Sturla Hggdahl Bae

Triage of PE-files through divide-and-
conquer clustering

Master’s thesis in Information Security
Supervisor: Geir Olav Dyrkolbotn

June 2020

2
2
=
2

o o
o o
C C
< c
3 3
= =
©
C
T
(V]
o)
[
R
(9]
wmy
G
o
2
(2]
—
[
=
[
)
C
.5
oo
:
o
z

o
c
-
]
]
£
)
c
i

T &0 C
Sco
T E S
33
QL c=
v 22
o
C
c £

o
B U
o ©
o c
Em
S 2

—
23
S o
g n
s
E S
o ®©
s E
= 5
Y

[t
© =
S, £
2 4
5 O
3 g
T o
(&)
a

@ NTNU

Norwegian University of
Science and Technology

Triage of PE-files through divide-and-conquer
clustering

Sturla Hggdahl Bae

CC-BY 2020/06/02

Abstract

The number of new, unique malicious files detected every day is steadily increas-
ing. The reason why so many new files are detected, is not that so many new
families of malware are created every day, but because minor modifications are
made to existing malicious files. Changing a single bit is enough to make a file
appear as an entirely new file, even though the behaviour of the file remains the
same. As the number of new files grows, it can eventually become infeasible to
analyse all new files in-depth. Worst case, this could lead to new variants of ma-
licious files going undetected for a longer period.

Since a large share of the “new” files are mere variations of other files, in-depth
analysis should not be necessary for all files. By analysing a single file in-depth,
one can predict the label of all similar files. This way, the number of files in need
of in-depth analysis would be reduced greatly.

A method that allows quick identification of similar files, is clustering based on
static properties. Numerous features can be used in clustering. By combining fea-
tures that complement each other, it can be possible to identify more files that are
similar. It can therefore be wise to use several features. Some features allow clus-
tering to be performed with quicker methods than others. How time-consuming
and costly it is to cluster files, can therefore be determined by the choice of fea-
tures.

In an attempt to increase the precision or reduce the execution time of cluster-
ing files, the divide-and-conquer algorithm could be applied. This involves cluster-
ing files differently, based on the properties of the files. Primarily the files should
be clustered using features that allow quick clustering, and if a label cannot be
determined by this, a new attempt can be made with features that are slow to
cluster files by. Provided that using fast features will be enough in most cases, it
will be possible to cluster files quicker than if all features were used on all files.

This thesis describes the proposed method, a proof of concept implemented to
evaluate if the method has merit, a comparison between the proposed method and
more basic clustering methods, and the challenges related to performing triage
and evaluating result.

iii

Sammendrag

Antallet nye, unike ondsinnede filer som oppdages hver dag gker stadig. Grunnen
til at det oppdages s& mange nye filer, er ikke at det lages s mange helt nye vari-
anter av skadevare hver dag, men fordi smé endringer blir gjort pa eksisterende
ondsinnede filer. Det kan veere nok & endre én enkelt bit for a fa en fil til & fremsta
som en helt ny fil, samtidig som filen fortsatt vil utfgre akkurat samme handling.
Etter hvert som antallet nye filer vokser, kan det bli umulig & analysere alle nye
filer i dybden. I verste fall, kan dette fgre til at nye varianter av ondsinnede filer
forblir uoppdaget over en lengre tidsperiode.

Etter som en stor andel av de “nye” filene bare er mindre variasjoner av andre
filer, bgr det ikke vaere ngdvendig a analysere alle filer i dybden. Ved a analysere
én enkelt fil i dybden, kan man forutsi hvilken familie av skadevare lignende filer
tilhgrer, og merke disse filene basert pa dette. Ved a gjore dette, vil antallet filer
som ma analyseres i dybden reduseres i stor grad.

En metode som gjgr det mulig & identifisere lignede filer raskt og effektivt, er
gruppering av filer basert pa statiske egenskaper. Mange egenskaper kan benyttes
for & gruppere filer. Ved 8 kombinere egenskaper som utfyller hverandre, kan man
potensielt finne flere filer som ligner pa hverandre enn hvis man kun benytter én
egenskap. Det kan derfor vaere nyttig 4 benytte flere egenskaper. Noen egenskaper
gjor det mulig & gruppere filer pa raskere mater enn andre. Hvilke egenskaper man
benytter kan dermed avgjere hvor tidkrevende og kostbart det vil veere & gruppere
filer.

I et forsgk pa & oke presisjonen eller redusere tiden det tar & gruppere filer, kan
man benytte splitt-og-hersk algoritmen. Dette inneberer & gruppere filer ulikt,
basert pa egenskapene til filene. Forst og fremst grupperes filene ved hjelp av
egenskaper som er raske 8 gruppere etter, og dersom man ikke klarer & identifisere
en merkelapp for filer basert pa dette, blir det gjort et nytt forsgk pa & gruppere
filene med egenskaper som er tregere gruppere etter.

Denne rapporten beskriver den foreslatte metoden, et konseptbevis som har
blitt implementert for & evaluere om hvor nyttig metoden er, en sammenligning
mellom den foreslatte metoden og enklere metoder for & gruppere filer, samt ut-
fordringene ved & prioritere filer og & evaluere resultater.

Acknowledgements

I would like to thank my supervisor, Geir Olav Dyrkolbotn, for his valuable guid-
ance throughout the semester.

I would also like to express my deepest gratitude to my co-supervisor, Trygve
Brox at NortonLifeLock. This project would likely not have been possible to carry
out without his expertise in the field.

Finally, I would like to thank my friends and family for all the support I have
received.

vii

Contents

Abstract L iii
Sammendrag e e e \
Acknowledgements vii
ContentsS ittt e e e ix
Figures e xiii
Tables e XV
Code Listings i vt ittt e e e e xvii
1 Introduction 1
1.1 Topicscovered @i 1
1.2 Keywords . . . v v v i it i e e e e e e e e e e e 2
1.3 Problemdescription 2
1.4 Justification, motivation and benefits 3
1.5 Scope e 4
1.6 Researchquestions, 4
1.7 Contributions 4
1.8 Thesisoutline 4

2 Theoryandrelatedwork 7
2.1 Concepts related to PE-files, clustering and triage 7
2.1.1 Portable Executablefile, 7

2.1.2 PEfilefeatures 8

2.1.3 Finding similar PE-files by comparing hashes 8

2.1.4 Obfuscation, 9

2.1.5 Clustering PEfiles, 10

2.1.6 Finding similar files based on distance 10

2.1.7 Identifying similar files based on identical values 11

2.1.8 Time complexity of clustering with different types of features 13

2.1.9 Performing triage through clustering. 13

2.2 Previous findings and approaches 18
2.2.1 Clustering files using distance/similarity based fuzzy hashes 18

2.2.2 Clustering files based on identical hash digests 19

2.2.3 Performing malwaretriage 21

2.2.4 Divide-and-conquer clustering 23

2.2.5 Evaluating malware triage / clustering 24

3 Theproposedmethod 29

ix

X Sturla H. Bae: Triage of PE-files through DAC clustering

3.1 Applying the DAC algorithm to triage of PE-files 29

3.1.1 Preprocessingottt e 31

3.1.2 Feature extractiono euvunwon.. 32

3.1.3 DACclustering v nienennin.. 32

3.1.4 Evaluating cluster quality. 34

3.1.5 Labellingfiles 34

3.2 Proof of Concept. o v v vttt e 35
3.2.1 Simulating a malware triage environment with a feed of

unknown PEfiles. 35

3.2.2 Preprocessing e 36

3.2.3 Feature extraction, 37

3.2.4 Improving performance through parallelization 38

3.2.5 DACclusteringy 38

3.2.6 Evaluatingclusters. 39

3.2.7 Labelling clustersandfiles 40

3.2.8 Prioritising files for in-depth analysis 40

3.3 EXperimentsttt 40

3.3.1 Datasets ov i e e e e e e e e e e 41

3.3.2 Hardware setup vv vt 45

4 Results. 47

4.1 Smalldataset 47

4.1.1 Training 47

4.1.2 Testing it 50

4.1.3 Triageo oo e e 51

4.2 Largedataset ittt e 53

421 Training 54

4.2.2 Testing e 55

423 Triage. e 56

5 Discussion 59

5.1 Analysis of results presented in section 4.2.2 and 4.2.3 59

5.2 Findings related to unpacking 61

5.3 Potential issues with the data sets used in the experiments 62
5.4 Issues and potential improvements for the proposed method and

implementation 63

5.4.1 Algorithmicattacks 64

5.5 Futurework 64

6 Conclusion 67

Bibliography e 69

A Abandoned unpacking methods and features. 75

A.1 Abandoned unpacking methods 75

A.2 Abandoned features 76

B Complexity of clustering with distance-based fuzzy hashes. 79

C Published open-source software 81

C.1 Proof of Concept. v v v vttt et e e e 81

Contents

C.2 Python module for extracting the icon of a PE-file
C.3 Ruby script for extracting the Machoc hash of a PEfile

Xi

Figures

2.1
2.2
2.3

2.4

2.5

2.6
2.7

3.1

3.2

3.3

4.1

Two-dimensional array for finding files with identical hash digests.
Using a hash table to quickly find files with a given “key”.
Triage of files: The label of an unknown file is predicted with clus-
tering and transduction, and the file should therefore not be prior-
itised.
Ilustration of the difference between using induction and trans-
duction for labelling files. A file in class A is incorrectly labelled as
belonging to class C when using induction.
If many unknown files have been clustered together, it is possible
to analyse a representative file in-depth, and predict the labels of
thesimilarfiles.
Hlustration of how precision and recall is calculated
Splitting data for multiple iterations with k-fold cross-validation . .

Ilustration of the triage pipeline. Files are processed in the steps
described insection 3.1.
Preprocessing of PE-files. If a file is detected as being packed, an
attempt is made at unpacking the file. If the file is successfully un-
packed, the resulting unpacked file will be clustered first. The ori-
ginal file can then potentially be labelled based on any label given
to the contained file.
Clustering most files using fast features and applying slower fea-
tures that complement the fast features on remaining files.

Comparison between clustering with Fast features, All features and
DAC clustering. DAC clustering is able to filter out almost as many
files as clustering with all features, and is only slightly slower than
clustering with fast features.

xiii

12
12

15

30

31

58

Tables

3.1 Detailsofthesmalldataset......................... 42
3.2 Details of thelargedataset 43

4.1 Mean execution time of parsing and extracting features from a
singlefile. 48

4.2 Number of files clustered, mean size and mean purity of clusters,
when clustering the 7 858 files in the training set with individual
features. 49

4.3 Total execution time for clustering the 7 858 files in the training
set, using individual features and combinations of features. 50

4.4 Precision and recall achieved, as well as the execution time of pars-
ing, clustering and labelling the 1 965 files in the testing set. 51

4.5 Precision and recall achieved when attempting to label unknown
files after analysing a representative file in the same cluster. The
recall indicates that very few files could be labelled in this man-
ner, while the precision indicates that approximately 20% of files
labelled in this manner were given an incorrect label. 52

4.6 The final results from performing triage, in terms of how many files
had to be analysed in-depth and how precise the labelling was. . . . 53

4.7 Mean execution time required to parse and extract features from a
fileinthe largedataset. 54
4.8 Number of files clustered, mean size and mean purity of clusters
created when clustering the 185 841 files in the training set using
various features. 54
4.9 Total execution time for clustering the 185 841 files in the training
set, using individual features and combinations of features. “No fea-
tures” corresponds to simply iterating over the files without making
any attempt at clustering them. 55
4.10 Precision and recall achieved, as well as the execution time of pars-
ing, clustering and labelling the 46 461 files in the testing set. ... 56
4.11 The final results from performing triage, in terms of how many files
had to be analysed in-depth and the precision of labelling files. . . . 57

XV

Sturla H. Bae: Triage of PE-files through DAC clustering

5.1 Comparison of the best performing clustering methods. Clustering
files with all features took much longer time than the other clus-
tering methods, but allowed a greater number of files to be filtered

Code Listings

3.1 Clustering files based on equal imphash in Python. As one can see
in the code below, clustering files based on equal values is simple
to implement as well as fast to execute.

B.1 Clustering files based on TLSH distance in Python

xvii

Chapter 1

Introduction

This chapter first introduces the topics covered by this thesis. A description of the
problem as well as the motivation to carry out this research projects is then given,
followed by the research questions and contributions.

1.1 Topics covered

Malware is a term used to describe malicious software — software made with the
intention of performing harmful activities on computers. The attack surface of
malware has increased rapidly in the past decade, together with a significant rise
in the number of people with access to a computer and the Internet, as well as the
Internet of Things trend where more devices than ever before are connected to the
Internet. The potential consequences that malware can cause, have also become
more severe since many critical societal functions have become dependent on
computers and computer networks.

To defend against malware, Anti-virus software is typically used. This software
defends against malware by detecting and blocking or removing malicious files.
On personal computers, anti-virus is strongly recommended since most people can
be tricked into downloading and executing malicious files. For detection of this
to be possible, the anti-virus software must have a method of identifying whether
files are malicious or not.

Malware analysis is an activity typically performed by anti-virus software vendors,
to identify new malware variants and new methods for detecting malicious files. If
a malicious file is detected by anti-virus software, it can be stopped from perform-
ing harmful activities on the system. Authors of malware are therefore continu-
ously trying to find new methods for avoiding detection of their malware, which
is why anti-virus software vendors always have to be in search for new malicious
files.

When the number of files in need of analysis increases beyond the number of files
one can analyse in-depth, anti-virus software vendors must perform triage on the
files. Triage involves sorting and prioritising items based on the perceived severity.
This can be done, since it is critical that certain files are analysed immediately,

2 Sturla H. Bae: Triage of PE-files through DAC clustering

while there would be little to no consequence of postponing or not analysing other
files.

One method that can help with triage is clustering. Clustering is the process of
grouping items together based on how similar they are. A cluster of files should
therefore contain files that are similar to each other. Triage can then involve prior-
itising files that are not similar to previously analysed files. The key to successful
triage is therefore to use a suitable clustering algorithm and suitable features,
which is the focus of this thesis.

The thesis also covers unpacking, which is a method for de-obfuscating files, in an
attempt to cluster files more precisely.

1.2 Keywords

Malware triage, Static analysis, Divide-and-Conquer clustering, Semi-supervised
learning, Static unpacking, Generic unpacking

1.3 Problem description

As mentioned in the beginning of this chapter, anti-virus software vendors must
be able to find and analyse new files in order to identify new malware variants.
Anti-virus software vendors can collect new files for analysis with various meth-
ods. One method is to utilise telemetry where the anti-virus software installed by
users will submit unknown files for analysis. Another method for identifying new
files is to subscribe to a feed from VirusTotal. This feed contains files submitted
by users wishing to scan a file with multiple anti-virus applications, and can typ-
ically contain 1.2 million distinct new files (of any type) per day, of which at least
350 000 files are malicious executable files [1-3]. Anti-virus software vendors
subscribed to this feed, can then retrieve the new files that they wish to add to
their database of analysed files.

One method used by anti-virus software for identifying if an executable file is ma-
licious, has been to check if the file matches any entries in a blacklist. These black-
lists typically contains checksums of malicious files or byte signatures of specific
file sections and must be updated regularly by the anti-virus software vendors. By
making small modifications to the files, or developing the malicious files such that
they modify themselves when propagating, the checksum of the file will change
although the functionality remains the same. In addition to making small modi-
fications to files, malware authors are also using packing as a technique to avoid
detection. Packing involves compressing or encrypting a file, and then adding code
that unpacks (decompresses / decrypts) the original file, before executing it. These
methods used by malware authors to avoid detection, are the main reasons why
there are so many new, unique files.

Anti-virus software vendors are facing a major challenge related to identifying
all new malware variants as the number of new, unique files increase faster than

Chapter 1: Introduction 3

the computation cost decreases. Without any method to identify which files are
likely to be interesting, files would have to be randomly selected or dropped. Do-
ing so, could lead to new variants of malware remaining undetected. To mitigate
this issue, triage must be performed to filter out files that are less interesting,
and prioritising files that are likely to be interesting. Files that typically would be
interesting are for instance new variants of malicious software that utilise new
methods for avoiding detection.

Dynamic analysis is an effective method that can be used to extract features for
identification of similar files. Dynamic analysis involves executing the file in a
controlled environment and monitor the behaviour of the file. This is an effective
method for clustering files, since two files that exhibit the same behaviour, likely
are related. The problem with dynamic analysis, is that it is computationally ex-
pensive. A method that can be significantly cheaper in terms of computation is
static analysis. Static analysis involves inspecting the properties of a file without
executing it. This allows multiple files per second to be processed on a single CPU
core, while dynamic analysis typically takes 2 to 5 minutes per file on a single
CPU core [4]. For this reason, dynamic analysis should only be used in situations
where static analysis is ineffective.

Multiple methods for scalable malware triage have been proposed previously, but
no definite solution has been identified yet. Some methods are only able to filter
out a small number of files, while other triage methods are computationally ex-
pensive themselves, significantly reducing the benefit of performing triage. After
investigating some proposed methods, the following question arose: Why are they
treating all files identically? Malware authors often try to obfuscate their malware
heavily, so is there really “one features fits all” or “one clustering method fits all”?
An alternative to treating all files identically would be to use the Divide-And-
Congquer (DAC) algorithm. This algorithm involves breaking down a problem into
smaller problems that are easier to handle. Is it possible to achieve greater speeds
or greater precision, by attempting to use different methods for clustering differ-
ent files?

1.4 Justification, motivation and benefits

Without improving the triage of executable files, new malware variants could re-
main undetected due to the cost of analysing all files rising to unacceptably high
levels. This could result in new variants drowning in the amount of polymorphic
and metamorphic files. The consequences of malicious files not being detected by
anti-virus can be severe, as the “WannaCry” and “NotPetya” attacks have shown
[5].

If a new method is identified that improves the performance of triage, it might be
possible to detect new variants of malware faster, or reduce the cost of performing
malware analysis in large scale.

4 Sturla H. Bae: Triage of PE-files through DAC clustering

1.5 Scope

To ensure that the project could be completed within the given time, the scope
of the project had to be reduced. Although triage is relevant for all types of files,
the majority of files submitted to anti-virus software vendors and VirusTotal are
Portable Executable files (“exe” and “dll” files) [1], hence referred to as PE-files.
The focus of this thesis was therefore on triage of PE-files, but findings can be
applicable to triage of other file types as well.

1.6 Research questions

The research question of this thesis is defined as the following:

e How does divide-and-conquer clustering perform in triage of PE-files, com-
pared to more naive clustering methods?

e How feasible it is to perform unpacking in large-scale triage of PE-files?

e To which extent does unpacking contribute to improved performance in
triage of PE-files?

Improving malware triage involves reducing the need of analysing files using com-
putationally expensive analysis methods such as dynamic or manual analysis or
achieving greater speeds and accuracy of triage. It is likely not possible to achieve
all these at once, but improving a single one of these measures could be a signi-
ficant contribution.

1.7 Contributions

The main contribution of this thesis is a detailed description of the method, a proof
of concept and an evaluation of the method based on results from experiments.
Additional contributions involve improved domain knowledge related to topics
such as static unpacking, generic/dynamic unpacking, and the usefulness of vari-
ous PE features.

The proof of concept is released as open-source software available for research-
ers wishing to verify or improve upon the implementation. This project has also
resulted in other tools that have been released as open-source software. These
open-source implementations are briefly described in appendix C, and can hope-
fully be of use for other researchers and malware analysts in the future.

1.8 Thesis outline

The thesis is divided into six chapters. Following this introduction, chapter 2,
provides an overview of the concepts and previous findings / approaches to triage
of PE-files and related topics. Chapter 3 then describes the proposed method and
the proof of concept that has been implemented to evaluate if the method can be

Chapter 1: Introduction 5

used to improve large scale triage of PE-files. The results of the conducted exper-
iments is presented in chapter 4, and then discussed in chapter 5. The thesis is
finally concluded in chapter 6.

Chapter 2

Theory and related work

This chapter first covers some basic concepts related to PE-files as well as clus-
tering and triage of PE-files. The chapter then covers previous findings and ap-
proaches to clustering and triage of malware and/or PE-files.

2.1 Concepts related to PE-files, clustering and triage

2.1.1 Portable Executable file

Portable Executable, typically abbreviated as “PE” is the name of the executable
files for Windows operating systems [6].

A PE-file generally consists of a PE header and various sections. The PE header
contains fields specifying basic properties of the file, such as the machine type the
file was compiled for (e.g. x86), number of sections, a timestamp of when the file
was created and the entry point address (address of where the execution of code
should start) [6].

Each section consists of a section header and section data. A section header spe-
cifies the name of the section the virtual size of the section, the size of the raw
data and flags specifying the characteristics of the section. Flags can typically in-
dicate whether a section can be read or written to. A section should generally not
be executable and writable, but there are exceptions to this.

