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Abstract

Up to now, quantum computers have only been considered a theoretical
threat to today’s public-key-cryptography. Also, nobody can say exactly
how long it will take until the first larger quantum computers exist. But
recently some progress has been made, so this theoretical threat is slowly
turning into a real one. Therefore, the cryptographic research community
has started to develop new schemes that are also safe against attacks of
quantum computers.

One of these new schemes is NewHope from Alkim et al. [2], but as
with all new schemes the best way to build confidence that a scheme is
as secure as claimed by the authors is to have it analyzed by the research
community. This work is part of this analysis as we take a look at the
so far published attack ideas from Bauer et al. [4] and Qin et al. [36].
These are key reuse attacks, which target the passively secure version of
NewHope. We re-implemented the attacks and tested them against the
C reference implementation written by the authors of NewHope. Within
this process it was possible to identify minor and major problems. While
the Problem in the approach from Bauer et al. just caused a lower success
rate, the improvement from Qin et al. became infeasible. Therefore we
developed other improvements, to speed up the attack but also to make
it possible to recover over 99% of the secret keys.





Preface

In my master studies I took several courses ranging from the formal
principles of cryptography up to their application. Although I now know
and can explain many of the basics, it still fascinates me and has lost none
of its "magic". For example, the Diffie-Hellmann key exchange, which
only allows to exchange a secret key by clever use of mathematics without
the possibility for an eavesdropper to obtain it. For this reason I wanted
for my thesis to use my gained theoretical knowledge to once dive into
a practical cryptoanalysis and what specific field could have been more
interesting as new upcoming post-quantum cryptography.

Therefore I am super grateful to all people at the Karlsruhe Institute
of Technology(KIT) and at the Norwegian University of Science and Tech-
nology(NTNU) to make this thesis possible. In special Willi Geisselman,
to support me with all the bureaucracy. but also my supervisors Colin
Boyd and Bor de Kock for answering all my questions and their helpful
remarks during the thesis. I would also like to thanks my parents and all
my friends that supported me during the embarrassing and dark times
during the thesis as well as all the volunteers who cross-read the thesis
to identify issues. Finally shout out to the high-class music of Scooter,
which always brought me back on track.





Contents

List of Figures vii

List of Tables ix

List of Algorithms xi

List of Acronyms xiii

Notation xv

1 Introduction 1

2 Preliminaries 5
2.1 Public Key Cryptography . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Key Encapsulation Mechanisms . . . . . . . . . . . . . . . . . 6
2.1.2 Security models of KEMs . . . . . . . . . . . . . . . . . . . . 7

2.2 Quantum Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Problems for Cryptography . . . . . . . . . . . . . . . . . . . 10

2.3 NIST-Competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Lattice-based cryptography 13
3.1 Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Ring-Learning with Errors(RLWE) . . . . . . . . . . . . . . . . . . . 16
3.3 NewHope-simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Original NewHope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Basic attacks 23
4.1 Decoding failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Key reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Signal Leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Attacks on NewHope-simple . . . . . . . . . . . . . . . . . . . . . . . 26

4.4.1 Malicious Alice . . . . . . . . . . . . . . . . . . . . . . . . . . 27

v



4.4.2 Malicious Bob . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4.3 Reproducing the results of Bauer et al. . . . . . . . . . . . . . 36

5 Attack Improvements 43
5.1 Proposals from Qin et al. . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Problems in the Qin et al. approach . . . . . . . . . . . . . . . . . . 46
5.3 Boundary check to reduce the amount of oracle queries . . . . . . . . 50
5.4 Reduce search space for brute force . . . . . . . . . . . . . . . . . . . 53

6 Summary and Conclusion 57

References 61



List of Figures

2.1 GameIND-CPA for Key Encapsulation mechanism (KEM)s by Bellare et
al. [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 GameIND-CCA for KEMs . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 A lattice with a «good» A = ( ~a1, ~a2) and a «bad» B = (~b1, ~b2) basis. . . 14
3.2 The Closest Vector Problem in a two dimensional lattice, given ~t find the

closest point in L(B) with B = (~b1, ~b2). . . . . . . . . . . . . . . . . . . 16
3.3 The basic principle of a Ring-Learning with Errors scheme . . . . . . . . 17
3.4 NewHope-simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 original version of NewHope . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 The procedure of the attack on Alice secret key s . . . . . . . . . . . . . 28
4.2 fv with an even s0

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 fv with an odd s0

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Queries with 1000 runs with the C-reference implementation . . . . . . 37
4.5 The number of absolute recovered coefficients with the Bauer et al.

method, with correct rounding in the Decompress algorithm. . . . . . . 39

5.1 Favorable case for s3 = −2 as τ1 + τ2 = −3 + 1 = −2 mod 0, with v = −2 52

vii





List of Tables

4.1 The three different results of a set of queries for one coefficient . . . . . 31
4.2 The probability distribution for the values 0 to 8 in a binomial distribution,

created by Bauer et al. [4] . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Oracle output in a favorable case . . . . . . . . . . . . . . . . . . . . . . 51
5.2 The average amount of query within 1000 attack runs, with the different

optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Different oracle outputs for coefficients in {−8,−7, 5, 6, 7, 8} over the

course of l0 ∈ [−4, 3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4 The possible interpretation from query patterns of Table 5.3 . . . . . . . 54
5.5 The average results from 1000 attacks, with our own improvement to

recover more coefficients and to reduce the search space . . . . . . . . . 54

ix





List of Algorithms

2.1 Oracle Dec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 Key Encode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Key Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Compress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Decompress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1 FindS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Key recovery algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1 Find-m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Set-l-with-v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 NarrowDownCoefficient-s0 . . . . . . . . . . . . . . . . . . . . . . . . 55

xi





List of Acronyms

CCA Chosen-cipher text attack.

CPA Chosen-plain text attack.

CVP Closest Vector Problem.

KEM Key Encapsulation mechanism.

LWE Learning with Errors.

NIST National Institute of Standards and Technology.

NTT Number Theoretic Transform.

PKC public key cryptography.

PQ post-quantum.

RLWE Ring-Learning with Errors.

SVP Shortest Vector Problem.

xiii





Notation

bxe if x ∈ R bxe = bx+ 1
2c ∈ Z

e
R←− D sample a uniformly random element e from the set or distribution D
L(B) a lattice create by the basis B
v[i] the i-th element of a vector v or the coefficient of xi of a polynomial v
Zq Z/qZ, the integer remainder set mod q with the elements [0, q − 1]
Rq Zq[x]/(xN + 1), with q being a prim number an N ∈ Z
ĉ polynomial in Z8[x]/(xN + 1), a compressed element in NewHope

Sign(0) > 0 zero will be denote as positive
|v| if v is a string, length of a string
ν the key string that is used the derive the final shared secret key
l the quadruplet (l0, l1, l2, l3) of cipher text variations for one bit of ν

sum v internal sum of the key mismatch oracle 4.5 v =
∑3
j=1 |lj − sj | − 8

ψk
centered binomial distribution with parameter k > 0
To get a sample from ψk compute s =

∑k
i=1 bi − b′i : bi, b′i ∈ {0, 1}

a
polynomials will be denoted as bold a[x]=̂a
This notation is inherited from the Learning with Errors (LWE) field

s0, s1, s2, s3
the four secret coefficients involved in decoding one bit of ν
(s[i], s[i+ 256], s[i+ 512], s[i+ 768]) : i ∈ [0, 255]

fv(lj)
function of key mismatch oracle output of the input of lj
fv(lj) = |lj − sj |+ v : j ∈ [0, 3]

Sign(x)
outputs a 0 for all x ≥ 0 and 1 otherwise. In the context of the
key mismatch oracle (0, 1) gets mapped to (+,−)
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Chapter1Introduction

Ever since humans have been exchanging information, there has been the demand to
do this confidentially. To achieve this confidentiality, cryptographic schemes were
used early on to encrypt information. The way these cryptographic schemes work has
changed over time. It is a normal process that schemes that once were considered to
be secure can later easily be broken, due to technical innovations and research. An
early example of this is the Vigenère cipher, which dates back to the 16th century
and was called «le chiffre indéchiffrable» (French for «the indecipherable cipher»)
for a long time [29]. Due to the increased emergence of the frequency analysis, it
could be broken in the 19th-century [34]. With today’s technology, the attack is
considered trivial and the cipher is far away from being a «indecipherable cipher».
This process of developing new schemes and breaking them continues until today,
where the Internet allows us to exchange more information than ever before.

Therefore cryptography has become even more important. Modern secure internet
protocols, like TLS, use several types of cryptography to not only provide confidential-
ity, but also other important properties such as authenticity and integrity. However,
it seems that we are once again on the verge of time where new technology makes
existing cryptography insecure. This time it will be quantum computers that create
the possibility to break parts of the cryptography currently used. So far they have
not been considered as a threat, although the idea of quantum computers has been
around for a few decades and special algorithms have already been designed for them.
However, it seems that a practical realization is potentially close, as meanwhile some
major parties like, the NSA, Google, IBM and the Chinese government are working
on building a real usable quantum computer. This would make it possible to solve
certain mathematical problems quickly and efficiently, but would also eliminate the
security of the today’s used public key cryptography. For this reason, new schemes
must be developed that remain secure even if there are attackers with access to a
quantum computer.

1



2 1. INTRODUCTION

To standardize such a new post-quantum scheme, the National Institute of
Standards and Technology (NIST) makes use of a proven procedure and has started a
competition in 2016. This competition involves researchers submitting new schemes
to then allow everybody to analyse and evaluate them. If a scheme turns out to be
impractical or insecure, it will be discarded. New technologies on the attacker side
enforce that also new concepts in cryptography are needed to withstand these new
attackers. Most of the 69 schemes submitted in round one of the NIST-competition
can be divided into four categories:

• Lattice-based
• Code-based
• Isogeny-based
• Multivariate-based

This thesis focus on the scheme NewHope developed by Alkim et al. [2] that is based
on the mathematical principle of lattices, which comes with the the Shortest Vector
Problem (SVP) and the Closest Vector Problem (CVP). These are the computational
hard to solve problems that are required to build public key cryptography. A special
way to use these problems to create cryptographic schemes is the Learning with Errors
(LWE) approach, which uses matrices as a basis for the lattices and thus also for
the keys. Therefore the Ring-Learning with Errors (RLWE) principle was developed
which is based on LWE idea but uses polynomials in a ring instead of matrices
and thus requires less computing power. One promising concrete implementation
of RLWE is the scheme NewHope. It was already used by Google, where they
added the NewHope encryption on top of the existing one, to test how post-quantum
cryptography could be rolled out on the Internet [9].

As the lattice-based approach is way more complicated than the currently used
cryptography a lot of analysis is needed to gain confidence in the new schemes. This
thesis is a part of this process by analyzing the possibilities of a key mismatch attack
on NewHope, by achieving the following goals:

• Understanding the NewHope scheme

• Analyse the published key reuse attack by re-implementing and testing it
against the reference implementation

• Discover a minor problem in the basic attack from Bauer et al.

• Discover two major problems in the improved attack form Qin et al.

• Develop own improvements of the attack
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The thesis will start with a short introduction on what quantum computers are,
including why they can break certain forms of cryptography. To then explain what
lattices are and how it can be uses to create PQ cryptography with based on the
the SVP and the CVP. Followed by a description of the Ring-Learning-with-Errors
principle that is used in NewHope.

With these foundations, we envision the first basic attack published by Bauer
et al. [4], which focuses on an attack against the server party of the scheme and
allows it to find out major parts of its secret server key. It is important to note
that the attack is not against the final version of NewHope, but only against the
passively secure version. Additionally, it is also assumed that the key parameters
are reused over time. To analyze the attack, it is re-implemented and tested against
the reference implementation, written by the authors of NewHope. During this
analysis, we discovered a minor problem with the attack, which slightly reduces the
success rate. Building on this basic attack, Qin et al. published an improvement
that should make it possible to recover almost the entire secret key [36]. We also
re-implemented this improvement and tested it against the reference implementation.
This test revealed two problems which lead to the fact that the improvement cannot
be executed successfully. For this reason, we have developed improvements that
enable us to recover almost the entire secret key and speed up the attack. Therefore
making it more practical and a bit more considerable.





Chapter2Preliminaries

The second chapter gives a small explanation of public key cryptography, KEMs,
quantum computers and why they are a threat for today’s cryptography, but also
what is done to face that threat.

2.1 Public Key Cryptography

Public key cryptography (PKC) is a subfield of cryptography, where the commu-
nicating participants have two associated keys, a private and a public one. The
public key should be made available to the public. Thus it can be used to encrypt
messages, which can only be decrypted by the owner of the corresponding private
key. Therefore the private key should only be made available to the parties who are
supposed to read the messages.

