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Abstract

Physics-based modeling can be highly accurate and interpretable, but requires
accurate knowledge of the system dynamics desired to model. Data-driven
methods can rely on observational data instead of knowledge, but often suf-
fer from low interpretability and generalizability due to their typical black-box
nature. By using symbolic or sparse regression for equation discovery, the sys-
tem dynamics can be modeled in the form of an expression and thereby reduce
some of the limitations associated with data-driven methods.

This research consists of two main elements that will be studied in parallel
throughout this thesis. One of them is a two-dimensional heat conduction sim-
ulator to create synthetic data with an adjustable noise factor with the purpose
of demonstrating the concept of equation discovery, how noise-sensitive these
methods are, and how the impact of noise can be reduced with principal com-
ponent analysis (PCA). The other part is a practical experiment consisting of an
aluminum plate with a heating element and a low-cost IR camera to measure
the temperature evolution in this plate. The purpose of this part is to apply the
knowledge from the synthetic experiments to a more relevant industrial use
case and to study the challenges of extending the methodology tested on syn-
thetic data to real measurement data.

A two-dimensional heat equation was successfully recovered from data by using
the sparse regression technique LASSO or by using the evolutionary algorithm
gene expression programming (GEP) for symbolic regression. These data-driven
methods are susceptible to noise, but can still be efficient for noisier data when
combined with the dimensionality-reduction method PCA for denoising. When
using a data-driven approach for describing heat evolution in the aluminum
plate, heat conduction dynamics could not be extracted directly as only a more
general expression capturing the overall cooling effect could be found, likely
due to the large amount of noise from the low-cost IR camera. A hybrid ap-
proach based on an inaccurate physics-based model and using GEP to correct
for the error could be used to improve performance for simulated data com-
pared to a purely physics-based approach. No significant improvement was seen
for the experimental set-up with this approach, probably due to noise.





xi

Sammendrag

Fysikkbasert modellering kan være svært nøyaktig og oversiktlig, men krever
omfattende kunnskap om dynamikken i systemet man ønsker å modellere.
Datadrevne metoder kan i stedet basere seg på observasjonsdata og ikke kunn-
skap, men mangler ofte oversiktlighet og generaliserbarhet ettersom de ofte
kan betraktes som svarte bokser med lite informasjon om hva som foregår mel-
lom input og output. Ved å bruke symbolsk regresjon kan systemdynamikken
modelleres i form av ligninger og dermed reduseres noen av disse begrensnin-
gene typisk for datadrevne metoder.

Den ene delen av denne oppgaven er en simulator for todimensjonale varme-
ligninger som brukes til å lage syntetisk data med varierbart støynivå. Denne
brukes til å demonstrere hvordan ligninger kan finnes fra data, hvor støysen-
sitive disse metodene er og hvordan principal component analysis (PCA) kan
benyttes for å redusere støy. Den andre delen er et praktisk eksperiment som
består av en aluminiumsplate med et varmeelement og et IR-kamera som måler
temperaturutviklingen i denne platen. Målet med denne delen er å anvende
kunnskapen fra forsøkene med syntetisk data til et faktisk eksempel med ekte
måledata og se på utfordringene dette medfører.

Både LASSO og den evolusjonære algoritmen gene expression programming
(GEP) klarte å finne en todimensjonal varmeligning fra kun data. Disse data-
drevne metodene er støysensitive, men de fungerte også for mer støyfull data
ved å benytte PCA for å filtrere bort støy ved hjelp av dimensjonalitetsreduk-
sjon. De datadrevne metodene klarte ikke å hente ut varmeledningsdynamikken
for aluminiumsplaten, men fant i stedet en mer generell ligning som fanget
opp den totale kjølende effekten fra omgivelsene. En hybridmetode hvor GEP
benyttes for å korrigere for en upresis fysikkbasert modell forbedret nøyak-
tigheten sammenlignet med å bare bruke den fysikkbaserte modellen. Ingen be-
tydelig forbedring ble funnet for det praktiske forsøket med aluminiumsplaten
ved å bruke en hybridmodell, trolig grunnet relativt store mengder støy.
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Chapter 1

Introduction

Simulations of two-dimensional heat conduction equations with adjustable
noise have been used to study how the data-driven equation discovery meth-
ods, LASSO and GEP, perform on noisy datasets. It was found that they can
still recover heat conduction equations from noisy data when using the dimen-
sionality reduction method principal component analysis (PCA) for denoising
the data. This methodology was extended to an experimental set-up consist-
ing of an aluminum plate with a heating element and a low-cost IR camera to
measure temperatures. Heat conduction dynamics were not directly recovered
with LASSO and gene expression programming (GEP), but a more general ex-
pression capturing the overall cooldown of the plate was found. This equation
suggests that convection is the governing dynamics for the cooldown phase.
A hybrid method based on an inaccurate physics-based model and using GEP
to find a correction term for synthetic data improved performance compared to
only using the inaccurate physics-based model. A hybrid approach made no sig-
nificant improvement for the experimental set-up, likely due to large amounts
of noise.

1.1 Motivation and background

Data-driven methods and machine learning can be very efficient for a wide va-
riety of applications, but they are often black-box approaches that suffer from
low interpretability. Data-driven methods such as deep neural networks are typ-
ically trained with large amounts of data and the model weights are altered
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through millions of calculations. The result is a deep and complex model struc-
ture that does not show what is happening between input and output. One way
of keeping the strengths associated with data-driven modeling, but at the same
time increase interpretability, is to use symbolic regression to obtain a model on
the form of an equation. Using white-box data-driven modeling is effective for
understanding the actual physics behind the data, and the equation can be used
for further simulation and predictions without the need of a deep and complex
model.

Discovering an equation for how heat moves in a plate can be valuable as it
can be used for predicting future temperature evolution and give more infor-
mation about the materials solely from data. A model of the heat development
can potentially be used for preventive maintenance, detecting leakages and
cracks, and tell us more about the overall soundness of the system. Being able
to model heat conduction and other forms of heat transfer from data could be
highly valuable as it is an important process across many different disciplines
and fields. Geology is one of the fields where heat transfer is of high impor-
tance. The conductive heat transfer process can be used to model subsurface
temperature distribution and predict surface heat flow distribution [1] or to
study slope stability [2].

1.1.1 State of the art

Several studies have focused on reducing the limited interpretability typically
associated with data-driven methods by using symbolic regression to extract
analytic equations describing complex dynamic systems [3][4][5]. By using the
evolutionary method GEP and sequential threshold ridge regression (STRidge),
the underlying physics can be modeled from data, both full analytic equations
and hidden physics from source terms [3]. However, much of the research
within symbolic regression are using synthetic data without noise. For prac-
tical usecases and applications, the data will however be noisy to some extent.
As the methods used for data-driven equation discovery often are sensitive to
noise, the step from synthetic data to noisy experimental data will be challeng-
ing, but valuable and important for further advancements in the field.

Purely physics-based and purely data-driven modeling are well researched top-
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ics and have usecases in a wide range of fields. However, combining these ap-
proaches in order to exploit the strengths of both is far less researched, but
some studies suggest such hybrid approaches have several advantages. Physics-
guided machine learning (PGML) where simplified physics-based models have
been used to augment neural networks by including calculated features at in-
termediate layers [6]. It was concluded that the PGML framework increased
the generalizability of data-driven models and that it is especially useful when
working with scarce data.

1.2 Research objectives and research questions

1.2.1 Objectives

Primary Objective: To develop data-driven equation discovery methods

Secondary Objectives:

• To evaluate the feasibility of using the data-driven equation discovery
methods in extracting the heat conduction equation from two-dimensional
simulated data

• To test the robustness of the data-driven equation discovery methods
against noise and adapt the methods to deal with such disturbances

• To test the feasibility of using the methods with data collected from an
experimental set-up

• To develop a hybrid method combining physics-based and data-driven
modeling

1.2.2 Research questions

The guiding questions governing the research can be stated as:

• Can two-dimensional heat conduction equations be recovered from simu-
lated data using data-driven equation discovery methods?

• How robust are these data-driven equation discovery methods against
noise and what can be done to reduce the impact of noise?
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• Can these methods be used with real measurement data from an experi-
mental set-up?

• Can a better model be found by using a hybrid approach that combines a
simpler physics-based base model and a correction term found with data-
driven methods?

1.3 Outline of report

Chapter 2 introduces the necessary background theory needed for this project.
This includes the theory needed to understand and implement a numerical
model of how heat moves through a two-dimensional medium. Chapter 2 also
covers symbolic regression, GEP and sparse regression for discovering equations
and physics from data. As these methods are sensitive to noise, a theory section
about PCA and how it can be used for denoising is also included. Chapter 3
describes the methods and the set-up needed to conduct experiments with both
synthetic data from simulations and real measurements collected with an IR
camera. Chapter 4 shows the results and the discussion of these, while chapter
5 is for the conclusions and the future work related to this project.
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Chapter 2

Theory

The primary objective is to study heat evolution in a heated metal plate and
to discover the equations that describe the underlying dynamics based on data.
Therefore, the first section is about the two-dimensional heat equation to get
a deeper understanding of the physics that will be modeled. The second part
addresses the theory about symbolic regression and how GEP and sparse re-
gression can be used for equation discovery from data. Finally, a brief section
about PCA is included to explain this concept and how it can be applied for
dimensionality reductions and removing noise.

