
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
sM

ulti-sensor m
ulti-target tracking using LID

AR and cam
era in a harbor environm

ent

Didrik Grove

Multi-sensor multi-target tracking
using LIDAR and camera in a harbor
environment

Master’s thesis in Cybernetics and Robotics
Supervisor: Edmund Førland Brekke
Co-supervisor: Giorgio D. K. M. Kufoalor

June 2021

M
as

te
r’s

 th
es

is

Didrik Grove

Multi-sensor multi-target tracking
using LIDAR and camera in a harbor
environment

Master’s thesis in Cybernetics and Robotics
Supervisor: Edmund Førland Brekke
Co-supervisor: Giorgio D. K. M. Kufoalor
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Preface

This report presents the work done in my master’s at the Norwegian University of Science
and Technology (NTNU) spring of 2021. It is the final requirement to achieve a master’s
degree within Cybernetics and Robotics at NTNU.

A lot of work on the hardware setup has been done in my project thesis fall of 2021 [19].
In this project I quantify the consequences of different time synchronization methods in
a target tracking setting.

I would like to thank my supervisors Giorgio D. K. M. Kufoalor from Maritime Robotics
and Edmund Førland Brekke from NTNU for their guidance and advice during the pe-
riod. I would also like to thank Maritime Robotics letting me use their hardware for this
thesis, their employees have been of tremendous help when setting up and running their
systems for the test scenarios.

Finally I would like to thank my family for all their patience and support, both while
working on this thesis and during my time as a student.

Trondheim, June 14, 2021
Didrik Grove

i

Sammendrag

Andelen ulykker på havet som resultat av menneskelige feil er anslått å være mellom 60
og 90%. I situasjoner der mennesker ofte opptrer ulikt gitt samme utgangspunkt har et
autonomt fartøy fordelen av å være forutsigbart, selv etter lengre perioder i drift. Det
å kunne tolke omgivelsene på en pålitelig måte for å detektere andre fartøy er et høyst
aktuelt tema innen forskning og utvikling av autonomi.

Denne avhandlingen presenterer en implementasjon av en JIPDA metode for å følge flere
fartøy gitt målinger fra deteksjoner i kamerabilder og LIDAR. Det er samlet inn data fra
ulike testscenario i områder med begrensede muligheter for trygg manøvrering. To båter
er utstyrt med GPS-mottakere for logging av posisjon og deltar som en del av scenari-
oene. GPS-posisjonen sammenlignes med posisjonsestimatene fra målfølgingsalgoritmen
for å kvantifisere ytelsen i de gitte scenarioene.

Prosessering av sensordata fra både LIDAR og kamera er beskrevet i detalj. Bildene
fra testscenarioene er annotert og vi oppnår en gjennomsnittlig deteksjonsnøyaktighet
på mindre enn 25% ved å bruke detekteringsalgoritmer som er forhåndstrent på andre
datasett. Ved å trene vår egen algoritme fra grunnen av oppnår vi en deteksjonsnøyak-
tighet på 95%. Detekteringene i kamerabildene blir konvertert til en retningsmåling som
blir prosessert i målfølgingsalgoritmen.

Denne implementasjonen av målfølgingsalgoritmen gir en økt ytelse dersom målene som
skal følges er innenfor kameraenes synsfelt. Det vises også til at ytelsen til målfølgingsal-
goritmen blir dårligere når målene er utenfor kameraenes synsfelt, ettersom algoritmen
antar et 360 graders synsfelt for alle sensorene. Kameramålingene er i stand til å op-
prettholde et tilfredstillende posisjonsestimat uten hjelp fra LIDAR i rundt 10 sekunder.
Etter hvert blir usikkerheten i estimatet stor nok til at flere retningsmålinger blir as-
sosiert med et enkelt posisjonsestimat, noe som fører til at kovariansen vokser raskt og
at estimatet blir termintert som følge av for stor usikkerhet. I tilfeller der algoritmen
mottar sporadiske målinger fra LIDAR viser denne rapporten at kameramålingene sørger
for tidligere initiering og å enklere opprettholde et estimat.

iii

Abstract

The amount of accidents at sea happening as a consequence of erroneous human action
is between 60 and 90%. While human operators often behave differently to the same
situations, an autonomous vessel has the advantage of being more predictable even after
long periods of operation. Being able to reliably sense the surroundings and detect other
vessels to make quantified decisions is a hot research subject within autonomy.

This thesis presents an implementation of a JIPDA-based multi-sensor multi-target tracker
where the data from a camera object detector and a LIDAR are fused together. Test data
sets are collected for different scenarios in congested waters with limited room for safe
navigation. Two targets in these test scenarios are equipped with GPS receivers that are
used for validating the accuracy and performance of the tracking system.

The data processing pipelines are described in detail for both the LIDAR and the camera
detector. The data from the test sets is annotated and we observe a mean average pre-
cision (mAP) of less than 25% when running a pre-trained detector on the set. Training
our own object detector from scratch we are able to achieve an mAP of over 95%. The
detections in the camera images are extracted as bearing measurements which are used
in the tracking pipeline.

Tests show that the current implementation of the tracker increases the performance while
the targets are within the camera’s field of view. The bearing measurements do however
yield lower performance on the data sets when the targets are outside the camera’s field of
view, as the tracker assumes a full 360 degree field of view from all sensors. The camera
is able to maintain a track for a few seconds without the help of a LIDAR, but gets
terminated quickly as the uncertainty grows too large. The large uncertainty introduced
in the bearing measurements causes multiple bearing measurements to be gated to a single
target which adds uncertainty to the estimate. The LIDAR alone has trouble initiating a
good track on a small target, but with sparse LIDAR measurements the camera is shown
to help with initiating and maintaining the track.

v

Contents

List of figures viii

List of tables xi

List of abbreviations xii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem description . 2
1.3 Related work . 3
1.4 Report outline . 4

2 Theory 5
2.1 Camera detections . 5

2.1.1 Convolutional neural networks . 5
2.1.2 Building blocks . 7
2.1.3 Metrics for bounding box detection 11
2.1.4 Image detection to relative bearing 13

2.2 Light Detection And Ranging (LIDAR) detections 15
2.2.1 LIDAR measurements . 15
2.2.2 Filtering . 17
2.2.3 Clustering . 18

2.3 Relative positioning between sensors and detections 19
2.4 Target tracking . 20

2.4.1 Kalman filter (KF) to extended Kalman filter (EKF) 21
2.4.2 Interacting multiple models (IMM) 24
2.4.3 Probabilistic Data Association (PDA) 27
2.4.4 PDA to JIPDA . 29
2.4.5 Visibility state modelling . 32
2.4.6 Multi sensor tracking . 34

2.5 Tracking in autonomy . 36
2.5.1 Autonomy . 36
2.5.2 Maritime rules of the sea . 37

3 Method 38
3.1 Test scenarios . 39

vi

3.1.1 Scenario one - Overtaking . 40
3.1.2 Scenario two - Occlusion of target 41
3.1.3 Scenario three - Passing of target 42

4 Experiment setup 43
4.1 Hardware setup . 44

4.1.1 Otter USV . 44
4.1.2 Sensor rig . 45
4.1.3 Target boats . 50

4.2 Pipeline implementation . 52
4.2.1 Camera pipeline . 53
4.2.2 LIDAR pipeline . 59
4.2.3 Tracking pipeline . 63

5 Results and discussion 68
5.1 Sensor processing delays . 68
5.2 JIPDA association delays . 70
5.3 Scenario one - Overtaking . 72
5.4 Scenario two - Occlusion of target . 78
5.5 Scenario three - Passing of target . 83
5.6 Loss of LIDAR measurements . 87

6 Conclusion and future work 90
6.1 Conclusion . 90
6.2 Future work . 91

Bibliography 93

Appendix I

vii

List of Figures

1 An object classifier would be able to tell that this image contains a boat
but give no further spatial information. 5

2 Object detections with YOLO V3 using an IR-camera. 6
3 Fully connected layer in a neural network 7
4 Non-linearities in the Sigmoid and ReLU activation functions [13]. 8
5 A convolution applied to a input image 9
6 The max pooling operation. 10
7 Predicted bounding box P and ground truth T 11
8 Precision-Recall curve . 12
9 Pinhole camera model [34] . 13
10 Barrel distortion [48]. 14
11 Polar and Cartesian coordinates [17]. 15
12 Resolution cells in Cartesian and polar coordinate system [35] 16
13 Point cloud visualization of LIDAR data in rviz 16
14 LIDAR Clusters [16] . 18
15 Transformation between two coordinate systems [15]. 19
16 The steps in a Kalman filter . 21
17 The steps in a Kalman filter using mathematical notation 22
18 The steps in an extended Kalman filter 23
19 Two vessels that behave very differently seen through a LIDAR 24
20 The prediction steps in multiple model filtering. 25
21 Multiple model filtering. 26
22 Univariate Gaussian mixture. 26
23 Multivariate Gaussian mixture[26]. 26
24 Probabilistic Data Association Filtering. 27
25 Integrated Probabilistic Data Association Filtering. 30
26 Joint Probabilistic Data Association Filtering. 31
27 Otter 27 . 39
28 Movement of the boats in the first scenario. 40
29 Movement of the boats in the second scenario. 41
30 Movement of the boats in the third scenario. 42
31 Overview of the testing area with the three boats used for data collection. 43
32 Otter USV . 44
33 Otter targa for autonomy development 45
34 Genie Nano C4040 . 46

viii

35 Fujinon Cf8ZA-1S . 46
36 Field of view of EO cameras. 46
37 Ouster OS-1. 47
38 Sentiboard . 48
39 ToC vs. ToA timestamping precision. 49
40 Time synchronization setup . 49
41 Juggernaut . 50
42 Otter 9 . 51
43 Pipeline in ROS . 52
44 The broken camera mount. 55
45 Camera images before (top) and after (bottom) the camera mount is broken. 56
46 The output from the object detector transformed into bearing measurements. 57
47 The raw point cloud output by the LIDAR. 59
48 The output from the voxel grid filtering and segmenter. 60
49 The output from Euclidean clustering and land filtering. 61
50 Newly initiated track based on bearing measurements 67
51 Processing delays in the LIDAR pipeline 68
52 Processing delays in the object detection pipeline 69
53 Delays without land filtering of the LIDAR points 70
54 Tracks initiated around measurements on land 71
55 Time delay in tracker relative to association hypotheses 71
56 Range from ownship to Juggernaut in scenario one 72
57 Estimated and ground truth position of Juggernaut using only LIDAR . 73
58 Estimated and ground truth position of Juggernaut using LIDAR and camera 73
59 Existence probability of Juggernaut . 74
60 Estimation error of Juggernaut (with GPS position as ground truth) . . . 75
61 Range to Otter 9 in scenario one . 76
62 Estimation error of Otter 9 (with GPS position as ground truth) 76
63 Mode probabilities for Otter 9 using LIDAR and camera 77
64 Mode probabilities for Otter 9 using only LIDAR 77
65 Range from ownship to Juggernaut in scenario two 78
66 Estimated and ground truth position of Juggernaut using only LIDAR . 79
67 Estimated and ground truth position of Juggernaut using LIDAR and camera 79
68 Existence probability of Juggernaut . 80
69 Range to Otter 9 in scenario two . 81
70 Estimation error of Juggernaut (with GPS position as ground truth) . . . 81

ix

71 Raw point cloud showing the two target boats 82
72 Range from ownship to Juggernaut in scenario three 83
73 Estimated and ground truth position of Juggernaut using LIDAR 84
74 Estimated and ground truth position of Juggernaut using LIDAR and camera 84
75 Mode probabilities of the Juggernaut track using LIDAR and camera . . 85
76 Estimated and ground truth position of Otter 9 using LIDAR 86
77 Estimated and ground truth position of Otter 9 using LIDAR and camera 86
78 Existence probability after LIDAR dropout 87
79 Mode probabilities during sensor dropout 87
80 Camera detections a few seconds after LIDAR dropout 88
81 Camera detections a few seconds after LIDAR dropout 88
82 Position estimate error compared to GPS position 89
83 Position estimate error compared to GPS position 89

x

List of Tables

1 The steps in an Euclidean clustering method [36]. 18
2 The notation used in this report relating to target tracking. 20
3 The sub- and superscripts used in this report relating to target tracking. 20
4 LIDAR Specifications. 47
5 Simrad HS60 GPS Specifications [25]. 50
6 Zed F9P Specifications [46]. 51
7 Performance of a pre-trained YOLO model on the data set. 53
8 Spread of annotated data from EO cameras. 53
9 The size of each dataset used for training, validation and testing. 54
10 Performance of trained object detector on data set. 54
11 Parameters for training the neural network. 55
12 Initial camera specific tracker parameters. 58
13 Parameters for voxel grid filtering. 59
14 Parameters for the Euclidean cluster segmenter. 60
15 Parameters for the Euclidean clustering. 61
16 Initial LIDAR specific tracker parameters. 62
17 Noise in the process models . 63
18 Initial probability for the process models 64
19 Final tracker specific parameters. 67

xi

List of abbreviations

LIDAR Light detection and ranging
ROS Robotic operating system
AIS Automatic identification system
RADAR Radio detection and ranging
YOLO You only look once
IMM Interative muliple models
JIPDA Joint integrated probabilistic data association algorithm
GPU Graphics processing unit
SSD Single shot detector
IoU Intersection over union
TP True positive
FP False positive
AP Average precision
RANSAC Random sample consensus
SLAM Simultaneous localization and mapping
(E)KF (Extended) Kalman filter
MC Markov chain
SEA Society of automotive engineers
COLREG Convention on the international regulations for preventing collisions at sea
GPS Global positioning system
USV Unmanned surface vehicle
RTK Real time kinematic
INS Inertial navigation system
MRU Motion reference unit
PPS Pulse per second
EO Electro optical
IR Infrared
GNSS Global navigation satellite systems
I/O Input / Output
PPM Parts per million
ToC Time of capture
ToA Time of arrival
CT Constant turn
CV Constant velocity

xii

1 Introduction

1.1 Motivation

Over the last years the funding and commercial interest for autonomy has skyrocketed.
With the technology that has been developed during the last two decades, autonomy has
gone from being a term only used in scientific context to being something we interact with
and deal with in our daily life. Many of us now have some form of artificial intelligence
in our living rooms, we have access to self-driving cars and companies are able to land
rocket boosters returning from space, all by using some form of feed back control.

Because of the oil industry and a thriving fish industry, Norway is one of the leading
countries when it comes to research and development of maritime solutions. With the
increase in demand for autonomy in the maritime industry, Maritime Robotics seek to
increase the situational awareness of their vessels and become one of the leading devel-
opers within the field. Being able to detect and get an understanding of the behaviour of
other vessels is a vital part of autonomy, and while human operators behave differently
and often respond in different ways to the same situations, an autonomous vessel has the
advantage of being more predictable even after longer periods of operation. Being able
to reliably sense the surroundings to make such quantified decisions is still a hot research
subject, and this thesis aims to explore the limitations and test the robustness of a multi
sensor tracking system using cameras and a LIDAR in congested waters.

Maritime Robotics is making a sensor hub which will be used in their autonomy devel-
opment project. This hub is mountable on vessels of different sizes and is built with
flexibility in mind, with interchangeable sensors and the possibility to make adjustments
and change data synchronization methods. The results from this thesis will contribute
to the development and optimization of this sensor hub.

1

1.2 Problem description

1.2 Problem description

Having multiple sensors detecting objects and sensing the surrounding environment is a
recognized method for obtaining a reliable and robust tracking system. The main goal
of this thesis is to quantify and test the robustness of a multi sensor multi target tracker
using camera and LIDAR. Tuning and setup of the sensors to get reliable sensor data is
also a part of the thesis to avoid poor sensor data cluttering our results when judging the
quality of the tracking system. The work done in this thesis can be split into four parts.

First, raw sensor data for development, validation and testing of the algorithms is gath-
ered. The data sets are collected at the start of the period for continuous testing during
development and to avoid surprises which could occur if it was done later in the period.
The goal is to gather data in congested waters with limited room for safe navigation
where the LIDAR and the camera are utilized to the fullest.