Definition 2.1. Security parameter A security parameter lambda indicates how
complicate it is for adversary to break a instance of a scheme instantiated with it.
Often it is related to the key size.

Definition 2.2. Polynomial time algorithm If the run time of an algorithm is
within O(nk) for its input size n and any k > 0, it is a polynomial time algorithm.

Definition 2.3. Public Key scheme
Let M be the message space, let λ be a security parameter. A public key scheme
consists of three polynomial time algorithms:

– (pk, sk)←− Key Generation(1λ) : outputs a public and private key pair

– ctxt ←− Encrypt(m, pk) : encrypts a message m ∈M, with the public key pk

– m′ ←− Decrypt(ctxt, sk): decrypts a ciphertext ctxt to the message m′ with the
private key sk

5



6 2. PRELIMINARIES

When public key cryptography was introduced by Diffie and Helllman in the
1970’s [12] it opened a wide variation of new possibilities. In contrast to symmetric
cryptography, where the same key is used for encryption and decryption, confidential
communication between two parties is now possible without the need of a common
shared secret. The security of the schemes is usually based on mathematical problems
that are difficult to solve, such as the factorization of large integers [22], which for
example is used in the RSA scheme, which was published in 1978 by Rivest, Shamir
and Adleman [38].

Definition 2.4. integer factorisation problem
Let N = q × p, q 6= p and p, q prime numbers.
Problem: Given N , find p and q

2.1.1 Key Encapsulation Mechanisms

Due to underlying mathematics public key cryptography requires more computing
power than symmetric cryptography. Therefore hybrid encryption schemes were
designed. The idea of them is to use the techniques of public key cryptography to
exchange a symmetric key, which then is used for further communication. This way
the advantages of both systems are combined, it is possible to communicate securely
without a shared secret and to work efficiently with resources.

Definition 2.5. Key Encapsulation mechanism (KEM)
Let K be the key-space of an associated symmetric key scheme, let λ be a security
parameter. A KEM consists of three polynomial time algorithms:

– (pk, sk)←− Key Generation(1λ): outputs a public and private key pair

– (k, ctxt) ←− Encapsulation(pk): outputs a ciphertext and shared secret key
k ∈ K

– k′ ←− Decapsulation(ctxt, sk): outputs the decapsulated shared secret key k′
from the ciphertext ctxt

– The two keys should be equal (k = k′)

One of the main differences between PKC and KEMs is that Encrypt allows the
message that it will encrypt to be specified by the sender. Encapsulation on the other
hand selects internally a random value that is encrypted. Also the distribution of the
public key is different. In public key schemes, the key is sent to the communication
partners once and used on a long-term basis. While the protocol procedure of KEMs
usually foresees that the public key is sent each time. This is based on the assumption
that KEMs are mostly used for a key exchange between two parties that have not
communicated with each other before.
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A KEM that is widely used today is the Diffie-Hellman KEM, which was published
by Diffie and Hellman in 1979 [12]. Its security is based on the discrete logarithm
problem.

Definition 2.6. Discrete logarithm problem
Let b an element of the group G.
Problem: Given a = bx, find x = logb a

Example 2.7. Diffie-Hellman KEM
Let p be a prime number, then Gp is multiplicative group of integers modulo p, with
p − 1 elements. An element g ∈ Gp is called generator if all elements of Gp can
created by multiplying g with itself.

– Key Generation(1λ):
Choose a prime p; a generator g ∈ Gp and a R←− ord(g)− 1
Output: pk = (pk′ = ga mod p, g, p) and sk = a

– Encapsulation(pk = (pk′, g, p)):
Choose b R←− ord(g)− 1
Output: k = pkb = (ga)b = gab mod p and ctxt = gb mod p

– Decapsulation(ctxt, sk):
Output: k′ = ctxta = (gb)a = gab mod p

2.1.2 Security models of KEMs

To determine the security of a KEM the indistinguishability game (IND) is used.
In this game an attacker A will get a ciphertext ctxtb and a key kb that is either a
random key or the actual encapsulated key of ctxtb. If the attacker can determine
the correlation between ctxtb and kb correctly he wins the game. The run time of A
must be polynomial relative to the security parameter.

For the level of security it depends on how powerful the attacker is, which is
defined by the attack model. The two relevant ones for this work are the Chosen-plain
text attack (CPA) and the Chosen-cipher text attack (CCA). In the CPA model
the attacker gets the public key and can use the Encapsulation algorithm to gather
information that will help him to win the IND game. In the CCA model the attacker
has additionally access to a decapsulation oracle Dec, which allows him to create
own ciphertexts and get the key that will be decapsulated out of them. This gives
the attacker more power, which is why a scheme that withstands a CCA attacker is
considered to be more secure than one that only withstands an CPA-attacker.

Together the combination of the game and the attacker model form the full security
definition of a scheme. Figure 2.1 illustrates the IND-CPA game and Figure 2.2
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shows the IND-CCA game for KEMs with the additional decapsulation oracle Dec.
In both games the attacker wins if b = b′.

1. (pk, sk)←− Key Generation(1λ)

2. b R←− {0, 1}

3. k0
R←− K, ctxt0

R←− {0, 1}∗

4. (k1, ctxt1)← Encapsulation(pk)

5. b′ ← A(pk, ctxtb, kb)

6. Output : b ?= b′

Figure 2.1: GameIND-CPA for KEMs by Bellare et al. [5]

1. (pk, sk)←− Key Generation(1λ)

2. b R←− {0, 1}

3. k0
R←− K, ctxt0

R←− {0, 1}∗

4. (k1, ctxt1)← Encapsulation(pk)

5. b′ ← ADec(pk, ctxtb, kb)
and ctxtb /∈ S

6. Output :
{

1 if b = b′

0 otherwise

Algorithm 2.1 Oracle Dec
Input: ctxt
S ← S ∪ {ctxt}
return Decapsulation(ctxt, sk)

Figure 2.2: GameIND-CCA for KEMs

Since the probability to win the game by guessing is a half, a scheme is only
considered as broken if an attacker wins the game significantly more often than that,
as shown in Definition 2.9

Definition 2.8. Negligible function A function ε is negligible if it approaches
zero faster than the reciprocal of every polynomial:

ε negligible ⇐⇒ ∀c ∈ N,∃n0 ∈ N : ∀n ≥ n0 : ε < 1
nc

Definition 2.9. (IND-CPA/CCA) security A key encapsulation mechanism
is IND-CPA/CCA secure if the advantage of every polynomial time attacker over a
random guess is negligible in the security parameter, formally:

AdvIND-CPA(A) :=
∣∣∣∣Pr[1← GameIND-CPA(1λ)]− 1

2

∣∣∣∣ ≤ negl(λ)



2.2. QUANTUM COMPUTING 9

Analog for IND-CCA security.

AdvIND-CCA(A) :=
∣∣∣∣Pr[1← GameIND-CCA(1λ)]− 1

2

∣∣∣∣ ≤ negl(λ)

2.2 Quantum Computing

The main idea of a quantum computer is to apply the properties of quantum physics
to information processing. But so far it is an open research question whether and
how the theoretical construct of a quantum computer can be realized in a large and
useful scale. At present, there are several smaller quantum computers, but intensive
research is underway to develop larger versions. In 2019 Google claimed to have
built the first quantum computer superior to a classical computer and thus declared
quantum supremacy [27] [35]. Although the results are questioned by the research
community [31], there is a large community that thinks that great progress is being
made towards more and more powerful quantum computers.
Based on the Preskill lecture notes [35], Nielsen & Chuang [30] and Tiepelt [45], this
section will give a short and simplified introduction what quantum computers are
and why they are a threat for the currently used cryptography.

2.2.1 Qubits

The fundamental differences between a quantum computers and classical computers
is the way information is stored and processed. While classical computers use bits,
quantum computers use quantum bits, so-called qubits. A classical bit can only
have exactly one fixed state at a time, which is usually described as zero or one. In
addition to these two states, a qubit can also have a superposition of zero and one.
These three states can be represented as vector:

zero: |0〉 =
(

1
0

)
one: |1〉 =

(
0
1

)

superposition of zero and one |ψ〉 : α|0〉+ β|〉 =
(
α

β

)
: α, β ∈ C

To determine the state of a qubit that is in a superposition |ψ〉 a measurement has
to be done. This then will force it to either take state |0〉 or |1〉 and the superposition
will collapse. Which state it takes depends on amplitudes α and β, by taking the
state |0〉 with probability |α|2 and the state |1〉 with probability |β|2.

To use more than one qubit a n-qubit big quantum register is used, which can
be represented by a 2n-dimensional vector. But unlike registers in a conventional
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computer, the qubits in a quantum register are not independent. So the register
can be a superposition of 2n different states, which is often denoted as the sum∑2n−1
x=0 αx|x〉.

For a 2 qubit register this means there are the two vector spaces V1 and V2 with
the basis |0〉 and |1〉. Their state can be described as αi|0〉+ βi|1〉, then the register
will contain elements in the vector space V1⊗V2, which can be expressed in the form:

(α1|0〉+ β1|1〉)⊗ (α2|0〉+ β2|1〉)
=α1α2|00〉+ α1β2|01〉+ α2β1|10〉+ β1β2|11〉

If a measurement of this register is performed the superposition collapses and the
measured state depends on the probabilities of the amplitudes:

|α1α2|2 → 00; |α1β2|2 → 01
|α2β1|2 → 10; |β1β2|2 → 11

One of the major tasks in building a quantum computer is to create a quantum
register as large as possible. The number of qubits is also an indication of the
performance, since more qubits can be used to represent more states in parallel.
When referring to large or powerful quantum computers, register sizes of several
hundred to thousand qubits are intended. The currently largest published interim
result is from Google AI Quantum, which managed to produce 53 qubits in 2019 [27].

With a working quantum register in place, simple operations can be done on
single or multiple qubits. This can be modeled by quantum circuits, which try to
follow the same principle as classical digital circuits. So there is a number of input
registers, which then are connected to gates that perform an action on qubits and
might change their state based on their input state. The outputs can than be again
used as new input for further gates. These quantum gates can do operations that
are also known from classical circuits, like a NOT-gate that negates the input qubit,
but there are also special quantum gates, like the Hadamard gate, which creates a
equally distributed superposition of |0〉 and |1〉.

2.2.2 Problems for Cryptography

By creating an input set of qubits, then applying a series of operation and measuring
them afterwards it is possible to do computation. As an n-set of qubits can have a
superposition of 2n states at the same time, the computation can be performed for
2n states at once. Special quantum algorithms combine all these states in a way that
all irrelevant states destructively interfere with each other. Thus, the superposition
collapses into the best state when a measurement is made after the algorithm has
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been executed. This feature enables quantum computers to solve particular problems
much more efficiently than classical computers, like the factorization of large integers
mentioned in definition 2.4. The best known algorithm to solve this problem with a
classical computer is the general number field sieve, which needs

O

(
e

64
9 n

1
3 (logn)

2
3

)
operations, with n bits to represent the number [19]. This makes solving it infeasible
for numbers greater than 1024 bits with today’s computer hardware. The last
published record from Thomé et al. is 829 bit [14], which was achieved on a high
performance cluster in 2020. But already in 1994, Shor published a quantum
algorithm to factorize integers [39], which has a logarithmic run time that can be
expressed as:

O
(
(logn)2 · log logn

)
So with Shor’s algorithm in place, the factoring problem can be solved for way

bigger integers, as soon as a quantum computer with enough qubits is there. As the
security of the RSA encryption [38] is based on the integer factoring problem, it can
be directly broken with a quantum computer, with the normally used key sizes of
2048 to 4096 bits. Considered that RSA is commonly used today it becomes clear
that quantum computers are a threat to the public key cryptography currently used.
Besides the factoring problem also the discrete logarithm can be computed more
efficiently. Hence the Diffie–Hellman key exchange described in Example 2.7 will also
be broken.

2.3 NIST-Competition

As mentioned before, the threat of big and working quantum computers starts to
grow. So the National Institute of Standards and Technology raised a competition
near the end of 2016, for Public-Key post-quantum (PQ) cryptographic algorithms
[10]. The aim is to find two new types of PQ algorithms, first public-key encryption
and KEM algorithms and second digital signature algorithms. The KEM candidates
were demanded to fulfill certain requirements, which include:

– IND-CCA secure

– breaking it should need at least the same amount of resources as breaking
AES-256 [11]

– an attacker is allowed to use up to 264 decapsulation queries,

– a quantum attacker is limited to a quantum circuit depth of 264 which is aprox.
equivalent to 2234 of classical computation operations.
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The reason why the competition was already started, even though it may take
several decades before a large quantum computer exists, is that if somebody already
records messages at the moment and stores it, the content could be decrypted later
when they are available. This is why the KEM protocols should be replaced before
that is the case. On the other hand, authentication only needs to be secure at the
moment the protocol is executed. Therefore the authentication protocols can be
replaced later.

