
Sim
en Been Kristiansen

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

t. 
of

 In
fo

rm
at

io
n 

Se
cu

rit
y 

an
d 

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Simen Been Kristiansen

Evaluating Post-Quantum Group Key
Exchange

Master’s thesis in Communication Technology

Supervisor: Colin Boyd, Bor de Kock

June 2020





Evaluating Post-Quantum
Group Key Exchange

Simen Been Kristiansen

Master of Science in Communication Technology
Submission date: June 2020
Responsible professor: Colin Boyd, IIK
Supervisor: Bor de Kock, IIK

Norwegian University of Science and Technology
Department of Information Security and Communication Technology





Title: Evaluating Post-Quantum Group Key Exchange
Student: Simen Been Kristiansen

Problem description:

The purpose of this thesis is to evaluate efficient protocols for post-quantum group
key exchanges based the Ring Learning-With-Errors problem, which is believed to
be difficult to solve, even given a practical quantum computer. In particular, this
thesis will apply design science iterating through three cycles - first implementing
and evaluating basic post-quantum group key exchanges, on to group authenticated
key exchanges in the second cycle. The final cycle will, if time allows, include an
evaluation of a real-world implementation of a post-quantum group authenticated
key exchange.

Responsible professor: Colin Boyd, IIK
Supervisor: Bor de Kock, IIK





Abstract

Public key cryptography is the foundation on which the security of many
popular services are built. Recent innovations in the field of quantum
computing could pose a risk to this current paradigm. Post-quantum
cryptography is the solution to this threat, but with it comes a set of
challenges in terms of efficiency, usability, and complexity.

In this thesis, we explore protocols for post-quantum group key exchange
based on a mathematical problem that is believed to be hard to solve
efficiently, even using quantum computers: Ring-learning with errors
(RLWE). Specifically, we instantiate two protocols with an estimated
105 bits of security, and provide efficient implementations using the
number-theoretic transform (NTT) and Barrett reduction for the group
key exchange protocols and authenticated versions. Finally, we provide a
prototype for a real-world application: interactive group messaging.

Information gathered in the process indicates that specific post-quantum
group key exchange protocols are feasible in certain situations, such as on
desktop and server computers. We achieve a performance comparable to
several post-quantum two-party key exchange protocols. Finally, we note
that further work on a protocol level is required to attain non-interactive
protocols with auxiliary properties such as deniability.





Sammendrag

Offentlig nøkkelkryptografi er grunnlaget som sikkerheten til mange
populære tjenester er bygget på. Nyere innovasjoner innen kvantedatama-
skiner kan utgjøre en risiko for dette nåværende paradigmet. Kvantesikker
kryptografi er løsningen på denne trusselen, men medfører en mengde
utfordringer hva gjelder effektivitet, brukbarhet og kompleksitet.

I denne oppgaven utforsker vi protokoller for kvantesikker gruppenøkkel-
utveksling basert på et matematisk problem som antas å være vanskelig å
løse effektivt, selv ved bruk av kvantedatamaskiner: Ringlæring med feil
(RLWE). Spesifikt instansierer vi to protokoller med anslagsvis 105 biters
sikkerhet, og gir effektive implementasjoner ved bruk av den tall-teoretiske
transformasjonen (NTT) og Barrett-reduksjon for gruppenøkkelutveks-
lingsprotokollene samt autentiserte versjoner. Til slutt gir vi en prototype
for en virkelighetsnær applikasjon: en interaktiv tekst-basert gruppesam-
taleapplikasjon.

Informasjon samlet i prosessen indikerer at spesifikke kvantesikre gruppe-
nøkkelutvekslingsprotokoller fungerer i visse situasjoner, for eksempel
på stasjonære datamaskiner og servere. Vi oppnår en ytelse som kan
sammenlignes med flere kvantesikre nøkkelutvekslingsprotokoller mellom
to parter. Til slutt bemerker vi at det kreves ytterligere arbeid på et pro-
tokollnivå for å oppnå ikke-interaktive protokoller med tilleggsegenskaper,
slik som fornektbarhet.
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Chapter1Introduction

Quantum computing has, over the past decades, evolved to the point where we
believe it to be capable of breaking current public key cryptography in a matter
of years. Public key cryptography is one of the building blocks of the internet,
supporting services such as online banking and secure communication. Quantum
computers operate on quantum bits — qubits — where each qubit can be in three
states, two corresponding to the classical 0 and 1 states, and a third state, which
is a superposition of the two. This allows for computation on 2k states using only
k qubits. Superpositions and the parallelism of data is a fundamental property
of quantum computing used in two theoretical algorithms from the mid-nineties,
Shor’s algorithm [Sho94] and Grover’s algorithm [Gro96]. Shor’s algorithm uses
a quantum computer to factorize large integers and solve the discrete logarithm
problem in polynomial time, breaking all practical cryptosystems based on these
problems. Grover’s quantum search algorithm gives a quadratic speedup in a search
algorithm, which halves the effective key length of any cryptosystem.

As most widely used public key cryptosystems are based on the integer factorization
problem or the discrete logarithm problem, these algorithms, coupled with a quantum
computer, break the current asymmetric paradigm altogether. New cryptographic
primitives that are not broken by the use of quantum computers are required. The
term “post-quantum cryptography” was first coined in 2003 by Bernstein [Lan16],
describing cryptography built upon problems in which adversarial access to quantum
computers have little practical effect. An initial recommendation [ABB+15] lists
McEliece with certain parameter sets as a viable post-quantum public key cryptosys-
tem. It is based on a different class of problems than what a practical quantum
computer is believed to efficiently break.

A consequence of the developments with regards to quantum computing, is the stan-
dardization process of post-quantum cryptographic primitives for key encapsulation
and digital signatures by the The United States National Institute for Standards and
Technology (NIST) [NIS16]. This process aims to settle on two or more primitives of

1



2 1. INTRODUCTION

each sort for an official US standard. A similar process was attempted with success
in standardizing both the Advanced Encryption Standard (AES) (1997-2001) and
the Secure Hash Algorithm 3 (SHA-3) (2009-2015).

The primitives currently being evaluated fall into one of several categories [BBD09].

– Hash-based cryptography, which is used for post-quantum signature schemes.
These are based on the problem of finding collisions in an underlying hash
function. This is a problem with proven security guarantees, even against
quantum attacks, as these may at best halve the effective computational
security.

– Code-based cryptography, which uses error-correcting codes. Here a public key
is a “disguised” encoding function, while the secret key is an optimal decoding
function. This allows anyone to encode a bit-sequence, but only the party
with the optimal decoding function is able to retrieve it, as finding an optimal
decoding function from a “bad” one is believed to be difficult, even in the
quantum-setting.

– Multivariate cryptography is based on the difficult problem of finding solutions
to large systems of quadratic equations over finite fields. It is believed to be a
hard problem, both for classical and quantum computers.

– Lattice-based cryptography depends on the difficulty of finding short vectors in
an integer lattice (the shortest vector problem, and other similar problems).
The public key can be a highly non-orthogonal basis for a lattice (e.g., a basis
in Hermitian Normal Form), while the secret key is a nearly-orthogonal basis
for the same lattice. It is believed to be difficult to go from a “bad” basis to a
nearly-orthogonal lattice for the same basis efficiently, in many dimensions.

– Supersingular isogeny cryptography [Cos19] [SP19] is a class of post-quantum
cryptography that is based on walks between different supersingular elliptic
curves using isogenies.

This thesis focuses on a subset of lattice-based cryptography, Ring-Learning With
Errors (RLWE). This class of lattice-based cryptography is a promising candidate
for efficient key agreement protocols in real-world settings, and is the basis for two
proposals in the NIST standardization process for Key Encapsulation Mechanism
(KEM) (NewHope and LAC).

As with the current standards, NIST will standardize the basic primitives, and not
more advanced primitives such as Authenticated Key Exchange (AKE) and Group
Key Exchange (GKE). This is an area cryptographers and engineers have to explore
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further, based on the basic primitives. This thesis will focus on post-quantum GKE
based on RLWE.

1.1 Motivation

Post-quantum cryptographic primitives come with a cost when compared to today’s
standards for performance, even between only two parties. The performance-related
issues are exacerbated when scaled up. One such scenario is in group communication,
such as conference calls and messaging, grid computing, and collaborative tools.
An N -way key exchange using post-quantum primitives in the naive way — every
participant performs a key exchange with every other participant — will incur high
costs, and is not scalable.

Furthermore, advanced adversaries are believed to be capable of intercepting and
storing encrypted data streams, such as secure messaging, encrypted e-mails, and
file transfers. These data streams can, at a later point, be decrypted using a
quantum computer, if the cryptographic key exchange is included and current
popular asymmetric cryptography is used, given that a practical quantum computer
becomes feasible for this adversary. As a result, the confidentiality of much of
today’s communication is already at stake. Evaluating and implementing new post-
quantum cryptosystems is intrinsic to the effort of creating and revising primitives
and transitioning to post-quantum cryptography in everyday applications.

1.2 Methodology

We believe that design science is an appropriate research methodology, contrasted with
many approaches from the natural sciences. In this thesis, we will attempt to discover
new knowledge through treating an engineering problem. When solving engineering
problems, we change the world around us, yielding knowledge, contrasted with
natural science approaches only aiming to discover knowledge through observation.
Furthermore, in this thesis, we aim to achieve research objectives, not necessarily
to answer fundamental questions about reality. As a result, we believe that design
science is an appropriate methodology.

Design science defines two important concepts, artifacts and context. An artifact
is anything created by people for practical purposes [Wie14], most relevant for this
thesis is software and algorithms. However, the term encompasses much more in the
general sense — varying from abstract concepts to physical objects. The purpose
of the artifact is to treat a problem, using it to interact with a context. Note that
artifacts treat problems, they do not solve them. This distinction is important, as
the artifact’s interaction in the problem context solves the problem, not the artifact
in itself.



4 1. INTRODUCTION

The context for this thesis is the process of establishing a shared secret between
several parties, given the existence of a practical quantum computer. The problem we
want to treat is how to achieve the shared secret, specifically. In this thesis, the artifact
will be a protocol instantiation and implementation, that as it is developed becomes
more complex and efficient. The utility — the end goal of any design science process
[HMPR04] — will be provided through the instantiations and implementations
themselves, as well as through an evaluation of the proposed protocols based on the
artifacts created.

The purpose of design science regarding the work with this thesis is to provide a
structured approach to creating artifacts. These artifacts are what we will use as a
basis for evaluating post-quantum key exchange. Specifically, the artifacts we aim
to create are concrete instantiations and software representations of the combined
protocols and instantiations. The design cycle is applied in the manner described
below.

1. Problem Investigation We begin each cycle by doing a literature review of
the most relevant research. This includes proposals for post-quantum key exchange
protocols in general, with a specific focus on group key exchange. The literature review
also includes techniques for performing the implementation of specific operations
effectively in practice. Furthermore, we research other published, and relevant
implementations as these may provide further insight. Based on this, we define the
cycle goals.

2. Treatment Design In the design phase, we select the appropriate protocols
suitable to treat the problem in an attempt to reach the cycle goals defined in the
initial phase. We then provide an instantiation of the protocol(s) through providing
a parameter set satisfying the protocol requirements, if this has not already been
done in a previous cycle. Finally, we develop or iterate upon the artifact until the
cycle goal is believed to have been reached.

3. Treatment Validation Validating the treatment is done through several
measures — first, correctness. The artifact should achieve a shared secret between
its parties with a low, if not negligible, error rate. Second, security — the group key
exchange should achieve a reasonable security level compared with other published
protocol implementations. Security is estimated analytically, using the proposed
protocol instance as an artifact. Finally, we want the group key exchange to be
efficient and constant-time. Efficiency is measured through processor cycles, which
should be near-constant — at least for the operations concerning cryptographic data.

We go through three design cycles, each iterating on the results of the previous
cycle. Each cycle attempts to achieve a new goal, with the initial cycle creating an
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artifact for post-quantum GKE, the second a post-quantum Group Authenticated Key
Exchange (GAKE), and finally, a GAKE in a practical application. As such, we are
slowly moving the project from a “laboratory”-like environment into an environment
more approximate to the real world. Each cycle attempts to gather information so
that we may achieve our research objective.

1.3 Research Objective

The research questions are formulated based on the chosen methodology, Design
Science, and were previously outlined in the pre-project report [Kri19]. The main
research goal this thesis will focus on is design a real-world implementation for group
key exchange based on the Ring Learning-With-Errors problem (RO0).

To accomplish this objective, we have divided it up into the following research
objectives (RO).

– RO1: What proposed protocols are suitable candidates for post-quantum
group key exchange based on the RLWE problem?

– RO2: Instantiate a protocol for group key exchange based on the RLWE
problem with adequate security supporting a reasonable number of participants.

– RO3: Is this protocol instantiation usable in terms of delay, processing require-
ments and quality of experience?

– RO4: What, if any, trade-offs must be made in order to achieve post-quantum
security in a group setting?

– RO5: How can we implement performant RLWE cryptosystems?

– RO6: How can we secure real-world implementations of RLWE cryptography
from side-channel attacks?

1.4 Outcome

The goal of this thesis is to instantiate, implement, and evaluate practical protocols for
performing group key exchange based on the RLWE-problem. The outcome from this
thesis should then be one or more instantiations — protocols with specific building
blocks, numbers, and other essential parts — and corresponding implementations.
Furthermore, we wish to compare our implementation with corresponding current
“state-of-the-art” implementations.

The implementations for the different group key exchange protocols may be found at
https://github.com/simenbkr/rlwe-gke, using commit 1795995.

https://github.com/simenbkr/rlwe-gke
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1.5 Limitations

The main limitation of this thesis is imposed by existing RLWE group key exchange
protocols, which are all interactive, meaning all participating parties have to par-
ticipate in the key exchange concurrently. Furthermore, the frameworks used to
achieve authenticated security require interactivity. The requirement of interactivity
is undesirable, and many protocols used in group key exchange scenarios today are
non-interactive.

1.6 Outline

Chapter 2 covers the necessary mathematical theory and cryptographic background.
In Chapter 3 we provide an instantiation of two post-quantum group key exchange
protocols. Then, in Chapter 4 we present an implementation and the results produced
by this. Chapter 5 covers a discussion on what we presented in the preceding chapters.
Finally, we provide a conclusion with a response to the research objectives in Chapter
6.



Chapter2Background and Theory

This chapter provides the necessary concepts and background material used in
this thesis. It is divided into several parts, covering the essential mathematical
background, modern cryptographic concepts, an introduction to RLWE, and a
summary of proposed RLWE group key exchange protocols.

2.1 Mathematical background

This section explains the foundational mathematics used in this thesis.

2.1.1 Group and Ring Theory

Group and ring theory are important building blocks in organizing sets, and are
especially useful in cryptography. For a more thorough reference, we refer the reader
to e.g., Fraleigh [Fra14] or Stinson and Paterson [SP19].

Set A set is a collection of distinct objects, e.g., integers.

Groups A group, G, is a set with a group operator, ∗, such that the group axioms
are fulfilled:

1. The group operator must be associative: a, b, c ∈ G =⇒ (a ∗ b) ∗ c = a ∗ (b ∗ c).

2. The group has an identity element, e, such that x ∗ e = e ∗ x = x, ∀x ∈ G.

3. All group elements have an inverse: a ∈ G =⇒ a ∗ b = b ∗ a = e, for one and
only one element b ∈ G.

The group operator can be any well-defined operation that combines two group
elements into a third, as long as the above axioms hold true.

7
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An Abelian Group A group is abelian if the group operator is commutative:
a, b ∈ G =⇒ a ∗ b = b ∗ a, ∀a, b ∈ G.

Rings R is a ring if the ring axioms are fulfilled:

1. R is an abelian group under addition.

2. Multiplication is associative in the ring.

3. The left distribution law and the right distribution law applies to all operations
in the ring: a, b, c ∈ R =⇒ a · (b + c) = (a · b) + (a · c) and a, b, c ∈ R =⇒
(a+ b) · c = (a · c) + (b · c).

Rings have a multiplicative identity, called unity, and an additive identity. For rings
of integers, the unity is 1, and the additive identity is 0.

Ideals Given a ring, R, and an additive subgroup A ≤ R. Then, if rA ⊆
A and As ⊆ A ∀r, s ∈ R, A is an ideal.

Quotient Rings Given R, ring, and A, an ideal of R, then R/A is a quotient ring,
defined as the additive cosets of A with binary operation such that a, b ∈ R/A =⇒
(a+A) + (b+A) = (a+ b) +A and (a+A) · (b+A) = (a · b) +A.

Rings of Polynomials Let R be any ring. Then R[x] is the corresponding ring
of polynomials, with elements of the form

∑∞
i=0 aix

i , ai ∈ R. An example is the
typical polynomials C[x] where each coefficient is a complex number.

Fields A field, F , is a ring in which all elements have an inverse. A typical example
of a field is the integers modulo a prime number, denoted as Zp.

Root of unity A nth root of unity, x, in a ring, R, is defined as xn = 1 — For
instance, in Z∗11, a 2nd root of unity is 10 because 102 ≡ 1 mod 11.

Primitive root of unity An nth root of unity, x, is also a primitive root of unity
if xk 6= 1 for 1 ≤ k < n.

