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Chapter 1
Introduction

In petroleum production systems, understanding the mass flow characteristics is of vital economic
importance. By adjusting production choke openings and pressure regulators, petroleum engineers
can regulate the petroleum output to meet demand. However, in order to efficiently optimize the
system like this, accurate knowledge of the mass flow characteristics is crucial. In this sense, the
potential mass flow governs the optimization potential of the production asset, as well as feasibility
of future developments. In order to understand the mass flow behaviour of the production system
as a whole, it may be more efficient to consider it as an assembly of smaller sub-systems, each with
their own flow characteristic (Jansen, 2015). There are several established methods for determining
the multi-phase flow through the various sub-assemblies. These include first-principle (mechanistic)
models, data-driven models, and naturally, physical flow meters. Non-physical flow meters, that is
data-driven and mechanistic models, are often referred to as virtual flow meters (VFMs). Each of
these methods have their own strengths and weaknesses. Mechanistic models can be made quite
accurate, but increase in complexity with more stringent accuracy requirements. This can can result
in the models being unsuitable for real-time applications. Data-driven models have the potential to
be a lot more computationally efficient than purely mechanistic models, but require a vast amount of
data which may be either impossible or not economically viable to procure. Both of these techniques
have been developed due to the limitations of physical multi-flow meters, which are often expensive
to operate and re-tune, and are prone to erosion and damage. A full overview and comparison of
virtual flow meters can be found in (Bikmukhametov and Jäschke, 2020).

Hybrid modeling is a modeling approach aimed at combining the strengths of mechanistic- and
data-driven models. Although rare, some of the first instances of this type of modeling can be
found in (Psichogios and Ungar, 1992), and have later been tried out in various industry processes,
such as biochemical plants in (Solle et al., 2017) and petroleum production systems (Kanin et al.,
2019). Recently, (Hotvedt et al., 2020a) used hybrid modeling to construct a virtual flow meter for
a petroleum production choke with promising results. There are several advantages to using hybrid
models, some of which are summarized in (Solle et al., 2017):
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• For some systems, the underlying mechanistic relations for certain phenomena may not be
known, or too computationally expensive to include in the mechanistic model. In such cases,
this part of the model can be approximated with a data-driven model instead.

• In many processes, high-quality may not be available, and the performance of data-driven
models are therefore limited. Incorporating already established relations through the use of
mechanistic models can mitigate the effect of low signal-to-noise ratio training data.

• In addition to being prone to noisy input, data-driven models also need a sufficient amount of
said data in order to generalize well. In many processes, data is either to scarce or too expensive
to generate, thus making full-fledged data-driven models infeasible. In such cases, creating
smaller, less data-hungry data-driven models and supplementing the gap with mechanistic
models may be a suitable compromise.

• Purely data-driven models such as neural networks use internal parameters not available
to us. Furthermore, NN-parameters have no physical meaning, and thus interpreting the
methodology of the network is often not possible. Learnable parameters in hybrid models have
the advantage of being based in real-world physical properties. This enables us to examine
how well the inner-workings of the model correlates the values of the learnable parameters to
the empirical values of the physical properties they represent.

In this project, we will try to leverage these advantages to create an accurate, yet adaptable
hybrid model of a production wellbore.

1.1 Scope of Thesis

In this paper a hybrid model for the mass flow through a wellbore will be developed. The
hybrid model will based on a simplified mechanistic model of a wellbore, but where the friction
factor is described with a neural network. Implementation of this model will be discussed,
with regards to optimization, regularization and choice of hyperparameters. The model will
then be trained on a dataset generated from the same simplified mechanistic model, but
with a calculated friction factor as apposed to an estimated one. After training, the model
performance will be evaluated with regards to accuracy, trainability and interpretability.

1.2 Method

As mentioned earlier, in order to model the multi-phase mass flow through a wellbore, we
will develop a hybrid model. The mechanistic part of the model will be based on a simplified
mechanistic first-principle model. This makes parameter estimation of the physical parameters
easier, and the expectation is that this estimation can be made with a reasonable set of data
points. Furthermore, the data-driven part of the model will be comprised of a neural network,
and will estimate the friction coefficient used in the mechanistic model part. By estimating the
friction factor in this manner, the model will be made explicit, making its calculation simpler.
Both the parameter estimation for the mechanistic model and the data driven model will be
conducted using an iterative, stochastic optimization algorithm. This way, the model should
scale well even on large amounts of data.
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1.3 Thesis Structure

The structure of this thesis will now be outlined. Chapter 1 introduced the project and
motivated the use of a hybrid modeling technique. Chapter 2 will give an introduction to the
relevant theory needed to understand the model and its implementation, starting with a brief
introduction to relevant aspect of flow dynamics in Section 2.1. Following will be an overview
of the first-principle wellbore model in Section 2.2 and an introduction to the data-driven
model aspects in Section 2.3. Moving on to Chapter 3 the hybrid model specification will be
constructed and its implementation discussed. Section 3.1 will describe the dataset used for
training and how this was generated. Section 3.2 and 3.3 will briefly describe the mechanistic-
and data-driven model components, respectively, before they are combined to form the hybrid
model in Section 3.4. The optimization problem for this model will be calculated in Section
3.5 before the implementation details will be discussed in Section 3.6. The results of the model
after training will be presented in Chapter 4. These results will be discussed in Chapter 5
with future works suggested in Section 5.4. Finally, a conclusion will be stated in Chapter 6.
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Chapter 2
Theory

In this section, relevant theoretical aspects needed for the modeling will be briefly explained.
First, an introduction to flow dynamics in Section 2.1 and its application to mechanistic
modeling of wellbores in Section 2.2 will be presented. This can be considered the basis for the
mechanistic model that will be presented in Section 3.2. Next, the basis for the data-driven
models will be introduced in Section 2.3.