It is possible to create arbitrary sections, but some sections are considered as spe-
cial sections. Some of them are [6]:

.bss: Uninitialized data

.data: Initialized data

.edata: Export tables; Contains information on exported functions

.idata: Import tables; Contains information on imported functions

.rdata: Read-only initialised data

.reloc: Image relocations; Holds information that is required to find the cor-
rect addresses if a file could not be loaded at the preferred address, because
something was already mapped to it.

.rsrc: Resource directory; Typically contains icons and images that are re-

8 Sturla H. Bae: Triage of PE-files through DAC clustering

sources used by the file.
e .text: Executable code; Instructions that should be executed.

The .idata section contains a table known as the Import Address Table (IAT). Most
PE-files import functions from libraries, and large programs can typically import
hundreds of functions. The import address table contains function pointers that
are used to look up the address of an imported function. When a PE-file is loaded,
the address that should be pointed to, is inserted into the IAT [7].

2.1.2 PE-file features

Static analysis of PE-files is based on properties of PE-files that can be determined
without executing the file. Some functionality can often be deduced by invest-
igating the static properties of a PE-file. A PE-file importing the function “Inter-
netOpenURL”, will for instance likely connect to the Internet in order to upload or
download data. For clustering files however, deducing the functionality of files is
not important. Such analysis is rather performed after files have been clustered.
The features of different files are compared, and one can often assume that files
exhibiting the same static features are related to each other. Some basic features
that are commonly found in or easily calculated from the static properties of PE-
files are [8]:

Timestamp

Number of sections

Number of symbols

Entry point address

Section size (raw and virtual)
Number of relocations
Section entropy

Resource attributes

o Language

o Resource size
o Code page

o Resource name

While some features can be directly extracted, such as timestamp, other features
are derived. The entropy of a section must for instance be calculated in order to
be used.

Certain features are optional and are not present on all PE-files. Icon is an example
of such a feature. If a PE-file contains an icon in the resource directory, the icon will
be displayed when a file is shown on the Windows desktop or in the file explorer.

2.1.3 Finding similar PE-files by comparing hashes

A fuzzy hash is a type of hash that allow identification of similar data. Unlike cryp-
tographic hashes, a fuzzy hash will not change significantly due to small changes

Chapter 2: Theory and related work 9

in a file. Creating fuzzy hashes of two similar files should therefore result in sim-
ilar hashes. To identify how similar the hashes (and thus files are), a distance or
a similarity score can be calculated. Comparing two small hashes is much faster
than comparing two complete files. Fuzzy hashes are therefore preferred when
comparing many files against each other.

While a fuzzy hash is not directly a feature of a PE-file, it can be derived from a
PE-file. It can therefore be considered as a derived feature.

A type of hash that is similar to fuzzy hashes, but not based on the raw data
of the file, is perceptual hashes. Perceptual hashes are made to identify similar
multimedia. They are typically based on how the multimedia is presented, for
instance the RGB values of pixels in an image or a video. A perceptual hash can
therefore identify similar images, even though the images have been compressed
with different compression algorithms and thus shares no similarity in the raw
data [9]. Perceptual hashes cannot be used to identify similar PE-files, but they
can be used to identify similar icons.

Another type of non-cryptographic hashes allows identification of similar files by
simply checking if the hashes are equal. To create these hashes, features that seem
to remain identical across similar versions of files are used. Some of the proposed
hashes based on this technique are described in section 2.2.2.

2.1.4 Obfuscation

To prevent malicious files from being detected as malicious by anti-virus soft-
ware, malware authors use various obfuscation techniques. Obfuscation can in-
volve modifying fields that do not affect the execution of the executable (e.g.
timestamp), inserting redundant instructions that does not affect the overall func-
tionality or hiding (compressing or encrypting) code that performs malicious ac-
tions.

Packing

Since performing manual obfuscation of files can be tedious, malware authors
often use tools that compress or encrypt files as an obfuscation method. The pro-
cess of compressing or encrypting an executable file is known as packing, and
tools made to perform packing is known as packers.

After the original file has been compressed or encrypted, a piece of code known as
an unpacking stub is added. The sole purpose of the unpacking stub is to decom-
press or decrypt the contained file and transfer execution to it. The resulting file
will therefore only consist of the unpacking stub and seemingly random data [10].
Some packers copy properties from the contained PE-file onto the new, exposed
header, while others do not. This varies from packer to packer. Unless properties
of the contained PE-file are copied onto the new header, it is difficult to cluster
files based on static features.

Packing is not only utilised to obfuscate malicious software, as it can also be used
for benign software. PE-files can for instance be compressed in order to reduce

10 Sturla H. Bae: Triage of PE-files through DAC clustering

the size of a file or encrypted in order to make reverse engineering more difficult.
One can therefore not assume that all packed files are malicious [11, p. 95].

Unpacking

When a packed file is executed, the entry point of the file is located in the unpack-
ing stub. This means that the code in the unpacking stub is executed first when
running the file. The unpacking stub first decompresses or decrypts the contained
file. The unpacking stub then transfers the execution to the contained file. This
involves executing the code at the entry point of the contained file, known as the
Original Entry Point (OEP) [12].

This process of decompressing or decrypting a contained file and executing it,
is referred to as unpacking. Executing a file in order to make it unpack itself, is
known as dynamic or generic unpacking [13].

In certain cases, files can also be unpacked without executing them. By reverse en-
gineering the functionality of a packer, it is possible to develop unpacking software
that reverses the actions performed by the packer. This is known as static unpack-
ing and is both safer and faster than executing potentially malicious files. The issue
of static unpacking is that there are many more packers available than static un-
packers, since reverse engineering is time-consuming and requires manual labour
[13].

2.1.5 Clustering PE-files

As mentioned in the introduction, clustering involves grouping similar files. One
option is to compare many of the individual properties present in the PE header
or PE-sections, and another option is to use hashes based on larger portions of a
file.

The challenge of grouping similar files is not simply finding files that have features
in common, but rather to only group files that in fact are related to each other.
When clustering malicious files, an ideal cluster contains all the files belonging
to a specific family of malware, and no other files. Bad clusters would contain
malware belonging to different families, or possibly even a mix of malicious and
benign files.

2.1.6 Finding similar files based on distance

To identify similar files based on distance, one must iterate over all files, and for
each file calculate a distance to other files. If the distance is lower than a certain
threshold, one can conclude that files are similar. Clustering based on similarity
score is very similar to clustering on distance. If the similarity score between two
files is high, this corresponds to a low distance.

Traditional centroid-based clustering methods such as K-means cannot be used for
triage since this would not allow detection of new classes of malware. A threshold
must be used to decide if files are sufficiently similar to each other. If unknown

Chapter 2: Theory and related work 11

files simply were added to the closest cluster, new classes of malware would be
incorrectly labelled. Files should therefore not be added to a cluster unless the
distance is lower than a given threshold. This is typically referred to as constrained
/ constraint-based clustering, which is a type of semi-supervised learning [14].
Finding suitable thresholds for identifying if files are similar enough, is a research
topic by itself. In this thesis, thresholds proposed in previously published papers
will therefore be used.

Since one of goals is to cluster quickly, and it is not vital that all items belonging
to the same class are added to a single cluster, the quality of clusters does not
have to be as high as if true clustering was performed. Some optimisations can
therefore be implemented to reduce the time-complexity. By only comparing new
files to the centroids of clusters and previously clustered files that are not part of
any clusters, fewer than n comparisons are required for each new file. The exact
number of comparisons required, will depend on how many clusters there are,
and how many files have not been added to any cluster. If most files are added to
clusters and clusters typically contain many files, the time-complexity of clustering
can be significantly lower than O(n?).

With distance/similarity based fuzzy hashes, it can be difficult to identify a centroid
as an arbitrary point that is in the true centre of the cluster. An option is to use the
most central item in the cluster. One method of identifying the most central item
is to use closeness centrality, commonly used in graphs to find the most important
vertices. The closeness centrality of an item is equal to the mean distance from the
item to all other items; C(x) = m [15]. The item with the highest closeness

centrality in a cluster, is suitable to use as centroid.

A potential trade-off that improves speed but likely degrades cluster quality, is to
use the first element in a cluster as the centroid, and not update the centroid after
adding new elements. This likely results in more clusters, but the clustering speed
is increased.

2.1.7 Identifying similar files based on identical values

Finding similar files based on identical values is much faster than calculating sim-
ilarity scores. This is not simply because comparing if two values are identical is
faster than calculating a similarity score, but because it completely removes the
need for iterating over files and checking if the values are equal.

To identify other files based on identical feature values, a two-dimensional array
can be used to avoid having to compare all files. The first dimension should be
an array that contains the feature values, for instance a hash digest, that are used
as keys. The second dimension contains a second array. This array should contain
references to files that are related to the given value/key. Figure 2.1 illustrates
how this could look like for finding files with identical imphash digests, a feature
described further in section 2.2.2.

Iterating over the whole array to find the correct imphash, would be inefficient
when processing large amounts of data. Using a more suitable data structure, can

12

Sturla H. Bae:

Triage of PE-files through DAC clustering

- - N
Dimension 1:
p| 05C7df6d575c13fa | 4b3edd952add62f3 | 5e267e543ca94cdo
Contains hash digests | £78878f9450f3b20 | 69df3e71d37f45d2 | 55b98dbesiacfeac | "t "
\ Y,
- . N A A A
Dimension 2: File‘ IDs File‘ IDs File‘IDs
Contains references » £955b5f1dO5b8ca | 919e717b@ab79c8 | 6f6d65ae798bbda
to files 0968531627029 abfea20f8fe9f5c | = u s
fea57ac12688b47 112dff68af4b4e2
9e87caa205ed211

Figure 2.1: Two-dimensional array for finding files with identical hash digests.

5e267e543ca94cde55b98dbo514cf62c

H(x)

N !

0 1 2 3
05c7dfe6d575c13fa 5e267e543ca%94cdo | 77b2e5e9b52fbef7
£788781945013b20 55b98db0514cf62c | 638f64ab65f0c58c

File IDs File IDs File IDs

Figure 2.2: Using a hash table to quickly find files with a given “key”.

increase the speed greatly. Two basic data structures that are suitable for such
comparison, are hash tables and binary search trees.

A hash table is a data structure that allows keys to be mapped to a value. To find
the correct index (offset in the array) for a specific key, a hash function is used
as illustrated in figure 2.2. This figure illustrates the best-case scenario where a
collision does not occur. The correct index is found immediately by using a hash
function that converts the key into an index. This corresponds to a time-complexity
of O(1) for searching. The best-case time-complexity for inserting an item is also
0o(1) [16].

The performance of using hash tables can be reduced if many collisions occur, or
the hash table must be dynamically resized. Since it is very unlikely that a perfect,
collision-free hash is identified, extra memory should be allocated to reduce the

Chapter 2: Theory and related work 13

likelihood of collisions.

Using binary search trees is an alternative to using hash tables. In binary search
trees, all elements are sorted in a tree structure. Finding the correct element is
therefore quick compared to iterating over all values in an array. Unlike hash-
tables, there is no risk of collisions causing degraded performance, but the best-
case time-complexity of performing a search is O(logn) [16].

2.1.8 Time complexity of clustering with different types of features

As previously mentioned, some features require a distance/similarity score to be
calculated between all files, to identify if files are similar. These features will hence
be referred to as “slow features”, since the clustering requires comparison between
many files and thus will be slow in a large data set.

Other features allow identification of similar files by finding identical values. These
features will hence be referred to as “fast features”, since the comparison will be
fast even with very large data sets.

There are also some features with a time-complexity somewhere between these
types of features, such as when calculating distances between icons. When trying
to identify similar icons, a distance must be calculated between all the different
icons. Preliminary research indicates that the number of unique icons is a lot smal-
ler than the number of unique files; In the small data set of 9 823 files, 5 818 files
(59.2%) had an icon, but there were only 1 628 unique icons. This means that
only 16.6% of the files had a unique icon. The time-complexity of finding files
with similar icons would therefore be much lower than O(n?). Such features will
hence be referred to as “medium speed features”.

2.1.9 Performing triage through clustering

Clustering of PE-files can be applied in triage. Triage is typically used in a setting
where large amounts of previously analysed PE-files are available, and a continu-
ous stream of new, unknown PE-files is coming in. The goal of the triage is to
identify which PE-files should be prioritised for in-depth analysis or not. In-depth
analysis could for instance involve dynamic analysis or manual analysis by a mal-
ware analyst. The files being prioritised, are not necessarily novel malware vari-
ants, but simply files where a label could not be determined through triage based
on static analysis.

Figure 2.3 illustrates how the use of clustering can help reduce the number of
files in need of detailed analysis: An unknown file arrives from a feed of un-
known PE-files. An attempt is made to cluster the new file with the files that
have been previously analysed. A file was matched, and they are grouped to-
gether in a new cluster. Since the previously analysed file had been labelled as
“Ransom:Win32/WannaCrypt” and they were identified to be similar, it is as-
sumed that the unknown file also should have the same label.

14 Sturla H. Bae: Triage of PE-files through DAC clustering

/ New cluster \

Clustering > 2
—) W\ =
Ransom:Win32/ Unknown
wannaCrypt file
= ¢
Feed of unknown Unknown file ﬁ?ansom:Win32/WannaCrpr

PE-files

Previously
analysed files Ransom:Win32/ Ransom:Win32/

WannaCrypt WannaCrypt

\ (predicted)/

Figure 2.3: Triage of files: The label of an unknown file is predicted with cluster-
ing and transduction, and the file should therefore not be prioritised.

Labelling new files can also be done through transduction, similar to inductive
reasoning, where files with predicted labels are used to further label new, un-
known files. Unlike induction, transduction involves using newly labelled items
in further labelling of subsequent unknown files. Figure 2.4 illustrates how this
can affect labelling of unknown files. When using induction, one of the files are
mislabelled as belonging to class C, even though the file is more similar to files
that are classified as belonging to class A. The downside of using transduction is
that any errors in labelling will propagate.

Chapter 2: Theory and related work

Problem: Labelling unknown files Labelling through transduction

Bk

Labelling through induction

Figure 2.4: Illustration of the difference between using induction and transduc-
tion for labelling files. A file in class A is incorrectly labelled as belonging to class
C when using induction.

15

16 Sturla H. Bae: Triage of PE-files through DAC clustering

The triage can further help with reducing the cost of analysing files in-depth, by
allowing the analysis of representative files. When a representative file is ana-
lysed in-depth, one can assume that the results also apply to similar unknown
files, as illustrated in figure 2.5. In this step one of this figure, similar files have
been clustered together, but none of the files have been labelled yet. Since this
cluster now is the cluster with the most unknown files, a representative file is sent
to in-depth analysis, here represented by dynamic analysis in step two. Through
dynamic analysis, file A is labelled as “Ransom:Win32/Petya”. Since file A was
labelled in step two, one can see that the cluster of files A, B and C now contains
a labelled file. It is then possible to label tree files, by only analysing a single file
in-depth.

The clusters containing the most unlabelled files, should be prioritised for in-depth
analysis, since analysing a representative file in a large cluster, allows labelling of
more files than analysing a representative file in a small cluster. If a cluster con-
tains 20 unlabelled files, and analysing a single file in-depth is enough to label
the other files in the cluster, the cost of labelling files is decreased by 95%, assum-
ing that the cost of clustering files is negligible compared to the cost of in-depth
analysis.

For such an approach to be effective, files being clustered together must be related.
Malware authors are interested in making their files appear as benign executables,
since it could allow malicious files to remain undetected by anti-virus software.
The system must therefore verify the quality of clusters in a manner that makes
it highly unlikely that files not being related to each other, are clustered together.
This issue is discussed further in section 3.1.4 and 5.4.1.

Chapter 2: Theory and related work

17

/ 1. Perform clustering on incoming file \
Y N
< /Cluster of unknown files ABC\
Feed of unknown Unknown A
PE-files file C .
Clustering
L o— o— o—
L Unknown Unknown Unknown
Existing file A file B fileC

clusters

/

N(

2. Analyse arepresentative file in clusters of unknown files

\

S~
NS >
— (<)
\
Unknown \
file A

Dynamic analysis

Ransom:Win32/Petya

/
N
\

/ 3. Predict label of files in the same cluster

Cluster of unknown files ABC \ / Ransom:Win32/Petya

2| 12| -

Ransom:Win32/ Unknown Unknown Petya Petya

\ Petya file B file C j \ (predicted)

Ransom:Win32/ Ransom:Win32/ Ransom:Win32/

Petya

N

(predicted) /
7/

Figure 2.5: If many unknown files have been clustered together, it is possible to
analyse a representative file in-depth, and predict the labels of the similar files.

18 Sturla H. Bae: Triage of PE-files through DAC clustering

2.2 Previous findings and approaches

Many papers have been published on methods for handling triage of PE-files. The
papers are focusing on malicious files only, since most of the files that make triage
necessary, seem to be malicious. This section covers some of the findings and
approaches to both malware triage and general clustering of malware, that are
relevant to the topic of this thesis.

2.2.1 Clustering files using distance/similarity based fuzzy hashes

Fuzzy hashes have been used to cluster malicious files for many years already.
In 2007, Shadowserver Foundation published a paper [17] concluding that fuzzy
hashes can be used to group similar malicious PE-files. They used ssdeep in their ex-
periments and recommended that malware analysts provide fuzzy hashes of newly
discovered malicious files together with identifiers such as cryptographic hashes.
The only challenge mentioned in the paper was related to the use of packers [17].
This seems to be the first paper suggesting the use of ssdeep for identifying similar
malicious PE-files. Since then, ssdeep has become the de facto industry standard
fuzzy hash for PE-files. Popular services such as VirusTotal and JoeSandbox both
provide ssdeep hashes for files uploaded to the services.

In recent years, papers criticising the findings of [17] have been published. An
important paper was published by Pagani et al. in 2018 [18]. This paper con-
cluded that ssdeep is less suitable for identifying similar binary files than other
fuzzy hashes. While it is true that ssdeep can be used to group similar malicious
PE-files, it is not as effective as the researchers claimed. The experiment in [17]
was performed on a fairly small data set, with files belonging to only two differ-
ent families of malware. Pagani et al. compared ssdeep to other fuzzy hashes such
as sdhash and TLSH. Their findings suggest that sdhash is best suited for finding
similarities between files made with different compiling options and TLSH is best
suited for finding similarities between files where changes have been made to the
source code. A noteworthy advantage of all these fuzzy hashes, was that they can
be used for any file type, and not just PE-files [18].

Ssdeep produces a “context triggered piecewise hash” by breaking files up into
smaller pieces, creating a small hash for each piece and joining the small hashes to-
gether to produce a hash for the whole file. sdhash (similarity digest hash) creates
a hash that consists of a sequence of bloom filters. The bloom filters are created by
identifying 64-byte sequences that have been empirically identified as being un-
likely to encounter, and then hashing these unique 64-byte sequences and putting
the hashes into bloom filters [19]. TLSH (Trend Micro Locality Sensitive Hash)
creates a hash based on N-grams of bytes [18].

N-grams are sequences of N items. The word “hash” does for instance contain
the 2-grams (bi-grams) “ha”, “as”, and “sh”. Typically, the number of occurrences
for each n-gram is counted, which then can be used to predict future sequences
of items. For binary files, n-grams of bytes can be counted and then compared

Chapter 2: Theory and related work 19

to other binary files to find files with a similar number of occurrences for each
n-gram.

For determining if two files are related, the authors of TLSH found that using a
distance threshold of 100 when comparing malicious files, the detection rate was
94.5% while the false positive rate was 6.43% [20]. Independent research has
also concluded that a threshold of 100 is suitable for identifying if files are similar
[21].

As the number of malicious files have increased, one significant challenge of using
ssdeep and other hashes based on calculating a similarity score between hashes has
become apparent. To cluster files using these hashes, a score must be calculated
between all the files. This results in a time complexity of O(n?) since each file
must be compared to all other files in the data set to find files that are similar.
With data sets containing many million files, finding similar files using distance-
based hashes is time-consuming and becomes even slower as the data set grows
due to the quadratic growth in the number of calculations required.

Even though ssdeep has been found to be less suitable for finding similar binary
files, a potentially major advantage was presented by Wallace in 2015 [22]. The
calculations required in order to calculate a distance between all files could be
drastically reduced by first performing small calculations that determine if two
hashes could match (having a similarity score of at least 1). The run time of clus-
tering malicious files was therefore drastically reduced on data sets that were not
homogeneous [22]. The average “cost” of comparing two hashes was reduced, but
the number of comparisons needed for clustering files would still have quadratic
growth.

2.2.2 Clustering files based on identical hash digests

Wicherski proposed a solution to this problem in 2009 [23], that was aimed spe-
cifically at clustering PE-files. The proposed hash was based on structural inform-
ation of the PE header and data section and was named peHash. This hash was
supposed to remain consistent, even though minor changes were made to PE-files.
This allows files to have identical peHash values even though the files are not
identical. The major benefit of this method was that one could find similar files
without needing to calculate a distance between all the file hashes. One could
simply group files based on identical hash digests instead [23]. Using hash tables
or sorted binary trees, one can quickly find other files with identical hash values
as described in section 2.1.7.

