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Abstract

New vulnerabilities and attack vectors are discovered every day. Cyber attacks
can critically impact and cripple businesses that are targeted. Many of these cyber
threats focus on penetrating the network of a business to steal valuable informa-
tion, hold data as ransom or permanently destroy the business network. The cost
of a cyber attack can be high, and is not only measured in lost data or equipment,
but also the business reputation and client-base. This is why it is important to
identify such attacks as soon as possible.

The most common way to do network security monitoring, is to use solutions
that detect, alert and possibly prevent security incidents from occurring by mon-
itoring the network traffic that flows to and from the computers in the business
network, and out to the internet. But as businesses are moving to become more
and more digital, and the workforce is getting accustomed to working from any-
where, be it from home, from the coffee shop or even from the beach, the business
network-perimeter is slowly being eroded away.

The industry solution to this has been to shift focus away from network-based
monitoring and detection, and shift the focus towards the endpoints in the net-
work. Centralizing and analysing log data from multiple endpoints has become
more and more commonplace in enterprises. Even though new technology has
made it easier to collect and store huge amounts of events, the problem still per-
sist on how to analyze and alert on those events in real time. There exist different
solutions for correlating event logs, but we believe that the specialized software
can be further enhanced to improve the performance of real time event correla-
tion. In this thesis we propose an improved method for correlating Windows event
logs in near real-time.
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Sammendrag

Nye sårbarheter og angrepsvektor blir funnet hver dag. Cyberangrep kan kritisk
skade og påvirke bedrifter som blir angrepet. Mange av disse truslene fokuserer
på å penetrere nettverket til bedriften for å stjele verdifull informasjon, holde
data som gissel eller permanent ødelegge bedriftsnettverket. Kostnaden av et cy-
berangrep kan være høy, og er ikke bare målt i tapt data eller utstyr, men også
bedriftens omdømme og kunder. Dette er grunnen til at det er viktig å identifisere
slike angrep så raskt som mulig.

Den mest vanlige måten å bedrive sikkerhetsmonitorering av et nettverk, er
ved å bruke løsninger som detekterer, alarmerer og muligens forhindrer sikker-
hetshendelser fra å inntreffe ved å overvåke nettverkstrafikken som flyter mellom
maskinene i bedriftsnettverket, og ut på internett. Men når bedrifter stadig blir
mer og mer digitale, og arbeidsstyrken blir mer vandt til å jobbe fra hvor som helst,
enten det er fra hjemme, fra kaffesjappa eller fra stranden, så eroderes bedriftens
nettverksperimeter sakte men sikkert bort.

Industriens løsning på dette problemet har vært å skifte fokus vekk fra nettverks-
basert overvåkning og deteksjon, og skifte fokus mot endepunktene i nettverket.
Sentralisering og analysering av loggdata fra flere endepunkt har blitt mer og mer
vanlig i større bedrfiter. Selv om ny teknologi har gjort det enklere å samle og lagre
store mengder med eventer, så er det fremdeles et problem hvordan man skal ana-
lysere og alarmere på de eventene i sanntid. Det finnes forskjellige løsninger for
å korrelere event logger, men vi mener at den type spesialisert programvare kan
bli ytterligere forbedret for å øke ytelsen ved sanntidskorrelering av event logger.
I denne oppgaven presenterer vi en forbedret metode for å korrelere Windows
event logger i nær sanntid.
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Chapter 1

Introduction

New vulnerabilities and attack vectors are discovered every day, and there is an
increase in the development of new malware as shown in The AV-TEST Security
Report 2018/2019 by AV-TEST [1]. The report M-Trends 2020 by FireEye Mandi-
ant Services [2] underlines the fact cyber attacks can critically impact and cripple
businesses that are targeted. Many of these cyber threats focus on penetrating the
network of a business to steal valuable information, hold data as ransom or per-
manently destroy the business network. The cost of a cyber attack can be high,
and is not only measured in lost data or equipment, but also the business reputa-
tion and client-base. This is why it is important to identify such attacks as soon as
possible.
Traditionally, Network Security Monitoring (NSM) has been essential to avert
these cyber threats and attacks. NSM is the collection, analysis, and escalation
of indications and warnings to detect and respond to intrusions in the network.
The goal is to detect and respond to threats as early as possible to prevent unau-
thorized access, misuse, destruction or data theft.
The most common way to do network security monitoring, is to use solutions
known as Intrusion Detection System (IDS) or Intrusion Prevention System (IPS)
as described by Liu et al. [3]. These systems are used to detect, alert and possibly
prevent security incidents from occurring by monitoring the network traffic that
flows to and from the computers in the business network, and out to the internet.
The main benefits of using these network-based solutions, is that there is no need
to alter the existing infrastructure or install any software on the hosts in the net-
work. The solutions monitor everything on the network segment they are placed
in, regardless of the operating systems (OS) running on the hosts. An additional
factor has been the fact that these solutions have a lower cost of setup and main-
tenance than host-based solutions that require installing or configuring software
on the hosts themselves.
But as businesses are moving to become more and more digital, and the workforce
is getting accustomed to working from anywhere, be it from home, from the cof-
fee shop or even from the beach, the business network-perimeter is slowly being
eroded away. As of writing this, the COVID-19 virus is spreading across the globe,
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and employees all around the world are forced to stay at home to reduce the risk
of spreading the disease. This global pandemic is forcing those businesses who
have not already adapted to a remote workforce, to introduce work-from-home
quickly as described by Kramer and Kramer [4]. In addition to the work-from-
home factor, we are also seeing a rise in encrypted traffic, both between hosts,
but also out to the wider internet. Privacy-enhancing technologies like DNS-over-
TLS/DNS-over-HTTPS, free TLS certificates and browsers marking unencrypted
websites as "unsafe" are pushing the bar on moving to a fully-encrypted inter-
net. Unless the business chooses to utilize TLS interception to "see" the encrypted
traffic inline using their traditional network security monitoring solutions, they
are increasingly becoming blind to the threats that might hide behind encrypted
communications. There is also no visibility into what is actually happening on the
hosts in the network, unless there is data transmitted across the network that can
be analyzed. All of these factors contribute to a reduced value in network-based
security monitoring.
The industry solution to this has been to shift focus away from network-based
monitoring and detection, and shift the focus towards the endpoints in the net-
work as said by Liu et al. [3]. The different solutions for endpoint protection have
historically been hard to install, configure and maintain on the individual hosts in
a business, and the alerts produced by the anti-virus or host monitoring software
has to be transmitted and stored in a central location, as discussed in the work
done by Brattstrom and Morreale [5]. In addition, performance degradation on
the hosts caused by the resource-intensive software required for detection, pre-
vention and transmitting alerts has been of concern.
First of all we have Host-based Intrusion Detection System (HIDS) which mon-
itor the dynamic state of the host, and alerts on system changes that are out-of-
place. This is usually based on a database containing the cryptographic hash of
known-good files. The HIDS then monitor the files for any changes, and report
any changes to a central location.
Then we have the common anti-virus/anti-malware/endpoint protection software.
These software solutions usually contain a range of different detection and pre-
vention methods, and usually incorporates a variety of signature-based, heuristic-
based, data mining and machine learning detection. Commercial-grade Anti-Virus
(AV) usually reports their findings to a central location for analysis. For anti-virus
to protect its integrity and detect malice it has to run with high privileges on
the host. Any vulnerabilities in the AV engine can then have fatal consequences
allowing for instance privilege escalation on the host. There has been concerns
regarding system instability caused by bugs in the AV engine or slow network
connections caused by the AV doing network inspection. These faults are usually
patched or corrected quickly by the vendor, but might still be of concern to the
system administrators.
Lastly, we have event forwarding, which is software that sends the events gener-
ated by the OS to a central location for detection, analysis and forensic purposes.
Storing all the logs, not just alerts like anti-virus and HIDS might do, in a central
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location has the added benefit of being able to be searched in after-the-fact. This
makes event forwarding very valuable for forensic purposes and for developing
new detections based on historical data. Event forwarding requires knowledge of
what logs to forward and what to filter out. The number of events that are gen-
erated per second can vary, and being able to estimate the amount of logs are
important so that the central log collection can be scaled appropriately to accom-
modate the volume of logs that are being ingested and stored. In recent years,
the technology both for configuring and maintaining software on the hosts and
systems for ingesting host data to a central location has done great leaps. Vendors
of security products have made their software simpler to configure, usually via a
cloud-based console. Storage is in general cheaper, and Security Information and
Event Management (SIEM) software has made it simpler to monitor and analyze
large volumes of event and log data.

1.1 Problem description

Even though new technology has made it easier to collect and store huge amounts
of events, the problem still persist on how to analyze and alert on those events
in real time when collected centrally. A problem that occurs when companies are
collecting more and more logs, is that actively hunting and alerting on badness in
those logs are becoming harder and more complex as told by Fatemi and Ghorbani
[6]. A single log item from a single source is not enough to properly analyze
what has happened in a system. Only by cross-correlating several log lines and log
sources are we able fully understand the situation at hand and create detection
that are of high quality.
While modern SIEM software like Splunk [7], QRadar [8] and RSA NetWitness
[9] support searching, analyzing and alerting in various degrees, quality SIEMs
are usually heavyweight, expensive, licensed by how many gigabytes are ingested
per day. The alert rules can be hard to create, manage and share between analysts,
and probably the most significant factor is that the alerts are only generated after
the log data has been indexed. This adds unnecessary latency when we optimally
want near real-time alerting. Traditionally in a SIEM, logs are analyzed after-the-
fact by an analyst. This is a major drawback, as this type of security monitoring is
reactive and error-prone, and problems are only detected in hindsight as explained
by Landauer et al. [10].
When considering free or open-source solutions like OSSIM [11], OSSEC [12] and
SEC [13] to correlate event logs in real-time, they are often lacking in terms of
performance and ease-of-use. In addition, when considering distributed company
environments, the hosts are not always able to send their event logs at the same
time. There will be delays based on the geographical location of the host, network
latency or network connectivity issues. Events may be ingested in the "wrong"
(non-sequential) order, or asynchronous with other hosts.
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1.2 Justification, motivation and benefits

Today, event log correlation is usually done centrally using built-in functional-
ity in a SIEM, or using specialized software that processes and correlates events
before they are ingested into a central storage system. As the volume of ingested
events increase, there is a big demand for solutions that are able to correlate large
amounts of event log in near real time, while also addressing correlation-problems
with regard to data latency, asynchronous events and time drift.
Each host generate a huge amount of events that can be available to us for ana-
lysis and correlation, and can give deep insight into what is happening on each
system. While we have this goldmine of host event data, we can not simply apply
signature-based alerting like we commonly see in anti-virus products. The reason
for this is that it is much harder to tell if a single event contains malice. A event
might for example contain the information that a specific user deleted a file. This
could be malicious, or it could be benign. The context around that event decides
if it is malicious activity or not. That level of context-awareness is impossible to
get with regular signatures, and is why event correlation can be so powerful, but
tricky. Another benefit of centrally analyzing event data from multiple hosts is the
cross-host correlation that can be done. It makes it possible to create correlations
that identify host-to-host interactions, lateral movement and attacker behaviour
across the whole network, which previously only was possible with network-based
monitoring. In the Microsoft Windows operating systems, those logs are known
as Windows Event Logs.
Modern approaches in cyber security shift from a purely forensic to a proactive
analysis of event logs as told by He et al. [14]. We believe that the specialized
software can be further enhanced to improve the performance of real time event
correlation. In this thesis we contribute an improved method for correlating Win-
dows Event logs in near real-time, while at the same time taking care to address
the problems with might occur with log ingestion delays and asynchronous events.

1.3 Research questions

To address the problems outlined in 1.1, the following research questions have
been developed:

Hypothesis: We believe that we are able to improve upon current research and
methods for real time event correlation, by utilizing a compiled, multi-threaded
programming language and better rule formats.

Research questions:

1. What is the state of the art for real time event correlation?
2. How can we improve the way real time event correlation is done for Win-

dows Event Logs?
3. What is the performance of our proposed method, and how does it compare

to other methods?
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1.4 Planned contributions

The primary contribution of this project is an improved method for correlating
Windows Event Logs in time, in near real time. The goal of this thesis is to ex-
plore ways to improve real time log correlation both performance-wise but also
addressing the problems that occur when analyzing asynchronous events or when
experiencing log ingestion delays.

1.5 Thesis outline

This section presents an overview of the thesis and a short summary of each
chapter.

Chapter 2: Background
First of all we give a give an introduction to event logs, Windows Event logs and
System Monitor (Sysmon). We will take a look at the field of event correlation,
and highlight some of the relevant techniques for correlating events. We then dis-
cuss Simple Event Correlator (SEC), and various types of rules that can be used
with rule-based event correlation.

Chapter 3: Methodology
In this chapter we outline the methodology and steps we will take to address our
research questions. First we look at how we can improve how real time event cor-
relation is done, and afterwards we discuss how we can measure the performance
of our solution.

Chapter 4: Experiments
Here we introduce our improved implementation. We outline the software and
hardware specifications used, the dataset collection and required preprocessing is
presented, and we introduce our solution in two steps.

Chapter 5: Results
In this chapter we present the results from our experiments, both looking at the
datasets used, and measuring the performance of our implementations.

Chapter 6: Discussion
Here we discuss our findings in more detail, looking at the bigger picture. We also
outline any future work.

Chapter 7: Conclusion
Finally we conclude by tying all ends together in a final summary of our thesis.





Chapter 2

Background

In this chapter we will give an introduction to event logs, and further elaborate on
Windows Event logs and System Monitor (Sysmon). Then we will take a dive into
the field of event correlation, and highlight some of the relevant techniques for
correlating events, answering our first research question of what the state of the
art for real time event correlation is. Furthermore we will take a look at Simple
Event Correlator (SEC), as that is the rule-based event correlator that we will focus
on in this thesis. Finally we will take a look at various types of rules that can be
used with rule-based event correlation.

