
Jens-Andreas H
anssen Rensaa

VerifyM
ed - Application of blockchain technology to im

prove trust in virtualized healthcare services

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Jens-Andreas Hanssen Rensaa

VerifyMed - Application of blockchain
technology to improve trust in
virtualized healthcare services

Master’s thesis in Communication Technology

May 2020

VerifyMed — Application of blockchain
technology to improve trust in virtualized
healthcare services

Jens-Andreas Hanssen Rensaa

Submission date: May 2020
Responsible professor: Prof. Danilo Gligoroski, IIK
Supervisor: Assoc. Prof. Katina Kralevska, IIK

Norwegian University of Science and Technology
Department of Information Security and Communication Technology

Title: VerifyMed — Application of blockchain technology to improve
trust in virtualized healthcare services

Student: Jens-Andreas Hanssen Rensaa

Problem description:

Innovations within information and communication technology have changed the
healthcare industry. Patients living in a digitized world can now interact with the
healthcare system through online services. Patients can use these services to talk
with medical professionals directly through chat applications, video conferencing or
indirectly through consulting services. These applications surface some fundamental
problems. Patients do not have any way to confirm that the person they are
interacting with is actually a medical professional. Furthermore, they have no way
to validate that the person has competence within the field in question.

This thesis aims to create and evaluate a proof-of-concept application for transparently
validating the authorization and competence of medical professionals using blockchain
technology. Such an application must be able to capture the trust relationships within
the healthcare industry to validate the medical authorization of the person claiming
it. Furthermore, we aim to capture the competence through storing metrics from
outcomes reported by patients. We use design science to formally iterate through the
process of capturing validation criteria, developing the technological artifact, and
evaluating it.

We aim to implement this application using technology compatible with a large
public blockchain. The application will be developed through using the Ethereum
blockchain and by using open-source tools which are publicly available.

Responsible professor: Prof. Danilo Gligoroski, IIK
Supervisor: Assoc. Prof. Katina Kralevska, IIK

Abstract

The healthcare industry is moving towards increased usage of virtualized
healthcare services. By using these, patients can interact with healthcare
workers via online applications, such as video conferencing or chat. When
patients first meet a healthcare worker through this setting, they must
trust that the healthcare worker has the authority and competence to
deal with their health problems. However, the patients do not have any
tool to confirm that this is actually the case.

In this thesis, we design, implement and evaluate VerifyMed — A proof-of-
concept platform built on the Ethereum blockchain. Our platform models
trust relationships within the healthcare industry to validate professional
clinical authorization. Furthermore, it enables a healthcare professional
to build a portfolio of real-life work experience and further validates
their competence by storing outcome metrics reported by the patients.
By using VerifyMed, patients can verify the authorization, experience,
and competence of a healthcare worker in a transparent, trust-less, and
non-repudiable manner.

Our results show that the VerifyMed platform can address the problem
of providing trust in healthcare at a moderate cost. However, throughput
is limited by the Ethereum blockchain. Further work on alternative
solutions is required to address these problems.

Sammendrag

Helsevesenet går mot økt bruk av digitale helsetjenester. Ved å bruke
slike tjenester kan pasienter møte helsepersonell ved bruk av nettbaserte
applikasjoner, for eksempel via digitale konsultasjoner på video eller chat.
Når en pasient først møter helsepersonell gjennom slike tjenester, så
må de stole på at helsepersonellet har autorisasjon og kompetanse til å
håndtere deres helseplager. Pasienten har imidlertid ikke noe verktøy for
å bekrefte at dette faktisk er tilfelle.

I denne masteroppgaven designer, implementerer og evaluerer vi
VerifyMed — En prototype plattform bygget på blokkjeden Ethereum. I
plattformen modellerer vi tillitsforhold innad i helsevesenet for å validere
at autorisasjon eksisterer. Videre lar plattformen helsepersonell bygge en
portefølje av ekte arbeidserfaring, og validerer kompetansen deres ved å
lagre pasientrapporterte utfallsmål. Ved å bruke VerifyMed kan pasienter
verifisere autorisasjon, erfaring og kompetanse hos helsepersonell på en
transparent, tillitsfri og ikke-avviselig måte.

Resultatene våre viser at VerifyMed-plattformen kan benyttes for
a skape tillit til helsepersonell, og dette med en moderat kostnad.
Gjennomløpsraten er imidlertid begrenset av Ethereum blokkjeden. Det
kreves derfor videre arbeid med alternative løsninger for å løse disse
problemene.

Preface

This Master’s Thesis concludes my Master of Science Degree in
Communication Technology with specialization in Information Security at
the Department of Information Security and Communication Technology
(IIK) at the Norwegian University of Science and Technology (NTNU)
in Trondheim. It was completed during spring 2020, and builds on a
pre-project conducted during fall 2019.

Acknowledgements

Research is never a solitary task. This thesis would not have been
possible without the invaluable input from experts within both the
technical and healthcare domains. I would like to express my gratitude to
Katina Kralevska, my supervisor, and Danilo Gligoroski, my responsible
professor. They have both provided invaluable guidance and feedback
during my work. I want to give a special thanks to Anton Hasselgren,
who has provided immense insight on blockchain in healthcare and has
participated beyond expectations in my thesis. I would also like to thank
Arild Faxvaag for his excellent understanding of the healthcare domain.

I would like to give a special thanks to my family, who have provided
their unbounded love and support during my education. A thank you is
also due to all the people who have helped make my five years Trondheim
unforgettable.

Although despised for shutting down society, I would like to acknowledge
COVID-19 for dramatically increasing the relevance of virtualized
healthcare platforms.

Contents

List of Figures xi

List of Tables xv

List of Symbols xvii

List of Acronyms xix

1 Introduction 1
1.1 Motivation . 1
1.2 Goal and Methodology . 2
1.3 Contribution . 3
1.4 Outline of Thesis . 4

2 Background and related literature 5
2.1 The Health Domain . 5

2.1.1 The Case for Virtualized Healthcare Services 5
2.1.2 Relevant Trends in Healthcare 6
2.1.3 Patient Reported Outcomes 7

2.2 General Cryptographic Context . 7
2.2.1 Cryptographic Hash Functions 7
2.2.2 Keccak Hash Functions . 8
2.2.3 Merkle Trees . 8
2.2.4 Public Key Cryptography . 10
2.2.5 The ECDSA Cryptosystem 10
2.2.6 Zero Knowledge Proofs . 11

2.3 Blockchain . 13
2.3.1 Clarifying Terminology . 13
2.3.2 The Blocks and Chain of Blockchain 14

2.4 Privacy and Security for Blockchain 16
2.4.1 Signature Schemes . 16
2.4.2 Access Control . 17

2.5 Smart Contracts and the Ethereum Blockchain 18

vii

2.5.1 Ethereum Contextual Terminology 20
2.5.2 Ethereum Accounts . 20
2.5.3 Smart Contracts . 22
2.5.4 Ethereum Transactions . 24
2.5.5 Transaction Costs . 25
2.5.6 Ethereum Ledger Construction 27

2.6 Prior Art . 31
2.6.1 Blockchain in Healthcare . 31
2.6.2 Evaluating Healthcare Applications 32

3 Trust Establishment in a Virtualized Healthcare Environment 33
3.1 Data Sharing in the Healthcare Domain 33
3.2 Data Sharing for Healthcare Workers 34
3.3 Trust in a Virtualized Healthcare Environment 35

4 Needs and Requirements 39
4.1 Using Blockchain for Trust in Healthcare 39
4.2 Scope . 40
4.3 Requirements . 41

4.3.1 Functional Requirements . 42
4.3.2 Quality Attributes . 42
4.3.3 Quality Attribute Scenarios 44

5 Artifact Design and Architecture 47
5.1 Modeling Evidence for Trust . 48

5.1.1 Evidence of Authority . 48
5.1.2 Evidence of Experience . 50
5.1.3 Evidence of Competence . 51

5.2 System Architecture . 52
5.2.1 On-Chain Application Part 54
5.2.2 Off-Chain Application Part 56

5.3 Addressing Quality Attributes . 59
5.3.1 Privacy Requirements . 59
5.3.2 Security Requirements . 61
5.3.3 Availability Requirements . 63
5.3.4 Scalability Requirements . 64

6 Application Implementation 67
6.1 Blockchain Service . 68
6.2 Contracts Service . 68
6.3 Back-End Server . 75
6.4 Web Application . 79

7 Test Results 83
7.1 Unit and Integration Testing . 83
7.2 Requirements Validation . 83
7.3 Cost of Usage . 87
7.4 Throughput . 88

8 Evaluation and Discussion 91
8.1 Ability to Provide Trust in Healthcare Workers 91
8.2 Social Impact . 92
8.3 Using a public blockchain . 93

8.3.1 The Advantages of a Public Blockchain 93
8.3.2 The Disadvantages of a Public Blockchain 94

8.4 The Case for Private Blockchains . 95
8.5 Limitations of VerifyMed . 95

8.5.1 Authentication of Patients . 96
8.5.2 Key Management . 96
8.5.3 Cost as an Architectural Limitation 96
8.5.4 Narrowly Scoped Security Model 97
8.5.5 Large Governance Complexity 97

8.6 Lessons Learned from VerifyMed . 97
8.7 Future Work . 98

9 Conclusion 99

References 101

Appendices

A Application Guide for Users 107
A.1 The User Interface . 107
A.2 Key Management . 108
A.3 The Authority Stakeholder . 111
A.4 The License Issuer Stakeholder . 116
A.5 The License Provider Stakeholder 118
A.6 The Treatment Provider Stakeholder 120
A.7 The Healthcare Worker Stakeholder 122
A.8 The Patient Stakeholder . 128
A.9 Healthcare Worker Overview . 130

B Application Guide for Administrators 133
B.1 The Codebase . 133
B.2 Setup with Docker . 133
B.3 Starting Services Manually . 134

B.4 Accessing the Application . 134

C System Testing Runbook 135

D VerifyMed Conference Paper 141

List of Figures

1.1 Visualization of the method applied in this thesis 3

2.1 A hash list for calculating a root hash over a set of data 8
2.2 A Merkle tree for calculating a root hash over a set of data 9
2.3 Verifying the inclusion of a data-item through Merkle-tree traversing. . 9
2.4 Interactive variant of a general zero-knowledge protocol [1] 12
2.5 A simple illustration showing the concept of a blockchain platform . . . 14
2.6 The structure of the bitcoin blockchain [1]. 15
2.7 A figure showing the concept of multi-signatures 17
2.8 Generic Role-Based Access Control scheme for healthcare [1] 18
2.9 Compiling a smart contract and creating a contract creation transaction 23
2.10 An example of the Ethereum transaction composition 24
2.11 The structure of the Ethereum blockchain ledger. 28
2.12 Executing a Ethereum transaction to produce a new world state and

transaction receipt. 29
2.13 Updates to the world-state σ from block additions 30

5.1 Interacting with the blockchain to gain trust in a healthcare worker . . 47
5.2 A trust model for stakeholders in the healthcare industry 50
5.3 A model for generating evidence of the experience of healthcare workers 51
5.4 A model for generating evidence of the competence of healthcare workers 52
5.5 A component diagram representing the Decentralized Application (dApp)

running on the blockchain. 53
5.6 A sequence diagram showing authentication flow when submitting a create

treatment transaction. 55
5.7 A component diagram capturing a top level view of the off-chain part of

our system architecture . 57
5.8 A sequence diagram showing how off-chain components interact during

treatment creation . 60
5.9 A sequence diagram showing the authentication flow when submitting a

evaluate treatment transaction. 62

xi

5.10 A sequence diagram showing how a patient authenticates themselves to
gain access to services via the treatment provider. 63

6.1 An overview of the run-time presence for our implemented services . . . 67
6.2 An overview of the back-end internals 76
6.3 Visualization of the process for generating Java wrapper objects for

contracts . 78
6.4 Overview of the key management panel in the web application 80

7.1 Sample of outputs from running unit and integration tests against smart
contracts . 84

7.2 Sample of transactions execution logs from Ganache. These outputs were
generated by running unit and integration tests against smart contracts 84

7.3 Details for the authority, treatments and evaluations related to a
healthcare worker . 85

7.4 An overview of the healthcare workers together with their authority,
experience and competence . 86

7.5 Simulated wei and USD prices for different procedures over a timespan of
four years . 90

A.1 An overview of sidebar in the proof-of-concept User Interface (UI) . . . 108
A.2 Overview of the key management panel of the UI 109
A.3 The send funds panel in use within the UI 110
A.4 The process for selecting a key in the UI 110
A.5 The process for creating a key in the UI 111
A.6 The main panel for managing authorities in the UI 112
A.7 The popup for adding new proposals as authority in the UI 113
A.8 A page in the UI for managing proposals related to distributed governance

protocol for authorities. 114
A.9 Page in the UI for authorities to manage and view treatment providers

and manage their trust in them. 115
A.10 Page in the UI for authorities to manage and view license issuers, and

manage their trust in them. 115
A.11 Page in the UI for authorities to manage and view license providers and

manage their trust in them. 116
A.12 Page in the UI for accounts to register themselves as a license issuer on

the blockchain. 117
A.13 Overview page in the UI for license issuers. 119
A.14 Page in the UI for accounts to register themselves as a license provider

on the blockchain. 120
A.15 Overview page in the UI for license providers 121
A.16 Registration page in the UI for treatment providers 122

A.17 Overview page in the UI for treatment providers 123
A.18 Page in the UI for healthcare workers without an issued license 124
A.19 Page in the UI for healthcare workers who have received a license 125
A.20 Page in the UI for healthcare workers who have received a license and is

trusted by a license provider . 126
A.21 Page in the UI for managing treatments by healthcare workers 127
A.22 Panel in the UI for approving treatments for healthcare workers 127
A.23 Overview of journal page for patients in the UI 128
A.24 Panel in the UI, allowing patients to evaluate treatments 129
A.25 Panel in the UI for showing the treatments evaluated by the patient . . 129
A.26 Page in the UI for showing an overview of healthcare workers with a

summary of metrics . 130
A.27 Page in the UI for showing details about all data related to a healthcare

worker . 131

B.1 An overview of the run-time presence for our implemented services . . . 134

List of Tables

2.1 Gas costs associated with a sample of EVM instructions [2] 27
2.2 Initial account balances for accounts used in Figure 2.13 29

7.1 Gas costs for a set of procedures for different stakeholders 87
7.2 Gas costs for calls to the the implemented smart contracts 89

xv

List of Symbols

H(a) = b A cryptographic hash function with variable
length input a and fixed length output b.

KEC(a) The cryptographic hash function Keccak-256
used over a message a.

RLP (x) Recursive Length Prefix encoding, for creating
a serialization of the binary data x.

T A complete blockchain transaction composed of
both Td and Ts.

Td The data component of a blockchain transaction.
Ts The signature component of a blockchain

transaction.

xvii

List of Acronyms

ABI Application Binary Interface.

API Application Programming Interface.

CLI Command Line Interface.

DAC Discretionary Access Control.

dApp Decentralized Application.

DSA Digital Signature Algorithm.

ECDSA Elliptic Curve Digital Signature Algorithm.

EHR Electronic Health Records.

ETH Ether.

EVM Ethereum Virtual Machine.

NTNU Norwegian University of Science and Technology.

PHR Personal Health Records.

PREM Patient Reported Experience Measures.

PRO Patient Reported Outcomes.

PROM Patient Reported Outcome Measures.

RBAC Role-Based Access Control.

RLP Recursive Length Prefix.

SHA Secure Hash Algorithm.

UI User Interface.

xix

Chapter1Introduction

1.1 Motivation

The healthcare sector is moving towards an increasingly virtualized world. Inspired
by the Industry 4.0 initiative, Healthcare 4.0 [3] is a similar strategic concept for
the healthcare domain. The aim of Healthcare 4.0 is to use modern technology such
as next-generation networking, Artificial Intelligence (AI), and cloud to enable a
virtualized healthcare environment where personalization is delivered in real-time for
patients. A vital part of this process is a strong shift towards virtualized healthcare
services, allowing routine tasks to either be automated or for patients to perform
these tasks by themselves. Healthcare 4.0 will allow patients to access the healthcare
system in more ways than before, resulting in a better and more accessible care.

Healthcare 4.0 aims to position the healthcare industry to tackle the socio-economic
and demographic changes in the future. An increasingly elderly population will require
the healthcare industry to be more efficient. Furthermore, socio-economic changes
and globalization have led to trends such as an increased demand for specialized care,
a strengthened patient choice of healthcare services, and an increased accessibility of
healthcare services across borders and jurisdictions.

The changes within the healthcare industry will lead to some emerging problems. The
critical problem we choose to focus on is providing trust within a virtualized healthcare
environment. In the current European landscape, most patients physically encounter
healthcare workers within authorized and well-known healthcare institutions. There
is an inherent trust relationship from the patient to the healthcare worker rooted
in this setting [4]. However, when meeting a healthcare worker within a virtualized
environment, this inherent trust relationship is not present. Furthermore, building up
such a trust relationship may be hard if the caregiver is an AI healthcare worker. The
healthcare domain, therefore, needs new solutions for enabling trust to be established
between patients and healthcare workers in a virtualized environment.

1

2 1. INTRODUCTION

Blockchain [5] is a maturing technology with properties enabling it to provide trust
within a virtualized healthcare domain. We can describe blockchain technology
as an enabler of distributed platforms where data is stored in an immutable and
fully distributed manner across organizations. The blockchain is maintained by
self-organizing computers, which automatically coordinate themselves in a trustless
environment to deliver this service. While the scope of blockchain traditionally was
bound to the financial domain, Blockchain 2.0 [6] allows users to store arbitrary data
and models on the blockchain through the means of smart contracts. Through creating
and deploying smart contracts, we can build models that capture the authorization,
experience, and competence of a healthcare worker directly on the blockchain. These
models can then be used by patients to establish a trust relationship with the
healthcare worker.

1.2 Goal and Methodology

The primary goal of this thesis is to design, implement, and evaluate a proof-of-
concept application for transparently validating the authorization and competence
of healthcare workers by using the blockchain technology. The thesis aims to do
exploratory research into this problem and how to apply blockchain technology to
solve it. The end-product itself may serve as a sound basis for further research or
real-world implementation.

Our method is rooted in the principles of design science [7] and inspired by
requirements engineering [8]. Figure 1.1 shows the iterative process, where we go
from defining requirements to producing results. We first define some requirements
based on our initial understanding of the problem. We work with a interdisciplinary
team with backgrounds from both the technical and healthcare side. This setting
allows us to validate if the requirements correspond to real-world problems and
regulatory requirements. Next, we use our requirements to create an architectural
model. We use the architecture to implement a proof-of-concept application, which is
the main artifact produced. Finally, we test the application and evaluate it based on
our requirements and collected metrics. If we ever find an assumption to be wrong,
or if the process reveals unexpected problems, we go one step back to the previous
step in our process.

The most critical outputs from our method are the observations of the artifact and
metrics. The observation covers the artifacts’ ability to solve the problem of trust in
a virtualized healthcare environment. We will evaluate the artifact in the context of
the defined requirements and other social needs. The metrics, on the other hand, are
objective measures that we use for evaluating the artifact against other solutions.
We collect these metrics from measurements during system testing. The most critical
metrics of our interest are:

1.3. CONTRIBUTION 3

Requirements
specification

Requirements
validation

Architectual
modelling

Artifact
implementaiton

Artifact
evaluation

System
Requirements

System
Architecture

Artifact
Implementation

Metrics and
observations

Process

Results

Figure 1.1: This figure shows a visualization of the overall method applied in this
thesis. We iterate through a process where we define requirements, validate these,
perform architectural modeling, implement the artifact, and finally evaluate it. Each
of these steps creates outputs, forming our primary results.

– Cost: Public blockchain transactions cost an amount of cryptocurrency with
monetary value. The cost scales with the complexity of the smart contract.

– Throughput: The maximum possible data rate which can be handled by the
system.

1.3 Contribution

This thesis is the product from exploring the problems of trust in the healthcare
domain and implementing a proof-of-concept application by using the Ethereum
blockchain. Our main contribution is the proof-of-concept application itself, showing
how blockchain technology can solve real problems in the healthcare domain. The
application is released as open-source software and is freely available on GitHub1.
Furthermore, we provide requirements, architectural models, and metrics for the
application. Finally, we provide an assessment of our application. We uncover the
conditions in which blockchain is suitable for the healthcare domain and provide
suggestions for further applications of the technology.

1https://github.com/jarensaa/transparent-healthcare, commit 34c09d9

https://github.com/jarensaa/transparent-healthcare

4 1. INTRODUCTION

In addition to the thesis, the work has also resulted in two papers:

– One technical paper on the VerifyMed architecture and implementation [9],
accepted for presentation at the 2nd Blockchain and Internet of Things
Conference (BIOTC 2020), to be held in Singapore from 8th to 10th of July
2020. The complete paper is attached in Appendix D.

– One work in progress paper on blockchain for trust in healthcare [10], to be
submitted to the journal Information Processing & Management, for their
special issue Blockchain for Information Systems Management and Security.

1.4 Outline of Thesis

This thesis is organized into nine chapters. We have presented our motivation, goal,
methodology, and contribution in Chapter 1. Chapter 2 presents essential background
material and concepts which are relevant to the thesis. We give a brief introduction
to the healthcare domain, cryptographic principles, blockchain, smart contracts, and
Ethereum. Chapter 3 presents a novel framework for categorizing evidence for trust
in the healthcare domain. Chapter 4 defines a set of requirements for our platform.
Chapter 5 presents our architectural models and system design. Chapter 6 describes
our implementation of the platform. Chapter 7 presents our test results in the form of
system testing, requirements validation and metrics. Chapter 8 includes a discussion
and summary of our main findings. Finally, we conclude our work in Chapter 9.

Chapter2Background and related literature

This chapter presents essential background material for the remainder of this thesis.
We will provide background on the healthcare domain, foundational cryptographic
methods, and relevant context for blockchain. Finally, we present prior art on
applying blockchain in the healthcare domain.

2.1 The Health Domain

The healthcare domain is inherently complex. Hospitals, insurance providers,
clinics, educational institutions, virtual healthcare platforms, and a range of other
stakeholders together compose the domain. In this section, we present some essential
background on relevant trends in the healthcare domain and background on evaluating
patient outcomes.

2.1.1 The Case for Virtualized Healthcare Services

The world is going through an overall increase in global life expectancy combined
with a decrease in the global birth rate. This trend is causing a demographic shift
where a smaller number of people in the workforce must support an increasing
number of people outside of it. This trend is reflected in the age dependency ratio,
measuring the ratio between dependants and the working-age population. This ratio
has decreased globally from 74% in 1960 to 54% in 2018 [11], and from 58% to 53%
in Norway. However, the growth in global life expectancy leads us to believe that
these numbers will increase over time.

A growing dependency ratio demands increased capacity within the healthcare system.
Otherwise, health services may become unavailable to patients, leading to worse
patient outcomes. One way to grow this capacity is through technological innovations
for increasing the efficiency of the existing healthcare infrastructure. Initiatives
such as Healthcare 4.0 [3] facilitate for a strong shift towards virtualized healthcare
services to increase efficiency. Such platforms see steadily increasing usage, and

5

6 2. BACKGROUND AND RELATED LITERATURE

we expect an accelerated growth as the world struggles to fight a global pandemic.
Additionally, policy focus from regulatory organizations such as WHO Europe [12]
further strengthens a shift towards such services.

2.1.2 Relevant Trends in Healthcare

Besides the technological and demographic changes mentioned in Section 2.1.1, we
can notice other trends relevant to trust in the healthcare domain. These trends
show how changes in behavior for how patients and healthcare workers interact, both
between each other and with the healthcare system in general. These changes may
have a sizeable structural impact on the future organization of the healthcare system.
In our further work [10], we define the following significant trends of relevance:

1. Virtualization of healthcare: Due to initiatives such as Healthcare 4.0 and
changes in demographic needs, the healthcare system will become increasingly
virtualized. Physical care will increasingly become the last resort for specialized
care. Routine tasks such as consultations with practitioners will increasingly be
done through virtual healthcare platforms, where both people and AI healthcare
workers can serve as a practitioner. Furthermore, new technology such as
personal sensors and devices enable automated and personalized healthcare
services outside of a traditional consultancy setting.

2. Healthcare across boarders and jurisdictions: An increase in the global-
ization caused by improved communication and transportation infrastructure
will continue to trigger changes in the healthcare system. These changes lead to
increased healthcare worker mobility across jurisdictions and borders. Patient
mobility due to long-term movement or short-term search for cheaper or better
medical care will also continue.

3. Increased specialized care: Continuing innovation in health sciences
will result in the healthcare domain becoming larger in scope. Healthcare
workers have to handle increasingly advanced domains within the healthcare
industry. Such patterns lead to requirements for the increased specialization of
competence. Therefore, patients seeking healthcare services should be able to
verify that the healthcare worker has competence in the field relevant to the
care they seek.

4. Patient empowerment: The healthcare domain is increasingly giving
patients the ability to choose their healthcare services and providers. This
change is triggered by greater availability due to easier mobility and increased
technological advances, enabling personalized care. However, healthcare systems
are not currently suited for a patient-controlled environment, as it requires
advanced access control mechanisms and increased data sharing.

2.2. GENERAL CRYPTOGRAPHIC CONTEXT 7

2.1.3 Patient Reported Outcomes

One way to measure health outcomes from treatments and clinical recommendations
are through Patient Reported Outcomes (PRO) [13]. There are two standardized
approaches for measuring PROs: Patient Reported Outcome Measures (PROM) and
Patient Reported Experience Measures (PREM) [14]. They, among other factors,
can measure the functional status associated with a treatment or the healthcare
which the patients have received. PROMs and PREMs are currently a critical metric
for evaluating the quality of a healthcare system. The metrics are collected and
compared on national levels for comparing healthcare systems, where they indicate
the quality of care within a country. We have chosen PREMs to capture the patient
experience metrics related to the virtual interaction with the caregiver. These can,
for example, be satisfaction rates for patients’ experience with their treatment, the
healthcare worker, or the virtual setting of the healthcare institution.

2.2 General Cryptographic Context

The proof-of-concept in this thesis uses the Ethereum blockchain to store data about
trust relationships, treatments, and evaluations within the healthcare domain. To
achieve this, we rely on many cryptographic primitives. Some of these concepts are
used directly within our proof-of-concept, while others are vital pieces to understand
the underlying workings of the Ethereum blockchain and the tools used to interact
with it. This section will explain the needed background on these topics.

2.2.1 Cryptographic Hash Functions

Hash functions are a family of functions which take binary data of arbitrary length
as input and output a fixed-sized output. The input is called a message, while the
output is called a digest. Furthermore, hash functions should have the following
properties [15]:

– Collision-Resistance: It should be computationally infeasible to find a
message M and M ′ such that H(M) = H(M ′).

– Pre-image Resistance: Hash functions should not be computationally
feasible to invert. Given H(M) it should be computationally infeasible to
find M .

– 2nd Pre-image Resistance: Given any message-digest pair (M,H(M)), it
should be computationally infeasible to find another message M ′ such that
H(M) = H(M ′).

8 2. BACKGROUND AND RELATED LITERATURE

Figure 2.1: A hash list for calculating a root hash over a set of data

Cryptographic hash functions are the workhorses of modern cryptography, and by
deduction blockchain. The most widely used hash functions fall within the Secure
Hash Algorithm (SHA) specifications. Within the Ethereum platform, SHA-3 (using
the KECCAK family of hash functions [16]) is most widely deployed [2].

2.2.2 Keccak Hash Functions

Keccak hash functions [17] are a family of modern cryptographic hash functions.
They are the latest generation of the NIST standardized SHA cryptographic hash
functions, known as SHA-3. The different variants of the functions have different
input and output sizes. The function family addresses concrete cryptoanalysis attacks
on the previous generations of SHA functions while improving speed and hardware
performance. This is achieved by using a sponge construction [18] combined with
Keccak-f [17] functions.

2.2.3 Merkle Trees

We can use cryptographic hash functions to prove the inclusion and integrity of data
within a set. One way to achieve this is by calculating a cryptographic hash, often
called a root hash, as a function over the full set of data. Given that the root hash is
known, any party who has access to the data can verify its presence and inclusion by
recalculating the hash and compare it to the root hash. A trivial way to calculate
such a hash is through a hash-list, as shown in Figure 2.1. In a hash-list, we first
calculate the cryptographic hash of each data item. We then calculate the root-hash
by hashing the concatenation of all the produced hashes. A verifier who wants to
ensure that they have the full dataset and verify its integrity may recalculate the
hash and compare it with the root-hash. If equal, they can believe that the two
underlying datasets were equal.

As described in Merkels’ 1979 patent [19], an authentication tree, hash-tree or simply
Merkle tree is also used for calculating a root-hash over a dataset. It has the same

2.2. GENERAL CRYPTOGRAPHIC CONTEXT 9

Figure 2.2: A Merkle tree for calculating a root hash over a set of data

Figure 2.3: Verifying the inclusion of a data-item through Merkle-tree traversing.

intent as hash-lists but enables more efficient verification of data by calculating the
root-hash through a tree structure. Figure 2.2 shows a Merkle tree over a set of 4
data elements. Each leaf-node in the hash component of the tree is found by hashing
the corresponding data with a cryptographic hash function. We find parent node
hashes by hashing the concatenation of the children hashes. We repeat this process
until we reach a root hash, which serves as an integrity hash for the whole dataset.

With Merkle trees, verifiers can calculate hashes starting bottom-up from the leaf,
ending with the root. Figure 2.3 shows an example where we verify the presence of
DC . Here, we want to prove the presence of the data DC by recalculating all hashes
leading to the root-hash HABCD. Given the hashes HD and HAB , we can calculate
the hashes HC , HCD and finally HABCD. We compare the calculated root hash with
the expected root-hash. In this proof, we only need a subset of the tree to verify
the presence of data. This stands in contrast to hash-lists, where we must know all
hashes to verify integrity.

10 2. BACKGROUND AND RELATED LITERATURE

2.2.4 Public Key Cryptography

Public key cryptography provides authentication or confidentiality of data through
the means of asymmetric key-pairs. These key-pairs are composed of two main
components, a secret key and a public key, where the latter is calculated based on the
secret key. As the name implies, the secret key is never shared, while we share the
public key with other parties. How we use these keys depends on the cryptographic
context in which we apply them. If we seek confidentiality, we apply public key
encryption. If authentication is required, we use the keys for digital signatures. We
first briefly explain digital signatures and public key encryption from a high level. We
then dig onto the Elliptic Curve Digital Signature Algorithm (ECDSA) cryptosystem
in detail, as this is essential for understanding the underlying workings of Ethereum.

Digital Signatures

Banks want to verify the sender of a bank transfer. Email recipients want to know if
a mail is legitimate or a phishing attempt. Blockchains want to verify the origin of a
transaction. Digital signatures are the enabling technology for making these processes
secure. We can view them as the improved, virtualized, and cryptographically secured
counterpart to physical signatures. In general, a signer uses their secret key along
with the message they wants to sign to create a signature that is sent along with
the message. To verify that the signature is correct, the verifier can use the signer’s
public key along with the message, thus proving that the secret key indeed signed
the message. If the verifier can be certain that only the expected sender possesses
the secret key, the verifier can be sure that the message originates from that specific
sender. This system also brings non-repudiation - once a message with a signature is
known, the secret key holder cannot deny that they signed it.