Other researchers have also attempted to identify potential features or hashes that
remain identical for closely related malicious files. Researchers at Mandiant pub-
lished a threat report in 2014 [24], describing a new feature that can be used to
find closely related malware. They had discovered that the order of the imports
in the IAT, often remains identical over multiple variants of the same family. It is
also rarely identical for different families of malware, provided that the files do
not have very few imports. An “imphash” is simply a hash of the ordered imports

20 Sturla H. Bae: Triage of PE-files through DAC clustering

in the IAT, and can be compared to the imphash of other files in order to find
related files [24]. Independent research published in 2015 also suggested that
imphash had good accuracy on clustering malware. The main downside of im-
phash was poor performance on packed malware, but this is common for features
based on static analysis. [25]. In 2018, Chikapa and Namanya published a paper
comparing peHash and imphash. The results from the experiments suggested that
imphash had better accuracy as well as creating fewer clusters per family [26]. It
would have been nice to know if there were specific situations where peHash per-
formed better than imphash or vice versa, but the researchers did not investigate
the results in detail. Namanya et al. published in 2016 a paper [27] where they
had combined peHash, imphash, ssdeep hash of the full PE-files and ssdeep hash of
file sections in a “Certainity Factor model Combinational Metric”. The combined
metric achieved even greater accuracy than using only one feature at a time, in-
dicating that some features could complement each other. The researchers did not
investigate how the clustering speed was affected, so it is not known how much
the improved accuracy cost in terms of processing powetr.

The hashes and features described so far, have all been ineffective at finding
packed files that are related to each other, but one feature is often copied from
the contained file onto the resulting packed file — the icon displayed when view-
ing the file in the Windows file explorer or on the desktop. As mentioned by Silva
et al. in a paper published in 2018 [28], one can greatly improve the accuracy
of clustering PE-files by clustering on icons. Using icons as a feature alone is a
bad idea, since malware authors often copy icons from benign executables. When
icon is used together with other features however, it helps improve the accuracy
of clustering malware greatly, since the same icon often is used for variants of the
same malware [28]. File icon is also used by VirusTotal for their “Multi-similarity
search” function. VirusTotal generates a dhash of the main icon for all PE-files with
an icon [29]. This allows identification of other PE-files with identical or nearly
identical icons, since dhash (difference hash) is a perceptual hash [30].
VirusTotal also uses imphash, ssdeep hash and Vhash for their multi-similarity
search function [29]. Vhash is a proprietary hash developed by VirusTotal for clus-
tering similar files. The only information that is publicly available is that Vhash
is “an in-house similarity clustering algorithm value, based on a simple structural
feature hash [that] allows you to find similar files” [31]. The exact performance
of Vhash is unknown, but considering the amount of research and development
that likely has been involved, it could be a valuable feature for clustering files
retrieved from a VirusTotal feed.

Another potentially fast and accurate feature was described by Webster et al. in
2017 [32]. In their paper, the authors describe an undocumented part of the PE32
header created by Microsoft’s linker “LINK.exe” since Visual Studio 97 SP3. This
undocumented header is simply known as the Rich header, since it ends with the
letters “Rich”. The header was found to contain information on the build environ-
ment used to build the executable and a checksum used as a key for encrypting the
header. Some packers copy the Rich header of contained files and use it in the new

Chapter 2: Theory and related work 21

header on the packed file, which could allow accurate clustering of packed files.
To find related files, one could either find files with identical Rich header check-
sums, or use a distance/similarity based metric for comparing the values [32].
Since the Rich header is not vital for the execution of a PE-file, the header can be
removed or modified by malware authors — and there are concrete examples of
this being exploited to confuse malware analysts [33]. Researchers at ESET have
attempted to use this feature for triage of files, and found that about 73% of all
PE-files in the wild had a Rich header. Although the experiments on performing
triage using the Rich header had good results, the researchers warned against re-
lying on the Rich header alone, since it can be easily removed or modified [34].
Assuming verification is made to check that the Rich header is not malformed and
the contents of the Rich header seems to match the features of the PE-file, the Rich
header might be a valuable feature to check if two files are related.

2.2.3 Performing malware triage

A solution aimed specifically at triage of malware, was published by Jang et al.
in 2011 [35]. Instead of focusing on creating a better hash for clustering mal-
ware, BitShred was a proposed method for malware triage, describing all the steps
needed to perform triage that could scale to handle millions of files. The authors
claimed BitShred was over 1000 times faster than existing approaches to malware
clustering, but this claim was based on comparisons against approaches using dy-
namic analysis. The authors used a hash based on N-grams, and Jaccard similarity
for calculating similarity scores between files, but stated that other distance/sim-
ilarity based features could be used. Since the comparison had a time complexity
of O(n?), measures were needed to allow the method to scale. The authors built a
scalable solution that could split the feature extraction and comparison between
multiple machines using Apache Hadoop and reported having an accuracy of over
90% when testing on non-packed malware. Although the solution could scale well
horizontally, the resources required to analyse files would have quadratic growth
due to the comparison method having a time complexity of O(n?). To mitigate the
problem of packed malware, the authors stated that one could use “off-the-shelf
unpackers”, but did not go into detail on which unpackers one could use, nor what
the success-rate of unpacking packed files would have been [35]. Similar claims
related to unpacking files were stated in [36].

Since the malware found in the wild often is packed, the accuracy presented in
[35] is not necessarily representative to the accuracy one would achieve in real
malware triage. A method named “MutantX-S” was proposed by Hu et al. in 2013
to solve this issue [37]. MutantX-S combines generic unpacking with a hash of N-
grams based on the opcodes of executables [37]. Opcodes (operation codes) are
the operations that should be carried out by the CPU, e.g. “add”. Together with one
or more operands, e.g. “eax, 1”7, they form an instruction. By performing unpack-
ing, it is possible to cluster files with a high level of accuracy even when handling
packed malware — although with some limitations. Generic unpacking involves

22 Sturla H. Bae: Triage of PE-files through DAC clustering

unpacking files using a generic method that works for files packed with various
packers. Specialised unpackers could be used to unpack files that are packed with
certain packers as UPX or (Win)Upack, since there exists software that can unpack
files packed by these packers. The problem of using specialised unpackers is that
developing a new packer, often is easier than creating a corresponding unpacker.
Specialised unpackers are therefore only available for some of the most common
packers.

The authors of MutantX-S claimed that using specialised unpackers would be in-
effective and costly, since it would require manual reverse engineering of all fre-
quently used packers. They therefore proposed, and implemented, a generic un-
packer. The unpacking was performed by executing the PE-files, in an environment
where the addresses written to and instructions executed are logged. An unpack-
ing stub will usually write to various addresses when the file is being decom-
pressed / decrypted. When it has finished doing so, the file will begin executing
code one of the addresses that was written to. The generic unpacking algorithm
assumes that the OEP is located at that address and will then make a memory
dump.

Although the memory dump does not contain the full, original PE-file (IAT is for
instance not restored), the memory dump does contain the instructions of the
original PE-file, assuming the unpacking was successful. This was the reason for
using a hash based on opcode N-grams. The generic unpacking was tested by
packing a malicious file using eight different packers, resulting in eight different
files. The packed files were then unpacked using the generic unpacker, with a
timeout of 1 minute. Files packed with Armadillo could not be unpacked, but files
packed with the other seven packers could be successfully unpacked, with only a
small difference in the N-grams compared to the original file. As with BitShred,
the hashing trick was used to reduce the dimensionality of the feature vectors,
which enable faster comparison between two files. The hashing trick resulted in
a minor decrease in precision, but also a major decrease in running time and
memory usage. When testing the ability of MutantX-S to predict labels of unknown
malware, a data set of 40 000 files collected in a time span of 12 months was
used. MutantX-S was able to achieve an accuracy between 0.7 and 0.8, when
labelling new files using files identified in the last six months as the training set
[37]. Unfortunately, the authors did not specify how many packed files there was
in the data set or how the accuracy would have been if generic unpacking was not
used. If a file had been packed twice, this method would likely be ineffective since
it is assumed that the OEP is found when execution is transferred to the second
unpacking stub. In this case, the instructions of the original executable would still
be compressed / encrypted.

PinDemonium [38] is another attempt at performing generic unpacking. Unlike
MutantX-S, PinDemonium could restore a fully functional PE-file when unpacking,
but had additional overhead that required the unpacking process to have a timeout
of five minutes. PinDemonium was evaluated by attempting to unpack files the
authors had packed themselves, and by attempting to unpack files from VirusTotal

Chapter 2: Theory and related work 23

that had been identified as being packed. The success rate on unpacking malware
found in the wild, was significantly lower than the success rate of unpacking files
the authors had packed themselves [38].

Processing malware as an infinite length evolving data stream

The methods mentioned so far, would not have been very efficient to use for anti-
virus software vendors. Most clustering techniques mentioned so far have been
based on batch clustering. This involves clustering all files, or smaller portions of
a data set as batches (groups of items). With a feed that continuously provides
new, unknown files, such a solution would be less suitable.

Malware can be seen as an evolving data stream, where new malware constantly
emerges, and old files become less relevant or might even experience a new up-
rising. For MutantX-S, the difference in accuracy between using historic data from
the last 12 months and historic data from the last 6 months in the training set was
minuscule, but only using data from the last 6 months reduced the space- and
time complexity significantly. Several papers have described such evolving meth-
ods in a more detailed manner [39-41]. One of them was published by Masud
et al. in 2008 [39], and described malware streams, such as the feeds processed
by anti-virus software vendors, as evolving, infinite-length streams of data. For
clustering infinite-length streams, traditional batch clustering methods become
ineffective. In their experiments, they found significant concept drift in the data
set. This means that the statistical properties of items change over time, making
a trained model less accurate over time. It was assumed that this was caused by
malware authors adapting to new defences, and the authors therefore suggested
that old data is excluded from clustering as new data is added [39].

A paper basing itself on these findings was published by Ouellette et al. in 2013
[40]. They proposed a method for detecting malware using semi-supervised learn-
ing. The method had an initial step that involved batch clustering on a training
set of labelled files to make the system able to identify malicious files. The second
step involved real-time clustering of the files in the testing set containing unla-
belled files. The files in the testing set were added to clusters iteratively, one at a
time, and labelled if it was found to match an existing labelled file. In addition to
labelling a file iteratively, the model is iteratively updated with the new files that
are clustered. By combining newly labelled files with the labelled training data,
the accuracy of the clustering was increased compared to using the training data
only [40].

2.2.4 Divide-and-conquer clustering

Since malware authors constantly are adapting to new defences, and often heavily
obfuscating malicious files, there is usually great difference between malicious
files. How files within a class are similar, can therefore differ between classes. A
clustering method designed to handle large data sets where files can be similar in
different ways is divide-and-conquer clustering.

24 Sturla H. Bae: Triage of PE-files through DAC clustering

Khalilian et al. presented in 2009 a method that allowed more efficient clustering
of vectors. The method combined the divide-and-conquer algorithm with k-means
clustering and involved first dividing the data based on the size of the vectors, and
then clustering vectors based on similarity. The problems of clustering the vectors
was therefore split into several smaller problems related to clustering vectors of
equal size. Finding similar vectors when all vectors are of roughly the same size
was found to be easier than if vectors of all sizes were compared. The vectors
could therefore be clustered with fewer iterations and higher accuracy [42].

To the best of our knowledge, divide-and-conquer clustering has neither been ap-
plied in clustering of malware nor triage of PE-files yet.

2.2.5 Evaluating malware triage / clustering

There are many challenges related to evaluating malware clustering, as described
by Li et al. in a paper published in 2010 [43]. In the paper, the authors indicate
that the results of many papers on malware clustering might not be as significant
as one would first perceive. A major reason for this, is the use of data sets that do
not represent malware found in the wild. An example given by the authors, was a
research project that had generated a data set of malware based on labels given
by different anti-virus software. By only choosing files where there was a broad
agreement between multiple anti-virus software, the authors could be fairly cer-
tain that the labels were correct, while also being able to quickly create a data set.
The issue was that this method can lead to artificially good results, since malicious
files with a broad agreement between many anti-virus software potentially also
are easier to cluster. Another issue of majority voting is the use of anti-virus soft-
ware with a third-party anti-virus engine. For the majority voting to be fair, one
must therefore make sure to only use independent anti-virus engines. To assess
how significant the results of various research projects were, Li et al. performed an
experiment similar to other methods for large scale malware clustering. The main
difference was that Li et al. used plagiarism detectors to perform the clustering.
Plagiarism detectors for software are made to detect how similar two executable
files are and thus identify if plagiarism has occurred. Using plagiarism detectors,
the researchers were able to achieve close to identical results as other research
projects experimenting with algorithms custom made to cluster malware. Since
the plagiarism detectors were not specifically made for clustering malware, the
authors noted that the malware samples were not difficult to cluster. When in-
vestigating the results further, the researchers identified a likely reason for why
the results are so good for both malware clustering algorithms and plagiarism de-
tectors. The data sets had classes containing many files, which led to large clusters
with low intra-cluster distances and higher inter-cluster distances. By reducing the
number of elements in clusters with a high number of elements, the accuracy of all
clustering algorithms dropped significantly. To ensure accurate results in research
projects involving clustering of malware, it is suggested that data sets should be
more representative of malware found in the wild. While there are several pub-

Chapter 2: Theory and related work 25

lic data sets with malicious files, there are no data sets that researchers agree on
using. Using a standardised data set might not be a good idea anyway, since the
malicious files in the wild constantly change, to combat new defences. A research
project having great results on a standardised data set could therefore have poor
results on malware found in the wild [43].

Measures for evaluating triage / clustering quality

As for how to evaluate the clustering of malware, there are no perfect solutions.
There are however some measures that are common to use since they provide
a fairly accurate representation of the results. Clusters can be evaluated using
internal or external evaluation. Internal evaluation involves evaluating the intra-
and inter-cluster distances, to assess the quality of the clusters [41]. The labelling
of items by an expert, is as an alternative clustering method that represents a
golden standard for labelling items. Comparing labels predicted by a model to
labels given by an expert, is called external evaluation [44]. External evaluation
is more suitable for evaluating clustering used for malware triage, since the goal
often is to replicate the labelling performed by humans. When clustering based
on identical hashes (for instance using peHash and imphash), it is not possible to
calculate intra- and inter-cluster distances, which would make internal evaluation
difficult.

When comparing labels during external evaluation, true positives, true negatives,
false positives and false negatives can be calculated. These measures can be used to
calculate the precision and recall, which seem to be the most common measures
for evaluating the quality of clusters created for triage of malware [35, 37, 45,
46].

Figure 2.6 illustrates how the precision and recall is calculated. Precision is equal
to the true positives divided by the sum of true positives and false positives. For
labelling malware, this corresponds to dividing the correctly labelled files, by the
sum of the correctly and incorrectly labelled files. The term precision is used, since
the measure indicates how precise the method is when labelling files. The preci-
sion could be used to answer the question “how likely is it that a label is correct
when using this method?”. Recall is calculated by dividing the true positives by
the number of relevant items. For labelling malware, this corresponds to dividing
the correctly labelled files by the number of files, assuming that all files should
be given a label. The recall could be used to answer the question “how likely is it
that a file is labelled, and the label is correct, when using this method?”.

Other measures used for measuring cluster quality are F;-score and purity [21,
47].

F-score is a measure of accuracy that considers both the precision and recall, but
with the possibility of weighting the recall value as more important than precision.
Purity is the ratio of how “pure” a cluster is, measured from 0 to 1 (0% to 100%)).
Within the field of clustering, purity is calculated by counting the number of items
in the most common class in a cluster, and then dividing by the total number of

26 Sturla H. Bae: Triage of PE-files through DAC clustering

relevant elements

false negatives true negatives

©oq © o o

true positives false positives

selected elements

How many selected How many relevant
items are relevant? items are selected?
Precision = — Recall =

Walber / CC BY-SA

Figure 2.6: Illustration of how precision and recall is calculated

https://commons.wikimedia.org/wiki/File:Precisionrecall.svg
https://creativecommons.org/licenses/by-sa/4.0

Chapter 2: Theory and related work 27

items in the cluster. One issue of using purity for evaluating clustering is that the
purity is 100% if all clusters have a size of 1 — which is an issue since the point
of clustering is to group items. This issue can be mitigated by also evaluating the
size of clusters.

When using clustering for triage of files, the focus is in general slightly different
from true clustering:

e When performing triage, it is not as common to label all the files in the
testing set, since mislabelling files can lead to severe consequences. Unless
one can label a file with a high degree of certainty, it is likely better to not
give the file a label.

e It is fine to have a much greater number of clusters than the number of
classes.

e The classes are usually imbalanced, since there are much more files belong-
ing to certain families than others.

Due to these reasons, the recall is typically lower than when using true clustering
methods such as k-means [37].

Validating results

When a data set is split into a training set and a testing set, it is possible that
selection bias can occur; If the selection of items is not sufficiently random, the
results could be biased due to how the data set was split. To avoid selection bias,
it is common to use cross-validation, and one of the basic methods for perform-
ing cross-validation, is to use k-fold cross-validation [48]. Leave-One-Out Cross-
Validation (LOOCYV) is another basic method for performing cross-validation, but
LOOCYV is not feasible to use with very large data sets. K-fold cross validation in-
volves randomly splitting the data set into K folds (splits) of roughly equal size
and performing experiments K times. For each iteration, one fold is chosen as the
testing set and the remaining folds are used as training set, as illustrated in figure
2.7. Typical values for K are 10 or 5 [49, pp. 181-182]. When performing K-fold
cross-validation, experimental results are produced for each split. The final results
are then typically given as the mean of these results and the 95% confidence in-
terval [48]. The confidence interval is calculated from the standard deviation and
is typically given with a value of 95% or 99%. A 95% confidence interval indicates
that the “true” value is within the given interval with a probability of 95% [49].

28

Sturla H. Bae: Triage of PE-files through DAC clustering

4———{ Training data I—»
e rrrrrrrrrrrrr)

[teraton 2| >0 @ 0990000 000000009009
[ieration 3 >0 0 009 90099000000 0000

[teration < > @ O 0O 0 0009000000000 00

I I 2
< [All data | >

Gufosowa / CC BY-SA

Figure 2.7: Splitting data for multiple iterations with k-fold cross-validation

https://commons.wikimedia.org/wiki/File:K-fold_cross_validation_EN.svg
https://creativecommons.org/licenses/by-sa/4.0

Chapter 3

The proposed method

This chapter first describes the proposed method for how to apply the DAC al-
gorithm in triage of PE-files. This is followed by a description of the proof of
concept that was implemented in order to evaluate how the performance of triage
is affected by applying the DAC algorithm.

3.1 Applying the DAC algorithm to triage of PE-files

Application of the DAC algorithm involves splitting the task of prioritising PE-
files into smaller tasks. Under the assumption that different files exhibit different
features, the features that will be ideal to cluster a file by with will vary.

The overall procedure is structured as a pipeline, where unknown files are com-
ing in at the start of the pipeline. Progressing through the pipeline, a file is pro-
cessed in the various steps required to perform the triage. Within each step in the
pipeline, an attempt is made at processing the file in the most optimal way. Usage
of the DAC algorithm is however mainly applied to the clustering step.

29

30 Sturla H. Bae: Triage of PE-files through DAC clustering
Y N
2 Preprocessin Feature
o P 9 "] extraction
o
Feed of unknown Unknown PE-file
PE-files
A
In a cluster
of high quality, that Evaluzlijt:"cluster - clugti(r:in
has a label? quality 9
A
Use in clustering
Mark as high priority of future files
for in-depth analysis
A 4 .)
Use in clustering
Label file and mark as low of future files Previously analysed
priority for in-depth analysis files and existing
clusters
— N N
g [— After analysing
- - high priority files
PE-file with Labelled PE-file

predicted label

Figure 3.1: Illustration of the triage pipeline. Files are processed in the steps
described in section 3.1.

The steps involved in the pipeline are illustrated in figure 3.1. These steps are
described in more detailed under the subsequent sections, but the steps can be
summarised with:

1.
2.
3.

Preprocessing of files: De-obfuscation to allow extraction of correct features.
Feature extraction: Extract features that will be used to find similar files.
Evaluate cluster quality: Evaluate quality to avoid concluding that files are
similar if multiple classes share a certain feature.

DAC clustering: Cluster each file with the features that are most suitable for
the specific file.

. Evaluate cluster quality: If the clusters were of poor quality or otherwise

does not have a label, go back to DAC clustering and attempt to cluster the
file with less suitable features.

Mark as low/high priority: Label the file if it is in a cluster was of high
quality and the cluster has a label assigned to it. If multiple clusters are of
high quality and have labels, use the label of the cluster that is of highest
quality. A file that is given a label with this method can be considered as

Chapter 3: The proposed method 31

being of low priority for in-depth analysis. A file that could not be labelled
is marked as high priority.

Regardless of whether a file was labelled or not, it will be added to the database of
previously analysed files and existing clusters. In-depth analysis will be performed
when resources are available. A file in a cluster containing as many high-priority
files as possible should then be prioritised.

3.1.1 Preprocessing

In the reviewed literature mentioned in section 2.2.3, there seems to be wide
agreement that one should perform unpacking on files that are identified as be-
ing packed. This should be done to achieve better performance, since clustering
packed files based on static analysis can be challenging.

