
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Jan Aleksander Fijalkowski

LiDAR-based Resilient Collision-free
Navigation for Aerial Robots in
Closed Environments

Master’s thesis in Cybernetics and Robotics
Supervisor: Kostas Alexis

June 2021M
as

te
r’s

 th
es

is

Jan Aleksander Fijalkowski

LiDAR-based Resilient Collision-free
Navigation for Aerial Robots in Closed
Environments

Master’s thesis in Cybernetics and Robotics
Supervisor: Kostas Alexis
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Problem Description

The research conducted in this thesis aims to investigate a reinforcement
learning approach for collision-avoidance and navigation that can be applied
onto an aerial robot aiming to navigate complex, confined environments. The
method should be able to utilize perceptual sensors and observations and
function without the need of reconstructing a 3D map of the environment.
Hence, the goal is to:

• Develop real-time collision-avoidance systems that ensure the safety
of a Micro Aerial Vehicle (MAV) given only minimalistic sensing and
computing requirements.

• Explore the effectiveness and robustness of the proposed approach on
a suitable test environment.

To undertake this effort, the following set of tools are made available for
this project:

• Computer with specification found in Appendix B.1 provided by the
Autonomous Robots Lab at NTNU (ARL-NTNU).

• Computer with specification found in Appendix B.2 provided by NTNU.

• OpenAI baselines [25].

• The open-source Rotors Simulator [9], including an appropriate model
of an MAV provided by ARL-NTU.

• LiDAR Simulator provided by ARL NTNU.

i

Preface

This master’s thesis was written during the spring semester 2021 at the De-
partment of Engineering Cybernetics at the Norwegian University of Science
and Technology (NTNU) in collaboration with the Autonomous Robots Lab
(ARL) at NTNU.

The work conducted in this thesis continues the work done during the fall
semester 2020, as a part of the course TTK4550 - Specialization Project in
Engineering Cybernetics [11]. A considerable effort was put into a literature
review and the foundation was laid to further develop the system used in
this thesis. Chapter 4 is similar to the theoretical chapter in the unpublished
project report but is considerably rewritten and updated to further fit the
scope of this thesis.

I would like to thank Prof. Dr. Kostas Alexis for the opportunity to
work with such an interesting subject as autonomous navigation and flight,
as well as guidance and help during the process. I would also like to thank
Huan Nguyen and the rest of the ARL-NTNU lab for all the help provided
during my research.

Trondheim, June 2021
Jan A. Fijalkowski

ii

Abstract

The thesis aims to develop and evaluate a navigation controller for quad-
copters using deep reinforcement learning frameworks. The quadcopter is
deployed in confined environments and should navigate collision-free to a
goal region without any prior information or any online construction of a
map. For this an end-to-end learning algorithm was used that transforms
raw sensory data directly into actuation commands for a flying robot. It does
so by extracting relevant data from a 3D LiDAR and odometry sensor and
trains the robot using a curriculum-based transfer learning strategy. To train
the specific quadcopter, several different environments were created with di-
versified complexity in Gazebo simulator. After the training stage, the robot
was deployed to several different unseen, simulated environments to evaluate
the controller. In addition, the proposed method was evaluated and tested
in a underground mine structure with an expert planner. The controller was
able to generalize to unseen situations and navigate fast through all of the
environments.

iii

Sammendrag

Denne oppgaven tar for seg utviklingen og evalueringen av en navigasjons-
og kollisjonsunngåelseskontroller for et autonomt multirotorfartøy. For å løse
dette ble det brukt et rammeverk som utnytter dyp forsterkende læring. Det
autonome fartøyet hadde til hensikt å navigere kollisjonsfritt til et bestemt
mål gjennom trange og lukkede miljøer. Dette ble gjort uten å ha noe
kjennskap til miljøet fra før eller å aktivt konstruere et 3D-kart. En ende-
til-ende læringsalgoritme ble brukt for å transformere rådata fra sensorer til
kommandoer brukt til å styre det flyvende fartøyet. Den utviklede metoden
gjør dette ved å hente ut viktig data fra en 3D LiDAR og odometrisensor,
og bruker dette til å trene en kontroller. Denne kontrolleren blir trent i et
spesifikt miljø og overfører den lærte kunnskapen til et nytt, mer komplisert
miljø. De forskjellige miljøene ble konstruert i simulatoren Gazebo. For å
validere den utviklede metoden ble fartøyet testet i forskjellige miljøer som
flyvende roboten ikke hadde blitt eksponert for tidligere. Hensikten med
dette var å teste alle aspekter ved den utviklede metoden. Kontrolleren om
bord på fartøyet ble også testet i en sjakt, og ble guidet ved hjelp av en
algoritmisk baneplanleggerekspert. Metoden var i stand til å løse alle de
forskjellige scenarioene den ble eksponert for, og navigerte raskt og effektivt
til sitt endemål.

