
AI for Exam Allocation

William Ke

December 21, 2020

Abstract

The main objective of this project is to design and implement an algorithm that is
able to distribute the students in TTK4555 Specialization Course into 4 time periods
available for examination. We were able to formulate this problem as a variant of
the exam timetabling problem, with the necessary constraint represented using
an objective function. Using an implementation of the hill climbing method, we
were able to solve for a feasible solution.

i

Sammendrag

Hovedmålet med dette prosjektet er å designe og implementere en algoritme som
er i stand til å distribuere studentene i TTK4555 Teknisk kybernetikk, fordypning-
semne til 4 tidsperioder tilgjengelig for eksaminering. Vi var i stand til å formulere
dette problemet som en variant av "exam timetabling" problemet, med de nød-
vendige begrensningene representert ved hjelp av en kostfunksjon. Gjennom en
implementasjon av "hill climbing" metoden kunne vi løse for en tilstrekkelig god
løsning.

ii

Preface

This specialisation project marks the beginning of the end of my Master’s degree
in Cybernetics and Robotics at the Norwegian University of Science and Tech-
nology (NTNU). The project is written under the supervision and guidance of
Professor Ole Morten Aamo, who did a great job assisting me from beginning to
end. Moreover, I would like to thank all my friends and family for supporting me
throughout these years.

The presented algorithm was implemented in MathWorks’ MATLAB, and the input
data was imported from Microsoft Office Excel sheets. The relevant theory neces-
sary for understanding the project will be presented, but the reader is expected
to be familiar with the fundamentals of mathematical optimisation and computer
programming.

William Ke
Trondheim, 21st December 2020

iii

Contents

Abstract . i

Sammendrag . ii

Preface . iii

Contents . iv

Figures . vi

1 Introduction . 1

1.1 Background and Motivation . 1

1.2 Objective . 2

1.3 Contributions . 3

1.4 Thesis Structure . 3

2 Theory . 4

2.1 Timetabling problem . 4

2.2 Solution approaches/techniques . 5

2.2.1 Local Search Based Techniques 5

2.2.2 Population Based Algorithms 8

3 Design & Implementation . 10

3.1 Problem definition . 10

3.2 Data model . 11

3.3 Solution data format . 11

iv

Contents v

3.4 Objective function . 12

3.5 The chosen algorithm . 12

4 Results and Discussion . 14

4.1 Case 1 . 14

4.2 Case 2 . 15

5 Conclusion . 17

5.1 Further Work . 17

Bibliography . 18

Figures

2.1 Metaheuristics classification . 6

3.1 a screenshot of example data . 11

4.1 Plot of case 1 showing value of the objective function and occur-
rences of each constraint as a function of iterations 15

4.2 Plot of case 2 showing value of the objective function and occur-
rences of each constraint as a function of iterations 16

vi

Chapter 1

Introduction

1.1 Background and Motivation

The general timetabling problem is a well researched issue that appears in numer-
ous forms, including educational timetabling [1], nurse scheduling [2], transport-
ation timetabling[3, Chapter 51], and sports timetabling [3, Chapter 52]. These
kinds of problems have been an important research area in both Operations re-
search and Artificial intelligence. Timetabling and scheduling have been used in-
terchangeably from what we have found in our literature review, It’s largely been
up the authors personal preference.

Burke et al. [1] gives a definition for the general timetabling problem, which cov-
ers most of the forms mentioned above:

A timetabling problem is a problem with four parameters: T , a finite
set of times; R, a finite set of resources; M , a finite set of meetings;
and C , a finite set of constraints. The problem is to assign times and
resources to the meetings so as to satisfy the constraints as far as pos-
sible.

Educational timetabling is one of the most important administrative task which
is done periodically in academic institutions. The timetable must account for the
needs of a broad range of different stakeholders such as administrators, lecturers,
and students; as such, there exists a large number of variants for the timetabling
problem in literature, since the exact needs and constraints will be different for dif-
ferent institutions. Multiple commercial software solutions have been developed
to relieve institutions of developing timetabling software themselves, but they
can be quite costly. Examples of providers for these commercial solutions include:
EventMAP [4], Destiny Solutions [5], and Scientia [6]

1

Chapter 1: Introduction 2

Variants of educational timetabling include class-teacher scheduling, course time-
tabling, exam timetabling [7], faculty timetabling, and classroom assignment [8].
Some specific problems might fall in between these categories, as the distinction
between categories are not clearly defined.