Lattice A lattice is a subgroup of Rn, and is composed of integer linear combinations
of k ≤ n linearly independent vectors. Λ =

{∑k
i=1 αi~vi

}
, where {~v0, . . . , ~vk} are

linearly independent in Rn, and αi ∈ Z.
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2.1.2 The Fourier Series and the Number Theoretic Transform

The Fourier transform is a method to transform periodic functions and signals into
the frequency domain. This will prove useful in efficiently calculating the convolution
of polynomials, which is a fundamental operation in RLWE cryptosystems. Let
f(x) ∈ C[x]. Then the Fourier transform is given as

f̂(w) = F(f(x)) = 1√
2π

∫ ∞
−∞

f(x)e−2πiwxdx.

And the inverse transform is given as

f(x) = F−1(f̂(w)) = 1√
2π

∫ ∞
−∞

f̂(w)e2πiwxdw.

The discrete version of the Fourier transform, the Discrete Fourier Transform (DFT),
is defined on a set of L elements — {a0, a1, . . . aL} —, where the kth result of the
forwards transform is given as

âk =
L−1∑
j=0

ake
−2πikj
L .

With a corresponding inverse transform.

There exists a further generalization of the Fourier transformations, that can be used
over finite fields, namely the Number-Theoretic Transform (NTT). We recognize that
e

2πki
n is an nth root of unity in the complex numbers. For a ring (field) Zq, we can

find nth roots of unity as x ∈ Zq s.t. xn ≡ 1 mod q.

Let ω denote the 2nth root of unity in Rq. We define the functions NTT and INTT
as the forwards and the inverse number theoretic transforms.

f̂(w) = NTT (f(x)) :=
i=n−1∑
i=0

âix
i where âi =

j=n−1∑
j=0

aωij

f(x) = INTT (f̂(w)) := n−1
i=n−1∑
i=0

āxi where ā =
j=n−1∑
j=0

âω−ij
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For the NTT, the Fourier theorems hold [Kre02] [LN16] [AB75], and the convolution
(f ∗ g)(x) = INTT (NTT ((f ∗ g)(x))) = INTT (NTT (f(x)) ◦NTT (g(x))), where ◦
denotes pointwise multiplication.

We also note that while the Fourier transform and the DFT work with floating point
operations, the NTT works with, and return exact integer results.

2.2 Modern Cryptography

Cryptography is about protecting information. Protecting it from eavesdropping
and tampering, and from being misrepresented. Typically, the basic properties
cryptography aims to provide are defined as the following [SP19]:

– Confidentiality — information should only be available to the intended
recipient.

– Integrity — after information has been created and transmitted, an adversary
should be unable to tamper with it.

– Authenticity — recipients should be able to tell that information came from
a specified sender with some verification mechanism.

Furthermore, we typically differentiate between two general types of attackers. Figure
2.1 depicts the different general types of adversary from which we attempt to protect
our communications and data. There is a passive adversary model where the adversary
can read all communication going over a network, and an active adversary, where
the adversary controls the network and can read, edit, delete and redirect messages.

(a) A passive adversary is typically modeled
as being able to read all messages going
across the communications channel.

(b) An active adversary can intercept mes-
sages, initiate communications, redirect mes-
sages to another recipient, or delete messages
entirely.

Figure 2.1: The adversary models for cryptographic protocols, showing both a passive
and an active adversary.
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Auxilliary properties that modern cryptographic protocols attempt to achieve include
the following:

– Non-repudiation — after an interaction, the acting party should be unable
to deny it committed the interaction in question. This is an important property
for e.g., bank transactions and elections

– Deniability — communication or interaction should not be provable by a
third party. This may be useful in communications scenarios such as instant
messaging or voice calls.

– Forward secrecy — if the adversary obtains the long-term secret key, the
confidentiality of previous interactions should not be at risk.

– Backward secrecy — also known as post-compromise security, is the ability
of a cryptographic channel to self-heal after having been compromised such
that future communication is secure, even if secret keys were compromised at
an earlier stage.

In cryptography, we also have the notion of the lifetime of keys — roughly divided
as long-term keys and ephemeral (short-term) keys. Often, a long-term key is used
over several protocol runs in order to provide authenticity, in combination with an
ephemeral key which is used for a single protocol run.

2.2.1 Random Number Generators

In cryptography we are often required to generate secret random numbers. For this
purpose, we use a Random Number Generator (RNG). Typically, we define two
general classes of RNG, Pseudo-Random Number Generator (PRNG) and Truly
Random Number Generator (TRNG). A PRNG generates numbers that “look”
random — in other words, for each output on average half the bits are different
from the previous output — however the chain of random numbers generated are
deterministic based on the internal state (e.g., a seed) of the PRNG. A type of PRNG
is a Cryptographically Secure Pseudo-Random Number Generator (CSPRNG), which
is what we use for cryptographic purposes. A TRNG generates “true” random
numbers based on a source of randomness such as radioactive decay or lava lamps1.

In practice, we use a CSPRNG where the initial state is seeded by a TRNG. This is
due to TRNG being slower than CSPRNG, and less practical to use.

1See https://blog.cloudflare.com/randomness-101-lavarand-in-production.

https://blog.cloudflare.com/randomness-101-lavarand-in-production
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2.2.2 Bits of Security

“Bits of security” is a term used to describe the amount of work needed to break —
for example recovering a secret key or the encrypted data — a cryptosystem, using
the best possible attack known. If the attacker must perform O(2k) operations to
break it, we say it has k bits of security.

Concerning the security of a cryptosystem, we often use two security parameters, the
computational security parameter, denoted λ, and the statistical security parameter,
denoted ρ. These typically have a direct relation to the security of the cryptosystem,
especially in symmetric cryptography. For certain other cryptosystems, it can be
more convoluted.

2.2.3 Side-Channel Attacks on Cryptography

A side-channel attack targets the implementation of a cryptographic application or
protocol. It attempts to exploit weaknesses in a specific implementation, so that
they may be able to recover a secret key or some other confidential information.
There is a wide variety of side-channel attacks. An example is timing attacks, where
the attacker repeatedly queries a server, noting the time before getting a response.
From there, the adversary may recover some secret data due to the implementation
taking various paths in the source code, which consume a different amount of time,
depending on some secret data [Koc96] [YGH17]. Another example of a side-channel
attack is an electromagnetic attack, such as Van Eck phreaking [VE85], which picks
up electromagnetic waves from digital equipment which leaks sensitive data.

The latter example is difficult to protect against purely through the implementation
of cryptography, but the former is avoided by ensuring constant-time for all code
paths in a program. In the context of cryptography, we define any operation on n bits
as constant-time if and only if it uses a constant number of CPU cycles, independent
of the bits it is operating on.

2.2.4 Secret Key Cryptography

Secret key cryptography, also known as symmetric cryptography, is an essential
building block of most modern cryptosystems in use today. Using a symmetric
cryptosystem, Alice can encrypt a message with a secret cryptographic key. Bob can
only decrypt the resulting ciphertext if he also has the same secret key. There is a
symmetry of information between the parties encrypting and decrypting. The goal
of a symmetric cryptosystem is to provide confidentiality by making it infeasible to
decrypt a ciphertext without the corresponding key. Furthermore, it can provide
integrity services to ensure that messages are not tampered with in transit between
the communicating parties.
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A modern symmetric cryptosystem is instantiated by the following parameters, sets
and algorithms [SP19, Definition 2.1]:

– The security parameter, with notation λ, such that the cipher yields λ bits of
security.

– A set of keys, K, with a corresponding key generation algorithm, KG, outputting
a uniform element in {0, 1}λ.

– A set of plaintexts P.

– A set of ciphertexts, C.

– An encryption algorithm, Ek that takes a key and a plaintext as input and
outputs a ciphertext.

– A decryption algorithm, Dk that takes a key and a ciphertext as input and
outputs the corresponding plaintext, or an error if decryption fails.

We require that Dk(Ek(m)) = m for all m ∈ P, k ∈ K — the decryption under a
specific key of any message encrypted under the same key should yield the original
message.

Cryptographic Hash Functions

A hash function is defined in the following way:

h : {0, 1}∗ −→ {0, 1}λ.

In other words, it takes a bit-string of arbitrary length, the message, and outputs
a bit-string of a given length, λ, which is referred to as the message digest or hash
value. The hash value should be computable in an efficient and deterministic manner
(same message yields the same message digest). For it to be cryptographic, it needs
to have the following additional properties [SP19, Chapter 5]:

– Preimage resistance: Given a hash value, t = h(m), it should be infeasible to
find any message, m′, such that h(m′) = t = h(m).

– Seond preimage resistance: Given a message m, it should be infeasible to find
m′ 6= m such that h(m) = h(m′).

– Collision resistance: Finding m, m′ where m 6= m′ such that h(m) = h(m′)
should be infeasible.
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With infeasible in the above, we mean in relation to the security parameter, λ,
meaning an attack should require computing 2O(λ) operations.

Cryptographic hash functions are used primarily for two things:

– Hash-based Message Authentication Code (HMAC): Hash a message combined
with a secret key, thus implicitly authenticating the message, and ensuring its
integrity simultaneously.

– For deriving unpredictable secrets, using the hash function as a random oracle
seeded with some input, outputting data indistinguishable from a uniform
element in {0, 1}λ.

Authenticated Encryption

Authenticated encryption combines the construct of message authentication codes,
usually through an HMAC, and a symmetric cipher to create a construct offering both
integrity, authentication, and confidentiality. There are three generic constructions
for doing this:

– Encrypt-then-MAC — Encrypting the plaintext and then creating a MAC on
the ciphertext.

– Encrypt and MAC — Encrypting the plaintext, and attaching a MAC computed
on the plaintext.

– MAC-then-Encrypt — Compute a MAC on the plaintext, then encrypt both
the MAC and the plaintext together.

A newer paradigm, authenticated encryption with associated data (AEAD), allows
for encrypting data while providing authentication for e.g., headers (associated data)
in addition to the data itself. This is useful in many scenarios where the header says
something about how the data should be handled and may be sent in the clear, but
it is still essential to ensure the integrity of the data being sent.

2.2.5 Public Key Cryptography

A problem with symmetric cryptography is that the communicating parties must
share secret keys, and the sharing of keys must be accomplished in a way that
does not compromise these. This is not always feasible, as it could require physical
interaction — transporting books of keys or some other form of key agreement and
key transport. This problem has been solved, with the first public key cryptosystem
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being published by Diffie and Hellman in 1976 [DH76], marking a paradigm shift,
effectively introducing public key cryptography. The Diffie-Hellman Key Exchange
(DH) protocol is still a basis for much of modern cryptography.

These cryptosystems are also called asymmetric because encryption keys can be
public, while decryption keys are secret — there is an asymmetry in information
between the sender, who encrypts, and the receiver, who decrypts.

A public key cryptosystem consists of [SP19, Chapter 6 and 7]:

– A key generation algorithm, which outputs a public key, p, and a secret key, s.

– A message set, dependent on the public key,Mp.

– An encryption algorithm, E , taking a message fromMp and the public key, p,
as input, outputting a ciphertext.

– A decryption algorithm, D, taking a ciphertext and the private key, s, as input,
outputting either the corresponding plaintext or an error if the decryption fails.

For a public key cryptosystem, it should be infeasible for any attacker to decrypt an
encrypted message without the private key.

Two prominent examples of public key cryptosystems are the Diffie-Hellman [DH76]
and RSA [RSA78] cryptosystems.

Digital Signature Schemes

The previously explained schemes protect against passive attacks when used alone.
Protecting against active adversaries require us to authenticate the party, or parties,
with whom we are communicating across a communications medium. To do this,
we use a digital signature scheme, which consists of the following three algorithms
[SP19, Definition 8.1]:

– A key generation algorithm, K that outputs a verification key, k, which should
be public, and the signing key, s, which should be kept secret.

– A signing algorithm, S, taking a message, m, and a signing key, and outputting
a signature, τ , on m under s.

– A verification algorithm, V , taking a messagem, a signature τ , and a verification
key v, outputting either success or failure depending on whether τ is a valid
signature on m by the corresponding s.
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Public paramaters:
Finite field Fp and generator g ∈ Fp.
Alice Bob

sa ←$ {0, 1, . . . , p− 1} sb ←$ {0, 1, . . . , p− 1}
pa ← gsa pb ← gsb

pa

kb ← psba ≡ (gsa)sb

pb

ka ← psab ≡ (gsb)sa

Figure 2.2: A version of the Diffie-Hellman key exchange protocol over finite fields.

2.2.6 Key Exchange

In most modern cryptographic applications, we wish to achieve a shared secret key
using public key cryptography, which is then used to derive a key to be used with
symmetric ciphers. This is due to public key encryption being inefficient in terms of
computation and bandwidth compared with modern secret key cryptosystems.

The first key exchange protocol, the DH [DH76] protocol, versions of which is still in
use, is constructed as illustrated in Figure 2.2.

It can be shown that Alice and Bob achieve the same shared secret, ka ≡ kb, and
furthermore that it is a hard problem — using classical computing — to recover
either secret keys, or the shared key. In modern cryptosystems, Diffie-Hellman is
performed over elliptic curves, and not over finite fields as illustrated above. However,
the overall protocol follows the same structure.

There are ways in which we can authenticate the participants during the key exchange,
for instance through digital signatures, or out-of-band verification of keys. We call
this an Authenticated Key Exchange (AKE).

Key Encapsulation Mechanisms

A KEM is similar in structure to public key encryption, but specialized in facilitating
key agreement. The key agreed upon is then typically used in symmetric ciphers.

A KEM consists of the following:
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– A key generation algorithm K that outputs an encapsulation key p and a
decapsulation key s.

– An encapsulation algorithm E that takes an encapsulation key and outputs a
secret key, k, and an encapsulation of the key.

– A decapsulation algorithm D that takes a decapsulation key and an encapsu-
lation and outputs either a secret key, k, or an error in case of decapsulation
failure.

Public parameters: KEM = {K, E ,D}
Alice Bob

(pa, sa)← K

pa

(sk, encapspask )← E{pa}

encapspask

sk ← D{encapspask , sa}

Figure 2.3: A generic KEM to achieve a shared secret between two parties.

By publishing an encapsulation key, there need not be a key exchange. Instead, by
the initiator uses the encapsulation algorithm on the recipients public key, receiving
the shared secret and the encapsulated message, which is transmitted to the recipient,
who decapsulates it and retrieves the shared secret using their decapsulation key. A
generic KEM is showed in Figure 2.3.

2.3 Ring Learning With Errors Cryptography

Regev [Reg05] first introduced the Learning With Errors (LWE) problem in 2005,
which consists of finding solutions to systems of linear equations where a subset of
the given equations has a small added error, e. Given a set of n linearly independent
vectors, a1, . . . ,an ∈ Fnp and a set of n results on the form bi = ai · s + ei — find s.
It is believed that, if n is large enough, this is a difficult problem. LWE forms the
basis of many proposed post-quantum cryptosystems, such as FrodoKEM [NAB+17],
while subtypes of the LWE problem form the basis of other candidates.

One such subtype is the LWE problem over algebraic rings. First formulated by
Lyubashevsky, Peikert, and Regev [LPR13], they add more structure to the LWE
problem, which proves to be advantageous as it gives a quadratic reduction in key
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sizes. This makes it more suitable for practical applications. Specifically they suggest
an LWE variant over cyclotomic power-of-two rings, Rq = Zq[x]/〈xn + 1〉, where n is
a power of two and q is a sufficiently large prime number such that q mod 2n ≡ 1.
In RLWE, we deal with polynomials from Rq, and not vectors as in LWE. Each
coefficient is a representative of Zq, and the polynomial itself is reduced modulo
xn + 1.

In RLWE, the secret and error polynomials are generated by sampling from the ring
using a probability distribution — typically a discrete Gaussian distribution centered
at zero. The public polynomial is either agreed upon or generated as a uniform
element of the ring.

The NIST standardization process currently has two candidates based on the RLWE
problem — NewHope [ADPS15] and LAC [LLZ+18]. LAC operates on comparatively
small numbers, focusing more on error correction than NewHope, which is a highly
efficient cryptosystem tested in practice [Bra16], and with many similarities to the
different GKE we will evaluate in this thesis. Another interesting implementation,
Bos et al. [BCNS15] demonstrated the use of a plain RLWE key exchange in practice,
applying it to the Transport Layer Security (TLS) protocol.

2.3.1 Generic RLWE Key Exchange

A general RLWE cryptosystem is instantiated by the following parameters:

– An ideal generated by an irreducible polynomial on the form f(x) = xn +
1 ∈ Zq[x] where n is a power of two, which generates the quotient ring,
Rq = Zq[x]/〈f(x)〉.

– The modulus, q, a prime number such that q mod 2n ≡ 1.

– A public polynomial, a ∈ Rq.

– A probability distribution χσ on Rq for generating secrets and errors, with
parameter σ. We denote sampling a polynomial a from Rq using χσ as a← χσ.