The authors of [35] and [36] simply used a data set of non-packed files and ar-
gued that the files can be unpacked using “off-the-shelf unpackers”, while [37,
38] proposed methods for how to unpack files.

Figure 3.2 illustrates the steps of unpacking a file. The first step of involves at-
tempting to detect if a file is packed and which packer the file has been packed
with. If the file seems packed, and it is likely that one will be able to unpack the
file, attempt to unpack the file. If the file was successfully unpacked, send the
contained file through the triage pipeline. The original file can then be labelled,
based on any labels given to the contained file.

Packed? Yes Unpacker
available?
o—
Feed of unknown Unknown file
files
No
Continue processing Yes
P this file (clustering, [——— N
labelling, etc.)
No
Send the unpacked file Y
through the triage pipeline
(preprocessing, clustering, [—Yes iicc::kségly -t u':“;:(?r:
labelling etc.), then continue p) P 9
processing the original file.

Figure 3.2: Preprocessing of PE-files. If a file is detected as being packed, an
attempt is made at unpacking the file. If the file is successfully unpacked, the
resulting unpacked file will be clustered first. The original file can then potentially
be labelled based on any label given to the contained file.

32 Sturla H. Bae: Triage of PE-files through DAC clustering

3.1.2 Feature extraction

If new files were only supposed to be clustered together with previously analysed
files that had been loaded from a database, it would be possible to minimise the
computational cost of feature extraction, by only extracting enough features to
cluster and label the new file. Processing evolving data streams however, this could
become an issue. If only the bare minimum of features are extracted, it would be
less likely that similar files will be matched when clustering future files.

An example of this would be if two files were retrieved from a feed of PE-file: File
A and File B. File A is retrieved first and the imphash of the file is extracted. The
file is then clustered by the imphash, a match is found and File A is given a label.
File B is then retrieved and the imphash of the file is extracted. When attempting
to cluster File B based on imphash, no match is found. The TLSH hash of File B is
then extracted and an attempt is made to cluster the file. Since no TLSH hash was
extracted from File A, it would not be possible to identify if File A and File B were
similar, based on any features other than imphash. Since the hypothesis of this
paper is based on the idea that there is no single feature that is perfect, and that
some features can complement each other, all relevant features must therefore be
extracted from all files.

This results in additional consumption of storage, memory, and processing powetr.
The time-complexity of extracting features and the space-complexity of storing
them is assumed to be O(n), and the feature extraction is therefore assumed to
scale well.

3.1.3 DAC clustering

This section describes how the DAC algorithm has been applied in clustering of PE-
files. The resulting clustering technique is referred to Divide-And-Conquer clus-
tering (DAC clustering), although the DAC algorithm most likely could have been
applied differently to split the clustering into smaller tasks.

There is no definite solution for how the task of clustering PE-files ideally should
be split into smaller tasks, but based on existing knowledge, some assumptions
can be made. First, different files exhibit different features. Some features are
common in all files and must be present, for a file to be considered as a PE-file.
Other features however, are optional and are not always available, such as icon
or Rich header. Secondly, the goal of clustering files for the purpose of triage, is to
quickly cluster files in a manner that is as accurate as possible.

The first method used for dividing the clustering into smaller tasks, is therefore
to cluster each file as accurately as possible based on the features that are avail-
able on each specific file. As [27] found, combining multiple features improves
accuracy. If imphash, icon hash, Rich hash and TLSH hash can be extracted from a
PE-file, the best accuracy would likely be achieved by using all of these features.
If only a TLSH hash could be extracted however, the file should be clustered using
this feature only. In this manner, all files will be clustered in a manner that ensures
that the files will be clustered as accurately as possible.

Chapter 3: The proposed method 33

Using all available features for clustering a file can increase accuracy, but will also
require additional computation. A potential goal is therefore to achieve satisfact-
ory accuracy, by clustering files with as many available features as necessary until
such accuracy is reached. If satisfactory accuracy is achieved without clustering
by all the features, the computational cost of clustering most files can be reduced.
The reduction is most significant if the most expensive features are the ones not
being used. This can allow computationally expensive features to be used when
necessary to achieve sufficient accuracy of clustering, and not being used when
they are not needed.

Using these optimisations based on the DAC algorithm, DAC clustering is proposed
to perform the following when clustering a file:

1. Attempt to cluster the file with all fast features that could be extracted from
the file.

2. Evaluate the quality of clusters with labels the file was added to, as described
in section 3.1.4.

3. If no cluster with a label and sufficiently high quality was identified, repeat
step 1. and 2. with the feature of highest priority, that has not yet been used.

The reasons why the clustering method uses all available fast features at once, is
because it is necessary to allow future files to match with the current file by means
of fast features. The cost of clustering with all the fast features is also negligible,
provided that the number of fast features being used is not very high.

If a fast feature is present on a file, there is no way of knowing if the file can be
matched with other files based on the feature, without attempting to cluster the
file. Because of this as well as the tiny cost of clustering with fast features, any
unsuccessful attempts at clustering a file with a fast feature can be seemed as a
check for whether the fast feature can be used for clustering the file.

For files that are clustered with a slow feature, the overall cost of clustering the
file will be higher than if the slow feature was the only feature used, since re-
sources were used in attempting to cluster the file based on fast features. For
divide-and-conquer clustering to have better performance than clustering based
on slow features, most of the files must be successfully clustered using fast fea-
tures. When most files are successfully clustered using fast features, the average
cost of clustering files will be low.

Since it is of importance that most files can be successfully clustered with fast fea-
tures only, it is important that the individual performance of features is measured,
as well as the performance gained from combining different features. By measur-
ing this, one can apply fast and accurate features first, and subsequently apply
slower features that complement the fastest features, as shown in figure 3.3. In
this figure one can see that most of the files are clustered with fast features. Some
files were not successfully clustered, and a new attempt was made with medium
speed features. It was then possible to cluster many of the remaining files. A sim-
ilar procedure was repeated, until all files were clustered or there were no other
features to cluster the files on.

34 Sturla H. Bae: Triage of PE-files through DAC clustering

/ Files to cluster \ 2. Among the remaining files,
» cluster as many files as possible
using medium speed feature A

3. Among the remaining files,
cluster as many files as possible
using medium speed feature B

1. Cluster as many
files as possible |«
with fast features

y

4. Cluster remaining files using
1 (or a few) slow features

Figure 3.3: Clustering most files using fast features and applying slower features
that complement the fast features on remaining files.

After a file is clustered, triage can be performed as described in section 2.1.9.

3.1.4 Evaluating cluster quality

Some features can be shared by files belonging to multiple classes. Files from
multiple classes can for instance exhibit the same icon or imphash. An evaluation
of the quality of clusters is therefore necessary if such features are used. If a cluster
is evaluated to be of poor quality, one should not use the cluster to label any files
added to the cluster.

A measure of cluster quality should typically represent how likely it is that a certain
cluster only will contain items belonging to a single class. The following cases are
given as examples of clusters exhibiting good / poor quality:

e If a cluster contains 20 files that all belong to the same class, a file that is
added to this cluster in the future will most likely also belong to the same
class. The quality is therefore assumed to be high.

e If a cluster contains 10 files belonging to class A and 9 files belonging to
class B, it would be difficult to ascertain if an unknown file added to this
cluster belongs to class A or class B. The quality of this cluster is therefore
assumed to be low.

Purity, described in section 2.2.5, is a measure that can be suitable to evaluate
the quality of clusters. The issue of using purity, is that the labels of the files have
to be known in order to calculate the purity. When performing triage, one will
most likely discover new clusters that do not contain any labelled files. A measure
of cluster quality that uses internal evaluation, described in section 2.2.5, would
therefore be required to evaluate the quality of all clusters.

3.1.5 Labelling files

If a file has been added to a cluster of high quality that also has a label assigned to
it, the file can be labelled as described in section 2.1.9. If a file has been added to

Chapter 3: The proposed method 35

multiple clusters with labels assigned to them, the label of the cluster exhibiting
the highest quality should be used.

3.2 Proof of Concept

To evaluate the performance of the described method, comparisons of speed and
accuracy between DAC clustering and naive clustering methods is needed. A proof
of concept has therefore been implemented to perform these comparisons. DAC
clustering could use an arbitrary number of features, and the proof of concept
is only using a small subset of features. The findings can therefore not be that
“DAC clustering performs better / worse than the other clustering methods”. The
findings would rather be that “DAC clustering can perform better / worse than
the other clustering methods”.

The proof of concept was implemented in Python since this allowed fast devel-
opment. There are many valuable open-source Python modules / libraries avail-
able. These modules help with parsing PE-files and extracting relevant features /
hashes. Software written in Python, is generally slower than software written in
lower level programming languages such as C or C++, due to the extra overhead
that is implicit in dynamic programming languages. Since this implementation
was only intended to be a proof of concept, the simplified implementation and
the availability of libraries was prioritised over raw performance. In production
environments handling very large amounts of files, it would be wise to rather use
lower level programming languages.

This section further describes how the proof of concept handles the steps involved
in the triage. Unlike section 3.1, this section does not describe the theoretical
method, but rather how the triage environment is simulated, and how the pro-
cessing at each step in the pipeline has been implemented.

3.2.1 Simulating a malware triage environment with a feed of un-
known PE-files

The proof of concept was implemented such that it can simulate the environment
of an anti-virus software vendor, that needs to perform triage. In this environment,
a large amount of previously analysed and labelled files is available. There is also
a feed where new, unknown files continuously arrive. As stated in [39], this feed
is likely to be evolving over time.

A common training set is fairly similar to a database of previously analysed files.
An anti-virus software vendor will likely have analysed a huge number of files
previously. To limit the complexity of clustering, it would likely be wise to reduce
the number of files used as a training set. By using files that have been seen in
various feeds within the last month, one can create a set that is likely to contain
relevant files, while limiting the number of files to process. Since all these files are
available at once, the proof of concept uses batch clustering on the training set.
After files have been clustered, the quality of clusters are evaluated as described

36 Sturla H. Bae: Triage of PE-files through DAC clustering

in section 3.1.4 and clusters exhibiting high quality are labelled based on majority
vote. This is possible since all files in the training set are supposed to represent
previously analysed files, and therefore have a label assigned to them.

The feed of unknown files corresponds to a testing set where the labels of files are
unknown, and the implementation should predict the labels of the files. As if the
files were arriving continuously, the proof of concept will attempt to cluster and
label the files in real-time, one file at a time. To allow the performance to increase
as new files are added to clusters, the quality of clusters is re-evaluated and the
labels are updated once a file in a cluster is given a label.

3.2.2 Preprocessing

The first step in the pipeline involves preprocessing. In the proof of concept, this
is limited to unpacking only. In the preprocessing step, an attempt at unpacking
the file will be made if a file is detected as being packed. After experimenting with
many potential unpacking methods, it was concluded that static unpacking with
ClamAV was the fastest method that could unpack a large portion of the packed
PE-files. ClamAV is an open-source anti-virus engine that is made to detect mali-
cious files, but it can also be used for unpacking PE-files. Developers of ClamAV
have likely spent considerable time in implementing this functionality, and as of
now it handles unpacking files that have been compressed/obfuscated by the fol-
lowing packers [50]:

Aspack (2.12)

UPX (all versions)

FSG (1.3, 1.31, 1.33, 2.0)
Petite (2.x)

PeSpin (1.1)

NsPack

wwpack32 (1.20)

MEW

Upack

YO0da Cryptor (1.3)

It would normally take considerable time to run ClamAV on a PE-file, but by re-
placing the signature database of ClamAV with an empty signature database, the
processing time was reduced greatly. The processing time was reduced from ap-
proximately 15 seconds down to approximately 60-100 millisecond when unpack-
ing files. The service updating the signature database also had to be disabled, to
prevent the service from restoring the signature database.

When running the program clamscan on a packed PE-file with the arguments “-
debug”, “~leave-temps” and “~tempdir destination_directory”, ClamAV will detect
if a specified file is packed, attempt to unpack the file and leave any unpacked
files in destination_directory. The unpacked files are not always PE-files, since the
real payload might be a script or another type of file.

An example of this, is PE-files that simply execute the commands in a contained

https://www.clamav.net/

Chapter 3: The proposed method 37

script. Autolt is an example of software that enables this, and has previously been
used in creation of malicious PE-files [51]. The software is made to allow users cre-
ate scripts for automating tasks. To execute the commands in an Autolt script, the
script must normally be executed by the Autolt software. As an alternative to this,
Autolt provides the tool Aut2Exe, which can be used to create executable PE-files.
Such a PE-file would then contain the script and all dependencies required to run
the commands in the script when the PE-file is executed. The default behaviour
of Aut2Exe is to pack the file with UPX after compilation [52].

After performing unpacking, the proof of concept will iterate over all the unpacked
files. Unpacked PE-files will be sent through the triage pipeline and will therefore
be recursively unpacked and analysed in the same manner as the original file.
Unpacked files that are not PE-files, are instead treated as unpacked resources,
a feature described in section 3.2.3. When all unpacked PE-files have been sent
through the triage pipeline, the original file will move to the next step.
Appendix A describes other unpacking that was tested, but had to be abandoned
due to poor performance.

3.2.3 Feature extraction

The implementation uses a limited set of features and has been limited to two
steps. The first step combines multiple fast features, and the last step uses a single
slow feature.

The fast features that were implemented in the proof of concept were:

imphash (hash of import table)

icon hash

contained resource hash (hash of unpacked resources)

Vhash (proprietary hash from VirusTotal, only used in the large data set)

Imphash, icon hash and Vhash is described in section 2.2.2. Contained resource
hash was however not used based on previous works. As mentioned in section
3.2.2, some files that are unpacked are not PE-files. An attempt was therefore
made at clustering files based on whether they contain similar resources (files
that are not PE-files). For all contained resources, the SHA-256 digest of the file
is computed and then used as a feature for clustering the file.

Clustering files by icon is also based on a SHA-256 digest of the data. By storing a
digest instead of the raw icon, the storage/memory consumption is reduced. Com-
paring two hashes to identify if they are identical, also requires less computation
than comparing two files to identify if they are equal.

The slow feature that was implemented in the proof of concept is TLSH, described
in section 2.2.1. This is a catch-all derived feature, that can be extracted from all
PE-files — even those that are corrupted and cannot be executed or parsed by the
Python module pefile. ssdeep and sdhash could also have been used, but previous
work suggests that TLSH can be more useful for finding similar PE-files.

As with unpacking methods, the use of certain features had to be abandoned. Ap-
pendix A describes the features that had to be abandoned due to poor performance

https://www.autoitscript.com/

38 Sturla H. Bae: Triage of PE-files through DAC clustering

or proposed as future work due to the limited time available.

3.2.4 Improving performance through parallelization

Performing unpacking and feature extraction on files does not have to be done
in the same order as the files arrived. Performing these actions on PE-files can be
done completely independent and can therefore be parallelized fairly easily.

The proof of concept therefore uses Python’s multiprocessing module to distrib-
ute the preprocessing and feature extraction. Multiple workers retrieve files that
need unpacking and feature extraction from a “queue” of files. After a worker has
finished processing file, the features are placed into a clustering queue. The clus-
tering process will then retrieve the features of one file at a time from this queue,
and cluster the file based on the extracted features.

This allows the unpacking and feature extraction to scale well across multiple
machines. The current implementation only supports scaling across multiple cores
on a single host, but can quite easily be modified to scale across multiple machines.
Unpacking and feature extraction is easy to distribute, but as mentioned by the
authors of BitShred [35], performing clustering in a distributed manner is more
challenging. If the clustering was performed in a distributed manner, it might have
been more difficult to measure the performance of different clustering methods
also. The clustering is therefore performed by a single thread.

3.2.5 DAC clustering

After the features of a file has been extracted, the DAC clustering method described
in section 3.1.3 is used to cluster the file. Unlike the figure illustrated in that
section, the proof of concept does not attempt to cluster files with any medium
speed features. Only a few fast features and a single slow feature is used. If the
file is not added to a labelled cluster of high quality when attempting to cluster it
with the fast features, an attempt is made at clustering the file with TLSH.
Details of how the proof of concept handles clustering files based on fast features
and slow features are described in the next two sections.

Clustering using fast features

Clustering files based on identical values, could easily be implemented in Python.
In Python, a “dictionary” is a data structure that can be used to map keys to their
corresponding values. In other programming languages, this type of data structure
is often referred to as associative arrays. The underlying implementation of Python
dictionaries shares some similarities with hash tables, since a hash function is used
to find the values based on the key [53].

The Python function defined in listing 3.1 is a slightly simplified version of the
function used to cluster files on equal values in the proof of concept. In addition
to being easy to implement, the clustering method also allows very fast retrieval
of files with identical imphash.

Chapter 3: The proposed method 39

Code listing 3.1: Clustering files based on equal imphash in Python. As one can
see in the code below, clustering files based on equal values is simple to implement
as well as fast to execute.

def cluster with imphash(sha256, imphash, imphash clusters):

Cluster a file based on the imphash of the file

Parameters:
- sha256: The SHA-256 digest of the file
- imphash: The imphash of the file

- imhash clusters: A dictionary of imphash clusters,
where the imphash values are used as keys

if imphash in imphash clusters.keys(): # If cluster exists,
imphash_clusters[imphash][’items’].add(sha256) # add file to cluster.
else: # If cluster doesn’t exist,
imphash_clusters[imphash] = { # create new cluster.
"label’: None,
'purity’: 0,
"items’: set([sha256]) # Add file to new cluster
}

Clustering using slow features

As mentioned in section 2.1.6, clustering files based on distance, is slightly more
difficult when many previously analysed files, have not been clustered using all
features. A file that is being clustered with TLSH, is first compared to the centroid
of all existing clusters. If the file was sufficiently close to any centroid, the file is
added to the cluster with the closest centroid.

If the file is not sufficiently close to an existing centroid, a new cluster is created
with the file as centroid. An iteration is then made over all files that have not been
added to any TLSH cluster yet. If any other file is sufficiently close to the centroid
of the new cluster, the file is added to the newly created cluster. Since some of
these files might have a label, an attempt is made to label the new cluster.

As described in section 2.1.6, a method for reducing the time-complexity of clus-
tering is to not update centroids after adding files to clusters. Preliminary research
suggested that the benefit gained from updating the centroid after adding an item
was low, and the default behaviour of the proof of concept is therefore to not up-
date the centroids. An option to enable updating of centroids is however included
in the implementation.

The Python function in appendix B illustrates how much more complex this is
than clustering files based on equal values, and how many iterations have to be
made, in order to cluster files with distance based fuzzy hashes.

3.2.6 Evaluating clusters

To evaluate the quality of clusters, the proof of concept uses the measure purity,
described in section 2.2.5. It is assumed that a cluster is of poor quality if the purity
is less than 0.5, or if the cluster contains five files or more and the purity is less than

40 Sturla H. Bae: Triage of PE-files through DAC clustering

0.8. These values were selected by manually inspecting a few clusters created with
each of the features. A thorough scientific analysis of what the optimal thresholds
are would be preferable. This would however require extensive testing and could
therefore not be performed within the limited time available for the project.

As described in section 3.1.4, the purity of a cluster can only be determined if
it contains labelled items. This measure is therefore mainly used at the end of
the training, after all files in the training set have been clustered. Any clusters
exhibiting low purity after training, will be marked as a cluster of poor quality.
After clustering unknown files, some files will be clustered together in new clusters
with unknown quality. In lack of a suitable method for evaluating these clusters,
the proof of concept assumes that all these clusters are of high quality. The con-
sequences of doing so, are discussed under section 5.4.

3.2.7 Labelling clusters and files

At the end of the training phase clusters are labelled. The mentioned evaluation of
cluster quality is used to identify if a cluster should be given a label, and majority
vote is used to identify which label should be used. If the quality of a cluster is
evaluated to be good, the label of the most common family in the cluster is used
to label the cluster. If a cluster is of poor quality, no label is given to the cluster.
For labelling a file, all clusters the file is part of, are inspected. Among clusters
that have a label, the cluster with the highest purity is chosen. The label of this
chosen cluster is then used to label the file. If the file cannot be labelled, but it
has been unpacked to another PE-file which has a label, the label of the unpacked
PE-file is used to label the original file.

3.2.8 Prioritising files for in-depth analysis

The triage is not only supposed to filter out files that are similar to previously
seen files, but also help maximising the benefit gained from performing in-depth
analysis. It should therefore be possible to identify files that should be prioritised
for in-depth analysis. Analysing a file in a cluster that contains many unlabelled
files should be prioritised, since this allows prediction of the labels for as many
files as possible.

For clusters of good quality, the first item in the cluster is sent to a simulated in-
depth analysis. The simulated in-depth analysis is simply a function that returns
the correct label of the file. The label of the file is then given to the cluster, as well
as all other unlabelled items in the cluster.

