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Abstract

This thesis explores the use of maximum hands-off control for attitude con-
trol of a spacecraft actuated by reaction wheels. The maximum hands-off, or
L0-optimal, controller aims to find the sparsest control signal among all admis-
sible control signals. However, L0-optimal problems are generally hard to solve
as L0-cost functions are discontinuous and nonconvex. Previous research have
investigated methods to approximate the L0-norm in the cost function, for in-
stance, using an L1-norm. This thesis proposes an approach to the maximum
hands-off control problem for spacecraft attitude control involving an L0-cost
function relaxed through complementarity constraints. Then, the controller is
applied to the spacecraft attitude control problem, and the sparsity of the max-
imum hands-off controller is compared to that of the L1-optimal controller. The
maximum hands-off controller is shown to be sparser than the L1-optimal con-
troller for one of the problems investigated through simulations based on a 6U
CubeSat. The simulations were conducted using CasADi as the primary opti-
mization tool, and the L1- and L0-optimal control problems were discretized
using direct multiple-shooting and solved using the IPOPT solver. In addition
to these results, this thesis proposes a new paradigm of control, called moving
maximum hands-off control, which lets the user specify in which time interval
the control should occur and aims to find the sparsest control among all ad-
missible controls based on this information. The moving maximum hands-off
controller is shown to be as sparse as the maximum hands-off controller for
some spacecraft maneuvers.
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Sammendrag

Denne avhandlingen utforsker bruken av "maximum hands-off" regulering for
attituderegulering av en satellitt som er drevet av reaksjonshjul. Maximum
hands-off, eller den L0-optimale, regulatoren forsøker å finne pådragssignalet
som er mest "sparse" blant alle mulige pådragssignal. L0-optimale problemer er
generelt vanskelige å løse siden en kostfunksjon basert på L0-normen hverken
er kontinuerlig eller konveks. Tidligere forskning har undersøkt metoder for å
tilnærme L0-normen, for eksempel ved bruk av en L1-norm. Denne oppgaven
foreslår å bruke en L0-kostfunksjon med komplementære begrensninger som
en tilnærming til maximum hands-off problemet for attituderegulering av en
satellitt. Deretter brukes maximum hands-off regulatoren for å løse attitud-
ereguleringproblemet for en satellitt, og pådragssignalet fra maximum hands-
off regulatoren sammenlignes med pådragssignalet fra den L1-optimale regula-
toren. Denne oppgaven viser at maximum hands-off regulatoren er mer sparse
enn den L1-optimale regulatoren for et av problemene som ble undersøkt gjen-
nom simuleringer basert på en 6U CubeSat. Simuleringene ble gjennomført ved
bruk av optimeringsverktøyet CasADi, og L1- og L0-optimeringsproblemene ble
diskretisert ved bruk av "direct multiple-shooting" og løst ved bruk av IPOPT. I
tillegg til disse resultatene så foreslår denne oppgaven en ny type regulator, kalt
"moving maximum hands-off" regulator, som lar brukeren spesifisere i hvilke
tidsintervaller pådragene skal settes på og prøver å finne pådragssignalet som
er mest sparse blant alle gyldige pådragssignaler, basert på denne informasjo-
nen. Det viste seg at moving maximum hands-off regulatoren er like sparse som
maximum hands-off regulatoren for noen satellittmanøvere.
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Chapter 1

Introduction

1.1 Motivation and Background

The work presented in this thesis is related to the HYPSO mission at the NTNU
Small Satellite Lab. The HYPer-Spectral smallsat for Ocean observation (HYPSO)
seeks to investigate the ocean, as it is of great interest in understanding the ef-
fects of climate changes (HYPSO, 2021). Studying the ocean could also increase
knowledge of how humans impact the world. More specifically, HYPSO aims to
track sporadic algal blooms in the oceans and to provide hyperspectral images
to support monitoring of marine environments (Grøtte et al., 2021).

HYPSO is equipped with a hyperspectral camera and advanced on-board
processing. A crucial part of the HYPSO mission is to perform a slew maneuver
during hyperspectral imaging across a desired target. The subsystem responsi-
ble for aiming the satellite, and thereby the camera, towards the target is the
Attitude Determination and Control System (ADCS). This thesis aims to solve
the spacecraft attitude control problem using a maximum hands-off controller.
The controller will be implemented and tested on a configuration similar to that
of HYPSO.

The motivation for using maximum hands-off control for the attitude control
of a spacecraft is to provide a control signal which is as sparse as possible,
i.e., the control signal is most often zero. Even though the maximum hands-off
controller yields a control signal that is as sparse as possible, the control input
may occur at any time instants within the optimization interval. This motivates
the design of the moving maximum hands-off controller, which lets the user
specify in which time intervals the control input should occur.

1.2 Contributions of this Thesis

The contributions of this thesis are in the field of optimal attitude control,
and more precisely, optimal attitude control with application to spacecraft. The
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main contribution of this thesis is the use of maximum hands-off control to
solve the spacecraft attitude control problem for a spacecraft actuated by reac-
tion wheels. The maximum hands-off controller was tested and simulated on a
configuration similar to a 6U CubeSat. Another contribution is the presentation
of an example, which demonstrates that using the L1-norm to approximate the
L0-norm does not always yield the L0-optimal solution. The moving maximum
hands-off controller is designed and implemented as an extension to the max-
imum hands-off controller. The moving maximum hands-off controller lets the
user specify in which time interval the control inputs should occur and is, to the
author’s best knowledge, a novel concept within the domain of control theory.
Finally, this thesis provides a comparison of the responses of the L1-optimal con-
troller, the maximum hands-off controller, and the moving maximum hands-off
controller when solving the spacecraft attitude control problem.

1.3 Research Objectives

The objectives that motivate the research in this thesis are as follows:

i To explore the use of maximum hands-off control for the spacecraft attitude
control problem.

ii To develop, design and explore the use of moving maximum hands-off con-
trol for the spacecraft attitude control problem.

iii To compare the responses of the L1-optimal controller, the maximum hands-
off controller, and the moving maximum hands-off controller when the con-
trollers are used to solve the spacecraft attitude control problem.

1.4 Outline of the Report

Chapter 1 has presented the motivation and background for this project. The
contributions of this thesis have been presented as well as the research objec-
tives.

Chapter 2 presents fundamental theory to derive and understand the equa-
tions of motion for a spacecraft. This theory provides useful tools to build a
mathematical model for the dynamics of the attitude of a spacecraft. The fields
of attitude control and optimal control are also explored, and brief summaries
of some of the previous works in these fields are presented.

Chapter 3 introduces the maximum hands-off controller. The mathematical
preliminaries required to understand the controller are presented, followed up
by the mathematical formulation of the controller. A few examples of the con-
troller, and its expected behavior, are also provided in Chapter 3.
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Chapter 4 derives the spacecraft model and the attitude dynamics based on
the theory provided in the previous chapters. After completing this chapter,
the reader will understand the dynamic equations governing the attitude of a
spacecraft.

Chapter 5 presents the design of the maximum hands-off controller, the
moving maximum hands-off controller, the L1-optimal controller, and a PD-
controller based on quaternions. The experimental cases are also presented, as
well as the simulation setup and software tools used for the experiments.

Chapter 6 presents the results obtained during the experiments and discusses
the findings. The results from the simulations of the different controllers and
maneuvers are presented and discussed.

Chapter 7 presents the conclusions based on the work in this project. Sugges-
tions for future work are presented based on the experiences obtained during
the work with this thesis.

Appendix A presents the plots of the angular velocity of the spacecraft’s re-
action wheels for the different experiments.

Appendix B includes a copy of a draft paper, which will be submitted for the
2022 American Control Conference (ACC).
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Chapter 2

Theory

This chapter provides an overview of the mathematical notation necessary to
follow the arguments throughout the thesis. The chapter also gives an intro-
duction to the fields of attitude control and optimal control and an overview of
some of the spacecraft-related research within these fields.

2.1 Notation

In this section, mathematical notation related to vectors are presented. Sec-
tion 2.1.1 gives a general introduction to vector notation, Section 2.1.2 intro-
duces the vector cross product, and Section 2.1.3 presents how to find the time
derivative of vectors.

2.1.1 Vectors

Vector notation is applied to describe forces, torques, velocities, and accelera-
tions. A vector ~u can be described by its magnitude |~u| and its direction. This
description of a vector may be said to be coordinate-free, as it does not rely on
the definition of any coordinate frame (Egeland and Gravdahl, 2003). Coordi-
nate frames are explored further in Section 2.3.

The vector ~u may also be described in terms of its components in a given
coordinate frame, say {a}. Let the frame {a} be defined by three orthogonal
unit vectors ~a1, ~a2, ~a3 along the x-, y- and z-axis of {a}. Then it is possible to
express the vector as a linear combination of the orthogonal unit vectors as
follows (Egeland and Gravdahl, 2003)

~u = u1~a1 + u2~a2 + u3~a3, (2.1)

where the unique components or coordinates of ~u in {a} are given as

ui = ~u · ~ai, i ∈ {1, 2, 3}. (2.2)
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The vector ~u can be expressed in {a} by a column vector consisting of the
vector’s coordinates in the frame. This column vector is also called the coordi-
nate vector form and it is written as (Egeland and Gravdahl, 2003)

ua =



u1
u2
u3


 . (2.3)

2.1.2 Vector cross product

The vector cross product between two coordinate-free vectors ~u and ~v is given
as (Egeland and Gravdahl, 2003)

~u× ~v = ~n|~u||~v|sin(θ), (2.4)

where θ ∈ [0, π] and ~n is a unit vector orthogonal to ~u and ~v, defined such that
(~u, ~v, ~n) forms a right-hand coordinate system.

The skew-symmetric matrix, denoted S(·), represents the cross product op-
erator and is used to compute the cross product of two coordinate vectors as
matrix multiplication as follows (Egeland and Gravdahl, 2003; Fossen, 2021)

u× v = S(u)v, (2.5)

where S(u) is defined as

S(u) ,




0 −u3 u2
u3 0 −u1
−u2 u1 0


 . (2.6)

In general, a matrix is said to be skew-symmetric if it satisfies the following

S(u)v = −S(v)u. (2.7)

2.1.3 Time derivative of vectors

Differentiation of coordinate vectors

Differentiation of a coordinate vector with respect to time is performed by dif-
ferentiating the components of the vector with respect to time, as follows (Ege-
land and Gravdahl, 2003)

u̇a , d

dt
(ua) =

d

dt



ua1
ua2
ua3


 =



u̇a1
u̇a2
u̇a3


 . (2.8)
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The coordinate vector in frame {a} and the coordinate vector in frame {b}
are related by the equation

ua = Ra
bu

b, (2.9)

where Ra
b is the rotation matrix from frame {b} to frame {a}. Rotation matrices

are explored further in Section 2.2.1.
Differentiation of (2.9) yields the following relation between the time deriva-

tive in frame {a} and the time derivative in frame {b} (Egeland and Gravdahl,
2003)

u̇a = Ra
b u̇

b + Ṙa
bu

b = Ra
b [u̇

b + S(ωbab)u
b], (2.10)

where the property Ṙa
b = Ra

bS(ωbab) has been exploited.

Differentiation of vectors

The process of differentiating a vector ~u with respect to time has to be carried
out with reference to some reference frame. Differentiating ~u with respect to
time in the {a}-frame yields (Egeland and Gravdahl, 2003)

ad

dt
~u , u̇a1~a1 + u̇a2~a2 + u̇a3~a3, (2.11)

where it is assumed that ~u = ua1~a1 + ua2~a2 + ua3~a3. The column vector represen-
tation of (2.11) is

u̇a =



u̇a1
u̇a2
u̇a3


 . (2.12)

The time derivative of ~u with reference to {a}may also be found accordingly

ad

dt
~u =

bd

dt
~u+ ~ωab × ~u, (2.13)

where
bd
dt
~u is the time derivative of ~uwith reference to {b}, and ~ωab is the angular

velocity of {b} relative to {a}.

2.2 Attitude representation

The attitude of a rigid body may be represented using different parametriza-
tions. In this section, four different parametrizations are presented; the rotation
matrix, the Euler angles, the angle-axis, and the unit quaternions.
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2.2.1 Rotation matrix

When deriving the equations of motion for a spacecraft, it is often convenient to
represent a vector in more than one coordinate frame and to transform vectors
between various frames. A vector represented in frame {a}may be transformed,
or rotated, to a vector in frame {b} using a rotation matrix, denoted Rb

a. The
rotation matrix Rb

a has two interpretations; the first is to transform a vector
between two reference frames, where Rb

a acts as a coordinate transformation
matrix, and the second is to rotate a vector within a given reference frame,
where Rb

a acts as a rotation matrix. The coordinate transformation of a vector
from frame {a} to a vector in frame {b} is given as (Egeland and Gravdahl,
2003)

vb = Rb
av

a, (2.14)

where the rotation matrix is

Rb
a = {~bi · ~aj}, (2.15)

and the elements rij = {~bi ·~aj} of Rb
a are called the direction cosines. The rota-

tion matrix is sometimes also referred to as the orientation matrix, the attitude
matrix, or the direction cosine matrix (Wen and Kreutz-Delgado, 1991).

Definition of the rotation matrix

The rotation matrix is an element in the special orthogonal group of order three,
i.e., SO(3), defined as (Egeland and Gravdahl, 2003)

SO(3) , {R|R ∈ R3×3, R is orthogonal, det(R) = 1}, (2.16)

and the orthogonality of a matrix is defined as

RR> = R>R = I3×3, (2.17)

where I3×3 is the identity matrix.

Properties of the rotation matrix

Egeland and Gravdahl (2003) presents some useful properties of the rotation
matrix. For all vb the following holds

vb = Rb
av

a = Rb
aR

a
bv

b, (2.18)

which implies

Rb
aR

a
b = I3×3, (2.19)
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and from (2.19) it follows that

Rb
a = (Ra

b )
−1. (2.20)

The rotation matrix also satisfies the following

Rb
a = (Ra

b )
−1 = (Ra

b )
>. (2.21)

2.2.2 Euler angles

The 3× 3-rotation matrix describes the orientation of a frame {b} with respect
to a frame {a} using nine elements. The rotation matrix is orthogonal, and
the orthogonality yields six constraints on the elements of the matrix. From
the six constraints, it follows that there are only three independent parameters
describing the rotation matrix (Egeland and Gravdahl, 2003). Thus, it is of
interest to find a three-parameter representation, i.e., a minimal representation,
of the rotation matrix. The Euler angles are often used for this purpose.

The Euler angles consist of three angles, and each angle describes rotation
about one of the three principal axes. The description of the rotation matrix
using Euler angles, is given as composite rotations about the x, y, and z axes.
Several variations of the Euler angle parametrization exist, and two of the most
common include the roll-pitch-yaw angles (ZYX) and the classical Euler an-
gles (ZYZ) (Egeland and Gravdahl, 2003; Sciavicco and Siciliano, 2012). The
roll-pitch-yaw angles are often used to describe the motion of free moving ob-
jects, for instance, spacecraft and satellites, whereas the classical Euler angles
are used to describe the rotation of rigid bodies connected to a fixed base, for
instance, robotic wrist joints (Egeland and Gravdahl, 2003).

Roll-Pitch-Yaw angles

The rotation from {a} to {b} can be described by roll-pitch-yaw angles as a
rotation ψ about the za-axis (yaw), followed by a rotation θ about the rotated ya-
axis (pitch), and then a rotation φ about the rotated xa-axis (roll). The resulting
rotation matrix is given as (Egeland and Gravdahl, 2003)

Rb
a = Rz(ψ)Ry(θ)Rx(φ), (2.22)

where the rotation matrices are given as (Egeland and Gravdahl, 2003; Fossen,
2021)
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Rx(φ) =




1 0 0
0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)


 , (2.23a)

Ry(θ) =




cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)


 , (2.23b)

Rz(ψ) =




cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


 . (2.23c)

Kinematic differential equations using Euler angles

It is not possible to integrate the body-fixed angular velocity of an object di-
rectly to obtain the Euler angles (Fossen, 2021). Instead, the kinematic relation
between the object’s angular velocities and the rate of change in the Euler an-
gles are exploited to obtain the Euler angles.

The rotation matrix from {d} to {a}, Ra
d, can be expressed in the roll-pitch-

yaw case as (Egeland and Gravdahl, 2003)

Ra
d = Rz(ψ)Ry(θ)Rx(φ), (2.24)

where the rotation matrices are given as

Ra
b = Rz(ψ), (2.25a)

Rb
c = Ry(θ), (2.25b)

Rc
d = Rx(φ). (2.25c)

The angular velocities associated with the rotations in (2.25) are

ωaab =




0
0

ψ̇


 , (2.26a)

ωbbc =




0

θ̇
0


 , (2.26b)

ωccd =



φ̇
0
0


 , (2.26c)
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where ωaab denotes the angular velocity of {b} with respect to {a}, expressed in
{a}. The angular velocity of {d} with respect to {a}, expressed in {a}, can be
expressed as a sum of the angular velocities in (2.26)

ωaad =




0
0

ψ̇


+ Rz,ψ




0

θ̇
0


+ Rz,ψRy,θ



φ̇
0
0


 , T−1a (Θ)Θ̇, (2.27)

where Θ = [φ, θ, ψ] is the vector of Euler angles, Θ̇ = [φ̇, θ̇, ψ̇] is the time deriva-
tive of the Euler angles, and T−1a (Θ) denotes the inverse of the transformation
matrix Ta(Θ). Solving (2.27) for Θ̇ gives the kinematic differential equation

Θ̇ = Ta(Θ)ωaad. (2.28)

Expanding (2.27) yields

T−1a (Θ) =



c(ψ)c(θ) −s(ψ) 0
s(ψ)c(θ) c(ψ) 0
−s(θ) 0 1


 , (2.29a)

Ta(Θ) =
1

c(θ)




c(ψ) s(ψ) 0
−s(ψ)c(θ) c(ψ)c(θ) 0
c(ψ)s(θ) s(ψ)s(θ) c(θ)


 , (2.29b)

where s(·) and c(·) denotes sin(·) and cos(·), respectively. From (2.29), it can
be seen that Ta(Θ) is undefined and becomes singular, for θ = ±π

2
. This sin-

gularity is called the Euler angle singularity, and it could be a challenge when
representing attitude using Euler angles. For any sequence of Euler angles, i.e.,
ZYX or ZYZ, the singularity occurs in the middle angle. To avoid the singular-
ity, at least four parameters have to be used to represent the attitude (Fossen,
2021).

2.2.3 Angle-axis

Rotation may also be represented using the angle-axis parametrization. It can
be useful to apply the angle-axis parametrization when developing, for in-
stance, kinematic models for use in control systems (Egeland and Gravdahl,
2003). Using angle-axis parametrization, it is possible to describe the rotation
from {b} to {a} as an angle θ about a unit vector ~k fixed in both {a} and {b}.
The angle-axis parametrization of the rotation matrix, Ra

b , is given as (Egeland
and Gravdahl, 2003)

Ra
b = cos(θ)I + S(ka)sin(θ) + (1− cos(θ))ka(ka)>, (2.30)

where ka is the coordinate vector of ~k in frame {a}.
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2.2.4 Quaternions

The unit quaternions, also known as the Euler parameters, use four parameters
to represent attitude. The use of four parameters ensures that the representa-
tion is nonsingular for all angles, as opposed to the Euler angles (Fossen, 2021;
Egeland and Gravdahl, 2003). It is convenient to use quaternions to describe
the attitude of a spacecraft, as opposed to Euler angles, since the spacecraft
moves freely in space and would be affected by the Euler angle singularity.
Moreover, the quaternions are useful in numerical simulations of rotation, as
they are more computationally efficient than the Euler angles.

The quaternion, q, can be written as (Egeland and Gravdahl, 2003; Fossen,
2021; Sola, 2017; Chou, 1992)

q =

[
η
ε

]
=




η
ε1
ε2
ε3


 , (2.31)

where η and ε are given in terms of the angle-axis parameters k and θ, which
are discussed in Section 2.2.3, as follows

η = cos(
θ

2
), (2.32a)

ε = k sin(
θ

2
). (2.32b)

The unit quaternion has several properties. One of the properties is that the
unit quaternion satisfies the following condition (Egeland and Gravdahl, 2003;
Fossen, 2021)

q>q = 1, (2.33)

which may be expanded to

η2 + ε>ε = η2 + ε21 + ε22 + ε23 = 1. (2.34)

Another property of the unit quaternion, is the quaternion product between
two quaternions, and it is given as (Egeland and Gravdahl, 2003; Fossen, 2021;
Sola, 2017; Chou, 1992)

q1 ⊗ q2 =

[
η1η2 − ε>1 ε2

η1ε2 + η2ε1 + S(ε1)ε2

]
= F(q1)q2, (2.35)

where F(q1) is a matrix defined by

F(q1) =

[
η1 −ε1
ε1 η1I3×3 + S(ε1)

]
. (2.36)
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Additionally, the inverse quaternion, corresponding to the unit quaternion q
in (2.31), is given as (Egeland and Gravdahl, 2003; Fossen, 2021; Sola, 2017;
Chou, 1992)

q−1 =

[
η
−ε

]
. (2.37)

A drawback with the unit quaternions is that they do not represent attitude
uniquely since each attitude corresponds to two different quaternion vectors
(Chaturvedi et al., 2011). To put it more precisely, a physical attitude R ∈
SO(3) is represented by a pair of quaternions ±q ∈ S3, where SO(3) is the
special orthogonal group discussed in Section 2.2.1 and S3 is the non-Euclidean
three-sphere (Chaturvedi et al., 2011).

2.3 Coordinate frames

The description of the position and attitude of a satellite has to be made in
relation to some reference frame. A reference frame, or a coordinate frame,
is a choice of coordinate system given as {r} = {Or,xr,yr, zr}, where Or is
the origin and xr,yr, zr are the orthonormal unit vectors. In this thesis, four
different coordinate frames are used to describe the attitude of the spacecraft.

2.3.1 Earth-centered inertial (ECI) frame

The Earth-centered inertial frame, denoted {i}, is considered to be an inertial
frame where Newton’s laws are valid. The origin of {i} is located at the Earth’s
center of mass, and the z-axis points through the North Pole, the x-axis points
towards the vernal equinox, and the y-axis completes the right-hand system
(Egeland and Gravdahl, 2003; Fossen, 2021).

2.3.2 Body frame

The body frame, denoted {b}, is a moving coordinate frame fixed to the space-
craft, with origin at the spacecraft’s center of mass (Egeland and Gravdahl,
2003; Fossen, 2021). The body frame axes follow the spacecraft structure.

2.3.3 Orbit frame

The Vehicle Velocity, Local Horizontal (VVLH) frame, or the orbit frame, is de-
noted {o} and has its origin at the spacecraft’s center of mass. The z-axis points
in the direction of the Earth’s center of mass, the x-axis points in the direction
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of the orbital velocity vector, while the y-axis completes the right-handed coor-
dinate system (Grøtte et al., 2020; Kristiansen et al., 2020). The unit vectors of
the orbit frame are defined as (Kristiansen et al., 2020)

ẑo = − ri

‖ri‖2
, x̂o =

vi

‖vi‖2
, ŷo =

ẑo × x̂o

‖ẑo × x̂o‖2
, (2.38)

where ri and vi are the distance between the spacecraft and the center of the
Earth, and the inertial velocity of the spacecraft, in the ECI frame, respectively.

2.3.4 Wheel frame

The wheel frame is used to specify vectors directly related to the reaction
wheels, and it is denoted by {w} (Kristiansen et al., 2020). There are two vec-
tors represented in the wheel frame, namely the vector of torques applied to the
wheels, τwu , and the angular velocity vector of the wheels, ωwbw. The dimensions
of τwu and ωwbw equals the number of the reaction wheels on the satellite. Each
channel of the vectors gives the torque applied or angular velocity about each
wheel’s axis of rotation.

2.3.5 Coordinate transformations

Orientation is described with respect to different frames. It is necessary to de-
fine the transformations between the various frames to be able to convert be-
tween them. The transformations are given in terms of rotation matrices, and
these rotation matrices can be described using, for instance, Euler angles or
quaternions. For a thorough explanation of the Euler angles, quaternions, and
other attitude parametrizations, see Section 2.2.

Transformation from {i} to {o}

The transformation from the inertial frame, {i}, to the orbit frame, {o}, denoted
by Ro

i ∈ R3×3 is given by (Grøtte et al., 2020; Kristiansen et al., 2020)

Ro
i =

[
x̂o ŷo ẑo

]>
, (2.39)

where x̂o, ŷoand ẑo is defined in (2.38).

Transformation from {o} to {b}

The transformation from the orbit frame, {o}, to the body frame, {b}, is given
by the rotation matrix, Rb

o ∈ R3×3, in terms of quaternions as (Egeland and
Gravdahl, 2003)
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Ro
b = R(qob) = I3×3 + 2ηobS(εob) + 2S2(εob),

Rb
o = (Ro

b)
>,

(2.40)

where S(·) is the skew-symmetric matrix defined in (2.5).

Transformation from {w} to {b}
The matrix A ∈ R3×n describes the rotation from the wheel frame, {w}, to
the body frame, {b} (Grøtte et al., 2020; Kristiansen et al., 2020). The column
vectors aj ∈ R3 of A, are the spinning axes of the j reaction wheels, for j =
{1, 2, ..., n} such that

A =
[
a1 a2 · · · an

]
. (2.41)

The matrix A ∈ R3×n maps the wheel frame to the body frame as follows

τ bu = Aτwu =⇒ τwu = A+τ bu, (2.42)

where the matrix A+ is the Moore-Penrose pseudo-inverse of A. Due to a fixed
reaction wheel configuration, A represents a constant mapping between {w}
and {b}.

2.4 Attitude control

Attitude control of rigid bodies has important applications in a wide range of
fields; from maneuvering a helicopter or a satellite to controlling a robot arm
(Wen and Kreutz-Delgado, 1991). Attitude control of rigid bodies is a field in
which multiple studies have been conducted, and there exist numerous results
on the field. Wen and Kreutz-Delgado (1991) and Chaturvedi et al. (2011) gives
a thorough introduction to the attitude control problem and rigid-body attitude
control.

In this thesis, the results on attitude control of spacecraft are of particular
interest. The attitude of a spacecraft is its orientation in space. Thus, the atti-
tude control of a spacecraft refers to the procedure of controlling its orientation
relative to a coordinate frame, for instance, the inertial frame. Attitude control
may be divided into two parts: attitude stabilization, which deals with main-
taining the current position, and attitude maneuver control, which deals with
steering the spacecraft from one orientation to another (Wertz, 2012). Attitude
control is required for several operations in a spacecraft, for instance, when it
comes to orient spacecraft used for orbit maneuvers or to prevent solar damage
to spacecraft components (Wertz, 2012). The work by Meyer (1971), Chobotov
(1991), Hughes (2004), and Wertz (2012) are excellent references for the atti-
tude control of spacecraft.
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Attitude control is normally studied using different attitude parametrizations
(Chaturvedi et al., 2011), and some of these representations are represented in
Section 2.2. A challenge related to attitude control is that no parametrization
represents attitudes both globally and uniquely (Chaturvedi et al., 2011) For
instance, the Euler angles are subject to singularities at certain angles, and
thus the derivatives become undefined. It is, therefore, necessary to avoid the
singularities when working with Euler angles or any other 3-parameter repre-
sentation, a consideration that complicates path planning and could constrain
admissible attitudes (Wen and Kreutz-Delgado, 1991). Unit quaternions, which
represent attitude using four parameters, avoid the previously discussed singu-
larities and are therefore able to represent attitude globally, although they fail
to represent attitude uniquely. See Section 2.2.4 for more on quaternions.