The secret key, s and the error, e are generated by extracting n coefficients using χ on
Rq n times, independently. The public key is then p = s · a+ e. A key exchange can
be performed by sharing public keys between two parties, and then multiplying their
secret key with their public key as s0 ·p1 = s0 · as1 + s0e1 ≈ s1 · as0 + s1e0 = s1 ·p0,
given that the error distribution is “short” for some definition of short, typically
depending on the parameter set. We illustrate this generic key exchange in Figure
2.4, where we see Alice and Bob achieve ba and bb, respectively. Due to this being
an approximate equality — ba ≈ bb — an error reconciliation is typically used to
achieve a fixed shared secret.
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Public parameters:
Rq = Zq[x]/〈f(x)〉, a ∈ Rq, χσ
Alice Bob

sa, ea ←$χσ sb, eb ←$χσ

pa ← sa · a + ea pb ← sb · sb + eb

pa

pb

ba ← sa · pb bb ← sb · pa

Figure 2.4: A generic RLWE key exchange where Alice and Bob achieve an approxi-
mate shared secret ring element.

2.3.2 Key Reconciliation Protocols

The purpose of this section is to introduce the concept of key reconciliation to the
reader. It will later be used in conjunction with a group key exchange to achieve a
shared secret.

In RLWE based cryptosystems, the participants usually achieve an approximate
equality. As the resulting RLWE-element is passed through a Key Derivation
Function (KDF) to achieve a key for use in symmetric cryptosystems, it is required
that the approximate equality be turned into an exact equality due to the fact that
two approximately equal elements passed through a KDF will give widely different
results.

In practice, the approximate equality is turned into a definite shared secret with high
probability through a reconciliation protocol. We define two functions, recMsg and
recKey:

recMsg : Rq −→ {0, 1}n × {0, 1}n

recKey : Rq × {0, 1}n −→ {0, 1}n.

Where {0, 1}n denotes a vector of length n with elements from the set {0, 1}. Following
an RLWE key exchange, Alice and Bob have two ring elements, ba,bb that are
approximately the same. Now, a generic reconciliation protocol between these two
parties is performed in the manner shown in Figure 2.5. The initiator generates a
reconciliation vector and the fixed shared secret using recMsg. The reconciliation
vector is sent to the responder, who is able to determine the fixed shared secret
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Public parameters: Rq, a ∈ Rq, χσ
Alice Bob

(rec, sk)← recMsg(ba)

rec

sk′ ← recKey(bb, rec)

Figure 2.5: A generic key reconciliation protocol for RLWE.

recKey using the reconciliation vector and the previously achieved approximate
shared secret.

Now, sk = sk′ with a high probability.

2.3.3 Attacks on RLWE Cryptography

In order to provide a useful instantiation of an RLWE cryptosystem, we need to
know how they are attacked, so we may pick parameters resistant to these attacks.
However, discussing these in-depth is out of scope for this thesis, and we must defer
to the provided references for extended discussions, most notably the initial RLWE
paper [LPR13], Peikert’s paper on safe instantiations [Pei16], and Player’s doctorate
on parameter selection for lattice cryptography [Pla18].

The security of an RLWE cryptosystem is based on the difficulty of getting the secret
ring element, s, from a public key p = s ·a + e. We believe that finding s given p and
a is hard when a is a uniform ring element and s and e are from non-trivial discrete
Gaussian distributions. This is called the search-RLWE problem (sometimes just
referred to as search-RLWE) — note that there is an equivalence between finding
the error, e, and the secret key, s. A related problem is the decision-RLWE problem,
where an attacker must distinguish between a public key, p and a uniform ring
element [LPR13].

The main known attacks on an RLWE instance is through reducing it to an instance
of an ideal lattice, given that such a reduction is possible, which is tighly coupled
with a secure instance of RLWE [Pla18] [Pei16] [APS15]. Using this strategy, solving
search-RLWE is believed to be at least as hard as solving the approximate Shortest
Vector Problem (SVP) problem [CDW16] in an ideal lattice. This problem consists of
finding a non-trivial vector which is smaller than some given approximation, related
by a factor of µ ∈ Z to a shortest non-zero vector in the given lattice [SP19, p. 349].
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2.4 RLWE Group Key Exchange

Currently, only the following papers relate to post-quantum group key exchange
protocols based on the RLWE problem: Ding et al. [JD12], Apon et al. [ADSGK19]
and Choi et al. [CHK20].

In this section, we will examine the following protocols for GKE:

– Proposal 1: Ding et al. [JD12],

– Proposal 2: Apon et al. [ADSGK19] and,

– Proposal 3: Choi et al. [CHK20].

Common to all proposals is that they are based on the RLWE problem, and use a
Gaussian distribution to generate secret and error polynomials. If nothing else is
specified, the protocol uses the parameters Rq = Zq[x]/〈xn + 1〉, where χ is a proba-
bility distribution centered at 0, with a non-zero standard deviation. Furthermore,
the modulus, q is a “large” prime number, for some definition of “large” — typically
larger than 8−bit — such that q mod 2n ≡ 1. Let bold lowercase letters denote
polynomials of dimension n, and let N be the number of participants. Indexes are
modulo N . Finally, let H denote a cryptographic hash function.

2.4.1 Proposal 1: Ding

1. Each participant, Pi, generates a secret key and an error si
χ←− Rq, ei

χ←− Rq,
and calculates its public key p0

i = si · a + ei.

2. Participant Pi sends its public key, p0
i , to participant Pi+1 (indexes are modulo

N).

3. All participants Pi+j calculate pji = si+j ·pj−1
i +2eji and send pji to participant

Pi+j+1.

4. Participant P0 calculates k0 = pN−2
1 · s0 + 2e′0, and generates a reconciliation

vector, rec, k0 = recMsg(k0), which is broadcast to all Pi.

5. Participant Pi first calculates ki = pN−2
i+1 · si + 2e′i.

6. All participants recover the key via a reconciliation technique — ki = recKey(rec,ki),
and the session key is set to ski ← H(ki).

This protocol requires O(N) rounds, thus scaling poorly. However, it was the first
proposed GKE based on RLWE, and is included here as helpful context.
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2.4.2 Proposal 2: Apon

The proposal by Apon et al., is similar in structure to the Burmester-Desmedt
[BD95] protocol for GKE using the Diffie-Hellman problem as its basis. This protocol
requires two Gaussian probability distributions, χ1, χ2 on the ring Rq, to ensure that
the sum of “neighbourhood”-keys are close to uniform.

1. Each participant, Pi, generates a secret key and an error, si
χσ1←−− Rq, ei

χσ1←−− Rq,
and calculates its public key pi = si · a + ei. The public key is broadcast to
the group.

2. Participant P0 samples e′0
χσ2←−− Rq, while Pi for i 6= 0 samples e′i

χσ1←−− Rq.
Then all Pi calculate “neighbourhood”-keys: Xi = (pi+1−pi−1)si + e′i, which
are broadcasted to the group.

3. All participants compute

bi = N · pi−1si + (N − 1)Xi + (N − 2)Xi+1 + . . .+ Xi+N−2

Participant N − 1 samples e′′N−1
χσ1←−− Rq and recomputes bN−1 = bN−1 +

e′′N−1. From this, PN−1 computes the reconciliation vector rec and key, kN−1
as rec, kN−1 = recMsg(bN−1). rec is broadcast to the group.

4. Participants i 6= N−1 calculate the key using bi and rec — ki = recKey(rec, bi).

5. Finally, the session key is set to ski ← H(ki)

Apon et al. [ADSGK19] provide the following equations for correctness and security
of their protocol:

(N2 + 2N) ·
√
n · ρ3/2 · σ2

1 +
(
N2

2 + 1
)
· σ1 + (N − 2) · σ2 ≤ βrec (2.1)

2N
√
nλ3/2 · σ2

1 + (N − 1) · σ1 ≤ βRényi (2.2)

σ2 = Ω(βRényi
√
n/ log λ). (2.3)

We shall henceforth refer to the protocol proposal by Apon as AponGKE.
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2.4.3 Proposal 3: Choi

The proposal by Choi et al. is a suggested improvement upon AponGKE, but they
base their proposal on an RLWE-version of the Dutta-Barua protocol for GKE
[DB05]. As a result, there are some similarities.

1. Each participant, Pi generates a secret key and an error, si
χσ1←−− Rq, ei

χσ1←−− Rq,
and calculates its public key pi = si · a + ei. The public key is broadcast to
the group.

2. Participant P0 samples e′0
χσ2←−− Rq, while Pi for i 6= 0 samples e′i

χσ1←−− Rq.
Then all Pi calculate “neighbourhood”-keys: Xi = (pi+1−pi−1)si + e′i, which
are broadcasted to the group.

3. Participant PN−1 samples e′′N−1
χσ1←−− Rq and computes

YN−1,N−1 = XN−1 + pN−2sN−1 + e′′N−1.

Then, PN−1 computes

YN−1,N−1+j = XN−1+j + YN−1,N−2+j

for ∀j ∈ {1, . . . , N −1}. Finally, PN−1’s approximate secret, bN−1 is calculated
as

bN−1 =
N−1∑
j=0

YN−1,N−1+j .

Now, PN−1 generates the reconciliation vector, rec, and the key kN−1 from
rec, kN−1 = recMsg(bN−1). rec is broadcasted to the group.

4. All other participants Pi calculate

Yi,i = Xi + pi−1si.

Then they compute
Yi,i+j = Xi+j + Yi,i−1+j

for ∀j ∈ {1, . . . , N − 1}. The approximate polynomial is calculated as

bi =
N−1∑
j=0

Yi,i+j .

Finally, the shared secret is recovered using an error reconciliation function —
ki = recKey(bi, rec).

5. Then, the session key is set to ski ← H(ki).
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We will refer to Choi’s protocol proposal as ChoiGKE.

Choi et al. [CHK20] is secure due to the same equations as AponGKE, however the
correctness bound is lower, and AponGKE’s equation 2.1 becomes equation 2.4 for
ChoiGKE.

1
2
(
N2 −N

)√
nρ3/2σ2

1 + 1
2
(
N2 + 3N

)
σ1 + (N − 2)σ2 ≤ βrec (2.4)

2.4.4 Peikert Reconciliation For Groups

In Subsection 2.3.2 we introduced the concept of key reconciliation. This section will
introduce a specific protocol we can use to do this. The below is based on Peikert
[Pei14] and BCNS [BCNS15].

When performing an RLWE key exchange, the participants end up with ring elements
that are approximately the same in every dimension — seen from a lattice perspective,
or in every coefficient from a polynomial ring perspective — and they need to agree
on a shared secret from this approximate equality. The general idea is that a specific
group member generates a reconciliation element based on their approximate shared
value, and shares this with the rest of the group. All participants then use this
element to recover the same shared secret.

Assume that we have performed a RLWE-based key exchange, and all participants
end up with approximately the same values b0 ≈ b1 ≈ . . . ≈ bN . We must
now reconciliate the errors such that all participants end up with the same key —
k0 = k1 = . . . = kN . Furthermore, assume that participant Pj will be creating the
reconciliation vector for the group.

We will here look at one technique for error reconciliation that is simple and efficient,
which we will use when instantiating our chosen protocols at a later point. Peikert
[Pei14] proposes a method for turning approximate agreement into a definite shared
secret — key reconciliation — by extracting a single bit from each coefficient such
that both participants end up with the same value. Extending this to the case where
we have ≥ 3 participants is trivial, as all protocol participants will end up with an
approximate shared secret. Then one participant creates the reconciliation vector,
which is broadcast to all participants who are then able to recover the shared secret.
The relevant reconciliation technique for prime moduli will be explained here. First
we define the function dbl,

dbl : Zq −→ Z2q 7→ dbl(x) = 2x+ e. (2.5)
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Where e is drawn from a discrete Gaussian distribution centered at zero, with a
magnitude less than or equal to one (i.e. the probability that we draw 0 is 0.5, while
both 1 and −1 have a probability of 0.25).

Next, we define the functions for rounding — b·eq,2 — and cross-rounding — 〈·〉q,2.

b·eq,2 : Zq −→ Z2 7→ bxeq,2 =
⌊

2
q
· x
⌉

mod 2 (2.6)

〈·〉q,2 : Zq −→ Z2 7→ 〈x〉q,2 =
⌊

4
q
· x
⌋

mod 2 (2.7)

Defining I0 = {0, 1, . . . ,
⌊
q
4
⌉
} and I1 = {

⌈ 3q
4
⌉
, . . . , q − 1}, which are disjoint sets of

coefficients from Zq, and the set E = {
⌈
q
4
⌉
, . . . ,

⌊ 3q
4
⌋
} Finally, define the reconciliation

function, rec : Z2q × Z2 −→ Z2 as

rec(w, b) =
{

0, w ∈ Ib + E mod 2q
1, otherwise

(2.8)

where b ∈ {0, 1}.

Figure 2.6: An illustration of the Peikert reconciliation function for an odd modulus.
The leftmost subfigure shows how the reconciliation vector and shared secret is
generated, while the other subfigures show how a recipient with an approximate
shared ring element may achieve the same shared secret using the reconciliation
vector.

The kth value of the reconciliation vector, r, is generated by participant Pj by taking
the kth coefficient from bj , applying dbl on it, and then applying the crossrounding
function on the result — rk = 〈dbl(bj,k)〉q,2. The key for each participant Pi is
constructed using the rec-function on each value of bi inputting the result of dbl on
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the kth coefficient and the kth reconciliation vector value. A figure illustrating the
process of Peikert error reconciliation is shown in Figure 2.6.

We note that Peikert reconciliation is an improvement upon previous work done by
Ding et al. [JD12]. The reconciliation mechanism by Ding et al. resulted in a biased
result when using an odd modulus, which is a challenge Peikert’s proposal overcomes
through the use of the dbl-function.

Peikert [Pei14] shows that this technique can be used to recover a shared secret,
when participants have approximate equality. Practical experiments in applying a
version of this reconciliation technique in an RLWE key exchange for TLS [BCNS15],
show a negligible error rate.

2.5 Transforming GKE to GAKE

A GKE protects against a passive adversary, capable of recording protocol runs.
However, it does not protect against active adversaries, controlling or influencing the
medium by which messages are communicated across. Protecting against these types
of attacks require us to authenticate the parties with which we communicate. In this
setting, we require a GAKE. In this context, a compiler is a method used to go from
a GKE to a GAKE, mutually authenticating all participants. This means that all
participants authenticate all other participants.

The major difference between the two compilers explained below, is the accompanying
theoretical framework. Katz-Yung provides only the compiler, and thus protocols
compiled only have provable AKE-security in a static context. Bresson et al. however,
work in a framework consisting of several algorithms for a dynamic group setting,
allowing participants to join and leave in a authenticated and secure manner.

In the following, let a‖b denote the concatenation of a and b.

2.5.1 The Katz-Yung compiler

It is possible to transform any general GKE to a GAKE by adding digital signatures.
Katz and Yung [KY03] propose a compiler, turning any constant round GKE into a
GAKE with an additional round. This is accomplished in the following way.

1. Initialization: An ephemeral verification/signing key pair is generated by all
communicating parties.

2. Each participant, Pi with unique identifier i, selects a nonce, ni, at random
from {0, 1}λ, and broadcasts i‖0‖ni, where 0 denotes the sequence number of
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the message, which is defined to be zero. The nonces of all parties, along with
the identifiers of these are stored as state variables for every participant.

3. The next rounds of the GAKE are done according to the original GKE, but
modified to add the corresponding nonce and a digital signature on the messages
sent. Every time a participant receives a message, the signature is verified. If
the signature is invalid, the protocol aborts.

4. If nothing went wrong, all participants end up with the same shared secret,
and are all mutually authenticated.

2.5.2 Compiler for Authenticated GAKE by Bresson et al.

Another technique for transforming a GKE to a GAKE is provided by Bresson et al.
[BMS06]. This compiler proposes the following:

1. Initialization: An ephemeral verification/signing key pair is generated by all
communicating parties. Furthermore, all parties generate a nonce, ni, which is
broadcast.

2. Each participant, Pi with unique identifier i, selects a nonce, ni at random from
{0, 1}λ, and broadcasts i‖0‖ni, where 0 denotes the sequence number of the
message, starting at zero. The nonces of all parties, along with the identifiers
of these are stored as state variables for every participant. Having received all
the nonces, each party creates a session identifier, sid = 0‖n0‖1‖n1‖ . . . ‖N −
1‖nN−1.

3. The next rounds of the GAKE are done according to the original GKE, but
modified such that when a message m, with sequence number k is to be sent, a
signature, τ on k‖m‖sid is concatenated with the original message, so i‖k‖m‖τ
is sent.

4. When a party Pi receives j‖k‖m‖τj from Pj , he checks if j is a valid participant
identifier by searching through the session identifiers. Furthermore, he checks
whether k is an expected sequence number. Finally, the signature is checked
using the verification key belonging to Pj , which Pi has stored. If any checks
fail, the protocol run is terminated by Pi.

5. The parties compute the same shared secret as in the original GKE.





Chapter3Protocol Instantiation

In this chapter, we will provide an instantiation of two protocols for post-quantum
group key exchange. By instantiation, we mean defining the variables to be used in
a practical implementation and the specific methods we will use to perform certain
operations required by the protocols, like sampling from Gaussians and performing
polynomial convolution.

The goal of our instantiation is to provide a reasonable level of security while still
providing a set of parameters that allow for an efficient implementation. We aim
for a security level fitting into to what NIST defines to be category 1 [NIS16, 4.A.5],
which is the lowest level corresponding to roughly 128 bits of security in the classical
model — i.e., not considering attacks using quantum computers.