Public Key Encryption

In other settings, we may want to ensure that only the intended receiver can read a
message. For example, when we send an email with confidential information, send a
secret message to someone, or publish some confidential data on a blockchain. In this
case, we can apply public key encryption. Here, the sender can use the public key of
the receiver to encrypt the message through a one-way function. The only way to
recover the message is through another function that relies on the secret key. Thus,
the sender can ensure that only the holder of the secret key can see the message.

2.2.5 The ECDSA Cryptosystem

Digital signatures are an enabling technology used in blockchains. The Ethereum
blockchain uses the ECDSA cryptosystem [20], which is a modern alternation of the
DSA cryptosystem designed to work with Elliptic curves over finite fields.

2.2. GENERAL CRYPTOGRAPHIC CONTEXT 11

The DSA Cryptosystem

The Digital Signature Algorithm (DSA) cryptosystem is a set of key-generation,
signature generation and signature verification algorithms. DSA is a variant of the
ElGamal signature scheme [21], which is secure due to the difficulty of computing
discrete logarithms.

Shortcomings of Classical Digital Signature Schemes in Blockchain

One of the problems of using a classical digital signature such as DSA within the
blockchain domain is the key length of at least 1024 bits, and often longer. Public
keys are often used as the identifiers in most blockchain systems. Therefore, we often
include a public key in most messages to a blockchain network. As these messages, in
general, are small, the large identifier will result in significant overhead. Furthermore,
the computational complexity of the verification process associated with long keys
has a high cost when these computations are repeated frequently across a large
network of independent nodes.

Introducing Elliptic Curves over Finite Fields

We can use cryptosystems with shorter keys to address the two problems of key-length
and computational complexity. One alternative for this is digital signature schemes
based on elliptic curves. In general, these cryptosystems also apply the discrete
logarithm problem but doing it over points on an elliptic curve over a finite field.
We refer the reader to Koblitz [22] for further information on both finite fields and
elliptic curves.

ECDSA is the elliptic curve equivalent to the DSA cryptosystem. By using elliptic
curves, the ECDSA cryptosystem can deliver the same level of security, but with
dramatically lower parameter and key sizes, increasing the level of security per key-bit
extensively. A 3072-bit DSA public key has the same security level as a 256-bit
ECDSA key. The later is of a size where it is better suited as a tool for blockchains.

2.2.6 Zero Knowledge Proofs

Zero-knowledge protocols are cryptographically backed methods allowing a prover
to show that they know some information x without revealing anything about the
information x itself. We can use these proofs in multiple contexts, where many of
these proofs are useful for either the implementation of Blockchains themselves or
applications using blockchains. Examples of common uses for zero-knowledge-proofs
include:

12 2. BACKGROUND AND RELATED LITERATURE

Figure 2.4: Interactive variant of a general zero-knowledge protocol [1]

1. Identification: A prover aims to prove they know x, which is associated with
their identity. The zero-knowledge proof can thus be used as an identification
mechanism, where the identifier shows they know x. An example of this is the
Schnorr protocol [23], a simple zero-knowledge protocol for showing ownership
of a secret key related to a given public key, without revealing it.

2. Group inclusion: Given a group g ∈ G where gi = f(xi), a prover may show
that they know a xn resulting in a gn which is included in the group, without
neither revealing xn or gn. Such proofs are the cornerstone of systems such as
ZeroCoin [24] and ZeroCash [25].

The general process of an interactive zero-knowledge protocol is shown in Figure 2.4.
The first phase is the commitment phase, or witness phase. Here, the prover creates
an initial commitment based on the fact which they try to prove. The following phase
is called the challenge phase. Here, the verifier will generate a question and send
this to the prover. The prover can only confidently answer the question if they know
the underlying committed fact. In the last phase, the response phase, the prover
sends its answer to the verifier, who checks it for correctness. However, there may
be a realistic chance for the prover to guess the correct answer. Thus, the prover
and verifier can repeat the challenge and response phase. We repeat this until the
probability of guessing all the correct answers is below an acceptable threshold.

Within the topic of blockchain, Zero-knowledge proofs are useful in a range of different
use cases. Examples include proving identity, showing an ability to spend coins, or
showing membership inclusion. However, blockchains are often immutable and offer
no means of direct interaction between provers and verifiers. Thus, advances in non-

2.3. BLOCKCHAIN 13

interactive variants zero-knowledge proofs have been the main driver of usage within
blockchain platforms. Protocols such as ZK-SNARKs [26] enable non-interactive
proofs of knowledge where the proofs are of size linear with the secret size.

2.3 Blockchain

We can describe a Blockchain as a distributed data store managed by a network
of trustless computers organized in a peer-to-peer network. Data in a blockchain
should be immutable, meaning it cannot be changed once added. We can achieve this
behavior by using a wide range of cryptographic primitives combined with mechanisms
to reach consensus in the trustless network. The result is a shared data-store which
can be updated and shared across different organizations and stakeholders, without
strict trust assumptions between these.

In general, we can add data to a blockchain by creating a transaction. Transactions
contain the data which we want to add to the blockchain, along with some metadata
describing the transaction. Transactions also contain a signature from a cryptographic
key. By using the signature, we can link a transaction to the owner of the given
key-pair in a non-repudiable manner. The signature serves as an identification and
authentication mechanism.

Blockchain designs that neither use blocks or chains exist [27]. However, we will only
focus on the classical blocks and chain based blockchain architecture as this is closely
related to the system implementation in this thesis. We will present blockchain from
a classical perspective, by using the Bitcoin blockchain as an example. Bitcoin offers
an understandable and straightforward system design while showing the most critical
patterns used in advanced blockchain designs.

2.3.1 Clarifying Terminology

Conversations about blockchain often become confusing because of the missing
distinction between blockchain ledgers and the network of underlying computers.
Figure 2.5 shows the overall framework for our terminology. In this thesis, we will
use the following concepts consistently:

A blockchain ledger is the data structure that stores immutable data. The ledger
stores the transactions themselves. As new transactions arrive, we add new blocks
containing these to the ledger. In this context, principles like smart contracts and
cryptographic hashes are of significant relevance.

A blockchain network is the network of nodes that cooperate to maintain a
shared blockchain ledger and propagate transactions. All nodes in a blockchain

14 2. BACKGROUND AND RELATED LITERATURE

A blockchain ledger

A blockchain network

A blockchain platform

Figure 2.5: A simple illustration showing the concept of a blockchain platform

network are generally not assumed to trust each other, and they, therefore, rely on
consensus algorithms to reach an agreement on how they build up the blockchain
ledger. Applications that want to interact with the blockchain ledger will do so by
interacting with any node in the network. The node can receive transactions, which
are propagated onwards in the network. We can also query nodes for the current
state of the ledger.

A blockchain platform is the composition of a network and the ledger it
maintains. When we conceptually talk about adding transactions to the blockchain,
we refer to the integrated process of sending the transaction to a node, the propagation
of the transaction in the network, the consensus procedures performed, and finally
adding the transaction to the ledger within a new block.

2.3.2 The Blocks and Chain of Blockchain

Blockchain ledgers are a data structure composed of a series of bundles with
transactions. We call these bundles blocks, and they both contain transactions
and some other metadata. The blockchain network nodes will create blocks based on
the transactions they have observed. The network nodes will apply some consensus
mechanism, which will eventually append (referred to as mining) the block to the
blockchain ledger, linking it back to a previous block. In this section, we dig into
what transactions are, how blocks are composed, and how they are linked together.

2.3. BLOCKCHAIN 15

Figure 2.6: The structure of the bitcoin blockchain [1].

We use the Bitcoin blockchain ledger, as presented in Figure 2.6 as the context of
our examples.

Transactions are a data structure used for interacting with a blockchain platform.
Users of the platform will create a transaction that indicates the process they want to
invoke on the blockchain. Within the bitcoin ledger, this process is typically sending
some currency from one account to another. We encode our process invocation as a
payload within the transaction, add metadata including the receiver, and finally sign
it with a key-pair. The signature links the transaction to the sender. In addition to
sending currency, we can invoke a large set of predefined processes. The payload in
our transaction indicates which of these actions to invoke.

Blocks are in essence a bundle of transactions. By using a consensus mechanism,
network participants create blocks by selecting a set of received transactions and
confirming their presence through some kind of proof. The Bitcoin blockchain
platform, as shown in Figure 2.6, uses a Merkle tree to create a root-hash over all the
transactions contained within the block. If a prover wants to show that a transaction
was indeed present in a given block, they can use a Merkle tree proof (see Section
2.2.3) to convince the verifier of this. Thus, once we have added a transaction to
a block, its presence cannot be disputed. By applying Merkle trees, we can also
provide non-repudiation of transaction ordering, allowing us to construct a complete

16 2. BACKGROUND AND RELATED LITERATURE

transaction history. This ordering allows all transactions to have a relative ordering,
either occurring before or after any other transaction.

Chains are a link from a block to the previous one in the chain, typically represented
by including the hash of the previous block within the next block’s data. Figure
2.6, shows how a chain materializes in the Bitcoin ledger. Here, the block header
contains the hash of the previous block. The main intent of this chain is to create a
fixed ordering of blocks, allowing us to form a strict global ordering of transactions.
We can use this ordering to ensure that future transactions are valid.

2.4 Privacy and Security for Blockchain

Using a public blockchain platform poses some key challenges from a privacy and
security perspective. The strict regulations for patient privacy and data ownership
makes the health domain hard to combine with blockchain unless specific steps are
made towards ensuring these requirements. Traditional centralized storage structures
can be protected through firewalls, encryption, and local access control mechanisms.
This set of mechanisms is not possible to apply in the same manner to a blockchain-
based application. However, there are tools available to us which are possible to use
on the blockchain. These are Cryptographic tools, and they can be used in multiple
different contexts, both for data published on the blockchain ledger itself or outside
of it.

2.4.1 Signature Schemes

Digital signatures schemes are a fundamental building-block for blockchain platforms.
We have previously described the ECDSA cryptosystem for key generation and
signatures. These cryptosystems address the fundamental need of blockchains where
we need to create keys and sign transactions by using these keys. However, if the
blockchain platform or contract requires quality attributes such as privacy, anonymity
or unlinkability, then different and more complex signature schemes may be required.

Multi-Signatures

Multi-signatures is a signature scheme where a group of participants uses individual
keys to collectively sign a message, as illustrated in Figure 2.7. A single stakeholder
may use multi-signatures to increase the security of their credentials. Alternatively,
a group of signers may use multi-signatures to indicate a multi-party agreement. An
alternative to the latter is for each of the participants to sign a message individually.
While functionally similar, multi-signature schemes result in a fixed-size joint signature
regardless of the number of participants. Another variant of this scheme is N-of-M

2.4. PRIVACY AND SECURITY FOR BLOCKCHAIN 17

82584ef8340567ff

Participant A

Participant B

Participant C

Data with multisignature

Figure 2.7: A figure showing the concept of multi-signatures

multi-signatures. Here, we set a limit n of required signatures from a group of known
signers s ∈M . If |s| >= n then the multi-signature is valid.

Blind Signatures

Blind signatures is a scheme where the message creator (C) and signer (I) are
different entities. Generally, blind signatures are created through a process where C
has a message m. This message is blinded by combining it with a secret component
s, creating the blinded message m. C sends m to I who signs it, thus creating the
blinded signature σ which is valid for the public key of I, pI . The signature is sent to
C, who can use the same secret element s with σ to extract a signature σ which is
valid for the message m with the public key pI . The resulting pair (m, σ) is a valid
signed message from the signer I, where I does not know the message m.

We can use blind signatures to ensure message integrity and authenticity while
preventing the sender from being associated with the message itself. We call this
property unlinkability, and it is essential for providing anonymity to message creators
in an environment where privacy is crucial.

2.4.2 Access Control

Access control dictates who can access data and in which way. Access Control Policies
[28] describe general models for access control. These general models can be applied
within the blockchain context to ensure that data written to it is legitimate. We can
apply access control policies for multiple purposes within a blockchain platform. By
incorporating access control schemes into the platform itself, we limit the entities
who can access it. Alternatively, we can implement access control schemes to control
the individual process invocations on a blockchain. In a fundamental sense, all
blockchains apply a simple access control mechanism where only users with a given
key-pair can get access to the account related to this.

18 2. BACKGROUND AND RELATED LITERATURE

Figure 2.8: Generic Role-Based Access Control scheme for healthcare [1]

Discretionary Access Control (DAC)

DAC is an access control scheme centered around direct access to specific data objects.
In this scheme, each data object a specific owner. Read and write access to the data
is given to users or groups of users through actions from the owner. Limiting the
access of an account on a blockchain to the owner of the related key-pair is DAC.
Additionally, we may use blockchains for enforcing DAC elsewhere. Data stored at
a location outside of the blockchain can use state on the blockchain to determine
who has access to the data. In this case, the owner of the data can give access to the
given piece of data by invoking a process on the blockchain.

Role-Based Access Control (RBAC)

RBAC is a general model for access control where users assume different roles. Data
can also be configured to accessible by different roles. Thus, users can only access or
modify data if they can assume a role with such permissions. Figure 2.8 shows an
example where we use role-based access control in the context of patients, healthcare
workers, and medical research institutions. In this case, only the stakeholder of a
particular role may add new data to the blockchain.

2.5 Smart Contracts and the Ethereum Blockchain

The main intention of the Ethereum blockchain platform is to extend the blockchain
paradigm from the financial domain into a platform where we can create general-
purpose applications. From the top level, we can view the Ethereum platform as a

2.5. SMART CONTRACTS AND THE ETHEREUM BLOCKCHAIN 19

state-machine where transitions are performed based on valid transactions. Each
transaction submitted to the blockchain alters the state through the function:

σt+1 = Υ(σt, T) (2.1)

σ is the global state for the Ethereum blockchain platform, often described as the
world state. Υ is the Ethereum state transition function, which produces a new
world state based on the current world state and a transaction T . To ensure that
all nodes participating in the blockchain network can deduce the same world state
σ, they must all agree to a fixed ordering of transactions S = [T0, T1, T2, ..., Tt]. If
all nodes can agree upon such an ordering, they can deduce a common world state.
They achieve this by using the transition function over the transaction set:

S = [T0, T1, . . . , Tt] (2.2)
σt = Υ(. . .Υ(Υ(Υ(σ0, T0), T1), T2) . . . , Tt) (2.3)

The purpose of the blockchain ledger and consensus mechanisms is to allow the nodes
in the network to agree to such a transaction order. The ledger follows the same
general structure as described in Section 2.3.2, where each block contains a set of
ordered transactions which are cryptographically bound to the block via a root hash.
By introducing blocks, we must alter the world state update function:

Bb =(. . . , (Tb0, Tb1, Tb2, . . .), . . .) (2.4)
σb =Ω(Bb,Υ(. . .Υ(Υ(Υ(σb−1, Tb0), Tb1), Tb2) . . .)) (2.5)

Where σb is the world state after block Bb is processed. The block Bb contains the
transaction set and the remaining data bound to the block. The Block transition
function Ω combines the state changes from transactions and the block (e.g., rewards
given to the miner of the block) and generates a new world state σb

The world state in the Ethereum blockchain platform is universal and expressive
enough to handle a wide range of possible states. This expressiveness allows us
to use it for general purpose applications, where we can define custom procedures
and state to be stored on the platform. We can manage this via smart contracts,
which can be uploaded by any user to the platform. Smart contracts act as an
additional state-machine on top of the existing infrastructure, with their own set
of valid transaction types. We can draw an analogy from smart contracts to object

20 2. BACKGROUND AND RELATED LITERATURE

instances, as they can store internal state, and users can interact with them through
calling functions via transactions.

The Ethereum blockchain platform’s composition follows the same fundamental
principles as Bitcoin, as previously described in Section 2.3.2. The Ethereum platform
expands on these principles by introducing additional complexity and concepts. The
remainder of this section will explain accounts, smart contracts, transactions, costs,
and the Ethereum ledger construction.

2.5.1 Ethereum Contextual Terminology

KEC(x) refers to the Keccak-256 hash over a variable-length message x. Refer to
Section 2.2.2 for an explanation of the hash function.

RLP (x) refers to Recursive Length Prefix encoding, a serialization method for
binary data. Refer to the Ethereum yellowpaper [2] for further details.

σ[s] refers to the state of an account with address s

σ[s]n refers to the latest used nonce for the account with address s

σ[s]b refers to the balance in Ether for the account with address s

Ether(ETH) is the cryptocurrency used in the Ethereum blockchain platform

Wei is the atomic unit of Ether. One Ether is defined as 1018 wei

Gas is a unit for the cost of transactions

2.5.2 Ethereum Accounts

Ethereum accounts are a fundamental building block in the Ethereum blockchain
platform. All state in the Ethereum blockchain ledger is stored in the context of
a given account with their public identifiers which are called addresses. The world
state σ is a union of all account states denoted σ[s] where s is the account address.

An account in Ethereum is, in essence, a ECDSA key-pair, as described in Section
2.2.5. Ethereum uses the elliptic curve SECP-256k1 [29] with 256-bit private keys,
offering security equivalent to a 128-bit symmetric key. Secret keys pr are created by
selecting a random positive integer in the domain of the curve. By using a ECDSA
key-pair, we can perform three important operations:

2.5. SMART CONTRACTS AND THE ETHEREUM BLOCKCHAIN 21

pu =ECDSAPUBKEY(pr) (2.6)
v, r, u =ECDSASIGN(m, pr) (2.7)

pu =ECDSARECOVER(m, v, r, u) (2.8)

These functions are related to the definitions, as found in the ECDSA specification
[20]. ECDSAPUBKEY, is part of the standard key generation algorithm and creates the
public key pu from the secret key pr. ECDSASIGN [2] is a variant of the standard
signature generation algorithm. In addition to the standard signature (r,u), an
additional recovery identifier byte v is included. This identifier specifies the parity
and finiteness for the point on the SECP-256k1 curve, where the signature component
r is the x-value. The inclusion of the recovery parameter v allows us to recover the
public key from a signed message with the ECDSARECOVER function, which is a variant
of the standard ECDSA signature verification algorithm.

Address Generation

We can create the Ethereum address s of an account by compressing the ECDSA
public key. This is done by taking the last 160-bits of the Keccak-256 hash function
over the public key. However, as we do not persistently store the ECDSA public key,
we use the following procedure to generate the address directly from our private key:

s =β96..255(KEC(ECDSAPUBKEY(pr))). (2.9)

Signature Verification

We have previously stated that Ethereum does not use the standard ECDSA signature
verification algorithm. This is caused by the choice of using addresses instead
of public keys as the general identifier for accounts due to their shorter length.
Therefore, we typically do not have the public key available to us during the signature
verification process. Signature validation in Ethereum is performed by using the
ECDSARECOVER function. Given a signature (v,r,u) and message m, we check if
the recovered public key p∗u yields the same address s∗ as the expected address s:

p∗u =ECDSARECOVER(m, v, r, u) (2.10)
s∗ =β96..255(KEC(p∗u)) (2.11)

Signature is valid =
{
True, if s∗ = s

False, otherwise
(2.12)

22 2. BACKGROUND AND RELATED LITERATURE

An additional feature of this scheme is the ability to recover the sending address
from the signature. Given a signed transaction, we can use the signature (v,r,u) to
recover the address of the sender. This allows us to omit to add the sender address
in each transaction, decreasing the size of transactions.

Data Encoding Schemes

In some cases, an Ethereum account owner may want to sign an arbitrary piece of data
with the key-pair related to their Ethereum account. In the Ethereum ecosystem, this
common practice for identification, as the address of an account, is recoverable from
a signature. This allows such signatures to be used for access control schemes, either
within a smart contract or within a standalone application outside of the blockchain.
However, this introduces risk for the signer as a program may trick a naive signer
into signing a piece of data corresponding to a valid transaction. To solve this issue,
EIP-712 [30] introduces the following encoding scheme for non-transactional data to
be signed:

encode(b) ="\x19Ethereum Signed Message:\n"||len(b)||b (2.13)

2.5.3 Smart Contracts

Smart contracts are a new paradigm implemented in the Ethereum blockchain.
They are the main toolchain available to developers who want to create distributed
applications that run directly on the blockchain. We refer to such applications as a
dApp. Smart contracts are composed in the same manner as classes in object-oriented
languages, as they have internal state, constructors, inheritance, and externally or
internally accessible functions. Smart contracts are stored as Ethereum Virtual
Machine (EVM) bytecode on the blockchain ledger, where they get their own address
s, making them addressable as if they were any other account on the platform. The
bytecode stored on the ledger defines the state variables, which is stored in the world
state σ[s]. The bytecode also defines the possible transition functions for changing
this state.

Smart contracts are typically developed writing code in a high-level language such as
Solidity [31], which is compiled down to EVM bytecode. To deploy a smart contract,
a user takes the compiled EVM bytecode and packs this into a contract creation
transaction with the data Td. They sign it using their ECDSA secret key, resulting
in the signature component Ts, allowing the full transaction T to be composed. This
transaction is sent to the Ethereum blockchain platform by sending it to a node in
the Ethereum blockchain network.

Figure 2.9 shows how we compile a smart contract into bytecode and create a contract
creation transaction for deploying the smart contract to the blockchain platform. Our

2.5. SMART CONTRACTS AND THE ETHEREUM BLOCKCHAIN 23

6080604052348015600f57600080fd5b
5060ac8061001e6000396000f3fe6080
...

Compilation

{
"nonce": "0x1a",
"gasPrice": "0x9184e72a000",
"gasLimit": "0x76c0",
"to":"",
"value":"0x0",
"data": "6080604052348015600f57600080fd5b
 5060ac8061001e6000396000f3fe6080
 ...",
"init":"efc181ea7d8ab4c28536184bb2a3338b78e392b8..."
}

Package to transaction

EVM bytecode

Contract creation transaction data

pragma solidity >=0.4.0 <0.7.0;

contract SimpleStorage {

 uint256 storedData;

 function set(uint256 x) public {

 storedData = x;

 }

 function get() public view returns (uint256) {

 return storedData;

 }

}

Figure 2.9: Compiling a smart contract and creating a contract creation transaction

example smart contract stores a single integer on the blockchain ledger. The value
of this variable is stored on the blockchain in the context of the contract address s
in the world state σ[s]. For interacting with the internal state, the contract defines
two functions. The first is a procedure causing a state transition of the variable. We
can interact with this function by creating a transaction for invoking it. The other
is a view function, allowing other contracts or off-chain users to access the variable
easily. This allows us to access the state by querying a node in the network, without
creating a transaction.

Once a contract is added to the ledger via contract creation transactions, it gets
assigned an address s. In contrast to addresses deduced from ECDSA key-pairs, this
address is not associated with a given key-pair but is rather a calculated address
under the control of the contract. This address is calculated by taking the last 160
bits (β96..255) of the Keccak hash of the Recursive Length Prefix (RLP) encoded

24 2. BACKGROUND AND RELATED LITERATURE

{
 nonce: "0x1a",
 gasPrice: "0x9184e72a000",
 gasLimit: "0x76c0",
 to:"0xF0109fC8DF283027b6285cc889F5aA624EaC1F55",
 value:"0x0",
 data: "0xf869808504e3b29200831e8480b6285cc94f0109fc8df283027b",
 init:"0xefc181ea7d8ab4c28536184bb2a3338b78e392b8...",
 r: '0x9ebb6ca057a0535d6186462bc0b465b561c94a295bdb0621fc19208ab149a9c',
 u: '0x440ffd775ce91a833ab410777204d5341a6f9fa91216a6f3ee2c051fea6a0428',
 v: '0x25',
}

Td

Ts

Figure 2.10: An example of the Ethereum transaction composition

sending address and nonce from the contract creation transaction [2]:

address = β96..255(KEC(RLP ((s, σ[s]n − 1)))). (2.14)

To interact with a contract, users have to create a new contract invocation transaction.
This transaction contains EVM bytecode indicating which function to invoke in the
smart contract, along with the function parameters. This bytecode is created by
using the contracts Application Binary Interface (ABI). This interface can be created
during the compilation of the contract and describes how to encode and decode
contract calls into EVM bytecode. The destination of this transaction must be the
address of the smart contract, as calculated in Equation 2.14.

2.5.4 Ethereum Transactions

Ethereum transactions, as illustrated in Figure 2.10, are a fixed data structure that
can be interpreted by nodes in the Ethereum blockchain platform. Transactions are
created by users, allowing them to publish new data on the Ethereum blockchain
ledger. The first central component of a transaction is the data Td, which describes
a state transition in the Ethereum world state σ. In general, this data takes one of
three forms:

1. A simple transfer of Ether (The cryptocurrency used by Ethereum) from one
address to another.

2. Smart contract creation, where a user uploads the bytecode of a contract and
gets a dedicated address for it.

3. A smart contract invocation, where the transaction contains data about which
smart contract to use, which procedure to invoke, and parameters.

2.5. SMART CONTRACTS AND THE ETHEREUM BLOCKCHAIN 25

The other central part of a transaction is the signature Ts. This is a ECDSA signature
generated with the private key of the account. The corresponding public address of
the private key is the transaction sender, and the transaction will be executed in the
context of this account.

Transaction Composition

In addition to the payload, the transactions contain many additional fields that are
used for handling the transaction. They are important both for establishing the
execution context, preventing attacks, and for building and disturbing blocks.

– Nonce is a monotonically increasing number associated with an address. Once
the nonce of an address is present on the blockchain, all subsequent transactions
from the same address must have an increased nonce value. The last observed
nonce for an address on the blockchain is denoted σ[s]n as a function of the
world state. Miners will not accept transactions with nonces lower or equal to
the one stored in the world state. This prevents replay attacks where existing
(and publicly available non-the-less) can be resubmitted to the platform.

– gasPrice is a value in wei set by the sender of the transaction. The total cost
of a transaction is a function of the gas price and the gas cost of the transaction.

– gasLimit the upper acceptable cost bound for the transaction in terms of gas.

– to is the recipient of the transaction. In the case of an Ether transfer, this
is the receiving account address. When calling a smart contract, this is the
contract address. During contract creation, this value is empty.

– value is the amount of Ether to send to the target address. When the
destination is a contract call or a contract creation, then the amount will
be controlled by the receiving contract.

– init is a field that must be present during contract creation. It contains the
data to be passed to the construction function of the contract.

2.5.5 Transaction Costs

Using the Ethereum blockchain has a cost associated with it. Each transaction
submitted to the blockchain will require all the nodes in the network to execute the
Ethereum state transition function, previously shown in Equation 2.1. The result
of the transition function is found by executing the procedure associated with the
transaction and will cause the node to execute a number of EVM instructions of
different types. Each of these instructions has a cost associated with it in the form
of gas, which is a variable unit of Ether.

26 2. BACKGROUND AND RELATED LITERATURE

– Ether is the main currency of the Ethereum blockchain. The main purpose of
Ether is to be the fuel for transactions. Ether is attached to each transaction and
is used to pay the transaction validators (miners) who include the transaction
in blocks on the ledger. Ether can be gained either through mining or from
receiving it from another account through a send transaction. Due to the
intrinsic value of Ether, it is often used as a store of value and as a currency
for payment.

– Wei is the smallest atomic unit of Ether. One Ether is defined as 1018 wei.

– Gas is a unit for transaction costs. When submitting a transaction, the sender
will use the gasPrice field in the transaction to select the amount of wei to pay
per unit of gas. Honest miners will prioritize the transactions with the highest
gas prices when selecting the transactions to include in a block. In practice,
this leads to an auctioning system, where the transaction will have a greater
chance of being included in a block if a higher gasPrice is set.

The Gas Price of Transactions

The gas cost of transactions in Ethereum is a function of the executed instructions
by the miner. These transactions can be calls to arbitrary contracts, which include
procedures defined in a Turing-complete language. Thus, miners cannot predict the
cost of a transaction before its execution. The general procedure for transaction
payment goes like this:

1. The sender creates a transaction. This transaction includes a gasPrice, denoted
Tp, and a gasLimit, denoted Tg. This transaction is sent to an Ethereum node,
which propagates it in the network.

2. A miner picks the transaction for inclusion in a block and executes the
transaction. As EVM instructions are executed, the miner keeps track of
the cost through mapping the instruction to a gas cost, as sampled in Table 2.1.
If the gas cost G rises above the gasLimit Tg, then the transaction is reverted
(but still charged for.) If the total cost of the transaction Tp ∗G exceeds the
account balance σ[s]b, then the transaction is also reverted and charged for.

3. Once the transaction terminates, the final cost G is charged from the senders
account balance σ[s]b.

Generally, the sender of a transaction will select a gasPrice for the transaction aligned
with its urgency. The average gasPrice for the transactions in recently mined blocks
is often used as a reference for determining this price.

2.5. SMART CONTRACTS AND THE ETHEREUM BLOCKCHAIN 27

Name Gas cost Description

GSSET 20000
Paid for a SSTORE operation when the storage value
is set to non-zero from zero. Stores a 256-bit value
on the ledger

GJUMP DEST 1 Paid for a JUMPDEST operation. Mark a memory
address for jumps

GSLOAD 200 Paid for a SLOAD operation. Loads a 256-bit value
into memory

Table 2.1: Gas costs associated with a sample of EVM instructions [2]

Minimum Balances

We have described how the cost of a transaction is calculated during execution, and
charged from the senders’ account balance. In this setting, miners are never punished
for selecting transactions which cannot complete and are reverted, as the gas for
all instructions up until termination is still charged for. However, this setup opens
up for some denial of service attacks as transactions may be created from accounts
with no Ether balance at all. If a malicious actor produces a large number of such
transactions, miners may use most of their time on reverting transactions. Therefore,
Ethereum nodes require the sending account to have a minimal Ether balance for
their transaction to be propagated in the network or processed. This minimum
balance is equal to the maximum possible gas cost for the given transaction, as it is
calculated as such:

Bmin = Tp · Tg (2.15)

where Tp is the gasPrice and Tg is the gasLimit. Both are defined as parameters in
each transaction, and a valid range for these are determined by miners. Ethereum
nodes will check Bmin < σ[s]b before processing or propagating a transaction.

2.5.6 Ethereum Ledger Construction

The construction of the Ethereum blockchain ledger is fundamentally similar to the
Bitcoin construction shown in Figure 2.6. However, some key modifications are added
to accommodate the more expressive world state σ, which must support arbitrary
updates based on smart contracts written by users. We show the construction in
Figure 2.11, where we can observe two new root hashes in the block header. The state
root-hash is a cryptographic hash over the world-state after the transactions in the
block are applied. The receipts root hash verifies the receipts from all transactions,
showing the effect of each applied transaction.

28 2. BACKGROUND AND RELATED LITERATURE

Block Bn

Header

parent block hash

state root

transactions root

timestamp

receipts root

beneficiary address

Body

Transaction T0

Transaction Tn

Block Bn-1

Header

parent block hash

state root

transactions root

timestamp

receipts root

beneficiary address

Body

Transaction T0

Transaction Tn

Block Bn-2

Header

parent block hash

state root

transactions root

timestamp

receipts root

beneficiary address

Body

Transaction T0

Transaction Tn

Figure 2.11: The structure of the Ethereum blockchain ledger.

Modified Merkle Patricia Trees

A Merkle Patricia Tree is a prefix-tree structure that is used to create an index over
a set of data while incorporating tree-hash mechanisms to find a root-hash for the
whole tree. It can be interpreted as Patricia tree [32], where the root hash can be
calculated in the same manner as in a Merkle tree (See Section 2.2.3). In Ethereum,
the transaction root, state root, and receipt root are constructed via Modified Merkle
Patricia Trees over transactions, the world state, and transaction receipts.