Also the actual communication that is encrypted with an symmetric encryption
scheme is less affected, as symmetric encryption like AES [11] is in principal secure
against quantum computer attacks if the key size is increased [6]. Increasing the key
size is also an option for current public key cryptography like RSA [38], which led to
submission of post-quantum RSA [7] to the competition. But while the larger AES
keys are still practical to use the PQ-RSA keys are approx. 1-terabyte big [7], which
would not be practical with current computers. So new schemes have to be designed
and analysed, which is why National Institute of Standards and Technology (NIST)
has already started the NIST-competition in 2016.

In the first round 69 submissions where accepted. After one year of evaluation by
the international crypto-community the candidates of round two where announced on
the 30th of January 2019. All broken candidates were removed and some candidates
merged, which resulted in a list of 26 submissions that are studied and analysed
at the moment. Including the NewHope scheme, which is focused in this work and
described in section 3.3. So the number of submissions that will be approved for
round three in 2020 can be reduced further. In this way it should be ensured that
only the best and sufficiently investigated procedures reach the final round. This
also helps to build confidence that there will be no security problems in the final
candidates. A similar process was used to define the hash function SHA-3 [8] and
the symmetric scheme AES [11].



Chapter3Lattice-based cryptography

This chapter explains what lattices are and how they can be used to create a
cryptographic scheme. This is demonstrated by the Ring-Learning with Errors
(RLWE) approach and is based on Micciancio and Regev [28] and Peikert [32]. At
the end the description of the RLWE-based scheme NewHope will be presented.

3.1 Lattice

Definition 3.1. Integer Lattice An integer lattice L is a discrete additive subgroup
of Rn that is spanned by a linear integer combination of a basis of Rn.
Let B = (~b1, ~b2, . . . , ~bn) be an integer basis. Then L = {

∑n
i=1 zi

~bi : zi ∈ Z, ~bi ∈ B}

According to Definition 3.1 the most general lattice is the subgroup Zn ⊂ Rn. In
the rest of this work we will only consider integer lattices L ⊆ Zn. As a lattice is
a discrete group it can be seen as a finite set of points that all can be represented
by a linear combination of the basis vectors (~b1, ~b2, . . . , ~bn) of the basis B, which are
linearly independent. It should be noted that the basis is not unique. If the base is
represented as a matrix and the individual base vectors are considered as rows of the
matrix B, a unimodular matrix U can be found for which the following applies:

UB = B′ and B = U ′B′

from which follows: B = U ′B′ = U ′UB =⇒ U ′U = I =⇒ U ′ = U−1

Therefore B and B′ are both a valid basis of the same lattice, while U just represents
the linear combination of the basis vectors of B to represent the vectors of B′.
However, there are preferred bases because some problems over lattices can be solved
more efficient with them, details will follow with Definition 3.5 and 3.6. Such a
«good» basis is characterized by the fact that its base vectors are short and pairwise
as orthogonal as possible to each other. Figure 3.1 illustrates an examples of a lattice
with a «good» and a «bad» basis.

13
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a1

a2

b1

b2

Figure 3.1: A lattice with a «good» A = ( ~a1, ~a2) and a «bad» B = (~b1, ~b2) basis.

Definition 3.2. Successive Minima
Let L be a lattice and ‖v‖ the euclidean norm of v.

– λ1(L) = min0 6=v∈L(‖v‖) = minx 6=y∈L(‖x− y‖)

– λi(L) = λi−1 ∪min(‖v‖ : ∀v : ‖v‖ ≥ ‖v′‖), v ∈ L, v′ ∈ λi−1

The successive minima (Definition 3.2) gives an indication of size of the vectors
(~v1, ~v2, . . . ) ∈ L of the lattice. By sorting these values in ascending order, so
λ1(L) ≤ λ2(L) ≤ λ3(L) ≤ · · · ≤ λn(L) means ‖~v′1‖ ≤ ‖~v′2‖ ≤ ‖~v′3‖ ≤ · · · ≤ ‖ ~v′n‖. In
lower dimensions ≤ 4 the vectors ~v′1, ~v′2, ~v′3, ~v′4 will always form a basis, but this is
not the case for higher dimensions (≥ 5) [26].

Definition 3.3. Lattice determinant
Let L be a lattice. The determinant det(L) of the lattice L is defined as:

– det(L) =
√

det(BTB), where B is any basis for L

– or
n∏
i=1
‖~bi‖, where ~bi, i ∈ {1, 2, . . . , n}, are basis vectors

Theorem 3.4. Minkowski
For every integer r > 1, there exists constant γr, such that for any lattice L of rank
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r and for all 1 ≤ k ≤ r:

(
k∏
i=1

λi(L)
) 1

k

≤ √γr det(L) 1
r

The Minkowski theorem gives a relation between the lattice determinant defined in
definition 3.3 and the successive minima. Therefore, an estimation of the successive
minima can be given, just by knowing a basis. This can be helpful for solving
some computational hard problems on lattices that are used to create public key
cryptographic schemes from lattices. The most commonly used of these problems is
the Shortest Vector Problem.

Definition 3.5. SVP
Let L be a lattice and B an arbitrary basis of L.
Problem: Given B, find ~v with ‖~v‖ = λ1(L)

To solve the problem the shortest non-zero vector in the lattice has to be found.
In Figure 3.1 this would be ~a2. However, if the given base is not of such a good
shape, the problem becomes much harder, this also applies to higher dimensional
lattices. In addition to the SVP there is the more general Closest Vector Problem,
which is illustrated in Figure 3.2.

Definition 3.6. Closest Vector Problem (CVP)
Let L be a lattice with dimension n and B an arbitrary basis of L.
Problem: Given a vector ~t ∈ Rn find the vector ~v in the lattice L(B) that is closest
to ~t.

How hard it is to solve the CVP again depends on the basis B, as with the
SVP, the shorter and more orthogonal the basis vectors are, the more efficiently
the problem can be solved [28]. Thus the relevant question is how to calculate a
«good» base B′ from any base B. So far the best known algorithm for this lattice
reduction is the 1982 published LLL algorithm from Lenstra, Lenstra and Lovász
[23]. It runs in poly time and gives an sub-exponential approximation by the factor
γ(n) = 2O(n), where n is the dimension of the lattice. This is acceptable since
for lattice-based cryptography requires only a polynomial approximation problem
factor γ(n) ≥ n to be secure [33]. The best known algorithms which provide an
approximation within a polynomial factors for n have a run time of 2Θ(n logn) or 2Θ(n)

and also need exponentially space [1], which makes them more or less impractical to
use, with higher dimensions. Now the following section will explain how to use these
computational hard problems to build public key cryptography with lattices.
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b1

b2

t ∈ R2

Figure 3.2: The Closest Vector Problem in a two dimensional lattice, given ~t find
the closest point in L(B) with B = (~b1, ~b2).

3.2 Ring-Learning with Errors(RLWE)

To build a public key scheme based on the RLWE technique either cyclic or ideal
lattices are used. These are lattices are created by using an ideal Ring R of the form
Z[x]/Zp, with p being a irreducible polynomial of degree n [24], which then can be
mapped to a lattice with an additive isomorphism [25]. The cyclic rings Rq used for
RLWE schemes are even more specific. They will only consist out of up to n − 1
coefficients with the values in [0, q − 1], where q is a sufficiently large prime number
and n a power of 2. The RLWE idea was introduced by Lyubashevsky, Peikert and
Regev in 2010 to improve the already existing learning with errors approach [25],
because the existing learning-with-errors approach has the same hardness as the
worst case lattice problems, but its quadratic communication overhead reduces its
practicality. The basic concept is the same, a small secret error is applied to an
element making it hard to distinguish from a uniform randomly selected element.
However, by knowing the secret, information can still be learned from the «erroneous»
element.

So if Alice and Bob want to exchange information, we assume both know a public
a ∈ Rq. Then first, Alice samples a secret s and an error e and then Bob as well
samples his s′ and e′ from a distribution χ over Rq. Next they create their public
keys b = as + e respectively u = as′ + e′ and send them to each other. Now both
can compute nearly the same value v′ = us and v = bs′. By using a Gaussian
distribution for X , the secrets s, s′ and errors e, e′ will be relatively small compared
to a. This way v′ is approximately the same as v. The whole protocol is illustrated
in Figure 3.3.
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• Let Rq = Zq[X]/(XN + 1)
• Let X be a distribution on Rq with small coefficients

Alice Bob
chose public a ∈ Rq

s, e R←− X s′, e′ R←− X
b← as + e b−−−−−−→ u← as′ + e′

v′ ← us u←−−−−−− v← bs′

v′ = us = as′s + e′s ≈ ass′ + es′ = bs′ = v

Figure 3.3: The basic principle of a Ring-Learning with Errors scheme

The security of the RLWE is based on the Ring-Learning with Errors Decision
problem, which can be reduced to the SVP [32, Theorem 2.7].

Definition 3.7. Ring-LWE Distribution [32]
For an s ∈ Rq and a distribution X over Rq, a sample from the RLWE distribution
As,χ over Rq × Rq is generated by choosing a R←− Rq, choosing s, e R←− X , and
outputting (a,b = a · s + e)

Definition 3.8. Ring-LWE, Decision problem [32]
The decision version of the RLWE problem, denoted R-DLWEq, χ, is to distinguish
with non-negligible advantage between independent samples from As,χ, where s R←− X
is chosen once and for all, and the same number of uniformly random and independent
samples from Rq ×Rq.

3.3 NewHope-simple

This section explains a concrete implementation of an RLWE scheme, which is
NewHope-simple. It is one of the 26 submissions of the second round of the NIST-
competition mentioned in section 2.3 and it can be used as a KEM. For NewHope
a polynomial ring Rq with the parameters (N, q) is used. NewHope1024 is using
(1024, 12289) and NewHope512 (512, 12289) so both use the same prime but different
degree of the polynomial. To sample the errors and the secret keys a centered
binomial distribution ψN8 is used, which behaves nearly like a Gaussian distribution.
The reason why no Gaussian distribution is used is that it cannot be implemented
efficiently and safely [3]. As a higher dimension improves the security for the rest of
the work NewHope1024 is used and denoted as NewHope. The description is based
on the NewHope-simple paper [2] and the project report [40].
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The following only describes the CPA-secure scheme, as the CCA-security is
achieved by a variant of the Fujisaki-Okamoto transformation [16] made by Hofheinz
et al. [20], which uses a CPA-secure scheme to create a CCA-secure one. In order to
describe the entire procedure, a few algorithms must first be introduced.

Key Encode and Decode Key Encode encodes a bit string ν of length n =
N
4 = 1024

4 = 256 into a polynomial k ∈ Rq. To make it possible for Key Decode to
recover ν from an noisy element k′, ν will be encoded 4 times into k, by setting
k[i] = k[i+ n] = k[i+ 2n] = k[i+ 3n] to either q

2 if ν[i] = 1 or to zero otherwise. Key
Decode will sum the absolute value of the four relevant indices up and decide if it
is closer to zero or 2q. Algorithm 3.1 and 3.2 show the detailed procedure of Key
Encode/Decode.

Algorithm 3.1 Key Encode
Input: ν ∈ {0, 1}n : n = 256
k ← 0
for i := 0 to n− 1 do

k[i]← ν[i]b q2c
k[i+ n]← ν[i]b q2c
k[i+ 2n]← ν[i]b q2c
k[i+ 3n]← ν[i]b q2c

end for
Return: k

Algorithm 3.2 Key Decode
Input: k ∈ Rq
ν ← 0
for i := 0 to n− 1 do

t←
∑3
j=0 |k[i+ 256j]− b q2c|

if t < q then νi ← 1
else νi ← 0
end if

end for
Return: ν

Compress and Decompress To reduce the amount of exchanged data, some
elements get compressed before and decompressed after the transmission. As the
relevant information is stored in the most significant bits, the compression is achieved
by performing a modulus switching from a polynomial k ∈ Rq to an element
c ∈ Z8[x]/(xN + 1). So only the three most significant bits are kept. The decompress
algorithm then shifts the 3 bits back into the full modulus of Rq. The detailed
procedure can be seen in algorithm 3.3 and algorithm 3.4.