Euler angles and unit quaternions are favored in different applications. For
surface vessels, the Euler angle singularity is not a problem (Fossen, 2021),
as the surface prevents them from rotating to the point where the singularity
occurs. When it comes to the dynamics of a flight, the Euler angle represen-
tation of attitude is often sufficient, as the singularity can be avoided. For the
singularity at θ = ±π

2
, where θ is the second angle in the rotation order, to

be a problem for the flight attitude, the flight has to point either straight up
or straight down, which is seldom a problem under regular flight conditions
(Beard and McLain, 2012). On the other hand, the singularity is an issue for
acrobatic flight maneuvers and other extreme operations (Beard and McLain,
2012). Underwater vehicles and spacecraft may operate close to the singularity,
as they can move freely and are not constrained by a surface (Fossen, 2021).
In this case, quaternions could be used as an alternative to the Euler angles to
avoid the singularity. The Euler angle singularity is discussed in Section 2.2.2.

Several solutions have been suggested to solve the spacecraft attitude con-
trol problem. Some of the most regularly employed attitude control strategies
include proportional-derivative (PD) control laws (Wen and Kreutz-Delgado,
1991; Show et al., 2002; Ismail and Varatharajoo, 2010). A PD-controller was
also implemented in this thesis, see Section 5.2.4.

Other approaches taken to solve the spacecraft attitude control problem are
techniques based on quaternion feedback. A nonlinear control law, which uses
feedback from the unit quaternion and measured angular velocities, have been
shown to yield global asymptotic stability (Joshi et al., 1995). Moreover, the
proposed controller in Joshi et al. (1995) is also robust to modeling errors and
can be used for large-angle maneuvers with guaranteed stability. A study con-
ducted on a micro satellite, where attitude control was performed using inte-
grator backstepping based on quaternion feedback, showed that the controller
yielded the closed loop equilibrium points asymptotically stable in the sense of
Lyapunov (Kristiansen et al., 2008).

Controllers based on the same principle, but utilizing different attitude rep-
resentation, have been successfully applied for spacecraft attitude control. For
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instance, control techniques based on sliding mode control (SMC) have been
implemented based on modified Rodriquez parameters (Crassidis and Markley,
1996) and based on quaternions (McDuffie and Shtessel, 1997).

Another approach to design the attitude controller is provided by the theory
of optimal control (Meyer, 1971). The methods within optimal control could
be hard to apply to systems that are both nonlinear and multidimensional, and
it could be time consuming to compute control laws for such systems (Meyer,
1971). Nevertheless, the optimal control theory is useful for the analysis of
system performance, and the methods based on this theory are elegant and
explicit (Meyer, 1971). The theory of optimal control and its applications within
attitude control is studied more in-depth in Section 2.5.

2.5 Optimal control

This section provides a brief introduction to the field of optimal control and
is primarily based on the works by Athans and Falb (2013), Gros and Diehl
(2019), and Nocedal and Wright (2006). Section 2.5.1 introduces some key
concepts within optimization, whereas Section 2.5.2 introduces the reader to
previous works in the field of optimal spacecraft attitude control.

Optimal control is a field within optimization that deals with the optimiza-
tion of dynamic systems (Gros and Diehl, 2019). A dynamic system describes
processes that change over time, and the evolving processes are often indicated
by states x. Control inputs, u, might be used to control the dynamic system.
These control inputs can be chosen to optimize some objective function, or cost
function, with respect to some constraints, hence the name optimal control.
The objective function relates to some requirement put on the system’s output,
i.e., it can be viewed as a quantitative measure of the performance of the sys-
tem (Athans and Falb, 2013; Nocedal and Wright, 2006). Depending on what
real-world problem the system model describes, the objective could be time,
potential energy, money, or any other quantity that can be represented by a
single number (Nocedal and Wright, 2006). The constraints represent physical
or artificial limitations on the system (Athans and Falb, 2013); for instance, it
would not make sense to have quantities such as time or mass be negative.

An example of an optimal control problem is the control of a rocket in outer
space (Nagahara, 2020). Note that this is a simple example of rocket control
which does not include attitude control of the spacecraft. The position and
velocity of the rocket compose the state vector, x, and the rocket engine makes
up the propulsion system. The control input, u, represents the engine power
that can be chosen at each time instant. A numerical solver might be able to
find the control input that minimizes the rocket’s travel time from one position
to another, subject to a constraint on the magnitude of the control input. The
solver minimizes an objective function to find the optimal solution, and for
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the rocket example, the objective function would involve one or multiple terms
related to time. When the objective function has been determined, an engineer
set to solve the task may formulate the control problem as follows (Athans
and Falb, 2013): determine the control inputs which yield the desired output,
satisfies the constraints, and which optimize the objective function. The solution
to this problem is called optimal control.

2.5.1 Numerical optimization

In this section, some of the concepts within numerical optimization are ex-
plored. The information presented in this section is primarily based on the
works by Athans (1963), Gros and Diehl (2019), and Nocedal and Wright
(2006).

Optimization is an important tool in problems that deal with the analysis
of physical systems (Nocedal and Wright, 2006). Before applying optimization
to a problem, it is necessary to identify an objective function, which depends
on some characteristics of the system, named variables or unknowns. These
variables are often subject to constraints, and the goal of the optimization is to
find the variables that optimize the objective function. The objective function,
the variables, and the constraints for a given problem have to be identified, a
process referred to as modeling (Nocedal and Wright, 2006). It is challenging
to find a sufficient mathematical description of a physical system (Athans and
Falb, 2013). One reason for this is that mathematical models are not unique,
as they are approximations of the real world. Another reason that makes it
hard to formulate the mathematical description is that requirements such as
reliability and simplicity are hard to formulate using mathematics. Therefore,
it is important to note that the mathematical descriptions of physical systems,
or other real-life problems, are simplified models of the real world.

A standard optimization problem may be formulated accordingly (Nocedal
and Wright, 2006)

minimize
x∈Rn

f(x)

subject to ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I,

(2.43)

where x is a vector that contains the variables, f is the objective function, ci
are the constraint functions, and E and I are the sets of equality and inequality
constraints, respectively.

To solve the optimization problem, an optimization algorithm is usually ap-
plied to the problem. There exist several types of optimization algorithms, and
each of the algorithms is specially adapted to solve a particular optimization
problem (Nocedal and Wright, 2006). Therefore, it is important to choose the
appropriate optimization algorithm when aiming to solve a problem, as it may
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affect whether the optimal solution is found or not, and if a solution exists -
whether it is found fast or slow (Nocedal and Wright, 2006).

An important optimization algorithm, and one of the fundamental tools
in optimization and control, is Newton’s method. The key idea of Newton’s
method is as follows (Gros and Diehl, 2019): suppose F : Rn → Rn is a contin-
uously differentiable function, and that the aim is to solve the nonlinear system
equation

F (x) = 0, (2.44)

where x 7→ F (x). Starting from an initial guess x0, Newton’s method recursively
produces a series of iterates {xk}∞k=0 by linearizing (2.44) at the current iterate

F (xk) +
∂F

∂x
(xk)(x− xk) = 0, (2.45)

where the term ’iterate’ means the improved estimate of the variable x (Nocedal
and Wright, 2006). The next iterate can be computed explicitly by solving the
linear system, which is Newton’s method

xk+1 = xk −
(
∂F

∂x
(xk)

)−1
F (xk), (2.46)

and the stopping criteria for the method could be to terminate when |xk+1 −
xk| < δ, or when |f(xk+1)| < δ (Weerakoon and Fernando, 2000). Here, δ is a
user-defined threshold value.

An important assumption in (2.46) is that the Jacobian J(xk) , ∂F
∂x

(xk) is
invertible, and a more general formulation of Newton’s method can be made
using an invertible approximation Mk of J(xk) (Gros and Diehl, 2019)

xk+1 = xk −M−1
k F (xk). (2.47)

The local convergence of the iterates in (2.47) may be fast or slow, or they
may not converge at all, depending on how well Mk approximates Jk.

From (2.46) it is clear that the derivative of the function F is needed. Hence,
Newton’s methods require that the derivative of F exists. Therefore, it is nec-
essary to make sure that when applying Newton’s method to a set of equations
or a system model, the equations have to be differentiable. For instance, the
maximum function, max(x), is neither smooth nor differentiable, and Newton’s
method is therefore not applicable to the function. The maximum function may
be rewritten into a smooth and differentiable function to overcome this issue
on the following form

max(x1, x2) =
1

2
·
(

(x1 + x2) +
√

(x1 − x2)2 + α
)
, (2.48)

where α is a parameter to be tuned.
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An example of a Newton-based optimization method, which is particularly
effective when solving nonlinear problems, is the Sequential Quadratic Pro-
gramming (SQP) approach (Gros and Diehl, 2019; Nocedal and Wright, 2006).
SQP approaches to the next iterate by solving quadratic subproblems and is
appropriate for solving both large and small optimization problems (Nocedal
and Wright, 2006). Another Newton-based method that is useful for nonlinear
problems is the interior-point algorithm named IPOPT (Wächter and Biegler,
2006). Interior-point algorithms are competitive when applied to small opti-
mization problems and without competition when applied to problems of larger
scale (Gondzio, 2012).

The optimal control problem in (2.43) can be solved using direct methods,
which approximate the continuous problem by a sequence of finite nonlinear
programs (NLP) (Gros and Diehl, 2019). Then, the sequence of NLPs can be
solved using NLP solvers and reveals why the direct approach is often character-
ized as "first discretize, the optimize" (Gros and Diehl, 2019). Three approaches
used for discretization of continuous optimal control problems are single shoot-
ing, multiple shooting, and collocation (Gros and Diehl, 2019). In the two fol-
lowing paragraphs, single shooting and multiple shooting are explained using
direct optimization.

Direct single shooting first discretizes the control on a fixed grid, for instance
t0 < t1 < . . . < tN−1 < tN = Tf , where f denotes the final time (Diehl et al.,
2006). Then, a numerical solver is applied to solve an initial value problem
with the discretized controls, to obtain the state trajectory over the time horizon
(Diehl et al., 2006).

Direct multiple shooting transcribes a continuous optimal control problem
into NLPs, by discretizing the control on a chosen grid t0 < t1 < . . . < tN−1 <
tN = Tf (Bock and Plitt, 1984), where f denotes the final time. The states are
computed at each subinterval, and a matching condition ensures continuity of
the solution trajectory (Bock and Plitt, 1984). The matching condition essen-
tially says that the state value at the beginning of control intervalm has to equal
the state value at the end of control interval m − 1, i.e., it closes the shooting
gaps and enforces continuity (Bock and Plitt, 1984; Gros and Diehl, 2019). Di-
rect single shooting essentially does the same, only with N=1 (Bock and Plitt,
1984).

Continuous and discrete time optimization

Dynamic systems evolve over time, and time can be expressed using two differ-
ent concepts, namely continuous time and discrete time (Gros and Diehl, 2019).
Physical time is continuous, and it is common to express the dynamics of many
biological and technical systems using continuous time (Gros and Diehl, 2019).
The use of discrete time often makes sense for digital systems (Gros and Diehl,
2019).
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In continuous optimization problems, the variables used in the objective
function and the constraints are continuous, i.e., the variables are real num-
bers (Nocedal and Wright, 2006). On the other hand, some optimization prob-
lems may contain variables that only make sense if they take on integer, or
even binary, values. Such optimization problems are called discrete optimiza-
tion problems, and the defining feature of such problems is that the unknown
variables are drawn from a finite, but often very large, set (Nocedal and Wright,
2006). Normally, it is easier to solve continuous optimization problems due to
the smoothness of the objective function and constraint functions. This charac-
teristic enables the use of information from the objective and constraints at a
particular point x to gather information about the function’s behaviour at every
point near x (Nocedal and Wright, 2006). Conversely, in discrete optimization
problems, the behaviour of the objective function and constraint functions may
differ significantly, moving from one feasible point to the next, even though the
two points are "close" to one another (Nocedal and Wright, 2006).

Constrained and unconstrained optimization

Optimization problems may be classified according to the linearity, or nonlin-
earity, of the objective function (Nocedal and Wright, 2006). Moreover, the
problems can be classified according to the number of variables present in the
problem (Nocedal and Wright, 2006). One essential distinction between opti-
mization problems is between those having constraints on the variables and
those that do not.

Constrained optimization problems model problems in which there are ex-
plicit constraints on the variables, and these constraints play an important role
(Nocedal and Wright, 2006). The optimization problem in (2.43) is a con-
strained optimization problem, with constraint functions ci(x). The constraint
functions could have varying complexity, ranging from simple linear bounds
to nonlinear inequalities that represent complex relations between the sys-
tem variables. It is possible to remove the constraints from a constrained op-
timization problem by replacing them with a penalizing term which is added
to the objective function, thereby discouraging constraint violations (Nocedal
and Wright, 2006). Removing the constraints from a constrained optimization
problem yields an unconstrained optimization problem. In unconstrained op-
timization problems, there are no constraints on the variables, i.e., for (2.43)
this means that E = I = ∅ (Nocedal and Wright, 2006).

Global and local optimization

The global solution to an optimization problem refers to the point which yields
the optimal objective function value among all feasible points, whereas the
local solution yields an objective function value that is smaller than all feasible
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nearby points (Nocedal and Wright, 2006). For convex optimization problems,
and especially linear problems, a local solution is also a global solution - but for
many problems, it is difficult to recognize a global solution and even harder to
locate the solution. For nonlinear optimization problems, there may exist local
solutions that are not global solutions (Nocedal and Wright, 2006).

Indirect approach to optimal control problems

Direct and indirect approaches are two different methods used to solve opti-
mal control problems (Gros and Diehl, 2019), and the direct approach was
discussed previously in this section. Indirect methods use necessary optimal-
ity conditions to eliminate the controls from the optimal control problem and
derive a boundary value problem (BVP) using ordinary differential equations
(ODE) (Gros and Diehl, 2019). The necessary optimality conditions for contin-
uous time optimal control problems are described by Pontryagin’s Maximum
(Minimum) Principle (Gros and Diehl, 2019; Pontryagin, 1962). After the BVP
has been formulated, it has to be solved numerically, which could be done using
shooting techniques or collocation (Gros and Diehl, 2019). Because the indirect
approach first identifies the optimality conditions of a problem in continuous
time and then discretizes the problem to compute a numerical solution, it is of-
ten referred to as "first optimize, then discretize" (Gros and Diehl, 2019). There
are two major disadvantages of the indirect approach (Gros and Diehl, 2019).
The first relates to the underlying differential equations, which are often hard
to solve due to strong nonlinearities and instabilities. The second disadvantage
relates to the changes in control structure, which could be difficult to handle as
they often require a completely new setup of the problem. One important ad-
vantage of direct approaches compared to indirect approaches is that the direct
approaches can easily treat all sorts of constraints (Gros and Diehl, 2019).

2.5.2 Optimal spacecraft attitude control

Optimal control has been applied for spacecraft attitude control in multiple
cases and using different cost functions. For instance, a time optimal attitude
control problem has been studied, where the objective is to minimize the time
it takes to rotate a rigid body to a desired attitude and angular velocity while
subject to control input constraints (Lee et al., 2008). Other time optimal atti-
tude control problems have been studied, one where the objective is to orient
a spacecraft from an initial attitude and angular velocity to a final attitude
and angular velocity in minimum time, using two independent control torques
(Shen and Tsiotras, 1999), and a second where the objective is the same as
before only using reaction wheels (Zhang, 2010).

A cost function based on angular velocity has been used to optimize the
attitude motion planning of a spacecraft, with pointing and actuator constraints
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(Biggs and Colley, 2016). Control Lyapunov functions, applied together with
optimal sliding mode controllers, have been studied in the regards of attitude
tracking of spacecraft (Pukdeboon and Zinober, 2012).

In small satellites, the available power is limited due to the little surface area
to excess heat, and the electrical power that a small satellite can produce is
limited (Schaub and Lappas, 2009). Motivated by the limited power in a small
satellite, a power-optimal reaction wheel motor torque distribution strategy has
been developed (Schaub and Lappas, 2009). This distribution strategy aims
to minimize the instantaneous requirements for electrical power in the small
satellite and yields a power-optimal attitude control.

During the operation of a spacecraft, several attitude maneuvers are nec-
essary to perform tasks such as scientific observation and communication (Wu
and Han, 2019). Quite a few constraints limit the feasible region of a spacecraft
during attitude maneuvers. For instance, the direction of the solar array must
satisfy the necessary energy supply, sensitive components and sensors might be
damaged by light and radiation, and the path may be limited by the bounds on
angular velocities and actuator input torque. Motivated by these restrictions,
an objective has been studied that aims to find an energy-optimal attitude ma-
neuver path for rigid body spacecraft under complex constraints (Wu and Han,
2019).

A spacecraft is subject to a wide range of external disturbances during its ma-
neuvering phase, which motivates the use of a robust controller when designing
an attitude control system for a spacecraft (Banerjee et al., 2019; Park, 2005).
In addition to being robust, the controller should satisfy the constraints put on
the spacecraft, i.e., it should be optimal (Banerjee et al., 2019). A robust and
optimal control method has been suggested for three-axis attitude control of a
spacecraft with external disturbances, in which the control law is based on the
minimax approach and the inverse optimal approach (Park, 2005). However,
Banerjee et al. (2019) argues that integrating both robustness and optimality
in the same control law poses a serious challenge, as these two terms conflict
one another in a control system. Therefore, these challenges have been solved
in two steps. First, a technique called the Pseudospectral method (PSM) has
been applied to obtain the optimal control part of the control system (Banerjee
et al., 2019). Secondly, the optimal control has been integrated with sliding
mode control (SMC) to ensure an optimal-robust controller for the attitude
control of a spacecraft (Banerjee et al., 2019).
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Chapter 3

Maximum Hands-Off Control

3.1 Introduction

Maximum hands-off control is a type of control algorithm with control values
which are most often zero, i.e., the control values are sparse, but still manage
to achieve the control objectives (Chatterjee et al., 2016). A hands-off control
holds the control values at exactly zero over a time interval, and the maximum
hands-off control maximizes the time interval over which the control input is
exactly zero (Nagahara et al., 2015). The works presented in Nagahara et al.
(2013), Nagahara et al. (2015), and Nagahara (2020) gives a thorough in-
troduction to the maximum hands-off controller, and the work in Nagahara
et al. (2015) is an extension of the work in Nagahara et al. (2013). Naga-
hara (2020) presents the maximum hands-off controller within a textbook ded-
icated to sparsity methods and summarizes the works in Nagahara et al. (2013)
and Nagahara et al. (2015). This thesis will primarily refer to Nagahara et al.
(2015) which essentially also cover the theoretical material presented in Naga-
hara et al. (2013) and Nagahara (2020).

Nagahara et al. (2015) argues that applications within the automotive in-
dustry, railway vehicles, wireless communication, and networked control could
benefit from hands-off control. For instance, a start-stop system in a car that
shuts down the engine automatically to prevent it from idling exhibits hands-
off behavior (Kirchhoff et al., 2010). A similar feature is used in hybrid cars;
when the car is not moving, or the speed is below a given threshold, the fuel
engine is stopped, and the electric motor is used (Chan, 2007; Shakouri et al.,
2013). Using hands-off control in vehicles could reduce fuel consumption and
reduce the CO and CO2 emissions (Nagahara et al., 2015). Moreover, hands-
off control is used to reduce energy consumption in railway vehicles (Liu and
Golovitcher, 2003; Khmelnitsky, 2000). Application of hands-off control could
reduce the control effort dramatically, as the control value is held exactly zero
over a time interval (Nagahara et al., 2015).
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Maximum hands-off control, or what is frequently called sparsity control, is
often approximated through the L1-optimal control problem, and it is of in-
terest in several applications (Feng et al., 2016). Using L1-optimal control to
approximate maximum hands-off control is what is done in Nagahara et al.
(2015). Applications within machine learning and image processing, includ-
ing compressed sensing (Donoho, 2006), feature selection (Ng, 2004), image
restoration (Dong and Zhang, 2013), and trend filtering (Kim et al., 2009) seek
to solve sparsity minimization problems. The use of the L1-norm to approximate
the maximum hands-off controller is discussed further in Section 3.4.

The rest of this chapter is organized as follows. Section 3.2 contains the
mathematical preliminaries required for understanding the concepts behind
maximum hands-off control. Section 3.3 formulates the maximum hands-off
control problem using the notation from Section 3.2. Section 3.4 gives a brief
summary of L1-optimal control, whereas Section 3.5 discusses the theoreti-
cal relation between maximum hands-off control and L1-optimal control. Sec-
tion 3.6 presents various reformulations of the maximum hands-off control
problem. To become more familiar with the maximum hands-off controller,
some examples are presented in Section 3.7.

3.2 Mathematical preliminaries

Some mathematical preliminaries need to be in place in order to understand
the concept and theoretical derivation of maximum hands-off control. Naga-
hara et al. (2015) gives a detailed review of the mathematics behind maximum
hands-off control, and the content presented in this section is based on the
review by Nagahara et al. (2015).

The L1-, L2-, and L∞-norm of a vector x ∈ Rn are defined as

‖x‖1 ,
n∑

i=1

|xi|, (3.1a)

‖x‖2 ,

√√√√
n∑

i=1

|xi|2, (3.1b)

‖x‖∞ , max
i=1,...,n

|xi|, (3.1c)

respectively. The Lp-norm, with p ∈ [1,∞), for a vector of continuous-time
signals u(t) over the time interval [0, T ) is defined as

‖u‖p ,
(∫ T

0

‖u(t)‖pdt
) 1

p

. (3.2)
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The norm ‖ · ‖ inside the integral in (3.2) can be any norm p-norm for p ∈
[1,∞] (Khalil, 2002), i.e., all norms presented in (3.1) could be used in the
definition of ‖ · ‖p. If p ∈ (0, 1), in (3.2), then ‖ · ‖p is not a norm as it fails to
satisfy the triangle inequality (Nagahara et al., 2015).

The support of a function is the set of points where the function takes on
nonzero values (Royden and Fitzpatrick, 1988), and the support set of a func-
tion u(t), is defined on the time interval t ∈ [0, T ] as (Nagahara et al., 2015)

supp(u(t)) , {t ∈ [0, T ] : u(t) 6= 0}. (3.3)

By using (3.3), the L0-norm for a vector of continuous-time signals u(t) can
be defined accordingly:

‖u‖0 , µ(supp(u(t))), (3.4)

where µ(·) is the Lebesgue measure.
The Lebesgue measure is explained thoroughly in Royden and Fitzpatrick

(1988), and it can be summarized as follows: the length of an interval I bounded
by the endpoints a and b is defined to be `(I) = b− a, whereas if the interval I
is unbounded its length is defined to be `(I) = ∞. The Lebesgue measure ex-
tends the concept of "length" to subsets of the n-dimensional Euclidean space.
For n=1, the Lebesgue measure corresponds to the standard measure of length.
While the Lebesgue measure gives the length of which a signal is defined, the
second part of the L0-norm, the support, returns a positive value when the sig-
nal is different from zero, and zero otherwise. Following, the signal’s L0-norm
is the total length for which a continuous-time signal takes on nonzero values,
i.e., the sparsity of the signal, which is clear from the definition of the L0-norm
in (3.4). In (3.4) the Lebesgue measure "counts" the length of the support of
the signal u(t), i.e., the Lebesgue measure sums up the parts where the control
signal is nonzero. Note that the L0-"norm" is not an actual norm because it is
not positive homogeneous (Nagahara et al., 2015).

3.3 Formulation of the Maximum Hands-Off Con-
trol Problem

The maximum hands-off control problem is formulated in this section. Briefly
explained, the maximum hands-off control is the control that maximizes the
time interval over which the control input is exactly zero. To put it more pre-
cisely, the controller minimizes the Lebesgue measure of the support, or the
L0-norm, which was defined in Section 3.2.

Nagahara et al. (2015) considers a general nonlinear system when introduc-
ing the maximum hands-off controller
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ẋ(t) = f(x(t)) +
m∑

i=1

gi(x(t))ui(t), t ∈ [0, T ], (3.5)

where x(t) is the n-dimensional state vector, ẋ(t) = dx(t)
dt

, ui(t) are the control
inputs, m is the total number of control inputs, and f(·) and gi(·) are functions
on Rn.

The vector representation u(t) denotes the vector of the control inputs ui(t),
and it aims to drive the state, x(t), from an initial state, x(0) = x0, to a final
state, x(T ) = 0, at time t = T . Moreover, the magnitude of the control input,
u(t), is constrained by

‖u(t)‖∞ ≤ ulimit, t ∈ [0, T ], (3.6)

where ulimit is the constraint on the magnitude of the control input. Nagahara
et al. (2015) use ulimit = 1, i.e., ‖u(t)‖∞ ≤ 1, in their work.

If a control {u(t) : t ∈ [0, T ]} satisfies (3.6), and drives the state, x(t), from
the initial state to the final state within the desired time, the control is called
admissible (Nagahara et al., 2015). The set of all admissible controls is denoted
by U . Another way to formulate the purpose of the maximum hands-off con-
troller is that it aims to find the sparsest control among all admissible controls
in U (Nagahara et al., 2015).

To find the sparsest control among all admissible controls for the system in
(3.5), the L0-cost function has to be minimized, and the L0-cost function is
defined using the L0-norm as (Nagahara et al., 2015)

J0(u) ,
m∑

i=1

λi‖ui‖0, (3.7)

where λi are positive weights. The control that minimizes (3.7) is called the
maximum hands-off control, or the L0-optimal control, and it is the sparsest con-
trol among all admissible controls (Nagahara et al., 2015).

The L0-cost function in (3.7) is discontinuous and nonconvex (Nagahara,
2020). Solving discontinous and nonconvex optimization problems are gener-
ally hard (Chatterjee et al., 2016), and solving the L0-optimal control problem
is NP-hard (Candes and Tao, 2005; Feng et al., 2016). Several relaxation meth-
ods and reformulations have been suggested to (3.7). Nagahara et al. (2015)
replaces the L0-norm by the L1-norm, which is studied more thoroughly in Sec-
tion 3.4. Feng et al. (2016), on the other hand, reformulates the L0-optimal
control problem using a set of complementary constraints, an idea that is ex-
plored further in Section 3.6.
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3.4 L1-Optimal Control

The L0-optimal control problem is NP-hard, and several reformulations of the
problem have been suggested, as mentioned in Section 3.3. One reformula-
tion that has been suggested replaces the L0-norm, ‖u‖0, in (3.7), with the
L1-norm, ‖u‖1 (Candes and Tao, 2005; Nagahara et al., 2015). This approxi-
mation yields an L1-optimal control problem. L1-optimal control is discussed
in detail in Athans (1963) and Athans and Falb (2013), and a brief review of
these works are given in Nagahara et al. (2015), which forms the basis for
this section. Note that the approach used in Nagahara et al. (2015) to solve
the L1-optimal control problem is the indirect approach, which is discussed in
Section 2.5.

The L1-optimal control problem is formulated in Nagahara et al. (2015):
for the system in (3.5), find an admissible control {u(t) : t ∈ [0, T ]} ∈ U that
minimizes the L1-cost function, which is defined as

J1(u) ,
m∑

i=1

λi‖ui‖1 =
m∑

i=1

λi

∫ T

0

|ui(t)|dt, (3.8)

where λi are positive weights and m is the total number of control inputs. The
L1-optimal control problem based on (3.8) can be formulated as follows

minimize
u

J1(u) ,
m∑

i=1

λi‖ui‖1. (3.9)

The relation between the maximum hands-off control and the L1-optimal
control can be established by first considering the Hamiltonian function for the
L1-optimal control problem, which is defined as (Nagahara et al., 2015)

H(x,p,u) =
m∑

i=1

λi|ui|+ p>
(

f(x) +
m∑

i=1

gi(x)ui

)
, (3.10)

where p is the costate vector, λi are positive weights, m is the number of control
inputs, and gi(·) are functions on Rn. Pontryagin’s minimum principle (Pontrya-
gin, 1962) claims that there exists a costate p∗ such that an optimal control u∗

satisfies

H(x∗,p∗,u∗) ≤ H(x∗,p∗,u), (3.11)

for all admissible u, where x∗ is the optimal state resulting from the optimal
control u∗. The costate p∗ and the optimal state x∗ satisfies the following canon-
ical equations (Nagahara et al., 2015)
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ẋ∗ = f(x∗(t)) +
m∑

i=1

gi(x
∗(t))u∗i (t)

ṗ = −f ′(x∗(t))>p∗(t)−
m∑

i=1

u∗i (t)g
′
i(x
∗(t))>p∗(t),

(3.12)

where ẋ∗ = dx∗
dt

and ṗ∗ = dp∗

dt
, and f ′(·) and g′i(·) are the Jacobians of f(·)

and gi(·), respectively. The canonical equations are subject to the boundary
conditions x∗(0) = x0 and x∗(T ) = 0.