2.1 Two-dimensional heat equation

The two-dimensional heat equation describes the dynamics of how heat is trans-
ferred through matter by conduction. It is called two-dimensional as it considers
two spatial dimensions and can therefore be useful for modeling temperature
in a thin metal plate. More accurately, it is called the unsteady state heat equa-
tion when studying the temperature evolution as a function of time. Heat is a
type of energy that makes atoms and molecules move [7]. This energy spreads
through matter as neighboring atoms and molecules also start moving due to
collisions. This type of heat transfer is called conduction, but heat can also move
in the forms of radiation and convection [8]. In the case of heat transfer in a
metal plate with a non-uniform temperature profile, conduction effects should
be significant. The two-dimensional heat equation can be written as [9]

∂T

∂t
= D

(
∂2T

∂x2
+
∂2T

∂y2

)
(2.1.1)
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where T is the temperature and D is the thermal diffusivity. In heat analysis,
this thermal diffusivity is a measurement of heat transfer rate and includes the
thermal properties of the conducting material. It can be written on the following
form [9]

D =
k

Cρ
(2.1.2)

where k is thermal conductivity, C is specific heat capacity, and ρ is density.

This partial differential equation (PDE) has to be discretized to make it possible
to use in numerical simulations for a two-dimensional grid. This discretization
can be done by using finite difference methods. Applying a forward difference
scheme for the first-order temporal term and a central difference scheme for
the two second-order spatial terms yields

T k+1
i,j − T ki,j

dt
= D

(
T ki+1,j − 2T ki,j + T ki−1,j

dx2
+
T ki,j+1 − 2T ki,j + T ki,j−1

dy2

)
(2.1.3)

where superscript k is temporal index, subscripts i and j are spatial indexes in
x-direction and y-direction, respectively, while dt is temporal step, and dx and
dy are spatial steps.

Solving this for T k+1
i,j , which is temperature for the next timestep at location

(i, j), and assuming dx = dy, gives

T k+1
i,j = T ki,j +

Ddt

dx2

(
T ki+1,j + T ki−1,j + T ki,j+1 + T ki,j−1 − 4T ki,j

)
(2.1.4)

When dealing with this explicit method, the timestep, dt, needs to be sufficiently
small to guarantee stability. This constraint can be written as

dt 6
1

2D

(dxdy)2

dx2 + dy2
=
dx2

4D
(2.1.5)

My specialization project compared the advantages and drawbacks of purely
physics-based modeling, data-driven modeling, and hybrid methods. The fol-
lowing discussion on physics-based modeling and how it can be related to the
physics space figure is reused from this specialization project [10].

Discretizing equations in order to do numerical simulations on a computer is
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considered physics-based modeling and can be an efficient and accurate ap-
proach for simple systems. However, there are several assumptions and sim-
plifications in the process described for two-dimensional heat conduction, and
it can therefore never be considered an exact solution. This is illustrated in
Figure 2.1.1. The largest region in Figure 2.1.1 is the full physics space and
considers all parts of physics, both known and unknown. This space could per-
fectly describe every process governed by physics. Inside this space, we have
the understood physics, which is all physics we can observe and understand
to this date. The modeled physics, which is everything we can describe with
theory and equations, is a subspace of the understood physics. The inner circle
is the space that covers numerical simulations. This space is a subspace of the
modeled physics as there are constraints of actually implementing and simulat-
ing the modeled physics, such as computational capacity.

Figure 2.1.1 can also be used to explain what physics is lost when simulat-
ing two-dimensional heat conduction compared to a physical heat conduction
experiment. No physics-based modeling can exploit the full physics space as this
also includes unknown physics. Due to several assumptions and simplifications,
we neither use the full understood physics space. The aforementioned equa-
tions assume uniform density, uniform specific heat, perfect insulation, and it
also assumes we have perfect knowledge about these properties, which would
not be feasible in an experimental set-up due to imperfect measurements and
impurity of materials. Furthermore, it only considers two spatial dimensions,
which is also a simplification compared to the physical world. We also neglect
all other forms of heat transfer, such as radiation and convection. Such ideal cir-
cumstances would neither be present in the real world. The discretized model
is also limited by computational capacity. The accuracy depends on the size
of the step lengths, and it would only be perfectly accurate with infinitesimal
steps, which is not possible. The equations above do not take any source term
into account either. Modeling a heating element of a particular shape may be
complicated and not very accurate as it is difficult to know how much of the
effect is actually used for heating the conducting medium.
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Full physics

Understood physics

Modeled physics

Numerical 

simulations

Figure 2.1.1: The actual described physics shrinks due to simplifications and assump-
tions

Figure reused from specialization project [10]

2.2 Symbolic regression

Symbolic regression is a class of data-driven algorithms that can find mathe-
matical models describing and predicting hidden physics from observed input-
response data [3]. While conventional regression needs assumptions on the
structural form of the models and only optimize parameters, symbolic regres-
sion infers the structural form from data, as well as finding the optimal pa-
rameters. However, this approach makes the search space grow exponentially
with the length of the expression. Evolutionary symbolic regression uses a pre-
selected set of mathematical operators and operands to find the best-fit model
with respect to accuracy and model complexity [3].

Unlike many other machine learning methods, symbolic regression has the ad-
vantage of being highly interpretable as it explains the relation between input
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and output with mathematical expressions. This desired property is not present
in black-box regression methods such as deep neural networks (DNNs). DNNs
have become extremely popular due to their vast range of possible applications
and high accuracy. However, as it is based on large amounts of implicit calcu-
lations and alternations on the input data through a series of hidden layers, it
is not easy to extract valuable information other than the result itself [11]. The
analytic solutions from a symbolic regression approach give us a greater under-
standing of the underlying dynamics of the system as it explains the relationship
between the input parameters, both linear and non-linear dependencies. Fur-
thermore, this can impact the generalizability as with a deeper understanding
of dependencies, it is easier to adapt the models to similar applications gov-
erned by the same physics.

Symbolic regression and other data-driven modeling methods do not suffer
from the same accuracy reduction due to simplifications and assumptions, as il-
lustrated for the physics-driven approaches in Figure 2.1.1. Instead, data-driven
methods use data solely so that the accuracy would be dependent on the mea-
surement accuracy and resolution of this data, rather than restrictions and con-
straints due to knowledge gaps and complexity. In data-driven modeling, data
from the actual system under consideration is used and can potentially account
for all physics affecting the system. Figure 2.2.1 illustrates how data-driven
methods collect data from the full physics space.
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Full physics

Understood physics

Modeled physics

Numerical 

simulations

Figure 2.2.1: An illustration of data-driven modeling

Figure reused from specialization project [10].

2.2.1 Gene expression programming

Genetic algorithms (GA), genetic programming (GP), and gene expression pro-
gramming (GEP) are all evolutionary algorithms that start with a randomly ini-
tialized population of individuals, selects the fittest individuals, and introduces
genetic variations of these using genetic operators [12]. In GA, the individuals
are linear strings of fixed length, called chromosomes, while in GP, they are
nonlinear entities of different shapes and sizes, called parse trees. GEP com-
bines these approaches as the individuals are encoded as linear strings of fixed
length, which are later expressed as nonlinear entities of different sizes and
shapes [12]. The flexibility and ample room for evolution make GEP a great
tool within symbolic regression to find constraint-free models solely from data.

In order to build the initial chromosomes in GEP, two sets have to be defined: a
function set, F, that can contain arithmetic operators, nonlinear functions and
Boolean operators, and a terminal set, T, containing symbolic variables [3].
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Each chromosome/gene consists of a head and a tail, where the head can be
made from both the function set and the terminal set, while the tail is strictly
made from the terminal set. The head length is one of the hyperparameters
that needs to be tuned depending on the structure of the problem and available
data. The length of the tail is then calculated as a function of the head length
and the number of arguments of the function with the most arguments, n [12].
This relation is described by the following equation:

tail length = head length(n− 1) + 1 (2.2.1)

Several genes can be connected to form multigenic chromosomes. Typically, a
more complex problem requires a higher number of genes [12].

