs [2]. isdigit () == True or

locs [3]. isdigit () == True:
31 if int(filter (str.isdigit , locs [0:4])) not in locs_found :
32 locs_found . append (int(filter (str.isdigit , locs [0:4])))
33 full_error_message . append (locs)
34 continue
35 elif len(locs) == 1:
36 files_loc . append ([vuln_file , locs_found , full_error_message])
37 vuln_file =""
38 locs_found =[]
39 full_error_message =[]
40 break
41 if line [0:5] == "Time:":
42 break
43 fp. close ()
44

50 4. EXPERIMENTAL SETUP

45 return files_loc

Listing 4.4: Code functionality for executing and handling vulnerability scanner
phpcs-security-audit.

4.3.3 Evaluating the self-healing techniques

The self-healing techniques’ performance will be evaluated based on three criteria:
self-healing, availability, and functionality, which is explained in depth in subsection
3.4. The practical solution to their implementation is further elaborated.

Self-healing evaluation

For the self-healing evaluation, measurements of whether the vulnerability in question
is still reachable or present are conducted. This is currently done manually, having
the user relaunch the attack which triggered the IDS initially. Based on the results
from the exploit, the user inputs to the script whether the attack is still possible to
launch successfully. The visual display, when validating the self-healing criteria, is
shown in figure 4.9.

Figure 4.9: Self-healing test in self-healing script.

Availability evaluation

In order to discover the status of the web pages, that is if they are "up" or "down",
scripts in listing 4.5 and 4.6 are run before and after the self-healing process
takes place. The bash scripts use curl to query the web server using URLs from
path_to_files.txt, and write the results to respectfully http_resp_before_heal.txt
and output_http_resp.txt.

4.3. OVERVIEW OF CODE 51

1 for URL in `cat avail_crit / path_to_files .txt `; do echo $URL; curl -m 10
-LIs $1 "$URL" | grep HTTP /1. | awk {'print $2 '}; done | tee

avail_crit / http_resp_before_heal .txt

Listing 4.5: get_HTTP_resp_before.sh

1 for URL in `cat avail_crit / path_to_files .txt `; do echo $URL; curl -m 10
-LIs $1 "$URL" | grep HTTP /1. | awk {'print $2 '}; done | tee

avail_crit / output_http_resp .txt

Listing 4.6: get_HTTP_resp.sh

Content of path_to_files.txt and http_resp_before_heal.txt/output_http_resp.txt
are exemplified in snippets in respectfully figure 4.10 and 4.11.

Figure 4.10: Example of content in path_to_files.txt

Figure 4.11: Example of content in files containing HTTP response codes.

Using the HTTP response code, the availability test is able to determine if the
site is up or down. A site is considered down if the response is "404 Not found". Due
to redirection, the HTTP response code might include "302 Found" in addition to
"200 OK". This is removed from the text files since they are irrelevant to the task.
The availability test returns the number of pages in total, number of pages down
before healing, and number of pages down after healing. The complete code of the
availability test is available in appendix A.1.

Functionality evaluation

The third and final evaluation criteria measures to what extent the functionality
of the healed page is kept. Unit tests for the relevant scenarios must be created

52 4. EXPERIMENTAL SETUP

in advance, and for this project, tests are created for /vulnerabilities/sqli/,
/vulnerabilities/fi/ and /vulnerabilities/exec/. These are run autonomously
after healing, and the results from testing are presented. If a file is given, which is
neither of the three, the test reports "None" as the result. Following, the functionality
tests of the three files are presented.

∗/vulnerabilities/sqli/ The page has the functionality of displaying in the
browser the given user ID. The test therefore checks whether the output is as given
in figure 4.15 when using the input "1".

Figure 4.12: Expected output in functionality test of /vulnerabilities/sqli/.

The evaluation score is 1 if it is able to display the given user ID after healing.

∗/vulnerabilities/fi/ The page shall include either one of three pages which
the user chooses. The test therefore tests if the given page is included and if the page
gives the correct output. The browser display is illustrated in figure 4.13 and 4.14.

4.3. OVERVIEW OF CODE 53

Figure 4.13: Expected output in func-
tionality test of /vulnerabilities/fi/.

Figure 4.14: Expected output in func-
tionality test of /vulnerabilities/fi/
when choosing file1.php.

The evaluation score is 1 if it is able to display all three files with expected output
after healing.

∗/vulnerabilities/exec/ The page is expected to ping a given URL. Hence, the
functionality test checks if the given URL is queried. An example output from the
page with expected behaviour is given in figure 4.15.

Figure 4.15: Expected output in functionality test of /vulnerabilities/exec/.

54 4. EXPERIMENTAL SETUP

The evaluation score is 1 if it is able ping the given URL after healing. The full
code is available in appendix A.1.

Chapter5Experiments and Results

In this chapter, the results from developing a self-healing script and using it to
autonomously remove vulnerabilities are presented. The system uses an IDS to
detect intrusions and a vulnerability scanner to find susceptibilities in the code.
Five self-healing "steps" have been developed, whereas the first is the most radical
approach and the last technique is more nuanced and precise towards particular
vulnerabilities. In order to measure the efficiency of each self-healing procedure,
three evaluation criteria is created.

For each step, the results are summarized in a table. Each experiment is given a
score for how well they satisfy the three evaluation criteria, and the average of all the
experiments of the current step are presented in a row named "Average". However,
vulnerabilities in experiments not covered in certain tests, such as the functionality
test, are given the score "None". When producing the average of all experiments in
such a scenario, the functionality will be documented manually and be included in
the calculation based on these manual findings. A corresponding table is given at the
end of the chapter as well, though it summarizes the performance of each healing
technique.

5.1 Step 1 - Power off web server

The self-healing approach tries to remove or make the vulnerability unreachable by
taking down the web server when an attack has been detected. The code snippet for
the procedure is included in listing 5.1.

1 def step1 ():
2 print (" ******* ")
3 print ("Self - healing mechanism : turn of server ")
4 print (" Server will shutdown now")
5 # launch stop server script
6 os. system ("./ stop_server .sh")

55

56 5. EXPERIMENTS AND RESULTS

7 print (" ******* ")

Listing 5.1: Code snippet of self-healing technique step 1.

A bash script is used in the code of step 1 to turn off the server, presented in
listing 5.2.

1 #!/ bin/bash
2 echo "stop server "
3 stopcommand =" service apache2 stop"
4 eval $stopcommand

Listing 5.2: stop_server.sh script used in step 1.

Figure 5.1: Command injection detected and step 1 is chosen as the self-healing
technique.

When testing the self-healing abilities of step 1, an attack is launched towards the
server in which the IDS must detect. In the following example, a command injection
is performed using input "google.com; ls ../../", equivalent to that presented in
figure 4.5 and figure 4.7. After having executed the attack, the response from the
self-healing script is showed in figure 5.1 when choosing step "one" as the self-healing

5.1. STEP 1 - POWER OFF WEB SERVER 57

procedure. As described in subsection 4.3.3, the availability measurement process is
initiated at once. After the necessary pretests, the self-healing is initiated, shown in
figure 5.2, where the server is shut down.

Figure 5.2: Self-healing initiated and availability test launched in step 1.

When the self-healing has taken place, the three tests are launched. Both the
availability and the self-healing criteria test is launched, demonstrated in figure 5.3.
In the latter, the administrator checks manually if the vulnerability is still present,
hence in this situation, if the output is equivalent in the browser as that presented in
figure 4.5.

Figure 5.3: Availability test and self-healing test in step 1.

As expected, when trying to confirm whether the vulnerability is removed by
using the output from the self-healing test, the server is down. The scenario is
displayed in figure 5.5.

58 5. EXPERIMENTS AND RESULTS

Figure 5.4: Result from self-healing test in step 1.

Note, the functionality test is not run in this scenario, since the server is down.
After having performed self-healing and run the tests, the results are presented, as
illustrated in figure 5.5.

Figure 5.5: Results from running and testing self-healing technique step 1.

Summary of results

The technique is able to manage the vulnerability by making it unreachable, and hence
passes the self-healing test. Since the server as a consequence is taken down, both

5.2. STEP 2 - REMOVE SUSCEPTIBLE PHP FILE 59

availability and functionality tests perform poorly since the web server is inaccessible.
It was not necessary to run multiple exploits for this self-healing process, since it
conducts healing uniformly - the server is shut down whenever a breach is detected
regardless of what kind of attack it is. There is no variety to the technique.

Self-healing test Availability test Functionality test Average

Step 1 1 0 0 0.333

Table 5.1: Summary of results for step 1. The self-healing test achieved full score,
whereas the availability and functionality test performed poorly.

5.2 Step 2 - Remove susceptible PHP file

In this self-healing procedure, the PHP file(s) suspected of being vulnerable is removed
from the server. There were conducted three distinct experiments, trying to heal a
SQL injection, file inclusion, and command injection vulnerability.

1 def step2 (filepath , vuln_files):
2 # filepath : path from PHPIDS
3 # vulnfiles : full filepath of files which the vulnerability

scanner indicated to be vulnerable
4 print (" ******* ")
5 print ("Self - healing mechanism : remove vulnerable PHP file")
6 print (" ******* ")
7 print ("When scanning "+ filepath +", phpcs suggests following

files are vulnerable : "+ ', '.join(vuln_files))
8 print (" ******* ")
9 print (" Moving file "+', '.join(vuln_files)+" from server to

temporary /new folder ")
10 for file in vuln_files :
11 os. system ("mv "+file+" / Master / test_server_dir /

files_from_step2 /")
12 print "* "+file+" is moved to / files_from_step2 "

Listing 5.3: Code snippet of self-healing technique step 2.

Code snippet 5.3 demonstrates the use of step 2. It takes as input the vulnerable
page which PHPIDS outputted, and the files which phpcs-security-audit detected
contain vulnerabilities. Using the latter input, these files are simply moved from
the web server to a separate folder of the server. Even though phpcs-security-audit
presents more details on the vulnerabilities present in the files, these are not taken
into consideration in this step.

60 5. EXPERIMENTS AND RESULTS

Experiment 1 - Command injection

The same exploit and input parameters as in section 5.1 is used, namely "google.com;
ls ../../". The attack details are displayed in figure 5.6.

Figure 5.6: Command injection detected and step 2 is chosen as the self-healing
technique in experiment 1 step 2.

In contrast to the first experiment, phpcs-security-audit is launched (figure 5.7)
since it is necessary to identify which files contain vulnerabilities. As illustrated in
figure 5.7, the susceptible files are presented and moved to a confined directory, that
is /files_from_step2, as part of the self-healing procedure.

5.2. STEP 2 - REMOVE SUSCEPTIBLE PHP FILE 61

Figure 5.7: phpcs-security-audit scanning results and self-healing procedure of
experiment 1 step 2.

The availability test results announces that six pages became unavailable after
healing, pictured in figure 5.8. When relaunching the exploit to measure the extent
of healing, it becomes apparent that the vulnerability is removed since the pages are
inaccessible. It is not possible to interact with the pages containing vulnerabilities.
Figure 5.10 displays the output in a web browser, and "y" is inputted in the script
(figure 5.9) to confirm healing.

Figure 5.8: Availability test results in experiment 1 step 2.

62 5. EXPERIMENTS AND RESULTS

Figure 5.9: Self-healing test in experiment 1 step 2.

Figure 5.10: Browser display after executing self-healing approach experiment 1
step 2.

The functionality test results are presented in figure 5.11. It is not surprising
that the test is unable to have the server ping a given URL, since the page executing
the command is not available.

5.2. STEP 2 - REMOVE SUSCEPTIBLE PHP FILE 63

Figure 5.11: Functionality test results in experiment 1 step 2.

Figure 5.12 displays the results from the criteria testing. Briefly, these results
show that the healing of the vulnerability was a success, but the availability of the
pages hosting these susceptibilities is not preserved. Hence, the functionality of the
healed pages are also not maintained.

Figure 5.12: Results from the self-healing approach in experiment 1 step 2.

Experiment 2 - File inclusion

A file inclusion vulnerability allows for arbitrary files to be uploaded to the server. Dis-
played in figure 5.13 are the attack details with the malicious input "../../../../etc/passw"
from the self-healing script. Figure 5.14 illustrates the attack scenario in the browser.

64 5. EXPERIMENTS AND RESULTS

Figure 5.13: File inclusion detected and step 2 is chosen as the self-healing technique
in experiment 2 step 2.

Figure 5.14: Browser with file inclusion attack string experiment 2 step 2.

phpcs-security-audit is invoked, finding and presenting the suspected vulnerable

5.2. STEP 2 - REMOVE SUSCEPTIBLE PHP FILE 65

files, and the self-healing procedure removes them from the server, demonstrated in
figure 5.15.

Figure 5.15: Results from phpcs-security-audit, the self-healing procedure is per-
formed and the availability testing is initiated in experiment 2 step 2.

Figure 5.16 presents results from the availability test, and figure 5.17 from self-
healing test and functionality test. As can be read from these results, there are
expected down states from the files having been removed presented in the availability
results. The functionality criteria is not met following the same reasoning as the

66 5. EXPERIMENTS AND RESULTS

previous test results; the pages are unavailable. However, the self-healing is seen as
successful since the vulnerability is removed in such a way that the exploitable pieces
are inaccessible. The scenario after healing is presented in a browser in figure 5.18.

Figure 5.16: Results from availability test when healing file inclusion in experiment
2 step 2.

Figure 5.17: Results from self-healing test and functionality test when healing file
inclusion in experiment 2 step 2.

5.2. STEP 2 - REMOVE SUSCEPTIBLE PHP FILE 67

Figure 5.18: Web page presented in a browser after initiating self healing technique
experiment 2 step 2.

Figure 5.19 summarized the results from each test in this experiment. The
vulnerability is healed, and more than 90% of the pages are, according to the set
criteria, available. However, the functionality of the given, vulnerable files are not
preserved.

Figure 5.19: Results from testing in experiment 2 step 2.

Experiment 3 - SQL injection

The current PHP file is vulnerable to SQL injections, and this is exploited using the
attack string "%’ or ’0’=’0" illustrated in figure 5.20 and 5.21.

68 5. EXPERIMENTS AND RESULTS

Figure 5.20: SQL injection detected and step 2 is chosen as the self-healing
technique in experiment 3 step 2.

Figure 5.21: Browser with SQL injection attack string in experiment 3 step 2.

5.2. STEP 2 - REMOVE SUSCEPTIBLE PHP FILE 69

The results from phpcs-security-audit is presented in figure 5.22, as well as
the self-healing process being executed. 7 pages are indicated to contain errors or
vulnerabilities, and are therefore removed during healing.

Figure 5.22: Results from phpcs-security-audit and the self-healing procedure is
performed in experiment 3 step 2.

As anticipated, the files being removed in the self-healing procedure are the ones
being inaccessible, presented in the availability test results shown in figure 5.23.

70 5. EXPERIMENTS AND RESULTS

Figure 5.23: Availability test results from SQL injection experiment after healing
in experiment 3 step 2.

The self-healing test gives the same result as the previous two experiments; the
vulnerability is unreachable and, therefore, unexploitable. Therefore, "y" is inputted
in the script to confirm healing, illustrated in figure 5.24. The functionality test
results tell that the functionality is not preserved, clearly because the page holding
the functionality is removed (figure 5.25).

Figure 5.24: Results from self-healing test when healing SQL injection in experiment
3 step 2.

5.2. STEP 2 - REMOVE SUSCEPTIBLE PHP FILE 71

Figure 5.25: Results from functionality test in experiment 3 step 2.

Figure 5.26 lists the final results from testing in experiment 3 with the SQL
injection. These show that the self-healing technique in this experiment was able to
remove the detected vulnerability. However, both availability and functionality were
sacrificed.

Figure 5.26: Results from testing in experiment 3 step 2.

Summary of results

The self-healing process of removing susceptible files detected by the scanner is
successful in these three experiments with regards to self-healing. The functionality
results are also equal for the experiments, being that the functionality of the pages
are absent in consequence of removing them. There are variations in the availability
results ranging from approximately 0.90 to 0.94. However, for each experiment, all the

72 5. EXPERIMENTS AND RESULTS

files being removed are the ones being detected by the vulnerability scanner. Other
files on the server are not affected by their disappearance. From this perspective,
they all score equally on the availability scale. The results are summarized in table
5.2.

Self-healing test Availability test Functionality test Average

Exp. 1 1 0.94 0 0.647
Exp. 2 1 0.90 0 0.633
Exp. 3 1 0.93 0 0.643
Average 1 0.923 0 0.641

Table 5.2: Summary of results for step 2. The first three rows give the results from
each experiments, including the average performance of each experiment in the final
column. The last row gives the average results from all experiments, and the bottom
right cell gives an idea of how well the self-healing technique performed concerning
the evaluation criteria. Each experiment achieves similar results, where the only
diversity is caused by the availability results. Even though the functionality was not
kept (0 as the result) in either experiment, these results were expected and necessary
for the self-healing to be a success. However, it is preferable to keep the functionality
after healing.

5.3 Step 3 - Remove susceptible line of code in PHP file

Based on the results from the vulnerability scanner, the self-healing technique removes
the lines of code which are indicated to contain vulnerabilities. There was conducted
three experiments, trying to heal a SQL injection, file inclusion and command
injection vulnerability.

1 def step3 (filepath , loc):
2 # filepath : path from PHPIDS
3 #loc: line(s) of code in filepath containing susceptibilities
4 print (" ******* ")
5 print (" ******* ")
6 print ("Self - healing mechanism : remove vulnerable line of code")
7 print (" ******* ")
8 f = open(filepath , "r")
9 lines = f. readlines ()

10 f. close ()
11 print (" Creating .old file for file "+ filepath)
12 name = filepath [len("/var/www/html/ vulnerabilities /"):]
13 name = name. replace ("/","_")
14 os. system ("mv "+ filepath +" / Master / test_server_dir /

files_from_step3 /"+name+".old")

5.3. STEP 3 - REMOVE SUSCEPTIBLE LINE OF CODE IN PHP FILE 73

15 print (" Copying lines of code to old file to path oldfiles /")
16 mod_lines = lines
17 print (" Modifying original file 's vulnerable lines of code")
18 for l in loc:
19 mod_line = "//"+ lines [l -1]
20 mod_lines [l -1] = mod_line
21 print "The lines with modifications are: \n"
22 for mline in mod_lines :
23 print mline
24 print (" Overwriting original file with new , modified lines ")
25 nw = open(filepath , "w")
26 nw. writelines (mod_lines)
27 nw. close ()
28 print " ******* "
29 print " ******* "

Listing 5.4: Code snippet of self-healing technique step 3.

In code snippet 5.4, the functionality of step 3 is presented. In order to "remove"
or isolate the vulnerable lines of code, the solution comments out ("//" in PHP)
the lines according to the list of vulnerable code locations from the input. It reads
the file in question, moves the original file to a separate folder and renames it to
name.old, and comments out the vulnerable lines of code in the vulnerable file.
These modifications are written to the original file on the web server.

Experiment 1 - Command injection

The same exploit and input parameters as in section 5.1 are used, namely "google.com;
ls ../../". The attack details are displayed in figure 5.27.

74 5. EXPERIMENTS AND RESULTS

Figure 5.27: Command injection detected and step 3 is chosen as the self-healing
technique in experiment 1 step 3.

As in the previous experiments, phpcs-security-audit uses the attacked filepath
identified by PHPIDS when scanning. The results are presented and, as expected,
equal to earlier scans of the same path, stated in figure 5.28.

Figure 5.28: phpcs-security-audit results when scanning the identified, attacked
filepath in experiment 1 step 3.

For each vulnerable file identified by the scanner, their corresponding vulnerable
locations are commented out from the code. Example outputs from the self-healing
script for two of the vulnerable files are shown in figure 5.29 and 5.30.

5.3. STEP 3 - REMOVE SUSCEPTIBLE LINE OF CODE IN PHP FILE 75

Figure 5.29: First example output for self-healing script when healing vulnerabilities
in experiment 1 in step 3.

Figure 5.30: Second example output for self-healing script when healing vulnera-
bilities in experiment 1 in step 3.

One example of healed files from the healing process is file low.php, as identified
by phpcs-security-audit (figure 5.28). Inspecting the scanner results from this
file, illustrated in listing 5.5 from appendix A.2, the lines being commented out
is demonstrated. Listing 5.6 shows how the PHP file appears after healing; the
vulnerable lines of code identified by the scanner (3, 5, 10 and 14) are neutralized in
the script.