The optimal control input vector u∗ = [u∗1, . . . , u
∗
m] of (3.10) is given by (Na-

gahara et al., 2015) as

u∗i (t) = −Dλi(gi(x∗(t))>p∗(t)), (3.13)

for t ∈ [0, T ], where Dλ(·) is the dead-zone function. The graph of the dead-
zone function can be seen in Fig. 3.1, and the function is defined as (Nagahara
et al., 2015)

Dλ(z) =





−1, if z < −λ
0, if − λ < z < λ,

1, if λ < z,

Dλ(z) ∈ [−1, 0], if z = −λ,
Dλ(z) ∈ [0, 1], if z = λ.

(3.14)

Figure 3.1: Dead-zone function, Dλ(z), for z ∈ [−5, 5].

According to Nagahara et al. (2015), the L1-optimal control problem, in
(3.8), is called normal if the set

Ti , {t ∈ [0, T ] : |λ−1i gi(x
∗(t))>p∗(t)| = 1} (3.15)
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is countable for i = 1, . . . ,m. If the L1-optimal control problem is normal, then
the components of the optimal control, u∗(t), are piecewise constant. The com-
ponents are also ternary, which means that they take on the values -1, 1 or 0
for almost all t ∈ [0, T ]. The ternary property of the optimal control, u∗(t), is
called "bang-bang", and it connects the L1-optimal control and the maximum
hands-off control (Nagahara et al., 2015). The connection between L1-optimal
control and the maximum hands-off control is explored further in Section 3.5.

3.4.1 Slack formulation

This section presents a method to solve the L1-optimal control problem using
numerical solvers, i.e., using a direct approach to optimization. A cost func-
tion that includes an L1-norm is non-differentiable, and to obtain a reasonably
fast and guaranteed convergence when deploying Newton algorithms on non-
differentiable problems; it is necessary to be careful (Gros and Diehl, 2019).
Gros and Diehl (2019) suggests a reformulation of a cost function involving
the L1-norm, which removes the non-smoothness from the cost function and
place it in the inequality constraints instead. The following example illustrates
how an L1-optimal control problem can be reformulated. First, a minimization
problem is formulated using a cost function based on the L1-norm

minimize
u

‖u‖1
subject to g(u) = 0,

(3.16)

where g(·) denotes a constraint function of u. According to Gros and Diehl
(2019), (3.16) can be reformulated by introducing an additional set of slack
variables, s ∈ Rn. The slack variables have the same dimension as the vector
subjected to the L1-cost function; in this case the control input vector u. Then,
the L1-norm is reformulated by confining the control input u between the slack
variables −s and s accordingly

− si ≤ ui ≤ si, (3.17)

where the subscript i denotes each element of s and u. If all constraints are
active, then

|ui| = si, (3.18)

and

‖u‖1 =
n∑

i=0

si = 1>s. (3.19)

Using (3.17), (3.18), and (3.19) , the optimal control problem in (3.16) can
be rewritten as
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minimize
u

1>s

subject to − s ≤ u ≤ s,

g(u) = 0.

(3.20)

The reformulation of the L1-optimal control problem using slack variables is
also discussed and used by Candes and Tao (2005).

3.5 Connection between L1-optimal control and L0-
optimal control

The L1-optimal control problem has been frequently used as a convex relaxation
of the L0-optimal control problem (Chatterjee et al., 2016; Nagahara et al.,
2015; Candes and Tao, 2005; Yuan and Ghanem, 2016; Zhang, 2010). This
section studies the connection between the two optimal control problems and
starts by presenting a theorem that is fundamental to prove the connection be-
tween L0- and L1-optimality, and the theorem is given in the work by Nagahara
et al. (2015).

Theorem 1. Assume that the L1-optimal control problem, presented in (3.9),
has at least one solution and that the problem is normal. Let the optimal solu-
tion to (3.8) be a bang-bang control, and the set of optimal solutions be denoted
by U∗1 . Let U∗0 denote the set optimal solutions to the L0-optimal control prob-
lem, presented in (3.7). Then U∗1 is also L0-optimal, and U∗1 = U∗0 (Nagahara
et al., 2015).

Proof. From the assumption, the optimal control U∗1 is non-empty. Since U∗1 is
an admissible control and non-empty, the set of admissible controls U(T,x0)
is also non-empty. Moreover, U∗0 ⊂ U(T,x0). This proof first shows that U∗0 is
non-empty. Then, it is shown that U∗1 = U∗0 .

For any admissible control u ∈ U(T,x0), the following holds

J1(u) =
m∑

i=1

λi

∫ T

0

|ui(t)|dt =
m∑

i=1

λi

∫

supp(ui)

|ui(t)|dt ≤
m∑

i=1

λi

∫

supp(ui)

1dt = J0(u).

(3.21)
Consider an arbitrary u∗1 ∈ U∗1 . From the assumption, the L1-optimal control

problem is normal and the optimal control values u∗1,i in u1 takes on values ±1
and 0 for almost every t ∈ [0, T ], which implies the following

J1(u
∗
1) =

m∑

i=1

λi

∫ T

0

|u∗1,i(t)|dt =
m∑

i=1

λi

∫

supp(u∗1,i)
1dt = J0(u

∗
1). (3.22)
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(3.21) and (3.22) shows that u∗1 minimizes J0, and that u∗1 ∈ U∗0 . This shows
that U∗0 is non-empty and that U∗1 ⊂ U∗0 .

On the other hand, let u∗0 ∈ U∗0 ⊂ U(T,x0), and let u∗1 ∈ U∗1 ⊂ U(T,x0). The
L1-optimality of u∗1 and (3.22) yields

J0(u
∗
1) = J1(u

∗
1) ≤ J1(u

∗
0). (3.23)

The L0-optimality of u∗0 and (3.21) yields

J1(u
∗
0) ≤ J0(u

∗
0) ≤ J0(u

∗
1). (3.24)

(3.23) and (3.24) reveals that J1(u∗1) = J1(u
∗
0). Thus, u∗0 minimizes J1. Con-

sequently, u∗0 ∈ U∗1 and U∗0 ⊂ U∗1 (Nagahara et al., 2015).

Theorem 1 proposes the use of L1-optimal control to find the L0-optimal
solution. Using an L1-cost to obtain a sparse solution in the control input is
a well-known result, under "nonsingularity" assumptions on the control sys-
tem (Chatterjee et al., 2016). However, it is uncertain if L1-optimization yields
sparse results when the problem is singular (Chatterjee et al., 2016). Feng et al.
(2016) argues that, even though theoretical results exist that provide condi-
tions under which an optimal solution to the L1-optimal control problem is also
an optimal solution to the L0-optimal control problem, optimal solutions to the
L1-problem yields suboptimal solutions to the L0-problem.

3.6 Different formulations for approximating the
L0-optimal control problem

Using L1-optimal control to solve the L0-optimal control problem is only one
among several approaches. Table 3.1 summarizes the main existing algorithms
used to solve the L0-norm minimization problem.

Method (reference) Description
greedy descent methods (Mallat and Zhang, 1993) only for smooth, typically quadratic, objective
L1 norm relaxation (Candes and Tao, 2005) ‖x‖0 ≈ ‖x‖1
k-support norm relaxation (Argyriou et al., 2012) ‖x‖0 ≈ ‖x‖k-sup , max0<v≤1,〈v,1〉≤k(

∑
i x)

2
i /vi)

1/2

k-largest norm relaxation (Yu et al., 2014) ‖x‖0 ≈ ‖x‖k-sup , max0<v≤1,‖v‖1≤k〈v,x〉
SOCP convex relaxation (Chan et al., 2007) ‖x0 ≤ k =⇒ ‖x‖1 ≤

√
k‖x‖2

SDP convex relaxation (Chan et al., 2007) ‖x0 ≤ k =⇒ X = xx>, ‖X‖1 ≤ ktr(X)
Schatten Lp approximation (Ge et al., 2011) ‖x‖0 ≈ ‖x‖p
re-weighted L1 approximation (Candes et al., 2008) ‖x‖0 ≈ 〈1, ln(|x|+ ε)〉
L1−2 DC approximation (Yin et al., 2015) ‖x‖0 ≈ ‖x‖1 − ‖x‖2
0-1 mixed integer programming (Bienstock, 1996) {‖x‖0 : ‖x‖∞ ≤ λ} ⇔ {minv∈{0,1}〈1,v〉 : |x| ≤ λv}
iterative hard shreadholding MPEC (Beck and Eldar, 2013) 0.5‖x− x′‖22, s.t.‖x‖0 ≤ k
non-separable MPEC (Yuan and Ghanem, 2016) ‖x‖0 = minu‖u‖1, s.t.‖x‖1 = 〈x,u〉, −1 ≤ u ≤ 1
separable MPEC (Yuan and Ghanem, 2015, 2016) ‖x‖0 = minv〈1,1− v〉, s.t.|x| � v = 0,0 ≤ v ≤ 1

Table 3.1: L0-norm optimization techniques (Yuan and Ghanem, 2016).
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Another approach to solve the L0-optimal control problem is presented in
Feng et al. (2016). The work presented by Feng et al. (2016) is of particular
interest, as they aim to find improved solutions to the L0-optimal control prob-
lem by reformulating the problem in terms of complementarity constraints and
show that their solutions are sparser than the L1-approximation. The rest of
this section discusses the reformulations presented in Feng et al. (2016), and
the following L0-problem is considered

minimize
x∈Rn

‖x‖0
subject to Ax ≥ b

Cx = d,

(3.25)

where x ∈ Rn is the state vector, A ∈ Rm×n and C ∈ Rk×n are matrices, and
b ∈ Rm and d ∈ Rk are given vectors.

3.6.1 Full complementarity

One way to reformulate the L0-norm is through the use of complementarity
constraints. First, the state vector x is divided into its non-negative parts, x+,
and non-positive parts, x−, as follows, x = x+−x−. Then, a vector ξ ∈ [0, 1]n is
defined, being the complementary vector to |x|, the absolute value vector of x.
This leads to the full complementarity formulation of (3.25) (Feng et al., 2016)

minimize
x,x±,ξ

1>N(1N − ξ) =
N∑

j=1

(1− ξj)

subject to Ax ≥ b

Cx = d

x = x+ − x−

0 ≤ ξ ⊥ x+ + x− ≥ 0

x± ≥ 0

ξ ≤ 1N ,

(3.26)

with 1N being the N -vector of ones, N is the number of control intervals, the
scalar 1 − ξj indicates the support of the state xj, and 1N − ξ is the support
vector of x. The support 1 − ξj of the state xj in (3.26) essentially plays the
same role as the support, supp(·), in (3.3). Moreover, the sum-sign used to add
the supports 1− ξj in (3.26) corresponds to the Lebesgue measure µ(·) in (3.4).
If x is an optimal solution to the problem presented in (3.25), and x± , max(0,
±x), and
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ξj ,
{

0, if xj 6= 0

1, if xj = 0,
(3.27)

for j = 1, . . . , N , then (x±, ξ) is an optimal solution to the minimization prob-
lem in (3.26) with objective function equal to ‖x0‖ (Feng et al., 2016).

The complementarity condition, 0 ≤ ξ ⊥ x+ + x− ≥ 0, in (3.26), can be
reformulated to provide a smooth and continuous NLP formulation. When re-
formulating the complementarity condition, the notation 0 ≤ y ⊥ z ≥ 0 is used
for simplicity purposes. One reformulation of the complementarity condition,
called the componentwise or Hadamard complementarity, is given in Feng et al.
(2016) as

(y, z) ≥ 0 and y ◦ z ≤ 0,

where y ◦ z denotes the Hadamard product of the vectors y and z, i.e., the
componentwise product.

3.6.2 Half complementarity

The full complementarity problem, in (3.26), may be formulated more simply.
This formulation is called the half complementarity formulation (Feng et al.,
2016)

minimize
x,ξ

1>N(1N − ξ) =
N∑

j=1

(1− ξj)

subject to Ax ≥ b

Cx = d

0 ≤ ξ ≤ 1N

ξ ◦ x = 0.

(3.28)

The definition of ξ, from (3.27), leads to the equivalence between the minimiza-
tion problem in (3.25), and the half complementarity formulation in (3.28). As
there is no non-negativity requirement on the variable x in (3.28), the con-
straints are not truly of the complementarity type. Nevertheless, the constraint
ξ ◦x = 0 ensures that either ξi = 0 or xi = 0, or both equals zero, for all i (Feng
et al., 2016).

3.6.3 A general L0-norm minimization problem

The L0-norm and the complementarity formulations, presented in (3.26) and
(3.28), makes it possible to formulate several minimization problems as pro-
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grams with complementarity constraints (Feng et al., 2016). A general NLP
model on this form is formulated as (Feng et al., 2016)

minimize
x

f(x) + γ‖x‖0
subject to ci(x) = 0, i ∈ E

ci(x) ≤ 0, i ∈ I,
(3.29)

where E and I are two finite index sets, γ is a positive scalar, f(·) is the contin-
uously differentiable objective function and ci the continuously differentiable
constraint functions.

The NLP in (3.29) may be rewritten using an equivalent complementarity
constrained formulation, similar to the full complementarity formulation in
(3.26) (Feng et al., 2016)

minimize
x

f(x) + γ>(1N − ξ)

subject to ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ I
x = x+ − x−

0 ≤ ξ ⊥ x+ + x− ≥ 0

0 ≤ x+ ⊥ x− ≥ 0

ξ ≤ 1N ,

(3.30)

where γ is a positive vector. The complementarity constrained formulation in
(3.30) is a Mathematical Program with Complementarity Constraints (MPCC)
because the objective function and the constraint functions are nonlinear. The
interested reader is referred to Fletcher and Leyffer (2004) for an introduction
of how to solve mathematical programs with complementarity constraints as
nonlinear programs.

The NLP in (3.29) may also be reformulated using an approach similar to
the half complementarity formulation in (3.28) (Feng et al., 2016)

minimize
x

f(x) + γ>(1N − ξ)

subject to ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ I
0 ≤ ξ ≤ 1N

ξ ◦ x = 0.

(3.31)

3.6.4 Relaxed formulations

In general, exact reformulations of an MPCC does not lead to a well-posed NLP
(Feng et al., 2016). The complementarity constraints in the MPCC are therefore



Chapter 3. Maximum Hands-Off Control 37

relaxed, which result in NLPs that have better properties. A relaxation of (3.31)
is given as (Feng et al., 2016)

minimize
x

f(x) + γ>(1N − ξ)

subject to ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ I
ξ ≤ 1N

ξ ◦ x ≤ ε1N

−ξ ◦ x ≤ ε1N

ξ ≥ 0.

(3.32)

It is desirable to investigate the properties of the relaxed problem when ε
approaches zero because then the complementarity constraints would equal
zero. For ε = 0, the relaxed problem in (3.32) equals the problem in (3.31).

3.7 Examples

A few test examples were carried out to become familiar with the maximum
hands-off controller and the L1-norm reformulation of the controller. Two sys-
tems, one linear and one nonlinear system, were investigated for each con-
troller.

3.7.1 Linear example problem

The linear example problem is used by Nagahara (2020) when investigating
the L1-norm approach to the maximum hands-off control problem. The linear
system is sometimes referred to as the double integrator and defined as

ẋ1(t) = x2(t)

ẋ2(t) = u(t),
(3.33)

with t ∈ [0, T ], where T = 5. The initial state is set to x1(0) = x2(0) = 1, the
final state is x1(T ) = x2(T ) = 0 and the control input is bounded by |u(t)| ≤ 1.

3.7.2 Nonlinear example problem

The nonlinear example is inspired by the problem presented in Andersson et al.
(2016). The system model is given as

ẋ1(t) = (1− x2(t)2)x1(t)− x2(t) + u(t)

ẋ2(t) = x1(t),
(3.34)
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with t ∈ [0, T ] where T = 10. The initial state is set to x1(0) = 0 and x2(0) =
1, the final state is x1(T ) = x2(T ) = 0 and the control input is bounded by
|u(t)| ≤ 1. The state x2 is constrained by x2(t) ≥ −0.25.

3.7.3 L1-optimal control: linear example

In this section, the linear example given in Section 3.7.1 was solved using L1-
optimal control. The L1-optimal control problem was formulated in MATLAB
and solved using CasADi, see Section 5.4.

A cost function that includes an L1-norm is non-differentiable, which was
discussed in Section 3.4. Therefore, the L1-optimal control problem was formu-
lated according to Gros and Diehl (2019), using a vector of slack variables s
and the notation presented in Section 3.4

minimize
u,x

1>s

subject to ẋ = Ax + bu,

|ui(t)| ≤ 1,

x(0) = [1, 1]>,

x(T ) = [0, 0]>,

−si ≤ ui(t) ≤ si,

(3.35)

where ẋ denotes the linear system dynamics in (3.33), x denotes the state
vector, u denotes the control input vector, ui denotes each element in u, and si
each element in the vector s. The matrix A and the vector b are given as

A =

[
0 1
0 0

]
,

b =
[
0 1

]>
.

(3.36)

Fig. 3.2 shows the resulting control input and state-space trajectory, which
resembles the results from Nagahara (2020). The shape of the optimal control
signal in Fig. 3.2.a, is very similar to the shape of a "bang-bang" control, as
the control signal changes almost instantaneously from -1 to 0 at t ≈ 1.5, and
from 0 to 1 at t ≈ 4.5, which characterizes L1-optimal control, as discussed in
Section 3.4. If the value of the control signal had changed instantaneously it
would have been on the exact form of a "bang-bang" control. From Fig. 3.2.b
it is clear that the optimal control signal moves the states from the initial state
[1, 1]> to the final state [0, 0]>.
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(3.2.a) L1-optimal control. (3.2.b) State-space trajectory.

Figure 3.2: L1-optimal control on the linear example.

3.7.4 L1-optimal control: nonlinear example

In this section, the nonlinear system presented in Section 3.7.2, was solved as
an L1-optimal control problem. The L1-optimal control problem used to solve
(3.34), was formulated as follows

minimize
u,x

1>s

subject to ẋ = f(x,u),

|ui(t)| ≤ 1,

x(0) = [0, 1]>,

x(T ) = [0, 0]>,

x(t) ≥ −0.25,

−si ≤ ui(t) ≤ si,

where ẋ denotes the nonlinear system dynamics in (3.34), x denotes the state
vector, u denotes the control input vector, ui denotes each element in u, and si
each element in the vector of slack variables s.

Fig. 3.3 shows the resulting control input and state trajectory. Fig. 3.3.a il-
lustrates the signals "bang-bang" characteristics, and Fig. 3.3.b shows that the
states change from the initial state to the final state while the constraints are
not violated.

3.7.5 L0-optimal control: linear example

In this section, the L0-optimal control approach to the problem formulated in
Section 3.7.1, is presented. The L0-optimal control problem was formulated us-
ing the relaxed approach presented in Section 3.6, and is formulated as follows
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(3.3.a) L1-optimal control. (3.3.b) State-space trajectory.

Figure 3.3: L1-optimal control on the nonlinear example.

minimize
u,ξ

(1N − ξ)1>N

subject to ẋ = Ax + bu,

|ui(t)| ≤ 1,

x(0) = [1, 1]>,

x(T ) = [0, 0]>,

ξ ≤ 1N ,

ξ ◦ u ≤ ε1N ,

−ξ ◦ u ≤ ε1N ,

ξ ≥ 0,

where ẋ denotes the linear system dynamics in (3.33), x denotes the state
vector, u denotes the control input vector, and ui each element in u, ε = 1 ·10−6,
and A and b are defined in (3.36).

Fig. 3.4 shows the resulting control input and state-space trajectory, and it is
clear that the L0-optimal control signal, or maximum hands-off control signal,
in Fig. 3.4.a, and the L1-optimal control signal in Fig. 3.2.a yield similar results.
Fig. 3.4.b shows the state-space trajectory resulting from the L0-controller. The
state-space trajectories resulting from the two controllers are similar, which
becomes clear comparing the trajectories in Fig. 3.4.b and Fig. 3.2.b.

3.7.6 L0-optimal control: nonlinear example

The nonlinear problem, from Section 3.7.2, was solved using L0-optimal con-
trol. Similar to the optimal control problem formulated for the linear problem,
presented in Section 3.7.5, the relaxed formulation of the L0-problem was used
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(3.4.a) L0-optimal control. (3.4.b) State-space trajectory.

Figure 3.4: L0-optimal control on the linear example.

to solve the nonlinear problem in this section. The optimal control problem is
formulated as follows

minimize
u,ξ

(1N − ξ)1>N

subject to |ui(t)| ≤ 1,

ẋ = f(x,u),

x(0) = [0, 1]>,

x(T ) = [0, 0]>,

ξ ≤ 1N ,

ξ ◦ u ≤ ε1N ,

−ξ ◦ u ≤ ε1N ,

ξ ≥ 0,

where ẋ denotes the nonlinear system dynamics in (3.34), x denotes the state
vector, u denotes the control input vector, and ui denotes each element in u,
and ε = 1 · 10−6.

Fig. 3.5 shows the resulting L0-optimal control and the state-space trajectory.
More specifically, the optimal control signal is shown in Fig. 3.5.a and the state-
space trajectory is shown in Fig. 3.5.b. By comparing the results in Fig. 3.5 to
the results in Fig. 3.3, the similarities between the L0-optimal control and the
L1-optimal control become apparent as the figures are almost identical.
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(3.5.a) L0-optimal control. (3.5.b) State-space trajectory.

Figure 3.5: L0-optimal control on the nonlinear example.
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Chapter 4

Spacecraft Model

In this chapter, the dynamic spacecraft model is deduced. First, the attitude rep-
resentation used for the model dynamics is presented, followed by an overview
of the angular velocity. Then, the spacecraft attitude dynamics, the system per-
turbations, the reaction wheel dynamics, and the error variables are presented.
Finally, the total system dynamics are deduced and presented. The structure of
this chapter and the deduction of the dynamic model are both inspired by the
work presented in Kristiansen et al. (2020).

4.1 Attitude representation

Unit quaternions, presented in Section 2.2.4, are used to describe the attitude
of the spacecraft. The unit quaternion, qob, denotes the attitude of {b} relative
to {o}. The rotation matrix from {o} to {b}, Rb

o, is defined in (2.40), and the
time derivative of Rb

o is given as (Egeland and Gravdahl, 2003)

Ṙb
o = S(ωbbo)R

b
o = −S(ωbob)R

b
o, (4.1)

where the angular velocity of {b} relative to {o} and represented in {b} is given
by ωbob.

The differential equation for qob, meaning the kinematic differential equation
for the spacecraft’s attitude, is given by (Egeland and Gravdahl, 2003)

q̇ob =

[
η̇ob
ε̇ob

]
=

1

2

[
−εo>b

ηobI3×3 + S(εob)

]
ωbob =

1

2
T(qob)ω

b
ob, (4.2)

where T(·) denotes the angular velocity transformation matrix.



44 Chapter 4. Spacecraft Model

4.2 Angular velocity

When analysing the attitude of the spacecraft, three different angular veloci-
ties are of interest, namely ωbob, which is the angular velocity of {b} relative to
{o}, ωbio, which is the angular velocity of {o} relative to {i}, and ωbib, which is
the angular velocity of {b} relative to {i}. The angular velocities relate to one
another as follows

ωbob = ωbib − ωbio = ωbib −Rb
oω

o
io. (4.3)

The angular velocity ωoio is defined as (Oland and Schlanbusch, 2009)

ωoio = Ro
i

S(ri)vi

(ri)>ri
. (4.4)

Moreover, the inertial acceleration of the spacecraft is defined as

v̇i = − µ

‖ri‖32
ri, (4.5)

where µ is the standard gravitational parameter of the Earth and ‖ri‖2 denotes
the 2-norm of ri. The rate of change for ri is given as

ṙi = vi. (4.6)

4.3 Attitude dynamics

The total system inertia of the spacecraft rigid body, J ∈ R3×3, is defined as

J = Js + AJwA>, (4.7)

where Js ∈ R3×3 denotes the inertia of the spacecraft rigid body excluding the
inertia about the spinning axes of the reaction wheels, and Jw ∈ Rn×n denotes
the inertia matrix of the reaction wheels about the spinning axes, where n is
the number of reaction wheels.

The total angular momentum of the spacecraft is defined as (Krogstad and
Gravdahl, 2006)

Hb
s = Jωbib + AJwω

w
bw. (4.8)

Applying Euler’s second axiom,
id
dt
~H =

∑
~τ , to (4.8) yields the rigid body

dynamics

id

dt
Hb
s = J

bd

dt
ωbib + AJw

wd

dt
ωwbw + S(ωbib)H

b
s = τ bext, (4.9)
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where τ bext is the external perturbation torque acting on the spacecraft. The
torque vector, τ bext, would also include torque produced by actuators on the
spacecraft, for instance thrusters or magnetorquers, if such equipment is avail-
able.

4.4 Perturbations

The total external perturbation torque acting on the spacecraft is given as

τ bext = τ bgravity + τ bnoise, (4.10)

where τ bgravity is the external torque caused by the gravity gradient, and τ bnoise
represents disturbances present in the system. Note that (4.10) is a simplifica-
tion of the total external perturbation torque that acts on a real-life spacecraft
operating in space.

The torque due to the gravity gradient occurs because the spacecraft is an
elongated body in the rigid body dynamic model, and it is defined by (Hughes,
2004)

τ bgravity = 3
µ

‖ri‖3S(c3)Jc3, (4.11)

where µ is the standard gravitational parameter of the Earth, ri is the distance
between the spacecraft and the center of the Earth, and c3 denotes the third
column of the rotation matrix Rb

o.
The torque caused by the noise affecting the system is modelled by a sinu-

soidal wave

τ bnoise = Asin(t)13, (4.12)

where A is the amplitude of the wave, t is time, and 13 is a 3×1-vector of all
ones. Note that the torque τ bnoise is a simplification of noise that would affect a
real spacecraft, and the simplification is not rooted in physical concepts.

4.5 Reaction wheel dynamics

The reaction wheel angular momentum is defined as (Krogstad and Gravdahl,
2006)

Hb
w = AJwA>(ωbib + Aωwbw)

= AJwA>(ωbib + ωbbw)

= AJwω
w
iw

= AJwA>ωbiw.

(4.13)
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Applying Euler’s second axiom to (4.13) yields the reaction wheel dynamics

id

dt
Hb
w =

bd

dt
(AJwA>ωbiw) + S(ωbiw)Hb

w

= AJwA>
bd

dt
ωbiw + S(Aωwiw)(AJwω

w
iw)

= AJwA>
bd

dt
ωbiw

= AJwA>(
bd

dt
ωbib + A

wd

dt
ωwbw)

= τ bu = Aτwu ,

(4.14)

where S(Aωwiw)(AJwω
w
iw) = 0 since the inertia of the reactions wheels are iden-

tical.

4.6 Attitude error dynamics

The quaternion error is defined as (Sola, 2017)

qe = q−1d ⊗ qob =

[
ηd −ε>d
−εd ηdI3×3 + S(εd)

]
qob, (4.15)

where ηd and εd composes the desired quaternion qd =

[
ηd
εd

]
.

The angular velocity error is defined as

ωbe = ωbob − ωbd = ωbib −Rb
oω

o
io − ωbd, (4.16)

where ωbd represents the desired angular velocity. Together, the quaternion error
and the angular velocity error forms the attitude error variables.