3.1 A Parameter Proposal

For AponGKE and ChoiGKE, we propose the following set of parameters:

– λ = ρ = 256,

– n = 1024,

– q = 45510033409, a 35-bit prime,

– 3 ≤ N ≤ 20,

– σ1 = 2,

– σ2 = 94371960.

These parameters should satisfy the general requirements for hardness of the RLWE
problem, and that the best method for attacking an RLWE cryptosystem, at this
time, is the same as the approximate SVP problem in an ideal lattice, which we

29
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previously discussed in Section 2.3.3. We select the security parameters, λ, the
computational security parameter, and ρ, the statistical security parameter to be 256
— we discussed these in Section 2.2.2. This will help us reach an acceptable level of
security — satisfying the equations for AponGKE and ChoiGKE in accordance with
our security and performance targets. The dimension is chosen as n = 1024, which
compared with other practical RLWE cryptosystems such as NewHope [ADPS15]
and Singh [Sin15] is a reasonable — previously seen as conservative — dimension for
an acceptable security level. Selecting parameters with some margin of security is
advantageous to accommodate the possibility of future results weakening its security,
given that RLWE-based key exchange, and RLWE GKE in particular, is a young
field, and better attacks are likely to occur in the future.

We recall the equations from Section 2.4.2, given by Apon et al. [ADSGK19] for
their protocol:

(N2 + 2N) ·
√
n · ρ3/2 · σ2

1 +
(
N2

2 + 1
)
· σ1 + (N − 2) · σ2 ≤ βrec (3.1)

2N
√
nλ3/2 · σ2

1 + (N − 1) · σ1 ≤ βRényi (3.2)

σ2 = Ω(βRényi
√
n/ log λ). (3.3)

The changes made by Choi et al. [CHK20] presented in full in Section 2.4.3, only
affect the equation for correctness, i.e. the first equation, which becomes:

1
2
(
N2 −N

)√
nρ3/2σ2

1 + 1
2
(
N2 + 3N

)
σ1 + (N − 2)σ2 ≤ βrec. (3.4)

We see that equations 3.1 and 3.4 are both dominated by the large term σ2, and that
equation 3.4 will be smaller than equation 3.1 for all valid values of N , n, ρ and λ.
As a result we are able to use equation 3.1 in the process of selecting parameters for
both protocols.

We select σ1 = 2, due to Peikert [Pei16] showing that this is the lowest possible value
that still makes the RLWE problem hard enough. Furthermore, selecting a value
for σ1, the ring dimension and the security parameters induce a lower bound on σ2
through the equations of Apon et al. This bound, in turn, gives a minimum value
for the modulus, q. Smaller moduli and standard deviations are advantageous, as
calculations can be done more effectively, which is consistent with the overall design
goal — security and efficiency. Selecting the smallest possible modulus increases the
relative noise, which additionally raises the security level of the protocol, compared
with larger moduli and a greater signal-to-noise ratio. The signal-to-noise ratio
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also decreases with the number of participants. At some point, this will make it
impossible for all parties to recover the shared secret with an insignificant error rate.

Regarding Ding et al. We choose not to propose an instantiation of the protocol
by Ding et al., as its round complexity is linear in the number of participants, making
supporting even small to medium-sized groups computationally expensive, in addition
to the network delays caused by a significant number of rounds. In Section 2.4.1, we
included it as a context for the environment in which AponGKE and ChoiGKE have
been proposed, as Ding provides the initial post-quantum GKE protocol based off
the RLWE problem. Due to the issues with round complexity we choose to focus on
AponGKE and ChoiGKE, disregarding Ding.

3.2 Efficient Implementation Building Blocks

In evaluating group key exchange, an efficient prototype provides insights we could
not otherwise obtain. Through experiences in the implementation process and the
performance of the prototype itself, and through comparing it with other solutions,
we obtain new knowledge about the protocol itself. This gives insight into the
real-world feasibility of the protocol, and where it may be useful. As solutions we
would like to compare with often are optimized, we must also provide an efficient
prototype. As RLWE-based cryptosystems are “new”, we are not aware of all possible
performance enhancements; however, we will attempt to use the techniques known
to us for achieving an efficient implementation so that our evaluation is based on the
“state of the art” knowledge. This also makes a comparison with existing optimized
solutions fair and useful.

In this section, we will explain how we implement the instantiations provided above,
using specific techniques for the most computationally expensive operations — poly-
nomial convolution and Gaussian sampling.

3.2.1 Polynomial Convolution

Given f(x), g(x) ∈ Rq = Zq[x]/〈x1024 + 1〉, the convolution (f ∗ g)(x) (i.e., the
multiplication of the polynomials in the polynomial ring) can efficiently be calculated
in a number of ways. Bernstein [Ber08] performs a comparison of some methods that
may be applied, and Roche [Roc09] performs a comparison between Fast Fourier
Transform (FFT) based approaches and Karatsuba [WP06]. For our use case,
Roche shows that the FFT-based NTT approach both has the best asymptotic
computational complexity, and is the fastest for our specific selected dimension. Scott
[Sco17] further optimizes the implementation of NTT, by using the forwards transform
of Cooley-Tukey adjusted for NTT, but then using the Gentleman-Sande algorithm
for the inverse. We have included the Cooley-Tukey forwards transform in Algorithm
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Figure 3.1: The equivalence relations that allow us to speed up the polynomial
convolution through transforming to the NTT domain and performing a pointwise
multiplication. The innermost text show the computational complexity of the
associated function depicted on the outside.

3.1, and the Gentleman-Sande inverse transform in Algorithm 3.2, based on the
descriptions by Longa and Naehrig [LN16], and Agarwal [AB75]. This approach yields
a computational complexity of the convolution operation of Θ(n logn), compared to
the naive solution which has a run-time complexity of O(n2). As each participant
in a protocol run uses 2N + 1 ring multiplication operations, this improvement in
the computational complexity speeds up the protocol significantly. In Figure 3.1 we
see the equivalence mapping, showing the process of performing convolution through
NTT.

Using the NTT to speed up the convolution process, requires us to transform
polynomials into NTT-domain, and after the pointwise multiplication, back to Rq.
This computation takes as input the powers of 2nth roots. These constants are
precomputed using NTT4RLWE1, which is partially adapted from the BLISS digital
signature project [DDLL13]2 for this thesis. For performance, the powers of 2nth
roots of unity are included as constants in the source code (in bit-reversed order).
This is similar to other approaches employed by other RLWE-based cryptosystem
implementations, and is the most performant option.

The approach of including variables as constants saves a significant amount of
computation power. However, it also limits the participant count to, as defined
above, 20, as we are unable to dynamically adjust the modulus (and other variables)
to accommodate an increased participant count. We believe that this is the best
approach regardless, and supporting more participants is out of the scope of this
thesis.

1Available at https://github.com/simenbkr/ntt4rlwe, commit ID f557f35.
2Specifically https://github.com/SRI-CSL/Bliss/blob/master/ntt_variants/make_red_tables.c,

commit ID 82a9d04

https://github.com/simenbkr/ntt4rlwe
https://github.com/SRI-CSL/Bliss/blob/master/ntt_variants/make_red_tables.c
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Algorithm 3.1 Cooley-Tukey Forwards NTT
Input: A polynomial, x ∈ Rq, and ω = {ω0, ω1, . . . , ωn}— powers of 2nth roots

of unity, stored in bit-reversed order.
Output: x̂ = x← NTT (x)

t← n
for m← 1; m < n; m = 2m do

t← t/2
for i← 0; i < m; i← i+ 1 do

j1 ← 2it
j2 ← j1 + t− 1
S ← ω[m+ i]
for j ← j1; j ≤ j2; j ← j + 1 do

U ← x[j]
V ← S · x[j + t] . Arithmetic in the ring, Rq.
x[j]← U + V
x[j + t]← U − V

end for
end for

end for
return x

3.2.2 Sampling from an Error Distribution

In RLWE, the error distributions are typically described as discrete Gaussian dis-
tributions in papers. The usage of these distributions is crucial to the security
and correctness of the cryptosystems. In practice, these are implemented in widely
different manners, due to the complexity involved in implementing efficient and cryp-
tographically secure samplers. Some notable papers argue that high-quality sampling
is not necessary, such as the NewHope paper [ADPS15]. Their practical approach in-
cludes approximating a discrete Gaussian distribution through the centered binomial
distribution. While others, such as the FALCON digital signature project [FHK+18],
focus on creating practical, high-quality discrete Gaussian samplers. There exist
many projects on creating such samplers, notably Zhao et al. [ZSS18] and Karmakar
et al. [KRVV19].

However, the implementation of efficient and cryptographically secure Gaussian
distributions is deemed out of scope for this thesis. As such, our approach will
include using the flexible, albeit not constant-time implementation of Albrecht et al.
— DGS3 [AW18], as it fits our other criteria relating to performance and closeness to
a proper discrete Gaussian.

A shortcoming of this tool is that it does not support standard deviations as high

3Code available at https://bitbucket.org/malb/dgs/src/master/, commit ID 4c5531d.

https://bitbucket.org/malb/dgs/src/master/
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Algorithm 3.2 Gentleman-Sande Inverse NTT
Input: A polynomial, x̂ in the NTT-domain, and ω−1 = {ω−1

0 , ω−1
1 , . . . , ω−1

n }—
inverse powers of 2nth roots of unity, stored in bit-reversed order.

Output: x = x̂← INTT (x̂)
t← 1
m = n/2
while m > 0 do

k ← 0
for i← 0; i < m; i← i+ 1 do

S ← ω−1[m+ i]
for j ← k; j < k + t; j ← j + 1 do

U ← x̂[j]
V ← x̂[j + t]
x̂[j]← U + V
x̂[j + t]← (U − V ) · S

end for
k ← k + 2t

end for
t← 2t
m← m/2

end while
for i← 0; i < n; i← i+ 1 do

x̂[i]← x̂ · n−1

end for
return x̂

as our instantiation proposal. To circumvent this issue, we use the composability
of normal distributions. We know that if X ∼ N (0, ρ2

0) and Y ∼ N (0, ρ2
1), then

X + Y ∼ N (0,
√
ρ2

0 + ρ2
1) — note that Z ∼ N (0, α2) means that Z is a random

variable from a centered Gaussian distribution with parameter α. This way, we are
able to sample for σ2 = 94371960 by using smaller distributions, sampling uniquely
and independently, and summing up the result — for each coefficient. As this is done
by a single party once during the entire protocol, it does not impact performance to
a large degree, though it is slower than an implementation supporting larger numbers
could be.

We can verify the correctness of the discrete Gaussian distribution sampler using
SAGA [HPRR19]4. This is a software suite designed for testing the output of samplers
of discrete Gaussian distributions against what we expect. Given a statistically
significant sample, SAGA is able to determine whether the given sample could
come from a given discrete Gaussian with overwhelming probability. Testing 100000
polynomials for statistical correctness in sampling using σ1 is shown in Figure 3.2.

4Code is available at https://github.com/PQShield/SAGA, commit ID bc3341d.

https://github.com/PQShield/SAGA
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Figure 3.2: The output of testing our sampler with SAGA [HPRR19]. The empiric
data is close to what we expect, illustrated by the χ2 statistic and p-value being
above the critical value. This figure is the output of running SAGA on polynomials
generated using DGS [AW18].

3.2.3 Reconciliation Function

We will use Peikert’s reconciliation function [Pei14], which we previously discussed
in Section 2.4.4. We believe that this is a suitable reconciliation protocol due to
its efficiency and negligible security effect. Furthermore, it is easy to implement in
software with high performance, making it even more desireable.

3.3 Estimating the Computational Security

When instantiating a protocol, it is useful to estimate the computational security it
provides. How secure is the proposal given above?

Apon et al. provide the maximum advantage given to an attacker as:

AdvGKE(t, q) ≤ 2−λ+1+√(
N ·AdvRLWE

n,q,χσ1 ,3
(t1) + AdvKeyRec(t1) + q

2λ
)
· exp{2πn(βRényi/σ2)2}

1− 2−λ+1

where t1 = t+O(N · tring) and O(N · tring) denotes the computational complexity
of N group operations in the ring Rq.

The attack surface of Apon and Choi primarily consists of:
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1. The underlying pure RLWE and derivative LWE problems,

2. the key reconciliation protocol used, and

3. through distinguishing based on the approximation to a uniform distribution
using a large standard deviation.

As we are provided with the advantage given to an attacker through the key reconcil-
iation protocol, and we are able to directly calculate the advantage given by the use
of a Gaussian with a high standard deviation, we only miss the advantage given by
the underlying RLWE scheme.

As our chosen σ2 is about 30βRényi — Ω(βRényi) — exp{2πn(βRényi/σ2)2}
1−2−λ+1 reduces to

exp{2πn(1/30)2}, as 1 − 2−λ+1 ≈ 1. Calculating q
2λ = 45510033409

2256 ≈ 235

2256 = 2−221.
Furthermore, the advantage given by Peikert’s key reconciliation function is negligible
[Pei14], and we set AdvKeyRec(t1) = 0.

There are multiple methods to attack RLWE-based cryptosystems, the most relevant
of which are through reductions to the general LWE problem or to ideal lattices,
all of which are explained in detail by Player [Pla18]. The most relevant attack
against AponGKE and ChoiGKE are the unique shortest-vector problem (uSVP),
the bounded distance decoding problem (BDD) [LM09] and dual lattice problem
[APS15]. Using the tool, LWEestimator, created by Albrecht et al. [APS15] we can
estimate the advantage an adversary has in the general RLWE problem with our
parameters — AdvRLWE

n,q,χσ1 ,3
(t1) = 2−2034.4, by uSVP. This allows for us to estimate

the security of the protocol instance as a whole:

AdvGKEApon(t, q) ≤ 2−255+√(
N · 2−2034.4 + 1 + 235

2256

)
· exp{2048π(1/30)2}

= 2−255 + 2−105.14 = 2−105.14. (3.5)

Where we assume that N is a reasonable number of participants. Note that in the
above equation, the value of N is irrelevant for any reasonable number of participants
as 2−2034 ≈ 5.06 · 10−613. We thus achieve about 105 bits of security for AponGKE
and ChoiGKE — two post-quantum group key exchange protocols. Comparing
this security level with many proposed two-party key exchange and key agreement
protocols estimated by Albrecht et al. [ACD+18], indicates that our claimed security
level is reasonable, especially when taking into consideration the fact that these
parameters support up to 20 simultaneous participants.
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In this chapter, we will look at implementations of instantiations provided in the
previous chapter for post-quantum group key exchange. Furthermore, we will see
these in an authenticated setting, resulting from the Katz-Yung compiler, and the
framework of Bresson et al. respectively, as we have previously seen in Section 2.5.
Then, we will show a real-world-like messaging application using one of the two
implemented GAKE. These results correspond to the three design science cycles
performed during this thesis. Finally, we will take a closer look at the performance
of some fundamental building blocks of the group key exchange.

Chapter 5 will focus on discussing the results presented here and in the previous
chapter.

4.1 Data Collection

Data gathered in this section come from tests run on a server with the following
processor: Intel(R) Core(TM) i7-7700K CPU with a clock speed of 4.20GHz. On
average, the processor completes 4200328733 clock cycles in a second.

We compile all the test programs using the GNU Compiler Collection (GCC)1 version
9.3.0 with the following flags:
-O3 -fomit-frame-pointer -msse2avx -march=corei7-avx. We use CMake2 to
build and compile our programs, using the template CMakeLists.txt file printed in
Appendix A.

In this chapter, we will compare the performance of both authenticated and unau-
thenticated AponGKE and ChoiGKE. To give the reader a notion of what the
numbers mean, we will compare these to the current “state-of-the-art” ECDH key
exchange over Curve25519 [Ber06], using X25519 according to RFC7748 [LMT16].

1GNU C Compiler, available at https://gcc.gnu.org/
2Website: https://cmake.org
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Specifically, we will perform key exchange for groups in a similar way as it is done in
the current Signal Protocol [Sig][CGCD+17] — pairwise between all communicating
parties [CGCG+17]. However, instead of the triple Diffie-Hellman key exchange,
we will use a singular one, meaning each participant performs a single ECDH key
exchange with every other participant. For the GAKE version of this, we reuse the
Curve25519 private key for signing.

Implementing ECDH is out of scope for this thesis, so we will use the implementation
provided by the efficient and small cryptography library Monocypher [Vai20], specifi-
cally version 3.0.0. This is a minimal library written in pure C, with a reasonable
amount of optimization. We believe this will be suitable as a baseline comparison,
given that the software developed in this thesis is optimized to a similar degree.

Computational Performance Wemeasure the computational performance through
counting CPU cycles over 1000 iterations of the protocol for each number of partici-
pants. The x86-64 processor we use support the built in (x86) Assembly instruction
to do this, which we call from our C-code function count_cycles() as seen in Listing
4.1. The measurements are performed by calling this function before and after the
operation to be measured, with the difference being the number of CPU cycles used
between the calls, and thus the cycle count for the operation in question. We use
CPU cycles as a measure of performance, as this is reproducible across most newer
generations of x86 processors.