Transaction Receipts

When miners execute transactions, they first and foremost use the current world-state
along with the transaction to generate a new world state via the Ethereum state
transition function, as shown in Equation 2.1. In addition to the world-state update,
they also produce a Transaction receipt as an independent output from the transition
function. This general pattern is shown in Figure 2.12. These receipts contain
metadata about the transaction execution, and contain gas usage in the block so far,
the logs created by the transaction execution, a bloom filter for the logs, and the
transaction termination status code.

Transaction receipts are useful for multiple purposes. They are first and foremost used
by miners to ensure consistency when executing transactions. Developers creating

2.5. SMART CONTRACTS AND THE ETHEREUM BLOCKCHAIN 29

Figure 2.12: Executing a Ethereum transaction to produce a new world state and
transaction receipt.

Address Balance

570e7ff1 10 ETH
570e97be 3 ETH
0b3a9957 5 ETH
0b3af9be 1 ETH

Table 2.2: Initial account balances for accounts used in Figure 2.13

dApps can parse receipts from transactions sent to the Ethereum platform. The exit
status code will show if the transaction succeeded or failed (e.g., when the balance of
the sender was too low to execute the whole transaction). Furthermore, the EVM
includes an event system, where events are stored in the produced logs. By parsing
these events, developers may create subscription-based architectures.

The State Root Hash

The state-root hash included in each block serves as an integrity check over the world
state σn. To check the validity of a world state, the verifier starts with a previously
calculated world-state σn−1. They then run all the transactions in the block by using
the Ethereum Block transition function (Equation 2.5). The block is valid if the
root-hash of the resulting Modified Merkle Patricia tree is equal to the state root
hash.

We show a practical example for how these-root hashes are constructed in Figure 2.13.
We start with a world state σn−2 where the initial balances are given in Table 2.2.
Block Bn−1 contains a transaction where the account with address 0b3a9957 sends
3ETH to the address 570e97be. In the subsequent block Bn, the account with address
570e7ff1 sends 6ETH to the address 0b3a9957. During each transition between world
states σn and σn+1, only the differences in the world states as produced by the
transactions are materialized.

30 2. BACKGROUND AND RELATED LITERATURE

Bl
oc

k

pa
re

nt
 ro

ot
 h

as
h

st
at

e
ro

ot

Bl
oc

k

pa
re

nt
 ro

ot
 h

as
h

st
at

e
ro

ot

Bl
oc

k

pa
re

nt
 ro

ot
 h

as
h

st
at

e
ro

ot

W
or

ld
 s

ta
te

R
oo

t n
od

e

57
0e

0b
3a

7f
f1

9
7
b
e

99
57

f9
be

1
ET

H
5

ET
H

10
 E

TH

W
or

ld
 s

ta
te

R
oo

t n
od

e

57
0e

0b
3a

97
be

99
57

2
ET

H
6

ET
H

W
or

ld
 s

ta
te

R
oo

t n
od

e

57
0e

0b
3a

99
57

8
ET

H

7f
f1

4
ET

H
3

ET
H

F
ig
ur
e
2.
13
:
T
hi
s
fig

ur
e
sh
ow

s
ho

w
th
e
M
od

ifi
ed

M
er
kl
e
Pa

tr
ic
ia

tr
ee

fr
om

w
hi
ch

is
ro
ot
-h
as
h
is

pr
od

uc
ed

up
da

te
s
w
he

n
ad

di
ng

ne
w

tr
an

sa
ct
io
ns
.

2.6. PRIOR ART 31

2.6 Prior Art

To our knowledge, no prior proof-of-concept application for providing trust in
healthcare workers’ qualifications, skills, and competence through blockchain
technology exists. However, blockchain-based proofs-of-concept exist for other
topics within the healthcare domain. Furthermore, research on trust in healthcare
predates blockchain technology and is extensive from both a technical and analytical
perspective. Finally, we note that extensive analytical work exists on how we can
apply blockchain in healthcare.

2.6.1 Blockchain in Healthcare

Extensive research on the use-cases of blockchain within the healthcare exists.
Blockchain is often proposed as a solution to the data management problems within
the healthcare domain. In particular, the potential for solving problems related
to inter-organizational data-sharing is high. The majority of previous research on
blockchain in healthcare has focused on managing Electronic Health Records (EHR)
or Personal Health Records (PHR) [33]. Some applications related to establishing
trust in healthcare through blockchain exist [34, 35, 36]. However, this research is
focused on conceptual analysis and does not include any practical implementations,
designs, or proofs-of-concept.

MedRec [37] is a proof-of-concept application that relies on the existing data-
infrastructure within the healthcare domain. They seek to ease data sharing and
access control by using the blockchain as a public registry for EHRs. They use
this registry to store a simple mapping between a pseudonymous patient identifier,
providers, and pointers to EHRs. Also, a permission system is implemented and
appended with the public data pointers. Overall, this architecture allows patients
and organizations to locate and access data from a range of providers given patient
consent. The application initially used the public Ethereum network, but a transition
process to a private ledger is in progress.

Ancile [38] is a system design for controlling access to EHRs, and tries to solve
the same problem statement as MedRec. They improve on previous solutions by
including a key management mechanism for symmetric keys over the blockchain to
encrypt the data stored at providers. The system is designed for a permissioned
Ethereum-based blockchain, but does not specify the underlying platform further.
They use a distributed governance mechanism to manage permissions for interacting
with the blockchain.

Blockcerts [39] is a standard developed for verifying certifications of competence by
storing signatures on a blockchain. The standard relies on existing trust relationships
between the issuer and the verifier of the certificate. Baldi et al. [40] show that

32 2. BACKGROUND AND RELATED LITERATURE

certificates within this system can be spoofed. They also propose to use decentralized
identifiers for governing such certificates.

2.6.2 Evaluating Healthcare Applications

Some research on requirements for blockchain applications within the healthcare
domain exists. Zhang et al. [41] define a set of metrics for evaluating blockchain
applications within the healthcare domain. Here they also describe some fundamental
principles which should be applied when creating dApps within the domain.
Although mainly directed towards the American Health Insurance Portability and
Accountability Act, the framework can be generalized to specific requirements that
will work in the European context.

Chapter3Trust Establishment in a
Virtualized Healthcare

Environment

Providing trust in healthcare workers by using existing data sources is a challenging
issue. Currently, getting access to data related to a healthcare worker is problematic
due to a low capability to share data within the healthcare domain. This section will
first describe the general issues of data-sharing within the healthcare domain. In the
context of these issues, we will describe how we can establish trust in a virtualized
healthcare environment. Finally, we describe a novel framework for defining the data
required to provide such trust.

3.1 Data Sharing in the Healthcare Domain

A fundamental problem within the healthcare domain is a low capability to share
data between healthcare institutions and services. The low data-sharing capability
materializes as multiple different problems. Blockchain, as a technology, can address
some of them. Previous research on the use cases of blockchain in healthcare
has defined four healthcare industry requirements where the technology has great
potential [33, 42]:

1. Interoperability The ability of systems to easily exchange information
is called interoperability. To achieve this, we must make data accessible
through standard means of communication and store it in a machine-readable,
parsable, and commonly used format. Within the healthcare industry, the
lack of interoperability results in medical data stored in isolated stores
within healthcare institutions. Moving these datasets to other systems and
organizations is challenging, as it may not use standard formats for storage or
formatting. Patients and healthcare workers have a hard time accessing their
data since they may be fragmented across multiple healthcare institutions and
hard to integrate due to variable formatting and access methods.

2. Security The volume and variety of data generated within the healthcare
domain is increasing. In addition to EHRs, we can now create produce data

33

34 3. TRUST ESTABLISHMENT IN A VIRTUALIZED HEALTHCARE
ENVIRONMENT

via on-body sensors and virtualized healthcare platforms. These datasets span
outside of the traditional EHR storage systems. As the surface area of data
increases, so does the requirements to keep this data secure. Once data expands
outside the traditional healthcare providers, existing requirements such as non-
repudiation and universal access control mechanisms become more important.
Patients should be able to trust that their data has not been modified, and has
not been accessed by unauthorized parties.

3. Data sharing The lack of interoperability, along with strict security
requirements, makes it hard for patients and healthcare workers to gain access
to all their data in a unified view. While efforts towards centralized national
stores for some datasets are undergoing in multiple countries [43], sharing
between organizations and across borders remains a large problem. These
initiatives try to solve the problem of data-sharing through the centralization
and integration of data. However, better interoperability could instead result in
more efficient data sharing and thus making federation over the data possible
instead.

4. Mobility While also related to interoperability, the portability of data enables
the mobility of healthcare workers and patients. A patient traveling between
countries, changing services, or switching their healthcare domain should
able to transfer their data from one healthcare service to another. Likewise,
practitioners should be able to transfer data related to their experience,
credentials, and performance between domains. Both these cases are, in
general, very challenging with the current structure of the healthcare domain.

Blockchain can address these problems by offering infrastructure for inter-domain
data sharing. We can apply the technology in multiple different architectures
and configurations to achieve this. Examples include blockchains for discovering
data through indexing, distributed storage of data, providing non-repudiation, or
supporting access control mechanisms. Common for all of them is that blockchain
can autonomously and instantly share information between trustless domains.

3.2 Data Sharing for Healthcare Workers

Most previous solutions [44, 37, 38] use Blockchain technology for addressing data-
sharing problems in the context of patients and their EHRs. However, we note that
these problems are just as severe for data contextual to healthcare workers. To show
this, we frame the previously mentioned industry requirements in the context of
healthcare workers:

3.3. TRUST IN A VIRTUALIZED HEALTHCARE ENVIRONMENT 35

1. Interoperability Data related to the healthcare worker are fragmented
between data stores where formats and access methods vary from organization
to organization. Additionally, this data is often stored in the context of patients.
Building applications that can access and integrate all this data in the context
of a healthcare worker may is therefore hard.

2. Security New security mechanisms within the healthcare domain try to enforce
patient-controlled data. In such schemes, patients must give specific access to
anyone who wants to access their data. However, the healthcare worker who
may have produced the given data may not have this ability.

3. Data sharing As healthcare workers change employers, their data documenting
their work-history does not follow. Thus, the evidence of their work-history
becomes increasingly fragmented over time between different organizations.

4. Mobility The inability to share data contextual to healthcare workers’ work-
history may limit their ability to move across borders and jurisdictions. Gaining
formal certifications and licenses can thus take a long time, reducing the overall
efficiency of healthcare worker mobility.

3.3 Trust in a Virtualized Healthcare Environment

Trust in a physical healthcare environment is often taken for granted, as there is an
inherent trust relationship between a patient and healthcare worker in the setting of
a physical meeting within a healthcare institution [4]. This trust relationship can be
rooted in factors such as the competence, reliability, compassion, and integrity of the
healthcare worker [45].

Trust relationships from the physical setting are extended into the virtualized work
when the patient is talking with a practitioner whom the patient already knows
from a previous physical setting. In a fully virtualized healthcare domain where
the patient does not know the healthcare worker before the virtual interaction, this
principle cannot be used. Thus, there is a need for enabling such trust relationships
to be built within a virtualized healthcare environment.

A Novel Framework for Trust in Healthcare Workers

We propose establishing a trust relationship between the patient and the healthcare
worker in a virtualized setting through data sharing. The shared data includes
evidence for trust. This evidence should convey some of the same information from
which the physical trust relationships are rooted. In the context of the patient and
healthcare worker relationship, we can define the following framework categorizing
evidences for trust:

36 3. TRUST ESTABLISHMENT IN A VIRTUALIZED HEALTHCARE
ENVIRONMENT

1. Evidence of authority The healthcare workers must be able to show that
they have formal credentials allowing them to practice as a healthcare worker.
They need a formal license, their background must be legitimate and approved,
and they must be working in a trusted healthcare institution.

2. Evidence of experience The healthcare worker must convince the patient
that they have the experience required to deal with the patient’s specific health
issues. As specialization increases, this evidence will increasingly be an essential
ground for trust.

3. Evidence of competence Experience as a standalone metric does not convey
information about the quality of care delivered. Therefore, the healthcare
worker should also be able to show that they have previously delivered positive
outcomes to patients. Thus, a metric for patients’ satisfaction can be another
crucial evidence.

By making these evidences available to patients, we can establish grounds for trust
between the patient and the healthcare worker. However, designing such a solution
is not trivial due to the significant problem-categories defined within the healthcare
domain: Interoperability, Security, Data Sharing, and Mobility. These problems make
it challenging to create an application that works on top of the existing organizational
structure where data is fragmented over different organizations with a diverse set of
formats. Although possible, we instead may require fundamentally different solutions
with higher availability and transparency for patients, while ensuring the evidence
they receive is not fraudulent.

Trust in AI healthcare workers

By defining a general model of evidence-based trust mechanisms, AI-healthcare
workers can be compared to human healthcare workers, which can increase confidence
from patients. While metrics such as accuracy and true positive rates may be excellent
from a technical and research perspective, they are not very approachable for patients.
However, metrics deduced from the experiences of other patients can inspire a patient
to trust the AI-healthcare worker. By creating systems that support capturing such
metrics, we can improve overall patient experiences with such new technology.

The advantage for healthcare workers

Making data about healthcare workers’ authority, experience, and competence
transparent, available, and immutable can be perceived as a privacy issue for
healthcare workers. This structure also has some significant advantages for the
healthcare worker. The availability of data allows us to simplify processes related
to turnover, on-boarding, and mobility processes. Employers will gain an increased

3.3. TRUST IN A VIRTUALIZED HEALTHCARE ENVIRONMENT 37

ability to perform efficient background checks related to their profession. Healthcare
workers will be able to share information about their background and competence
efficiently. They can also have visibility into their reputation, providing a significant
incentive to provide better care.

Chapter4Needs and Requirements

Healthcare is going through a trend of an increased virtualization of healthcare
services and increased mobility of healthcare workers. During this transition, the
need for structured trust in healthcare workers is becoming more critical than ever
before. Patients and healthcare institutions will, to an increased degree, require
evidence showing that a healthcare worker has formal authorization, is experienced,
and is competent. However, gaining access to this evidence in the current healthcare
system structure is challenging due to the fundamental problems of data-sharing
in existing systems. To solve the problem of trust in healthcare, we propose an
application that exposes our proposed sources of trust in healthcare workers: Evidence
of authority, Evidence of experience, and Evidence of competence. We have previously
stated that this evidence can serve as a ground for trust in a healthcare worker.
However, these evidences offer no value to either patients or healthcare institutions
if their source cannot be trusted.

We propose to deliver evidence of authority, experience, and competence by using a
public blockchain. We will first explain why blockchain is suitable for this specific
use-case, and explain our reasoning for using the Ethereum blockchain platform.
Based on the decision to use a public blockchain, we define the most important
functional requirements for our application. Additionally, the healthcare domain
requires strict properties such as security and privacy, which may be hard to combine
with the transparency of public blockchains. We capture such requirements in the
form of quality attributes, where we mainly focus on the ones tightly related to
blockchain and the scope of our application.

4.1 Using Blockchain for Trust in Healthcare

To ensure that the evidence for a healthcare worker’s trust is credible, we can use a
blockchain platform for storage. Blockchains offer a data-store that is immutable
and highly distributed, making them easy to access. Blockchain technology has been

39

40 4. NEEDS AND REQUIREMENTS

coined as a critical enabling technology for better data-sharing and interoperability
within the healthcare industry [44], as it enables patients and healthcare institutions
to share, index and control access to data in a fully distributed manner. Blockchain
platforms are also highly available and easily accessible by all participants in the
blockchain network.

Through the means of smart contracts, we can create a dApp running directly on
a blockchain platform. We can use these smart contracts to store the evidence of
a healthcare worker’s authority, experience, and competence while incorporating
access control mechanisms to ensure that the published data is credible. The data
uploaded via these contracts are immutable, resulting in the evidence of trust to be
non-reputable for healthcare workers. Additionally, since we source evidence directly
from the blockchain, the healthcare worker cannot selectively hide some evidence.
The non-repudiation property denies any change to the evidences once published,
disabling healthcare workers to alter their evidences fraudulently. Data can be easily
available to patients and healthcare institutions by using a public platform, allowing
them to validate evidence on-demand and without authenticating.

The Ethereum blockchain is the most popular blockchain platform to incorporate
the concept of smart contracts. As a consequence, it offers a rich suite of developer
tooling, enabling rapid prototyping and testing. It, therefore, offers a compelling
value proposition for creating proof-of-concept applications. By using the Ethereum
platform, we can focus on developing the business logic of our blockchain application,
while refraining from focusing on low-level concepts such as consensus mechanisms.
Although a permissionless blockchain platform in nature, developers stand free to
implement their own access control mechanisms within smart contracts to limit how
data can be published. Smart contracts on the blockchain can interact with each
other, enabling the creation of complex architectures with a rich set of features.

4.2 Scope

Before defining the requirements, it is crucial to clearly define the scope in which we
are designing our application. We will focus on the core problem of providing trust
in a healthcare worker by using blockchain technology. However, when designing
such a system, some closely aligned categories of problems become apparent. We
define these as out-of-scope:

Lower level blockchain technologies

This thesis aims to create a proof-of-concept application that uses an existing public
blockchain. We only focus on developing applications on top of such a platform.
We do not go deeply into the underlying technology used in this blockchain, unless

4.3. REQUIREMENTS 41

directly relevant to the implementation of the application. We discuss properties
such as prices for usage, block compositions, and how to interact with the blockchain.
However, we will not go deeply into topics such as consensus models, multi-layer
scaling, block verification, and other related concepts.

Identity and access management

For our proof-of-concept application to be usable in the real world, the application
should interact with existing public identification services to verify the identities
of patients and healthcare workers. Although highly relevant to the security of the
system, identity and access management mechanisms are not within our scope. We
assume that we can verify such identities where relevant.

Key management

The blockchain’s ability to provide trusted data relies on actors storing their key-pairs
in a secure and portable way that can be readily loaded into our application or used
externally for signatures. Securely handling such keys is a common problem for any
solution which relies on cryptographic solutions. We will not provide any solutions
for how these keys are stored and handled by stakeholders.

Data formats within the healthcare industry

Datasets such as PREMs, treatment descriptions, and other related healthcare data
have specific formats that change over time. Therefore, we do not define any specific
data formats for these datasets and define these formats as out of scope. Where we
meet such formats, we handle them as high-level textual data and thus abstract away
any underlying formats. If we require any specific data formats, such as a rating,
we specifically define these. If we create assumptions about these datasets, they are
only present for demonstration purposes, and not necessarily map to real-world data
formats.

4.3 Requirements

We base our proof-of-concept on a set of functional and non-functional requirements.
The functional requirements are based on use-cases for stakeholders and define which
functionality to implement. Non-functional requirements surface the properties which
the system must have, such as privacy and scalability. When architecting a system,
non-functional requirements have a sizeable architectural impact, influencing how
the system is made.

42 4. NEEDS AND REQUIREMENTS

4.3.1 Functional Requirements

– A patient using a virtualized healthcare platform to talk with a healthcare
worker should be able to get access to evidence of the healthcare worker’s
authority via the system. This evidence must show if the healthcare worker is
allowed to practice. The same system should show that the healthcare worker
holds no authority if this is the case.

– A patient should be able to evaluate a healthcare worker’s experience by using
data provided from the system. The system must allow for the generation of
additional evidence of this kind by storing information about treatments.

– A patient should be able to evaluate a healthcare worker’s performance by
looking at data from the blockchain. The system must allow for the generation
of additional evidence of this kind by storing information about the evaluations
of treatments.

– All evidence served from the system should not require the patient to trust the
given healthcare worker initially.

4.3.2 Quality Attributes

In addition to the functional requirements, we define some non-functional attributes
of the system through quality attributes. These define the qualities the system must
possess while conforming to the functional requirements. The number of quality
attributes for a system is, in theory, unbounded. This section, therefore, presents
the quality attributes which have the greatest architectural impact on the system.

Privacy Requirements

Priv1: Unlinkability to patients
The identity of patients must be treated as confidential. It must not be possible
to link a transaction on the blockchain to a specific patient without any further
knowledge from outside the blockchain.

Priv2: Anonymity of patients
The content of evaluations and treatments should not reveal the identity of patients.
The encoding scheme in the dApp should not allow for such information to be
publicized.

Security Requirements

Sec1: Fraudulent treatments
It should be impossible for a treatment to be published to the blockchain for

4.3. REQUIREMENTS 43

unauthorized parties. All treatments must be cryptographically approved by an
entity with direct or implicit authority to publish treatments.

Sec2: Fraudulent evaluations
It should be impossible to publicize an evaluation without going through a valid
treatment first. Once a treatment has a related evaluation published, it should not
be possible to create another evaluation that relates to the same treatment.

Sec3: Fraudulent patients
Creating fake patients that can submit fraudulent treatments and evaluations
undermines the credibility of the system. Therefore, it should be impossible for a
healthcare worker to create a treatment that can be evaluated without the support
of other trusted entities.

Availability requirements

A1: Addition of new governance entities
It should be possible to add new governance entities dynamically without any code
changes to the original contracts on the blockchain.

A2: Denial of service of governance
Temporary downtime of governance entities should result in a low long-time disruption
of the application behavior.

A3: Recoverability after authority loss
If a minority of governance entities becomes permanently unavailable or misbehaves,
it should be possible to remove them. It should be possible to recover the dApp into
a healthy state without interaction from the misbehaving governance entities.

Scalability Requirements

Scale1: The amount of data on the blockchain should be minimal
The blockchain is an expensive storage medium. Small data formats and encoding
should be used to represent data on the blockchain.

Scale2: Decentralization of data
The system should work across a range of jurisdictions and institutions. Therefore,
storing all data in a centralized manner may be impossible from both a technical and
judicial perspective. The system should support a decentralized architecture where
data can be fragmented across organizations.

44 4. NEEDS AND REQUIREMENTS

4.3.3 Quality Attribute Scenarios

Some quality attributes have a higher architectural impact than others. In this
section, we refine some of the listed quality attributes further. This is done through
a scenario where we address the risk associated with it through a measure(s).

Priv1: Unlinkability to patients

A vital feature of the system is the publication of data linkable to healthcare workers
on the blockchain. This data is used to provide trust in the healthcare worker from a
patient’s perspective. Some of the data published have a patient as a subject. These
datasets can include treatments or evaluations. Due to privacy regulations and the
long-lived and immutable nature of the blockchain, it should be impossible to link
this data back to the given patient, as this may have real-world consequences for the
patient.

Source: A patient who submits data to a blockchain

Stimulus: A transaction related to the patient is published on the blockchain.
This transaction contains data related to the patient and key information such as an
address.

Artifact: The smart contracts on the blockchain. Patients or treatment providers
who upload transactions.

Environment: During runtime of the platform.

Response: The smart contracts should be designed in a manner where it is
impossible for the body of data to reveal identifying information about a patient.
The design of the system should allow for the usage of keys and addresses which
cannot be linked back to a specific patient.

Response measure:

– Given a set of any public transactions, it should be computationally infeasible
to link one or more of these transactions to a patient.

– Given the knowledge of a patient’s identity or long-lived key, it should be
computationally infeasible to find transactions on the blockchain linked to the
patient.

4.3. REQUIREMENTS 45

Sec3: Fraudulent Patients

By using evaluations as a measure of trust, we create an incentive for healthcare
workers to create fake patients who can submit evaluations which are not grounded in
a real-world patient interaction with the healthcare system. This can allow healthcare
workers to create a fraudulently positive view of themselves. Such a setting discredits
the system as a source of trust and thus counteracts the system’s intent.

Source: A healthcare worker

Stimulus: A healthcare worker tries to create a fraudulent evaluation to influence
their trust positively. They do so by trying to create a fake patient who go through
a non-existent patient interaction with the healthcare system.

Artifact: The systems authorized to publish treatments on the blockchain.

Environment: During run-time of the platform.

Response: There should be governance in place to limit the stakeholders who can
publish evaluations on the blockchain. These stakeholders should apply mechanisms
that ensure that these evaluations originate from real-world patients. This can
be achieved by piggybacking on national identity providers, or via cryptographic
proofs such as zero-knowledge-proofs. The authorized stakeholders should store
cryptographic proofs off-chain, enabling them to show that treatments on the
blockchain originate from real-life patients.

Response measure:

– It should be computationally infeasible for healthcare workers to fraudulently
create evaluations within the system.

– Stakeholders with authorization to publish data on the blockchain-related to
patient evaluations must be able to cryptographically prove to auditors that
the data on the blockchain originates from a real-world patient.

A2: Recoverability after authority loss

One of the entities governing the system is breached, resulting in loss of control.
As a result, it starts to act fraudulently. Actions may include issuing fraudulent
treatments, and evaluations related to these.

Source: A governance entity with authority of the application.

46 4. NEEDS AND REQUIREMENTS

Stimulus: The keys of the governance entity is leaked, resulting in a malicious
third party getting hold of the keys to the related blockchain account.

Artifact: The smart contracts running on the blockchain, and the software running
on the governance entity.

Environment: During run-time of the platform.

Response: Distibuted governance should be used to distribute responsibility
between multiple entities. A voting system should be implemented, which allows a
majority of governance entities to remove a malicious actor. The same voting system
should be able to allow new entities to be added for governance. It should also be
easy for governance entities to remove themselves from the system.

Response measure:

– Malicious or rouge governance entities should not result in long-term loss of
authority for honest governance entities.

– It should be possible to maintain the robustness of the application through
distributed management.

– It should always be possible to recover to a healthy state if over half of
governance entities are honest.

Chapter5Artifact Design and Architecture

This chapter describes our design and architecture of the VerifyMed platform for
providing trust in healthcare workers. Our proposed system architecture is designed
to store evidence of Authority, evidence of experience, and evidence of competence
on the public Ethereum blockchain platform. For these pieces of evidence to hold
any legitimacy, the application incorporates a concept of governance, where a set
of stakeholders cooperate to create a trusted environment on the blockchain via
smart contracts. These governance entities allow us to relate the existing structure
in the healthcare industry to a model on the blockchain. Patients use this trusted
environment to gain evidence for trust in a healthcare worker, and publish their own
experiences once the patient and healthcare worker interaction is completed. While
the high-level view, as shown in Figure 5.1, is simple, the underlying system design
is of high complexity.

The first contributor to increased complexity is the real-world trust relationships
within the healthcare system. Our top-level model depicts a single governance entity.

Patient

Trustless verification
of identity

Public blockchain

Governance
Entity

Healthcare
worker

Publish trust relationshipsGet evidence for trust
in healthcare worker

Publish experiences Issue treatments

Figure 5.1: Interacting with the blockchain to gain trust in a healthcare worker

47

48 5. ARTIFACT DESIGN AND ARCHITECTURE

However, no such entity exists in the real world. The trust relationships within the
healthcare industry include a large set of different organizational entities. These
entities hold specific responsibilities, and they can only together create overall trust
in the healthcare system. Our system architecture includes multiple organizational
entities, and we capture the trust relationships between these on the blockchain. We
will present these stakeholders, along with the model for trust between them.

The previously defined quality attributes also include many other challenges to be
solved. These include patient privacy, prevention of fraudulent patients and healthcare
workers, and scalability considerations. We can only address these quality attributes
through architectural choices. After describing our overall system architecture and
our choices, we will break this down into procedures and subsections to show how
the architecture addresses these requirements.

5.1 Modeling Evidence for Trust

We have previously defined our novel framework for categorizing evidence for trust in
a healthcare worker. This section describes how these evidence categories materialize
in our design.

5.1.1 Evidence of Authority

The first evidence for trust in healthcare workers is evidence of authority. This
evidence consists of the formal credentials which allow healthcare workers to
practice. By providing this evidence on a blockchain, patients or any other interested
stakeholder can access these freely. If the patient can confirm the link between a
healthcare worker and the evidence of authority on the blockchain, they should trust
that the healthcare worker has formal authorization. In practice, we choose to model
the evidence of authority as two different statements which the healthcare worker
wants to prove:

1. The healthcare worker is currently in possession of a valid License for Health
Personnel and is thus formally qualified to practice in healthcare.

2. The healthcare worker is formally associated with an authorized healthcare
facility.

The healthcare worker cannot fulfill these statements alone. They are instead
statements of trust from other organizational entities that are deemed trusted
themselves. This structure of entities and their trust relationships quickly serves
as the foundation of trust in the system. We define the following stakeholders as
present this hierarchy of trust:

5.1. MODELING EVIDENCE FOR TRUST 49

– Authorities is top-level healthcare authorities responsible for the formal autho-
rization of healthcare institutions, educational facilities, and other organizations
that provide services related to providing healthcare. Organizations with such
authorities are typically national health directorates.

– License Issuers are organizations that are responsible for the formal
authorization of healthcare workers. They are responsible for the background
check of applicant healthcare workers requiring a license for healthcare personnel.
They verify that the healthcare worker has the competence and background
required to practice. If that is the case, they choose to issue such a license
and thus establish a trust relationship with the healthcare worker. Such
organizations are often units within a national health directorate.

– License Providers are authorized healthcare facilities responsible for the
practice of the healthcare worker on a day-to-day basis. These facilities are
under continuous evaluation by authorities and have to ensure their associated
healthcare workers’ competence. Such organizations can include hospitals or
clinics.

– Treatment Providers are healthcare service providers who are responsible
for facilitating interactions between patients and healthcare workers. These
stakeholders may be perceived as similar to license providers, as they will, in
many cases, be the same organizations, such as clinics or hospitals. However,
these stakeholders are, in some cases, different. For example, when a clinic
healthcare worker interacts with a patient via a virtualized healthcare platform.
In this case, the clinic serves as the license provider responsible for the healthcare
worker’s day-to-day practice. In contrast, the virtualized healthcare platform
is the treatment provider which the healthcare worker and patient interact
through.

– Licenses is the representation of healthcare workers within our trust model.
A license can only be created by a license issuer, and is tied to credentials
(a key-pair) in possession of the healthcare worker. Once issued, it may be
transferred between License Providers, License Issuers, and associated with
additional Treatment Providers if these stakeholders agree to these movements.

Together, these stakeholders can interact to form a complete trust hierarchy. We
show this hierarchy of trust in Figure 5.2. This model is captured via smart contracts
deployed to the blockchain ledger, storing data about stakeholders and their trust
relationships. The top level is our authorities, where the smart contract creator
start as an authority as a bootstrap. These authorities organize themselves via a
distributed governance protocol. We propose to use simple majority voting for this
purpose, but implementations stand free to choose any protocol of their liking.

50 5. ARTIFACT DESIGN AND ARCHITECTURE

Authority

Treatment
Provider

License
provider

License
Issuer

License

Issues

Trusts

AuthorityAuthority

TrustsHires

TrustsTrusts

Figure 5.2: A trust model for stakeholders in the healthcare industry

Authorities may, in turn, place their trust in License Issuers, License Providers, and
Treatment Providers. These trust relationships should be justified in real-world
decisions and processes to deem them eligible to hold such a responsibility. If an
authority deems their trusted stakeholders unfit of their trust, they can choose to
revoke this trust relation.

Validating the two statements for proof of authority is done by asserting the current
state in the trust hierarchy as represented on the blockchain. Checking if a healthcare
worker has a valid License for Health Personnel is done by inspecting their license
representation and validate that a trust relationship exists from a License Issuer. An
authority must also trust the given license issuer. A similar process is performed to
validate the second statement. In this case, we validate if the license is trusted by
trusted License provider.

5.1.2 Evidence of Experience

The second evidence for trust in healthcare workers is their experience. Depending
on the context in which the patient meets a healthcare worker, experience within
a relevant field may be of high importance to ensure that the healthcare worker
can deliver the required care. Metrics for experience come in either qualitative or
quantitative forms. The healthcare worker can convey qualitative evidence through
certifications. They can convey quantitative evidence via metrics such as the number
of treatments performed by the healthcare worker. To model proof of experience, we
choose to focus on quantitative metrics.