4.7 Total system dynamics

The rate of change in the angular velocity ωbob, given in (4.3), can be found by
first differentiating the term involving a rotation matrix in (4.3) as follows

bd

dt
(Rb

oω
o
io) =

(
bd

dt
Rb
o

)
ωoio + Rb

o

(
bd

dt
ωoio

)

= −S(ωbob)R
b
oω

o
io + Rb

o

od

dt
(ωoio) + Rb

oS(ωobo)ω
o
io

= −S(ωbob)R
b
oω

o
io −Rb

oS(ωoob)ω
o
io

= −S(ωbob)R
b
oω

o
io −Rb

oS(Ro
bω

b
ob)ω

o
io,

(4.17)
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where
od
dt

(ωoio)=0 since the orbit is assumed to be constant over time. Then,
differentiating (4.3) using (4.17) yields

bd

dt
ωbob =

bd

dt
ωbib −

bd

dt
(Rb

oω
o
io)

=
bd

dt
ωbib + S(ωbob)R

b
oω

o
io + Rb

oS(Ro
bω

b
ob)ω

o
io.

(4.18)

Rewriting (4.9) using (4.7) and (4.14) gives

J
bd

dt
ωbib = −AJw

wd

dt
ωwbw − S(ωbib)H

b
s + τ bext =⇒

Js
bd

dt
ωbib = −(AJwA>

bd

dt
ωbib + AJw

wd

dt
ωwbw)− S(ωbib)H

b
s + τ bext

= −Aτwu − S(ωbib)H
b
s + τ bext.

(4.19)

Using (4.2), (4.3), (4.14), (4.17), (4.18) and (4.19) the total spacecraft dy-
namics are found to be

q̇ob =
1

2
T(qob)ω

b
ob (4.20a)

ω̇bib = Js
−1(−Aτwu − S(ωbib)H

b
s + τ bext) (4.20b)

ω̇bob = ω̇bib + S(ωbob)R
b
oω

o
io + Rb

oS(Ro
bω

b
ob)ω

o
io (4.20c)

ω̇wbw = Jw
−1τwu −A>ω̇bib, (4.20d)

where ω̇bib =
bd
dt
ωbib, ω̇

b
ob =

bd
dt
ωbob, and ω̇wbw =

bd
dt
ωwbw.
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Chapter 5

Control Design

In this chapter, the designs of four controllers are presented, namely the maxi-
mum hands-off controller, the novel moving maximum hands-off controller, the
L1-controller, and the proportional-derivative (PD) controller. The three former
controllers are optimal controllers; the maximum hands-off controller and the
moving maximum hands-off controller minimize the L0-norm, whereas the L1-
controller minimizes the L1-norm. For all controllers, attitude is represented
using quaternions.

One of the main contributions of this thesis is to use maximum hands-off con-
trol for attitude control of a spacecraft, and the maximum hands-off controller
presented in this chapter is designed for this specific purpose. Moreover, the
design and implementation of the moving maximum hands-off controller con-
stitute an important contribution. The moving maximum hands-off controller is
also designed for the purpose of spacecraft attitude control.

The rest of this chapter is organized as follows. First, the control objectives
are presented in Section 5.1, followed by the designs of the controllers in Sec-
tion 5.2. The experimental cases are presented in Section 5.3, and the simu-
lation setup used for the experiments is presented in Section 5.4. Finally, in
Section 5.5, the design choices for the maximum hands-off controller and the
moving maximum hands-off controller are discussed, as well as the different
parameters used in the optimal control problems.

5.1 Control objective

The control objective of the maximum hands-off controller is to find the sparsest
control among all admissible controls, as discussed in Chapter 3. This thesis
explores how the maximum hands-off controller works for attitude control of a
spacecraft. Note that for the remaining parts of this study, the term sparsity is
defined accordingly:
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Definition 5.1.1 (Sparsity). The sparsity of a control signal refers to the number
of control intervals for which the control signal takes on nonzero values.

The number of control intervals for which the control signal takes on nonzero
values refers to the number of control intervals for which the absolute value of
the control signal is larger than a threshold value chosen to be 1 · 10−6.

Although the maximum hands-off controller yields the sparsest control sig-
nal, the control torques might not occur at the most favorable instants of time,
which motivates the design of a controller that inherits the maximum hands-off
controller’s sparsity and lets the user specify at which time intervals the control
input should occur. A novel controller, called the moving maximum hands-off
controller, has been designed as an extension of the maximum hands-off con-
troller. The term moving refers to the characteristic of the controller, which lets
the user move the sparse control according to a desired set of preferences, for
instance, environmental constraints.

The maximum hands-off controller, the moving maximum hands-off con-
troller, and the L1-controller are all instances of optimal control. The optimal
control problems seek to find the optimal control signals, i.e., an optimal se-
quence of control torques that move the spacecraft to the desired orientation.
The control torques are produced by the spacecraft’s reaction wheels. Opti-
mization of the control input could therefore be conducted either directly in
the wheel-frame {w}, or in the body-frame {b}, and afterward be transformed
to {w}. The attitude of the satellite is given as the orientation of the body-
frame {b} relative to the orbit-frame {o}. For the satellite to move to a desired
attitude, the body-frame {b} has to be rotated relative to the orbit-frame {o}.
Torque is applied in {b} and makes the satellite rotate, i.e., {b} rotates relative
to {o}. The optimization is carried out in {b} because this yields the optimal
amount of control torque about each axis necessary to reach the desired ori-
entation. The optimal control input is then transformed from {b} to {w} using
the Moore-Penrose pseudo-inverse of A so that the desired control input is dis-
tributed among the reaction wheels. The conversion between {b} and {w} are
studied in Section 2.3.4.

5.2 Mathematical formulations of the controllers

In this section, the mathematical formulations of the controllers are presented.
First, the control design of the maximum hands-off controller for the attitude
control problem with attitude represented using quaternions is presented, fol-
lowed by an introduction to the design and implementation of the moving max-
imum hands-off controller. Then, the implementation of the L1-controller is
presented, and last, the classical PD-controller is presented. The designs of the
maximum hands-off controller, the moving maximum hands-off controller, and
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the L1-controller, are based on the theory presented in Chapter 3.

5.2.1 Maximum hands-off controller

The maximum hands-off controller, or the L0-optimal controller, aims to min-
imize the L0-norm of the control input, as discussed in Chapter 3. The math-
ematical preliminaries necessary to understand the controller, and the various
reformulations of the L0-control problem, are presented in Chapter 3. The max-
imum hands-off controller for the spacecraft attitude control problem is given
as

minimize
τ b
u

k1f(ωbob) + k2g(qob) + k3‖τ bu‖0 (5.1a)

subject to q̇ob =
1

2
T(qob)ω

b
ob (5.1b)

ω̇bib = Js
-1(−Aτwu − S(ωbib)H

b
s + τ bext) (5.1c)

ω̇wbw = Jw
-1τwu −A>ω̇bib (5.1d)

ω̇bob = ω̇bib + S(ωbob)R
b
oω

o
io + Rb

oS(Ro
bω

b
ob)ω

o
io (5.1e)

ṙi = vi (5.1f)

v̇i = − µ

‖ri‖32
ri (5.1g)

τwu ≤ τ limit (5.1h)
τwu ≥ −τ limit (5.1i)

qob(0) = qob,0 (5.1j)

ωbib(0) = ωbib,0 (5.1k)

ωwbw(0) = ωwbw,0 (5.1l)

ωbob(0) = ωbob,0 (5.1m)

ri(0) = ri0 (5.1n)

vi(0) = vi0, (5.1o)

where k1, k2, and k3 are positive constants, τ bu is the vector of control inputs in
{b}, τwu is the vector of control inputs in {w}, and τ limit is the torque limit on the
reaction wheels. The torque vectors τ bu and τwu are related through (2.42). The
kinematic equation, (5.1b), and the dynamic equations, (5.1c) to (5.1e), are
derived in Chapter 4, and qob,0, ω

b
ib,0, ω

w
bw,0, and ωbob,0 are the state initial values.

(5.1f) and (5.1g) denotes the orbital dynamics derived in Section 4.2, and ri0
and vi0 are the initial values for (5.1f) and (5.1g). The functions f(·) and g(·)
are designed to steer ωbob and qob, respectively, to their desired final states. More
specifically,
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f(ωbob) =
n∑

i=1

(ωbob,i(T )− ωbob,ref,i)
2

g(qob) = 1−
∣∣(qob(T ))>qob,ref

∣∣ ,
(5.2)

where T denotes the final time, ωbob,ref and qob,ref are the reference angular ve-
locity and reference quaternion, n denotes the number of entries in ωbob(T )
and ωbob,ref, while ωbob,i(T ) and ωbob,ref,i denotes the i-th component of ωbob(T ) and
ωbob,ref, respectively. The function f(·) yields the sum of the squared elements
of a vector, and is implemented using the SUMSQR-function in MATLAB (MAT-
LAB, 2020). The function g(·) is a pseudometric on the unit quaternion, but
a metric on SO(3) (Huynh, 2009). The absolute value, |(qob(T ))>qob,ref|, is im-
plemented using the smooth maximum function in (2.48) (Kristiansen et al.,
2021).

The L0-cost function is discontinuous and nonconvex, and solving optimiza-
tion problems with these characteristics are generally hard, as discussed in Sec-
tion 3.3. Therefore, the maximum hands-off control problem in (5.1) is rewrit-
ten according to the L0-controller given in Feng et al. (2016), using the relaxed
formulation presented in (3.32) in Section 3.6.4. This formulation is different
from the one used in the work by Nagahara et al. (2015), where the L1-norm
was used as an approximation to the L0-norm. The reformulation of (5.1) re-
sults in the following minimization problem
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minimize
τ b
u,ξ

k1f(ωbob) + k2g(qob) + k3(1N − ξ)1>N (5.3a)

subject to q̇ob =
1

2
T(qob)ω

b
ob (5.3b)

ω̇bib = Js
-1(−Aτwu − S(ωbib)H

b
s + τ bext) (5.3c)

ω̇wbw = Jw
-1τwu −A>ω̇bib (5.3d)

ω̇bob = ω̇bib + S(ωbob)R
b
oω

o
io + Rb

oS(Ro
bω

b
ob)ω

o
io (5.3e)

ṙi = vi (5.3f)

v̇i = − µ

‖ri‖32
ri (5.3g)

τwu ≤ τ limit (5.3h)
τwu ≥ −τ limit (5.3i)

qob(0) = qob,0 (5.3j)

ωbib(0) = ωbib,0 (5.3k)

ωwbw(0) = ωwbw,0 (5.3l)

ωbob(0) = ωbob,0 (5.3m)

ri(0) = ri0 (5.3n)

vi(0) = vi0 (5.3o)
ξ ≤ 1N (5.3p)

ξ ◦ τ bu,1 ≤ ε1N (5.3q)

−ξ ◦ τ bu,1 ≤ ε1N (5.3r)

ξ ◦ τ bu,2 ≤ ε1N (5.3s)

−ξ ◦ τ bu,2 ≤ ε1N (5.3t)

ξ ◦ τ bu,3 ≤ ε1N (5.3u)

−ξ ◦ τ bu,3 ≤ ε1N (5.3v)

ξ ≥ 0, (5.3w)

where ε is a positive constant, τ bu,1, τ
b
u,2, and τ bu,3 denotes the components of τ bu

about the x-, y- and z-axis in {b}, respectively, and τwu is the vector of control
inputs in {w}. The torque vectors τ bu and τwu are related through (2.42). 1N is
the N -dimensional vector of all ones, where N is the number of control inter-
vals, ξ is the complementarity vector to the control input τ bu, and 1N − ξ is the
support vector of τ bu. The concepts complementarity vector and support vector
was presented in Section 3.6. The notation a ◦ b denotes the componentwise
product between the vectors a and b.

The complementarity constraints in (5.3q) to (5.3v) imply that either ξi or
τ bu,1,i, or both, must be 0. Here, ξi and τ bu,1,i denotes the components of the
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vectors ξ and τ bu,1, respectively, and τ bu,1 is chosen as an example; the comple-
mentarity constraints imply the same for all components of τ bu, i.e., they imply
the same for τ bu,2 and τ bu,3 as well. The complementarity constraints in (5.3)
were implemented using the same complementarity vector ξ for all three com-
ponents of τ bu. The reason for this design choice was to ensure that control
input about the x-, y- and z-axis in {b} could occur at the same time instants
without extra cost. The positive constant ε in (5.3q) to (5.3v) imposes slack on
the complementarity constraints, in the sense that neither ξi nor τ bu,1,i (or τ bu,2,i
or τ bu,3,i) have to be exactly 0; they have to be close to 0 depending on the value
of ε.

Note that for the results and discussion parts in Chapter 6, the maximum
hands-off controller will be referred to as the L0-controller or the L0-optimal
controller.

5.2.2 Moving maximum hands-off controller

The moving maximum hands-off controller inherits the optimal sparsity from
the maximum hands-off controller and also lets the user specify in which time
interval the control should occur. To put it more precisely, the moving maximum
hands-off controller aims to find the sparsest control among all admissible con-
trols based on the preferences of the user.

The moving maximum hands-off controller lets the user specify in which
time interval the control should occur and aims to find the sparsest control
among all admissible controls based on this information.

Considering attitude control of a spacecraft, it could, for example, be inter-
esting to perform a maneuver, which is as sparse as possible, i.e., provide the
sparsest control input, within time intervals for which it is possible to observe
the satellite from a specific location on the Earth.

An advantage of the moving maximum hands-off controller is the oppor-
tunity to apply control within a user specified time interval and observe if the
system responds as expected. If the system does not respond as expected within
the time interval specified by the user, i.e., the system differs from the model,
or the actuators do not work as expected, it could be possible to correct the
system response by applying new control torque.

One disadvantage related to the novel controller is that it might require more
energy than the maximum hands-off controller, which yields the L0-optimal
control. The user of the moving maximum hands-off controller may specify
that the control torques should occur within a time interval of, for instance,
∆t = 30 s. Contrary, for the maximum hands-off controller, the control torques
may occur anywhere on the total time interval, specified by the simulation time
of, for instance, ∆t = 100 s. One could imagine that a control torque must
be applied at two time instants to steer the spacecraft to the desired attitude;



Chapter 5. Control Design 55

one control torque pushes the spacecraft towards the desired attitude, and one
control input stops the spacecraft’s rotation. To reach the desired attitude within
a short time interval, the control torques applied to the spacecraft have to be
larger than for a longer time interval. The control torques could be smaller
for a larger time interval as the spacecraft would have more time to rotate
towards the desired orientation after the initial control input has been applied.
It requires more energy to produce a large control torque than a small control
torque. Therefore, it might be possible that the moving maximum hands-off
controller uses more energy than the maximum hands-off controller.

The design of the moving maximum hands-off controller is similar to that of
the maximum hands-off controller in (5.1), and it is formulated as

minimize
τ b
u

k1f(ωbob) + k2g(qob) + k3h(t)‖τ bu‖0 (5.4a)

subject to q̇ob =
1

2
T(qob)ω

b
ob (5.4b)

ω̇bib = Js
-1(−Aτwu − S(ωbib)H

b
s + τ bext) (5.4c)

ω̇wbw = Jw
-1τwu −A>ω̇bib (5.4d)

ω̇bob = ω̇bib + S(ωbob)R
b
oω

o
io + Rb

oS(Ro
bω

b
ob)ω

o
io (5.4e)

ṙi = vi (5.4f)

v̇i = − µ

‖ri‖32
ri (5.4g)

τwu ≤ τ limit (5.4h)
τwu ≥ −τ limit (5.4i)

qob(0) = qob,0 (5.4j)

ωbib(0) = ωbib,0 (5.4k)

ωwbw(0) = ωwbw,0 (5.4l)

ωbob(0) = ωbob,0 (5.4m)

ri(0) = ri0 (5.4n)

vi(0) = vi0, (5.4o)

where k1, k2, and k3 are positive constants, τ bu is the vector of control inputs in
{b}, τwu is the vector of control inputs in {w}, and τ limit is the torque limit on
the reaction wheels. The torque vectors τ bu and τwu are related through (2.42).
The kinematic equation, (5.4b), and the dynamic equations, (5.4c) to (5.4e)
are derived in Chapter 4, and qob,0, ω

b
ib,0, ω

w
bw,0, and ωbob,0 are the state initial

values. The functions f(·) and g(·) are given in (5.2), and the function h(·)
specifies where the control torques should occur. In a similar way as for the
maximum hands-off controller, the moving maximum hands-off controller in
(5.4) is reformulated as
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minimize
τ b
u,ξ

k1f(ωbob) + k2g(qob) + k3(1N − ξ ◦ hN)1>N (5.5a)

subject to q̇ob =
1

2
T(qob)ω

b
ob (5.5b)

ω̇bib = Js
-1(−Aτwu − S(ωbib)H

b
s + τ bext) (5.5c)

ω̇wbw = Jw
-1τwu −A>ω̇bib (5.5d)

ω̇bob = ω̇bib + S(ωbob)R
b
oω

o
io + Rb

oS(Ro
bω

b
ob)ω

o
io (5.5e)

ṙi = vi (5.5f)

v̇i = − µ

‖ri‖32
ri (5.5g)

τwu ≤ τ limit (5.5h)
τwu ≥ −τ limit (5.5i)

qob(0) = qob,0 (5.5j)

ωbib(0) = ωbib,0 (5.5k)

ωwbw(0) = ωwbw,0 (5.5l)

ωbob(0) = ωbob,0 (5.5m)

ri(0) = ri0 (5.5n)

vi(0) = vi0 (5.5o)
ξ ≤ 1N (5.5p)

ξ ◦ τ bu,1 ≤ ε1N (5.5q)

−ξ ◦ τ bu,1 ≤ ε1N (5.5r)

ξ ◦ τ bu,2 ≤ ε1N (5.5s)

−ξ ◦ τ bu,2 ≤ ε1N (5.5t)

ξ ◦ τ bu,3 ≤ ε1N (5.5u)

−ξ ◦ τ bu,3 ≤ ε1N (5.5v)

ξ ≥ 0, (5.5w)

where ε is a positive constant, τ bu,1, τ
b
u,2, and τ bu,3 denotes the components of

τ bu about the x-, y- and z-axis in {b}, respectively, and τwu is the vector of con-
trol inputs in {w}. The torque vectors τ bu and τwu are related through (2.42).
1N is the N -dimensional vector of all ones, where N is the number of control
intervals. ξ is the complementarity vector to the control input τ bu, and 1N − ξ is
the support vector of τ bu. The N -dimensional vector hN represents the function
h(·) in (5.4) as a function of control intervals instead of time. By default, the
vector hN is a vector of all ones. The user might change the values of hN to
values between 0 and 1, to indicate for which time intervals the control input
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should occur. For instance, if the value of hN is set to 0.1 for N = 10, . . . , 20, it
could yield a more optimal solution if the control occur between these control
intervals as sparsity comes at a lower cost in this interval than the rest.

Note that for the results and discussion parts in Chapter 6, the moving maxi-
mum hands-off controller will be referred to as the moving L0-controller or the
moving L0-optimal controller.

5.2.3 L1-optimal controller

The L1-optimal controller is implemented according to the theory presented in
Section 3.4. The design of the L1-optimal control problem is similar to that of
the maximum hands-off control problem in (5.1), except that the L0-norm is
replaced by the L1-norm which yields the following design

minimize
τ b
u

k1f(ωbob) + k2g(qob) + k3‖τ bu‖1 (5.6a)

subject to q̇ob =
1

2
T(qob)ω

b
ob (5.6b)

ω̇bib = Js
-1(−Aτwu − S(ωbib)H

b
s + τ bext) (5.6c)

ω̇wbw = Jw
-1τwu −A>ω̇bib (5.6d)

ω̇bob = ω̇bib + S(ωbob)R
b
oω

o
io + Rb

oS(Ro
bω

b
ob)ω

o
io (5.6e)

ṙi = vi (5.6f)

v̇i = − µ

‖ri‖32
ri (5.6g)

τwu ≤ τ limit (5.6h)
τwu ≥ −τ limit (5.6i)

qob(0) = qob,0 (5.6j)

ωbib(0) = ωbib,0 (5.6k)

ωwbw(0) = ωwbw,0 (5.6l)

ωbob(0) = ωbob,0 (5.6m)

ri(0) = ri0 (5.6n)

vi(0) = vi0, (5.6o)

where k1, k2, and k3 are positive constants, τ bu is the vector of control inputs in
{b}, τwu is the vector of control inputs in {w}, and τ limit is the torque limit on
the reaction wheels. The torque vectors τ bu and τwu are related through (2.42).
The kinematic equation, (5.6b), and the dynamic equations, (5.6c) to (5.6e)
are derived in Chapter 4, and qob,0, ω

b
ib,0, ω

w
bw,0, and ωbob,0 are the state initial

values. The functions f(·) and g(·) are given in (5.2).
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Using the approach based on Gros and Diehl (2019) and presented in Sec-
tion 3.4, the L1-optimal control problem is reformulated as follows

minimize
s,τ b

u

k1f(ωbob) + k2g(qob) + k3

N∑

i=0

sk (5.7a)

subject to q̇ob =
1

2
T(qob)ω

b
ob (5.7b)

ω̇bib = Js
-1(−Aτwu − S(ωbib)H

b
s + τ bext) (5.7c)

ω̇wbw = Jw
-1τwu −A>ω̇bib (5.7d)

ω̇bob = ω̇bib + S(ωbob)R
b
oω

o
io + Rb

oS(Ro
bω

b
ob)ω

o
io (5.7e)

ṙi = vi (5.7f)

v̇i = − µ

‖ri‖32
ri (5.7g)

τwu ≤ τ limit (5.7h)
τwu ≥ −τ limit (5.7i)

qob(0) = qob,0 (5.7j)

ωbib(0) = ωbib,0 (5.7k)

ωwbw(0) = ωwbw,0 (5.7l)

ωbob(0) = ωbob,0 (5.7m)

ri(0) = ri0 (5.7n)

vi(0) = vi0 (5.7o)

−sN ≤τ bu,1 ≤ sN (5.7p)

−sN ≤τ bu,2 ≤ sN (5.7q)

−sN ≤τ bu,3 ≤ sN , (5.7r)

where ε is a positive constant, τ bu,1, τ
b
u,2, and τ bu,3 denotes the components of τ bu

about the x-, y- and z-axis in {b}, respectively, and τwu is the vector of control
inputs in {w}. The torque vectors τ bu and τwu are related through (2.42). The
N -vector of slack variables is denoted by sN , where N is the number of control
intervals, and sk denotes each slack variable in the slack vector.

5.2.4 Proportional-derivative (PD) controller

A PD-controller was implemented to test if the satellite dynamics worked as
intended. The PD-controller is defined in Wen and Kreutz-Delgado (1991)

τ bu = Kdω
b
e + Kpεe, (5.8)
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where ωbe is the angular velocity error, given in (4.16), and εe is the vector part
of the error quaternion given in (4.15). Kd and Kp are constant and positive
definite controller gain matrices. The numerical values of the gain matrices
were chosen while tuning the PD-controller.

5.3 Experimental cases

The performances of the maximum hands-off controller, the moving maximum
hands-off controller, and the L1-optimal controller were tested and compared
through the following experiments based on the simulations of a 6U CubeSat.
First, a single-axis maneuver was tested, i.e., the spacecraft orients towards a
setpoint involving rotation about one single axis in the body-frame {b}. Next,
an experiment involving rotation about all three axes in {b}, a multiple-axis
maneuver, was conducted. Then, the spacecraft controllers’ abilities to perform
a path-following maneuver were investigated, and finally, the performances of
the controllers when there are known perturbations present in the system, were
tested. All experiments were conducted in a simulation environment, which is
explored in Section 5.4. Note that rotations about the body-frame axes are given
as an angle φ about the x-axis, an angle θ about the y-axis, and an angle ψ about
the z-axis. All rotations are given in degrees [◦ deg]. For instance, a maneuver
from (0◦, 0◦, 0◦) to (90◦, 45◦, 15◦) means that the spacecraft rotates an angle φ =
90◦ about the x-axis, an angle θ = 45◦ about the y-axis, and an angle ψ = 15◦

about the z-axis.

5.3.1 Single-axis maneuver

The single-axis maneuver tests the controllers’ abilities to steer the spacecraft
to a desired position which involves rotation about one single axis in the body-
frame {b}. The spacecraft was rotated from an initial position (φ = 0◦, θ =
0◦, ψ = 0◦) to a final position (45◦, 0◦, 0◦), which means a rotation of an angle
φ = 45◦ about the x-axis. For the moving maximum hands-off controller, the
vector hN was chosen such that it is cheaper for control input to occur between
N = 20 and N = 30, which corresponds to t = 28 s and t = 42 s, respectively.
The cost was set to 0.001 within this interval. The cost outside the interval
specified by hN is by default 1.

5.3.2 Multiple-axis maneuver

Two multiple-axis maneuvers were tested; one maneuver rotates the spacecraft
from an initial position (0◦, 0◦, 0◦) to a final position (90◦, 45◦, 15◦); the second
maneuver rotates the spacecraft from (0◦, 0◦, 0◦) to (75◦, 50◦, 15◦). For the mov-
ing maximum hands-off controller, the vector hN was chosen such that it is
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cheaper for control input to occur between N = 20 and N = 30, which corre-
sponds to t = 28 s and t = 42 s, respectively. The cost was set to 0.001 within
this interval. The cost outside the interval specified by hN is by default 1.

5.3.3 Path-following maneuver

The path-following experiments rotate the spacecraft from an initial orientation
(0◦, 0◦, 0◦) through (30◦, 45◦, 15◦) and back to (0◦, 0◦, 0◦).

For the path-following maneuver, two different approaches were tested. The
first approach iterates through a list of setpoints and computes the optimal
control signal from one setpoint to the next. The second method utilizes slightly
modified versions of the cost functions (5.3a), (5.5a) and (5.7a) including an
additional quaternion term. The cost functions are modified as follows

JL0 = a1f(ωbob) + a2g1(q
o
b) + +a3g2(q

o
b) + a4(1N − ξ)1>N (5.9a)

Jmov,L0 = a1f(ωbob) + a2g1(q
o
b) + +a3g2(q

o
b) + a4(1N − ξ ◦ hN)1>N (5.9b)

JL1 = a1f(ωbob) + a2g1(q
o
b) + +a3g2(q

o
b) + a4

N∑

i=0

sk, (5.9c)

where (5.9a) is the modified cost function for the maximum hands-off con-
troller, (5.9b) is the modified cost function for the moving maximum hands-off
controller, and (5.9c) is the modified cost function for the L1-controller. a1, a2,
a3, and a4 are positive constants, the function f(·) is defined in (5.2), and g1(·)
and g2(·) are functions of the quaternion, qob. The function g1(·) is equal to g(·)
in (5.2), and g2(·) is given as:

g(qob) = 1−
∣∣∣(qob(T

′
))>qo

′
b

∣∣∣ , (5.10)

where T ′ denotes the time for which it is desirable that the spacecraft reaches
the intermediate attitude, which is denoted by the intermediate quaternion qo

′
b ,

and the absolute value,
∣∣(qob(T

′
))>qo

′
b

∣∣, is implemented using the smooth maxi-
mum function in (2.48).

For the path-following maneuver where multiple optimizations are performed,
the vector hN in the moving maximum hands-off controller was chosen such
that it is cheaper for control input to occur between N = 20 and N = 30,
which corresponds to t = 28 s and t = 42 s, respectively. The cost was set
to 0.001 within this interval. For the path-following maneuver where an extra
quaternion-term is added to the cost functions, the value of the vector hN is set
to 0.001 between N = 7 and N = 14, and N = 35 and N = 42, which corre-
sponds to t ≈ 10 s and t ≈ 20 s, and t = 49 and t = 59 s, respectively, for the
moving maximum hands-off controller. The cost outside the intervals specified
by hN is by default 1.
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5.3.4 Multiple-axis maneuver with known perturbations

The last experiment aims to test the performance of the controllers when known
perturbations are present in the system. The perturbations added to the system
are the sum of the gravity gradient torque and a sine-wave. The implementation
of the gravity gradient torque is shown in (4.11), and the implementation of the
sine-wave is shown in (4.12). The multiple-axis maneuver rotates the spacecraft
from (0◦, 0◦, 0◦) to (90◦, 45◦, 15◦).

