
Using machine learning for optimal SLA/SLO
contract negotiation in 5G

Zhu Zhu
Submission date: April 2020
Supervisor: Bjarne Emil Helvik, IIK
Co-supervisor:

NTNU – Norwegian University of Science and Technology
Department of Information Security and Communication Technology

Title: Using machine learning for optimal SLA/SLO
contract negotiation in 5G

Student: Zhu Zhu

Problem description:

In 5G, services and slices will be provided in co-operation between many networks
and service providers. The quality of service (QoS) provided to the end users and how
the providers contribute to this QoS is agreed in Service Level Agreement (SLA). SLA
is the contract that refers to the level of service guaranteed to a user by the network
operator and to a number of quality of service parameters or metrics including
dependability, latency, security, etc. To measure the quality of the offered service,
the customer relies on a specific element of SLA, which is Service Level Objectives

(SLOs). Not meeting SLOs may have severe economic consequences. Fulfilling the
SLOs may be expensive, while lack of control mechanisms may lead to over-dimension
the provided resource. So the establishment and re-negotiations of contracts among
the parties may be regarded as a game.
The problem to be solved in this project is how to optimize the strategy in the
multi-provider domain regarding the system dependability SLO. More specifically
how the "failure budget" should be shared among the sub-providers to achieve the
lowest overall cost while meeting the dependability SLO. It is assumed that each
sub-provider has two different service modes – cheap and expensive. And the optimal
strategy is the decision about whether each sub-provider should shift from one mode
to another or trade their downtime budget at certain points of time, with the objective
to lower the overall cost. The project aims to explore one or more machine learning
methods to solve the problem above.

Date approved: 2019-02-14
Supervisor: Bjarne Emil Helvik, IIK

Abstract

The objective of this master thesis is to optimize strategy in the multi-
operator domain to achieve the lowest overall cost while meeting the
dependability SLO by using machine learning.
To reach this objective, we identified to use reinforcement learning al-
gorithms to interact with an discrete event simulated environment to
optimize the decision making both for a single operator and for multiple-
operators who are working simultaneously to provide service.
We designed a simulator which can be used to combine discrete event
simulation and reinforcement learning algorithms. We created proper
interfaces for our reinforcement learning agent to interact with one or
multiple synchronized discrete event simulation processes. The reinforce-
ment learning agent is able to complete its optimization learning process
by getting real-time information from the simulator, deploying action
orders to the simulator, and getting feedback from the simulator.
Our results showed that by using Q-learning algorithm with our simulator,
the overall cost for a single operator can be reduced by 4.9% averagely.
This work has involved an analysis on how to use reinforcement learn-
ing in multi-operator scenario, what methods could be used and why
these methods are considered to be appropriate for the problem. With a
chapter devoted to the necessary background knowledge in reinforcement
learning, the thesis should serve as an introduction to use reinforcement
learning for optimal SLA/SLO contract negotiation in 5G for anyone who
is interested in this field.

Preface

First and foremost, I want to thank my supervisor Bjarne Emil Helvik,
whose guidance and feedback has been invaluable both to this thesis
and to the specialization project preceding it. The number of feedback
meetings he has held, the inspirations and guidance he has given, and
the time he has spent reading drafts has exceeded my expectations.
This thesis was written across one year and three months, since I took ten
months’ maternity leave in the middle. I want to thank my supervisor
and the faculty of IIK for the additional time they have spent on the
arrangement due to my leave. I also want to thank my family, who gave
me strong support of taking care of my kid when I was writing the thesis.

Contents

List of Figures 1

1 Introduction 3
1.1 Background . 3
1.2 Objectives . 5
1.3 Structure . 5

2 Background Theory and Motivation 7
2.1 Machine Learning . 7

2.1.1 Sub-branches of Machine Learning 7
2.1.2 Deep Learning . 8

2.2 Reasons for Choosing Reinforcement Learning 8
2.3 More on Reinforcement Learning . 10

2.3.1 Terminologies . 10
2.3.2 Methods . 12

3 Problem Analysis and Methodology 15
3.1 Reinforcement Learning Problem Setup 15

3.1.1 Single operator scenario . 15
3.1.2 Multiple operators scenario 16

3.2 Chosen Reinforcement Learning Method 16
3.2.1 Method for Single Operator Scenario 16
3.2.2 Method for Multiple Operator Scenario 16

3.3 A discrete event simulation environment 17

4 Simulator design 19
4.1 Introduction . 19
4.2 Simulator for Single Operator Scenario 19

4.2.1 The State Transition and the Sequence of Processes 19
4.2.2 Work Process . 20
4.2.3 Step Process . 23
4.2.4 Apply Reinforcement Learning 23

v

4.3 Simulator for Multiple (Two) Operator Scenario 25

5 Results and Discussions 27
5.1 Optimising parameters . 27

5.1.1 Parameters of Q-learning . 27
5.2 Workflow and final result . 30

6 Summary 33

References 35

Appendices
A Python code of the Simulator 37

List of Figures

4.1 State transition diagram of single operator scenario 20
4.2 Sequence diagram of single operator scenario 21
4.3 Penalty function: penalty relates to accumulated down-time 22
4.4 Q-Table . 24
4.5 Sequence diagram of multiple operators scenario 26

5.1 Tuning α for optimization . 28
5.2 Tuning γ for optimization . 29
5.3 Tuning ε for optimization . 30
5.4 Reinforcement Learning Process Overview 31
5.5 Average total cost at each 10000 iteration 32

1

Chapter1Introduction

In 5G, services and slices will be provided in co-operation between many networks and
service providers. The quality of service (QoS) provided to the end users and how the
operators contribute to this QoS is agreed in Service Level Agreement (SLA). SLA is
the contract between network service sub-operators and the service user. It usually
states the sub-operators’ obligations, which include the implemented dependability
mechanism, the SLOs with the required down-time threshold and the penalty for
down-time overflow, and how to share the penalty between sub-operators, etc.
The difficulties associated with sub-operators’ behavior are how to react to possible
failures according to SLOs and how to allocate appropriate resources.
To guarantee QoS in SLA in a cost effective way, the adequate framework based on
dynamic resources allocation could thus be implemented; such a framework allows
managing resources in order to minimize the risk of SLO violations while reducing
the cost. Accordingly, the sub-operators’ systems will be able to meet the SLO in
SLAs in an economical way.