When using GEP for symbolic regression, it is desired to evolve the chromo-
somes towards an expression that best fits the data. Therefore, each chromo-
some is expressed as expression trees (ET) and then converted to numerical
expressions that can be evaluated with a fitness function to determine how they
perform compared to the actual model or the measurement data. Mean squared
error (MSE) is often chosen when working with regression. Even though the
genes are fixed-length, the ETs can be of different sizes as they do not necessar-
ily include all elements from the gene. Depending on the structure of functions
and terminals in the gene, the last part of the tail may be a non-coding region
that is not present in the ET. The coding region is often called open reading
frames (ORFs). The ability to vary the ORFs and non-coding regions gives GEP
high flexibility to create a wide variety of ETs even though the genes are of fixed
length. This translation from a genotype structure (genes) to a phenotype rep-
resentation (ETs) makes GEP a genotype-phenotype evolutionary optimization
algorithm.
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Figure 2.2.2: Small changes to the chromosome head gives significantly different ETs

Figure 2.2.2 shows how two chromosomes can be expressed as ETs. The tail
is shown in bold and should be one longer than the head, according to Eq.
2.2.1. Notice how the two chromosomes are the same length, but the ETs are
not the same size. The ET from chromosome A only uses two terminals from
the tail, and therefore has a nine-digit ORF and a five-digit non-coding region.
Chromosome B is similar to chromosome A except that the two last terminals
in the head region have been changed to two functions. A larger part of the tail
is now used in the ORF, which leads to a more complex ET. The equations for
the two ETs can be written as follows:

A : a− a

b
+ a · b (2.2.2)

B : a− a

b
+
√
a · (b+ a) (2.2.3)

After checking the fitness of each chromosome, a selection procedure follows
to determine which chromosomes will be retained as a base for further evo-
lution. A typical selection method is roulette wheel selection which is a pro-
portional selection strategy that can be thought of as a roulette wheel where
each chromosome has a sector, and the size of each sector is based on the fit-
ness of the individual chromosome. As a result, a higher fitness score leads to
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a higher probability of being chosen [13]. Another method is tournament se-
lection, where a random subset of chromosomes is chosen from the population
and then choosing the chromosome from the subset with the highest fitness.
The selected chromosome will be copied to the next generation.

The next step is to form a new population of chromosomes by modifying the
selected chromosomes from the previous generation. There are four central ge-
netic operators to introduce variation based on the parent chromosomes [12]:
Replication: the simplest operator as the chromosome is just copied to the next
generation. The fittest chromosomes are most likely to be replicated and thus
be included in the new population.
Mutation: to ensure that the mutated chromosome is structurally correct, sym-
bols in the head can be substituted with any other symbol from set T or F, while
for the tails, terminals can only be substituted with other terminals in set T.
Changing symbols from set T to set F or vice versa in the head leads to signifi-
cant changes in the ET.
Transposition: fractions are moved to another location in the chromosome.
There are three types of transposition. Insertion sequence (IS) takes a random
sequence anywhere in the genome and inserts it anywhere in the head except
for the first position (the root). Root insertion sequence (RIS) transposes a ran-
domly chosen sequence from the head that starts with a function to the root of
genes. In gene transposition, full genes are transposed to the start of a chromo-
some.
Recombination: two randomly chosen chromosomes swap some material re-
sulting in two new chromosomes that are combinations of the parents. There
are three types of recombination. In one-point recombination and two-point re-
combination, one and two crossover point are chosen randomly and the mate-
rial downstream from the crossover point is exchanged. In gene recombination,
entire genes are exchanged.

These genetic operators are tunable hyperparameters that will ensure genetic
variation and evolution of the chromosomes. For example, if the mutation rate
is set to 0.1, one in ten chromosomes will mutate. A chromosome can be subject
to multiple genetic operators.

The whole algorithm for GEP is illustrated in Figure 2.2.3. First, a population
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of random chromosomes is initialized. These are then expressed as ETs before
they are executed and evaluated by their fitness. Along with the best-fit chro-
mosome, a weighted selection procedure where the best-fit chromosomes are
more likely to be chosen is used to determine which chromosomes will be the
foundation for the next generation. The selected chromosomes are then ex-
posed to multiple genetic operators to produce a new population with much
variance. This cycle repeats itself until the desired amount of generations has
been reached. After termination, the best-fit chromosome is saved and can be
expressed as an equation.

Iterate

Terminat

Figure 2.2.3: GEP procedure

A crucial part of symbolic regression is to find the weightings of each feature in
form of a numerical constant. Ferreira addresses this challenge by introducing
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a new terminal, "?", and a domain, Dc, that comes after the tail with the same
length as the tail [3]. The "?" terminal represents random constants and can be
used similarly to other terminals in Figure 2.2.2. These terminals can then be
substituted with symbols from the Dc in a left to right and top to bottom ap-
proach as before. This process is illustrated in Figure 2.2.4 These symbols cor-
respond to a location in an array consisting of random constants. By separating
the Dc domain and the original part of the gene, the primary genetic operators
are not affected by the Dc and additional Dc specific genetic operators can be
introduced to ensure variation and evolution of the numerical constants. These
extra operators can be Dc specific mutations, transpositions, and inversions.

01234567890123456789012
+-*?*?+?ab??a?b38261547

+

- *

? * ? +

? a ?b

(4a) The "?" terminal can be used in the ET
just like the other terminals

01234567890123456789012
+-*?*?+?ab??a?b38261547

+

- *

3 * 8 +

2 a 6b

(4b) The "?" is swapped with symbols from
the Dc region

Figure 2.2.4: The process of including numerical constants in GEP

If the following array of numerical constants, C, is used, the ET from Figure
2.2.4 can be expressed as in Figure 2.2.5.

C = [−0.07,−0.32, 0.78, 0.45, 0.09,−0.87, 0.63,−0.42,−0.02, 0.03]
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01234567890123456789012
+-*?*?+?ab??a?b38261547

+

- *

0.45 * -0.02 +

0.78 a 0.63b

Figure 2.2.5: An ET with numerical constants

The ET in Figure 2.2.5 can be read as the following expression:

0.45− 0.78a+ (−0.02(b+ 0.63))

Even though the goal of using GEP for symbolic regression is to identify both
expression structure and coefficients, there is room for improvement in identi-
fying continuous real coefficients. GEP can often find the structure quickly, but
even with the described approach with numerical constant arrays and Dc spe-
cific operators, GEP still struggles with finding accurate coefficients that are not
integers. A relatively simple but yet very effective improvement is to add linear
scaling to the already proposed method. It has been proven that using a scaled
MSE rather than the regular MSE when determining the fitness significantly im-
proves the performance of symbolic regression [14]. The linear scaling is based
on finding the optimal slope and intercept, or the weights a and b, respectively.
The scaled MSE can therefore be implemented by solving

min
a,b

1

N

N∑
i=1

(yi − (aypi + b))2 (2.2.4)

where yi and ypi are actual and predicted values for example i in the dataset.
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2.2.2 Sparse regression

When discovering equations with symbolic regression, both function form and
parameters are discovered at the same time. An extensive feature library is
therefore required to capture the true underlying dynamics with great accu-
racy. However, an extensive library of features does not mean we expect com-
plex equations to describe our model. Physical laws and equations are often
relatively simple as long as they are expressed with the right features. It is de-
sired to extract the most essential features, a process called feature selection,
to drastically reduce computational demand and overfitting. This assumption
of simplicity, or sparsity, can be used to recover sparse statistical models where
only a few parameters (or predictors) play an important role [15].

Any PDE can be written as a linear system representation in terms of a fea-
ture library and output data [3]:

V (t) = Θ(U) · β (2.2.5)

where V (t) is spatiotemporal target data or measurements gathered as a single
column vector. Θ(U) is the feature library which is a matrix consisting of the
features for every spatiotemporal datapoint. Each column of Θ(U) contains all
values for a particular candidate function across the full space of spatiotempo-
ral data. β = [β1, β2, ..., βN ] is the coefficient vector where βN is the number of
features. This is an overdetermined linear system as there should be a higher
number of measurements than features. By finding a sparse coefficient vector,
the full PDE can be represented as a weighted sum of fewer library terms. This
should be a significantly simpler feature set and thus reduce the computation
times and complexity significantly.

By using the least absolute shrinkage and selection operator (LASSO), the co-
efficient vector, β, can be approximated with the following sparse regression
objective function based on least squares: [15]

β∗ = argmin
β
‖Θ · β − V (t)‖22 + λ‖β‖1 (2.2.6)

where λ is a regularizing weight and ‖β‖1 corresponds to the L1 penalty, also
called the LASSO penalty. The L1 term is equal to the absolute sum of the coef-
ficients. The main advantage of LASSO regression is its ability to obtain sparse
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models by eliminating negligible coefficients and therefore does feature selec-
tion automatically.