2.1 Flow Dynamics

The oil production rate of a petroleum asset is largely dependent on the potential mass
flow through the production string. The properties of this mass flow are governed by fluid
dynamics. In this section, the relevant concepts of fluid dynamics necessary to construct the
first-principle model in Section 2.2 will be briefly introduced. This is done in order to provide
an understanding of the assumptions that will later be made in the modeling process.

Compressible and Incompressible Fluids

When talking about a compressible or incompressible fluid, it concerns the properties of the
density ρ of the fluid in question. An incompressible fluid is considered to have a constant
density over varying conditions such as pressure changes. Although all fluids are compressible
to some degree, assuming incompressibility greatly simplifies the mathematical modeling, and
is a valid assumptions when dealing with real liquids such as water and oil where the density
is almost constant (von Mises and Friedrichs, 1971). Compressible fluids exhibit density
variations based on pressure- and temperature fluctuations, and thus the density ρ = ρ(p) can
no longer be considered constant. Gases are usually considered as compressible fluids.
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Steady-State Homogeneous Flow

A flow is said to be steady-state if there are no change to the flow regime during the time
interval considered. In practice, this means that the mathematical model of the flow is time-
independent. Prerequisite assumptions necessary for steady-state flow are uniform thickness,
incompressible fluid and flow across a constant circumference (Chaudhry, 2004). The mass
flow from a production well is multi-phased. A multi-phased flow consists of a mixture of
several fluids, in this case primarily water, oil and gas. In order for the mixture to meet the
requirement of uniform thickness, it has to be thoroughly mixed and with homogeneous flow.
Homogeneous flow here refers to the negligible relative motion between different phases of the
fluid. Thus, the mass and moment conservation equations for single-phased fluids may be
utilized for the fluid mixture as a whole (Brennen, 2005).

Temperature and Frozen Flow

Temperature plays an integral role in fluid dynamics. The state of matter and density of the
fluid, as well as the pressure in the wellbore are all effected by temperature. However, in
this model we will assume a properly insulated wellbore such that no thermal energy will be
transferred to the surroundings. Then the only introduction of thermal energy to the system
will be through the effects of friction from the pipe wall, however this amount is negligible.
Thus, we can assume frozen flow, where the fluid mass fractions ε remain constant from bottom
hole to wellhead. This makes the following mathematical modeling considerably simpler, but
it should be noted that assuming a constant temperature is somewhat of a harsh assumption
for real-world systems.

2.2 First-principle Modeling of a Wellbore

In this section we will develop the mathematical model for the mass flow through a production
wellbore, as depicted in Figure 2.1. First, a few assumptions regarding the fluid flow will be
made. We will consider an incompressible liquid in a steady-state homogeneous flow through
a streamline. The streamline will consist of insulated tubing with constant cross-sectional area
A. Furthermore, there will be negligible temperature difference along the area of consideration.
These concepts were discussed in Section 2.1.

All these assumptions considered, the steady-state Bernoulli’s energy equation for flow along a
streamline can be utilized (Cengel and Cimbala, 2014):

p1
g

+
v21ρ1
2g

+ z1ρ1 =
p2
g

+
v22ρ2
2g

+ z2ρ2 + ρ2hf (2.1)
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Figure 2.1: Illustration of the wellbore. It can be seen as a vertical pipe with length L and diameter
D.
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where,

i : index 1 for bottomhole and index 2 for wellhead
p : pressure[Pa]

ρ : fluid density
[
kg

m3

]
z : height[m]

v : fluid velocity
[m
s

]
g : gravitational constant

[m
s2

]
hf : head loss due to pipe friction[m]

The head loss hf can be expressed as follows [S.L. and C.A. (2010)]:

hf = f
Lv2

2Dg
(2.2)

where,

f : friction factor[−]

L : total length of wellbore[m]

D : hole diameter[m]

Rearranging the Bernoulli equation (2.1) and adding the head loss expression (2.2) yields:

p1 +
v21ρ1

2
+ z1ρ1g = p2 +

v22ρ2
2

+ z2ρ2g + f
Lρ2v

2

2D
(2.3)

Since the ultimate goal is to model the mass flow through the wellbore, the conservation of
mass from bottom hole to wellhead may be utilized. Assuming the cross-sectional area of the
pipe to be constant yields:

ṁ = ρ1v1A = ρ2v2A (2.4)

where ṁ is the rate of change in mass through the pipe and A is the cross-sectional area of
the pipe. Adding the mass balance (2.4) to the Bernoulli expression (2.3) and solving for the
mass flow rate ṁ yields:

p1 +
ṁ2

2ρ1A2
+ z1ρ1g = p2 +

ṁ2

2ρ2A2
+ z2ρ2g + f

L

D

ṁ2

2ρ2A2

ṁ =

√
2ρ1ρ2D(p1 − p2 + z1ρ1g − z2ρ2g)