Algorithm 3.3 Compress
Input: m ∈ Rq
for i := 0 to N − 1 do

c[i]← d 8·m[i]
q c mod 8

end for
Return: c ∈ Z8[x]/(xN + 1)

Algorithm 3.4 Decompress
Input: c ∈ Z8[x]/(xN + 1)
for i := 0 to N − 1 do

m′[i]← d q·c[i]
8 c

end for
Return: m′ ∈ Rq

Like all KEM schemes, NewHope has 3 poly-time algorithms, Key Generation,
Encapsulation, Decapsulation, whose execution can be described in three steps.
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1. Key Generation:
The public parameter a R←− Rq gets chosen by Alice. In the practical realization,
this is done by a Parse function, which takes a random seed as input, hashes it
and interprets the hash value as coefficients of a polynomial in Rq. Additionally
she samples her secret key s R←− ψN8 and a small error e R←− ψN8 to calculate her
public key b = as + e. The pair (a,b) then is sent to Bob.

2. Encapsulation:
Bob picks a νB

R←− {0, 1}n which will be the basis for the later shared key
and samples s′, e′, e′′ R←− ψN8 . Next he computes his public key u = as′ + e′
and encodes νB into k with the Key Encode algorithm. He then computes the
ciphertext c = bs′ + e′′ + k, which gets compressed into ĉ with the Compress
algorithm. The pair (u, ĉ) then is sent to Alice.

3. Decapsulation:
Alice decompresses ĉ to c′ with the Decompress algorithm to then calculate
k′ = c− us such that:

k′ = c− us = (as + e)s′ + e′′ + k− (as′ + e′)s = k + es′ + e′′ − e′s (3.1)

Then she extracts νA from k′ with the Key Decode algorithm, which is possible
as the coefficients in es′ + e′′ − e′s are rather small compared to k. νA is then
used to derive the shared secret key µA by hashing it with SHA3-256 [8]. The
hashing is done to prevent a leakage of Bob random number generator state,
as the final shared secret key only relies on Bob’s random input.

In Figure 3.4 the full protocol description is provided. However, one simplification
has been made. The full implementation of the protocol uses the Number Theoretic
Transform (NTT) [17] in order to perform the multiplication of polynomials more
efficiently. Since the transformation to the Number Theoretic Transform (NTT)
domain has no influence on the security properties of NewHope, it is omitted here.

3.4 Original NewHope

The above described version of NewHope is the one that was submitted to the second
round of the NIST competition. It is called NewHope-simple because the authors
think the new version is simpler that the original one from the first round. Although
the main focus of this work is on NewHope-simple, the original variant is briefly
introduced here. Because section 4.3 presents signal leak attack, which only works
with the original variant.

Both versions rely on the same lattice construction with the same parameters.
The difference is how the shared secret key is derived. While in NewHope-simple the
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Parameters: q = 12289, N = 1024, n = 1024
4 = 256 with ψN8

Alice Bob
1. Key Generation
seed R←− [0, 255]32

a← Parse(seed) 2. Encapsulation
s, e R←− ψN8 ν′B

R←− {0, 1}n

b = as + e mA=(b,seed)−−−−−−−−→ s′, e′, e′′ R←− ψN8
a← Parse(seed)

u = as′ + e′

νB ← SHA3-256(ν′B)
k← Key Encode (νB)

3. Decapsulation c = bs′ + e′′ + k
c′ ← Decompress(ĉ) mB=(u,ĉ)←−−−−−− ĉ← Compress(c)

k′ = c′ − us
νA ← Key Decode(k′)
µA ← SHA3-256(32, νA) µB ← SHA3-256(32, νB)

Figure 3.4: NewHope-simple

νB gets chosen by Bob, who encodes and encrypts it into c, the original version used
a technique called reconciliation, where Bob generates a signal vector ω instead of a
ciphertext ĉ. To do so the signal function Sig(v) is used.

Definition 3.9. Signal function of original NewNope
Let q be the prime of the ring Rq and v ∈ Rq.

Sig(v)[i] =
{

0 if v[i] ∈ {− q4 , . . . ,
q
4}

1 otherwise

Bob calculates kB = bs′ + 2e′′ and ω = Sig(kB) to send mB = (u, ωB).
Then Alice also calculates kA = us such that both can use kA/B, ω and the
reconciliation function of the form Mod2: (Zq × {0, 1})→ {0, 1} to derive the shared
secret key µ. The full procedure is presented in Figure 3.5.
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Parameters: q = 12289, N = 1024 with ψN8
Alice Bob

1. Key Generation
seed R←− [0, 255]32

a← Parse(seed) 2. Encapsulation
s, e

R←− ψN8 s′, e′, e′′ R←− ψN8
b = as + e mA=(b,seed)−−−−−−−−→ a←Parse(seed)

u = as′ + e′

kB = bs′ + e′′

3. Decapsulation ω ← Sig(kB)
k′A ← us mB=(u,ω)←−−−−−−−

νA ← Mod2(kA, ω) νB ← Mod2(kB, ω)
µA ← SHA3-256(νA) µB ← SHA3-256(νB)

Figure 3.5: original version of NewHope





Chapter4Basic attacks

This chapter starts with a general introduction to decoding failures and their effects
on the security of cryptographic schemes. This is followed by a description of an
attack idea against the original version of NewHope. The rest is devoted to the
attack against NewHope simple published by Bauer et al. The attack is not only
presented but also the problems that occur during the reproduction are explained.
Furthermore, the results of the restoration are also presented.

4.1 Decoding failures

In general as soon as a cryptographic scheme uses a decoding algorithm within it’s
encryption or decryption algorithm there is a possibility of decoding failures. This
could can lead to problems as only legitimate identities involved in the protocol
should be able to encode a ciphertext, which can later be decoded correctly by the
respective party. Especially those failures are relevant where the decoding algorithm
delivers a supposedly valid output instead of outputting ⊥ together with an error
message.

There are two options to address the concerns about this problem. First it can
be shown that the occurrence of decoding failures is not possible within the scope of
the protocol. Second it can be stated that it only occurs with a certain probability
that can be considered as acceptable. Since almost all schemes use some random
input to create keys or ciphertexts, the first option is often not possible or at least
quite complex. Therefore the probability-based variant is usually chosen. Then it is
often stated that one out of a given number of decoding attempts fails. Here it also
plays a role whether decoding failures can be detected and possibly corrected with
other methods or not, but usually the protocol is simply executed again.

On the other hand, decoding failures can also reveal information about internal
states, which could be interesting from the security perspective. It generally cannot
be said whether the extractable information can be used for an attack or not, as

23
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it depends strongly on the particular scheme. However, the past has shown that
decoding failures can be used for successful attacks. post-quantum schemes are no
exception. An example is the attack by Guo et al. [18] against the QC-MPCD variant
of McEliece, which is one of the oldest PQ schemes based on linear codes, where they
first created special patterns to query the decapsulation oracle of a weakened variant
of the scheme. Based on the eventually occurring decoding failures, it was possible to
reconstruct the secret key. Next they could transfer this attack to the CCA variant.

In the specific case of NewHope decoding failures can only be detected after the
end of the protocol, as each party has only its µA/B and cannot determine whether
µA = µB. However, µA and µB are mostly intended as key for the symmetric
encryption of the following communication, so it should be possible for them to
determine whether the other communication partner has the same key or not. The
usability of NewHope depends on how often a decoding failure occurs. Therefore the
authors of NewHope have done an analysis and concluded that the probability of a
decoding failure is 2−60. Considering that NewHope is intended for the use on the
internet, is an acceptable failure probability, since the authors of NewHope said that
other failures are much more likely to occur on the internet [3].

4.2 Key reuse

A common pattern for creating attacks on cryptographic procedures can be observed
here. First, a successful attack on a weakened scheme is developed in order to be
use as a sub step for an attack on the full scheme in the second step. A similar
approach is used for the later described attacks on New Hope. Also, for lattice-based
cryptographic schemes decoding failure attacks have been found. For example, there
is one on the NTRU scheme, where the secret key can be derived from the number
of decodings [21].

All these attacks are based on one common assumption: That the secret key
will be reused by the honest party on a long-term basis, making it possible to do
many decoding queries. For a public key scheme this assumption is quite realistic,
because usually the goal of to create the public/private key pair once and then use it
for a longer period of time. Although it is possible to generate new keys after each
decryption, the new public key would have to be sent to the communication partners
again. This massively increases the communication overhead with corresponding
limitations in practicability.

However, this works differently for KEMs. These, are usually used at the beginning
of the communication and most of the protocols foresee sending the public keys
anyway, making it acceptable to generate new keys for each protocol execution.
Nevertheless, the generation of new keys still requires computing time. Although this
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may not be particularly problematic for a single communication, it may be worth
using the generated key pair over a longer period of time, if it is considered that a
server may have to establish thousands of connections in a short period of time. For
this reason, a draft for the TLS 1.3 protocol includes the feature to use keys over a
longer period of time [37]. Even if this is only an optional feature, it can be assumed
that the keys will be used for a longer period on the server side. In addition, the
integration of cryptographic schemes into server software is often quite complex and
the key management may not be taken over by the eventually secure and correct
implementation of the scheme. Therefore, also for KEMs the assumption can be
made that the keys will be reused. This class of attacks is then called key-reuse
attacks.

Since NewHope contains an encoding and decoding algorithm, and is intended
to be used on servers with the TLS protocol it is reasonable to analyze if decoding
failures can leak security-related information under the assumption of key reuse. In
the following section different approaches for such a attack are presented.

4.3 Signal Leakage

The signal leakage attack that was published by Fluhrer [15] and extended by Ding
et al. [13], is against RLWE schemes that use a signal function like the original
version of NewHope described in section 3.4 and outlined in Figure 3.5. The signal
vector ω is used to learn information about the secret key s and eventually fully
recover it. While the attack proposed by Fluhrer is attacking Alice to recover her
secret key, the version of Ding et al. is targeting Bob. Since the variant of Ding is
the more advanced one, this section is limited to his variant and gives a simplified
outline of the attack in the following.

As the attack is a key-reuse attack it assumes that Bob uses his key for a longer
period of time, so the attacker A is in the position of Alice and initiates several key
exchanges to learn information about Bob’s secret key. All the parameters are the
ones given from the NewHope description above. The procedure can be divided into
four steps, assuming that the public parameter a is already known by the attacker A
and Bob.

Step 1: A sets his s = 0 and e = 1 ∈ Rq as the neutral element in the ring. Additionally
he defines a k ∈ Rq to create his public key b = as + ke = k.
Which will result in Bob’s kb being kb = bs′ + e′′ = ks′ + 2e′′.
This configuration is then used to initiate q − 1 key exchanges, where the
individual coefficients k[i] are iterated over form 0 to q − 1.
Since the signal vector is calculated from kB , the signal for an element changes
whenever |ks′[i]| is close to q

4 , according to the signal function from Definition
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3.4. So by counting the signal changes in signal vector ω A can now calculate
the individual absolute values s′[i]. Thus, per coefficient s′[i] signal changes
occur. However, if |ks′[i]| is in the range around q

4 there may be more frequent
signal changes caused by the error e′′, but according to Ding et al. it is possible
to just ignore these areas with high frequent signal changes [13].

Step 2: After determining the absolute values of s′, it is now necessary to find the signs of
the coefficients. To do so, step one gets repeated with one configuration change,
the public key will be b′ = (1 + x)b. This will give A the signal changes cause
by (1 + x)ks′. Making it possible for him to compute the absolute value of the
coefficients of (1+x)s′ = {s′[0]−s′[N−1], s′[1]+s′[2], . . . , s′[N−2]+s′[N−1]}.

Step 3: The information gained in the first two steps now can be combined. A knows
|s′[0]|, |s′[N − 1]| and |s′[0]− s′[N − 1]| so he can determine whether s′[0] and
s′[N − 1] have the same or a different sign.
For all other pairs s′[x], s′[y] : x ∈ [0, N−2], y ∈ [1, N−1], it can be determined
with the help of the information |s′[x] + s′[y]| from step 2 whether they have
the same or different signs.

Step 4: Finally A knows all the signs of all s′[i] relative to its neighbours, which results
in two possibilities for s′. By testing s[0] and −s[0] A can now find out which
one is the correct one and s′ is completely recovered.

4.4 Attacks on NewHope-simple

Since NewHope encodes and encrypts the shared key into a ciphertext and does
not use a signal vector, another source of information must be used. As mentioned
before, decoding failures in NewHope cannot be detected during the protocol, but
during the following communication it can be verified if the keys of Alice and Bob
match or not. With this one bit of information a key mismatch attack can be created
as shown by Bauer et al. [4]. They focus on an attack where Alice, who reuses her
secret keys, gets attacked by a malicious Bob. In reality Alice would be the server
and Bob the client. Nevertheless, there is also an attack for the scenario that Bob
reuses his key and communicates with a malicious Alice even though this case is less
likely to happen. Both attacks target the CPA secure variant of NewHope and not
the final CCA secure scheme, but they are still worth considering, since attacks on a
weakened scheme often lead to advancements for an attack against the more secure
variant of the scheme. As the attack against Bob is less complicated than the one
against Alice it will be explained first and is followed by description of the more
sophisticated attack against Alice.
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4.4.1 Malicious Alice

The basic idea for this key-reuse attack was published by Ding et al. in 2017 [13]
and adapted for NewHope by Bauer et al. [4]. It is assumed that Bob uses his secret
key s′ and the error e′ for multiple connections to different servers. In contrast to
the Signal Leakage attack previously presented in section 4.3, this key reuse attack
does not involve an active attacker A, but only a passive eavesdropper Eve. It reads
the messages between Bob and two different servers, which allows her to calculate
the private key s′ as follows.