2.1 Event logs

In general terms, a event is something that happened at a point in time. It could
be anything, like a bank transaction, a user logging in to a system, the fire alarm
being pulled, that your food delivery has arrived, and so forth. In regards to com-
puters, events are something that happens on the individual computer systems.
There can be events for a broad range of use cases like events related to system
components, such as drivers and built-in interface elements, events related to pro-
grams installed on the system or events related to security, such as logon attempts
and resource access.
The original reason why these logs are kept is such that system administrators
can use them to debug software or configuration issues. In recent years, security
professionals have started reviewing and using these logs as a mean to analyze
and detect what has happened on a system. The event logs can give the people
doing digital forensics valuable insight into a machine compromise, or help detect
malicious activity as it is happening. Historically, the event logs has purely been
used as a reactive log source, and only with recent shifts has been getting more
focus as explained by He et al. [14].
The amount of events that are logged on a machine varies greatly depending
on how it is configured and what the software installed on the system choose
to log. Depending on the system, event logs might have to be manually enabled
or configured to provide the valuable insight into the events of the system. In

7
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addition, there is no standardized way that logs are created. While there exist
various attempts at creating a standard like Common Event Format (CEF)[15],
Log Event Extended Format (LEEF)[16], Common Information Model (CIM)[17]
and Intrusion Detection Message Exchange Format (IDMEF)[18], none of them
have caught on. As outlined by He et al. [19] in the paper ‘Towards Automated Log
Parsing for Large-Scale Log Data Analysis’, logs are generally unstructured, and
analysing the logs relies on labor-intensive and error-prone manual inspection.
Automated log analysis and log mining has been discussed in various ways before
(Xu et al. [20], Fu et al. [21], He et al. [22], Beschastnikh et al. [23], Shang et al.
[24], Yuan et al. [25], Nagaraj et al. [26], Oprea et al. [27], and Gu et al. [28])
and will not be further covered here. Our focus for this thesis will be on Windows
Event logs, and we will elaborate on that in Section 2.1.1. Support for other log
formats is considered future work.

2.1.1 Windows Event Logs

Windows Event Log is a built-in capability of the Microsoft Windows operating
systems.
According to Ultimate Windows Security [29], there are more than 400 different
types of events that can be logged. Some of these event types have to explicitly be
enabled, and some are enabled by default. As an example, if we want Windows
to log events for when a network share object was accessed/added/modified/de-
leted, we have to enable that using Group Policy Object (GPO). The path for doing
so can be found using the Group Policy Management Console and by navigating to
"Computer Configuration -> Policies ->Windows Settings -> Security Settings ->
Advanced Audit Policy Configuration -> Audit Policies -> Object Access -> Audit
File Share" as seen in Figure 2.1.
Since the events are so verbose and plentiful, they can also overlap quite a lot.
For instance when a new account is created, the event "4720: A user account was
created" is created, as well as the events "4722: A user account was enabled.",
"4724: An attempt was made to reset an account’s password" and "4738: A user
account was changed". This is shown in Figure 2.2.
In enterprise networks that utilize Active Directory for managing multiple hosts,
these type of GPO settings can be configured centrally and applied to relevant ma-
chines. The above-mentioned file share events would for instance be interesting
to enable for file servers, but not for other servers or client machines. If the enter-
prise uses some sort of central log collection, it is therefore necessary to configure
and tune which events are saved, as that will affect how many events are sent
over the wire and stored centrally.
When it comes to forwarding events and storing them, Windows Event logs are not
stored in plain text on the system, but in a proprietary binary format as explained
by Schuster [30]. To access the events programmatically, one have to go through
the Windows Event Log Application Programming Interface (API)[31]. From the
API it is possible to access the raw XML of the events. It is also possible to view
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Figure 2.1: Screenshot of Local Group Policy Editor enabling file share auditing

Figure 2.2: Screenshot of events related to user creation
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the events in the built-in Event Viewer as seen in Figure 2.3. This is a program
that allows for searching, filtering and viewing events. Each event contains a lot
of information, and it is possible to view more details about each event as seen in
Figure 2.4.

Figure 2.3: Screenshot of Event Viewer

In enterprises, Windows Event Logs are usually sent to a centralized location for
storage and analysis, either using the built-in option called Windows Event For-
warding[32] or using custom agents like Splunk Universal Forwarder[33], Win-
logbeat [34] or NXLog [35] to name a few.

Sysmon

System Monitor (Sysmon)[36] is an extension to the stock Windows Event Logs
that allows for a more powerful customization of what events go into the event log.
Using a kernel driver, Sysmon is able to add support for a wider variety of inter-
esting events. The table 2.1 is a list of each event type that Sysmon can generate.
Sysmon events do not replace those of regular Windows events, but creates events
that contain detailed information about process creations, network connections,
and changes to file creation time which can be used to help identify malicious or
anomalous activity and understand how intruders and malware operate on your
network.
For our experiments in this thesis, we will focus our attention towards the Sys-
mon process creation event (event ID 1). This event contains all the information
necessary to detect which processes ran on a system, what its parent process was,
what the command line arguments passed to the process was, and so forth.
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Figure 2.4: Screenshot of Event Properties
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ID Description
1 Process creation
2 A process changed a file creation time
3 Network connection
4 Sysmon service state changed
5 Process terminated
6 Driver loaded
7 Image loaded
8 CreateRemoteThread
9 RawAccessRead
10 ProcessAccess
11 FileCreate
12 RegistryEvent (Object create and delete)
13 RegistryEvent (Value Set)
14 RegistryEvent (Key and Value Rename)
15 FileCreateStreamHash
17 PipeEvent (Pipe Created)
18 PipeEvent (Pipe Connected)
19 WmiEvent (WmiEventFilter activity detected)
20 WmiEvent (WmiEventConsumer activity detected)
21 WmiEvent (WmiEventConsumerToFilter activity detected)
22 DNSEvent (DNS query)
255 Error

Table 2.1: List of Sysmon event types
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2.2 Event correlation

As stated in Section 2.1, a event is something that happens at a point in time.
Event correlation is a statistical relationship between random events that are not
necessarily expressed by a rigorous functional relationship as stated by Prokhorov
[37]. This means that the relationship between two events is based on the fact
that the conditional probability of one of the events occurring, given the occur-
rence of another event, is different from the unconditional probability. There exists
numerous ways to determine the dependency between two events, like Pearson
coefficient according to Kent State University [38], Spearman’s rank correlation
coefficient as illustrated by Prokhorov [39], Kendall rank correlation coefficient
as described in Prokhorov [40], Goodman and Kruskal’s gamma by Goodman and
Kruskal [41] just to name a few.
Event correlation is usually applied when we want to create a higher level of un-
derstanding, based on the information found in the events. By correlating events,
we can gather up smaller events that in and of them self are not worthy an alarm,
and create an over-arching alarm that encompasses the smaller events. Event cor-
relation can be used for a wide range of cases, like root-cause analysis, fault detec-
tion and future prediction and its usage can be found in areas such as market and
stock trends, fraud detection, system log analysis, network management and fault
analysis, medical diagnosis and treatment, et cetera. In the information security
sphere, correlation can be used for things like detecting patterns of Distributed
Denial-of-Service (DDoS) attacks as shown by Wei et al. [42] and identifying sub-
sets of data attributes for intrusion detection as outlined by Jiang and Cybenko
[43] and for detection of attacks based on the relationships between network
events as shown in Kruegel et al. [44].
Event correlation is a broad topic, and a complete overview is outside the scope of
this thesis. The following sections will highlight some of the more popular event
correlation methods, and particularly rule-based event correlation which will be
the main focus for our thesis with regard to event correlation techniques.

2.2.1 Finite State Machines

A finite-state machine, a system is abstracted into mathematical model which can
have exactly one of a finite number of states at a time. A finite-state machine has
a fixed set of possible states, a set of inputs that change the state, and a set of pos-
sible outputs as described by Keller [45]. The next state of a finite-state machine
is based on the current state that the machine is in, and the input that change
the state. There are generally considered to be two kinds of finite-state machines,
deterministic finite-state machines and non-deterministic finite-state machines. In
a deterministic finite-state machine, every state has only one transition per input,
as opposed to the non-deterministic state machine, where an input can lead to
none, one or many transitions for a given state. Since the deterministic finite-
state machine is a more strict version of the non-deterministic finite-state ma-
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chine, that leads to that by definition, a deterministic finite-state machine is also
a non-deterministic finite-state machine. For example, assuming that we have the
following three events in order:

1. the process ’word.exe’ started
2. the process ’googlechrome.exe’ started
3. The process ’powershel l.exe’ started

If we want to trigger an alert when we see the word.exe process is created,
and then the powershel l.exe process afterwards, we can design a simple non-
deterministic state machine like the one in Figure 2.5. When applying the above-
mentioned events to this finite state-machine, event number one will move our
state from s0 to s1. Event number two will not do any transitions and change the
state (one of the benefits of using a non-deterministic state machine). When event
number three occurs, the state machine transitions from s1 to s2, and our accept-
ing state is reached, which fulfills the state machine and we can create an alarm.
One of the benefits of the finite-state model is that it is possible to specify if the

s0start s1 s2
’word.exe’ started ’powershell.exe’ started

Figure 2.5: Example of non-deterministic finite-state machine

order of the events are important or not. If the event order is not of interested, a
finite-state machine as shown in Figure 2.6 can represent the same case as seen
in Figure 2.5.

s0start

s1

s2

s3

’word.exe’ started

’powershell.exe’ started

’powershell.exe’ started

’word.exe’ started

Figure 2.6: Example of non-deterministic finite-state machine

An approach to use finite-state machines for event correlation has been shown by
Bouloutas et al. [46]. The authors use observed events that are generated by the
monitored process to feed into the modelled finite-state machine that represent
the monitored process. If an event arrives that leads to an invalid state in the
model, an error is produced.
One of the main drawback with the finite-state machine is the missing notion of
time. As shown in Figure 2.6 we can take into account order of events, but a finite-
state machine does not separate on the time difference between events that are
streamed into the model.
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2.2.2 Rule-based Event Correlation

Rule-based event correlation software is historically known as a expert system.
Expert systems is defined by Cronk et al. [47] as a "problem-solving software that
embodies specialized knowledge in a narrow task domain to do work usually per-
formed by a trained, skilled human.". According to Cronk et al. [47], expert sys-
tems are organized around three levels; data, control and knowledge. As shown
in Figure 2.7, the data level is the working memory of the expert system that con-
tains the events that are being processed. Then the knowledge level is the rule
repository that contains the domain-specific expert knowledge. Finally we have
the control level which consist of the inference engine that determines how to
apply the rules from the knowledge base against the working memory.

Working Memory

Inference Engine

Knowledge Base

Remove data
elements

Create
new data
elements

Modify
attributes
of data
elements

Match
potential rule

Select
"best" rule

Invoke action

Figure 2.7: Model of rule-based expert systems

Traditionally, creating the rules that goes into a knowledge base is defined as two-
fold; first you have the subject-matter expert which has the expertise and know-
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ledge about which events you are interested in creating correlations against, and
secondly the knowledge engineer which is familiar with how the expert system
works and how the rules has to be written to be understood by the system. In more
modern settings, usually the subject-matter expert and the knowledge engineer
is the same person. This person has both the knowledge of which events are of
interest, and the capability to implement, monitor and tune the rules necessary to
detect the events that are of interest.
The value of a rule-based approach is that the rules in the knowledge base can
be written with a close similarity to the human language. For example if we want
to write a rule for the occurrence of two different events X and Y, it could be
spelled out like "IF event X AND event Y THEN doAction". This also makes it easier
to deduce how and why an alert was triggered. We will take a further look at
different rules that can be utilized with rule-based event correlation in Section 2.4.
In larger production environments, it is also important that the rules are specific
enough, so that they do not generate too many alarms. There can be multiple
reasons that a rule will trigger too many times. If the subject-matter expert is not
specific enough when defining which conditions are to be added to the rule, or
there can be a lack of proper events to analyze, such that to catch the behaviour
that the subject-matter expert wants to detect, the knowledge engineer will have
to write a more generic rule than wanted. Regardless, the knowledge engineer
will have to tune the rule such that it will not flood the analysts with new alerts.
Commonly such rules are ran in a test system with production input such that
the knowledge engineer can collect metrics on how often the rules trigger alerts
before adding the rule to production.
One of the main drawbacks, and probably the biggest reason for other types of
event correlation is the lack of learning or adaptability, which menas that the same
correlation will be made for every similar case every time as stated by Meira [48].
Networks may differ, so it is not given that a rule that fits into one network, can
automatically be used in another. As outlined by Lewis [49], rule-based correla-
tion tend to fail when presented with new or unexpected situations. In addition,
creating new rules, maintaining old rules and adapting the rules in the knowledge
base can be time-consuming. Regardless of these drawbacks, we see a common
trend that rule-based systems are the most common when it comes to network-
based monitoring (see Suricata [50], Snort [51]) as well as for log data in SIEMs
like Splunk [7], OSSEC [12] and OSSIM [11].
There exists several different types of software that makes it possible to correlate
events in real-time based on log data. From more simple projects like swatch-
dog [52], LogSurfer [53] and SEC [54], to more complex projects with multiple
moving parts like Prelude [55], OSSEC [12], Wazuh [56], Apache Metron [57],
MozDef [58], OpenNMS [59], OSSIM [11].
Throughout most of the literature regarding event correlation of log data, Simple
Event Correlator (SEC) [54] has stuck out as one of the most popular software for
doing event correlation on log data, as seen in Kont et al. [60], Farshchi [61] and
Vaarandi [62] just to name a few. I will address SEC further under Section 2.3.
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2.2.3 Case-based Reasoning

In case-based reasoning, a previously experienced problem and its solution is
called a case. Case-based reasoning is based on the assumption that we can find a
solution for a new problem by finding past cases that are similar, and then reusing
the solution to solve the new problem. The reasoning is then further enforced by
adding the problem and the solution to the case library for future use as described
by Aamodt and Plaza [63]. As stated by Slade [64], case-based reasoning is sim-
ilar to how humans approach new problems by assimilating past experiences and
adapting them to new situations.
Figure 2.8 describes the cycle used in case-based reasoning from a high-level per-
spective. Under each step in the cycle there are multiple tasks that may be neces-
sary to conduct before continuing on with the cycle. For instance, the "Retrieve"
step might need to identify which features of the problem to search the Case Lib-
rary for.