Exam timetabling can be described as the scheduling of exams for a set of uni-
versity courses, while minimizing overlap of exams with common students, and
spreading the exams for students as much as possible. We will focus on exam time-
tabling as the task we are trying to solve in this project can be seen as a subvariant
within exam timetabling.

The motivation for this project is to automate the process of creating an exam
timetable for the course TTK4555 Specialization Course at The Department of En-
gineering Cybernetics at NTNU. The process is currently done manually by hav-
ing a person create an exam timetable and checking for conflicts. Automating the
timetabling allows the administrator to spend their time on other tasks, it is much
faster than manual timetabling, and it reduces the probability of conflicts.

1.2 Objective

The main objective of this specialization project, as paraphrased from my super-
visor, is to develop an algorithm that automatically distributes the students in
TTK4555 Specialization Course into 4 time periods available for examination. The
algorithm should take these constraint into consideration:

• Avoid assigning a student to multiple exams in the same time slot
• Preferably avoid conflict with exams from other courses
• Preferably avoid assigning multiple exams to the same day.

The first constraint is a hard constraint and should be avoided at all costs. The
second constraint is a soft constraint that should preferably be avoided. The third
constraint is also a soft constraint but has low importance. The first task is to for-
mulate the problem as an exam timetabling problem. The next task is to design
and implement an algorithm that takes into consideration the constraints de-
scribed above. It is acceptable that the solution is sub-optimal, as long as the one
hard constraint is satisfied, i.e., Avoid assigning a student to multiple exams in
the same time slot.

Chapter 1: Introduction 3

1.3 Contributions

We propose a formulation of the optimisation problem. In addition to an imple-
mentation of an algorithm that considers the soft and hard constraints, and that
is able to return a feasible solution to the optimisation problem. Lastly, we will
give a qualitative and quantitative evaluation of our results.

1.4 Thesis Structure

Chapter 2 will present all the necessary theory for understanding and solving the
main objective of this project. Chapter 3 is where we propose a formulation of the
main objective in the form of a mathematical optimisation problem. The latter
part of the chapter will be for presenting a data model that the algorithm will
use as input, as well as the design and implementation of the algorithm itself.
Chapter 4 presents the results and discussion from the output of our algorithm.
Finally, Chapter 5 will give a conclusion of our work and results.

Chapter 2

Theory

This chapter is for giving an overview of the necessary theory that is relevant for
solving the project. The first section will be briefly about Mathematical optim-
isation. All the subsequent sections will be about the exam timetabling problem.
Schaerf [7], Gashgari et al. [9], and Qu et al. [10] have made three excellent sur-
vey papers that gives an general overview of the exam timetabling problem and
solution approaches for this problem. Therefore, a majority of the theory presen-
ted in this chapter will be paraphrased in some form from these three survey
papers.

2.1 Timetabling problem

Exam timetabling problems can be defined as assigning a set of exams E = e1, e2, . . . , ee
into a limited number of ordered timeslots T = t1, t2, . . . , t t , subject to a set of
constraints C = c1, c2, . . . , cc [10]. The timetabling problem can be either formu-
lated as a search problem or as an optimisation problem. The former case consists of
finding any timetable that satisfies all the constraints, while the latter consists of
finding a timetable that satisfies all the hard constraints and minimises an objective
function that represents the soft constraints

A solution that satisfies all the hard constraints are said to be feasible. Soft con-
straints are those constraints that are desirable, and is often used to measure the
quality of a solution. The soft constraints may contradict each other in most prac-
tical cases and are therefore often impossible to fully satisfy.

Qu et al.[10] presents the hard and soft constraints that most commonly occur in
exam timetabling literature.

4

Chapter 2: Theory 5

Common Hard Constraints:

1. No exams with common students assigned simultaneously
2. Resources for exams needs to be sufficient (i.e size of exams must not exceed

room capacity; enough room must exist for all exams.)