After collection we move over to processing of the sensor data. Interpreting and getting
as much information from the data as possible will give a better foundation for the target
tracker. Having stable sensor processing algorithms will give an optimal input to the
tracker and give less noise in the results. While data collection is done beforehand for
continuous development of processing algorithms, some data sets are stored as test sets
that will be reviewed towards the end.

The VIMMJIPDA tracker developed by Audun Hem in his project and masters thesis
[22] will be implemented into the situational awareness pipeline at Maritime Robotics.
The tracker is a python module and will be restructured into a ROS-node. In its cur-
rent state the tracker supports RADAR and AIS measurements in a Cartesian coordinate
plane but will be extended to support bearing only measurements from an object detector.

At last the performance of this multi sensor multi target tracker will be tested in different
scenarios with a focus on robustness and reliability. Situations where LIDAR drop out
is experienced will be reviewed and the accuracy and performance of the multi sensor
tracker in these states will be quantified and discussed.

2

1.3 Related work

1.3 Related work

There has been a lot of development within the field of sensor fusion the last years, and
while LIDAR and RADAR have often been the sensors of choice, for the last few decades
the camera has become a commonly used sensor. The recent development of open-source
computer vision platforms have made powerful and optimized neural networks available
for the average user. Fusing the measurements of LIDAR and camera has been a popular
approach the last twenty years. In "Sensorfusion using spatiotemporal aligned video and
LIDAR for improved vehicle detection [33]" regions of interest for the object detector
is generated using LIDAR measurements and in "Perception for collision avoidance and
autonomous driving [3]" a high level fusion approach for object tracking is implemented
using LIDAR and cameras. "A multi-sensor fusion system for moving object detection
and tracking in urban driving environments [11]", "LIDAR and vision based pedestrian
detection systems [37]" and "Vehicle tracking with lane assignment by camera and LIDAR
sensor fusion [47]" are other articles where sensor fusion between camera and LIDAR are
reviewed. YOLO [39] is used as an object detector in the situational awareness pipeline
developed by Maritime Robotics and is explained more extensively in subsection 2.1.1.

The work in this thesis is a continuation of the work in the project done in the fall of 2020
[19]. This project thesis quantifies the consequences of poor time synchronization and
time stamping on a target tracking system using LIDAR and camera. For more infor-
mation about the time synchronization setup and constraints in the sensor rig the reader
is refereed to this project thesis. The tracker used is this masters thesis is an extension
of Audun Hems tracker developed in his masters [22] and more thoroughly described in
his research article [7]. This is a joint integrated probabilistic data association (JIPDA)
tracker applying interactive multiple models (IMM) where the visibility of the targets
is modelled. This way the targets can enter an invisible state. The work flow and the
modules used in this tracker is explained extensively in section 2.4.

Similar implementations have been done by Vegard Kvamsgård in his masters thesis [29]
and by Knut Turøy in his project and [45] and masters thesis [45]. Turøy implemented a
multi sensor tracker using RADAR, LIDAR, electro-optical and infrared cameras. While
his thesis investigates the quality of tracks using the multi sensor tracker, this thesis will
quantify the quality and robustness of the tracks in congested waters where the system
loses access to a sensor, either knowingly or unknowingly.

3

1.4 Report outline

1.4 Report outline

Section 2 will give an introduction to theory relevant for the later sections. Sections 2.1
and 2.2 explains relevant data processing methods for camera and LIDAR that are used
in this project. It also gives a short introduction to other, similar processing algorithms.
Section 2.4 describes different modules and the work flow of a Bayesian target tracker
doing measurement fusion on multiple targets using multiple sensors. Section 2.5 gives
a short introduction to the rules of the sea, specifically for vessels in the areas where
scenarios are being conducted.

Section 3 expands on the methods used for validating the theory and verifying the results
from the scenarios. In Section 3.1 we described the three different scenarios for data
collection in detail.

In Section 4.1 the hardware setup and the boats used in the test scenarios are expanded
upon. The software pipeline for the camera and LIDAR data is described in Section 4.2
and the implementation of the target tracker with bearing measurements is described in
Section 4.2. The tuning of the pipelines and thought-process behind the implementations
are also expanded upon in this Section.

In Section 5 we present the results that were gained through the test scenarios. In Sec-
tion 5.1 we present the delays in the processing pipeline and their impact on the target
tracker. In Section 5.2 we show how the association hypotheses impact the processing
time and in sections 5.3, 5.4 and 5.5 we discuss the tracker performance on the three test
scenarios. In Section 5.6 we review how the tracker behaves when LIDAR measurements
are lost.

In Section 6 the results are concluded and suggestions for future work is presented.

4

2 Theory

2.1 Camera detections

After AlexNet achieved a 16% error rate in the PASCAL VOC challenge the use of GPUs
running convolutional neural networks became the standard for solving computer vision
tasks. While most developers of self-driving cars use LIDAR as the short-range sensor
of choice it is most often used in conjunction with a camera detection system. With the
skyrocketing development within the field of vision systems, large companies like Tesla
even see this as the main sensor for sensing the environment [40].
Most modern vision systems use some sort of convolutional neural network. These net-
works are a class of deep neural networks, most commonly used in image analysis. Neural
networks are built on the concept of neurons behaving somewhat similar to the neurons
in the human brain, where different inputs trigger different reactions and outputs. This
section will explain the workflow of convolutional neural networks, explain some of the
most used building blocks, scratch the surface of some of the most common object de-
tection algorithms and explain how these image detections can be used in sensor fusion.

2.1.1 Convolutional neural networks

The goal of a regular classification algorithm is to classify the content of an image like
Figure 1, giving feedback on whether the image is of a car, boat or a plane. An object
detection algorithm also attempts to draw a bounding box around the object to describe
where in the image it is located like Figure 2.

Figure 1: An object classifier would be able to tell that this image
contains a boat but give no further spatial information.

5

2.1 Camera detections

A regular classification algorithm does not take into account more than one object within
the image, while an object detection algorithm can detect several objects of interest within
a single image without knowing the amount of objects beforehand. A naive approach to
this problem would be to split the original image into a very large amount of smaller
images and then run the object detection algorithm on each image. Because the objects
can have different aspect ratios and be located in different sections of the image this
would not be computationally tractable on a real-time system, as the amount of possible
locations would be extremely large. Doing this in an efficient manner is the problem that
modern object detection algorithms attempt to solve.

Figure 2: Object detections with YOLO V3 using an IR-camera.

Two of the most popular object detection algorithms for real-time use are SSD and YOLO.
SSD [32] uses extra convolutional layers of different resolutions that predict where the
bounding boxes are located and their size, then SSD runs a classification algorithm on
each suggested bounding box. YOLO [39] instead applies a single neural network to the

6

2.1 Camera detections

full image (hence the name "You Only Look Once"), which divides the image into regions
and predicts bounding boxes and probabilities for each region. Because running a SSD is
a two-step process it is a bit slower than YOLO, however image processing still happens
within reasonable time for a real-time system. The trade-off for YOLO is limited accu-
racy on objects that are small and smaller objects located close to each other due to the
limited size of the region proposals.

2.1.2 Building blocks

Classic convolutional neural networks usually apply the same building blocks, although
in different orders, sizes, structures and with different optimization methods.

Figure 3: Fully connected layer in a neural network

A regular fully-connected layer like the one shown in Figure 3 is the most basic building
block. Each neuron in such a layer is connected to all neurons in the previous layer.
Each connection between the neurons is weighted and each neuron applies an activation
function and has a bias.

w1 =

[
w1

11 w1
12

w1
21 w1

22

]
w2 =

[
w2

11 w2
12

w2
21 w2

22

]
w3 =

[
w3

11 w3
12

w3
21 w3

22

]

b1 =

[
b1

1

b1
2

]
b2 =

[
b2

1

b2
2

]

7

2.1 Camera detections

A forward pass through the weights and the biases is done with the function

zi = (wi)Tai−1 + bi

As this function is linear the output of the forward pass is not confined to any range and
will not be able to learn non linearities in the data. Simply adding a non-linear activation
function solves these problems and improves learning. The sigmoid and the ReLU (with
modifications) are some basic and often used activation functions shown in Figure 4.

Figure 4: Non-linearities in the Sigmoid and ReLU activation functions [13].

Sigmoid a = f(z) =
1

1 + e−z
df(z)

dz
= f(z)(1− f(z))

ReLU a = f(z) = max(0, z)
df(z)

dz
=

1, if z > 0

0, otherwise

The bias and the weights are modifiable parameters that are tuned during training by
doing a backward pass. After inputting data to the first layer and performing a forward
pass through the network it produces an output value for each of the classes it is trained
to recognize. A cost function is used to calculate the cost of the error when comparing
the output to the actual ground truth values. Using the cost the backwards pass iterates
backwards into the network and tunes the weights and biases by calculating the gradients.
The gradient at each weight/bias gives a value on how much it impacted the final result
and how much the weight needs to be changed. Doing this over many iterations with
different inputs one gets at a network that learns to recognize different classes.

8

2.1 Camera detections

While the fully connected layer is the most basic building block the convolution is the
most commonly used building block for a convolutional neural network. A convolutional
layer applies filters of different sizes to the input data. During the convolution each block
in the filter is multiplied with the input data, the blocks are summed together and gives
an output value as in Figure 5.

Figure 5: A convolution applied to a input image

z1,11 = 0.01 · 50 + 0.02 · 100 + 0.03 · 50 + 0.04 · 100 = 8

While the fully connected layer mainly looks at individual pixel values, the filters in this
layer are able to learn more complex features such as edges and corners. The convo-
lutional layer can also contain weights for depth channels, and in such a way take into
account color combinations for the features. They are hence very useful and often used
for analyzing images.

9

2.1 Camera detections

A pooling layer is often applied between successive convolutional layers. This layer re-
duces the spatial size of the network to reduce the amount of parameters and computa-
tions done. The most commonly used pooling layer is performing a max pooling operation
like that shown in Figure 6.

Figure 6: The max pooling operation.

Reducing the amount of parameters in the network helps against overfitting. Overfitting
happens when the network keeps specializing on recognizing the images in its training
dataset but at the same time gets lower performance on objects that are outside of the
dataset. The goal of an object detection network is most often to be general and able
to recognize as many objects within its scope as possible, and techniques such as max
pooling layers are applied to reduce said overfitting. The gradient for the max pooling
layer is also equal to 1 for the chosen neuron and 0 for all others. During the backwards
pass this gradient ensures that only the weights and neurons triggered and used towards
the output will be modified. This helps splitting the network into different regions where
each part learns different features. Because of this gradient only the weights that are
relevant for the output will be modified, which increases generalization.
While max pooling is the most commonly used pooling layer, we also have average and
L2-norm pooling layers. Average pooling simply takes the average over the region, and
the L2-norm takes the square root of the sum of the squares of the activation in the
region.

10

2.1 Camera detections

2.1.3 Metrics for bounding box detection

Given a set of images with predicted bounding boxes and truth values we can calculate
metrics for bounding box detection to estimate the accuracy of our network. For each
detection we calculate the Jaccardi overlap, also called intersection over union (IoU).

Figure 7: Predicted bounding box P and ground truth T

With the detection in Figure 7 we calculate the overlap with the following equations

Iwidth = min(Pxmax, Txmax)−max(Pxmin, Txmin)

Iheight = min(Pymax, Tymax)−max(Pymin, Tymin)

Iarea = Iwidth ∗ Iheight
UP,area = (Pxmax − Pxmin)(Pymax − Pymin)

UT,area = (Txmax − Txmin)(Tymax − Tymin)

IoU =
Iarea

UP,area + UT,area

If the IoU gives a score over the detection threshold we classify the detection as a true
positive (TP) while detections under the treshold are classified as false positives (FP).

11

2.1 Camera detections

After calculating the total number of true positives and false positives, precision and
recall can be calculated using the following formulas.

Precision =
TP

All Detections

Recall =
TP

Numer of ground truths

Precision gives the rate of correct predictions in the total set of predictions. Recall gives
a ratio of correct detections compared to the amount of expected detections.

As we iterate through the set of predictions for a class we can plot the precision against
the recall value like in Figure 8. The general definition of the average precision (AP) for
a class is the area under this curve.

Figure 8: Precision-Recall curve

AP =
1

11

∑
Precision(recall)

While AP is the average precision for a single class, we also use mean average precision
(mAP) for the total set of classes for a neural network.

mAP =

∑
AP

n

12

2.1 Camera detections

2.1.4 Image detection to relative bearing

As detections with cameras in a mono-setup are done in 2D space they can only give
accurate information about an object’s height and angular position relative to the camera,
and give limited information about the distance to a target. With the recent development
in convolutional neural networks, however, they are also a very convenient tool for object
classification to find information about the dynamic properties of the target. They are
also often applied as a tool for a human-machine interface [28].

Figure 9: Pinhole camera model [34]

Accurate static transformations to the camera and its exintric, intrinsic and distortion
parameters are needed to precisely describe the transformation of an object in the 2D
image relative to the camera in 3D space. Newer cameras have specialized lenses that are
built to minimize distortion caused by the curvature of the camera lens, but in general
there is always a certain degree of distortion to account for. This is more thoroughly
explained in [21].

The pinhole camera model in Figure 9 describes transformations between three different
coordinate frames. The world coordinate frame represents coordinates of the 3D object in
the real world, and the virtual image plane represents 3D coordinates in the camera, with
the origin at the center of projection and the Z-axis as the optical axis. The 2D image
plane is pixel coordinates within the image. The transformation from the 3D object in the
world frame to the 3D object in the camera frame is given as a standard 3D coordinate
transformation like the one described in Section 2.3, although it is often denoted as the
extrinsic calibration matrix Mex. The transformation between the virtual image plane
and the 2D image plane is given with the intrinsic calibration matrix, which is given on
the following form.

13

2.1 Camera detections

Min =

fsx 0 ox

0 fsy oy

0 0 1

 (1)

Where the parameters are as follows

f Focal length
(ox, oy) Piercing point coordinates
sx Pixel size in x-axis
sy Pixel size in y-axis

This can be used to achieve a mapping between a vector in the world frame
−→
X to pixel

coordinates −→p as a set of linear transformations

−→p = MinMex

−→
X (2)

The intrinsic parameters describe the camera field of view. If this is known beforehand
one can also use the field of view together with pixel width to create a linear mapping
between bearing angle and pixel coordinates. Neither of these methods does however
take into account any distortion of the pixels. Because of the natural curvature of the
camera lens one must often correct for radial lens distortion like barrel distortion shown in
Figure 10. Letting (x̂, ŷ) be the undistorted image coordinates and k1, k2 be the distortion
coefficients, a simple radial distortion model can be given by the following equations:

x̂ = x(1 + k1(x2 + y2) + k2(x2 + y2)2)

ŷ = y(1 + k1(x2 + y2) + k2(x2 + y2)2)
(3)

Figure 10: Barrel distortion [48].

14

2.2 Light Detection And Ranging (LIDAR) detections

2.2 Light Detection And Ranging (LIDAR) detections

While detecting objects and sensing the environment using a camera is relatively new
within autonomy, the LIDAR has been the work horse at short ranges for decades. Com-
plex tasks like docking to the international space station (ISS) has been done using LIDAR
technology because of its high precision at shorter ranges [24].
New state-of-the-art LIDAR technology like solid state sensors is reducing the cost by
tenfolds, increasing sensor range up to 200 meters and giving the ability to sense the
velocity of an object in 3D space [14]. While object detectors can be run on relatively
cheap cameras, the LIDAR is however hindered by its significant cost.

2.2.1 LIDAR measurements

While an EO-camera captures the reflected natural light in its lens, the LIDAR detects
nearby objects by emitting light at a certain wavelength and measures the time of flight
of the reflections. The LIDAR contains filters that excludes all light outside the desired
wavelength, and in an automotive application the beam is often emitted and reflected
through a rotating mirror to achieve a high field of view. The LIDAR outputs detections
in a spherical coordinate frame, with range calculated by time of flight.

R =
Speed of light × Time of flight

2
(4)

The rotated angle of the mirror gives the azimuth angle α. Newer LIDARs also have
some vertical resolution with mirrors and reflectors mounted at different angles to add
elevation ω.

Figure 11: Polar and Cartesian coordinates [17].