1 FILE: /var/www/html/ vulnerabilities /exec/ source /low.php
2 ---
3

4 FOUND 0 ERRORS AND 4 WARNINGS AFFECTING 4 LINES
5 ---
6 3 | WARNING | User input detetected with $_POST .
7 5 | WARNING | User input detetected with $_REQUEST .
8 10 | WARNING | System program execution function shell_exec () detected

with dynamic parameter
9 14 | WARNING | System program execution function shell_exec () detected

with dynamic parameter
10 ---

Listing 5.5: Parts of phpcs-security-audit scanning results of low.php in experiment
1 step 3.

76 5. EXPERIMENTS AND RESULTS

1 <?php
2

3 // if(isset ($_POST ['Submit '])) {
4 // Get input
5 // $target = $_REQUEST ['ip '];
6

7 // Determine OS and execute the ping command .
8 if(stristr (php_uname ('s'), 'Windows NT ')) {
9 // Windows

10 // $cmd = shell_exec ('ping ' . $target);
11 }
12 else {
13 // *nix
14 // $cmd = shell_exec ('ping -c 4 ' . $target);
15 }
16

17 // Feedback for the end user
18 $html .= "<pre >{ $cmd }</pre >";
19 }
20

21 ?>

Listing 5.6: low.php after healing in experiment 1 step 3

The availability test results is displayed in figure 5.31. These results state that
all pages are up and existing, namely, no curl query return "404" in the HTTP
response.

Figure 5.31: Results from availability test in experiment 1 in step 3.

The self-healing test scenario is expressed in figure 5.32, 5.33 and 5.34. These
results show that the vulnerability is healed since the vulnerable code is not present
on the sites. They also show that the sites are available. However, it seems the
healing approach, commenting out vulnerable lines of code, have caused errors in the
server code, thus "HTTP ERROR 500" error code.

5.3. STEP 3 - REMOVE SUSCEPTIBLE LINE OF CODE IN PHP FILE 77

Figure 5.32: Self-healing test in experiment 1 in step 3.

Figure 5.33: Browser showing internal
error experiment 1 in step 3.

Figure 5.34: Browser showing internal
error for page high.php in experiment 1
in step 3.

Looking at the results from the availability tests before (figure 5.35) and after
(figure 5.36), we can conclude that there appeared internal server issues from the
healing procedure which need to be resolved to achieve expected functionality.

Figure 5.35: Availability results before healing in experiment 1 step 3.

78 5. EXPERIMENTS AND RESULTS

Figure 5.36: Availability result after healing in experiment 1 step 3.

It is therefore not surprising that the functionality test fails, since there are
errors on the server making it not perform correctly. The details from the test are
demonstrated in figure 5.37.

Figure 5.37: Functionality results in experiment 1 step 3.

The results from the experiment is presented in figure 5.38, showing that the
self-healing and availability criteria are met, while the functionality criteria is not.

Figure 5.38: Results from experiment 1 step 3.

5.3. STEP 3 - REMOVE SUSCEPTIBLE LINE OF CODE IN PHP FILE 79

Experiment 2 - File inclusion

The experiment follows the same setup as the previous experiments with file inclusions,
namely input "../../../../etc/passw", with details in figure 5.39.

Figure 5.39: File inclusion attempt detected and step 3 is chosen as the self-healing
technique in experiment 1 step 3.

Figure 5.40: phpcs-security-audit results when scanning the identified, attacked
filepath in experiment 2 step 3.

phpcs-security audit outputs which files are vulnerable, shown in figure 5.40.
Using these results from the scanner, the self-healing procedure initiates healing of all
files registered as vulnerable. In the two examples, figure 5.41 and 5.42, respectively
files low.php and medium.php are shown with modifications applied. In both cases,
the line of code in which gets the requested page is commented out. The error

80 5. EXPERIMENTS AND RESULTS

message of phpcs-security-audit’s scan is in listing 5.7, implying that there is an issue
using the function $_GET with user input.

Figure 5.41: File low.php healed in experiment 2 step 3.

Figure 5.42: File medium.php healed in experiment 2 step 3.

1 4 | WARNING | User input detetected with $_GET .

Listing 5.7: Parts of phpcs-security-audit scanning results of low.php and
medium.php in experiment 2 step 3.

5.3. STEP 3 - REMOVE SUSCEPTIBLE LINE OF CODE IN PHP FILE 81

The availability results are equal to the previous experiment, i.e., all pages are up.
This can be confirmed when using a browser to try and access the pages. However,
the HTTP responses only changed from "200" to "500" for one file, namely index.php.
The details for the availability testing are displayed in figure 5.43, 5.44 and 5.45.

Figure 5.43: Results from availability test in experiment 2 step 3.

Figure 5.44: Availability results before healing in experiment 2 step 3.

Figure 5.45: Availability result after healing in experiment 2 step 3.

82 5. EXPERIMENTS AND RESULTS

The self-healing test details are given in the script, as shown in figure 5.46. When
trying to execute a file inclusion attempt towards the page in a browser (figure 5.47),
it is clear that the vulnerability is not present. Internal server errors are preventing
normal execution of the page.

Figure 5.46: Self-healing test in experiment 2 step 3.

Figure 5.47: Testing if the file inclusion susceptibility is removed after healing in
experiment 2 in step 3.

As with experiment 1, the functionality of the page is distorted. This is stated in
the self-healing script presented in figure 5.48, but can also be seen when running
manual tests. Figure 5.49 shows how the page is reachable, but the internal server
errors clutters its functionality.

5.3. STEP 3 - REMOVE SUSCEPTIBLE LINE OF CODE IN PHP FILE 83

Figure 5.48: Functionality test results for experiment 2 step 3.

Figure 5.49: Example of reachable page with distorted functionality in experiment
2 step 3.

The results after all the tests are presented in figure 5.50. Experiment 2 achieves
the same results as experiment 1 with regards to the evaluation criteria measurements.

Figure 5.50: Results after testing in experiment 2 step 3.

84 5. EXPERIMENTS AND RESULTS

Experiment 3 - SQL injection

Using attack string "%’ or ’0’=’0" as in previous SQL injection experiments, the
self-healing script output is displayed in figure 5.51.

Figure 5.51: SQL injection detected and step 3 is chosen as the self-healing
technique.

For the rest of the execution of the program, the results are similar to the
previous two experiments. The server is experiencing internal errors due to the
healing technique, but the pages are available (HTTP error response is not 404). The
vulnerability of SQL injection is removed, however. The results are summarized in
figure 5.52.

Figure 5.52: Results from experiment 3 step 3.

Summary of results

In this section, the self-healing technique of removing vulnerable lines of code in PHP
files have been tested. Based on three experiments, it is possible to conclude that
the vulnerabilities are not reachable. Hence, the server is healed. All experiments
also resulted in the pages being available and "up". However, the test for availability

5.4. STEP 4 - ADD SANITIZATION TO INPUT 85

did not include unavailability due to internal server errors, such as "500 Internal
Server Error". As expected, when removing arbitrary lines in the PHP code, this can
cause syntax errors and, therefore, server errors. For that reason, the functionality
was not kept in any of the experiments - the server never worked as intended. The
self-healing technique is able to heal the vulnerability without compromising uptime.
Still, the functionality of the healed paged has been reduced, and similar results will
probably appear if tested with other vulnerable PHP pages. The results from the
experiments are summarized in table 5.3.

Self-healing test Availability test Functionality test Average

Exp. 1 1 1 0 0.666
Exp. 2 1 1 0 0.666
Exp. 3 1 1 0 0.666

Average 1 1 0 0.666

Table 5.3: Summary of results for step 3. The first three rows give the results
from each experiments, including the average performance of each experiment in
the final column. The last row gives the average results from all experiments, and
the bottom right cell gives an idea of how well the self-healing technique performed
concerning the evaluation criteria. As this table illustrates, each experiment has the
same result for each performance test. Even though the functionality was not kept
(0 as the result) in either experiment, these results were expected and necessary for
the self-healing to be a success. However, it is preferable to keep the functionality
after healing.

5.4 Step 4 - Add sanitization to input

In this self-healing technique, basic sanitization and filters are applied to user input.
The type of vulnerability detected decides what kind of sanitization is used. The self-
healing procedure currently supports XSS, SQL injections, directory traversal exploits,
and command injections by interpreting PHPIDS and phpcs-security-audit output.
The attacks not falling into either three categorizations are sanitized uniformly using
a simple, allround method.

First scenario: XSS

if-condition to trigger scenario: ("User input" and postget) in
’\t’.join(phpcs_error_messages) or "HTML construction with direct user
input" in ’\t’.join(phpcs_error_messages) and "xss" in phpids_type
Filter or sanitization method used: htmlspecialchars()
When the detected breach is categorized as an XSS attack, the healing is performed by

86 5. EXPERIMENTS AND RESULTS

sanitizing the user input using htmlspecialchars(). The PHP function is popular
for mitigating script injections since it converts special characters to HTML entities1.

Second scenario: SQL injection

if-condition to trigger scenario: "sqli" in phpids_type and ("mysqli_query"
and "dynamic parameter") in ’\t’.join(phpcs_error_messages)
Filter or sanitization method used: mysqli_real_escape_string()
If the attack string is detected to be an SQL injection, the function mysqli_real_escape_string()
is applied in the current PHP file. It escapes special characters in a string for use in
an SQL statement2.

Third scenario: Directory traversal attacks and command injection

if-condition to trigger scenario: ("dt" in phpids_type and ("id" in phpids_type
or "lfi" in phpids_type)) and "../../" in urllib.unquote(attack_string)
Filter or sanitization method used: str_replace(array("../"), "", $string)
The solution is a "quick fix" for handling path traversal attacks and command injec-
tions with path traversals. The PHP function str_replace() replaces all occurrences
of the search string ("../") with the replacement string ("")3.

Fourth scenario: Attack not identified or not in the first three scenarios

if-condition to trigger scenario: else triggers the scenario.
Filter or sanitization method used: preg_replace(’/[â-zA-Z0-9]/’, ”, $string)
When the attack is not identified or does not fall in either of the previous three
categories, a uniform filtering is applied. preg_replace()4 used in this context
removes all characters which are not letters, numbers or dots (".").

For the experiments, it is desirable to test each sanitization method. Therefore,
experiments using specific exploits to trigger each scenario are conducted. The
last experiment of step 4 will initiate scenario four for each exploit launched in the
previous experiments. This is to compare how suitable distinct sanitization methods
for self-healing are for our test environment in comparison to one being significantly
more comprehensive.

Experiment 1 - XSS

In an XSS attack, malicious scripts are uploaded and run in the browser. In this
exploit, the XSS is reflected and the input parameters<script>alert(1)</script>

1https://www.php.net/manual/en/function.htmlspecialchars.php
2https://www.php.net/manual/en/mysqli.real-escape-string.php
3https://www.php.net/manual/en/function.str-replace.php
4https://www.php.net/manual/en/function.preg-replace.php

5.4. STEP 4 - ADD SANITIZATION TO INPUT 87

are displayed in figure 5.53. The PHPIDS suggests that the attack is possibly one of
the following types: "xss csrf sqli rfe lfi".

Figure 5.53: Example input of reflected XSS in experiment 1 step 4.

Figure 5.54: Reflected XSS detected and self-healing initiated in experiment 1 step
4.

As the attack is detected, self-healing step 4 is initiated (figure 5.54) and phpcs-
security-audit outputs its results for the vulnerable page (figure 5.55).

88 5. EXPERIMENTS AND RESULTS

Figure 5.55: phpcs-security-audit results for reflected XSS exploit in experiment 1
step 4.

Using the results from the scanner and the IDS, the self-healing can start. Figure
5.56 shows the output from healing the vulnerable files. The figure shows that the
outputted, vulnerable files from the vulnerability scanner and the parameters from
the IDS are used when choosing which of the four scenarios to use when healing.

Figure 5.56: Self-healing procedure of reflected XSS in experiment 1 step 4.

Further examining one of the healed PHP files, low.php, listing 5.8 and 5.9

5.4. STEP 4 - ADD SANITIZATION TO INPUT 89

respectfully display the code before and after patching. The user input will now be
sanitized using function htmlspecialchars(). The function is applied in line 6 and
7 of the file.

1 <?php
2

3 header ("X-XSS - Protection : 0");
4

5 // Is there any input ?
6 if(array_key_exists ("name", $_GET) && $_GET ['name '] != NULL) {
7 // Feedback for end user
8 $html .= '<pre > Hello ' . $_GET ['name '] . ' </pre >';
9 }

10

11 ?>

Listing 5.8: low.php before healing in experiment 1 step 4.

1 <?php
2

3 header ("X-XSS - Protection : 0");
4

5 // Is there any input ?
6 if(array_key_exists ("name", $_GET) && htmlspecialchars ($_GET ['name '

]) != NULL) {
7 // Feedback for end user
8 $html .= '<pre > Hello ' . htmlspecialchars ($_GET ['name ']) . ' </pre >'

;
9 }

10

11 ?>

Listing 5.9: low.php after healing in experiment 1 step 4.

In order to evaluate whether the vulnerability is healed, manual inspection is
needed. Relaunching of the exploit is illustrated in figure 5.57, and shows that the
healing was a success since the browser did not execute alert() from the injected
script. The special characters are converted to HTML entities by the sanitization
function.

90 5. EXPERIMENTS AND RESULTS

Figure 5.57: Browser result from relaunching exploit after healing in experiment 1
step 4.

The results from the availability test, self-healing test and functionality test from
the script are presented in figure 5.58. Since the script has not automated functionality
testing for the page with the reflected XSS vulnerability (/vulnerabilities/xss_r/),
the results for this test shows "None". However, we can conclude that the functionality
is preserved after healing by manual inspection; the functionality of the page is simply
to display to the user what is inputted in the form, illustrated in figure 5.57. From
the results, we can also read that the availability was not distorted from healing.

Figure 5.58: Results from experiment 1 step 4.

Experiment 2 - SQL injection

Using the input as in previous experiments, "%’ or ’0’=’0" to trigger the IDS, the
self-healing responds as presented in figure 5.59. The attack is, according to the IDS,

5.4. STEP 4 - ADD SANITIZATION TO INPUT 91

identified as one of the following: "xss csrf sqli id lfi".

Figure 5.59: SQL injection detected by self-healing script in experiment 2 step 4.

The results from the vulnerability scanner are equal to previous scans of /vulnerabilities/
sqli/ (figure 5.60), and are used in the self-healing technique. The script identifies
the attack as an SQL injection, and uses mysqli_real_escape_string() to sanitize
the user input. Figure 5.61 illustrates an example from the healing procedure, with
low.php as example file.

Figure 5.60: phpcs-security-audit results in experiment 2 step 4.

92 5. EXPERIMENTS AND RESULTS

Figure 5.61: Self-healing low.php in experiment 2 step 4.

Further inspection of the source code of low.php before and after healing in
listing 5.10 and 5.11, the changes are featured. The fifth line in the code sanitizes
the user input before it is used in the SQL query.

1 <?php
2

3 if(isset ($_REQUEST ['Submit '])) {
4 // Get input
5 $id = $_REQUEST ['id '];
6

7 // Check database
8 $query = " SELECT first_name , last_name FROM users WHERE user_id = '

$id ';";
9 $result = mysqli_query ($GLOBALS [" ___mysqli_ston "], $query) or die(

'<pre >' . ((is_object ($GLOBALS [" ___mysqli_ston "])) ? mysqli_error (
$GLOBALS [" ___mysqli_ston "]) : (($___mysqli_res =
mysqli_connect_error ()) ? $___mysqli_res : false)) . ' </pre >');

10

11 // Get results
12 while ($row = mysqli_fetch_assoc ($result)) {
13 // Get values
14 $first = $row[" first_name "];
15 $last = $row[" last_name "];
16

17 // Feedback for end user
18 $html .= "<pre >ID: {$id}
 First name: { $first }
 Surname : {

$last }</pre >";
19 }
20

21 mysqli_close ($GLOBALS [" ___mysqli_ston "]);
22 }
23

24 ?>

Listing 5.10: low.php before healing in experiment 2 step 4.

5.4. STEP 4 - ADD SANITIZATION TO INPUT 93

1 <?php
2

3 if(isset ($_REQUEST ['Submit '])) {
4 // Get input
5 $id = mysqli_real_escape_string ($GLOBALS [" ___mysqli_ston "], $_REQUEST [

'id ']);
6

7 // Check database
8 $query = " SELECT first_name , last_name FROM users WHERE user_id = '

$id ';";
9 $result = mysqli_query ($GLOBALS [" ___mysqli_ston "], $query) or die(

'<pre >' . ((is_object ($GLOBALS [" ___mysqli_ston "])) ? mysqli_error (
$GLOBALS [" ___mysqli_ston "]) : (($___mysqli_res =
mysqli_connect_error ()) ? $___mysqli_res : false)) . ' </pre >');

10

11 // Get results
12 while ($row = mysqli_fetch_assoc ($result)) {
13 // Get values
14 $first = $row[" first_name "];
15 $last = $row[" last_name "];
16

17 // Feedback for end user
18 $html .= "<pre >ID: {$id}
 First name: { $first }
 Surname : {

$last }</pre >";
19 }
20

21 mysqli_close ($GLOBALS [" ___mysqli_ston "]);
22 }
23

24 ?>

Listing 5.11: low.php after healing in experiment 2 step 4.

To evaluate if the self-healing was a success, the attack is rerun. The browser
display when doing so, is shown in figure 5.62. The malicious attack string is sanitized
and therefore does not interrupt the SQL query.

94 5. EXPERIMENTS AND RESULTS

Figure 5.62: Example in browser after healing in experiment 2 step 4.

For the functionality test, the results are displayed in figure 5.63 and 5.64. These
show that the functionality of the page is kept in accordance to the unit test; the
page outputs the ID which is requested, namely "admin".

Figure 5.63: Functionality results in experiment 2 step 4.

5.4. STEP 4 - ADD SANITIZATION TO INPUT 95

Figure 5.64: Example in browser for functionality test after healing in experiment
2 step 4.

The final results from the experiment are summarized in figure 5.65 from the
self-healing script. The experiment achieves a complete score on each evaluation
criteria.

Figure 5.65: Results in experiment 2 step 4.

Experiment 3 - Command injection

The experiment used "localhost; ls ../../" to trigger the self-healing script, illus-
trated in figure 5.66. The IDS indicates that the attack is one of the following "dt
id lfi".

96 5. EXPERIMENTS AND RESULTS

Figure 5.66: Self-healing script initiated by command injection attempt in experi-
ment 3 step 4.

The vulnerability scanner outputs which files are vulnerable (figure 5.67), and
these are used in the self-healing. Healing of one of the vulnerable files, low.php, is
presented in figure 5.68. We can see from the figure that the self-healing procedure
initiates healing for a directory traversal and/or command injection vulnerability.

Figure 5.67: phpcs-security-audit results in experiment 3 step 4.

5.4. STEP 4 - ADD SANITIZATION TO INPUT 97

Figure 5.68: Example from healing procedure in step 3 step 4.

The source code for low.php before and after healing is shown in listing 5.12 and
5.13. The fifth line of code shows where modifications have been made, hence where
str_replace has been implemented after healing.

1 <?php
2

3 if(isset ($_POST ['Submit '])) {
4 // Get input
5 $target = $_REQUEST ['ip '];
6

7 // Determine OS and execute the ping command .
8 if(stristr (php_uname ('s'), 'Windows NT ')) {
9 // Windows

10 $cmd = shell_exec ('ping ' . $target);
11 }
12 else {
13 // *nix
14 $cmd = shell_exec ('ping -c 4 ' . $target);
15 }
16

17 // Feedback for the end user
18 echo "<pre >{ $cmd }</pre >";
19 }

Listing 5.12: low.php before healing in experiment 3 step 4.

1 <?php
2

3 if(isset ($_POST ['Submit '])) {
4 // Get input
5 $target = str_replace (array ("../"), "", $_REQUEST ['ip ']);
6

7 // Determine OS and execute the ping command .
8 if(stristr (php_uname ('s'), 'Windows NT ')) {

98 5. EXPERIMENTS AND RESULTS

9 // Windows
10 $cmd = shell_exec ('ping ' . $target);
11 }
12 else {
13 // *nix
14 $cmd = shell_exec ('ping -c 4 ' . $target);
15 }
16

17 // Feedback for the end user
18 echo "<pre >{ $cmd }</pre >";
19 }

Listing 5.13: low.php after healing in experiment 3 step 4.

When evaluating if the vulnerability has been removed, the original exploit was
relaunched. The results in a browser before and after healing are shown in figure 5.69
and 5.70. The healing removed the "../../" used in the attack, but it appears that
the command injection vulnerability is still present since the command ls is executed.
This can cause concern for other attacks not relying on traversing directories. Figure
5.71 shows another, classic command injection string, namely "cat /etc/passwd",
being executed successfully on the server after healing. This strongly indicates that
the healing was not a success.

Figure 5.69: Launched command injec-
tion attack before healing in step 3 step
4.