Another method based on adding a penalty term is called STRidge. The goal
of STRidge is to find a sparse coefficient vector that only includes active fea-
tures, while the rest of the feature library is hard thresholded to zero [3]. In
STRidge, the coefficient vector, β, is approximated with the following sparse
regression objective function based on least squares:

β∗ = argminβ‖Θ · β − V (t)‖22 + λ‖β‖2 (2.2.7)

where λ is a regularizing weight and ‖β‖2 corresponds to the L2 penalty, also
called the ridge penalty. The L2 penalty equals the square of the magnitude of
the coefficients. These penalty terms have certain properties. An L0 penalty is
not efficient as it results in a non-convex optimization problem that is np-hard.
Regularizing with the L1 penalty is common for feature selection as it achieves
sparsity, but relaxing the problem to a convex L1 regularized least squares is
not necessarily a good approach as it tends to perform poorly with highly cor-
related data [16]. L2 regularization does not add this sparsity property, but
by hard thresholding small values within a certain tolerance to zero, STRidge
achieves the goal of finding a sparse coefficient vector with reduced overfit-
ting. The values for tolerance and λ are hyperparameters that have to be tuned
depending on the problem. The tolerance value can be found by starting with
a very small value and gradually increasing it until the test performance de-
creases.

Both L1 and L2 can be used to regularize data as they penalize the loss function
and discourage complexity of the model. Regularizing the data is important to
avoid overfitting. An overfitted model will perform well on training data, but
is not good at generalizing to new data. This lack of generalizability makes it
unfit for modeling physics that is desired to apply to several other similar or not
so similar use cases and applications.
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β1 β1

β2

Figure 2.2.6: Comparison between LASSO (left) and ridge (right)

Figure based on Hastie et al.[15]

Figure 2.2.6 gives a visual explanation of how LASSO and ridge regression reg-
ularizes a simple two-dimensional model. The figure shows the contours of the
error in red, while the blue areas are constraint functions for LASSO (left) and
ridge (right). The solutions will be at the crossing points between the constraint
regions and the elliptical contours. Due to the shape of the constraint function
for LASSO regression, the solution often lay on one of the axes and thereby
set one coefficient to absolute zero. As the ridge penalty term is quadratic, the
constraint function for ridge regression will have a circular shape. This circular
shape will still draw the solution towards the origin and therefore shrink the
coefficients, but it will not lie on one of the axes and therefore not eliminate any
coefficients. Therefore, both of these penalty terms can be useful for regular-
ization and reducing overfitting, but only LASSO regression will lead to feature
selection alone without additional hard thresholding of small coefficients to
zero.

2.3 Principal component analysis

Processes and dynamics in nature can often be described with relatively simple
equations, so a vast amount of information is not necessarily better — quality of
information is more important. PCA is a powerful tool based on linear algebra
that can reduce complex datasets to a lower number of dimensions [17]. By re-
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ducing the number of dimensions, redundant information can be discarded and
it is especially useful when the variables are highly correlated. This is valuable
as it can remove noise and reveal simpler underlying dynamics that are difficult
to extract from complex data sets. These properties make PCA an efficient tool
for a variety of applications, such as image compression [18], anomaly detec-
tion [19], and face recognition systems [20].

The purpose of PCA is to project a higher-order n-dimensional vector down
to a k-dimensional subspace and still retain as much valuable information as
possible [21]. This yields a projection of the original vectors onto k directions,
also called the principal components. After projecting the data onto the princi-
pal components, it can be projected back to the original components to obtain a
filtered dataset without the contributions from the most noisy components with
low quality of information. One way of finding these principal components is
to find the projections that maximize variance. The direction with the high-
est variance is called the first principal component and it is the direction that
holds the most valuable information. In other words, it is the direction that best
can distinguish different data samples. The second principal component will be
orthogonal to the first principal component. Equivalent to maximizing the vari-
ance, we could also minimize the projection error or the projection residuals.
The first principal component, p1, can then be found by minimizing

m∑
j=1

(‖xj‖2 − (xjp1)
2), pT1 p1 = 1 (2.3.1)

where xj is datapoint j and xjp1 is a projection along p1. PCA for a simple two-
component dataset is illustrated in Figure 2.3.1. Instead of using x1 and x2 to
describe the data, it can be projected onto the first principal component, p1, to
explain most of the variance with only one dimension.
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x1

x2 p

Figure 2.3.1: PCA maximizes variance or minimizes the projection error

There are several ways of deriving these principal components. It can be re-
duced to solving an eigenvalue/eigenvector problem or by using singular value
decomposition (SVD), which is a widely used matrix factorization technique
that yields a numerically stable matrix decomposition exposing useful matrix
properties for extracting principal components[22][23].
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Chapter 3

Set-up and method

3.1 Set-up

3.1.1 Experimental set-up

3.1.1.1 IR camera

A thermal camera allows us to do contactless and non-intrusive temperature
measurements of a surface and is therefore ideal for studying the temperature
evolution in a heated metal plate. Unlike regular cameras, a thermal camera
detects heat, also called infrared energy, instead of visible light [24]. The ther-
mal energy an object emits increases with the temperature. Thermal cameras
usually have a lower resolution than regular cameras, as infrared energy has
much larger wavelengths than visible light and therefore requires larger sen-
sors.

The low-cost Waveshare MLX90640 110◦ FOV IR camera [25] was chosen for
this project. This is a 32x24 IR array that gives 768 temperature measure-
ments within its range from -40◦C to 300◦C. The MLX90640 was connected
to a Raspberry Pi 4 Module B [26] via the I2C protocol (SDA/SCL) to ac-
cess and collect these measurements. This I2C is not a hardware interface en-
abled on the Raspberry Pi by default, so it was enabled by uncommenting "dt-
param=i2c_arm=on" in the config.txt file. To increase thermal imaging perfor-
mance, the speed of the I2C communication was increased to 1 Mbit/s from the
default of 400 kbit/s. This was done by adding ",i2c_arm_baudrate=1000000"
on the same line. Increasing the speed above default values requires extra cau-



24 Chapter 3. Set-up and method

tion on overheating, especially if running for longer periods.

As we want the temperature as a function of time, x-coordinate and y-coordinate,
u(t, x, y), it is desired to gather the data as a three-dimensional array consisting
of n temperature arrays of size 32x24, where n are the number of timesteps.
The temperature arrays from each of these timesteps can be visualized as a
heatmap by bounding the color range to a minimum and maximum temper-
ature. According to the datasheet, it is expected that up to four sensors are
defective. As this is also the case for the camera used in this project, these
would have to be detected and accounted for. These defect cells either gave
extremely high or low values, so they could easily be detected by checking that
every value was within an expected range. This will identify both defect cells
and any unexpected wrong measurements. These faulty values were fixed by
interpolating the neighboring cells.

3.1.1.2 Metal plate with a heating element

The primary objective is to study how heat moves through a medium and dis-
cover the equations describing heat evolution. A thin metal plate can be used
as the conducting medium to model heat transfer in two spatial dimensions. In
this study, an aluminum plate that is 60 cm wide, 52 cm tall, and 10 mm thick
is used. A heating element, which is a bake element typically at the bottom of
ovens, was attached to the back of the plate. A purely physics-based modeling
approach with numerical equations for the heating phase for this set-up would
typically be very complicated due to the complex structure of the heating el-
ement. There would also be a number of assumptions that reduce the overall
accuracy. Furthermore, the actual properties of the materials and heating ele-
ments might not even be known. If it instead is possible to obtain a model from
data, this would be a specific model for precisely these properties and it would
account for what would generally be performance-reducing assumptions.

The heating element has a maximum effect of 1200W and is usually used with
a thermostat to keep a specific temperature by switching the power on and off.
However, it is also desired to choose the effect of the heating element and keep
it for a long period, so a simple on/off mechanism is not sufficient. Therefore, a
variable transformer can be plugged into a wall outlet (230V) to adjust the out-
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put to the desired voltage. This makes it possible to choose a lower effect than
the maximum value that would be the case if the element was plugged directly
to 230V. A thermostat is also attached to the back of the plate and a tuning
knob on the side of the plate to adjust the threshold for the thermostat. One of
the wires from the variable transformer to the heating element is connected via
this thermometer to cut the power when the temperature is above the chosen
threshold. This can be useful if we want a fixed temperature at a specific point
instead of a fixed voltage for the heating element.

A problem that arises when using an IR camera for a polished aluminum plate
is that the emissivity of the aluminum is actually too low for the camera to mea-
sure the temperature. Instead, the temperatures of the objects in the reflections
are measured. The emissivity is the ratio between an object’s ability to emit
energy in the form of radiation and a blackbody’s ability to emit energy in the
form of radiation at the same given temperature [27]. Therefore, it is crucial
to have an object with a high emissivity (preferably close to 1) to get accurate
temperature measurements. Polished aluminum has an emissivity of only 0.095
[27]. This emissivity can be increased with high-emissive painting or coatings,
but the low-cost and non-permanent solution in this experiment is to cover the
plate with opaque electrical tape that should have an emissivity of around 0.95
[28]. Even though electrical tape is usually made from plastics which are poor
heat conductors, it is only 0.18 mm thick and should therefore not affect the
temperature measurements significantly. The small isolation effect should also
be relatively uniform as the tape is evenly covering the entire plate.