15

2.2 Light Detection And Ranging (LIDAR) detections

As seen in Figure 11 these can be transformed into a Cartesian coordinate frame using
some basic trigonometric functions

x = R cosω sinα

y = R sinω sinα

z = R cosα

(5)

It should however be noted that because a sensor with measurements in polar coordinates
does not accurately represent squares in a Cartesian coordinate system, there is a loss of
accuracy when doing such a transformation. While the resolution cells in the Cartesian
coordinate systems is represented as squares, the resolution in the polar coordinate sys-
tem can be represented as rectangles from the range and bearing resolution a shown in
Figure 12.

Figure 12: Resolution cells in Cartesian and polar coordinate system [35]

A state of the art LIDAR can output several hundred thousand such reflections/data
points at a high frequency. These data points are usually gathered in a point cloud which
is then filtered and processed through techniques mentioned in sections 2.2.2 and 2.2.3.

Figure 13: Point cloud visualization of LIDAR data in rviz

16

2.2 Light Detection And Ranging (LIDAR) detections

2.2.2 Filtering

Processing the hundreds of thousands of data points in a point cloud can be a very
computationally heavy task. It is therefore very often applied pre-processing methods
to the point cloud to filter out data points that are irrelevant to the application. If the
point cloud is used to detect obstacles ground filtering is often applied. Using the height
of the LIDAR, the ground plane is estimated and calculated using nearby data points.
Random sample consensus (RANSAC) is an algorithm that is often used for ground
filtering. Given a mathematical model with parameters

y = f(x; a) where a = (a1, a2, ..., an)

it iterates over a random set of subsamples to find the best model parameters. This is
done in five steps.

1. Estimate the model parameters from a randomly sampled subset of data points
2. Determine the set of inliers to be the data points within a distance to the model
3. If this is the largest set of inliners, store the model parameters
4. If the model precision is over some threshold value, stop. If not, repeat
5. Stop after N iterations

For a ground vehicle the sample is selected using the relative position of the vehicle to
the ground. For an autonomous application at sea we can also apply land filtering by
using sea charts to filter out buildings and other objects on land that are irrelevant to the
application. These maps can also be made dynamically using simultaneous localization
and mapping (SLAM) methods.

Two popular methods for down-sampling a point cloud is also the grid-based and the
minimal distance methods. In the minimal distance method the data points are removed
so that no data point is closer to another data point than the minimum distance specified.
In the grid method a grid structure is created and a representative data point is selected
from within that grid. Each grid cell is called a voxel and will only keep one representative
point which can be selected in different ways. This point can be the center of all the points
located within the voxel or the point closest to the center.

17

2.2 Light Detection And Ranging (LIDAR) detections

2.2.3 Clustering

Because of the high resolution most objects are reflected and registered as several LI-
DAR data points. Different clustering techniques are applied to organize the points that
correspond to the same object into clusters like those in Figure 14. These clusters are
generally used as a detection in a tracking pipeline.

Figure 14: LIDAR Clusters [16]

The goal of such a clustering method, similar to filtering methods, is to reduce the overall
processing time and complexity when processing the data and extract objects of interest.
A simple Euclidean data clustering approach can be implemented by splitting the LIDAR
operating area into subdivisions similar to an voxel grid filter. We can however make use
of nearest neighbours and kd-trees to make a more precise method.

1. Create a Kd-tree representation for the input cloud dataset P

2. Set up an empty list of clusters C and a queue of the points that needs to be checked Q

3. For every point pi ∈ P , perform the steps:
• add pi to the queue Q
• For every point pi ∈ Q:

– Search for the set P k
i of point neighbours of pi in a sphere with radius R

– For every neighbor pki ∈ P k
i , check if the point has already been processed, if

not add it to Q
• When the list of all points in Q have been processed, add Q to the list of clusters C

and reset Q to an empty list
4. The algorithm terminates when all points pi ∈ P have been processed and are now part

of the list of point clusters C

Table 1: The steps in an Euclidean clustering method [36].

18

2.3 Relative positioning between sensors and detections

2.3 Relative positioning between sensors and detections

To be able to judge where different sensors are relative to each other one needs to describe
their placement. Such transformations are done by homogeneous transformation matrices
that describe the position and orientation between different coordinate frames. Such a
transformation matrix is shown in Equation 2.3 and can also be used to give the relative
position of detections.

T ab =

(
Ra
b T aab

0 0 0 1

)
T aab =

xy
z

Here Ra

b describes the rotation and T aab describes the translation of point b relative to
point a. In ROS, which is the framework used in the test scenarios described in Section 4,
these transformations are defined as rotations in roll, pitch, yaw and translation in x, y
and z-direction. The rotation matrix Ra

b is constructed from three smaller matrices each
representing a rotation around an axis.

Rx(φ) =

1 0 0

0 cosφ − sinφ

0 sinφ cosφ

Ry(ω) =

 cosω 0 sinω

0 1 0

− sinω 0 cosω

Rz(ψ) =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

Multiplying these together we get the rotation matrix Ra

b (φ, ω, ψ).

Rxyz(φ, ω, ψ) =

cosψ cosω − sinψ cosφ+ cosψ sinω sinφ sinψ sinφ+ cosψ sinω cosφ

sinψ cosω cosψ cosφ+ sinψ sinω sinφ − cosψ sinφ+ sinψ + sinω cosφ

− sinω cosω sinφ cosω cosφ

Figure 15: Transformation between two coordinate systems [15].

19

2.4 Target tracking

2.4 Target tracking

The goal of a target tracker is to estimate the motion of objects and to confirm or confute
tentative hypotheses about target presence using sensor measurements. How a system
can detect objects using sensors like a camera and a LIDAR has already been described
and this Section will describe methods for fusing and interpreting these measurements.
There are two schools of sensor fusion, namely track level fusion and measurement level
fusion. Track level fusion runs a tracker for each sensor and generates multiple tracks,
performing fusion on these tracks to find a combined solution to the estimation problem.
Meanwhile measurement level fusion will use a single tracker that fuses the measurements
together into a single track. In this Section and this thesis we will focus on the latter.
Most of the information in this Section is from "Fundamentals of Sensor Fusion [6]".

The symbols listed below are used to describe different elements within target tracking.

x Kinematic state π Transition probability matrix
P State covariance matrix µ Mode probability
F State transition matrix PD Detection probability
z Measurement λ Clutter intensity
R Measurement covariance matrix a Association hypothesis
H Measurement matrix g Validation gate scaling parameter

Table 2: The notation used in this report relating to target tracking.

ˆ Estimate t Track index
· Time derivative s Kinematic mode
k Time step k|k − 1 Conditional on previous time

Table 3: The sub- and superscripts used in this report relating to target tracking.

20

2.4 Target tracking

2.4.1 Kalman filter (KF) to extended Kalman filter (EKF)

The Kalman filter provides a closed-form solution to the estimation problem if the model
and its likelihood is Gaussian and linear. The Kalman filter is the base for most modern
estimation methods and can be viewed as an iterative two-step process. We perform a
prediction using a mathematical model of the system before we perform an update step,
updating and correcting the predictions using measurements. The steps in the Kalman
filter can be shown in Figure 16.

Figure 16: The steps in a Kalman filter

21

2.4 Target tracking

The Kalman gain is a parameter that decides how much we should weigh the predicted
and the measured value. This is calculated using the uncertainty of the prediction and
the error in the measurements. The equations used in the Kalman filter are shown in Fig-
ure 17. Note that the state transition matrix F and the measurement matrix H are linear.

Figure 17: The steps in a Kalman filter using mathematical notation

Most real world problems involve non linear functions which break the assumptions for
the Kalman filter. As can be seen in sections 2.1.4 and 2.2.1 the position of the objects
relative to the vessel is often given as a bearing angle which in turn brings trigonometric
functions and non-linearities into the picture. One can convert the measurements into
a Cartesian coordinate system before using the tracker, but even if the measurement
model is linear the system model is often non-linear. Feeding a Gaussian into a non-
linear function will always cause the output distribution to be non-Gaussian. In order to
solve this problem the extended Kalman filter applies linearisation by means of the first

22

2.4 Target tracking

order derivative, giving a linear approximation to the non-linear functions by using the
tangent around the mean. This process is visualized in Figure 18 where we have added
two linearization steps marked in orange. The prediction of the state and measurement
means, marked with red, are now non-linear functions. Because of this linearization we
can achieve a Gaussian distribution while having a non-linear state transition matrix and
measurement matrix.

Figure 18: The steps in an extended Kalman filter

23

2.4 Target tracking

2.4.2 Interacting multiple models (IMM)

In a maritime setting, a target tracking algorithm needs to be versatile and dynamic
enough to be able to detect and track everything from large ships to smaller debris and
buoys. Targets of the same size have different dynamic properties. A fishing boat and
a recreational boat of the same size are expected to act very differently, however look-
ing at these though the eyes of a LIDAR or a RADAR, it is hard to securely apply
either of these two models to the target. Figure 19 shows an example of this. While
the LIDAR point clouds are relatively similar, we humans would know that the vessel
on the left side of the top picture would behave very different from the vessel on the right.

Figure 19: Two vessels that behave very differently seen through a LIDAR

Interactive multiple models is a filtering technique that performs predictions of a set
of models in parallel where each model represent different dynamical behaviour. The
method then applies probability theory to weigh the output from each model and mix-
ture reduction to merge the weighted filter estimates into one common state estimate. It
was presented by Henk A. P. Blom and Yaakov Bar-Shalom in 1988 in "The interacting
multiple model algorithm for systems with markovian switching coefficients [5]."

24

2.4 Target tracking

Figure 20: The prediction steps in multiple model filtering.

Figure 20 shows the steps in a multiple model filter as an extension of the extended
Kalman filter. In reality it is more like Figure 21 where we have a set of M filters that all
do predictions on separate models for the target. The mode conditional likelihood for each
mode represents the precision of the estimate. This is found using the measurement, the
innovation and the innovation covariance. This is used to update the mode probabilities
with the new information gained through the measurements, which in turn is used to
calculate mixing probabilities for the Gaussians.

25

2.4 Target tracking

Figure 21: Multiple model filtering.

As each filter outputs a Gaussian we reduce them into a single estimate by means of
the mixing probabilities and Gaussian mixture. Gaussian mixture combines several dis-
tributions into one single distribution that is the best representative for all modes. For
clarity Figure 22 shows a mixture of the most commonly used univariate Gaussians. In
this thesis we will do tracking in a Cartesian coordinate system which requires the use of
the multivariate Gaussian. An example of this reduction is shown in Figure 23. In both
Figures the probability mass is centered as the mean of the two original distributions.

Figure 22: Univariate Gaussian mixture. Figure 23: Multivariate Gaussian mixture[26].

26

2.4 Target tracking

2.4.3 Probabilistic Data Association (PDA)

In a real world scenario with sensors like LIDAR and RADAR there will be misdetections
and times when multiple sensor measurements can be attributed to the same target.
There will also be cases when the sensor does not register the target due to occlusion or
unstable sensor processing methods. The probabilistic data association algorithm solves
these problems by performing the update step using different data association hypotheses
and doing mixture reduction on the results to find the innovation mean and covariance.
Like in the multiple models filter we also here apply probability theory to weight the
hypotheses.

Figure 24: Probabilistic Data Association Filtering.

27

2.4 Target tracking

To account for clutter in the measurements the PDA applies a clutter model. The poisson
distribution is often used to model this. It is shown in equation 6 where PFA represents
the probability of a false detection and N represents the total number of resolution cells.
PFA is a sensor specific constant.

µ(φ) = e−λ
λφ

φ!
where λ = NPFA (6)

We also apply a model for misdetections by means of a Bernoulli random variable. This
is applicable if the detection events are independent. It uses the detection probability PD
as a parameter to to model the detection event δ.

p(δ) =

{
PD if δ = 1

1− PD if δ = 0

While it is not shown as a part of Figure 24, we also need to account for cases when there
are no detections from the target. In this case the innovations and innovation covariance
is given as in equation 2.4.3.

p(xk|ak, Z1:k) ∝

{
pk|k−1(xk) if ak = 0

fz(z
ak

k |xk)pk|k−1(xk) if ak > 0

28

2.4 Target tracking

2.4.4 PDA to JIPDA

The EKF, IMM and PDA filtering methods are easily applied under the assumption that
all the measurements originate from the target or as clutter. Together they are great
modelling and estimation tools, however they always assume that the target is existing
and that estimation is needed. It does not have any mechanisms in place to handle
track initialization or track loss. Given a validation gate around the track we can filter
measurements that are likely to originate from the target, but we need a method in
place to judge if a set of sequence of detections should initiate a new track. We also
need a mechanism for terminating tracks when the target moves outside the surveillance
region or dissolves. Assigning measurements to targets increase complexity, and in a real
world scenario we need to be able to track multiple targets at once while taking into
considerations clutter and a large set of measurements.
A way of initializing tracks is the M/N -logic. Here a tentative track is initialized if we
receive two consecutive measurements in close vicinity to each other. The tentative track
is then run through the PDA forN time steps, after which a decision is made. If we receive
more then M measurements within those steps the track is initiated and if we received
less than M measurements the preliminary track is terminated. The problem with such
logic is that track initialization takes up N time steps. The integrated probabilistic data
association (IPDA) algorithm is an extension to the PDA which in addition to state
estimation also estimates the probability of target existence. This probability can in turn
be used to initiate or terminate tracks. The IPDA consists of five steps:

1. Existence Prediction
2. State Prediction
3. Association Weights
4. State Update
5. Existence Update

Figure 25 shows the workflow in an IPDA algorithm. Here the L in the existence
prediction corresponds to the following:

Lk = 1− PD +
PD
λ

mk∑
ak=1

N (zakk ; ẑk|k−1, Sk)

29

2.4 Target tracking

Figure 25: Integrated Probabilistic Data Association Filtering.

While the IPDA solves the problem of track initialization it does not solve the problem of
multiple targets and assigning measurements. The Joint Probabilistic Data Association
(JPDA) algorithm is the multi-target extension of the PDA which takes care of joint data
association hypotheses. The IPDA in itself can be a sufficient tracker when the tracks and
measurements are sufficiently far apart. A problem does however arise when the objects
that are tracked are within close proximity to each other and measurements fall within
the validation gates for several targets. This is where the JPDA comes into play. Data
association hypotheses are made from a cluster of nearby tracks and measurements, and
the probability for each hypothesis is calculated. The output from the filters weighted

30

2.4 Target tracking

with the association probability are merged using mixture reduction into a single Gaussian
for each track. The workflow of the JPDA can be seen in Figure 26.

Figure 26: Joint Probabilistic Data Association Filtering.

Constructing these association hypotheses and performing a full estimation cycle on each
one of them is computationally demanding. Clustering of nearby tracks is one way of
reducing the complexity of the problem. This can be done by a single linkage track clus-
tering algorithm described in "Single-link and complete-link clustering [10]." Depending
on the amount of measurements the amount of association hypotheses can still reach the
hundreds. Using the auction algorithm described in "A distributed relaxation method
for the assignment problem [4]" we can select only the few hypotheses with the most
probability mass.

Merging the data association hypotheses in the JPDA and the estimation of probability
of target existence from the IPDA we get the JIPDA. As can be seen in Figure 26 we use
the IPDA when performing the full estimation cycle on each hypothesis.

31

2.4 Target tracking

2.4.5 Visibility state modelling

Being able to estimate the visibility of a target can make the tracker less susceptible to
track-loss, a problem extensively described in "Hybrid state formulation and verification
on maritime radar benchmark data [9]". For the IPDA two models for target existence and
observability are often used, namely the markov chain one (MC1) and markov chain two
(MC2). The MC1 assumes that a target exists and have a certain detection probability,
while the MC2 is an extension of MC1 that assumes that a target exists and can be
unobservable. In MC2 we model both the kinematic state, the detection probability and
the visibility state in a hybrid state. While the kinematic state is continuous the visibility
state v is a discrete state.

v =

{
1 if the target is visible
0 otherwise

For the birth intensity we assume an unknown target intensity instead of the constant
birth intensity. We assume it to be stationary on the form

vk|k−1(y) = bΩ(Hx)N (H∗x; 0, Pv)Pr{sk−1}Pr{vk−1} = bΩ(Hx)N (H∗x; 0, Pv)µ
0so0v

The probabilities Pr{sk} and Pr{vk} can be organized in matrices representing a Markov
chain. The parameter bΩ quantifies the overall rate of the unknown target intensity.
While the detection probability previously has been a constant value it is now dependant
on the visibility state of the target.