Dρ1 + fLρ1 −Dρ2
(2.5)

The friction factor f may be determined in multiple ways (Guo et al., 2007). In this model we
will utilize the method outlined in Awad and Muzychka (2008) as it is suited for homogeneous
flow:

f =

{
16
Re Re < 2300
0.079
Re0.25 Re ≥ 4000

(2.6)
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where Re is the Reynolds number expressed as

Re =
ṁD

Aµ
(2.7)

with µ denoting mixture viscosity.
Next, we will find an expression for the fluid mixture density ρ and viscosity µ. However,
some preliminary relations must first be established. Starting with the assumption of frozen
flow and a fluid without contamination, the mass fractions ε of gas(G), oil(O) and water(W )
constitutes the entire fluid mass, that is:

εO + εW + εG = 1 (2.8)

Using the water-to-oil ratio, or water cut(wc), expressions for the liquid(L) density and viscosity
are found:

wc =
εW

εW + εO

µL = wc ∗ µW + (1− wc)µO

ρL = wc ∗ ρW + (1− wc)ρO (2.9)

The gaseous fluid density is found using the real gas law:

ρG =
pMG

ZRT
(2.10)

where,

MG : molar mass of the gas
[ g

kmol

]
R : ideal gas constant

[
J

kmol

]
T : temperature[K]

Z : compressibility factor[−]

The compressibility factor Z = Z(p, T ) may be calculated using the correlation in Sutton
(1985). Considering homogeneous fluid mixture, the density ρ and mixture viscosity µ, may
be calculated using Awad and Muzychka (2008):

1

ρ
=
xG
ρG

+
xL
ρL

(2.11)

1

µ
=
xG
µG

+
xL
µL

(2.12)

2.3 Machine Learning and Neural Networks

The second component necessary to build a hybrid model is the data-driven model. In
this section, a short summary of relevant concepts in machine learning and neural networks
necessary to build the data-driven part of the hybrid model in Section 3.3 will be presented.
The following content is primarily sourced from Goodfellow et al. (2016).
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2.3.1 Definition of Machine Learning

A machine learning algorithm can be defined as being able to learn a task from experience,
at a certain performance level. The defining characteristic of machine learning is that the
performance level increases as more experience is fed to the algorithm. The terms "task",
"experience" and "performance" in this definition are quite vague, allowing machine learning
algorithms to be applicable to many applications. In this project machine learning will be
used for regression, that is, for finding an output to an unknown function based an input of
features x. An ’unknown function’ here refers to a function f(x) in which its mathematical
structure is not completely known, or assumed not to be. However, using machine learning
algorithms a function g(x) can be constructed that has the same input-output characteristics
as f(x), such that g(x) ≈ f(x). It should be noted that the mathematical definition of function
g(x) may not be available to us, especially when it is constructed using a neural network.
Implementation of a regression algorithm for the friction factor f from equation (2.6) will be
discussed in Section 3.3.

2.3.2 Components of a Machine Learning Algorithm

The key components necessary to transfer the experience into a usable output of a machine
learning algorithm can be summarized as follows:

– Dataset: The dataset is a set of features x, and sometimes outputs y, that constitutes
the experience a machine learning algorithm processes in order to improve its performance.
The dataset available to us in this project includes both features and outputs, and may
thus be used in so-called supervised learning algorithms, such as regression. A more
detailed overview of the features and generation of this dataset is available in Section 3.1.
The kind of data stored in the dataset has a large influence on how the machine learning
algorithm should be designed. For instance, a dataset consisting of pictures with tags
specifying the motif of the picture (such as MNIST) will require a completely different
type of algorithm and output than a dataset containing data points to fit to a curve.

– Model: A model specification of the system. Choice of model greatly impacts the
effectiveness of the optimization algorithm. More effective optimization is often achieved
using linear models, such as linear regression ŷ = wTx + b, but these usually have limited
capacity, meaning the model is limited in the amount of functions it can approximate.
Thus, choosing a model is often a balancing act of finding a model with enough capacity,
while still being able to be optimized at a reasonable computational cost.

– Cost Function: The cost function represents the value of the model we want to minimize.
For instance, when the objective of the model is to fit a function to data (regression),
an appropriate cost function might be to calculate the mean squared error between the
model output ŷ and the output from the training data y. Another choice could be mean
absolute error for this type of task. Different models and objectives require different cost
functions. Another important aspect of cost functions is that they can be modified in
order to regularize the model. More on this in Section 2.3.3.

– Optimization Algorithm: The role of the optimization algorithm is to minimize the
cost function. Nearly all deep learning algorithms use some variant of stochastic gradient
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descent (SGD). This optimization algorithm is a variation of gradient descent, a well
known optimization technique. Gradient descent becomes stochastic when only parts
of the data is used to calculate the gradient in each iteration. SGD uses only one data
sample at the time whilst fixed-size mini-batch SGD uses a randomly drawn sub-set of
samples to calculate the gradient. This reduces the computational complexity of the
optimizer at every iteration, making it possible to find low values of the cost function
in reasonable time. Note however, that gradient descent does not guarantee this value
to be a global minimum. Alternatives to stochastic gradient descent include RMSProp
and Adam. However, all gradient-based optimization algorithms need the gradients of
the objective function for every training cycle. These gradients are calculated using
back-propagation, which is already implemented in most machine learning libraries.