For the moving maximum hands-off controller, the vector hN was chosen
such that it is cheaper for control input to occur between N = 20 and N = 30,
which corresponds to t = 28 s and t = 42 s, respectively. The cost was set to
0.001 within this interval. The cost outside the interval specified by hN is by
default 1.

5.4 Simulation setup

The experiments were conducted using MATLAB R2020b (MATLAB, 2020) as
the scripting language and CasADi as the optimization tool. CasADi is an open-
source software framework for numerical optimization, which can be used to
model and solve optimization problems with a large degree of flexibility (An-
dersson et al., 2019). CasADi also generates derivatives automatically using
algorithmic differentiation, i.e., it automatically calculates the derivative of
functions represented as algorithms (Andersson et al., 2019). The NLP-solver
IPOPT was used to solve the optimization problems, using the solver’s default
options. See Section 2.5.1 for a more in-depth description of IPOPT. The op-
timal control problems in (5.3), (5.5) and (5.7) were discretized using direct
multiple-shooting, and the dynamics of the spacecraft were discretized and im-
plemented using Runge-Kutta 4 integration. Initial guesses for the starting point
were given to IPOPT at the beginning of the optimization. The output from the
PD-controller was given as the initial guess for the L1-optimal controller, and
more specifically as initial guess on the spacecraft’s states qob, ω

b
ib, and ωwbw. The

output from the L1-optimal controller was given as initial guesses for the max-
imum hands-off controller and the moving maximum hands-off controller, on
the states qob, ω

b
ib, and ωwbw. No initial guesses were applied to the state ωbob and

the control torque τ bu, i.e., the default initial guess used by CasADi was applied.
CasADi’s default initial guess is a vector of all zeros. The experiments reported
in this thesis were conducted using a 2 GHz Intel Core i7-9700T CPU computer
running Windows.

The simulations of the experiments were conducted using the parameters for
a 6U M6P CubeSat as the spacecraft rigid body, and it is assumed to orbit in low-
Earth orbit (LEO). The CubeSat uses an M6P platform from NanoAvionics, and
four reaction wheels are used to control the attitude of the CubeSat. This is part
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of the setup that is going to be used for the HYPSO-1 mission, which motivates
this thesis, as discussed in Section 1.1. Three of the reaction wheels are placed
orthogonally along the three axes of the body frame. The fourth reaction wheel
is placed such that its torque yields equal components about each of the body-
frame axes. The torque distribution matrix A is given as (Grøtte et al., 2020;
Kristiansen et al., 2020)

A =




1 0 0 1√
3

0 1 0 1√
3

0 0 1 1√
3


 . (5.11)

The total inertia matrix for the spacecraft rigid body is given as (Kristiansen
et al., 2020)

J =




0.0775 0.0002 −0.0002
0.0002 0.1067 0.0005
−0.0002 0.0005 0.0389


 kg ·m2, (5.12)

and the inertia matrix of the reaction wheels is (Kristiansen et al., 2020)

Jw = JwI4×4, (5.13)

where Jw = 2.1 · 10−4 kg·m2 is the inertia of a single reaction wheel. The inertia
of all four reaction wheels are set to be identical. The gains for the controllers
in (5.3), (5.5), (5.7) and (5.8), and the path-following cost functions in (5.9a)
to (5.9c), are shown in Table 5.1, and the parameters required for the optimiza-
tion are shown in Table 5.2.

The optimization is performed over N control intervals, and the simulation
of the system stops at the final control interval. Thus, if the desired states are
reached at control interval no. N , it is not possible to see from the simulations
whether the states remain at the desired value or not. Therefore, the system
is propagated for an additional number of control intervals, denoted Nprop, to
visualize what happens after the optimization finishes. The final state from the
optimization serves as the initial state for the propagation, and the control input
is set to zero for the whole propagation. The orbit of the spacecraft is initial-
ized using the orbital parameters in Table 5.3, which are transformed into ECI
coordinates using the RANDV-function from Vallado (2001).

5.5 Discussion

In this section, the controller designs and the parameter values are discussed.
First, Section 5.5.1 discusses the design of the maximum hands-off controller,
whereas Section 5.5.2 discusses the design of the moving maximum hands-off



Chapter 5. Control Design 63

Controller gain Value Unit
k1 (maximum hands-off controller) 1 · 106 s2

k2 (maximum hands-off controller) 1 · 102 -
k3 (maximum hands-off controller) 1 · 101 -
k1 (moving maximum hands-off controller) 1 · 106 s2

k2 (moving maximum hands-off controller) 1 · 102 -
k3 (moving maximum hands-off controller) 1 · 101 -
k1 (L1-controller) 1 · 106 s2

k2 (L1-controller) 1 · 102 -
k3 (L1-controller) 1 · 101 -
a1 (path-following) 1 · 106 s2

a2 (path-following) 1 · 102 -
a3 (path-following) 1 · 102 -
a4 (path-following) 1 · 101 -
Kp (PD-controller) 3 · Js N·m
Kd (PD-controller) 2.7 · Js N·m·s

Table 5.1: Controller gains.

Variable Value Unit
Simulation time (T ) 70 s
Control intervals (N) 50 -
Step size (h) 1.4 s
Control intervals for propagation (Nprop) 20 -
ε (maximum hands-off controller) 1 · 10−8 -
ε (moving maximum hands-off controller) 1 · 10−8 -
τlimit ±3 · 10−3 N·m
Standard grav. parameter, Earth (µ) 3.986 · 1014 m3/s2

Table 5.2: Optimization constants.

controller. Then, Section 5.5.3 discusses the values of the parameters used in
the optimal control problems. Note that, in this section, the sparsity of a control
signal refers to the number of nonzero control intervals in the signal, as defined
in definition 5.1.1.

5.5.1 Design choice for the maximum hands-off controller

The maximum hands-off controller used to solve the spacecraft attitude con-
trol problem was presented in Section 5.2.1. During the design phase of the
controller, different ways to formulate the maximum hands-off control problem
were explored before the final design choice was made. This section compares



64 Chapter 5. Control Design

Orbital elements Value Unit
Semi-major axis 6852.2 km
Eccentricity 0.002 -
Inclination 97 ◦

Right ascension of the ascending node 280 ◦

Argument of periapsis 0 ◦

True anomaly 0 ◦

Table 5.3: Orbital parameters.

the different design choices to one another and explains why the final design
choice was made. The different formulations of the maximum hands-off control
problem were all inspired by the relaxed formulation in the work by Feng et al.
(2016), which was presented in Section 3.6.4.

The formulation of the maximum hands-off control problem presented in
(5.3) was chosen because it yielded the best results compared to the other de-
signs that were tested. For a single-axis maneuver from (0◦, 0◦, 0◦) to (90◦, 0◦, 0◦),
the computation time, the sparsity, and the total number of iterations for (5.3)
are shown in Table 5.4 in the row named ’Design 1’. The orientation trajecto-
ries and the optimal control signals represented in the body-frame are shown
in Fig. 5.1 and Fig. 5.2, respectively.

A different design of the maximum hands-off control problem was consid-
ered, where three complementarity vectors, ξ1, ξ2 and ξ3, were related to each
of the three components of τ bu, yielding the following optimal control problem
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minimize
τ b
u,ξ

k1f(ωbob) + k2g(qob) + k3((1N − ξ1)1>N + (1N − ξ2)1>N + (1N − ξ3)1>N)

(5.14a)

subject to q̇ob =
1

2
T(qob)ω

b
ob (5.14b)

ω̇bib = Js
-1(−Aτwu − S(ωbib)H

b
s + τ bmtq + τ bext) (5.14c)

ω̇wbw = Jw
-1τwu −A>ω̇bib (5.14d)

ω̇bob = ω̇bib + S(ωbob)R
b
oω

o
io + Rb

oS(Ro
bω

b
ob)ω

o
io (5.14e)

ṙi = vi (5.14f)

v̇i = − µ

‖ri‖32
ri (5.14g)

τwu ≤ τ limit (5.14h)
τwu ≥ −τ limit (5.14i)

qob(0) = qob,0 (5.14j)

ωbib(0) = ωbib,0 (5.14k)

ωwbw(0) = ωwbw,0 (5.14l)

ωbob(0) = ωbob,0 (5.14m)

ri(0) = ri0 (5.14n)

vi(0) = vi0 (5.14o)
ξ1, ξ2, ξ3 ≤ 1N (5.14p)

ξ1 ◦ τ bu,1 ≤ ε1N (5.14q)

−ξ1 ◦ τ bu,1 ≤ ε1N (5.14r)

ξ2 ◦ τ bu,2 ≤ ε1N (5.14s)

−ξ2 ◦ τ bu,2 ≤ ε1N (5.14t)

ξ3 ◦ τ bu,3 ≤ ε1N (5.14u)

−ξ3 ◦ τ bu,3 ≤ ε1N (5.14v)

ξ1, ξ2, ξ3 ≥ 0, (5.14w)

where the constants, functions, and dynamics are the same as in (5.3).
The optimal control problem in (5.14) was tested for a single-axis maneuver

from (0◦, 0◦, 0◦) to (90◦, 0◦, 0◦), with the controller gains in Table 5.1 and the
output from the L1-controller as initial guess for the optimization. The compu-
tation time for the optimization, the sparsity, and the number of iterations are
shown in Table 5.4, in the row named ’Design 2’. The orientation trajectory is
shown in Fig. 5.1, and the optimal control signal represented in the body-frame
is shown in Fig. 5.2.
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The design choice in (5.14) would make the optimal control inputs more
independent from one another, but it would also result in extra cost when trying
to provide control inputs about different axes simultaneously. Because of this,
the optimal control inputs would most likely occur at more places, e.g., a control
input about the z-axis would not occur at the same time instant as a control
input about the y-axis, which is confirmed in Fig. 5.2. In Fig. 5.2 it can be seen
that for Design 2, the first control torque is applied about the x-axis, followed
by a control torque about the z-axis. This contrasts the findings for Design 1,
where the first occurrence of control input has components about the x-, y-, and
z-axes. Control input at more time instants yields a less sparse control signal,
as shown in Table 5.4 where Design 2 gives a control signal which is less sparse
than the control signal resulting from Design 1. These results favor an optimal
control problem on the form of (5.3) over (5.14).

A third design choice also considers three complementarity vectors, ξ1, ξ2
and ξ3, related to each of the three components of τ bu, resulting in the following
optimal control problem

minimize
τ b
u,ξ

k1f(ωbob) + k2g(qob) + k3(1N − (ξ1 + ξ2 + ξ3))1
>
N , (5.15)

where the constraints on (5.15) are identical to (5.14b) to (5.14w), and the
constants, functions, and dynamics are the same as in (5.3). The formulation in
(5.15) provides a design where control torque about different axes could occur
separately, which could lead to a less sparse signal.

The optimal control problem in (5.15), called ’Design 3’, was tested for a
single-axis maneuver from (0◦, 0◦, 0◦) to (90◦, 0◦, 0◦). The computation time for
the optimization, the sparsity of the control signal, and the number of iterations
are shown in Table 5.4 in the row named Design 3. The orientation trajectory
of the spacecraft is shown in Fig. 5.1, and the optimal control signal in the
body-frame is shown in Fig. 5.2.

The orientation trajectory and optimal control signal resulting from Design
3 is similar to the orientation trajectory and optimal control signal resulting
from Design 2, as shown in Fig. 5.1 and Fig. 5.2. The optimal control prob-
lems with Design 2 and Design 3 uses the same number of iterations, 1025, to
find the optimal control signal, compared to 553 iterations for Design 1. The
complementarity constraints in Design 1 force the control torques to occur si-
multaneously, as opposed to the complementarity constraints in Design 2 and
Design 3, which yield the control inputs more independent from one another.
It might be easier for the solver to find the optimal solution in the case for
Design 1, since the control inputs have to appear simultaneously due to the de-
sign of the complementarity constraints, and may explain why the solver uses
fewer iterations to find the optimal solution for Design 1 than for the two other
designs. This reasoning may also apply to the computation times shown in Ta-
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ble 5.4, where it is clear Design 1 uses less time than the other two designs.
Another difference in the design choices becomes apparent in Fig. 5.1 where
θL0 deviates from zero both throughout the simulations and also at the end of
the simulations for Design 2 and Design 3, as opposed to for Design 1. From
Fig. 5.2 it can be seen that Design 2 and Design 3 only provide control torque
about the y-axis at the end of the simulation, whereas Design 1 provides con-
trol torque about the y-axis both at the start and the end of the simulation. This
could be the reason for the different responses in θL0 for the different designs.

Table 5.4 shows that Design 1 provides a control signal with a sparsity of 2,
whereas Design 2 and 3 yield control signals with sparsities of 3. The reason
why Design 1 yields a sparser control signal is because this design makes it
possible for control inputs to occur simultaneously at no extra cost. For instance,
if a large control torque occurs at one time instant, then a smaller control torque
could be applied at the same instant without increasing the value of the cost
function. This is possible because the optimal control problem in (5.3), Design
1, is defined using only one complementarity vector ξ which relates to all three
components of τ bu. For Design 2 and Design 3 there are three complementarity
vectors, ξ1, ξ2 and ξ3, that relates to each of the three components of τ bu. This
design provides for control inputs that are more independent from one another,
but, as shown in Table 5.4, may also result in control signals that are less sparse
compared to those produced by Design 1.

The results and discussions presented in this section show why the optimal
control problem in (5.3) were chosen over (5.14) and (5.15) for the design of
the maximum hands-off control problem.

Control design CPU time NLP, [s] CPU time IPOPT, [s] Sparsity Iterations
Design 1 70.571 6.279 2 553
Design 2 133.854 12.225 3 1025
Design 3 132.411 12.070 3 1025

Table 5.4: Computation time, sparsity and iterations for Design 1, Design 2, and Design
3 for a single-axis maneuver from (0◦, 0◦, 0◦) to (90◦, 0◦, 0◦).

5.5.2 Design choice for the moving maximum hands-off con-
troller

During the design phase of the moving maximum hands-off controller, two dif-
ferent formulations of the moving maximum hands-off optimal control prob-
lem were explored. The first optimal control problem that was tested is given
in (5.5). The second optimal control problem explores a design similar to that
in (5.5), but the cost function is formulated slightly different resulting in the
following minimization problem
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Figure 5.1: Euler angles for Design 1, Design 2, and Design 3 for a single-axis maneu-
ver from (0◦, 0◦, 0◦) to (90◦, 0◦, 0◦).

minimize
τ b
u,ξ

k1f(ωbob) + k2g(qob) + k3(hN ◦ (1N − ξ)1>N), (5.16)

where the controller gains are given as in Table 5.1, the functions f(·) and g(·)
are given in (5.2), and the constraints on the minimization problems are identi-
cal to those in (5.5b) to (5.5w) but omitted here for the sake of simplicity. The
two different formulations of the moving maximum hands-off control problem
gave the same results, and the first formulation was chosen.
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Figure 5.2: Control input body frame for Design 1, Design 2, and Design 3 for a single-
axis maneuver from (0◦, 0◦, 0◦) to (90◦, 0◦, 0◦).

5.5.3 Parameter values in the optimal control problems

The values for the different controller gains are showed in Table 5.1, and their
values are discussed in this section.

The PD-controller gains, Kp and Kd, were found through tuning as men-
tioned in Section 5.2.4. Experiments with the PD-controller have confirmed
that the controller works well, but to make the PD-controller perform even bet-
ter, additional tuning of the controller gains could be done. The PD-controller
was used to test whether the spacecraft attitude dynamics worked as intended
and to produce initial guesses for the L1-controller.

The positive constants, k1, k2, and k3 in (5.3a), (5.5a), and (5.7a) were found
through tuning and they represent the weights on the different terms in the cost
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functions. The values of k1, k2, and k3 are identical for the three controllers to
provide identical conditions for all of them. The results of the optimization
are sensitive to changes in the weights, because k1, k2, and k3 specifies how
much ’effort’ should be put into optimizing the term related to the respective
controller gain. For instance, if there is a large value on the controller gain
in front of the term dealing with the final state of ωbob, and a small value on
the controller gain in front of the term dealing with the final state of qob, it
essentially means that the optimization algorithm considers it more important
to reach the desired final state of ωbob. For the path-following cost functions in
(5.9a) to (5.9c), the constant a1 was set to the same value as k1 since both
constants determine the cost on the term involving ωbob, a2 and a3 were both
chosen to equal k2 since all three constants regard terms involving qob, and a4
were chosen to equal k3 since both constants regard the L0- and L1-norm.

The simulation time T is set to 70 s, and the number of control intervals
N is set to 50, which yields a step size h = T

N
= 1.4 s. A larger number of

control intervals, i.e., N approaches ∞, would yield a smaller step size. For
a smaller step size, the control torques have to become larger at each step in
order to obtain the same effect as before. The total amount of torque required to
perform a maneuver is the same regardless of the step size. Therefore, when the
step size becomes smaller, the control torque will be applied over a shorter time,
and the value of the torque needs to be larger to obtain the same total torque as
for a larger time step. At one point, the control torques cannot be larger due to
saturation on the actuators, which in this case are reaction wheels. If the control
torque needed at one time step is larger than the saturation limit, it could be
necessary to apply an additional control torque at the following time step to
get the same amount of torque. However, if the saturation limit was higher,
the reaction wheels may not saturate even though the step size decreases, and
it would not be necessary to apply torque at an additional time step. Thus,
decreasing the step size while keeping the saturation limit constant could yield
a control signal which is less sparse than if the saturation limits were higher.

The spacecraft state variables and the control input that are optimized us-
ing CasADi, are of different orders of magnitude and are therefore scaled before
the optimization. IPOPT does not scale the optimization variables automatically,
even though it does so for the objective function and the constraints (CasADi,
2018). Therefore, the optimization variables had to be scaled before the opti-
mization. The scaling variables were found by studying the final values of the
state and input before the scaling was applied, followed by some additional
tuning. An observation was made during the tuning that the solution to the
optimization is very sensitive to the values chosen for the scaling variables.

In Section 5.2.1 it was mentioned that the value ε, used in the complimen-
tary constraints of the controllers (5.3) and (5.5), is a positive constant which
imposes slack on the complementarity constraints. (5.3) and (5.5) are relaxed
formulations of the general L0-norm minimization problem discussed in Feng
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et al. (2016) and Section 3.6. (3.31) shows that the complementarity constraint
on the minimization problem is equal to zero for the half complementarity for-
mulation of the general L0-norm minimization problem, i.e., ξ ◦ x = 0. The
relaxed formulation presented in Section 3.6.4, and used in the optimal control
problems (5.3) and (5.5), relaxes the complementarity constraints using ε. The
value of ε determines how strict the complementarity constraint is, i.e. if ε = 0
it implies that the value of either ξ or x, or both, has to be exactly zero, and it
could be hard to solve an optimization problem having such strict constraints.
On the other hand, if ε is a nonzero and small value then the values of ξ or
x, or both, do not have to exactly zero, they just have to be small. This would
provide a less strict constraint on the optimal control problem, and the problem
could be easier to solve. During the design process of the maximum hands-off
controller and the moving maximum hands-off controller, different values of ε
were tested, resulting in various performance of the controllers. Eventually, the
value for ε was chosen to be 1 · 10−8 because it provided good results during
the tests. Also, ε = 1 · 10−8 is the value used for the experiments in the work by
Feng et al. (2016).
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Chapter 6

Results and Discussion

This chapter presents the results from the simulations and discusses the find-
ings. First, Section 6.1 provides a general discussion related to the implemen-
tation of the L0-controller and to whether the control torques should be opti-
mized in the body-frame {b} or in the wheel-frame {w}. The rest of the chapter
presents and discusses the results from each of the experiments considered in
Section 5.3. Section 6.2 presents and discusses the results from the experiment
involving rotation around one single axis, and Section 6.3 deals with the exper-
iments involving rotation around multiple axes. In Section 6.4, the results from
the two path-following schemes are presented and discussed. The last section,
Section 6.5, presents and discusses the results from a multiple-axis maneuver
where known perturbations are present in the system. For each experiment, the
optimal control inputs and spacecraft state trajectories resulting from the max-
imum hands-off controller, the moving maximum hands-off controller, and the
L1-optimal controller are compared. For the rest of this chapter, the maximum
hands-off controller will be referred to as the L0-optimal controller or the L0-
controller, whereas the moving maximum hands-off controller will be referred
to as the moving L0-optimal controller or the moving L0-controller. Note that
the sparsity of a control signal refers to the number of nonzero control intervals
in the signal, as defined in Definition 5.1.1. The number of control intervals for
which the control signal takes on nonzero values refers to the number of con-
trol intervals for which the absolute value of the control signal is larger than a
threshold value chosen to be 1 · 10−6.
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6.1 General discussion

6.1.1 Initial guesses for the IPOPT solver used to solve the
L0-optimal control problem

This section presents and discusses the findings from the tests where different
initial guesses were provided for the IPOPT solver used to solve the L0-optimal
control problem. Table 6.1 presents the computation time and the number of
iterations used to find the optimal solution, for different initial guesses for
the IPOPT solver, when the spacecraft performs a single-axis maneuver from
(0◦, 0◦, 0◦) to (45◦, 0◦, 0◦). Fig. 6.1 and Fig. 6.2 show the spacecraft’s orientation
trajectories and the control signals resulting from the different initial guesses,
respectively. In this section, variants of the phrases "initial guesses for the L0-
controller" and "initial guesses for the solver" are used interchangeably, and
both refer to the initial guesses for the IPOPT solver used to solve the L0-optimal
control problem.

Initial guess
for the L0-controller

CPU time NLP, [s] CPU time IPOPT, [s] Iterations

Sat. PD 122.923 10.794 953
Unsat. PD 71.794 5.949 559
No init 1.831 0.145 14
All ones 227.425 19.587 1757
PD (45, 30, 15) 192.134 16.798 1473
L0 init 130.639 11.199 1001

Table 6.1: Computation time and iterations for different initial guesses on the L0-
controller, for a single-axis maneuver from (0◦, 0◦, 0◦) to (45◦, 0◦, 0◦).

The initial guesses for IPOPT are of significant importance when trying to
find the optimal solutions to the optimal control problems. Different initial
guesses cause the optimization of the different optimal control problems to
iterate fast or slow towards an optimal solution, and it affects the quality of
the solution. As mentioned in Section 5.4, the output from the PD-controller
serves as an initial guess for the L1-controller, and more specifically as an ini-
tial guess for the spacecraft’s states qob, ω

b
ib, and ωwbw. The output from the L1-

controller serves as an initial guess for the L0- and moving L0-controller, on the
states qob, ω

b
ib, and ωwbw. No initial guesses were applied to the state ωbob and the

control torque τ bu, i.e., the default initial guess used by CasADi was applied.
CasADi’s default initial guess is a vector of all zeros. Note that the different ini-
tial guesses, presented in this section, were all tested on a single-axis maneuver
from (0◦, 0◦, 0◦) to (45◦, 0◦, 0◦).

Table 6.3 shows the number of iterations used to find the optimal control
signal using the output from the L1-controller as an initial guess for the L0- and
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Figure 6.1: Euler angles for different initial guesses on the L0-controller, for a single-
axis maneuver from (0◦, 0◦, 0◦) to (45◦, 0◦, 0◦). Note that the legend de-
scribing the colors of the trajectories for φ, θ, ψ in the subplot named "Euler
angles, init: no init" applies to all the subplots in this figure.

moving L0-controllers. Initially, the output from the PD-controller served as an
initial guess for both the L1- and the L0-controller, but after testing different
initial guesses, it turned out the better solution was to use the output from the
L1-controller as an initial guess for the L0- and moving L0-controllers.

The control torques produced by the PD-controller saturate due to the limi-
tations of the reaction wheels, and the saturated control input gives a different
spacecraft response than the response following from an unsaturated control
input. The output from both the saturated and unsaturated PD-controller were
used as initial guesses for the (saturated) L0-controller to study the response of



76 Chapter 6. Results and Discussion

Figure 6.2: Control input in body-frame for different initial guesses on the L0-
controller, for a single-axis maneuver from (0◦, 0◦, 0◦) to (45◦, 0◦, 0◦). Note
that the legend describing the colors of control torques for τb,1, τb,2, τb,3 in
the subplot named "Euler angles, init: no init" applies to all the subplots in
this figure.

the L0-controller resulting from different initial guesses. The computation time
and the number of iterations used to find the L0-optimal control signal, with ini-
tial guesses from both the saturated and unsaturated PD-controller, are shown
in Table 6.1. The orientation trajectory is shown in Fig. 6.1, and the resulting
optimal control signal is shown in Fig. 6.2, where ’sat. PD’ and ’unsat. PD’ de-
notes the results from the saturated and unsaturated PD-controller, respectively.
From Table 6.1, it is clear that using the initial guess from the unsaturated PD-
controller requires fewer iterations to find the L0-optimal solution than using
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the initial guess from the saturated PD-controller. Although the initial guess
from the unsaturated PD-controller yields fewer iterations, Fig. 6.2 reveals that
the optimal control signal found using the initial guess from the unsaturated
PD-controller is less sparse than that of the saturated PD-controller.

A test was conducted with no initial guess on the L0-controller, which made
the optimization procedure using only 14 iterations to find the optimal solution,
as shown in Table 6.1. The optimal solution found in this case was not even
close to reaching the desired orientation, as shown in Fig. 6.1. The abbreviation
’no init’ denotes the case for no initial guess. Running the optimization with no
initial guess gives the same result as applying a vector of all zeros as an initial
guess, which is the default initial guess in CasADi.

A vector of all ones of dimension N , where N is the number of control inter-
vals, was applied as an initial guess for the L0-controller. The computation time
for the optimization, and the number of iterations, when applying this initial
guess are shown in Table 6.1, in the row named ’all ones’. The vector of all
ones yields the highest computation time and the highest number of iterations
among all the initial guesses that were tested. Although the computation time
and number of iterations are relatively high, the control input shown in Fig. 6.2
is as sparse as the L0-optimal control input shown in Fig. 6.5, where the out-
put from the L1-controller is used as initial guess. The spacecraft reaches the
desired orientation for the initial guess of all ones, as can be seen in Fig. 6.1.

An experiment was conducted to investigate the performance of the L0-
controller for a single-axis maneuver from (0◦, 0◦, 0◦) to (45◦, 0◦, 0◦), when it is
provided an initial guess from the PD-controller performing a multiple-axis ma-
neuver from (0◦, 0◦, 0◦) to (45◦, 30◦, 15◦). Table 6.1 shows that this initial guess
causes the optimization procedure to use 1473 iterations, compared to 953 iter-
ations when using an initial guess from the PD-controller performing the same
maneuver as the L0-controller. Fig. 6.1 shows that the spacecraft reaches the
desired orientation for this initial guess, denoted ’PD (45, 30, 15)’, and Fig. 6.2
shows that the optimal control signal is as sparse as for the initial guess from the
saturated PD-controller performing a maneuver from (0◦, 0◦, 0◦) to (45◦, 0◦, 0◦).

Another initial guess was tested for the L0-controller, based on the output
from the previous optimization. The output from the previous optimization
refers to the output from the L0-controller performing a single-axis maneu-
ver from (0◦, 0◦, 0◦) to (45◦, 0◦, 0◦) using the output from the L1-controller as
the initial guess. The output of the previous optimization was applied to the
L0-controller performing a single-axis maneuver from (0◦, 0◦, 0◦) to (45◦, 0◦, 0◦).
The computation time and number of iterations can be seen in Table 6.1, in the
row denoted ’L0 init’. Fig. 6.1 and Fig. 6.2 show the change in orientation and
the optimal control input.

By comparing the number of iterations in Table 6.1 and the number of itera-
tions used by the L0-controller in Table 6.3, it is clear that using the output from
the L1-controller as an initial guess for the L0-controller yields an optimization
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procedure that in most cases iterates faster than for the other initial guesses
that were tested. Table 6.1 reveals that the L0-controller uses only 14 iterations
to find the optimal solution, when there are no initial guesses applied, com-
pared to the 25 iterations in Table 6.3. However, considering the Euler angles
in Fig. 6.1 it is clear that the spacecraft does not reach the desired position
when there are no initial guesses applied. Conversely, Fig. 6.3 shows that the
spacecraft reaches the desired orientation using the L0-controller with initial
guesses provided by the L1-optimal controller. The output from the L1-optimal
controller was chosen as input for the L0-optimal controller for the remaining
experiments, after considering the different cases explained in this section and
comparing the computation time, the number of iterations, the optimal control
signals, and the different spacecraft orientation trajectories.