The complete set-up is shown in Figure 3.1.1. The aluminum plate is covered in
black electrical tape and is placed in front of a height-adjustable camera stand
where the Raspberry Pi and the IR camera are mounted. The variable trans-
former to adjust the voltage is shown in the background. Figure 3.1.2 shows
the heating element on the backside of the aluminum plate.
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Figure 3.1.1: The full experimental set-up

Figure 3.1.2: Heating element on the backside of the plate
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3.1.1.3 Experiments for data generation

When collecting measurements from the experimental set-up, the voltage of the
heating element was set to 135V, which gives around 700W, and was heating
the plate for one hour and 15 minutes. The plate had then reached equilibrium
and the heating element was turned off. The IR camera was collecting data with
intervals of 0.5078 seconds, and 9000 frames of measurements were collected
for the heating phase and 9000 frames for the cooldown phase. Figure 3.1.3
shows the temperatures right after the heating element was turned off and
the cooldown phase had started. The highest temperatures are slightly above
80◦C. The heating element could not be used at full power as it would lead to
temperatures too high for the electrical tape.
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Figure 3.1.3: The initial temperatures for the cooldown phase

3.1.2 Synthetic data from simulated heat conduction

As this is a low-cost IR camera subject to relatively large amounts of noise,
it is also desired to create synthetic data with the possibility of adjusting the
noise. Simulated data can be used to verify that the methodology works and to
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study how much noise it can handle by gradually adding noise up to the point
of failure. A simulator was implemented in Python based on the theory from
Section 2.1 and using Eq. 2.1.4 to calculate the next timestep. In addition, a
random number within a desired range can be added here to symbolize noise.
The temperature is simulated as a function of time and two spatial dimensions,
u(t, x, y), with the dimensions (200,50,50).

The plate is initialized with a temperature of 0◦C, but with a square holding
an initial temperature of 100◦C to represent a heated element. The boundary
conditions are set to 0◦C. By calculating the future timesteps, we can study
how this heat spreads throughout the plate. Figure 3.1.4 shows a heatmap of
a timestep from the simulated data without noise shortly after initialization.
These simulations use high values for D to obtain rapid heat conduction. This
means that the heat transfer effects can be studied with relatively small datasets
and computation times can be kept low when processing the data further. The
other parameters were dt = 0.1 and dx = dy = 1.
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Figure 3.1.4: A timestep from simulated data
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3.2 Method

3.2.1 Feature library

Both GEP and the sparse regression methods need a feature library that includes
higher-order spatial and temporal derivatives to discover PDEs. The core library
of features can be written as

V (t) = [U t] (3.2.1)

Θ̃(U) = [U Ux U 2x U 3x U y U 2y U 3y] (3.2.2)

Every feature is organized as a single column with values for every spatiotem-
poral datapoint. The core library can be used directly as input in GEP as it is
able to find combinations of the core features automatically. LASSO regression
does not have this ability and it is necessary to use a more extensive feature
set with every feature we can expect to be a part of the solution. This manual
feature engineering step can be done by defining and calculating the following
feature set:

Θ(U) = [U Ux U 2x U 3x U y U 2y U 3y U
2 U 2

x U
2
2x U

2
3x U

2
y U

2
2y U

2
3y] (3.2.3)

The number of features is βN = 14, which gives 14 values for every spatiotem-
poral datapoint. This is still a rather simple feature set and will not find com-
bined terms such as UxU y. When these methods are used on synthetic data
where no such combined terms are expected, the above feature set should suf-
fice. This need for expectations to omit potential features shows a major limita-
tion for LASSO and ridge-based regression methods, compared to GEP, which
has inbuilt feature engineering properties. For this reason, GEP will be the pre-
ferred method when working with experimental data where it is more difficult
to predict what to expect.

The core features can be approximated by using numerical schemes on the col-
lected data. A leapfrog scheme is used for temporal derivatives, while a central
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difference scheme is used for spatial derivatives.

ut =
uk+1
i,j − uk−1

i,j

2dt
(3.2.4a)

u2t =
uk+1
i,j − 2uki,j + uk−1

i,j

dt2
(3.2.4b)

ux =
uki+1,j − uki−1,j

2dx
(3.2.4c)

u2x =
uki+1,j − 2uki,j + uki−1,j

dx2
(3.2.4d)

u3x =
uki+2,j − 2uki+1,j + 2uki−1,j − uki−2,j

2dx3
(3.2.4e)

uy =
uki,j+1 − uki,j−1

2dy
(3.2.4f)

u2y =
uki,j+1 − 2uki,j + uki,j−1

dy2
(3.2.4g)

u3y =
uki,j+2 − 2uki,j+1 + 2uki,j−1 − uki,j−2

2dy3
(3.2.4h)

where superscript k is temporal index, subscripts i and j are spatial indexes in
x-direction and y-direction, respectively, while dt is temporal step, and dx and
dy are spatial steps.

3.2.2 Gene expression programming

The GEP implementation was done in Python [29] by using the GEP framework
geppy [30]. geppy is built on top of the evolutionary computation framework
DEAP [31]. DEAP has great support for GP and geppy can be considered an ex-
tension from GP to GEP following the style of DEAP. As there are a lot of tuning
parameters for GEP and every run can be quite time-consuming, the rates for
the genetic operators are based on the values proposed by Ferreira [12] and
the values used in the geppy documentation [30]. These can be found in Table
3.2.1. The other tuning parameters found in Table 3.2.2 are more based on trial
and error. Tournament selection was used as the selection procedure. The func-
tion set consists of addition, subtraction, multiplication and division, while the
terminal set is a random numerical constant (RNC) array with 100 elements.
80% of the data was used for training and the remaining 20% was used as a
test set to reduce overfitting.



Chapter 3. Set-up and method 31

Genetic operator Rate
Mutation 0.05
Inversion 0.1
IS transposition 0.1
RIS transposition 0.1
Gene transposition 0.1
One-point recombination 0.3
Two-point recombination 0.2
Gene recombination 0.1
Dc specific mutation 0.05
Dc specific inversion 0.1
Dc specific transposition 0.1

Table 3.2.1: Rates for the genetic operators

Parameter Value
Head length 3
Genes per chromosome 1
Length of RNC array 100
Population 200
Generations 25

Table 3.2.2: Tuning parameters for GEP

3.2.3 A hybrid modeling approach

Instead of using pure modeling methods, another approach is to combine data-
driven modeling with physics-based modeling to obtain a hybrid method. This
can be done by using a data-driven method to correct for the error after using a
simpler physics-based model based on assumptions about the system. An error
term, S(t, x, y), can be included in Eq. 2.1.1:

∂T

∂t
= D

(
∂2T

∂x2
+
∂2T

∂y2

)
+ S(t, x, y) (3.2.5)

The term S captures the error between the assumed physics-based model and
the actual model, including errors in heat conduction parameters and also other
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effects that are not caused by heat conduction. For the simulated data, the ac-
tual value forD is known and it is therefore possible to reconstruct the equation
without any S-term, but this is not necessarily the case for real use cases, so a
wrong estimate of D is used to see if a hybrid approach can correct for an inac-
curate estimate. Eq. 3.2.5 was solved for S by using noise-free simulated data,
and setting D = 0.5, instead of the actual value D = 2. A dataset including
every value for S and every neighboring temperature measurement could then
be used for GEP to find an expression for S(k, i, j) as a function of u(k, i− 1, j),
u(k, i+ 1, j), u(k, i, j − 1) and u(k, i, j + 1). An 80/20 training-test split is again
used for the GEP to reduce overfitting.
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Chapter 4

Results and discussions

As this study is comprised of several experiments with a high number of figures,
the results are discussed consecutively throughout the chapter.

4.1 Accuracy of experimental set-up

According to Melexis’ website [32], the camera should have a typical target ob-
ject temperature accuracy of 1◦C across its full measurement scale. Handling
noise will be very important when transitioning from working with synthetic
data from simulations to actual measurements from an experimental set-up. A
more thorough study of the impact of noise is therefore conducted to better un-
derstand how the noise affects the readings of the metal plate. While keeping
the plate at room temperature, 100 rapid measurements of the full plate were
collected. The difference between the highest and lowest value for each cell
can be plotted as a heat map as seen in Figure 4.1.1. The camera has less noisy
measurements in the center of the images, while the edges and especially the
corners have very noisy measurements. The average difference for all cells is
0.901◦C. Even though the plate is kept at room temperature and should have a
uniform temperature profile, the difference between the highest and the lowest
measured temperature in the plate is almost 10◦C.