1 long long count_cycles ( ) {
2 unsigned long long r e s u l t ;
3 asm v o l a t i l e (
4 " rd t s c ; "
5 " sh lq $32 , %%rdx ; "
6 " orq %%rdx , %%rax "
7 : "=a " ( r e s u l t )
8 :
9 : "%rdx " ) ;

10

11 r e turn r e s u l t ;
12 }

Listing 4.1: This function is called right before and directly after the code we wish
to measure the performance of. The difference between the two values obtained are
the number of CPU cycles required for the operation.

Memory Usage We are able to analytically determine the amount of memory
required by any given protocol run. This will not give an exact number, as compiling
on different platforms yield different machine code; however, it does yield a good
approximation of reality.
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Network Usage Finally, in Section 4.5 of this chapter, we will analyze the network
usage required to set up a key exchange in a real-world scenario. We do this by
inspecting a protocol run in a real-world-like scenario using tcpdump3 and Wireshark4.

4.2 Performance of Subroutines

The performance of the group key exchange protocols as a whole is dependent on the
performance of many crucial subroutines. Before looking at the group key exchange
protocols as a whole, we will see the performance of these crucial subroutines for
generating polynomials (uniform, with σ1, and with σ2), the forwards and inverse
NTT transformations, and the key reconciliation functions. The numbers in Table
4.1 are rounded to the nearest integer, based on data from 1 000 iterations.

Subroutine Mean CPU cycles Standard deviation
GenUniformPoly() 149 372 2 366
GenPoly(σ1) 307 745 30 088
GenPoly(σ2) 6 012 056 262 746
NTT() 98 407 13 541
InverseNTT() 117 253 19 783
PolyConvolution() 327 635 23 691
NaivePolyConvolution() 17 389 609 953 746
RecMsg() 67 753 6 664
RecKey() 23 152 4 163

Table 4.1: The performance for a selection of subroutines that are common to
AponGKE and ChoiGKE. Note that GenPoly(σ2) which is only used once in a
protocol run, by a single participant, and is included here for the sake of completeness.
As a comparison, the performance of the naive approach to polynomial convolution
is included.

Below we provide a brief explanation of what the different subroutines do.

– GenUniformPoly() samples a uniform ring element by reading raw bytes from
/dev/urandom — the operating system CSPRNG — and placing them into the
field, Zq,

– GenPoly(σ1) and GenPoly(σ2) samples ring elements from a discrete Gaussian
distribution, as described in Section 3.2.2,

3Website: https://www.tcpdump.org
4Website: https://www.wireshark.org

https://www.tcpdump.org
https://www.wireshark.org
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– NTT() and InverseNTT() are the forwards and inverse NTT transforms used
to perform polynomial convolution,

– PolyConvolution() is the function taking two polynomials to be convolved
and returning the result, using the NTT-functions to perform the convolution,

– NaivePolyConvolution() is included here for illustration purposes only, and
performs polynomial convolution the direct way, and

– RecMsg() and RecKey() are directly corresponding to the functions described
in Section 2.4.4 about Peikert reconciliation.

4.3 Group Key Exchange Implementations

In this section, we will see the implementation of unauthenticated AponGKE and
ChoiGKE, as well as the results provided by these. We have implemented these in C,
and the code is publicly available at https://github.com/simenbkr/rlwe-gke, using
commit ID 1795995. Due to optimization and practicality, the explanations below
does not necessarily have a one-to-one correspondence to the actual code.

4.3.1 AponGKE and ChoiGKE

The implementations for AponGKE and ChoiGKE are similar in many ways. The
major difference is the key exchange itself, while the way we represent polynomials,
and perform ring operations are identical. As q was previously selected as a 35-bit
prime, a polynomial is n = 1024 coefficients and we choose to represent a coefficient
as a 64-bit unsigned integer, a polynomial is represented in our implementation as a
list of 1024 64-bit integers.

State Variables

A participant, Pi, in AponGKE and ChoiGKE, has a state variable containing his
own polynomials:

– The secret polynomial, si,

– the errors ei, e′i, (optionally e′′i ),

– the public key, zi = sia + ei,

– the “neighbourhood”-key, Xi = (pi+1 − pi−1)si + e′i, and

– the approximate shared secret, bi.

https://github.com/simenbkr/rlwe-gke
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Furthermore, each participant has to store the broadcasted polynomials associated
with the other participants. Let P ji denote the state variable for Pi containing the
broadcasted keys from Pj and holding the following:

– Pj ’s public key — pj if Pj is a neighbour of Pi ⇐⇒ j = i + 1 mod N or
j = i− 1 mod N ,

– Pj ’s “neighbourhood”-key Xj = (pj+1 − pj−1)sj + e′j

Finally, the reconciliation vector can be represented as a 128-byte value (in practice
a list of 32 8-byte values) directly corresponding to 1024 bits, one for each coefficient,
using Peikert reconciliation, as we previously saw in Section 2.4.4.

Pi in ChoiGKE has an additional state variable, Yi, which holds N polynomials.
This is a set of intertwined “neighbourhood”-keys, which we previously reviewed in
Section 2.4.3.

Subroutines

We define a set of subroutines for the group key exchange protocols. These act using
the state variable Pi as input. These are the common functions:

– InitializeParticipant(Pi) — Generates the secret and error polynomials,
and calculates Pi’s public key, which is subsequently broadcasted to the other
participants.

– ComputeX(Pi) uses the receieved public keys of Pi’s neighbours to compute the
neighbourhood-key, X = (pi+1 − pi−1si + e′i), and broadcasts it to the other
participants.

– RecKey(Pi, rec) and RecMsg(Pi) — These are the key reconciliation functions
previously reviewed in Section 2.3.2, instantiated as Peikert’s key reconciliation
function, as seen in Section 2.4.4. We use these to go from bi to a definite
shared value ki, which only works when b0 ≈ b1 · · · ≈ bN−1.

In addition to these, AponGKE has the following subroutine:

– ComputeApproxSecret(Pi) calculates the approximate shared secret value,
bi = N · pi−1si +

∑N−1
j=0 (N − j − 1)Xi+j mod N

While ChoiGKE has the following additional subroutines:



42 4. PROTOCOL IMPLEMENTATION

– ComputeYList(Pi) — This function creates the list of “neighbourhood”-keys
intertwined with our secret. We start with Yi,i = Xi+pisi, and then iteratively
compute Yi,i+j = Xi+j + Yi,i−1+j .

– ComputeApproxSecret(Pi) — Using Yi, we derive the approximate shared
secret — bi =

∑n
j=0 Yi,i+j .

Algorithmic Illustration

Putting the state variables and subroutines together, we can create an algorithmic
version of both AponGKE and ChoiGKE from the perspective of Pi, as illustrated
by Algorithm 4.1. Let P j,pji denote the storage of Pj ’s public key, pj in Pi’s state
variable, and likewise for other variables.

Algorithm 4.1 AponGKE
Input: N , n, q, λ, ρ, χσ1 , χσ2 .
Output: Shared secret, session_key, between N parties.

InitializeParticipant(Pi)
P
j,pj
i ← pj , j ∈ {i− 1, i+ 1}

ComputeX(Pi)
P
j,Xj

i ← Xj , ∀j ∈ {0, . . . , N − 1} and j 6= i.
ComputeApproxSecret(Pi)
if i = N − 1 then

rec← recMsg(Pi)
ki ← recKey(Pi, rec)

else
ki ← recKey(Pi, rec)

end if
session_key ← H(ki)
return session_key

4.3.2 Performance

The performance of the group key exchange protocols is divided into the analytical
analysis of memory requirements and an experimental part showing the artifacts’
performance, which should give an accurate indication as to how a more refined
implementation could perform.

Memory Consumption

From an analytical point of view, we can count the number of polynomials needed
by each protocol participant in the above explanation of state variables.
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– AponGKE requires seven polynomials to represent the local participant state.
Furthermore, it requires two additional ones for each additional participant.
Ergo, 7 + 2N polynomials. As each polynomial is 1024 64-bit values, each
participant needs 5.73 +N · 1.64kB of memory.

– ChoiGKE requires the same seven, plus N polynomials, to represent the
local participant state. It also requires two additional polynomials for each
additional participant. This results in needing 7 + 3N polynomials, which
results in 5.73 +N · 2.46kB of memory.

Protocol (participant context) N = 3 N = 10 N = 20
AponGKE (i 6= N − 1) 123 008 213 120 376 960
AponGKE (i = N − 1) 106 624 221 312 385 152
ChoiGKE (i 6= N − 1) 131 200 303 232 548 992
ChoiGKE (i = N − 1) 123 008 295 040 540 800

Table 4.2: The memory usage in bytes for 3, 10, and 20 participants for both roles
(initiator and responder) of AponGKE and ChoiGKE.

We summarize the dynamic memory usage of AponGKE and ChoiGKE in Table 4.2.
In addition to this comes the static memory of the compiled binary, which, when
statically compiled, is on the order of a megabyte.

Computational Performance

Figure 4.1 shows a comparison of the CPU-cycles for both of the GKE implementa-
tions, compared with the baseline explained at the start of this chapter. The arrow
points to the mean cycle time, with the horizontal caps indicating the standard
deviation of the observed CPU cycle times. The raw data presented by Figure 4.1 is
available in Appendix B.

Error Rate

Both AponGKE and ChoiGKE have a non-negligible error rate for the selected
parameters when the number of participants reaches above 10. This is due to
the noise level of this many participant’s public keys being mixed, making the
reconciliation process at times impossible. The empiric error rate seems to be
exponential as more participants are added, as shown in Table 4.3.
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Figure 4.1: A comparison of the CPU cycles required to perform an (unauthenti-
cated) GKE for AponGKE, ChoiGKE and pairwise ECDH using Curve25519. The
comparisons are done on the server described above, using the same compilation
options found in Appendix A.

4.4 GAKE Implementation

In this section, we provide the specifics for turning AponGKE and ChoiGKE into
authenticated group key exchange protocols. We will refer to these as AponGAKE
and ChoiGAKE.

4.4.1 Choice of Digital Signature Scheme

In Section 2.5, we discussed different compilers for turning a GKE into a GAKE. Both
of these require a digital signature scheme. Also, in this thesis, we are specifically look-
ing at RLWE-schemes for group key exchange. In the context of this thesis, it makes
sense to also use a digital signature algorithm based on the same, or related, problem.
Three candidates from the NIST standardization process5 — which we discussed
briefly in Chapter 1 — are based on lattice cryptography, namely FALCON (NTRU-
based), qTESLA (RLWE-based), and CRYSTALS-Dilithium (Module-RLWE). In
this thesis, we use FALCON and qTESLA showing how they can be used, and how
they perform in the group authenticated key exchange. We use the lowest security
levels these provide, which is close to the estimated security level of the instantiated
protocols treated here. For FALCON we then use FALCON-512, and with qTESLA
we use qTESLA-p-I.

5Website: https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
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Participants AponGKE Error rate ChoiGKE Error rate
3 0.0000 0.0000
4 0.0000 0.0000
5 0.0000 0.0000
6 0.0000 0.0000
7 0.0000 0.0000
8 0.0000 0.0000
9 0.0000 0.0000
10 0.0000 0.0000
11 0.0000 0.0001
12 0.0006 0.0002
13 0.0015 0.0014
14 0.0036 0.0055
15 0.0116 0.0121
16 0.0288 0.0254
17 0.0448 0.0479
18 0.0820 0.0808
19 0.0950 0.1336
20 0.1994 0.2049

Table 4.3: Here we see the error rate given by AponGKE and ChoiGKE for a number
of participants. We will discuss this figure more in the next chapter.

As implementing digital signature schemes is deemed out of scope for this thesis, we
use the implementation provided by the OQS6 project.

4.4.2 Protecting Against Active Attacks

As before, we assume the ring, a public polynomial, a ∈ Rq = Zq[x]/〈xn + 1〉 and the
distributions χσ1 and χσ2 to be known. Furthermore, we assume that the participants
have agreed on a digital signature scheme to use, with known algorithms and constants
for key generation, K, signature generation, S, and signature verification, V. We let
a‖b denote the concatenation of a and b. Finally, recall thatH denotes a cryptographic
hash function, as described in Section 2.2.4.

6Website available at https://openquantumsafe.org, and code at https://github.com/
open-quantum-safe/liboqs. We use commit 38c47f7.

https://openquantumsafe.org
https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/liboqs
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AponGAKE

We recall the form AponGKE, outlined in Section 2.4.2. Using the Katz-Yung
compiler, as suggested by Apon [ADSGK19], yields a protocol with the following
rounds:

1. All participants, Pi, generate a digital signature key pair, (vki, ski) ← K,
a nonce selected at (uniformly) random from ni ← {0, 1}λ (λ being Kleene
notation). Pi then broadcasts i‖0‖ni. This is stored in a state for every
participant.

2. Pi samples si
χσ1←−− Rq, ei

χσ1←−− Rq and calculates zi = sia + ei. Pi broadcasts
the message i‖1‖zi‖ρi,1, where ρi,1 ←− S(ski, 1‖zi‖ni).

3. Pi, i 6= 0 samples e′i
χσ1←−− Rq and P0 samples e′0

χσ2←−− Rq. Pi computes
Xi ←− (zi+1 − zi−1)si + e′i. Creates a signature, ρi,2 ←− S(ski, 2‖Xi‖ni) and
broadcasts i‖Xi‖ρi,2.

4. Pi sets bi ←− zi−1Nsi + (N − 1)Xi + (N − 2)Xi+1 + . . . + Xi+N−2. Partic-
ipant PN−1 samples e′′N−1

χσ1←−− Rq and sets bN−1 ←− bN−1 + e′′N−1. PN−1
creates a reconciliation vector and recoveres the session key (rec, kN−1) ←−
recMsg(bN−1). Then PN−1 sets ρN−1,3 ←− K(skN−1, 3‖rec‖ni) and broad-
casts N − 1‖rec‖ρN−1,3.

5. All participants recover the key as ki ←− recKey(bi, rec).

ChoiGAKE

Choi et al. demonstrates compiling ChoiGKE into ChoiGAKE in their paper,
[CHK20]. We will repeat a version of that GAKE here. Recall the description of
ChoiGKE in Section 2.4.3.

1. All participants, Pi, generate a digital signature pair (vki, ski)← K and a nonce
selected uniformly from {0, 1}λ. They then generate a secret key and an errors
from the ring — si

χσ1←−− Rq, ei
χσ1←−− Rq and calculateszi = sia + ei. Then the

message mi,1 is constructed as mi,1 ← i‖1‖zi, and signed, ρi,1 ← S(ski,mi,1).
mi,1‖ρi,1 gets broadcasted to its neighbours.

2. Each received message is verified using the corresponding verfication key. If i =
0, then e′i

χσ2←−− Rq, if not then e′i
χσ1←−− Rq. Pi calculates their “neighbourhood”-

key — Xi = (zi+1 − zi−1)si + e′i. Pi sets mi,2 ← i‖2‖Xi‖ni, which is signed,
ρi,2 ← S(mi,2), and mi,2‖ρi,2 is broadcasted to all participants.
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3. All messages with the “neighbourhood”-keys are verified, and the message
nonces are extracted and added to the state variables of the participants. Then,
PN−1 samples e′′i

χσ1←−− Rq, and computes

YN−1,N−1 = XN−1 + pN−2sN−1 + e′′N−1.

Then, PN−1 computes

YN−1,N−1+j = XN−1+j + YN−1,N−2+j .

for ∀j ∈ {1, . . . , N−1}. Finally, PN−1’s approximate secret, bN−1, is calculated
as

bN−1 =
N−1∑
j=0

YN−1,N−1+j

Now, PN−1 generates the reconciliation vector, rec, and the key kN−1 from
rec, kN−1 = recMsg(bN−1). The reconciliation message is constructed as
mN−1,3 ← N−1‖3‖rec. Then PN−1 broadcastsmN−1,3‖ρN−1,3 ← S(mN−1,3).

4. The reconciliation message is verified by all Pi, i 6= N−1. All other participants
Pi calculate

Yi,i = Xi + pi−1si.

Then they compute
Yi,i+j = Xi+j + Yi,i−1+j

for ∀j ∈ {1, . . . , N − 1}. The approximate polynomial is calculated as

bi =
N−1∑
j=0

Yi,i+j .

Finally, the shared secret is recovered using an error reconciliation function —
ki = recKey(bi, rec).

5. Then the session key is set to ski ← H(ki).

4.4.3 Implementation Modifications

In order to accommodate the changes required by the different compilers applied to
AponGKE and ChoiGKE, we need some modifications regarding the state variables
and subroutines used by the authenticated group key exchange protocols. We also
introduce a new concept, messages, which will provide further abstractions and
simplifications.
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Figure 4.2: An illustration of the encoding schema used to represent messages in the
GAKE implementation. Here we use FALCON as an example, though it is easily
exchangeable.