Additionally, a few tests were carried out to explore how the L1-controller
responds to different initial guesses. The L1-controller is less sensitive to differ-
ent initial guesses than the L0-controller. However, the L1-controller provides
better results when the output from the PD-controller is applied as an initial
guess for the controller, compared to no initial guess at all. Here, better results
refer to the optimization procedure using fewer iterations to find the optimal
solution, as the spacecraft attitude trajectories were identical for both initial
guesses.

6.1.2 Optimization in body-frame versus optimization in wheel-
frame

Section 5.1 describes that the optimization of the control input is performed in
the body-frame {b}, instead of in the wheel-frame {w}. Tests were conducted to
investigate in which frame the optimization should be conducted, and the com-
putation times and the number of iterations found for the different tests are
shown in Table 6.2. The tests were conducted for a single-axis maneuver from
(0◦, 0◦, 0◦) to (45◦, 0◦, 0◦), using the L0-controller with an initial guess from the
L1-controller. From Table 6.2 it is clear that optimization conducted in {b} uses
less computation time and fewer iterations than optimization in {w}. A possible
explanation for this is that optimization in {w} could add complexity to the op-
timization procedure as the distribution of control would have to be optimized
among four reaction wheels, instead of only distributing the control about the
three {b}-axes. The comparison between optimization in the two frames re-
vealed that the optimal control signals had the same sparsity. Thus, since the
optimization conducted in {b} uses less computation time and fewer iterations
than optimization in {w}, a decision was made to perform the optimization in
{b}. The control torques in {b} are then transformed to {w} using the Moore-
Penrose pseudo-inverse of A so that the desired control torques are distributed
among the four reaction wheels. The Moore-Penrose pseudo-inverse of A is the
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optimal mapping from {b} to {w}, and the conversion between {b} and {w} are
studied in Section 2.3.4.

Frame used for optimization CPU time NLP, [s] CPU time IPOPT, [s] Iterations
Body-frame {b} 3.277 0.225 25
Wheel-frame {w} 5.979 0.499 41

Table 6.2: Computation time and iterations in {b} and {w}, for a single-axis maneuver
from (0◦, 0◦, 0◦) to (45◦, 0◦, 0◦) the L0-controller.

6.2 Single-axis maneuver

This section presents and discusses the results from the experiment discussed
in Section 5.3.1, in which the spacecraft is rotated an angle φ = 45◦ about
the x-axis. There is no rotation about the remaining axes, i.e., θ = 0◦, and
ψ = 0◦. First, the results are presented, followed by a discussion of the results
in Section 6.2.1.

Fig. 6.3 shows the change in the spacecraft’s attitude over time, and reveals
that all three controllers are able to steer the spacecraft to the desired orienta-
tion of (φ, θ, ψ) = (45◦, 0◦, 0◦) and keep the spacecraft at this attitude. The dot-
ted lines φd, θd, and ψd denotes the angles of the desired attitude, whereas the
solid lines φ, θ, and ψ corresponds to the actual states. The angular velocity of
{b} relative to {o}, represented in {b}, ωbob, is shown in Fig. 6.4 and reveals that
the spacecraft stops rotating, i.e., the body-frame stops rotating relative to the
orbit-frame, when the desired orientation is reached. The optimal control input
is computed in the body-frame {b}, and the optimal control signal can be seen
in Fig. 6.5. The torque vector in {b}, τ bu, is transformed into the wheel-frame
{w}, τwu , before the torques are applied to the reaction wheels. The transfor-
mation between {b} and {w} is discussed in Section 2.3.4. The optimal control
signals represented in {w} are shown in Fig. 6.6. The angular velocity of the
reaction wheels, ωwbw, can be seen in Fig. 6.7, and illustrates the dynamical re-
sponse of the reaction wheels. The computation times for the different control
scenarios, the sparsity, i.e., the number of nonzero control intervals, for each
of the control signals, and the number of iterations used to find the optimal
solution for each of the three controllers are shown in Table 6.3.

6.2.1 Discussion

Fig. 6.3, Fig. 6.4, Fig. 6.5, and Fig. 6.6 show that the changes in the spacecraft’s
states over time and the control signals are identical for the L0-controller and
the L1-controller. These results are in agreement with the findings in Nagahara
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Controller CPU time NLP, [s] CPU time IPOPT, [s] Sparsity Iterations
L0-optimal control 3.235 0.253 2 25
Moving L0-optimal control 46.914 3.828 2 371
L1-optimal control 2.479 0.204 2 19

Table 6.3: Computation time, sparsity and number of iterations for a single-axis ma-
neuver from (0◦, 0◦, 0◦) to (45◦, 0◦, 0◦).

Figure 6.3: Euler angles for a single-axis maneuver from (0◦, 0◦, 0◦) to (45◦, 0◦, 0◦).

et al. (2015) and suggest that the L1-norm may be used as an approximation
to the L0-norm.

On the other hand, Fig. 6.3, Fig. 6.4, Fig. 6.5, and Fig. 6.6 show that the
responses and control signals resulting from the moving L0-controller differs
from the two other controllers. The differences can be explained by comparing
the cost functions of the three controllers in (5.3a), (5.5a), and (5.7a). For the
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Figure 6.4: Angular velocity, ωbob, for a single-axis maneuver from (0◦, 0◦, 0◦) to
(45◦, 0◦, 0◦).

moving L0-controller, the vector hN was chosen such that it would cost less for
the control inputs to occur between t = 28 s and t = 42 s, whereas for the two
other controllers, it is equally expensive for the control inputs to occur over the
whole time interval. Fig. 6.5 and Fig. 6.6 show that the control inputs produced
by the moving L0-controller occur at t = 28 s and t = 42 s, and Fig. 6.3 and
Fig. 6.4 show that the spacecraft’s states change within this interval. Because
it is cheaper for the control input to occur within the time interval specified by
hN , it could make sense that the responses and control signal from the moving
L0-controller are different from the responses and control signals for the two
other controllers. This finding suggest that the moving L0-controller is able to
move control inputs to a user-defined interval.

Fig. 6.5 and Fig. 6.6 show that the optimal control signal computed by the
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Figure 6.5: Control input body frame for a single-axis maneuver from (0◦, 0◦, 0◦) to
(45◦, 0◦, 0◦).

moving L0-controller has larger amplitude than the control signals produced by
the two other controllers. A reasonable explanation for this may be that since
the moving L0-control torques occur closer in time, the torque applied at each
of the two time instants has to be larger in order to steer the spacecraft to the
desired orientation within a smaller time interval. The control input that occurs
at t = 28 s pushes the spacecraft towards the desired orientation, whereas
the control input at t = 42 s slows the spacecraft down so that it stays at
the desired orientation and stops spinning, i.e., the body-frame stops rotating
relative to the orbit-frame. To reach the desired position in a short time interval,
the control torques applied to the spacecraft have to be larger than if the time
interval was longer. However, if the time interval was longer, the control inputs
could be smaller as the spacecraft would have more time to rotate towards the
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Figure 6.6: Control input wheel frame for a single-axis maneuver from (0◦, 0◦, 0◦) to
(45◦, 0◦, 0◦).

desired orientation after the initial control input has been applied. This finding
indicates that the moving L0-controller may require more energy than the two
other controllers, because it requires more energy to produce a large control
torque than a small control torque.

Fig. 6.5 and Fig. 6.6 show that the control inputs produced by the moving
L0-controller occur at t = 28 s and t = 42 s, which means that they occur
exactly at the boundaries of the time interval specified by hN . The saturation
limits for the control torque are τlimit = ±3 · 10−3 N·m, and Fig. 6.6 shows that
the control torques produced by the moving L0-controller are relatively close
to the saturation limits. As outlined previously, for the spacecraft to reach the
desired attitude in a short time interval, the control torques applied to it have
to be larger than if the time interval was longer. Thus, if the control torques had
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Figure 6.7: Angular velocity, ωwbw, for a single-axis maneuver from (0◦, 0◦, 0◦) to
(45◦, 0◦, 0◦).

occurred at other time instants in the interval specified by hN , they would have
occurred closer in time, and the torques would therefore have larger values.
The control torques are already close to the saturation limits when they occur
at t = 28 s and t = 42 s, and if the torque values were to increase, the reaction
wheels might saturate. If the reaction wheels saturate, an additional control
torque may be required to perform the spacecraft maneuver, as discussed in
Section 5.5.3, and an additional control torque would yield a less sparse control
signal. It is cheaper for the control input to occur between t = 28 s and t = 42
s, but if the control torques are too close in time, they may saturate, and the
controller would have to apply an additional control torque. Hence, the most
optimal solution may be to apply the control torques as far apart in time as
possible, but still within the time interval specified by hN . This is because it is
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cheaper for the control inputs to occur within this interval and they are not so
close in time that they will saturate. Therefore, it makes sense that the control
torques occur at the borders of the time interval specified by hN , i.e., at t = 28
s and t = 42 s.

Table 6.3 shows that all three controllers yield optimal control signals which
have the same sparsity, i.e., the number of nonzero control intervals are 2 for all
controllers. This finding suggests that all three controllers are able to find the
sparsest solution. For a spacecraft single-axis maneuver, it may not be possible
to find a control signal which is sparser than 2, as one control torque has to
push the spacecraft towards the desired attitude and one control input has to
stop the spacecraft rotation. If the spacecraft was operating inside the Earth’s
atmosphere, it might be possible to obtain a sparser control signal, as it may be
possible to apply control torque to the spacecraft at only one instant. This con-
trol torque would push the spacecraft towards its desired attitude, and instead
of applying a second control torque to stop the spacecraft, it could be possi-
ble to rely on the air resistance to slow the spacecraft down. Relying on the
air resistance to slow the spacecraft down would require a relatively long time
horizon since the air resistance does not affect the spacecraft much in orbit.
Air resistance is less important as the altitude of the spacecraft increases, and
therefore a control torque would be needed to stop the spacecraft from rotating
when the spacecraft is operating at a higher altitude. Hence, a control signal in
which control torques occur at two different time instants provides the sparsest
control signal for the spacecraft single-axis maneuver in this thesis.

When trying to maneuver the spacecraft an angle φ = 45◦ about the x-axis,
one might expect an optimal controller to yield control torque simply about
the body-frame x-axis. Fig. 6.5 shows that control torques are applied about all
three axes, although the control torque about the x-axis is the most prominent.
The optimal control algorithms yield torque about all three axes because the
spacecraft rotates relative to its orbit at the same time as it orbits the Earth.
To put it more mathematically, the body-frame {b} rotates relative to the orbit-
frame {o}, at the same time as the orbit-frame {o} also rotates relative to the
inertial frame {i}. If the spacecraft is not operating in orbit, which would be the
case if the spacecraft operated in deep-space, then the orbit-frame {o} would
not be well-defined. Then, the angular acceleration of the spacecraft would be
represented by the angular acceleration of {b} relative to {i}, and (4.20c) may
be rewritten accordingly

ω̇bob = ω̇bib. (6.1)

A spacecraft operating in LEO, such as the satellite used for the simulations in
this thesis, would rotate relative to its orbit, i.e., {b} rotates relative to {o}. This
results in the angular acceleration in (4.20c). For the single-axis maneuver from
(0◦, 0◦, 0◦) to (45◦, 0◦, 0◦), one might expect zero rotation about the y- and z-
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axis, since θd and φd are both zero. However, Fig. 6.3 shows that θ and φ are not
entirely zero during the simulations, which confirms that there is rotation about
the y- and z-axis. Because of the spacecraft’s rotation around the Earth, there
will be rotation about the y- and z-axis throughout the optimization horizon, in
addition to the control effort made about the x-axis. Therefore, torque from the
reaction wheels must be applied to compensate for the drift about the y- and
z-axis.

The total inertia matrix for the spacecraft rigid body, J, in (5.12) also con-
tributes to rotation about multiple axes. Due to the nonlinearity of the space-
craft dynamics, the terms are coupled, which results in torques about all three
axes, even though motion is only needed about one axis. The total system in-
ertia matrix is not diagonal and is given in (5.12). If a diagonal J-matrix were
used instead of the one in (5.12), the states would be less coupled, which is
clear from (4.7), (4.8), and (4.20b). Less coupling of the dynamics would yield
less torque about the y- and z-axis when a single-axis maneuver is performed
about the x-axis.

6.3 Multiple-axis maneuver

Two multiple-axis maneuvers were tested, as discussed in Section 5.3.2, and the
results from the experiments are presented and discussed in this section. Sec-
tion 6.3.1 presents the results for the multiple-axis maneuver from (0◦, 0◦, 0◦) to
(90◦, 45◦, 15◦), and Section 6.3.2 discusses these results. Section 6.3.3 presents
the results from the multiple-axis maneuver from (0◦, 0◦, 0◦) to (75◦, 50◦, 15◦),
and Section 6.3.4 discusses these results.

6.3.1 Multiple-axis maneuver from (0◦, 0◦, 0◦) to (90◦, 45◦, 15◦)

The first multiple-axis maneuver rotates the spacecraft an angle φ = 90◦ about
the x-axis, θ = 45◦ about the y-axis, and ψ = 15◦ about the z-axis.

Fig. 6.8 shows the change in attitude over the simulation time, and reveals
that the spacecraft reaches the desired attitude. The angular velocity, ωbob, for
the three controllers are shown in Fig. 6.9, and reveals that the spacecraft stops
rotating when it reaches the desired attitude. The optimal control input torques
in {b} and {w} are shown in Fig. 6.10 and Fig. 6.11, respectively. Note that the
angular velocity of the reaction wheels can be found in Fig. A.1 in Appendix A.
Table 6.4 presents the computation times for the different control scenarios, the
sparsity for each of the three control signals, and the number of iterations used
to find the optimal solution for each of the three control scenarios.



Chapter 6. Results and Discussion 87

Controller CPU time NLP, [s] CPU time IPOPT, [s] Sparsity Iterations
L0-optimal control 66.216 6.106 2 497
Moving L0-optimal control 90.175 7.706 2 699
L1-optimal control 5.131 0.360 2 39

Table 6.4: Computation time, sparsity and iterations for a multiple-axis maneuver from
(0◦, 0◦, 0◦) to (90◦, 45◦, 15◦).

Figure 6.8: Euler angles for a multiple-axis maneuver from (0◦, 0◦, 0◦) to
(90◦, 45◦, 15◦).

6.3.2 Discussion of the multiple-axis maneuver from (0◦, 0◦, 0◦)
to (90◦, 45◦, 15◦)

Fig. 6.8 shows that all three controllers are able to steer the spacecraft to the
desired orientation of (90◦, 45◦, 15◦). Fig. 6.9 shows that the angular velocity of
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Figure 6.9: Angular velocity, ωbob, for a multiple-axis maneuver from (0◦, 0◦, 0◦) to
(90◦, 45◦, 15◦).

{b} relative to {o} becomes zero, for all three controllers, when the spacecraft
reaches the desired attitude. The results in this section support the findings
from Section 6.2, which suggested that all three controllers work as intended.

Fig. 6.10 and Fig. 6.11 show that the first control torque from the moving L0-
controller occurs after about t = 8 s, and the second control torque occurs close
to t = 40 s. The second control torque occurs within the interval specified by hN .
The vector hN was chosen such that it would cost less for the control inputs to
occur between t = 28 s and t = 42 s. One might have expected all control inputs
to occur within this time interval. However, one control input occurs outside
this interval. The reason for this is that there are no constraints on where the
control input should not occur; it only costs less between t = 28 s and t = 42 s.
The optimization procedure aims to satisfy the constraints and reach the final
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Figure 6.10: Control input body frame for a multiple-axis maneuver from (0◦, 0◦, 0◦)
to (90◦, 45◦, 15◦).

state values while minimizing the cost function. If it is not possible to reach this
goal by applying control input within the cheap interval specified by hN , some
or all of the control input will occur outside this interval. Therefore, control
inputs may occur outside the interval defined by hN .

The L1-optimal control signal and the L0-optimal control signal are not iden-
tical, which can be seen in Fig. 6.10 and Fig. 6.11. The first control input pro-
duced by the L1-controller occurs at t ≈ 2 s, whereas the first control input
produced by the L0-controller occurs at t ≈ 8 s. The two last control inputs oc-
cur simultaneously for both controllers. The amplitudes of the control torques
from the L1-controller are smaller than those from the L0-controller. A possible
explanation for the difference in amplitudes is that since there is more time be-
tween the two L1-control inputs, the spacecraft will have more time to rotate to
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Figure 6.11: Control input wheel frame for a multiple-axis maneuver from (0◦, 0◦, 0◦)
to (90◦, 45◦, 15◦).

the desired orientation, and thus less torque would need to be applied. There-
fore, it makes sense that the control torques produced by the L1-controller are
smaller than the control torques produced by the L0-controller. These results
suggest that the L1-optimal solution does not always equal the L0-optimal so-
lution. On the other hand, they suggest that the L1-optimal control problem
could be a rather acceptable approximation to the L0-optimal control problem.

6.3.3 Multiple-axis maneuver (0◦, 0◦, 0◦) to (75◦, 50◦, 15◦)

The second multiple-axis maneuver rotates the spacecraft from an initial orien-
tation (φ, θ, ψ) = (0◦, 0◦, 0◦) to a final orientation (75◦, 50◦, 15◦).

Table 6.5 gives the computation times for each of the optimal control prob-
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lems, the sparsity of the optimal control signals in {b} for each of the three con-
trollers, and the number of iterations used to solve the optimal control problems
using IPOPT. The spacecraft’s change in attitude for the different controllers is
shown in Fig. 6.12. The angular velocity of the body-frame relative to the orbit-
frame is shown in Fig. 6.13. Fig. 6.14 shows the optimal control signals in the
body-frame, whereas Fig. 6.15 shows the optimal control signals in the wheel-
frame. The angular velocity of the reaction wheels can be found in Fig. A.2 in
Appendix A.

Controller CPU time NLP, [s] CPU time IPOPT, [s] Sparsity Iterations
L0-optimal control 115.960 10.171 2 913
Moving L0-optimal control 40.436 3.438 2 315
L1-optimal control 2.947 0.221 4 23

Table 6.5: Computation time, sparsity and iterations for a multiple-axis maneuver from
(0◦, 0◦, 0◦) to (75◦, 50◦, 15◦).

6.3.4 Discussion of the multiple-axis maneuver from (0◦, 0◦, 0◦)
to (75◦, 50◦, 15◦)

The L1-optimal control signal is less sparse than the L0-optimal control sig-
nal for the for the multiple-axis maneuver from (0◦, 0◦, 0◦) to (75◦, 50◦, 15◦), as
shown in Table 6.5. This is an interesting result as it confirms what was sug-
gested in Feng et al. (2016), i.e., that L1-optimal solutions provide suboptimal
solutions to the L0-optimal control problem. Although this finding is interest-
ing, the difference in sparsity for the two control signals might occur due to the
implementation of the optimal control problems and the numerical approach
taken to solve them. The results presented in this section were found using
direct optimization, whereas indirect optimization was used in the work by Na-
gahara et al. (2015), which suggested that L1-optimal control could be used to
approximate L0-optimal control.

For the moving L0-controller, only one of the two control torques occur
within the time interval specified by hN from t = 28 s to t = 42 s, as shown
in Fig. 6.14 and Fig. 6.15. As discussed before, this finding illustrates that even
though it is cheaper for the control inputs to occur within the specified interval,
this does not guarantee that they will occur here. Additional constraints may
be required in the moving L0-optimal control problem to prevent the control
inputs from occurring outside the desired time interval.

By comparing the moving L0-optimal control signals in Fig. 6.10 and Fig. 6.14,
it is clear that for both control signals only one control torque occur with the
time interval specified by hN from t = 28 s to t = 42 s, whereas the remaining
control torques occur outside this interval. This finding supports what has been
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Figure 6.12: Euler angles for a multiple-axis maneuver from (0◦, 0◦, 0◦) to
(75◦, 50◦, 15◦).

stated previously in that even though it is cheaper for the control inputs to oc-
cur within the specified interval, this does not guarantee that they will occur
here. Fig. 6.10 reveals that for the maneuver from (0◦, 0◦, 0◦) to (90◦, 45◦, 15◦),
the control torque occurring outside the interval specified by hN is applied at
the beginning of the simulation, at about t = 8 s. Contrary, Fig. 6.14 shows that
for the maneuver from (0◦, 0◦, 0◦) to (75◦, 50◦, 15◦) the control torque occurring
outside the interval specified by hN is applied at the end of the simulation, close
to t = 70 s. This finding suggests that if two control torques are required to per-
form a maneuver, it is possible to move both the first and the second control
torque to within the time interval specified by hN .

The computation times for the L1-controller are different for the two multiple-
axis maneuvers, and smaller in the case for the maneuver from (0◦, 0◦, 0◦) to
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Figure 6.13: Angular velocity, ωbob, for a multiple-axis maneuver from (0◦, 0◦, 0◦) to
(75◦, 50◦, 15◦).

(75◦, 50◦, 15◦), which can be seen in Table 6.4 and Table 6.5. One possible expla-
nation to why the computation time is less for the maneuver from (0◦, 0◦, 0◦) to
(75◦, 50◦, 15◦) is that the optimization solver gets stuck in a local minimum and
stops searching for a more optimal solution. Comparing Table 6.5 and Table 6.4
reveals that the L1-optimal control signal for the maneuver from (0◦, 0◦, 0◦) to
(75◦, 50◦, 15◦) is less sparse than the L1-optimal control signal for the maneuver
from (0◦, 0◦, 0◦) to (90◦, 45◦, 15◦). This finding may also suggest that the solver
has stopped in a local minimum while searching for the optimal solution to the
L1-optimal control problem for the maneuver from (0◦, 0◦, 0◦) to (75◦, 50◦, 15◦).
Another possible explanation to why the computation time is less for the ma-
neuver from (0◦, 0◦, 0◦) to (75◦, 50◦, 15◦) is that the initial guesses provided for
the optimization is closer to the optimal solution or the local minimum, com-
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Figure 6.14: Control input body frame for a multiple-axis maneuver from (0◦, 0◦, 0◦)
to (75◦, 50◦, 15◦).

pared to the initial guesses provided for the optimization of the maneuver from
(0◦, 0◦, 0◦) to (90◦, 45◦, 15◦).

6.4 Path-following maneuver

This section presents and discusses the results from the experiments dealing
with path-following, as explained in Section 5.3.3. First, Section 6.4.1 presents
the results from the path-following maneuver where multiple optimizations are
used to find the optimal solutions. The results presented in Section 6.4.1 are
discussed in Section 6.4.2. Then, in Section 6.4.3, the results from the path-
following maneuver where an extra quaternion term is added to the cost func-
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Figure 6.15: Control input wheel frame for a multiple-axis maneuver from (0◦, 0◦, 0◦)
to (75◦, 50◦, 15◦).

tions are presented, followed by a discussion of these results in Section 6.4.4.
For both path-following approaches, a maneuver from (φ, θ, ψ) = (0◦, 0◦, 0◦)
through (30◦, 45◦, 15◦) to (0◦, 0◦, 0◦) is performed.

6.4.1 Path-following using multiple optimizations

The results for the path-following maneuver from (φ, θ, ψ) = (0◦, 0◦, 0◦) through
(30◦, 45◦, 15◦) to (0◦, 0◦, 0◦), where multiple optimizations are used to find the
optimal solutions are presented in this section. Using multiple optimizations to
solve the optimal control problem means that first, the maneuver from (0◦, 0◦, 0◦)
to (30◦, 45◦, 15◦) is optimized, and then the maneuver from (30◦, 45◦, 15◦) to
(0◦, 0◦, 0◦) is optimized.



96 Chapter 6. Results and Discussion

The sparsity of the optimal control signals are shown in Table 6.6, whereas
the computation times used for each of the three controllers, for each of the two
optimizations, are shown in Table 6.7. The number of iterations used to find
the optimal solution are also shown in Table 6.7. Fig. 6.16 shows the attitude
trajectories of the spacecraft, and illustrates that the spacecraft is able to follow
the predefined path. Fig. 6.17 shows the angular velocity of the body-frame
relative to the orbit-frame, ωbob. The control signals computed in the body-frame
are found in Fig. 6.18, whereas the control signals computed in the wheel-frame
are shown in Fig. 6.19. The angular velocity of the reaction wheels can be found
in Fig. A.3 in Appendix A.

Controller Sparsity
L0-optimal control 4
Moving L0-optimal control 6
L1-optimal control 4

Table 6.6: Sparsity for path-following using multiple optimizations, from (0◦, 0◦, 0◦)
through (30◦, 45◦, 15◦) to (0◦, 0◦, 0◦).

Controller Optim. no. CPU time NLP, [s] CPU time IPOPT, [s] Iterations
L0-optimal control 1 49.505 4.108 358
L0-optimal control 2 97.399 8.897 717
Total: - 146.904 13.005 1075
Moving L0-optimal control 1 88.086 7.775 642
Moving L0-optimal control 2 147.574 13.009 1073
Total: - 235.660 20.784 1715
L1-optimal control 1 2.959 0.171 22
L1-optimal control 2 3.139 0.265 24
Total: - 6.098 0.436 46

Table 6.7: Computation time and iterations for path-following using multiple opti-
mizations, from (0◦, 0◦, 0◦) through (30◦, 45◦, 15◦) to (0◦, 0◦, 0◦).

6.4.2 Discussion for the path-following using multiple opti-
mizations

At first, the initial guesses for the L0- and moving L0-controller were the output
from the L1-controller performing a path-following maneuver from (0◦, 0◦, 0◦)
through (30◦, 45◦, 15◦) to (0◦, 0◦, 0◦), but these initial guesses yielded poor re-
sults. In other words, the spacecraft did not reach the desired attitude and an-
gular velocity when applying the output from the L1-controller as initial guesses
for the L0- and moving L0-controller. Therefore, different initial guesses than
what were first used were applied to the L0- and moving L0-controller. The new
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Figure 6.16: Euler angles for path-following using multiple optimizations, from
(0◦, 0◦, 0◦) through (30◦, 45◦, 15◦) to (0◦, 0◦, 0◦).

initial guess applied for the L0-controller was the output from the L1-controller
performing a single-axis maneuver from (0◦, 0◦, 0◦) to (75◦, 0◦, 0◦). The new ini-
tial guess applied for the moving L0-controller was the output from the L1-
controller performing a single-axis maneuver from (0◦, 0◦, 0◦) to (90◦, 0◦, 0◦).
From Fig. 6.16 and Fig. 6.17 it is clear that the spacecraft follows the path
and stops rotating for these initial guesses, although they were not expected to
yield better results than the original initial guesses. A possible explanation to
why the first initial guesses did not yield satisfactory results is that the optimiza-
tion solver might have become stuck in a local minimum, and is therefore not
able to find the optimal solution. The first initial guesses may have provided
a starting point close to a local minimum, and the optimization stops at this
point. Contrary, the second initial guesses may have provided a starting point
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Figure 6.17: Angular velocity, ωbob, for path-following using multiple optimizations,
from (0◦, 0◦, 0◦) through (30◦, 45◦, 15◦) to (0◦, 0◦, 0◦).

closer to a better solution. This confirms that the optimization solver, IPOPT,
is sensitive to the choice of initial guesses. The results also illustrates the im-
portance of choosing good initial guesses for the L0- and moving L0-optimal
control problems. The sensitivity of the L0-optimal control problem to different
initial guesses was explored in Section 6.1.1.