Figure 5.70: Launched command injec-
tion attack after healing in step 3 step
4.

5.4. STEP 4 - ADD SANITIZATION TO INPUT 99

Figure 5.71: Second command injection attack after healing in step 3 step 4.

Therefore, the self-healing criteria is not met. For the functionality testing, the
page is still able to ping the given URL, resulting in full score. The two tests are
illustrated in figure 5.72. The summary of the results are given in figure 5.73.

Figure 5.72: Functionality test results in step 3 step 4.

100 5. EXPERIMENTS AND RESULTS

Figure 5.73: Results from tests in step 3 step 4.

Experiment 4 - File inclusion

The experiment possesses portions of the same results as the previous experiment. The
attack string used is "../../../../etc/passwd", which results in PHPIDS classifying
it as either "dt id lfi". The self-healing procedure recognizes the attack pattern as
either command injection, directory traversal or file inclusion. Using the file low.php
as an example from the healing, its source code before and after healing is presented
in respectfully listing 5.14 and 5.15. The $file variable is used in the index.php,
presented in listing 5.16.

1 <?php
2

3 // The page we wish to display
4 $file = $_GET ['page '];
5

6 ?>

Listing 5.14: low.php before healing in experiment 4 step 4.

1 <?php
2

3 // The page we wish to display
4 $file = str_replace (array ("../"), "", $_GET ['page ']);
5

6 ?>

Listing 5.15: low.php after healing in experiment 4 step 4.

1 ...
2 if(isset ($file))
3 include ($file);
4 else {
5 header ('Location :? page= include .php ');

5.4. STEP 4 - ADD SANITIZATION TO INPUT 101

6 exit;
7 }
8 ...

Listing 5.16: Parts of index.php which includes files on the server in experiment
4 step 4.

The browser display when launching an exploit using the original attack string
and a modification ("/etc/passwd/") after healing are presented in figure 5.74
and 5.75. When inspecting these, the same results as in the command injection
experiment are prevalent. It is still possible to include files even though directory
traversal with "../../" is infeasible.

Figure 5.74: File inclusion attempt after
healing in experiment 4 step 4.

Figure 5.75: Second file inclusion attack
after healing in experiment 4 step 4.

Therefore, healing of the vulnerability was not a success. However, both availabil-
ity and functionality are preserved after healing. The results are, therefore, equivalent
to the previous experiment, summarized in figure 5.73.

Experiment 5 - Extensive sanitization

The last scenario of healing technique step 4 is a general, extensive mechanism
that removes all characters except for letters, numbers, and dots. To trigger this
process, the technique must not associate the attack parameters with either one of
the previous three scenarios. However, in this experiment, the healing mechanism is
used on the former four attack schemes to evaluate its performance. In addition, a
stored XSS is tested in this experiment. A summary of the details of the conducted
experiment is shown in table 5.4.

102 5. EXPERIMENTS AND RESULTS

Path Vulnerability/
exploit

Attack input

/vulnerabilities/xss_r/ Reflected XSS <script>alert(1)</script>
/vulnerabilities/sqli/ SQL injection %’ or ’0’=’0

/vulnerabilities/exec/ Command
injection

localhost; ls ../../

/vulnerabilities/fi/ Local file inclusion ../../../../../../../../../../../
../../etc/passwd

/vulnerabilities/xss_s/ Stored XSS <script>alert(1)</script>

Table 5.4: Table summarizing attacks to trigger scenario four of step four.

After healing the five exploits using preg_replace() to replace all non-letters,
non-integers and non-dots, the vulnerabilities were not any more reachable and
therefore not exploitable for the given attack inputs. The results from the file
inclusion is presented in figure 5.76 and 5.77. The images show that the illegal
characters are removed from the input before executing the request. The patched
source code of /vulnerabilities/fi/source/low.php in listing 5.17 illustrates
how preg_replace() has been implemented.

Figure 5.76: Launching file inclusion attack in experiment 5 step 4.

5.4. STEP 4 - ADD SANITIZATION TO INPUT 103

Figure 5.77: Error in apache2 error log from file inclusion attempt in experiment 5
step 4.

1 <?php
2

3 // The page we wish to display
4 $file = preg_replace ('/[^a-zA -Z0 -9.]/ ', '', $_GET ['page ']);
5

6 ?>

Listing 5.17: /vulnerabilities/fi/source/low.php after healing in experiment
5 step 4.

Figure 5.78: Stored XSS functionality deviation in experiment 5 step 4.

The availability of all pages was also kept. Functionality was preserved, but
there are cases showing that the functionality is not entirely as it was before healing.
Figure 5.78 shows an example from the stored XSS with a comment section with

104 5. EXPERIMENTS AND RESULTS

Self-healing test Availability test Functionality test Average

Exp. 1 1 1 None 1
Exp. 2 1 1 1 1
Exp. 3 0 1 1 0.666
Exp. 4 0 1 1 0.666
Exp. 5 1 1 1 1

Average 0.6 1 1 0.867

Table 5.5: Summary of results for step 4. The first five rows give the results
from each experiments, including the average performance of each experiment in
the final column. The fifth experiment includes the result from the average of each
subexperiments. The last row gives the average results from all experiments, and
the bottom right cell gives an idea of how well the self-healing technique performed
concerning the evaluation criteria. The table shows that there was some differences
in performance. However, according to the given evaluation criteria, the self-healing
technique achieved the best scores for experiment 1, 2 and 5.

the same comment before and after healing. Even though the vulnerability has been
removed after healing, it shows that the guestbook displays comments differently
because of the sanitization.

Summary of results

In this self-healing technique, popular quick fixes and sanitization methods for a
variety of PHP web vulnerabilities have been tested. When relaunching the attacks
which triggered the IDS in experiment 1, 2, 3, and 4, the self-healing criteria was
met for all but experiment 3. However, variations of attack input in experiment 4
proved that the sanitization method used is not sufficient with regards to healing. For
experiment 2, the use of mysqli_real_escape_string() to prevent SQL injections
is discredited, since it is often misapplied. In this self-healing script, scenario 2 using
this sanitization method does not make sure that the variable is quoted correctly
in the SQL query. If this was not priorly implemented in the PHP file, the healing
mechanism leaves the page still vulnerable to SQL injections.

The fifth experiment comprises tests of several vulnerabilities after being healed
with a comprehensive sanitization method. The results show that the healing was
successful for all the vulnerabilities, but at the expense of server functionality. The
experimental results are presented in table 5.5.

5.5. STEP 5 - CORRECT SUSCEPTIBLE CODE CAUSING VULNERABILITY 105

5.5 Step 5 - Correct susceptible code causing vulnerability

In the last self-healing procedure, the goal is to correct the code in which inflicts
vulnerabilities. This stands out from the other, former steps since it tries to remove
concrete vulnerabilities using recommended patching, rather than eliminating symp-
toms of breaches. It currently attempts to identify XSSs, command injection using
shell_exec() and SQL injections. The method does not use wide-ranging patching
suitable for multiple vulnerabilities such as the generic approach of step 4. It has a
specific patching alternative for the given vulnerability, narrowed down to specific
susceptible functions and appliances.

XSS patching

if-condition to trigger patching: ("User input" and postget) in
’\t’.join(phpcs_error_messages) or "HTML construction with direct user
input" in ’\t’.join(phpcs_error_messages) and "xss" in phpids_type
Patching approach: htmlspecialchars()
Follows the same reasoning as the first scenario in step 4.

Command injection with shell_exec() patching

if-condition to trigger patching: "shell_exec" in ’\t’.join(phpcs_error_messages)
and ("dt" in phpids_type or "id" in phpids_type or "lfi" in phpids_type)
Patching approach: shell_exec(’cmd ’ . escapeshellarg($string))
The PHP function escapeshellarg() escapes a string to be used as a shell argu-
ment5, preventing disruptions of shell command execution.

SQL injection patching

if-condition to trigger patching: "sqli" in phpids_type and "MYSQLi" in
’\t’.join(phpcs_error_messages)
Patching approach: Prepared statements
One of the most efficient solutions to avoiding SQL injections in PHP are by the use
of prepared statements6,7. This is implemented in the SQL injection-specific patching
of step 5. The protection is achieved by using mysqli_prepare() to prepare the
statement for further processing, using it in the function mysqli_stmt_bind_param()
to bind the parameters and executing the query using mysqli_stmt_execute().
mysqli_stmt_get_result() is used to receive the results from the query.

5https://www.php.net/manual/en/function.escapeshellarg.php
6https://www.php.net/manual/en/security.database.sql-injection.php
7https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

106 5. EXPERIMENTS AND RESULTS

Experiment 1 - SQL injection

Using input "%’ or ’0’=’0" to trigger the IDS and self-healing script, the display
from the script is illustrated in figure 5.79. The IDS suggests that attack is either
one of "xss csrf sqli id lfi". The vulnerability scanner is run (figure 5.80), and the
results are equivalent to earlier runs of the scanner.

Figure 5.79: SQL injection detected and healing technique 5 is selected in experi-
ment 1 step 5.

Figure 5.80: phpcs-security-audit results in experiment 1 step 5.

Each of the vulnerable files are iterated through in the self-healing process to
determine what kind of vulnerability might be present, as can be seen in figure 5.81.

5.5. STEP 5 - CORRECT SUSCEPTIBLE CODE CAUSING VULNERABILITY 107

Figure 5.81: Healing of all vulnerable files in experiment 1 step 5.

The file which we launched the SQL injection towards, low.php, is suspected to
contain such a vulnerability. The code of the file before and after healing is presented
in listing 5.18 and 5.19. Line 8 and 9 of script 5.18 are modified to line 8 to 12 in
5.19.

1 <?php
2

3 if(isset ($_REQUEST ['Submit '])) {
4 // Get input
5 $id = $_REQUEST ['id '];
6

7 // Check database
8 $query = " SELECT first_name , last_name FROM users WHERE user_id = '

$id ';";
9 $result = mysqli_query ($GLOBALS [" ___mysqli_ston "], $query) or die(

'<pre >' . ((is_object ($GLOBALS [" ___mysqli_ston "])) ? mysqli_error (
$GLOBALS [" ___mysqli_ston "]) : (($___mysqli_res =
mysqli_connect_error ()) ? $___mysqli_res : false)) . ' </pre >');

10

11 // Get results
12 while ($row = mysqli_fetch_assoc ($result)) {

108 5. EXPERIMENTS AND RESULTS

13 // Get values
14 $first = $row[" first_name "];
15 $last = $row[" last_name "];
16

17 // Feedback for end user
18 $html .= "<pre >ID: {$id}
 First name: { $first }
 Surname : {

$last }</pre >";
19 }
20

21 mysqli_close ($GLOBALS [" ___mysqli_ston "]);
22 }
23

24 ?>

Listing 5.18: low.php before healing SQL injection in experiment 1 step 5.

1 <?php
2

3 if(isset ($_REQUEST ['Submit '])) {
4 // Get input
5 $id = $_REQUEST ['id '];
6

7 // Check database
8 $query = " SELECT first_name , last_name FROM users WHERE user_id =

?";
9 $prep = mysqli_prepare ($GLOBALS [" ___mysqli_ston "], $query);

10 mysqli_stmt_bind_param ($prep ,'s', $id);
11 mysqli_stmt_execute ($prep);
12 $result = mysqli_stmt_get_result ($prep);
13

14 // Get results
15 while ($row = mysqli_fetch_assoc ($result)) {
16 // Get values
17 $first = $row[" first_name "];
18 $last = $row[" last_name "];
19

20 // Feedback for end user
21 echo "<pre >ID: {$id}
 First name: { $first }
 Surname : {

$last }</pre >";
22 }
23

24 mysqli_close ($GLOBALS [" ___mysqli_ston "]);
25 }
26

27 ?>

Listing 5.19: low.php after healing SQL injection in experiment 1 step 5.

When testing if the SQL injection vulnerability is removed, the same attack
that triggered the IDS is launched. Figure 5.82 shows the output in browser before

5.5. STEP 5 - CORRECT SUSCEPTIBLE CODE CAUSING VULNERABILITY 109

healing, while figure 5.83 shows after healing. The SQL injection has been removed,
as indicated in the figures.

Figure 5.82: Browser output from SQL
injection attack before healing in experi-
ment 1 step 5.

Figure 5.83: Browser output from SQL
injection attack after healing in experi-
ment 1 step 5.

After having healed the vulnerability, measurement of functionality criteria is
initiated. Figure 5.84 presents the functionality test and its results from the self-
healing script. The script was able to heal the vulnerability while maintaining
essential functionality of the page.

Figure 5.84: Functionality test results in experiment 1 step 5.

The final results from the three evaluation measurements are summarized in
figure 5.85. Each criteria achieves the same result, being 1.

110 5. EXPERIMENTS AND RESULTS

Figure 5.85: Results from experiment 1 step 5.

Experiment 2 - XSS

For the experiment, input <script>alert(1)</script> was used to initiate the
self-healing script. The experiment was conducted on both pages with a reflected
XSS vulnerability and stored XSS vulnerability, using the same input. The IDS
yields the same predictions for possible attacks: "xss csrf id rfe lfi". The reflected
XSS details from when it was detected are displayed in figure 5.86.

Figure 5.86: Reflected XSS detected by self-healing script in experiment 2 step 5.

The healing mechanism uses the output from phpcs-security-audit when inputting
which files to heal, illustrated in figure 5.87. The healing mechanism is equivalent to
that of section 5.4 scenario 1; htmlspecialchars() is applied to user input.

5.5. STEP 5 - CORRECT SUSCEPTIBLE CODE CAUSING VULNERABILITY 111

Figure 5.87: Self-healing process in experiment 2 step 5.

For the reflected XSS, a comparison between code of file low.php before healing
(listing 5.20) and after healing (listing 5.21) shows that the PHP sanitization function
is implemented on user input, preventing harmful code injections.

1 <?php
2

3 header ("X-XSS - Protection : 0");
4

5 // Is there any input ?
6 if(array_key_exists ("name", $_GET) && $_GET ['name '] != NULL) {
7 // Feedback for end user
8 echo '<pre > Hello ' . $_GET ['name '] . ' </pre >';
9 }

10

11 ?>

Listing 5.20: low.php before healing SQL injection in experiment 1 step 5.

1 <?php
2

3 header ("X-XSS - Protection : 0");
4

5 // Is there any input ?
6 if(array_key_exists ("name", $_GET) && htmlspecialchars ($_GET ['name '

]) != NULL) {

112 5. EXPERIMENTS AND RESULTS

7 // Feedback for end user
8 echo '<pre > Hello ' . htmlspecialchars ($_GET ['name ']) . ' </pre >';
9 }

10

11 ?>

Listing 5.21: low.php after healing SQL injection in experiment 1 step 5.

Figure 5.88 and 5.89 illustrates output from the browser before and after healing
given the attack string. This clearly shows that the browser is prevented from running
malicious scripts after being healed.

Figure 5.88: Browser output from re-
flected XSS attack before healing in ex-
periment 1 step 5.

Figure 5.89: Browser output from re-
flected XSS attack after healing in experi-
ment 1 step 5.

For the second example using stored XSS, the browser output before and after
healing are presented in figure 5.90 and 5.91. The experiment yields the same results
as reflected XSS; hence, the user input is sanitized.

5.5. STEP 5 - CORRECT SUSCEPTIBLE CODE CAUSING VULNERABILITY 113

Figure 5.90: Browser output from
stored XSS attack before healing in ex-
periment 1 step 5.

Figure 5.91: Browser output from
stored XSS attack after healing in experi-
ment 1 step 5.

Results from the tests of the reflected XSS, which also are representative for the
stored XSS, are presented in figure 5.92.

Figure 5.92: Results from experiment 2 step 5.

Experiment 3 - Command injection

For the command injection, input "localhost; ls ../../" was used as attack input.
This results in the IDS reacting and predicts the attack to be either "dt id lfi",
shown in figure 5.93.

114 5. EXPERIMENTS AND RESULTS

Figure 5.93: Self-healing script initiated in experiment 3 step 5.

The results from the vulnerability scanner (figure 5.94) is used in the healing
process to decide which files to heal. The output from the self-healing is presented in
figure 5.95, highlighting which lines are sanitized using escapeshellarg().

Figure 5.94: phpcs-security-audit results in experiment 3 step 5.

5.5. STEP 5 - CORRECT SUSCEPTIBLE CODE CAUSING VULNERABILITY 115

Figure 5.95: Self-healing process in experiment 3 step 5.

After healing, listing 5.22 and 5.23 illustrate the changed lines of the vulnerable
files low.php before and after healing. The misconfiguration is that the function
shell_exec() takes in direct user input, making it vulnerable to remote command
executions from arbitrary users. As presented in listing 5.23, the user input is now
sanitized before being executed.

1 <?php
2

3 if(isset ($_POST ['Submit '])) {
4 // Get input
5 $target = $_REQUEST ['ip '];
6

7 // Determine OS and execute the ping command .
8 if(stristr (php_uname ('s'), 'Windows NT ')) {
9 // Windows

10 $cmd = shell_exec ('ping ' . $target);
11 }

116 5. EXPERIMENTS AND RESULTS

12 else {
13 // *nix
14 $cmd = shell_exec ('ping -c 4 ' . $target);
15 }
16

17 // Feedback for the end user
18 echo "<pre >{ $cmd }</pre >";
19 }
20

21 ?>

Listing 5.22: low.php before healing command injection vulnerability in experiment
3 step 5.

1 <?php
2

3 if(isset ($_POST ['Submit '])) {
4 // Get input
5 $target = $_REQUEST ['ip '];
6

7 // Determine OS and execute the ping command .
8 if(stristr (php_uname ('s'), 'Windows NT ')) {
9 // Windows

10 $cmd = shell_exec ('ping ' . escapeshellarg ($target));
11 }
12 else {
13 // *nix
14 $cmd = shell_exec ('ping -c 4 ' . escapeshellarg ($target)

);
15 }
16

17 // Feedback for the end user
18 echo "<pre >{ $cmd }</pre >";
19 }
20

21 ?>

Listing 5.23: low.php after healing command injection vulnerability in experiment
3 step 5.

When testing if the vulnerability has healed by relaunching the attack, the
attack is "rejected" by the server, leaving the browser blank (figure 5.96). The
/var/log/apache2/error.log shows that the ping to be executed with the attack
input "localhost; ls ../../" fails since the host does not exist. Using the sanitization
function escapeshellarg() on the given attack input returns ’localhost; ls
../../’. Hence, ping ’localhost; ls ../../’ is executed instead, which is an
unknown host.

5.5. STEP 5 - CORRECT SUSCEPTIBLE CODE CAUSING VULNERABILITY 117

Figure 5.96: Ping fail when executing attack after healing in experiment 3 step 5.

The results from the three evaluation measurements are presented in figure 5.97.
They all achieve full score on the scale.

Figure 5.97: Results from experiment 3 step 5.

Summary of results

The self-healing technique removes the vulnerability, which is identified by patching
coding errors. The three experiments conducted healing of common web vulnerabili-
ties such as XSS and SQL injections. They were all able to heal the vulnerability
while meeting the availability and functionality criteria. Hence, this healing technique
performs the best out of all five with regards to the evaluation criteria. However,
these results can only be applied to these special cases on this web server and is
therefore not scaleable to other systems. The technique, as of now, only has support
for the vulnerabilities tested in the experiment, when in reality, there are multitudes
of other web vulnerabilities that might be present.

118 5. EXPERIMENTS AND RESULTS

Self-healing test Availability test Functionality test Average

Exp. 1 1 1 1 1
Exp. 2 1 1 None 1
Exp. 3 1 1 1 1

Average 1 1 1 1

Table 5.6: Summary of results for step 5. The first three rows give the results from
each experiments, including the average performance of each experiment in the final
column. The last row gives the average results from all experiments, and the bottom
right cell gives an idea of how well the self-healing technique performed concerning
the evaluation criteria. The table shows that healing technique 5 showed significant
performance in all the three experiments.

5.6 Chapter summary

In this chapter, a self-healing script was introduced, explained, and demonstrated
with concrete cases. The script has one source of detecting breaches, namely an IDS.
The script uses the detection mechanism to initiate either one of five self-healing
procedures. The first self-healing mechanism performs healing by turning off the
server whenever a security incident has occurred. The second process removes files
which are indicated by the vulnerability scanner to contain vulnerabilities, while
the third self-healing process removes the lines in the code of the susceptible files,
which might contain vulnerabilities. The three first self-healing steps heal uniformly
with regards to exploit, meaning that they heal the same way independent of what
the vulnerability and attack parameters are. Step four and five use sanitization and
patching to remove specific vulnerabilities, performing better on both availability
and functionality criteria. However, in certain experiments of step 4, the healing
criteria is not met since sanitization and filtering are used wrongly for the purpose
of removing vulnerabilities. Table 5.7 presents the scores of all healing mechanisms
based on the evaluation criteria.