Mixing and matching these four components, a large set of machine learning algorithms are
obtainable for a multitude of applications.

2.3.3 Generalization and Regularization

The ultimate goal of any machine learning algorithm is to generalize well. Generalization here
refers to the algorithms ability to predict a correct output given a set of inputs not included in
the training data. This performance measure governs the practical usability of the algorithm.
If the algorithm correctly predicts the output values in the training set, but fails to predict any
new or slightly anomalous inputs, the practical application of the algorithm on new real-world
data is limited. This is often referred to as overfitting. Critically, the objective of minimizing
the error on training data is not directly positively correlated to the minimization of the
generalization error. In other words, any increase in training error does not necessarily cause an
increase in generalization error. This is where regularization becomes relevant. Regularization
is any change done to the machine learning algorithm that improves the generalization error,
but not necessarily the training error. As mentioned earlier, adjusting the cost function is a
common way of achieving regularization, usually with parameter norm penalties. A popular
such method is L2 parameter regularization. Other popular regularization techniques include
early-stopping and data augmentation.

2.3.4 Network Architecture

Neural Networks are a type of machine learning algorithm developed to solve more abstract
generalization tasks. Instead of using a single model, the model is divided among many
’neurons’ in a network, connected by activation functions. The most common type of network
is a so-called feedforward neural network. It is called feedforward due to the unidirectional
flow of data from input to output of the network. An example of an activation function might
be the rectified linear unit (ReLU). This function is an almost completely linear function,
making it easy to optimize over. A more in-depth description of activation functions can be
found in most literature on deep learning, such as Goodfellow et al. (2016). Every node in the
network is a seperate, smaller model. By using a simple linear function in every node, we have
created a linear feedforward network, which in practice is a set of piecewise linear equations.
An important design choice for neural networks is the network architecture. The architecture
defines how many layers the network will consist of (depth) and how many nodes every layer
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Figure 2.2: Fully connected feed forward neural network. Every line is an instance of activation
function.

will consist of (width). The first layer is commonly referred to as the input layer, and should
have width corresponding to the number of system inputs. The last layer is often referred to
as the output layer, and should have as many nodes as desired outputs. The layers in between
are referred to as hidden layers, seeing as the training data does not contain a desired output
for the nodes in these layers. An illustration of the type of model that will be used in this
project can be seen in Figure 2.2. This is a fully connected neural network, meaning that all
nodes from one layer is connected to all nodes of the next.
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Chapter 3
Method

This section will describe the implementation and simulation of a hybrid model for mass
flow estimation in a wellbore, based on the principles and theory outlined in Section 2.
First, a description of the dataset used in training the model will be provided in Section 3.1.
Next, Sections 3.2 and 3.3 will present the mechanistic- and data-driven model components,
respectively. These will be combined to form the hybrid model in Section 3.4. The optimization
problem for this hybrid model will then be calculated in Section 3.5 before the implementation
details are discussed in Section 3.6.

3.1 Dataset

Before handling the model specification, a brief look at the available data is prudent. The
data is organised as a set of features x and an output y corresponding to a steady state of
the wellbore system. The features consists of bottomhole pressure p1, wellhead pressure p2,
temperature T , bottomhole compressiblity factor Z1 and wellhead compressiblity factor Z2.
The output for every datapoint is either the calculated mass flow ṁ or the calculated mass
flow with added noise ṁnoise. Both are included in the dataset such that the robustness of
the hybrid model can be more thoroughly tested. The dataset can be expressed as:

D = {xi, yi}ni=1

xi = [p1,i, p2,i, Ti, Z1,i, Z2,i]

yi = [ṁi] ∨ [ṁnoise,i]

(3.1)

The dataset was generated by implementing the first-principle model outlined in Section
2.2. Upon closer inspection, it is clear that this first-principle model is implicit, seeing as
the friction factor f necessary to compute the mass flow ṁ is also dependent on the same
mass flow. The model was therefore implemented in a Python program using the symbolic
mathematics library “Sympy”, capable of solving implicit systems. In order to generate the
data, the inputs p1, p2 and T were drawn from normal distributions, with means and variances
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based on empirical evidence. The compressibility factors Z1 and Z2 were calculated from
correlations as outlined in Sutton (1985). Well specific parameters were assumed constant
with values specified in Table 4.2. Turbulent flow was assumed, and this assumption was then
checked for correctness by calculating the Reynolds number based on the produced mass flow
ṁ. Finally, an additional output was calculated by adding noise to ṁ: ε ∼ N(0, 1).