iv

Abbreviations

DDPG Deep Deterministic Policy Gradient
DoF Degrees of Freedom
GBPlanner Graph-based Planner
GNSS Global Navigation Satellite System
IMU Inertial Measurement Unit
LiDAR Light Detection And Ranging
MAV Micro Air Vehicle
MDP Markov Decision Process
RL Reinforcement Learning
RMF Resilient Micro Flyer
ROS Robot Operating System
RRG Rapidly-exploring Random Graphs
SGD Stochastic Gradient Descent
SOR Statistical Outlier Removal

v

Contents

Contents

Problem Description i

Preface ii

Abbreviations v

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2
1.3 Contributions . 3
1.4 Structure of the Thesis . 3

2 Simulating the Quadcopter 5
2.1 Introducing the System . 5
2.2 Reference Frames and Notation 6
2.3 RMF Dynamics . 8
2.4 Actuators . 9
2.5 State Estimation . 10

3 Perception 12
3.1 An Overview . 12
3.2 Different Sensors . 13
3.3 Fundamentals of 3D LiDAR 14
3.4 Preprocessing LiDAR Data 15
3.5 Environmental Noise Filtering 16
3.6 Point Cloud Feature Extraction 17

3.6.1 Point Cloud Representation 17

4 Reinforcement Learning 19
4.1 Motivation Behind Deep Reinforcement Learning 19
4.2 Reinforcement Learning - Key Concepts 20

4.2.1 Stochastic and Deterministic Policies 21
4.3 Deep Reinforcement Learning Algorithms 22
4.4 Policy Gradient Methods . 22

vi

Contents

4.4.1 Off- and On-Policy Learning 23
4.4.2 Policy Objective Function 23
4.4.3 Stochastic Gradient Ascent 24
4.4.4 The Baseline . 24

4.5 Deep Deterministic Policy Gradient 25
4.5.1 DDPG - Key Elements 25
4.5.2 DDPG and Off-Policy learning 25
4.5.3 Replay Buffer . 26
4.5.4 The Actor Network . 26
4.5.5 The Critic Network . 27
4.5.6 Noise Based Exploration 27
4.5.7 Batch Normalization 28
4.5.8 Target Networks . 28

5 End-to-End Learning 29
5.1 Traditional and End-To-End Control 29
5.2 Learning in Simulation . 30
5.3 Learning Strategies . 31

5.3.1 Curriculum Learning 31
5.3.2 Imitation Learning . 32

5.4 Auxiliary Rewards . 32
5.5 Planning . 33

5.5.1 Sampling-based Path and Motion Planning 34

6 Proposed Approach 35
6.1 System Overview . 35
6.2 Simulator . 36
6.3 Waypoints . 38
6.4 Feature Extraction . 38

6.4.1 Point Cloud Features 38
6.4.2 Odometry Features . 41
6.4.3 Tracking Feature . 42

6.5 The Structure of the Reward Functions 42
6.5.1 Navigation Reward . 43
6.5.2 Obstacle Avoidance Reward 43
6.5.3 Combining Obstacle Avoidance with Navigation 44
6.5.4 Tracking Reward . 45

6.6 Implementation of the DDPG Algorithm 46
6.6.1 Network Topology . 46

6.7 The Training Process . 48
6.7.1 Environments . 49
6.7.2 Terminal Conditions 50

vii

Contents

7 Results 52
7.1 The Training Setup and Results with the Obstacle Avoidance

Controller . 52
7.1.1 Hyperparameters . 53
7.1.2 Training Results . 54

7.2 Validating the Obstacle Avoidance Solution in Different En-
vironments . 55
7.2.1 Collision-free Paths . 56
7.2.2 Paths with Obstacles 59

7.3 The Obstacle Avoidance Controller in and Underground Mine
Environment . 63

7.4 The Training Setup and Results with Tracking Solution . . . 66
7.4.1 Hyperparameters . 66
7.4.2 Training Results . 67

7.5 Validating the Tracking Controller in a Simulated Environment 68
7.6 The Tracking Controller in an Underground Environment . . 69

8 Discussion 73
8.1 The Reward Structure . 73
8.2 The States . 75
8.3 The Feature Extraction Pipeline of the Obstacle Avoidance

Controller . 75
8.4 Reliability . 77

8.4.1 Consistency Challenges 77
8.4.2 Sensory Inputs . 78

8.5 Comparing the Obstacle Avoidance Controller to the Tracking
Controller . 78
8.5.1 The Filtering Process 79

8.6 Comparing the Obstacle Avoidance Controller to Sampling-
based Methods . 79

8.7 Challenges with Reinforcement Learning 80
8.7.1 Challenges with the DDPG Algorithm 80

8.8 Networks . 80
8.9 Other Improvements . 81

9 Conclusion 82
9.1 Overview . 82
9.2 Further Work . 82

Appendix 84

A 84
A.1 Deep Deterministic Policy Gradient Algorithm 85

viii

Contents

B 86
B.1 ARL-NTNU Computer Specifications 86
B.2 NTNU Computer Specifications 86

References 87

ix

List of Figures

List of Figures

2.1 The structure of how all of the components are connected.
(Source of figures: [27], [38], [7], [34], [8]) 6

2.2 Dynamic model of the RMF (Source of Figure: [41]) 7

3.1 The four components in an autonomous system. 12
3.2 The same environment sensed with a camera and LiDAR. . . 13
3.3 A point represented on a sphere. (Source of figure: [1]) 18