1.1 Background

The problem to be solved in this project is how to optimize the strategy in the
multi-operator domain regarding the system dependability SLO. More specifically
how the "failure budget" should be shared among the sub-providers to achieve the
lowest overall cost while meeting the dependability SLO. It is assumed that each
sub-provider has two different service modes – cheap and expensive. And the optimal
strategy is the decision on whether each sub-provider should shift from one mode to
another or trade their downtime budget at certain points of time, with the objective
to lower the overall cost. The project aims to explore one or more machine learning
methods to solve the problem above.
Existing work that address the related topic can be classified in the following two
aspects:

3

4 1. INTRODUCTION

i. What methods could be used to dynamically allocate resource along the service
period and among the different service sub-suppliers?
There is a trade-off between fulfilling the SLA availability, and the amount of resources
needed in order to do so. The paper "Guaranteeing Availability Requirements in
SLAs using Hybrid Fault Tolerance"[AJGW15] introduces the potential hybrid fault
tolerance approach. Assuming there are two different technologies A and B to be
used. A provides relatively higher level of performance with relatively higher cost
than B. Then two intuitive ways to combine the use of fault tolerance technologies
A and B are studied: i) Spend and Save. ii) Save and Spend. Spend and Save is
a hybrid fault tolerance approach that uses technology B at the beginning of the
SLA. This initial phase is called spend. In order to have a tight control on the risk
of violating the SLA availability parameter, the provider has the opportunity to
switch to technology A at any time, starting the save phase. However, it is desired to
delay the shift as much as possible, due to the cost saving consideration. The main
challenge of this approach is to decide the appropriate point to switch to the save
phase. Save and Spend is a hybrid fault tolerance approach that uses technology A
at the beginning of the SLA period. This initial phase is called save phase, since
there is a very high probability to satisfy or exceed the SLA availability parameter.
However, the use of technology A implies more costs and resources. Therefore, it is
desired to switch to technology B as early as possible. The mechanism has to verify
that the the saving at the save phase is enough.
The Hybrid Fault Tolerance method is used to solve the individual service provider’s
problem - fulfilling the SLA availability while saving cost and resource as much as
possible. However, future communication based services will be provided by a set of
independent market actors who cooperate in providing the service. SLA will take
the roll to guide and govern the related service activities among multiple operators
and the user. The operators must distribute the obligations and benefits from this
agreement[Zhu].
ii. What machine learning models could be chosen to satisfy the research objective.
In the paper "SLA Violation Prediction In Cloud Computing: A Machine Learning
Perspective" [RAH18], two machine learning models: Naive Bayes and Random Forest
Classifiers have been explored to predict SLA violations. As SLA violations are
events that rarely happen in the real world (0.2%), several re-sampling methods are
used to overcome the challenge. And Random Forest with SMOTE-ENN re-sampling
are found to have the best performance among other methods with the accuracy of
0.9988%. It is also mentioned that mem_requested is the most important feature of
the random forest model in predicting violations. And random forest can be used
real-time thanks to its relatively high speed.

In another paper "Failure prediction using machine learning and time series in
optical network"[ZWL17], a performance monitoring and failure prediction method
in optical networks based on machine learning is proposed. The primary algorithms

1.2. OBJECTIVES 5

of this method are the Support Vector Machine (SVM) and Double Exponential
Smoothing (DES). Though the method is not particularly used for network service
failure prediction, the methodology used can still be of interest and consideration for
this study[Zhu].
Many of the previous studies are devoted to SLA violation predictions. In this study,
we will review and analyze the feasibility of existing methods, and try to find Machine
Leaning methods for process control rather than violation prediction. We aim to
apply Machine Learning tool for decision making optimization to fulfill the SLOs
while minimizing the total cost for operators.

1.2 Objectives

The main objectives of this Master’s project is to find the optimal policy for network
service operators to minimize cost while fulfilling dependability SLO in SLA by using
Machine Learning.

– Question 1: What kinds of machine learning methods are appropriate for policy
optimization in this research problem and why?

– Question 2: How to achieve policy optimization for the research problem with
the selected machine learning methods?

1.3 Structure

The rest of the thesis is structured as follows.
Chapter 2. Background Theory and Motivations gives an introduction to the
background theory necessary to understand the chosen methods and the rest of the
thesis, and the motivations for selecting methods and algorithms that will be used in
this study.
Chapter 3. Problem Analysis and Methodology analyzes the problems relate
to reinforcement learning and explain the methodology used for the simulator design
in the upcoming chapter.
Chapter 4. Simulator Design describes the design of the simulator and how to
build the interaction between the simulator and reinforcement learning agent.
Chapter 5. Results and Discussion presents the workflow of the reinforcement
learning implementation with parameter optimization and final result.
Chapter 6. Summary summarizes the study findings and concludes with proposi-
tions for future work.

Chapter2Background Theory and
Motivation

This chapter presents theoretic knowledge and terminology for the reader to under-
stand the rest of the thesis. Section 2.1 briefly introduces concepts and fundamentals
in machine learning and deep learning, section 2.2 explains the motivations for
applying reinforcement learning and details on reinforcement learning, and section
2.3 elaborates the specific reinforcement learning algorithms appropriate for our
problems.

2.1 Machine Learning

Machine learning addresses the question of how to build computers that improve
automatically through experience[JM15]. It is about learning from data and making
predictions and/or decisions[Li18].

2.1.1 Sub-branches of Machine Learning

There are many approaches that can be used when conducting machine learning.
They are usually grouped into the areas of supervised learning, unsupervised learning,
and reinforcement learning.

Supervised Learning

Supervised learning is the most widely used machine learning methods today. The
applications of supervised learning includes email spam classification, fingerprints
recognition, object recognition over images and so on.
Supervised learning is where the training data is a collection of (x, y) pairs and the
goal is to predict y∗ in respect to x∗. The predictions are generally formed via a
learned mapping f(x), which produces an output y for each input x.[JM15] As each
of the input data x has a corresponding output data y. We call the data as labeled
data.

7

8 2. BACKGROUND THEORY AND MOTIVATION

Supervised learning can be further group into two subcategories: Classification and
regression.