The dataset D will be split in 3 parts; the training set Dtrain, the validation set Dval and the
test set Dtest. Dataset D will be randomly split 80/20 between Dtrain and Dtest. The training
set Dtrain will then subsequently be split again at a 80/20 ratio with the validation set Dval

such that the number of training samples in each set is:

len(D) = 5000

len(Dtrain) = 3200

len(Dval) = 800

len(Dtest) = 1000

3.2 Mechanistic Model Component

The mechanistic part of the model will be based on the first-principle wellbore model introduced
in Section 2.2, with a few modifications. Recall that two variables were yet to be defined in
this model; the compressibility factor Z and the mixture viscosity µ. As mentioned previously,
the compressibility factor Z is already a part of the available dataset, so in the mechanistic
model implementation this variable will be considered a system input. This simplifies the
model and decreases the computational load. The only parameter related to the viscosity µ in
the mass flow system (2.5) is the friction factor f , as defined in equation (2.6). By defining the
variable f as an output of a data-driven model, the system dependency on the viscosity µ will
be represented in the data-driven model rather than in the mechanistic one. Thus, the final
model will be independent on µ. We are left with the following mechanistic model description,
referred to as gMM :

ṁ = gMM (x,ΦMM )

=

√
2ρ1ρ2D(p1 − p2 + z1ρ1g − z2ρ2g)

Dρ1 + fLρ1 −Dρ2

(3.2)

where the mechanistic model parameters ΦMM are:

ΦMM = [xG, xO, ρO, ρW ,MG, L,D] (3.3)

and the system inputs x are:
x = [p1, p2, T, Z1, Z2] (3.4)

In this model implementation, it will be useful to define another set of parameters as "learnable"
parameters ΦLP . This will be a subset of the mechanistic parameters ΦMM such that
ΦLP ⊆ ΦMM . The learnable parameters will be estimated using the dataset, while the
remaining mechanistic parameters will be presumed constant. More on initialization of these
parameters follows in Section 3.6.1.
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3.3 Data-Driven Model Component

The data-driven part of the hybrid model consists of a fully connected feed-forward neural
network, used to estimate the friction coefficient f from equation (2.6). The chosen network is a
3-depth linear feed forward neural network with 5 input nodes in the input layer (corresponding
to the 5 system inputs), 100 nodes in the hidden layer and a single output node, as seen in
Figure [2.2]. We use the rectified linear unit (ReLU) as activation function on each layer except
the output layer. A summary of these machine learning concepts were provided in Section 2.3.
Mathematically, we can express the neural network gNN as:

f = gNN (x′,ΦNN ) (3.5)

where the neural network parameters ΦNN are comprised of the node weights (W) and biases
(b) such that:

ΦNN = [W,b] (3.6)

and the inputs x′ are:
x′ = [p1,s, p2,s, Ts, Z1, Z2] (3.7)

The subscript s here denotes that the inputs have been scaled. This is done using a min-max
scaler function in Sklearn with the purpose of normalizing the individual input variations’
impact on the network performance. The scaler has been initialized on the training samples,
and the same distribution has been used on the validation- and test set. The compressibility
factors Zi do not need to be scaled, as they are already in range (0, 1).

3.4 Complete Hybrid Model Description

There are several ways to hybridize the first-principle wellbore model in Section 3.2. In this
project we will create a serial hybrid model using the mechanistic model as a baseline, and
then introduce the data-driven model in Section 3.3 in order to estimate the friction factor
f . This model architecture is illustrated in Figure 3.1, where the friction factor f is first
estimated using the neural network, before the estimation f̂ is fed to the mechanistic model.
Modeling the wellbore this way lets us train a data-driven model without the use of the actual
friction coefficient f , which may be hard to accurately calculate using first-principles. Instead,
the system can be trained on ṁ, which is more readily available. By combining the two
mathematical model expressions (3.2) and (3.5) we obtain the final mathematical expression
for the hybrid model:

ˆ̇m = gHM (X, z,ΦMM )

= gHM (X,Φ)

z = f = gNN (X′,ΦNN )

(3.8)

where the model parameters is the set of both the mechanistic and neural network parameters:

Φ = [ΦMM ,ΦNN ] (3.9)
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Figure 3.1: Block diagram depicting the hybrid model architecture and data flow.

3.5 Defining the Optimization Problem

With the complete hybrid model defined, we can also put together the optimization problem
for the machine learning algorithm to solve. As mentioned in Section 3.3, the model has a
set of learnable parameters ΦLP as well as a set of neural network parameters ΦNN . The
task of the machine learning algorithm is to optimize over this set of parameters Φ∗ =
[ΦLP ,ΦNN ]. Optimizing with regards to the mean squared error and adding separate L2

parameter regularization for ΦLP and ΦNN yields the following optimization problem:

Φ̂∗ = arg min
Φ∗

J (Φ∗,λ∗)

= arg min
Φ∗

(
1

n

n∑
i=1

(
ṁi − gHM (Xi,Φ)

)2
+

1

n

mNN∑
j=1

λNN

(
ΦNN,j − Φ̄NN,j

)2
+

1

n

mLP∑
k=1

λLP,k

(
ΦLP,k − Φ̄LP,k

)2)
(3.10)

where

n : the number of training samples in the batch
mNN : the number of neural network parameters
mLP : the number of learnable parameters

λNN : the L2 regularization parameter for the neural network parameters

λLP : the L2 regularization parameters for the neural learnable parameters
Φ̄ : the mean value of the parameter Φ

Furthermore,
λ∗ = [λLP , λNN ]

The computation of these regularization parameters will follow in Section 3.6.3.

3.6 Implementation Details

Now that the hybrid model has been properly defined in Section 3.4 and the corresponding
optimization problem has been derived in Section 3.5, only a few implementation details
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remain to be discussed. These details will be discussed here before the result of the model
training is presented in Section 4.