3.3 Experiments

The proof of concept has been implemented to allow several different clustering
methods to be used. The results of clustering with different methods can then be
compared against each other. The compared methods are:

Chapter 3: The proposed method 41

Using a single feature for clustering all files
Using all fast features

Using all features

Divide-And-Conquer

The main goal of the experiments is to compare the speed and accuracy of the
DAC clustering described in chapter 3 to more naive methods, and evaluate how
the application of the DAC algorithm affects the performance.

Although using all features or only fast features are seen as more naive methods,
the divide-and-conquer algorithm has been applied to some extent; Some features
are only used on some files, which results in some files being clustered differently
than others. The truly naive methods are the ones where a single feature is used
to cluster all files. The difference between clustering with “all features” and DAC
clustering, is therefore that the proposed DAC clustering method will not cluster
a file with slower features, if the file has been successfully clustered with fast
features.

The features used in the experiments are mentioned in section 3.2.3.

3.3.1 Data sets

Two data sets were used for the experiments. The first data set was a rather small
data set, consisting of 10 families with a total of 9 823 files. The second data set
is a quite large data set of 93 families with a total of 232 301 files.

The reason for using two data sets of different sizes, is to test how the size of the
data set affects the results. The number of computations required for clustering
files with slow features grows faster than the number of items in a data set, and
the findings can therefore be different for data sets of different sizes.

The small set is a subset of a data set used in previous research projects, at the
Testimon Research group at NTNU. It consists of both packed and non-packed
PE32 files (PE-files compiled for 32-bit processors). It was collected in Q3 2015
from maltrieve, VirusShare, VxHeaven and files shared by students. According to
the paper describing the data set, the files were labelled using anti-virus reports
retrieved from VirusTotal, but it is not mentioned whether majority voting was
used or not [54, 55]. This data set will hence be referred to as the small data set,
and details of this set is listed in table 3.1.

The large data set was collected in March 2020 by subscribing to a VirusTotal
feed. Files were labelled based on majority votes among the anti-virus results in
VirusTotal, and unfortunately it was not considered that some anti-virus software
vendors, use the same anti-virus engines. Files were collected based on family
name and Vhash, but only files where family name could be determined, were
used in experiments, since validation otherwise would be difficult to perform.
More specifically, the method was:

1. Collect all PE-files in the feed that have not already been collected.
2. Determine family name based on anti-virus results. Store family name and
Vhash in a database.

42 Sturla H. Bae: Triage of PE-files through DAC clustering

3. If there are more than 10 000 files of a specific family or with a specific
Vhash, do not collect more files of that family or with that Vhash.

4. After finishing collection, group by family and Vhash. Store files that are in
clusters of at least 100 files.

5. Exclude any files without a family name.

This data set will hence be referred to as the large data set, and details of this set
is listed in table 3.2. Notice that there are 13 438 files in the agent family. This
means that some files were included in the data set only due to having identical
Vhash as at least 100 other files. The results of clustering files based on Vhash are
therefore likely not fully representative of how Vhash would perform in clustering
of other PE-files.

In an ideal situation, the large data set should have been collected over a longer
period. It should nevertheless be more representative for typical files found in the
wild today, than the files in the small data set. The data set exhibits more realistic
imbalance related to the number of files belonging to each family, and since it is
much bigger, the challenges related to scalability becomes more evident.

The labelling process is not perfect, and a few files have been verified to carry
the wrong label. Due to the amount of data required for testing large scale triage,
no better solution was found for labelling the files. Most files seem to be labelled
correctly, and the results should therefore not be noticeably affected.

In addition to showing the families of malware and the number of samples in
each family, the tables show the number of packed samples within each family.
This was identified by using Detect It Easy ver. 2.05. This tool only detects files
that are packed with known packers, and the tool might report false positives. The
given numbers are therefore only approximate values.

Table 3.1: Details of the small data set

Family Non-packed files | Packed files | Total
agent 478 522 | 1000
hupigon 97 903 | 1000
obfuscator 113 887 | 1000
onlinegames 921 79 | 1000
renos 657 343 | 1000
small 139 861 | 1000
vb 482 581 | 1000
vbinject 635 365 | 1000
vundo 609 214 | 823
zlob 821 179 | 1000

Sum 4952 (50.4%) | 4934 (49.6%) | 9823

https://github.com/horsicq/Detect-It-Easy/tree/9404ac6ff4504dd4fba8a9daefa4d3dc76813313

Chapter 3: The proposed method

Table 3.2: Details of the large data set

Family Non-packed files Packed files Total
adposhel 1656 0 1656
agent 9121 4317 13438
allaple 5021 0 5021
alman 166 14 180
bancteian 912 0 912
banker 281 29 310
benjamin 2 8751 8753
bifrose 141 55 196
bladabindi 1313 55 1368
blocker 134 14 148
brontok 36 165 201
coinminer 10651 6 10657
cosmu 15 236 251
crypt 268 5 273
darkkomet 198 34 232
detroie 107 75 182
dialer 39 568 607
dinwod 73 3672 3745
eggnog 279 378 657
emotet 2709 87 2796
expiro 1488 1 1489
farfli 113 51 164
fasong 280 327 607
fearso 141 203 344
floxif 2472 286 2758
fsysna 3299 0 3299
fugrafa 170 0 170
gandcrab 6333 0 6333
glupteba 404 0 404
hematite 9989 0 9989
hupigon 140 231 371
ipamor 2 1281 1283
ircbot 247 409 656
jeefo 410 0 410
juched 131 2 133
keylogger 109 13 122
koutodoor 109 45 154
lamer 197 4861 5058
locky 105 2 107

43

Sturla H. Bae: Triage of PE-files through DAC clustering

Table 3.2 continued from previous page

Family Non-Packed files Packed files Total
lolbot 1150 0 1150
lunam 2402 3244 5646
mabezat 172 4 176
madangel 104 5 109
mansabo 4910 0 4910
mydoom 237 3601 3838
neshta 4404 12 4416
nimnul 228 43 271
nitol 1255 0 1255
nymaim 216 0 216
padodor 9137 0 9137
pakes 612 1 613
parite 996 90 1086
picsys 1937 2551 4488
pluto 1149 605 1754
qgpass 37 83 120
qukart 4279 0 4279
ramnit 2127 322 2449
renamer 434 0 434
ribaj 1174 0 1174
rozena 129 0 129
runouce 1120 78 1198
sality 4998 680 5678
shipup 1533 384 1917
shodi 25 546 571
sivis 4665 0 4665
skybag 100 0 100
small 6101 426 6527
softcnapp 4492 0 4492
soltern 5250 0 5250
starter 224 0 224
startpage 4558 21 4579
stormattack 1330 0 1330
swisyn 658 111 769
swrort 387 9 396
sytro 7328 1854 9182
tinba 91 63 154
toffus 256 0 256
tofsee 178 0 178
unruy 9353 102 9455

Table 3.2 continued from previous page

Chapter 3: The proposed method

45

Family Non-Packed files Packed files Total
upatre 3290 1506 4796
urelas 2316 673 2989
ursnif 316 1 317
vbkrypt 133 29 162
viking 72 441 513
vilsel 406 232 638
virlock 9986 0 9986
virut 8868 1120 9988
vobfus 570 16 586
vundo 1921 0 1921
wabot 9832 73 9905
warezov 247 1 248
xorist 113 16 129
zegost 76 42 118

Sum | 187143 (80.6%) | 45158 (19.4%) | 232301

3.3.2 Hardware setup

The experiments with the proof of concept, were performed on a virtual machine
in a local OpenStack cloud computing platform. In shared cloud platform envir-
onments, overcommitting is often used. This allows multiple virtual CPU-cores to
be created per physical CPU-core, since it is unlikely that all users will be using all
available processing power at all times. Ideally the experiments should have been
performed on a dedicated system, but since cross-validation is used, it is unlikely
that disturbance caused by other users will occur, without such disturbances being
clearly visible in the results.

The virtual machine had 16 virtual CPU cores with the model name “Westmere
E56xx/L56xx/X56xx (Nehalem-C)” and 32 GB of RAM, but the exact hardware
should not matter. It is rarely possible to correctly compare the speed of different
research projects, as even the same CPU can perform differently if the microcode
is updated. To allow comparison of the method against more naive methods, the
comparisons are therefore made with the same software, on the same hardware.
Additionally, the results can be validated by downloading the open-source proof
of concept and performing the same comparisons on new hardware. Although the
exact timings likely will differ, how fast the different methods are relative to each
other, should not change.

Chapter 4

Results

This chapter presents the results from experiments performed with the proof of
concept. Section 4.1 first presents the results from performing the experiments on
the files in the small data set. This is followed by results from experiments on the
large data set in section 4.2.

Results from experiments performed with k-fold cross-validation are given as the
mean value, together with the 95% confidence interval. For all experiments where
k-fold cross-validation was used, k was equal to 5, meaning that the experiments
were conducted five times.

4.1 Small data set

The small data set containing 9 823 files was used in all experiments except those
that involved Vhash. The results are presented according to the steps in the triage
pipeline described in section 3.1. In each of the steps, the performance of different
clustering methods is compared. A final comparison that measures the overall
effectiveness of the triage when using the different clustering methods is included
at the end.

4.1.1 Training

During training, the feature extraction and clustering is performed in separate
steps. This ensures that the speed of extraction- and clustering speed can be in-
vestigated independently.

Preprocessing (Unpacking)

By unpacking files in the small data set with 9 823 files, of which 4 934 files
(49.6%) have been identified as being packed, the proof of concept was able to
achieve the following:

e 1 350 files (27.4% of the packed files) could be unpacked to at least one
file.

47

48 Sturla H. Bae: Triage of PE-files through DAC clustering

e 1 204 files (24.4% of the packed files) could be unpacked to at least one
PE-file that was not identified as being packed. This includes both files that
were unpacked directly to a non-packed file and files that were indirectly
unpacked to a non-packed file, through recursive unpacking.

e 4 208 PE-files were unpacked from the files in the data set. Due to this, the
proof of concept had to process 14 031 files instead of 9 823. This is an
increase of 42.8%.

e Performing unpacking on files, did not lead to a significant increase in pro-
cessing time by itself. Attempting to unpack the 4 208 files that had been
identified as being packed, resulted in an 11.5% increase in processing time.
A large increase in processing time was however caused by parsing and re-
cursively unpacking the unpacked files.

Feature extraction

The mean time required for parsing and extracting features from PE-files is shown
in table 4.1. The execution time is given in milliseconds per file, on a single CPU
core. When denoting the execution time per file as t, the number of files as n and
the number of CPU-cores as c, the total execution time required to extract features
from a set of files, is approximately tc—"

Table 4.1: Mean execution time of parsing and extracting features from a single
file.

Execution time
. ?
Feature Unpacking performed? per file (ms)

No features Yes 445 (+/- 4)
. No 259 (+/-1)
imphash Yes 445 (+/-4)
icon hash Yes 445 (+/-5)

contained No N/A
resource hash Yes 447 (+/-5)
TLSH Yes 457 (+/-7)
No 271 (+/-2)
All features Yes 459 (+/-5)

Most of the time spent per file is not in fact spent on extracting the aforementioned
features. Before extracting features from a file, the SHA-256 digest of a file is
calculated, the file is potentially unpacked, and the file is parsed with the pefile
module. Parsing files with pefile seems to be quite time-consuming, but allows
fast retrieval of certain features after parsing. Extracting icon or imphash is for
instance much faster, but extracting TLSH hash is not faster since this feature is

Chapter 4: Results 49

extracted from the raw bytes of the file. “no features extracted” is therefore given
as a baseline.

It is evident that the processing time increases significantly when parsing and re-
cursively unpacking all unpacked files. Simply parsing the files without extracting
any features, took 72% longer time, compared to only parsing files when unpack-
ing was not performed.

For divide-and-conquer clustering, all features must be extracted. The additional
cost of extracting multiple features, compared to extracting a single feature only,
seems negligible, provided that the file has been parsed with PE-file.

Clustering

The results of clustering with the different features are evaluated in various man-
ners. The results presented in table 4.2 shows a significant difference the number
of files that can be clustered with the different methods. When unpacking was
not performed, 5 750.8 files (73%) could be clustered with imphash, 3 430.4 files
(44%) with icon, and 2 626.8 (33%) with TLSH at a threshold of 100. Although
more files are considered as “being in a cluster” by the underlying implementation,
the files are not counted as being clustered if they are the only file in a “cluster”,
when statistics are gathered.

TLSH was the only feature where the number of files clustered was affected by
performing unpacking. This is due to TLSH clustering files with the “most similar”
files (within a threshold), as opposed to the strict method used by other features.
The current implementation compares the TLSH hash of each file to the TLSH hash
of all other files, including the unpacked files. This seems to slightly decrease the
number of files being successfully clustered, since a few files then will match better
with an unpacked file.

Table 4.2: Number of files clustered, mean size and mean purity of clusters, when
clustering the 7 858 files in the training set with individual features.

Feature Unpacking Files Mean size Mean purity
performed? clustered of clusters of clusters

imphash No 5750.8 (+/- 20.3) | 10.4 (+/-0.1) | 93.2% (+/- 0.2%)
Yes 5750.8 (+/-20.3) | 10.4 (+/- 0.1) | 93.2% (+/- 0.2%)
«con hash No 3430.4 (+/-21) | 8.7 (+/-0.1) | 89.3% (+/- 0.5%)
Yes 3430.4 (+/-21) | 8.7 (+/-0.1) | 89.2% (+/- 0.5%)

contained No N/A
resource hash Yes 291.2 (+/-30) | 4.8 (+/-0.4) | 52.9% (+/- 4.4%)
ILSH No 2626.8 (+/- 20.4) 4.5 (+/-0) | 95.7% (+/- 0.3%)
Yes 2617.2 (+/- 21) 4.5 (+/-0) | 95.6% (+/- 0.3%)

In addition to being able to cluster many files in the data set, the created clusters
should preferably be as large and pure as possible. The mean size and purity of the
clusters are therefore also shown in table 4.2. Imphash seemed to be the individual
feature that performed the best in terms of number of files clustered, mean size

50 Sturla H. Bae: Triage of PE-files through DAC clustering

and speed, but TLSH clusters had a higher purity, when using a distance threshold
of 100.

Even though imphash indeed performed well, it certainly was not able to cluster all
the files in the training set. If the features can complement each other, combining
features can allow clustering of more files.

Another aspect of clustering that is highly interesting, is the execution time re-
quired to cluster the files. Table 4.3 shows the execution time of clustering the
files with the individual features, as well as different combinations of features.
Clustering files with fast features is very fast, both when features are used indi-
vidually and when they are combined. DAC clustering is slower than using fast
features only, yet it is much faster than using TLSH or all features on all files.

Table 4.3: Total execution time for clustering the 7 858 files in the training set,
using individual features and combinations of features.

Feat Unpacking Time to cluster

cature performed? (in seconds)
) No 0.559 (+/- 0.037)
imphash Yes 0.899 (+/- 0.058)
icon hash No 0.528 (+/- 0.021)
Yes 0.821 (+/- 0.017)

contained No N/A

resource hash Yes 0.814 (+/- 0.034)
No 61.284 (+/- 2.714)
TLSH Yes 94.92 (+/- 3.944)
No 0.642 (+/- 0.013)
All fast features Yes 1.019 (+/-0.109)
No 64.427 (+/- 2.367)
All features Yes 98.89 (+/- 3.498)
Divide-and- No 19.295 (+/- 0.49)
conquer Yes 41.343 (+/-1.188)

The clustering performed as part of the training only gives an impression of how
fast files can be clustered together and how pure the average cluster is. The ef-
fects of combining features to perform real-time clustering of files is presented in
section 4.1.2.

4.1.2 Testing

During testing, files are clustered one by one, and labelled if possible. In this step,
the ability of clustering and labelling unknown files is tested. Table 4.4 shows how
well the features and combinations of features performed in terms of labelling the
unknown files. Using no features, the files are simply parsed. The time spent on
clustering files was small compared to the time spent parsing the files regardless
of how the files were clustered, but there is still a difference between the cluster-

Chapter 4: Results

51

ing methods. The increased recall achieved by combining all fast features or all
features, indicate that the chosen features can complement each other.

Table 4.4: Precision and recall achieved, as well as the execution time of parsing,
clustering and labelling the 1 965 files in the testing set.

Feature Unpacking Precision Recall T otal.executlon

performed? time (in seconds)
No 56.09 (+/- 0.742)
No features Yes N/A 77.666 (+/-6.997)
imphash No 94.7% (+/- 0.7%) | 34.7% (+/- 0.5%) | 55.197 (+/- 0.333)
P Yes 94.6% (+/- 0.7%) | 35% (+/- 0.4%) | 82.289 (+/- 3.443)
icon hash No 91.8% (+/- 1.4%) | 20.9% (+/- 0.7%) 55.922 (+/- 0.57)
Yes 91.3% (+/- 1.5%) | 21.2% (+/- 0.7%) | 82.701 (+/- 3.886)

contained No N/A
resource hash Yes 83.5% (+/- 8.8%) 0.4% (+/- 0.1%) | 80.971 (+/- 3.533)
TLSH No 96% (+/- 0.8%) | 30.4% (+/- 1.3%) | 58.738 (+/- 0.792)
Yes 94.7% (+/- 1%) | 30.8% (+/- 1.4%) | 79.883 (+/- 6.449)
No 92.2% (+/- 1%) | 42.4% (+/- 0.2%) | 56.873 (+/- 0.444)
Fast features Yes 91.9% (+/- 1.1%) | 42.8% (+/- 0.2%) | 83.011 (+/- 3.632)
No 91.7% (+/- 1%) | 49.2% (+/- 0.8%) | 58.174 (+/- 0.386)
All features Yes 91.1% (+/- 1.1%) | 49.1% (+/- 0.8%) | 85.557 (+/- 3.394)
Divide-and- No 92.3% (+/- 1%) | 48.1% (+/- 0.8%) | 57.508 (+/- 0.332)
conquer Yes 91.6% (+/- 1.3%) | 47.9% (+/- 0.9%) | 84.434 (+/- 4.343)

The most interesting comparisons are between clustering with fast features, all
features and divide-and-conquer clustering. Although the difference is small, clus-
tering files with DAC clustering is slightly faster than clustering all files with all
features. The improved speed does come at a cost; the recall of DAC clustering is
slightly lower than the recall of clustering with all features.

By using unpacked files to label the original files, the precision is reduced slightly.
The recall is in some cases increased slightly, but in other cases the recall is de-
creased slightly when unpacking is performed. Despite the unpacking process
causing the execution time to increase significantly, the precision or recall did
not seem to increase significantly.

4.1.3 Triage

By labelling files that are identified as being related to a previously analysed file,
the proof of concept has already performed some form of triage. The files that
have been given labels through clustering should not be prioritised for in-depth
analysis. The second task of the triage is to identify files that should be prioritised
for in-depth analysis, which in the proof of concept is performed after the testing
phase is done.

After clustering files with DAC clustering or all features, approximately 50% of the
files in the testing set had been given a label. The remaining files might have been
added to a cluster of poor quality, clusters that did not contain any labelled items
or they might not have been identified as being similar to other files. An attempt

52 Sturla H. Bae: Triage of PE-files through DAC clustering

is therefore made analysing representative files in-depth and using the analysis
result to predict labels of other files.

Table 4.5: Precision and recall achieved when attempting to label unknown files
after analysing a representative file in the same cluster. The recall indicates that
very few files could be labelled in this manner, while the precision indicates that
approximately 20% of files labelled in this manner were given an incorrect label.

ki

Feature Unpacking Precision Recall

performed?
. No 86.7% (+/- 6.7%) | 1% (+/- 0.3%)
imphash Yes 89.7% (+/- 6.7%) | 1% (+/- 0.3%)
. No 76.1% (+/- 12.7%) | 0.5% (+/- 0.1%)
icon hash Yes 78.1% (+/- 11%) | 0.6% (+/- 0.1%)
contained No N/A
resource hash Yes 0% 0%
No 81.7% (+/- 3%) | 1.3% (+/- 0.3%)
TLSH

Yes 82.5% (+/- 3%) | 1.3% (+/- 0.3%)
No 83.2% (+/- 4.6%) | 1.1% (+/- 0.2%)
Fast features Yes 88.1% (+/-9.8%) | 1.1% (+/- 0.2%)
No 83% (+/- 3.8%) | 1.5% (+/- 0.2%)
All features Yes 82.3% (+/- 4%) | 1.3% (+/-0.3%)
Divide-and- No 78.9% (+/- 4.8%) | 1.9% (+/- 0.2%)
conquer Yes 80.3% (+/- 6.4%) | 1.8% (+/- 0.3%)

Table 4.5 shows the precision and recall achieved when attempting to use the
results of in-depth analysis to predict labels of other files. Both the precision and
recall is poor. The low recall suggests that there were few clusters left; most of the
remaining files had not been found to be similar to any other files. The low preci-
sion suggests that some of the remaining clusters were of poor quality, containing
files belonging to multiple classes.