– Classification: A classification problem is when the output variable is a
category, such as “spam” and “not spam”, or “cat” or “dog”.

– Regression: A regression problem is when the output variable is a real value,
such as “revenue” or “price”.

Unsupervised Learning

Unsupervised Learning deals with clustering and finding relations in unlabeled
data[SZ19]. It generally involves the analysis of unlabeled data under assumptions
that the data has structural properties(e.g. probabilistic, algebraic, or combinatorial)[JM15].

Reinforcement Learning

Reinforcement learning is known as a semi-supervised learning model in machine
learning. Here the information available in the training data is intermediate between
supervised learning and unsupervised learning. Instead of the form of the paired
data (x, y) where y is the correct output for the given input x, the training data
in reinforcement learning are assumed to provide only an indication in response to
whether an action is correct or not; the problem of fining the correct action remains
when an action is incorrect[JM15].

2.1.2 Deep Learning

In machine learning algorithms we have x and y, which we can also call them input
layer and output layer. In deep learning, there are one or more hidden layers between
input layer and output layer, and weights on links between units from layer to
layer. At each layer except input layer, we compute the input to each unit, as
the weighted sum of output of units from the previous layer, with non-linearity(or
activation function), such as logistic, tanh, rectified linear unit (ReLU), and Softmax.
After computations flow forward from input layer to output layer, we compute error
derivatives backward at output layer and each hidden layer, and backpropagate
gradients towards the input layer, so that weights can be updated to optimize some
loss function.[Li18]

2.2 Reasons for Choosing Reinforcement Learning

Supervised Learning can solve a lot of problems, e.g. classifying images, translating
text. However, the problem of SLO fulfillment optimization is a decision-making
problem which is similar to the problems of playing games or teaching a robot to

2.2. REASONS FOR CHOOSING REINFORCEMENT LEARNING 9

take an action. Supervised learning is not thought to be appropriate to deal with
this kind of problem. Why?
Suppose we had a data set containing all the history of the service provided by
multiple operators. Then we could use the service state as input x and the optimal
action that are taken for that state as output y. In theory it sounds to work but in
practice a few issue arise.

i. Collecting such a data set might be quite expensive or unfeasible.
A typical supervised learning algorithm generally requires an immense amount
of prior data (e.g., typically more than 100,000 items) for training the decision
model. With this scale, the controller should have a strong storage capacity
and powerful calculating ability. In a real network, determining whether a node
is available is performed by many different kinds of equipment. If the controller
monitors and predicts the state of each piece of equipment with that scale, it
will suffer a seriously heavy burden[ZWL17].

ii. Data sets are incomplete for all domains we need.
Consider that we want to use machine learning algorithms to find out the best
time point to take the action to shift mode or trade down-time. The problem is
that it’s impossible to have the data sets that involve all the time-steps that the
system actually shifted its mode or traded down-time with another operator.

iii. This approach aims to imitate a human expert rather than actually learn the
optimized strategy.
Suppose that we have the data sets that contains the output y, which is the
lowest cost for operators. We don’t know whether the cost could be reduced
further. If we use the existing lowest cost as the target for supervised learning,
it won’t be possible for us to find optimal solution to achieve even lower cost.

Reinforcement learning comes to address the problems here. It attempts to learn
optimal actions in an interactive environment by trial and error. In other words,
it learns the optimal strategy by sampling actions and then observing which one
leads to the desired outcome. Unlike supervised learning that learns the optimal
action from a label, reinforcement learning learns it from a time-delayed label called
a reward. The reward tells us whether the outcome of whatever we did was good or
bad. Hence, the goal of reinforcement learning is to optimize actions for maximum
reward.

10 2. BACKGROUND THEORY AND MOTIVATION

2.3 More on Reinforcement Learning

In this section, we are going to present an overview of reinforcement learning. For
reinforcement learning experts, as well as new comers, we hope this overview would
be helpful as a reference and provide as much relevant information as possible for
the readers to understand the rest of the thesis.

2.3.1 Terminologies

Actions

Actions are the methods for the Agent to interact with and change its environment,
and thus transfer between states. Every action performed by the Agent yields a
reward from the environment. The decision of which action to choose is made based
on the policy.

Policy (π)

The policy, denoted as π (or π(a|s)), is a mapping from some states to the probabilities
of selecting each possible action given that state. For example, a greedy policy outputs
the action with the highest expected Q-Value for every state.

Agent

Agent is the reinforcement model that learns to maximize the rewards it is given by
the environment.

State

State is every possible scenario the agent encounters in the environment. The agent
transits between different states by performing actions. The terminal state usually
marks the end of an episode. And it returns to the initial state when a new episode
begins.

Environment

Environment is where the agent gets feedback on its actions, either directly or
indirectly. The environment changes as the agent performs actions; every such
change is considered a state-transition.

Reward

Reward is a numerical value received by the agent from the environment as a direct
response to the agent’s actions. The agent’s goal is to maximize the overall reward
it receives during an episode, so the agent is motivated by the reward in order to

2.3. MORE ON REINFORCEMENT LEARNING 11

take a desired action. Reward can be a positive value, which emphasizes a desired
action, or a negative value, which discourage an undesired action.

Overall reward

Overall reward, sometimes referred to as “expected return”, is the expected reward
over an entire episode.

The Bellman Equation

Assume we already know what is the expected reward for each action on each step.
Then we’ll choose the sequence of actions that will eventually generate the highest
reward. This cumulative reward is often referred to as Q Value, and The Bellman
Equation is the mathematical formalization of this strategy.
[SB]

In the equation, the Q Value yielded from performing action a at state s, equals to
the immediate reward r(s,a), plus the highest Q Value from state s’ (which is the
state it arrives in after performing action a from state s). The agent will receive the
highest Q Value from s’ by selecting the action that maximizes the Q Value.

Q Value

Q Value (Q Function), usually denoted as Q(s,a) (sometimes as Q(s, a; θ) in Deep
RL), is the sum of the instant reward and the discounted future reward (of the
resulting state). "Q" is the abbreviation of the word “Quality”.

Q-table

Q-table is a matrix where we store the Q-values for each state and action.