3.6.1 Parameter Initialization

There are in total three different types of parameters in the hybrid model; the mechanistic
parameters ΦMM , the learnable parameters ΦLP and the neural network parameters ΦNN .
Before training on the model starts, these parameters have to be initialized. In real- world
applications, all parameters used have some degree of uncertainty associated with them,
and should thus be estimated. Usually this is done using gradient descent. However, in
order to simplify the model some of the well known wellbore-specific parameters, such as
the diameter D and height L of the wellbore, will initialized at their known value. Other
mechanistic parameters may have a higher degree of uncertainty associated with them, such
as the oil density ρO or the mass fractions εO, εW and εG. These can either be initialized at
some presumed value, or be considered learnable parameters. The learnable parameters will
be initialized by drawing an initial value from a normal distribution about the parameters’
empirical mean value and standard deviation. Finally, as common practice suggests, the neural
network parameters will be initialized using Kaiming initialization, as outlined in He et al.
(2015). A positive bias will be used, seeing as the mass flow is biased in positive flow direction.

3.6.2 Training

Training the model (3.8) refers to solving the optimization problem (3.10) by use of the dataset
Dtrain defined in Section(3.1). The optimization algorithm to be used in this implementation is
the adaptive moments optimization scheme (Adam), mentioned in Section 2.3.2. When training
the model, the hyperparameters can be tuned in order to achieve better model performance.
However, in order to prevent poor generalization performance, all hyperparameter-tuning will
have to be conducted using the output of the validation set Dval. The test set Dtest is reserved
for analysing the model performance once tuning is completed.

3.6.3 Hyperparameters

In this section we will establish an overview of the hyperparameters in the implementation of
the hybrid model. First, the L2 regularization scheme added to the cost function in (3.10)
also adds mLP hyperparameters in the form of the regularization parameters λLP , in addition
to one parameter for the neural network λNN . These are defined according to standard as
follows:

λNN = 0.001

λLP,i =
σ2
e

σ2
i

(3.11)

where σ2
e is the standard deviation of the measurement noise and σ2

i is the standard deviation
of the learnable parameter. If the measurement noise is not available to us, this may also
be treated as a hyperparameter. Other hyperparameters include the training batch size B,
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the number of training epochs E, the learning rate lrate and the neural network architecture
specifications such as depth and width. For hybrid models, it can be argued for that the the
choice of learnable parameters is also a hyperparameter in of itself. In this implementation,
the learnable parameters will be ρO and ρW such that:

ΦLP = [ρO, ρW ]

mLP = 2
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Chapter 4
Results

In this section, the training results and the final model performance will be presented. The
model has been evaluated in 4 configurations. These configurations originate from two variable
configuration settings: whether the output y of the dataset D is ṁ or ṁnoise, and whether L2

parameter regularization has been implemented on the learnable parameters ΦLP or not. The
configuration definitions are given in Table 4.1.

Model Configuration L2 regularization Output y

c−,− no ṁ
c−,noise no ṁnoise

creg,− yes ṁ
creg,noise yes ṁnoise

Table 4.1: Configuration specification for the 4 possible model implementation configurations.

All the parameter values used in the simulation of this model are summarized in Table 4.2. A
description of these parameters where given in Section 2.2.
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Parameter Value

g 9.81
R 8.314
MG 0.0269
L 2000
D 0.178
εO 0.9
εW 0.0
εG 0.1
z1 0
z2 2000
ρ̄O 830
ρ̄W 1020

Table 4.2: Parameter values used in this implementation.

The training results have been evaluated in two ways. First, since the dataset D is generated
using the empirical mean values for the learnable parameters, this mean value has been plotted
against the learnable parameter value over the training cycle. This is shown in Figure 4.1
and Figure 4.2. Second, the total loss function value, the mean squared error (MSE) loss, the
learnable parameter loss and the neural network(NN) loss have been plotted over the course
of the training cycle. This result can be found in Figure 4.3.

The performance of the model is measured in three ways. First, a cumulative performance plot
is given for each of the configurations, as seen in Figure 4.4. This plot shows what percentage
of test points fall within the deviation stated on the x-axis. The closer the graph is to a step
function, the better. More on cumulative performance plots can be found in (Corneliussen
et al., 2005). Second, a histogram of the friction coefficient f , both estimated by the neural
network and the friction model (2.6) - (2.7), is given for each configuration in Figure 4.5.
Finally, a table summarizing the mean absolute error (MAE) over f and ṁ in the test set
Dtest, as well as the final absolute errors (AE) of the learnable parameters ρO and ρW after
training can be seen in Table 4.3.