Problem

Retrieve

Reuse

Revise Retain

Case Library

Copy or Adapt

Evaluate

Figure 2.8: Case-based reasoning cycle

A example where this might be useful is in a Security Operations Center (SOC). A
SOC receives a high number of alerts that have to be handled by an analyst to ana-
lyse and propose a response to the alert. The response can vary from simply sup-
pressing the alert as a false-positive, sending an e-mail to the client to alert them,
or escalating the alarm to the Incident Response team. Case-based reasoning can
then be applied to new alerts by first retrieving the most similar alerts previously
handled. The information stored in the previous case can then be used to handle
the analysis or solution to an alert. The analyst will then revise the proposed
solution, and retain the parts that might be useful for resolving similar future
alerts. This follows the case-based reasoning cycle proposed in ‘Case-Based Reas-
oning: Foundational Issues, Methodological Variations, and System Approaches’
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by Aamodt and Plaza [63].
The retrieval step is difficult because we need to find similar cases that offer solu-
tions that are relevant. Cases may contain attributes that are irrelevant, which
might not be clear to the automated retrieval process. An example of this could
be the following: Consider that we receive an alert that a malicious file has been
detected on a system. We get the IP, hostname, filename and hash of the file as part
of the alert. The analyst decides that the file is benign through analysis. This is
then stored as a case. If we then receive another similar alert containing yet again
an IP, hostname, filename and hash of the file. The filename in this new alert is
identical to the one we received earlier, but the hash is different. Using this data,
the case-based reasoning engine should not propose a solution based the fact that
the filenames are identical, since the file hashes are different, suggesting that the
files are not the same. To solve this, both the work by Lewis [49] and Davies
and Russell [65] propose creating "determination rules" or "determinators" that
are either compound attributes or a pointer to which attributes to look at in the
case. Additionally, adaptation of the old solutions to the new problem is a difficult
task. While manual specification of the solution in the "Revise" step is possible and
somewhat required, too much emphasis on manual intervention or adjustments
will defeat the purpose of case-based reasoning. This is why according to Leake
and Remindings [66] many case-based reasoning systems have adapted the cycle
from Retrieve-Reuse-Revise-Retain to a much shorter Retrieve-Propose cycle that
completely eliminates the adaptation.
In the paper ‘A case-based approach to network intrusion detection’, the authors
Schwartz et al. [67] used the intrusion detection system Snort as a basis for a new
case-based reasoning IDS that uses the Snort rule base as a case library. Snort
rules may in general be too specific and fail to detect certain kind of intrusions,
but with the case-based reasoning approach, the retrieval step in the cycle will
take care of this by finding cases (rules) that are applicable to the network packet
even though the vanilla rule would not create an alert on that packet. Kapetanakis
et al. [68] argue that with the digital traces left by an attacker, it is possible to
build a profile for that attacker which can be used to assist in future attacks to
identify which attacker is attacking. In the paper written by Han et al. [69], the
authors implemented a system called "WHAP" which uses case-based reasoning
to compare cyber attacks against websites. WHAP builds on a large database of
website defacements, which are custom webpages left on the victim server by
the attacker to claim credit for a website hack. The system is then able to take
new hacked websites as input, and output similar previous cases where it is likely
that the website has been hacked by the same attacker. This can be useful for
attribution and forensic investigations.

2.2.4 Model-based Reasoning

Model-based reasoning is a expert system where the target is to create a model
that can be used to predict the outcome of input event or faults in the system.
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The idea of modelling the structure and behavior of a system has its roots in the
work done by Davies and Russell [65] where they explore the use of such models
in troubleshooting digital electronics. There are no fixed way for how a system
can or should be modelled. The model itself can be created as a logical formal-
ization using pure mathematics, or as a simulated system using for example a
game engine. As Dodig-Crnkovic and Cicchetti [70] highlight in their paper ‘Com-
putational Aspects of Model-Based Reasoning’, there is an increased interest in
automating the creation of the model of a system. This is based on the fact that
creating and keeping a model consistent with the system it is supposed to model,
is hard. Jakobson and Weissman [71] discuss model-based reasoning for alarm
correlation for fault management in telecommunications networks in their paper
‘Alarm correlation’.
In ‘System Modeling and Diagnostics for Liquefying-Fuel Hybrid Rockets’ written
by Poll et al. [72], a figure similar to 2.9 is shown. It outlines the process for check-
ing if a modelled system is consistent with the real world system it is supposed to
replicate.

Physical system Model of system

Actions

Observed behavior Predicted behavior

Discrepancy?

Model is consistent
with system

Search over model
to explain discrep-
ancy

No Yes

Figure 2.9: Illustration of model-based reasoning

As stated by Steinder and Sethi [73], one of the primary drawbacks of model-
based reasoning is the requirement to have a well structured system to model
and to keep that model updated. Systems that contain fluctuating objects like for
example computer networks or network services are not trivial to represent in
a formal model. More applicable areas might include hardware diagnostics like
shown in the work by Davies and Russell [65], or other areas where it is possible
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to model a more static target system, like for example automobile diagnostics.
Finally, in ‘A review of process fault detection and diagnosis: Part I: Quantitat-
ive model-based methods’ by Venkatasubramanian et al. [74], they discuss that
various implementations of model-based reasoning is quite computational com-
plex, depending on number of objects in the model and their various inputs and
outputs.

2.2.5 Codebook-based Event Correlation

p1 p2 p3

e1 e2 e3 e4

Figure 2.10: Example causality graph used for codebook-based event correlation

Yemini et al. [75] propose that the events caused by problems can be modelled as
seen in figure 2.10 where the directed edges of the graph describe the causality of
an event. px denotes a problem, and ex denotes an event. To utilize the codebook,
each problem node in the graph is converted into a binary vector that can be used
to describe its relation to the events on the graph. This is known as a "code". The
binary vector contains bits that corresponds to each event in the graph. If a bit is set
to a 1, it indicates that the given problem causes the event that the bit corresponds
to. A bit of 0 indicates that it does not cause the event. These codes then go into
the codebook. If we convert the graph in figure 2.10 into a codebook, it will look
like table 2.2. The graph and codebook needs to be sufficiently large to be able
to identify all the problems. If the codebook is too small, it may omit events that
are of interest to us. If the codebook is too large, it may contain events that are
unnecessarily redundant. One way to approach the problem with codebooks that
are too large, is to do what Yemini et al. [75] calls "codebook reduction". Codebook
reduction is the process of removing events that are "universal" for all problems.
In the figure 2.10 and the corresponding table 2.2 we can see that event e2 is a
common event for all the problems. Because of this redundancy, it can be remove
to simplify the codebook as show in table 2.3. Further work has been done to
enhance the efficiency of the codebook. Gupta and Subramanian [76] proposes a
two step preprocessing algorithm that ensures mathematical provable codebooks
and eliminates events that are unable to distinguish between problems.
When new events occur, the events are converted into a new binary vector. This
vector is then compared with the codes in the codebook, and the code that is the
most similar is chosen as a means to identify the problem. A simple approach
for comparing the binary vectors could be a 1-to-1 comparison to see if the new
binary vector exactly matches any of the codes in the codebook, but Yemini et
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al. [75] propose to instead use Hamming distance to calculate the closest match.
Using Hamming distance has several benefits, first of all it increases the toler-
ance for noise or lost events, secondly instead of choosing a single best candidate
problem, we can defined a radius that will give us a codebook subset containing
possible codes within the given Hamming distance radius. Because of the novel
preprocessing down to binary vectors, codebook-based correlation is faster than
other rule-based event correlation techniques. One of the more time-consuming
tasks with regard to codebook-based event correlation is the creation of the prob-
lems and their mapping to symptom events. The most likely way to produce these
codebooks will be as an expert system where a person with deep knowledge about
the events in the system are able to map symptoms to problems. In addition, the
process of selecting which events might be symptoms of a problem is similar to
feature selection in the machine learning landscape. Feature selection is the pro-
cess of selecting a subset of features that can be used in model construction, which
is similar to how the codebook is generated.
One of the biggest limitations regarding codebook-based event correlation is that
there is no built-in way to handle time. When a problem has been identified based
on a number of symptoms, there is no time window applied, and there is no notion
of event order. Furthermore the events do not contain any properties, and would
require significant extending to take into account e.g. source hostname, username.

e1 e2 e3 e4

p1 1 1 1 0
p2 0 1 1 1
p3 1 1 0 1

Table 2.2: Codebook correlation matrix

e1 e3 e4

p1 1 1 0
p2 0 1 1
p3 1 0 1

Table 2.3: Reduced codebook correlation matrix

2.2.6 Dependency Graphs

Similar to the dependency graph used in 2.2.5, Gruschke [77] suggests that a
dependency graph can contain enough information to be used for event correl-
ation, while also being simple to automatically generate. The dependency graph
is a directed graph that maps the relationship managed objects. These objects
can be hosts in a network, dependencies between software dependencies, and so
forth. In figure 2.11 we have mapped a series of objects as an example. Events
are mapped to their corresponding object in the graph (colored in blue, object b,
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h i j k l

Figure 2.11: Example dependency graph

c and d). Then we walk the graph from those objects. As explained by Gruschke
[77], when we optimally find one object node that are common for all the given
events, we have most likely found the responsible node. In the example this is
marked as red, object i. Gruschke [77] further outlines that the quality of the
root-cause detection can be measured by the depth and length we need to walk
the graph at. Objects that are further away from the initial object are less likely
to be the root cause, and vica versa. One of the main drawbacks of dependency-
graph-based correlation is the fact that it does not handle multiple, non-related
problems very well. Gruschke [77] assumes that only one problem occurs at a
time. If multiple problems occur that are not related or affect each other, finding
the root-case may prove to be impossible, or select the wrong root-cause object.
Assumes the events are for a single fault. Meaning it will not be able to handle
detecting multiple failing nodes. As with the codebook-based event correlation
we discussed in 2.2.5, dependency graphs also lack the notion of time. Addition-
ally the dependency graph is not taking advantage of attributes on the nodes to
further enhance the graph.

2.2.7 Bayesian Network-based Event Correlation

Bayesian networks are one of the most widely used graphical models for represent-
ing and reasoning about the probabilistic causal relationships between variables
as explained in Kavousi and Akbari [78]. Bayesian networks are usually represen-
ted by directed acyclic graphs. Directed acyclic graphs are finite directed graphs
that contain no direct cycles. This means that there is no way to start from a given
node, and via the directed edges return back to the same node. Each node in
the network represents a variable of interest and the edges describe the relations
between these variables. The Bayesian network is split up into two parts. First
there is the graphical model of the network which shows the nodes and the edges
that connect them. Secondly, there is the conditional probability tables associated
with each node. The table consist of the probabilities that a node is in a given state
given the state of its parent nodes.
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Both the research done by Kavousi and Akbari [78] and Qin and Lee [79] utilize
Bayesian networks to create "Bayesian attack graphs" (BAG) which are models
that use Bayesian networks to depict the security attack scenarios in a system.
As a simple experiment using a Bayesian Network for detection, we have the dir-
ected acyclic graph as shown in Figure 2.12. The nodes are a bit like the ones
represented in Codebook-based correlation 2.2.5 where the nodes B and C rep-
resent two symptom events that are analyzed by the system, these can be events
from an IDS, host machine logs, web logs, et cetera. The node A represent a prob-
lem node and is not connected to any specific events. The purpose of this Bayesian
network, is to answer the following question: What is the probability that, when
we observe the two events B and C , we have a problem A?
To calculate this, we first need the the conditional probability tables, which are
given in Table 2.4.

A

B C

Figure 2.12: Simple example directed acyclic graph

P(A= 0) P(A= 1)
0.8 0.2

A P(B = 1|A) P(B = 0|A)
1 0.9 0.1
0 0.05 0.95

A P(C = 1|A) P(C = 0|A)
1 0.95 0.05
0 0.05 0.95

Table 2.4: Conditional probability tables

We can then calculate the probability that A has occurred, given that we have
observed the events B and C by using Bayes’ theorem.