Our model’s goal is to convey information about the number of treatments performed
by the healthcare worker. We can create evidence of authority through a formal

5.1. MODELING EVIDENCE FOR TRUST 51

Patient

Public blockchain

Treatment provider Healthcare worker

2. Propose treatment

3. Approve treatment

1. Propose treatment

5. Notify of approval

4. Publish treatment
 metadata

6. Approve treatment
metadata

Figure 5.3: A model for generating evidence of the experience of healthcare workers

model where parties establish trust relationships between each other. In contrast, we
generate evidence of experience through patient and healthcare worker interactions.
Each new interaction results in a new treatment, thus forming evidence for future
patients who want to interact with the healthcare worker.

Figure 5.3 shows our model for publishing treatment information on the blockchain.
During the patient and healthcare worker interaction, the treatment provider is
responsible for conveying information about treatments recommended by a healthcare
worker to the patient. Once approved by the patient, we store the full content of
the treatment at the treatment provider. The treatment provider will then publish
metadata about the treatment to the blockchain. This metadata is, in turn, approved
publicly by the healthcare worker, thus forming a public link from the healthcare
worker to the treatment. Over time, this process will generate a public log capturing
metadata about treatments performed by a healthcare worker, which serves as the
proof of experience.

5.1.3 Evidence of Competence

While a quantitative metric like the number of treatments can be an evidence for
experience, it does not represent the quality of these treatments. PREMs are a
standardized way to measure patient experience from the treatment. By translating
these experiences into quantitative metrics, and publishing them on the blockchain,
we can measure the experienced quality of a treatment. We show this general process
in Figure 5.4, where the patient interacts directly with the blockchain to publish their
experience related to a treatment they have gone through. Since these treatments are
linked to a healthcare worker, we can use them as a proxy for evaluating a healthcare
worker’s competence. The log of treatment metadata with corresponding experience
measures on the blockchain serves as proof of competence.

52 5. ARTIFACT DESIGN AND ARCHITECTURE

Patient

Public blockchain

Treatment
provider

Other
patients

1. Publish experiences
from treatment

3. Get experiences
of healthcare worker

2. Get experiences
of healthcare worker

Figure 5.4: A model for generating evidence of the competence of healthcare
workers

5.2 System Architecture

Our models present a high-level view of the concepts applied to generate trust in a
healthcare worker. These models show the overall methodology for processes and
convey information about the critical datasets required to provide trust. However,
the models cannot be implemented as a software artifact directly and do not take
all the required quality attributes into account. To handle these two cases, we
create a complete software architecture that incorporates these models. The software
architecture takes the underlying technology into account, along with the scope,
functional requirements, and quality attributes presented previously.

We divide our software architecture into two main components. The first of these
is a set of smart contracts. Together, these form a dApp running on the Ethereum
blockchain platform. We will refer to this section as the on-chain part of our
application. The other major part of the system is the artifacts outside of the
blockchain platform that interacts with this dApp. Components in this part of the
system are traditional software artifacts with a run-time presence on stakeholder
owned server. We refer to this part as the off-chain component in our system.

Interaction between the off-chain and on-chain parts of the software architecture
happens through transactions and state queries. Off-chain components create
transactions. These are sent to a node in the Blockchain network. Transactions allow
for the state in the contracts to be mutated. This process yields no return value from
the network, so we fetch the updated state asynchronously. If the off-chain component
wants to query the current state of the on-chain application, they will send a query to
a node in the Ethereum blockchain network. This query will immediately return the
current state of the contract σ[s] without any additions to the Ethereum blockchain
platform, and therefore has no related cost.

5.2. SYSTEM ARCHITECTURE 53

sm
a

rt
_

co
n

tr
a

ct
s_

to
p

_
le

ve
l

<
<

c
o

m
p

o
n

e
n

t>
>

B
lo

c
k

c
h

a
in

 d
A

p
p

<
<

c
o

m
p

o
n

e
n

t>
>

M
e

a
s

u
re

 C
o

n
tr

a
c

t

<
<

c
o

m
p

o
n

e
n

t>
>

T
re

a
tm

e
n

t
C

o
n

tr
a

c
t

<
<

c
o

m
p

o
n

e
n

t>
>

A
u

th
o

ri
ty

M
a

n
a

g
e

r
C

o
n

tr
a

c
t

<
<

c
o

m
p

o
n

e
n

t>
>

T
re

a
tm

e
n

tP
ro

v
id

e
r

C
o

n
tr

a
c

t

<
<

c
o

m
p

o
n

e
n

t>
>

L
ic

e
n

s
e

 C
o

n
tr

a
c

t
S

u
b

m
it

 e
v

a
lu

a
ti

o
n

A
u

th
o

ri
ty

 V
o

ti
n

g

L
ic

e
n

s
e

 P
ro

v
id

e
r

M
a

n
a

g
e

m
e

n
t

S
p

e
n

d
 T

re
a

tm
e

n
t

A
c

c
e

s
s

 t
re

a
tm

e
n

t

A
c

c
e

s
s

 e
v

a
lu

a
ti

o
n

A
c

c
e

s
s

 L
ic

e
n

s
e

A
u

th
o

ri
z

a
ti

o
n

A
u

th
o

ri
z

a
ti

o
n

C
re

a
te

 t
re

a
tm

e
n

t
T

re
a

tm
e

n
t

P
ro

v
id

e
r

M
a

n
a

g
e

m
e

n
t

T
re

a
tm

e
n

tP
ro

v
id

e
r

A
u

th
o

ri
z

a
ti

o
n

A
p

p
ro

v
e

 t
re

a
tm

e
n

t

L
ic

e
n

s
e

H
o

ld
e

r
A

u
th

o
ri

z
a

ti
o

n

L
ic

e
n

s
e

 M
a

n
a

g
e

m
e

n
t

L
ic

e
n

s
e

 I
s

s
u

e
r

M
a

n
a

g
e

m
e

n
t

V
is

u
a

l
P

a
ra

d
ig

m
 P

ro
fe

ss
io

n
a

l(
Je

n
s-

A
n

d
re

a
s(

N
o

rw
e

g
ia

n
 U

n
iv

e
rs

it
y

o
f

S
ci

e
n

ce
 a

n
d

 T
e

ch
n

o
lo

g
y)

)

F
ig
ur
e
5.
5:

A
co
m
po

ne
nt

di
ag
ra
m

re
pr
es
en
tin

g
th
e
dA

pp
ru
nn

in
g
on

th
e
bl
oc
kc
ha

in
.

54 5. ARTIFACT DESIGN AND ARCHITECTURE

5.2.1 On-Chain Application Part

Our models include information about licenses, trust relationships between
stakeholders, metadata about treatments, and their evaluations. We store this
information on the Ethereum blockchain via smart contracts. The platform allows us
to create a global state σ[s] in the context of a smart contract, where this state can
be mutated by adding transactions to the blockchain ledger. The smart contracts
include logic which dictates how this state can be mutated, and on which condition
these mutations can happen.

Our architecture includes a set of five different smart contracts that hold specific
responsibilities. The contracts interact with each other during transaction executions,
and the full consortium of smart contracts have all functionality required to support
the processes in our models. We show the full consortium of these contracts in Figure
5.5, where the smart contracts have the following responsibilities:

AuthorityManager Contract is a smart contract responsible for storing
information about authorities. It maintains a list of authorities and implements a
distributed governance protocol allowing for the addition and removal of these.

TreatmentProvider Contract is a smart contract responsible for storing
information about treatment providers. It maintains a list of treatment providers,
along with their trust relationships. The contract exposes interfaces for checking if a
treatment provider is trusted, registering an address as a treatment provider, and for
authorities to manage their trust in treatment providers.

License Contract is a smart contract for storing information related to Licenses
and their corresponding governance entities. Responsibilities include maintaining a
list of Licenses, License Providers, License Issuers, and the trust relationships, both
between each other and to authorities. The contract contains the logic to deduce if a
license is trusted based on these trust relationships.

Treatment Contract is a smart contract responsible for storing treatment
metadata. It maintains a list with this data along with links to relevant entities such
as the approving license and treatment provider.

Measure Contract is a smart contract responsible for storing information about
summarized patient experiences. It interacts with the Treatment Contract to establish
a link between the treatment and the evaluation while ensuring consistency rules,
such as only allowing a single evaluation of each treatment.

5.2. SYSTEM ARCHITECTURE 55

s
d

cr
e

a
te

_
tr

e
a

tm
e

n
t_

d
a

p
p

a
lt

[e
ls

e
]

[i
f

se
n

d
e

r
is

 t
ru

st
e

d
 t

re
a

tm
e

n
t

p
ro

vi
d

e
r]

tr
e

a
tm

e
n

t
C

o
n

tr
a

ct
 :

T
re

a
tm

e
n

t
C

o
n

tr
a

ct
tr

e
a

tm
e

n
tP

ro
vi

d
e

r
C

o
n

tr
a

ct
 :

T
re

a
tm

e
n

tP
ro

vi
d

e
r

C
o

n
tr

a
ct

a
u

th
o

ri
ty

M
a

n
a

g
e

r
C

o
n

tr
a

ct
 :

A
u

th
o

ri
ty

M
a

n
a

g
e

r
C

o
n

tr
a

ct

1
.4

:
tr

a
n

sa
ct

io
n

 s
u

cc
e

ss

1
.5

:
tr

a
n

sa
ct

io
n

 r
e

ve
rt

1
.3

:
s

to
re

 t
re

a
tm

e
n

t

1
.2

:
tr

u
e

/f
a

ls
e

1
.1

.2
:

tr
u

e
/f

a
ls

e

{
}

1
.1

.1
:

is
A

u
th

o
ri

ty
(a

u
th

o
ri

ty
A

d
d

re
ss

 :
 a

d
d

re
ss

)
:

b
o

o
le

a
n

1
.1

:
is

T
ru

st
e

d
T

re
a

tm
e

n
tP

ro
vi

d
e

r(
tr

e
a

tm
e

n
tP

ro
vi

d
e

rA
d

d
re

ss
 :

 a
d

d
re

ss
)

:
b

o
o

le
a

n

1
:

cr
e

a
te

T
re

a
tm

e
n

t(
tr

e
a

tm
e

n
tA

d
d

re
ss

 :
 a

d
d

re
ss

,
tr

e
a

tm
e

n
tD

a
ta

S
u

m
m

a
ry

 :
st

ri
n

g
,

tr
e

a
tm

e
n

tP
ro

vi
d

e
rU

R
I

:
st

ri
n

g
,

tr
e

a
tm

e
n

tP
ro

vi
d

e
rT

ra
n

sa
ct

io
n

S
ig

n
a

tu
re

 :
s

tr
in

g
)

V
is

u
a

l
P

a
ra

d
ig

m
 P

ro
fe

ss
io

n
a

l(
Je

n
s-

A
n

d
re

a
s(

N
o

rw
e

g
ia

n
 U

n
iv

e
rs

it
y

o
f

S
ci

e
n

ce
 a

n
d

 T
e

ch
n

o
lo

g
y)

)

F
ig
ur
e
5.
6:

A
se
qu

en
ce

di
ag
ra
m

sh
ow

in
g
au

th
en
tic

at
io
n
flo

w
w
he

n
su
bm

itt
in
g
a
cr
ea
te

tr
ea
tm

en
t
tr
an

sa
ct
io
n.

56 5. ARTIFACT DESIGN AND ARCHITECTURE

Access Control in Smart Contracts

We have designed our architecture to use a public and permissionless blockchain
platform. Such platforms allow for any user to submit a transaction targeted for
our smart contracts. Therefore, we must apply access control schemes to govern the
state in our smart contracts. Adding these prevents trust relationships, treatments,
and evaluations from being fraudulently published to our smart contracts. These
schemes must only allow authorized senders to change the state within our blockchain
application. We achieve this behavior by implementing access control logic within
the smart contracts themselves.

The access control scheme implemented can be described as a RBAC scheme where
accounts interacting with the blockchain must hold a particular role within our dApp
to perform such an action. Examples of access control policies in the on-chain part
of our architecture include:

– Only existing authorities may interact with the distributed governance protocol;

– Only existing authorities may add trust in a treatment provider, license provider,
or license issuer;

– Only treatment providers trusted by an authority may add treatments;

– Evaluations can only be created by the patient, who is the subject in a treatment.

These policies are part of the internal contract logic and enforced through interaction
between the contracts. We show an example of this in Figure 5.6, where the treatment
contract checks if the sender of the transaction is indeed a trusted treatment provider.
We notice how this check is propagated to the authority contract. Thus, if an
authority is removed, any trusted descendants will lose their authority to create
treatments immediately.

5.2.2 Off-Chain Application Part

The goal for the off-chain part of our software architecture is first to generate and use
evidence for trust in a healthcare worker. While the on-chain smart contracts provide
interfaces to store and evaluate this evidence, the off-chain components generate
this evidence and create transactions to publish it. Figure 5.7 shows an overview
of the complete software architecture with all components. Within this view, all
components except for the Blockchain dApp are off-chain software artifacts. Here,
the Blockchain dApp represents the Ethereum blockchain network, where the exposed
interfaces represent sets of transactions for interacting with the smart contracts for
querying their state.

5.2. SYSTEM ARCHITECTURE 57

to
p

_
le

ve
l_

vi
e

w

<
<

c
o

m
p

o
n

e
n

t>
>

B
lo

c
k

c
h

a
in

 d
A

p
p

<
<

c
o

m
p

o
n

e
n

t>
>

T
re

a
tm

e
n

t
P

ro
v

id
e

r

<
<

c
o

m
p

o
n

e
n

t>
>

P
a

ti
e

n
t

C
li

e
n

t

<
<

c
o

m
p

o
n

e
n

t>
>

H
e

a
lt

h
 w

o
rk

e
r

C
li

e
n

t

<
<

c
o

m
p

o
n

e
n

t>
>

L
ic

e
n

s
e

 P
ro

v
id

e
r

C
li

e
n

t

<
<

c
o

m
p

o
n

e
n

t>
>

A
u

th
o

ri
ty

 C
li

e
n

t

<
<

c
o

m
p

o
n

e
n

t>
>

L
ic

e
n

s
e

 I
s

s
u

e
r

C
li

e
n

t

A
p

p
ro

v
e

 t
re

a
tm

e
n

t

C
re

a
te

 t
re

a
tm

e
n

t

S
u

b
m

it
 e

v
a

lu
a

ti
o

n
L

ic
e

n
s

e
 P

ro
v

id
e

r
M

a
n

a
g

e
m

e
n

t

T
re

a
tm

e
n

t
A

p
p

ro
v

a
l

P
a

ti
e

n
t

id
e

n
ti

fi
c

a
ti

o
n

H
e

a
lt

h
 w

o
rk

e
r

id
e

n
ti

fi
c

a
ti

o
n

A
c

c
e

s
s

 e
v

a
lu

a
ti

o
n

A
c

c
e

s
s

 t
re

a
tm

e
n

t

A
c

c
e

s
s

 L
ic

e
n

s
e

F
u

ll
 e

v
a

lu
a

ti
o

n
 A

c
c

e
s

s

P
a

ti
e

n
t

R
e

g
is

tr
a

ti
o

n

T
re

a
tm

e
n

t
P

ro
p

o
s

a
l

P
a

ti
e

n
t

N
o

ti
fi

c
a

ti
o

n
s

A
u

th
o

ri
ty

 V
o

ti
n

g

L
ic

e
n

s
e

 P
ro

v
id

e
r

M
a

n
a

g
e

m
e

n
t

T
re

a
tm

e
n

t
P

ro
v

id
e

r
M

a
n

a
g

e
m

e
n

t

L
ic

e
n

s
e

 I
s

s
u

e
r

M
a

n
a

g
e

m
e

n
t

L
ic

e
n

s
e

 I
s

s
u

e
r

M
a

n
a

g
e

m
e

n
t

T
re

a
tm

e
n

t
P

ro
v

id
e

r
M

a
n

a
g

e
m

e
n

t

F
u

ll
 t

re
a

tm
e

n
t

a
c

c
e

s
s

S
u

b
m

it
 e

v
a

lu
a

ti
o

n

A
c

c
e

s
s

 t
re

a
tm

e
n

t

S
e

n
d

 f
u

n
d

s

V
is

u
a

l
P

a
ra

d
ig

m
 P

ro
fe

ss
io

n
a

l(
Je

n
s-

A
n

d
re

a
s(

N
o

rw
e

g
ia

n
 U

n
iv

e
rs

it
y

o
f

S
ci

e
n

ce
 a

n
d

 T
e

ch
n

o
lo

g
y)

)

F
ig
ur
e
5.
7:

A
co
m
po

ne
nt

di
ag
ra
m

ca
pt
ur
in
g
a
to
p
le
ve
lv

ie
w

of
th
e
off

-c
ha

in
pa

rt
of

ou
r
sy
st
em

ar
ch
ite

ct
ur
e

58 5. ARTIFACT DESIGN AND ARCHITECTURE

The flow of information generally follows the same pattern as described in our
high-level models, with exceptions for some processes. Decisions for addressing our
requirements cause changes in this behavior. This allows us to provide properties
such as unlinkability to patients, limited on-chain storage, and a reduced number of
transactions.

Off-Chain Components

The main responsibilities of the off-chain components within our software architecture
are to publish data to smart contracts. However, the mapping from off-chain to
on-chain components is not one-to-one. The off-chain components often communicate
with multiple contracts and sometimes perform procedures isolated to the off-chain
environment. The application also keeps a distributed architecture in mind. The
number of instances for off-chain is arbitrary. The different components are also
assumed to be under the control of different organizations with either good or bad
intentions. Therefore, we present briefly each of these components, along with their
responsibilities.

Authority Client is a component under the control of authorities, the top level in
the trust hierarchy. It interacts with other authorities via the distributed governance
protocol implemented within the Authority Contract. It can send transactions to
the License Contract to add or remove trust in License Issuers and Providers. It can
also send transactions to the Treatment Provider Contract to add and remove trust
in treatment providers. This component never interacts with the other off-chain
components directly from a technical viewpoint, but trust relationships should be
justified in real-world interactions.

License Issuer Client is a component responsible for managing licenses on the
blockchain. It can submit transactions to the License Contract for issuing licenses
to addresses. It can also accept movements of licenses to themselves, as may be
desirable when a healthcare worker takes a mobility decision to move jurisdictions.
In the same manner as the Authority Client, the License Issuer does not interact
directly with the other off-chain components but takes all actions via the contracts
in the on-chain part.

License Provider Client administer trust relationships between the License
Provider and licenses. It is responsible for creating transactions to publish such
relationships on the blockchain. It can also accept proposed movements of licenses to
them in the case of healthcare worker turnover and mobility. The License Provider
should ensure that the published trust relationships are rooted in real-world processes
such as performance reviews and evaluations of the healthcare worker.

5.3. ADDRESSING QUALITY ATTRIBUTES 59

Treatment Provider has responsibility for facilitating the interaction between
the patient and the healthcare worker and for storing data from this interaction. It
authenticates patients via some identity provider to ensure the legitimacy of the
patient. The specifics of this process fall under identity and access management
of patients and is, therefore, out of scope. Once the patient approves treatments,
the treatment provider is responsible for publishing the summary of these to the
blockchain by sending a transaction to the Treatment Contract.

Healthcare Worker Client is a device owned by the healthcare provider during
operational procedures, for example, a computer in their office. The component is
responsible for interacting with patients via treatment providers. It submits proposals
for treatments to patients via the treatment provider. Once accepted by the patient,
the healthcare worker client can verify the authenticity of the treatment metadata
on the blockchain, and approve this if correct.

Patient Client is a device owned by patients who are responsible for the patient
side of an interaction with a healthcare worker. It authenticates itself with the
treatment provider responsible for the interaction and approves treatments suggested
by the healthcare worker. Once completed, the Patient Client is used to submit an
evaluation related to a treatment.

5.3 Addressing Quality Attributes

The main intent of the VerifyMed platform is to provide evidence for trust in a
healthcare worker in a virtualized setting. Nevertheless, the platform must respect
attributes such as patient privacy. We have previously defined a set of quality
attributes, each with an impact on the overall system architecture. This section
describes how the architecture addresses these quality attributes.

5.3.1 Privacy Requirements

Priv1: Unlinkability to patients Ethereum accounts and addresses can be
considered pseudonymous. These identifiers cannot be linked directly to a real-world
identity. However, if one can link this address to a patient, it is possible to gain
information about all transactions submitted to the blockchain by that address.
If these transactions contain treatment metadata, it is possible to create a view
of a patient’s medical history, which cannot be public. Therefore, the VerifyMed
architecture does avoid this practice for patients.

60 5. ARTIFACT DESIGN AND ARCHITECTURE

s
d

tr
e

a
tm

e
n

t_
c

re
a

ti
o

n

b
lo

ck
ch

a
in

 d
A

p
p

 :
 B

lo
ck

ch
a

in
 d

A
p

p
H

e
a

lt
h

 w
o

rk
e

r
:

H
e

a
lt

h
 w

o
rk

e
r

C
lie

n
t

p
a

ti
e

n
t

:
P

a
ti

e
n

t
C

lie
n

t
p

a
ti

e
n

t
M

a
n

a
g

e
r

:
T

re
a

tm
e

n
t

P
ro

vi
d

e
r

1
.1

.2
.2

:
se

n
d

(t
o

A
d

d
re

ss
 :

 a
d

d
re

ss
,

fr
o

m
S

ig
n

a
tu

re
 :

 b
yt

e
s,

 a
m

o
u

n
t

:
lo

n
g

)

4
:

va
li

d
a

te
 t

re
a

tm
e

n
t

w
it

h
 b

lo
ck

ch
a

in

3
.1

:
tr

e
a

tm
e

n
tD

a
ta

S
u

m
m

a
ry

3
:

g
e

tT
re

a
tm

e
n

t(
tr

e
a

tm
e

n
tA

d
d

re
ss

 :
 s

tr
in

g
)

5
:

a
p

p
ro

ve
T

re
a

te
n

t(
tr

e
a

tm
e

n
tA

d
d

re
ss

 :
 s

tr
in

g
,

lic
e

n
se

H
o

ld
e

rT
ra

n
sa

ct
io

n
S

ig
n

a
tu

re
 :

 s
tr

in
g

)

2
.1

:
F

u
ll

 t
re

a
tm

e
n

t

2
:

g
e

tF
u

ll
T

re
a

tm
e

n
t(

tr
e

a
tm

e
n

tA
d

d
re

ss
)

:
fu

ll
T

re
a

tm
e

n
t

1
.1

.3
:

se
n

d
T

re
a

tm
e

n
t(

tr
e

a
tm

e
n

tA
d

d
re

ss
)

1
.1

.2
.1

:
cr

e
a

te
T

re
a

tm
e

n
t(

tr
e

a
tm

e
n

tA
d

d
re

ss
 :

 a
d

d
re

ss
,

tr
e

a
tm

e
n

tD
a

ta
S

u
m

m
a

ry
 :

st
ri

n
g

,
tr

e
a

tm
e

n
tP

ro
vi

d
e

rU
R

I
:

st
ri

n
g

,
tr

e
a

tm
e

n
tP

ro
vi

d
e

rT
ra

n
sa

ct
io

n
S

ig
n

a
tu

re
 :

 s
tr

in
g

)

1
.1

.2
:

p
a

ti
e

n
tA

p
p

ro
ve

T
re

a
m

e
n

t(
tr

e
a

tm
e

n
tI

d
 :

 s
tr

in
g

,
tr

e
a

tm
e

n
t

a
d

d
re

ss
 :

st
ri

n
g

,
tr

e
a

tm
e

n
tA

d
d

re
ss

 s
ig

n
a

tu
re

 :
 s

tr
in

g
,

p
a

ti
e

n
t

a
cc

e
ss

 t
o

ke
n

 :
 s

tr
in

g
)

1
.1

.1
:

g
e

n
e

ra
te

T
ra

n
sa

ct
io

n
K

e
yp

a
ir

1
.1

:
se

n
d

T
re

a
tm

e
n

t(
tr

e
a

tm
e

n
t

d
e

sc
ri

p
ti

o
n

 :
 s

tr
in

g
,

tr
e

a
tm

e
n

tT
e

m
p

Id
 :

 s
tr

in
g

)

1
:

cr
e

a
te

T
re

a
tm

e
n

t(
p

a
ti

e
n

tA
d

d
re

ss
 :

 s
tr

in
g

,
tr

e
a

tm
e

n
tD

e
sc

ri
p

ti
o

n
 :

 s
tr

in
g

)

V
is

u
a

l
P

a
ra

d
ig

m
 P

ro
fe

ss
io

n
a

l(
Je

n
s-

A
n

d
re

a
s(

N
o

rw
e

g
ia

n
 U

n
iv

e
rs

it
y

o
f

S
ci

e
n

ce
 a

n
d

 T
e

ch
n

o
lo

g
y)

)

F
ig
ur
e
5.
8:

A
se
qu

en
ce

di
ag
ra
m

sh
ow

in
g
ho

w
off

-c
ha

in
co
m
po

ne
nt
s
in
te
ra
ct

du
rin

g
tr
ea
tm

en
t
cr
ea
tio

n

5.3. ADDRESSING QUALITY ATTRIBUTES 61

One solution for this problem is to use one-time ECDSA keys for each treatment,
which are generated independently from the patients’ long-time key-pair. By using
a new and independent key for each transaction, we cannot link them to a patient.
Furthermore, if the one-time key-pair never interacts with the long-time key-pair
on the blockchain, they cannot be linked together via traffic analysis attacks [46].
However, such keys have a usability flaw in the Ethereum ecosystem, as we cannot
use such key-pairs to create transactions before some Ether is sent to the account.
This Ether cannot be sent directly from the patient, as this creates an association
between keys.

The VerifyMed architecture uses both a trusted intermediary and one-time keys
for treatments. During treatment approval, as shown in Figure 5.8, the patient
generates a one-time ECDSA key-pair. The patient approves treatments by signing
with both their long-lived identity key and the generated one-time key, forming a
multi-signature on the treatment. Both these signatures are sent to the treatment
provider. The treatment provider will only include the address of the one-time key in
the treatment’s metadata, thus preventing linkability from patient to treatments. If
the patient ever wants to prove that they took part in treatment to any other entity,
they can use a zero-knowledge proof to show that they own the one-time secret key
related to the given treatment.

After publishing the treatment metadata to the blockchain, the treatment provider
will send a small amount of Ether to the address of the one-time key generated by
the patient. This process allows the patient to submit an evaluation independently
while remaining unlinked from the patient. Thus, to submit an evaluation, he/she
can simply create a transaction by signing with his/her one-time key-pair.

Priv2: Anonymity of patients To prevent a cryptographic link from evaluations
to the patient, we apply one-time keys. However, the content within treatments and
evaluations may nevertheless reveal such a link. To prevent such information from
being leaked on the blockchain, the on-chain contracts will only accept summaries of
both treatments and evaluations. The evaluation only includes quantifiable metrics
such as scores and does not support any type of data that may reveal an identity.
Treatments only include essential metadata about the complete treatments, for
example, the general category of it. It includes a hash of the complete treatment,
thus providing an integrity proof of the complete treatment data as stored elsewhere.

5.3.2 Security Requirements

Sec1: Fraudulent treatments As treatments are essential to provide both
evidence of experience and evidence of competence, the system should only allow for
legitimate treatments to be submitted. In order to enforce this behavior, treatments

62 5. ARTIFACT DESIGN AND ARCHITECTURE

s d create_evaluation_dapp

a l t

[else]

a l t

[evaluation for treatment address exists]

[else]

[If treatment is evaluated]

patient client :
Patient Client

measure Contract :
Measure Contract

treatment Contract :
Treatment Contract

1.5: true3: revert transaction

2: transaction success

1.2: revert transaction

1.1: Evaluation created for address?

1.4: false

1.3: isEvaluated(treatmentAddress : address) : boolean

1: createEvaluation(evaluation, senderSignature)

Visual Paradigm Professional(Jens-Andreas(Norwegian University of Science and Technology))

Figure 5.9: A sequence diagram showing the authentication flow when submitting
a evaluate treatment transaction.

can only be published to the blockchain by treatment providers who are trusted
by an authority. This access control mechanism is enforced as code within the
treatment contract. Stakeholders with something to gain from fraudulent treatments
(healthcare workers) cannot submit treatments themselves and must rely on another
stakeholder, namely the treatment provider.

Sec2: Fraudulent evaluations We prevent the creation of fraudulent evaluations
by enforcing a one-to-one mapping between treatments and evaluations. Treatment
metadata includes the address of the one-time key generated by a patient. When
evaluating a treatment, the patient uses this key to create the evaluation transaction,
which is processed by the evaluation contract. The sending address is validated to
check if no existing evaluation exists with the sending address and if this address has
indeed been used previously for a treatment. We show this overall process in Figure
5.9, where we show the interaction between the patient client, measure contract, and
treatment contract.

Sec3: Fraudulent Patients Treatment providers are responsible for the
publication of treatments on behalf of the patient. This pattern is advantageous
for providing patient anonymity on the blockchain. This component can also serve
as a Policy Enforcement Point [47] to prevent fraudulent patients from submitting
treatments. The treatment provider is responsible for validating that the patients

5.3. ADDRESSING QUALITY ATTRIBUTES 63
s d patient_key_registation

patient client : Patient Client patient Manager : Treatment
Provider

4.1: keyAccessToken

1.1: access token

1: login(credentials) : access token

4: registerKey(accessToken : string, challangeSignature : string, publicKey : string) : keyAccessToken

3: generate keypair

2.1: challange

2: initializeKeyRegistration(access token : string) : challange

Visual Paradigm Professional(Jens-Andreas(Norwegian University of Science and Technology))

Figure 5.10: A sequence diagram showing how a patient authenticates themselves
to gain access to services via the treatment provider.

interacting with it are indeed real-world patients. This validation can happen by
consulting an (out-of-scope) national identity provider. We show an example of such
a procedure in Figure 5.10, where the initial login procedures contain credentials for
such a provider. The patient uses the created access token for subsequent interactions
with the treatment provider. Here, the patient also uses a zero-knowledge-proof to
show ownership of a public key, granting a token for showing ownership of this key
in later procedures. The treatment provider stores all data related to the treatment
to prove that it originated from the given patient.

5.3.3 Availability Requirements

The top-level in our hierarchy of governance entities is the authority. They interact
with each other via a distributed governance protocol, allowing for the addition and
removal of such entities. VerifyMed uses simple voting as its governance protocol. We
implement this protocol as logic within the authority contract, which we may interact
with by sending transactions. Authorities which are within the pool of authorities
may do the following:

1. Propose a vote for adding a new authority to the pool of authorities.

2. Vote on a proposal for adding a new authority to the pool of authorities.

3. Enact a proposal for adding a new authority to the pool of authorities. We
can only perform this action if over 50% of authorities in the pool have voted
for the proposal.

64 5. ARTIFACT DESIGN AND ARCHITECTURE

4. Propose a vote for removing an existing authority from the pool of authorities.

5. Vote on a proposal for removing an existing authority from the pool of
authorities.

6. Enact a proposal removing an existing authority from the pool of authorities.
We can only perform this action if over 50% of authorities in the pool have
voted for the proposal.