α - learning rate

α (alpha) is the learning rate (0 < α 6 1) - Just like in supervised learning settings,
α is the extent to which our Q-values are being updated in every iteration.

γ - discount factor

γ controls the importance of long term reward versus the immediate reward.

12 2. BACKGROUND THEORY AND MOTIVATION

Exploitation Exploration

Reinforcement learning has no pre-generated data sets which they can learn from.
Instead, it creates its own experience and learn by trial and error. Exploration is
something about the agent explores the environment — the agent tries many different
actions in many different states in order to learn all available possibilities and find
the path which will maximize its overall reward. If all the agent will do is explore, it
will never find the best path to maximize its overall reward — it must also use the
information it learned to do so. Exploitation is something about the agent exploits
its knowledge to maximize the rewards it receives[SB]. The trade-off between the
two is one of the biggest challenges of reinforcement learning.

Greedy Policy, ε-Greedy Policy

A Agent constantly performs the action that is believed to yield the highest expected
reward is called greedy policy. Obviously, such a policy will not allow the Agent to
explore at all. An ε-greedy policy is often used instead to allow some exploration: we
decide whether to pick a random action or to exploit the already computed Q-values.
This is done simply by using the ε parameter in the range of [0,1] and comparing it
to a random number in the range of [0, 1].

Markov Decision Process (MDP)

MDPs are a classical formalization of sequential decision making, where actions
not just yield immediate rewards, but also influence subsequent states and through
those future rewards. Reinforcement learning problems can be mathematically
formulated into MDPs, where we define the interaction between a learning agent and
its environment in terms of states, actions, and rewards.[SB]

Episode

Episode can be broken down into sequences in which the agent interacts with its
environment until it reaches a certain terminal state that resets the environment to
its initial state.

2.3.2 Methods

Q-learning

Q-learning is an off-policy reinforcement learning algorithm that seeks to find the
best action to take given the current state, where a policy is derived by choosing the
action with the highest Q-value in the current state.

2.3. MORE ON REINFORCEMENT LEARNING 13

Deep Q Network(DQN)

Deep Q Network is the combination of Q learning and deep learning (specifically, a
deep convolutional Artificial Neural Network (ANN))[SB]. It comes into play when
the number of states and actions are very large. The idea is to replace the Q-table
with a neural network that works to approximate Q-Values. It is referred to as the
approximating function, and denoted as Q(s, a; θ), where θ represents the neural
network’s weights.

Policy Gradient

Policy Gradient is a kind of reinforcement learning methods that learn a parameterized
policy that can choose actions without consulting a value function. The parameter
vector is denoted as θ. The methods learn to optimize θ (which are usually the
neural-network’s weights) based on the gradient of some performance measure J(θ)
with respect to θ.

[SB]

where α is a learning rate.

Chapter3Problem Analysis and Methodology

This chapter will analyze our study problems relate to reinforcement learning and
explain the methodology used for the simulator design in the upcoming chapter. In
section 3.1, we are going to setup and analyze the reinforcement learning problems.
In section 3.2, we will discuss what reinforcement learning methods can be used and
why. In section 3.3, we will elaborate the possible simulation tools for reinforcement
learning implementation and our choice.

3.1 Reinforcement Learning Problem Setup

In this study, we are trying to deal with two consecutive problems. The first problem
is to minimize cost for a single operator who provides service. The second is to
minimize the overall cost for multiple operators who provide service simultaneously.

3.1.1 Single operator scenario

The environment is the simulation of one operator provides service either in cheap
mode (denoted as mode A) or in expensive mode (denoted as mode B). The agent
is the reinforcement learning model who will make sequential decisions at certain
time-steps on whether to provide the service in mode A or mode B. The actions(either
1 or 2) is the mode selecting decisions that the agent makes at every state it arrives.
In simple terms, the agent will first observe and construct its own representation of
the environment (state). The state is defined as two-dimensional: The first domain
is time; the second domain is accumulated down-time in respect to time. The agent
will take certain actions like shift the mode at different state and observe how would
the service availability response (next state). Assume the agent is in cheap mode. If
the accumulative down-time is longer than expected (receiving a negative reward),
the agent will switch to expensive mode (updating the policy); if the accumulative
down-time is shorter than expected (receiving a positive reward), the agent will stick
to the cheap mode. The agent will repeat the process until it finds a policy (what to

15

16 3. PROBLEM ANALYSIS AND METHODOLOGY

do under different circumstances) that minimizing the total cost (maximizing the
total rewards).

3.1.2 Multiple operators scenario

To be simple, here we assume there are only two operators, denoted as operator 1
and operator 2. The environment is the simulation of the two operators provide
service either in mode A or in mode B simultaneously. The agent is the reinforcement
learning model who will make a bunch of sequential decisions at each time-step.
The actions is the decisions at each time-step: 1) whether to provide the service in
mode A or mode B for operator 1 and operator 2 respectively; 2) whether to trade
down-time budget or not between operator 1 and operator 2; 3) if trade down-time
budget, whether operator 1 sells its down-time budget to operator 2 or the other way
around; 4) how much down-time budget do they sell or buy respectively. Since we
need to observe the two simultaneous process, the state should be defined as three-
dimensional: the first domain is time; the second domain is accumulated down-time
in respect to time of operator 1 ; and the third domain is accumulated down-time in
respect to time of operator 2.

3.2 Chosen Reinforcement Learning Method

3.2.1 Method for Single Operator Scenario

We are going to apply Q-learning to the single operator scenario. The choice is made
based on the following reasons: 1) Q-learning is one of the fundamental reinforcement
learning methods, it directly parameterize and update value functions or policies
without explicitly modeling the environment. So it is typically simpler, more flexible
to use. 2) Q-Learning tries to have complete and unbiased knowledge of all possible
actions. Its learning procedure is to figure out the quality of each possible action, and
select the best one. Since we only have two possible actions in the single operator
scenario, Q-learning is capable of performing the action selection.