P(A= 1|B = 1, C = 1)

=
P(A= 1)P(B = 1, C = 1|A= 1)

P(B = 1, C = 1)

=
P(A= 1)P(B = 1, A= 1)P(C = 1, A= 1)

P(A= 1)P(B = 1|A= 1)P(C = 1|A= 1) + P(A= 0)P(B = 1|A= 0)P(C = 1|A= 0)

=
0.2 · 0.9 · 0.95

(0.2 · 0.9 · 0.95) + (0.8 · 0.05 · 0.05)
≈ 0.9884

In this case, we see that there is a 98.8% chance that the problem/alert A has
happened, by observing the arrival of the two events B and C .
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Figure 2.13: Example of neural network with three hidden layers

2.2.8 Neural Network Approaches

Artificial Neural Networks are used in the field of Artificial Intelligence as a system
that is inspired by the neural networks in biological brains as explained by Chen et
al. [80]. These system often come in the form of highly interconnected, neuron-
like processing units. As illustrated in Figure 2.13, the circular node represents
an artificial neuron and an arrow represents a connection from the output of one
artificial neuron to the input of another. These systems are meant to learn and
perform tasks by ingesting training data, and creating their own decision model
that will be applied when considering future cases.
The computation done in each node can vary from simple mathematical opera-
tions like a summation of all its inputs, or by using more complex operations like
treshold values, temporal operation as explained by Lippmann [81] or operations
that involve the memory of a node as shown in Meira [48]. To allow the network
to learn, input weights are often dynamically adapted as stated by Lippmann [81].
Which strategy is used for operation selection and input weighting depends on the
application of the network, and multiple approaches exist for this.
As Pouget and Dacier [82] stated in their paper ‘Alert correlation: Review of the
state of the art’, "Neural Networks seem not to be frequently applied in Alert Cor-
relation tools.". The primary reason for this is that it is hard to get insight into
how a neural network arrived at the output it produced. Regardless, there are
several papers that use artificial intelligence and neural networks for event cor-
relation. The authors of ‘Combating advanced persistent threats: From network
event correlation to incident detection’ Friedberg et al. [83] automatically gener-
ated a system model with the ability to continuously evolve itself. The proposed
approach was able to detect anomalies that are the consequence of realistic APT
attacks. In the work by Lin et al. [84], the authors used a distributed gradient
boosting library to classify real-world malware programs with more than 99%
success-rate. Another approach is presented in ‘Using neural networks for alarm
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correlation in cellular phone networks’, where the authors Wietgrefe et al. [85]
used a neural network to correlate alarms in a cellular phone network.
One of the primary benefits of using neural networks is the ability the networks
has to adapt either via training data, or in real time during processing of live event.
As pointed out by Pouget and Dacier [82], the main drawback speaks to the fact
that it is hard for an analyst to comprehend how a artificial neural network has
concluded, which may affect the trust in the system.

2.2.9 Hybrid approaches

In additional to all the "pure" correlation techniques, there also exist various im-
plementations that take a hybrid approach to event correlation by utilizing two or
more techniques at the same time. Some examples include the work done by Hane-
mann and Marcu [86]which combine rule-based event correlation and case-based
reasoning, the authors of ‘Extracting attack scenarios using intrusion semantics’,
Saad and Traore [87] proposed a hybrid event correlation approach that used se-
mantic analysis and a intrusion ontology to reconstruct attack scenarios. Further-
more, Ficco et al. [88] developed a hybrid, hierarchical event correlation approach
for detecting complex attacks in cloud computing. Finally Mé et al. [89] to pro-
posed a fully functionalIDS based on event and alert correlations by implement-
ing a language driven signature based correlation that uses FSM to implement the
multi-pattern rule matching detection algorithm.

2.3 Simple Event Correlator

As previously stated, throughout the relevant research done with regards to event
correlation of system logs, SEC seems to be the most commonly referenced and
used software. It is widely used and as Vaarandi [90] explains, has been deployed
in several different sectors and industries (Finance, Telecom, IT security, Gov-
ernment, Retail, etc.). SEC has been utilized for several different purposes like
fraud detection, insider-threat detection, system fault and availability and secur-
ity events.
SEC is quite versatile, as it is agnostic to the type of log event that it receives. SEC
uses rules that are using Perl-style regular expressions for matching events and
extracting data from the event itself using sub-expressions. The extracted data
can then be used to correlate between other matching events.
The rules used in SEC are heavily based on regular expressions, which makes it
hard to understand, modify and write new rules. The argument for using regular
expressions builds on the assumption that most system and network administrat-
ors are already familiar with the regular expression language as stated in Vaarandi
[91]. Although that might be the case, complex regular expressions can be hard
to comprehend, and the output of the regular expression also requires detailed
knowledge of what the input event looks like. The rule format of SEC will be fur-
ther explained under Section 2.4.1. In addition to this, there are few open source
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rules and rule-sets with a focus on security, which means that the analyst generally
has to start from scratch writing their own rules.
Perhaps the biggest drawback of SEC is that SEC bases its correlation time on
when the event was read from the input file. It does not take into account any
timestamps that may be in the logs. If logs are ingested from multiple systems
(like in a enterprise environment) the logs could be delayed for multiple reasons,
or if SEC is unable to ingest the log events fast enough (either because of I/O
delays or a huge amount of logs), the timestamp of the logs will be different from
when the log event was actually produced. The consequences of this could be
severe, as events that should be correlated together in a given timeframe might
drift away from each-other and not be correlated at all.
Scaling is possible, but a bit hard. It is possible to spawn several SEC instances
that ingest their own separate event streams and different rule sets as described
by Vaarandi et al. [92]. Lang [93] utilize this fact to run several instances of SEC
on several servers, but also on a single machine as show in Figure 2.14. However
this makes it impossible to correlate across event streams, as the SEC instances do
not have any knowledge of the other instances in the system. At first Lang [93]
considered rewriting and implementing a memory object caching system named
"memcached" [94] as seen in Figure 2.15 that would allow the SEC instances to
share their context between each-other. However they chose not to tackle that
particular problem. In the end, Lang [93] ended up with implementing a solution
similar to Figure 2.16, where each SEC instance produces new syslog events and
sends them to a master instance which then correlates across the event streams
and creates a single alert output.

Event stream 1

Event stream 2

Event stream 3

SEC instance

SEC instance

SEC instance

Alert output 1

Alert output 2

Alert output 3

multiple instances
on one machine

Figure 2.14: Standard SEC usage

2.4 Correlation rules

Just as there are multiple different software and systems for doing rule-based
event correlation, there are multiple ways of representing the rules in a knowledge
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SEC instance
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Alert output 2

Figure 2.15: Distributed SEC concept

Event stream 1

Event stream 2

Event stream 3

SEC instance

SEC instance

SEC instance

SEC master Alert output

multiple instances
on one machine

Figure 2.16: Horizontal scaling of SEC
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base. In general there are two requirements when it comes to rules. Since they are
written and maintained by a knowledge engineer, making the rules readable and
easy to create is important. In addition, the rules have to be flexible enough such
that it is possible to represent the wishes of the subject-matter expert, preferably
without affecting the readability of the rule.
One of the most common ways to write rules are by using boolean operations,
either explicitly or implicitly. As exemplified earlier, if we want to write a rule
for the occurrence of two different events X and Y, it could be spelled out like
"IF event X AND event Y THEN doAction". Further complexity could be added by
adding additional boolean operations, and by using order of operation marks like
parentheses. An exmaple of this could be "IF event X AND (event Y OR event Z)
THEN doAction".
Rules for event correlation has been implemented in a range of various ways.
General purpose languages such as Lua or Python has been used for example
in Prelude [55]. Markup languages like XML and YAML as seen in OSSEC [95],
OSSIM [96] and Sigma [97]. Structured Query Language (SQL) rules like those
used in Esper [98] or custom definitions like those seen in SEC [54], EQL [99]
and Splunk [7].
When the inference engine tries to find matching rules from the knowledge base,
the engine might take the linear approach and try each and every rule in sequence
until it finds a match (or does not find a match). Another approach to this is by
using the Rete algorithm found in Forgy [100]. This algorithm creates a directed
acyclic graph that represents the rule set. The graph is defined with a right and left
side, called alpha and beta respectively. All the selection and conditional nodes are
in the alpha side, while combining and enrichment nodes are on the beta side. As
can be seen in Figure 2.17, When a new event is sent through this graph, it enters
at the root node in the alpha side of the graph. After passing through the graph,
the event ends at a terminal node which is the output of the Rete. As opposed
to linear searching the knowledge base, Rete is independent of this and could
perform much better when there are a lot of rules involved in the correlation,
as told by Pouget and Dacier [82]. Some practical implementations use Rete for
event correlation as seen in Doorenbos [101]. The interested reader is referred to
Forgy [100] for more details about the Rete algorithm.
As said, Simple Event Correlator (SEC) uses a custom format design particularly
for SEC based on regular expressions. We will further examine this rule format
under Section 2.4.1. We will also consider Sigma in greater detail in Section 2.4.2
as a possible candidate for replacing the rules used by SEC.

2.4.1 SEC rule format

SEC rule files are simple text-files that contain one or more blocks of key-value
pairs. One block is considered one rule. This block contains a set of pre-specified
keys that make up how the rule works.
SEC applies each rule sequentially, and will stop looking when it finds a match
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Figure 2.17: Illustrates the basic Rete[102]

(unless that specific rule uses the continue keyword). With this knowledge it is
possible to optimize the rule set by placing more popular rules nearer the top of
the rule set as told by Rouillard [103].
A rule consists of a subset of the following keywords, where some of the keywords
are only applicable if some of the keywords holds a special value:

• type - which kind of rule
• ptype - which type of pattern
• pattern - pattern to match event against
• desc - rule description
• action - action to take if pattern is matched
• continue - if set, allows SEC to continue searching for other matching rules
• context - boolean statement based on global context variables
• thresh - (if applicable) threshold for triggering event
• window - (if applicable) time window in seconds

for type, there are multiple different possible values:

• Single - Match input and execute action.
• Suppress - Suppress the matching input which keeps the input from being

matched by later rules.
• Calendar - Execute action on a given time.
• SingleWithSuppress - A combination of Single and Suppress. Match input

and execute action, but suppress the matching input for a set period of time
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afterwards.
• Pair - Match input and execute action, then wait until another event arrives

and execute second action.
• PairWithWindow - Like Pair, but also execute an action if second event does

not arrive.
• SingleWithThreshold - Count matching input in a time window, if number

of matches is above a threshold, execute action and ignore matches for rest
of window.

• SingleWith2Thresholds - Count matching input in a time window, if number
of matches is above a threshold, execute action. Then create new count, and
if number of matches drops below the threshold, execute action.

• EventGroup - Count N number of different events and execute action if all
of them reach their given threshold.

• SingleWithScript - Match value and depending on return-value of external
script, do action.

• Jump - Submits matching event to another rule set for further processing.

For ptype, there are multiple different possible values:

• SubStr - pattern is a string that will be searched for in the event
• RegExp - pattern is a Perl regular expression
• PerlFunc - pattern is a Perl function for matching
• Cached - pattern matches previously cached patterns.
• TValue - pattern is a boolean value (TRUE/FALSE) that always or never

matches.

In addition to the above-mentioned values for ptype, they all have (except for
TValue) a negated version as well, prefixed with "N" (as in NSubStr, NRegExp,
etc).
The following example in figure Code listing 2.1 is a slimmed down version of the
"MITRE CAR-2013-04-002: Quick execution of a series of suspicious commands"
[104]. The purpose of the rule is to detect quick execution of commands that a
regular user would not frequently do, but that an attacker might run as part of
their reconnaissance or exploitation of the system.
As an example, consider that the following events occur within 10 seconds from
start to finish:

1. Alice ran word.exe on PC1

2. Bob ran calc.exe on PC2

3. Mallory ran whoami.exe on PC1

4. Mallory ran ssh.exe on PC1

5. Bob ran powershell.exe on PC2

6. Alice ran firefox.exe on PC1

7. Mallory ran powershell.exe on PC1
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8. Mallory ran systeminfo.exe on PC1

9. Bob ran word.exe on PC2

10. Alice ran powerpoint.exe on PC1

11. Mallory ran hostname.exe on PC1

If we apply the rule shown in Code listing 2.1, during the execution, the following
events will be created and re-injected into the event stream:

1. Interesting_commands_by_Mallory_on_PC1

2. Interesting_commands_by_Bob_on_PC2

3. Interesting_commands_by_Mallory_on_PC1

4. Interesting_commands_by_Mallory_on_PC1

These re-injected events will be processed by rule #4, and when the threshold
number of 3 is met for the event "Interesting_commands_by_Mallory_on_PC1", the
rule will trigger its action and write "Three interesting commands were run on host
PC1 by user Mallory" to the console.

Code listing 2.1: Example ruleset for detecting quick execution of a series of
commands

# Rule 1
type=Single
ptype=RegExp
pattern=(\S+) ran whoami\.exe on (\S+)
desc=$0
action=event Interesting_commands_by_$1_on_$2

# Rule 2
type=Single
ptype=RegExp
pattern=(\S+) ran powershell\.exe on (\S+)
desc=$0
action=event Interesting_commands_by_$1_on_$2

# Rule 3
type=Single
ptype=RegExp
pattern=(\S+) ran hostname\.exe on (\S+)
desc=$0
action=event Interesting_commands_by_$1_on_$2

# Rule 4
type=SingleWithThreshold
ptype=RegExp
pattern=Interesting_commands_by_(\S+)_on_(\S+)
desc=$0
action=write - Three interesting commands were run on host $2 by user $1
window=10
thresh=3

In addition to the rule show in Code listing 2.1, we can implement the same rule by
using the EventGroup type as show in Code listing 2.2. This rule works similarly
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as the first rule, but the main difference with EventGroups is that all the event
conditions have to be satisfied before the action will trigger. This means that we
explicitly have to have all three patterns match, and will not trigger if for instance
whoami.exe is ran three times in a row.

Code listing 2.2: Example ruleset 2 for detecting quick execution of a series of
commands

type=EventGroup3
ptype=RegExp
pattern=(\S+) ran whoami\.exe on (\S+)
ptype2=RegExp
pattern2=(\S+) ran powershell\.exe on (\S+)
ptype3=RegExp
pattern3=(\S+) ran hostname\.exe on (\S+)
desc=Three interesting commands were run on host $2 by user $1
actiom=write - Three interesting commands were run on host $2 by user $1
window=10

This is not an extensive listing of the features in the SEC rule language, but covers
what is needed for the rest of the thesis. For a deeper dive into SEC rules with more
examples, the reader is referred to the paper ‘Real-time Log File Analysis Using
the Simple Event Correlator (SEC).’ by Rouillard [103] and the SEC man-pages
[105].