Common Soft Constraints:

1. Spread exams as evenly as possible, or not in consecutive time slots or days
2. Schedule all exams, or largest exams, as early as possible
3. Ordering (precedence) of exams need to be satisfied
4. Time requirements (e.g., certain exams should (not) to be in certain time

slots)
5. Conflicting exams on the same day to be located nearby
6. Exams may be split into different rooms over similar locations
7. Only exams of the same length can be combined into the same room
8. Facility requirements

The needs for different institutions may not be the same. Consequently, exam
timetabling problems might not contain all the constraints listed above and/or
have constraints that are not listed. In addition, the weighting of the constraints
might be different in the objective function.

The computational complexity of the exam timetabling problem is NP-complete
in most practical cases [7]. Exact solutions are therefore only possible for simple
cases (e.g., less than 10 exams). Real cases might involve hundreds of courses and
students. Consequently, only heuristic methods are feasible for solving real cases
[11].

2.2 Solution approaches/techniques

This section will give an overview of some of the approaches for solving the exam
timetabling problem as described in the previous section. Figure 2.1 shows how
some the methods that will be presented might be categorised.

2.2.1 Local Search Based Techniques

Local search based techniques [12], such as Hill Climbing, Tabu Search and sim-
ulated annealing are commonly seen as belonging to metaheuristics [13]. Meta-
heuristics are higher level heuristic methods that are designed to provide a suf-

Chapter 2: Theory 6

Figure 2.1: Metaheuristics classification

Source: https://commons.wikimedia.org/wiki/File:Metaheuristics_classification.svg.

ficiently good solution to an optimisation problem. It is most commonly used in
cases with incomplete information or limited computational power [14]. Most
literature on metaheuristics describe empirical result that are based on computer
experiments. We have no mathematical proofs to guarantee optimal solutions, but
the solutions that metaheuristic methods give are often sufficient in practice.

Local search methods solve problems by searching from an incumbent solution
to its neighbourhood, hence the name local search. Local search methods differ
in the way they define the neighbourhood and moving operators. An objective
function is used to measure the quality of the resulting solutions.

Hill Climbing

Hill climbing is one of the simplest local search methods. It is an iterative al-
gorithm that starts with an arbitrary initial solution and attempts to change to a
better solution among the solutions in its neighbourhood. This will continue un-

Chapter 2: Theory 7

til no further improvements can be found. Hill climbing is well suited for solving
convex problems, as a locally optimal solution is also a global optimal solution.
Hill climbing will plateau on local optima for non-convex problems. Variants of
hill climbing include simple hill climbing, and steepest ascent hill climbing. The
former is when the first better solution is chosen, while the latter is when the best
solution in the neighbourhood is chosen.

Tabu search

Tabu search [15] can be seen as a modification to the hill climbing algorithm.
The first modification is that the inferior solution might be selected if no better
solutions are available. The second modification is done by disallowing revisiting
a list of recent moves. These moves are kept in a tabu list, hence the name. The
first modification makes the method able to escape local optima, while the second
modification is to ensure that the method does not flip back and forth between
the same two solutions. One disadvantage with the tabu search method is that
the parameters need to be fine-tuned to the specific problem at hand in order for
the method to perform well. Examples of these parameters include the size of the
tabu list and the stopping conditions.

Simulated annealing

Simulated annealing [16] is a method that is inspired from the natural annealing
process. It is a probabilistic local search technique that approximates a global
optimum for objective functions with many local optima. The idea of the method
is to search a wider area of the search space at the beginning of the algorithm by
accepting worse solutions with a higher probability. The probability of accepting
worse solution goes down as the search progresses. The parameters that can be
tuned include: start and end probability, and the reduction rate of this probability.
The motivation for choosing worse solutions is the same as in tabu search, which
is to avoid getting stuck in local optima.

Summary of Local Search Based Techniques

Hill climbing is the simplest algorithm to implement, but it has the disadvantage of
getting stuck in local optima for non-convex problems i.e., most practical cases.
Tabu search and simulated annealing can be seen as modified hill climbing al-
gorithm whereby accepting worse moves might aid in escaping local optima. One
common drawback with Tabu search and simulated annealing is that they require
tuning their associated parameters for the specific problem at hand in order to get

Chapter 2: Theory 8

high quality solutions.