3.2.2 Method for Multiple Operator Scenario

As we discussed in Section 3.1.2, the number of actions in the multiple operator
scenario becomes much larger compared with that in the single operator scenario.
Exploring all possible actions using an ε-greedy strategy such as in Q-learning might
take too long. DQN is an extension of Q-learning that combines deep learning.
It could handle the scenario of Q-learning when the number of states and actions
becomes very large. Intuitively it could be applied to deal with our multiple operator
problem. Besides, policy gradient is the kind of method that learns in a more robust
way, by not trying to evaluate the value of each action — but simply evaluating which

3.3. A DISCRETE EVENT SIMULATION ENVIRONMENT 17

action should it prefer. When the number of actions is large in the environment, policy
gradient algorithms guarantees stronger convergence than action-value methods. In
policy gradient, with continuous policy parameterization, the action probabilities
change smoothly as a function of the learned parameter, whereas in ε-greedy selection
the action probabilities may change dramatically for an arbitrarily small change
in the estimated action values, if that change leads to a different action with the
maximal value[SB].

3.3 A discrete event simulation environment

A large number of iterations are needed before a RL algorithm works. Therefore, a
simulated environment that can reflect the real world problem is needed. Furthermore,
to model the system dependability, we usually apply discrete event simulation method
that can model the operation of a system as a discrete sequence of events in time.
We know there are some great open source solutions for reinforcement learning such
as OpenAI Gym, and some tools for discrete event simulation such as the Python
module Simpy. Let’s evaluate the two tools.

OpenAI Gym

OpenAI Gym is a toolkit that was created for developing and comparing reinforcement
learning algorithms. It is also the most widely used toolkit that supports teaching
agents for the variety of applications ranging from playing video games like Atari
to problems in robotics. The OpenAI Gym library is a collection of simulated
environments. These environments are virtual, and they have a shared interface,
which allows you to write general reinforcement learning algorithms. It also allows
source building for environment modification and adding new environments[w2].

Simpy

The SimPy package offers a straightforward way to build process-based discrete-event
simulation environment. It allows us to create event-driven simulators which step
the environment from event to event[w3].

Although OpenAI Gym is a quite convenient tool for performing reinforcement
learning, we choose Simpy over OpenAI Gym due to the following reasons: 1)
OpenAI Gym is not designed for discrete event simulation, it may miss some necessary
functions we need when we simulate the network service environment; 2)Time is
important for our decision making, so our reinforcement learning agent needs to be
time sensitive. Recall Section 3.1 where we defined the state with two domains: one
is time, the other is the accumulated down-time at the time. Therefore the agent is
necessarily to be synchronized with the environment so as to get the on-time state;

18 3. PROBLEM ANALYSIS AND METHODOLOGY

3)In our problem, we don’t necessarily to interact with a virtual environment such
as the environments in OpenAI Gym.
As we choose to apply Simpy to create our discrete event environmemt, we need to
create the interfaces for reinforcement learning from draft.

Chapter4Simulator design

4.1 Introduction

This chapter will introduce a simulator that combines the discrete event simulation
environment with reinforcement learning algorithms to achieve the objective of this
study. First, we are going to illustrate the simulator in the single operator scenario
in section 4.2, then we are going to explore how the simulator could be expanded
into the multiple operator scenario in section 4.3.

4.2 Simulator for Single Operator Scenario

Since we want our reinforcement agent to be synchronized with the discrete event
simulation environment, we need to create two synchronized processes in the single
operator scenario: one is the work process which has a sequence of discrete events
of "fail" and "recover", the other is the step process, which keeps track on the work
process and get the state from the work process at certain time-steps.

4.2.1 The State Transition and the Sequence of Processes

The state transition diagram and the sequence diagram of the simulator for single
operator scenario are shown as below.
The work process is a discrete event process. It includes two subordinate discrete
event processes - the states become up and down in each mode. The work process
serves as an reinforcement learning environment and it provides interfaces for rein-
forcement learning agent. The step process is a synchronized process with the work
process. It allows the reinforcement agent to apply those interfaces and to implement
reinforcement learning during the simulation process.

19

20 4. SIMULATOR DESIGN

Figure 4.1: State transition diagram of single operator scenario

4.2.2 Work Process

The work process of the simulator is to simulate the system that run by the service
operator. The process runs in a certain period, which is called service period.
The operator provides service either in mode A(cheap mode) or in mode B(expensive
mode) in a service time period. The system fails according to a Poisson process of
intensity λA and λB respectively in mode A and mode B. And it recovers following
normal distribution with mean time µA and µB and standard deviation σA and σB

respectively in mode A and mode B. The major difference between mode A and
mode B is the recovery time. The system is able to recover from failure within a
shorter time in mode B than in mode A.

4.2. SIMULATOR FOR SINGLE OPERATOR SCENARIO 21

Figure 4.2: Sequence diagram of single operator scenario

22 4. SIMULATOR DESIGN

Total Cost, Operational Cost and Penalty

The total cost CT of running the system includes operational cost CO and penalty
CP :

CT = CO + CP

The operational cost CO is the sum of the operational cost in mode A denoted as
COA and the operational cost in mode B denoted as COB :

CO = COA + COB = CA × TA + CB × TB

where CA, CB are cost per minute respectively in mode A and mode B (CA < CB),
and TA, TB are running time respectively in mode A and mode B.
The operator will receive a penalty if the accumulate down time when the service
period ends is longer than the down time budget pre-determined in SLOs. The
penalty function is called at each time-step to get the penalty value which will be
parsed to the step process as a negative reward for reinforcement learning agent. The
penalty function is as followed:

CP =
{

0 tacc_dt <= threshold

Cppm × (acc_dt− threshold) acc_dt > threshold

where Cppm denotes penalty per minute, acc_dt denotes accumulate down-time, and
threshold denotes down-time threshold for the operator in the service period.
The graph of the penalty function is as below.

Figure 4.3: Penalty function: penalty relates to accumulated down-time

4.2. SIMULATOR FOR SINGLE OPERATOR SCENARIO 23

4.2.3 Step Process

The step process is implemented for interaction between the environment (work
process) and the reinforcement agent. It has two functions: 1)for the agent to keep
track of the state and get reward from the system at certain time-steps; 2)to execute
the action determined by the agent at each of the time-steps.

4.2.4 Apply Reinforcement Learning

We know that reinforcement learning is intended for the agent to determine appro-
priate actions at each state to maximize the long-term reward. Now we are going to
define the key elements agent, state, actions and reward in our simulator.