1. Eve collects the message from the first server m1,A1 = (b1,a1) = Parse(SHA3-
256(seed1)) and the reply m1,B = (u1, c1) from Bob

2. Then she collects m2,A2 = (b2,a2) = Parse(SHA3-256(seed2)) with a1 6= a2
from the second server and the corresponding m2,B = (u2, c2) from Bob.

3. As e′′ is sampled from ψN8 , it is considerably small and gets removed by
Compress , thus it needs not be considered.
Then Eve can calculate s′ directly:

s′ = u1 − u2

a1 − a2
= (a1s′ + e′)− (a2s′ + e′)

a1 − a2

Although the attack does not necessarily require an active attacker A, it can be
performed by one. The attacker has to execute the protocol twice with Bob and has
to make sure that he uses two different a1 6= a2. Then he can calculate the secret
key as in described step 3.

4.4.2 Malicious Bob

The attack of Bauer et al. against an honest Alice is more complex and requires an
active attacker A that is in Bob’s position. The corresponding scenario is that a
server (in our case Alice) uses her secret key for all her connections over a longer
period of time. If the attacker succeeds in recovering the secret key of Alice, he is
able to decrypt the messages from the remaining connections of Alice. The general
approach is that A guesses a key value νA′ and creates a special corresponding public
key u and ciphertext ĉ, which he sends to Alice. Depending on whether the key
created by Alice matches or not, Bob repeats this process and can gradually extract
parts of Alice’s secret key s. This gave the attack its name «key mismatch attack», as
it is based on the technique that the attacker checks whether he gets a key mismatch
or not. The fully detailed description that follows is based on the work of Bauer et
al. [4].
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Definition 4.1. Key mismatch oracle
A key mismatch oracle is an oracle that outputs one bit of information on the possible
mismatch at the end of the key encapsulation mechanism.

In a practical implementation of the attack, the attacker A would determine
whether the key he guessed and the key derived from Alice matches or not by
checking if he can decrypt the messages of the following communication from Alice
to something meaningful or not. Assuming that A can get this information, it is
possible to combine the key mismatch step and the decapsulation part of Alice into
a key mismatch oracle. This simplifies the theoretical description of the attack by
giving the attacker the public parameter a and Alice public key b as input and
instead of interacting with a «real» Alice he can use the key mismatch oracle to get
information about a possible key mismatch. The full procedure of the attack model
is given in Figure 4.1.

Parameters: q = 12289, N = 1024 with ψN8
Alice Attacker A

1. Key Generation
1×seed R←− [0, 256]256, s, e R←− ψN8

a← Parse(seed)
b = as + e mA=(B,seed)−−−−−−−−−→ 2. Create attack query

guess νA′


n×

Key mismatch oracle prepare a special (u, ĉ)

3. Query oracle query with mA=(u,ĉ)←−−−−−−−−−−−−−− make a query
c′ ← Decompress(ĉ)

k′ = c′ − us
νA ← Key Decode(k′) 1 or −1 whether νA=νA′−−−−−−−−−−−−−−−−→ 3. Evaluate oracle result

repeat 2. or
output s′

Figure 4.1: The procedure of the attack on Alice secret key s

Creation of the key mismatch oracle

The key mismatch oracle will be defined in several stages, starting with O1.

Definition 4.2. Key mismatch oracle O1

O1(mA, µA) =
{

1 if Decapsulation(mA′ , s) = (νA) = νA′

−1 otherwise
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As already mentioned, A makes a fixed guess for the value of νA′ that is why
from now on the value of νA′ is fixed according to Equation 4.1

νA′ = (1, 0, . . . , 0) : |νA′ | = 256 (4.1)

Why he chooses this particular string is explained later together with the verification
of Hypothesis 4.4. Together with the definition of mA = (u, ĉ) the next variant of
the oracle can be defined.

Definition 4.3. Key mismatch oracle O2

O2(u, ĉ) = O1((u, ĉ), νA′)

A has his public key u and the ciphertext ĉ to influence the output of O2. To
understand which possible combinations of u and ĉ can help to obtain information
about the secret key s, a closer look is taken into the process of how Alice computes
her key value νA, especially how the individual bits νA[i] are deducted.

νA[i] = Sign

 3∑
j=0

∣∣∣(Decompress(ĉ)− us) [i+ nj]−
⌊q

2

⌋∣∣∣− q
 (4.2)

The Sign function outputs an 0 for for all all numbers ≥ 0 and a 1 otherwise. Later
this will be mapped just to a + instead of a 0 and − instead of a 1. Since the attacker
only gets one bit of information from the oracle, but there are potentially n = 256
bits that can cause a key mismatch, he will need to ensure that he knows n− 1 bits
of νA, to have only one bit of variation. To achieve this, a hypothesis about Alice’s
νA is formulated.

Hypothesis 4.4.
νA[i] = 0 : i ∈ [1, n− 1]

Additionally it has to be considered that the Key Encode andKey Decode algorithm
combine four coefficients of s into one bit of νA. This means the smallest number
of coefficients of s that can be targeted at once is four. To do so the quadruplet
l = (l0, l1, l2, l3) for a target index k corresponding to s[k + nj]j=0...3, is used by the
attacker to choose his public key u and a ĉ such that hypothesis 4.4 is verified. This
can be achieved by setting them as stated in Equation 4.3.

u =
⌊
q − 1

8

⌉
x−k and ĉ =

3∑
j=0

((lj + 4) mod 8) · xnj (4.3)

As u gets multiplied with s, the x−k is used to shift the s[k + nj]j=0...3 to
s[nj]j=0...3. These are exactly the coefficients used to decode VA[0]. For this reason
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only the coefficients ĉ[nj]j=0...3 are of interest for the ciphertext. All other coefficients
in ĉ will be set to zero, such that the likelihood that Alice decodes them to zero is
high. Bauer et al. discussed how likely this is and came to the conclusion that in
at least 94.6% of the cases s will be in a form that Hypothesis 4.4 will be fulfilled
[4]. With this the final key mismatch oracle O can be formulated as a variant of O2
depending on the target index k and the quadruplet l.

O(k, l) = O2

⌊q − 1
8

⌉
x−k,

3∑
j=0

((lj + 4) mod 8) · xnj


O(k, l) = Sign

 3∑
j=0

∣∣∣(Decompress(ĉ)− us)[k + nj]−
⌊q

2

⌋∣∣∣− q


Running the algorithm on the values from Equation 4.3 into the Decompress algorithm

Decompress(ĉ)[nj] =
⌊

(lj + 4 mod 8) · q
8

⌉
= (lj + 4 mod 8) · q − 1

8

and plugging the values of u in:

O(k, l) = Sign

 3∑
j=0

∣∣∣∣(lj + 4) mod 8)q − 1
8 − q − 1

8 s[k + nj]
)
−
⌊q

2

⌋∣∣∣∣− q


With q divided by q−1
8 being ≈ 8.0007 and

⌊
q
2
⌋

= q−1
2 , the whole formula can be

divided by q−1
8 .

O(k, l) = Sign

 3∑
j=0
|(lj + 4) mod 8)− s[k + nj])− 4| − 8


If l gets limited to [−4, 3]4 then (lj + 4) mod 8 = (lj + 4) so:

O(k, l) = Sign

 3∑
j=0
|lj − s[k + nj]| − 8


Definition 4.5. Final key mismatch oracle
Assumed Hypothesis 4.4 is verified. Let k ∈ [0, n − 1] be the target index, ĉ set as
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described in equation 4.3, let l be the integer quadruplet in [−4, 3]4. The final key
mismatch oracle is:

O(k, l) = Sign

 3∑
j=0
|lj − s[k + nj]| − 8


By using the final key mismatch oracle O the attacker can create queries just

depending on the quadruple l and the target index k iterating from 0 to 255.

Recovering the secret key with the help of the key mismatch oracle

This section describes how the attacker A can use the key mismatch oracle from
Definition 4.5 to recover the secret key, by setting the values of the quadruple l
from Equation 4.3 in a certain way. For simplicity’s sake, the following assumes
that k is fixed within [0, 255]. Accordingly, the coefficients of s will be denoted
as sj = s[k + nj] : j ∈ [0, 3]. Although the coefficients of s are sampled from
the distribution ψ8 and thus lie in the interval [−8, 8], for the beginning we only
consider the coefficients from the subset [−3, 2] and will expand the interval set later
in section 4.4.2. Since the four coefficients are recovered one by one, we will only
consider 0 as the the successive 3 coefficients are calculated analogously.

At best, it will take only eight queries to recover s0. For the first query l0 gets
set to −4 and the other three elements will be sampled uniformly random from the
interval [−4, 3]. In the following seven queries l0 will be increased by one until l0 = 3.
The according results from the oracle will look like one of the three following cases
shown in Table 4.1.

l0 -4 -3 -2 -1 0 1 2 3

i.) + + + + + + + +
ii.) − − − − + + + +
iii.) + + + − − − + +

Table 4.1: The three different results of a set of queries for one coefficient

To find out which of the three cases occurs, one has to recap how characters are
calculated in O.

3∑
j=0
|lj − s[k + nj]| − 8

As l1, l2, l3 are fixed over the eight queries, the last three elements of the sum can be
expressed as a fixed v =

∑3
j=1 |lj − sj |− 8. This allows fv to be defined as a function
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of l0. Which of the cases occurs depends on the values of fv(l0)

fv(l0) = |l0 − s0|+ v (4.4)

We can subdivide the dependency on v into three cases:

(i) v is greater than zero:
All queries have to result in a positive sign.

0
v

l0
s0−4

Values of fv if v ≥ 0

(ii)

v � 0, v is a lot smaller then zero:
Then the first queries will be negative and
the last ones might have a positive result,
where a change of sign occurs on τ1.

0

τ1

v

l0
s0−4

Values of fv if v � 0

(iii)

v is less then zero but still close to zero:
Then the first results will be positive and
become negative at τ1. At τ2 they will get
positive again, so τ1 < τ2.
This case is called a favorable case, because
it allows to recover s0.

0

τ1 τ2

v

l0
s0−4

Values of fv if v < 0

If case (i) or (ii) occurs, A has to choose new random values for l1, l2 and l3 and
make eight new queries, to see if v has the correct value to get a favorable case.
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Note that if s0 is not in the interval [−3, 2], which was assumed at the beginning of
section 4.4.2, then a favorable case will never happen. So in a real implementation,
A would try it several times and then move on to the next sj if no favorable case
occurs. In the event that a favorable case occurs, as shown in (iii), because of the
symmetry of fv, the coefficient so can be calculated using τ1 and τ2:

s0 = τ1 + τ2
2 (4.5)

Bauer et al. have conducted a study on the probability of the success of a favorable
case appearance and came to the conclusion that as long as all s1, s2, s3 lie in [−4, 4]
a favorable case is always possible. Take for example if the values of l are

l1 = s1 − 2 · Sign(s1), l2 = s2 − 2 · Sign(s2), l3 = s3 − 3 · Sign(s3)

then v is −1, which results in a favorable case.

Example 4.6. Let the four relevant coefficients of (s0, s1, s2, s3) be (−1, 0, 2,−1).
If (l1, l2, l3) = (3, 1,−3) then v = −2, which will result in the following oracle output:

l0 -4 -3 -2 -1 0 1 2 3

fv(l0) 3 2 1 0 1 2 3 4
O + + − − − + + +

So τ1 = −2 and τ2 = 0, which means that:

s0 = τ1 + τ2
2 = −2 + 0

2 = −1

Expanding the recoverable interval The problem with the method described
so far is that the coefficients of s are drawn from ψ8 and not from ψ4, so they lie in
the interval [−8, 8] instead of [−4, 4]. This also affects the target coefficient s0, since
it is very likely that s0 lies outside the assumed interval [−3, 2].