Removing the top row, the two bottom rows, the three leftmost columns, and
the five rightmost columns reduces the average difference to 0.760◦C and the
difference between the highest and lowest measured temperature in the plate
to 2.18◦C. Cropping out these cells with the most noise increases the overall
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accuracy significantly, but as seen in Figure 4.1.1, there are still many cells with
differences above 1◦C. 1◦C makes up a high percentage, especially at the begin-
ning of the heating process when the plate holds a low temperature. The accu-
racy might also decrease for higher temperatures, but as it is difficult to keep the
plate at a constant and uniform temperature, it was only tested at room temper-
ature. Conducting this experiment gives an indication of how much noise we
can expect from the physical set-up. This is used as a reference when adding
more and more noise to synthetic data from simulated experiments. However,
discovering the equations from a simulated heat conduction experiment with
the expected noise is not sufficient as the physical set-up would also be affected
by other effects, such as other forms of heat transfer and impurity of materials.
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Figure 4.1.1: Accuracy of IR camera

4.2 Synthetic data without noise

A full feature set of is created with the method described in Section 3.1.2. This
results in a full feature library of 15 features. As the differentiation cannot be
applied to the borders, the full dataset consists of 198 ∗ 46 ∗ 46 ∗ 15 = 6, 284, 520

datapoints. After creating the dataset, the first time derivative, ut, is chosen as
output, y. The other 14 features make up the input, X. The goal is to find a
combination of the features in X that equals y. This can be done by fitting a
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linear regression model with the linear_model.LinearRegression() method from
the scikit-learn package[33]. This gives the following table of coefficients:

Feature Coefficient
u 4.63309244e-03
ux -1.46208262e-05
u2x 2.05227318e+00
u3x -2.34106707e-06
uy 1.58940258e-02
u2y 2.03467977e+00
u3y 2.86237560e-02
u2 -2.79252754e-04
u2x 8.23510789e-03
u22x -2.01661080e-02
u23x -7.07926462e-03
u2y 7.19151780e-03
u22y -2.11047739e-02
u23y 1.70244573e-03

Table 4.2.1: Feature coefficients for linear regression without noise

As seen in Table 4.2.1, feature u2x and u2y have the largest coefficients, while
the rest are rather small in comparison. This means that the linear regression
has successfully identified u2x and u2y as the most significant features, which
agrees with Eq. 2.1.1. The actual value for D in this simulation is 2.0 and the
linear regression found an expression with 2.05u2x and 2.03u2y. Even though
these have the largest coefficients, the linear regression still includes smaller
values for every other feature making the full expression very complicated. The
MSE between the predictions from the approximated equation and the actual
measurements is 0.00126.

LASSO can be implemented by using the method linear_model.Lasso() from the
scikit-learn package[33]. The alpha parameter, which is a constant that multi-
plies the L1 term and therefore affects the tolerance for setting coefficients to
zero, is set to 0.001. This gives the following table of coefficients:
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Feature Coefficient
u 9.48177156e-03
ux 0
u2x 1.99258276e+00
u3x 0
uy 0
u2y 1.99258299e+00
u3y 0
u2 -1.21609373e-03
u2x 1.03259247e-02
u22x -7.22007243e-03
u23x 0
u2y 1.03259154e-02
u22y -7.22001958e-03
u23y 0

Table 4.2.2: Feature coefficients for LASSO without noise

LASSO manages to extract the terms 1.99u2x and 1.99u2y, which is close to the
actual expression. Several of the features have been set to zero and thereby
eliminated, demonstrating LASSO regression’s feature selection properties. The
MSE between the derived expression and the actual data is 0.00139, which is
slightly higher than for the linear regression. Since the expression found with
LASSO is more accurate, the low MSE for the linear regression suggests that it
overfits more than the LASSO approach, which is expected.

Unlike symbolic regression, linear regression and LASSO regression can not
combine features or find more complex terms and forms of the expression. In
this case, a rather simple two-dimensional heat conduction equation is sim-
ulated and an expression with only significant coefficients for u2x and u2y is
expected. However, with real experimental data, such a simple structural form
is not expected as there are other forms of heat transfer as well. The goal is
not only to identify u2x and u2y and their coefficients, but also to discover the
unknown physics and a source term with a structural form that is not known.
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GEP is an approach that does not suffer from these limitations. GEP only needs
u, ux, u2x, u3x, uy, u2y and u3y as input features. GEP with linear scaling was
able to extract this expression:

ut = 2.0714u2x + 2.0714u2y + 0.0041 (4.2.1)

The MSE between the estimated model and the actual data is 0.0015. In this
case, linear regression, LASSO regression, and GEP managed to describe the dy-
namics of the data with relatively high accuracy. LASSO was closest to finding
the true coefficients, but GEP found the simplest expression. Other alpha values
for the LASSO regression were tested in order to set more features to zero, but
it decreased the accuracy of the more important coefficients. Performing linear
regression and LASSO regression was a quick process after the dataset with
features had been made. GEP is a more time-consuming method that requires
some testing as many parameters can be tuned. It could probably be tuned
better to find more accurate coefficients, but for finding the structure of the ex-
pression it is very efficient even without extensive tuning. Linear regression and
LASSO regression work because we calculate features we already know should
be present in the equation. It can only find coefficients for all input features,
while GEP can create combinations and new features based on a set of base fea-
tures. This built-in feature engineering in GEP can be especially valuable when
discovering physics with restricted a priori knowledge.

4.3 Synthetic data with noise

The previous section showed that the two-dimensional heat conduction equa-
tion could be recovered from data. However, it is also necessary to study the
methods using noisy data as industrial use cases and experimental data always
have noise. Random numbers between -0.2 and 0.2 can be added to the tem-
perature calculations from Eq. 2.1.4. Using LASSO regression as before gives
the coefficients seen in Figure 4.3.1
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Figure 4.3.1: Feature coefficients found with LASSO after adding +-0.2 ◦C noise

u2x and u2y still have large coefficients, but they are not as dominant as they
were without noise. u3y actually has a larger coefficient than u2y, while the co-
efficient for uy is much larger than it was in the noise-free dataset. The rest of
the features are less significant. It is struggling more with feature selection as
fewer coefficients are set to absolute zero. The MSE is now 1.5927, which is
much higher than in the previous dataset. A significant part of the dynamics is
now lost in the regression.

If the noise terms are increased to +-1.0, LASSO regression with an alpha of
0.01 finds the coefficients seen in Figure 4.3.2
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Figure 4.3.2: Feature coefficients found with LASSO after adding +-1.0 ◦C noise

It is no longer extracting u2x and u2y as significant features. Instead, it finds
a complicated combination consisting of many larger coefficients. The difficul-
ties in identifying the most important features demonstrate how important it is
to keep noise to a minimum. Calculations of features and regression are both
highly sensitive to noise and inaccuracies of temperature measurements can
progress through the process.

4.3.1 Using PCA to handle noise

PCA can be used for denoising by discarding components that do not add valu-
able information as described in Section 2.3. Every timestep of the temperature
data with noise between -0.2 and 0.2 was first flattened, resulting in a matrix
with the dimensions (200, 2500). PCA could then be applied by using the scikit-
learn package[33] for Python, which finds principal components based on SVD.
Figure 4.3.3 shows how much of the variance is explained for a given number
of components. There are 200 components in total but most of the variance
is captured with only a few components, while the contribution from most of
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them is negligible. 99.6% of the variance can be explained with only the five
most important components or dimensions, shown in orange. PCA can then
be used to project the data onto these five components and then back to the
original components to obtain a filtered dataset.
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Figure 4.3.3: Explained variance for a given number of components for the dataset
with +-0.2 ◦C noise

After filtering, the LASSO method with an alpha of 0.05 finds the coefficients
as seen in Figure 4.3.4.
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Figure 4.3.4: Feature coefficients found with LASSO after adding +-0.2 ◦C noise and
filtering with PCA

The coefficients for u2x and u2y are now 2.00 and 1.95, respectively, while the
rest of the coefficients are either set to zero or are very close to zero. It has
therefore successfully recovered the simulated equation with high accuracy and
is a significant improvement from the unfiltered data seen in Figure 4.3.1.

The same method was also applied to the dataset with noise between -1.0 and
1.0. Figure 4.3.5 shows how much of the variance is explained for a given num-
ber of components.
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Figure 4.3.5: Explained variance for a given number of components for the dataset
with +-1.0 ◦C noise

More of the variance is now spread over the less significant components. 94.5%
of the variance can be explained with the five most important components, as
shown in orange. The dataset was filtered by projecting onto these components
before projecting it back. Using LASSO with an alpha of 0.05 on the filtered
dataset gives the coefficients shown in Figure 4.3.6
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Figure 4.3.6: Feature coefficients found with LASSO after adding +-1.0 ◦C noise and
filtering with PCA

GEP manages to find the following equation:

ut = 2.1478u2x + 2.1478u2y + 0.0151 (4.3.1)

It is now working a lot better than it did without PCA as LASSO identifies u2x
and u2y as the most significant features despite the relatively large amount of
noise. The coefficients for the rest of the features are zero or small in compar-
ison. GEP finds more accurate coefficients and also a simpler structural form
of the expression. These results demonstrate how effective PCA is to reduce
noise and simplify datasets. The way PCA filters data is highly efficient when
trying to identify and study the central underlying dynamics. Handling noise
is crucial when extending the study to actual measurement data as the meth-
ods for extracting physics are very sensitive to noise. Noise-sensitive methods
in combination with IR camera measurements, which are often not the most
accurate data, is one of the most difficult challenges that has to be solved to
make equation discovery work for practical use cases.
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4.4 Equation discovery for experimental data

It has been demonstrated that it is possible to recover a two-dimensional heat
conduction equation from only data, but also how sensitive these methods are
to noise. Working with real measurement data from the experimental data will
therefore be much more challenging. In Figure 3.1.3, which shows the initial
temperatures after the cooldown phase has started, there are two warmer sec-
tions in the middle caused by the shape of the heating element as seen in Figure
3.1.2. As these measurements are taken after the plate has reached an equilib-
rium, there are no major differences in temperature, but it can be seen that it is
slightly colder further away from the middle. Several runs with lower voltages
have been collected and the following methods have also been tested for these
datasets. As there were no major differences in the results, the run with 135V
is in focus as it allows for the highest possible temperature variances.