Agent

To be simple, the agent is our reinforcement learning model.

State

The agent observes the state at each time step and decide the action to take next.
We define the state as two dimensional: The first domain is time-step, which slices
the simulation time of one episode into a sequence of equal-length intervals; the
second domain is accumulated down-time slots, where we slice the possible highest
accumulated down-time at each time-step into a sequence of equal-length slots, and
any possible value of the accumulated down-time will fall into one of these slots.

Action

The agent selects between two actions: 1) run in mode A; 2) run in mode B. The
agent chooses its action based on the applied reinforcement learning algorithm.

Rewards

Our objective is to achieve lowest total cost. So in our Q-value function, the rewards
will be negative rewards which relates to our cost. We set the immediate reward at
each time-step as the sum of the negative penalty and the negative operational cost
during one time-step.

rewardtime_step = −[CP + (CA ∗ tA + CB ∗ tB)]

where tA is the time in mode A and tB is the time in mode B during that time-step.

24 4. SIMULATOR DESIGN

Q-Learning

In Q-learning, Q-values are usually initialized to an arbitrary value, and as the agent
exposes itself to the environment and receives different rewards by executing different
actions, the Q-values are updated using the equation:

Q(state, action)← (1−α)Q(state, action)+α(reward+γmaxQ(next state, all actions))

Q-values are stored in a Q-table. Q-table is a matrix where we have a row for each
state and a column for each action. Usually the states are first initialized to 0, and
the values are updated along training. In our problem, we created the Q-table as
below:

Figure 4.4: Q-Table

4.3. SIMULATOR FOR MULTIPLE (TWO) OPERATOR SCENARIO 25

4.3 Simulator for Multiple (Two) Operator Scenario

Recall Section 3.1.2 on the multiple operator scenario, we need one more work process
for each additional operator. To be simple, we design the simulator for two operators.
We have three synchronized processes in our simulator: one step process and two work
processes. The step process is responsible to keep track of the two work processes at
each time step, getting the accumulated down-time and reward from the two work
processes and sending the action decisions to them respectively . The two work
processes are treated independently when the agent makes decisions on whether to
shift mode, whether to trade down-time, who is the buyer and who is the seller, and
how much down-time budget to trade.

26 4. SIMULATOR DESIGN

Figure 4.5: Sequence diagram of multiple operators scenario

Chapter5Results and Discussions

5.1 Optimising parameters

5.1.1 Parameters of Q-learning

When we vary parameters in reinforcement learning, we observe the results over
a number of episodes where we hope to show stability and convergence. This is a
two dimensional comparison (x = episode and y = output). And when we want
to observe the results if we vary a parameter this becomes three dimensional (x =
episode, y = output and z = parameter). So we use multiple plots for each parameter
choice. And we use average total cost for each 10000 iteration as the output y.

α - learning rate

α (alpha) is the learning rate (0 < α 6 1) - Just like in supervised learning settings,
α is the extent to which our Q-values are being updated in every iteration.

27

28 5. RESULTS AND DISCUSSIONS

Figure 5.1: Tuning α for optimization

As we see from the above figure, in our problem, the smaller the learning rate, the
better convergence.

γ - discount factor

γ (gamma) is the discount factor (0 6 γ 6 1) - determines how much importance
we want to give to future rewards. A high value for the discount factor (close to 1)
captures the long-term effective award, whereas, a discount factor of 0 makes our
agent consider only immediate reward, hence making it greedy.
As we prefer future reward to immediate reward, we need to set γ as the highest
value. After tuning the γ parameter, we see the result is what as we expected.

5.1. OPTIMISING PARAMETERS 29

Figure 5.2: Tuning γ for optimization

We select a big gamma value γ = 0.9, as it learns quickly and converges steadily.

ε - epsilon

ε(epsilon) is the parameter used for trad-off between exploration and exploitation.
Instead of just selecting the best learned Q-value action, we’ll sometimes favor
exploring the action further.

30 5. RESULTS AND DISCUSSIONS

Figure 5.3: Tuning ε for optimization

In our case, from the result we see that the agent favors exploitation to exploration,
therefore we select a smaller epsilon value ε = 0.1.

5.2 Workflow and final result

5.2. WORKFLOW AND FINAL RESULT 31

We have created a visual that shows and summarises the entire workflow to produce
the final output:

Figure 5.4: Reinforcement Learning Process Overview

32 5. RESULTS AND DISCUSSIONS

We use the average total cost for each 10,000 iteration for result evaluation. And we
see the average total cost declined around 4.9% after 200,000 iterations.

Figure 5.5: Average total cost at each 10000 iteration

Chapter6Summary and Recommendations
for Further Work

This thesis’s two research questions were: 1) What kinds of machine learning methods
are appropriate for policy optimization in this research problem and why? 2) How
to achieve policy optimization for the research problem with the selected machine
learning methods?
To answer the first question, we analyzed different sub-branches of machine learning
and explained why reinforcement leaning is believed to be appropriate for our specific
research problems. To answer the second question, we evaluated and compared
different reinforcement algorithms in respect to our research problems, designed a
simulator with necessary interfaces for interacting with reinforcement learning agent,
and implemented Q-learning in our simulator. From the Q-learning result, we see
that the overall cost for a single operator has been reduced by 4.9% after 100,000
episodes. This gives us a much better decision making strategy compared with
random decision making. Furthermore, this simulator could be used for both single
operator scenario and multiple operator scenarios.
However, we could have implemented more reinforcement learning algorithms to
find an optimal strategy for both single operator scenario and multiple operator
scenario. But due to limited time, we haven’t finished implementation of the other
reinforcement algorithms such as DQN or policy gradient.
For future research, an introduction of the reinforcement learning fundamentals and
a discrete event simulator with interfaces for reinforcement agents will probably be
the most useful contribution of this study.
The future work could be a comparison for possible reinforcement learning algorithms
for the single operator scenario problem, a thorough investigation of the multiple
operator scenario and implementations of the possible reinforcement learning solutions
for the multiple operator scenario.

33

References

[AJGW15] Prakriti Tiwari† Denis M. Becker‡ Andres J. Gonzalez, Bjarne E. Helvik† and
Otto J. Wittner. Gearshift: Guaranteeing availability requirements in slas using
hybrid fault tolerance. 2015 IEEE Conference on Computer Communications
(INFOCOM), 2015.