Messages

The description of AponGAKE and ChoiGAKE uses messages, instead of just sending
polynomials and vectors. The messages are a concatenation of the polynomial or
vector, and associated metadata — i.e., nonces and identifiers. We apply this
approach in the implementation as well. Both polynomials and relevant identification
numbering of messages and participants are represented as a collection of byte
values (8-bit unsigned integers) in a structured element. This makes integration
with OpenQuantumSafe’s digital signature algorithms relatively trivial, due to the
similar way to represent raw data. The encoding schema is illustrated in Figure 4.2.
Here we see an example of encoding the public key broadcasting message from P4761
(note that 4761 = 1299 in hexadecimal). We note that even though the numbers are
treated as 64-bit integers when performing operations on them, due to the modulus
being 35-bit, we can encode them as 40-bit integers. This reduces the memory usage
by close to 40%, which will become even more critical when we move to networked
usage of AponGAKE and ChoiGAKE.
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State Variables

To accommodate the transformation to authenticated group key exchange, we need
to add a keypair of verification and signature keys to each participant’s internal state,
as well as N − 1 verification keys to each participants protocol state, one for each
other participant. Additionally, each participant needs a nonce for their internal
state, and the state representing the protocol as a whole. The protocol dictates that
the nonce should be selected uniformly at random from {0, 1}λ, which corresponds
directly to an unsigned 32-bit integer.

Other than these small changes, the state variables remain the same. The “paradigm”
has changed somewhat though, as we no longer deal directly with polynomials, but
with messages wrapped around them.

Subroutines

The additional subroutines we need are related to the messages and the authentication
of these, and are the same for both AponGAKE and ChoiGAKE, though applied
in different manners due to the inherent differences between the protocols. The
subroutines correspond to the following:

– CreateMessageForRound(Pi, k) — Creates a message object for the specific
round, depending on the participant’s internal state, signing the message in
the process.

– VerifyMessage(Pi, mj,k) — Takes the internal state of the verifying partici-
pant, Pi and a message for round k received from Pj , and outputs either 1 if
verified successfully or 0 if the verification failed.

– ExtractPoly(m) extracts a polynomial from a (signed) message.

– AbortGKE() aborts the protocol run, tearing down any connections and deleting
the secret data from memory.

Furthermore, InitializeParticipant(Pi) now also generates a digital signature
key pair, and a nonce, which is broadcast upon generation to the other participants.

Algorithnic Illustration

In Algorithm 4.2, we provide a logical illustration of the group authenticated key
exchange, AponGAKE.
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Algorithm 4.2 AponGAKE
Input: N , n, q, λ, ρ, χσ1 , χσ2 .
Output: Shared secret between N parties, or NIL, indicating an error.

InitializeParticipant(Pi)
P j,noncei ← noncej , ∀j ∈ {0, . . . , N − 1} and j 6= i . Get the nonce and
P j,vki ← vkj . verification key from all the other participants.
CreateMessageForRound(Pi, 1) . The sending of this message to the
neighbours of participant i is left implied.
if VerifyMessage(mj,1), j ∈ {i− 1, i+ 1} then

P
j,pj
i ← pj , j ∈ {i− 1, i+ 1}

else
AbortGKE()
return NIL

end if
ComputeX(Pi)
CreateMessageForRound(Pi, 2) . The broadcast of this message to all other
participants is left implied.
if VerifyMessage(mj,2) ∀j ∈ {0, . . . , N − 1} and j 6= i then

P
j,Xj

i ← Xj = ExtractPoly(mj,2), ∀j ∈ {0, . . . , N − 1} and j 6= i.
else

AbortGKE()
return NIL

end if
ComputeApproxSecret(Pi)
if i = N − 1 then

rec← recMsg(Pi)
ki ← recKey(Pi, rec)

else
ki ← recKey(Pi, rec)

end if
session_key ← H(ki)
return session_key
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Figure 4.3: The average number of CPU cycles in millions to perform a GAKE using
AponGAKE and ChoiGAKE with digital signature schemes FALCON and qTESLA
compared with a naive ECDH-GAKE.
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Figure 4.4: A comparison of the performance when discounting the generation of the
digital signature scheme key pair.
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4.4.4 Performance

Memory Consumption

For FALCON, the digital signature keypair adds an overhead of 897 bytes per
verification key, 1 281 bytes per signing key, and 690 bytes per signature. For
qTESLA, we need 14 880 bytes for the verification key, 5 224 for the secret key, and
2 592 for each signature. Additionally, the messaging paradigm adds an overhead of
6 bytes per message.

Processor Usage

For both AponGAKE and ChoiGAKE, the CPU usage of the group authenticated
key exchange protocols are dominated by the signing and verification algorithms of
FALCON, as may be surmised comparing Figures 4.1 and 4.3. As the key generation
part of FALCON is the dominating factor, we also present a comparison of cycles
without this subroutine included in Figure 4.4. Now the dominating subroutines are
the verification and signing routines.

4.5 Real-world Interactive Messaging

Putting it all together in a real-world like scenario is useful in evaluating the feasibility
of the protocols as a whole. In this section, we will see an implementation of a simple
messaging application built upon the protocols described in the previous sections.
Specifically, the implementation will use the FALCON version of AponGAKE.

4.5.1 Practical Considerations

We make some practical considerations concerning the implementation.

– Move all sampling of polynomials to the same point in time — Pi samples all of
si, ei, e′i, and possibly e′′i in succession at the start of the protocol run, before
initiating any network connection. This ensures a minimal amount of delay,
as the major factor in the time required to set up the connection is network
throughput.

– Although ChoiGKE supports the dynamic joining and leaving of groups, we
have not included this in our practical implementation, though it will be
included in the evaluation as a whole.

– In our runs of the protocols, we did not generate the public polynomial a on
the fly, but instead included it statically in all the clients.
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Figure 4.5: A minimal example of the architecture used in the simple interactive
messaging application.

4.5.2 System Architecture

As a peer-to-peer setup is complicated, we have chosen to use a simple client-
server architecture, with the client being a C implementation performing all the
cryptographic operations, and the server, in Python, acting as a hub with each client
publishing to it, and the server forwarding the messages to the other, relevant, clients.

Figure 4.5 provides an illustration of this architecture, showing a participant broad-
casting, for example, their public key to its neighbours. In our specific implementation
we use this client-server architecture, but in general it is not required. However,
we note that peer-to-peer applications can typically be more complex, which for
our direct purposes is irrelevant. Additionally, many communications systems over
networks and between multiple parties use a similar approach, notable examples
being Signal [Sig], Wire [Wir], and Zoom [Zoo16]. These examples are applications
where post-quantum group key exchange may be useful, thus making our prototype
system architecture even more relevant.

4.5.3 Messages

There are essentially three message types:

1. Polynomial message, consisting of the sending participant identifier, the se-
quence number, the signature, and the polynomial itself.

2. Reconciliation message, consisting of the sending participant identifier, the
sequence number, the signature, and the reconciliation vector itself.

3. A chat message, consisting of sending participant identifier, sender’s distin-
guisher, and the encrypted message. We encrypt the entire message using an
AEAD scheme.
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Figure 4.6: Polynomial transfer from the server to a local client. Note the message
length (in bytes), including overhead from the TCP, IPv4 and Ethernet headers.

These are encoded in the same manner as described earlier, for Figure 4.2, with slightly
differing fields. Messages one and two are used during the group (authenticated) key
exchange, which derives a key to be used with message three.

4.5.4 Network Effects and Package Sizes

The maximum frame size for Ethernet is set to 1518 bytes, where 18 bytes are
part of the header, leaving 1500 for the payload for the upper network layers. This
effectively makes 1500 bytes the maximum transmission unit (MTU) on the internet,
and affects any application transmitting significant amounts of data, such as our
group authenticated key exchange.

The message sizes, corresponding to the types in the previous section, are the
following:

– Polynomial message: 5816 bytes — 5120 bytes from the polynomial, 690 bytes
from the signature and 6 bytes for metadata,

– Reconciliation message: 824 bytes — 128 bytes for the reconciliation vector,
690 bytes from the signature and 6 bytes for metadata, and

– Chat message: 1088 bytes — 1024 bytes for the encrypted message, and 64
bytes of metadata (i.e., nonce, identifier, sequence numbers).

The polynomial message, which is sent twice and received 2N times per run of
the protocol, is much larger than the MTU, and is thus fragmented into several
network packets — three carrying 1448 bytes each, and a fourth carrying 1472 bytes
(assuming TCP over IPv4) as shown in Figure 4.6. Thus, for each protocol run, a
given participant needs to receive 2N polynomials, equating to 8N packets, plus the
packet carrying the reconciliation message. The participant also needs to send two
polynomials — 8 packets. Additionally, the synchronization overhead costs at least
two packets — arranging unique identifiers and figuring out which participant should
create the reconciliation vector.



Chapter5Analysis and Discussion

In this chapter, we will present a discussion on the two preceding chapters, and the
results contained therein. We will focus on the research objectives set out in Section
1.3.

We will begin by explaining the primary optimization techniques in detail, along with
potential trade-offs and decisions made in order to respond to RO3 and RO5. Then,
we will discuss the performance, as shown in the preceding chapter, both concerning
the specific subroutines and the group key exchange protocols as a whole, and how
it relates to the real world, responding to RO3 and RO4. Finally, we will look to
discuss RO6 about constant-time cryptography in the context of RLWE.

The discussion on these research objectives will, taken together, answer the defining
research objective of this thesis, RO0.

Comparisons are made against relevant (R)LWE instantiations and implementations
for key encapsulation protocols such as NewHope, CRYSTALS-Kyber and the BCNS
RLWE key exchange for TLS. We will compare against cryptosystems with a similar
security level, around 100 bits of post-quantum security. We note that we compare
group key exchange which have a different set of requirements than two-party KEMs
do, and this in itself may explain much of the performance difference.

5.1 Notable Optimizations

Here we will explain four of the most notable areas of optimization for RLWE in
the context of our implementations and our rationale for our chosen strategy in this
regard, relating to modular reduction, polynomial convolution, error sampling and
vectorization.

5.1.1 Modular Reduction
1 s t a t i c const uint128_t SHIFT = 72 ;

55
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2 s t a t i c const uint128_t F = 103765392576;
3

4 i n l i n e uint64_t barrett_128 ( uint128_t a ) {
5 uint128_t t = ( a − ( ( a ∗ F) >> SHIFT) ∗ GKE_Q) ;
6 r e turn t < GKE_Q ? t : t − GKE_Q;
7 }

Listing 5.1: The Barrett reduction with constants for our chosen field — efficiently
calculating the reduction of a 128-bit unsigned integer mod q = 45510033409.

Figure 5.1: This figure compares the CPU cycles required to perform an (unauthenti-
cated) GKE for AponGKE, ChoiGKE and pairwise ECDH using Curve25519. These
data are from the unoptimized version, using no special modular arithmetic or special
optimization, except for the NTT.

The remainder operator in C, “%”, CPU notably inefficient. To perform a single
modulo operation through this operator, the CPU must perform an integer division,
which is notoriously slow, consuming on the order of tens of processor cycles. There-
fore, an efficient algorithm for modular reduction is used instead of the remainder
operator, avoiding any division. There exist several options for this, but we chose
to use Barrett reduction, as explained by Menezes et al. [MKVOV96] (Chapter 14),
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leading to the subroutine illustrated in Listing 5.1. In reality, two versions were used,
one for representatives we are able to guarantee are below 264− 1, and one for results
up to 271. The former is useful for reductions following addition and subtraction
operations, while the latter is applied after a modular multiplication. Splitting it
up this way allows us to use smaller integer sizes, which uses fewer clock cycles on
average.

The speedup resulting from using Barrett reduction is significant. It constituted
a speedup of up to 55%. The performance of the unoptimized implementation is
shown in Figure 5.1, which, when contrasted with Figure 4.1 shows the significant
performance increase achieved using relatively simple methods.

5.1.2 Polynomial Convolution

Using the Number-Theoretic Transform, in the way described in Section 3.2.1 provides
a significant speedup. It is a simple algorithm with low computational complexity,
and including pre-calculated constants for the transform makes the convolution
operation highly efficient compared to a naive approach.

1 void convo lut ion ( const poly_t ∗a , const poly_t ∗b , poly_t ∗ r e s u l t ) {
2

3 poly_t a_copy , b_copy ;
4

5 memcpy( a_copy , a , s i z e o f ( poly_t ) ) ;
6 memcpy(b_copy , b , s i z e o f ( poly_t ) ) ;
7

8 forwards_ntt ( omega , a_copy ) ;
9 forwards_ntt ( omega , b_copy ) ;

10

11 i n t i ;
12 f o r ( i = 0 ; i < GKE_N; ++i ) {
13 r e su l t −>c o e f f i c i e n t s [ i ] = modmul( a_copy−>c o e f f i c i e n t s [ i ] , b_copy−>

c o e f f i c i e n t s [ i ] ) ;
14 }
15

16 inver se_ntt ( omega_inverse , r e s u l t ) ;
17 }

Listing 5.2: The code used for polynomial convolution, edited slightly to appear more
readable and understandable for the reader.

As the conversion to and from NTT-domain is the most computationally expensive
operation in the convolution process, a modification of the protocol so that we keep
polynomials in NTT-domain as much as possible might be advantageous, converting
back only when needed. Our current convolution approach is shown in Listing
5.2. This approach includes copying the two input polynomials, then transforming
these into the NTT-domain, pairwise multiplying and transforming back the result.
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The copying of the input polynomials ensures that we only need to convert the
result back. If we could keep polynomials in NTT-domain implicitly, we would need
fewer transformations, and could also skip the expensive copy operation. Keeping
polynomials in NTT-domain is being done by, among others, Kyber [ABD+] and
NewHope [AAB+].

5.1.3 Error Sampling

How we sample from Gaussian distributions is a point in which there is significant
potential for an increase in performance. An open problem in the literature is to find
methods that support sampling with both small and large standard deviations. As
explained in Section 3.2.2, we chose to solve this using a sampler made for relatively
small samples and in an inefficient manner combining these for the single large sample.
The sampler used is efficient, but not specialized in any way to the needs of the
protocol. Furthermore, it is not constant-time, which poses other problems related
to the security of the protocols.

Ideally, we would like a sampler that can approximate a discrete Gaussian for both the
smaller σ1 and the larger σ2. The next best thing would be two specialized samplers
for each case. The most promising sampling technique in terms of performance is
through the centered binomial, as used in NewHope [AAB+]. However, there has
also been some promising work recently in sampling directly from discrete Gaussian
distributions concerning several post-quantum digital signature schemes [ZSS18]. We
intentionally leave this for future work.

5.1.4 Vectorization and Loops

Vectorization is a technique in which we increase instruction parallelism by performing
the same operation on multiple data — often referred to as Single Instruction
Multiple Data (SIMD). On certain processor architectures, like the x86, this is
supported on the instruction set level. This means that, in theory, we can move
from adding coefficients in a polynomial pairwise manner — ci = ai + bi — to
summing up sub-vectors created by coefficients of the polynomial itself, summing up
[ci, ci+1, ci+2, ci+3] = [ai, ai+1, ai+2, ai+3] + [bi, bi+1, bi+2, bi+3] at what is essentially
the same cost. This would effectively reduce the runtime of polynomial addition to a
fourth of the original. However, the widespread usage of processors supporting such
operations is focused on 8−, 16−, and 32−bit integers through Intel (x86) Streaming
SIMD Extensions (SSE) and Advanced Vector Extensions (AVX). As we are dealing
with integers over a field with a modulus of 35-bits, this is not suitable for our
needs. It is possible to get around this by using floating-point numbers. However,
the overhead associated with conversion between 64-bit integers and floating-point
numbers impacts performance to a degree where any potential gain is close to nil. For
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possible future work, the investigation of AVX-512, which supports 64-bit integers
natively, and RLWE-based group key exchange could be interesting. We note that
both NewHope [AAB+] and Kyber [ABD+], among other NIST contenders1 provide
AVX implementations.

As a result, we have chosen not to manually use vectorization optimizations in our
implementation, though the compiler may choose to do so when suitable determined
according to the compiler options found in Appendix A. It appears that the compiler
will choose not to add vectorization. If this is due to using 64-bit integers, which is
not supported (without using floating-point tricks) by Intel vectorization (SSE and
AVX), or due to the wrapping of operations (as in Listings 5.3 and 5.4) in function
calls is unclear.

1 void poly_add ( const poly ∗a , const poly ∗b , poly ∗ r e s u l t ) {
2 f o r ( i n t i = 0 ; i < 1024 ; i++) {
3 r e su l t −>c o e f f i c i e n t s [ i ] = barrett_64 (a−>c o e f f i c i e n t s [ i ] + b−>

c o e f f i c i e n t s [ i ] ) ;
4 }
5 }

Listing 5.3: The polynomial add function, summing up two elements in the field and
reducing using Barrett reduction.

1 void poly_add ( const poly ∗a , const poly ∗b , poly ∗ r e s u l t ) {
2 f o r ( i n t i = 0 ; i < 256 ; i++) {
3 r e su l t −>c o e f f i c i e n t s [ i ] = barrett_64 (a−>c o e f f i c i e n t s [ i ] + b−>

c o e f f i c i e n t s [ i ] ) ;
4

5 r e su l t −>c o e f f i c i e n t s [256 + i ] = barrett_64 (a−>c o e f f i c i e n t s [256 + i ]
+ b−>c o e f f i c i e n t s [256 + i ] ) ;

6

7 r e su l t −>c o e f f i c i e n t s [512 + i ] = barrett_64 (a−>c o e f f i c i e n t s [512 + i ]
+ b−>c o e f f i c i e n t s [512 + i ] ) ;

8

9 r e su l t −>c o e f f i c i e n t s [768 + i ] = barrett_64 (a−>c o e f f i c i e n t s [768 + i ]
+ b−>c o e f f i c i e n t s [768 + i ] ) ;

10 }
11 }

Listing 5.4: An unrolled version of the polynomial add function, summing up two
elements in the field and reducing using Barrett reduction.