The cooldown phase can be used for studying temperature evolution without
additional source terms from the heating element. The most inaccurate pixels
based on the accuracy study from Section 4.1 were removed, which reduces the
number of data points to 8998x18x22 per feature. As heat conduction is a rel-
atively slow process and the measurements are collected with a high sampling
rate, an average of multiple timesteps can be used to reduce the noise further
when finding a model. Combining 20 subsequent measurements at a time and
increasing the timestep to 10.16 seconds should decrease the effect of incon-
sistent measurements that were observed in 4.1. After filtering it with PCA by
using only six principal components, LASSO with an alpha of 0.00001 found
the coefficients seen in Figure 4.4.1
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Figure 4.4.1: Feature coefficients found with LASSO on experimental data

GEP manages to find the following equation:

ut = −0.00075u+ 0.01991 (4.4.1)

As the simulations used a much larger value for D than what is expected
from an experimental set-up with an aluminum plate, the coefficients should
be much smaller than they were with synthetic data. Unlike for the simula-
tions, LASSO is now not extracting u2x and u2y as important features at all.
Instead, it finds a larger negative coefficient for u, which is simply the tem-
perature measurements in the plate. As the plate holds a higher temperature
than the environment, this negative coefficient can model the cooling effect
caused by radiation and convection. As these effects were not modeled in the
simulations, the synthetic data did not have any heat loss but only heat trans-
fer within the plate due to conduction. Eq. 4.4.1 is similar to Newton’s law of
cooling, which is an ordinary differential equation that can be written as [34]

ut = k(u− ua) (4.4.2)
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where ua is the ambient temperature and k is a negative constant of propor-
tionality depending on the system properties. As the ambient temperature can
be assumed constant throughout the cooldown phase, and k is negative, the
two equations take the exact same form. Solving for ua yields that the ambient
temperature is 26.5◦C, which is likely not very far from the actual ambient tem-
perature.

Figure 4.4.2 and Figure 4.4.3 are heatmaps from the cooldown phase at timestep
2000 and timestep 4000, respectively, where one timestep is 0.5078 seconds. As
expected, it can be seen that the temperature in the plate gets more uniform af-
ter a while. The effects of heat conduction will therefore decrease significantly,
and radiation and convection will be the governing forms of heat transfer, mak-
ing the plate cool down more evenly. Heat conduction is not found to be very
significant when trying to find an expression for the full cooldown phase.

It can be seen that the plate gets slightly warmer towards the top, which can be
caused by convection. The air close to the plate heats up and rises due to the
hotter air having a lower density and thereby slows down the cooling process
at the top due to the higher surrounding temperatures. This is clearly a much
more complex system than the simulated system making it significantly harder
to find an accurate expression even with similar noise levels. GEP and LASSO
find quite different expressions, and the results changed significantly even with
small changes of the tuning parameters. This suggests that there might not be
any simple and obvious PDE to describe the system based on the collected data.
These inconsistent results might also be a sign of overfitting, even though GEP
was implemented with a test set to find the best-fit equation for unseen hold-
out data. The found equation does not explain the relationship between neigh-
boring values, but is simply a decreasing function based on the previous spot
measurement. It therefore discards any heat conduction effect and strengthens
the hypothesis for cooling by convection to be the dominant form of dynamics.

By extracting the initial conditions and boundary conditions from the collected
measurements, it is possible to make predictions by numerically calculating the
temperatures in the same manner as for the simulated data. Eq. 4.4.1 was sim-
ulated numerically and Figure 4.5.2 and Figure 4.5.6 show heatmaps from this
simulation. At timestep 500, it can be seen that the temperature distribution
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is similar to the initial temperature profile due to the more uniform cooldown
and lack of heat transfer within the plate. The lack of spatial derivatives in
the prediction model is clearly seen in Figure 4.5.6 as there are large discrep-
ancies between the boundary conditions, which are actual measurements, and
the neighboring values. This lack of spatial correlation also means that only
initial conditions should suffice when doing numerical simulations, and it does
not need measurements for boundary throughout the full simulations. Despite
the inaccurate temperature distribution in the plate, the data-driven model is
still a fairly good model for the overall temperature in the plate and has a total
MSE of 0.39 compared to the actual measurements.
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Figure 4.4.2: Temperature measurements at timestep 2000



48 Chapter 4. Results and discussions

0 5 10 15 20
x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

y

35

36

37

38

39

40

41

Figure 4.4.3: Temperature measurements at timestep 4000

There are several sources of uncertainty in addition to inaccurate IR camera
measurements that can increase the gap between synthetic and experimental
data. When calculating the features, values for dt, dx, and dy need to be known,
but these are difficult to find accurately. The values used for the spatial steps, dx
and dy, are estimates found by measuring the distances on the plate between
the relevant pixels. Seeing this border on an IR camera requires a hotter object
to distinguish it from the rest of the plate, and together with the low resolu-
tion, it becomes a challenge to find very accurate values for these important
parameters. These values were measured to be dx = 0.019 and dy = 0.016. The
value for dt was found by taking the total running time divided by the num-
ber of timesteps. This results in a rather accurate average value, but in reality,
these values vary slightly due to some variations in the code’s running time for
taking measurements and the fact that the camera is on the limit for how fast it
can sample. Inaccuracies of these step lengths are scaled up further when cal-
culating higher-order features as these are calculated with exponents of these
values.
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4.5 Predicting with the heat conduction equation

Assuming heat conduction is the only form of heat transfer, Eq. 2.1.3 can be
used with the actual physical properties of the system to calculate the temper-
atures at every timestep. Using D = 9.7 ∗ 10−5 for aluminum [35], the stabil-
ity constraint from 2.1.5 gives dt 6 0.77. The IR camera must therefore take
measurements every 0.77 seconds at a minimum to guarantee stability. After
overclocking the Raspberry Pi as described in Section 3.1.1.1, it was possible to
sample with a timestep of 0.5078 seconds. The value for heat diffusion, D, is
considered a best guess and is not necessarily accurate as the actual properties
of the set-up is not known and the value also varies slightly with temperature.

The following figures show plots from actual measurements, predictions from
a physics-based model using the heat conduction equation and the data-driven
model found with GEP in the previous section. To study the performance of the
physics-based model, plots of the difference between actual measurements and
predictions are also included.
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Figure 4.5.1: Temperature measurements at timestep 500
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Figure 4.5.2: The prediction at timestep 500 based on the equation found with GEP
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Figure 4.5.3: The prediction at timestep 500 based on the heat conduction equation
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Figure 4.5.4: The difference between measurements and predictions by the physics-
based model at timestep 500
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Figure 4.5.5: Temperature measurements at timestep 6000



52 Chapter 4. Results and discussions

0 5 10 15 20
x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

y

30.0

30.5

31.0

31.5

32.0

32.5

33.0

33.5

34.0

Figure 4.5.6: The prediction at timestep 6000 based on the equation found with GEP
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Figure 4.5.7: The prediction at timestep 6000 based on the heat conduction equation
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Figure 4.5.8: The difference between measurements and predictions by the physics-
based model at timestep 6000

Figure 4.5.1 and Figure 4.5.3 show the actual measurements and the predic-
tions from the physics-based model at timestep 500, which is around 250 sec-
onds into the cooldown phase. Both figures show a warmer circular shape in
the center which is reasonable due to the hot center seen from the initial tem-
peratures in Figure 3.1.3. Figure 4.5.4 shows the difference or the error be-
tween measurements and predictions at the same timestep. The predicted tem-
peratures are generally higher than the actual measurements, and the error is
larger towards the center. This is expected as the boundary conditions are the
actual measurements and the error will propagate the further away from these
boundaries the model has to predict. A warmer prediction is also expected as
the predictions only model heat conduction, but in reality, the plate will also
be cooled by radiation and convection as the environment holds a lower tem-
perature than the plate. These effects are captured by the boundary conditions
but not in the predictions toward the center. Increasing the thermal diffusivity
of the prediction model could partially substitute these effects as it would push
the temperature of the full plate towards the colder boundary conditions, but
it is not likely that the actual thermal diffusivity of the plate is higher than the
value for pure aluminum which is modeled in Figure 4.5.3.