Model Configuration MAE(f) MAE(ṁ) AE(ρO) AE(ρW )

c−,− 4.803e-6 0.235 10.75 6.023
c−,noise 3.941e-6 1.055 10.74 6.023
creg,− 3.609e-6 0.406 0.011 0.0
creg,noise 3.550e-6 0.832 0.002 0.0

Table 4.3: Performance metrics for 4 different model configurations: with/without added noise to ṁ and
with/without L2 regularization on the learnable parameters ΦLP . The performance metrics are: Mean
absolute error (MAE) of the friction factor f and model output ṁ over all the samples in the test set, as
well as the absolute error (AE) of the densities ρO and ρW compared to their mean values.
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Figure 4.1: The learnable parameter value of ρO over the number of training samples considered. The
empirical mean value of ρO is plotted for reference.
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Figure 4.2: The learnable parameter value of ρW over the number of training samples considered. The
empirical mean value of ρW is plotted for reference.
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Figure 4.3: Training loss as represented by total loss, mean squared error loss, learanable parameter loss
and neural network parameter loss. The loss has been smoothed out by taking the mean over every 100
iteration.
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Figure 4.4: Cumulative performance plot for the four model configurations.
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Figure 4.5: Histogram of the friction factor f as calculated mechanistically and estimated by the neural
network.
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Chapter 5
Discussion

In this section, the results from Chapter 4 will be given a more in-depth analysis. We will start
by analysing the effect of parameter regularization in Section 5.1 before analysing the effect of
output noise on the system in Section 5.2. A short analysis of the total system performance
will be conducted in Section 5.3. Finally, suggestions for future work will be given in Section
5.4.

5.1 The Effects of Parameter Regularization

First we will analyse the effect parameter regularization on the learnable parameters ΦLP have
on the model performance. This is most clearly visible in Figures 4.1 and 4.2. We will now be
comparing Figure 4.1a and Figure 4.1c. First, a key observation to make is that the model
without regularization in Figure 4.1a has only been trained on 1/10 of the number of iterations.
This is due to the fact that the model converges much faster without parameter regularization,
and thus the number of training iterations needed are much fewer. This however does not
change the fact that the parameters in the models without regularization have converged to a
value close to their initialized value, which is different from their true underlying values. We
see this for all the non-regularized models, both with and without noise for both learnable
parameters, as seen in Figures 4.1a, 4.1b, 4.2a and 4.2b. We would expect this difference to
affect the predictive performance of the model. We investigate this by looking at Figure 4.3.
This figure shows the various loss components over the course of the training cycle. Looking
closer at Figure 4.3a reveals that the mean squared error of the output still converges to ∼ 0
quite rapidly. We know however from the Figures 4.1a and 4.2a that the learnable parameters
are indeed not at the ’correct’ values. This can also be seen in Table 4.3 where the final
absolute errors of the learnable parameters after training are quite large, but the MSE of
the model output ṁ is still reasonable. One hypothesis might be that the neural network
used to calculate the friction factor f compensates for this discrepancy. We investigate this
hypothesis further by comparing the output of the neural network without regularization
shown in Figure 4.5a and with regularization in Figure 4.5c. By paying close attention to the
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neural network output (colored blue), it can be seen that without regularization the estimated
friction factor f̂ has a somewhat lower value than that calculated with regularization. Since the
two distributions are not the same, it suggests that the neural network has indeed compensated
for the error in the learnable parameters. The difference in correctness of the estimated f̂
between the two model configurations can also be seen in Table 4.3. As now expected, the
mean square error of the friction estimation over the test set is higher for the model without
regularization, where we know the learnable parameters to have an error. Consequently, it
would seem that the hybrid model successfully exhibits some of the adaptable characteristics
associated with data-driven models.

Another consideration to make regarding the impact of regularization on the model is the
training iterations needed to achieve reasonable performance. As mentioned above, without
parameter regularization of the learnable parameters the model converges much faster, and
thus fewer training epochs are necessary. This can clearly be seen by comparing Figure 4.3a
and 4.3c. The model with regularization c−,− has been trained on 10 times more iterations
than the model without regularization creg,−. This is done so that the learnable parameters
can converge to their correct values. This convergence can be confirmed by looking at the
absolute errors of the parameters for the regularized model configurations in Table 4.3, and
also in the plots 4.1c, 4.1d, 4.2c and 4.2d. The convergence might have been achieved quicker
however by tuning the hyperparameters. As mentioned in Section 3.6.3, the regularization
coefficients λLP are calculated using the measurement noise σe. When regularization is on, this
parameter is considered a hyperparameter, and can be tuned. In the results seen in Section
4 this parameter was set to σe = 5. A higher value for the noise might have yielded faster
convergence. The learning rate was also experimented with, but was found to quickly cause
divergent behavior in the model with too high values. For this dataset we were able to find a
compromise between training time and stability, but for real-world datasets the data points
may be more noisy and more limited, necessitating more thorough hyperparameter tuning.

Finally, the effect of parameter regularization on the total performance of the model will be
considered. Taking a look at Figure 4.4 reveals that regularization does not seem to have a
significant impact on the noise-less models, but does improve the performance slightly when
noise is considered. Of course, all the performance plots in Figure 4.4 are already quite good,
so maybe the impact would have been clearer with a more challenging dataset. Furthermore,
the parameters were initialized close to the mean values. If they had been initialized further
away, the model without regularization might have had a harder time finding correct system
outputs. Table 4.3 also shows the mean squared error for the model output ṁ for the different
model configurations. Interestingly, when noise is not considered, the regularized model has a
slightly worse performance on the test set. However, in accordance with the result we just
found, regularization seems to benefit the model when trained on a noisy output. Regardless,
having regularization is beneficial to the interpretability of the model. As engineers, we want
to make sure that the model is using parameters that make physical sense, so regularizing
the learnable parameters gives more confidence in the model even though it might perform
slightly worse on perfect datasets.
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5.2 The Effects of Output Noise

Next, we will investigate the effect of the output noise on the model performance. Looking
at the learnable parameters in Figure 4.1 and Figure 4.2, it is clear that output noise has
very little effect on the behaviour of the learnable parameters. However, by comparing Figure
4.1c and Figure 4.1d closely, it can be seen that the parameter converges slightly slower when
noise is introduced. Overall though, the behaviour characteristic is much the same. This is
promising, seeing as this suggests the model might be able to handle higher degrees of noise
on the dataset.