Since few files could be labelled by performing in-depth analysis of representative
files, there were many files left that needed in-depth analysis. When a file is ana-
lysed in-depth, it allows accurate labelling of a file, but would be very resource
demanding. The precision and recall achieved through labelling files by means of
clustering, must therefore be examined in relation to the cost of in-depth analysis.
The results used to measure the performance of the triage, is therefore preci-
sion/recall and the share of files sent to in-depth analysis. The precision and recall
shown in table 4.6 is much higher than the previously presented results, but car-
ries a high “cost” in terms of how many files would have to be analysed in-depth.
A precision of 100% would for instance be very bad if all the files had to be sent
to in-depth analysis, such as when no triage is performed.

The number of mislabelled files can also be considered as a “cost” of performing
triage, since there is a trade-off where the number of files in need of in-depth
analysis is reduced, but the number of mislabelled files increases. Since all files

Chapter 4: Results

Table 4.6: The final results from performing triage, in terms of how many files

had to be analysed in-depth and how precise the labelling was.

. Files sent to . .
Unpacking | . . Precision /
Feature in-depth analysis
performed? . Recall
(lower is better)

No features No 100% 100%
Yes 100% 100%
) No 62.6% (+/- 0.7%) 98% (+/- 0.3%)
imphash Yes 63.1% (+/- 0.6%) | 97.9% (+/- 0.3%)
. No 76.7% (+/- 1.1%) 98% (+/- 0.4%)
icon hash Yes 77% (+/- 1.2%) | 97.9% (+/- 0.5%)

contained No N/A
resource hash Yes 99.5% (+/- 0.1%) 99.9% (+/- 0%)
TLSH No 67.2% (+/- 1.3%) | 98.5% (+/- 0.3%)
Yes 67.3% (+/- 1.1%) | 98.1% (+/- 0.3%)
No 53.2% (+/- 0.4%) | 96.3% (+/- 0.4%)
Fast features Yes 53.6% (+/- 0.4%) | 96.2% (+/- 0.5%)
No 45.5% (+/- 0.6%) | 95.4% (+/- 0.5%)
All features Yes 46.2% (+/- 0.5%) | 95.1% (+/- 0.6%)
Divide-and- No 46.8% (+/- 0.7%) | 95.8% (+/- 0.5%)
conquer Yes 46.6% (+/- 0.5%) | 95.4% (+/- 0.6%)

53

are labelled, the number of false positives is equal to false negatives, and the recall
is therefore equal to the precision.

Since the difference in execution time was negligible between clustering with all
features and DAC clustering, and performing unpacking only led to an increase
in execution time, the best results were achieved when using all features for clus-
tering, without performing unpacking. By clustering using this method, less than
half of the unknown files had to be analysed in-depth.

4.2 Large data set

The amount of data handled by a system performing malware triage, would likely
be much greater than the data set used for evaluating the different features and
clustering methods described in the previous sections. For a more realistic test of
the method, the experiments that are likely to be affected by the size of the data
set had to be repeated on a much larger data set.

As in the previous sections, the results are presented according to the steps in the
triage pipeline described in section 3.1, but the preprocessing step is skipped since
the results of performing unpacking was assumed to not depend on the size of the
data set.

54 Sturla H. Bae: Triage of PE-files through DAC clustering

4.2.1 Training

The training step was again divided into a feature extraction and clustering step.

Feature extraction

The processing time required to parse a file and extract features was roughly equal
to the processing time per file in the small data set, as seen in table 4.7. The feature
extraction was therefore confirmed to have a time-complexity of O(n).

Table 4.7: Mean execution time required to parse and extract features from a file
in the large data set.

Feature Execution time per file (ms)
No features 367 (+/-2)
imphash 372 (+/-2)
icon hash 370 (+/-2)
TLSH 381 (+/-1)
All features 387 (+/-1)

The small difference was likely caused by the properties of the files in the data
sets (e.g. file size), since the execution time per file also was increased when only
parsing the files without extracting any features. Vhash is not included in these
results since it was retrieved from VirusTotal metadata and could not be extracted
from the files.

Clustering

When clustering the files, findings were mostly the same as for the small data set.
The difference in mean size of clusters is most likely caused by the classes being
bigger in this data set.

Table 4.8: Number of files clustered, mean size and mean purity of clusters cre-
ated when clustering the 185 841 files in the training set using various features.

Mean size Mean purity

of clusters of clusters
Vhash 172633.4 (+/- 24.35) | 26.59 (+/- 0.11) | 99.32% (+/- 0.03%)

imphash | 162693.6 (+/- 82.41) | 56.14 (+/-0.43) | 90.5% (+/- 0.15%)

icon hash 75192.8 (+/-98.7) | 28.04 (+/- 0.08) | 88.85% (+/- 0.11%)
TLSH 159983 (+/- 27.23) | 22.49 (+/- 0.13) | 93.14% (+/- 0.28%)

Feature Files clustered

Even though Vhash was used in the collection of the large data set, only 4 095
additional files (1.76%) seem to have been added to the data set based on Vhash.
As shown in the table, clusters created based on Vhash were smaller than clusters
based on imphash, but the purity of Vhash clusters was much higher, and allowed

Chapter 4: Results 55

more files to be added to a cluster of at least two files. The performance of Vhash
was not expected to have been affected that much by the method used in collect-
ing the data set, and might suggest that Vhash is a feature that performs well in
clustering of PE-files.

Table 4.9: Total execution time for clustering the 185 841 files in the training set,
using individual features and combinations of features. “No features” corresponds
to simply iterating over the files without making any attempt at clustering them.

Time to cluster
Feature .
(in seconds)
No features 14.447 (+/- 0.314)
Vhash 17.232 (+/- 0.345)
imphash 16.755 (+/- 0.189)
icon hash 15.763 (+/- 0.184)
TLSH 4789.028 (+/- 184.49)
Fast features
(w/o Vhash) 17.5 (+/- 0.173)
Fast features
(w/ Vhash) 20.776 (+/- 0.553)
All features
(w/o Vhash) 4974.026 (+/- 303.186)
All features
(w/ Vhash) 4850.354 (+/- 109.633)
DAC
(w/o Vhash) 2441.116 (+/- 58.583)
DAC
(w/ Vhash) 1667.37 (+/- 26.327)

The findings related to the execution time of clustering, shown in table 4.9, are
roughly the same as for clustering the small data set — clustering with fast features
is very fast, DAC clustering is slower, and clustering with all features is much
slower. By using Vhash in the DAC clustering in addition to imphash, icon hash
and TLSH, the execution time of clustering files with DAC clustering was further
reduced. This is because it allowed a larger share of the files to be successfully
clustered with fast features.

4.2.2 Testing

Although the findings during the training phase were quite similar for both data
sets, the findings from the testing phase differed slightly.

Table 4.10 shows that the precision and recall achieved through simply clustering
files based on independent features or the various combinations of features is
significantly better for experiments performed on the large data set. The massively
increased training set, a smaller share of packed files, the combination of these

56 Sturla H. Bae: Triage of PE-files through DAC clustering

Table 4.10: Precision and recall achieved, as well as the execution time of parsing,
clustering and labelling the 46 461 files in the testing set.

Execution time

Feature Precision Recall)
(in seconds)
No features N/A 1081.395 (+/- 10.185)
Vhash 99.8% (+/-0%) | 92.5% (+/-0%) | 1135257 (+/- 14.06)
imphash 98.6% (+/- 0%) | 78.7% (+/- 0.2%) | 1105.803 (+/- 13.164)
icon hash | 97.4% (+/- 0.1%) | 36.3% (/- 0.2%) | 1096.736 (+/- 15.62)
TLSH 98% (+/- 0.1%) | 78.2% (+/-0.3%) | 2776.76 (+/- 16.458)
fj\f;of%hm::ﬁj 97.9% (+/- 0.1%) | 81% (+/- 0.2%) | 1118.617 (+/- 17.728)
F(ﬁt/f‘e;zgle)s 98.9% (+/- 0%) | 94.9% (+/- 0.1%) | 1121.405 (+/- 14.785)
(":‘lvllf)es;‘;e;’) 97.7% (+/- 0.1%) | 91.5% (+/- 0.2%) | 3134.075 (+/- 38.865)
‘(A‘vli /ﬁx::ﬁ;’ 98.5% (/- 0%) | 95.5% (+/- 0.1%) | 3214.105 (+/- 52.14)
DAC

(/o Vhashy | 97:8% (+/-0.1%) | 91.3% (+/-0.2%) | 1326.37 (+/- 25.509)
o /Dxﬁlsh) 98.6% (+/- 0%) | 95.4% (+/- 0.1%) | 1191.756 (+/- 10.496)

properties, or other properties of the data set seems to allow more effective triage
of files.

In the table one can also see that using Vhash in addition to the other fast features
made it possible to achieve a higher precision and recall for clustering files. The
recall achieved by using “fast features w/ Vhash”, “all features w/ Vhash” and
“DAC clustering w/ Vhash” were all approximately 95%. The highest recall was
achieved when clustering all files with all features, but the time required to cluster
the files was also much higher than when the other clustering methods were used.
The execution-time for clustering files with DAC clustering was reduced further
when Vhash was used, since it allowed an even greater number of files to be
clustered with fast features only. The precision and recall is closer to the results of
clustering all files with all features, but the total execution time is much closer to
that of clustering files with fast features only, than the execution time of clustering
all files with all features.

4.2.3 Triage

Since the real-time clustering performed in the testing could be used to label a
large amount of the files, much fewer files had to be sent to in-depth analysis.
Table 4.11 shows the precision/recall achieved after analysing files in-depth, as
well as the share of files that had to be analysed in-depth.

The difference in precision is quite small among the clustering methods that use

Chapter 4: Results

Table 4.11: The final results from performing triage, in terms of how many files

had to be analysed in-depth and the precision of labelling files.

57

Files sent to Precision /

Feature in-depth analysis Recall

(lower is better)

Vhash 7.29% (+/- 0.03%) | 99.82% (+/- 0.02%)
imphash | 20.13% (+/- 0.26%) | 98.85% (+/- 0.03%)
icon hash | 62.79% (+/- 0.24%) | 99.05% (+/- 0.04%)

TLSH 20.16% (+/- 0.27%) | 98.4% (+/- 0.11%)

lgj:/tof%hat::ﬁ; 17.23% (+/- 0.24%) | 98.26% (+/- 0.04%)

ngt/ f“;ﬁ;‘;;‘;s 4.06% (+/- 0.07%) | 98.93% (+/- 0.05%)

All f

. /Oef;;‘;z:) 6.36% (+/- 0.16%) | 97.82% (+/- 0.06%)

‘z‘x /fifl:::ﬁ; 3.07% (+/- 0.07%) | 98.58% (+/- 0.04%)
DAC

(w/o Vhashy | 6-69% (+/-0.19%) | 97.96% (+/- 0.06%)
DAC

(w/ Vhashy | 3-28% (+/-0.09%) | 98.68% (+/- 0.04%)

combinations of features. The difference in the share of files that would have to
be sent to in-depth analysis is more significant. The share of files that could be
filtered out by the triage was highest when Vhash was used in addition to the other
features. Among the clustering methods combining different features, including
Vhash, the clustering method that allowed the triage to filter out the most files
was using all of the features on all files, with only 3.07% of the files remaining.
DAC clustering was not far behind, with 3.28% files remaining, and using fast
features only was slightly further behind, with 4.06% files remaining.

These clustering methods are the most interesting to investigate further. Figure
4.1 compares these clustering methods in terms of the total execution time for
clustering the files and the number of files in need of in-depth analysis. As one
can see in this figure, DAC clustering performed almost as well as clustering with
all features in terms of how many files that could be filtered out. DAC clustering
also performed almost as well as clustering with fast features only in terms of
execution time for clustering files.

Based on these results, DAC clustering seems to perform well in terms of clustering
files, but it is not as clear which method that was best for triage. Was decrease in
execution time for clustering files worth the increased number of files in need of
in-depth analysis? This topic is discussed further in section 5.1.

58

Number of files in need of in-depth analysis

2000

1900

1800

1700

1600

1500

1400

1300

1200

Sturla H. Bae: Triage of PE-files through DAC clustering

Fast features
(w/ Vhash)

%

DAC |
(w/ Vhash)
All features |
(w/ Vhash)
1000 1500 2000 2500 3000 3500

Total execution time in seconds

Figure 4.1: Comparison between clustering with Fast features, All features and
DAC clustering. DAC clustering is able to filter out almost as many files as cluster-
ing with all features, and is only slightly slower than clustering with fast features.

Chapter 5

Discussion

This chapter discusses the results presented in chapter 4 and attempts to uncover
any weaknesses with the experiments that could affect how significant the results
are.

5.1 Analysis of results presented in section 4.2.2 and 4.2.3

The three clustering methods that performed the best, were to cluster with fast
features, cluster with all features and DAC clustering — with Vhash being used in
all cases. The main differences between these methods are shown in table 5.1.
Some elements have been simplified to allow easier comparison of the values.

Table 5.1: Comparison of the best performing clustering methods. Clustering files
with all features took much longer time than the other clustering methods, but
allowed a greater number of files to be filtered out.

Execution time of parsing | Number of files sent to

Features and clutering files in-depth analysis
(minutes and seconds) (lower is better)
No features 18m1s 46461
(no triage)
Fast features 18m41s 1884
All features 53m33s 1425
DAC 19m51s 1524

The method that required the least execution time for clustering files, was to
cluster files with fast features only. Even though the quickest method only used
fast features, the share of files filtered out was significantly worse than when using
DAC clustering or clustering with all features.

The reason why clustering with all features and DAC clustering performed better
than using fast features only, is because TLSH was able to complement the other
features, and thus allowed an increased number of files to be clustered. TLSH

59

60 Sturla H. Bae: Triage of PE-files through DAC clustering

is most likely not the only feature that can complement imphash, icon hash and
Vhash. Other slow features, or even other fast features such as peHash and Rich
hash, would likely also be able to complement the features for finding similar files.
Ideally, one would be able to filter out all files with fast features only, but this is
somewhat unrealistic since the fast features are quite strict in the comparison.
Since fuzzy hashes such as TLSH, ssdeep or sdhash allows more flexibility in the
matching, they will likely be able to complement fast features regardless of how
many fast features are used.

An important factor in the analysis of which clustering method performed the best
of DAC clustering and clustering with all features, is how much processing time
would be required to analyse the files not filtered out by DAC clustering. By clus-
tering the files with all features, 99 additional files were filtered out, compared
to the files filtered out with DAC clustering. The processing time that is required
to analyse a file with in-depth analysis is at least two minutes, and potentially
five minutes. Analysing the 99 additional files would therefore require an addi-
tional cost in execution time of at least 99 - 2 minutes = 198 minutes. This is
much greater than the approximately 34 minutes saved by using DAC clustering,
instead of clustering all files with all features, during the triage. If more than two
minutes would be required for in-depth analysis, which is not unreasonable when
the overhead of launching the virtual environments, the difference would be even
greater.

This analysis indicates that even though there was a tiny difference in the share
of files being filtered out, and a significant difference in execution time of cluster-
ing files, using all features for all files results in a lower total execution time for
labelling all files. The reduction in execution time for clustering files, would have
to be much more significant, to justify the small reduction in files filtered out with
DAC clustering.

Due to the time-complexity of clustering files with slow features, it is expected that
the difference in execution time between DAC clustering and clustering with all
features, will become more significant as the size of the data set grows. DAC clus-
tering could therefore potentially perform better than clustering with all features
if applied to a much larger data set. Identifying if this is the case, would how-
ever be difficult with an empirical approach. A theoretical approach could there-
fore be better suited. Due to the optimisations that reduce the time-complexity of
clustering files with distance-based features, described in section 2.1.6, the time-
complexity of clustering files is lower than O(n?) and highly dependent on proper-
ties of the data set. Using a theoretical approach would therefore also be difficult.
Based on the findings of these experiments, one can conclude that DAC clustering
can be used to filter out a greater number of files than some of the tested clustering
methods. An even greater number of files can however be filtered out by clustering
all files with all (available) features. Even though additional processing is required
to cluster all files with all features, the overall cost in processing power is lower
than when using DAC clustering, since one would have to analyse more files in-
depth when using DAC clustering. This is at least the case when performing triage

Chapter 5: Discussion 61

on the files in the data sets described in section 3.3.1, using the features described
in section 3.2.3 and the method described in section 3.1.

5.2 Findings related to unpacking

Unpacking files has been proposed as a solution to combat the usage of packers in
previously published papers. Performing unpacking and using unpacked files to
improve clustering performance, was found to be a greater challenge than it was
indicated in these papers.

Unpacking files with generic unpacking, where files are executed to unpack them-
selves, does not seem to be suitable for large scale malware triage. Existing solu-
tions that can restore a functioning executable and therefore are able to handle
recursively packed files, can typically consume the same amount of resources as
performing dynamic analysis. Additionally, the solutions will often fail when at-
tempting to unpack files that are found in the wild. In situations where files must
be unpacked, generic unpacking can be a viable solution, but in triage of PE-files
however, it seems too resource demanding and provides little value.

Using static unpacking, can allow fast unpacking of files, but many such tools
cannot be automated. Using ClamAV was viable, since it has a command-line in-
terface and can unpack files quickly. Even though ClamAV only seems to be able
to unpack about one in four PE-files identified as being packed, static unpacking
with ClamAV is very fast and the cost of unpacking is therefore low. That does
however not mean that it is cost-effective to unpack files for the purpose of im-
proving the triage of PE-files. The precision or recall would have to be improved
by the unpacking process, for it to be considered as cost-effective.

In the experiments, the precision and recall was reduced slightly when unpacking
was performed. This is likely because the unpacked files were not handled optim-
ally. There are likely methods that can be used to handle the unpacked files, but
identifying the ideal method is not trivial. MutantX-S, described one method, but
was found to have poor performance on malware found in the wild [37]. No re-
search projects have seemed to both describe how unpacked files should be used
to improve the precision or recall of the triage and exhibit good performance on
clustering malware found in the wild. A study of how the unpacked files should
be handled to achieve optimal effect on precision and recall, could therefore be of
value. A subsequent cost-benefit analysis of the unpacking process would make it
possible to identify whether unpacking really should be attempted or not.

In [35] and [36], data sets that only contained non-packed files were used in
evaluation of clustering. The authors of these papers argued that the findings were
representative for malware found in the wild, since files can be unpacked using
off-the-shelf unpackers. There does not seem to be any evidence supporting these
claims. Many files can be unpacked through static unpacking or computationally
expensive generic unpacking, but the share of files that can be unpacked without
requiring manual labour seems to be much lower than 100%.

Interestingly, most of the files identified as being packed, could be successfully

62 Sturla H. Bae: Triage of PE-files through DAC clustering

clustered and labelled even though they were not unpacked. This indicates that
many files identified as being packed, either have been falsely detected as being
packed, or that features of the contained executables often are exposed in the
new header or new sections (such as icon). This further reduces the likelihood of
unpacking being cost-effective.

5.3 Potential issues with the data sets used in the exper-
iments

The results from the experiments were reliable, with a small confidence interval.
For several, this does not necessarily mean that the same performance would be
achieved in a real malware triage environment.

First, the results only apply to triage of files that the data sets are representative
for. The large data set was supposed to be as similar as possible to files typically
found in the wild, but some limitations were required, to ensure that it was feasible
to carry out the experiments.

The data sets only consist of files where a family name could be determined based
on VirusTotal results. As mentioned in [43], the files in the data sets could there-
fore be easier to cluster than files typically found in the wild. The data set does
not include any benign PE-files either, since labelling these files would be difficult.
The results are therefore potentially not representative for the triage performed
by anti-virus software vendors.

During collection of the data sets, files were labelled based on anti-virus reports
retrieved from VirusTotal. If no label could be determined for a file, it was not in-
cluded in the data set. This could for instance be a file that is packed in a manner
that makes it difficult to identify a label for and difficult to cluster. If so, unpacking
the file could potentially provide more value than what was gained from unpack-
ing the files in the small data set in experiments on this data set. The poor results
related to unpacking, are therefore potentially not representative for unpacking
of files found in the wild.

Whether the files in the data set were easier to cluster than files typically found in
the wild, does however not affect the results related to the performance of DAC
clustering to the same degree. The individual performance of features would be
lower if files were more difficult to cluster, but this was also the case when clus-
tering the small data set. The individual performance of features was poor when
clustering files in the small data set, compared to the performance when cluster-
ing files in the large data set. Even so, the difference between DAC clustering and
other clustering methods was roughly the same. One can therefore assume that
findings based on comparing DAC clustering to other clustering methods, were
not affected by how easy the files were to cluster.

The same applies to the usage of Vhash in the experiments on the large data set.
As section 3.3.1 described, Vhash was used in the collection of the data set, and
the performance of Vhash might not be representative because of this. Since the

Chapter 5: Discussion 63

findings did not depend on the individual performance of features, using Vhash
in the clustering was fine. Using Vhash in clustering of the large data set, also
allowed better insight into how well the proof of concept was able to filter out
files for the purpose of triage, provided that the features being used performed
well.