2.2.2 Population Based Algorithms

Genetic Algorithms, Memetic Algorithms, and Ant Algorithms are included in a
family of population based algorithms known as Evolutionary algorithms. They
are commonly characterized by their common inspiration from natural phenom-
ena and behaviours.

Genetic Algorithms

Genetic Algorithms [17] simulated the natural evolutionary process by evolving
and manipulating populations of solutions withing the search space. Solutions
are encoded as choromosones(array of bits) and are evolved over multiple gen-
erations using crossover and mutation operators with the aim of incrementally
getting better solutions. The parameters and operators of the algorithm needs to
be properly defined. Consequently, the approach is usually more complicated to
implement that local search based methods. The search strategy is fundamentally
different from local search based methods in that multiple solution is managed
simultaneously, instead of just a single solution as seen in local search.

Memetic Algorithms

Memetic algorithms [18] aims to improve upon genetic algorithms by combining
them with local search methods. This works by using local search methods on indi-
vidual solutions of a population in between generations. Memetic algorithms are
able to combine the benefit of exploring large search space from population based
algorithms with the benefit of improving individual solutions in a population in
a slightly less random way from local search based methods. There are however
some drawbacks with Memetic algorithms. The first drawback is that it increases
the computational cost of the algorithm. The second drawback is that this intro-
duces several more design parameters that need to be fine-tuned, including: how
often local search should be applied, which solutions should local search be used
on, how long should local search be run, and which local search algorithm should
be used?

Chapter 2: Theory 9

Ant Algorithms

Ant algorithms [19], as the name implies, take inspiration from the way ants be-
have. It aims to simulate the way ants search for the shortest route to food by
using pheromones along the way.

Ants of some species will initially wander randomly in the natural world. When
they find food, they will return to the colony while placing down pheromone trails
along the path. Other ants are inclined to follow the pheromone path instead of
wandering randomly, and they will in turn reinforce the pheromone trail if they
also find food.

However, these pheromone trails do not last indefinitely and will over time evap-
orate and become weaker. Longer trails will have more time to evaporate than
shorter trails. This results in the shortest trails having stronger pheromone trails
than other paths over a period of time.

Summary of population based Algorithms

The ability to evaluate multiple solutions simultaneously is a huge benefit with
population based algorithms. Each generation of population based algorithms has
a larger computational cost associated with it compared to a single iteration in
local search based techniques. The benefits of using population based algorithms
are therefore not overly apparent, at least with respect to total computation time.

Chapter 3

Design & Implementation

This chapter is for presenting the problem formulation as it pertains for our spe-
cific problem. We propose in addition an objective function that considers all the
necessary constraints.

3.1 Problem definition

All Master students in Cybernetics and Robotics are required to take TTK4555
Specialization Course [20] [21]. Each student is to take either two specialization
subjects à 3,75 credits, or one à 7,5 credits. We will only be assigning the students
that take the 3.75 credit subjects, so we can ignore those who take one 7.5 credit
subject. The evaluation form of the subjects with 3.75 credits are oral examina-
tions. The oral examinations will have a duration of 30 minutes each. As such,
there is a limit to how many examinations a single sensor can oversee each day.
The whole course is allocated two examination days with two time slots each (one
for morning and one for afternoon), for a total of four time slots. Each specializ-
ation subjects à 3,75 credits will have a predetermined number of students that
should be assigned into each time slot according to these rules:

• Subjects with less than 6 students have only one time slot on day 1
• Subjects with between 6 and 16 students have two time slots on day 1
• Subject with more than 16 students have two time slots each on day 1 and

day 2, for a total of four time slots.

Our exam timetabling problem can be defined as assigning a set of students S =
s1, s2, . . . , Ss into two exams E = e1, e2. Each exam has a predetermined amount of
students that should be assigned into 4 time slots T = F1, E1, F2, E2 (F1, E1, F2, E2

10

Chapter 3: Design & Implementation 11

corresponds to "formiddag, day 1", "ettermiddag, day 1", "formiddag, day 2", "et-
termiddag, day 2" respectively.), according to a set of constraints C

The set of constraints C for our problem is the following:

Hard constrains, of which we only have one:

• Avoid assigning a student to multiple exams in the same time slot

Soft constraints, of which we have two:

• Preferably avoid conflicts with exams from other courses
• Preferably Avoid assigning multiple exams to the same day.