This protocol allows for the addition of new governance entities (Addressing A1),
and removal of authorities who act fraudulently from the perspective of over 50% of
authorities in the pool (addressing A3). Additionally, the protocol does not require
the live-ness of authorities as it persists state even if an authority is going through
downtime. Thus, an attacker seeking to gain a majority vote cannot use downtime
as a tool (addressing A2).

5.3.4 Scalability Requirements

Scale1: The amount of data on the blockchain should be minimal Our
smart contracts accept a set of transactions for storing state on the blockchain.
Adding data to such a state is the main contributor towards high gas costs for
transactions, and should thus be minimized. We can reduce the number of state
updates by either minimizing the number of transactions sent to the blockchain or by
reducing each transaction’s size. We perform the latter by minimizing the amount of
textual data on the blockchain. Instead, each contract only accepts hashes with a
bit-length of 256, which serves as an integrity check for data stored off-chain.

Scale2: Decentralization of data The treatment providers are responsible for
storing data created during a patient and healthcare worker interaction. While
metadata about treatments are stored on the blockchain, the full treatment data
is stored in the treatment provider. Thus, data about treatments is stored in a
decentralized manner across treatment providers. Utilizing this pattern is problematic,
as we have previously stated that data sharing is a problem within the healthcare
industry.

To make treatment data discoverable and accessible, we can use the metadata on the
blockchain. The treatment address is linked to a patient. Thus, the treatment provider
can give access to any stakeholder who can prove that they own the corresponding
private key. We can do this through a zero-knowledge proof. Healthcare workers
can use a similar process for showing ownership of their license. Finally, we can
make the dataset of full treatments discoverable by adding a resource locator to
the treatment metadata, indicating where the full treatment is stored. If these

5.3. ADDRESSING QUALITY ATTRIBUTES 65

discovery and access control mechanisms are taken into account, we can state that
the architecture supports a distributed architecture.

A healthcare worker who wants to access all data related to them may follow a simple
procedure. First, they query the blockchain for all treatment metadata related to
their licenses. Second, they use the locators in this metadata to find the treatment
provider storing the full treatment. Finally, they prove ownership of their license to
the respective treatment provider though a zero-knowledge proof, gaining access to
the treatments after that. This same procedure can be used by patients to access
their data.

Chapter6Application Implementation

This chapter describes the implemented proof-of-concept application representing the
VerifyMed architecture described in Section 5.2. The implemented application does
not have a run-time presence directly corresponding to the architecture. Instead,
we create a simple client-server web application that simulates the processes and
components as designed in the system architecture. The overall application structure
is shown in Figure 6.1. This approach does not allow us to scale beyond local testing
of the platform and is not suited for production use cases. Nevertheless, the reduced
complexity of this approach drastically reduces development time while enabling us
to assemble metrics, evaluate the architecture for design faults, and evaluate the
system’s properties.

During this chapter, we will present details for the application implementation and
the applied technology. We focus on technological choices for each service and how
they interact. Code is periodically presented for showing examples of behavior, or
for describing the usage of some technology. In addition to the description in this
chapter, we provide an admin guide for application setup in Appendix B, allowing
the reader to set up the system locally. We also refer to Appendix A for a complete
usage guide for application UI.

Front-end Back-end Blockchain

Contract deployer

Figure 6.1: An overview of the run-time presence for our implemented services

67

68 6. APPLICATION IMPLEMENTATION

6.1 Blockchain Service

A node from the live Ethereum network represents the blockchain component in our
application. However, for development and testing purposes, we use the Ganache-cli1
tool to set up such a node. The tool provides a Command Line Interface (CLI) for
setting up a local single-node Ethereum network, bootstrapped with a set of accounts
with a configurable amount of Ether. It implements the Ethereum specification2,
and uses a standard Ethereum node internally to replicate the Ethereum network.
Therefore, it can be used for reliable testing, while remaining swappable with a node
from the live Ethereum network if a production deployment is desired. By using such
a setup, we can simulate the real-world behavior of the Ethereum network, without
paying for the Ether required for using the live network.

6.2 Contracts Service

The Contracts Service contains the source code for the smart contracts composing
our dApp on the Ethereum blockchain. Additionally, it is responsible for:

1. Compiling smart contracts into EVM bytecode.

2. Deploying smart contracts on the blockchain.

3. Unit testing the smart contracts.

4. Exporting the Application Binary Interface of each contract to the API server.

5. Exporting contract addresses to the API server.

Technology

The following list of technologies are used for creating our smart contracts and the
supporting functionality:

– Solidity [31]: a programming language for writing Ethereum smart contracts;

– Solc3: the Solidity compiler for compilation to EVM bytecode;

– Truffle4: for compiling, deploying and testing smart contracts.

1https://github.com/trufflesuite/ganache-cli, version 6.9.0
2https://github.com/ethereum/go-ethereum/wiki/Ethereum-Specification, commit b28b61c
3https://github.com/ethereum/solc-js, version 0.6.1
4https://github.com/trufflesuite/truffle, version 5.1.8

https://github.com/trufflesuite/ganache-cli
https://github.com/ethereum/go-ethereum/wiki/Ethereum-Specification
https://github.com/ethereum/solc-js
https://github.com/trufflesuite/truffle

6.2. CONTRACTS SERVICE 69

Solidity Smart Contracts

As modeled in Section 5.2.1, our application consists of five different smart contracts.
We write each of these contracts in the Solidity language. Solidity is object-oriented,
and uses patterns such as inheritance. The interfaces between contracts can, therefore,
be defined individually as interfaces implemented by each contract. In brief, we
implement the following smart contracts:

– IAuthorization

– ILicenseProviderManager

– ITreatmentProviderManager

– IMeasure

– ITreatment

– AuthorityManager is IAuthorization

– LicenseProvide is ILicenseProviderManager

– TreatmentProvider is ITreatmentProviderManager

– Measure is IMeasure

– Treatment is ITreatment

The simplest of these contracts are the IMeasure and Measure contracts. The
interface IMeasure defines all the functions used to interact with the measure contract,
along with data formats to be used within it:

1 pragma solidity ^0.6.1;
2
3 interface IMeasure {
4
5 // The definition of an evaluation
6 struct MeasureInstance {
7 uint8 rating ; // Representation of the rating given by the

patient
8 bytes32 fullMeasureHash ; // SHA3 Hash of the extended

evaluation
9 string fullMeasureURL ; // Location of the extended evaluation
10 }
11
12 // Function for storing a new evaluation on the blockchain .
13 function createMeasure (

70 6. APPLICATION IMPLEMENTATION

14 uint8 _rating ,
15 bytes32 _fullMeasureHash ,
16 string calldata _fullMeasureURL
17) external ;
18
19 // Get the evaluation related to a specific treatment if it exists
20 function getMeasureForTreatment (address _treatment)
21 external
22 view
23 returns (uint8 , bytes32 , string memory);
24
25 }

Listing 6.1: The IMeasure.sol contract

The Measure contract must instance all the functions as defined in IMeasure.
Additionally, the contract is responsible for storing data about evaluations and to
enforce the access control mechanisms as described in our architectural model in
Section 5.3.2 and further visualized in Figure 5.9. Although simple, it shows how
we can create smart contracts that enforce access control mechanisms, store data,
interact with other contracts, and provide functions for data access.

1
2 pragma solidity ^0.6.1;
3 import "./ iface / ITreatment .sol";
4 import "./ iface / IMeasure .sol";
5
6 contract Measure is IMeasure {
7 ITreatment treatmentContract ; // Stores a pointer to the treatment

contract
8
9 // A mapping from treatment addresses to evaluations
10 mapping (address => MeasureInstance) measures ;
11
12 // Set the pointer to the treatment contract during contract

creation . This argument is passed in the contract creation
transaction

13 constructor (address _treatmentContractAddress) public {
14 treatmentContract = ITreatment (_treatmentContractAddress);
15 }
16
17
18 // Function for storing a new evaluation on the blockchain .

The sender of the transaction should be a treatment address .
19 function createMeasure (
20 uint8 _rating ,
21 bytes32 _fullMeasureHash ,
22 string calldata _fullMeasureURL
23) external override {

6.2. CONTRACTS SERVICE 71

24 // Check if the treatment has been evaluated previously , and
revert transaction if this is the case.

25 require (
26 ! treatmentContract . isTreatmentSpent (msg. sender),
27 " Treatment is allready evaluated "
28);
29 // Check if the sending address is indeed a treatment address ,

and revert if this is not the case.
30 require (
31 treatmentContract . isTreatmentInstanced (msg. sender),
32 " Treatment is not instanced "
33);
34
35 // Store the information about the rating
36 measures [msg. sender]. rating = _rating ;
37 measures [msg. sender]. fullMeasureHash = _fullMeasureHash ;
38 measures [msg. sender]. fullMeasureURL = _fullMeasureURL ;
39
40 // Call the treatment contract to ensure that the treatment

cannot be re - evaluated .
41 treatmentContract . spendTreatment (msg. sender);
42 }
43
44 // Get the evaluation related to a specific treatment if it exists .
45 function getMeasureForTreatment (address _treatment)
46 external
47 view
48 override
49 returns (uint8 , bytes32 , string memory)
50 {
51 // Return the value directly from our storage . If such a

mapping does not exist , it will return default values for
each data type. Clients must check if the returned data is
default values .

52 return (
53 measures [_treatment]. rating ,
54 measures [_treatment]. fullMeasureHash ,
55 measures [_treatment]. fullMeasureURL
56);
57 }
58
59 }

Listing 6.2: The Measure.sol contract

We repeatedly use the patterns shown in the Measure contract during the
implementation of the remaining contracts. However, we reemphasize that the
IMeasure and Measure contracts are the simplest and most understandable
contracts, and therefore do not introduce all the important concepts of Solidity.
Additional concepts of importance includes Events and Modifiers. Events are objects
that can be emitted as a result of a contract call. They are stored in the transaction

72 6. APPLICATION IMPLEMENTATION

receipts within blocks. Modifiers allow us to create reusable code, which can be
injected into functions. We typically use these for access control mechanisms. To
illustrate both concepts, we present a snippet from theAuthorityManager contract.

1 contract AuthorityManager is IAuthorization {
2 struct Proposal {
3 uint256 proposalType ;
4 address target ;
5 bool isActive ;
6 address [] voters ;
7 mapping (address => bool) hasVoted ;
8 }
9
10 ...
11
12 mapping (address => bool) public authorities ;
13
14 modifier authorized () {
15 require (authorities [msg. sender], " Unauthorized ");
16 _; // The injection point for the function using the modifier
17 }
18
19 event ProposalEvent (
20 address _proposer ,
21 address _proposalSubject ,
22 uint256 _proposalType ,
23 uint256 _proposalID
24);
25
26 ...
27 // propose a vote for the addition or removal of an authority
28 function propose (uint256 _proposalType , address _targetAddress)
29 public
30 authorized // Refers to the authorized modifier
31 {
32 ...
33 // Emit an event to be stored in the transaction receipt
34 emit ProposalEvent (
35 msg.sender ,
36 _targetAddress ,
37 _proposalType ,
38 proposalID
39);
40 }
41 ...
42 }

Listing 6.3: A snippet from the AuthorityManager contract

6.2. CONTRACTS SERVICE 73

The remaining smart contracts use the same overall structure and patterns as
presented. However, we refrain from presenting them all in detail, as they surpass
1200 lines of Solidity code. We refer the reader to the open-source GitHub repository
for the full implementation of the remaining smart contracts.

Compiling, Testing and Deploying Smart Contracts

Truffle is a general-purpose toolchain for the development, testing, and deployment
of smart contracts. It simplifies contract development by allowing developers to
write deployment and testing scripts in JavaScript running on the NodeJs run-time
environment. Developers use the toolchain via a CLI with commands such as truffle
compile, truffle test and truffle migrate

Solidity compilation The first feature provided by Truffle is smart contract
compilation. It inspects all the Solidity source code to be compiled, and uses the
correct Solc Solidity compiler based on the version preamble in the contract. This
process creates EVM bytecode, which we can deploy to the blockchain, and a ABI
describing how to encode transactions indented for the smart contract. We use this
feature by running the truffle compile command.

Solidity testing To test solidity source code, we can write tests with the truffle
framework, and run these with the truffle test command. Truffle will manage a
lifecycle where it first deploys a contract and then tests it by submitting transactions
to the blockchain. We validate the output from out transactions by either querying
the node for contract state or by parsing the generated transaction receipts. We
illustrate this process with some of our code for testing the AuthorityManager
contract:

1 const AuthorityManagement = artifacts . require ("./ AuthorityManager .sol");
2 const assert = require ("chai"). assert ;
3 const truffleAssert = require ("truffle - assertions ");
4
5 contract (" AuthorityManager ", accounts => {
6 let authorityManagementInstance ;
7
8 before (async () => {
9 authorityManagementInstance = await AuthorityManagement . deployed ();
10 });
11
12 it(" Account0 should be only authority ", async () => {
13 const authorities = await authorityManagementInstance .

getAuthorities ();
14 assert .ok(authorities . includes (accounts [0]));
15 });

74 6. APPLICATION IMPLEMENTATION

16
17 it(" Account2 should be unable to propose a vote", async () => {
18 await truffleAssert . fails (
19 authorityManagementInstance . propose (1, accounts [2] , {
20 from: accounts [2]
21 }) ,
22 " Unauthorized "
23);
24 });
25
26 it(" Account0 should be able to propose Account1 as authority ", async

() => {
27 const result = await authorityManagementInstance . propose (1,

accounts [1] , {
28 from: accounts [0]
29 });
30 truffleAssert . eventEmitted (result , " ProposalEvent ");
31 });
32
33 ...
34 }

Listing 6.4: A test for the authority manager contract

These tests illustrate some useful concepts. We start the batch of tests by deploying
the AuthorityManager contract to the blockchain. The first test shows how we
can query the state of the contract. Such a call does not generate a transaction, so
we do not need to set a sending account, as this process is free in terms of Ether. We
can also test if a transaction is invalid, and thus reverts, as shown in the second test.
Finally, we can perform a function call and check if the block with the transaction
contains a transaction receipt with a given event.

Deployment and export The final primary feature of Truffle is scripted
deployments. These scripts allow us to define how to deploy a contract. During the
deployment procedure, Truffle will deploy the contract to the blockchain through
a contract creation transaction, and will optionally run any setup and cleanup
procedures in our script. This functionality is especially useful when we have inter-
contract dependencies, as shown in the measure contract (Listing 6.2) where we
depend on the Treatment contract. The following deployment script shows how we
deploy the Measure contract:

1 var Treatment = artifacts . require ("./ Treatment .sol");
2 var Measure = artifacts . require ("./ Measure .sol");
3 var fs = require ("fs");
4
5 module . exports = async (deployer , network , accounts) => {

6.3. BACK-END SERVER 75

6
7 // Get the instance representing the deployed treatment contract
8 const treatmentInstance = await Treatment . deployed ();
9
10 // Pass the address of the treatment contract when constructing the

measure contract
11 await deployer . deploy (Measure , Treatment .address , {
12 from: accounts [0] ,
13 });
14
15 // Register the measure contract in the treatment contract for future

mutual authentication .
16 await treatmentInstance . registerMeasureContract (Measure .address , {
17 from: accounts [0] ,
18 });
19
20 // Store the address of the measure contract in a file to be exported
21 var previousAddresses = JSON. parse (fs. readFileSync (" shared / addresses .

json"));
22 var json = JSON. stringify (
23 {
24 ... previousAddresses ,
25 measure : Measure .address ,
26 }, null , 2
27);
28 fs. writeFileSync (" shared / addresses .json", json);
29 };

Listing 6.5: The truffle deplotment script for the Measure contract

In this case, we use the deployment script not only to deploy the measure contract
but also to link the measure and treatment contracts together. We also see how we
can store the address of the deployed contract in a file to be exported.

6.3 Back-End Server

The back-end of the implemented application is responsible for simulating most
workflows in the VerifyMed architecture. In the context of the off-chain part
presented in Section 5.2.2, the back-end is a monolithic application with internal
services representing the Treatment Provider, License Provider Client, License Issuer
Client, and Authority Client. For supporting these services, the application includes
functionality for simple key management, interaction with the Ethereum blockchain,
RESTful data access, and a WebSocket-based publish/subscribe Application
Programming Interface (API) for reacting to events on the blockchain.

76 6. APPLICATION IMPLEMENTATION

Et
he

re
um

 n
et

w
or

k

Sp
rin

g
bo

ot
 a

pp
lic

at
io

n

W
eb

3j

Au
th

or
ity

 R
ES

T
co

nt
ro

lle
r

Au
th

or
ity

 S
er

vi
ce

Et
he

re
um

 n
od

e

Et
he

re
um

 n
od

e

Et
he

re
um

 n
od

e

Et
he

re
um

 n
od

e

Tr
an

sa
ct

io
n

pr
op

ag
at

io
n

Au
th

or
ity

 P
ub

/S
ub

co
nt

ro
lle

r
Au

th
or

ity
 P

ub
/S

ub
Se

rv
ic

e

Au
th

or
ity

 c
on

tra
ct

se

rv
ic

e

Au
th

or
ity

 e
ve

nt
lis

te
ne

r

W
eb

3j
co

re

Si
gn

ed
 T

ra
ns

ac
tio

ns

Tr
an

sa
ct

io
n

re
ce

ip
ts

fro
m

 n
ew

 b
lo

ck
s

Q
ue

rie
s

R
ES

Tf
ul

 A
PI

 c
al

ls

Ke
ys

to
re

C
on

tra
ct

 fu
nc

tio
n

ca
lls

,
ac

co
un

t c
re

de
nt

ia
ls

Se
rv

ic
e

ca
lls

Pu
bl

is
h

ev
en

t t
o

to
pi

c
Ev

en
ts

Su
bs

cr
ib

e
to

 to
pi

c

Pu
bl

is
h

to
 to

pi
c

Q
ue

rie
s

G
et

 a
cc

ou
nt

 c
re

de
nt

ia
ls

 fo
r u

se
r F
ig
ur
e
6.
2:

A
n
ov
er
vi
ew

of
th
e
ba

ck
-e
nd

in
te
rn
al
s

6.3. BACK-END SERVER 77

Figure 6.2 shows the overall structure of the back-end application. Our example shows
the Authority part of the application’s internal structure. While not shown here, the
application uses a similar structure for the remaining processes and components. The
remainder of this section will describe the used technology and its use for interaction
with the other services. Due to the maturity and broad usage of Java-based web-
applications, we will only briefly describe this part. Our interface towards smart
contracts will, on the other hand, be described in extensive detail.

Technology

To implement the application, we use the following core technologies:

– Java5, the programming language used for implementing the system;

– Spring boot6 a framework for creating RESTful web services in Java;

– Web3j7 a library for interacting with the Ethereum blockchain.

Controllers

The controller part of the implementation is responsible for the management of the
different endpoints for the RESTful web service part of the application, and the
pub/sub-topics to which the clients can subscribe. In practice, this layer serves as
a bridge between API logic used to interface with the application and the business
logic from the model, which is placed in the service layer.

Service Layer

The services in our implementation instance the business logic, as previously presented
in the VerifyMed architecture of Section 5.2. Examples of such business logic include:

– Translating API calls to smart contract function calls.

– Querying for data stored within smart contracts.

– Parsing events stored in transaction receipts on the blockchain and propagating
these to users.

– Storing data about transactions internally in a database

– Performing other procedures such as patient registration and authentication.
5https://www.oracle.com/java/, version 11
6https://spring.io/projects/spring-boot, version 2.2.4
7https://github.com/web3j/web3j, version 4.5.5

https://www.oracle.com/java/
https://spring.io/projects/spring-boot
https://github.com/web3j/web3j

78 6. APPLICATION IMPLEMENTATION

Contracts service
Backend service

AuthorityManager.sol

AuthorityManager
Contract ABItruffle compile

AuthorityManager
Contract addresstruffle migrate

Export

AuthorityManager
Contract

Java Class

Web3j codegen

Config

Ethereum
node url

gasPrice

gasLimit

Web3j client

AuthorityManager
Contract service

Instance to

Configures

Injected

Configures

Figure 6.3: Visualization of the process for generating Java wrapper objects for
contracts

Smart Contract Interface Layer

To interact with smart contracts, we use the Web3j library. This library contains the
most needed functionality for interacting with the Ethereum blockchain and smart
contracts deployed on it. The core functionality of the Web3j library is an API for
creating and submitting transactions. This API will submit the transactions to the
Ethereum node, and get the corresponding transaction receipt once available. The
library allows us to submit transactions in a synchronous manner where a transaction
is submitted, and a response with the receipt is returned.

In addition to the core functionality for submitting transactions, the Web3j library
also includes code generation features for creating Java wrapper objects for interacting
with smart contracts. The code generation functionality allows the user to interact
with the smart contracts on the blockchain via standard Java objects. These Java
objects are generated by using the ABI produced by the contracts service, along
with required configuration parameters such as the gasPrice, gasLimit, and contract
address. The overall process for generating these Java objects is shown in Figure 6.3.

Once we have instanced such a Java object, we have a reusable and straightforward
service that we can use for interaction with the smart contract. To show this, we
present a Java snippet using the propose function of the AuthorityManager Contract,
as shown in Listing 6.3. This snippet creates a Java wrapper object loaded with the

6.4. WEB APPLICATION 79

private key of the authority sending the proposal:

1 @Service
2 public class AuthorityService {
3
4 @Autowired
5 private CAuthorityManagerFactory cAuthorityManagerFactory ; // A

factory preconfigured with gasPrice , gasLimit , the Web3j client
and contract address .

6
7 ...
8
9 public void proposeAuthority (final Proposal proposal ,
10 final String privateKey) {
11 try {
12 cAuthorityManagerFactory
13 . fromPrivateKey (privateKey) // The private key of the proposer
14 . propose (proposal . proposalType () , proposal . subject ())
15 .send (); // Send the transaction to the blockchain and wait

for a receipt
16 } catch (final Exception e) {
17 // Triggered if the transaction is either reverted or rejected

by the node due to insufficient funds in the sending account
18 throw new TransactionFailedException (e. getMessage ());
19 }
20 }
21 }

Listing 6.6: A Java snippet submitting a transaction to the AuthorityManager
Contract

To make this pattern manageable, we use the dependency injection features of the
spring framework. This can be observed in line 4 of listing 6.6 This allows us to
create a global instance of the contract wrapper once, and then inject it into all the
services which require an interface to the contract.

6.4 Web Application

To enable easy testing of the architecture, we developed a web application for using
the functionality exposed by the back-end. The web application allows us to simulate
different workflows for the overall VerifyMed architecture. This process allows us
to capture metrics such as cost and find flaws in the architecture of the system.
In addition to exposing functionality from the back-end, the web application also
serves as the patient and healthcare worker clients, as presented in the VerifyMed
architecture. To handle different roles, we include some basic key management

80 6. APPLICATION IMPLEMENTATION

Figure 6.4: Overview of the key management panel in the web application

functionality for generating and storing credentials in the browser. We refer the
reader to Appendix A for a complete guide for the whole web application.

We implement the web-application as a client-side rendered application by using
the ReactJs framework8, along with BlueprintJs9 as a component library, and
Undraw10 for animations. Additionally, we use the Web3js library11, the JavaScript
counterpart to the Web3j library, as presented in the back-end section. This library
contains cryptographic libraries for cryptographic hashing, key generation, and digital
signatures by using the standards in Ethereum.

An overview of the key management panel is shown in Figure 6.4. The sidebar
contains a navigation section where the user can visit pages intended for different
stakeholders. Clicking area 1 routes the user to the key management panel. The user

8https://reactjs.org/, version 16.12.0
9https://blueprintjs.com/, version 3.24.0

10https://undraw.co
11https://github.com/ethereum/web3.js/, version 1.2.6

https://reactjs.org/
https://blueprintjs.com/
https://undraw.co
https://github.com/ethereum/web3.js/

6.4. WEB APPLICATION 81

can access additional panels in the same manner. Actions within these panels are
related to one of the keys within the key management panel. The users can select
which key to use with the menu at the bottom of the sidebar. An overview of all
keys is shown in area 3, and additional keys can be generated by clicking the panel
in area 4. Ether can be sent between accounts by using area 2.

Chapter7Test Results

We use the proof-of-concept application presented in Chapter 6 to perform a series
of tests for measuring the performance and usability of the VerifyMed architecture
presented in Chapter 5. To test the correctness of smart contracts, we applied unit
and integration testing. System testing was performed to evaluate the architecture
in the context of the requirements defined in Chapter 4. Cost metrics were collected
by performing simulated workflows in the proof-of-concept application. These costs
were also used the find the theoretical maximum throughput of the architecture.

7.1 Unit and Integration Testing

We tested the behaviors of the smart contracts deployed on the Ethereum blockchain
through unit and integration tests. Examples of behaviors include proper enforcement
of access control schemes, accurate storage of data, ability to serve the relevant data,
and correct events emitted. Unit tests were used to test if the standalone contract
performed as expected, while integration tests check if the contract performs as
expected within the consortium of the other contracts.

A total of 109 unit and integration tests were written for the smart contracts. These
tests were run through the use of the Truffle CLI, and tested against the local
Ethereum node created by Ganache. The Ganache instance was configured to
instantly produce a new block once a transaction was received. Figure 7.1 shows a
subset of the output from the testing procedure with Truffle, and Figure 7.2 shows
some of the metadata generated by Ganache for the submitted transactions during
this procedure.

7.2 Requirements Validation

We used the implemented proof-of-concept to validate that we meet the functional
requirements, as presented in Section 4.3.1. We validate this by using all functionality

83

84 7. TEST RESULTS

Figure 7.1: Sample of outputs from running unit and integration tests against
smart contracts

Figure 7.2: Sample of transactions execution logs from Ganache. These outputs
were generated by running unit and integration tests against smart contracts

7.2. REQUIREMENTS VALIDATION 85

Figure 7.3: Details for the authority, treatments and evaluations related to a
healthcare worker

86 7. TEST RESULTS

Figure 7.4: An overview of the healthcare workers together with their authority,
experience and competence

in the application to generate evidence of authority, evidence of experience, and
evidence of competence. These evidences should then be publicly accessible. We
refer the reader to the complete runbook used for the tests in Appendix C. This
runbook is summarized with the following overall actions:

1. We create accounts representing a set of governance stakeholders, a set of
healthcare workers, and a set of patients.

2. We set up trust relationships between the governance entities, and from the
governance entities to the healthcare workers.

3. We issue a set of treatments from the healthcare workers to the patients,
approve them with the patient account, and finally approve them with the
healthcare worker account.

7.3. COST OF USAGE 87

Procedure Gas cost

Proposing the addition of a new authority,
voting on the said proposal, and enacting it.
Assumes seven authorities to exist before the
new authority is added.

464368

Submitting a treatment and getting it approved
by a healthcare worker. 302839

Submitting an evaluation from a patient 143669

Table 7.1: Gas costs for a set of procedures for different stakeholders

By completing the runbook, we are left with an internal contract state on the
blockchain, which is publicly available and accessible by anyone. This information
was used to construct the overview panel of healthcare workers, as shown in Figure
7.4. Given the address of a healthcare worker, the patient can use this panel to
gain information about them. This information includes their formal authority to
practice, the number of treatments performed, and the average experience measure
from these treatments. Further details about authority, treatments, and evaluations
are also available, as shown in Figure 7.3. Overall, this shows that the system fulfills
the functional requirements.

7.3 Cost of Usage

By using the web application, we can capture the gas prices for different procedures
within the platform. Gas prices serve as a metric for measuring the operational cost
of using the blockchain platform. Gas prices can be translated to cost in Ether, which
in turn hold monetary value. We measure the gas prices by evaluating the output
from our Ethereum node as we submit transactions to it. An example of such an
output was previously shown in Figure 7.2. We generate these transactions by first
following the runbook in Appendix C, followed by additional tests for edge cases and
unpermitted actions.

Table 7.2 shows the gas costs for different transaction types within our platform.
These individual transactions can be composed together into procedures. Examples
of different procedures and their total gas cost is found in Table 7.1. Procedures
with higher complexity will execute more instructions on the EVM, thus yielding
higher costs. Storing additional state within the contracts is especially expensive.

To quantify these gas costs into real-world monetary costs, we simulate the system’s
use over a four-year duration. The exchange rate between gas and Ether is given
though the gasPrice field within individual transactions. As no fixed exchange rate

88 7. TEST RESULTS

between gas and Ether exists, we have to simulate this over a fixed period. This
is done by using historical values for the gasPrice in transactions on the Ethereum
platform. If we were to use the VerifyMed platform in a production use-case, we
could expect to pay similar prices for gas as the average within historic blocks.

The simulated price of usage for some workflows is shown in Figure 7.3. These graphs
were generated by combining gas costs for our procedures with two public datasets
from EtherScan [48]. The first dataset [49] contains the average gasPrice used for
transactions within blocks on the Ethereum blockchain, giving us a price in wei per
gas. The second dataset [50] shows the average daily Ethereum price in USD, from
which we can deduce USD per wei.

7.4 Throughput

The off-chain part of the VerifyMed architecture presented in Chapter 5 is horizontally
scalable. This means we can always add additional capacity to the system by
registering additional nodes as authorities, treatment providers, license issuers, and
license providers. As most interaction between these stakeholders happens via the
blockchain, this process is, in general, easy. However, the on-chain part of our
application does have a theoretical throughput limitation, as only a finite number of
transactions can fit within a block on the Ethereum ledger.

We find the maximum theoretical throughput of our system by calculating the
maximum number of treatments that can be processed by the Ethereum blockchain
per year. We consider the full lifecycle of a treatment, including publication, approval,
and evaluation. This process costs 446.508 gas in total. The current gasLimit on
the Ethereum blockchain, limiting the max amount of gas to be used in a block, is
9.982.766 [51]. This limit will allow us to fit 22 treatments within a block. Blocks
are generated once every 13.3 seconds [52]. By consuming 1% of the Ethereum
blockchain’s capacity, we can process 520.000 treatments per year. In contrast, the
number of worldwide surgeries was estimated to be between 266,2 and 359,5 million
in 2012 [53]. Therefore, we have a maximum theoretical throughput where we can
process between 0.14% and 0.19% of worldwide surgeries.