The ideal healing mechanism for a system having been prone to a cyberattack,
is to remove the vulnerability without disrupting other characteristics of the server,
such as availability and functionality. However, the results from this testing prove
that the intersection between guaranteed healing while preserving other essential
traits is challenging. The more comprehensive and extreme measures to remove
vulnerabilities, such as steps 1, 2, and 3, are less complex to implement and act in some
ways as failsafe procedures. However, step 4, and especially step 5, providing better
performance on all three evaluation criteria, require significantly more entangled
and composite development and implementation, as is clearly demonstrated in the

5.6. CHAPTER SUMMARY 119

Average result from experiments

Healing technique 1 0.333
Healing technique 2 0.641
Healing technique 3 0.666
Healing technique 4 0.867
Healing technique 5 1

Table 5.7: Summary of results for all self-healing techniques. The table includes
the average result from each healing technique in the rows. It clearly indicates that,
according to the set evaluation criteria, step 1 performs the poorest, while step 5 has
the best scores.

experiments. Nevertheless, all steps need unit and regression tests for functionality
measures, which is also a time-consuming task to create for each accessible file.
Nevertheless, these results are specific to the conducted experiments of this thesis
and cannot necessarily be applied to all vulnerable servers.

Chapter6Discussion

In this chapter, the research questions of the thesis are discussed against the achieved
results. Further, the arising limitations of the project will be discussed, as well as
suggestions for future work on the topic.

6.1 RQ1: Pre-existing self-healing techniques

The first research question, "What kind of self-healing techniques already exist, what
are the shortcomings of these, and how can one overcome these?", are discussed and
presented in the literature review of chapter 2. Briefly summarized, autonomous
systems are a sought-after research topic. Self-healing is not a standardized term,
hence research within the field varies in definitions. Many approaches to healing
exist, such as machine learning, knowledge base consulting, exploitation of code
redundancy, and systems inspired by cell’s regenerative abilities. The most significant
shortcoming that stands out is that systems claiming to be self-healing, has properties
of fault-tolerance rather than healing.

6.2 RQ2: Patching and immunising vulnerabilities
autonomously

The second research question, "Which vulnerabilities that enable attacks will the
system be able to patch autonomously, and which ones will it be able to immunize
autonomously?", have been investigated through numerous experiments and tests.
The testbed, DVWA, contained multiple web vulnerabilities, and several of these
were tested in the practical experiments.

The five healing techniques achieved different results with regards to patching and
immunizing. Several vulnerabilities were tested and successfully healed according to
the set healing evaluation criteria, such as stored and reflected XSS, SQL injections,
command injections, and local file inclusions. Concerning immunizing vulnerabilities,

121

122 6. DISCUSSION

that is to neutralize or render them ineffective, steps 1, 2, 3, and partly 4, fall into this
category. Ranging from turning off the vulnerable server to mitigating vulnerabilities
by sanitizing user input, healing by immunizing was achieved.

Patching, namely to make corrections in the susceptible code to eliminate distinct
vulnerabilities, was realized in steps 4 and 5. However, the two achieved different
results; step 4 applied superficial, unspecific filtering and sanitization methods mainly
focused on removing symptoms of the vulnerabilities. Step 5, on the other hand,
targeted the root cause of the present vulnerabilities.

However, these experiments barely scratch the surface of existing web vulnerabili-
ties. If the five healing steps were to be evaluated solely on coverage, step 1 would
be the best option since it will block any attack due to the server being offline. It is
also the most independent solution considering the use of external tools, since the
only assumption is that the IDS is able to detect all breaches. The other healing
techniques rely on the correctness of the vulnerability scanner as well. Step two is
purely dependent on the vulnerability scanner to identify the correct, vulnerable files,
whereas step 3 also needs the identification of vulnerable lines of code to be accurate.
Steps 4 and 5 rely on both the scanner’s and the IDS’s verbose output to be able to
heal the vulnerability correctly. Following this reasoning, step 1 is more probable to
successfully immunize other vulnerabilities launched towards the server in addition
to the ones conducted in the experiments, rather than the other steps since they
require less drastic and more specific healing measures based on the exploit detected.
In the same manner, step 2’s coverage is probably greater than steps 3, 4, and 5, and
so on.

6.3 RQ3: Correlation between self-healing techniques

In light of the third research question, "If vulnerabilities are able to heal or be
immunized, is there a correlation between the self-healing techniques?", comparisons
between the functionality of the self-healing techniques will be made. Some of the
methods provide more general, exhaustive solutions to healing of the vulnerabilities,
namely step 1, 2, and 3. Step 4 and 5, on the other side, present solutions that target
specific web vulnerabilities. The two approaches influence at least two corresponding
consequences; the trade-offs between healing, availability and functionality and the
complexity of the healing solutions.

For all healing steps and their corresponding successful experiments concerning
healing, except for step 5, there is a trade-off between removal of exploitable segments,
and availability and functionality. Step 1 is arguably the best option when healing
is the primary object, but has proven to be severely inefficient with regards to
availability and functionality. In the conducted experiments, step 2 sacrifices parts

6.4. LIMITATIONS 123

of the server availability and completely the functionality of the affected files. Step
3 achieved better results on availability, but in turn, the functionality is still lost.
Steps 4 and 5 have the best test results from the experiment, minimizing the trade-
off between the three requirements. However, the experiments of step 4 did not
exclusively achieve successful healing.

The experiments with the five healing techniques indicate that rising complexity
and a greater need for code awareness are outcomes from more specific functionality
preserving healing techniques. The steps demonstrate the two outcomes by comparing
the broader healing techniques with the more distinct and precise ones; for instance,
both lines of code and code complexity increase due to an increase in handling specific
cases, namely exploits.

6.4 Limitations

The results from the thesis might be affected by numerous factors, such as the choice
of tools and platforms and how experiments were executed. In this section, we discuss
potential limitations of the project.

6.4.1 Generalizability

The self-healing script, evaluation tests, and tools are customized and tailor-made for
the chosen testbed. Therefore, the results are not directly applicable to other web
servers or testbeds. For instance, the healing of the SQL injection in step 5 works as
intended for the specific case on DVWA, but it is not generalized for all instances of
SQL injections.

6.4.2 Evaluation execution and results

There are several potential limitations related to the evaluation criteria. Firstly,
the evaluation of a self-healing technique’s performance is based solely on three
requirements; a substantial amount of requirements and criteria would provide a
more comprehensive assessment. Secondly, the functionality tests are limited in
number and complexity; there are only three functionality tests, and these are fairly
simple. However, the functionality of the pages on DVWA is rather minimalistic,
making it difficult to test how intricate systems would respond to the self-healing
techniques. Thirdly, the self-healing test is not automated, and as one of the aims of
self-healing systems is to act as autonomous beings, the credibility of the self-healing
script would have improved if all tests were automated. Finally, the implementation
of the availability test presented a weakness, especially for step 3, since it does not
account for unavailability due to internal server errors (HTTP error response 500).

124 6. DISCUSSION

Even though the page is "up," it behaves similarly to the opposite, which could be
beneficial to include in the availability results.

6.4.3 Vulnerability coverage and dependability on external tools

The solution is entirely dependent on an IDS for detecting cyberbreaches and on
a vulnerability scanner for detecting vulnerabilities. Therefore, the solution can
only be as good as the tools it relies on. When using the tools, it is clear that it
is possible to bypass the IDS (such as a file upload vulnerability), and there exist
vulnerabilities which the vulnerability scanner is unable to identify (such as a remote
file inclusion vulnerability). For the latter, the specific vulnerability is undetected
because the coding error is not in the PHP file, but in the configuration file php.ini.
By using more diverse tools to detect vulnerabilities, the program could improve. For
instance, the open-source tool iniscan1 would have identified the remote file inclusion
vulnerability and its patching could easily be automated.

6.4.4 Proof of Concept

Several of the self-healing techniques could have been applied before a breach occurred
as multiple of the vulnerabilities are detectable without the contribution from an
IDS. Therefore, it should be stated that the program mimics a proof of concept of
a self-healing system, rather than having obtained essential characteristics of an
entirely autonomous being.

6.5 Further work

In this thesis, we implemented a simple script to enforce self-healing capabilities
on a web server. Experiments were conducted in a restricted environment with
few tools and tests. To improve the coverage of the program, either more tools for
the detection of breaches and identification of vulnerabilities can be integrated, or
the ones chosen now can be revised and replaced with more suitable alternatives.
Since the tests are both limited in number and test coverage, a better and more
comprehensive testing scheme could be applied to achieve more realistic, credible,
and precise results. Choosing another testbed with more intricate functionality could
also provide new insights into the performance of the script. These improvements
combined could potentially bring the self-healing program closer to the notion of
being self-healing or an autonomous being.

1https://github.com/psecio/iniscan

Chapter7Conclusion

The development of self-healing computer systems is a hopeful contribution to the field
of computer science with regards to effectiveness and maintenance, but perhaps most
importantly, towards creating secure and safe systems with robust characteristics. In
this thesis, the concept of self-healing was explored through a literature review and
by developing a self-healing script monitoring a vulnerable web application.

RQ1: What kind of self-healing techniques already exist, what are the
shortcomings of these and how can one overcome these In the literature
study, several papers within the field of self-healing were examined. The techniques
comprise of approaches such as machine learning, knowledge base consulting, ex-
ploitation of code redundancy, and systems inspired by biological procedures. It
became apparent that the self-* terminology is used interchangeably, and there was
not a clear definition of either one, as well as the research appears very limited. One
of the most significant shortcomings identified is that the self-healing systems in
certain works act more like a fault-tolerance system rather than a self-healing one.
Referring to the classifications made of the related papers in the literature study,
the technical work in this thesis covers implementation of a system that removes
susceptibilities caused by security incidents.

RQ2: Which vulnerabilities that enable attacks will the system be able
to patch autonomously, and which ones will it be able to immunize au-
tonomously? During the technical testing of five self-healing techniques, multiple
experiments were conducted by launching exploits towards a vulnerable web applica-
tion. With the use of these techniques, several vulnerabilities, such as SQL injections
and XSSs, were patched and immunized. However, during the experiments, only a
handful of known PHP susceptibilities were investigated. The results indicated that
the more radical healing solutions immunized a larger range of vulnerabilities than
the specific healing solutions patched.

125

126 7. CONCLUSION

RQ3: If vulnerabilities are able to heal or be immunized, is there a corre-
lation between the self-healing techniques? When comparing the self-healing
techniques used, it became apparent that they preserved functional and non-functional
requirements differently. Steps such as 1 and 2 achieved far worse results concerning
maintaining availability and functionality after healing than step 5. However, as
mentioned in the previous research question, it is anticipated that these low-scoring
healing techniques will outperform the more precise healing techniques regarding
healing if tested against several other vulnerabilities.

References

[15990] Ieee standard glossary of software engineering terminology. IEEE Std 610.12-1990,
pages 1–84, Dec 1990.

[20112] National cyber security framework manual. 2012.

[20113] Iso / iec 25010 : 2011 systems and software engineering — systems and software
quality requirements and evaluation (square) — system and software quality
models. 2013.

[Atk00] Leon Atkinson. Core PHP programming: using PHP to build dynamic Web sites.
Pearson Education, 2000.

[BNS07] David Brumley, James Newsome, and Dawn Song. Sting: An end-to-end self-
healing system for defending against internet worms. In Malware Detection, pages
147–170. Springer, 2007.

[Bru01] Guy Bruneau. The history and evolution of intrusion detection. SANS Institute,
1, 2001.

[CN95] Lawrence Chung and Brian A Nixon. Dealing with non-functional requirements:
three experimental studies of a process-oriented approach. In 1995 17th Interna-
tional Conference on Software Engineering, pages 25–25. IEEE, 1995.

[CRC08] Patricia Cronin, Frances Ryan, and Michael Coughlan. Undertaking a literature
review: a step-by-step approach. British journal of nursing, 17(1):38–43, 2008.

[Dub13] Elena Dubrova. Fault-tolerant design. Springer, 2013.

[EA09] Muna Elsadig and Azween Abdullah. Biological inspired intrusion prevention and
self-healing system for network security based on danger theory. International
Journal of Video & Image Processing and Network Security, 9(9):16–28, 2009.

[Fre87] Peter Freeman. Software perspectives: the system is the message. Addison-Wesley
Longman Publishing Co., Inc., 1987.

[Gli07] Martin Glinz. On non-functional requirements. In 15th IEEE International
Requirements Engineering Conference (RE 2007), pages 21–26. IEEE, 2007.

127

128 REFERENCES

[GSRU07] Debanjan Ghosh, Raj Sharman, H Raghav Rao, and Shambhu Upadhyaya. Self-
healing systems—survey and synthesis. Decision support systems, 42(4):2164–2185,
2007.

[Har18] Chris Hart. Doing a literature review: Releasing the research imagination. Sage,
2018.

[HFAAF17] Amjad A Hudaib, Hussam N Fakhouri, Fatima Eid Al Adwan, and Sandi N
Fakhouri. A survey about self-healing systems (desktop and web application).
Communications and Network, 9(1):71–88, 2017.

[How80] William E Howden. Functional program testing. IEEE Transactions on Software
Engineering, (2):162–169, 1980.

[IHK04] Juhani Iivari, Rudy Hirschheim, and Heinz K Klein. Towards a distinctive body
of knowledge for information systems experts: coding isd process knowledge in
two is journals. Information systems journal, 14(4):313–342, 2004.

[Jav] Yasir Javed. Using public vulnerabilities data to self-heal security issues in
software systems.

[JM19] Linda Joseph and Rajeswari Mukesh. Securing and self recovery of virtual
machines in cloud with an autonomic approach using snapshots. Mobile Networks
and Applications, 24(4):1240–1248, 2019.

[JNS16] David Jaramillo, Duy V Nguyen, and Robert Smart. Leveraging microservices
architecture by using docker technology. In SoutheastCon 2016, pages 1–5. IEEE,
2016.

[KB15] Joxean Koret and Elias Bachaalany. The antivirus hacker’s handbook. Wiley
Online Library, 2015.

[KC03] Jeffrey O Kephart and David M Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[Ker07] Angelos D Keromytis. Characterizing self-healing software systems. 2007.

[Kot04] Chakravanti Rajagopalachari Kothari. Research methodology: Methods and
techniques. New Age International, 2004.

[LC09] Simon Liu and Bruce Cheng. Cyberattacks: Why, what, who, and how. IT
professional, 11(3):14–21, 2009.

[LE06] Yair Levy and Timothy J Ellis. A systems approach to conduct an effective
literature review in support of information systems research. Informing Science,
9, 2006.

[Lim06] Keng Leng Lim. Intrusion protection system and method, February 2 2006. US
Patent App. 11/051,795.

REFERENCES 129

[LW89] Hareton KN Leung and Lee White. Insights into regression testing (software
testing). In Proceedings. Conference on Software Maintenance-1989, pages 60–69.
IEEE, 1989.

[LW90] Hareton KN Leung and Lee White. A study of integration testing and software
regression at the integration level. In Proceedings. Conference on Software
Maintenance 1990, pages 290–301. IEEE, 1990.

[MCN92] John Mylopoulos, Lawrence Chung, and Brian Nixon. Representing and using
nonfunctional requirements: A process-oriented approach. IEEE Transactions on
software engineering, (6):483–497, 1992.

[MGK19] Anders Mikkelsen, Tor-Morten Grønli, and Rick Kazman. Immutable infras-
tructure calls for immutable architecture. In Proceedings of the 52nd Hawaii
International Conference on System Sciences, 2019.

[MROO20] Hannah Ritchie Max Roser and Esteban Ortiz-Ospina. Internet. Our World in
Data, 2020. https://ourworldindata.org/internet.

[MSB11] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software testing.
John Wiley & Sons, 2011.

[Nas18] Nasjonal Sikkerhetsmyndighet. Grunnprinsipper for ikt-sikkerhet, versjon 1.1.
2018.

[OWA17] Top OWASP. Top 10-2017 the ten most critical web application se-
curity risks. URL: https://www.owasp.org/images/7/72/OWASP_Top_10-
2017_%28en%29.pdf.pdf, 29, 2017.

[Per13] Nicolo Perino. A framework for self-healing software systems. In 2013 35th
International Conference on Software Engineering (ICSE), pages 1397–1400.
IEEE, 2013.

[PH04] Manish Parashar and Salim Hariri. Autonomic computing: An overview. In
International workshop on unconventional programming paradigms, pages 257–269.
Springer, 2004.

[PK04] Barbara Paech and Daniel Kerkow. Non-functional requirements engineering-
quality is essential. In 10th International Workshop on Requirments Engineering
Foundation for Software Quality, 2004.

[PKL+09] Jeff H Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan
Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou,
Greg Sullivan, et al. Automatically patching errors in deployed software. In
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles,
pages 87–102, 2009.

[Row02] Craig H Rowland. Intrusion detection system, June 11 2002. US Patent 6,405,318.

[RRS11] S Ramamoorthy, SP Rajagopalan, and S Sathyalakshmi. Process for security in
self-healing systems’ architecture. 2011.

130 REFERENCES

[She08] Onn Shehory. Shadows: Self-healing complex software systems. In 2008
23rd IEEE/ACM International Conference on Automated Software Engineering-
Workshops, pages 71–76. IEEE, 2008.

ChapterAAppendix

A.1 Self-healing script

131

132 A. APPENDIX

1
im

po
rt

su
bp

ro
ce

ss
2

im
po

rt
os

3
im

po
rt

ur
ll

ib
4

im
po

rt
re

qu
es

ts
5

im
po

rt
re

6
fr

om
sh

im
po

rt
ta

il
7

im
po

rt
ti

me
8 9

de
f

wa
tc

h
(f

n)
:

10
fp

=
op

en
(f

n
,

'r
')

11
wh

il
e

Tr
ue

:
12

ne
w

=
fp

.
re

ad
li

ne
()

13
#

On
ce

al
l

li
ne

s
ar

e
re

ad
th

is
ju

st
re

tu
rn

s
''

14
#

un
ti

l
th

e
fi

le
ch

an
ge

s
an

d
a

ne
w

li
ne

ap
pe

ar
s

15
if

ne
w

==
''

:
16

pr
in

t
"

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
"

17
pr

in
t

("
Ta

il
in

g
ID

S
lo

g"
)

18
pr

in
t

("
Wa

it
in

g
fo

r
in

co
mi

ng
at

ta
ck

")
19

pr
in

t
("

**
**

**
*

")
20

pr
in

t
("

**
**

**
*

")
21

wh
il

e
Tr

ue
:

22
at

ta
ck

=
fp

.
re

ad
li

ne
()

23
if

(
at

ta
ck

!=
""

):
24

pr
in

t
"

At
ta

ck
ha

s
be

en
de

te
ct

ed
"

25
pr

in
t

"
An

al
yz

in
g

at
ta

ck
..

."
26

pr
in

t
"

..
..

..
..

..
..

..
..

..
.

"
27

p
=

at
ta

ck
.

sp
li

t
("

,"
)

28
pr

in
t

p
29

pr
in

t
"

..
..

..
..

..
..

..
..

..
.

"
30

ip
1

=
p[

0]
31

da
te

=
p[

1]
32

im
pa

ct
=

p[
2]

33
ty

pe
=

p[
3]

A.1. SELF-HEALING SCRIPT 133

34
re

qg
et

=
p[

4]
35

re
q

,
ge

t_
po

st
=

p
[4

].
sp

li
t

("
")

36
if

"
PO

ST
."

in
ge

t_
po

st
:

37
ge

t_
po

st
=

"
PO

ST
"

38
el

if
"G

ET
."

in
ge

t_
po

st
:

39
ge

t_
po

st
=

"G
ET

"
40

su
bU

RL
=

ge
tF

il
ep

at
h

(p
[5

])
[0

]
41

su
bU

RL
=

su
bU

RL
.

st
ri

p
('

"'
)

42
at

ta
ck

_U
RL

=
ge

tF
il

ep
at

h
(p

[5
])

[1
]

43
at

ta
ck

_U
RL

=
at

ta
ck

_U
RL

.
st

ri
p

('
"'

)
44

ip
2

=
p[

6]
45

pr
in

t
"

Da
te

an
d

ti
me

:
"+

da
te

46
pr

in
t

"
Po

ss
ib

le
at

ta
ck

ty
pe

s
"+

ty
pe

47
pr

in
t

"
HT

TP
Re

qu
es

ts
"+

re
qg

et
48

pr
in

t
"

Af
fe

ct
ed

fi
le

/
pa

th
:

"+
su

bU
RL

#/
vu

ln
er

ab
il

it
ie

s
/

xs
s_

r
/

49
pr

in
t

"
At

ta
ck

st
ri

ng
:

"+
at

ta
ck

_U
RL

#/
vu

ln
er

ab
il

it
ie

s
/

xs
s_

r
/?

na
me

=%
3

Cs
cr

ip
t

%3
Ea

le
rt

%2
81

%2
9%

3
C%

2
Fs

cr
ip

t
%3

E
50

pr
in

t
"

**
**

**
*

"
51

pr
in

t
"

**
**

**
*

"
52

ws
=

ra
w_

in
pu

t
("

En
te

r
wh

ic
h

se
lf

-
he

al
in

g
pr

oc
ed

ur
e

to
in

it
ia

te
,

on
e

,
tw

o
,

th
re

e
,

fo
ur

or
fi

ve
?