For this reason, Bauer et al. [4] proposed a method to double the two intervals to
allow to recover coefficients in [−6, 4]. This also enables the possibility to always get
favorable case, as the interval for the allowed values for s1, s2, s3 will also be doubled
to [−8, 8]. Therefore the public key u from Equation 4.3 must be halved, so that the
new u is:

u =
⌊
q − 1

8

⌉
x−k · 1

2 =
⌊
q − 1

16

⌉
x−k (4.6)

This causes the computation of the key mismatch oracle to change to the following:

O = Sign

 3∑
j=0

∣∣∣∣lj − s[k + nj]
2

∣∣∣∣− 8


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Which accordingly also influences the result of the oracle, since the minimum of
the function fv from Equation 4.4 is no longer limited to an integer. The number
of negative results can be either even or odd, as demonstrated in Figure 4.2 and
Figure 4.3. In order to calculate s0, the attacker must first distinguished how many

0

τ1 τ2

v

l0
s0
2−4

Figure 4.2: fv with an even s0
2

0

τ1 τ2

v

l0
s0
2−4

Figure 4.3: fv with an odd s0
2

times there is a negative result. To do so, he can simply check whether the sum
τ1 + τ2 is even or odd.
If τ1 + τ2 mod 2 = 0, then S0

2 is in the set {−3,−2,−1, 0, 1, 2} and the coefficient is
calculated as follows:

s0 = 2τ1 + τ2
2 = τ1 + τ2

If τ1 + τ2 mod 2 = 1, then S0
2 is in the set {−2.5,−1.5,−0.5, 0.5, 1.5} and the

coefficient is calculated as follows:

s0 = 2
⌊
τ1 + τ2

2

⌋
+ 1
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This analysis of the oracle outputs and calculation of the coefficient is formally
described in the FindS Algorithm 4.1.

One disadvantage is that if s0 is in {−8, 7, 5, 6, 7, 8} A cannot recover s0 with this
method. However, as Table 4.2 shows, these values do not appear too frequently when
sampling from a binomial distribution ψ8 like the one used in NewHope. It shows
that about 98% of the coefficients are within the recoverable range, which means
concretely that ten of 1024 coefficients of s cannot be recovered. Those remaining
coefficients must be found by a brute force search to find the complete key. As there
are 6 possibilities for each of them the complexity for this search is 610 ≈ 226, which
is feasibly, but not optimal. The procedure from the attack side that recovers the
recoverable coefficients is presented in algorithm 4.2.

value of s0 0 1 2 3 4 5 6 7 8

Probability(×216) 12870 11440 8008 4368 1820 560 120 16 1

Table 4.2: The probability distribution for the values 0 to 8 in a binomial distribution,
created by Bauer et al. [4]

Algorithm 4.1 FindS
Input:oracle results b[8]
τ1 ←⊥
τ2 ←⊥
for i := −3 to 2 do

if b[i− 1] = + and b[i] = − then Finding the sign change from + to -
τ1 ← i

end if
if b[i] = − and b[i+ 1] = + then Finding the sign change from - to +

τ2 ← i
end if

end for
τ ← τ1 + τ2
if τ mod 2 = 0 then

c← τ
end if
if τ mod 2 = 1 then

c← 2b τ2 c+ 1
else

c←⊥
end if

Return:coefficient c of s
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Algorithm 4.2 Key recovery algorithm
for k := 0 to N − 1 do

u← q−1
16 x

−k

for j :=0 to 3 do
c←⊥
while c =⊥ and nbQueries ≤ MaxQueries do

l← (l0, l1, l2, l3) R←− [−4, 3]4
b← ZeroMatrix(8)
for i := −4 to 3 do

l[j]← i
b[i]← O(k, l)

end for
c← FindS(b)

end while
s[k + nj] = c

end for
end for

Return:s

4.4.3 Reproducing the results of Bauer et al.

To show that their attack works, Bauer et al. provide a MagmaCAS implementation1,
which uses their own implementation of NewHope. In total they ran 1000 experiments
and were able to recover 95% of the coefficients of the secret keys, which took them
in average 16 700 queries per key. One goal of this work was to see if their results can
be reproduced. But in difference to the code published by Bauer et al. the attack
should be tested against the official reference implementation of NewHope that was
submitted to the NIST-competition. Since this reference implementation is written
in C, the attack also had to be ported to C as part of this thesis [42]. However,
the description from the paper and the MagmaCAS implementation were used as
reference.

Except for one problem, which is mentioned later in section 4.4.3, it was possible
to recover all coefficients that are within the recoverable range of [−6, 4], which means
approximately 98% of all coefficients. This came with a down side as Figure 4.4
shows, it took in average approximately 18 900 queries, which is 2 200 queries more
than Bauer et al. used. However, if the higher rate of found coefficients and the
higher number of requests are combined, it can be seen that with an average of 18
queries per coefficient we only need one more. A reason for this could be that we try
more often to find a suitable quadruple l until we give up and move on to the next
coefficient.

1The MagmaCAS code can be found at https://www.di.ens.fr/~mrossi/

https://www.di.ens.fr/~mrossi/
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Figure 4.4: Queries with 1000 runs with the C-reference implementation

Problems

During the porting of the the attack, it was noticed that the MagmaCAS implemen-
tation differs from the formal description of the NewHope scheme. This difference
is in the Decompress algorithm, while in the formal description and also in the
C-reference implementation the following term is rounded normally, the MagmaCAS
implementation always rounds down.

NewHope scheme MagmaCAS implementation
m′[i]← d q·c[i]

8 c vs. m′[i]← b q·c[i]
8 c

Although this is only a small detail, it does have consequences on the success
rate of the attack, as Figure 4.5 and Example 4.7 show.

Example 4.7. Let the elements (l1, l2, l3) of the quadruple l be (−3,−4, 3) and the
attack public key will be set according to Equation 4.6, u =

⌊
q−1
16
⌉
x−0 = 768. Target

index is s0 = 3, with s1 = 0, s2 = −3, s3 = 2. Then the oracle output with the floor
rounding assumed by Bauer et al., will be:
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l0 -4 -3 -2 -1 0 1 2 3

O + + + + + − + +

So τ1 = 0 and τ2 = 2 resulting in the following guess for s0:

τ1 + τ2 mod 2 = 0 =⇒ s′0 = τ1 + τ2 = 2 6= 3 = s0

Thus the problem is the result of l0 = 2, which should be negative, because then:

τ1 + τ2 mod 2 = 1 =⇒ s′0 = 2
⌊
τ1 + τ2

2

⌋
+ 1 = 3 = s0

To understand the positive output, it is necessary to take a closer look at the calculation
that caused the output. Especially the calculation of the first bit of νA. Here the
term in { } denotes the difference to the values, computed when using only the floor
rounding as assumed by Bauer et al.

ĉ[0] = 6
ĉ[256] = 1
ĉ[512] = 0
ĉ[768] = 7

, Decompress(ĉ) =

c[0] = 9217 {−1}
c[256] = 1536
c[512] = 0
c[768] = 10753 {−1}

So the k′ will be:

k′ = c − u · s = k′

k′[0] = 9217{−1} − 768 · 3 mod q = 6913 {−1}
k′[256] = 1536 − 768 · 0 mod q = 1536
k′[512] = 0 − 768 · −3 mod q = 2304
k′[768] = 10753{−1} − 768 · 4 mod q = 9217 {−1}

The values for the computation for the first bit of νA will be:⌊q
2

⌋
= 6144

∑ |6913− 6144| {−1} = |769| {−1}
|1536− 6144| = | − 4608|
|2304− 6144| = | − 3840|
|9217− 6144| {−1} = |3073| {−1}

 =12290{−2}

So ν[0] will be a 1, as 12290 > q or analog for the oracle positive, as 12290−q > 0,
but if the −2 is applied, 12288 < q would result in a 0, respectively 12288− q < 0 in
a negative oracle output.
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The general effect on the success rate of the attack is shown by Figure 4.5. It
can be seen that only 86.1 % of all coefficients and 87% of the coefficients in [−6, 4]
can be recovered.

 650

 700

 750

 800

 850

 900

 950

 0  100  200  300  400  500  600  700  800  900  1000

co
rr

ec
t 

re
co

v
er

ed
 c

o
ef

fi
ci

en
ts

runs

Basic attack against Newhope-simple wih correct rounding

correct coefficients

Average recovered coefficients =   882.095

Average recoverable coefficients = 1012.9

Figure 4.5: The number of absolute recovered coefficients with the Bauer et al.
method, with correct rounding in the Decompress algorithm.

Since the Decompress algorithm is also included in the key mismatch oracle
from Definition 4.5, the oracle must be updated. To do so it has to be formally
demonstrated why it makes a difference if you round with dxc = bx+ 1

2c or only with
down rounding bxc. First the changes within the Decompress algorithm for single
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coefficient must be considered. The ciphertext is chosen according to Equation 4.3.

Decompress(ĉ[j]) =
⌈

(lj + 4 mod 8) · q
8

⌋
As lj ∈ [−4, 3] ⇐⇒ lj + 4 mod 8 = lj + 4

=
⌈
(lj + 4) q8

⌋
=
⌈

(lj + 4)
(
q − 1

8 + 1
8

)⌋
=
{

(lj + 4) q−1
8 if lj ∈ [−4,−1]

(lj + 4) q−1
8 + 1 if lj ∈ [0, 3]

For demonstration reasons it is assumed that all four elements of l are in [0, 3], so
the largest effect can be seen. Therefore only the last case is used and set into the
computation of the Sign function.

O′ = Sign

 3∑
j=0

∣∣∣∣(lj + 4) fracq − 18 + 1− q − 1
8 sj −

⌊q
2

⌋∣∣∣∣− q


= Sign

4 +
3∑
j=0

∣∣∣∣(lj + 4) fracq − 18− q − 1
8 sj −

⌊q
2

⌋∣∣∣∣− q


= Sign

4 +
3∑
j=0

∣∣∣∣(lj + 4− sj − 4) q − 1
8

∣∣∣∣− q
 as

⌊q
2

⌋
= q − 1

2

= Sign

4 +
3∑
j=0
|(lj + sj)| − 8

 as 8q
q − 1 ≈ 8.0007

As it turns out, there might be an extra factor before the sum if the rounding is
done as specified in NewHope. Since the +4 in front of the sum only represents the
case where all l is in [0, 3], the factor in front of the sum is mostly smaller. It can be
described with the function r.

Definition 4.8. Rounding factor function
Let l be a quadruple.

r : [−4, 3]4 7→ [0, 4]; r(l) =
3∑
j=0

{
1 lj ≥ 0
0 lj < 0
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Definition 4.9. Corrected key mismatch oracle
Assumed Hypothesis 4.4 is verified. Let k ∈ [0, n − 1] be the target index, ĉ set as
described in equation 4.3, let l be the integer quadruplet in [−4, 3]4 and r the function
from Definition 4.8. The corrected key mismatch oracle is:

O′(k, l) = Sign

r(l) +
3∑
j=0
|lj − s[k + nj]| − 8


Despite the fact that the success rate is lower with the corrected oracle, the

rest of the work it is assumed that all coefficients in the interval [−6, 4] can be
recovered. This was done to find possible ways to recovers the remaining coefficients
in {−8, 7, 5, 6, 7, 8}. It seems likely that it should be possible to increase the success
rate again with the corrected oracle.





Chapter5Attack Improvements

This chapter is about improving the basic attack described in chapter 4 beginning
with the presentation of an approach published by Qin et al. [36] and then discuss the
problems discovered during the reproduction process of this approach. Furthermore,
the improvements developed in the scope of this work are presented. For instance, it
was possible to reduce the number of oracle queries needed for the attack. The more
significant improvement, however, is the recovery of additional coefficients and the
narrowing of coefficients to speed up the subsequent brute force search.

5.1 Proposals from Qin et al.

After Bauer et al. has published their attack Qin et al. published «A Complete
and Optimized Key Mismatch Attack on NIST Candidate NewHope» [36]. They
also tried to reproduce the results of Bauer et al., but were only able to reproduce
about 73% of the 1024 coefficients of s. As the code is not published and it is not
explained in detail what exactly led to the lower success rate, only assumptions can
be made. It seems likely that this is partly caused by the rounding problem described
in section 4.4.3. It is quite possible that there were other problems, as they found 13
% less coefficients than when only correcting the rounding problem. An indication
for this is that they found a fourth case additionally to the three cases described
in section 4.4.2, when l0 is iterated from −4 to 3. They call it also an «favorable
case». The oracle output is at the beginning negative, then becomes positive and
then negative again, as shown below:

l0 -4 -3 -2 -1 0 1 2 3

O − − − + + + − −

However, this fourth case could not be detected in the context of this work and no
further attempt was made to reproduce their method of recovering the coefficients in

43
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[−6.4]. The more interesting part of the work from Qin et al. is that they proposed
a smarter way to recover the coefficients in {−8,−7, 5, 6, 7, 8}.