2.4.2 Sigma

Sigma is a "Generic Signature Format for SIEM Systems"[97]. Sigma is an open
standard for rules that are used to generically describe searches in log data. The
value proposition of Sigma is that there is a lack of standardisation within the
SIEM search field. A given query to search for the same item might look very
different depending on the SIEM platform used. This makes it inherently harder
to share and contribute rules within the community.
Sigma is primarily used as a high-level rule that is transcompile into SIEM queries
for products like Splunk [7], ElasticSearch [106], NetWitness [9], etc. The rules
are written in YAML Ain’t Markup Language (YAML)[107], which is a key-value
based format that uses indentation to indicate nesting. The rule format contains
some required and some optional fields, and it is extensible with custom fields as
shown in Figure 2.18.

Code listing 2.3: Example Sigma rule for detecting quick execution of a series of
commands

title: Quick Execution of a Series of Suspicious Commands
logsource:

product: windows
service: sysmon

detection:
selection:

OriginalFileName|contains:
- whoami
- hostname
- powershell
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timeframe: 10s
condition: selection | count(User) by MachineName >= 3

The Code listing 2.3 is a minimal example that is similar to the rule shown in Code
listing 2.1. An example input event can be found in Code listing 2.4. The rule is
selecting the OriginalFileName-key from our event and checking if it contains any
of the following entries: whoami, hostname or powershell. The rule creates a time-
frame of 10 seconds, and the condition counts the distinct user names grouped
by MachineName, and checks if the count is more than or equal to three.

Code listing 2.4: Example event for Sigma

MachineName: Client01.mrtn.lab
UtcTime: 2020-02-18 10:29:49.839
ProcessId: 1040
OriginalFileName: whoami.exe
User: MRTNLAB\mrtn

There exists a vast amount of example rules, and new rules are added continuously
to the project by contributors [108]. For further information about the details of
the Sigma specification, the interested reader is referred to the Sigma Specification
[109].

Figure 2.18: Sigma specification [109]
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Methodology

One of the main goals of this thesis is to explore if there is any way that we can
improve the way real time event correlation is done and how our improvement
compare to other methods. As outlined in Chapter 2 we have chosen to compare
our solution against Simple Event Correlator (SEC). In addition to the focus to-
wards SEC, we will particularly look at event correlation of Windows Event Logs.
In the following chapter we will discuss the methodology used address these goals.
We will evaluate which datasets exist and should be used, we will discuss the vari-
ous ways we can improve how event correlation can be done, and we will take a
look at how that performance change can be measured.

3.1 Datasets

To properly address the research questions proposed, it is important to have one
or more datasets that can be used to evaluate the performance of the proposed
solution in this thesis. There is not a vast variety of available datasets that focus
on Windows Event Logs publicly available, but there are some that have surfaced
in the recent years. We will present those in the following section and offers a
short evaluation in the context of this thesis.

3.1.1 Evaluation of existing datasets

When evaluating which datasets we want to use for our experiments, we first have
to define some parameters that we can measure the datasets by:

• Size - The dataset must be large enough to measure the performance of
existing solutions and our proposed solution.

• Representative - The dataset must be representative of the real world
• Up to date - The dataset should preferably be of a recent date

35
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Boss of the SOC

Boss of the SOC (BOTS) are datasets created for Splunks Boss of the SOC capture
the flag competitions [110]. The datasets are created in a controlled environment,
where some adversarial actions has taken place. The contestants have to analyze
and hunt in the data to answer several security-related questions which grant
points.
There are currently three different datasets available. Each with a different focus.
The first dataset consists primarily of Suricata [50] and Windows events. The
second dataset also contains Suricata and Windows events, in addition to more
application specific logs like Symantec Endpoint Protection, Weblogic, MySQL etc.
The third and last dataset focuses more on cloud and hybrid environments and
do not contain the same amount of Windows event logs for instances.
The datasets from BOTS are released in a Splunk pre-indexed format, meaning
that one would have to set up a Splunk instance, import the indexed datasets,
and then export the datasets out in a more usable format (like JavaScript Object
Notation (JSON)).

Mordor

The Mordor datasets [111] are pre-recorded events generated by simulating ad-
versarial techniques in a test environment using common red team tools like Em-
pire and Cobalt Strike.
There currently exists two datasets under the Mordor project, namely APT29 and
APT3. These datasets contain Windows event logs from simulated Advanced Per-
sistent Threat (APT) actions. These actions are predefined by the MITRE ATT&CK
Evaluations project [112]. The MITRE ATT&CK Evaluations project is created as a
way to evaluate different endpoint solutions ability to detect various adversarial
techniques, tactics and procedures. The adversarial actions are maps to techniques
under 10 categories in the MITREs ATT&CK Matrix [113], as shown in Table 3.1.

Categories
Initial Access
Execution
Persistence
Privilege Escalation Defense Evasion
Credential Access Discovery
Lateral Movement
Collection
Command and Control
Exfiltration
Impact

Table 3.1: List of MITRE ATT&CK Matrix categories

We will focus on the APT3 dataset. This dataset consists of two subsets, one for
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each scenario as outlined by MITRE in their Attack Emulation Overview [114] for
APT3.

Synthetic datasets

Synthetic data is datasets that are generated and design with the intent to measure
some specific condition or event that may not be found in real world data, or
that the real world data would be hard to come by, as told by Barse et al. [115].
There are multiple reasons why one might consider to use a synthetic dataset,
like simulating a large period of time which would be unrealistic to capture in
real life, simulating extraordinary events occurring, huge data loads, and so forth.
Continuing this section, we will consider three different synthetic datasets that we
will be applying during our experiments in Chapter 4.
It is worth stressing that the synthetic datasets are used strictly for measuring the
performance of the systems in a worst-case/best-case scenario, and the dataset is
in itself not representative of a real world scenario.
Baseline dataset
This dataset is a dataset with events that are all benign. This dataset is useful for
measuring the speed at which the tools process and analyse the events, without
triggering any rules.
High signal, low noise dataset
If we want to test the maximum event correlation throughput possible, we want
to use a dataset that is designed to continuously trigger one or more rules. Given
that we want to trigger a rule like the one defined in Code listing 2.3, a high
signal, low noise dataset could be designed to repeat the same 3 log lines that are
enough to trigger the rule.
Low signal, high noise dataset
This is the opposite of the high signal, low noise dataset which contained the
necessary log lines to repeatedly trigger a specific rule. This dataset only contains
the necessary events to trigger a single rule once, the rest of the events are simply
background noise. This is pretty similar to the baseline dataset.

3.1.2 Datasets used in this thesis

For the experiments conducted in this thesis, Multiple datasets have been chosen:

• Mordor dataset (APT3, Scenario 1 and 2)
• High signal, low noise dataset
• Baseline dataset

We chose the Mordor dataset as it is sufficiently large enough, representative and
up-to-date. Then we have chosen the baseline and high signal, low noise synthetic
datasets as they will be used for baselining and giving us best and worst-case
scenarios for performance measuring. We do not use the low signal, high noise
dataset, as we consider that almost identical to the baseline dataset.
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3.2 Improving real time event correlation for Windows
Event Logs

With regards to Research Question 2 in Section Section 1.3, the question we are
trying to answer is if there are ways we can improve how real time event correl-
ation is done. We will discuss multiple approaches to how this can be achieved in
the following section.

3.2.1 Compiled language vs. interpreted language

As previously stated in Section 2.3, SEC is written in the Perl language. Perl is an
interpreted language that according to its creator Wall et al. [116] is "optimized
for scanning arbitrary text files, extracting information from those text files, and
printing reports based on that information". Being an interpreted language means
that the code is not compiled into machine code and executed like a compiled
language does, but the interpreter parses the code step-by-step and execute its
actions in subroutines. We can see an overview of both in Figure 3.1.
There are many benefits to choosing a interpreted language. The interpreter can
hide a lot of the complexity when programming, which means that a interpreted
language can be easier to write, use and understand. Similarly to the benefits seen
with the rules in rule-based event correlation Section 2.2.2, the programming lan-
guage can be written with a close similarity to the human language. Additionally,
the programs can run cross-platform, as the interpreter manages the lower level
details of the specific architecture that we are executing code on.
The main disadvantage is the additional overhead required by the interpreter.
Compiled code will generally always be faster than interpreted code, because it
runs closer to the "bare metal". When we want to increase performance, working
with compiled languages are generally considered the right thing to do.
In the compiled language world, C and C++ has been the kings for a long time. In
recent years, other languages like Go [117] and Rust [118] has seen the light of
day, and are increasing in popularity. Benefits of the new generation of compiled
languages is the built in features for memory safety, safe concurrency, security and
better designed languages that makes it easier to get started with the language.
This has been the main issue with traditional compiled programs, they are harder
to write and easier to get wrong than a program written in a interpreted language.
While this section might give the impression that there is a black and white differ-
ence between compiled and interpreted languages, that is not technically correct.
In modern times, languages such as Lisp and Pascal implement both, and Java and
C# are compiled into an intermediate language (bytecode) which is executed in
a virtual machine as described in Henriques and Bernardino [119]
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Figure 3.1: Illustration of compiled vs. interpreted language

3.2.2 Concurrent execution

As discussed, SEC is not taking full advantage of the system when only running
in a single thread. It is a fair claim that by using multi-threading it is possible to
increase the throughput of an alternate solution which will process events much
quicker. We can symbolize the difference with the synchronous example in Fig-
ure 3.2, and the concurrent process as seen in Section 3.2.2.
While they both process the same amount of events, the concurrent version handles
the total number of events much quicker than the synchronous version. Note that
it is not given that each individual event is processed any faster in any of the two
examples. In fact, given that we probably want to correlate between the events,
the concurrent version could use longer time to handle each event, as it has to
check a shared context between the threads, which could cause some overhead.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Thread 1

Figure 3.2: Synchronously processing of 8 events

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Thread 1

Thread 2

Thread 3

Thread 4

Figure 3.3: Concurrent processing of 8 events
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3.2.3 Better rules

The rules in the knowledge base is the bread and butter of the rule-based event
correlation. And although there are multiple different ways to create rules as dis-
cussed in Section 2.4, it is always worth considering if other rule formats could be
more beneficial. As stated by Rouillard [103], the majority of the computational
time used in SEC is spent on matching events against regular expression, so if we
could in some way remove the need for the extensive use of regular expressions
by using another rule format, that could potentially be a much faster solution.
We outlined a possible rule candidate in Section 2.4.2, namely Sigma. We will
look at implementing Sigma when we experiment with the rule change.

3.2.4 Proper time management

One of the biggest drawbacks of SEC as outlined in Section 2.3, is the fact that
when it bases its correlation time on when the event was read from the input file.
It does not take into account any timestamps that may be in the logs. If logs are
ingested from multiple systems (like in a enterprise environment) the logs could
be delayed for multiple reasons, or if SEC is unable to ingest the log events fast
enough (either because of I/O delays or a huge amount of logs), the timestamp
of the logs will be different from when the log event was actually produced. The
consequences of this could be severe, as events that should be correlated together
in a given timeframe might drift away from each-other and not be correlated at
all.
Instead of the time being based on when the event is read, we want to base our
correlation on when the event was generated by the source system. Since we are
doing the assumption that we will only be working with Windows event logs which
have the UTC timestamp in the logs, we are able to use that. However, if we were
to expand to ingest other logs as well, we would have to take into account that
the time might be represented differently in the log. It is rare to see logs that
do not have a timestamp in some form or fashion. The hardest part might be
localization, if the timestamp is not written with a specific timezone. However,
this will not be a problem in this thesis as all Windows event logs are written with
the UTC timezone.

3.2.5 Internal representation of logs

When we are testing the different rules in SEC against a log line, the pattern of
the rule is applied against the whole log line. We propose that tokenizing the log
before testing each rule could improve the performance.
Tokenizing the log means that we are taking a log in the form of "EventID: 1
nMachineName: client1
nUser: john", and parsing it into a object instead, as seen in Code listing 3.1.
The benefit of this is that we can query specific parts of the event log directly,
instead of having to parse the whole event log every time we want to access a
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single key-value pair. An example could be if we wanted to access the Machine-
Name or User values from Code listing 3.1, which could do something like this
event[’MachineName’] and event[’User’].

Code listing 3.1: Example tokenization

Object event = {
EventID = 1
MachineName = client1
User = john

}

Moving away from the large regexes as already discussed in Section 3.2.3 and
using tokenization to enable using new rule formats like Sigma could improve the
performance of our solution.

3.2.6 Support for multiple log formats

As briefly discussed in Section 3.2.4 the biggest hurdle would be event logs that
either do not contain a timestamp, or are syntactically hard to parse or tokenize as
discussed in Section 3.2.5. In this thesis we are focused on Windows Event Logs,
but it is possible that other log sources would be possible to have working without
any or little change to the solution this thesis proposes. We consider this future
work.

3.2.7 Output modularity

Defining different alert output channels. It would be nice to be able to create
granular output rules that takes some decision based on the alert severity and
sends the alert to the proper channel. Channels could include:

• E-Mail
• Instant Messaging platforms like Slack, Teams et cetera.
• Ticketing system
• SIEM products like Splunk

We have chosen not to implement these as we focused primarily on performance
measurements, and consider this future work.