\n
")

53
wh

il
e

ws
no

t
in

["
on

e"
,"

tw
o"

,"
th

re
e

",
"

fo
ur

",
"

fi
ve

"]
:

54
ws

=
in

pu
t

("
En

te
r

wh
ic

h
se

lf
-

he
al

in
g

pr
oc

ed
ur

e
to

in
it

ia
te

,
1,

2,
3,

4,
5?

")
55 56

sh
_r

es
="

"
57

av
_r

es
="

"
58

fu
nc

_r
es

="
"

59
pr

in
t

"
**

**
**

*
"

60
pr

in
t

"
**

**
**

*
"

61
pr

in
t

"
Pr

ep
ar

in
g

av
ai

la
bi

li
ty

cr
it

er
ia

by
ch

ec
ki

ng
av

ai
la

bi
li

ty
of

pa
ge

s
be

fo
re

in
it

ia
ti

ng
he

al
in

g
."

62
pr

in
t

"
..

..
..

.
"

63
os

.
sy

st
em

("
./

ge
t_

HT
TP

_r
es

p_
be

fo
re

.s
h"

)
64 65

if
ws

==
"o

ne
":

134 A. APPENDIX
66

st
ep

1
()

67
st

at
us

=
av

_t
es

t
(

su
bU

RL
)

68
sh

=
sh

_t
es

t
(s

ub
UR

L
,

p,
fn

,
st

at
us

)
69

if
sh

!=
No

ne
:

70
pr

in
t

"
**

**
**

**
*

"
71

pr
in

t
"

Re
la

un
ch

ex
pl

oi
t

ma
nu

al
ly

wi
th

gi
ve

n
at

ta
ck

ur
l

pa
ra

me
te

rs
"

72
pr

in
t

"
to

va
li

da
te

if
vu

ln
er

ab
il

it
y

is
un

re
ac

ha
bl

e
/

he
al

ed
:"

73
pr

in
t

"U
RL

:
"+

sh
[0

]
74

pr
in

t
"

In
pu

t
:

"+
sh

[2
]

75
pr

in
t

"
**

**
**

**
*

"
76

he
al

_n
oh

ea
l

=
ra

w_
in

pu
t

("
Pr

es
s

y
or

ye
s

to
co

nf
ir

m
he

al
in

g
\n

")
77

if
he

al
_n

oh
ea

l
==

"y
"

or
he

al
_n

oh
ea

l
==

"y
es

":
78

sh
_r

es
=

1
79

fu
nc

_r
es

=
0

80
av

_r
es

=
0

81
if

st
at

us
!=

"
do

wn
":

82
pr

in
t

"
Ru

nn
in

g
fu

nc
te

st
"

83
fu

nc
_t

es
t

(
su

bU
RL

)
84 85

i
=

ra
w_

in
pu

t
("

Pr
es

s
y

or
ye

s
to

re
st

ar
t

se
rv

er
\n

")
86

pr
in

t
("

")
87

if
i

==
"y

"
or

i
==

"y
es

":
88

os
.

sy
st

em
("

./
re

st
ar

t_
se

rv
er

.s
h"

)
89

el
se

:
90 91

ph
pc

s_
tx

t
=

ph
pc

s
(s

ub
UR

L
,

da
te

)
92

fi
le

s_
lo

c
=

ph
pc

s_
fi

le
_l

oc
(

ph
pc

s_
tx

t
)

93
al

l_
fi

le
s

=
[]

94
pr

in
t

"
Ru

nn
in

g
ph

pc
s

on
fi

le
"+

su
bU

RL
95

pr
in

t
"

ph
pc

s
sc

an
ne

r
su

gg
es

ts
fo

ll
ow

in
g

fi
le

s
co

nt
ai

n
vu

ln
er

ab
il

it
ie

s
:"

96
fo

r
f

in
fi

le
s_

lo
c

:
97

al
l_

fi
le

s
.

ap
pe

nd
(f

[0
])

98
pr

in
t

f[
0]

99
if

ws
==

"t
wo

":

A.1. SELF-HEALING SCRIPT 135

10
0

st
ep

2
(s

ub
UR

L
,

al
l_

fi
le

s
)

10
1

av
=

av
_t

es
t

(
su

bU
RL

)
10

2
if

no
t

is
in

st
an

ce
(a

v
,

ba
se

st
ri

ng
):

10
3

nu
m

=
av

[0
]

10
4

af
te

r
=

av
[2

]
10

5
av

_r
es

=
(

fl
oa

t
(

fl
oa

t
(n

um
)-

fl
oa

t
(

af
te

r
))

)/
fl

oa
t

(n
um

)
10

6
st

at
us

=
""

10
7

10
8

sh
=

sh
_t

es
t

(s
ub

UR
L

,
p,

fn
,

st
at

us
)

10
9

if
sh

!=
No

ne
:

11
0

pr
in

t
"

**
**

**
**

*
"

11
1

pr
in

t
"

Re
la

un
ch

ex
pl

oi
t

ma
nu

al
ly

wi
th

gi
ve

n
at

ta
ck

ur
l

an
d

pa
ra

me
te

rs
to

va
li

da
te

if
vu

ln
er

ab
il

it
y

is
un

re
ac

ha
bl

e
/

he
al

ed
:"

11
2

pr
in

t
"U

RL
:

"+
sh

[0
]

11
3

pr
in

t
"

In
pu

t
:

"+
sh

[2
]

11
4

pr
in

t
"

**
**

**
**

*
"

11
5

he
al

_n
oh

ea
l

=
ra

w_
in

pu
t

("
Pr

es
s

y
or

ye
s

to
co

nf
ir

m
he

al
in

g
\n

")
11

6
if

he
al

_n
oh

ea
l

==
"y

"
or

he
al

_n
oh

ea
l

==
"y

es
":

11
7

sh
_r

es
=

1
11

8

11
9

fu
nc

_r
es

=
fu

nc
_t

es
t

(
su

bU
RL

)
12

0
if

ws
==

"
th

re
e

":
12

1
fo

r
en

tr
y

in
fi

le
s_

lo
c

:
12

2
st

ep
3

(
en

tr
y

[0
]

,
en

tr
y

[1
])

12
3

12
4

av
=

av
_t

es
t

(
su

bU
RL

)
12

5
if

no
t

is
in

st
an

ce
(a

v
,

ba
se

st
ri

ng
):

12
6

nu
m

=
av

[0
]

12
7

af
te

r
=

av
[2

]
12

8
av

_r
es

=
(

fl
oa

t
(

fl
oa

t
(n

um
)-

fl
oa

t
(

af
te

r
))

)/
fl

oa
t

(n
um

)
12

9
st

at
us

=
""

13
0

sh
=

sh
_t

es
t

(s
ub

UR
L

,
p,

fn
,

st
at

us
)

136 A. APPENDIX
13

1
if

sh
!=

No
ne

:
13

2
pr

in
t

"
**

**
**

**
*

"
13

3
pr

in
t

"
Re

la
un

ch
ex

pl
oi

t
ma

nu
al

ly
wi

th
gi

ve
n

at
ta

ck
ur

l
an

d
pa

ra
me

te
rs

to
va

li
da

te
if

vu
ln

er
ab

il
it

y
is

un
re

ac
ha

bl
e

/
he

al
ed

:"
13

4
pr

in
t

"U
RL

:
"+

sh
[0

]
13

5
pr

in
t

"
In

pu
t

:
"+

sh
[2

]
13

6
pr

in
t

"
**

**
**

**
*

"
13

7
he

al
_n

oh
ea

l
=

ra
w_

in
pu

t
("

Pr
es

s
y

or
ye

s
to

co
nf

ir
m

he
al

in
g

\n
")

13
8

if
he

al
_n

oh
ea

l
==

"y
"

or
he

al
_n

oh
ea

l
==

"y
es

":
13

9
sh

_r
es

=
1

14
0

el
se

:
14

1
sh

_r
es

=
0

14
2

14
3

fu
nc

_r
es

=
fu

nc
_t

es
t

(
su

bU
RL

)
14

4

14
5

if
ws

==
"

fo
ur

":
14

6

14
7

at
ta

ck
_v

ar
_a

nd
_i

np
ut

_r
aw

=
re

q[
le

n(
"

RE
QU

ES
T

")
+2

:]
14

8
at

ta
ck

_v
ar

,
at

ta
ck

_i
np

ut
_r

aw
=

re
q.

sp
li

t
("

="
)

14
9

at
ta

ck
_v

ar
=

at
ta

ck
_v

ar
[l

en
("

RE
QU

ES
T

")
+2

:]
15

0
fo

r
en

tr
y

in
fi

le
s_

lo
c

:
15

1
st

ep
4

(
ty

pe
.

sp
li

t
("

")
,

ge
t_

po
st

,
en

tr
y

[0
]

,
en

tr
y

[1
]

,
at

ta
ck

_v
ar

,
at

ta
ck

_U
RL

,
en

tr
y

[2
]

,
p

[4
])

15
2

15
3

av
=

av
_t

es
t

(
su

bU
RL

)
15

4
if

no
t

is
in

st
an

ce
(a

v
,

ba
se

st
ri

ng
):

15
5

nu
m

=
av

[0
]

15
6

af
te

r
=

av
[2

]
15

7
av

_r
es

=
(

fl
oa

t
(

fl
oa

t
(n

um
)-

fl
oa

t
(

af
te

r
))

)/
fl

oa
t

(n
um

)
15

8
st

at
us

=
""

15
9

16
0

sh
=

sh
_t

es
t

(s
ub

UR
L

,
p,

fn
,

st
at

us
)

16
1

if
sh

!=
No

ne
:

A.1. SELF-HEALING SCRIPT 137

16
2

pr
in

t
"

**
**

**
**

*
"

16
3

pr
in

t
"

Re
la

un
ch

ex
pl

oi
t

ma
nu

al
ly

wi
th

gi
ve

n
at

ta
ck

ur
l

an
d

pa
ra

me
te

r
to

va
li

da
te

if
vu

ln
er

ab
il

it
y

is
un

re
ac

ha
bl

e
/

he
al

ed
:"

16
4

pr
in

t
"U

RL
:

"+
sh

[0
]

16
5

pr
in

t
"

In
pu

t
:

"+
sh

[2
]

16
6

pr
in

t
"

**
**

**
**

*
"

16
7

he
al

_n
oh

ea
l

=
ra

w_
in

pu
t

("
Pr

es
s

y
or

ye
s

to
co

nf
ir

m
he

al
in

g
\n

")
16

8
if

he
al

_n
oh

ea
l

==
"y

"
or

he
al

_n
oh

ea
l

==
"y

es
":

16
9

sh
_r

es
=

1
17

0
el

se
:

17
1

sh
_r

es
=

0
17

2

17
3

fu
nc

_r
es

=
fu

nc
_t

es
t

(
su

bU
RL

)
17

4

17
5

if
ws

==
"

fi
ve

":
17

6
pr

in
t

"
**

**
**

"
17

7
at

ta
ck

_v
ar

_a
nd

_i
np

ut
_r

aw
=

re
q[

le
n(

"
RE

QU
ES

T
")

+2
:]

17
8

at
ta

ck
_v

ar
,

at
ta

ck
_i

np
ut

_r
aw

=
re

q.
sp

li
t

("
="

)
17

9
at

ta
ck

_v
ar

=
at

ta
ck

_v
ar

[l
en

("
RE

QU
ES

T
")

+2
:]

18
0

fo
r

en
tr

y
in

fi
le

s_
lo

c
:

18
1

st
ep

5
(

ty
pe

.
sp

li
t

("
")

,
ge

t_
po

st
,

en
tr

y
[0

]
,

en
tr

y
[1

]
,

at
ta

ck
_v

ar
,

en
tr

y
[2

])
18

2

18
3

av
=

av
_t

es
t

(
su

bU
RL

)
18

4
if

no
t

is
in

st
an

ce
(a

v
,

ba
se

st
ri

ng
):

18
5

nu
m

=
av

[0
]

18
6

af
te

r
=

av
[2

]
18

7
av

_r
es

=
(

fl
oa

t
(

fl
oa

t
(n

um
)-

fl
oa

t
(

af
te

r
))

)/
fl

oa
t

(n
um

)
18

8
st

at
us

=
""

18
9

19
0

sh
=

sh
_t

es
t

(s
ub

UR
L

,
p,

fn
,

st
at

us
)

19
1

if
sh

!=
No

ne
:

138 A. APPENDIX
19

2
pr

in
t

"
**

**
**

**
*

"
19

3
pr

in
t

"
Re

la
un

ch
ex

pl
oi

t
ma

nu
al

ly
wi

th
gi

ve
n

at
ta

ck
ur

l
an

d
pa

ra
me

te
r

to
va

li
da

te
if

vu
ln

er
ab

il
it

y
is

un
re

ac
ha

bl
e

/
he

al
ed

:
"

19
4

pr
in

t
"U

RL
:

"+
sh

[0
]

19
5

pr
in

t
"

In
pu

t
:

"+
sh

[2
]

19
6

pr
in

t
"

**
**

**
**

*
"

19
7

he
al

_n
oh

ea
l

=
ra

w_
in

pu
t

("
Pr

es
s

y
or

ye
s

to
co

nf
ir

m
he

al
in

g
\n

")
19

8
if

he
al

_n
oh

ea
l

==
"y

"
or

he
al

_n
oh

ea
l

==
"y

es
":

19
9

sh
_r

es
=

1
20

0
el

se
:

20
1

sh
_r

es
=

0
20

2
fu

nc
_r

es
=

fu
nc

_t
es

t
(

su
bU

RL
)

20
3

pr
in

t
""

20
4

pr
in

t
"

**
**

**
**

"
20

5
pr

in
t

"
**

**
**

**
"

20
6

pr
in

t
"

Re
su

lt
s

fr
om

te
st

in
g

..
."

20
7

pr
in

t
"(

0
be

in
g

fa
il

ed
,

1
be

in
g

fu
ll

sc
or

e
)"

20
8

pr
in

t
"S

el
f

-
he

al
in

g
re

su
lt

s
:

"+
st

r(
sh

_r
es

)
20

9
pr

in
t

"
Av

ai
la

bi
li

ty
re

su
lt

s
:

"+
st

r(
av

_r
es

)
21

0
pr

in
t

"
Fu

nc
ti

on
al

it
y

re
su

lt
s

:
"+

st
r(

fu
nc

_r
es

)
21

1

21
2

21
3

21
4

de
f

ph
pc

s
(

fi
le

pa
th

,
da

te
):

21
5

pr
in

t
"

**
**

**
*

"
21

6
pr

in
t

"
**

**
**

*
"

21
7

pr
in

t
("

In
it

ia
ti

ng
ph

pc
s

to
sc

an
fo

r
vu

ln
er

ab
il

it
ie

s
on

fi
le

pa
th

"+
fi

le
pa

th
)

21
8

21
9

co
mm

an
d

=
"p

hp
PH

P_
Co

de
Sn

if
fe

r
/b

in
/

ph
pc

s
--

ex
te

ns
io

ns
=p

hp
,i

nc
,l

ib
,m

od
ul

e
,

in
fo

--
st

an
da

rd
=/

Ma
st

er
/

te
st

_s
er

ve
r_

di
r

/p
hp

cs
-

se
cu

ri
ty

-
au

di
t

/
ex

am
pl

e_
dr

up
al

7_
ru

le
se

t
.x

ml
/v

ar
/w

ww
/

ht
ml

"+
fi

le
pa

th
22

0
co

mm
an

d_
li

st
=

co
mm

an
d

.
sp

li
t

("
")

22
1

fi
le

pa
th

_o
ut

pu
t

=
"/

Ma
st

er
/

te
st

_s
er

ve
r_

di
r

/
ph

pc
s_

ou
tp

ut
s

/"
#

ED
IT

PA
TH

22
2

fi
le

na
me

=
fi

le
pa

th
[l

en
("

vu
ln

er
ab

il
it

ie
s

")
+1

:]
+

"_
"+

da
te

[:
19

]+
".

tx
t"

A.1. SELF-HEALING SCRIPT 139

22
3

fi
le

na
me

=
fi

le
na

me
.

re
pl

ac
e

("
/"

,
""

)
22

4
f

=
op

en
(

fi
le

pa
th

_o
ut

pu
t

+
fi

le
na

me
,"

w"
)

22
5

22
6

su
bp

ro
ce

ss
.

ca
ll

(
co

mm
an

d_
li

st
,

st
do

ut
=f

)
22

7

22
8

re
tu

rn
fi

le
pa

th
_o

ut
pu

t
+

fi
le

na
me

22
9

23
0

de
f

ph
pc

s_
fi

le
_l

oc
(

ph
pc

s_
re

su
lt

s_
tx

t
):

23
1

fp
=

op
en

(
ph

pc
s_

re
su

lt
s_

tx
t

,
'r

')
23

2
fi

le
s_

lo
c

=[
]

23
3

wh
il

e
Tr

ue
:

23
4

li
ne

=
fp

.
re

ad
li

ne
()

23
5

lo
cs

_f
ou

nd
=[

]
23

6
fu

ll
_e

rr
or

_m
es

sa
ge

=
[]

23
7

23
8

if
li

ne
[0

:4
]

==
"

FI
LE

":
23

9
vu

ln
_f

il
e

=
li

ne
[6

:]
.

rs
tr

ip
("

\n
")

24
0

wh
il

e
Tr

ue
:

24
1

lo
cs

=f
p.

re
ad

li
ne

()
24

2
if

le
n(

lo
cs

)
>

1:
24

3
if

lo
cs

[1
].

is
di

gi
t

()
==

Tr
ue

or
lo

cs
[2

].
is

di
gi

t
()

==
Tr

ue
or

lo
cs

[3
].

is
di

gi
t

()
==

Tr
ue

:
24

4
if

in
t(

fi
lt

er
(s

tr
.

is
di

gi
t

,
lo

cs
[0

:4
])

)
no

t
in

lo
cs

_f
ou

nd
:

24
5

lo
cs

_f
ou

nd
.

ap
pe

nd
(i

nt
(

fi
lt

er
(s

tr
.

is
di

gi
t

,
lo

cs
[0

:4
])

))
24

6
fu

ll
_e

rr
or

_m
es

sa
ge

.
ap

pe
nd

(
lo

cs
)

24
7

co
nt

in
ue

24
8

el
if

le
n(

lo
cs

)
==

1:
24

9
fi

le
s_

lo
c

.
ap

pe
nd

([
vu

ln
_f

il
e

,
lo

cs
_f

ou
nd

,
fu

ll
_e

rr
or

_m
es

sa
ge

])
25

0
vu

ln
_f

il
e

="
"

25
1

lo
cs

_f
ou

nd
=[

]
25

2
fu

ll
_e

rr
or

_m
es

sa
ge

=[
]

25
3

br
ea

k
25

4
if

li
ne

[0
:5

]
==

"
Ti

me
:"

:
25

5
br

ea
k

25
6

fp
.

cl
os

e
()

140 A. APPENDIX
25

7
re

tu
rn

fi
le

s_
lo

c
25

8

25
9

de
f

ge
tF

il
ep

at
h

(
ba

dp
at

h
):

26
0

#
re

tu
rn

s
26

1
#(

'
vu

ln
er

ab
il

it
ie

s
/f

i/
',

'v
ul

ne
ra

bi
li

ti
es

/f
i

/?
pa

ge
=.

./
..

/.
./

..
/

ls
')

26
2

pr
et

ty
_U

RL
=

ur
ll

ib
.

un
qu

ot
e

(
ba

dp
at

h
)

26
3

ur
l

=
pr

et
ty

_U
RL

.
sp

li
t

("
?"