PD(v) =

{
PD if v = 1
0 if v = 0

The prior is given as

f tk−1(y) = f tsk−1(s)µk−1ok−1

The mode probabilities, visibility probabilities and predicted kinematic states are

µk|k−1 =
∑

πssµtsk−1

32

2.4 Target tracking

ηk|k−1 = ω01(1− ηk−1) + ω11nk−1

fk|k−1(x) =

∫
fx(x|x)fk−1(x)dx

For the JIPDA-implementation with visibility modelling the measurement update is done
similar to Figure 26. We do however now have four cases for the posterior, depending on
whether the measurement corresponds to an empty track, a new target, a misdetection or
a detection. For the case with a new target we have the following association weights,
existence probabilities, updated model probabilities and state pdf

ωtjk = λ+ bη0

rtjk =
bη0

λ+ bη0

µtsjk = µ0s

ηtsjk = η0s

f tsjk (x) = N (x; x̂s0, P
S
0)

In the case of a misdetection we have

ωt0k = 1− rtk|k−1 + rtk|k−1(1− ηtk|k−1Pd)

rt0k =
rtk|k−1(1− ηtk|k−1PD

1− ηk|k−1 + ηk|k−1(1− ηtk|k−1PD)

µts0k = µts0k|k−1

ηt0k =
(1− PD)ηtk|k−1

1− PDηtk|k−1

f ts0k (x) = f tsk|k−1(x)

And in the detection case these become

ωtjk = PDr
t
k|k−1η

t
k|k−1

∑
µtsk|k−1l

tsj
k

rtjk = 1

µtsjk = µts0k|k−1l
tsj
k /

∑
µtsk|k−1l

tsj

ηtjk = 1

f tsjk (x) = f sz (zjk|x)f tsk|k−1(x)/ltsjk

where ltsjk =

∫
f sz (zjk|x)f tsk|k−1(x)dx

33

2.4 Target tracking

2.4.6 Multi sensor tracking

The core of sensor fusion is reducing the uncertainty of data from separate sources by
interpreting them together. This thesis is about fusing measurements in the Cartesian
coordinate system from a LIDAR as well as detections in the form of bearing-only mea-
surements from cameras. As mentioned in the introduction to this Section the methods
discussed previously are focused on measurement level fusion. Converting the measure-
ments using different measurement functions we continuously update our filters and de-
crease the uncertainty in our estimates.

As mentioned in subsection 2.2.1 the LIDAR points originates from range-bearing mea-
surements but is converted into the Cartesian coordinate plane using equation 5. In
ROS the standard is to output LIDAR points in Cartesian coordinates. Because of the
transformation is already done, the measurement function for the LIDAR becomes

fk(xk) =

[
1 0 0 0

0 1 0 0

]
pxk
pyk
vxk
vyk

For the camera we can calculate the bearing and elevation angle for a bounding box
detection by knowing the field of view and the pixel resolution of a camera. As the
tracking is done in the 2D plane the elevation angle is of no use and only the bearing
angle is considered for tracking. This gives the following measurement function for a
camera

fk(xk) = arctan
(pyk
pxk

)
It should be noted that the observability of a target using bearing only measurements
is reduced if the target maneuvers more than the sensor platform. A system is defined
as observable if all the states can be estimated directly from the measurements. For the
bearing only tracking problem the states are only partially observable since the range
state is observable only after the observer performs a manoeuvre.

34

2.4 Target tracking

In "Observability analysis of advanced guidance laws with bearing-only measurement
[31]" it is shown that a constant velocity target is not observable for a stationary sensor.
Given the measurement function for a bearing only tracker

M(t) = x(t)y(t)

where

x(t) =

rx(t0)

ry(t0)

vx(t0)

vy(t0)

M(t) =

−sinλ(t)

cosλ(t)

−∆tsinλ(t)

∆tcosλ(t)

y(t) =

∫ t

t0

(t− τ)[amy(τ)cosλ(t)− amx(τ)sinλ(t)]dτ

And the observability matrix

A(t) =

M(t)

Ṁ(t)

M̈(t)
...
M(t)

It shows that the observability matrix A(t) attains full rank if λ̇ is non-zero which means
movement of the sensor needs to be constantly accelerating to obtain full observability
of a constant velocity target.

35

2.5 Tracking in autonomy

2.5 Tracking in autonomy

Being able to detect and estimate the behaviour of objects serves a vital role in building
situational awareness. Correctly estimating and predicting the movement of other vessels
at sea will give a solid basis for decision making when moving in order to avoid collisions.

2.5.1 Autonomy

Automation has been part of the human society for hundreds of years, with the industrial
revolution and the transition from production using our hands to using machines perhaps
being the biggest historic event. The complexity and amount of automated task has
increased greatly over the last years, and with the development into newer and faster
computers over the last few decades we are able to perform more complex and more
computationally demanding tasks. Autonomy is a word often used when the automation
reaches a certain level of complexity, such as automated control over a vehicle. The
Norwegian Maritime Authority defines five levels of autonomy [43].

1. Decision support
2. Automated
3. Periodically unmanned/uncrewed
4. Unmanned/uncrewed
5. Fully autonomous

For a system to be autonomous it requires accurate information about the surroundings,
and the level of autonomy that can be safely introduced highly depends on the overall
situational awareness of an autonomous system. The higher degree of automation the
more time is needed between human inputs to the system, up the fully autonomous stage
where the vehicle should need no input from a human to perform its tasks. While humans
need breaks and often behave differently to the same information, the goal with a fully
autonomous system is to perform its tasks without any need for human interaction or
monitoring. Knowing that the amount of accidents at sea happening as a consequence of
erroneous human action is between 60 to 90% [12] an autonomous system can help save
lives as well as giving a substantial economical gain.

36

2.5 Tracking in autonomy

2.5.2 Maritime rules of the sea

The Norwegian Maritime Authority sets the regulations in Norwegian waterways, these
are based on international conventions. The regulations are described in "Regulations of
1 December 1975 No. 5 for preventing collisions at sea (Rules of the Road at Sea)" [44],
more commonly described as COLREG. The rules apply to all vessels upon the high seas
and in all waters connected that are navigable by sea-going vessels.

Rule 7 of these regulations applies to reducing the risk of any collision. Here it is stated;

(b) Proper use shall be made of radar equipment if fitted and operational,
including long-range scanning to obtain early warning of risk of collision and
radar plotting or equivalent systematic observation of detected objects.

(c) Assumptions shall not be made on the basis of scanty information, espe-
cially scanty radar information.

Rule 9 applies to movement in narrow channels.

(d) A vessel proceeding along the course of a narrow channel or fairway shall
keep as near to the outer limit of the channel or fairway which lies on her
starboard side as is safe and practicable.

Rule 14 applies to a head-on situation:

(a) When two power-driven vessels are meeting on reciprocal or nearly recip-
rocal courses so as to involve risk of collision, each shall alter her course to
starboard so that each shall pass on the port side of the other.

Rule 18 defines the responsibilities between vessels

(a) A power-driven vessel underway shall keep out of the way of:
(i) a vessel not under command
(ii) a vessel restricted in her ability to manoeuvre
(iii) a vessel engaged in fishing
(iv) a sailing vessel

In addition the Norwegian speed limits changed as of May 15th 2021 where you are no
longer allowed to drive faster than 5 knots if one is less than 50 meters from people who
are swimming or buoys. Earlier the same speed limit was in effect in areas close to shore
where there were a lot of traffic and specific need to regulate the speed. This was either
marked in sea charts or by signs in the areas [30].

37

3 Method

A qualititive analysis is conducted by measuring the results from the experiements to-
wards relevant theory from Section 2. Data from different scenarios is collected to make
a quantitive analysis and ensure a large enough sample size to come to a valid conclusion.

The data is collected in congested waters with limited room for safe navigation as this is
the main operating environment for the Otter USV. It is collected as rosbags which can
be played back later and used for training and testing. Because the data is collected as
rosbags we can play it back when analyzing given conditions and avoid noise and minor
differences when repeating the experiments. Shutting down different rosnodes like the
camera detector or the LIDAR processing pipeline will be useful when analyzing sensor
dropouts in the tracker, both registered and unregistered. Data is also collected in rain
and in poor light conditions which helps test the robustness of the system when there is
extra noise on the LIDAR and less useful information from the cameras.
Both target boats are equipped with GPS receivers and their position is logged locally.
Even though the position of all three vessels present in the scenarios is logged locally they
are all referenced to GPS time with a very low and quantified delay. This ensures precise
positioning when playing back the data set. The accuracy of the tracking estimates is
compared to the GPS positions and discussed. This is done over several instances of
different scenarios to ensure validity and credibility in the results.

38

3.1 Test scenarios

3.1 Test scenarios

As one of the goals in this project is to quantify the robustness of a multi-sensor tracker
we conduct some tests of the tracking pipeline. Because of its size and modularity the
Otter can be disassembled and transported to sheltered survey areas such as lakes, rivers
and harbour areas. This is also where mid-range sensors like a LIDAR and cameras are
the sensors of choice. In such congested waters with limited room for safe navigation it
is important to obtain correct information about other vessels for use in path planning
and collision avoidance. As such Trondheim harbour is a fitting testing area and will be
used for data collection to be used in these tests. As seen in Figure 31 it is also filled
with static targets that will serve as a challenge for the camera detector.

Three vessels are present in each scenario:

Vessel Role
Otter 27 (Figure 27) Ownship w/ Sensor hub
Otter 9 (Figure 42) Target boat
Juggernaut (Figure 41) Target boat

Figure 27: Otter 27

The Otter aswell as the sensor rig on Otter 27 is extensively explained in sections 4.1.1
and 4.1.2 while the two target boats are described in section 4.1.3.

39

3.1 Test scenarios

3.1.1 Scenario one - Overtaking

In the first scenario Otter 27 is driving towards and passing Otter 9. The Juggernaut
starts behind Otter 27 before it speeds up and passes it. When the Juggernaut reaches
the end of the path it stops and waits for Otter 27 to catch up, then it follows the Otter
27, driving behind it back to the starting point.

Figure 28: Movement of the boats in the first scenario.

The goal of this scenario is to test the multi target tracker with boats passing in close
vicinity to own-ship in closed waters. Because the Juggernaut and target Otter spend a
good amount of time behind the main Otter we get to test the multi sensor tracker when
the targets are out of line of sight of the cameras and only within the LIDAR field of
view.

40

3.1 Test scenarios

3.1.2 Scenario two - Occlusion of target

In the second scenario the Otter 9 and the Juggernaut are both driving in opposite
directions making a turn, passing on their starboard sides. The Juggernaut does the
wider turn. Otter 9 makes a turn when Otter 9 is occluded by the Juggernaut and the
two targets are aligned.

Figure 29: Movement of the boats in the second scenario.

The goal of this scenario is to test the multi target tracker when one of the targets,
namely Otter 9 is occluded by another target, the Juggernaut. Because of the small size
and relatively long distance between Otter 27 and Otter 9 the camera detector will be
challenged on recognizing the target Otter. The two targets are also passing relatively
close.

41

3.1 Test scenarios

3.1.3 Scenario three - Passing of target

The third scenario is similar to the second scenario but with the roles swapped around.
The main Otter and Juggernaut drive towards each other and pass while doing a turn
while the target Otter drives back and forth in the main Otter’s old path.

Figure 30: Movement of the boats in the third scenario.

The goal of this scenario is similar to scenario two but with Otter 9 initiating a turn
while it is outside the cameras field of view. It is also a scenario where the Juggernaut
moves from the port cameras field of view to the starboard cameras field of view, as well
as a period where it is visible in both cameras. Since we will have two bearing angles
referencing it’s position at this point we should be able to triangulate the position given
good calibration.

42

4 Experiment setup

The hardware used in data collection and the details of the software pipeline used for
analysis will be expanded upon in this Section. The hardware setup used in the test
scenarios are explained in Sections 4.1.1 and 4.1.2. The two target boats are outlined in
section 4.1.3 along with the accuracy of their GPS positioning. The pipeline, including
the image detector, LIDAR pipeline and tracker setup is explained in section 4.2

Figure 31: Overview of the testing area with the three boats used for data collection.

Figure 31 shows an overview image from the vehicle control station at Maritime Robotics.
This was used when controlling the two Otters remotely. In the top right corner the
camera on top of Otter 9 is visible. This is only used for situational awareness for the
operator.

43

4.1 Hardware setup

4.1 Hardware setup

4.1.1 Otter USV

The Otter (Figure 32) is an unmanned surface vehicle (USV) from Maritime Robotics
and will serve as the main development platform for their autonomy project. The idea is
to have a high grade of scaleability, as the end idea is to increase the autonomy on all of
their products.

Figure 32: Otter USV

The Otter is the smallest USV delivered from Maritime Robotics and provides an easily
deployable and modifiable testing platform for autonomy development, and is used for
collecting data in the experiment. It is usually equipped with payload equipment used
to perform tasks like environmental monitoring and seabed mapping. The Otter USV is
2 meter long and 1.2 meter wide, and because of its size and capabilities, it is often used
in areas that cannot be reached by larger vessels. This increases the requirements for an
autonomous system, being able to maneuver and make qualified decisions in smaller areas.

44

4.1 Hardware setup

4.1.2 Sensor rig

Because of the Otters modularity, a separate targa is constructed for the purpose of
autonomy development. This targa interfaces with all the sensors and contains the pro-
cessing power needed for the Otter to develop situational awareness. The targa and the
different sensors can be seen mounted on the Otter in Figure 33.

Figure 33: Otter targa for autonomy development

The Otter is usually equipped with sonars used for mapping that require high accuracy
positioning systems. Most of these sonars are equipped with INS (Inertial Navigation
System) with RTK-precision, and the output of these are transferred to the targa and
used in the autonomy pipeline. For this project however, a Kongsberg mini-MRU [41]
(Motion Reference Unit) is used to keep track of position, velocity, angular orientation
and angular velocity. The MRU outputs time-stamped data and is synchronized with
GPS time using PPS. It has an error in timing of less than 1 ms.

45

4.1 Hardware setup

The sensor hub is equipped with two Dalsa Genie Nano C4040 EO-cameras (Figure 34.)
They provide 4112x3008 resolution images and are equipped with Fujinon CF8ZA-1S
lenses providing 85.7 degrees horizontal field of view (Figure 35). The camera mounts
are constructed such that the horizontal angle can be modified, giving support for both
mono and stereo vision, and the cameras are setup with hardware-triggering.

Figure 34: Genie Nano C4040 Figure 35: Fujinon Cf8ZA-1S

In this thesis the cameras are mounted for a dual stereo vision setup with around 170
degrees field of view in front of the Otter.

Figure 36: Field of view of EO cameras.

46

4.1 Hardware setup

Data collection is done with an Ouster OS-1 128 LIDAR. This is a state of the art LIDAR
with high range as well as high angular and vertical resolution and its specifications can
be seen listed in Table 4.

Ouster OS1-128
Vertical Resolution 128 Channels
Vertical Field of View ±22.5◦

Horizontal Resolution 512, 1024, 2048
Horizontal Field of View 360◦

Range 120 m
Precision ±7− 50 mm
Rotation Rate 10 or 20 Hz
False Positive Rate PFA 1 / 10.000
Extras IMU, PPS Sync

Table 4: LIDAR Specifications.

The LIDAR is mounted on a rail at the top of the Otter as seen in Figure 33 to avoid
anything blocking its 360 degree field of view.

Figure 37: Ouster OS-1.

The Ousters internal clock has a timestamp resolution of 1 microsecond and a data latency
of less than 10 milliseconds. Because the LIDAR timestamps packets with its internal
clock it is convenient to synchronize this using GNSS-PPS and use it as the reference
time. For more information about these timestamping methods the reader is reffered to
the project thesis [19].