5.4 Issues and potential improvements for the proposed
method and implementation

A major issue that would prevent the triage being performed in these experiments
from being viable in a real triage environment, is that new data constantly is
added without removing any old data. As described in [40], malware is constantly
evolving. It is unlikely that new files will be matched with old files that have
not been seen in a very long time. To avoid false positives and ensure that the
computational complexity of clustering does not increase indefinitely, old files that
have not been seen in a long time, should be removed from the existing clusters.
Another issue, is that any errors made in the labelling is not detected. Errors will
likely propagate to new unknown files that are similar to the mislabelled files.
Solutions to this was proposed in [40], but would result in a large computational
overhead.

Although the individual performance of features can be blamed for poor perform-
ance in the experiments on the small data set, the proof of concept did not utilise
the availability of multiple features as well as it probably could. It is an potential
weakness that files are clustered with multiple fast features, but only the label of
one cluster is considered.

If divide-and-conquer clustering had not been used, and all features could be ex-
tracted from all files, a combined metric as the one proposed in [27] could have
been used. It is likely more difficult to create a combined metric when certain
features are missing on some files, but it should be possible to create a similar
metric. By using this approach, it might be possible to achieve greater precision
and recall for clustering, resulting in better triage.

The last issue in the implementation, is related to the basic measure of cluster
quality. Using external evaluation seems to be effective in evaluation of quality
for clusters that contained labelled files. The lack of any measures for internal
evaluations, did however result in poor precision for labelling files in clusters that
did not contain any labelled files. A good measure for internal evaluation would be
necessary to prioritise files for in-depth analysis correctly. An alternative to imple-
menting a measure of cluster quality would be to not use features that occasionally
are shared between files belonging to different classes. Vhash clusters did for in-
stance rarely contain files belonging to multiple classes. If the distance threshold
used for clustering with TLSH had been lower, TLSH clusters would likely also
have been very pure, though the size of clusters and share of files clustered likely
would have been lower.

64 Sturla H. Bae: Triage of PE-files through DAC clustering

5.4.1 Algorithmic attacks

The proof of concept is susceptible to algorithmic attacks since the evaluation of
cluster quality is simple and does not verify if files are similar based on more than
one feature. By creating a malicious file with the same imports in the same order
as a benign file, the files will have identical imphash, and the proof of concept
would assume that the malicious file is related to the benign file and possibly
label it as benign as well. The proof of concept was implemented to evaluate
if divide-and-conquer clustering has merit as a method for improving the speed
or accuracy of clustering, and protection against algorithmic attacks was there-
fore not implemented. If the clustering method is implemented in a real malware
triage environment, it is vital that the risk of algorithmic attacks is assessed, and
measures are implemented. Using a combined metric as the one described in [27]
would likely reduce the risk of algorithmic attacks.

5.5 Future work

Due to the limited timeframe of this project, some issues and questions have not
been resolved. This section describes the topics that would likely be of interest to
investigate further.

A good measure for internal evaluation would be required to prioritise files for in-
depth analysis correctly. The reason why this type of evaluation is needed, is that
some clusters based on imphash and icon hash, contain files belonging to different
classes. An alternative would be to only cluster files with features that allow clus-
tering with high precision, but this would likely lead to a large decrease in files
being clustered. Identifying a good method for performing internal evaluation is
therefore likely a better solution. To perform prioritisation of files properly, using
the method described in section 3.1, a solution to this problem is necessary. It is
therefore proposed that this issue is investigated further.

There is also a need for a method that describes how PE-files should be unpacked
and how the unpacked files should be used, to minimise the cost of unpacking
and maximising the benefit of the unpacking process. Once a good solution is
identified for doing so, an evaluation should be made whether unpacking really
should be described as the solution to performing triage on a data set containing
packed PE-files. Unless major improvements are made within the field of generic
unpacking, it seems unlikely that generic unpacking will be a viable option for
triage.

Investigation should be made on whether the challenge of labelling files based on
VirusTotal reports, described in [43] could have been the reason for why unpack-
ing files did not seem to improve the precision or recall of clustering. If this is the
case, the results would have little significance, since unpacking then could have
had more effect when processing files found in the wild.

No studies documenting the precision and recall of clustering with Vhash, seems
to have been published. It is therefore difficult to assess if the method used for

Chapter 5: Discussion 65

collecting the data set, is the reason for the good performance of Vhash or not. Re-
search should therefore be performed on the precision and recall one can achieve
through clustering and labelling files based on Vhash. If the results indeed were
representative, Vhash is a highly attractive feature. More attempts should also be
made at combining Vhash with other features, to identify if any other features can
complement Vhash and help increase the precision and recall further.

Finally, the idea behind peHash seems to have been very good. Identification of
similar files by comparing if hashes are equal, allows fast and extremely scalable
clustering of PE-files. It seems like the design and choice of features might not
have been ideal, since imphash, a hash solely based on the import address table,
allegedly performs better than peHash. Using machine learning or possibly even
deep learning, it might be possible to create a hash function for clustering PE-files
that allow clustering of files with even greater precision and recall.

Chapter 6

Conclusion

This final chapter presents the findings of the thesis. In addition to answering the
research questions of the thesis, additional findings and contributions that arose
are also presented.

The research questions of the thesis were related to how DAC clustering performs
in comparison to more naive clustering methods, how feasible it is to unpack files
for the purpose of triage, and to which extent unpacking helps improve perform-
ance in triage of PE-files.

By using DAC clustering, it is possible to cluster files much faster than if all files
are clustered with all features. There is however a small reduction in the number
of files that can be labelled when clustering files, and the number of files that is
filtered out in the triage is therefore reduced.

Even though the difference in the number of files being filtered out is small, the
cost of analysing a file with in-depth analysis is high. Assuming a processing time
of 2 to 5 minutes per file in need of in-depth analysis, the overall cost in processing
time would be significantly greater when using DAC clustering, than when clus-
tering all files with all features. DAC clustering did however perform better than
the other clustering methods it was compared against.

The results indicate that a difference in the share of files being filtered out, is much
more significant than a difference in the execution time required to cluster files.
This is the reason why DAC clustering performs worse than using all features for
all files, when applied in triage of PE-files. Despite exhibiting worse performance
in triage of PE-files, there could be other situations where a slight decrease in
recall would be more acceptable, and DAC clustering therefore would be more
suitable.

Performing unpacking of files, was found to be more challenging than previously
published papers had suggested. Generic unpacking was found to be very resource
demanding and cannot be used to unpack most files that are found in the wild.
Using generic unpacking for large-scale triage of PE-files is therefore not feas-
ible with the currently available methods for generic unpacking. Static unpacking
could be used to unpack files quickly, but could only be used to unpack approxim-
ately one in four files that had been identified as being packed. One can therefore

67

68 Sturla H. Bae: Triage of PE-files through DAC clustering

conclude that it is feasible to unpack files to a small extent, but not to an extent
that would justify the use of data sets with non-packed files only. Since most files
cannot be unpacked in a manner that would be fast enough for the purpose of
triage, it seems misleading to claim that a data set containing only non-packed
files is representative of files found in the wild.

In addition to not seeming very feasible, unpacking files did not seem to improve
the precision or recall of clustering. Even though the experiments indicated that
unpacking files resulted in slightly degraded performance, the method of treating
the unpacked files might not have been optimal. Since most of the packed files
could be clustered successfully without performing unpacking, and the data sets
purely consisted of files where labels could be determined based on VirusTotal
reports, the data might have consisted of files that were easier to cluster than
files typically found in the wild. Whether unpacking files improves performance
in triage of PE-files, is therefore inconclusive.

Even though the proposed clustering method was not able perform better than a
more naive clustering method, the project contributed to increased domain know-
ledge. The results showed how a fairly big increase in execution time of clustering
files can be worth it, provided that the share of files being filtered out is increased.
Better insight into how various features perform and how they complement each
other, can be of value in future research on clustering and triage of PE-files. So can
the obtained knowledge related to clustering of packed PE-files, how unpacking
can be performed, and the complexity of unpacking files.

Bibliography

[1] VirusTotal, Statistics - VirusTotal, Jan. 2020. [Online]. Available: https://w
ww.virustotal.com/en/statistics/ (visited on 21/01/2020).

[2] AV-TEST, Malware Statistics & Trends Report, Apr. 2020. [Online]. Avail-
able: https://www.av-test.org/en/statistics/malware/ (visited on
23/04/2020).

[3] Kaspersky, Kaspersky Lab detects 360,000 new malicious files daily — up
11.5% from 2016, Dec. 2017. [Online]. Available: https://www. kasper
sky.com/about/press-releases/2017 kaspersky-lab-detects-360000
-new-malicious-files-daily (visited on 23/04/2020).

[4] L. Nataraj, V. Yegneswaran, P Porras and J. Zhang, ‘A Comparative Assess-
ment of Malware Classification Using Binary Texture Analysis and Dynamic
Analysis’, in Proceedings of the 4th ACM Workshop on Security and Artificial
Intelligence, ser. AlSec '11, Chicago, Illinois, USA: Association for Comput-
ing Machinery, 2011, pp. 21-30, 1SBN: 9781450310031. DOI: 10.1145/20
46684 .2046689.

[5] C. Hirsch, Collateral damage outcomes are prominent in cyber warfare, des-
pite targeting, English, 2018. [Online]. Available: https://search.proqu
est.com/docview/2018926694 (visited on 30/04/2020).

[6] M. Satran, M. LeBLanc, C. Robertson, K. Bridge, M. Kayser, Y. Zhu, J. Kennedy
and C. Warrington, PE Format, Aug. 2019. [Online]. Available: https://d
ocs.microsoft.com/en-us/windows/win32/debug/pe- format (visited on
20/05/2020).

[7] dzzie, Understanding the Import Address Table, 2013. [Online]. Available:
http://sandsprite.com/CodeStuff/Understanding imports.html (vis-
ited on 25/05/2020).

[8] J. Yonts, ‘Attributes of Malicious Files’, SANS Institute Information Secur-
ity Reading Room, Jun. 2012. [Online]. Available: https://www.sans.o
rg/ reading - room/whitepapers/malicious / paper /33979 (visited on
22/01/2020).

69

https://www.virustotal.com/en/statistics/
https://www.virustotal.com/en/statistics/
https://www.av-test.org/en/statistics/malware/
https://www.kaspersky.com/about/press-releases/2017_kaspersky-lab-detects-360000-new-malicious-files-daily
https://www.kaspersky.com/about/press-releases/2017_kaspersky-lab-detects-360000-new-malicious-files-daily
https://www.kaspersky.com/about/press-releases/2017_kaspersky-lab-detects-360000-new-malicious-files-daily
https://doi.org/10.1145/2046684.2046689
https://doi.org/10.1145/2046684.2046689
https://search.proquest.com/docview/2018926694
https://search.proquest.com/docview/2018926694
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
http://sandsprite.com/CodeStuff/Understanding_imports.html
https://www.sans.org/reading-room/whitepapers/malicious/paper/33979
https://www.sans.org/reading-room/whitepapers/malicious/paper/33979

70

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Sturla H. Bae: Triage of PE-files through DAC clustering

E Khelifi and A. Bouridane, ‘Perceptual Video Hashing for Content Identi-
fication and Authentication’, IEEE Transactions on Circuits and Systems for
Video Technology, vol. 29, no. 1, pp. 50-67, Jan. 2019. DOI: 10.1109/tcsv
t.2017.2776159.

A. Swinnen and A. Mesbahi, One packer to rule them all: Empirical identifica-
tion, comparison and circumvention of current Antivirus detection techniques,
Aug. 2014. [Online]. Available: https://www.blackhat.com/docs/us-1
4/materials/us-14-Mesbahi-One-Packer-To-Rule-Them-All-WP.pdf
(visited on 25/05/2020).

A. T. Alexey Kleymenov, Mastering Malware Analysis: the complete malware
analyst’s guide to combating malicious software, APT, cybercrime, and IoT
attacks. Packt Publishing, 6th Jun. 2019, 562 pp., ISBN: 1789610788.

Y. Nakatsuru, Recommendation of Perfect Unpacking, Apr. 2014. [Online].
Available: https://www.jpcert.or.jp/present/2014/20140424ssmjp.p
df (visited on 25/05/2020).

N. M. Hai, M. Ogawa and Q. T. Tho, ‘Packer identification based on metadata
signature’, in Proceedings of the 7th Software Security, Protection, and Re-
verse Engineering / Software Security and Protection Workshop, ACM, Dec.
2017. por1: 160.1145/3151137.3160687.

S. Basu, A. Banerjee and R. J. Mooney, Active semi-supervision for pairwise
constrained clustering, English, 2004. [Online]. Available: https://searc
h.proquest.com/docview/940861659 (visited on 24/05/2020).

R. Jacob, D. Koschiitzki, K. A. Lehmann, L. Peeters and D. Tenfelde-Podehl,
‘Algorithms for Centrality Indices’, in Network Analysis, Springer Berlin
Heidelberg, 2005, pp. 62-82. DOI: 10.1007/978-3-540-31955-9 4.

E. Rowell, Big-O Cheat Sheet, Aug. 2016. [Online]. Available: https://ww
w.bigocheatsheet.com/ (visited on 07/05/2020).

DigitalNinja, Fuzzy Clarity: Using Fuzzy Hashing Techniques to Identify Ma-
licious Code, Apr. 2007. [Online]. Available: https://web.archive.org/w
eb/20180403132547/http://www.shadowserver.org/wiki/uploads/Inf
ormation/FuzzyHashing.pdf (visited on 27/01/2020).

E Pagani, M. Del’Amico and D. Balzarotti, ‘Beyond Precision and Recall:
Understanding Uses (and Misuses) of Similarity Hashes in Binary Analysis’,
in Proceedings of the Eighth ACM Conference on Data and Application Security
and Privacy, ser. CODASPY "18, Tempe, AZ, USA: Association for Computing
Machinery, 2018, pp. 354-365, ISBN: 9781450356329. DOI: 10.1145/317
6258.3176306.

V. Roussev, ‘An evaluation of forensic similarity hashes’, Digital Investiga-
tion, vol. 8, S34-S41, Aug. 2011. DOI: 10.1016/j.diin.2011.05.005.

https://doi.org/10.1109/tcsvt.2017.2776159
https://doi.org/10.1109/tcsvt.2017.2776159
https://www.blackhat.com/docs/us-14/materials/us-14-Mesbahi-One-Packer-To-Rule-Them-All-WP.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Mesbahi-One-Packer-To-Rule-Them-All-WP.pdf
https://www.jpcert.or.jp/present/2014/20140424ssmjp.pdf
https://www.jpcert.or.jp/present/2014/20140424ssmjp.pdf
https://doi.org/10.1145/3151137.3160687
https://search.proquest.com/docview/940861659
https://search.proquest.com/docview/940861659
https://doi.org/10.1007/978-3-540-31955-9_4
https://www.bigocheatsheet.com/
https://www.bigocheatsheet.com/
https://web.archive.org/web/20180403132547/http://www.shadowserver.org/wiki/uploads/Information/FuzzyHashing.pdf
https://web.archive.org/web/20180403132547/http://www.shadowserver.org/wiki/uploads/Information/FuzzyHashing.pdf
https://web.archive.org/web/20180403132547/http://www.shadowserver.org/wiki/uploads/Information/FuzzyHashing.pdf
https://doi.org/10.1145/3176258.3176306
https://doi.org/10.1145/3176258.3176306
https://doi.org/10.1016/j.diin.2011.05.005

Bibliography 71

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

J. Oliver, C. Cheng and Y. Chen, ‘TLSH - A Locality Sensitive Hash’, in 2013
Fourth Cybercrime and Trustworthy Computing Workshop, Nov. 2013, pp. 7-
13. DOI: 10.1109/CTC.2013.9.

A. Azab, R. Layton, M. Alazab and J. Oliver, ‘Mining Malware to Detect
Variants’, in 2014 Fifth Cybercrime and Trustworthy Computing Conference,
Nov. 2014, pp. 44-53. DOI: 10.1109/CTC.2014.11.

B. Wallace, ‘Optimizing ssDeep for use at scale’, in Proceedings of the 25th
Virus Bulletin International Conference, M. Grooten, Ed., Virus Bulletin, Nov.
2015. [Online]. Available: https://www.virusbulletin.com/virusbulle
tin/2015/11/0ptimizing- ssdeep-use-scale (visited on 12/12/2019).

G. Wicherski, ‘PeHash: A Novel Approach to Fast Malware Clustering’, in
Proceedings of the 2nd USENIX Conference on Large-Scale Exploits and Emer-
gent Threats: Botnets, Spyware, Worms, and More, ser. LEET’09, Boston, MA:
USENIX Association, 2009, p. 1. [Online]. Available: https://www.usenix
.org/conference/leet-09/pehash-novel-approach-fast-malware-clu
stering (visited on 25/10/2019).

Mandiant, Threat Research: Tracking Malware with Import Hashing, Jan.
2014. [Online]. Available: https://www.fireeye.com/blog/threat- re
search/2014/01/tracking-malware- import - hashing.html (visited on
18/01/2020).

J. Choi, H. Kim, J. Choi and J. Song, ‘A Malware Classification Method
Based on Generic Malware Information’, in Neural Information Processing,
S. Arik, T. Huang, W. K. Lai and Q. Liu, Eds., Cham: Springer International
Publishing, 2015, pp. 329-336, 1SBN: 978-3-319-26535-3. DOI: 10.1109
/SAINT.2012.48.

M. Chikapa and A. P Namanya, ‘Towards a Fast Off-Line Static Malware
Analysis Framework’, in 2018 6th International Conference on Future Inter-
net of Things and Cloud Workshops (FiCloudW), Aug. 2018, pp. 182-187.
DOI: 10.1109/W-FiCloud.2018.00035.

A. P Namanya, Q. K. A. Mirza, H. Al-Mohannadi, I. U. Awan and J. E P
Disso, ‘Detection of Malicious Portable Executables Using Evidence Com-
binational Theory with Fuzzy Hashing’, in 2016 IEEE 4th International Con-
ference on Future Internet of Things and Cloud (FiCloud), Aug. 2016, pp. 91—
98. DOI: 10.1109/FiCloud.2016.21.

P Silva, S. Akhavan-Masouleh and L. Li, Tmproving Malware Detection Ac-
curacy by Extracting Icon Information’, in 2018 IEEE Conference on Multi-
media Information Processing and Retrieval (MIPR), IEEE, Apr. 2018. DOI:
10.1109/mipr.2018.00088.

VirusTotal, Multi-similarity searches, 2019. [Online]. Available: https://s
upport.virustotal.com/hc/en-us/articles/360001398517-Multi-sim
ilarity-searches (visited on 26/04/2020).

https://doi.org/10.1109/CTC.2013.9
https://doi.org/10.1109/CTC.2014.11
https://www.virusbulletin.com/virusbulletin/2015/11/optimizing-ssdeep-use-scale
https://www.virusbulletin.com/virusbulletin/2015/11/optimizing-ssdeep-use-scale
https://www.usenix.org/conference/leet-09/pehash-novel-approach-fast-malware-clustering
https://www.usenix.org/conference/leet-09/pehash-novel-approach-fast-malware-clustering
https://www.usenix.org/conference/leet-09/pehash-novel-approach-fast-malware-clustering
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://doi.org/10.1109/SAINT.2012.48
https://doi.org/10.1109/SAINT.2012.48
https://doi.org/10.1109/W-FiCloud.2018.00035
https://doi.org/10.1109/FiCloud.2016.21
https://doi.org/10.1109/mipr.2018.00088
https://support.virustotal.com/hc/en-us/articles/360001398517-Multi-similarity-searches
https://support.virustotal.com/hc/en-us/articles/360001398517-Multi-similarity-searches
https://support.virustotal.com/hc/en-us/articles/360001398517-Multi-similarity-searches

72

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Sturla H. Bae: Triage of PE-files through DAC clustering

B. Hoyt, dhash, Aug. 2017. [Online]. Available: https://github.com/Jet
setter/dhash (visited on 29/04/2020).

A. Jungheit, VirusTotal vHash Maltego Transform, Oct. 2019. [Online]. Avail-
able: https://github.com/arieljt/VTvHash-Maltego/tree/3e4bbe2c9
bcdcf38d81fc08b6Td198655290ac2f (visited on 29/04/2020).

G. D. Webster, B. Kolosnjaji, C. von Pentz, J. Kirsch, Z. D. Hanif, A. Zar-
ras and C. Eckert, ‘Finding the Needle: A Study of the PE32 Rich Header
and Respective Malware Triage’, in Detection of Intrusions and Malware,
and Vulnerability Assessment, M. Polychronakis and M. Meier, Eds., Cham:
Springer International Publishing, 2017, pp. 119-138, 1SBN: 978-3-319-
60876-1. DOI: 10.1007/978-3-319-60876-1 6.

Kaspersky Global Research & Analysis Team, The devil’s in the Rich header,
Mar. 2018. [Online]. Available: https://securelist.com/the-devils-i
n-the-rich-header/84348/ (visited on 22/01/2020).

M. Poslu$ny and P Kélnai, ‘Rich headers: Leveraging this mysterious arti-
fact of the PE format’, in Virus Bulletin International Conference 2019, Virus
Bulletin, Oct. 2019. [Online]. Available: https://www.virusbulletin.co
m/conference/vb2019/abstracts/rich-headers-leveraging-mysterio
us-artifact-pe-format/ (visited on 18/01/2020).