In the same spirit as vectorization, we have taken advantage of loop-unrolling and
pipelining, yielding modest performance gains. This is the only difference between
the Listings 5.3 and 5.4. Unrolling allows us to fetch data into the cache at an earlier
time, decreasing the time used on waiting for the memory to fetch data associated

1Available at the NIST website: https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
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with operations. Pipelining allows us to use the processor better when it otherwise
would have been idle. Still, the performance gain is modest due to the compiler
unrolling in a slightly different way under normal circumstances.

5.2 Performance

We presented the performance results in Sections 4.2, 4.3.2 and 4.4.4, for some
important subroutines, the group key exchange protocols and authenticated versions
respectively. In this section, we will provide a discussion on the results presented
previously, regarding processor and memory usage, error rate, and key sizes as relates
to sending data over a network.

5.2.1 CPU Cycles of Subroutines

The performance of a selection of subroutines were given in Section 4.2, and specifically
Table 4.1. Here we aim to give a discussion and comparison concerning other known
implementations for LWE-based cryptography.

Be aware that the comparisons made here are between measurements from different
cryptosystems, and as such, contain different assumptions and operating parameteres.
The most important aspect to note is that the comparisons are against cryptosystems
with two participants in a typical client-server fashion.

NTT and Polynomial Convolution

Table 4.1 already makes it clear that convolution through NTT is significantly
more efficient than a naive approach, being about 53 times faster. Our NTT-based
convolution is slightly faster than the FFT-based one used to implement RLWE for
TLS [BCNS15] — about 20000 cycles faster on average — where they use q = 232−1.
This modulus is specifically chosen for efficient modular reduction, is smaller than
ours, and allows their implementation to use 32-bit integers internally. Thus, it
is unclear why our implementation is somewhat faster. It seems like they do not
precompute any constants, which would trivially make our implementation faster.
Furthermore, it could be related to the compilation flags used, as we allow for SSE and
AVX optimization if the compiler finds it useful — which in practice is rarely — but
BCNS do not2. Another plausible explanation is that the usage of the Cooley-Tukey
forwards and Gentleman-Sande inverse NTT is faster than the Nussbaumer FFT.

Comparing with Newhope and Crystals-Kyber — both LWE-based cryptosystems
and contenders in the NIST standardization contest — which use moduli q = 12289
and q = 3329 respectively, both representable as 16-bit integers, indicates that

2See Makefile https://github.com/dstebila/rlwekex/blob/master/Makefile, commit 1fbbd8c

https://github.com/dstebila/rlwekex/blob/master/Makefile
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Implementation NTT/FFT Inverse NTT/FFT Convolution
BCNS [BCNS15] - - 342 800
CRYSTALS-Kyber [ABD+] 320 290 -
NH-512-CPA-KEM [AAB+] 21 772 23 384 -
NH-512-CPA-KEM (AVX) [AAB+] 4 888 4 820 -
Singh [Sin15] 95 300 98 800 300 500
This thesis 98 407 117 253 327 635

Table 5.1: Polynomial convolution performance of a selection of RLWE-based cryp-
tosystems. Due to differents in measuring, we include both the NTT/FFT transfor-
mations and the convolution as a whole, to give a fair comparison. We note that our
implementation uses a larger modulus than all we compare to here.

our NTT implementation is not as performant as possible. Kyber uses only 320
CPU cycles for the forward transformation and 290 for the inverse transformation
[ABD+], while NewHope uses 21 772 for the forwards and 23 384 for the inverse
transformations [AAB+], as seen in Table 5.1, which provides a comparison of the
performance of the discussed convolution techniques. Compared to our 98 407 and
117 253, the speed difference with Kyber is significant but explainable partly due to
the assumptions for that cryptosystem. Furthermore, Kyber’s low CPU cycle count
is due to a highly optimized version in Assembly heavily utilizing x86 vectorization.
It is possible that our implementation could have been more performant had we
taken a similar approach. The performance difference to NewHope is explainable,
mostly due to their usage of smaller integers. Finally, we see that Singh [Sin15],
who uses q = 40961, is similar in performance to us despite using a significantly
smaller modulus. The small difference is most likely due to our usage of Cooley-Tukey
forwards and Gentleman-Sande inverse transforms, while Singh uses Cooley-Tukey
inverse and Gentleman-Sande forwards. The reason for this is unclear, and we find
no indication that this is better than what Longa and Naehrig [LN16] suggest, and
which we implement.

Reconciliation

The reconciliation subroutines are only run once per participant, making optimal
performance here less of a focus than in convolution, for instance. Comparing the
CPU usage of our subroutines, RecMsg(), which directly corresponds to the doubling
and crossrounding function in Peikert’s error reconciliation protocol described in
Section 2.4.4, and the corresponding function used by BCNS [BCNS15] yields an
interesting result. It is for practical purposes identical to ours. Yet their subroutines
analogous to RecMsg() use 23 500 CPU cycles, against 67 753 for our implementation.
Singh [Sin15] achieves as few as 12 900 cycles for n = 1024. We suspect that these
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more performant results stem from the way randomness is generated in the dbl()-
subroutine, which is used in RecMsg(). The implementations other than the source
and method for getting random bits is, for practical purposes, the same between all
these three. BCNS and Singh generate random numbers using AES as a PRNG,
which is seeded by a CSPRNG (e.g., /dev/urandom), thus keeping a random state
and not initiating every time it needs a random number. This differs from our
approach, which simply reads from /dev/urandom directly. Using a PRNG in the
program directly is faster than reading from the operating systems random number
generator, which is likely a major reason for these implementations being faster in
this regard.

Function Implementation CPU cycles (CT) CPU cycles (non-CT)
RecMsg() BCNS [BCNS15] 23 500 21 300
RecMsg() Singh [Sin15] - 12 900
RecMsg() This thesis 67 753 -
RecKey() BCNS [BCNS15] 14 400 6 800
RecKey() Singh [Sin15] - 4 200
RecKey() This thesis 23 152 -

Table 5.2: A comparison of the performance of the reconciliation functions of BCNS,
Singh and the work presented in this thesis. These all use Peikert reconciliation,
which provides for a fair comparison.

The approach utilizing a PRNG in the dbl-function is secure in relation to the security
parameter λ given that the initial seed is randomly selected uniformly from {0, 1}λ,
and a suitable PRNG is used. An example is AES, where the initial data is uniformly
random, encrypted under a uniformly random key iteratively. We could also use
SHA-3, with a uniformly random bit-string of length λ as the initial state, which is
the correct usage of a cryptographic primitive for this task.

The other reconciliation function, RecKey() is closer to that of BCNS — 27 196 to
their 14 400. The difference here stems from the different types of integer sizes —
32-bit against 64-bit unsigned integers — as otherwise, the functions are the same.

Table 5.2 provides a summarized comparison of the performance of the reconciliation
techniques discussed above.

Error Sampling

As reasoned in Section 3.2.2, implementing an error sampler specifically for the
implementations provided in this thesis was deemed out of scope. We therefore use
the one created by Albrecht et al. [AW18], with a trick to make it work for σ2,
which is larger than what it originally supports. There are some challenges with
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this sampler. First and foremost, it does not protect against side-channel attacks.
Furthermore, it is not suitable for sampling with large standard deviations, as this
was not the intended goal of the implementation.

Implementation CPU cycles (CT) CPU cycles (non-CT)
Singh [Sin15] - 663 400
BCNS [BCNS15] 1 042 700 668 000
Kyber-512 (AVX) [ABD+] 20 004 -
NH-512-CPA-KEM [AAB+] 56 236 -
This thesis (σ1) - 307 745
This thesis (σ2) - 6 012 056

Table 5.3: A comparison of the error sampling methods demonstrated in various
papers and specifications. We distinguish between constant-time (CT) and non-
constant-time (non-CT) sampling as constant-time is ideal, but non-constant-time
can yield better performance at the cost of security against side-channel attacks. As
a result they are in seperate categories. Note that we are using the Gaussian sampler
of Albrecht [AW18] alone for σ1, and composited for σ2.

Regardless, the efficiency of Albrecht’s sampler is acceptable when compared with
other highly optimized implementations, as shown in Table 5.3. We believe a vital
takeaway of this comparison is that for an efficient implementation, we would require
a specialized discrete Gaussian sampler that could support both small and relatively
large standard deviations. This would allow us to avoid sampling several times for
the larger σ2. Due to Gaussians being notoriously difficult3 to implement in practice,
a centered binomial could be more suitable.

Uniform Sampling

Uniform sampling is in our implementation done, as described in Section 4.2, through
reading bytes from the operating system CSPRNG (/dev/urandom). In the same
vein as the discussion regarding reconciliation, if we had used a PRNG seeded by
a TRNG, like AES, (which though strictly speaking is not a PRNG, for practical
purposes could function as a PRNG using a cryptographically secure random key
and initialization and data, chained together in succession) or SHA-3, we could have
achieved a near-NewHope performance in this regard. The only difference here is
due to us requiring 1024 35-bit integers, while NH-512-CPA-KEM needs 512 16-bit
integers. The resulting performance gap should then be smaller, estimated to be at
about two to four times the number of cycles used by NH-512-CPA-KEM, due to

3See, for instance, https://groups.google.com/a/list.nist.gov/forum/#!msg/pqc-forum/
7Z8x5AMXy8s/Spyv8VYoBQAJ

https://groups.google.com/a/list.nist.gov/forum/#!msg/pqc-forum/7Z8x5AMXy8s/Spyv8VYoBQAJ
https://groups.google.com/a/list.nist.gov/forum/#!msg/pqc-forum/7Z8x5AMXy8s/Spyv8VYoBQAJ
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using approximately double the size in integers and a dimension of 1024 compared
to their dimension of 512.

Uniformly sampling using a seed generated by a TRNG as the initial state in a
chained cryptographic hash function, which is then expanded iteratively is secure due
to the hash function generating seemingly uniformly random bytes. This is enough
for the generation of a uniformly random polynomial, which is public in any case.

Previous Work CPU cycles (constant-time)
NH-512-CPA-KEM [AAB+] 10 804
This thesis 149 372

Table 5.4: The CPU cycles used to sample a uniform ring element by the implemen-
tation presented in this thesis, compared with the implementation in the NewHope
cryptosystem.

We were unable to find data on processing time for uniform generation by BCNS,
Singh or Kyber, which is the reason these are absent in this comparison.

5.2.2 Error Rate

The error rate, as demonstrated in Table 4.3, is, for 8 or more participants, significant.
Error rate at ≈ 20% for N = 20 is, in most circumstances, unacceptable. This is
far above the error rate of comparable protocols, operating with “negligible” error
rates in the case of NewHope [AAB+], and 2−100 in the case of CRYSTALS-KYBER
[ABD+]. In their paper [BCNS15] on implementing an RLWE key exchange in TLS,
the authors notably do not mention an error rate.

The error rate given by the instantiations given in this thesis may be significantly
decreased by utilizing an error correction approach where we correct errors based on
sets of coefficients, and not just one-by-one. For instance, Saarinen [Saa17] provides
some improvements over Peikert reconciliation, going from ≈ 2−60 error rate to
≤ 2−128 — which is a significant improvement. This could be possible for the group
key exchange protocols presented here.

Another approach to decrease the error rate is to use a larger modulus. As we,
in the implementation of AponGAKE and ChoiGAKE already use 64-bit integers
internally, this should be a relatively straight-forward procedure once suitable moduli
and accompanying parameter sets are determined. The increase in size of modulus
may be to the detriment of the protocol security for fewer users, as the signal-to-noise
ratio will necessarily be lower. As such, the most suitable solution may be to use our
parameter set for N ≤ 10, and another for N ∈ {10, . . . , 20}, having a parameter set
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for each range of participants, to better achieve successful error reconciliation while
keeping a reasonable noise level.

5.2.3 Key Sizes

To reiterate, the public and neighbourhood keys of our implementations fit into 5120
bytes — 1024 coefficients which are modulo a 35-bit number fits into 5 bytes totaling
5120 bytes for a polynomial. We provide a comparison to previous work in Table 5.5.
The comparison illustrates that our approach is, compared to other post-quantum
schemes, inefficient in terms of key sizes. The key size comes from using large fields in
order to accommodate the necessary signal-to-noise ratio and the required difference
between the standard deviations of the two error distributions for the security of the
protocols.

Cryptosystem Public key size (bytes)
X25519 [LMT16] 32
RSA-2048 [RSA78] 256
KYBER-512 [ABD+] 800
NH-512-CPA-KEM [AAB+] 928
This thesis 5 120

Table 5.5: Comparison between the key sizes of work here, and previous work, using
notable key exchange and key encapsulation mechanisms from both classical schemes
and post-quantum schemes.

Theoretically, it is possible to fit a number existing modulo a 35−bit integer into
36−bits of data. However, this does not align with the 8−bit sizes of bytes, meaning
there is no conventional support for this on a processor level. This adds significant
complexity, for a gain of 4 bits per coefficient, adding up to 512 bits for a public key.
This is not worth the added complexity due to us still requiring the same number of
network packets to transfer a public key regardless.

Key Compression

The compression of public keys sent over the network was considered in the process of
developing a real-world-like implementation; however, we found two good reasons not
to do so — Compression of public keys fundamentally alters the protocol, according
to NIST [AASA+, p. 7]. Furthermore, the potential gain in network performance
due to the potentially smaller public keys is offset by the actual compression and
decompression operations. Additionally, the public keys should be indistinguishable
from uniform over a large field; in other words holding much entropy, meaning
compression would be ineffective.
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5.2.4 Performance of GKE

We previously presented the performance of the group key exchange protocols in
Section 4.3.2. In Figure 4.1 we see a graph depicting the performance of AponGKE,
ChoiGKE and an ECDH-GKE. Our implementations seem to beat the ECDH-GKE
version when the number of participants grows to N = 9. This can partially be
explained by the exponential growth of the chosen ECDH, and an argument can
be made that we are not providing a fair comparison in that regard. However, we
would argue that comparing with the ECDH-based group key exchange where all
participants perform a key exchange with every other participant is a useful, if not
fair, comparison due to the widespread adoption of (a more complex version of) this
group key exchange in various practical applications such as the Signal app [Sig]
and Wire [Wir]. Due to the complexity of AponGKE and ChoiGKE being linear,
and the ECDH-GKE being quadratic, it is a given that for a certain number of
participant we would have to beat it. However, reaching the performance of the
“state-of-the-art” at N = 9 participants is pretty good, especially considering the
security goals. In a way, it may be seen as unfair comparing the other way around as
well, as ECDH is only safe in a world without practical quantum computers, but our
protocol instantiation of ChoiGKE and AponGKE have a theoretical (approximate)
105 bits of post-quantum security.

Overall, the performance of the GKE is acceptable, but could likely be improved
upon given the usage of the optimization techniques discussed above concerning
specific subroutines.

5.2.5 The Impact of Authentication

Comparing the performance of the group key exchange protocols with the authenti-
cated versions of Sections 4.3.2 and 4.4.4 shows how dominant the digital signature
schemes are in terms of processing requirements. Comparing Figures 4.1 and 4.3
shows that the ECDH-GAKE is close in terms of performance to its unauthenti-
cated version, while both the FALCON and qTESLA versions of AponGAKE and
ChoiGAKE are significantly affected by the signature schemes. In both the graphs
of Figures 4.3 and 4.4 the digital signature algorithms are the dominant performance
factor. In the case of qTESLA, it is also the dominating factor when sending net-
worked messages due to the size of the signatures and public keys, with the signature
of a message occupying close to two network packets alone.

In Figure 4.4 we have excluded the generation of the verification/signing key pairs,
which could be a plausible scenario where these keys are generated for long-term
usage and exchanges out-of-band. Still the subroutines fro¨m the digital signature
algorithm is dominating — using more than half the processor cycles on verification
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Figure 5.2: The top subroutines used in the AponGAKE when excluding key pair
generation. All subroutines shown except GAKE_APON‘modmul are from the OQS
implementation of FALCON. This further demonstrates how dominating the authen-
tication part is. All other subroutines use less than 1% of the processor cycles.

and signing, shown in Figure 5.2. The image is taken from the JetBrains CLion4

profiling tool, which uses perf5 during a profiling run of the FALCON version of
AponGAKE. We also note that there is a memory-time trade-off between qTESLA
and FALCON, with qTESLA using significantly more memory and less time in
generating key pairs, but with a worse run-time regarding the signing and verification
of messages than FALCON as seen when comparing Figures 4.3 and 4.4. It is also
apparent that FALCON uses a significant amount of time in the creation of key pairs,
with the signing and verification operations consuming a comparatively small portion
of the processor cycles.

It is possible that other digital signature algorithms are more suitable, and that
what the standardization process lands on would be more suitable. The intention
of the inclusion here is to provide the reader with a detailed implementation of an
authenticated group key exchange, and what digital signature algorithm is used is of
little consequence as it may easily be exchanged with another.