7.4. THROUGHPUT 89

Gas cost Stakeholder Transaction type

21000 All Sending Ether
179013 Authority Propose to add another address as a authority
149040 Authority Propose to remove an authority
73686 Authority Vote on a proposal to add or remove a authority
64297 Authority Enact a proposal to add or remove a authority

28045 Authority Trying to enact a proposal without a majority
vote in place

45332 Authority Enact proposal to remove an authority
93707 Authority Add trust in a registered treatment provider
22909 Authority Remove trust in a registered treatment provider
48863 Authority Add trust in a registered license issuer
18829 Authority Remove trust in a registered license issuer
48906 Authority Add trust in a registered license provider
15965 Authority Remove trust in a registered license provider
85959 Treatment Provider Register address as a treatment provider
200118 Treatment Provider Create a new treatment
71059 License Issuer Register as license issuer
88538 License Issuer Issue a new license to address

23040 License Issuer Approve movement of license to a new license
issuer

86036 License Provider Register as license provider

38019 License Provider Approve movement of license to a new license
provider

46059 License holder Propose movement of license to a new license
provider

46092 License holder Propose license provider movement

102721 License holder Approve published treatment for a given
patient

143669 Patient Submitting an evaluation

Table 7.2: Gas costs for calls to the the implemented smart contracts

90 7. TEST RESULTS

2016
07-01

2017
01-01

2017
07-01

2018
01-01

2018
07-01

2019
01-01

2019
07-01

2020
01-01

0.5

1.0

1.5

2.0

2.5

3.0

E
th

e
r

co
st

s
(w

e
i)

×1016 Wei costs by date

2016
07-01

2017
01-01

2017
07-01

2018
01-01

2018
07-01

2019
01-01

2019
07-01

2020
01-01

0.10

1.00

10.00

D
o
ll
a
r

co
st

s
(U

S
D

)

Dollar costs by date

(a) Cost in wei and USD for creating a treatment and getting it approved

2016
07-01

2017
01-01

2017
07-01

2018
01-01

2018
07-01

2019
01-01

2019
07-01

2020
01-01

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
th

e
r

co
st

s
(w

e
i)

×1016 Wei costs by date

2016
07-01

2017
01-01

2017
07-01

2018
01-01

2018
07-01

2019
01-01

2019
07-01

2020
01-01

0.10

1.00

10.00

D
o
ll
a
r

co
st

s
(U

S
D

)
Dollar costs by date

(b) Cost in wei and USD for evaluating a treatment

2016
07-01

2017
01-01

2017
07-01

2018
01-01

2018
07-01

2019
01-01

2019
07-01

2020
01-01

1

2

3

4

E
th

e
r

co
st

s
(w

e
i)

×1016 Wei costs by date

2016
07-01

2017
01-01

2017
07-01

2018
01-01

2018
07-01

2019
01-01

2019
07-01

2020
01-01

0.10

1.00

10.00

D
o
ll
a
r

co
st

s
(U

S
D

)

Dollar costs by date

(c) Cost in wei and USD for the process of adding a new authority in a setting with
seven existing authorities

Figure 7.5: Simulated wei and USD prices for different procedures over a timespan
of four years

Chapter8Evaluation and Discussion

Our results show that our proof-of-concept implementation can be used to verify a
healthcare worker’s authority, experience, and competence. The verifier does not
have to place any trust in the healthcare worker themselves. This process can be
performed by anyone with access to the Ethereum blockchain network, making the
evaluation process fully transparent.

This chapter evaluates and discusses the VerifyMed platform. Our results show
that operational costs associated with the platform are moderate. However, the
throughput does not allow for a truly global scale to be reached. Therefore, we
discuss critical architectural choices, including the choices for data storage. We also
discuss how the application can be improved to lower operational costs and increase
throughput.

8.1 Ability to Provide Trust in Healthcare Workers

We have demonstrated that the VerifyMed platform can provide a patient with
evidence for authority, experience, and competence. This evidence is rooted in a
model of trust between governance entities, as presented in Chapter 5. These trust
relationships are captured on the blockchain, allowing the patient to use evidence
without any established trust-relationships off-chain. However, a patient can only
trust this evidence if they inherently trust these governance entities.

Our model for trust is justified in the real-world governance of healthcare. As
an environment with heavy regulatory oversight, capturing preexisting governance
relationships on a public blockchain serves as a natural first step for providing trust in
the virtualized setting. Furthermore, we strengthen our model by adding revocation
abilities, where the trust of a governance entity can be revoked if it acts in bad faith.
The result is a trust model that is justified in the inherit trust relationship between
patients and the currently established healthcare system.

91

92 8. EVALUATION AND DISCUSSION

We note that our model for trust is extensible. A patient may trace all trust
relationships from any evidence back to a top-level authority. The patient stands
free to blindly trust the blockchain or use a third-party service to verify each of the
upstream governance entities independently.

We finally state that our platform’s main intent is to govern and publish evidence for
authority, experience, and competence on a public blockchain. Once published, third-
party applications stand free to use this information as they see fit. By publishing the
ABI and contract addresses, third-party developers may construct contract APIs via
the Web3js or Web3j libraries. Thus, using the on-chain part is simple for third-party
developers. This enables usage within any healthcare platform wishing to provide
secure verification of their healthcare workers to patients.

8.2 Social Impact

As virtualized healthcare platforms become more relevant for each passing day, we
believe that blockchain-based solutions such as the VerifyMed platform will have a
large social impact. The platform contributes to the security of patients and their
trust in their healthcare system. We achieve this social impact by empowering the
patient to become well-informed about the healthcare worker, thus decreasing the
risk of malpractice and enabling the patient to gain an expectation for the quality of
care.

We also emphasize that the information published on the blockchain has use-cases
outside of the scope of the relationship between patients and healthcare workers.
Other identified use-cases include:

1. The data may give external regulators an impression of the quality of care
provided by a healthcare institution. The available metrics for experience
and competence may be used for audits or to justify a healthcare institution’s
further inspection.

2. If deployed in an international setting, the platform may be used to evaluate
healthcare systems on a broad scale. The platform allows for the comparative
evaluation of national healthcare systems in real-time.

3. Information about the healthcare worker can be used within mobility processes
for healthcare workers. Background checks can be simplified as the healthcare
worker can refer to concrete evidence for their experience and competence. This
offers a compelling alternative to current processes, which is often based on
extensive manual background checks based on credentials received from the
healthcare worker themselves.

8.3. USING A PUBLIC BLOCKCHAIN 93

4. The ability of healthcare workers to show experience and competence can
enable new services to be created. Examples include premium second-opinion
services where patients can indeed verify that the healthcare worker is very
experienced.

Overall, we believe that introducing our model for improved trust in healthcare
workers will be a crucial contribution to virtualized healthcare services. Platforms
based on blockchain will enable better patient care, better patient outcomes, and a
healthcare system that can scale to future needs.

8.3 Using a public blockchain

We use the public Ethereum blockchain for hosting our smart contracts. This choice
is incorporated in our architecture, as we have to take the public nature of the
blockchain into account. Using a public blockchain requires us to limit the published
data to protect patient privacy, and we must implement access control schemes within
our smart contracts. Additionally, we must incorporate a mechanism to transfer
Ether between accounts, allowing them to submit transactions.

8.3.1 The Advantages of a Public Blockchain

Using a public blockchain gives us some key advantages. The most noteworthy of
these is transparency. Once the state in a contract is updated, anyone with access to
an Ethereum node can access it. This can allow patients and third-party services to
interact with our smart contracts, without any further interaction from the off-chain
part of our application.

The public nature can increase the adoption of the platform from healthcare
institutions. No inter-organizational agreements or procedures are required to access
data on the blockchain. Any healthcare service or institution can immediately gain
access to data. Furthermore, these organizations can implement separate systems
for publishing data to the blockchain, as long as their addresses are trusted in some
manner. Organizations can publish and get data with a standard format via the
blockchain. This increases the data sharing capabilities between these organizations.

The final argument for using a public blockchain is the possibility for interaction with
the underlying cryptocurrency on the blockchain. This allows us to build incentive
models on top of the existing smart contract, pushing the participants into correct
behaviour. This allows us to solve problems which are tightly related to our initial
problem statement of trust in healthcare.

94 8. EVALUATION AND DISCUSSION

One concise problem which we can solve with incentive models is evaluation response
rates. We have assumed that patients are willing to submit experiences related to
their treatments. However, many may choose not to submit a digital PREMs [54].
By extending our smart contracts to send cryptocurrency to the evaluating patient,
we can incentivize this behavior, and thus increase response rates.

8.3.2 The Disadvantages of a Public Blockchain

One of the prices paid for using a public blockchain is monetary. Thus, the advantage
gained in terms of features and properties must yield a return of greater value than
these costs. Our results show that the operational costs associated with our platform
are moderate. Recent months show prices of 1 USD for submitting a treatment and
getting it approved. Evaluations costs around 50 cents. However, when simulating
prices over a timespan of four years, large fluctuations were observed. This may lead
to unpredictable operational costs over time, generating unnecessary financial risk
for the healthcare industry.

The main scalability problem with our platform originates from the throughput. The
Ethereum blockchain offers low throughput compared to the pace of the healthcare
system. Additionally, throughput in terms of transactions per second decreases as
transaction size increases. We also emphasize that our maximum throughput is
based on an assumption of using 1% of the transaction capacity on the Ethereum
blockchain, which can be orders of magnitude above feasible usage. Additionally,
costs will scale linearly with the usage, yielding low returns from the economics of
scale. On the contrary, large scale usage can trigger an increase in the price of Ether,
further increasing operational costs.

Using a public blockchain does also give us some disadvantages in terms of
architectural impact. As costs scale linearly with the amount of data within a
transaction, we must limit the amount of data stored on the blockchain. This results
in mostly hashes and small summaries being stored on the blockchain. Adding
additional data will increase costs accordingly.

The immutable nature of public blockchains results in an inefficient storage
architecture over time. As time progresses, data stored on the blockchain lose
importance. If, for example, a healthcare worker passes away, data related to them
will still remain on the blockchain indefinitely. In contrast to financial use-cases
where a complete history for some cryptocurrency is required, this is not always the
case within the healthcare industry. We are thus paying an unnecessary premium for
a service that is not required long-term.

Finally, we must state that our platform is governed by a set of authorities, license
issuers, license providers, and treatment providers. This allows us to publish evidence

8.4. THE CASE FOR PRIVATE BLOCKCHAINS 95

for trust rooted in real-world trust relationships on the blockchain. This model
contrasts with the fully trustless principles which usually are applied within the
domain of public blockchains. We argue that the complexity of the healthcare system
cannot be captured in a fully trust-less model. Nevertheless, this conflict introduces
additional cost and complexity.

8.4 The Case for Private Blockchains

Using a public blockchain results in a cost premium, low possible throughput, and
undesired architectural impact. However, we still believe that blockchain is a crucial
technology to support the inter-organizational data sharing required for providing
trust in virtualized healthcare. An alternative approach for creating such a solution
is through private blockchain platforms.

Private blockchains allow a consortium of organizations to share data by taking part
in a blockchain network that is shared between them. In the context of VerifyMed,
we can envision a shared private blockchain maintained by our governance entities.
We can extend our model for trust in governance entities to a permission model
for the blockchain, where trusted governance entities can take part in the private
blockchain. The access control schemes in our smart contracts can be translated to
permissions in a private blockchain, allowing patients to gain permission to submit
evaluations to it.

The biggest advantages of private blockchains are reduced cost and increased
throughput. For common platforms such as Hyperledger Fabric [55] or Corda [56], the
cost is linear with the operational cost of the underlying infrastructure. This offers a
compelling value proposition compared to costs linear to the number of transactions.
This transition offers dramatically reduced costs, along with lower variance over
time, making the operational costs predictable. Additionally, throughput can be
improved by using consensus algorithms with different trust assumptions than public
blockchains.

8.5 Limitations of VerifyMed

We have validated that the VerifyMed platform fulfills our requirements through
unit, integration, and system testing. The platform is capable of providing trust in
healthcare workers in a transparent manner. Nevertheless, some key disadvantages can
be identified. These were identified both during application modeling, implementation,
and system testing.

96 8. EVALUATION AND DISCUSSION

8.5.1 Authentication of Patients

We have presented quality attributes stating that treatments and evaluations should
be rooted in real-world interactions. This implies that fraudulent healthcare workers
and patients should be impossible to create. Our architecture incorporates a precise
model for preventing this situation on the healthcare worker side through on-chain
access control schemes. However, we cannot deploy equivalent mechanisms for patients
due to privacy concerns. We have therefore assumed that treatment providers are
able to authenticate patients through some identity provider, and have defined the
details of this procedure as out-of-scope. The resulting scheme trusts treatment
providers with this task, which may be naive.

To give stronger guarantees for the prevention of fraudulent patients, the system
should be extended with stronger cryptographic mechanisms to ensure that treatments
and evaluations indeed originate from real-world patients. One possibility is applying
zero-knowledge proofs for publicly showing that a treatment and evaluation originates
from a patient while keeping the specific patient secret.

Another alternative for improving patient privacy by using schemes such as blind
signatures, ring-signatures [57], and stealth addresses [58] to protect the sending
address, and thus yield patient privacy. Such schemes can either be implemented
within smart contracts or be delivered as a service from the underlying blockchain
platform.

8.5.2 Key Management

The VerifyMed architecture has a heavy reliance on keys that are controlled by
different stakeholders. These stakeholders can loose or leak their keys. In these cases,
we rely on the governance entities to revoke their trust in these entities. This process
becomes harder as the number of participants in the system grows. Further key
management mechanisms such as key rotation and revocation should, therefore, be
implemented.

8.5.3 Cost as an Architectural Limitation

In addition to the monetary cost related to the cost of transactions, some architectural
limitations were identified. The most prominent of these is the extensive setup phase.
Users of the platform cannot participate before their accounts have Ether associated
with their account. This gives a considerable reliance on the Ether cryptocurrency
from the healthcare sector. Thus, all stakeholders in the system must ensure that
they have an Ethereum account with Ether, to be able to interact with our platform.
Requiring ownership of such accounts is a burden and should not be a requirement for
receiving healthcare. Additionally, adding Ether to an account creates an immutable

8.6. LESSONS LEARNED FROM VERIFYMED 97

link between the sender and receiver. This limits how we can use concepts such as
one-time addresses, limiting our possibilities for providing privacy.

8.5.4 Narrowly Scoped Security Model

Our requirements capture two main adversaries: fraudulent patients and fraudulent
healthcare workers. The treatment provider is expected to authenticate patients
to protect against fraudulent patients. During the patient and healthcare worker
interaction, we assume a security model where the treatment provider cannot be
adversarial. This model is justified with the possibility for authorities to revoke their
trust in the treatment provider. However, this model cannot reasonably ensure that
no trusted adversarial treatment providers do not exist at any moment in time.

8.5.5 Large Governance Complexity

Our model for creating a trusted environment on the blockchain tries to model and
capture real-world trust relationships. This results in large smart contracts of high
complexity, leaving room for errors. As Solidity is a limited language with many
common security pitfalls [59], the risk of security flaws increases with complexity.
As the blockchain is immutable, contracts cannot be patched once deployed. This
setting results in a preference for simpler models, with less complexity on-chain.
Therefore, an alternative approach for governance dictated by off-chain certificate
authorities or similar should be considered.

8.6 Lessons Learned from VerifyMed

Creating a complex distributed application on the Ethereum blockchain is easier than
ever before. The developer tooling allows anyone to develop, test, and deploy smart
contracts easily. These smart contracts can be interacted with through multiple
open-source tools such as Web3j and Web3js.

However, public blockchains are not necessarily the right choice for all blockchain-
based applications. We have described how our platform delivers social impact via
an open, fully distributed, and transparent platform. However, this comes at a
considerable price. Using the system will couple the healthcare system with the
Ethereum blockchain. This will require the usage of the Ether cryptocurrency, and
smart contracts deployed on the blockchain, resulting in moderate costs and low
scalability. Once in usage, moving on to a new platform will be hard.

Proofs of concepts can, in nature, reveal multiple types of findings. They can show
that a concept works perfectly and is ready for real-world use-cases. They can also
reveal the critical research areas which must be addressed before a solution is suited
for a real-world use-case. We do see a future in the VerifyMed platform, but extensive

98 8. EVALUATION AND DISCUSSION

testing into our assumptions must be performed. Private blockchains should be
tested to address our cost and scalability issues. Finally, our model for trust should
be extended to cover the full extent of the healthcare industry.

8.7 Future Work

Systematic Testing of Gained Trust

Our presented application allows patients to gain evidence for the authority,
experience, and competence of a healthcare worker. We have assumed that this
information can either increase or decrease the patients’ trust in the healthcare
worker. While a rational assumption in nature, it should nevertheless be tested.
Therefore, we propose to perform further research within the patient and healthcare
worker interaction to see if such information indeed increases trust in the healthcare
worker.

Scoped Research into Trust Models within the Healthcare Industry

Our research has only scratched the surface of the complexity within the healthcare
industry. Areas such as pharmaceuticals, insurance, and education are vital players
who should be included in a future variant of VerifyMed. Further research into the
trust relationships within the healthcare system should, therefore, be performed.

Scaling the Platform with Private Blockchains

The VerifyMed architecture should be implemented on a private blockchain platform.
This will allow us to assess if the platform can deliver the same social impact while
remaining less transparent to the general public.

Scaling the Platform with Distributed File Systems

An alternative to using a private blockchain is to scale the VerifyMed platform by
adding a storage layer between the on-chain and off-chain parts of our applications.
Distributed file systems such as Swarm [60] and IPFS [61] allow files to be stored in
a public, immutable and transparent manner. At the same time, the integrity can be
protected by storing a Merkle root hash on the blockchain.

Chapter9Conclusion

In this thesis, we have designed, implemented, and evaluated VerifyMed - A blockchain
platform for providing transparent trust in healthcare workers. The platform allows
patients to verify the authorization, experience, and competence of a healthcare
worker in a transparent, trust-less, and non-repudiable manner. Additionally, the
platform may be used by third-party applications, regulators, and auditors for
additional social impact. To our knowledge, this is the first blockchain solution
addressing this specific problem.

The platform is the product of an extensive software development process. We
have performed background research into the healthcare domain and preexisting
proposals for using blockchain technology within it. We have identified a need
for increased trust in virtualized healthcare, and have defined functional and non-
functional requirements for blockchain applications trying to solve this problem. The
VerifyMed architecture was created based on this, along with models for creating
trust within a virtualized healthcare environment. The architecture was instanced to
a proof-of-concept application with intuitive user interfaces. The proof-of-concept
was used in extensive simulated testing.

The VerifyMed platform uses a novel model for capturing evidence for trust in a
healthcare worker: evidence of authority, evidence of experience, and evidence of
competence. This evidence is stored in a public and non-repudiable manner on
the Ethereum blockchain. Evidence for authority is generated by a consortium of
governance entities from the healthcare domain, who publish their preexisting trust
relationships. Evidence of experience is created by creating a history of treatments
delivered to patients by healthcare workers. Evidence of competence is created by
storing experience measures from these treatments.

Our results show that using our platform has moderate costs associated with it. This
cost originates from the gas costs related to publishing transactions to the Ethereum
blockchain platform. Structured system testing of our platform shows that the average

99

100 9. CONCLUSION

cost for publishing a summary of a treatment and getting it approved is around
1 USD, and the cost for evaluating a treatment is around 50 cents. Additionally,
extensive cost is associated with governance. As gas prices vary over time, we have
simulated historic costs over a time span of 4 years. During this time frame, large
fluctuations were observed, yielding high financial risk related to using the platform.
Additionally, we have uncovered that the VerifyMed platform cannot scale globally
by using the Ethereum blockchain network.

The VerifyMed platform shows how blockchain technology can have a place in the
healthcare industry. The platform empowers patients to verify that that healthcare
workers indeed hold the required authorizations, experience, and competence. This
can enable further advances in virtualized healthcare. Still, further work is required
to create a blockchain platform ready for production use-cases.

References

[1] M. Raikwar, D. Gligoroski, and K. Kralevska. Sok of used cryptography in
blockchain. IEEE Access, 7:148550–148575, 2019.

[2] Gavin Wood. Ethereum yellow paper. Internet: https://github. com/ethereum/yel-
lowpaper, [version 7e819ec - 2019-10-20], 2014.

[3] Christoph Thuemmler and Chunxue Bai. Health 4.0: Application of Industry
4.0 Design Principles in Future Asthma Management, pages 23–37. Springer
International Publishing, Cham, 2017.

[4] Graham Scambler and Nicky Britten. System, lifeworld and doctor–patient
interaction: Issues of trust in a changing world. In Habermas, critical theory and
health, pages 53–75. Routledge, 2013.

[5] Michael Nofer, Peter Gomber, Oliver Hinz, and Dirk Schiereck. Blockchain.
Business & Information Systems Engineering, 59(3):183–187, 2017.

[6] Melanie Swan. Blockchain: Blueprint for a new economy. " O’Reilly Media, Inc.",
2015.

[7] Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. Design science
in information systems research. MIS quarterly, pages 75–105, 2004.

[8] Klaus Pohl. Requirements engineering: fundamentals, principles, and techniques.
Springer Publishing Company, Incorporated, 2010.

[9] Jens-Andreas Hanssen Rensaa, Danilo Gligoroski, Katina Kralevska, Anton
Hasselgren, and Arild Faxvaag. Verifymed – a blockchain platform for transparent
trust in virtualized healthcare: Proof-of-concept, 2020.

[10] Hasselgren, Rensaa, Gligoroski, Kralevska, and Faxvaag. Blockchain for increased
trust in virtual healthcare; Ushered through the VerifyMed platform. A work in
progress paper on blockchain for trust in healthcare, to be submitted to the
journal Information Processing & Management, for their special issue Blockchain
for Information Systems Management and Security.

[11] World Bank. Age dependency ratio (% of working-age population). Internet:
https://data.worldbank.org/indicator/SP.POP.DPND, Accessed 02.04.2020, 2020.

101

102 REFERENCES

[12] World Health Organization et al. Future of digital health systems: report on the
who symposium on the future of digital health systems in the european region.
Report on the WHO Symposium on the Future of Digital Health Systems in the
European Region, 2019.

[13] Theresa Weldring and Sheree MS Smith. Article commentary: Patient-reported
outcomes (pros) and patient-reported outcome measures (proms). Health services
insights, 6:HSI–S11093, 2013.

[14] Charlotte Kingsley and Sanjiv Patel. Patient-reported outcome measures and
patient-reported experience measures. Bja Education, 17(4):137–144, 2017.

[15] Saif Al-Kuwari, James H. Davenport, and Russell J. Bradford. Cryptographic
hash functions: Recent design trends and security notions. Cryptology ePrint
Archive, Report 2011/565, 2011. https://eprint.iacr.org/2011/565.

[16] Morris J Dworkin. Sha-3 standard: Permutation-based hash and extendable-
output functions, 2015.

[17] Guido Bertoni, Joan Daemen, Michaël Peeters, and GV Assche. The keccak
reference, version 3.0. NIST SHA3 Submission Document (January 2011), 2011.

[18] Bertoni Guido, Daemen Joan, P Michaël, and VA Gilles. Cryptographic sponge
functions, 2011.

[19] Ralph C Merkle. Method of providing digital signatures, January 5 1982. US
Patent 4,309,569.

[20] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital
signature algorithm (ecdsa). International journal of information security, 1(1):36–
63, 2001.

[21] Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE transactions on information theory, 31(4):469–472,
1985.

[22] Neal Koblitz. A course in number theory and cryptography, volume 114. Springer
Science & Business Media, 1994.

[23] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial
knowledge and simplified design of witness hiding protocols. In Annual
International Cryptology Conference, pages 174–187. Springer, 1994.

[24] Ian Miers, Christina Garman, Matthew Green, and Aviel D Rubin. Zerocoin:
Anonymous distributed e-cash from bitcoin. In 2013 IEEE Symposium on Security
and Privacy, pages 397–411. IEEE, 2013.

[25] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages 459–474.
IEEE, 2014.

https://eprint.iacr.org/2011/565

REFERENCES 103

[26] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct
non-interactive arguments for a von neumann architecture. IACR Cryptology
ePrint Archive, 2013:879, 2013.

[27] Xavier Boyen, Christopher Carr, and Thomas Haines. Graphchain: A blockchain-
free scalable decentralised ledger. In Proceedings of the 2nd ACM Workshop on
Blockchains, Cryptocurrencies, and Contracts, BCC ’18, page 21–33, New York,
NY, USA, 2018. Association for Computing Machinery.

[28] Pierangela Samarati and Sabrina Capitani de Vimercati. Access control: Policies,
models, and mechanisms. In International School on Foundations of Security
Analysis and Design, pages 137–196. Springer, 2000.

[29] Nicolas T. Courtois, Marek Grajek, and Rahul Naik. Optimizing sha256 in bitcoin
mining. In Zbigniew Kotulski, Bogdan Księżopolski, and Katarzyna Mazur,
editors, Cryptography and Security Systems, pages 131–144, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg.

[30] Bloemen R, Logvinov L, and Evans J. Eip-712 ethereum
typed structured data hashing and signing. Online at
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-712.md, 2020.

[31] Chris Dannen. Introducing Ethereum and Solidity, volume 1. Springer, 2017.

[32] Arne Andersson and Stefan Nilsson. Efficient implementation of suffix trees.
Software: Practice and Experience, 25(2):129–141, 1995.

[33] Anton Hasselgren, Katina Kralevska, Danilo Gligoroski, Sindre A. Pedersen, and
Arild Faxvaag. Blockchain in healthcare and health sciences—a scoping review.
International Journal of Medical Informatics, 134:104040, 2020.

[34] Peter B Nichol and Jeff Brandt. Co-creation of trust for healthcare: The
cryptocitizen framework for interoperability with blockchain. Research Proposal.
ResearchGate, 2016.

[35] Eric Funk, Jeff Riddell, Felix Ankel, and Daniel Cabrera. Blockchain technology:
A data framework to improve validity, trust, and accountability of information
exchange in health professions education. Academic Medicine, 93(12):1791–1794,
2018.

[36] Angelo Capossele, Andrea Gaglione, Michele Nati, Mauro Conti, Riccardo
Lazzeretti, and Paolo Missier. Leveraging blockchain to enable smart-health
applications. In 2018 IEEE 4th International Forum on Research and Technology
for Society and Industry (RTSI), pages 1–6. IEEE, 2018.

[37] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman. Medrec: Using blockchain
for medical data access and permission management. In 2016 2nd International
Conference on Open and Big Data (OBD), pages 25–30, Aug 2016.

104 REFERENCES

[38] Gaby G. Dagher, Jordan Mohler, Matea Milojkovic, and Praneeth Babu Marella.
Ancile: Privacy-preserving framework for access control and interoperability of
electronic health records using blockchain technology. Sustainable Cities and
Society, 39:283 – 297, 2018.

[39] Philipp Schmidt. Blockcerts—an open infrastructure for academic credentials on
the blockchain. MLLearning (24/10/2016), 2016.

[40] Marco Baldi, Franco Chiaraluce, Migelan Kodra, and Luca Spalazzi. Security
analysis of a blockchain-based protocol for the certification of academic credentials.
arXiv preprint arXiv:1910.04622, 2019.

[41] P. Zhang, M. A. Walker, J. White, D. C. Schmidt, and G. Lenz. Metrics for
assessing blockchain-based healthcare decentralized apps. In 2017 IEEE 19th
International Conference on e-Health Networking, Applications and Services
(Healthcom), pages 1–4, Oct 2017.

[42] Thomas McGhin, Kim-Kwang Raymond Choo, Charles Zhechao Liu, and Debiao
He. Blockchain in healthcare applications: Research challenges and opportunities.
Journal of Network and Computer Applications, 135:62 – 75, 2019.

[43] Morten Hertzum and Gunnar Ellingsen. The implementation of an electronic
health record: Comparing preparations for epic in norway with experiences from
the uk and denmark. International Journal of Medical Informatics, 129:312 – 317,
2019.

[44] William J Gordon and Christian Catalini. Blockchain technology for healthcare:
facilitating the transition to patient-driven interoperability. Computational and
structural biotechnology journal, 16:224–230, 2018.

[45] Steven D Pearson and Lisa H Raeke. Patients’ trust in physicians: many theories,
few measures, and little data. Journal of general internal medicine, 15(7):509–513,
2000.

[46] T. Chang and D. Svetinovic. Improving bitcoin ownership identification using
transaction patterns analysis. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 50(1):9–20, 2020.

[47] R Yavatkar, D Pendarakis, and R Guerin. Rfc 2753–a framework for policy-based
admission control, ieft, internet engineering task force std., january 2000.

[48] Etherscan. Etherscan block explorer. Online at https://etherscan.io/ , 2020.

[49] Etherscan. Etherscan block explorer - ethereum average gas price chart, csv
export. Online at https://etherscan.io/chart/gasprice, 2020.

[50] Etherscan. Etherscan block explorer - ether daily price (usd) chart, csv export.
Online at https://etherscan.io/chart/etherprice, 2020.

[51] Etherscan. Etherscan block explorer - ethereum average gas limit chart. Online
at https://etherscan.io/chart/gaslimit, 2020.

https://etherscan.io/
https://etherscan.io/chart/gasprice
https://etherscan.io/chart/etherprice
https://etherscan.io/chart/gaslimit

REFERENCES 105

[52] Etherscan. Etherscan block explorer - ethereum average block time chart. Online
at https://etherscan.io/chart/blocktime, 2020.

[53] Thomas G Weiser, Alex B Haynes, George Molina, Stuart R Lipsitz, Micaela M
Esquivel, Tarsicio Uribe-Leitz, Rui Fu, Tej Azad, Tiffany E Chao, William R
Berry, et al. Size and distribution of the global volume of surgery in 2012. Bull
World Health Organ, 94(3):201–209F, 2016.

[54] Nicole JE Horevoorts, Pauline AJ Vissers, Floortje Mols, Melissa SY Thong, and
Lonneke V van de Poll-Franse. Response rates for patient-reported outcomes
using web-based versus paper questionnaires: Comparison of two invitational
methods in older colorectal cancer patients. J Med Internet Res, 17(5):e111, May
2015.

[55] The Linux Foundation. Hyperledger fabric. Online at https://www.hyperledger.
org/projects/ fabric, 2020.

[56] Corda. Corda - open-source blockchain platform for business. Online at
https://www.corda.net/ , 2020.

[57] Sherman S. M. Chow, Siu-Ming Yiu, and Lucas C. K. Hui. Efficient identity based
ring signature. In John Ioannidis, Angelos Keromytis, and Moti Yung, editors,
Applied Cryptography and Network Security, pages 499–512, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

[58] Bassam El Khoury Seguias. Monero’s building blocks part 10 of 10–stealth
addresses. 2018.

[59] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on
ethereum smart contracts sok. In Proceedings of the 6th International Conference
on Principles of Security and Trust - Volume 10204, pages 164–186, New York,
NY, USA, 2017. Springer-Verlag New York, Inc.

[60] Ethersphere. Swarm storage and communication infrastructure for a sovereign
digital society. Online at https://ethersphere.github.io/swarm-home/, 2020.

[61] Juan Benet. Ipfs-content addressed, versioned, p2p file system. arXiv preprint
arXiv:1407.3561, 2014.

https://etherscan.io/chart/blocktime
https://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/projects/fabric
https://www.corda.net/

AppendixAApplication Guide for Users

This guide shows how to use the implemented UI for our proof-of-concept. We first
showcase the standard functionality used across all pages, such as the overall user
interface and key management. Afterward, we walk through workflows from the
perspective of each of the individual stakeholders. We refer the reader to Appendix
B for setting up the application for local testing.

A.1 The User Interface

Figure A.1 shows the overall user interface, which is common for all stakeholder
workflows. The left side shows a navigation sidebar, which has the following sections
as numbered in the figure:

1. Section for navigating to the panels relevant to the authority stakeholder

2. Section for navigating to the panels relevant to the License Provider and license
issuer stakeholder

3. Section for navigating to the panels relevant to the Treatment Provider
stakeholder

4. Section for navigating to the panels relevant to the healthcare worker stakeholder

5. Section for navigating to the panels relevant to the patient stakeholder

6. Section for navigating to the panels relevant to key management, relevant to
all stakeholders

7. Selection button for selecting the current active Ethereum keypair (ECDSA
keypair) to be used for actions in the UI. Relevant for all stakeholders

8. Toggle for admin mode. This toggle gives access to an account, which is the first
default authority, giving a baseline allowing the user to expand the hierarchy

107

108 A. APPLICATION GUIDE FOR USERS

Figure A.1: An overview of sidebar in the proof-of-concept UI

from there. This account has an initial balance of 100ETH, which can be sent
to other accounts, so they are able to create transactions.

A.2 Key Management

As this proof-of-concept application is technical, we expose functionality for managing
the ECDSA keys used for accounts and blockchain transactions during the application
run-time. Figure A.2 shows the panel intended for this purpose. This panel allows
users to create and view key-pairs. These keys are either stored on the server or
locally, dependant on the intent. One can also use the panel to send Ether from one
account to another.