)[
0]

26
4

ur
l

=
ur

l
[1

:]
26

5
re

tu
rn

ur
l

,
pr

et
ty

_U
RL

[1
:

le
n(

pr
et

ty
_U

RL
)]

26
6

26
7

de
f

st
ep

1
()

:
26

8
pr

in
t

("
**

**
**

*
")

26
9

pr
in

t
("

Se
lf

-
he

al
in

g
me

ch
an

is
m

:
tu

rn
of

se
rv

er
")

27
0

pr
in

t
("

Se
rv

er
wi

ll
sh

ut
do

wn
no

w"
)

27
1

#
la

un
ch

st
op

se
rv

er
sc

ri
pt

27
2

os
.

sy
st

em
("

./
st

op
_s

er
ve

r
.s

h"
)

27
3

pr
in

t
("

**
**

**
*

")
27

4

27
5

de
f

st
ep

2
(

fi
le

pa
th

,
vu

ln
_f

il
es

):
27

6
#

vu
ln

fi
le

s
=

al
l_

fi
le

s
=

fi
le

pa
th

+
na

me
of

al
l

vu
ln

er
ab

le
fi

le
s

27
7

#g
et

re
su

lt
s

fr
om

ph
pc

s
27

8
pr

in
t

("
**

**
**

*
")

27
9

pr
in

t
("

Se
lf

-
he

al
in

g
me

ch
an

is
m

:
re

mo
ve

vu
ln

er
ab

le
PH

P
fi

le
")

28
0

pr
in

t
("

**
**

**
*

")
28

1
pr

in
t

("
Wh

en
sc

an
ni

ng
"+

fi
le

pa
th

+"
,

ph
pc

s
su

gg
es

ts
fo

ll
ow

in
g

fi
le

s
ar

e
vu

ln
er

ab
le

:
"+

',
'.

jo
in

(
vu

ln
_f

il
es

))
28

2
pr

in
t

("
**

**
**

*
")

28
3

pr
in

t
("

Mo
vi

ng
fi

le
"+

',
'.

jo
in

(
vu

ln
_f

il
es

)+
"

fr
om

se
rv

er
to

te
mp

or
ar

y
/n

ew
fo

ld
er

")
28

4
fo

r
fi

le
in

vu
ln

_f
il

es
:

28
5

#
cr

ea
te

fu
nc

ti
on

al
it

y
fo

r
bl

an
k

fi
le

?
28

6
os

.
sy

st
em

("
mv

"+
fi

le
+"

/
Ma

st
er

/
te

st
_s

er
ve

r_
di

r
/

fi
le

s_
fr

om
_s

te
p2

/"
)

28
7

pr
in

t
"*

"+
fi

le
+"

is
mo

ve
d

to
/

fi
le

s_
fr

om
_s

te
p2

"
28

8

28
9

A.1. SELF-HEALING SCRIPT 141

29
0

de
f

st
ep

3
(

fi
le

pa
th

,
lo

c)
:

29
1

#g
et

re
su

lt
s

fr
om

ph
pc

s
29

2
#

re
mo

ve
li

ne
of

co
de

in
gi

ve
n

ph
p

fi
le

,
co

mm
en

t
ou

t
29

3
pr

in
t

("
**

**
**

*
")

29
4

pr
in

t
("

**
**

**
*

")
29

5
pr

in
t

("
Se

lf
-

he
al

in
g

me
ch

an
is

m
:

re
mo

ve
vu

ln
er

ab
le

li
ne

of
co

de
")

29
6

pr
in

t
("

**
**

**
*

")
29

7
f

=
op

en
(

fi
le

pa
th

,
"r

")
29

8
li

ne
s

=
f.

re
ad

li
ne

s
()

29
9

f.
cl

os
e

()
30

0
pr

in
t

("
Cr

ea
ti

ng
.o

ld
fi

le
fo

r
fi

le
"+

fi
le

pa
th

)
30

1
na

me
=

fi
le

pa
th

[l
en

("
/v

ar
/w

ww
/

ht
ml

/
vu

ln
er

ab
il

it
ie

s
/"

):
]

30
2

na
me

=
na

me
.

re
pl

ac
e

("
/"

,"
_"

)
30

3
os

.
sy

st
em

("
mv

"+
fi

le
pa

th
+"

/
Ma

st
er

/
te

st
_s

er
ve

r_
di

r
/

fi
le

s_
fr

om
_s

te
p3

/"
+

na
me

+"
.o

ld
")

30
4

pr
in

t
("

Co
py

in
g

li
ne

s
of

co
de

to
ol

d
fi

le
to

pa
th

ol
df

il
es

/"
)

30
5

mo
d_

li
ne

s
=

li
ne

s
30

6
pr

in
t

("
Mo

di
fy

in
g

or
ig

in
al

fi
le

's
vu

ln
er

ab
le

li
ne

s
of

co
de

")
30

7
fo

r
l

in
lo

c:
30

8
mo

d_
li

ne
=

"/
/"

+
li

ne
s

[l
-1

]
30

9
mo

d_
li

ne
s

[l
-1

]
=

mo
d_

li
ne

31
0

pr
in

t
"T

he
li

ne
s

wi
th

mo
di

fi
ca

ti
on

s
ar

e:
\n

"
31

1
fo

r
ml

in
e

in
mo

d_
li

ne
s

:
31

2
pr

in
t

ml
in

e
31

3
pr

in
t

("
Ov

er
wr

it
in

g
or

ig
in

al
fi

le
wi

th
ne

w
,

mo
di

fi
ed

li
ne

s
")

31
4

nw
=

op
en

(
fi

le
pa

th
,

"w
")

31
5

nw
.

wr
it

el
in

es
(

mo
d_

li
ne

s
)

31
6

nw
.

cl
os

e
()

31
7

pr
in

t
"

**
**

**
*

"
31

8
pr

in
t

"
**

**
**

*
"

31
9

32
0

de
f

st
ep

4
(

ph
pi

ds
_t

yp
e

,
po

st
ge

t
,

fi
le

pa
th

,
lo

c
,

in
pu

t_
pa

ra
m

,
at

ta
ck

_u
rl

,
ph

pc
s_

er
ro

r_
me

ss
ag

es
,

at
ta

ck
_s

tr
in

g
):

32
1

pr
in

t
"

**
**

*
"

32
2

pr
in

t
"

In
it

ia
ti

ng
se

lf
-

he
al

in
g

te
ch

ni
qu

e
:

Co
rr

ec
t

su
sc

ep
ti

bl
e

co
de

ca
us

in
g

vu
ln

er
ab

il
it

y
"

32
3

pr
in

t
"

**
**

**
*

"

142 A. APPENDIX
32

4
pr

in
t

"
Sa

ni
ti

zi
ng

us
er

in
pu

t
ba

se
d

on
ph

pi
ds

re
su

lt
s

an
d

ph
pc

s
-

se
cu

ri
ty

-
au

di
t

re
su

lt
s

."
32

5

32
6

fo
r

i
in

ra
ng

e
(l

en
(

ph
pi

ds
_t

yp
e

))
:

32
7

ph
pi

ds
_t

yp
e

[i
]

=
ph

pi
ds

_t
yp

e
[i

].
st

ri
p

('
"'

)
32

8

32
9

if
"x

ss
"

in
ph

pi
ds

_t
yp

e
an

d
(

po
st

ge
t

an
d

"
Us

er
in

pu
t

")
in

'\
t'

.
jo

in
(

ph
pc

s_
er

ro
r_

me
ss

ag
es

)
an

d
("

my
sq

li
_q

ue
ry

")
no

t
in

'\
t'

.
jo

in
(

ph
pc

s_
er

ro
r_

me
ss

ag
es

):
33

0
pr

in
t

"
PH

PI
DS

in
di

ca
te

s
XS

S
,

wh
il

e
ph

pc
s

sc
an

ne
r

de
te

ct
s

us
er

in
pu

t
wi

th
"+

po
st

ge
t

33
1

pr
in

t
"

In
it

ia
ti

ng
ge

ne
ri

c
sa

ni
ti

za
ti

on
ap

pr
op

ri
at

e
fo

r
po

ss
ib

le
xs

s:
ht

ml
sp

ec
ia

lc
ha

rs
()

"
33

2
xs

s_
he

al
(

in
pu

t_
pa

ra
m

,
lo

c
,

fi
le

pa
th

,
po

st
ge

t
)

33
3

33
4

el
if

"
sq

li
"

in
ph

pi
ds

_t
yp

e
an

d
("

my
sq

li
_q

ue
ry

"
an

d
"

dy
na

mi
c

pa
ra

me
te

r
")

in
'\

t'
.

jo
in

(
ph

pc
s_

er
ro

r_
me

ss
ag

es
):

33
5

pr
in

t
"

PH
PI

DS
in

di
ca

te
s

SQ
L

in
je

ct
io

n
,

wh
il

e
ph

pc
s

sc
an

ne
r

de
te

ct
s

MY
SQ

Li
qu

er
y

wi
th

dy
na

mi
c

pa
ra

me
te

r
"

33
6

pr
in

t
"

In
it

ia
ti

ng
ge

ne
ri

c
sa

ni
ti

za
ti

on
ap

pr
op

ri
at

e
fo

r
po

ss
ib

le
sq

li
:

my
sq

li
_r

ea
l_

es
ca

pe
_s

tr
in

g
()

"
33

7
pr

in
t

"
Fi

le
:

"+
fi

le
pa

th
33

8
fi

le
=

op
en

(
fi

le
pa

th
,

"r
")

33
9

li
ne

s
=

fi
le

.
re

ad
li

ne
s

()
34

0
fi

le
.

cl
os

e
()

34
1

c
=

0
34

2
db

_c
on

n_
va

r
=

'$
GL

OB
AL

S
["

__
_m

ys
ql

i_
st

on
"]

'
34

3
fo

r
l

in
li

ne
s

:
34

4
if

"$
_[

"
an

d
"'

"+
in

pu
t_

pa
ra

m
+"

'"
in

l
an

d
"

is
se

t
"

no
t

in
l:

34
5

pr
in

t
"

Fi
nd

in
g

in
de

x
in

st
ri

ng
of

$_
"

34
6

in
de

x_
do

ll
ar

=
fi

nd
_a

ll
_i

nd
ex

es
(l

,"
$_

")
34

7
pr

in
t

"
Fi

nd
in

g
cl

os
in

g
br

ac
ke

t
"

34
8

fo
r

x
in

in
de

x_
do

ll
ar

:
34

9
in

de
x_

ri
gh

t_
br

ac
ke

t
=

l[
in

t(
x)

:]
.

fi
nd

("
]"

)
35

0
in

de
x_

ri
gh

t_
br

ac
ke

t
=

x
+

in
de

x_
ri

gh
t_

br
ac

ke
t

35
1

35
2

if
in

pu
t_

pa
ra

m
in

l[
x:

in
de

x_
ri

gh
t_

br
ac

ke
t

]:
35

3
ap

pl
y_

sa
n

=
l[

x:
in

de
x_

ri
gh

t_
br

ac
ke

t
+1

]

A.1. SELF-HEALING SCRIPT 143

35
4

pr
in

t
"

Ap
pl

yi
ng

sa
ni

ti
za

ti
on

us
in

g
my

sq
li

_r
ea

l_
es

ca
pe

_s
tr

in
g

()
"

35
5

sa
n

=
"

my
sq

li
_r

ea
l_

es
ca

pe
_s

tr
in

g
("

+
db

_c
on

n_
va

r
+

",
"

+
ap

pl
y_

sa
n

+"
)"

35
6

pr
in

t
"

Sa
ni

ti
ze

d
li

ne
:"

35
7

sa
ni

ti
ze

d_
li

ne
=

l.
re

pl
ac

e
(

ap
pl

y_
sa

n
,s

an
)

35
8

pr
in

t
sa

ni
ti

ze
d_

li
ne

35
9

li
ne

s
[c

]
=

sa
ni

ti
ze

d_
li

ne
36

0
c=

c+
1

36
1

36
2

fi
le

2
=

op
en

(
fi

le
pa

th
,

"w
")

36
3

fi
le

2
.

wr
it

el
in

es
(

li
ne

s
)

36
4

fi
le

2
.

cl
os

e
()

36
5

36
6

el
if

("
dt

"
in

ph
pi

ds
_t

yp
e

an
d

("
id

"
in

ph
pi

ds
_t

yp
e

or
"l

fi
"

in
ph

pi
ds

_t
yp

e
))

an
d

"
..

/.
./

"
in

ur
ll

ib
.

un
qu

ot
e

(
at

ta
ck

_s
tr

in
g

):
36

7
pr

in
t

"
PH

PI
DS

in
di

ca
te

s
at

ta
ck

s
su

ch
as

di
re

ct
or

y
tr

av
er

sa
l

,
lo

ca
l

fi
le

in
cl

us
io

n
an

d
co

mm
an

d
in

je
ct

io
n

."
36

8
pr

in
t

"
In

it
ia

ti
ng

qu
ic

k
fi

x
so

lu
ti

on
to

av
oi

d
di

re
ct

or
y

tr
av

er
sa

l
an

d
fi

le
in

cl
us

io
n

:
st

r_
re

pl
ac

e
()

"
36

9
pr

in
t

"
Fi

le
:

"
+

fi
le

pa
th

37
0

fi
le

=
op

en
(

fi
le

pa
th

,
"r

")
37

1
li

ne
s

=
fi

le
.

re
ad

li
ne

s
()

37
2

fi
le

.
cl

os
e

()
37

3
c

=
0

37
4

fo
r

l
in

li
ne

s
:

37
5

if
"$

_[
"

an
d

"'
"

+
in

pu
t_

pa
ra

m
+

"'
"

in
l:

37
6

pr
in

t
"

Fi
nd

in
g

in
de

x
in

st
ri

ng
of

$_
"

37
7

in
de

x_
do

ll
ar

=
fi

nd
_a

ll
_i

nd
ex

es
(l

,
"$

_"
)

37
8

pr
in

t
"

Fi
nd

in
g

cl
os

in
g

br
ac

ke
t

"
37

9
fo

r
x

in
in

de
x_

do
ll

ar
:

38
0

in
de

x_
ri

gh
t_

br
ac

ke
t

=
l[

in
t(

x)
:]

.
fi

nd
("

]"
)

38
1

in
de

x_
ri

gh
t_

br
ac

ke
t

=
x

+
in

de
x_

ri
gh

t_
br

ac
ke

t
38

2

38
3

if
in

pu
t_

pa
ra

m
in

l[
x:

in
de

x_
ri

gh
t_

br
ac

ke
t

]:
38

4
ap

pl
y_

sa
n

=
l[

x:
in

de
x_

ri
gh

t_
br

ac
ke

t
+

1]

144 A. APPENDIX
38

5
pr

in
t

"
Ap

pl
yi

ng
sa

ni
ta

ti
on

us
in

g
st

r_
re

pl
ac

e
()

"
38

6
sa

n
=

's
tr

_r
ep

la
ce

(
ar

ra
y

(
'+

'"
'+

'.
./

'+
'"

'+
")

,
"+

'"
",

'+
ap

pl
y_

sa
n

+
")

"
38

7
pr

in
t

sa
n

38
8

sa
ni

ti
ze

d_
li

ne
=

l.
re

pl
ac

e
(

ap
pl

y_
sa

n
,

sa
n)

38
9

li
ne

s
[c

]
=

sa
ni

ti
ze

d_
li

ne
39

0
c

=
c

+
1

39
1

fi
le

2
=

op
en

(
fi

le
pa

th
,

"w
")

39
2

fi
le

2
.

wr
it

el
in

es
(

li
ne

s
)

39
3

fi
le

2
.

cl
os

e
()

39
4

39
5

el
se

:
39

6
pr

in
t

"
Sy

st
em

do
es

no
t

su
pp

or
t

an
ym

or
e

sp
ei

ci
fi

c
sa

ni
ti

za
ti

on
op

ti
on

s
to

wa
rd

s
ce

rt
ai

n
vu

ln
er

ab
il

it
ie

s
"

39
7

pr
in

t
"

Ba
si

c
sa

ni
ti

za
ti

on
wi

ll
be

ap
pl

ie
d

to
fi

le
"+

fi
le

pa
th

39
8

fi
le

=
op

en
(

fi
le

pa
th

,
"r

")
39

9
li

ne
s

=
fi

le
.

re
ad

li
ne

s
()

40
0

fi
le

.
cl

os
e

()
40

1
c

=
0

40
2

fo
r

l
in

li
ne

s
:

40
3

if
"$

_[
"

an
d

"'
"

+
in

pu
t_

pa
ra

m
+

"'
"

in
l:

40
4

pr
in

t
"

Fi
nd

in
g

in
de

x
in

st
ri

ng
of

$_
"

40
5

in
de

x_
do

ll
ar

=
fi

nd
_a

ll
_i

nd
ex

es
(l

,
"$

_"
)

40
6

pr
in

t
"

Fi
nd

in
g

cl
os

in
g

br
ac

ke
t

"
40

7
fo

r
x

in
in

de
x_

do
ll

ar
:

40
8

in
de

x_
ri

gh
t_

br
ac

ke
t

=
l[

in
t(

x)
:]

.
fi

nd
("

]"
)

40
9

in
de

x_
ri

gh
t_

br
ac

ke
t

=
x

+
in

de
x_

ri
gh

t_
br

ac
ke

t
41

0

41
1

if
in

pu
t_

pa
ra

m
in

l[
x:

in
de

x_
ri

gh
t_

br
ac

ke
t

]:
41

2
ap

pl
y_

sa
n

=
l[

x:
in

de
x_

ri
gh

t_
br

ac
ke

t
+

1]
41

3
pr

in
t

"
Ap

pl
yi

ng
sa

ni
ti

za
ti

on
us

in
g

pr
eg

_r
ep

la
ce

()
"

41
4

sa
n

=
"

pr
eg

_r
ep

la
ce

("
+"

'"
+"

/[
^a

-z
A

-Z
0

-9
.]

/
"+

"'
"+

",
"+

"
''

"+
""

+"
,

"
+

ap
pl

y_
sa

n
+

")
"

41
5

pr
in

t
sa

n
41

6
sa

ni
ti

ze
d_

li
ne

=
l.

re
pl

ac
e

(
ap

pl
y_

sa
n

,
sa

n)

A.1. SELF-HEALING SCRIPT 145

41
7

li
ne

s
[c

]
=

sa
ni

ti
ze

d_
li

ne
41

8
c

=
c

+
1

41
9

fi
le

2
=

op
en

(
fi

le
pa

th
,

"w
")

42
0

fi
le

2
.

wr
it

el
in

es
(

li
ne

s
)

42
1

fi
le

2
.

cl
os

e
()

42
2

42
3

42
4

de
f

st
ep

5
(

ph
pi

ds
_t

yp
e

,
po

st
ge

t
,

fi
le

pa
th

,
lo

c
,

in
pu

t_
pa

ra
m

,
ph

pc
s_

er
ro

r_
me

ss
ag

es
):

42
5

pr
in

t
"

In
it

ia
ti

ng
se

lf
-

he
al

in
g

te
ch

ni
qu

e
:

Co
rr

ec
t

su
sc

ep
ti

bl
e

co
de

ca
us

in
g

vu
ln

er
ab

il
it

y
"

42
6

pr
in

t
"

Cu
rr

en
tl

y
su

pp
or

ts
SQ

Li
,

sh
el

l
ex

ec
ut

io
n

,
xs

s
..