Each of the two subsequent optimizations lasts for t = 70 s, and the orienta-
tion trajectories resulting from the L1-controller and L0-controller are symmet-
rical about t = 70 s, excluding the propagation time at the end of the second
optimization. The same goes for the control signals computed by the two con-
trollers. One explanation to why the symmetrical results make sense, is because
the same amount of torque is required to move the spacecraft from (0◦, 0◦, 0◦)
to (30◦, 45◦, 15◦), and from (30◦, 45◦, 15◦) to (0◦, 0◦, 0◦). Fig. 6.18 and Fig. 6.19
show that the control torques for the two optimizations have the same size, and
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Figure 6.18: Control input body frame for path-following using multiple optimiza-
tions, from (0◦, 0◦, 0◦) through (30◦, 45◦, 15◦) to (0◦, 0◦, 0◦).

thus supports the suggested explanation.
On the other hand, the results for the moving L0-controller are rather asym-

metrical. One way to explain the asymmetrical results for the moving L0-controller
could be that the choice of hN makes it cheaper to apply control torques if they
occur within t = 28 s and t = 42 s for the moving L0-controller for each of the
two optimizations. This means within t = 28 s to t = 42 s and t = 98 s to t = 112
s in the plots. For the first maneuver from (0◦, 0◦, 0◦) to (30◦, 45◦, 15◦), two con-
trol inputs occur within this interval and one occur at the end of the optimiza-
tion interval. A close-up study of the moving L0-control signals in Fig. 6.18 and
Fig. 6.19 reveals that the first and second control torques have slightly different
magnitudes. Therefore an additional control input has to be applied to compen-
sate for the difference between the two first control torques, i.e., the spacecraft
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Figure 6.19: Control input wheel frame for path-following using multiple optimiza-
tions, from (0◦, 0◦, 0◦) through (30◦, 45◦, 15◦) to (0◦, 0◦, 0◦).

requires the same amount of torque to stop spinning as it requires to start. For
the second optimization, i.e., the maneuver from (30◦, 45◦, 15◦) to (0◦, 0◦, 0◦),
the control torques occur at three instants, all within the interval t = 98 s to
t = 112, which differs from the first maneuver. One might have expected that
the control inputs would occur at the same time instants for the optimizations
for both maneuvers, considering they are opposite maneuvers and the optimiza-
tion is performed over the same number of control intervals. Contrary to this,
the moving L0-control signals in Fig. 6.18 and Fig. 6.19 are asymmetrical. For
each of the optimizations, i.e., the optimization of the maneuver from (0◦, 0◦, 0◦)
to (30◦, 45◦, 15◦) and the optimization from (30◦, 45◦, 15◦) to (0◦, 0◦, 0◦), the op-
timization procedure aims to satisfy the constraints and reach the final state
values while minimizing the cost function. If it is not possible to reach this goal
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by applying control input within the cheap interval specified by hN , some or all
of the control input will occur outside this interval. Therefore, control inputs
may occur outside the interval defined by hN . This, together with the fact that
the two maneuvers are different, could explain why the control signals differs
for the first and second part of the path-following maneuver for the moving L0-
controller. Another possible explanation to why the first and second part of the
path-following maneuver for the moving L0-controller differ, is that the con-
troller behave differently based on initial guesses, as discussed in Section 6.1.1.

For the moving L0-controller and the second optimization, i.e., the maneu-
ver from (30◦, 45◦, 15◦) to (0◦, 0◦, 0◦), control torques occur at three instants, all
within the interval t = 98 s to t = 112 as outlined above. The control torques
that occur at t ≈ 102 s and the control torques that occur at t ≈ 112 s make the
reaction wheels saturate, as shown in Fig. 6.19. An explanation to why the ac-
tuators saturated could be that all the control torques occur within an interval
of ∆t ≈ 14 s for the second optimization, compared to an interval of ∆t ≈ 40
s for the first optimization. As discussed in Section 6.2.1; if the control torques
occur within a small time interval the values of the torques have to be larger
than if there was more time between each control torque, in order to perform
a specified maneuver. For the first optimization, i.e., for the maneuver from
(0◦, 0◦, 0◦) to (30◦, 45◦, 15◦), the two first control inputs are close to the satura-
tion limits of τlimit = ±3 · 10−3 N·m. However, for the first optimization, a third
control input occurs at the end of the optimization interval. Although the con-
trol torques occur within a relatively large time interval for the first maneuver,
two of them are close to the saturation limits. The spacecraft has to rotate the
same distance for the two maneuvers, i.e., from (0◦, 0◦, 0◦) to (30◦, 45◦, 15◦), and
from (30◦, 45◦, 15◦) to (0◦, 0◦, 0◦). Since the control torques applied to steer the
spacecraft from (30◦, 45◦, 15◦) to (0◦, 0◦, 0◦) occurs closer in time than for the
first maneuver, it could make sense that the actuators saturate. If the control
torques were even closer together, yet another control torque might be required
to perform the maneuver as discussed in Section 5.5.3.

6.4.3 Path-following using an extra quaternion in the cost
function

The results for the path-following maneuver from (φ, θ, ψ) = (0◦, 0◦, 0◦) through
(30◦, 45◦, 15◦) to (0◦, 0◦, 0◦), where an extra quaternion term is added to the cost
functions, are presented in this section.

The computation times for the different control scenarios, the sparsity for
each of the control signals, and the number of iterations used to find the optimal
solution for each of the three controllers are shown in Table 6.8.

Fig. 6.20 shows the change in the spacecraft’s attitude over time, and re-
veals that all three controllers are able to steer the spacecraft through the pre-
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defined path. The angular velocity of {b} relative to {o}, represented in {b},
ωbob, is shown in Fig. 6.21. The optimal control input in the body-frame can be
seen in Fig. 6.22, and the torques represented in the wheel-frame are shown
in Fig. 6.23. The angular velocity of the reaction wheels, ωwbw, can be seen in
Fig. A.4 in Appendix A.

Controller CPU time NLP, [s] CPU time IPOPT, [s] Sparsity Iterations
L0-optimal control 81.583 6.937 3 627
Moving L0-optimal control 104.913 9.173 3 829
L1-optimal control 3.705 0.275 3 29

Table 6.8: Computation time, sparsity and iterations for path-following using an extra
quaternion in the cost function, from (0◦, 0◦, 0◦) through (30◦, 45◦, 15◦) to
(0◦, 0◦, 0◦).

6.4.4 Discussion for the path-following using an extra quater-
nion in the cost function

The initial guess for the L0-controller were the output from the L1-controller
for a single axis maneuver from (0◦, 0◦, 0◦) to (90◦, 0◦, 0◦). This initial guess
yielded better results than using an initial guess from the L1-controller for a
path-following maneuver from (0◦, 0◦, 0◦) through (30◦, 45◦, 15◦) to (0◦, 0◦, 0◦),
similarly to the observations made for the path-following maneuver in Sec-
tion 6.4.1. As mentioned previously, a possible explanation to why the initial
guess from the path-following maneuver did not yield satisfactory results may
be that the optimization solver could have become stuck in a local minimum,
and is therefore not able to find the optimal solution.

For the moving L0-controller, the vector hN was chosen such that it would
cost less for the control input to occur between t = 10 s and t = 20 s, and
t = 49 s and t = 59 s. Fig. 6.22 and Fig. 6.23 show that no control inputs occur
within these time intervals. A reason for this could be that even though it is
cheaper to provide control inputs within these two intervals, doing so may not
minimize the cost function in (5.9b) while satisfying the constraints. In other
words, to minimize the cost function, it is more important to minimize the
terms in the cost function which relate to attitude and angular velocity, than
it is to move the control inputs to inside the predefined intervals. The control
inputs occur outside t = 10 s and t = 20 s, and t = 49 s and t = 59 s, which is
acceptable behaviour, since there are no terms in the moving L0-optimal control
problem that prevents the control torques from occurring outside the cheapest
time intervals. Thus, this result does not indicate that the moving L0-controller
does not work, but it illustrates that the control inputs are only moved to the
predefined interval if it contributes to minimizing the objective function while
satisfying the constraints.
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Figure 6.20: Euler angles for path-following using an extra quaternion in the cost func-
tion, from (0◦, 0◦, 0◦) through (30◦, 45◦, 15◦) to (0◦, 0◦, 0◦).

The saturation limits for the reaction wheel torque are τlimit = ±3 ·10−3 N·m,
given in Table 5.2. Fig. 6.23 shows that, for all three controllers, the reaction
wheel related to τw,2 saturates at the time instant where the second control
torque occur, at about t = 34 s. The first control input, which occurs around t =
2 s, pushes the spacecraft towards the desired intermediate attitude. The second
control input, which occurs around t = 34 s, pushes the spacecraft towards the
final attitude, but in doing so it also has to oppose the motion of the spacecraft
resulting from the first control input. At the end of the optimization, the last
control input stops the rotation of the spacecraft. Therefore, it makes sense
that the second control input, which occurs around t = 34 s, is larger than the
other two, and could explain why it saturates.

The path-following maneuver which uses an extra quaternion yielded a con-
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Figure 6.21: Angular velocity, ωbob, for path-following using an extra quaternion in the
cost function, from (0◦, 0◦, 0◦) through (30◦, 45◦, 15◦) to (0◦, 0◦, 0◦).

trol signal which was more sparse than the control signal resulting from the
path-following maneuver which uses multiple optimizations. The difference in
sparsity can be seen by comparing Table 6.8 to Table 6.6. These results make
sense because in the case for the path-following maneuver which uses an ex-
tra quaternion, the optimization of the maneuver is performed over the whole
interval. For this maneuver, one control torque is required to push the space-
craft towards the intermediate orientation, one torque is required to turn, and
one torque is required to stop the spacecraft at the end of the optimization in-
terval. In the case for path-following which uses multiple optimizations, two
separate optimizations are performed for two separate maneuvers which are
put together to form the total path. For each of these separate maneuvers, the
angular velocity ωbob goes to zero at the end of the optimization, due to the
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Figure 6.22: Control input body frame for path-following using an extra quaternion in
the cost function, from (0◦, 0◦, 0◦) through (30◦, 45◦, 15◦) to (0◦, 0◦, 0◦).

formulation of the cost functions in (5.3a), (5.5a), and (5.7a). Therefore, one
torque is applied at the beginning of each maneuver to push the spacecraft to-
wards the desired attitude, and a second torque is applied at the end of the
optimization to stop the spacecraft, which yields a sparsity of 4 for the L1- and
L0-control signals. A control signal having a sparsity of 4 is the sparsest possible
control signal for a path-following maneuver split into two optimizations, due
to the start and stop torques which has to be applied for each optimization.
Similarly, a sparsity of 3 provides the sparsest possible control signal for the
path-following which uses an intermediate quaternion, when the cost functions
are given as in (5.9a) to (5.9c) and hN is chosen such that it would cost less
for the control input to occur between t = 10 s and t = 20 s, and t = 49 s and
t = 59 s.



106 Chapter 6. Results and Discussion

Figure 6.23: Control input wheel frame for path-following using an extra quaternion
in the cost function, from (0◦, 0◦, 0◦) through (30◦, 45◦, 15◦) to (0◦, 0◦, 0◦).

The response in the spacecraft’s states and the control signals are identi-
cal for all three controllers, as shown in Fig. 6.20, Fig. 6.21, Fig. 6.22, and
Fig. 6.23. As discussed before, a control signal having the sparsity of 3 is the
sparsest possible control signal for a path-following maneuver which uses an
intermediate quaternion in the cost function. These findings suggest that all
controllers have been able to find optimal control signals for the path-following
maneuver which uses an intermediate quaternion in the cost function from
(0◦, 0◦, 0◦) through (30◦, 45◦, 15◦) to (0◦, 0◦, 0◦), since all the control signals have
a sparsity of 3 and the spacecraft reaches its desired states. A possible expla-
nation to why the three optimal solutions are identical could be that the initial
guesses for each of the optimization procedures provide a starting point close
to an identical local minimum.
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6.5 Multiple-axis maneuver with known perturba-
tions

This section presents and discusses the results from the experiment dealing
with a multiple-axis maneuver with known perturbations. The experiment is
explained in detail in Section 5.3.4. First, the results from the experiment are
presented. Then, Section 6.5.1 discusses the results.

The computation times for the different control scenarios, the sparsity for
each of the control signals, and the number of iterations used to find the optimal
solution for each of the three controllers are shown in Table 6.9.

The change in attitude over the simulation time can be seen in Fig. 6.24.
Fig. 6.25 shows the angular velocity ωbob. The optimal control input in the body-
frame and the wheel-frame can be seen in Fig. 6.26 and Fig. 6.27, respectively.
The angular velocity of the reaction wheels ωwbw is shown in Fig. A.5 in Ap-
pendix A.

Controller CPU time NLP, [s] CPU time IPOPT, [s] Sparsity Iterations
L0-optimal control 3.153 0.165 2 18
Moving L0-optimal control 113.364 7.430 2 678
L1-optimal control 6.768 0.391 2 39

Table 6.9: Computation time, sparsity and iterations for a multiple-axis maneuver from
(0◦, 0◦, 0◦) to (90◦, 45◦, 15◦) with known perturbations.

6.5.1 Discussion

All three controllers are able to steer the spacecraft to the desired orientation,
stop the spacecraft’s rotation, and keep it there, even though there are known
perturbations present, as shown in Fig. 6.24 and Fig. 6.25. These results indi-
cate that the controllers are able to find optimal control signals when known
perturbations are applied to the spacecraft. If all perturbations are known, they
can be modelled and added to the spacecraft model. Then, the controllers will
be able to steer the spacecraft to the desired attitude regardless of the perturba-
tions. Even though the perturbations are known and included in the spacecraft
model for this experiment, it is not realistic that all perturbations affecting a
real-life spacecraft can be modelled perfectly.

The L0-, moving L0- and L1-control signals are equally sparse, as shown in
Table 6.9. From Fig. 6.26 and Fig. 6.27 it is clear that the L0- and L1-control sig-
nals are identical, whereas the moving L0-control signal differs from the other
two controllers. The similarity between the L0- and L1-control signals once
again highlights why the L1-controller could be used as an approximation to
the L0-controller, as suggested in Nagahara et al. (2015). A possible explana-
tion to the difference between the control signals is due to the different designs
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Figure 6.24: Euler angles for a multiple-axis maneuver from (0◦, 0◦, 0◦) to
(90◦, 45◦, 15◦) with known perturbations.

of the controllers. For the moving L0-controller, it is cheaper to apply control
input in the interval from t = 28 s to t = 42 s, defined by the vector hN . Only
one of the two control inputs occur within this interval, and might once again
indicate that although it is cheaper to apply control input between t = 28 s
and t = 42 s, doing so might not minimize the cost function. In other words,
even though the term related to control input is minimized between t = 28 s
and t = 42 s, the terms related to attitude and angular velocity may not be
minimized if control input is applied within this interval.

The computation time and the number of iterations used by the L0-controller
to find the optimal solution are smaller when known perturbations are ap-
plied, which becomes clear comparing Table 6.9 and Table 6.4. These results
show that, for a multiple-axis maneuver from (0◦, 0◦, 0◦) to (90◦, 45◦, 15◦), the
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Figure 6.25: Angular velocity, ωbob, for a multiple-axis maneuver from (0◦, 0◦, 0◦) to
(90◦, 45◦, 15◦) with known perturbations.

L0-controller finds the optimal solution faster when known perturbations are
applied to the spacecraft. An explanation for this could be that the presence of
disturbances makes it easier for the optimization algorithm to find an optimal
solution. The known perturbations are included in the system model through
(4.20b), and changes the total spacecraft system dynamics. The system dynam-
ics where the known perturbations are included may yield an L0-optimal con-
trol problem which is easier to solve, compared to when the known pertur-
bations are not included in the model. Another explanation could be that the
optimization algorithm gets stuck in a local minimum when the perturbations
are not present, and therefore stops searching for a better solution.

Fig. 6.25 shows that the angular velocity ωbob, i.e., the rotation of the space-
craft relative to its orbit, exhibits oscillating behaviour. The oscillating behaviour
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Figure 6.26: Control input body frame for a multiple-axis maneuver from (0◦, 0◦, 0◦)
to (90◦, 45◦, 15◦) with known perturbations.

occurs due to the sine wave present in the perturbations. Because of the pertur-
bations, ωbob oscillates around zero when the spacecraft has reached its desired
orientation, but the results in Fig. 6.24, shows that the spacecraft stays at the
desired position regardless of the oscillations. Fig. 6.26 and Fig. 6.27 show that,
despite the perturbations and oscillating behaviour in ωbob, no additional control
input is applied after the desired orientation is reached.
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Figure 6.27: Control input wheel frame for a multiple-axis maneuver from (0◦, 0◦, 0◦)
to (90◦, 45◦, 15◦) with known perturbations.
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Chapter 7

Conclusions and Future Work

This chapter presents the conclusions based on the work carried out in this
thesis and states some suggestions for future work. First, a brief recap of the
research objectives stated in Section 1.3 is presented. Then, Section 7.1 presents
the conclusions, and Section 7.2 presents some suggestions for future work.

The main goal of this thesis has been to explore the use of maximum hands-
off control, also called L0-optimal control, for the spacecraft attitude control
problem. Moreover, the use of the moving maximum hands-off controller in
spacecraft attitude control has been explored. The moving maximum hands-
off controller is a new concept within control, and it is also referred to as the
moving L0-optimal controller. Additionally, a comparison of the L1-optimal con-
troller, the maximum hands-off controller, and the moving maximum hands-off
controller was conducted when the controllers are used to solve the spacecraft
attitude control problem.

7.1 Conclusions

The work carried out in this thesis has shown that the maximum hands-off
controller is able to steer the spacecraft to the desired attitude. It was also
shown that the controller ensures that the spacecraft reaches the desired fi-
nal states, i.e., ωbob becomes zero when the spacecraft arrives at the desired
attitude. Therefore, through the work presented in this thesis, it is confirmed
that the maximum hands-off controller works for the spacecraft attitude control
problem.

Another important finding, which was discussed in Section 6.3, is that the
L1-optimal control signal was less sparse than the maximum hands-off control
signal for a multiple-axis maneuver from (0◦, 0◦, 0◦) to (75◦, 50◦, 15◦). This re-
sult is particularly interesting as it confirmed what was suggested in Feng et al.
(2016), i.e., that L1-optimal solutions may provide suboptimal solutions to the
L0-optimal control problem. This is different from what was suggested in the
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work by Nagahara et al. (2015), where L0-optimal control is approximated by
L1-optimal control. The difference between the sparsities, as defined in defini-
tion 5.1.1, of the two optimal control signals illustrates that using the L1-norm
to approximate the L0-norm does not always yield the L0-optimal solution.

Section 6.3 also discussed the results for the multiple-axis maneuver from
(0◦, 0◦, 0◦) to (90◦, 45◦, 15◦). The findings for this maneuver also suggested that
the L1-optimal solution does not always equal the L0-optimal solution. On the
other hand, they suggested that the L1-optimal control problem could, in some
cases, be a rather acceptable approximation to the L0-optimal control problem.

The moving maximum hands-off controller was developed, designed, and
used to solve the spacecraft attitude control problem. This study has shown
that the moving maximum hands-off controller is able to steer the spacecraft
to a predefined attitude, and it also ensures that the spacecraft reaches the de-
sired final states. In general, the findings presented in Chapter 6 suggest that
the moving maximum hands-off controller works as intended, which means
that the controller produces a control signal that can be moved to a predefined
interval specified by the vector hN . The optimization procedure aims to sat-
isfy the constraints and reach the final state values while minimizing the cost
function. If it is not possible to reach this goal by applying control input within
the cheap interval specified by hN , some or all of the control input will occur
outside this interval. Therefore, control inputs may occur outside the interval
defined by hN .

7.2 Future Work

The results presented in Chapter 6 were found through experiments conducted
in a simulation environment. Therefore, a suggestion for future work is to per-
form experimental testing of the controllers in order to obtain a better indica-
tion of how the controllers would perform for a real-life spacecraft.

As discussed in Section 6.1.1, the initial guesses for IPOPT are of significant
importance when trying to find the optimal solutions. Future studies are en-
couraged to obtain a better understanding of how the initial guesses affect the
performance of the optimization in order to provide the most optimal initial
guesses for the solver.

The positive constants k1, k2, and k3 are given in Table 5.1 and discussed in
Section 5.5.3. The constants determine the cost on the different terms in the
cost functions for the controllers in (5.3a), (5.5a), and (5.7a), and they were
chosen to be identical for the three controllers to provide equal conditions for
all of them. It is proposed that further research should investigate more in-depth
how the values of k1, k2, and k3 affect the outcome of the optimization. Addi-
tionally, an interesting extension to the work presented in this thesis, would be
to provide different values for k1, k2, and k3 for the three controllers in order to
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explore whether this would increase the performance of the controllers.
The findings in this study have shown that the control torques produced by

the moving maximum hands-off controller do not necessarily occur within the
time interval defined to be the cheapest by the vector hN . A suggestion for
future work is, therefore, to constrain the control input to zero on the time
intervals found to be optimal by the numerical solver to try to force the torques
into the interval specified by hN .
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Angular velocity of reaction wheels

A.1 Multiple-axis maneuver

A.1.1 Multiple-axis maneuver (0◦, 0◦, 0◦) to (90◦, 45◦, 15◦)

Figure A.1: Angular velocity, ωwbw, for a multiple-axis maneuver from (0◦, 0◦, 0◦) to
(90◦, 45◦, 15◦).
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A.1.2 Multiple-axis maneuver (0◦, 0◦, 0◦) to (75◦, 50◦, 15◦)

Figure A.2: Angular velocity, ωwbw, for a multiple-axis maneuver (0◦, 0◦, 0◦) to
(75◦, 50◦, 15◦).
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A.2 Path-following maneuver

A.2.1 Path-following using multiple optimizations

Figure A.3: Angular velocity, ωwbw, for path-following using multiple optimizations,
from (0◦, 0◦, 0◦) through (30◦, 45◦, 15◦) to (0◦, 0◦, 0◦).
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A.2.2 Path-following using an extra quaternion in the cost
function

Figure A.4: Angular velocity, ωwbw, for path-following using an extra quaternion in the
cost function, from (0◦, 0◦, 0◦) through (30◦, 45◦, 15◦) to (0◦, 0◦, 0◦).
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A.3 Multiple-axis maneuver with known perturba-
tions

Figure A.5: Angular velocity, ωwbw, for a multiple-axis maneuver from (0◦, 0◦, 0◦) to
(90◦, 45◦, 15◦) with known perturbations.
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Maximum Hands-Off Attitude Control*

Sigrid Kjønnø Schaanning1, Bjørn Andreas Kristiansen2, Jan Tommy Gravdahl2

Abstract— In this paper, we explore the use of maximum
hands-off control for attitude control of a spacecraft actuated
by reaction wheels. The maximum hands-off, or L0-optimal,
controller aims to find the sparsest control signal among all
admissible control signals. However, L0-optimal problems are
generally hard to solve as L0-cost functions are discontinuous
and non-convex. Previous research have investigated methods
to approximate the L0-norm in the cost function, for instance
using an L1-norm. We propose an approach to the maximum
hands-off control problem for spacecraft attitude control in-
volving an L0-cost function relaxed through complementarity
constraints. Then, the controller is applied to the spacecraft
attitude control problem, and the sparsity of the maximum
hands-off controller is compared to that of the L1-optimal
controller. The simulations based on a 6U CubeSat were
conducted using CasADi as the primary optimization tool, and
the L1- and L0-optimal control problems were discretized using
direct multiple-shooting and solved using the IPOPT solver. In
addition to these results, we propose a new paradigm of control,
called moving maximum hands-off control, which lets the user
specify in which time interval the control should occur, and then
aims to find the sparsest control among all admissible controls
based on this information. The moving maximum hands-off
controller is shown to be as sparse as the maximum hands-off
controller for some spacecraft maneuvers.

I. INTRODUCTION

Attitude control of spacecraft is a field in which multiple
studies have been conducted [1]–[3]. Several solutions have
been suggested to solve the spacecraft attitude control prob-
lem. Some of the most regularly employed attitude control
strategies include proportional-derivative (PD) control laws
[1], [4]. Other approaches taken to solve the spacecraft
attitude control problem are techniques based on quaternion
feedback [2], [5]. Another approach to design the attitude
controller is provided by the theory of optimal control [3].
Optimal control has been applied for spacecraft attitude
control in multiple cases, and with the use of different
cost functions. For instance, a time optimal attitude control
problem has been studied, where the objective is to minimize
the time it takes to rotate a rigid body to a desired attitude and
angular velocity, while subject to control input constraints
[6]. Other time optimal attitude control problems have been
studied, one where the objective is to orient a spacecraft
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from an initial attitude and angular velocity to a final
attitude and angular velocity in minimum time, using two
independent control torques [7], and a second where the
objective is the same as before only using reaction wheels
[8]. A cost function based on angular velocity have been
used to optimize the attitude motion planning of a spacecraft,
with pointing and actuator constraints [9]. Maximum hands-
off control has, to the authors’ best knowledge, never been
applied to spacecraft attitude control. A maximum hands-
off controller is a type of optimal controller with control
values which are most often zero, i.e., the control values
are sparse, but still manage to achieve the control objectives
[10]. A hands-off control holds the control values at exactly
zero over a time interval, and the maximum hands-off control
maximizes the time interval over which the control input is
exactly zero [11].

The main contribution of this paper is the use of maximum
hands-off control to solve the attitude control problem for a
spacecraft actuated by reaction wheels. The maximum hands-
off controller is tested through simulations based on the
configuration of a 6U CubeSat. Another contribution is the
presentation of an example, which shows that using the L1-
norm to approximate the L0-norm does not always yield the
L0-optimal solution. We design and implement the moving
maximum hands-off as an extension to the maximum hands-
off controller. The moving maximum hands-off controller
lets the user specify in which time interval the control
inputs should occur and is, to the authors’ best knowledge, a
novel concept within control. Finally, this paper provides a
comparison of the responses of the L1-optimal controller, the
maximum hands-off controller, and the moving maximum
hands-off controller when solving the spacecraft attitude
control problem.

The rest of this paper is organized as follows. Section II
describes the coordinate frames used and presents the total
spacecraft dynamics used for the simulations. Section III
introduces the maximum hands-off controller. Section IV
introduces the controller designs, including the design of the
novel moving maximum hands-off controller, and Section V
presents the simulation setup. The simulation results are
presented in Section VI, whereas Section VII discusses the
findings. Section VIII provides the conclusion.

II. SPACECRAFT MODEL

In this section, we present the model of a spacecraft
orbiting the Earth, actuated by reaction wheels.



A. Coordinate frames

A reference frame, or a coordinate frame, is a choice of
coordinate system given as {r} = {Or,xr,yr, zr}, where
Or is the origin and xr,yr, zr are the orthonormal unit
vectors.

1) Earth-centered inertial (ECI) frame: The Earth-
centered inertial frame, denoted {i}, is considered to be an
inertial frame where Newton’s laws are valid. The origin
of {i} is located at the Earth’s center of mass, with the z-
axis points through the North Pole, the x-axis points towards
the vernal equinox and the y-axis completes the right-hand
system [12].

2) Body frame: The body frame, denoted {b}, is a moving
coordinate frame fixed to the spacecraft, with origin at the
spacecraft’s center of mass [12]. The body frame axes follow
the spacecraft structure.

3) Orbit frame: The Vehicle Velocity, Local Horizontal
(VVLH) frame, or the orbit frame, is denoted {o} and has
origin at the spacecraft’s center of mass. The z-axis points in
the direction of the Earth’s center of mass, the x-axis points
in the direction of the orbit velocity vector, while the y-
axis completes the right-handed coordinate system. The unit
vectors of the orbit frame are defined as [13]

ẑo = − ri

‖ri‖2
, x̂o =

vi

‖vi‖2
, ŷo =

ẑo × x̂o

‖ẑo × x̂o‖2
, (1)

where ri and vi are the distance between the spacecraft
and the center of the Earth, and the inertial velocity of the
spacecraft, respectively, in the ECI frame.