3.2.8 Distributed correlation

There are multiple reasons why we might consider using a distributed correlation
system. A distributed system first of all provides redundancy if one or more inges-
tion node or correlation server should fail, having the system continue running
without experiencing loss in data. This is important because when we are correl-
ating, we never know when a rule might hit, and any loss of data or interruptions
in the correlation process can lead to missed alerts. Furthermore, with regard to
geolocation, being able to reduce latency by ingesting data from hosts as close
to them as possible could improve the real time effectiveness of the system. Any
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system should be able to handle delayed data, but having as little delay when in-
gesting data is still preferable. Lastly, if we want to scale up our system to handle
bigger loads of data and correlation rules, we need scalability.
As discussed in Section 2.3, the authors of Lang [93] considered a few ways to
scale SEC as shown in Figure 2.15 and Figure 2.16.
When scaling a system, we generally consider two different types of scaling. Ho-
rizontal and vertical. Horizontal scaling means that we are adding additional ma-
chines into a pool of resources for that particular service. Vertical scaling is adding
more power to the existing machine, for instance by increasing the available RAM
or upgrading the CPU(s). There are multiple considerations that have to be done
when choosing which way to scale a system. Horizontal scaling usually comes with
the drawback of having to manage the pool of resources for each scaled service.
Vertical scaling is in general simpler, but at some point it is no longer possible or
feasible to scale further with regards to performance and cost. The implement-
ation show in this thesis is primarily built to scale vertically. Interesting future
work would be to add horizontal scaling to the proposed solution in this thesis,
much like in Figure 2.15, and tackle the challenges associated with load balancing,
shared "context memory" between the correlators, and other possible obstacles.

3.3 Measuring performance

There are multiple factors that affect the performance of event correlators. All
these factors lead to multiple ways that we can measure performance. This section
tries to outline the most important ones.

3.3.1 Data ingestion speed

At the start of the data pipeline, we have to ingest our data for processing. Data
ingestion is the process of importing data from an external source into our pro-
gram. The rate at which we are ingesting events are usually measured in events
per second. Data ingestion is based on a emitter sending the data, and a receiver
receiving the data. The emitter does not have to be a separate system, it can be
a hard disk, RAM or a network-based service. The performance related to data
ingestion speeds can be bottlenecked by several possible things. The emitter may
be bound by the storage medium it is sending data from. If we are reading events
from a log file stored to disk, we are bound to the read speed that our disk(s)
support. If we are reading events from a process that stores the events in memory,
we are bound by the read speeds of our RAM. With regards to network-based
transmission, the choice of transport-layer protocol used can have an impact on
transmission speed. Using UDP may be the fastest, but could lead to dropped pack-
ages which not optimal. Using TCP ensures that all events are transmitted, but at
the cost of additional overhead for re-transmitting lost data, re-arranging packets
out of order, et cetera. When transmitting data in a network (both internal and
via the internet) encryption is needed to ensure authenticity and tamper protec-
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tion of the data. But encryption comes at a cost, namely that it takes some time to
encrypt and decrypt data when its sent and received. Additionally, the network-
ing hardware can play a role depending on the setup. The supported speeds of
the network card in the emitter and receiver, and any intermediate networking
equipment like switches and routers could affect the throughput of events. There
are multiple ways of transmitting data over the network that may affect the in-
gestion speed, and that is the implementation of how transmitting shall be done.
Real-time transmission sends the events as soon as they happen, one-by-one. An-
other tactic is to use batching or chunking that sends bursts of events instead of
sending the events one-by-one. Finally, a hybrid approach is possible where the
emitter chooses which type to use depending how many events are being trans-
mitted. Then we have the ingestion capabilities of the receiver. This boils down to
how efficient the receiver is to manage the backlog of events it receives. A simple
program might only allow processing one event at the time, blocking incoming
new events. A more efficient program might store a backlog of events in RAM,
which ensures that it does not block incoming new events.
There are multiple ways we can measure all these different possible bottlenecks.
For disk and RAM-based operations we can use profiling tools that come with the
operating system to measure the load we are under. We can look at the number
and size of the network packages being sent and received. Given an external emit-
ter running for instance the software Kafka, we can get an overview of how fast
receivers are fetching data from the emitter. Likewise, we can do the same from
the end of the receiver by looking at how many events we are ingesting into our
program per second. Finally, we can test the ingestion using timing, by ingesting
a set number of events and timing how fast the receiver can ingest them (without
any processing other than ingesting), we can calculate the number of events per
second.

3.3.2 Processing speed

Since the ingestion speed discussed in Section 3.3.1 might fluctuate depending
on how the data is ingested, measuring the internal processing speed might be
more interesting when evaluating the performance of the various solutions. This
removes the uncertainties related to ingestion speeds. There are multiple options
when looking at internal processing speed. One might look at the processing as
a whole from start to finish, or try to separate out the various internal steps that
occur during processing. Go features a profiler that will output a graph, showing
which functions are taking up the most time during runtime. This can give an idea
of where the most of the time is spent during processing.
The processing speed can be affected by several things. First of all the dataset used
will matter, as the number of matches will have an effect on the number of alerts
generated and contexts updated. Secondly, the implementation of how rules are
processed and checked against events can have a big impact on the processing
speed. If the solution is able to quickly disregard events as not interesting, there is
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a big potential for saving time. Lastly, the internal handling of contextual inform-
ation, how that information is accessed and other performance-related improve-
ments all have an effect on the processing speed observed. The biggest drawback
of this approach is the need profiling or timing "inside" the solution. While this
might be simple to implement in a new solution, patching such a feature into older
solutions can prove to be hard or in the worst case error-prone if the solution being
patched is not fully understood.

3.3.3 Compound processing speed

Measuring the compound processing speed will give us a bird’s-eye view of what
the total processing speed is. It takes into account both ingestion and processing
speeds, measures the total time used, including both I/O and any internal pro-
cessing.
Depending on the solutions, this might be the best or only option for a good one-
to-one comparison between solutions, if they do not support the same ingestion
abilities.

3.4 Test plan

As discussed in this chapter we have identified multiple ways that possibly could
improve or further expand the capabilities of existing real time event correlation
solutions, more specifically SEC.
In Chapter 4 we will be using the Mordor [111] APT3 dataset, in addition to three
synthetic datasets as explained in Section 3.1.
We will focus our experiments around the possible improvements mentioned in
this chapter, namely using a compiled language, utilize concurrent execution, test
if better internal representation of log data and using other rules might affect per-
formance and lastly implement better time management. Distributed correlation,
output modularity and support for multiple log formats is considered future work.
As discussed in Section 3.3, there are multiple ways that we can measure the per-
formance of our solution against existing solutions. We will be using compound
processing speed as discussed in Section 3.3.3 for our performance tests.
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Experiments

The following chapter introduce our improved implementation based on the meth-
odology presented in Chapter 3. The software and hardware specifications are
listed, the dataset collection and required preprocessing is presented, and we in-
troduce our solution in two step, first a solution that uses the same rule format as
SEC, and then a improved version that implements Sigma [97] and a better way
for internally representing events as discussed in Section 3.2.5.

4.1 Hardware and Software Specifications

The host system used for running the experiments feature a Intel(R) Core(TM)
i7-7600U CPU @ 2.80GHz processor and 24 GB memory. The processor features
two physical cores, and is capable of running two threads per core. This means
that the processor has a maximum of 4 logical cores.
The software versions of interest are:

• Ubuntu 18.04.4 LTS, released February 2020
• go version go1.13.3 linux/amd64, released October 2019
• Perl v5.30.2 built for x86_64-linux, released March 2020
• Simple Event Correlator v2.8.2, released on Jun 2, 2019

4.2 Dataset preprocessing and analysis

In total, the two subsets contain 223 563 log lines in JSON format. 116 572 of
these are of the type "Microsoft-Windows-Sysmon" which will be the main focus
of our experiments. As previously explained in Section 2.3, SEC is created to work
with logs that contain one event per line in syslog format. For us to be able to use
the Mordor dataset in SEC, we had to convert the JSON logs into a syslog-friendly
format. We converted the Mordor APT3 datasets by extracting the hostname and
the raw Windows Event message which was still intact in the JSON events. The
script used can be found in Appendix A.
It was interesting to us to graph the dataset, as a way to identify if the frequency
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of events are relatively stable, or of there are peaks in the dataset. Using the script
found in Appendix B we calculated how many events occurred in every 10 second
interval in the dataset. This is valuable as it will tell us what the peak number of
events might be, and will guide us in understanding if we are reaching our goal
of real time event correlation. We chose 10 seconds because our example rule
(as seen in Code listing 2.1) uses this number as its time window. In addition,
we wanted to look at the number of computers and users in the dataset. This is
valuable as it will give us an idea of how large the environment is. We did this
using the scripts in Appendix D and Appendix C respectively.
Finally, it might be interesting for us to see how our implementation handles mul-
tiple rules, and if that impacts performance. The script used for generating 1000
events can be seen in Appendix G.

4.3 Implementation that uses SECs own regex-based rule
format

4.3.1 Choosing a compiled language

As explained in Section 3.2.1, there are several benefits when using a compiled
language in terms of performance gains. We landed on Go as our language for
implementing our new solution.
Go [117] is cross-platform, supports garbage collection, strongly and statically
typed. In addition, Go features powerful built-in profiling tools and race-condition
detection that can help development. This is especially valuable as we know we
want to implement concurrency, and detecting and fixing any race-condition is-
sues is of great importance. Go makes building concurrent programs easy by
providing features such as goroutines for spawning new threads, and channels
for communicating between the threads. This will not be an extensive intro to Go,
the interested reader is referred to Go [117] for further details.

Goroutines, channels and workers

Goroutines are not "real" threads. They are lightweight threads managed by the
Go runtime, with a lower cost of creation than regular threads [120]. Channels
are the preferred way to communicate between goroutines in Go, and are created
to prevent any race conditions when multiple goroutines are reading and writing
to the same channel. The use of channels and goroutines gives us the ability to
run safely in a threaded matter, utilizing multiple cores. Since goroutines run in
the same address space, any access to shared memory outside of channels has to
be synchronized to avoid race conditions or data races.
Continuing forward in this thesis, we will use the term worker for a goroutine that
is created to handle events. By spawning multiple workers, we are able to handle
a bigger workload and increase the event throughput of our implementation.
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4.3.2 Implementation

When considering which features we wanted to implement from SEC, we chose to
implement the features that we saw the best value in. We chose to only implement
the Single and SingleWithTreshold type, and the RegExp pattern type. These are the
features required to implement the rule found in Code listing 2.1, and also some
of the most popular features observed from the SEC rule repository [121]. For
testing this implementation, we used the rule found in Appendix E.
Furthermore, we implemented threading by using goroutines and channels. The
architecture can be seen from the Figure 4.1. While it might seem complex, in
reality it is pretty simple. Each block is a separate Go routine running in a light-
weight thread. getEvents() reads events from input, and sends each event on a
channel named eventChannel. The handleEvent() goroutines (named workers in our
implementation), listens to this channel and when a new event arrives, picks it off
the channel and starts processing it. As can be seen from Figure 4.1, the workers
are sharing context, that they will lock on if any rules are matching and they need
to do some correlation. If a rule matches and issues a event action (as shown in
Code listing 2.1), the worker will push the event action on to a new channel that
is being listened to by reinjectEvents(). reinjectEvents() is a Go routine with the
sole purpose to collect events from multiple workers and forward them on a single
channel, reinjecting into eventChannel. This makes the new events available to the
the workers, so that they can process the new events. If any of the handleEvent()

workers completes a correlation according to the rule, and the rule issues a write
action, the action is written to output.
When we want to do correlation between two or more events based on a rule, we
need to have some kind of overview of what state our rule is in. In Figure 4.1 we
denote this as context. When a new event arrives that triggers our rule, we need to
know if this is the first event, if there are other events that have triggered before
it, and most importantly, if the previous events that triggered the rule is within
the given time frame of the rule.
One of the benefits of our new implementation is the ability to process events
concurrently. But when working with a context that is accessed by several workers
concurrently, data races may appear. A data race occurs when two goroutines
concurrently accesses the same variable (in this case the context variable), and
at least one of the goroutines writes to the variable. The danger here is that we
could have two or more goroutines with their own versions of the context that are
out of sync. This could lead to data loss and/or a failure to detect when a rule-
condition is met. The standard way of dealing with data races like this is to use a
mutex. A mutex provides a locking mechanism to ensure that only one goroutine
can manipulate a variable at a time.
In our implementation we integrated a per-rule mutex. This gave us a goroutine-
safe way of accessing and editing our context. It is safe to use this as a lock, since a
worker only will we working with one rule context at a time. If several goroutines
are accessing the context at the same time, but are interested in different rules,
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we will lock on the individual rule mutex instead of having to lock on a single
shared mutex which would lead to more waiting for locks to unlock.

events.txt getEvents() context

handleEvent()

handleEvent()

reinjectEvents() Output

Workers

Figure 4.1: Reimplementation in Go

4.4 Implemented a new rule format

As stated, we wanted to create another version that implements Sigma [97] and
a better way for internally representing events as discussed in Section 3.2.5.
As discussed in Section 3.2.5, SEC and our implementation in Section 4.3, when
tested the different rules against a log line, the pattern of the rule is applied against
the whole log line. In Section 3.2.5 we proposed that tokenizing the log before
testing each rule could improve the performance. When we tokenize the event log,
we take a single line of log/event, and split it into its key-value representation. For
instance, the event log found in Code listing 4.1 is a huge single line of text. Both
writing rules for, and using regular expressions, on such a large log line seems
inefficient.

Code listing 4.1: Example syslog event

<14>Feb 18 02:29:49 Client02.mrtn.lab Microsoft-Windows-Sysmon[2092]: Process
Create: RuleName: UtcTime: 2020-02-18 10:29:49.839 ProcessGuid: {dadb16ad-
bc9d-5e4b-0000-0010c8fd3600} ProcessId: 1040 Image: C:\Windows\System32\
whoami.exe FileVersion: 10.0.17763.1 (WinBuild.160101.0800) Description:
whoami - displays logged on user information Product: Microsoft Windows
Operating System Company: Microsoft Corporation OriginalFileName: whoami.exe
CommandLine: whoami CurrentDirectory: C:\Users\mrtn\ User: MRTNLAB\mrtn
LogonGuid: {dadb16ad-2c2d-5e17-0000-0020fc3c1b00} LogonId: 0x1B3CFC
TerminalSessionId: 1 IntegrityLevel: Medium Hashes: MD5=43
C2D3293AD939241DF61B3630A9D3B6,SHA256=1
D5491E3C468EE4B4EF6EDFF4BBC7D06EE83180F6F0B1576763EA2EFE049493A,IMPHASH=7
FF0758B766F747CE57DFAC70743FB88 ParentProcessGuid: {dadb16ad-2cf1-5e17
-0000-001027122b00} ParentProcessId: 2748 ParentImage: C:\Users\mrtn\test.exe
ParentCommandLine: .\test.exe
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If we tokenize the event before processing, we turn the event found in Code list-
ing 4.1 into something like what we have in Code listing 4.2.