."
42

7
pr

in
t

"
**

**
**

**
"

42
8

42
9

fo
r

i
in

ra
ng

e
(l

en
(

ph
pi

ds
_t

yp
e

))
:

43
0

ph
pi

ds
_t

yp
e

[i
]

=
ph

pi
ds

_t
yp

e
[i

].
st

ri
p

('
"'

)
43

1

43
2

if
"

sq
li

"
in

ph
pi

ds
_t

yp
e

an
d

"
MY

SQ
Li

"
in

'\
t'

.
jo

in
(

ph
pc

s_
er

ro
r_

me
ss

ag
es

):
43

3
sq

li
_h

ea
l

(
in

pu
t_

pa
ra

m
,'

$G
LO

BA
LS

["
__

_m
ys

ql
i_

st
on

"]
',

fi
le

pa
th

)
43

4
el

if
"

sh
el

l_
ex

ec
"

in
'\

t'
.

jo
in

(
ph

pc
s_

er
ro

r_
me

ss
ag

es
)

an
d

("
dt

"
in

ph
pi

ds
_t

yp
e

or
"i

d"
in

ph
pi

ds
_t

yp
e

or
"

lf
i"

in
ph

pi
ds

_t
yp

e
):

43
5

ex
ec

_h
ea

l
(

in
pu

t_
pa

ra
m

,
lo

c
,

fi
le

pa
th

)
43

6
el

if
("

Us
er

in
pu

t
"

an
d

po
st

ge
t

)
or

"
HT

ML
co

ns
tr

uc
ti

on
wi

th
di

re
ct

us
er

in
pu

t
$_

GE
T

de
te

ct
ed

"
in

'\
t'

.
jo

in
(

ph
pc

s_
er

ro
r_

me
ss

ag
es

)
an

d
"x

ss
"

in
ph

pi
ds

_t
yp

e
:

43
7

xs
s_

he
al

(
in

pu
t_

pa
ra

m
,

lo
c

,
fi

le
pa

th
,

po
st

ge
t

)
43

8

43
9

de
f

fi
nd

_a
ll

_i
nd

ex
es

(
in

pu
t_

st
r

,
se

ar
ch

_s
tr

):
44

0
l1

=
[]

44
1

le
ng

th
=

le
n(

in
pu

t_
st

r
)

44
2

in
de

x
=

0
44

3
wh

il
e

in
de

x
<

le
ng

th
:

44
4

i
=

in
pu

t_
st

r
.

fi
nd

(
se

ar
ch

_s
tr

,
in

de
x

)
44

5
if

i
==

-1
:

44
6

re
tu

rn
l1

44
7

l1
.

ap
pe

nd
(i

)
44

8
in

de
x

=
i

+
1

146 A. APPENDIX
44

9
re

tu
rn

l1
#

ht
tp

s
:/

/
ww

w.
jo

ur
na

ld
ev

.c
om

/2
36

66
/

py
th

on
-s

tr
in

g
-

fi
nd

45
0

45
1

45
2

de
f

xs
s_

he
al

(
in

pu
t_

pa
ra

ms
,l

oc
,

fi
le

pa
th

,
ge

tp
os

t
):

45
3

pr
in

t
("

Su
sp

ec
te

d
xs

s
vu

ln
er

ab
il

it
y

fo
un

d
in

fi
le

"
+

fi
le

pa
th

)
45

4
fi

le
=

op
en

(
fi

le
pa

th
,

"r
")

45
5

li
ne

s
=

fi
le

.
re

ad
li

ne
s

()
45

6
fi

le
.

cl
os

e
()

45
7

va
r_

na
me

_i
_p

=
""

45
8

45
9

fo
r

in
pu

t_
pa

ra
m

in
in

pu
t_

pa
ra

ms
:

46
0

46
1

fo
r

l
in

lo
c:

46
2

if
"$

_"
+

ge
tp

os
t

in
li

ne
s

[i
nt

(l
)

-1
]

an
d

"
ht

ml
sp

ec
ia

lc
ha

rs
"

no
t

in
li

ne
s

[i
nt

(l
)

-1
]

an
d

"
is

se
t

"
no

t
in

li
ne

s
[i

nt
(l

)
-1

]:
46

3
#

pr
in

t
"

Fi
nd

in
g

in
de

x
in

st
ri

ng
of

$_
"+

ge
tp

os
t

+"
["

46
4

in
de

x_
do

ll
ar

=
fi

nd
_a

ll
_i

nd
ex

es
(

li
ne

s
[i

nt
(l

)
-1

],
"$

_"
+

ge
tp

os
t

+"
["

)
46

5
#

pr
in

t
"

Fi
nd

in
g

cl
os

in
g

br
ac

ke
t

"
46

6
fo

r
x

in
in

de
x_

do
ll

ar
:

46
7

46
8

in
de

x_
ri

gh
t_

br
ac

ke
t

=
li

ne
s

[i
nt

(l
)

-1
][

in
t(

x)
:]

.
fi

nd
("

]"
)

46
9

in
de

x_
ri

gh
t_

br
ac

ke
t

=
x

+
in

de
x_

ri
gh

t_
br

ac
ke

t
47

0

47
1

if
in

pu
t_

pa
ra

m
in

li
ne

s
[i

nt
(l

)
-1

][
x:

in
de

x_
ri

gh
t_

br
ac

ke
t

]:
47

2
ap

pl
y_

sa
n

=
li

ne
s

[i
nt

(l
)

-1
][

x:
in

de
x_

ri
gh

t_
br

ac
ke

t
+1

]
47

3
pr

in
t

"
Ap

pl
yi

ng
sa

ni
ti

za
ti

on
us

in
g

ht
ml

sp
ec

ia
lc

ha
r

"
47

4
sa

n
=

"
ht

ml
sp

ec
ia

lc
ha

rs
("

+
ap

pl
y_

sa
n

+"
)"

47
5

sa
ni

ti
ze

d_
li

ne
=

li
ne

s
[i

nt
(l

)
-1

].
re

pl
ac

e
(

ap
pl

y_
sa

n
,s

an
)

47
6

li
ne

s
[i

nt
(l

)
-1

]
=

sa
ni

ti
ze

d_
li

ne
47

7

47
8

os
.

sy
st

em
("

cp
"+

fi
le

pa
th

+"
"+

fi
le

pa
th

+"
.o

ld
")

47
9

fi
le

2
=

op
en

(
fi

le
pa

th
,

"w
")

48
0

fi
le

2
.

wr
it

el
in

es
(

li
ne

s
)

48
1

fi
le

2
.

cl
os

e
()

A.1. SELF-HEALING SCRIPT 147

48
2

48
3

48
4

de
f

ex
ec

_h
ea

l
(

in
pu

t_
pa

ra
m

,l
oc

,
fi

le
pa

th
):

48
5

pr
in

t
("

Su
sp

ec
te

d
co

mm
an

d
in

je
ct

io
n

vu
ln

er
ab

il
it

y
fo

un
d

in
fi

le
"

+
fi

le
pa

th
)

48
6

48
7

fi
le

=
op

en
(

fi
le

pa
th

,
"r

")
48

8
li

ne
s

=
fi

le
.

re
ad

li
ne

s
()

48
9

fi
le

.
cl

os
e

()
49

0
va

r_
na

me
_i

_p
=

""
49

1

49
2

fo
r

i
in

ra
ng

e
(l

en
(

li
ne

s
))

:
49

3
if

"'
"+

in
pu

t_
pa

ra
m

+"
'"

in
li

ne
s

[i
]:

49
4

va
r_

na
me

_i
_p

=
li

ne
s

[i
].

sp
li

t
("

="
)

[0
].

st
ri

p
("

")
49

5
pr

in
t

va
r_

na
me

_i
_p

49
6

49
7

fo
r

l
in

lo
c:

49
8

if
"

sh
el

l_
ex

ec
"

in
li

ne
s

[l
-1

]:
49

9
ne

w_
li

ne
=

li
ne

s
[i

nt
(l

)
-1

].
re

pl
ac

e
(

va
r_

na
me

_i
_p

.
re

pl
ac

e
("

\t
",

''
),

"
es

ca
pe

sh
el

la
rg

("
+

va
r_

na
me

_i
_p

+
")

")
50

0
pr

in
t

ne
w_

li
ne

50
1

li
ne

s
[i

nt
(l

)
-1

]
=

ne
w_

li
ne

50
2

50
3

50
4

os
.

sy
st

em
("

cp
"+

fi
le

pa
th

+"
"+

fi
le

pa
th

+"
.o

ld
")

50
5

fi
le

2
=

op
en

(
fi

le
pa

th
,

"w
")

50
6

fi
le

2
.

wr
it

el
in

es
(

li
ne

s
)

50
7

fi
le

2
.

cl
os

e
()

50
8

50
9

51
0

de
f

sq
li

_h
ea

l
(

in
pu

t_
pa

ra
m

,
db

_c
on

n_
va

r
,

fi
le

pa
th

):
51

1
#'

$G
LO

BA
LS

["
__

_m
ys

ql
i_

st
on

"]
'

51
2

pr
in

t
("

Su
sp

ec
te

d
SQ

Li
vu

ln
er

ab
il

it
y

fo
un

d
in

fi
le

"+
fi

le
pa

th
)

51
3

51
4

fi
le

=
op

en
(

fi
le

pa
th

,
"r

")

148 A. APPENDIX
51

5
li

ne
s

=
fi

le
.

re
ad

li
ne

s
()

51
6

fi
le

.
cl

os
e

()
51

7
ch

an
ge

d_
li

ne
s

=
[]

51
8

va
r_

na
me

_i
_p

="
"

51
9

52
0

fo
r

i
in

ra
ng

e
(l

en
(

li
ne

s
))

:
52

1
if

"'
"+

in
pu

t_
pa

ra
m

+"
'"

in
li

ne
s

[i
]:

52
2

va
r_

na
me

_i
_p

=
li

ne
s

[i
].

sp
li

t
("

="
)

[0
].

st
ri

p
("

")
52

3

52
4

if
va

r_
na

me
_i

_p
an

d
("

SE
LE

CT
"

or
"

FR
OM

"
or

"
WH

ER
E

"
or

"
OR

DE
R_

BY
")

in
li

ne
s

[i
]:

52
5

qu
er

y_
fo

un
d

=
li

ne
s

[i
]

52
6

va
r2

=
va

r_
na

me
_i

_p
.

re
pl

ac
e

("
\t

",
""

)
52

7
ne

w_
qu

er
y

=
li

ne
s

[i
].

re
pl

ac
e

("
'"

+
va

r2
+"

';
",

"?
")

#
be

wa
re

;
52

8
in

de
x

=
i

52
9

fo
r

x
in

ra
ng

e
(

in
de

x
):

53
0

ch
an

ge
d_

li
ne

s
.

ap
pe

nd
(

li
ne

s
[x

])
53

1
va

r_
na

me
_q

ry
=

ne
w_

qu
er

y
.

sp
li

t
("

="
)

[0
].

st
ri

p
("

")
53

2
ch

an
ge

d_
li

ne
s

.
ap

pe
nd

(
ne

w_
qu

er
y

)
53

3

53
4

pr
ep

=
"

$p
re

p
=

my
sq

li
_p

re
pa

re
("

+
db

_c
on

n_
va

r
+"

,"
+

va
r_

na
me

_q
ry

+"
);

\n
"

53
5

va
r_

na
me

_p
re

p
=

"
$p

re
p

"
53

6
ch

an
ge

d_
li

ne
s

.
ap

pe
nd

(
pr

ep
)

53
7

53
8

bi
nd

=
"

my
sq

li
_s

tm
t_

bi
nd

_p
ar

am
("

+
va

r_
na

me
_p

re
p

+"
,"

+"
's

'"
+"

,"
+

va
r_

na
me

_i
_p

+"
);

\n
"

53
9

ch
an

ge
d_

li
ne

s
.

ap
pe

nd
(

bi
nd

)
54

0

54
1

ex
ec

ut
e

=
"

my
sq

li
_s

tm
t_

ex
ec

ut
e

("
+

va
r_

na
me

_p
re

p
+"

);
\n

"
54

2
ch

an
ge

d_
li

ne
s

.
ap

pe
nd

(
ex

ec
ut

e
)

54
3

54
4

el
if

"
my

sq
li

_q
ue

ry
"

in
li

ne
s

[i
]:

54
5

re
su

lt
_f

ou
nd

=
li

ne
s

[i
]

54
6

va
r_

na
me

_r
es

ul
t

=
li

ne
s

[i
].

sp
li

t
("

="
)

[0
].

st
ri

p
("

")
54

7
re

su
lt

=
re

su
lt

_f
ou

nd
.

sp
li

t
("

="
)

[0
]+

"=
"+

"
my

sq
li

_s
tm

t_
ge

t_
re

su
lt

("
+

va
r_

na
me

_p
re

p
+"

);
\n

"
54

8
ch

an
ge

d_
li

ne
s

.
ap

pe
nd

(
re

su
lt

)

A.1. SELF-HEALING SCRIPT 149

54
9

55
0

fo
r

c
in

ra
ng

e
(i

+1
,

le
n(

li
ne

s
))

:
55

1
ch

an
ge

d_
li

ne
s

.
ap

pe
nd

(
li

ne
s

[c
])

55
2

br
ea

k
55

3

55
4

fi
le

2
=

op
en

(
fi

le
pa

th
,

"w
")

55
5

fi
le

2
.

wr
it

el
in

es
(

ch
an

ge
d_

li
ne

s
)

55
6

fi
le

2
.

cl
os

e
()

55
7

pr
in

t
"S

QL
in

je
ct

io
n

fi
xe

d
."

55
8

55
9

#T
he

fo
ll

ow
in

g
fu

nc
ti

on
is

an
at

te
mp

t
of

au
to

ma
te

d
he

al
in

g
te

st
in

g
,

bu
t

is
no

t
fu

nc
ti

on
in

g
co

rr
ec

tl
y

.
56

0
de

f
sh

_t
es

t
(

at
ta

ck
ed

_p
ag

e
,p

,f
n

,
st

at
us

):
56

1
pr

in
t

""
56

2
pr

in
t

"
**

**
**

*
"

56
3

pr
in

t
("

In
it

ia
ti

ng
se

lf
-

he
al

in
g

te
st

fo
r

se
lf

-
he

al
in

g
te

ch
ni

qu
e

..
."

)
56

4

56
5

re
q

,
ge

t_
po

st
=

p
[4

].
sp

li
t

("
")

56
6

56
7

if
"

PO
ST

."
in

ge
t_

po
st

:
56

8
ge

t_
po

st
=

"
PO

ST
"

56
9

el
if

"G
ET

."
in

ge
t_

po
st

:
57

0
ge

t_
po

st
=

"G
ET

"
57

1

57
2

57
3

at
ta

ck
_v

ar
_a

nd
_i

np
ut

_r
aw

=
re

q[
le

n(
"

RE
QU

ES
T

")
+2

:]
57

4
at

ta
ck

_v
ar

,
at

ta
ck

_i
np

ut
_r

aw
=

re
q.

sp
li

t
("

="
)

57
5

at
ta

ck
_v

ar
=

at
ta

ck
_v

ar
[l

en
("

RE
QU

ES
T

")
+2

:]
57

6
at

ta
ck

_i
np

ut
_u

nq
uo

te
=

ur
ll

ib
.

un
qu

ot
e

(
at

ta
ck

_i
np

ut
_r

aw
)

57
7

at
ta

ck
_u

rl
=

"
ht

tp
:/

/
lo

ca
lh

os
t

"+
at

ta
ck

ed
_p

ag
e

57
8

57
9

da
ta

=
{

at
ta

ck
_v

ar
:

at
ta

ck
_i

np
ut

_u
nq

uo
te

}
58

0
he

ad
er

s
=

{'
Us

er
-

Ag
en

t
':

'M
oz

il
la

/5
.0

(
Ma

ci
nt

os
h

;
In

te
l

Ma
c

OS
X

10
_1

0_
1

)
Ap

pl
eW

eb
Ki

t
/5

37
.3

6
(K

HT
ML

,
li

ke
Ge

ck
o

)
Ch

ro
me

/3
9.

0.
21

71
.9

5
Sa

fa
ri

/5
37

.3
6

'}
58

1
pa

yl
oa

d
=

{

150 A. APPENDIX
58

2
'u

se
rn

am
e

':
'a

dm
in

',
58

3
'p

as
sw

or
d

':
'p

as
sw

or
d

',
58

4
'L

og
in

':
'L

og
in

'
58

5
}

58
6

c2
=

{'
PH

PS
ES

SI
D

':
'8

fk
sg

el
1e

q8
fh

q6
hf

nh
ab

bt
uf

1
',

's
ec

ur
it

y
':

'l
ow

'}
58

7

58
8

co
ok

ie
s

={
}

58
9

ur
l1

=
at

ta
ck

_u
rl

59
0

ur
l2

=
at

ta
ck

_u
rl

+"
?"

+
at

ta
ck

_v
ar

+"
="

+
at

ta
ck

_i
np

ut
_r

aw
59

1

59
2

#i
f

st
at

us
==

"
do

wn
":

59
3

#
re

tu
rn

ur
l1

,
ur

l2
,

at
ta

ck
_i

np
ut

_u
nq

uo
te

59
4

re
tu

rn
ur

l1
,

ur
l2

,
at

ta
ck

_i
np

ut
_u

nq
uo

te
59

5

59
6

wi
th

re
qu

es
ts

.
Se

ss
io

n
()

as
c:

59
7

r
=

c.
ge

t(
'h

tt
p

:/
/

lo
ca

lh
os

t
/

lo
gi

n
.p

hp
',

he
ad

er
s

=
he

ad
er

s
)

59
8

fo
r

e
in

r.
co

ok
ie

s
:

59
9

co
ok

ie
s

[e
.

na
me

]
=

e.
va

lu
e

60
0

to
ke

n
=

re
.

se
ar

ch
("

us
er

_t
ok

en
'\

s*
va

lu
e

=
'(

.*
?)

'"
,

r.
te

xt
).

gr
ou

p
(1

)
60

1
pa

yl
oa

d
['

us
er

_t
ok

en
']

=
to

ke
n

60
2

p
=

c.
po

st
('

ht
tp

:/
/

lo
ca

lh
os

t
/

lo
gi

n
.p

hp
',

da
ta

=
pa

yl
oa

d
,

he
ad

er
s

=
he

ad
er

s
)

60
3

bu
rp

0_
co

ok
ie

s
=

{
"

se
cu

ri
ty

":
"l

ow
",

"
PH

PS
ES

SI
D

":
"

fg
40

2r
9l

vp
39

hu
ge

n8
ve

89
lg

g3
"}

60
4

se
ss

io
n

=
re

qu
es

ts
.

Se
ss

io
n

()
60

5
pr

in
t

ge
t_

po
st

60
6

if
ge

t_
po

st
==

"
PO

ST
":

60
7

pr
in

t
"

PO
ST

"
60

8
te

st
=

se
ss

io
n

.
po

st
(u

rl
1

,
he

ad
er

s
=

he
ad

er
s

,
co

ok
ie

s
=

bu
rp

0_
co

ok
ie

s
,

da
ta

=
da

ta
)

60
9

o
=

se
ss

io
n

.
po

st
(u

rl
2

,
he

ad
er

s
=h

ea
de

rs
,

co
ok

ie
s

=
bu

rp
0_

co
ok

ie
s

)
61

0
el

se
:

61
1

pr
in

t
"i

n
ge

t
pl

ac
e

to
o"

61
2

c.
ge

t(
ur

l1
,

he
ad

er
s

=h
ea

de
rs

,
co

ok
ie

s
=

bu
rp

0_
co

ok
ie

s
,

da
ta

=
da

ta
)

61
3

c.
ge

t(
ur

l2
,

he
ad

er
s

=h
ea

de
rs

,
co

ok
ie

s
=

bu
rp

0_
co

ok
ie

s
)

61
4

61
5

A.1. SELF-HEALING SCRIPT 151

61
6

de
f

re
m_

30
2

(
fi

le
):

61
7

f
=

op
en

(f
il

e
,"

r"
)

61
8

li
st

=
f.

re
ad

li
ne

s
()

61
9

fo
r

l
in

li
st

:
62

0
if

"3
02

"
in

l:
62

1
li

st
.

re
mo

ve
(l

)
62

2
f.

cl
os

e
()

62
3

n
=

op
en

(f
il

e
,"

w"
)

62
4

n.
wr

it
el

in
es

(
li

st
)

62
5

n.
cl

os
e

()
62

6

62
7

de
f

av
_t

es
t

(
fi

le
s

):
62

8
pr

in
t

"
**

**
**

"
62

9
pr

in
t

("
In

it
ia

ti
ng

av
ai

ba
bi

li
ty

te
st

af
te

r
se

lf
-

he
al

in
g

te
ch

ni
qu

e
..

."
)

63
0

pa
th

_t
o_

pa
ge

s
=

"/
Ma

st
er

/
te

st
_s

er
ve

r_
di

r
/

pa
th

_t
o_

fi
le

s
.t

xt
"

63
1

pr
in

t
("

Ch
ec

ki
ng

av
ai

la
bi

li
ty

of
fi

le
s

on
th

e
we

b
se

rv
er

."
)

63
2

os
.

sy
st

em
("

./
ge

t_
HT

TP
_r

es
p

.s
h"

)
63

3
re

m_
30

2
("

av
ai

l_
cr

it
/

ou
tp

ut
_h

tt
p_

re
sp

.t
xt

")
63

4
re

m_
30

2
("

av
ai

l_
cr

it
/

ht
tp

_r
es

p_
be

fo
re

_h
ea

l
.t

xt
")

63
5

pr
in

t
("

**
**

**
")

63
6

pr
in

t
("

**
**

**
")

63
7

pr
in

t
("

Co
mp

ar
in

g
up

an
d

do
wn

si
te

s
be

fo
re

an
d

af
te

r
se

lf
-

he
al

in
g

..
."