They analyzed the tuples (s[i], s[i+ 256], s[i+ 512], s[i+ 768]) : i ∈ [0, 255] of 106

secret keys. The results show that 4.16% of the tuples have at least one coefficient
that is not in [−6, 4] and 98.5% of these tuples have only one coefficient that is not in
[−6, 4]. This means that all tuples with three or four coefficients in [−6, 4] represent
99.94% of all coefficients. Therefore Qin et al. have concentrated on the coefficients
that are in such a tuple.

As used in the description of the attack from Bauer et al. in subsection 4.4.2 the
term sj : j ∈ [0, 4] is used for the tuple (s[i], s[i+256], s[i+512], s[i+768]) : i ∈ [0, 255]
of Alice’s secret key s. These four coefficients are involved in decoding the bit νA[i] of
Alice’s key string. The unknown coefficient will be the first of the tuple s0, meaning
that s1, s2, s3 ∈ [−6, 3] are already recovered. The procedure is analogous if one of
the other coefficients s1, s2, s3 is the unknown. The idea of the improvement is to
extract the sum m =

∑3
j=0 |sj | of all coefficients sj , with only s0 unknown, which

can be calculated afterwards by s0 = m−
∑3
j=1 |sj |. To find out m, the attacker A

has to choose his public parameter as follows:

s′ = e′′ = 0, (5.1)
u = as′ + e′ = e′ = h · x512 : h ∈ [0, q − 1] (5.2)

νA = (0, . . . , 0) except at the target index νA[i] = 1 (5.3)

This means that the ciphertext will be just k, which is be set according to the key
string νA from Equation 5.3:

c = bs′ + e′′ + k
= k
= Key Encode(νA)

=
⌊q

2

⌋
xi +

⌊q
2

⌋
xi+256 +

⌊q
2

⌋
xi+512 +

⌊q
2

⌋
xi+768

According to that the compressed ciphertext is:

ĉ = Compress(c) = 4xi + 4xi+256 + 4xi+512 + 4xi+768

These values are then used in the combination with the key mismatch oracle
O2 defined in Definition 4.3 to find the sum m. Therefore the attacker iterates h
from zero to q − 1. In the beginning the oracle output will be positive and changes
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eventually to a negative one. The value of h at which the output changes can then
be used by the attacker to calculate m =

⌊
q
h

⌉
. The full procedure of finding m

in illustrated in Algorithm 5.1. After the attacker has determined m he is able to
calculate the value of s0 using s1, s2, s3.

s0 = m− |s2| − |s2| − |s3|

Algorithm 5.1 Find-m
Input:Target index i ∈ [0, 255]
for h := 1 to q − 1 do

u[512]← h
νA = (0, . . . , 0) and νA[i] = 1
k← Key Encode(νA)
ĉ← Compress(k)
r ← O2(u, ĉ, νA)
if r < 0 then

m =
⌊
q
h

⌉
break

end if
end for

Return: m

Proof To understand why the attacker can calculate m using h, the decapsulation
procedure of Alice must be inspected. Therefore we use the values defined in
Equation 5.1 and Equation 5.2, beginning with the ciphertext c′.

c′ = Decompress(ĉ) =
⌊q

2

⌋
xi +

⌊q
2

⌋
xi+256 +

⌊q
2

⌋
xi+512 +

⌊q
2

⌋
xi+768

= 6145xi + 6145xi+256 + 6145xi+512 + 6145xi+768

As x1024 ≡ −1 in Rq meaning 3x1025 ≡ −3x ∈ Rq, the coefficients in k′ are:

k′ = c− s · u
k′[i] = 6145− (−s2 · h) mod q

k′[i+ 256] = 6145− (−s3 · h) mod q

k′[i+ 512] = 6145− s0 · h mod q

k′[i+ 768] = 6145− s1 · h mod q
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Then the Key Decode(k′) computation will result in:

t =
3∑
j=0
|k[i+ 256j]−

⌊q
2

⌋
|

t = |6145 + s2 · h− 6144|
+ |6145 + s3 · h− 6144|
+ |6145− s0 · h− 6144|
+ |6145− s1 · h− 6144|

=|1 + s2 · h|+ |1 + s3 · h|+ |1− s0 · h|+ |1− s1 · h|
=1 + s2 · h+ 1 + s3 · h+ s0 · h− 1 + s1 · h− 1
=(s2 + s3 + s0 + s1) · h
=m · h

According to the definition of Key Decode it will be checked if t is greater than or
less than q. Which means that at the beginning with h = 0 implying m · h < q Key
Decode outputs a one, resulting in a positive output from O2. If the oracle output is
negative then it means that Key Decode outputs a zero and m · h ≈ q, so m can be
calculated with the h where the oracle output changes from positive to negative.

m · h ≈ q ⇔ m =
⌊ q
h

⌉
�

Qin et al. have done some experiments, but they did not mention which language
was used or published any code. The number of queries their needed for there attack
is fifty times higher than what Bauer et al. used, instead of 16 700 Qin et al. used in
average 879 725 queries. One reason might be that more coefficients are recovered
by sending queries to the oracle instead of brute forcing them, but also because of
their way of finding the coefficients in [−6, 4] needs more queries. This is the reason
why only the approach from Bauer et al. for recovering the coefficients in [−6, 4] is
presented in this work.

5.2 Problems in the Qin et al. approach

As with the attack of Bauer et al., the aim of this work was to practically reproduce
the improvement from Qin et al. Only the formal description of their publication could
be used [36], since the source code of their experiments is not published. Again the
attack was implemented in C and is tested against the reference implementation that
was submitted by the authors of NewHope to the NIST-Competition. Unfortunately,
it was not possible to reproduce the published results, caused by two problems, which
were discovered during the reproduction process. Both have the consequence that
the improvement of the attack as proposed by Qin et al. does not work successfully.
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Multiplication of u and s

Similar to the basic attack by Bauer et al., an important condition for the improvement
is that the key string decapsulated by Alice differs from the key string the attacker
assumes only in one bit. In this case means that Alice’s key string is either as
assumed in Equation 5.3 or consists only of zeros, νA = (0, . . . , 0), limiting the only
bit that can vary to ν[i]. However this is not always the case in the approach from
Qin et al.. To understand why, example 5.1 is given.

Example 5.1. Assume that u and c are set as specified in Equation 5.2, with the
target index i being zero, accordingly the key string is νA = (1, 0, . . . , 0). For this
example all the coefficients of the targeted secret key s are zero except of the following
eight:

s[0] = 6 s[256] = 1 s[512] = 0 s[768] = −4
s[1] = 4 s[257] = 4 s[513] = 6 s[769] = 6

Correspondingly, the sum m is:

m = |s[0]|+ |s[256]|+ |s[512]|+ |s[768]|
= |6|+ |1|+ |0|+ | − 4|
= 11

To determine the key string that is decoded by Alice one has to look at the Key
Decode(k′) algorithm for the index 0. As described above, the output is based on
whether m · h is greater than or less than q. At the beginning the h will be zero, so:

m · h = 6 · 0 = 0 < q ⇒ Key Decode(k′)[0] = 1

This will result in the wanted positive oracle output. With h increasing, the output will
get positive when Key Decode(k′)[0] changes to 0, which will be the case if h = 1118
as:

m · h = 6 · 1118 = 12298 > q ⇒ Key Decode(k′)[0] = 0

As described in Algorithm 5.1, the first time there is a negative oracle output,
no further queries are made and m =

⌊
q
h

⌉
gets calculated with the most recent h.

Assuming that all other bits of νA are still zero, which is not the case for νA[1].
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To understand why νA[1] also changes to a one, first the relevant coefficients of
k′ need to be calculated.

k′ = c− s · u
k′[1] = 0− (−s[513] · h) mod q = s[513] · h

k′[257] = 0− (−s[769] · h) mod q = s[769] · h
k′[513] = 0− s[0] · h mod q = −s[0] · h
k′[769] = 0− s[257] · h mod q = −s[257] · h

These coefficients are used within the Key Decode algorithm, which will use the sum
t to the decoded bit Key Decode(k′)[1]:

t =
3∑
j=0
|k′[1 + 256j]− bq2c|

=
∣∣∣s[513] · h−

⌊q
2

⌋∣∣∣
+
∣∣∣s[769] · h−

⌊q
2

⌋∣∣∣
+
∣∣∣−s[0] · h−

⌊q
2

⌋∣∣∣
+
∣∣∣−s[257] · h−

⌊q
2

⌋∣∣∣
= |4h+ 4h+ 6h+ 6h− 2q|
= |20h− 2q|

For h = 0, the sum t will be 2q resulting in a zero as output. As h increases the sum
will decrease and for h = 615, t will be:

t = |20h− 2q|
= |20 · 615− 2q|
= |12300− 2q|
= q − 11

Obviously q − 11 is smaller than q and Key Decode outputs a one, resulting the bit
νA[1] of Alice’s key string to be one. As h gets iterated from 0 to q − 1 the bit νA[1]
changes earlier than the targeted bit νA[0]. Therefore the oracle output will change at
h = 615 instead of h = 1118 so a wrong m and correspondingly a wrong s0 will be
calculated by A.

Although the example 5.1 shown above is somewhat artificial, reproducing the
attack has shown that the problem occurs with almost every secret key s R←− ψN8 .
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Regarding the fact that it is very likely that other bits of the key string change earlier
than intended, the attack is impracticable.

Absolute value in Key Decode

In addition to the problem previously described, another problem occurred during
the reproduction. It arises in the Key Decode algorithm, where the coefficients of
k′ get interpreted as normal integers instead of elements of Zq Unfortunately, the
exact cause could not be identified since no source code was published by Qin et al.
However, the problem will be illustrated by the following concrete example.

Example 5.2. Let the coefficients of the secret key s be (s0 = 6, s1 = 1, s2 = 3, s3 =
1), so the coefficient to recover is s0 and the rest is already known, as they could
be recovered with the basic attack from Bauer et al. described in subsection 4.4.2.
According to the coefficients, the targeted sum m is 11, which means that the first h
at which the oracle output changes is 1118, since:

m · 1118 = 12298 > q

Accordingly, we will look at the individual steps the decapsulation process done by
Alice, starting with the multiplication of u and s.

s · u[0] = −s2h mod q = −3h mod q = −3354 mod q = 8935
s · u[256] = −s3h mod q = −h mod q = −1118 mod q = 11171
s · u[512] = s0h mod q = 6h mod q = 6708 mod q = 6708
s · u[768] = s1h mod q = h mod q = 1118 mod q = 1118

These values are then used to calculate the polynomial k′ = c− us, note
⌊
q
2
⌋

= 6144:

k′[0] = 6144− 8935 mod q = −2791 mod q = 9498
k′[256] = 6144− 11171 mod q = −5027 mod q = 7262
k′[512] = 6144− 6708 mod q = −564 mod q = 11725
k′[768] = 6144− 1118 mod q = 5026 mod q = 5026

Finally Key Decode(k′) uses these coefficients to decode νA, so the sum t has to be
calculated:
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t =
∑3
j=0 |k′[0 + 256j]− b q2c|

= |9498−
⌊
q
2
⌋
| = |3354| = 3354

+|7262−
⌊
q
2
⌋
| = |1118| = 1118

+|11725−
⌊
q
2
⌋
| = |5518| = 5518

+|5026−
⌊
q
2
⌋
| = | − 1118| = 1118

= 11171 < q ⇒ Key Decode(k′)[0] = 0

Obviously there is a problem as t = 11171 6= 12298 = m · h = 11 · 1118
This could be fixed if the third coefficient is changed to its a negative representation
in Zq 5518 mod q ≡ −6708 mod q then the sum t is:

t = |3354|+|1118|+|−6708|+|−1118| = 12298 = m·h > q ⇒ Key Decode(k′)[0] = 1

As example 5.2 demonstrates, the cause of the problem is of a more technical
nature. The values of the coefficients of the polynomials in Rq are in Zq. The
reference implementation uses uint16 to store all coefficients so they can only be
represented by numbers in [0, 216 − 1]. For NewHope this means that all coefficients
are always represented with a number in [0, q − 1]. The reason why this causes a
problem can be reduced to the fact that the following applies:

−6 · h mod q = −6708 mod q ≡ 5518 = q − 6 · h in the group Zq

But for the absolute values:

| − 6 · h| 6= |q − 6 · h| = | − 6 · h mod q| even when 6 · h < q

The parallel occurrence of the two described problems is the reason why the
improvement of the attack of Qin et al. could not be practically reproduced. The
problem with the absolute value is probably caused by a different technical im-
plementation of the NewHope scheme from Qin et al, than the official reference
implementation. Therefore a key element to be able to discover both problems, were
that the attack was re-implemented and tested as part of this work. The version of
the source code that implements the improvement by Qin et al. and demonstrates
both problems is published in [43].