Code listing 4.2: Example tokenized event

MachineName: Client02.mrtn.lab
ProcessType: Process Create:
RuleName:
UtcTime: 2020-02-18 10:29:49.839
ProcessGuid: {dadb16ad-bc9d-5e4b-0000-0010c8fd3600}
ProcessId: 1040
Image: C:\Windows\System32\whoami.exe
FileVersion: 10.0.17763.1 (WinBuild.160101.0800)
Description: whoami - displays logged on user information Product: Microsoft

Windows Operating System
Company: Microsoft Corporation
OriginalFileName: whoami.exe
CommandLine: whoami
CurrentDirectory: C:\Users\mrtn\
User: MRTNLAB\mrtn
LogonGuid: {dadb16ad-2c2d-5e17-0000-0020fc3c1b00}
LogonId: 0x1B3CFC
TerminalSessionId: 1
IntegrityLevel: Medium
Hashes: MD5=43C2D3293AD939241DF61B3630A9D3B6,SHA256=1

D5491E3C468EE4B4EF6EDFF4BBC7D06EE83180F6F0B1576763EA2EFE049493A,IMPHASH=7
FF0758B766F747CE57DFAC70743FB88

ParentProcessGuid: {dadb16ad-2cf1-5e17-0000-001027122b00}
ParentProcessId: 2748
ParentImage: C:\Users\mrtn\test.exe
ParentCommandLine: .\test.exe

The tokenized version of the event log is stored as a struct, which makes it sim-
pler to query specific parts of the event log directly, instead of having to parse
the whole event log every time we want to access a single key-value pair. An ex-
ample would be if we wanted to access the MachineName or CommandLine values
from the above example, which would be done like this: event[’MachineName’] and
event[’CommandLine’].
Implementing Sigma was achieved by replacing the rule parser that previously
parsed SEC rules, and use a YAML library instead. Most of the work required to
make these YAML function was spent on implementing the condition block from
the Sigma specification [109]. One benefit with the new format, is that since the
selection block-items are ANDed together, we are able to much quicker decide if a
rule is applicable for a event, without having to iterate over every single condition
in the rule. For testing this implementation, we used the rule found in Appendix F.
The end architecture is less complex when compared to the one presented in Sec-
tion 4.3. A figure representing the architecture for this iteration can be seen in
Figure 4.2.
All implemented code will be available from the authors GitHub [122] after de-
livering this thesis.
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events.txt getEvents() context

handleEvent()

handleEvent()

Output

Workers

Figure 4.2: Second implementation in Go
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Results

In this chapter we will present the results from our experiments. Further analysis
will be conducted in Chapter 6. We will denote our first implementation described
in Section 4.3 with MEC, and the second implementation described in Section 4.4
as MEC2.

5.1 Dataset analysis

As discussed in Section 4.2, we wanted to analyze the datasets to get an impression
if the frequency of events are relatively stable, or of there are any peaks in the
dataset. In total there are 8 users and 5 hosts present in the dataset spanning
both subsets. In the bar graphs in this section, the x axis represents time in 10
second intervals, and the y-axis represents the number of events during those 10
second intervals.
Figure 5.1 shows the data from the first subset. The data spans a time period of
76 minutes in total. As we can see, there are occasional spikes of events up to
around 1500 and 2400 events. There is an average of 144 events per 10 second
intervals. It is clear from the figure that there is always some background noise in
the dataset. This is expected, as Windows event logs are fairly verbose.
In Figure 5.2 what immediately sticks out is the huge outlier with almost 25 000
events in a single 10 second interval. These events seems to be "Process Access"-
events generated by a PowerShell-process enumerating all the processes on the
system mutliple times. In Figure 5.3 we have removed that outlier to get a better
view of the rest of the data in the graph. When we exclude the outlier, we get
an average of 678 events per 10 second intervals. In addition to this, it is worth
mentioning that the second subset shown in Figure 5.2 spans a lot shorter time
period than the first subset, only roughly 12 minutes.
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Figure 5.4: Baseline dataset

5.2 Implementation that uses SECs own regex-based rule
format

Single core

When comparing our solution against SEC it makes sense to only use one thread
for execution. As can be seen from Figure 5.4, MEC clearly outperforms SEC using
both 1 and 10 workers. As can be seen from the figure, there is a certain disad-
vantage of running MEC with multiple workers when the dataset is small. We can
attribute this to the additional overhead required by the Go runtime to control
the goroutines in a single thread, and any locking that might occur between the
goroutines against the rule context.
If we compare the baseline plot Figure 5.4 against the high signal, low noise data-
set in Figure 5.5, we can clearly a speed improvement going from the baseline
dataset, and over to the high signal, low noise dataset. The reason for this lies in
the implementation of SEC and MEC. If we are able to match a rule quickly, we
do not have to check all the other rules for a match, which when it adds up, saves
some time and improves the overall throughput.
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Figure 5.5: High signal, low noise dataset

Multiple cores

By using all the CPU cores available (4) instead of a single one, we can take bet-
ter advantage of Gos concurrency model, and raise the throughput when using
multiple workers and CPUs as seen in Figure 5.6 and Figure 5.7.
It is interesting to note the measurements for "1CPU,10W", which "catches up"
with the other measurements at around 100 000 events in both Figure 5.6 and
Figure 5.7. This is pretty much the same as what we saw in the single core test
when we ran with 10 workers on a single thread. The time used to spin up the 10
workers is only outweighed at approximately 100 000 events.
As we can see from Figure 5.6 and Figure 5.7, the results of 1CPU,1W, 1CPU,10W
and 4CPU,1W are generally performing the same. This is because they in general
are the same. When we are limiting our script to 1 worker, it doesn’t really matter
how many cores we use, as only one core will be running the worker regardless.
Likewise, when we are limited to only one CPU, spawning multiple workers only
add additional overhead without any gains.
There is however a slight benefit to the 4CPU,1W when we consider the smallest
dataset. This is because of the main-function in Go itself being a goroutine, so
when we are creating a worker in another core, the main-function can work un-
interrupted with reading the log files, while the worker is not blocking since it is
running in another core.
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Figure 5.6: Concurrency with high signal low noise dataset

5.3 Implemented a new rule format

We are interested in seeing if there are any performance benefits from running
our new rule implementation versus the re-implementation of the SEC rules. In
Figure 5.8 we are running with only a single rule, using our high signal, low noise
dataset. If we compare this to the concurrent version of MEC in Figure 5.6, we see
a drastic improvement between the two.
The slight benefit to the 4CPU,1W we saw in Section 5.2, has changed drastic-
ally to become the next-best performing metric after implementing our new rule
format.In addition there is now a larger separation between 1CPU,1W and 1CPU,10W
as compared to the results in Section 5.2. This variation can again be explained
by the fact that too many workers can be counter-productive, as they are blocking
on the rule context between them. This makes the 1CPU,1W quicker, as there is
not locking involved.
As stated in Section 4.2, we generated 1 000 rules randomly, to understand how
multiple rules might impact performance. We ran it against our high signal, low
noise dataset using 4 CPUs and 10 workers. The result can be found in Figure 5.9.
As the reader can deduce, there is a drastic fall in events processed per second,
because of the need to iterate over more rules.
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Figure 5.7: Concurrency with baseline dataset
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Figure 5.8: MEC2 concurrency with high signal low noise dataset
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Chapter 6

Discussion

In this chapter, we will discuss the results of our experiments, and how they line
up with our research questions posed in Chapter 1. We will also outline any future
work. This chapter provides a discussion of what implications the results of the
experiments has, and presents different aspects of the work conducted.
The first research question regarding the state of the art in event correlation has
been addressed in Chapter 2 where we have highlighted relevant studies and op-
tions for doing event correlation. We highlighted several different methods for
doing event correlation.
The experiments conducted in this thesis evaluated a subset of possible features
that might improve the performance of real time event correlation. We chose to
compare our solution against SEC, as that seems to be the most popular open-
source software for rule-based event correlation and used in a wide variety of
sectors.
First of all we will extrapolate some numbers from the Mordor datasets that we
used as explained in Section 3.1. As discussed in Section 5.1, the second scenario
had an average events per 10 seconds of 678. This gives us 67.8 events per second.
If we consider that the dataset contained 8 users and 5 hosts, we can try to make
some assumptions regarding real world environments. If we consider an environ-
ment with 100 hosts, that would give us a ballpark estimation of 1356 events per
second. If we consider an environment with 500 hosts, that brings our estimation
to 6780 events per second. This is not taking into account any peaks in the data.
If we consider the highest peak in the first scenario, as seen in Figure 5.1. Given
a network size of 500 hosts, that would give us a peak at about 22 800 events
per second. Now, that is probably unrealistic, as not all the hosts in the network
would peak at the same time, producing massive amount of logs.
We have considered multiple ways that we could improve the way real time event
correlation is done for Windows Event Logs in Chapter 3. As outlined in Chapter 4,
we re-implemented what we considered the most important parts of SEC in Go,
taking advantage of Go being a compiled program as discussed in Section 4.3. As
seen in Figure 5.4 and Figure 5.5 just by re-implementing SEC alone saw perform-
ance improvements.
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When comparing our solution against SEC it makes sense to only use one thread
for execution. As can be seen from Figure 5.4, MEC clearly outperforms SEC using
both 1 and 10 workers. As can be seen from the figure, there is a certain disad-
vantage of running MEC with multiple workers when the dataset is small. We can
attribute this to the additional overhead required by the Go runtime to control
the goroutines in a single thread, and any locking that might occur between the
goroutines against the rule context.
If we compare the baseline plot Figure 5.4 against the high signal, low noise data-
set in Figure 5.5, we can clearly a speed improvement going from the baseline
dataset, and over to the high signal, low noise dataset. The reason for this lies in
the implementation of SEC and MEC. If we are able to match a rule quickly, we
do not have to check all the other rules for a match, which when it adds up, saves
some time and improves the overall throughput.
Running this using equal conditions like the same dataset, and only a single core,
we were able to outperform SEC with 20-40% using the high signal low noise data-
set, and up to 89-135% when comparing with the baseline dataset. This clearly
shows the benefits of utilizing a compiled language when performance is an im-
portant criteria. As discussed in Section 4.3, we wanted to add concurrency and
threading to our solution, which allowed us to utilize the full capacity of the pro-
cessor. As seen in Figure 5.6 and Figure 5.7, these improvements showed and
greater event throughput. By taking full advantage of the system hardware by us-
ing all cores available to use. This gave us an even bigger increase in throughput
compared to both SEC and our own implementation using only a single core. We
saw performance improvements of 59-80% comparing our multi-threaded version
to our single core version using the high signal low noise dataset, and improve-
ments of 33-68% when using the baseline dataset.
In addition, we implemented a better time management system that extracts the
UTC timestamp from the event, and uses that for the time-based correlation as
opposed to SEC which uses the time of when SEC reads the log line from input.
The difference here does not play a role processing-wise, as the timestamps in the
datasets are set to a single point in time, which replicates how SEC works in our
new solution. In a real world scenario this would not be the case, and we consider
our solution to be a better implementation than the one used in SEC.
We also implemented a new way to pre-handle event logs when ingesting. We
called this tokenizing, Section 3.2.5 and along with using Sigma Section 2.4.2
which reduced the reliance on regular expressions, as a new rule format, we were
able to increase the throughput even further, as seen by Figure 5.8. This shows
that we were not only able to improve the way real time event correlation is done
for Windows Event Logs, but also show that our improvements give significant
performance benefits.
The slight benefit to the 4CPU,1W we saw in Section 5.2, has changed drastic-
ally to become the next-best performing metric after implementing our new rule
format. We attribute this again to the fact that the main-function in Go itself is a
goroutine, so when we are creating a worker in another core, the main-function
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can work uninterrupted with reading the log files, while the worker is not block-
ing on the rule context since it is running in another thread. In addition there is
now a larger separation between 1CPU,1W and 1CPU,10W as compared to the
results in Section 5.2. This variation can again be explained by the fact that too
many workers can be counter-productive, as they are blocking on the rule context
between them. This makes the 1CPU,1W quicker, as there is not locking involved.
In our testing we primarily used 1 rule, which is unrealistic in a enterprise en-
vironment. To address this, we generated 1000 rules as explained in Section 4.2
and used that for testing performance as well. As can be seen in Figure 5.9, the
solution takes a clear hit when having to parse a much larger number of rules, av-
eraging at around 1600 events per second when ran against our high signal, low
noise dataset using 4 CPUs and 10 workers. As discussed earlier in this chapter,
that would still be within the threshold for an environment consisting of 100 hosts,
but additional scaling would have to be done to support a larger number of events
per second.