J. Jang, D. Brumley and S. Venkataraman, ‘BitShred: Feature Hashing Mal-
ware for Scalable Triage and Semantic Analysis’, in Proceedings of the 18th
ACM Conference on Computer and Communications Security, ser. CCS "11,
Chicago, Illinois, USA: Association for Computing Machinery, 2011, pp. 309—
320, 1SBN: 9781450309486. DOI: 10.1145/2046707.2046742.

I. Shiel and S. O’Shaughnessy, ‘Improving file-level fuzzy hashes for mal-
ware variant classification’, Digital Investigation, vol. 28, pp. 88-94, 2019,
ISSN: 1742-2876. DOI: 10.1016/j.diin.2019.01.018.

X. Hu, K. G. Shin, S. Bhatkar and K. Griffin, ‘MutantX-S: Scalable Malware
Clustering Based on Static Features’, in Presented as part of the 2013 USENIX
Annual Technical Conference (USENIXATC 13), San Jose, CA: USENIX, 2013,
pp. 187-198, 1sBN: 978-1-931971-01-0. [Online]. Available: https://www
.usenix.org/conference/atcl3/technical-sessions/presentation/h
u (visited on 14/10/2019).

S. Mariani, L. Fontana, E Gritti and S. D’Alessio, ‘PinDemonium: A DBI-
based generic unpacker for Windows executables’, in Black Hat USA 2016,
2016. [Online]. Available: https://www.blackhat.com/docs/us-16/mate
rials/us-16-Mariani-Pindemonium-A-Dbi-Based-Generic-Unpacker-
For-Windows - Executables-wp.pdf (visited on 18/02/2020).

M. M. Masud, T. M. Al-Khateeb, K. W. Hamlen, J. Gao, L. Khan, J. Han
and B. Thuraisingham, ‘Cloud-Based Malware Detection for Evolving Data
Streams’, ACM Transactions on Management Information Systems, vol. 2,
no. 3, Oct. 2008, 1SSN: 2158-656X. DOI: 10.1145/2019618.2019622.

https://github.com/Jetsetter/dhash
https://github.com/Jetsetter/dhash
https://github.com/arieljt/VTvHash-Maltego/tree/3e4bbe2c9bcdcf38d81fc08b6fd198655290ac2f
https://github.com/arieljt/VTvHash-Maltego/tree/3e4bbe2c9bcdcf38d81fc08b6fd198655290ac2f
https://doi.org/10.1007/978-3-319-60876-1_6
https://securelist.com/the-devils-in-the-rich-header/84348/
https://securelist.com/the-devils-in-the-rich-header/84348/
https://www.virusbulletin.com/conference/vb2019/abstracts/rich-headers-leveraging-mysterious-artifact-pe-format/
https://www.virusbulletin.com/conference/vb2019/abstracts/rich-headers-leveraging-mysterious-artifact-pe-format/
https://www.virusbulletin.com/conference/vb2019/abstracts/rich-headers-leveraging-mysterious-artifact-pe-format/
https://doi.org/10.1145/2046707.2046742
https://doi.org/10.1016/j.diin.2019.01.018
https://www.usenix.org/conference/atc13/technical-sessions/presentation/hu
https://www.usenix.org/conference/atc13/technical-sessions/presentation/hu
https://www.usenix.org/conference/atc13/technical-sessions/presentation/hu
https://www.blackhat.com/docs/us-16/materials/us-16-Mariani-Pindemonium-A-Dbi-Based-Generic-Unpacker-For-Windows-Executables-wp.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Mariani-Pindemonium-A-Dbi-Based-Generic-Unpacker-For-Windows-Executables-wp.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Mariani-Pindemonium-A-Dbi-Based-Generic-Unpacker-For-Windows-Executables-wp.pdf
https://doi.org/10.1145/2019618.2019622

Bibliography 73

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

J. Ouellette, A. Pfeffer and A. Lakhotia, ‘Countering malware evolution us-
ing cloud-based learning’, in 2013 8th International Conference on Malicious
and Unwanted Software: "The Americas" (MALWARE), Oct. 2013, pp. 85-94.
DOI: 10.1109/MALWARE.2013.6703689.

M. Hassani and T. Seidl, ‘Using internal evaluation measures to validate the
quality of diverse stream clustering algorithms’, Vietnam Journal of Com-
puter Science, vol. 4, no. 3, pp. 171-183, Oct. 2016. DOI: 10.1007/s40595
-016-0086-9.

M. Khalilian, E Z. Boroujeni, N. Mustapha and M. N. Sulaiman, ‘K-Means
Divide and Conquer Clustering’, in 2009 International Conference on Com-
puter and Automation Engineering, IEEE, Mar. 2009. DOI: 10.1109/iccae
.2009.59.

P Li, L. Liu, D. Gao and M. K. Reiter, ‘On Challenges in Evaluating Malware
Clustering’, in Recent Advances in Intrusion Detection, S. Jha, R. Sommer
and C. Kreibich, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 238-255, ISBN: 978-3-642-15512-3. DOI: 10.1007/978-3-642-15512
-3 13.

D. Pfitzner, R. Leibbrandt and D. Powers, ‘Characterization and evaluation
of similarity measures for pairs of clusterings’, Knowledge and Information
Systems, vol. 19, no. 3, pp. 361-394, Jul. 2008. DOI: 10.1007/s10115-008
-0150-6.

D. Kirat, L. Nataraj, G. Vigna and B. S. Manjunath, ‘SigMal: A Static Sig-
nal Processing Based Malware Triage’, in Proceedings of the 29th Annual
Computer Security Applications Conference, ser. ACSAC ’13, New Orleans,
Louisiana, USA: Association for Computing Machinery, 2013, pp. 89-98,
ISBN: 9781450320153. DOI: 10.1145/2523649.2523682.

G. Laurenza, L. Aniello, R. Lazzeretti and R. Baldoni, ‘Malware Triage Based
on Static Features and Public APT Reports’, in Cyber Security Cryptography
and Machine Learning, S. Dolev and S. Lodha, Eds., Cham: Springer In-
ternational Publishing, 2017, pp. 288-305, 1SBN: 978-3-319-60080-2. DOI:
10.1007/978-3-319-60080-2_ 21.

Y. Fang, W. Zhang, B. Li, E Jing and L. Zhang, ‘Semi-Supervised Malware
Clustering Based on the Weight of Bytecode and API’, IEEE Access, vol. 8,
pp. 2313-2326, Jan. 2020, 1SSN: 2169-3536. DOI: 10.1109/ACCESS.2019
.2962198.

scikit-learn developers, Cross-validation: Evaluating estimator performance,
2019. [Online]. Available: https://scikit-learn.org/stable/modules
/cross validation.html (visited on 01/05/2020).

G. James, D. Witten, T. Hastie and R. Tibshirani, An Introduction to Statist-
ical Learning. Springer New York, 2013. DOI: 10.1007/978-1-4614-7138-
7.

https://doi.org/10.1109/MALWARE.2013.6703689
https://doi.org/10.1007/s40595-016-0086-9
https://doi.org/10.1007/s40595-016-0086-9
https://doi.org/10.1109/iccae.2009.59
https://doi.org/10.1109/iccae.2009.59
https://doi.org/10.1007/978-3-642-15512-3_13
https://doi.org/10.1007/978-3-642-15512-3_13
https://doi.org/10.1007/s10115-008-0150-6
https://doi.org/10.1007/s10115-008-0150-6
https://doi.org/10.1145/2523649.2523682
https://doi.org/10.1007/978-3-319-60080-2_21
https://doi.org/10.1109/ACCESS.2019.2962198
https://doi.org/10.1109/ACCESS.2019.2962198
https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/cross_validation.html
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1007/978-1-4614-7138-7

74

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Sturla H. Bae: Triage of PE-files through DAC clustering

ClamAV, LibClamAV, 2020. [Online]. Available: https://www.clamav.net
/documents/libclamav (visited on 07/05/2020).

K. Wilhoit, Autolt Used To Spread Malware and Toolsets, May 2013. [On-
line]. Available: https://blog.trendmicro.com/trendlabs-security-i
ntelligence/autoit-used-to-spread-malware-and-toolsets/ (visited
on 24/05/2020).

J. Bennett, Compiling Scripts with Aut2Exe, Mar. 2018. [Online]. Available:
https://www.autoitscript.com/autoit3/docs/intro/compiler.htm
(visited on 06/05/2020).

Python Software Foundatio, Mapping Types - dict, 2020. [Online]. Avail-
able: https://docs.python.org/3/library/stdtypes.html#typesmapp
ing (visited on 07/05/2020).

A. Shalaginov and K. Franke, ‘Automated intelligent multinomial classifica-
tion of malware species using dynamic behavioural analysis’, in 2016 14th
Annual Conference on Privacy, Security and Trust (PST), Dec. 2016, pp. 70—
77.DOI: 10.1109/PST.2016.7906939.

A. Shalaginov, L. S. Grini and K. Franke, ‘Understanding Neuro-Fuzzy on
a class of multinomial malware detection problems’, in 2016 International
Joint Conference on Neural Networks (IJCNN), Jul. 2016, pp. 684-691. DOI:
10.1109/IJCNN.2016.7727266.

J. Lenoir, Gunpack: Un outil générique d’unpacking de malwares. Jun. 2016.
[Online]. Available: https://www.sstic.org/2016/presentation/gunpa
ck/ (visited on 04/02/2020).

https://www.clamav.net/documents/libclamav
https://www.clamav.net/documents/libclamav
https://blog.trendmicro.com/trendlabs-security-intelligence/autoit-used-to-spread-malware-and-toolsets/
https://blog.trendmicro.com/trendlabs-security-intelligence/autoit-used-to-spread-malware-and-toolsets/
https://www.autoitscript.com/autoit3/docs/intro/compiler.htm
https://docs.python.org/3/library/stdtypes.html#typesmapping
https://docs.python.org/3/library/stdtypes.html#typesmapping
https://doi.org/10.1109/PST.2016.7906939
https://doi.org/10.1109/IJCNN.2016.7727266
https://www.sstic.org/2016/presentation/gunpack/
https://www.sstic.org/2016/presentation/gunpack/

Appendix A

Abandoned unpacking methods
and features

Multiple ideas that arose from studying previous work, had to be abandoned dur-
ing implementation of the proof of concept due to poor results or time constraints.
This appendix explains why they initially were planned to be used and why they
had to be abandoned.

A.1 Abandoned unpacking methods

Several different unpacking methods were tested. The performance and success-
rate of most unpacking methods was found to be far below expectations, and most
attempts had to be abandoned.

The UPX software can be used to statically unpack a PE-file that has been packed
using UPX. This unpacking would however often fail, even on files that have been
manually verified to be packed by UPX. It is suspected that small modifications
such as modifying checksums, are made by malware authors to make unpack-
ing more difficult. Using ClamAV for unpacking files that are identified as being
packed with UPX, was almost as fast and resulted in a higher success rate. Un-
packing of files with the UPX software, was therefore removed from the proof of
concept.

The majority of the abandoned unpacking methods were based on generic unpack-
ing. The findings of [37] and [38] indicated that the use of generic unpacking can
improve malware triage significantly. Implementations based on these research
projects, were therefore tested on a small set of PE-files that had been identified
as being compressed/obfuscated with packers listed as supported in the descrip-
tions of these implementations. The authors of MutantX-S [37] did not seem to
release their implementation to the public, but a researcher at Airbus Group In-
novations, made an open-source implementation named Gunpack [56] based on
MutantX-S. A generic unpacker that was released to the public by the original
researchers however, is PinDemonium [38].

75

https://bitbucket.org/iwseclabs/gunpack/src/master/
https://github.com/Phat3/PINdemonium

76 Sturla H. Bae: Triage of PE-files through DAC clustering

Setting up the correct environments and building the software was tedious, and
unfortunately the results from initial experiments disappointed too. As mentioned
in [38], the success-rate of PinDemonium was significantly lower when tested on
malware found in the wild. This indicates that malware found in the wild, is not
simply packed once by one packer and released into the wild without further
modification. Malware authors are likely recursively packing or obfuscating PE-
files to make malware analysis more difficult.

In the experiments performed using Gunpack and PinDemonium, a tiny portion
of the packed files were successfully unpacked. Because of the additional over-
head, timeouts of 1 and 5 minutes were required for Gunpack and PinDemonium
respectively. With no method of knowing whether a file will be successfully un-
packed or not until the file has been attempted unpacked, a huge amount of pro-
cessing power is wasted. Performing generic unpacking was simply not worth it,
when considering the tiny amount of successfully unpacked files, and the huge
waste of CPU-time that could have rather been used at dynamic analysis.

A final attempt at generic unpacking was performed with Unipacker. Unipacker
emulated execution of PE-files and could therefore run in Linux environments. In
cases where Unipacker was able to return a PE-file, it seemed to do so in less than
4 seconds, and a slightly low success-rate, could therefore be more acceptable.
The success-rate of Unipacker was tiny, which again led to an unacceptable waste
of CPU-time compared to the provided value.

A.2 Abandoned features

There were also promising features that unfortunately were not used in the proof
of concept.

It would be interesting to study how suitable features based on the Rich header
would be in divide-and-conquer clustering. Since the Rich header is not present on
all PE-files, it would be more suitable in divide-and-conquer clustering than other
clustering approaches.

The findings of [26] indicated that imphash performed better than peHash, but
there might be situations where peHash can complement imphash. It would there-
fore have been interesting to see if peHash could complement other features being
used.

Using a perceptual hash such as dhash, instead of a cryptographic hash like SHA-
2 for creating hashes of icons was attempted, but the libraries used to create a
dhash from an icon often failed at parsing the icon. By using both dhash and
a cryptographic hash, it would have been possible to compare icons using both
perceptual and cryptographic hashes, but due to time constrains, this was also
abandoned.

For performing slow clustering, using ssdeep with the improvements proposed in
[22], could have been a better alternative. Even though the time-complexity is
identical to clustering with TLSH, the overall cost per comparison is smaller, and
the method should therefore be able to scale slightly better.

https://github.com/unipacker/unipacker

Chapter A: Abandoned unpacking methods and features 77

The final feature that was abandoned, was Machoc hash. A Machoc hash is a control
flow graph hash implemented in the polichombr framework. A control flow graph
is a graph based on all potential paths an executable can traverse. Polichombr
is a framework developed and used by ANSSI (National Cybersecurity Agency
of France), and it was therefore assumed that the feature performed well. Ma-
choc hash is not mentioned in related work, since the only papers published on
the feature, are written in French and Italian. After initial experiments had been
performed, it was concluded that the available implementations for extracting a
Machoc hash from a PE-file, were far too slow for scalable malware triage. The
available Ruby implementation typically spent 3 to 15 seconds on disassembling
and extracting the Machoc hash of a single PE-file, on a single CPU core. An imple-
mentation combining Python and Radare2 was also available, but this was even
slower than the implementation in Ruby. Unlike the other features mentioned in
this section, the main reason for not including Machoc hash in the proof of concept,
was the very slow feature extraction.

https://github.com/ANSSI-FR/polichombr

Appendix B

Complexity of clustering with
distance-based fuzzy hashes

Clustering files with distance-based fuzzy hashes is significantly more complex
than clustering based on equal values. Many iterations must be made, resulting in
a high time-complexity. Listing B.1 shows how it is possible to cluster files based
on TLSH hash in Python.

Code listing B.1: Clustering files based on TLSH distance in Python

def cluster with tlsh(file to cluster, all files, tlsh clusters, update centroid):

Cluster a file based on TLSH distance.

Parameters:
- file to cluster: The file to cluster. Must have the property tlsh,
containing the calculated tlsh hash of the file.

- all files: A dictionary of all files. All the objects must have
the property tlsh, containing the calculated tlsh hash of the file.
- tlsh clusters: A dictionary of TLSH clusters,

where the centroids are used as keys.
- update centroid: Specify whether the centroids should be updated
after adding a file to a cluster (True / False).

Use a distance threshold of 100 (see related work)
THRESHOLD = 100

Best score is initially 101. If distance is 101 or
higher, the files are not sufficiently similar.
best score = THRESHOLD + 1

Reference to the TLSH cluster that matched this file the best
best centroid = None

Iterate over all existing clusters first
for centroid in tlsh_clusters.keys():
Calculate distance to centroid of cluster
score = tlsh.diff(file to cluster[’tlsh’], centroid)
if score < best score:
If distance is less than threshold / currently closest,

79

80 Sturla H. Bae: Triage of PE-files through DAC clustering

set this cluster as the new "closest" centroid.
best centroid = centroid
best score = score

if best centroid is not None:
If a centroid was close enough for a match,
add this file to the matched cluster.
tlsh clusters[best centroid][’items’].add(file to cluster[’sha256'])
file to cluster[’tlsh cluster’] = best centroid
else:
If no cluster matched, create a
new cluster with this file as centroid
best centroid = file to cluster[’tlsh’]
tlsh clusters[best centroid] = {
"label’: None,
"training purity’: 0,
"items’: set([file to cluster[’sha256'1])
}

file to_cluster[’tlsh_cluster’] = best centroid

And then iterate over all files that are not in a TLSH cluster
for other file in all files.values():
if (other file[’'tlsh’] is not None
and other file[’tlsh cluster’] is None
and tlsh.diff(file to cluster[’'tlsh’], other file[’tlsh’]) <= THRESHOLD):
If distance is less than or equal to threshold,
add the other file to the newly created cluster.
tlsh clusters[best centroid][’items’].add(other file[’sha256'])
other file[’'tlsh cluster’] = best centroid

Attempt to label the newly created cluster
(in case some of the matching items had labels)
label cluster(tlsh clusters[best centroid])

if update centroid:
Update centroid if specified to do so
update tlsh centroid(tlsh clusters[best centroid])

Appendix C

Published open-source software

This appendix describes the open-source software that has been developed as part
of this research project.

C.1 Proof of Concept

The proof of concept has been implemented to compare DAC-clustering to more
naive clustering methods, but contains code that might be useful for others per-
forming experiments on triage of PE-files or wishing to verify the results. The
proof of concept is described in detail in section 3.2, and published to Github:
https://github.com/57url4/DAC- clustering- PoC

C.2 Python module for extracting the icon of a PE-file

A Python module for extracting icons from PE-files had already been developed
and published as open-source software. The module was only supported by the
now deprecated Python 2 and would often crash due to unhandled exceptions
when parsing files. A fork of this module was made, which is more resilient and
runs under Python 3. This fork is published to Github: https://github.com/57u
rl4/pefile-extract-icon

C.3 Ruby script for extracting the Machoc hash of a PE-
file

Although the proof of concept ended up not using Machoc hash to cluster files,
others might find the developed script useful in the future. The script is mostly
based on the Polichombr framework, but allows extraction of Machoc hash without
invoking the whole framework: https://github.com/57url4/machoc

81

https://github.com/57ur14/DAC-clustering-PoC
https://github.com/57ur14/pefile-extract-icon
https://github.com/57ur14/pefile-extract-icon
https://github.com/57ur14/machoc

@ NTNU

Norwegian University of
Science and Technology

	Abstract
	Sammendrag
	Acknowledgements
	Contents
	Figures
	Tables
	Code Listings
	Introduction
	Topics covered
	Keywords
	Problem description
	Justification, motivation and benefits
	Scope
	Research questions
	Contributions
	Thesis outline

	Theory and related work
	Concepts related to PE-files, clustering and triage
	Portable Executable file
	PE-file features
	Finding similar PE-files by comparing hashes
	Obfuscation
	Clustering PE-files
	Finding similar files based on distance
	Identifying similar files based on identical values
	Time complexity of clustering with different types of features
	Performing triage through clustering

	Previous findings and approaches
	Clustering files using distance/similarity based fuzzy hashes
	Clustering files based on identical hash digests
	Performing malware triage
	Divide-and-conquer clustering
	Evaluating malware triage / clustering

	The proposed method
	Applying the DAC algorithm to triage of PE-files
	Preprocessing
	Feature extraction
	DAC clustering
	Evaluating cluster quality
	Labelling files

	Proof of Concept
	Simulating a malware triage environment with a feed of unknown PE-files
	Preprocessing
	Feature extraction
	Improving performance through parallelization
	DAC clustering
	Evaluating clusters
	Labelling clusters and files
	Prioritising files for in-depth analysis

	Experiments
	Data sets
	Hardware setup

	Results
	Small data set
	Training
	Testing
	Triage

	Large data set
	Training
	Testing
	Triage

	Discussion
	Analysis of results presented in section 4.2.2 and 4.2.3
	Findings related to unpacking
	Potential issues with the data sets used in the experiments
	Issues and potential improvements for the proposed method and implementation
	Algorithmic attacks

	Future work

	Conclusion
	Bibliography
	Abandoned unpacking methods and features
	Abandoned unpacking methods
	Abandoned features

	Complexity of clustering with distance-based fuzzy hashes
	Published open-source software
	Proof of Concept
	Python module for extracting the icon of a PE-file
	Ruby script for extracting the Machoc hash of a PE-file