4A C/C++ IDE: https://www.jetbrains.com/clion/, using version 2020.1.1
5A Linux performance tool, see https://perf.wiki.kernel.org/index.php/Main_Page, using version

5.6.g7111951b8d49

https://www.jetbrains.com/clion/
https://perf.wiki.kernel.org/index.php/Main_Page
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5.2.6 On the Real-world Implementation

In Section 4.5, we provided a real-world-like implementation in the form of a group
messaging application, which is one of many applications in which a group key
exchange would be useful.

The dominating factor in setting up a key exchange using either AponGAKE or
ChoiGAKE is the time required to synchronize all the participants. As no one can
calculate their neighbourhood-keys before getting their neighbours’ public keys, and
no one can calculate the shared secret before receiving all neighbourhood-keys, the
protocol execution has to happen in a synchronized fashion. The other major factor
is the network delay, which is on the order of tens of milliseconds. For the processor
used in the tests, 10ms corresponds to 42 003 287 cycles, which is on the order
of what the entire group key exchange uses of processing cycles. The networked
messages have to be sent several times as well, and is divided into several packets
due to the message sizes being above the maximal transfer unit of Ethernet further
compounding the network delay. This seems to be a trade-off one would have to make
in order to ensure post-quantum safety for many protocols, as none seem to beat the
current quantum-insecure paradigm when it comes to key sizes and computational
performance.

5.2.7 Potential Trade-offs for Group Key Exchange

Using either AponGAKE, ChoiGAKE, or any other similar protocol in the future
will yield a significant benefit over the current paradigm — post-quantum security.
The inherent performance issues notwithstanding, in the process, we may make other
desired properties of our group key exchange protocols unobtainable, or obtainable
only at a high cost. Such properties that at least AponGAKE and ChoiGAKE do
not provide, but are provided for by certain currently used protocols are deniability
and post-compromise security. Furthermore, a major disadvantage of these group
key exchange protocols is that all participants need to share keying material in a
synchronous fashion, which is not how, for example, current messaging applications
work. Synchronous group key exchange can be suitable for certain applications such as
video conferencing, but is certainly more limited in its usefulness than non-interactive
group key exchange protocols would be.

As a result of the problem with interactivity, it is possible that future post-quantum
group key exchange could be performed using NIST-standardized KEMs coupled
with digital signature algorithms or other techniques to achieve desired cryptographic
properties. However, if such an approach does not achieve a linear growth in
computational complexity and a constant number of rounds, this will not be more
efficient than AponGKE and ChoiGKE for larger numbers of participants.
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5.3 Constant-time RLWE Cryptography

We previously defined constant-time cryptography in Section 2.2.3, which protects
against timing-related side-channel attacks, which we introduced in Section 2.2.3.
Constant-time cryptographic operations are important, as the volatility in the time
required to perform these may leak secret data [YGH17] [Sch19]. Implementing
constant-time cryptography is a difficult process, further complicated by RLWE
cryptography being a young area of research. In this section, we will explain our
efforts to make our implementation as constant-time as possible within our research
scope.

1 uint64_t t e s t = ( uint64_t ) b−>c o e f f i c i e n t s [ i ] << ( uint64_t ) 1 ;
2

3 i f ( rec−>c o e f f i c i e n t s [ i ] == 0) {
4 i f ( t e s t >= 34132525058 && t e s t <= 79642558468) {
5 key−>c o e f f i c i e n t s [ i ] = 1 ;
6 }
7 } e l s e {
8 i f ( t e s t >= 11377508352 && t e s t <= 56887541762) {
9 key−>c o e f f i c i e n t s [ i ] = 1 ;

10 }
11 }

Listing 5.5: This code is part of the Peikert reconciliation protocol — recKey(),
implemented the naive, non-constant-time way.

1 uint64_t t e s t = ( uint64_t ) b−>c o e f f i c i e n t s [ i ] << ( uint64_t ) 1 ;
2 uint64_t t1 = ( ct_eq_u64 ( rec−>c o e f f i c i e n t s [ i ] , 0) & ct_ge_u64 ( t e s t ,

34132525058) & ct_le_u64 ( t e s t , 79642558468) ) ;
3

4 uint64_t t2 = ( ct_eq_u64 ( rec−>c o e f f i c i e n t s [ i ] , 1) & ct_ge_u64 ( t e s t ,
11377508352) & ct_le_u64 ( t e s t , 56887541762) ) ;

5

6 key−>c o e f f i c i e n t [ i ] = 0 ;
7 key−>c o e f f i c i e n t [ i ] |= t1 ;
8 key−>c o e f f i c i e n t [ i ] |= t2 ;

Listing 5.6: Here we provide a constant-time version of the inner loop of the recKey()-
subroutine, borrowing certain helper-functions from BCNS [BCNS15].

In our implementations we have attempted to remove any conditional branching
and table lookups dependent on secret data. For instance, making the RecKey()-
function, which inner loop is shown in Listing 5.5, constant-time includes removing
all the branching statements, replacing them with functions that do this in constant
time. The constant-time version is depicted in Listing 5.6, borrowing from the BCNS
implementation6 the constant-time comparison functions — for instance ct_eq_u64()
checks in constant time whether two unsigned 64-bit integers are equal.

6Available at https://github.com/dstebila/rlwekex/blob/master/rlwe.c, commit 1fbbd8c

https://github.com/dstebila/rlwekex/blob/master/rlwe.c
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Much of the cryptographic core functions of AponGKE and ChoiGKE are polynomial
addition, subtraction, and convolution. Addition and subtraction are constant-time by
themselves. The subroutines barrett_64() and barrett_128() — which reduces a
64-bit integer or a 128-bit integer modulo q respectively — only performs operations
which are constant-time, at least on our target instruction set architecture, the
Intel x86. We believe that our NTT-implementation, and thus also the polynomial
convolution, is constant-time as well. However, we have not taken advantage of more
advanced techniques such as blinded polynomial multiplication [Saa16], which we
believe is the way to go when implementing real-world polynomial convolution.

Figure 4.1 shows the CPU cycles used for a variable number of participants of both
protocols. Furthermore, it plots the standard deviation of the samples as bars above
and below, with a marker in the middle indicating the sample mean. We believe
that the small standard deviation is an indicator of the implementation being close
to constant-time. However, we remark that it cannot be constant-time due to the
sampler, and possibly other unknown (to us) causes.

Finally, as noted previously, the error sampling library, DGS [AW18] is not constant-
time. Previously in this chapter, we noted that an efficient implementation of
AponGKE and ChoiGKE would require a specialized sampler. This specialized
sampler should also be constant-time, which would solve this problem as well.



Chapter6Conclusion

This chapter provides a conclusion on the work presented in the previous chapters,
and suggests some future work that were out of scope for this thesis.

6.1 Research Objectives

In Section 1.3 we set the following research objective: Design a real world implemen-
tation for group key exchange based on the Ring Learning-With-Errors problem. We
will briefly summarize the outcomes of the secondary research objectives.

– RO1: What proposed protocols are suitable candidates for post-quantum group
key exchange based on the RLWE problem?
AponGAKE and ChoiGAKE are interesting candidates that could be used
for post-quantum group key exchange. The discussion in Chapter 5 indicates
that the performance is decent compared with RLWE-based schemes for two-
party key exchange — especially when considering the different use cases. A
disadvantage of these is the interactivity requirement, and the lack of auxiliary
properties, which are widely used in today’s protocols for group key exchange.

– RO2: Instantiate a protocol for group key exchange based on the RLWE problem
with adequate security supporting a reasonable number of participants.
An instantiation is provided in Chapter 3, which supports multiple participants,
though the error rate is non-negligible when the number of users is above 10
for our proposed parameter set. A reduction in error rate could be achieved
through specialized parameter sets for larger numbers of users.

– RO3: Is this protocol instantiation usable in terms of delay, processing require-
ments and quality of experience?
The protocol is usable on the platforms tested in this work, primarily x86
workstations and servers. For constrained networks and devices, it may not
be ideal, but an increase in computation time and key sizes is to be expected

71
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for post-quantum primitives, including those discussed in this thesis. At the
moment, there exists no better performing post-quantum group key exchange
implementation based on RLWE.

– RO4: What, if any, trade-offs must be made in order to achieve post-quantum
security in a group setting?
Given the proposed protocols for group key exchange based on RLWE, we
seem to require interactivity in the key exchange, which makes deniability and
backward security difficult. Furthermore, some performance overhead, which is
to be expected, is induced. We discussed all of these trade-offs in Section 5.2.7.

– RO5: How can we implement performant RLWE cryptosystems?
Implementing performant RLWE-based cryptosystem is an open-ended field
of research. This thesis outlines some techniques, such as using NTT and
techniques for modular reduction. For a thorough discussion, see Chapter 5.

– RO6: How can we secure real-world implementations of RLWE cryptography
from side-channel attacks?
Removing branching instructions and secret-based table lookups removes most
of the attack surfaces when it comes to side-channel attacks. However, the
techniques used in this thesis, which we discussed in Section 5.3, are not
complete, and much remains to be understood in making constant-time efficient
implementations.

In conclusion, we have provided an instantiation and implementation of two post-
quantum group key exchange protocols, along with a real-world prototype, completing
our primary research goal successfully. In the process, we have been able to answer all
of the research objectives and questions posed; however, there remains a considerable
amount of potential regarding future work.

6.2 Future work

In this thesis, we have touched upon a multitude of interesting topics that might be
desirable to know more about. We will name a selection of these here.

The most interesting future work, in our opinion, is in finding methods to perform
post-quantum non-interactive group key exchange, which to our knowledge, does not
yet exist in a practical manner.

Furthermore, practical implementations of common RLWE mathematics such as
the NTT using instruction set level optimizations for larger integers, like the x86
AVX-512, could be useful in speeding up RLWE even more. For embedded devices,
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increasing the performance probably requires different approaches, which could also
be an avenue for new research.

In the process of working with this thesis, we had considerable issues in finding
acceptable discrete Gaussian samplers in terms of performance and closeness to a
real Gaussian. Should there be a single performant sampler capable of sampling
both small and large errors, or should we use two specialized samplers, one for each?
Perhaps using a centered binomial is the way to go, but what constraints must be
taken into consideration, especially for distributions as large as the ones defined by
σ2 in Chapter 3? Further research into Gaussian — or near-Gaussian — sampling
could considerably increase the performance of many protocols.
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AppendixACompiler options

We use CMake to generate the Makefiles for our projects, using the below file as
CMakeLists.txt. A release-candidate is generated by running the following commands:

1 mkdir bu i ld && cd bu i ld
2 cmake . . −DCMAKE_BUILD_TYPE=Release
3 make

All the accompanying code used in this thesis may be found at https://github.com/
simenbkr/rlwe-gke, commit 1795995.

1

2 cmake_minimum_required (VERSION 3 .15 )
3 p ro j e c t (<projectname> C)
4

5 s e t (CMAKE_C_STANDARD 99)
6

7 i f (NOT CMAKE_BUILD_TYPE)
8 s e t (CMAKE_BUILD_TYPE Release )
9 end i f ( )

10

11 s e t (CMAKE_C_FLAGS_RELEASE " ${CMAKE_C_FLAGS_RELEASE} −Wall −Wextra −O3 −
fomit−frame−po in t e r −msse2avx −march=core i 7−avx −s " )

12

13 add_executable(<projectname> main . c <other f i l e s >)
14 t a r g e t_ l i n k_ l i b r a r i e s (<projectname> −s t a t i c dgs oqs mpfr gmp m pthread )

Listing A.1: CMakeLists.txt for the compilation of the project binaries used to collect
data. Similar makefiles were used for the other versions as well.
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AppendixBRaw data

This data is presented as a graph in Chapter 4. The underlying measurements stem
from the code published at https://github.com/simenbkr/rlwe-gke, using commit id
1795995. The raw data can be found in the subfolders of create_charts.

B.1 GAKE

B.1.1 ECDHGAKE

Participants Mean CPU cycles Standard deviation
3 8093472 1498506
4 14135599 682511
5 22836023 1682192
6 33648522 2780582
7 47668281 5837126
8 61881527 6385294
9 79643507 8746228
10 99178334 11269130
11 118717372 11682242
12 139865464 7194238
13 166818467 15236827
14 192118335 16539704
15 222760510 19979406
16 254992546 27853728
17 282003072 13733843
18 318596813 16721442
19 352190055 18359774
20 396270971 27978079
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84 B. RAW DATA

B.1.2 FALCON-AponGAKE

Participants Mean CPU cycles Standard deviation
3 321034266 38548090
4 423477523 45967385
5 517012130 45689436
6 621370685 51222242
7 730904006 59255768
8 856203031 74601518
9 944236732 69937583
10 1045762534 66782451
11 1154995350 69750982
12 1265623825 71680137
13 1403294315 96639183
14 1545537127 95142660
15 1635672180 91143605
16 1759372995 96584029
17 1858122813 95820400
18 1999984000 110338144
19 2110416504 97412756
20 2229646565 106198871



B.1. GAKE 85

B.1.3 FALCON-ChoiGAKE

Participants Mean CPU cycles Standard deviation
3 340440508 38154217
4 448948478 45203272
5 551329491 46467151
6 663535366 54180245
7 777407858 59374787
8 905872236 76168189
9 996904974 66284594
10 1106181726 64780849
11 1220845950 67632512
12 1342046155 80230937
13 1499395734 92085817
14 1611283586 92493401
15 1728852828 88045003
16 1851523927 100494440
17 1967441882 109124736
18 2128124214 111988875
19 2227091481 103278750
20 2361726592 114336407



86 B. RAW DATA

B.1.4 qTESLA-AponGAKE

Participants Mean CPU cycles Standard deviation
3 68185547 9281054
4 96201622 9671047
5 134274460 17454657
6 175559779 20728496
7 217841687 23300843
8 267584282 23508685
9 321666072 25278488
10 386083166 34678084
11 462504473 53517241
12 532960479 60328421
13 640988508 89707934
14 708705445 87539906
15 803019275 106768070
16 914094954 127233897
17 989413076 124468008
18 1054576419 109909841
19 1126641072 72198178
20 1252961186 79348041



B.1. GAKE 87

B.1.5 qTESLA-ChoiGAKE

Participants Mean CPU cycles Standard deviation
3 65760924 7682345
4 96565902 11981431
5 129041170 13243488
6 171712430 18854481
7 219032410 25922297
8 259772282 16612510
9 322968718 31696826
10 383961352 36025736
11 454894405 57823304
12 531587672 68668141
13 631681231 94867159
14 709673468 85293744
15 798495205 110951967
16 905372576 115785491
17 992825943 125051343
18 1048375458 111726830
19 1117042311 76310603
20 1248092698 82887734



88 B. RAW DATA

B.2 GAKE without keygen

B.2.1 ECDHGAKE

Participants Mean CPU cycles Standard deviation
3 8093472 1498506
4 14135599 682511
5 22836023 1682192
6 33648522 2780582
7 47668281 5837126
8 61881527 6385294
9 79643507 8746228
10 99178334 11269130
11 118717372 11682242
12 139865464 7194238
13 166818467 15236827
14 192118335 16539704
15 222760510 19979406
16 254992546 27853728
17 282003072 13733843
18 318596813 16721442
19 352190055 18359774
20 396270971 27978079
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B.2.2 FALCON-AponGAKE

Participants Mean CPU cycles Standard deviation
3 143339171 8216654
4 186838744 12359066
5 231786161 11145337
6 276386079 11031563
7 322390574 10298195
8 370556526 13089670
9 419025731 20827660
10 473732265 16316756
11 523260826 13858485
12 579629755 36417906
13 614624116 32844640
14 688762066 21609540
15 752041563 24199271
16 798576606 24815887
17 857755031 28492796
18 917936912 32493345
19 979328270 28528355
20 1046790581 41129200



90 B. RAW DATA

B.2.3 FALCON-ChoiGAKE

Participants Mean CPU cycles Standard deviation
3 142578068 8190200
4 184496132 10771402
5 231157464 12976642
6 273678840 9713205
7 318899892 9692351
8 366670609 10866243
9 413872715 20615615
10 468633594 16350840
11 517936198 13898550
12 570869396 25442262
13 606534978 10235305
14 677151088 19681977
15 741578873 27143423
16 788947326 27646676
17 843036382 25299825
18 903686135 31903366
19 962253517 25995367
20 1027236901 32673723



B.2. GAKE WITHOUT KEYGEN 91

B.2.4 qTESLA-AponGAKE

Participants Mean CPU cycles Standard deviation
3 55736190 7820992
4 80937887 8862372
5 111504090 10239622
6 148308084 13957007
7 190868060 20293890
8 234668863 20895762
9 283235415 20866283
10 342288624 30099683
11 395903144 26307475
12 456609537 23465528
13 535199756 37141832
14 619625059 54850921
15 701591686 49518292
16 806959650 85742196
17 933077455 117716834
18 1025270308 120653521
19 1161871286 155335552
20 1237835766 140255629



92 B. RAW DATA

B.2.5 qTESLA-ChoiGAKE

Participants Mean CPU cycles Standard deviation
3 56598536 8859394
4 84147529 14159968
5 109631300 10402715
6 144696175 11773214
7 189031556 20586055
8 230750438 21945803
9 278766475 19511671
10 339543441 31027041
11 396170015 28356629
12 451681094 20805308
13 528274397 37372856
14 613166107 47539721
15 694753471 53156239
16 801473909 86208020
17 918257328 111059152
18 1017920580 122781363
19 1143992930 140246135
20 1240085579 150435292
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