A more clear image of the effects of noise on the system can be observed in Figure 4.3.
Comparing the configurations with and without noise, it is clear that the MSE is higher for
both configurations with noise. This is especially clear when comparing Figure 4.3a and 4.3b.
In the configuration c−,noise the MSE error is not able to reach ∼ 0. This would suggest that
the model accuracy is decreased with the introduction of noise. This suspicion is confirmed
in Table 4.3, where the MSE of the model output ṁ is higher for both configurations with
noise when compared to the configurations without noise. In order to investigate further,
we will now focus on the model configuration with both noise and regularization creg,noise.
As mentioned above, the MSE loss in Figure 4.3d does not converge to ∼ 0. However, the
learnable parameters do converge to their true values, as seen in Figure 4.1d and 4.2d. This
would suggest that the cause of the constant loss delta is to be found in the neural network
component of the hybrid model. Interestingly, this corresponds to the findings presented in
Figure 4.5. The distribution of the estimated friction coefficient f̂ in Figure 4.5d is quite
skewed in comparison with the noise-less distribution found in Figure 4.5c. This suggests that
the neural network is indeed the cause of the MSE loss.

It can be tempting to conclude that the model performance is weakened by the inclusion of
noise. This is made quite apparent both from the cumulative plots in Figure 4.4 and the
outputs in Table 4.3. However, a more careful analysis of the performance metrics may be in
order. Specifically, when noise is introduced to the system, it is done by adding the noise to the
output ṁ. Thus, when training the model, the assumed correct output of the model is ṁnoise.
Crucially, the noise is not added to the model inputs. The mechanistic model component will
naturally generate a noise-less output given noise-less inputs. However, the model is expected
to calculate an output with noise, so this discrepancy is compensated for in the neural network.
Consequently, we would expect there to be a significant mean squared error between the model
output and the noisy data output, seeing as the mechanistic model part of the hybrid model
produces a noise-less output. This MSE is indeed present in both configurations with noise, as
seen in Figures 4.3b and 4.3d. An interesting follow-up to this result would be to train the
model on noisy data, but evaluate the model performance on noise-less data.

5.3 Overall Results

Overall, the results are promising. We have shown that the model adapt well to both incorrect
input parameters, as well as noisy measurements. Although not perfect, the most divergent
result from Table 4.3 is still within 0.3% of the average mass flow in the dataset. The
most promising results however, might be the ones shown in Figure 4.5. The fact that the
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distributions of the estimated and calculated friction coefficients are so similar, even though
the estimated f̂ is not estimated using ṁ, suggests that the hybrid model may work well
on more complicated models and datasets. It should be mentioned that the current model
performance might be somewhat inflated due to the simplicity of the dataset.

Another important result to consider is that of identifiability (Hotvedt et al., 2020b). From
Figures 4.3c and 4.3d, it is clear that the model may reach a similar performance level for
many different values of the learnable parameters. This does obscure some of the physical
interpretability of the model.

5.4 Future Work

Having presented the results of this project so far, places for improvement have also
been revealed. These improvements may come in future works, and some suggestions for
improvements include:

– As mentioned in Section 5.2, evaluating a model trained on noisy data with noise-less data
will show more clearly the actual performance of the hybrid model. Furthermore, this
would also reveal how susceptible the data-driven model component is to noisy training
data in terms of performance loss.

– The model can be initialized with learnable parameters further from their true value. This
would check the validity of model configurations without regularization more thoroughly.

– The learnable parameters used in this implementation were ρO and ρW , as discussed in
Section 3.6.3. However, investigating how increasing the level of ’hybridity’ by including
more learnable parameters would impact the model performance might be an interesting
experiment. Candidates for the new learnable parameters might be the mass fractions
εO, εW and εG.

– The dataset used in this project was generated using a similar first-principle model as
the one used in the hybrid model, as discussed in Section 3.1. However, using a dataset
generated on a more sophisticated model, or even better, real production data might
reveal more of the limitations or advantages of the hybrid model suggested here.
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Chapter 6
Conclusion

In this project a hybrid model of a production wellbore was created, combining a mechanistic
first-principle model with a data-driven model component. Using a dataset generated on
first-principles, different configurations of the model implementation was trained and evaluated
with regards to training- and prediction performance. The prediction results are promising,
indicating that the model has maintained some of the adaptability of data-driven models, while
still maintaining high accuracy and resistance to noise. The data-driven model is also able to
correctly predict the output f̂ without using information on the output ṁ, as was done when
generating the dataset. This suggests that this modeling technique may be adaptable to more
advanced datasets and models. In conclusion, this project successfully lays the groundwork
for future projects where more advanced wellbore models may be estimated using the hybrid
modeling approach presented here.
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