Figure 4.5.5 and Figure 4.5.7 are heatmaps of the actual measurements and
predictions from the physics-based model at timestep 6000, which is around
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3000 seconds after the cooldown phase was initiated. Heat conduction has now
lead to a more uniform temperature in the plate. As the plate’s temperature at
this stage is closer to the room temperature, the other heat transfer effects are
slower and less significant than they were at timestep 500. The differences be-
tween measurements and predictions, as seen in Figure 4.5.8, are therefore
less than they were at earlier stages. Based on the accuracy study in section
4.1, noise up to 1◦C is expected. Therefore, the discrepancies seen in Figure
4.5.8 seem to be more a result of noise and less systematic error compared
to earlier stages when unmodeled effects had a more significant impact. The
purely physics-based model has an MSE of 0.42 compared to the actual mea-
surements, which is very similar to the performance of the data-driven model.
However, the physics-based model is likely less prone to overfitting due to a
more robust foundation in physics. The effect of heat rising towards the upper
part of the plate can actually be observed with the physics-based model, even
though no convection is modeled. Since this effect is captured in the bound-
ary conditions, it progresses through the neighboring values with conduction.
This approach requires measurements of the boundary conditions for the full
simulation period, but for many use cases these boundary conditions might be
known or can be predicted.

4.6 A hybrid modeling approach

It has been seen that a purely data-driven modeling approach was successful
for noise-free synthetic data but struggled with even small amounts of noise
and was therefore dependent on efficient denoising. Both a data-driven, and
a physics-based modeling approach using the boundary conditions from mea-
surements could be used to make predictions with reasonable overall accuracy,
but they are not able to capture all the underlying dynamics and are struggling
with discrepancies within the plate. The hybrid approach from Section 3.2.3
was implemented for the noise-free synthetic dataset used earlier.

GEP finds the following expression for S when using a physics-based model
with inaccurate assumptions:

S(k, i, j) = −5.4576e− 5 ∗ (u(k, i− 1, j) ∗ u(k, i+ 1, j)

∗ u(k, i, j − 1) ∗ u(k, i, j + 1)) + 0.1464
(4.6.1)
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This new estimate of the S-term can now be subtracted from the original S-
term to correct the model. Figure 4.6.1 and Figure 4.6.2 show the S-term before
and after correction at timestep 30. The correction is not perfect, but it is still
a significant improvement of the inaccurate physics-based model. The mean
square for every S-term throughout the simulation is reduced from 7.45 to
2.68 using the correction term found with GEP.
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Figure 4.6.1: The error term, S, between simulated data and a physics-based model
based on inaccurate assumptions at timestep 30
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Figure 4.6.2: The error term, S, between simulated data and a physics-based model
based on inaccurate assumptions after correcting with GEP at timestep
30

The improvement found with GEP can easily be used in the predictions by sim-
ulating Eq. 3.2.5 with the approximation of the error term. Figure 4.6.3 shows
the simulated temperatures at timestep 30 with D = 2, while Figure 4.6.4
shows the temperature with a purely physics-based modeling approach based
on an inaccurate assumption of the conducting material as D = 0.5. Figure
4.6.5 shows the temperature at the same timestep after correcting with the er-
ror term found with GEP. The simulation with a too low value for D is too hot
where there were higher initial temperatures. After correction, the simulations
seem to be closer to the original data. The MSE between the original simulation
and the simulation with a wrong assumption of D is 14.41, while it is reduced
to 7.48 after adding the correction term.

This experiment highlights a problem with pure physics-based models. If a data-
driven approach is not feasible to find, a physics-based model based on assump-
tions is often considered the other alternative. Finding an accurate physics-
based model requires accurate knowledge of the conducting material, such as
thermal conductivity, k, specific heat capacity, C, and density, ρ. In addition,
other physics would be have to modeled as well, which is often much more
complex than only heat conduction. The model with the correction term can
be considered a hybrid approach as it uses an assumed physics-based model as
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a basis, but improves the performance by using a data-driven method for the
residuals. In this experiment, the residual is just the error due to inaccurate
parameter values for heat conduction, but in practical use cases, the S-term
will also capture unmodeled physics, such as radiation and convection effects
or unknown physics that is difficult to account for.

The hybrid method in this experiment did improve performance from the as-
sumed best-guess physics-based model. It is more difficult to compare it directly
to the purely data-driven methods that managed to find a near perfect recov-
ered model from the same dataset. The hybrid approach is trying to correct an
error from the physics-based model by finding a term with only neighboring
temperature measurements and not a larger feature set as was used for the
purely data-driven methods, resulting in a simpler equation. The S-term can
easily be added to the simulations without any further calculations of new fea-
tures.
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Figure 4.6.3: The original simulated temperatures at timestep 30 with D = 2
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Figure 4.6.4: The simulated temperatures at timestep 30 with an inaccurate assump-
tion of D = 0.5
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Figure 4.6.5: The simulated temperatures at timestep 30 with an inaccurate assump-
tion of D = 0.5, but with a correction term found with GEP

A similar approach was tested for the experimental set-up by finding the S-term
for the physics-based model from Section 4.5. Figure 4.6.6 is a heatmap of the
S-term at timestep 2000 without filtering the data. There is no obvious pat-
tern as there was for synthetic data, but it is seemingly more a result of noisy
measurements. GEP had no significant progress in reducing the error through-
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out the generations and found only complex equations using only one or two
neighboring values with very small coefficients. These were not consistent with
different parameter tunings and are most likely suffering from a high degree
of overfitting. The importance of less noisy data is even higher now as most of
the physics is already accounted for in the physics-based model as seen in Sec-
tion 4.5. Filtering with PCA to reduce the noise in the remaining error term did
neither provide any good GEP approximation of the S-term. Several of these
equations found with GEP were implemented in the numerical simulations, but
none of them lead to significantly improved performance. For the physics-based
model to be numerically stable, the timestep needs to be sufficiently small, but
the expected differences between timesteps are then minuscule. This makes the
expected difference caused by heat transfer effects for this slow system almost
negligible compared to the large amounts of noise.
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Figure 4.6.6: The error term, S, between a physics-based model and actual measure-
ments of the plate at timestep 2000
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Chapter 5

Conclusion and future work

5.1 Conclusions

The major conclusions of this thesis can be summarized as follows:

• The two-dimensional heat conduction equation was successfully recov-
ered from simulation data by calculating a core feature set and using GEP
with linear scaling for symbolic regression. It was also recovered by using
LASSO with an extended feature set.

• LASSO and GEP were found to be highly susceptible to noise as they strug-
gled to recover equations even with small amounts of noise. PCA was
efficient for denoising and improved the results significantly.

• A data-driven approach using GEP found a simple equation describing
the measurement data of the aluminum plate, similar to Newton’s law of
cooling. It was not identifying terms from the heat conduction equation,
and cooling by convection seems to be the governing dynamics captured
by the discovered equation. The model could be used for predictions with
reasonable overall accuracy, but struggles with temperature differences
within the plate due to lack of spatial derivatives in the discovered equa-
tion.

• A hybrid modeling approach where GEP was used to correct an inaccurate
or incomplete physics-based model improved performance when model-
ing heat transfer using synthetic data, but gave no significant improve-
ment of the noisy measurement data from the heated plate.
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5.2 Future work

Part of this thesis was an attempt to find a low-cost solution for modeling heat
evolution in a metal plate. It has been demonstrated that even small amounts of
noise deteriorate the results but that it is possible to improve performance sig-
nificantly by filtering with PCA. However, modeling all forms for heat transfer
from real measurement data is much more complex than working with synthetic
data made from only heat conduction. Higher complexity increases the need for
less noisy data in order for the data-driven methods to extract multiple smaller
physical processes. It would therefore be interesting to do a similar study with
a higher-tier IR camera as this type of physics discovery can be valuable beyond
a low-cost solution. Noisy data has been a major challenge with this study, and
a more accurate IR camera should yield significantly better results due to the
noise-sensitive nature of these data-driven methods. The challenging leap from
synthetic simulation data to real measurement data becomes visible in this the-
sis, but most studies use only simulation data despite that most of the valuable
use cases and applications are dependent on actual measurement data. Keeping
noise levels to a minimum will be one of the keys to close this gap.

The experimental set-up suffers from a trade-off as a quick sampling rate is
desired for the accuracy and stability of numerical simulations, but a smaller
timestep makes the measurement noise much more significant as the expected
temperature differences between timesteps decrease. Using an implicit numer-
ical modeling approach can allow for larger timesteps as it it is not constrained
by the same stability criteria as an explicit approach. It would also be interest-
ing to do further studies of hybrid methods for measurement data if the noise
levels can be reduced. Once a more accurate equation for the cooldown phase
is extracted, this can perhaps be used for finding the source terms caused by
the heating element in the heating phase.
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