There is a "core" list of elective courses that Master students in Cybernetics and
Robotics can take. These electives are guaranteed to not collide with obligatory
courses and can be freely taken. As such, avoiding conflict with other exams is a
soft constraint, because it is ultimately the students’ responsibility that they choose
elective courses that do not have conflicting exam dates.

3.2 Data model

3.3 Solution data format

Figure 3.1: a screenshot of example data

A screenshot of the example data format can be seen in Figure 3.1. The names of
the students have been erased to preserve anonymity. Each row is one student,
and each student has 13 columns associated with them. The name column is used
as a unique identifier for the table. "tema 1" and "tema 2" are the two subjects that
each student has chosen. One-hot encoding has been used to represent which time
slot the corresponding exam has. This was done to simplify the implementation of
objective function and switching algorithm. The last two columns "Blokk 1" and

Chapter 3: Design & Implementation 12

"Blokk 2" are used to signify if the student has a collision on a specific day with
an exam from a different course. "Blokk 1" is used to signify a collision on day 1,
and "Blokk 2" is used to signify a collision on day 2.

3.4 Objective function

The objective function that we will use to evaluate the quality of our solution will
be as follows:

Z =
∑

wi gi(X) for i ∈ 1,2, 3 (3.1)

wi is the weighting coefficient corresponding to the i th variable.

gi(X) are the constraints for our problem expressed as a function of the decision
variables X , where X are all the possible time slots for each student. To keep
the implementation simple, we will represent both our hard and soft constraints
using the objective function. The only difference is a considerably larger weighting
coefficient wi for the hard constraints.

g1(X), g2(X), and g3(X) corresponds to the constraints described in Section 3.1
with the same order of appearance.

The exam timetable problem can then be represented as the following optimiza-
tion problem

min
x
= Z(x) (3.2)

3.5 The chosen algorithm

The Steepest-Ascent hill climbing method was chosen to be implemented first as
it was the simplest to implement, and we could modify the hill climbing method
into Tabu search or Simulated annealing if it later proved to be necessary. We
found out during preliminary testing of the algorithm that the algorithm was suf-
ficiently able to produce a feasible solution for the problem as described above.
The main objective of this project was only to develop an algorithm that would
give a feasible solution, and not a globally optimal solution. We decided that it was
not necessary to implement and test the other algorithms outlined in Chapter 2,
as we had already accomplished the main objective of the project.

Chapter 3: Design & Implementation 13

The pseudocode for the hill climbing method is as follows:

Algorithm 1: Steepest-Ascent hill climbing method
Result: SolBest A solution table that is a local optima of the exam

timetable problem
Sol_Best ← read(excelSheet);
Candidate_Best ← read(excelSheet);
while not stoppingConditions() do

Sol_neighbors← getneighborso f (Candidate_best);
for neighbor ∈ Sol_neighbors do

if computecost(neighbor)< computecost(Candidate_Best)
then

Candidate_Best ← neighbor;
else

if computecost(Candidate_Best)< computecost(Sol_Best) then
Sol_Best ← Candidate_Best;

else

The algorithm first reads the Excel sheet with the data model as described in
Section 3.2. Then next it runs the getneighborso f () function that returns a list
of solutions that lies in the neighbourhood of the current candidate solution.

The getneighborso f () first finds the student(row) that contributes most to the
objective function. Next it identifies all the possible swaps in time slots between
the costliest student and other students. Then it returns a list of solutions that is
one swap away from starting solution, which is defined as the neighbourhood for
our problem. A swap is only possible if the students have a common subject. The
reason we do a swap is to conserve the number of students in each time slot since
those are predetermined.

The algorithm then computes the value of the objective function for all the solu-
tions in the neighborhood and selects the solution with the lowest value, this is
designated as the best candidate (Candidate_Best). The best candidate then be-
comes the best solution (Sol_Best) if it has a lower cost in the objective function.

The algorithm continues to iterate until there is no improvement in cost, or ideally
if the cost reaches a value of zero.