Key Management Functionality Overview

Figure A.2 shows the key management panel with the following sections:

1. The button to click to access the key management panel

A.2. KEY MANAGEMENT 109

Figure A.2: Overview of the key management panel of the UI

2. The panel to send Ether from one account to another

3. The section to view current keys of all formats. This shows fields such as
address and balance. If a local key is shown, the private key will be used. If
present, an access token to use the key on the back-end is shown.

4. A card which can be clicked to create new keys with a selection of types.

Sending Ether

Section 2 in Figure A.2 allows all stakeholders to send funds between the keys to
which they have access. Figure A.3 shows how the interaction with the panel, where
the following steps are taken to send funds:

1. Select the key to send funds from

2. Select the amount of Ether to send

110 A. APPLICATION GUIDE FOR USERS

Figure A.3: The send funds panel in use within the UI

Figure A.4: The process for selecting a key in the UI

3. Select the key to send funds to

4. Click to send the send funds transaction to the blockchain.

This will create a new send transaction on the blockchain platform. Once the
transaction is added to the ledger, the user may refresh the page to see the new
balances.

Selecting a Key

In any panel, it is possible to select the key which is used. This allows the user to get
data which is related to the key, and for transactions to be signed by the selected
key. Figure A.4 shows how a user can select among all stored keys.

1. Click the Select active key button at the bottom of the side panel.

2. Select a key type from the list which appeared.

A.3. THE AUTHORITY STAKEHOLDER 111

Figure A.5: The process for creating a key in the UI

Create a Key

There are three different keys which can be created in the application:

– Server side keys are generated on the back-end. These keys are associated
with an access token, which allows the user to use them. These keys are, for
simplicity, used in contexts where the key management is of low importance to
the quality attributes in the system.

– Local keys these keys are locally generated, where both the secret and public
key is isolated to the local client.

– Patient keys these keys are locally generated, and only stored on the client.
However, during creation, the client and server go through a registration
procedure where the client proves ownership of the key to the back-end. The
client gets an access token, which can be used for access control to prove the
patient’s identity in some scenarios.

Figure A.5 shows the process for creating a key. This process is initialized by pressing
the card shown in section 4 of Figure A.2. The user first selects the type of key they
want to generate, then provide a name for the key, and finally click the respective
generate button.

A.3 The Authority Stakeholder

The authority is the top level in our trust hierarchy. As an authority, two main
workflows are present. The first is participating in the distributed governance protocol.
When doing so, authorities may propose to add new authorities or to remove existing
ones. All authorities vote on these proposals, and if a proposal gets a majority vote,

112 A. APPLICATION GUIDE FOR USERS

Figure A.6: The main panel for managing authorities in the UI

they can be enacted. The second workflow is adding trust in the stakeholders beneath
authorities in the trust hierarchy - treatment providers, license issuers, and license
providers.

Managing Authorities

Figure A.6 show the main panel for viewing and managing authorities. All the data
in this panel originates directly from the blockchain ledger. The panel includes the
following section:

1. A button allowing the authority to add proposals for adding or removing new
authorities. Figure A.7 shows the popup which appears once clicked. The user
must input the account address of the subject in the proposal and select the
proposal type.

2. A section listing all authorities

3. A section listing all proposals which are currently active on the blockchain
ledger. Each row contains a summary of the proposal. The rows are clickable,
which will forward the user to a page with further details.

A.3. THE AUTHORITY STAKEHOLDER 113

Figure A.7: The popup for adding new proposals as authority in the UI

Voting on Proposals

By clicking on the rows in section 3 of Figure A.6, the user gets forwarded to a page
showing further details for the proposal. This panel is shown in Figure A.8 and
contains the following sections:

1. A section with two buttons, allowing the user to vote on the proposal if they
already have not. If the proposal has a majority vote, the user can click the
second button to enact the proposal, triggering the action to be taken in the
smart contract on the blockchain.

2. A section showing all the available details for the proposal.

3. A section showing the authorities which have voted on the proposal.

Managing Trust in Treatment Providers

Once we have access to a trusted authority, we can build a trust hierarchy in treatment
providers. The page treatment providers under the Authority section of the sidebar
contains this functionality. The page is shown in Figure A.9, and it contains the
following features:

1. This section allows us to see all the treatment providers in which we have
placed trust.

2. This section allows us to see all the treatment providers which we have not
trusted.

3. Each card contains address information and if they are trusted. If a treatment
provider is listed as trusted, it means that another trusted authority has trust
in them.

114 A. APPLICATION GUIDE FOR USERS

Figure A.8: A page in the UI for managing proposals related to distributed
governance protocol for authorities.

4. Untrusted treatment providers are accounts who have registered themselves as
a treatment provider but are yet to be trusted by an authority.

5. This button allows authorities to add trust in the provider. This trust should
be rooted in a real-world process, such as an application process and an audit.

6. If an authority ever wants to remove a trust relationship in a treatment provider,
they may remove it with this button. This should also be rooted in a real-world
event, such as a bankruptcy or uncovered malpractice.

Managing Trust in License Issuers

Figure A.10 shows the page for managing trust in license issuers as an authority.
The page follows the same flow and usage as presented for treatment providers in
section A.3

A.3. THE AUTHORITY STAKEHOLDER 115

Figure A.9: Page in the UI for authorities to manage and view treatment providers
and manage their trust in them.

Figure A.10: Page in the UI for authorities to manage and view license issuers,
and manage their trust in them.

116 A. APPLICATION GUIDE FOR USERS

Figure A.11: Page in the UI for authorities to manage and view license providers
and manage their trust in them.

Managing Trust in License Providers

Figure A.11 shows the page for managing trust in license providers as an authority.
The page follows the same flow and usage as presented for treatment providers in
section A.3

A.4 The License Issuer Stakeholder

License issuers are organizations that can issue medical licenses to practitioners.
Examples of such organizations include units within national healthcare authorities.
License issuers can also register existing licenses to them, as may be the case of
practitioner mobility. A license issuer must be trusted by at least one authority. If
License issuers misbehave, the trusting authority can remove their trust in them,
thus preventing them from issuing new licenses on the blockchain. In this case, all
licenses registered with them will become untrusted.

License Issuer Registration

The first action required by license issuers is to perform a registration step. When
performed, the selected account (key-pair) will be registered as a license issuer,

A.4. THE LICENSE ISSUER STAKEHOLDER 117

Figure A.12: Page in the UI for accounts to register themselves as a license issuer
on the blockchain.

allowing authorities to see it and possibly place trust in it. Figure A.12 shows the
treatment provider page when the user has yet to register. The page includes the
following content:

1. A panel the current status of the account in the context of being a license
issuer, here presented when the issuer is yet to register.

2. A notification showing the current status of the license issuer

3. A button allowing the selected account to register as a license issuer.

License Issuer Page

Once registered, the license issuer gets access to the full overview page of the license
issuer. This page can be seen in Figure A.13. This page allows license issuers to see
their current status as trusted/untrusted, issue licenses, see all licenses they trust,
and all they do not trust. This functionality is present on the page in the following
manner:

118 A. APPLICATION GUIDE FOR USERS

1. A panel showing the status of the license issuer. The notifications will show if
the license issuer is registered and if an authority trusts the issuer.

2. License holders can propose to get their license moved to a new issuer. This
can be the case during practitioner mobility.

3. Pressing this button allows the license issuer to approve a move of a license to
themselves. This places the license under their trust domain.

4. This panel allows the license issuer to issue new licenses to accounts.

5. Pressing this button will create a new license for the given account address if
they do not hold one from before. This creates a transaction on the blockchain,
which will be public.

6. An overview of all licenses which are issued and trusted by the license issuer.
Each card shows all available information about each license holder, including
their trust status.

7. An overview of all licenses who are not issued license issuer. Each card shows
all available information about each license holder, including their trust status.

Keep in mind that all actions are available to any registered license issuer, including
issuing licenses. However, the issued licenses will not be trusted unless the license
issuer themselves are trusted.

A.5 The License Provider Stakeholder

License providers are organizations who are the main health-service associated with
license holders and are responsible for confirming the occupation of a healthcare
worker. Examples of such organizations include hospitals and clinics. A license must
be associated with a trusted license provider to be trusted. If License Providers
misbehave, the trusting authority can remove trust in them, thus preventing their
licenses from being trusted.

License Provider Registration

As is the case with license issuers, license providers must also register themselves
first on the blockchain. This is done in a similar manner as shown in section A.4.
The registration page is shown in Figure A.14. The page contains the following
functionality:

1. This section shows the current status of the license provider. In this context, it
only shows that the account is not registered as a license provider.

A.5. THE LICENSE PROVIDER STAKEHOLDER 119

Figure A.13: Overview page in the UI for license issuers.

2. Clicking this button creates a transaction registering the selected account as a
license provider.

License Provider Page

Once registered, the license provider gets access to the full overview page of the
license provider. This page can be seen in Figure A.15. This page allows license
provider to see their current status as trusted/untrusted, see all licenses they trust,
and all they do not trust. This functionality is present on the page in the following
manner:

1. A panel showing the status of the license provider. The notifications will show if
the license provider is registered and if an authority trusts the license provider.

2. License holders can propose to get their license moved to a provider. This can
be the case when practitioners change their main employer.

3. Pressing this button allows the license provider to approve a move of a license
to themselves. This places the license under their trust domain.

120 A. APPLICATION GUIDE FOR USERS

Figure A.14: Page in the UI for accounts to register themselves as a license provider
on the blockchain.

4. An overview of all licenses which are trusted by the license provider. Each card
shows all available information about each license, including their trust status.

5. An overview of all licenses that are not directly trusted by the license provider.
Each card shows all available information about each license holder, including
their trust status.

A.6 The Treatment Provider Stakeholder

Treatment providers are responsible for facilitating the interaction between the patient
and the healthcare worker. It stores information about treatments and publishes
summaries from these to the blockchain. To achieve this, the treatment provider
hires a set of healthcare workers who can interact through them. They also notify
patients about treatments pending their approval.

Treatment Provider Registration

Accounts must first and foremost register themselves as treatment providers on the
blockchain. This is done via the panel shown in Figure A.16, containing the following

A.6. THE TREATMENT PROVIDER STAKEHOLDER 121

Figure A.15: Overview page in the UI for license providers

parts:

1. The button to click in the sidebar to access the panel.

2. A section showing information about the treatment provider

3. A button allowing the selected account to register as a treatment provider.

Treatment Provider Hires and Treatments

Once registered, the treatment provider becomes discoverable by authorities, which
in turn can add their trust in them. This procedure has been shown previously in
section A.3. Once trusted, the treatment provider can get access to the full page.
An example of this is shown in in Figure A.16. This page contains the following
additional parts:

1. A section for managing healthcare workers associated with the treatment
provider.

2. A section showing the treatment providers associated with the treatment
provider.

122 A. APPLICATION GUIDE FOR USERS

Figure A.16: Registration page in the UI for treatment providers

3. A section for associating new healthcare workers with the treatment provider.

4. The button to press for adding a new healthcare worker association.

5. A section for showing information about treatments delivered via the treatment
provider.

A.7 The Healthcare Worker Stakeholder

Healthcare workers are the main subject of our platform. They are responsible for
delivering care to patients. To be able to practice, healthcare workers must have
a valid license issued to them, be trusted by a license provider, and be hired by a
treatment provider. As time progresses, healthcare workers get associated with their
issued treatments, which, in turn, is evaluated by the patient.

Getting a License

Figure A.18 shows the license management panel for healthcare workers. As healthcare
workers cannot register themselves, a limited version is shown if no license is held.
The panel has the following sections:

1. The button to click in the sidebar to access the panel.

A.7. THE HEALTHCARE WORKER STAKEHOLDER 123

Figure A.17: Overview page in the UI for treatment providers

2. A section showing if the account has a trusted license.

3. A section showing information about the current association to license providers
and issuers.

License Overview

Healthcare workers cannot register themselves. Instead, they have to share their
account address with a License Issuer, who can issue a license to the healthcare
worker. This process is show in previouslyA.4. Once registered, the healthcare worker
can access the full license management page. This is shown in Figure A.19. The
following additional sections are present:

124 A. APPLICATION GUIDE FOR USERS

Figure A.18: Page in the UI for healthcare workers without an issued license

1. A section showing information about the current license issuer associated with
the license.

2. A label showing if an authority trusts the license issuer.

3. An input field for proposing a change of license issuer. The address of the
issuer must be provided.

4. A button for submitting the proposal to change license issuer.

5. A section showing information about the current license provider associated
with the license.

6. An input field for proposing a change of license provider. The address of the
provider must be given.

7. A button for submitting the proposal to change the license provider.

To become trusted, the license provider must first submit a proposal to be associated
with a license provider. Once proposed, the given license provider must approve it.
This procedure has been shown previously in section A.5. Once associated with a
trusted provider, the page will transition into the view, as shown in Figure A.20,
where we can see that 1) The license is trusted and 2) is associated with a trusted
license provider.

A.7. THE HEALTHCARE WORKER STAKEHOLDER 125

Figure A.19: Page in the UI for healthcare workers who have received a license

Managing Treatments

The other main panel for healthcare workers is shown in Figure A.21. This panel
allows the healthcare worker to manage treatments for patients. The panel includes
the following parts:

1. The button to click in the sidebar to access the panel.

2. A section showing the status of the selected accounts license.

3. A section for selecting the treatment provider to issue the treatment though.

4. A selection menu where the healthcare worker can choose between all their
associated treatment providers.

5. A section for issuing treatments to patients.

6. A input box for the address of the patient.

7. A input box for the description of a treatment.

126 A. APPLICATION GUIDE FOR USERS

Figure A.20: Page in the UI for healthcare workers who have received a license
and is trusted by a license provider

8. A button that submits the treatment to the treatment provider, which in turn
will send it to the patient for approval.

9. A section showing the treatments which are pending the healthcare worker’s
approval.

Approving Treatments

Once treatments are approved by the patient and submitted to the blockchain, the
healthcare worker may give final approval. Figure A.22 shows the approve treatments
section if such treatments are present. The healthcare worker client will validate
that the complete treatment as received from the treatment provider corresponds
to the summary of the treatment as published on the blockchain. This is done by
comparing the hash of the full treatment.

A.7. THE HEALTHCARE WORKER STAKEHOLDER 127

Figure A.21: Page in the UI for managing treatments by healthcare workers

Figure A.22: Panel in the UI for approving treatments for healthcare workers

128 A. APPLICATION GUIDE FOR USERS

Figure A.23: Overview of journal page for patients in the UI

A.8 The Patient Stakeholder

The final stakeholder is the patient. They are the subject in treatments and can
evaluate them after their completion.

Treatment Management for Patients

To get an overview of all proposed, pending, and completed treatments, the patient
will use the panel, as shown in Figure A.23. This contains the following parts:

1. The button to click in the sidebar to access the panel.

2. Section showing all treatments pending the approval of the patient.

3. Button for approving a given treatment.

4. Section showing all treatments pending approval from a healthcare worker.

5. Section for showing all previous treatments which the patient has gone through.

6. Button for evaluating the given treatment.

A.8. THE PATIENT STAKEHOLDER 129

Figure A.24: Panel in the UI, allowing patients to evaluate treatments

Figure A.25: Panel in the UI for showing the treatments evaluated by the patient

Evaluating a Treatment

Once a treatment is approved on the blockchain by a healthcare worker, the patient
can evaluate it. This is done by pressing button 6) in Figure A.23, which will show
the panel in Figure A.24. Here, the patient can give a simple metric for evaluating
the treatment. Once evaluated, the treatment is marked as such in the overview
panel, as shown in Figure A.25

130 A. APPLICATION GUIDE FOR USERS

Figure A.26: Page in the UI for showing an overview of healthcare workers with a
summary of metrics

A.9 Healthcare Worker Overview

The final panel is accessible for any user is the healthcare worker overview. The
panel does not require an account for access. The panel, as shown in Figure A.1
shows an overview of all healthcare workers, along with a summary of their formal
authority, experience, and competence. Authority trust is based on their current
license status, showing if they are trusted or not. Experience is captured as the
number of treatments approved. Finally, competence is given by the average rating
from patients on the given treatments.

If the user wants further details about the underlying data for each healthcare worker,
they can press the respective practitioner details button. This will show the panel in
Figure A.27.

A.9. HEALTHCARE WORKER OVERVIEW 131

Figure A.27: Page in the UI for showing details about all data related to a
healthcare worker

AppendixBApplication Guide for
Administrators

We have developed a fully working proof-of-concept application for evaluating the
architecture. During the application development process, we tried to keep usability
for administrators in mind, where we tried to make the process of administering and
running the application to be easy. This will allow for further development of the
application, and allows third parties to test and set up the application easily. This
appendix explains how to get hold of the code, how the codebase is structured, and
how to get up running. We first cover a simple setup guide using docker-compose for
testing. Afterward, we show how to set up the services manually, allowing for an
easier development process.

B.1 The Codebase

All the code for the software application is found in the GitHub repository1. The
codebase is a monorepo divided into folders representing different services. ganache
is a single-node Ethereum network intended for testing purposes. contracts is a
service containing the smart contracts and logic for compiling, testing, and deploying
these to the blockchain. providerService is a spring-boot application providing a
REST API. webapp serves a client-side rendered web application. The structure for
how these services interact is shown in figure B.1. These servies should be started
in the following order: ganache, contracts, providerService and webapp. In
addition to the code, the repository contains a License and some documentation.

B.2 Setup with Docker

A docker-compose.yml file is provided at the root of the project. This file is
designed to build and start all services in the correct order automatically. Running
docker-compose up in the project root should be sufficient.

1https://github.com/jarensaa/transparent-healthcare, commit 34c09d9

133

https://github.com/jarensaa/transparent-healthcare

134 B. APPLICATION GUIDE FOR ADMINISTRATORS

Front-end Back-end Blockchain

Contract deployer

Figure B.1: An overview of the run-time presence for our implemented services

B.3 Starting Services Manually

When developing on the application, you probably want to run the services manually.
To do this, follow this procedure:

1. Open a terminal window and navigate to the ganache folder.

2. Run yarn start

3. Open another terminal window and navigate to the contracts folder.

4. Run yarn start

5. Open another terminal window and navigate to the providerService folder.

6. Run ./gradlew bootRun

7. Open another terminal window and navigate to the webapp folder.

8. Run yarn start

B.4 Accessing the Application

By default the web application is accessible at http://localhost:3000 and the
API is accessible at http://localhost:8080

AppendixCSystem Testing Runbook

To validate that the system meets the functional requirements specified, we perform a
system test. This test is performed by manually performing actions in the web
application. This appendix presents a runbook with a step-by-step guide for
reproducing this test. We refer the reader to the user guide in Appendix A for
specifics on how each action is performed.

Application Setup

1. Clone the open-source repository1

2. Build the application by running docker-compose build

3. Start the application by running docker-compose up

4. Visit http://localhost:3000 to load the web application

Setup Phase

We setup all the accounts and keys required for the test:

1. Ensure that the admin mode toggle found at the bottom of the sidebar is
enabled.

2. Visit the panel Key Management > Keys and funds

3. Generate two keys stored on the server named Authority and Secondary
Authority

4. Generate a key stored on the server named License issuer

5. Generate a key stored on the server named License provider

1https://github.com/jarensaa/transparent-healthcare, commit 34c09d9

135

https://github.com/jarensaa/transparent-healthcare

136 C. SYSTEM TESTING RUNBOOK

6. Generate a key stored on the server named Treatment provider

7. Generate three keys stored on the server named Healthcare worker <1,2,3>

8. Generate four patient (local) keys named Patient <1,2,3,4>

9. Send 0.1 in Ether from the Original Authority Key to the Authority key,
License issuer key, License provider key, Treatment provider key and
healthcare worker keys.

Registration Phase

The generated keys must register for their given roles:

1. Select the License issuer in the selection menu at the bottom of the sidebar.

2. Visit the Licenses > Issuer panel.

3. Click the Register button.

4. Select the License provider in the selection menu at the bottom of the
sidebar.

5. Visit the Licenses > Provider panel.

6. Click the Register button.

7. Select the Treatment provider in the selection menu at the bottom of the
sidebar.

8. Visit the Treatment Provider > Hires and treatments panel.

9. Click the Register button.

Adding an Authority

We first want to add our new authorities to the consortium of trusted authorities:

1. Note down the addresses of Authority and Secondary Authority

2. Select the Original Authority Key in the selection menu at the bottom of
the sidebar.

3. Visit the Authority > Authority panel.

4. Click the Add proposal button.

137

5. Paste in the address of Authority, select Add authority and click Submit
proposal

6. Wait until the proposal appears (Should take a few seconds) and click it.

7. Click the Enact proposal button.

8. Go back to the Authority > Authority panel.

9. Click the Add proposal button.

10. Paste in the address of Secondary Authority, select Add authority and click
Submit proposal

11. Select the Authority in the selection menu at the bottom of the sidebar.

12. Wait until the proposal appears (Should take a few seconds) and click it.

13. Click the Vote on proposal button.

14. Click the Enact proposal button.

15. Go back to the Authority > Authority panel.

16. The list of authorities should now show three addresses.

Authority Setup Phase

We set up the trust relationships from the Authority:

1. Select the Authority in the selection menu at the bottom of the sidebar.

2. Visit the Authority > Treatment providers panel.

3. Add trust in shown treatment provider

4. Visit the Authority > License issuers panel.

5. Add trust in shown license issuer

6. Visit the Authority > License providers panel.

7. Add trust in shown license provider

138 C. SYSTEM TESTING RUNBOOK

Issuing Licenses

1. Select the License issuer in the selection menu at the bottom of the sidebar.

2. Visit the Key management > Keys and funds panel and note down the
addresses of the healthcare workers.

3. Visit the Licenses > issuer panel.

4. For each healthcare worker, write the address into the input box and press
Issue license to address.

Associating licenses with license providers

For each healthcare worker, do the following procedure:

1. Select the healthcare worker in the selection menu at the bottom of the
sidebar.

2. Visit the Key management > Keys and funds panel.

3. Visit the Practitioner view > Manage License panel.

4. In the Your license provider section, enter the address of the treatment
provider and click Set provider.

Then, access the transfer to the license provider:

1. Select the license provider in the selection menu at the bottom of the
sidebar.

2. Visit the Licenses > Provider panel.

3. Accept all the proposed license moves.

Treatment Provider Setup

1. Select the Treatment provider in the selection menu at the bottom of the
sidebar.

2. Visit the Treatment provider > Hires and treatments panel.

3. Go to the section Hire a new practitioner.

4. For each healthcare worker, enter their address and press the hire button.

139

Issuing Treatments to Patients

Repeat the following procedure as many times as you want:

1. Select the key of a Healthcare worker in the selection menu at the bottom
of the sidebar.

2. Visit the Practitioner view > Treatments panel.

3. Go to the Choose your treatment provider section, and select the treatment
provider from the selection menu.

4. Go to the Issue treatment to a patient section, type in the patient address,
a description (of at least 10 characters in length) of the treatment and press
issue treatment.

5. Select the key corresponding to the patient which the treatment was issued to
in the selection menu at the bottom of the sidebar.

6. Visit the Patient > My journal panel.

7. Approve the proposed treatment in the Treatments waiting for your
approval section.

8. Select the key of the same healthcare worker as in step 1).

9. Visit the Practitioner view > Treatments panel.

10. Go to the Treatments you can approve section and click approve treatment

11. Select the key of the same patient as in step 5)

12. Visit the Patient > My journal panel.

13. Go to the Completed treatments panel and click the Evaluate treatment
button.

14. Drag the slider to a random rating, and press the Publish evaluation button.

AppendixDVerifyMed Conference Paper

The work in this thesis resulted in a conference paper describing the VerifyMed
platform. The paper was submitted to the 2nd Blockchain and Internet of Things
Conference (BIOTC 2020), to be held in Singapore from 8th to 10th of July 2020.
After being reviewed by international experts in related fields, the paper was accepted
for presentation. The remainder of this appendix contains the final version of the
paper.

141

VerifyMed - A blockchain platform for transparent trust in
virtualized healthcare: Proof-of-concept

Jens-Andreas Hanssen Rensaa
Dep. of Inf. Sec. and Comm. Techn.

Norwegian University of Science and
Technology, (NTNU)

jens.rensaa@gmail.com

Danilo Gligoroski
Dep. of Inf. Sec. and Comm. Techn.

Norwegian University of Science and
Technology, (NTNU)
danilog@ntnu.no

Katina Kralevska
Dep. of Inf. Sec. and Comm. Techn.

Norwegian University of Science and
Technology, (NTNU)
katinak@ntnu.no

Anton Hasselgren
Dep. of Neuromedicine and

Movement Science
Norwegian University of Science and

Technology, (NTNU)
anton.hasselgren@ntnu.no

Arild Faxvaag
Dep. of Neuromedicine and

Movement Science
Norwegian University of Science and

Technology, (NTNU)
arild.faxvaag@ntnu.no

ABSTRACT
Patients living in a digitized world can now interact with med-
ical professionals through online services such as chat applica-
tions, video conferencing or indirectly through consulting services.
These applications need to tackle several fundamental trust issues:
1. Checking and confirming that the person they are interacting
with is a real person; 2. Validating that the healthcare professional
has competence within the field in question; and 3. Confirming that
the healthcare professional has a valid license to practice. In this
paper, we present VerifyMed - the first proof-of-concept platform,
built on Ethereum, for transparently validating the authorization
and competence of medical professionals using blockchain technol-
ogy. Our platform models trust relationships within the healthcare
industry to validate professional clinical authorization. Further-
more, it enables a healthcare professional to build a portfolio of
real-life work experience and further validates the competence by
storing outcome metrics reported by the patients. The extensive
realistic simulations show that with our platform, an average cost
for creating a smart contract for a treatment and getting it approved
is around 1 USD, and the cost for evaluating a treatment is around
50 cents.

CCS CONCEPTS
• Applied computing → Health informatics; • Security and
privacy→ Social aspects of security and privacy.

KEYWORDS
Blockchain, Healthcare, Trust, Ethereum

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
BIOTC 2020, July 08–10, 2020, Singapore
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

ACM Reference Format:
Jens-Andreas Hanssen Rensaa, Danilo Gligoroski, Katina Kralevska, Anton
Hasselgren, and Arild Faxvaag. 2020. VerifyMed - A blockchain platform for
transparent trust in virtualized healthcare: Proof-of-concept. In BIOTC 2020:
2nd Blockchain and Internet of Things Conference, July 08–10, 2020, Singapore.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
The healthcare industry is currently ongoing through a digital trans-
formation, and innovations within information, and communica-
tion technologies have enabled the healthcare industry to improve
the delivery of health services. Similar to Industry 4.0, Health-
care 4.0 [20] aims to use modern digital technologies to enable a
virtualized healthcare environment by providing distributed and
patient-centered care delivery. This virtualization is expected to
accelerate with the emergence of next-generation mobile network
strategies (5G) and artificial intelligence (AI), enabling virtualized
care services to be executed in real-time and performed based on
real-time data collection from anywhere at any time.

The transition to virtualized health services poses some chal-
lenges; one of them is providing trust. In the current healthcare
environment, most patients meet physically with healthcare work-
ers in accredited healthcare institutions. However, when the meet-
ing is moved to a virtualized environment, this inherited trust is
decreased. Furthermore, building up such a trust relationship is
even harder if the caregiver is an AI health worker. The health
domain, therefore, needs new solutions to enable an establishment
of trust between patients and healthcare workers in a virtualized
environment.

Blockchain is a maturing technology with properties that can
provide trust within a virtualized health domain as it allows mu-
tually mistrusting entities to interact without the presence of a
central trusted third party. While initially intended for the financial
domain, the addition of smart contracts allow for general purpose
applications to be made. By creating and deploying smart contracts,
we can build models that capture the authorization and the expe-
rience of a healthcare worker directly on the blockchain. These
models can then be used to establish trust in a patient-caregiver
encounter.

142 D. VERIFYMED CONFERENCE PAPER

BIOTC 2020, July 08–10, 2020, Singapore Rensaa, et al.

When it comes to building network applications that capture
and nourish the complex relations of trust among different entities,
a related area is the area of distributed database systems. More
than a quarter of a century ago, the trust-management approach to
the authentication and access control of distributed-systems was
proposed in [3]. It addressed the inefficiency and inadequacy of
traditional authorization mechanisms. However, a real renaissance
in the trust-management approach of distributed database systems
is happening with the introduction of blockchain technology. As
described in [17], in the last decade, wewitnessed amutual influence
and development between database technology and the blockchain
technology. In particular, the blockchain technology has influenced
the introduction of new functionalities in some modern databases
such as immutability, privacy, and censorship resistance. Those
blockchain functionalities are precisely the ones that we valued the
most in this work.

Our contribution:We describe the design rationale, implemen-
tation and evaluation of VerifyMed - a proof-of-concept for trans-
parently validating the authorization and competence of healthcare
workers by using blockchain technology1.

First, we identify the issues related to data sharing and trust
establishment and maintenance in a virtualized healthcare envi-
ronment. Second, we define the requirements that the proposed
application has to meet. These requirements are mapped to solu-
tions provided with blockchain and smart contracts. Last but not
least, we present the proposed architecture, its implementation
and evaluation. To our knowledge, this is the first proof-of-concept
designed to enhance trust in a virtualized healthcare environment
by utilizing blockchain technology.

We propose three types of evidences for building trust in a vir-
tualized healthcare environment such as evidence of authority,
evidence of experience and evidence of competence. Our design
uses the public Ethereum blockchain platform, where transactions
cost some amount of cryptocurrency. We evaluate the performance
of our platform in terms of this cost.
2 RELATEDWORK
Extensive research on the use-cases of blockchain within the health
domain has been done in recent years [1, 10, 13]. The technology is
generally proposed as a solution to the data management problems
within the health domain, and it is shown as especially well suited
for the data sharing problems. These problems relate to challenges
with interoperability, security and mobility. The majority of the
research on blockchain in healthcare has focused on managing
electronic health records [10].

MedRec[2] is a proof-of-concept application that relies on the
existing data-infrastructure within the healthcare domain. It uses
blockchain as a public registry for data sharing and access con-
trol of Electronic Medial Records (EMRs). The registry is used to
store a simple mapping between a pseudonymous patient identifier,
healthcare providers and pointers to EMRs. Overall, this architec-
ture allows patients and organizations to locate and access data
from a range of providers given a patient’s consent. Ancile[5] is
a system for controlling access to EMRs, and tries to solve the
same problem as MedRec. It improves the previous solutions by

1As an online addition to this article, the source code and instructions for setting up
the platform are available at https://github.com/jarensaa/transparent-healthcare

including a key-management mechanism for symmetric keys to
encrypt the data stored at providers. The system is designed for
a permissioned Ethereum-based blockchain, but does not specify
the underlying platform further. Permissions for access and par-
ticipation in the blockchain are governed through a distributed
governance mechanism where a pool of voter nodes controls these
permissions.