[JM15] M. I. Jordan and T. Mitchell. Machine learning: Trends, perspectives, and
prospects. Science, 349(6245):255–260, 2015.

[Li18] Yuxi Li. Deep reinforcement learning: An overview. 2018.

[RAH18] Universite de Montre Reyhane Askari Hemmat, Abdelhakim Hafid. Sla
violation prediction in cloud computing: A machine learning perspective.
book:Computational Science and Its Applications, 2018.

[SB] Richard S. Sutton and Andrew G. Barto.

[SZ19] Algorithm Engineer at Taboola Shaked Zychlinski. The complete reinforcement
learning dictionary. Medium, 2019.

[w2] Openai gym.

[w3] Simpy.

[Zhu] Technical report.

[ZWL17] Danshi Wang Chuang Song Min Liu Jin Li Liqi Lou Zhilong Wang, Min Zhang
and Zhuo Liu. Failure prediction using machine learning and time series in optical
network. 25(16):18553–18565, Aug 2017.

35

AppendixAPython code of the Simulator

"""Using␣machine␣learning␣for␣optimal␣SLA/SLO␣contract␣negotiation␣in␣5G"""

import random
import simpy
import pandas as pd
import numpy as np
from datetime import datetime , timedelta
import matplotlib.pyplot as plt
import matplotlib.colors as colors
import seaborn as sns

"""Initiate␣parameters"""
"""-------------------"""
"""Parameters␣for␣the␣simulator"""
NUM_RUNS = 200000
MTTF = 500000.0 # Mean time to failure in minutes
MTTR_1 = 1 #Mean time to recovry in minutes
MTTR_2 = 0.1
RT_MEAN = 0.02 # Avg. recovering time in minutes
RT_SIGMA = 0.01 # Sigma of recovering time
RECOVERY_TIME_2 = 100.0
OPER_COST_PER_MIN_A = 0.01 #Operation cost(thousand) per minute
OPER_COST_PER_MIN_B = 0.012
NUM_SYSTEMS = 1 # Number of subsuppliers included in the SLA contract
WEEKS = 300 # Simulation time in weeks
SIM_TIME = WEEKS * 7 * 24 * 60 # Simulation time in minutes
DOWNTIME_BUDGET = 0.2 # The allowed maximum accumulated down time in minutes
THRESHOLD = 30
PENALTY_PARAM = 25 #Penalty(thousand) per minute
TIMESTEP = 10
ACC_DT_SLOT = 100
ACC_DT_PER_SLOT = 0.1
MODE = 2

"""Hyperparameters␣for␣Q-learning"""
alpha = 0.1 # the learning rate
gamma = 1.0 # [0,1], a higher value(close to 1) captures the long -term effective award
epsilon = 0.1 # [0,1], whether to pick a random action or to exploit the already computed Q-values

the lower the value , the more it will exploit the Q-values

"""Simulator␣design"""
"""----------------"""
def time_to_failure(mttf):

"""Return␣time␣until␣next␣failure."""

37

38 A. PYTHON CODE OF THE SIMULATOR

return random.expovariate (1.0/ mttf)

def time_to_recover(rt_mean):
"""Return␣time␣until␣recover"""
return random.normalvariate(rt_mean , RT_SIGMA)

def get_time(minutes):
"""Change␣the␣time␣into␣a␣readable␣form"""
week = int(minutes /(7*24*60))
day = int((minutes -week *7*24*60)/(24*60))
hour = int((minutes -week *7*24*60 - day *24*60)/60)
minute = minutes -week *7*24*60 - day *24*60 - hour *60
return "%d:%d:%d:%d" % (week , day , hour , minute)

def get_penalty(acc_dt):
"""Return␣penalty␣for␣down -time␣overflow"""
penalty = 0
if acc_dt > DOWNTIME_BUDGET:

overflow = acc_dt - DOWNTIME_BUDGET
penalty = PENALTY_PARAM * overflow

return penalty

def fail(env , mttr , num):
"""Fail␣and␣recover␣process"""
#print(’--’)
while True:

time_to_fail = time_to_failure(MTTF)
while time_to_fail < (SIM_TIME - env.now):

fail = env.timeout(time_to_fail)
yield fail
fail_time = env.now
#print(’Failed␣in␣mode␣%d␣at’ % num , get_time(fail_time))
time_to_recv = time_to_recover(mttr)
if time_to_recv < (SIM_TIME - env.now):

recover = env.timeout(time_to_recv)
yield recover
#print(’Recovered␣in␣mode␣%d␣at’ % num , get_time(recover_time))
return time_to_recv

else:
return env.now - fail_time

else:
return 0

def encode(timestep , acc_dt_slot):
"""␣Create␣states␣of␣10␣*␣100␣for␣Q-table"""
i = timestep
i *= ACC_DT_SLOT
i += acc_dt_slot
return i

def decode(i):
out = []
out.append(i % ACC_DT_SLOT)
i = i // ACC_DT_SLOT
out.append(i)
assert 0 <= i < TIMESTEP
return reversed(out)

def update_Q_value(alpha , old_value , reward , gamma , next_max):
"""update␣Q-value␣according␣to␣bellman␣equation"""

39

new_value = (1 - alpha) * old_value + alpha * (reward + gamma * next_max)
return new_value

def Q_state(time , acc_dt):
state_2d = (int(time //(SIM_TIME / TIMESTEP)), int (acc_dt // ACC_DT_PER_SLOT))
state = encode(state_2d [0], state_2d [1])
return state

"""The␣system␣includes␣two␣simultaneous␣processes:␣Work␣Process␣and␣Step␣Process.
Q-learning␣algorithm␣is␣implements␣in␣the␣Step␣Process"""
"""---"""
class System:

def __init__(self , env , step_pipe , reward_pipe , q_table , total_cost):
self.env = env
self.q_table = q_table
self.total_cost = total_cost
self.work_proc = env.process(self.work(env , step_pipe , reward_pipe))
self.step_proc = env.process(self.step(env , step_pipe , reward_pipe))
#print("===============================")
#print(’Start␣working␣at’, get_time(env.now))