47

4.1 Hardware setup

The Sentiboard (Figure 38) deals with most of the low level time synchronization between
the sensors on the rig. It has two SPI, two RS-232, three UART and one RS-422 I/O that
all can be used to communicate with a range of different sensors [42]. Each I/O can be set
up as an hardware interrupt when receiving data from a sensor. This data is re-packed
and transmitted with an extra header containing a time stamp synchronized with GPS-
time. Each I/O can also be set up for hardware-triggering and is able to provide a steady
PPS signal. It can also synchronize all of the I/O across each other, so one can ensure
that all outputs trigger sensors at the same time. The trigger signals can also be output
at a different frequency relative to each other, while still maintaining synchronization.

Figure 38: Sentiboard

The Sentiboard keeps track of time using a low drift oscillator with an accuracy of 10
PPM (parts per million.) This means that after a bit more than one and a half week
(11.57 days) without any type of error correction, it can have a maximum inaccuracy of
10 seconds. Tests show that this synchronization board can relate sensor measurements
to an absolute time reference with a clock drift of 1.9 microseconds per second RMS if it
is connected to a GPS PPS-signal [1]. By using a low level system like the sentiboard for
time synchronization we avoid delays due to other processes running on the local system.
Figure 39 shows the difference in accuracy when timestamping using the sentiboards time
of capture (ToC) instead of time of arrival (ToA.)

The current system has the NTNU Sentiboard synchronize with GPS time using PPS.
The position, pose and twist of the vehicle is output from a Kongsberg Mini-MRU and
sent through the Otters On-Board System (OBS) to the targa where it is logged in ROS.
The timestamping of this INS data is done on the MRU itself which is synchronized with
GPS time. The OBS is synchronized with GPS time via another u-blox receiver and set
up as a NTP-server. The onboard computers are synchronized with this as NTP-clients.
The cameras are hardware-trigged at a frequency of 5 Hz through the NTNU Sentiboard,

48

4.1 Hardware setup

Figure 39: ToC vs. ToA timestamping precision.

and the time of the triggers are parsed in the sentiboard driver and broadcasted on a
ROS-topic. This is merged with the camera images in the camera driver. The Ousters
LIDAR data is timestamped locally on the sensor, with the internal clock of the sensors
being synchronized with the GPS time messages from the OBS and a PPS-signal from
the Sentiboard. The timing setup in this system is visualized in Figure 40.

Figure 40: Time synchronization setup

49

4.1 Hardware setup

4.1.3 Target boats

The first target boat is the Juggernaut. It is a Skarsvåg 880 built in 2019 and owned
by Maritime Robotics. It is 8 meters long and 2.6 meters wide and modified so it can
be controlled remotely. The position of the Juggernaut is received through a Simrad HS
60 and the stated accuracy from the GPS manufacturer is shown Table 5. This is docu-
mented as the worst case error and when the GPS performs a low grade of maneuvering
the error is experienced to be a lot lower.

GPS Accuracy ± 1m
GPS Time Accuracy 30 ns
Update Rate 10 Hz

Table 5: Simrad HS60 GPS Specifications [25].

The Juggernaut, like most other boats, have a dark colored hull. Dark surfaces has low
reflectivity in the spectral range of the LIDAR, making it a challenge to detect at longer
ranges. Because of its size it should still be detected reliably when it is within the LIDAR
working range.

Figure 41: Juggernaut

50

4.1 Hardware setup

The other target boat is an Otter USV. The specifications for the Otter is listed in sec-
tion 4.1.1, and this one is set up with a ZED F9P Development kit for GPS positioning.
Because of its relatively small size it should provide a detection challenge both for the
LIDAR and the camera detector at mid to long range. The Otter is relatively low, and
the high vertical resolution of the Ouster and the Velodyne is needed to detect it reliably.
Like the Juggernaut most of it is colored in black, decreasing reflectivity making it hard
to detect using a LIDAR.

GPS Accuracy ± 1m
GPS Time Accuracy 30 ns
Update Rate 20 Hz

Table 6: Zed F9P Specifications [46].

Just like the Juggernaut the GPS position of Otter 9 is logged in a rosbag. It is synchro-
nized with GPS time giving a common time reference with the sensor rig.

Figure 42: Otter 9

51

4.2 Pipeline implementation

4.2 Pipeline implementation

This section aims to describe the work flow and some of the design choices made when
creating the software pipeline shown in Figure 43. The pipeline is running in ROS and
uses some modules and message types developed in the autosea project for visualization
and publishing of tracker estimates. Even though the data from the scenarios are collected
locally on the computers inside the Otter targa it is analyzed remotely to avoid having
to take into consideration limited computational power.

Figure 43: Pipeline in ROS

52

4.2 Pipeline implementation

4.2.1 Camera pipeline

Using an object detector we want to obtain a bearing measurement from boats in the
vicinity that can be used in the tracking pipeline. Because the main goal of this thesis
is to test the robustness of the target tracker in congested waters we want reliable and
consistent information from the detection pipelines. Having an object detector that can
at least perform up to a standard, more general object detector should be the goal, and
we want to achieve a mAP of at least 80% to avoid poor sensor data cluttering our anal-
ysis. Maritime Robotics has a modified darknet [38] object detector pipeline that is part
of their situational awareness pipeline. This detector is used in this project.

Class Unique truths TP FP Precision Recall AP
Boat 1845 410 35 22.2% 92.13% 22.2%

Table 7: Performance of a pre-trained YOLO model on the data set.

Initial testing showed that a pretrained YOLO v3 network performed poorly on the data
sets and the decision was made to train a new model from scratch. Due to the relatively
unique shape and size of the Otter USV it is hard to detect using the pretrained model
presented in "YOLOv3: An Incremental Improvement [39]". This model only contains
boat as a general class and the performance on the dataset can be viewed in Table 7.
Data from each scenario was collected in good and bad weather for three different LIDARs
as datacollection was done while benchmarking a set of LIDAR’s. This gave a total of
six data sets for each scenario. Because the same vessels were present in each scenario,
training on a few of these data sets in different light conditions and types of weather
should be sufficient.

Scenario Weather #Images pr. camera
1 Cloudy 300
2 Sun 300
2 Rain 200
2 Dark 400
3 Sun 175
3 Rain 150
3 Dark 160

Table 8: Spread of annotated data from EO cameras.

53

4.2 Pipeline implementation

In addition to the data from Table 8 around 1000 images from outside the data sets
were annotated. These images were from different test runs when the performance of
the system was being tested and validated, and although they did not pertain to any
scenario they are collected within the same area and show many of the same objects.
These numbers are for each individual camera and in total over 4000 images were anno-
tated for the data set. The set was split into three pieces with a training, validation and a
testing set. The script used to split this data set is added as an attachment to this report.

Type Size Images
Training set 85 % 3513
Validation set 10 % 413
Testing set 5 % 213

Table 9: The size of each dataset used for training, validation and testing.

The structure of the neural network that is trained is a YOLO v3 which is further de-
scribed in [39]. Because of real-time limitations the images from the dalsa cameras are
downscaled to 416x416 pixels. Increasing the image resolution and input resolution to
the neural network causes a increase in memory usage of the graphics processing unit
(GPU). This is already a limiting factor as the depth (amount of layers) of the network
also affects memory usage. YOLO v3 is 117 layers deep and is considered to be a large
neural network. Finding an optimal combination between network depth, resolution and
processing time is out of the scope of this thesis. In a real system it would be hard to
detect an Otter at long range using this resolution, however as the training data contains
images of the Otter from the same angles as most data sets in different light conditions
we expect to get good results using this network structure.

Class Unique truths TP FP Recall Precision AP
Motor vessel 1456 1419 105 97.46 % 93.11 % 97.46 %
Sailboat - Sail down 389 386 12 99.32 % 96.98 % 99.32 %

mAP 96.98 %

Table 10: Performance of trained object detector on data set.

As can be seen in Table 10 the network performs very well on the training data. There
are some false detections of motor vessels with a confidence threshold of 25%. Increasing

54

4.2 Pipeline implementation

the threshold to 85% we lose 30 true detections while the amount of false detections goes
from 57 down to 48. As the neural network is already overfitted and most detections
would rarely reach such a high confidence in a real scenario we do however choose to keep
the threshold at 25%. The parameters used for training are shown in Table 11.

Parameters Value
Batch 32
Subdivisions 4
Input resolution 416 x 416
Output classes 4
Learning rate 0.01
Momentum 0.9
Decay 0.0005
Training batches 20 000

Table 11: Parameters for training the neural network.

The Dalsa Genie Nano cameras are equipped with lenses that should have close to zero
distortion. Because of the high resolution of such cameras zero distortion lenses are often
a necessity as post processing of high resolution images require a lot of computational
power. We assume zero distortion in the images and do not apply a distortion model
to our bearing outputs. The calibration of the transforms to the cameras is however of
high importance when fusing the measurements together with the LIDAR. If sensors in a
multi sensor tracker are giving contradicting information it will degenerate the accuracy
of our estimates and force us to use higher uncertainties in our models.

After data collection the transform to the port camera was found to be inaccurate when
comparing the bearing measurements to the point cloud.

Figure 44: The broken camera mount.

Looking at Figure 44 we see that the 3D-printed camera mount had been damaged. This
had caused the port camera to shift slightly to the port side which is not representative

55

4.2 Pipeline implementation

to the camera transform. Looking at Figure 45 we see that the antenna in front of the
Otter is visible in the bottom image and that the rail in front of the Otter is more visible
in the port camera than it was originally. Correcting this static transformation is done by
shifting the transform in a negative yaw-direction until the bearing measurements overlap
the LIDAR points generated by the targets. The script for changing the transforms is
attached to this report.

Figure 45: Camera images before (top) and after (bottom) the camera mount is broken.

The transformations from image detections to bearing measurements are displayed in
Figure 46. This conversion is done in the local camera frame with the center of the image
as the origin. As we know the vertical field of view of the camera as well as the resolution
we apply a linear model to transform the pixel coordinates into a bearing angle. The
bearing angle θ is given from the center of the bounding box. The elevation angle can be
calculated in the same way, although as tracking is done in the Cartesian 2D plane we
assume this to always be zero.

56

4.2 Pipeline implementation

Figure 46: The output from the object detector transformed into bearing measurements.

θ = xpixel ∗
Field of view

Image widthpixels
−

Image widthpixels
2

The sensor specific tracker parameters can be estimated using the results on the test set
and the accuracy and time delay for the bearing measurements. Although the camera
images are captured at 4112x3008 the neural network runs with an input of 416x416.
The resolution of the bounding boxes follows the resolution of the network accuracy and
as such the 85.7 degrees field of view of the cameras can be divided into an angular
resolution of 0.2 degrees. After reviewing the output images from the neural network it
is also clear that there is some noise in the placement of the bounding boxes. This adds
a measurement uncertainty which we set to be around 2 degrees. This gives an overall
angular measurement uncertainty of 2.2 degrees or 0.0385 radians.

57

4.2 Pipeline implementation

The clutter density is estimated from the amount of false positives on the test set. From
the results in Table 10 we see that the mean precision is 96.98 %. Likewise the probability
of detection can be estimated by using the mean average precision in the same table at
96.86 %. This is however only the case when the objects are within the cameras field of
view. As the cameras only cover around 170 degrees around ownship having such a high
PD would severly degenerate the quality of tracks outside the cameras field of view. PD
is hence set to be around half of this at 45%. For the camera measurements we estimate
γ to be 3 by looking at how objects close to ownship move between image frames relative
to the angular uncertainty in the camera measurement. The camera specific tracker pa-
rameters are summarized in Table 12. These values are just a starting point for tuning
the tracker and will require modifications to achieve optimal performance.

Parameter Value
σθ 0.0385 Radians
λ 10−5

PD 45 %
γ 3

rmax 110 m
rmin 10 m
Pinitial 40 %

Table 12: Initial camera specific tracker parameters.

58

4.2 Pipeline implementation

4.2.2 LIDAR pipeline

The raw data from the Ouster OS-1 at the start of scenario one is shown in Figure 47. At
this point there are a few hundred thousands data points within the cloud that needs to
be processed. A voxel grid filter is applied to down-sample the raw cloud. The parameters
for the voxel grid filtering method are shown in Table 13.

Parameter Value [cm]
Leaf size (x) 10
Leaf size (y) 10
Leaf size (z) 30

Table 13: Parameters for voxel grid filtering.

Figure 47: The raw point cloud output by the LIDAR.

The three coordinate systems in Figure 47 represent the Juggernaut, Otter 27 and Otter
9. The middle one is Otter 27 with the sensor hub and from the image one can see
a lot of clutter around it. This is due to a lot of kelp floating around in the harbour

59

4.2 Pipeline implementation

because of nearby construction work. There were some attempts at applying the land
filtering methods described in Section 2.2.2, although with poor results as there were not
enough ground points to accurately model the ground plane. Instead the algorithm chose
data points from nearby targets which gave a plane that was not aligned with the water
surface and instead filtered out objects of interest. Instead of ground plane estimation a
Euclidean segmenter from LidarPerception [18] is applied. The parameters can be seen
in Table 14 and the resulting point cloud can be seen in Figure 48.

Parameter Value
Region delta tolerance 0.1
Minimum cluster size 20
Maximum cluster size 30 000

Table 14: Parameters for the Euclidean cluster segmenter.

Figure 48: The output from the voxel grid filtering and segmenter.

The Euclidean cluster segmenter reduces the amount of data points by a good margin,
however there are still too many points to input to the tracker. There are also points

60

4.2 Pipeline implementation

that are guaranteed to not pertain to any objects of interest. Looking at the right side
of Figure 48 we observe a lot of points on land that are of no interest for the tracking
application. In autosea [8] a module was developed that filtered out RADAR points on
land based on a grid map. Because of the operating range of the RADAR this was made
for targets a lot further away then our scenario, and as such the resolution of the grid was
relatively low with a resolution of 10x10 meters. For the LIDAR points this was modified
slightly, increasing the grid resolution to 10 cm and removing all points that are within
two meters of the land cells in the grid map. After this land filtering we apply Euclidean
clustering with parameters in Table 15 to reduce the data points further. The output
after applying these two methods can be seen in Figure 49.

Parameter Value
Cluster threshold 8.4

Table 15: Parameters for the Euclidean clustering.

Figure 49: The output from Euclidean clustering and land filtering.

Like the cameras the LIDAR also has some sensor specific parameters that can be es-

61

4.2 Pipeline implementation

timated. The clustering method does not output the center of an object as our single
measurement after clustering as the sensor is only viewing each object from one side. As
such the range covariance will vary with the size of the object and the stability of our
clustering method. We choose a high enough value that should be able to cover all the
targets in our scenarios with σr = 1. The same goes for the bearing covariance of the
LIDAR measurements and we choose a value of 10 degrees or 0.03 radians to be able to
cover instability in the clustering method. Because of the filtering we don’t expect many
false detections, and as such the clutter density is set to λ = 10−6. Because few LIDAR
data points can be interpreted as clutter and the LIDAR clustering method is stable we
set the probability of detection PD to be 98 %. The size of the validation gate is set to
γ = 3.

Parameter Value
σr 1
σθ 0.03 rad
λ 10−6

PD 98 %
γ 3

Table 16: Initial LIDAR specific tracker parameters.

62

4.2 Pipeline implementation

4.2.3 Tracking pipeline

The original tracker presented in Audun Hems article [9] is tested on AIS measurements
and measurements originating from RADAR with limited surrounding targets. The test
scenarios from the article have also been performed far away from land with little clutter
from objects that are of no interest to the tracker. As such a lot of effort has been put into
filtering the LIDAR data and reducing the amount of data points originating from the
LIDAR. The tracker works in a global NED frame with its origin placed at the Maritime
Robotics office building. In a NED frame the X-axis has positive direction north, Y-axis
positive direction east and the Z-axis positive direction down. The sensor frames are
defined with X axis pointing forward, Y axis pointing starboard and Z-axis pointing up.
A positive rotation in the sensor frame describes a negative rotation in the NED frame.