4) Wheel frame: The wheel frame is used to specify
vectors directly related to the reaction wheels, and it is
denoted by {w} [13]. There are two vectors represented in
the wheel frame, namely the torque applied to each wheel,
τw
u , and the wheel angular velocity, ωw

bw. The dimensions of
τw
u and ωw

bw equals the number of the reaction wheels on the
satellite. Each channel of the vectors gives the torque applied
or angular velocity about each wheel’s axis of rotation. The
matrix A ∈ R3×n maps the wheel frame to the body frame
as follows [13]

τ b
u = Aτw

u =⇒ τw
u = A+τ b

u, (2)

where the matrix A+ is the Moore-Penrose pseudo-inverse of
A. Due to a fixed reaction wheel configuration, A represents
a constant mapping between {w} and {b}.
B. Attitude representation

Unit quaternions are used to describe the attitude of the
spacecraft. The unit quaternion, qo

b , denotes the attitude of
{b} relative to {o}. The rotation matrix from {o} to {b}, Rb

o

is defined as

Ro
b = R(qo

b) = I3×3 + 2ηobS(ε
o
b) + 2S2(εob),

Rb
o = (Ro

b)
>,

(3)

where qo
b = [ηob , ε

o>
b ]> ∈ R4 satisfy the constraint η2 +

εo>b εob = 1, I3×3 is the 3 × 3-identity matrix, and S(·) is a

skew-symmetric matrix. The time derivative of Rb
o is given

as Ṙb
o = −S(ωb

ob)R
b
o where the angular velocity of {b}

relative to {o} is given by ωb
ob.

The kinematic differential equation for the spacecraft’s
attitude qo

b , is given by [12]

q̇o
b =

[
η̇ob
ε̇ob

]
=

1

2

[
−εo>b

ηobI3×3 + S(εob)

]
ωb

ob =
1

2
T(qo

b)ω
b
ob,

(4)
where T(·) denotes the angular velocity transformation ma-
trix.

C. Angular velocity

When analysing the attitude of a spacecraft orbiting
the Earth, three different angular velocities are of interest,
namely the angular velocity of {b} relative to {o}, ωb

ob, the
angular velocity of {o} relative to {i}, ωb

io, and the angular
velocity of {b} relative to {i}, ωb

ib. The angular velocities
relate to one another as follows

ωb
ob = ω

b
ib − ωb

io = ωb
ib −Rb

oω
o
io, (5)

and the angular velocity ωo
io is defined as [14]

ωo
io = Ro

i

S(ri)vi

(ri)>ri
. (6)

Moreover, the inertial acceleration of the spacecraft is
defined as [15]

v̇i = − µ

‖ri‖32
ri, (7)

where µ is the standard gravitational parameter of the Earth
and ‖ri‖2 denotes the 2-norm of ri. The rate of change for
ri is given as

ṙi = vi. (8)

D. Total system dynamics

The total spacecraft dynamics for a spacecraft orbiting the
Earth are given as [2], [13], [14], [16]

q̇o
b =

1

2
T(qo

b)ω
b
ob (9a)

ω̇b
ib = Js

−1(−Aτw
u − S(ωb

ib)H
b
s) (9b)

ω̇b
ob = ω̇

b
ib + S(ωb

ob)R
b
oω

o
io +Rb

oS(R
o
bω

b
ob)ω

o
io (9c)

ω̇w
bw = Jw

−1τw
u −A>ω̇b

ib, (9d)

where J ∈ R3×3 is the total system inertia of the spacecraft
rigid body, defined as J = Js+AJwA

>, where Js ∈ R3×3

denotes the inertia of the spacecraft rigid body excluding the
inertia about the spinning axes of the reaction wheels, and
Jw ∈ Rn×n denotes the inertia matrix of the reaction wheels
about the spinning axes, where n is the number of reaction
wheels. The total angular momentum of the spacecraft is
denoted by Hb

s [16]. Note that ω̇b
ib =

bd
dtω

b
ib, ω̇b

ob =
bd
dtω

b
ob,

and ω̇w
bw =

bd
dtω

w
bw.



III. MAXIMUM HANDS-OFF CONTROL

In this section, we present some mathematical prelimi-
naries required to understand the concept of and theoretical
derivation of maximum hands-off control.

A. Mathematical preliminaries

The content presented in this section is based on the review
by [11], which provides a detailed review of the mathematics
behind maximum hands-off control.

The L1-norm of a vector x ∈ Rn is defined as

‖x‖1 ,
n∑

i=1

|xi|. (10)

The Lp-norm, with p ∈ [1,∞), for a vector of continuous-
time signals u(t) over the time interval [0, T ) is defined as

‖u‖p ,
(∫ T

0

‖u(t)‖pdt
) 1

p

. (11)

The norm ‖ · ‖ inside the integral in (11) can be any norm
p-norm for p ∈ [1,∞) [17]. If p ∈ (0, 1), in (11), then ‖ · ‖p
is not a norm as it fails to satisfy the triangle inequality [11].

The support of a function is the set of points where the
function takes on nonzero values [18], and the support set
of a function u(t), is defined as [11]

supp(u(t)) , {t ∈ [0, T ] : u(t) 6= 0}, (12)

and by using (12), the L0-norm for a vector of continuous-
time signals u(t) can be defined by the length of the support
of each of each signal u(t) accordingly:

‖u‖0 , µ(supp(u(t))), (13)

where µ(·) is the Lebesgue measure. The Lebesgue measure
essentially ”counts” the length of the support of the signal
u, i.e, the Lebesgue measure sums up the parts where the
control signal is nonzero.

B. Maximum Hands-off Control Problem Formulation

The maximum hands-off control is the control that maxi-
mizes the time interval over which the control input is exactly
zero. To put it more precisely, the controller minimizes the
Lebesgue measure of the support, i.e., the L0-norm, to find
the sparsest of the admissible controls [11]. The L0-cost
function is given as [11]

J0(u) ,
m∑

i=1

λi‖ui‖0, (14)

where m is the number of control inputs, u is the control
input vector, λi are positive weights, and ui denotes each
element i in u. The control that minimizes (14) is called the
maximum hands-off control, or the L0-optimal control, and
it is the sparsest control among all admissible controls [11].

The L0-cost function in (14) is discontinuous and non-
convex [11]. Solving discontinous and non-convex optimiza-
tion problems are generally hard [11], and solving the L0-
optimal control problem is NP-hard [19]. Several relaxation
methods and reformulations have been suggested to (14),
for instance replacing the L0-norm by the L1-norm [11].
The L0-optimal control problem has also been reformulated
using a set of complementarity constraints [19] accordingly

minimize
x

f(x) + γ>(1N − ξ) (15a)

subject to ci(x) = 0, i ∈ E (15b)
ci(x) ≤ 0, i ∈ I (15c)
ξ ≤ 1N (15d)
ξ ◦ x ≤ ε1N (15e)
−ξ ◦ x ≤ ε1N (15f)
ξ ≥ 0, (15g)

where 1N is the N -vector of ones, N is the number of
control intervals, and 1N −ξ is the support vector of x. The
support 1− ξj of the state xj essentially plays the same role
as the support, supp(·), in (12). The notation a◦b denotes the
componentwise product between the vectors a and b. E and
I are two finite index sets, γ > 0 is a positive vector, f(·) is
the continuously differentiable objective function, and ci the
continuously differentiable constraint functions. ε > 0 is a
relaxation scalar. It is desirable to investigate the properties
of the relaxed problem when ε approaches zero, because then
the complementarity constraints would equal zero.

IV. CONTROL DESIGN

A. Control objectives

The control objective of the maximum hands-off controller
is to find the sparsest control among all admissible control.
We explore how the maximum hands-off controller works for
attitude control of a spacecraft. Note that for the remaining
parts of this study, the term sparsity is defined accordingly:

Definition 4.1 (Sparsity): The sparsity of a control signal
refers to the number of control intervals for which the control
signal takes on nonzero values.

Although the maximum hands-off controller yields the
sparsest control, the control might not occur at the most
favorable instants of time, which motivates the design the
moving maximum hands-off controller. The term moving
refers to the characteristic of the controller which lets the
user move the sparse control according to a desired set of
preferences, for instance environmental constraints.

B. Maximum hands-off controller

The maximum hands-off controller, or the L0-optimal
controller, aims to minimize the L0-norm of the control
input. The design of the maximum hands-off controller im-
plemented in this paper is inspired by the relaxed formulation
in (15) with γ = 1N , and is formulated as



minimize
τ b

u,ξ
k1f(ω

b
ob) + k2g(q

o
b) + k3(1N − ξ)1>N (16a)

subject to ẋ = f(x, τw
u ) (16b)

τw
u ≤ τ limit (16c)
τw
u ≥ −τ limit (16d)

x(0) = x0 (16e)
ξ ≤ 1N (16f)

ξ ◦ τ b
u,1 ≤ ε1N (16g)

−ξ ◦ τ b
u,1 ≤ ε1N (16h)

ξ ◦ τ b
u,2 ≤ ε1N (16i)

−ξ ◦ τ b
u,2 ≤ ε1N (16j)

ξ ◦ τ b
u,3 ≤ ε1N (16k)

−ξ ◦ τ b
u,3 ≤ ε1N (16l)

ξ ≥ 0, (16m)

where k1, k2 and k3 are positive constants, 1N is the N -
dimensional vector of all ones, where N is the number of
control intervals, ξ is the complementarity vector to the
control input τ b

u, and 1N − ξ is the support vector of τ b
u.

τ b
u,1, τ b

u,2, and τ b
u,3 denotes the components of τ b

u about the
x-, y- and z-axis in {b}, respectively. The state vector x =
[qo

b ,ω
b
ib,ω

b
ob,ω

w
bw,v

i, ri]>, ẋ = [q̇o
b , ω̇

b
ib, ω̇

b
ob, ω̇

w
bw, v̇

i, ṙi]>

denotes the system dynamics, and x0 the initial state values.
The functions f(·) and g(·) are designed to steer ωb

ob and qo
b ,

respectively, to their desired final states. More specifically,

f(ωb
ob) =

n∑

i=1

(ωb
ob,i(T )− ωb

ob,ref,i)
2

g(qo
b) = 1−

∣∣(qo
b(T ))

>qo
b,ref

∣∣ ,
(17)

where T denotes the final time, ωb
ob,ref and qo

b,ref are the
reference angular velocity and reference quaternion, n de-
notes the number of entries in ωb

ob(T ) and ωb
ob,ref, and

ωb
ob,i(T ) and ωb

ob,ref,i denotes the ith component of ωb
ob(T )

and ωb
ob,ref, respectively. The function f(·) yields the sum

of the squared elements of a vector, and is implemented
using MATLAB’s SUMSQR-function. The function g(·) is a
pseudometric on the unit quaternion, but a metric on SO(3)

[20]. The absolute value,
∣∣∣(qo

b(T ))
>qo

b,ref

∣∣∣, is implemented
using the smooth maximum function max(x1, x2) = 1

2 ·(
(x1 + x2) +

√
(x1 − x2)2 + α

)
, where α is a parameter

to be tuned [21].
During the design phase of the maximum hands-off con-

troller, different ways to formulate the control problem
were explored, before the final design choice was made.
The formulation of the maximum hands-off control problem
presented in (16) was chosen because it yielded better results
for the spacecraft attitude control problem compared to the
other designs that were tested.

C. Moving maximum hands-off controller
The design of the moving maximum hands-off controller is

similar to that of the maximum hands-off controller in (16).

The moving maximum hands-off optimal control problem is
formulated as

minimize
τ b

u,ξ
k1f(ω

b
ob)+k2g(q

o
b)+k3(1N−ξ◦hN )1>N , (18)

where the constraints on (18) are identical to (16b) to (16l).
The vector hN specifies where the control torques should
occur. By default, the vector hN is a N -dimensional vector
of all ones. The user might change the values of hN to values
between 0 and 1, to indicate for which time intervals the
control input should occur. For instance, if the value of hN

is set to 0.1 for N = 10, . . . , 20, it could yield a more optimal
solution if the control occur between these control intervals
as sparsity comes at a lower cost in this interval than the
rest.

D. L1-optimal controller

The design of the L1-optimal control problem is formu-
lated as

minimize
s,τ b

u

k1f(ω
b
ob) + k2g(q

o
b) + k3

N∑

i=0

sk (19)

where the constraints on (19) equals (16b) to (16e) in
addition to the constraint −sN ≤ τ b

u ≤ sN .
∑N

i=0 sk denotes
the L1-norm of τ b

u, i.e., ‖τ b
u‖1 =

∑n
i=0 si = 1>s, where

s ∈ Rn is a set of slack variables. The formulation of the
L1-norm in (19) is inspired by [22].

E. PD-controller

A PD controller was implemented to test if the satellite
dynamics work as intended. The PD controller is defined in
[1]

τ b
u = Kdω

b
e +Kpεe, (20)

where ωb
e is the angular velocity error, defined as ωb

e = ω
b
ob−

ωb
d, where ωb

d. εe is the vector part of the error quaternion,
defined as qe = q−1d ⊗ qo

b , where qd = [ηd, ε
>
b ]
> is the

desired attitude represented using quaternions. Kd and Kp

are constant and positive definite controller gain matrices.
The numerical values of the gain matrices were chosen while
tuning the PD controller.

V. SIMULATION SETUP

The experiments were conducted using CasADi as the
optimization tool [23]. The NLP-solver IPOPT was used
to solve the optimization problems, using the solver’s de-
fault options. The optimal control problems in (16), (18)
and (19) were discretized using direct multiple-shooting,
and the dynamics of the spacecraft were discretized and
implemented using Runge-Kutta 4 integration. Initial guesses
for the starting point were given to IPOPT at the beginning
of the optimization. The output from the PD controller was
given as the initial guesses for the L1-optimal controller,
and the output from the L1-optimal controller was given as
initial guesses for the maximum hands-off controller and the



moving maximum hands-off controller. The initial guesses
were applied to the states qob , ωb

ib, and ωw
bw. No initial

guesses were applied to the control torque τ b
u, i.e., the default

initial guess used by CasADi were applied. CasADi’s default
initial guess is a vector of all zeros.

Some tests were conducted with different initial guesses to
see how the controllers responded. The tests revealed that the
initial guesses for IPOPT are of significant importance when
trying to find the optimal solutions. Different initial guesses
causes the optimization to iterate fast or slow towards an
optimal solution, and affect the quality of the solution.

The experiments reported in this thesis were conducted
using a 2 GHz Intel Core i7-9700T CPU computer running
Windows. The simulation of the experiments were conducted
using the parameters for a 6U M6P CubeSat as the spacecraft
rigid body, and it is assumed to orbit in Low-Earth-Orbit
(LEO). The CubeSat uses a M6P platform from NanoAvion-
ics, and four reaction wheels are used to control the attitude
of the CubeSat. This is part of the setup that is going to be
used for the HYPSO-1 mission which motivates this work.
Three of the reaction wheels are placed orthogonally along
the three axis of the body frame. The fourth reaction wheel
is placed such that it’s torque yields equal components in
each of the body axes. The torque distribution matrix A is
given as [13]

A =



1 0 0 1√

3

0 1 0 1√
3

0 0 1 1√
3


 . (21)

The total inertia matrix for the spacecraft rigid body and
the inertia matrix of the reaction wheels are given as [13]

J =




0.0775 0.0002 −0.0002
0.0002 0.1067 0.0005
−0.0002 0.0005 0.0389


 kg·m2, Jw = JwI4×4,

(22)
where Jw = 2.1·10−4 kg·m2 is the inertia of a single reaction
wheel. The inertia of all four reaction wheels are set to be
identical. The controller gains, and the parameters required
for the optimization are shown in Table I.

After the optimization procedure finishes, the system is
propagated for an additional number of control intervals, de-
noted Nprop, to visualize what happens after the optimization
finishes. The final state from the optimization serves as the
initial state for the propagation, and the control input is set to
zero for the whole propagation. The orbit of the spacecraft is
initialized using the orbital parameters in Table I, which are
transformed into ECI coordinates using the RANDV-function
from [24].

VI. RESULTS

Fig. 1 shows the change in the spacecraft’s attitude over
time, and reveals that all three controllers are able to
steer the spacecraft to the desired orientation of (φ, θ, ψ)
= (45◦, 0◦, 0◦) and keep the spacecraft at this attitude. The
dotted lines φd, θd, and ψd denotes the angles of the desired

Parameter Value Unit
k1 1 · 106 s2

k2 1 · 102 -
k3 1 · 101 -
Kp 3 · Js N·m
Kd 2.7 · Js N·m·s
Simulation time (T ) 70 s
Control intervals (N ) 50 -
Step size (h) 1.4 s
Control intervals for propagation (Nprop) 20 -
ε 1 · 10−8 -
τlimit ±3 · 10−3 N·m
Semi-major axis 6852.2 km
Eccentricity 0.002 -
Inclination 97 ◦

Right ascension of the ascending node 280 ◦

Argument of periapsis 0 ◦

True anomaly 0 ◦

Standard grav. parameter, Earth (µ) 3.986 · 1014 m3/s2

TABLE I
CONTROLLER GAINS, OPTIMIZATION CONSTANTS, AND ORBITAL

PARAMETERS.

attitude, whereas the solid lines φ, θ, and ψ corresponds to
the actual states. The torque vector τ b

u can be seen in Fig. 3.
The torque vector τw

u can be seen in Fig. 3. The angular
velocity ωb

ob is shown in Fig. 2 and reveals that the spacecraft
stops rotating, i.e., {b} stops rotating relative to {o}, when
the desired orientation is reached. The angular velocity ωw

bw

can be seen in Fig. 5, and illustrates the dynamical response
of the reaction wheels. The computation times, the sparsity,
and the number of iterations used to find the optimal solution
for each of the three controllers are shown in Table II.

Fig. 6 shows the change in the spacecraft’s attitude
over time from a multiple-axis maneuver from (φ, θ, ψ) =
(0◦, 0◦, 0◦) to (90◦, 45◦, 15◦). The optimal control torques
τ b
u and τw

u are shown in Fig. 8 and Fig. 9, respectively.
The angular velocity ωb

ob is shown in Fig. 7. The angular
velocity ωw

bw is shown in Fig. 10. The computation times,
the sparsity, and the number of iterations used to find the
optimal solution for each of the three controllers are shown
in Table III.

Controller CPU time
NLP, [s]

CPU time
IPOPT, [s] Sparsity Iterations

L0 3.235 0.253 2 25

Moving L0 46.914 3.828 2 371

L1 2.479 0.204 2 19

TABLE II
COMPUTATION TIME, SPARSITY AND NUMBER OF ITERATIONS

SINGLE-AXIS MANEUVER FROM (0◦, 0◦, 0◦) TO (45◦, 0◦, 0◦).

VII. DISCUSSION
In this section, the maximum hands-off controller will be

referred to as the L0-optimal controller or the L0-controller,
whereas the moving maximum hands-off controller will



Fig. 1. Euler angles, single-axis maneuver from (0◦, 0◦, 0◦) to
(45◦, 0◦, 0◦).

Fig. 2. Angular velocity, ωb
ob, single-axis maneuver from (0◦, 0◦, 0◦) to

(45◦, 0◦, 0◦).

Controller CPU time
NLP, [s]

CPU time
IPOPT, [s] Sparsity Iterations

L0 66.216 6.106 2 497

Moving L0 90.175 7.706 2 699

L1 5.131 0.360 2 39

TABLE III
COMPUTATION TIME, SPARSITY AND NUMBER OF ITERATIONS

MULTIPLE-AXIS MANEUVER FROM (0◦, 0◦, 0◦) TO (90◦, 45◦, 15◦).

be referred to as the moving L0-optimal controller or the
moving L0-controller. The sparsity of a control signal refers
to the number of nonzero control intervals in the signal, as
defined in Definition 4.1.

Fig. 3. Control input in {b}, single-axis maneuver from (0◦, 0◦, 0◦) to
(45◦, 0◦, 0◦).

Fig. 4. Control input in {w}, single-axis maneuver from (0◦, 0◦, 0◦) to
(45◦, 0◦, 0◦).

A. Single-axis

Figs. 1 to 4, Fig. 2 show that the spacecraft’s state
space trajectories and the control signals are identical for
the L0-controller and the L1-controller. These results are in
agreement with the findings in [11], and suggests that the
L1-norm may be used as an approximation to the L0-norm.

Figs. 1 to 4 show that the spacecraft’s state space tra-
jectories and the control signals resulting from the moving
L0-controller differs from the two other controllers. The
differences can be explained by comparing the cost functions
of the three controllers in (16a), (18), and (19). For the
moving L0-controller, the vector hN was chosen such that
it would cost less for the control inputs to occur between
t = 28 s and t = 42 s. For the two other controllers, it
is equally expensive for the control inputs to occur over
the whole time interval. Fig. 3 and Fig. 4 show that the
control inputs produced by the moving L0-controller occur



Fig. 5. Angular velocity, ωw
bw , single-axis maneuver from (0◦, 0◦, 0◦) to

(45◦, 0◦, 0◦).

Fig. 6. Euler angles, multiple-axis maneuver from (0◦, 0◦, 0◦) to
(90◦, 45◦, 15◦).

at t = 28 s and t = 42 s, and Fig. 1 and Fig. 2 show that
the spacecraft’s states changes within this interval.

Fig. 3 and Fig. 4 show that the optimal control signal com-
puted by the moving L0-controller has larger amplitude than
the control signals produced by the two other controllers. A
reasonable explanation for this may be that since the moving
L0-control torques occur closer in time, the torque applied
at each of the two time instants has to be larger in order to
steer the spacecraft to the desired orientation within a smaller
time interval. To reach the desired position in a short time
interval, the control torques applied to the spacecraft has to
be larger than if the time interval was longer. If the time
interval was larger, the control inputs could be smaller as
the spacecraft would have more time to rotate towards the
desired orientation after the initial control input has been
applied.

Fig. 3 and Fig. 4 show that the control inputs produced
by the moving L0-controller occur at t = 28 s and t = 42

Fig. 7. Angular velocity, ωb
ob, multiple-axis maneuver from (0◦, 0◦, 0◦)

to (90◦, 45◦, 15◦).

Fig. 8. Control input in {b}, multiple-axis maneuver from (0◦, 0◦, 0◦) to
(90◦, 45◦, 15◦).

s, which means that they occur exactly at the boundaries of
the time interval specified by hN . The saturation limits for
the control torque are τlimit = ±3 · 10−3 N·m, and Fig. 4
shows that the control torques produced by the moving L0-
controller are close to the saturation limits. If the control
torques had occurred at other time instants in the interval
specified by hN , they would occur closer in time and the
torques would therefore have larger values. The control
torques are already close to the saturation limits when they
occur at t = 28 s and t = 42 s, and if the torque values
were to increase the reaction wheels may saturate. If the
reaction wheels saturate, an additional control torque may
be required to perform the spacecraft maneuver, and an
additional control torque would yield a less sparse control
signal. It is cheaper for the control input to occur between
t = 28 s and t = 42 s, but if the control torques are too close
in time they may saturate. Then, the controller would have
to apply an additional control torque which would result in



Fig. 9. Control input in {w}, multiple-axis maneuver from (0◦, 0◦, 0◦)
to (90◦, 45◦, 15◦).

Fig. 10. Angular velocity, ωw
bw , multiple-axis maneuver from (0◦, 0◦, 0◦)

to (90◦, 45◦, 15◦).

a less sparse control signal. Therefore, it makes sense that
the control torques occur at the borders of the time interval
specified by hN , i.e., at t = 28 s and t = 42 s.

Table II shows that all three controllers yield optimal
control signals which have the same sparsity. This finding
confirms that all three controllers are able find the sparsest
solution. For a spacecraft single-axis maneuver, it may not
be possible to find a control signal which are sparser than
2, as one control torque has to push the spacecraft towards
the desired attitude and one control input has to stop the
spacecraft rotation. If the spacecraft was operating inside the
Earth’s atmosphere it might be possible to obtain a sparser
control signal, as it may be possible to apply control torque to
the spacecraft at only one instant. This control torque would
push the spacecraft towards its desired attitude, and instead
of applying a second control torque to stop the spacecraft,
it could be possible to rely on the air resistance to slow the
spacecraft down. Relying on the air resistance to slow the

spacecraft down would require a rather long time horizon,
since the air resistance does not affect the spacecraft much
in orbit. Air resistance is less important as the altitude of the
spacecraft increases, and therefore a control torque would
often be needed to stop the spacecraft from rotating when
the spacecraft is operating at a higher altitude. Hence, for
the conditions provided in this paper, a control signal in
which torques occur at two different time instants provides
the sparsest optimal control signal for the spacecraft single-
axis maneuver.

When trying to maneuver the spacecraft an angle φ =
45◦ about the x-axis, one might expect an optimal controller
to yield control torque simply about the body-frame x-axis.
Fig. 3 shows that control torques are applied about all three
axes, although the control torque about the x-axis is the most
prominent. The reason why the optimal control algorithms
yield torque about all three axes is because the spacecraft
rotates relative to it’s orbit at the same time as it orbits the
Earth. If the spacecraft is not operating in orbit, which would
be the case if the spacecraft operated in deep-space, then the
orbit-frame {o} would not be well-defined. Then, the angular
velocity of the spacecraft would be defined as ωbob = ωbib.
A spacecraft operating in LEO, such as the one used in this
work, would rotate relative to its orbit, which results in the
angular velocity in (9c). Because of the spacecraft’s rotation
around the Earth, there will be rotation about the y- and z-
axis throughout the optimization horizon, in addition to the
control effort made about the x-axis. Therefore, torque from
the reaction wheels has to be applied to compensate for the
drift about the y- and z-axis.

The total inertia matrix for the spacecraft rigid body, J, in
(22) also contributes to rotation about multiple axes. Due
to the nonlinearity of the spacecraft dynamics, the terms
are coupled, which results in torque about all three axes,
even though motion is only needed about one axis. The total
system inertia matrix is not diagonal and given in (22). If
a diagonal J-matrix were used instead of the one in (22),
the states would be less coupled, which is clear from (9b).
Less coupling of the dynamics would yield less torque about
the y- and z-axis, when a maneuver is performed about the
x-axis.

B. Multiple-axis maneuver

Fig. 8 and Fig. 9 show that the first control torque from
the moving L0-controller occurs after about t = 5 s, and the
second control torque occurs close to t = 40 s. The second
control torque occurs within the interval specified by hN .
The vector hN was chosen such that it would cost less for the
control inputs to occur between t = 28 s and t = 42 s. One
might have expected all control inputs to occur within this
time interval. However, one control input occurs outside this
interval. The reason for this is that there are no constraints on
where the control input should not occur; it only costs less
between t = 28 s and t = 42 s. The optimization procedure
aims to satisfy the constraints and reach the final state values
while minimizing the cost function. If it is not possible to
reach this goal by applying control input within the cheap



interval specified by hN , some or all of the control input
will occur outside this interval. Therefore, control inputs may
occur outside the interval defined by hN .

The L1-optimal control signal and L0-optimal control sig-
nal are not identical, which can be seen in Fig. 8 and Fig. 9.
The first control input produced by the L1-controller occurs
before the first control input produced by the L0-controller,
whereas the two last control inputs occur simultaneously.
The amplitude of the control torques from the L1-controller
are smaller than those from the L0-controller. A possible
explanation for the difference in amplitudes is that since
there are more time between the two L1-control inputs,
the spacecraft will have more time to rotate to the desired
orientation, and thus less torque would need to be applied.
Therefore, it makes sense that the control torque produced
by the L1-controller are smaller the the control torque
produced by the L0-controller. These results suggest that the
L1-optimal solution does not always equal the L0-optimal
solution. On the other hand, they suggest that the L1-optimal
control problem could be an acceptable approximation to the
L0-optimal control problem.

VIII. CONCLUSION
The main goal of this paper has been to explore the use of

maximum hands-off control, also called L0-optimal control,
for the spacecraft attitude control problem. Our work has
shown that the maximum hands-off controller is able to steer
the spacecraft to the desired attitude and the desired final
states. Thus, our work confirms that the maximum hands-
off controller works for the spacecraft attitude control prob-
lem. The use of the moving maximum hands-off controller
has also been explored for the spacecraft attitude control
problem. Our findings suggest that the controller works as
intended, which means that the controller produces a control
signal that can be moved to a predefined interval specified
by the vector hN . While the cost in at certain intervals might
be lowered with the choice of hN , control torque may still
occur outside this interval as the optimization procedure aims
to satisfy the constraints while minimizing the cost function.
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