Reference [23] defines a set of metrics which can be used for
the evaluation of blockchain applications within the health do-
main. That reference also describes some fundamental principles
which should be applied when creating decentralized applications.
Although the work is directed towards the American Health In-
surance Portability and Accountability Act, the framework can be
generalized to a set of specific requirements that can be applied
to the European setting. References [4, 8, 15] focus on establish-
ing trust in healthcare through blockchain, but they only present
conceptual analysis and do not include a practical implementation,
design or proof-of-concept.
2.1 Using blockchain for trust in healthcare
To ensure that evidence for a health-workers trust is credible, we
can use a blockchain platform for their storage. Blockchains offer
data storage, which is immutable and highly distributed, making
them easy to access. Blockchain technology has been coined as a key
enabling technology for better data-sharing and interoperability
within the healthcare industry [9]. It can potentially enable patients
and healthcare institutions to share, index and control access to
data in a fully distributed manner. Blockchain platforms are also, by
its nature highly available, and easily accessible by all participants
in the blockchain network.

Through the means of smart-contracts, we can create a dis-
tributed application running directly on a blockchain platform.
These smart-contracts can be used to store the proofs of a health
worker’s authority, experience and competence while incorporat-
ing access control mechanisms that ensure that the published data
is credible. The data uploaded via these contracts is immutable,
resulting in the proofs of trust that are non-reputable. The non-
repudiation property denies any change to the proofs once pub-
lished, disabling health-workers to alter their proofs fraudulently.
Through the use of a public platform, data can be easily available
to patients and healthcare institutions, allowing them to validate
proofs on-demand.

The Ethereum blockchain is the most popular blockchain plat-
form to incorporate the concept of smart contracts [6]. As a con-
sequence, it offers a rich suite of developer tools, enabling rapid
prototyping and testing. It, therefore, offers a compelling value-
proposition for creating proof-of-concept applications. Although
a permissionless blockchain platform in nature, developers stand
free to implement their own permission structure within smart
contracts to limit how data can be published. Smart contracts on
the blockchain can interact with each other, enabling the creation
of complex architectures with a rich set of features.
2.2 Patient reported outcomes
One way to measure outcomes from a given treatment and clinical
recommendations is through Patient Reported Outcomes (PROs)
[21]. There are two standardized manners to measure PROs: Pa-
tient Reported Outcome Measures (PROMs) and Patient Reported

143

VerifyMed - A blockchain platform for transparent trust in virtualized healthcare: Proof-of-concept BIOTC 2020, July 08–10, 2020, Singapore

Experience Measures (PREMs) [12]. They, among other factors,
can measure the functional status associated with a treatment or
the healthcare which the patients have received. We have chosen
the latter to capture the patient experience metrics related to the
virtual interaction with the caregiver. These can, for example, be
satisfaction rates for patients’ experience with their treatment, the
health-worker or the virtual setting of the healthcare institution.
By creating a link from the healthcare worker to treatment to ex-
perience, we can create a model for healthcare worker experience
(number of treated cases) and competence (PREMs).

3 USED CRYPTOGRAPHIC COMPONENTS
VerifyMed uses the Ethereum blockchain [22] to store data about
trust relationships, treatments and evaluations within the health
domain. To achieve this, we rely on many cryptographic primitives.
Some are used directly, while others are key pieces to understand
the underlying workings of the Ethereum blockchain and the tools
used to interact with it. For the overall security of our platform, we
followed the design and engineering principles of applied cryptog-
raphy [19] and we assumed that all security features are inherited
from the Ethereum blockchain. While proving the security of some
particular and specific relations in our platform is an important
issue, in this proof-of-concept stage of the development, it was out
of the scope of our work. In that sense, since the purpose of this
paper is not to be a tutorial for the cryptographic concepts and
primitives that are used in blockchain, we refer an interested reader
to some systematization of knowledge publications such as [16]
and to follow the references there. Yet, we can say that VerifyMed
uses the following cryptographic primitives:
• Cryptographic hash functions (Ethereum uses the NIST approved
SHA-3 hash function [7]);
•Merkle trees (Ethereum uses a generalized form called Modified
Merkle Patricia Trees);
• The ECDSA digital signature scheme [11].

3.1 Smart contracts in Ethereum
The main intention of the Ethereum blockchain platform is to en-
able the creation of general-purpose decentralized applications.
The platform can be seen as a state-machine with a set of valid
transitions triggered by transactions. Each individual transaction
submitted to the blockchain alters the state through the function:

𝜎𝑡+1 = Υ(𝜎𝑡 ,𝑇) (1)
where𝜎 (i.e.𝜎0, 𝜎1, . . .) is the global state for the Ethereum blockchain
platform, often described as the world state. The function Υ is the
Ethereum state transition function, which produces a newworld state
based on the current world state and a transaction𝑇 . To ensure that
all nodes participating in the blockchain network can deduce the
same world state 𝜎 , they must all agree to a fixed ordering of trans-
actions 𝑆 = [𝑇0,𝑇1,𝑇2, ...]. Given that such an ordering is shared
and agreed upon, all nodes may deduce the same world state by
using the transition function over all of these transactions:

𝑆 = [𝑇0,𝑇1,𝑇2, ...] (2)
𝜎𝑡 = Υ(Υ(Υ(𝜎0,𝑇0),𝑇1),𝑇2)... (3)

The purpose of the blockchain ledger and consensus mechanisms
is to allow the nodes in the network to agree to such a transaction

order. The ledger follows a general structure where each block
contains a set of ordered transactions which are cryptographically
bound to the block via a root hash. With the introduction of blocks,
we must alter the world state update function:

𝐵𝑏 =(..., (𝑇𝑏1,𝑇𝑏2, ...), ...) (4)
𝜎𝑏 =Ω(𝐵𝑏 , Υ(Υ(Υ(𝜎𝑏−1,𝑇𝑏0),𝑇𝑏1),𝑇𝑏2)...) (5)

where 𝜎𝑏 is the world state after block 𝐵𝑏 is processed. The block 𝐵𝑏
contains the transaction set, along with the remaining data bound
to the block. The Block transition function Ω combines the state
changes from transactions and the block (e.g. rewards given to the
miner of the block) and generates a new world state 𝜎𝑏 .

The main differentiating factor of the Ethereum blockchain plat-
form in comparison to the popular Bitcoin platform is the expres-
siveness of the world state and the ability of users to create smart
contracts to utilize this expressiveness. Smart contracts allow users
to append their own programs to the blockchain ledger. These pro-
grams act like an additional state-machine on top of the existing
infrastructure, with their own set of valid transaction types.

The composition of the Ethereum blockchain platform follows
the same fundamental principles of the Bitcoin blockchain platform.
However, a fundamental understanding of details related to five
different concepts in Ethereum is required and we urge the reader
to study reference [22] for the following Ethereum concepts: 1.
Accounts; 2. Smart contracts; 3. Transactions; 4. Costs, and 5. The
Ethereum ledger construction.

4 DATA SHARING AND TRUST
ESTABLISHMENT IN VIRTUALIZED
HEALTHCARE ENVIRONMENT

A fundamental problem within the health domain is the low capa-
bility to share data between healthcare institutions and services.
This problem has multiple underlying root-causes, where each
can be addressed with a different individual solution. References
[10, 14] have defined four healthcare industry requirements where
blockchain can be a significant contributing factor to improvement.
Here we explain the same requirements but from a perspective of a
healthcare worker.

(1) Interoperability: Data is not organized in a way that is
easily shareable and transferable between institutions. In
particular, the data related to the healthcare worker is stored
in fragmented data stores where formats and access methods
vary from organization to organization. Building applica-
tions that can access and integrate all this data together to
form an evidence for trust is therefore challenging.

(2) Security:Asmore digital health data is produced and shared,
higher security requirements are imposed. Data providing an
evidence for the experience of a healthcare worker is stored
in context to patients. Security mechanisms such as access
control are therefore patient-centered, making it difficult to
access in the context of a health worker without manual
intervention.

(3) Data sharing: Due to interoperability and security require-
ments, it is difficult for patients and healthcare workers to
gain access to all their data in a unified view. As health-
care workers change employers, their data documenting

144 D. VERIFYMED CONFERENCE PAPER

BIOTC 2020, July 08–10, 2020, Singapore Rensaa, et al.

their work-history does not follow them. Thus, the evidence
of their work-history becomes increasingly fragmented be-
tween different organizations over time.

(4) Mobility: A patient traveling between countries, changing
services or switching their health domain should be able to
transfer his/her data from one health institution to another.
Likewise, practitioners should be able to transfer data re-
lated to their experience, credentials and practice between
institutions. The inability to share the work history of health-
care workers, may limit their ability to move across borders
and jurisdictions. Gaining formal certifications and licenses
can thus take a long time, reducing the overall efficiency of
the healthcare workers and increasing the costs related to
recruitment and on-boarding for healthcare institutions.

4.1 Trust in a virtualized environment
There is an inherent trust relationship between a patient and health-
care worker in the setting of a physical meeting in a healthcare
institution: The patient often trusts that the person in front of
him/her in a white coat is an authorised medical professional and
the healthcare worker trusts that the patient is whom he/she claims
to be, often verified with physical ID [18]. The same trust rela-
tionship could be extended into a virtualized environment when
the patient is talking with a practitioner that the patient already
knows from a previous physical setting, and the healthcare worker
knows that the patient is who he/she claims to be. Although in a
virtualized healthcare environment where the virtual interaction is
the first meeting, this same principle cannot be used. Thus, there
is a need for establishing such trust relationships in a virtualized
healthcare environment.

To enable trust in a virtualized world, the trustee must be pro-
vided with an evidence. This evidence is the ground that justifies a
trust relationship between the trustee and the trusted. In the context
of the patient-caregiver relationship, we can define the following
three major evidences that could enhance trusts:

(1) Evidence of authority: The healthcare workers must be
able to show that they have formal credentials allowing them
to practice as healthcare workers. They need a formal license,
and their background must be legitimate and approved.

(2) Evidence of experience: The healthcare workers will have
the possibility to verify their experience required to deal
with the specific health issue of the patient. As specialization
increases, this evidence will increasingly be an essential
ground for trust.

(3) Evidence of competence: In addition to being experienced
within the medical problem in question, the healthcare work-
ers should be able to show that they have previously deliv-
ered positive experiences to other patients. Thus, a metric
for patients satisfaction is another crucial evidence.

By making these evidences available to the patients, the grounds
for trust between the patient and the healthcare worker can be
established. However, designing such a solution is not trivial due to
the major requirements defined within the health domain: interop-
erability, security, data sharing and mobility. These requirements
make it challenging to create an application that works on top of

Figure 1: Interacting with the blockchain to gain trust in a
health worker

the existing organizational structure where data is fragmented over
different organizations with a diverse set of formats.

Making data about healthcare workers’ authority, experience
and competence transparent, available and immutable can be per-
ceived as a privacy issue for healthcare workers. However, this
structure also has some significant advantages for the healthcare
worker. Due to the availability of data, turnover, on-boarding and
mobility processes can be simplified due to the ability of employers
to perform efficient background checks related to their profession.
They can also have better visibility, providing a major incentive to
provide better care.

5 DESCRIPTION OF THE ARCHITECTURE
Our proposed system architecture is designed to store Evidences
of Authority, Evidences of experience and Evidences of compe-
tence on the public Ethereum blockchain platform. To enable these
evidences to hold any legitimacy, the application incorporates a
concept of governance, where a set of stakeholders cooperate to
create a trusted environment on the blockchain via smart contracts.
Patients use this trusted environment to gain evidence for trust in a
health worker, and publish their own experiences once the patient
and health worker interaction is completed. While the high-level
view, as shown in Figure 1, is simple, the underlying system design
is of high complexity. The first contributor to increased complexity
is the real-world trust relationships within the healthcare system.
While our top level model depicts a single governance entity, no
such entity exists in the real world. The trust relationships within
the healthcare industry include a broad set of different organiza-
tional entities. These entities hold specific responsibilities, and they
can only together create overall trust in the healthcare system. Our
system architecture includes multiple organizational entities, and
we capture the trust relationships between them on the blockchain.

Other requirements relevant to our platform include patient
privacy, prevention of fraudulent patient evaluations and scalabil-
ity considerations. These quality attributes can only be addressed
through architectural choices, furthermore contributing to com-
plexity. After describing our overall system architecture and our
choices, we will break this down into procedures and subsections
to show how the architecture addresses these requirements.

145

VerifyMed - A blockchain platform for transparent trust in virtualized healthcare: Proof-of-concept BIOTC 2020, July 08–10, 2020, Singapore

5.1 Modeling evidence for trust
5.1.1 Evidence of authority.

The first evidence for trust in a healthcare worker is the evidence
of authority. This evidence consists of the formal credentials which
allow the healthcare professional to practice. By providing this evi-
dence on a blockchain, patients or any other interested stakeholder
can access it freely. If the patient can confirm the link between a
healthcare worker and the evidence of authority on the blockchain,
he/she should be able to trust that the healthcare worker has for-
mal authorization. In practice, we choose to model the evidence of
authority as two different statements which the healthcare worker
wants to prove:

(1) The healthcare worker is currently in possession of a valid
License for Health Personnel in the area he or she operated
and is thus formally qualified to practice.

(2) The healthcare worker is formally associated with an autho-
rized healthcare facility.

Both of these statements cannot be fulfilled by the healthcare
worker alone. They are instead statements of trust from other
organizational entities that are deemed trusted themselves. This
structure of entities and their trust relationships quickly serves
as the foundation of trust in the system. We define the following
stakeholders that create one hierarchy of trust:

• Authorities are top-level healthcare authorities responsi-
ble for the formal authorization of healthcare institutions,
educational facilities and other organizations who provide
healthcare related services. Organizations with such author-
ities are usually the national health directorates. These orga-
nizations organize themselves via a distributed governance
protocol.

• License Issuers are organizations that are responsible for
the formal authorization of healthcare workers. They are
responsible for background checking of the applicant and
use their documented experience and performance to decide
if the healthcare worker is fit to hold a License. If that is the
case, they choose to issue such a license and thus establish a
trust relationship with the healthcare worker. Such organi-
zations are often units within a national health directorate.

• License Providers are authorized healthcare facilities re-
sponsible for the practice of the healthcare worker on a
day-to-day basis. These facilities are under continuous eval-
uation by the authorities and have to ensure the competence
of their associated healthcare workers. Such organizations
can include hospitals or clinics.

• Treatment Providers are health service providers who are
responsible for facilitating the interactions between patients
and healthcare workers. They hold the main responsibility
for authenticating patients and for storing data related to
the interaction. Such stakeholders may be similar to license
providers, like hospitals or clinics. It can also include ser-
vices such as e-health platforms and secondary consultation
services.

• Licenses are the components that represent the healthcare
workers within our trust model. A license can only be created
by a license issuer, and it is tied to credentials (keys) in posses-
sion of the health worker. Once issued, it may be transferred

Figure 2: A model for generating evidences for the experi-
ence of health workers

between License Providers, License Issuers and associated
with additional Treatment Providers if these stakeholders
agree to these movements.

Together, these stakeholders interact and build a complete trust
hierarchy. This model is captured via smart contracts deployed to
the blockchain ledger, storing data about stakeholders and their
trust relationships.

5.1.2 Evidence of experience. The second evidence for trust in
healthcare workers is their experience. Depending on the context
in which the patient meets a healthcare worker, experience within
a relevant field may be of high importance to ensure that the health-
care worker can deliver the care required. The metrics for experi-
ence come in either qualitative or quantitative forms. The quali-
tative evidence can be conveyed through certifications, while the
quantitative evidence can be deduced frommetrics such as the num-
ber of a specific treatment performed by the healthcare worker or
the number of specific problems addressed. To model the evidence
of experience, we choose to focus on quantitative metrics.

The goal of our model is to expose the number of treatments
performed by the healthcare worker to the patient. Evidence of
authority is created by a formal model for creating an evidence. In
contrast, evidence of experience is generated through patient and
healthcare worker interactions. Each new interaction resulting in
a treatment thus forms evidence for future patients who want to
interact with the healthcare worker. Figure 2 shows our model for
publishing treatment information on the blockchain. During the
patient and healthcare worker interaction, the treatment provider
is responsible for conveying information about treatments recom-
mended by a healthcare worker. Once approved by a patient the
full content of the treatment is stored at the treatment provider.
Metadata about the treatment is published to the blockchain, which
is in turn approved publicly by the healthcare worker, thus forming
a public link from the healthcare worker to the treatment. Over
time, this process will generate a public log capturing metadata
about treatments performed by a health worker, which serves as
the evidence of experience.

5.1.3 Evidence of competence. While a quantitative metric like
a number of treatments can be evidence for experience, it does
not represent the quality of these treatments. Patient Reported
Experience Measures (PREMs) is a standardized way to measure
the outcome of an encounter. By summarizing these outcomes into
qualitative metrics which is published on the blockchain, we can

146 D. VERIFYMED CONFERENCE PAPER

BIOTC 2020, July 08–10, 2020, Singapore Rensaa, et al.

Figure 3: A model for generating evidences for the compe-
tence of health workers

measure the quality of a treatment. This general process is shown
in Figure 3, where the patient interacts directly with the blockchain
to publish a summarized outcome measure related to a treatment
they have gone through. Since these treatments are linked to a
healthcare worker, we can use them as a proxy for evaluating their
competence. As a log of treatment metadata with corresponding
outcome measures is built on the blockchain, it serves as evidence
of competence.

5.1.4 Access control in smart contracts.
The implemented access control scheme can be described as

a Role Based Access Control (RBAC) scheme where accounts in-
teracting with the blockchain must hold a certain role within our
distributed application to perform such an action. Examples of
access control policies in the blockchain component of our archi-
tecture include: 1. Only existing authorities may interact with the
distributed governance protocol; 2. Only existing authorities may
add trust in a treatment provider, license provider or license issuer;
3. Only treatment providers trusted by an authority may add treat-
ments; and 4. Evaluations can only be created by the patient who
is the subject in a treatment.

6 IMPLEMENTATION DETAILS
A fully working proof-of-concept application was developed for
assembling metrics, finding faults with the architecture, and for
testing stakeholder workflows. During the application development
process, we tried to keep usability for administrators in mind, where
we tried to make the process of administering as easy to run as
possible. This will allow further development of the application
to be easy, and allows third parties to easily test and set up the
application. All the code for the software application is in a github
repository2.

The full application is created as four independent services.
These services together simulate the architectures shown in Fig-
ure 1, 2 and 3. Figure 4 shows how these services interact during
runtime. The contract-deployer service is a short-lived service re-
sponsible for deploying the smart contracts to the blockchain and
export the keys used for their deployment.

6.1 Setup with Docker
A docker-compose.yml file is provided in the root of the project.
This file is designed to automatically build and start all services in

2https://github.com/jarensaa/transparent-healthcare

Figure 4: An overview of the run-time presence for our im-
plemented services

the correct order. Running docker-compose up in the project root
should be sufficient.

6.2 User interface
Once the platform is up and running it offers a user interface with
the following sections:

(1) Section for navigating to the panels relevant to the authority
stakeholder;

(2) Section for navigating to the panels relevant to the License
Provider and license issuer stakeholder;

(3) Section for navigating to the panels relevant to the Treatment
Provider stakeholder;

(4) Section for navigating to the panels relevant to the healthcare
worker stakeholder;

(5) Section for navigating to the panels relevant to the patient
stakeholder;

(6) Section for navigating to the panels relevant to key manage-
ment, relevant to all stakeholders;

(7) Selection button for selecting the current active Ethereum
keypair (ECDSA keypair) to be used for actions in the UI,
relevant for all stakeholders;

(8) Toggle for admin mode: This gives access to an account
which is the first default authority, thus, giving a baseline
allowing the user to expand the hierarchy from there. This
account has a initial balance of 100ETH, which can be sent
to other accounts so they are able to create transactions.

6.3 Key management
The key management is performed via a panel shown in Figure 5.
This panel allows users to create and view keypairs. These keys are
either stored on the server or locally, it depends on the intent. One
can also use the panel to send Ether from one account to another.
The panel has the following sections:

(1) The button to click to access the key management panel.
(2) The panel to send Ether from one account to another.
(3) The section to view current keys of all formats. This shows

fields such as address and balance. If a local key is shown,
the private key will be used. If present, an access token to
use the key on the backend is shown.

(4) A card which can be clicked to create new keys with a selec-
tion of types.

147

VerifyMed - A blockchain platform for transparent trust in virtualized healthcare: Proof-of-concept BIOTC 2020, July 08–10, 2020, Singapore

Figure 5: Overview of the key management panel

6.4 Initial results of simulated use of the
platform

We have performed numerous simulated runs for different work-
flows of the platform. The simulations were performedwith a single-
node Ethereum network configured to simulate the real-world be-
haviour of the public Ethereum network. Configuration parameters
for the blockchain were: Block gas limit: 9.991.391; Block generation
time: 20s.

The simulations showed the following costs (in gas denomina-
tions) for different smart contract invocations: Add another address
as a authority - 179013; Remove an authority - 149040; Vote on a
proposal to add or remove a authority - 73686; Enact a proposal
to add or remove a authority - 64297; Trying to enact a proposal
without a majority vote in place - 28045; Enact proposal to remove
an authority - 45332; Add trust in a registered treatment provider
- 93707; Remove trust in a registered treatment provider - 22909;
Add trust in a registered license issuer - 48863; Remove trust in a
registered license issuer - 18829; Add trust in a registered license
provider - 48906; Remove trust in a registered license provider -
15965; Register address as a treatment provider - 85959; Create a
new treatment - 200118; Register as license issuer - 71059; Issue a
new license to address - 88538; Approve movement of license to
a new license issuer - 23040; Register as license provider - 86036;
Approve movement of license to a new license provider - 38019;
Propose movement of license to a new license provider - 46059;
Propose license provider movement - 46092; Approve published
treatment for a given patient - 102721; Submitting an evaluation -
143669.

Combined with historical data of the price of Ether vs. USD, in
Figures 6, 7, 8 and 9, we show the simulated costs for several smart
contracts such as creating a treatment or evaluation of a treatment.
In Figure 7, we show that the current cost for creating a treatment
and getting it approved is around 1 USD, and the cost for evaluating
a treatment, as shown in Figure 9, would be around 0.5 USD. How-
ever, these prices may increase dramatically if network congestion

Figure 6: Cost in wei for creating a treatment and getting it
approved by a health worker.

reaches similar levels as in January 2018, when a dramatic cost
increase was observed.

7 CONCLUSIONS AND FUTURE FORK
We presented the design rationale, modelling and implementation
of VerifyMed - a robust blockchain platform for transparent trust
in a healthcare domain. To our knowledge, this is one of the first
blockchain solutions addressing this specific problem. It is based
on the Ethereum blockchain. Our platform is released as an open
source code in github. The open source includes also user guides
for setting up and running the platform.

We envision three user entities for this trust enhancing platform:
governance entities, healthcare workers and patients. For each of
these entities, the platform offers easy and intuitive user interfaces.

We have performed numerous simulated use case scenarios with
the platform and showed the modest cost of the platform services
for an extended simulated period of four years.

148 D. VERIFYMED CONFERENCE PAPER

BIOTC 2020, July 08–10, 2020, Singapore Rensaa, et al.

Figure 7: Cost in USD for creating a treatment and getting it
approved by a health worker.

Figure 8: Cost in wei for evaluating a treatment

Figure 9: Cost in USD for evaluating a treatment

Future work: Our platform in the future updates will enrich the
current trust model by including more trust requirements such as
1. The caregiver must trust that the patient exists; 2. The caregiver
must trust the authenticity of the data that the patient is willing to
share and 3. A third party (e.g. a insurance company) must be able
to trust the patients claim that care provision has taken place.

REFERENCES
[1] Cornelius C Agbo, Qusay H Mahmoud, and J Mikael Eklund. 2019. Blockchain

technology in healthcare: a systematic review. In Healthcare, Vol. 7. Multidisci-
plinary Digital Publishing Institute, 56.

[2] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman. 2016. MedRec: Using Blockchain
for Medical Data Access and Permission Management. In 2016 2nd International
Conference on Open and Big Data (OBD). 25–30.

[3] Matt Blaze, Joan Feigenbaum, and Jack Lacy. 1996. Decentralized trust manage-
ment. In 1996 IEEE Symposium on Security and Privacy. IEEE, 164–173.

[4] Angelo Capossele, Andrea Gaglione, Michele Nati, Mauro Conti, Riccardo
Lazzeretti, and Paolo Missier. 2018. Leveraging blockchain to enable smart-health
applications. In 2018 IEEE 4th International Forum on Research and Technology for
Society and Industry (RTSI). IEEE, 1–6.

[5] Gaby G. Dagher, Jordan Mohler, Matea Milojkovic, and Praneeth Babu Marella.
2018. Ancile: Privacy-preserving framework for access control and interoperabil-
ity of electronic health records using blockchain technology. Sustainable Cities
and Society 39 (2018), 283 – 297. https://doi.org/10.1016/j.scs.2018.02.014

[6] Monika Di Angelo and Gernot Salzer. [n.d.]. Characterizing Types of Smart
Contracts in the Ethereum Landscape. In Proc. 4th Workshop on Trusted Smart
Contracts, Financial Cryptography 20. Springer.

[7] Morris J Dworkin. 2015. SHA-3 standard: Permutation-based hash and extendable-
output functions. Technical Report.

[8] Eric Funk, Jeff Riddell, Felix Ankel, and Daniel Cabrera. 2018. Blockchain tech-
nology: A data framework to improve validity, trust, and accountability of in-
formation exchange in health professions education. Academic Medicine 93, 12
(2018), 1791–1794.

[9] William J Gordon and Christian Catalini. 2018. Blockchain technology for health-
care: facilitating the transition to patient-driven interoperability. Computational
and structural biotechnology journal 16 (2018), 224–230.

[10] Anton Hasselgren, Katina Kralevska, Danilo Gligoroski, Sindre A. Pedersen, and
Arild Faxvaag. 2020. Blockchain in healthcare and health sciences—A scoping
review. International Journal of Medical Informatics 134 (2020), 104040.

[11] Don Johnson, Alfred Menezes, and Scott Vanstone. 2001. The elliptic curve digital
signature algorithm (ECDSA). International journal of information security 1, 1
(2001), 36–63.

[12] Charlotte Kingsley and Sanjiv Patel. 2017. Patient-reported outcome measures
and patient-reported experience measures. Bja Education 17, 4 (2017), 137–144.

[13] Tim K Mackey, Tsung-Ting Kuo, Basker Gummadi, Kevin A Clauson, George
Church, Dennis Grishin, Kamal Obbad, Robert Barkovich, and Maria Palom-
bini. 2019. ‘Fit-for-purpose?’–challenges and opportunities for applications of
blockchain technology in the future of healthcare. BMC medicine 17, 1 (2019), 68.

[14] Thomas McGhin, Kim-Kwang Raymond Choo, Charles Zhechao Liu, and De-
biao He. 2019. Blockchain in healthcare applications: Research challenges and
opportunities. Journal of Network and Computer Applications 135 (2019), 62 – 75.

[15] Peter B Nichol and Jeff Brandt. 2016. Co-creation of trust for healthcare: The
cryptocitizen framework for interoperability with blockchain. Research Proposal.
ResearchGate (2016).

[16] M. Raikwar, D. Gligoroski, and K. Kralevska. 2019. SoK of Used Cryptography in
Blockchain. IEEE Access 7 (2019), 148550–148575.

[17] M. Raikwar, D. Gligoroski, and G. Velinov. 2020. Trends in Development of
Databases and Blockchain. arXiv:cs.DC/2003.05687

[18] Graham Scambler and Nicky Britten. 2013. System, lifeworld and doctor–patient
interaction: Issues of trust in a changing world. In Habermas, critical theory and
health. Routledge, 53–75.

[19] Bruce Schneier. 2007. Applied cryptography: protocols, algorithms, and source code
in C. John Wiley & sons.

[20] Christoph Thuemmler and Chunxue Bai. 2017. Health 4.0: Application of Industry
4.0 Design Principles in Future Asthma Management. Springer International
Publishing, Cham, 23–37. https://doi.org/10.1007/978-3-319-47617-9_2

[21] Theresa Weldring and Sheree MS Smith. 2013. Article Commentary: Patient-
Reported Outcomes (PROs) and Patient-Reported Outcome Measures (PROMs).
Health services insights 6 (2013), HSI–S11093.

[22] Gavin Wood. 2014. Ethereum yellow paper. Internet: https://github.
com/ethereum/yellowpaper, [version 7e819ec - 2019-10-20] (2014).

[23] P. Zhang, M. A. Walker, J. White, D. C. Schmidt, and G. Lenz. 2017. Metrics for
assessing blockchain-based healthcare decentralized apps. In 2017 IEEE 19th Inter-
national Conference on e-Health Networking, Applications and Services (Healthcom).
1–4.

149

Jens-Andreas H
anssen Rensaa

VerifyM
ed - Application of blockchain technology to im

prove trust in virtualized healthcare services

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Jens-Andreas Hanssen Rensaa

VerifyMed - Application of blockchain
technology to improve trust in
virtualized healthcare services

Master’s thesis in Communication Technology

May 2020

	List of Figures
	List of Tables
	List of Symbols
	List of Acronyms
	Introduction
	Motivation
	Goal and Methodology
	Contribution
	Outline of Thesis

	Background and related literature
	The Health Domain
	The Case for Virtualized Healthcare Services
	Relevant Trends in Healthcare
	Patient Reported Outcomes

	General Cryptographic Context
	Cryptographic Hash Functions
	Keccak Hash Functions
	Merkle Trees
	Public Key Cryptography
	The ECDSA Cryptosystem
	Zero Knowledge Proofs

	Blockchain
	Clarifying Terminology
	The Blocks and Chain of Blockchain

	Privacy and Security for Blockchain
	Signature Schemes
	Access Control

	Smart Contracts and the Ethereum Blockchain
	Ethereum Contextual Terminology
	Ethereum Accounts
	Smart Contracts
	Ethereum Transactions
	Transaction Costs
	Ethereum Ledger Construction

	Prior Art
	Blockchain in Healthcare
	Evaluating Healthcare Applications

	Trust Establishment in a Virtualized Healthcare Environment
	Data Sharing in the Healthcare Domain
	Data Sharing for Healthcare Workers
	Trust in a Virtualized Healthcare Environment

	Needs and Requirements
	Using Blockchain for Trust in Healthcare
	Scope
	Requirements
	Functional Requirements
	Quality Attributes
	Quality Attribute Scenarios

	Artifact Design and Architecture
	Modeling Evidence for Trust
	Evidence of Authority
	Evidence of Experience
	Evidence of Competence

	System Architecture
	On-Chain Application Part
	Off-Chain Application Part

	Addressing Quality Attributes
	Privacy Requirements
	Security Requirements
	Availability Requirements
	Scalability Requirements

	Application Implementation
	Blockchain Service
	Contracts Service
	Back-End Server
	Web Application

	Test Results
	Unit and Integration Testing
	Requirements Validation
	Cost of Usage
	Throughput

	Evaluation and Discussion
	Ability to Provide Trust in Healthcare Workers
	Social Impact
	Using a public blockchain
	The Advantages of a Public Blockchain
	The Disadvantages of a Public Blockchain

	The Case for Private Blockchains
	Limitations of VerifyMed
	Authentication of Patients
	Key Management
	Cost as an Architectural Limitation
	Narrowly Scoped Security Model
	Large Governance Complexity

	Lessons Learned from VerifyMed
	Future Work

	Conclusion
	References
	Application Guide for Users
	The User Interface
	Key Management
	The Authority Stakeholder
	The License Issuer Stakeholder
	The License Provider Stakeholder
	The Treatment Provider Stakeholder
	The Healthcare Worker Stakeholder
	The Patient Stakeholder
	Healthcare Worker Overview

	Application Guide for Administrators
	The Codebase
	Setup with Docker
	Starting Services Manually
	Accessing the Application

	System Testing Runbook
	VerifyMed Conference Paper