All sensor data originate from a local sensor frame which is transformed to the NED-frame
using a static transformation to the sensor and the INS position of ownship at the time
of data capture. Using the local sensor frame pertaining to each individual measurement
we are able to shift the origin of the measurements which will give increased performance
of the multiple bearing measurement sources. With the two camera measurements orig-
inating from different origins the uncertainty of targets within both images should be
decreased greatly. Having two bearing measurements intersect the target our Kalman
filter should be able to triangulate the position if the measurement uncertainty is small
enough. If all bearing measurements originated from the same origin it would instead
add a lot of inaccuracy to the tracker and would not make full use of multiple sources of
bearing only measurements.

For the prediction step we choose three process models for our IMM-filter. With the high
uncertainty in the bearing only measurements we use two CV models, one with high and
one with low process noise. We also use one CT rate model with a relatively high noise as
the Otter and Juggernaut can have a high turn rate. The noise parameters are gathered
in Table 17.

Model Process noise
CVlow 0.4
CVhigh 2.3
CT 0.5

Table 17: Noise in the process models

63

4.2 Pipeline implementation

We set the initial mode probabilities for new tracks to be high for the two models with
high uncertainty. This is done to prevent incorrect convergence when using bearing only
measurements. The probabilities are presented in Table 18.

Model Initial probability
CVlow 20 %
CVhigh 60 %
CT 20 %

Table 18: Initial probability for the process models

Because of the high update rate of the LIDAR the following mode transition matrix is
chosen and shows to give good results. In the research paper presenting the VIMMJIPDA
tracker [22] the transition probabilities for each mode is set to π00 = 0.9, π11 = 0.9 and
π22 = 0.99. These probabilities give good results on AIS measurements which enter the
tracker every 2 to 10 seconds and RADAR measurements with a sample interval of 2.5
seconds. The LIDAR point cloud is given at a much higher rate of 10 Hz and as such
the probabilities below give good results. Higher probabilities give large and unwanted
fluctuations in the mode probabilities.

π =

 0.99 0.005 0.005

0.005 0.99 0.005

0.00005 0.00005 0.9999

For the same reason the survival probability is set to be relatively high at 99.9%. The
tracks are set to be terminated when the existence probability reaches 30% and the
transition from a preliminary to a confirmed track is set to happen when the existence
probability reaches 80%. Lower survival probabilities with the high update rate from
the LIDAR cause tracks to be terminated in less than a second when there are periods
without measurements from the target. The tracker also contains a parameter for maxi-
mum idle steps which causes the track to be terminated after a certain amount of updates
without measurements. For the original implementation this was set to 10 measurements.
For this implementation it is set to 200 update steps to avoid early termination of tracks.
With the images from the two cameras coming at a rate of 2 Hz and the LIDAR update
rate of 10 Hz this allows tracks to survive for 14 seconds without measurements. The
maximum velocity for the tracked targets is given as 5 m/s as this is the maximum speed
allowed inside the harbour (Section 2.5.2.) The initial velocity covariance is given as 4
m/s. This is relatively high for the scenarios but higher covariance is shown to give better

64

4.2 Pipeline implementation

convergence of the tracks when using bearing measurements.

The tracker ROS node is made out of one tracker class that contains different callback
functions, one for each type of sensors. The different callbacks unpack and convert the
different measurements into types that are supported by the underlying VIMMJIPDA
framework. Because the VIMMJIPDA originally supports cartesian and polar (range-
bearing) measurements some modifications are done to support bearing only measure-
ments. The underlying framework also applies to single sensor measurements and have
general parameters for clutter density, detection probability and other sensor specific
parameters. This is extended where the tracker now has several sets of sensor specific
parameters that are used during the sensor specific callbacks. The VIMMJIPDA tracker
framework contains a manager class that manages the data flow. The manager class
populates the underlying tracker with the position of the sensor in the NED-frame before
the measurement update step is called. This causes a possible race condition when the
callbacks from different sensors are done in parallel at a high rate. If two measurements
come too close to each other the position of the sensor is changed before the first measure-
ment is finished processing and we get an incorrect state estimate. The tracker class is
protected by a mutex to avoid this race condition. A mutex is a programmable lock that
needs to be released before someone else can use the resource it is protecting. This gives
good results but it does not allow for the tracker to process more than one measurement
at once. Changing the structure of the tracker to avoid this mutex is suggested as future
work. Our state vector is given as

x =

px

py

vx

vy

θ

 (7)

The non linear measurement model is given with

θ̂ = atan2

(
p̂y − py,o
p̂x − px,o

)
(8)

where the subscript o denotes the state of the own ship. The gating of measurements is
done with the equation

65

4.2 Pipeline implementation

∥∥∥∥∥(θ − θ̂)2

S

∥∥∥∥∥ < γ (9)

Given bearing only measurements the tracker attempts to associate each measurement
to each confirmed and preliminary tracks. Each track state is converted into an bearing
angle relative to the sensor origin and compared with the incoming measurements using
Equation 9. If a measurement is associated with the target we perform the update
step for the track estimate using the bearing only measurement model and the extended
kalman filter equations shown in Section 2.4.1. Because we have a non-linear measurement
equation we linearise our measurement model and the innovation covariance is calculated
using the Jacobian H around the state estimate x̂

H =

[
py

p2
x + p2

y

−px
p2
x + p2

y

0 0 0

]
(10)

If the measurement is not associated to any existing track state we instead initiate a new,
preliminary track. Certain assumptions are used with the object detectors and scenarios
at hand. One such assumption is limiting the range of the camera detections to be
between a minimum range rmin = 10 and a maximum range rmax = 100. We estimated
the mean position of the initiated preliminary track to be at the center of this range
interval. The new tracks are initialized using the method from [2] with initial mean and
covariance given by

r =
rmax − rmin

2
(11)

x =

[
r sin θ

r cos θ

]
(12)

P =

[
σ2
x σxy

σyx σ2
y

]
(13)

σ2
x = rσ2

θ cos2 θ + σ2
r sin2(θ)

σ2
y = rσ2

θ sin2 θ + σ2
r cos2 θ

σxy = σyx = σ2
r − r2σ2

θ sin(θ) cos(θ)

(14)

In Figure 50 we see a newly initiated track based on bearing measurements from the
equations above. Note that the track is shifted slightly as it is only initiated after receiving
a few successive measurements that have caused a high enough probability for a confirmed
track to be initiated.

66

4.2 Pipeline implementation

Figure 50: Newly initiated track based on bearing measurements

The final tracker specific parameters are summarized in Table 19.

Parameter Value
Maximum Velocity 5 m\/s
Initial velocity covariance 3 m\/s
Survival Probability 99 %
Confirmation Threshold 80 %
Termination Treshold 30 %
Visibility Probability 90 %
Maximum idle steps 200 Steps
Birth Intensity 10−3

PCV,low 20 %
PCV,high 60 %
PCT 20 %
σCV,low 0.4

σCV,high 2.3

σCT 0.5

π11 99%

π22 99%

π33 99.99%

Table 19: Final tracker specific parameters.

67

5 Results and discussion

5.1 Sensor processing delays

Fusing together measurements from a LIDAR and a camera object detector poses some
timing difficulties. Processing the images in the object detector poses a large time delay
that is not existent in the LIDAR pipeline. Figure 51 shows the delays in the LIDAR
pipeline. The total delay represents the delay from the image is timestamped in the driver
until the tracker estimates are published. The cloud processing delay is the time from the
LIDAR data is time stamped until it is received in the tracker node. The tracker delay
is the time from LIDAR data is received in the tracker until the estimates are published.

Figure 51: Processing delays in the LIDAR pipeline

In Figure 52 the delays in the image processing pipeline are visualized. The mean delay
between LIDAR data capture and publishing of the tracker estimate is 215 milliseconds
while the object detection mean delay is 560 milliseconds.

Both pipelines have significant noise and variations in the processing time. This is partly
due to the inaccuracies of ROS time stamping presented in Figure 39. A consequence

68

5.1 Sensor processing delays

Figure 52: Processing delays in the object detection pipeline

of the difference in processing time is that messages are received asynchronously in the
tracker, often with a negative time delay. When applying a discrete time Kalman filter
proper processing of this late data is needed to obtain an optimal state estimate. This
problem is thoroughly discussed in [23] where a negative time-update technique is pre-
sented, however applying such a technique is out of scope of this thesis. The following
results will have a lower than optimal performance as a consequence of this delay.

69

5.2 JIPDA association delays

5.2 JIPDA association delays

Initially the computationally demanding task of processing both the LIDAR and camera
measurements in the tracker caused a propagating large time delay. The large amount
of measurements received in the tracker caused the processing time of the tracker to go
beyond the time between measurements received from the LIDAR processing pipeline.
As such the overall delay in the pipeline kept propagating as shown in Figure 53. The
delay kept increasing until the maximum message queue size was reached and LIDAR
messages were dropped.

Figure 53: Delays without land filtering of the LIDAR points

As mentioned in Section 4.2.2 the large amount of data points from a LIDAR relative to
AIS measurements or an RADAR in open water caused a lot of data points to be input to
the tracker. Several layers of filtering of the LIDAR data has been applied to avoid such
a propagating delay. In the harbour area a lot of the LIDAR points were on or around
land like what is shown in Figure 54, and the amount of measurements was reduced by
half after removing points that are of no interest with respect to the situational awareness
pipeline.

70

5.2 JIPDA association delays

Figure 54: Tracks initiated around measurements on land

The time delay relative to the amount of association hypotheses is displayed in Figure 55.

Figure 55: Time delay in tracker relative to association hypotheses

71

5.3 Scenario one - Overtaking

5.3 Scenario one - Overtaking

The relative range between the Juggernaut and ownship is shown in Figure 56. The goal
of scenario one is to see how the tracker behaves when the target leaves and enters the
field of view from the camera while staying within range of the LIDAR. We get to see
how the bearing measurements from the cameras behaves on an already initiated track.
Around 60 seconds into the data set is when the Juggernaut passes ownship and when the
range between the two vessels is at its shortest. Ownship reaches the end of its path at
90 seconds and makes a turn while the Juggernaut starts following again at 125 seconds
into the scenario.

Figure 56: Range from ownship to Juggernaut in scenario one

In Figure 57 we see the estimated position of the Juggernaut using only the LIDAR and
in Figure 58 we see the estimated position using both the LIDAR and the two cameras.
Since the track is already initiated when the target enters the camera field of view we don’t
experience any earlier track initiation and since the target is out of field of view when it
leaves the LIDAR range we don’t expect any longer track length when introducing the
bearing only measurements. The start of the track is at the top right of the two figures
at coordinates (−20,−60) and the track ends at (−90,−90).

72

5.3 Scenario one - Overtaking

Figure 57: Estimated and ground truth position of Juggernaut using only LIDAR

Figure 58: Estimated and ground truth position of Juggernaut using LIDAR and camera

73

5.3 Scenario one - Overtaking

The biggest difference between the two scenarios is a seemingly more noisy track when
introducing the bearing only measurements. There is also track loss after re-initialisation.
Looking at Figure 59 we see that the existence probability fluctuates a lot when adding
the measurements from the camera detector. Because the bearing only measurements are
at the center of the bounding box this might not always be representative of the LIDAR
cluster. When the Juggernaut travels close to ownship the LIDAR detects part of the
wake behind the boat. This is clustered together with the boat which causes a shift to
the LIDAR detection. The bounding box seemingly also fluctuates a bit between images
depending on the accuracy of the object detector and the annotations. Increasing the
bearing covariance of the detections to σθ = 0.06 gives better results which are presented
in Section 5.4. This does however increase the size of the measurement gate and give
larger clusters and more association hypotheses for the JIPDA tracker.

The detection probability PD is a constant and in the current implementation of the
tracker assumes a 360 degree field of view of the sensor. The fluctuations in existence
probability when including the bearing measurements are also because of the update steps
for the bearing measurements when the targets are outside of the cameras field of view.
Between 80 and 90 seconds into the scenario we can see that the probability fluctuates
less as the Juggernaut is within the field of view of both cameras.

Figure 59: Existence probability of Juggernaut

74

5.3 Scenario one - Overtaking

The fluctuations in existence probability are reflected in the estimation error shown in
Figure 60 where the position estimate fluctuates a lot when introducing the bearing
measurements. The error is at its highest just after re-initiating the track when the
Juggernaut is passing ownship.

Figure 60: Estimation error of Juggernaut (with GPS position as ground truth)

Similar to the Juggernaut we get some extra noise when adding the bearing measurements
to the tracker. As seen in Figure 75 we also get earlier track initiation of the Otter when
using the camera detections in addition to the LIDAR. Because of the smaller size of the
Otter compared to the Juggernaut we get a lot less data points when using the LIDAR.
The clustering method described in Section 4.2.2 has a minimum cluster size of 20 data
points and even when using the ousters full horizontal resolution of 2048 points the Otter
can only be detected within 30 meters from ownship. The initial estimate has a lot higher
uncertainty than when only using the LIDAR, however this is expected when the track
is initiated using bearing only measurements as described in Section 4.2.1. The track
does converge more quickly and we get a lower error when the Otter is detected by the
LIDAR.

75

5.3 Scenario one - Overtaking

Figure 61: Range to Otter 9 in scenario one

Figure 62: Estimation error of Otter 9 (with GPS position as ground truth)

76

5.3 Scenario one - Overtaking

Looking at the mode probabilities for the Otter (Figures 63 and 64) we see that the initial
probability when using bearing only measurements is shifted towards the CT model. This
stabilizes more when the Otter gets detected by the LIDAR, however the probabilities
remain slightly shifted compared to only using LIDAR measurements.

Figure 63: Mode probabilities for Otter 9 using LIDAR and camera

Figure 64: Mode probabilities for Otter 9 using only LIDAR

77

5.4 Scenario two - Occlusion of target

5.4 Scenario two - Occlusion of target

The goal of scenario two is to see how the tracker behaves when the Otter becomes oc-
cluded by the Juggernaut. The pass happens from 60 to 65 seconds into the scenario
when the Juggernaut is around 20 meters away from ownship and the Otter is a bit
over 30 meters away. In Figures 66 and 67 the Juggernaut starts in the top left cor-
ner at (−160,−65), makes a turn at 75 seconds into the scenario and end its path at
(−128,−165).

Figure 65: Range from ownship to Juggernaut in scenario two

As seen on the next page the addition of the camera detector does not greatly improve
the position estimate of the Juggernaut. The precision with the multi sensor tracker
is however higher compared to scenario one after increasing the noise covariance for
the bearing measurements. The measurements does become a lot more scattered after
ownship has made its turn and the target is no longer within the field of view of the
cameras.

78

5.4 Scenario two - Occlusion of target

Figure 66: Estimated and ground truth position of Juggernaut using only LIDAR

Figure 67: Estimated and ground truth position of Juggernaut using LIDAR and camera

79

5.4 Scenario two - Occlusion of target

Changing the bearing covariance also decreases the noise in the existence probabilities.
Until the Juggernaut makes a turn at around 75 seconds there is a high probability of
existence. The existence probability is however degenerated when the Juggernaut is no
longer in the cameras field of view.

Figure 68: Existence probability of Juggernaut

Unfortunately the same problem occurs in scenario two with respect to the Otter. The
small size makes it hard to detect for the LIDAR and the camera detection are not
enough to initiate a track on their own. Due to the increased measurement noise (and
hence a larger validation gate) it instead takes slightly longer to initiate the track when
the Otter emerges behind the Juggernaut. Similar as the Juggernaut we also get an
increased estimation error when ownship makes a turn and the Otter is no longer within
the cameras field of view. The error is however still within the accuracy of the GPS.

80

5.4 Scenario two - Occlusion of target

Figure 69: Range to Otter 9 in scenario two

Figure 70: Estimation error of Juggernaut (with GPS position as ground truth)

81

5.4 Scenario two - Occlusion of target

The problems with detecting the Otter is shown in Figure 71 displaying the raw point
cloud when the Otter is passing the Juggernaut. The coordinate system closest to the
camera is ownship and the one furthest away is the target Otter. While the Juggernaut
and surrounding boats are detected by a lot of points the Otter is only detected as a
small line. This is filtered out as noise due to the minimum cluster size in the LIDAR
filtering. Attempts were made to decrease the cluster size further to detect the Otter,
although this in turn caused a lot of noise to be input to the tracker. This required a
larger clutter density which in the end did not give cause any earlier detection of the Otter.