Chapter 4

Results and Discussion

This chapter is for presenting the results and discussion using the model that was
developed in Chapter 3. The weighting coefficient for multiple exams on the same
time w1 slot was set to be 10000, while the weighting coefficient for conflict with
exams from other courses w2 was set to be 1000. Lastly, the weighting coefficient
for multiple exams in the same day w3 was set to 10. This can be interpreted as
the cost of the objective increasing by the respective amounts for each occurrence
of the constraints for a student. e.g., if two student multiple exams on the same
time slot and one student have a conflict with an exam from another course will
result in the objective function returning a value of 5000.

The hill climbing algorithm was tested on real data consisting of 166 students
from fourth year master’s student studying Cybernetics and robotics at NTNU.
The criteria that we will use to evaluate the algorithm will be as follows:

• The number of iterations of the algorithm
• The final value of the objective function
• How fast the objective value decreases as a function on the number of iter-

ations.

4.1 Case 1

Figure 4.1 Shows value of objective function and occurrences of each constraint
as a function of iterations. 18 of the students had exams from other courses that
may conflict with one of the examination days. The starting cost for this case was
120860. The initial number of occurrences for constraint 1 g1, constraint 2 g2,
and constraint 3 g3 was 10, 0, and 86, respectively. The algorithm took 9 main
loop iterations and 75.21 seconds to finish. The resulting solution after running

14

Chapter 4: Results and Discussion 15

Figure 4.1: Plot of case 1 showing value of the objective function and occurrences
of each constraint as a function of iterations

the hill climbing had a objective cost of 760. The final number of occurrences for
constraint 1 g1, constraint 2 g2, and constraint 3 g3 was 0, 0, and 76, respectively.
The most numerous constraint was constraint 3 g3. This reason for this is that
there are some subjects with few students. This consequently results in that these
subjects are assigned few time slots. The algorithm is therefore unable to find time
slots that can fully satisfy constraint 3 g3. The two most important constraints
were able to be fully satisfied.

4.2 Case 2

Figure 4.2 Shows value of objective function and occurrences of each constraint
as a function of iterations. Case 2 represents a more difficult, and somewhat un-
realistic case. Random swaps were performed to generate a new initial solution.
In addition, this time 62 of the students had exams from other courses that may
conflict with one of the examination days. Historical data shows that about 10%
to 15% percent of the students have conflicts with exams from other courses, from
year to year. The starting cost for this case was 450970. The initial number of oc-
currences for constraint 1 g1, constraint 2 g2, and constraint 3 g3 was 40, 50, and
97, respectively. The algorithm took 29 main loop iterations and 706.89 seconds
to finish. The resulting solution after running the hill climbing had a objective

Chapter 4: Results and Discussion 16

Figure 4.2: Plot of case 2 showing value of the objective function and occurrences
of each constraint as a function of iterations

cost of 37670. The final number of occurrences for constraint 1 g1, constraint 2
g2, and constraint 3 g3 was 0, 37, and 67, respectively. The one hard constraint
we had was still able to be fully satisfied. In contrast, the soft constraints were
unable to be fully satisfied. One drawback with the algorithm is that the running
time is quite long when the initial objective function is high. This can be partially
explained by that it takes some time to evaluate the objective function on the all
the neighbourhood solutions to find the best one. This is however not that im-
portant for the practical functionality of the algorithm as the exam timetabling
for TTK4555 Specialization Course is something that is done once a year.

Chapter 5

Conclusion

In the present work, a short overview of the theory and solution approaches be-
hind exam timetabling was provided. We managed to formulate the exam timetable
problem as an optimisation problem. Furthermore, we designed and implemented
the Steepest-Ascent hill climbing algorithm to solve our problem.

The results showed that our algorithm was able to give solutions that fully satisfied
the hard constraint in our problem. In contrast, the soft constraints were unable to
be fully satisfied. The main objective was still fulfilled however, as it was accept-
able that the solution were sub-optimal as long the hard constraint was satisfied.
This shows that even the most simple method presented in Chapter 2 were able to
solve our problem. It must be noted however that our specific exam timetabling
problem is a simpler version compared to the other exam timetabling problems
that exist in literature. The number of students we had to account for belonged
only to one program of study, compared to a whole university. moreover, the num-
ber of exams we had to assign was limited. We only had to assign two exams on
four different time slots across two days.