"=== Step␣Process ==="
def step(self , env , out_pipe , in_pipe):

state = 0
"Q-learning␣-␣epsilon␣greedy"
while True:

if random.uniform (0,1) < epsilon:
action = np.random.randint (2)
act = (env.now , action , state) # Explore action space
#print("Random␣Action:␣", action)

else:
action = np.argmax(self.q_table[state])
act = (env.now , action , state)
#print("Q␣value␣Action:␣", action)

out_pipe.put(act)

yield env.timeout(SIM_TIME/TIMESTEP)

info = yield in_pipe.get() ## 0-time , 1-acc_DT , 2-mode , 3-old state
state = Q_state(info[0], info [1])
old_state = info [3]
penalty = get_penalty(info [1])
cost = info [4]
reward = - penalty - cost

old_value = self.q_table[old_state , action]
next_max = np.max(self.q_table[state])
"Update␣Q␣value"
new_value = update_Q_value(alpha , old_value , reward , gamma , next_max)
self.q_table[old_state , action] = new_value

"""=== Work␣Process ==="""
def work(self , env , in_pipe , out_pipe):

info = [0, 0, 0, 0, 0] # info that will be transmitted to step process: 0-current time , 1-acc DT, 2-mode , 3-old state , 4-cost
down_time = 0
cost = 0

while True:
Get event for action pipe
action = yield in_pipe.get() # 0-time , 1-action , 2-state
old_state = action [2]

40 A. PYTHON CODE OF THE SIMULATOR

if(action [1] == 0):
"""Work␣in␣mode␣1"""
start_mode_A = env.now

#print(’Start␣mode␣A␣at␣%s’ % get_time(start_mode_A))
fail_in_mode_A = self.env.process(fail(env , MTTR_1 , 1))
down_time = yield fail_in_mode_A
end_mode_A = env.now
if (end_mode_A - start_mode_A > SIM_TIME/TIMESTEP):

time_in_mode_A = end_mode_A - start_mode_A
else:

time_in_mode_A = SIM_TIME/TIMESTEP
cost += OPER_COST_PER_MIN_A * time_in_mode_A
info = (end_mode_A , info [1] + down_time , 1, old_state , cost)
#print(’Accumulated␣down␣time␣at␣time␣%s:␣%d’ % (get_time(end_mode_A), info [1]))
#print(’--’)

if(action [1] == 1):
"""Work␣in␣mode␣2"""
start_mode_B = env.now
#print(’Start␣mode␣B␣at␣%s’ % get_time(start_mode_B))
fail_in_mode_B = self.env.process(fail(env , MTTR_2 , 2))
down_time = yield fail_in_mode_B
end_mode_B = env.now
if (end_mode_B - start_mode_B > SIM_TIME/TIMESTEP):

time_in_mode_B = end_mode_B - start_mode_B
else:

time_in_mode_B = SIM_TIME/TIMESTEP
cost += OPER_COST_PER_MIN_B * time_in_mode_B
info = (end_mode_B , info [1] + down_time , 2, old_state , cost)
#print(’Accumulated␣down␣time␣at␣time␣%s:␣%d’ % (get_time(end_mode_B), info [1]))
#print(’--’)

out_pipe.put(info)

self.total_cost = cost + get_penalty(info [1])

"""Running␣the␣system␣for␣one␣episode"""
"""----------------------------------"""
def simSystem(end_sim , q_table , total_cost):

env = simpy.Environment ()
step_pipe = simpy.Store(env)
reward_pipe = simpy.Store(env)

system = System(env , step_pipe , reward_pipe , q_table , total_cost)
env.run(until = end_sim)
return system.q_table , system.total_cost

"""Initialize␣Q-table"""
"""------------------"""
state_num = TIMESTEP * ACC_DT_SLOT
q_table = np.zeros([state_num , 2])

"""Letting␣the␣reinforcement␣agent␣play␣and␣learn"""
"""--"""
total_cost = 0
cost_sum = 0

41

cost_list = [] # store the total cost of each iteration so we can plot it later
aver_cost_list = [] # store the average of total cost of every 10000 iteration so we can plot it later

#Set the episodes the agent will run
for i in range(0,NUM_RUNS):

q_table , total_cost = simSystem(SIM_TIME , q_table , total_cost)
cost_sum += total_cost
cost_list.append(total_cost)

if i % (NUM_RUNS /20) == 0:
#print("Episode␣%d" % i)
print("---")
if i == 0:

print("Cost␣at␣iteration␣%d:" % i, cost_sum)

else:
aver_cost = cost_sum /(NUM_RUNS /20)
aver_cost_list.append(aver_cost)
print("Average␣cost␣from␣iteration␣%d␣to␣%d:" % (i-(NUM_RUNS /20)+1 , i), aver_cost)

cost_sum = 0
#print("===")

"""Plot␣the␣mean␣cost␣for␣each␣10,000␣episodes␣after␣the␣agent␣running␣for␣200 ,000␣episodes"""
"""--"""
plt.figure(figsize =(15 ,7))
plt.plot(range(len(aver_cost_list)),aver_cost_list , color=’blue’,

linewidth=2, label=’with␣Q-learning ’)
plt.xlabel(’Episodes(1000)’)
plt.ylabel(’Average␣Total␣Cost’)
plt.legend ()
plt.show()

	List of Figures
	Introduction
	Background
	Objectives
	Structure

	Background Theory and Motivation
	Machine Learning
	Sub-branches of Machine Learning
	Deep Learning

	Reasons for Choosing Reinforcement Learning
	More on Reinforcement Learning
	Terminologies
	Methods

	Problem Analysis and Methodology
	Reinforcement Learning Problem Setup
	Single operator scenario
	Multiple operators scenario

	Chosen Reinforcement Learning Method
	Method for Single Operator Scenario
	Method for Multiple Operator Scenario

	A discrete event simulation environment

	Simulator design
	Introduction
	Simulator for Single Operator Scenario
	The State Transition and the Sequence of Processes
	Work Process
	Step Process
	Apply Reinforcement Learning

	Simulator for Multiple (Two) Operator Scenario

	Results and Discussions
	Optimising parameters
	Parameters of Q-learning

	Workflow and final result

	Summary
	References
	Python code of the Simulator