Figure 71: Raw point cloud showing the two target boats

82

5.5 Scenario three - Passing of target

5.5 Scenario three - Passing of target

In scenario three the goal is to test the tracker when the Juggernaut is located in front of
ownship and within field of view of both the cameras. This happens while the Juggernaut
is relatively far away from the Otter and at the edge of the LIDAR working range. The
Juggernaut starts at −138,−162 in the bottom left in Figures 74 and 73. It maneuvers
to (−142,−79) and passes ownship between 55 and 60 seconds into the scenario.

Figure 72: Range from ownship to Juggernaut in scenario three

In this scenario we are able to maintain a track of the Juggernaut a lot easier when fusing
the measurements from the cameras and the LIDAR. In Figure 73 we see that the tracker
receives enough LIDAR-measurements to initiate a track a few meters into the scenario
and in Figure 74 we see that the camera measurements are able to maintain the track.

83

5.5 Scenario three - Passing of target

Figure 73: Estimated and ground truth position of Juggernaut using LIDAR

Figure 74: Estimated and ground truth position of Juggernaut using LIDAR and camera

84

5.5 Scenario three - Passing of target

In figure Figure 75 we see that the initial probability is shifted towards the constant
turn rate model when the track is initiated and maintained by the camera measurements.
We also see that the mode probabilities are shifted more towards the high process noise
constant velocity model compared to the one with low process noise. Around 40 seconds
into the scenario we get more updates from the LIDAR which gives a higher probability
for the target to follow the CV model with low process noise.

Figure 75: Mode probabilities of the Juggernaut track using LIDAR and camera

In Figures 76 and 77 the Otter starts from the left at (−62,−112) and moves left to
(−93,−111). Unlike the Juggernaut the track of the Otter is not improved when fusing
the camera measurements with the LIDAR. It takes longer for the track to initialise and
it dies out earlier than with only the LIDAR. Because the Otter is always outside of the
cameras field of view the lack of measurements from the cameras rather give a decrease
in existence probability. This is similar to what is seen in the other scenarios when the
target is outside the cameras field of view.

85

5.5 Scenario three - Passing of target

Figure 76: Estimated and ground truth position of Otter 9 using LIDAR

Figure 77: Estimated and ground truth position of Otter 9 using LIDAR and camera

86

5.6 Loss of LIDAR measurements

5.6 Loss of LIDAR measurements

To simulate a loss of LIDAR data the measurements past a certain timestamp in the data
set is removed. In scenario two the LIDAR data is removed when the two targets are
passing. At this point the track of the Juggernaut is well initiated with a high existence
probability. From Figure 78 we see that the camera is able to maintain a reliable track for
five seconds after the LIDAR measurements are cut at 48 seconds. The probability does
not decrease linearly which shows us that the bearing measurements are being processed.

Figure 78: Existence probability after LIDAR dropout

Similar to the other scenarios we see that the probabilities when relying on bearing
measurements are shifted towards the CT model.

Figure 79: Mode probabilities during sensor dropout

87

5.6 Loss of LIDAR measurements

In Figures 80 and 81 we see a large amount of detections around the target at this
point in time. Several of these measurements are gated to the target and instead of
maintaining the track the covariance grows larger and the track is terminated due to the
large uncertainty.

Figure 80: Camera detections a few seconds after LIDAR dropout

Figure 81: Camera detections a few seconds after LIDAR dropout

88

5.6 Loss of LIDAR measurements

Sensor dropout was also simulated in the first scenario. This time the LIDAR data
drops out at 78 seconds, a few seconds after the Juggernaut has passed ownship. The
tracker is able to maintain the track for nine seconds before it is terminated as shown
in Figure 82. This is longer than in the previous scenario, however we would expect a
well initiated track to be maintained for longer with the bearing measurements. Looking
at Figure 83 we see that there are three measurements gated with the track estimate.
Similar to the previous scenario they add uncertainty to the estimate and cause track
divergence, however this takes longer as there are less measurements within the validation
gate compared to Figure 81.

Figure 82: Position estimate error compared to GPS position

Figure 83: Position estimate error compared to GPS position

89

6 Conclusion and future work

6.1 Conclusion

Data from three different test scenarios has been collected. In these scenarios two targets
are equipped with GPS receivers and maneuver in patterns that provide different chal-
lenges for the tracker. To avoid poor sensor data cluttering our analysis, extra data sets
have been collected in the same areas for training the object detector.

Reliable sensor data has been obtained for both the LIDAR and the camera and bearing
measurements are extracted from the detection of a neural network. For the camera
images an object detector has been trained on over 4000 annotated images to obtain a
mAP of over 96 %. Processing techniques have been implemented to reduce the amount
of points and to cluster the LIDAR data into objects of interest to the tracking pipeline.
The tracker has been restructured into a ROS-node and implemented into the situational
awareness pipeline. It is extended to contain sensor specific parameters and modified to
support bearing only measurements from the object detector.

The GPS positions of the targets are compared with the estimates and give good results.
When introducing the bearing only measurements we get good estimates when the tar-
gets are within the cameras field of view, however the performance is degenerated when
the targets are outside of the cameras surveillance range because of the tracker assuming
a 360 degree field of view from its sensors. The camera helps to initiate and maintain a
track when the targets are within the cameras field of view. In addition LIDAR dropouts
have been simulated and the camera is able to maintain the track for a few seconds on
its own, but the gating method should be improved to further increase the performance.

90

6.2 Future work

6.2 Future work

The current implementation of the bearing only measurements can be improved by a
more dynamic gating method, as the current implementation does not take into account
the velocity covariance or the range to the target. A well known problem with a bear-
ing only tracking is incorrect convergence of the covariance ellipses. Adding a range
parameterised Kalman filter as shown in "Improved bearings-only target tracking with
iterated Gaussian mixture measurements [49]" is shown to give more precise convergence
in "Recursive Bayesian estimation: bearings-only applications [27]". Adding methods for
handling asynchronous messages from the sensors will increase the performance of the
tracker due to the different processing delays for the different sensors [20]. Changing the
tracker structure to avoid the mutex and allow processing several sets of measurements
in parallel will increase the efficiently of the tracker.

YOLO uses a convolutional layer to learn and predict the most likely locations of bound-
ing boxes in an image. Adding another layer to the network which proposes possible
locations using LIDAR measurements and the location of existing tracks could help in-
crease the accuracy of a neural network. Using INS data and the rotation of own-ship
relative to existing targets could be used to propose bounding boxes and ensure new
measurements of existing targets. While the object detector used in this thesis has a very
high accuracy it is not reasonable to assume such performance of an object detector in
a real world scenario. This object detector is over-fitted to the targets pertaining to the
scenarios. Extending an object detector with an extra layer for bounding box prediction
using INS data would increase the reliability and stability of the bearing only measure-
ments once a track has been initiated.

Currently the output from the object detector is a bearing measurement relative to the
center of the bounding box. Extending this to include the horizontal edges of the bound-
ing box would give more information about a targets size and possibly also the distance
to an object. Adding some bounding parameters like the maximum width of different
classes from the neural network could help gauge distance. Adding detection classes for
different types of boats could be used to limit the size of the objects which could be used
to triangulate range. Different detection classes for different types of boats can also be
used to attribute dynamical properties to the tracks with limits to speed and acceleration.

In Figures 48 and 49 we can see that the docks in the center of the map are interpreted

91

by the Euclidean segmenting method as a detection which is sent into the target tracking
pipeline. Extending the ground segmentation to include maps created dynamically by a
SLAM algorithm would reduce the amount of false inputs to the tracker. Sea charts are
often changed, new docks are added (like those in Trondheim harbour) and in a congested
environment we get a lot of false tracks from nearby docks and land areas. As shown
in Figure 53 the processing time increases exponentially from the amount of association
hypotheses.

92

References

[1] Sigurd Albrektsen and Tor Johansen. User-configurable timing and navigation for
uavs. Sensors, 18:2468, July 2018.

[2] M. Arulampalam, Branko Risti, N. Gordon, and T. Mansell. Bearings-only tracking
of manoeuvring targets using particle filters. EURASIP Journal on Advances in
Signal Processing, 2004, Nov 2004.

[3] R. Aufrere, J. Gowdy, C. Mertz, C. Thorpe, C. Wang, and T. Yata. Perception for
collision avoidance and autonomous driving. Mechatronics, 13:1149–1161, 2003.

[4] Dimitri Bertsekas. The auction algorithm: A distributed relaxation method for the
assignment problem. Annals of Operations Research, 14:105–123, Dec 1988.

[5] H. A. P. Blom and Y. Bar-Shalom. The interacting multiple model algorithm for
systems with markovian switching coefficients. IEEE Transactions on Automatic
Control, vol. 33, no. 8, page 780–783, 1988.

[6] E Brekke. Fundamentals of Sensor Fusion - Target tracking, navigation and SLAM.
NTNU, Jan 2020. [Online; accessed Feb 5, 2021] https://folk.ntnu.no/edmundfo/
msc2019-2020/sf13chapters.pdf.

[7] E Brekke, Hem A.G., and Tokle L.-C. N. The vimmjipda: Hybrid state formulation
and verification on maritime radar benchmark data. Global OCEANS 2020 Online
Proceedings, 2020.

[8] E Brekke, E Wilthil, Bjørn-Olav Eriksen, D Kufoalor, Øystein Helgesen, I Hagen,
Morten Breivik, and Tor Johansen. The autosea project: Developing closed-loop
target tracking and collision avoidance systems. Journal of Physics: Conference
Series, 1357:012020, Oct 2019.

[9] Edmund Førland Brekke, Audun Gullikstad Hem, and Lars-Christian Ness Tokle.
The vimmjipda: Hybrid state formulation and verification on maritime radar bench-
mark data. In Global Oceans 2020: Singapore – U.S. Gulf Coast, pages 1–5, 2020.

[10] Cambridge University Press. Single-link and complete-link clus-
tering. https://nlp.stanford.edu/IR-book/html/htmledition/
single-link-and-complete-link-clustering-1.html, April 2009. [Online;
accessed June 13, 2021].

93

https://folk.ntnu.no/edmundfo/msc2019-2020/sf13chapters.pdf
https://folk.ntnu.no/edmundfo/msc2019-2020/sf13chapters.pdf
https://nlp.stanford.edu/IR-book/html/htmledition/single-link-and-complete-link-clustering-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/single-link-and-complete-link-clustering-1.html

[11] H. Cho, Y. W. Seo, B. V.K. V. Kumar, , and R. R. Rajkumar. A multi-sensor fusion
system for moving object detection and tracking in urban driving environments.
IEEE International Conference on Robotics and Automation (ICRA), pages 1836–
1843, May 2014.

[12] Jiri de Vos, Robert G. Hekkenberg, and Osiris A. Valdez Banda. The impact of
autonomous ships on safety at sea – a statistical analysis. Reliability Engineering &
System Safety, 210:107558, 2021.

[13] dhruv’s space. Ml basics #4: Replace negatives with zeros! https://dhruvs.
space/posts/ml-basics-issue-4, Sept 2019. [Online; accessed May 4, 2021].

[14] Christoph Domke and Quentin Potts. Lidars for self-driving vehicles:
a technological arms race. https://www.automotiveworld.com/articles/
lidars-for-self-driving-vehicles-a-technological-arms-race/, Sept 2020.
[Online; accessed March 28, 2021].

[15] Katherine Ellis, Suneeta Godbole, Simon Marshall, Gert Lanckriet, John Stauden-
mayer, and Jacqueline Kerr. Identifying active travel behaviors in challenging envi-
ronments using gps, accelerometers, and machine learning algorithms. Frontiers in
public health, 2:36, Apr 2014.

[16] enginBozkurt. Lidar obstacle detection. https://github.com/enginBozkurt/
LidarObstacleDetection, Sept 2019. [Online; accessed Feb 6, 2021].

[17] Sondos Fadl and Noura Semary. Robust copy-move forgery revealing in digital images
using polar coordinate system. Neurocomputing, June 2017.

[18] Gary Chan and Joshua Whitley. Lidar perception. https://github.com/
LidarPerception/common_lib, 2019. [Online; accessed June 13, 2021].

[19] Didrik Grove. Data synchronization in maritime target tracking. Technical report,
Norwegian University of Science and Technology, Jan 2021. Project thesis.

[20] Thomas Hanselmann and Mark Morelande. Multiple target tracking with asyn-
chronous bearings-only-measurements. In 2007 10th International Conference on
Information Fusion, pages 1–8, 2007.

[21] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, 2 edition, 2004.

94

https://dhruvs.space/posts/ml-basics-issue-4
https://dhruvs.space/posts/ml-basics-issue-4
https://www.automotiveworld.com/articles/lidars-for-self-driving-vehicles-a-technological-arms-race/
https://www.automotiveworld.com/articles/lidars-for-self-driving-vehicles-a-technological-arms-race/
https://github.com/enginBozkurt/LidarObstacleDetection
https://github.com/enginBozkurt/LidarObstacleDetection
https://github.com/LidarPerception/common_lib
https://github.com/LidarPerception/common_lib

[22] Audun Gullikstand Hem. Maritime multi-target tracking with radar and asyn-
chronous transponder measurements. Master’s thesis, Norwegian University of Sci-
ence and Technology, Jan 2021. Unpublished.

[23] Richard Hilton and David Martin. Tracking with time-delayed data in multisensor
systems. page 56, August 1993.

[24] Heather Hinkel, John J. Zipay, Matthew Strube, and Scott Cryan. Technology de-
velopment of automated rendezvous and docking/capture sensors and docking mech-
anism for the asteroid redirect crewed mission. In 2016 IEEE Aerospace Conference,
2016.

[25] NAVICO Inc. Hs60 gps compass user guide. http://busse-yachtshop.de/pdf/
simrad-hs60-manual.pdf, 2014. [Online; accessed May 1, 2021].

[26] Jet New. Gaussian mixture models with tensor-
flow probability. https://medium.com/analytics-vidhya/
gaussian-mixture-models-with-tensorflow-probability-125315891c22,
June 2020. [Online; accessed June 13, 2021].

[27] R. Karlsson and F. Gustafsson. Recursive bayesian estimation: bearings-only appli-
cations. IEE Proceedings - Radar Sonar and Navigation, page 305–313], 2005.

[28] Jelena Kocić, Nenad Jovičić, and Vujo Drndarević. Sensors and sensor fusion in
autonomous vehicles. In 2018 26th Telecommunications Forum (TELFOR), pages
420–425, 2018.

[29] Vegard Kvamsgård. Fusion between camera and lidar for autonomous surface vehi-
cles. Master’s thesis, Norwegian University of Science and Technology, July 2018.

[30] Jan Nic. Langfeldt. Boatman’s drivers test. https://www.seileren.no/
wp-content/uploads/2014/08/English-baatforer-text.pdf, Aug 2014. [On-
line; accessed June 14, 2021].

[31] Chang-Hun Lee. Observability analysis of advanced guidance laws with bearing-only
measurement. IFAC Proceedings Volumes, 43:136–141, Sept 2010.

[32] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander Berg. Ssd: Single shot multibox detector. In SSD:
Single Shot MultiBox Detector, volume 9905, pages 21–37, Oct 2016.

95

http://busse-yachtshop.de/pdf/simrad-hs60-manual.pdf
http://busse-yachtshop.de/pdf/simrad-hs60-manual.pdf
https://medium.com/analytics-vidhya/gaussian-mixture-models-with-tensorflow-probability-125315891c22
https://medium.com/analytics-vidhya/gaussian-mixture-models-with-tensorflow-probability-125315891c22
https://www.seileren.no/wp-content/uploads/2014/08/English-baatforer-text.pdf
https://www.seileren.no/wp-content/uploads/2014/08/English-baatforer-text.pdf

[33] M. Mahlisch, R. Schweiger, W. Ritter, and K. Dietmayer. Sensorfusion using spa-
tiotemporal aligned video and lidar for improved vehicle detection. IEEE Intelligent
Vehicles Symposium, page 424–429, 2006.

[34] MathWorks. What is camera calibration? https://www.mathworks.com/help/
vision/ug/camera-calibration.html, 2020. [Online; accessed May 15, 2021].