5.1 Further Work

We managed to accomplish the main objective of the specialization project. There
are however some room for further work. One may try to implement some of
the more advanced methods presented in Chapter 2. They may be able to fur-
ther reduce the objective function of out solutions, compared to the hill climbing
algorithm.

17

Bibliography

[1] E. Burke, D. de Werra, J. Kingston, J. L. Gross and J. Yellen, ‘Applications
to Timetabling,’ ResearchGate, Jan. 2004. DOI: 10.1201/b16132-33.

[2] E. K. Burke, P. De Causmaecker, G. V. Berghe and H. Van Landeghem, ‘The
State of the Art of Nurse Rostering,’ J. Scheduling, vol. 7, no. 6, pp. 441–
499, Nov. 2004, ISSN: 1094-6136. DOI: 10.1023/B:JOSH.0000046076.
75950.0b.

[3] J. Y.-T. Leung, Handbook of Scheduling:Algorithms, Models, and Performance
Analysis. Andover, England, UK: Taylor & Francis, Apr. 2004, ISBN: 978-0-
42920564-4. DOI: 10.1201/9780203489802.

[4] EXAM: powerful exam scheduling software | EventMAP, [Online; accessed 21.
Dec. 2020], Aug. 2019. [Online]. Available: https://www.eventmapsolutions.
com/exam.

[5] O.+. D. Solutions®, Exam Scheduling Software | Destiny Solutions, [Online;
accessed 21. Dec. 2020], Dec. 2020. [Online]. Available: https://www.
destinysolutions.com/products/proctor-and-exam-scheduling.

[6] Exam Scheduler- Scientia | Graphical Scheduling Solution, [Online; accessed
21. Dec. 2020], Dec. 2020. [Online]. Available: https://www.scientia.
com/product/exam-scheduler.

[7] A. Schaerf, ‘A Survey of Automated Timetabling,’ Artificial Intelligence Re-
view, vol. 13, no. 2, Jan. 1996, ISSN: 0269-2821. DOI: 10.1023/A:1006576209967.

[8] V. A. Bardadym, ‘Computer-aided school and university timetabling: The
new wave,’ in Practice and Theory of Automated Timetabling, Berlin, Ger-
many: Springer, Jun. 2005, pp. 22–45, ISBN: 978-3-540-61794-5. DOI: 10.
1007/3-540-61794-9_50.

[9] R. Gashgari, L. Alhashimi, R. Obaid, T. Palaniswamy, L. Aljawi and A. Alam-
oudi, ‘A Survey on Exam Scheduling Techniques,’ 2018 1st International
Conference on Computer Applications & Information Security (ICCAIS), pp. 1–
5, Apr. 2018. DOI: 10.1109/CAIS.2018.8441950.

18

https://doi.org/10.1201/b16132-33
https://doi.org/10.1023/B:JOSH.0000046076.75950.0b
https://doi.org/10.1023/B:JOSH.0000046076.75950.0b
https://doi.org/10.1201/9780203489802
https://www.eventmapsolutions.com/exam
https://www.eventmapsolutions.com/exam
https://www.destinysolutions.com/products/proctor-and-exam-scheduling
https://www.destinysolutions.com/products/proctor-and-exam-scheduling
https://www.scientia.com/product/exam-scheduler
https://www.scientia.com/product/exam-scheduler
https://doi.org/10.1023/A:1006576209967
https://doi.org/10.1007/3-540-61794-9_50
https://doi.org/10.1007/3-540-61794-9_50
https://doi.org/10.1109/CAIS.2018.8441950

Bibliography 19

[10] R. Qu, E. K. Burke, B. McCollum, L. T. G. Merlot and S. Y. Lee, ‘A Survey of
Search Methodologies and Automated Approaches for Examination Time-
tabling,’ Journal of Scheduling - SCHEDULING, Jan. 2006, ISSN: 1094-6136.

[11] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solv-
ing (The Addison-Wesley series in artificial intelligence). Boston, MA, USA:
Addison-Wesley, Apr. 1984, ISBN: 978-0-20105594-8.