)
63

8
pr

in
t

("
**

**
**

")
63

9
pr

in
t

("
**

**
**

")
64

0
be

fo
re

=
op

en
("

av
ai

l_
cr

it
/

ht
tp

_r
es

p_
be

fo
re

_h
ea

l
.t

xt
",

"r
")

64
1

af
te

r
=

op
en

("
av

ai
l_

cr
it

/
ou

tp
ut

_h
tt

p_
re

sp
.t

xt
",

"r
")

64
2

be
fo

re
_l

in
es

=
be

fo
re

.
re

ad
li

ne
s

()
64

3
af

te
r_

li
ne

s
=

af
te

r
.

re
ad

li
ne

s
()

64
4

be
fo

re
.

cl
os

e
()

64
5

af
te

r
.

cl
os

e
()

64
6

64
7

nu
m

=
(l

en
(

be
fo

re
_l

in
es

)/
2)

64
8

af
te

r_
40

4
=

0
64

9
be

fo
re

_4
04

=
0

152 A. APPENDIX
65

0
fi

le
_b

ef
or

e_
40

4
=

[]
65

1
fi

le
_a

ft
er

_4
04

=
[]

65
2

fo
r

i
in

ra
ng

e
(l

en
(

be
fo

re
_l

in
es

))
:

#
as

su
me

s
no

fi
le

wi
th

na
me

in
cl

ud
in

g
40

4
65

3
if

"
40

4\
n"

in
be

fo
re

_l
in

es
[i

]:
65

4
be

fo
re

_4
04

=
be

fo
re

_4
04

+
1

65
5

fi
le

_b
ef

or
e_

40
4

.
ap

pe
nd

(
be

fo
re

_l
in

es
[i

-1
])

65
6

fo
r

y
in

ra
ng

e
(l

en
(

af
te

r_
li

ne
s

))
:

65
7

if
"

40
4\

n"
in

af
te

r_
li

ne
s

[y
]:

65
8

af
te

r_
40

4
=

af
te

r_
40

4
+

1
65

9
fi

le
_a

ft
er

_4
04

.
ap

pe
nd

(
af

te
r_

li
ne

s
[y

-1
])

66
0

66
1

if
af

te
r_

40
4

!=
0

or
be

fo
re

_4
04

!=
0

or
le

n(
af

te
r_

li
ne

s
)=

=
nu

m:
66

2
if

be
fo

re
_4

04
>

0:
66

3
pr

in
t

("
Th

e
pa

ge
s

do
wn

be
fo

re
he

al
in

g
:"

)
66

4
fo

r
r

in
fi

le
_b

ef
or

e_
40

4
:

66
5

pr
in

t
r

66
6

if
af

te
r_

40
4

>
0

an
d

le
n(

af
te

r_
li

ne
s

)
!=

0:
66

7
pr

in
t

("
Th

e
pa

ge
s

do
wn

af
te

r
he

al
in

g
:"

)
66

8
fo

r
k

in
fi

le
_a

ft
er

_4
04

:
66

9
pr

in
t

k
67

0
pr

in
t

("
Ou

t
of

"+
st

r(
nu

m)
+"

pa
ge

s
,

be
fo

re
:"

+s
tr

(
be

fo
re

_4
04

)+
"

an
d

af
te

r
:"

+s
tr

(
af

te
r_

40
4

)+
"

we
re

un
av

ai
la

bl
e

")
67

1

67
2

if
le

n(
af

te
r_

li
ne

s
)

==
nu

m:
67

3
pr

in
t

("
Al

l
pa

ge
s

,
"+

st
r(

nu
m)

+"
ar

e
do

wn
af

te
r

he
al

in
g

>>
Th

e
ho

st
is

do
wn

")
67

4
re

tu
rn

"
do

wn
"

67
5

el
se

:
67

6
pr

in
t

("
Al

l
pa

ge
s

ar
e

up
,

to
ta

l
:

"+
st

r(
nu

m)
)

67
7

67
8

re
tu

rn
nu

m
,

be
fo

re
_4

04
,

af
te

r_
40

4
67

9
#

av
_t

es
t

(1
)

68
0

68
1

de
f

au
th

en
ti

ca
te

_t
o_

DV
WA

()
:

68
2

A.1. SELF-HEALING SCRIPT 153

68
3

pr
in

t
("

Ru
nn

in
g

au
th

en
ti

ca
ti

ng
pr

oc
ed

ur
e

to
se

rv
er

..
."

)
68

4

68
5

he
ad

er
s

=
{'

Us
er

-
Ag

en
t

':
'M

oz
il

la
/5

.0
(

Ma
ci

nt
os

h
;

In
te

l
Ma

c
OS

X
10

_1
0_

1
)

Ap
pl

eW
eb

Ki
t

/5
37

.3
6

(K
HT

ML
,

li
ke

Ge
ck

o
)

Ch
ro

me
/3

9.
0.

21
71

.9
5

Sa
fa

ri
/5

37
.3

6
'}

68
6

pa
yl

oa
d

=
{

68
7

'u
se

rn
am

e
':

'a
dm

in
',

68
8

'p
as

sw
or

d
':

'p
as

sw
or

d
',

68
9

'L
og

in
':

'L
og

in
'

69
0

}
69

1
co

ok
ie

s
={

}
69

2

69
3

wi
th

re
qu

es
ts

.
Se

ss
io

n
()

as
c:

69
4

r
=

c.
ge

t(
'h

tt
p

:/
/

lo
ca

lh
os

t
/

lo
gi

n
.p

hp
',

he
ad

er
s

=
he

ad
er

s
)

69
5

fo
r

e
in

r.
co

ok
ie

s
:

69
6

co
ok

ie
s

[e
.

na
me

]
=

e.
va

lu
e

69
7

to
ke

n
=

re
.

se
ar

ch
("

us
er

_t
ok

en
'\

s*
va

lu
e

=
'(

.*
?)

'"
,

r.
te

xt
).

gr
ou

p
(1

)
69

8
pa

yl
oa

d
['

us
er

_t
ok

en
']

=
to

ke
n

69
9

p
=

c.
po

st
('

ht
tp

:/
/

lo
ca

lh
os

t
/

lo
gi

n
.p

hp
',

da
ta

=
pa

yl
oa

d
,

he
ad

er
s

=
he

ad
er

s
)

70
0

bu
rp

0_
co

ok
ie

s
=

{
"

se
cu

ri
ty

":
"l

ow
",

"
PH

PS
ES

SI
D

":
"

fg
40

2r
9l

vp
39

hu
ge

n8
ve

89
lg

g3
"}

70
1

se
ss

io
n

=
re

qu
es

ts
.

Se
ss

io
n

()
70

2
pr

in
t

("
..

.
Au

th
en

ti
ca

te
d

")
70

3
re

tu
rn

se
ss

io
n

,
bu

rp
0_

co
ok

ie
s

,
he

ad
er

s
70

4

70
5

de
f

fu
nc

_t
es

t
(

fi
le

_t
o_

te
st

):
70

6
pr

in
t

("
")

70
7

pr
in

t
("

**
**

**
*

")
70

8
pr

in
t

("
In

it
ia

ti
ng

fu
nc

ti
on

al
it

y
te

st
fo

r
fi

le
"+

fi
le

_t
o_

te
st

)
70

9
pr

in
t

("
Cu

rr
en

tl
y

su
pp

or
ts

un
it

/
re

gr
es

si
on

te
st

s
fo

r
/

ex
ec

/,
/f

i/
an

d
/

sq
li

/"
)

71
0

pr
in

t
("

**
**

**
")

71
1

71
2

ci
_e

xp
ec

te
d

=
""

71
3

sq
l_

ex
pe

ct
ed

=
""

71
4

fi
=

""
71

5

154 A. APPENDIX
71

6
se

ss
io

n
,

co
ok

ie
s

,
he

ad
er

s
=

au
th

en
ti

ca
te

_t
o_

DV
WA

()
71

7

71
8

if
fi

le
_t

o_
te

st
==

"/
vu

ln
er

ab
il

it
ie

s
/

ex
ec

/"
:

71
9

pr
in

t
"F

or
/

vu
ln

er
ab

il
it

ie
s

/e
xe

c
,

th
e

ex
pe

ct
ed

be
ha

vi
or

is
to

pi
ng

gi
ve

n
ip

or
ur

l.
"

72
0

ur
l

=
"

ht
tp

:/
/

lo
ca

lh
os

t
"+

fi
le

_t
o_

te
st

72
1

da
ta

=
{"

ip
":

"
lo

ca
lh

os
t

",
"

Su
bm

it
":

"
su

bm
it

"}
72

2
ex

ec
_t

es
t

=
se

ss
io

n
.

po
st

(u
rl

,
he

ad
er

s
=

he
ad

er
s

,
co

ok
ie

s
=

co
ok

ie
s

,
da

ta
=

da
ta

)
72

3
pr

in
t

ex
ec

_t
es

t
.

te
xt

72
4

if
"0

pa
ck

et
s

re
ce

iv
ed

"
no

t
in

ex
ec

_t
es

t
.

te
xt

an
d

ex
ec

_t
es

t
.

te
xt

!=
""

:
72

5
pr

in
t

"T
he

fu
nc

ti
on

al
it

y
of

th
e

pa
ge

ex
ec

is
pr

es
er

ve
d

"
72

6
re

tu
rn

1
72

7
el

se
:

72
8

pr
in

t
"T

he
fu

nc
ti

on
al

it
y

ha
s

be
en

di
st

or
te

d
so

me
ho

w
.

Th
e

ou
tp

ut
is

no
t

as
ex

pe
ct

ed
wh

en
tr

yi
ng

to
pi

ng
.

Se
e

ou
tp

ut
:"

72
9

pr
in

t
""

73
0

pr
in

t
ex

ec
_t

es
t

.
te

xt
73

1
re

tu
rn

0
73

2

73
3

if
fi

le
_t

o_
te

st
==

"/
vu

ln
er

ab
il

it
ie

s
/f

i/
":

73
4

pr
in

t
"F

or
"+

fi
le

_t
o_

te
st

+"
,

th
e

ex
pe

ct
ed

be
ha

vi
or

is
to

di
sp

la
y

ei
th

er
on

e
of

th
re

e
fi

le
s

.
Th

es
e

mu
st

be
ac

ce
ss

ib
le

."
73

5
ba

se
_u

rl
=

"
ht

tp
:/

/
lo

ca
lh

os
t

"+
fi

le
_t

o_
te

st
+"

?
pa

ge
="

73
6

fi
le

s
=

["
fi

le
1

.p
hp

",
"

fi
le

2
.p

hp
",

"
fi

le
3

.p
hp

"]
73

7
c

=
fl

oa
t

(0
)

73
8

pr
in

t
"T

he
th

re
e

fi
le

s
ar

e
te

st
ed

on
e

by
on

e.
"

73
9

74
0

fi
_t

es
t_

1
=

se
ss

io
n

.g
et

(
ba

se
_u

rl
+

fi
le

s
[0

]
,

he
ad

er
s

=
he

ad
er

s
,

co
ok

ie
s

=
co

ok
ie

s
)

74
1

#c
an

do
ev

en
mo

re
ex

te
ns

iv
e

te
st

s
fo

r
ea

ch
fi

le
,

ex
fo

r
th

is
on

e
ch

ec
k

if
th

e
IP

ad
dr

es
s

pr
es

en
te

d
is

th
e

sa
me

as
mi

ne
74

2
if

"
Fi

le
1"

an
d

"
He

ll
o

"
an

d
"

Yo
ur

IP
ad

dr
es

s
is

"
in

fi
_t

es
t_

1
.

te
xt

:
74

3
pr

in
t

"T
he

fu
nc

ti
on

al
it

y
of

th
e

fi
le

fi
le

1
.p

hp
in

fu
nc

ti
on

al
it

y
te

st
of

/f
i/

ha
s

be
en

pr
es

er
ve

d
."

74
4

c
=

c
+

fl
oa

t
(1

)/
fl

oa
t

(3
)

74
5

el
se

:
74

6
pr

in
t

"T
he

fu
nc

ti
on

al
it

y
of

fi
le

1
.p

hp
is

no
t

pr
es

er
ve

d
."

A.1. SELF-HEALING SCRIPT 155

74
7

74
8

fi
_t

es
t_

2
=

se
ss

io
n

.g
et

(
ba

se
_u

rl
+

fi
le

s
[1

]
,

he
ad

er
s

=
he

ad
er

s
,

co
ok

ie
s

=
co

ok
ie

s
)

74
9

if
"I

ne
ed

ed
a

pa
ss

wo
rd

ei
gh

t
ch

ar
ac

te
rs

lo
ng

so
I

pi
ck

ed
Sn

ow
Wh

it
e

an
d

th
e

Se
ve

n
Dw

ar
ve

s
"

in
fi

_t
es

t_
2

.
te

xt
:

75
0

pr
in

t
"T

he
fu

nc
ti

on
al

it
y

of
th

e
fi

le
fi

le
2

.p
hp

in
fu

nc
ti

on
al

it
y

te
st

of
/f

i/
ha

s
be

en
pr

es
er

ve
d

."
75

1
c

=
c

+
fl

oa
t

(1
)/

fl
oa

t
(3

)
75

2
el

se
:

75
3

pr
in

t
"T

he
fu

nc
ti

on
al

it
y

of
fi

le
2

.p
hp

is
no

t
pr

es
er

ve
d

."
75

4

75
5

fi
_t

es
t_

3
=

se
ss

io
n

.g
et

(
ba

se
_u

rl
+

fi
le

s
[2

]
,

he
ad

er
s

=
he

ad
er

s
,

co
ok

ie
s

=
co

ok
ie

s
)

75
6

#c
an

do
ev

en
mo

re
ex

te
ns

iv
e

te
st

s
fo

r
ea

ch
fi

le
,

ex
fo

r
th

is
on

e
ch

ec
k

if
th

e
IP

ad
dr

es
s

pr
es

en
te

d
is

th
e

sa
me

as
mi

ne
75

7
if

"
Fi

le
3"

an
d

"
We

lc
om

e
ba

ck
"

an
d

"
Yo

ur
us

er
-

ag
en

t
ad

dr
es

s
is

"
in

fi
_t

es
t_

3
.

te
xt

:
75

8
pr

in
t

"T
he

fu
nc

ti
on

al
it

y
of

th
e

fi
le

fi
le

3
.p

hp
in

fu
nc

ti
on

al
it

y
te

st
of

/f
i/

ha
s

be
en

pr
es

er
ve

d
."

75
9

c
=

c
+

fl
oa

t
(1

)/
fl

oa
t

(3
)

76
0

el
se

:
76

1
pr

in
t

"T
he

fu
nc

ti
on

al
it

y
of

fi
le

3
.p

hp
is

no
t

pr
es

er
ve

d
."

76
2

76
3

re
tu

rn
c

76
4

76
5

if
fi

le
_t

o_
te

st
==

"/
vu

ln
er

ab
il

it
ie

s
/

sq
li

/"
:

76
6

pr
in

t
"F

or
"+

fi
le

_t
o_

te
st

+"
,

th
e

ex
pe

ct
ed

be
ha

vi
or

is
to

di
sp

la
y

ID
,

fi
rs

t
na

me
an

d
su

rn
am

e
wh

en
gi

ve
n

an
ID

as
in

pu
t

."
76

7
ur

l
=

"
ht

tp
:/

/
lo

ca
lh

os
t

"+
fi

le
_t

o_
te

st
+"

?i
d

=1
&

Su
bm

it
=

Su
bm

it
#"

76
8

sq
li

_t
es

t
=

se
ss

io
n

.g
et

(u
rl

,
he

ad
er

s
=

he
ad

er
s

,
co

ok
ie

s
=

co
ok

ie
s

)
76

9
if

"<
pr

e
>I

D:
1<

br
/>

Fi
rs

t
na

me
:

ad
mi

n
<b

r
/>

Su
rn

am
e

:
ad

mi
n

</
pr

e
>"

in
sq

li
_t

es
t

.
te

xt
:

77
0

pr
in

t
"<

pr
e

>I
D:

1<
br

/>
Fi

rs
t

na
me

:
ad

mi
n

<b
r

/>
Su

rn
am

e
:

ad
mi

n
</

pr
e

>
fo

un
d

in
ou

tp
ut

."
77

1
pr

in
t

"T
he

fu
nc

ti
on

al
it

y
of

/
sq

li
/

ha
s

be
en

pr
es

er
ve

d
af

te
r

he
al

in
g

."
77

2
re

tu
rn

1
77

3
el

se
:

77
4

pr
in

t
"T

he
fu

nc
ti

on
al

it
y

of
/

sq
li

/
ha

s
no

t
be

en
pr

es
er

ve
d

af
te

r
he

al
in

g
."

77
5

pr
in

t
"S

ee
ou

tp
ut

:"

156 A. APPENDIX
77

6
pr

in
t

""
77

7
pr

in
t

sq
li

_t
es

t
.

te
xt

77
8

re
tu

rn
0

77
9

el
se

:
78

0
pr

in
t

"
Th

er
e

is
no

t
su

pp
or

t
to

te
st

th
is

fi
le

pa
th

:
"+

fi
le

_t
o_

te
st

78
1

78
2

fn
=

'/
va

r/
ww

w/
ht

ml
/

ex
te

rn
al

/
ph

pi
ds

/0
.6

/
li

b/
ID

S/
tm

p/
ph

pi
ds

_l
og

.t
xt

'
78

3

78
4

wa
tc

h
(f

n)

A.2. EXAMPLE OUTPUT FROM PHPCS-SECURITY-AUDIT 157

A.2 Example output from phpcs-security-audit

1

2 FILE: /var/www/html/ vulnerabilities /exec/help/help.php
3 ---
4 FOUND 0 ERRORS AND 2 WARNINGS AFFECTING 2 LINES
5 ---
6 45 | WARNING | Possible XSS detected with dvwaExternalLinkUrlGet on

echo
7 61 | WARNING | Possible XSS detected with dvwaExternalLinkUrlGet on

echo
8 --

9

10

11 FILE: /var/www/html/ vulnerabilities /exec/ index .php
12 ---
13 FOUND 1 ERROR AND 8 WARNINGS AFFECTING 7 LINES
14 ---
15 4 | WARNING | Possible RFI detected with DVWA_WEB_PAGE_TO_ROOT on

require_once
16 17 | WARNING | User input detetected with $_COOKIE .
17 32 | ERROR | No file extension has been found in a include / require

function . This implies that some
18 | | PHP code is not scanned by PHPCS .
19 32 | WARNING | Possible RFI detected with DVWA_WEB_PAGE_TO_ROOT on

require_once
20 32 | WARNING | Possible RFI detected with " vulnerabilities /exec/ source

/{ $vulnerabilityFile }" on
21 | | require_once
22 58 | WARNING | HTML construction with dvwaExternalLinkUrlGet detected .
23 59 | WARNING | HTML construction with dvwaExternalLinkUrlGet detected .
24 60 | WARNING | HTML construction with dvwaExternalLinkUrlGet detected .
25 61 | WARNING | HTML construction with dvwaExternalLinkUrlGet detected .
26 ---
27

28

29 FILE: /var/www/html/ vulnerabilities /exec/ source /high.php
30 ---
31 FOUND 0 ERRORS AND 4 WARNINGS AFFECTING 4 LINES
32 ---
33 3 | WARNING | User input detetected with $_POST .
34 5 | WARNING | User input detetected with $_REQUEST .
35 26 | WARNING | System program execution function shell_exec () detected

with dynamic parameter
36 30 | WARNING | System program execution function shell_exec () detected

with dynamic parameter
37 ---
38

39

40 FILE: /var/www/html/ vulnerabilities /exec/ source /low.php
41 ---

158 A. APPENDIX

42

43 FOUND 0 ERRORS AND 4 WARNINGS AFFECTING 4 LINES
44 ---
45 3 | WARNING | User input detetected with $_POST .
46 5 | WARNING | User input detetected with $_REQUEST .
47 10 | WARNING | System program execution function shell_exec () detected

with dynamic parameter
48 14 | WARNING | System program execution function shell_exec () detected

with dynamic parameter
49 ---
50

51

52 FILE: /var/www/html/ vulnerabilities /exec/ source / impossible .php
53 ---
54 FOUND 0 ERRORS AND 5 WARNINGS AFFECTING 5 LINES
55 ---
56 3 | WARNING | User input detetected with $_POST .
57 5 | WARNING | User input detetected with $_REQUEST .
58 8 | WARNING | User input detetected with $_REQUEST .
59 22 | WARNING | System program execution function shell_exec () detected

with dynamic parameter
60 26 | WARNING | System program execution function shell_exec () detected

with dynamic parameter
61 ---
62

63

64 FILE: /var/www/html/ vulnerabilities /exec/ source / medium .php
65 ---
66 FOUND 0 ERRORS AND 4 WARNINGS AFFECTING 4 LINES
67 ---
68 3 | WARNING | User input detetected with $_POST .
69 5 | WARNING | User input detetected with $_REQUEST .
70 19 | WARNING | System program execution function shell_exec () detected

with dynamic parameter
71 23 | WARNING | System program execution function shell_exec () detected

with dynamic parameter
72 ---
73

74 Time: 57 ms; Memory : 4MB