6.1 Future work

While we propose that there would be not have to be done a lot of changes to the
current solution to implement other log formats in Section 3.2.6, we considered
that future work for the single reason that we did not consider it necessary to
address our research questions. However, it would be very interesting to see fu-
ture work that covers correlating different log sources from for example network
monitoring, application logs, etc.
We chose not to implement any form of output modularity as our focus was on
increasing the performance of our solution. However it would be nice to be able to
create granular output rules that takes some decision based on the alert severity
and sends the alert via e-mail, instant messaging platforms or ticketing systems.
We discussed distributed correlation in Section 3.2.8 which would be beneficial
for the redundancy, geolocation and scalability of the system. The implementa-
tion show in this thesis is primarily built to scale vertically, and interesting future
work would be to add horizontal scaling to the proposed solution in this thesis,
much like what is proposed in Figure 2.15, and tackle the challenges associated
with load balancing, shared "context memory" between the correlators, and other
possible obstacles.
We did unfortunately not have the ability to run our solution in any production
environment, which would be of interest to prove the real-world use of our solu-
tion.
Lastly, as explained in Section 4.3.2 we did not achieve feature parity with SEC or
Sigma in our implementation. We highlighted which parts we found interesting
and necessary for this thesis to properly test and answer our research questions.
However, it would still be interesting to see a complete implementation of SEC
using a compiled language, in addition to fully integrating Sigma into MEC2, to
allow for broader correlation actions using the various features in the rule spe-
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cification.



Chapter 7

Conclusion

The primary contribution of this project is an improved method for correlating
Windows Event Logs in time, in near real time. The goals of this thesis was to
outlined the state of the art in real time event correlation, and implemented a
solution that improves the way real time event correlation can be done with re-
gards to Windows Event log correlation. We chose to compare our solution against
SEC, as that seemed to be the most popular open-source software for rule-based
event correlation and used in a wide variety of sectors as explained in Section 2.3.
First of all we did a deep dive into the state of the art and considered several rel-
evant types of event correlation. Rule-based event correlation was chosen because
of its popular use in the security industry, and SEC was identified as the primary
target that we wanted to compare our solution against.
A implementation was created that utilized the same rule-set as SEC. Just by using
a compiled language like Go instead of a interpreted language like Perl, we saw
improvements to the event throughput. When we implemented multi-threading
and utilized the full processing power available to us on the test machine, we saw
an even greater effect.
A new implementation was then proposed that uses different rules for correl-
ating events and a different way to pre-process the events when ingesting. We
considered the Sigma Section 2.4.2 rule format, and utilized tokenization Sec-
tion 3.2.5 for making it easier to parse the event logs internally in our solution.
The experiments and the associated results present the event processing and cor-
relation throughout which showed a varying level of increased performance, de-
pending on the dataset and methods used for context management. We were able
to outperform SEC with 20-40% using the high signal low noise dataset, and up
to 89-135% when comparing with the baseline dataset. By taking full advantage
of the system hardware by using all cores available to use and improving our
rule format and internal representation of events gave us an even bigger increase
in throughput compared to both SEC and our own implementation using only a
single core. We saw performance improvements of 59-80% comparing our multi-
threaded version to our single core version using the high signal low noise dataset,
and improvements of 33-68% when using the baseline dataset.
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Furthermore, we made an important contribution by implemented a better time
management system that extracts the time from the event, and uses that for the
time-based correlation as opposed to SEC which uses the time of when SEC reads
the log line from input.
In conclusion, this thesis has outlined the state of the art in real time event correl-
ation, and implemented a solution that improves the way real time event correla-
tion can be done with regards to Windows Event log correlation and performs very
good compared to SEC. Different implementations have been created and tested
for performance through experiments using datasets that are both realistic, and
optimized for testing performance. The experiments served as proof-of-concept
that we were able to enhance and improve the event processing throughput and
correctness compared to existing solutions. As a result, this thesis has made a
contribution to event correlation, and more specifically for correlating Windows
Event logs in near real time.
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Appendix A

Sysmon to Syslog Python script

Code listing A.1: Sysmon to Syslog Python script

import json

def convertEvents(sysmon):
for event in sysmon:

if "Microsoft-Windows-Sysmon" in event:
event = json.loads(event)

m = event["message"]
m = m.replace("\n", "␣␣")

if "computer_name" in event:
h = event["computer_name"]

elif "winlog" in event:
h = event["winlog"]["computer_name"]

else:
h = "NOHOSTNAME"

x = f"<14>Jan␣01␣00:00:00␣{h}␣Microsoft-Windows-Sysmon[2092]:␣{m}"
print(x)

with open(’./caldera_attack_evals_round1_day1_2019-10-20201108.json’,’r’) as sysmon:
convertEvents(sysmon)

with open(’./empire_apt3_2019-05-14223117.json’,’r’) as sysmon:
convertEvents(sysmon)
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Appendix B

Extracting events in 10s intervals

Code listing B.1: Extracting events in 10s intervals

import json
from datetime import datetime

epoch = datetime.utcfromtimestamp(0)

depth = 9 # 10s intervals
m = {}

def unix_time_millis(datetime):
return str((datetime - epoch).total_seconds() * 1000.0).replace(".0", "")

def convertEvents(sysmon):
for event in sysmon:

if "Microsoft-Windows-Sysmon" in event:
event = json.loads(event)
timestamp = event[’@timestamp’]
parsed = datetime.strptime(timestamp,"%Y-%m-%dT%H:%M:%S.%fZ")
millis = unix_time_millis(parsed)
top = millis[:depth]

if top in m:
m[top] += 1

else:
m[top] = 1

with open(’./caldera_attack_evals_round1_day1_2019-10-20201108.json’, ’r’) as sysmon:
convertEvents(sysmon)

with open(’./empire_apt3_2019-05-14223117.json’, ’r’) as sysmon:
convertEvents(sysmon)

for x in m:
print(f"({x},{m[x]})")

79





Appendix C

Extracting users from dataset

Code listing C.1: Extracting users from dataset

import json

users = {}

def convertEvents(sysmon):
for event in sysmon:

if "Microsoft-Windows-Sysmon" in event:
event = json.loads(event)

if "winlog" in event:
if "event_data" in event["winlog"]:

if "User" in event["winlog"]["event_data"]:
user = event["winlog"]["event_data"]["User"]
if user not in m:

users[user] = 1

with open(’./caldera_attack_evals_round1_day1_2019-10-20201108.json’, ’r’) as sysmon:
convertEvents(sysmon)

with open(’./empire_apt3_2019-05-14223117.json’, ’r’) as sysmon:
convertEvents(sysmon)

print(f"There␣are␣{len(users)}␣in␣total:")
for user in users:

print(user)

81





Appendix D

Extracting computers from
dataset

Code listing D.1: Extracting computers from dataset

import json

computers = {}

def convertEvents(sysmon):
for event in sysmon:

if "Microsoft-Windows-Sysmon" in event:
event = json.loads(event)

if "computer_name" in event:
hostname = event["computer_name"]

elif "winlog" in event:
hostname = event["winlog"]["computer_name"]

if hostname not in computers:
computers[hostname] = 1

with open(’./caldera_attack_evals_round1_day1_2019-10-20201108.json’, ’r’) as sysmon:
convertEvents(sysmon)

with open(’./empire_apt3_2019-05-14223117.json’, ’r’) as sysmon:
convertEvents(sysmon)

print(f"There␣are␣{len(computers)}␣in␣total:")
for computer in computers:

print(computer)
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Appendix E

SEC rule used in testing

Code listing E.1: SEC rule used in testing

# whoami
# $1 - hostname
# $2 - executable
# $3 - username
type=Single
ptype=RegExp
pattern=<\d+>\S+\s+\d+\s\d\d:\d\d:\d\d\s(\S+).*Process Create.*OriginalFileName:
\s+((?i)whoami.exe).*User: (\S+)
desc=$0
action=event CAR-2013-04-002_for_$3_on_$1

# quser
type=Single
ptype=RegExp
pattern=<\d+>\S+\s+\d+\s\d\d:\d\d:\d\d\s(\S+).*Process Create.*OriginalFileName:
\s+((?i)quser.exe).*User: (\S+)
desc=$0
action=event CAR-2013-04-002_for_$3_on_$1

# hostname
type=Single
ptype=RegExp
pattern=<\d+>\S+\s+\d+\s\d\d:\d\d:\d\d\s(\S+).*Process Create.*OriginalFileName:
\s+((?i)hostname.exe).*User: (\S+)
desc=$0
action=event CAR-2013-04-002_for_$3_on_$1

# collector
# $1 - username
# $2 - hostname
type=SingleWithThreshold
ptype=RegExp
pattern=CAR-2013-04-002_for_(\S+)_on_(\S+)
desc=$0
action=write - CAR-2013-04-002: Quick execution of a series of suspicious commands

detected on host $2 from user $1
window=10
thresh=3

#
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# SEC Performance Test Rule
# Look for EOF at the end of the line, and send ourselves
# a USR1 signal to dump statistics, and a TERM signal to
#end the program.
type=Single
ptype=RegExp
pattern=EOF\s*$
desc=$0
action=eval %k ( $pid=$$$; kill(TERM, $pid));



Appendix F

Sigma rule used in testing

Code listing F.1: Sigma rule used in testing

title: Quick Execution of a Series of Suspicious Commands
id: 61ab5496-748e-4818-a92f-de78e20fe1f1
description: Detects multiple suspicious process in a limited timeframe
logsource:

category: process_creation
product: windows

detection:
selection:

CommandLine:
- whoami
- quser
- hostname

timeframe: 10s
condition: selection | count() by MachineName >= 3
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Appendix G

Rule generator

Code listing G.1: Rule generator

import uuid
import random

NUM_RULES = 1000
MEC_OUTPUT_FOLDER = "./output/"
MEC_SUFFIX = "_rule.yml"

SEC_OUTPUT_FOLDER = "./sec-output/"
SEC_SUFFIX = "_rule.sec"

mec_template = ""
sec_template = ""

COMMANDLINE = [
"arp",
"at",
"whoami",
"attrib",
"cscript",
"dsquery",
"hostname",
"ipconfig",
"mimikatz",
"nbstat",
"net",
"netsh",
"nslookup",
"ping",
"quser",
"qwinsta",
"reg",
"runas",
"sc",
"schtasks",
"ssh",
"systeminfo",
"taskkill",
"telnet",
"tracert",
"wscript",
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"xcopy"
]

with open(’template.yml’, ’r’) as template_file:
mec_template = template_file.read()

with open(’template.sec’, ’r’) as template_file:
sec_template = template_file.read()

for i in range(NUM_RULES):
mt = mec_template
st = sec_template
mec_path = f"{MEC_OUTPUT_FOLDER}{i}{MEC_SUFFIX}"
sec_path = f"{SEC_OUTPUT_FOLDER}{i}{SEC_SUFFIX}"

RANDOM_ID = str(uuid.uuid4())
TIMEFRAME = str(random.randrange(10,30))
COUNT = str(random.randrange(3, 6))
COMMAND_1 = str(random.choice(COMMANDLINE))
COMMAND_2 = str(random.choice(COMMANDLINE))
COMMAND_3 = str(random.choice(COMMANDLINE))

mt = mt.replace("{RANDOM_ID}", RANDOM_ID)
mt = mt.replace("{TIMEFRAME}", TIMEFRAME)
mt = mt.replace("{COUNT}", COUNT)
mt = mt.replace("{COMMAND_1}", COMMAND_1)
mt = mt.replace("{COMMAND_2}", COMMAND_2)
mt = mt.replace("{COMMAND_3}", COMMAND_3)

st = st.replace("{RANDOM_ID}", RANDOM_ID)
st = st.replace("{TIMEFRAME}", TIMEFRAME)
st = st.replace("{COUNT}", COUNT)
st = st.replace("{COMMAND_1}", COMMAND_1)
st = st.replace("{COMMAND_2}", COMMAND_2)
st = st.replace("{COMMAND_3}", COMMAND_3)

with open(mec_path, "w") as out:
out.write(mt)

with open(sec_path, "w") as out:
out.write(st)

eof_rule = """
#
# SEC Performance Test Rule
# Look for EOF at the end of the line, and send ourselves
# a USR1 signal to dump statistics, and a TERM signal to
#end the program.
type=Single
ptype=RegExp
pattern=EOF\s*$
desc=$0
action=eval %k ( $pid=$$$; kill (USR1, $pid); kill(TERM, $pid));
"""

with open(f"{SEC_OUTPUT_FOLDER}eof{SEC_SUFFIX}", "w") as out:
out.write(eof_rule)
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’’’
SEC template:
# whoami
# $1 - hostname
# $2 - executable
# $3 - username
type=Single
ptype=RegExp
pattern=<\d+>\S+\s+\d+\s\d\d:\d\d:\d\d\s(\S+).*Process Create.*OriginalFileName
:\s+((?i){COMMAND_1}.exe).*User: (\S+)
desc=$0
action=event {RANDOM_ID}_for_$3_on_$1

# quser
type=Single
ptype=RegExp
pattern=<\d+>\S+\s+\d+\s\d\d:\d\d:\d\d\s(\S+).*Process Create.*OriginalFileName
:\s+((?i){COMMAND_2}.exe).*User: (\S+)
desc=$0
action=event {RANDOM_ID}_for_$3_on_$1

# hostname
type=Single
ptype=RegExp
pattern=<\d+>\S+\s+\d+\s\d\d:\d\d:\d\d\s(\S+).*Process Create.*OriginalFileName
:\s+((?i){COMMAND_3}.exe).*User: (\S+)
desc=$0
action=event {RANDOM_ID}_for_$3_on_$1

# collector
# $1 - username
# $2 - hostname
type=SingleWithThreshold
ptype=RegExp
pattern={RANDOM_ID}_for_(\S+)_on_(\S+)
desc=$0
action=write - {RANDOM_ID}: Quick execution of a series of suspicious commands
detected on host $2 from user $1
window={TIMEFRAME}
thresh={COUNT}

MEC Template:
title: Quick Execution of a Series of Suspicious Commands
id: {RANDOM_ID}
description: Detects multiple suspicious process in a limited timeframe
logsource:

category: process_creation
product: windows

detection:
selection:

CommandLine:
- {COMMAND_1}
- {COMMAND_2}
- {COMMAND_3}

timeframe: {TIMEFRAME}s
condition: selection | count() by MachineName > {COUNT}

’’’
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