[12] M. Pirlot, ‘General local search methods,’ Eur. J. Oper. Res., vol. 92, no. 3,
pp. 493–511, Aug. 1996, ISSN: 0377-2217. DOI: 10.1016/0377-2217(96)
00007-0.

[13] M. Gendreau and J.-Y. Potvin, Handbook of Metaheuristics. Boston, MA,
USA: Springer, Boston, MA, 2010, ISBN: 978-1-4419-1663-1. DOI: 10.1007/
978-1-4419-1665-5.

[14] L. Bianchi, M. Dorigo, L. M. Gambardella and W. J. Gutjahr, ‘A survey on me-
taheuristics for stochastic combinatorial optimization,’ Nat. Comput., vol. 8,
no. 2, pp. 239–287, Jun. 2009, ISSN: 1572-9796. DOI: 10.1007/s11047-
008-9098-4.

[15] M. Gendreau and J.-Y. Potvin, ‘Tabu Search,’ in Search Methodologies: In-
troductory Tutorials in Optimization and Decision Support Techniques, Bo-
ston, MA, USA: Springer, Boston, MA, 2005, pp. 165–186, ISBN: 978-0-
387-23460-1. DOI: 10.1007/0-387-28356-0_6.

[16] E. Aarts, J. Korst and W. Michiels, ‘Simulated Annealing,’ in Search Meth-
odologies: Introductory Tutorials in Optimization and Decision Support Tech-
niques, Boston, MA, USA: Springer, Boston, MA, 2005, pp. 187–210, ISBN:
978-0-387-23460-1. DOI: 10.1007/0-387-28356-0_7.

[17] K. Sastry, D. Goldberg and G. Kendall, ‘Genetic Algorithms,’ in Search Meth-
odologies: Introductory Tutorials in Optimization and Decision Support Tech-
niques, Boston, MA, USA: Springer, Boston, MA, 2005, pp. 97–125, ISBN:
978-0-387-23460-1. DOI: 10.1007/0-387-28356-0_4.

[18] P. Moscato, L. Plata and M. G. Norman, ‘A "Memetic" Approach for the Trav-
eling Salesman Problem Implementation of a Computational Ecology for
Combinatorial Optimization on Message-Passing Systems,’ ResearchGate,
vol. 1, Jul. 1999.

[19] M. Dorigo and C. Blum, ‘Ant colony optimization theory: A survey,’ Theoret.
Comput. Sci., vol. 344, no. 2, pp. 243–278, Nov. 2005, ISSN: 0304-3975.
DOI: 10.1016/j.tcs.2005.05.020.

[20] Course - Engineering Cybernetics, Specialization Course - TTK4555 - NTNU,
[Online; accessed 17. Dec. 2020], Dec. 2020. [Online]. Available: https:
//www.ntnu.edu/studies/courses/TTK4555#tab=omEmnet.

[21] Fordypning høsten 2020, [Online; accessed 17. Dec. 2020], Dec. 2020. [On-
line]. Available: https://www.itk.ntnu.no/emner/fordypning.

https://doi.org/10.1016/0377-2217(96)00007-0
https://doi.org/10.1016/0377-2217(96)00007-0
https://doi.org/10.1007/978-1-4419-1665-5
https://doi.org/10.1007/978-1-4419-1665-5
https://doi.org/10.1007/s11047-008-9098-4
https://doi.org/10.1007/s11047-008-9098-4
https://doi.org/10.1007/0-387-28356-0_6
https://doi.org/10.1007/0-387-28356-0_7
https://doi.org/10.1007/0-387-28356-0_4
https://doi.org/10.1016/j.tcs.2005.05.020
https://www.ntnu.edu/studies/courses/TTK4555#tab=omEmnet
https://www.ntnu.edu/studies/courses/TTK4555#tab=omEmnet
https://www.itk.ntnu.no/emner/fordypning

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Introduction
	Background and Motivation
	Objective
	Contributions
	Thesis Structure

	Theory
	Timetabling problem
	Solution approaches/techniques
	Local Search Based Techniques
	Population Based Algorithms

	Design & Implementation
	Problem definition
	Data model
	Solution data format
	Objective function
	The chosen algorithm

	Results and Discussion
	Case 1
	Case 2

	Conclusion
	Further Work

	Bibliography