[35] OpenStax College. Polar coordinates. https://courses.lumenlearning.com/
precalctwo/chapter/polar-coordinates/, 2021. [Online; accessed Mar 26, 2021].

[36] Point Cloud Library. Euclidean cluster extraction. https://pcl.readthedocs.io/
en/latest/cluster_extraction.html, 2021. [Online; accessed May 27, 2021].

[37] C. Premebida, O. Ludwig, , and U. Nunes. Lidar and vision-based pedestrian detec-
tion system. Journal of Field Robotics, 26:696–711, 2009.

[38] Joseph Redmon. Darknet: Open source neural networks in c. http://pjreddie.
com/darknet/, 2013-2016. [Online; accessed June 13, 2021].

[39] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 779–788, 2016.

[40] AutoPilot Review. Elon musk on cameras vs lidar for self driving and autonomous
cars. https://www.youtube.com/watch?v=HM23sjhtk4Q, 2019. [Online; accessed
Feb 27, 2021].

[41] Kongsberg Seatex. minimru - the compact reference unit. https://www.
kongsberg.com/globalassets/maritime/km-products/product-documents/
datasheet_minimru.pdf, Dec 2020. [Online; accessed Feb 12, 2021].

[42] SentiSystems. Sentiboard documentation. https://gitlab.senti.no/senti/
senti-doc/, June 2021. [Online; accessed Feb 25, 2021].

[43] Sjøfartsdirektoratet. Føringer i forbindelse med bygging eller installer-
ing av automatisert funksjonalitet, med hensikt å kunne utføre ubeman-
net eller delvis ubemannet drift. https://www.sdir.no/contentassets/
2b487e1b63cb47d39735953ed492888d/rsv-12-2020.pdf?t=1619765992454, Aug
2020. [Online; accessed June 14, 2021].

[44] Norwegian Maritime Authority (Sjøfartsdirektoratet). Regulations of 1 december
1975 no. 5 for preventing collisions at sea (rules of the road at sea), Dec 1975.

96

https://www.mathworks.com/help/vision/ug/camera-calibration.html
https://www.mathworks.com/help/vision/ug/camera-calibration.html
https://courses.lumenlearning.com/precalctwo/chapter/polar-coordinates/
https://courses.lumenlearning.com/precalctwo/chapter/polar-coordinates/
https://pcl.readthedocs.io/en/latest/cluster_extraction.html
https://pcl.readthedocs.io/en/latest/cluster_extraction.html
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://www.youtube.com/watch?v=HM23sjhtk4Q
https://www.kongsberg.com/globalassets/maritime/km-products/product-documents/datasheet_minimru.pdf
https://www.kongsberg.com/globalassets/maritime/km-products/product-documents/datasheet_minimru.pdf
https://www.kongsberg.com/globalassets/maritime/km-products/product-documents/datasheet_minimru.pdf
https://gitlab.senti.no/senti/senti-doc/
https://gitlab.senti.no/senti/senti-doc/
https://www.sdir.no/contentassets/2b487e1b63cb47d39735953ed492888d/rsv-12-2020.pdf?t=1619765992454
https://www.sdir.no/contentassets/2b487e1b63cb47d39735953ed492888d/rsv-12-2020.pdf?t=1619765992454

[45] Knut Turøy. Sensor Fusion of Camera-LIDAR for ReVolt. Master’s thesis, Norwegian
University of Science and Technology, Dec 2019.

[46] u blox. Zed-f9p datasheet. https://www.u-blox.com/en/docs/UBX-17051259,
June 2020. [Online; accessed Feb 25, 2021].

[47] H. Weigel, P. Lindner, and G. Wanielik. Vehicle tracking with lane assignment by
camera and lidar sensor fusion. IEEE Intelligent Vehicles Symposium, pages 513–520,
June 2009.

[48] WolfWings. Barrel distortion visual example. https://en.wikipedia.org/wiki/
File:Barrel_distortion.svg, 2008. [Online; accessed May 27, 2021].

[49] Qian Zhang and Taek Lyul Song. Improved bearings-only target tracking with it-
erated gaussian mixture measurements. IET Radar Sonar Navig, pages 294–303,
2017.

97

https://www.u-blox.com/en/docs/UBX-17051259
https://en.wikipedia.org/wiki/File:Barrel_distortion.svg
https://en.wikipedia.org/wiki/File:Barrel_distortion.svg

Appendix

A: Script for splitting dataset following the YOLO standard
1 import g lob
2 import random
3 import os
4 import s h u t i l
5 import argparse
6
7 par s e r = argparse . ArgumentParser (d e s c r i p t i o n = " Sp l i t and s h u f f l e

datase t in to t r a i n / t e s t / v a l i d a t i o n s e t s . ")
8 par s e r . add_argument (" t r a i n " , type=f loat , he lp="por t i on o f the o r i g i n a l

s e t to be used as a t r a i n i n g s e t (as a decimal number .) ")
9 par s e r . add_argument (" va l " , type=f loat , he lp="por t i on o f the o r i g i n a l

s e t to be used as a va l i d a t i o n s e t (as a decimal number .) ")
10 par s e r . add_argument (" path " , type=str , he lp="path to the f o l d e r

conta in ing the o r i g i n a l datase t . This f o l d e r needs to conta in both .
txt and . png f i l e s co r r e spod ing to the YOLO 1.1 annotat ion standard
. ")

11
12 args = par s e r . parse_args ()
13
14 PATH = args . path
15 r_tra in = args . t r a i n
16 r_val = args . va l
17
18 p r in t (" S p l i t t i n g datase t in " + str (PATH) + " . " + str (r_tra in ∗100) +

"% Training , " + str (r_val ∗100) + "% Val idat i on and " + str (100−(
r_tra in+r_val) ∗100) + "% Test . ")

19
20 i f r_tra in + r_val > 1 :
21 r a i s e Exception (" Train ing and va l i d a t i o n por t i on s e t to be g r e a t e r

than 1 . The combined s i z e o f t r a i n and va l cannot exeed 100% of
the o r i g i n a l datase t . ")

22
23 t r a i n_ fo l d e r = PATH + ’ t r a i n / ’
24 va l i d_ fo ld e r = PATH + ’ va l i d / ’
25 t e s t_ f o l d e r = PATH + ’ t e s t / ’
26
27 # Making sure there are no existing train/valid/test folders. This is to avoid

duplicate files and files not listed in the train/validation/test.txt-files.
28 i f (os . path . e x i s t s (t r a i n_ fo l d e r)) :

I

29 r a i s e Exception (" Train f o l d e r a l r eady e x i s t s . Remove a l l e x i s t i n g
t r a i n / va l / t e s t f o l d e r s / f i l e s be f o r e you cont inue . ")

30 i f (os . path . e x i s t s (va l i d_ fo ld e r)) :
31 r a i s e Exception (" Va l idat i on f o l d e r a l r eady e x i s t s . Remove a l l

e x i s t i n g t r a i n / va l / t e s t f o l d e r s / f i l e s be f o r e you cont inue . ")
32 i f (os . path . e x i s t s (t e s t_ f o l d e r)) :
33 r a i s e Exception (" Test f o l d e r a l r eady e x i s t s . Remove a l l e x i s t i n g

t r a i n / va l / t e s t f o l d e r s / f i l e s be f o r e you cont inue . ")
34
35 # Get all paths to your images files and text files
36 img_paths = glob . g lob (PATH+ ’∗ . png ’)
37 txt_paths = glob . g lob (PATH+ ’∗ . txt ’)
38
39 # Check for duplicate files (both txt and png)
40 f o r img in img_paths :
41 found = False
42 f o r txt in txt_paths :
43 i f txt [: −4] == img [: − 4] :
44 found = True
45 cont inue
46 i f not found :
47 r a i s e Exception (str (img) + " does not have a corre spond ing text

f i l e . ")
48
49 f o r txt in txt_paths :
50 found = False
51 f o r img in img_paths :
52 i f img [: −4] == txt [: − 4] :
53 found = True
54 cont inue
55 i f not found :
56 r a i s e Exception (str (txt) + " does not have a corre spond ing

image f i l e . ")
57
58 # Calculate number of files for training, validation
59 data_size = len (img_paths)
60
61 t r a i n_s i z e = int (data_size ∗ r_tra in)
62 va l_s i ze = int (data_size ∗ r_val)
63 t e s t_s i z e = data_size − t r a i n_s i z e − va l_s i z e
64 p r in t (" Train ing Images : " + str (t r a i n_s i z e) + " , Va l idat ion Images : " +

str (va l_s i ze) + " , Test Images : " + str (t e s t_s i z e −2))
65
66 p r in t (" Shu f f l i n g the data (with t h e i r cor re spond ing text f i l e s .) ")

II

67
68 \# Combine txt and img files
69 img_l i s t = l i s t ()
70 t x t_ l i s t = l i s t ()
71
72 f o r img in img_paths :
73 f o r txt in txt_paths :
74 i f txt [: −4] == img [: − 4] :
75 img_l i s t . append (img)
76 t x t_ l i s t . append (txt)
77 cont inue
78
79 f i l e_duo = z ip (img_list , t x t_ l i s t)
80
81 \# Shuffle
82 img_txt = l i s t (f i l e_duo)
83 random . seed (43)
84 random . s h u f f l e (img_txt)
85 img_paths , txt_paths = z ip (∗ img_txt)
86
87 \# Check that all txt and img files in the list matches
88 f o r img , txt in z ip (img_paths , txt_paths) :
89 i f img [: −4] != txt [: − 4] :
90 r a i s e Exception (" Image : " + str (img) + " and text : " + str (txt)

+ " are not s im i l a r . ")
91 i f img [−4 :] != " . png " :
92 r a i s e Exception (str (img) + " i s not a PNG− f i l e . ")
93 i f txt [−4 :] != " . txt " :
94 r a i s e Exception (str (txt) + " i s not a txt .− f i l e . ")
95
96 \# Now split the list into training, validation and test sets
97 train_img_paths = img_paths [: t r a i n_s i z e]
98 train_txt_paths = txt_paths [: t r a i n_s i z e]
99

100 valid_img_paths = img_paths [t r a i n_s i z e : va l_s i ze+t ra i n_s i z e]
101 val id_txt_paths = txt_paths [t r a i n_s i z e : va l_s i ze+t ra i n_s i z e]
102
103 test_img_paths = img_paths [va l_s i ze+t ra i n_s i z e :]
104 test_txt_paths = txt_paths [va l_s i ze+t ra i n_s i z e :]
105
106 os . mkdir (t r a i n_ fo l d e r)
107 os . mkdir (va l i d_ fo ld e r)
108 os . mkdir (t e s t_ f o l d e r)
109

III

110 def move(paths , f o l d e r) :
111 f o r p in paths :
112 s h u t i l . move(p , f o l d e r)
113
114 # Move images and text files to train, valid and test-folders.
115 move(train_img_paths , t r a i n_ fo l d e r)
116 move(train_txt_paths , t r a i n_ fo l d e r)
117 move(valid_img_paths , va l i d_ fo ld e r)
118 move(valid_txt_paths , va l i d_ fo ld e r)
119 move(test_img_paths , t e s t_ f o l d e r)
120 move(test_txt_paths , t e s t_ f o l d e r)
121
122 p r in t (" Migrat ion completed . ")
123
124 t r a i n_ f i l e = PATH + ’ t r a i n . txt ’
125 v a l i d_ f i l e = PATH + ’ va l . txt ’
126 t e s t _ f i l e = PATH + ’ t e s t . txt ’
127
128 train_img_paths = glob . g lob (t r a i n_ fo l d e r + ’∗ . png ’)
129 test_img_paths = glob . g lob (t e s t_ f o l d e r + ’∗ . png ’)
130 val_img_paths = glob . g lob (va l i d_ fo ld e r + ’∗ . png ’)
131
132 def wr i t eL i s tContent s (i n pu t l i s t , f i l e p a t h) :
133 \# To avoid writing to already existing files (which might contain

non-existing paths.) Trust the script to do the job. ‘O.o)/‘

134 i f (os . path . e x i s t s (f i l e p a t h)) :
135 r a i s e Exception (str (f i l e p a t h) + ’ a l r eady e x i s t s . Remove a l l

e x i s t i n g t r a i n / va l / t e s t f o l d e r s / f i l e s be f o r e you cont inue . ’)
136 f = open (f i l e p a t h , "w")
137 f o r i in range (l en (i n p u t l i s t)) :
138 f . wr i t e (i n p u t l i s t [i] + "\n")
139 f . c l o s e ()
140
141 p r in t (" Creat ing t r a i n . txt , v a l i d . txt and t e s t . txt f i l e s . F i l l i n g them

with the corre spond ing image paths . ")
142 wr i t eL i s tContent s (train_img_paths , t r a i n_ f i l e)
143 wr i t eL i s tContent s (val_img_paths , v a l i d_ f i l e)
144 wr i t eL i s tContent s (test_img_paths , t e s t _ f i l e)

IV

B: Script for changing a ROS transform
1 import rosbag
2 from copy import deepcopy
3 import t f
4
5 bagInName = ’ otter27−ouster−scen1 −512−cloudy −2021−03−02−12−54−01.bag ’
6 bagIn = rosbag . Bag(bagInName)
7 bagOutName = ’ otter27−ouster−scen1 −512−cloudy −2021−03−02−12−54−01− f i x e d

. bag ’
8 bagOut = rosbag . Bag(bagOutName , ’w’)
9 with bagOut as outbag :

10 f o r top ic , msg , t in bagIn . read_messages () :
11 i f t op i c == ’/ t f ’ :
12 new_msg = deepcopy (msg)
13 f o r i ,m in enumerate (msg . t rans forms) : # go through each

frame->frame tf within the msg.transforms
14 i f m. header . frame_id == "targa_base " :
15 i f m. child_frame_id == "eocam_port " :
16 r o t a t i on = t f . t r ans f o rmat i ons . quaternion_from_euler

(0 , 0 , 0 . 5 0)
17 m. trans form . r o t a t i on . x = ro t a t i on [0]
18 m. trans form . r o t a t i on . y = ro t a t i on [1]
19 m. trans form . r o t a t i on . z = ro t a t i on [2]
20 m. trans form . r o t a t i on .w = ro t a t i on [3]
21 new_msg . t rans forms [i] = m
22
23
24 outbag . wr i t e (top ic , new_msg , t)
25 else :
26 outbag . wr i t e (top ic , msg , t)
27
28 bagIn . c l o s e ()
29 bagOut . c l o s e ()

V

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
sM

ulti-sensor m
ulti-target tracking using LID

AR and cam
era in a harbor environm

ent

Didrik Grove

Multi-sensor multi-target tracking
using LIDAR and camera in a harbor
environment

Master’s thesis in Cybernetics and Robotics
Supervisor: Edmund Førland Brekke
Co-supervisor: Giorgio D. K. M. Kufoalor

June 2021

M
as

te
r’s

 th
es

is

	List of figures
	List of tables
	List of abbreviations
	Introduction
	Motivation
	Problem description
	Related work
	Report outline

	Theory
	Camera detections
	Convolutional neural networks
	Building blocks
	Metrics for bounding box detection
	Image detection to relative bearing

	Light Detection And Ranging (LIDAR) detections
	LIDAR measurements
	Filtering
	Clustering

	Relative positioning between sensors and detections
	Target tracking
	Kalman filter (KF) to extended Kalman filter (EKF)
	Interacting multiple models (IMM)
	Probabilistic Data Association (PDA)
	PDA to JIPDA
	Visibility state modelling
	Multi sensor tracking

	Tracking in autonomy
	Autonomy
	Maritime rules of the sea

	Method
	Test scenarios
	Scenario one - Overtaking
	Scenario two - Occlusion of target
	Scenario three - Passing of target

	Experiment setup
	Hardware setup
	Otter USV
	Sensor rig
	Target boats

	Pipeline implementation
	Camera pipeline
	LIDAR pipeline
	Tracking pipeline

	Results and discussion
	Sensor processing delays
	JIPDA association delays
	Scenario one - Overtaking
	Scenario two - Occlusion of target
	Scenario three - Passing of target
	Loss of LIDAR measurements

	Conclusion and future work
	Conclusion
	Future work

	Bibliography
	Appendix