5.3 Boundary check to reduce the amount of oracle queries

Additional to the extension of the interval in which coefficients can be recovered
described in section 5.1 and section 5.4, the attack also can be improved by reducing
the amount of oracle queries needed. This is relevant because the fewer queries are
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needed for a successful attack, the faster an attack can be executed. This means that
the attack will work even if Alice/a server only reuses its key for a shorter period.
So it can be said that the fewer queries are needed, the more practical the attack is.

There are several ways how the number of queries can be reduced. The first is
not described by Bauer et al. in their paper [4], but is applied in the code provided.
It is about an early detection of whether one gets a favorable case (iii) as described
in subsection 4.4.2 or not, to eventually chose a new l

R←− [−4, 3]4. Short recap, the
quadruple l is used to create the attack ciphertext.

ĉ =
3∑
j=0

((lj + 4) mod 8) · x256j

By choosing the ciphertext this way it is possible to define the key mismatch oracle
O(k, l) from Definition 4.5 that has either a positive or negative output. A favorable
case occurs, if over the iteration of li in [−4, 3] the oracle output is positive at
the beginning, then becomes negative and at the end becomes positive again, as
illustrated in Table 5.1. Since in all other cases the oracle output is negative in at

li -4 -3 -2 -1 0 1 2 3

O + + + - - - + +

Table 5.1: Oracle output in a favorable case

least one of the two boundary cases li = −4 , li = 3, these two boundary cases can
be checked first, instead of simply iterating l from −4 to 3 as described in Algorithm
4.2. If one of the outputs is not positive, a new l

R←− [−4, 3]4 can be selected. Saving
6 requests if the quadruple is not suitable.

A further reduction was realised as part of this work. Instead of picking the
quadruple l at random and hoping that the values will result in a favorable case,
the values can be chosen more sophisticatedly. Unfortunately this will not work for
s0, s1, s2, as there is not enough knowledge to fully control v. To produce a favorable
case as described in section 4.4.2, the sum v needs to be smaller than zero but still
close to zero, as illustrated in Figure 5.1. The sum v is slightly different than in
section 4.4.2, as we are now targeting s3.

v =
2∑
j=0
|lj −

sj
2 | − 8

Since s0, s1, s2 are already known when recovering s3 v can already be calculated
after selecting l R←− [−4, 3]. This saves the two requests for the boundary check
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0

τ1 τ2

v

l3
s3
2−4

Figure 5.1: Favorable case for s3 = −2 as τ1 + τ2 = −3 + 1 = −2 mod 0, with
v = −2

described above. However, it is also possible to select the values l0, l1, l2 directly in
such a way that v will have the intended value, with a tolerance of +0.5. Therefore it
can be ensured that the queries will result in a favorable case. The tolerance of +0.5
is because of sj

2 might not be an integer values, but for lj only integer values can be
chosen. For this reason the Algorithm 5.2 uses in line three vr + 0.5 instead of vr,
which results in the tolerance −0.5. Even though lj could also be -4, it simplifies the
code to just use 3 in the minimum function and limit the lj ∈ [−3, 3].

Algorithm 5.2 Set-l-with-v
Input:s1, s2, s3 ∈ [−6, 4], target sum vt

1: vr ← vt +−
∣∣ s1

2
∣∣− ∣∣ s2

2
∣∣− ∣∣ s3

2
∣∣

2: for j := 1 to 3 do
3: lj = Sign(sj) · bmin(vr + 0.5, 3)c
4: vr ← vr − |vj |
5: end for
Return: l1, l2, l3 ∈ [−3, 3]

How the different optimizations reduce the amount of queries needed for the basic
attack is shown in Table 5.2. The boundary check that was already used by Bauer et
al. brings the biggest reduction of about 32%. Even though the optimization of l
is not so effective, if both of them are combined the average amount of queries is
reduced by 46%. All the results were produced using the the code published in [41].
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no optimization ≈ 27600
set l with v ≈ 23900

boundary check ≈ 18900
boundary check + ≈ 14800

set l with v

Table 5.2: The average amount of query within 1000 attack runs, with the different
optimizations

5.4 Reduce search space for brute force

Since it was not possible to use the improvement from Qin et al. to recover the
coefficients in {−8,−7, 5, 6, 7, 8}, the question arose whether there are other ways
to recover these coefficients. The benchmark here is a brute force search with a
complexity of 611. This is due to the fact that there are about 11 coefficients per
secret key that are not within the recoverable interval and that there are six options
{−8,−7, 5, 6, 7, 8} for each of them. The optimal solution would be to derive all the
coefficients directly from additional key-mismatch queries. Unfortunately this could
not be achived for all of them, but with some additional queries it is possible to
recover some more or narrowing them down to reduce the search space for the brute
force search.

Like in section 5.1 and section 5.3 again the fact is used that most of the coefficients
that cannot be recovered belong to a tuple (s0, s1, s2, s3), where three out of four
coefficients are already known. Therefore Algorithm 5.2 is used to set l, which allows
to have control over the sum v. Additionally, the control over v allows you to extract
information from a non favorable case, were only one sign change occurs. In the
rest of this section it is assumed that s1, s2, s3 ∈ [−6, 4] are the known coefficients
and s0 ∈ {−8,−7, 5, 6, 7, 8} is the missing targeted one. First it needs to be checked
whether the sum v will be an integer or has a rest of 0.5, this can be achieved by
calculating the sum of the known coefficients.

v′ =
3∑
j=1

sj
2 and check v′ − bv′c ?= 0

The division by two is caused by the extension to the full interval [−6, 4] described
in section 4.4.2.

The second step is to set l using algorithm 5.2 so that v = −1.0 respective
v = −0.5 and use it for eight oracle queries where l0 is iterated from −4 to 3. In the
case v′ − bv′c = 0 is an integer, eight more requests must be made with v = 0. The
resulting outputs for the different coefficients are listed in Table 5.3. Obviously there
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sj v = −0.5 v = −1.0 v = 0

-8 [−+ + + + + ++] [−−+ + + + ++] [−+ + + + + ++]
-7 [−−+ + + + ++] [−−+ + + + ++] [+ + + + + + ++]
5 [+ + + + + +−−] [+ + + + + +−−] [+ + + + + + ++]
6 [+ + + + + + +−] [+ + + + + +−−] [+ + + + + + +−]
7 [+ + + + + + +−] [−+ + + + + +−] [+ + + + + + ++]
8 [−+ + + + + ++] [−+ + + + + +−] [+ + + + + + ++]

Table 5.3: Different oracle outputs for coefficients in {−8,−7, 5, 6, 7, 8} over the
course of l0 ∈ [−4, 3]

are no more favorable cases, but some output patterns can be identified and some
coefficients can be recovered and some at least narrowed down. The colors in the
table give an indication which coefficient results in a unique pattern, allowing them
to be recovered or to which two options the coefficient can be narrowed down.

v′ − bv′c Recoverable Narrow down

0.5 −7, 5 {−8, 8}, {6, 7}
0 −8,−7, 5, 6 {7, 8}

Table 5.4: The possible interpretation from query patterns of Table 5.3

As Table 5.4 shows the five is always recoverable, which is an improvement as due
to the centered binomial distribution used for New Hope, the five is the most common
coefficient within the here relevant interval. This thesis also included to show that
the improvements are applicable in practice. Therefore both improvements were
implemented in C and tested against the reference implementation of NewHope. The
full C code is published in [44]. The same code was used for the analysis presented
in Table 5.5.

Per secret key s with 1024 coefficients:

Number of coefficients in {−8,−7, 5, 6, 7, 8} 11
Number of correct recovered coefficients 1022
Number of coefficients narrowed down to two options 1.5
Number of total unknown coefficients 0.5

Table 5.5: The average results from 1000 attacks, with our own improvement to
recover more coefficients and to reduce the search space
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The amount of correct coefficients increases to 1022, so only two are missing.
Mostly one of these two is already determined down to two options, but often this is
the cause for both. Thus the complexity for the brute force search could be reduced
from 611 = 225 to 4 to 8 · 2 = 16 possibilities, which more or less could be considered
as not relevant. Meaning that this improvement makes the attack more practical.

Algorithm 5.3 NarrowDownCoefficient-s0

Input:s1, s2, s3 ∈ [−6, 4]
1: v′ =

∑3
j=1 sj

2: vint = v′ − bv′c = 0
3: l← (−4, Set-l-with-v(s1, s2, s3, vt = −1.0))
4: for j := 0 to 7 do . Doing the first eight oracle queries
5: r[j]← O(0, l)
6: end for
7: if vint = 0 then . If v is an integer make a second run with v = 0
8: l← (l0 = −4, Set-l-with-v((s1, s2, s3), vt = 0))
9: for j := 0 to 7 do

10: r2[j]← O(0, l)
11: end for
12: end if
13: . After all queries, check for different patterns
14: if vint = 0 and r = [−+ + + + + ++] then s0 ← {−8, 8}
15: end if
16: if vint = 0 and r = [−−+ + + + ++] then s0 ← −7
17: end if
18: if vint = 0 and r = [+ + + + + +−−] then s0 ← 5
19: end if
20: if vint = 0 and r = [+ + + + + + +−] then s0 ← {6, 7}
21: end if
22: if vint = 0.5 and r = [−−+ + + + ++] then
23: if r2 = [−+ + + + + ++] then s0 ← −8
24: else s0 ← −7
25: end if
26: end if
27: if vint = 0.5 and r = [+ + + + + +−−] then
28: if r2 = [+ + + + + + ++] then s0 ← 5
29: else s0 ← 6
30: end if
31: end if
32: if vint = 0 and r = [−+ + + + + +−] then s0 ← {7, 8}
33: end if
Return: s0





Chapter6Summary and Conclusion

This work is part of the process to develop the new type of post-quantum (PQ)
cryptography. To understand why this new type of cryptography is needed, the
thesis starts with a simplified description of quantum computers and their threats
for the currently used cryptography. A major part of this process is the competition
launched by the National Institute of Standards and Technology (NIST) to find a
PQ scheme suitable to be used on the internet. We present the lattice-based Key
Encapsulation mechanism NewHope that was submitted to the first round of the
NIST-competition and got simplified for the second round. Our contribution is to
analyse a published attack approach against NewHope and develop improvements
and all of this is not only done as theoretical work but also practically evaluated
by implementing it and test it against the official C-reference implementation of
NewHope that is written by the authors. All different versions of the produced source
code are published in [43], [42], [41], [44].

The main focus lies on the key reuse attack from Bauer et al. [4] and the
improvement published by Qin et al. [36]. The key element of this analysis is to
reproduce the attack and test it against the C-reference implementation that was
submitted to NIST-competition by the authors of NewHope. This makes it possible to
detect a problem in the approach of Bauer et al., which is caused by a small technical
detail where their implementation differed from the reference implementation. Instead
of the normal rounding function b e they only use floor rounding b c in the Key
Decode algorithm. The full reason of this problem was discovered late in the course
of this thesis, so due to the lack of time it was not possible to develop a solution and
reach the success rate previously achieved by Bauer et al.. Still though it is possible
to more or less reproduce their results and to recover the most of the coefficients of
Alice’s secret key.

Unfortunately the same cannot be said about the improvement from Qin et al.,
as we discovered two problems in their approach. The first is more of a mathematical
nature and caused by an incorrect assumption in the multiplication of two polynomials,
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while the second one is again a technical one, since it might be caused by an inaccurate
representation of elements in the group Zq.
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As the improvement from Qin et al. does not work for us, we developed an
new way to increase the amount of recoverable coefficients. With our approach it is
possible to recover more then 99% of the coefficients. Another optimization is done
to reduce the amount of queries needed for the basic attack by using the already
known coefficients.

Despite the success of being able to recover nearly hundred percent of the secret
key the attack can yet not be considered as critical for NewHope. Although it is
possible that there will maybe implementations that use the private key for a longer
period of time, the assumptions made for the attack are still too strict. The authors
of NewHope have already recommended to generate new private keys for each key
exchange when introducing the procedure. Furthermore the attack only works against
the CPA-secure scheme of NewHope and not against the more secure CCA version,
which would be the one used later. So the next step for further work is to develop
a key mismatch oracle based on the CCA version of NewHope. A possible way of
doing this could for example to check if a timing attack can be used to create a key
mismatch oracle for the CCA-secure version of NewHope.

Overall one important advice can be given as result of this work: always test an
attack against the reference code if it is available. It reduces the number of possible
error sources and thus ensures that the scheme is implemented correctly. Personally, I
am very curious to see if a lattice-based approach will prevail in the NIST-competition
and what other attack approaches against NewHope will be published in the future.
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