4.1 A flow diagram describing the general framework in reinforce-
ment learning. 20

5.1 Overview of the end-to-end learning architecture. 30

6.1 Architecture overview showing the general set up for high level
control of the RMF using reinforcement learning. 36

6.2 An open Gazebo environment with the RMF. 37
6.3 A point cloud depicting an underground environment, where

the marked red points will be filtered out by the SOR algorithm. 39
6.4 Dividing the 3D point cloud into stacks and sectors. (Figure

generated by OpenGL: [1]). 40
6.5 A visualization of the extracted sparse distance measurements

marked in red with the RMF in the center. 41
6.6 Vector field with 3 obstacles in red and a yellow goal region. . 45
6.7 The fully-connected neural networks architectures used by the

different controllers. 48
6.8 The shapes used in the simulations. 49
6.9 The environments used for training the RMF. 50

7.1 Simulation results of the mean reward return for each epoch. 54
7.2 The results from training depicting the loss of the actor and

the critic. 55
7.3 Obstacle-free straight paths. 57
7.4 Obstacle-free twisty paths. 58
7.5 Obstacle-free y-path environment. 59

x

List of Figures

7.6 Path environment with obstacles. 60
7.7 Large environment with obstacles. 61
7.8 Large environment with obstacles of different shapes. 62
7.9 Y-path environment with obstacles. 63
7.10 Underground mine environment section 1. 64
7.11 Underground mine environment section 2. 65
7.12 Underground mine environment section 3. 65
7.13 Simulation results of the mean reward return for each epoch. 67
7.14 The results from training depicting the loss of the actor and

the critic. 68
7.15 Visualization of the trajectory of the RMF within the obstacle-

filled environment. 69
7.16 Visualization of the first section of the underground mine en-

vironment with the reference and RMF trajectory. 70
7.17 Cave environment section 2. 71
7.18 Visualization of the third section of the underground mine

environment with the reference and RMF trajectory. 72

xi

List of Tables

2.1 Notation of the forces, moments and states of a 6 DoF vehicle
(SNAME (1950)[23]). 8

6.1 Specifications of the parameters used to simulate the RMF. . 38

7.1 Specifications of the hyperparameters used in the DDPG al-
gorithm in each environment during training. 53

7.2 Specifications of the reward parameters used in the reward
function rt (Equation (6.10)) in each environment during train-
ing. 53

7.3 Training time used in each environment. 55
7.4 Specifications of the hyperparameters used in the DDPG al-

gorithm during training. 66
7.5 Specifications of the reward parameters used in the reward

function rt (Equation (6.12)) during training. (*rte was set to
0 during the first training session. Hence, this parameter was
not used) . 67

7.6 Training time used in each training sessions. 68

B.1 Computer Specifications of the ARL-NTNU computer. 86
B.2 Computer Specifications of the provided NTNU computer. . . 86

Chapter 1. Introduction

Chapter 1

Introduction

This chapter introduces the motivation, a short introduction to the problem,
previous work related to the problem, the structure of this thesis and the
contributions to the overall solution.

1.1 Motivation

When disaster strikes, humans rely on first responders to rush in and save
lives. The degraded environments that these humans face are beyond danger-
ous and often impossible to navigate through due to many hazards present.
In these Search and Rescue (SAR) operations it can be more useful to send
in robots, without risking any human life to get better situational aware-
ness. This can pose a huge tactical advantage when doing decision making
in difficult situations. However, such operations are often time critical, as
any time wasted can be fatal for the victims. Any aid that should be used
needs to be efficient and reliable, as there is also a lot of uncertainty tied
to such conditions. Micro Air Vehicles (MAVs) have the ability to navigate
through narrow spaces in a very fast and agile motion. There is already a
lot of related work exploring these topics using MAVs. However, what is
very common between all of these studies is that fast solutions come at the
expense of agile and robust solutions. External sensors or a prior map is
usually required in an attempt to have quick and robust autonomous flight.
Eventually, one strives for a system that is reliable, fast, and agile and at the
same time uses as little prior knowledge as possible, essentially eliminating
the need for a prior map. In addition, most of the autonomous quadcopters
that navigate beyond the visual line of sight today uses mostly Global Navi-
gation Satellite Systems (GNSS). However, such aid does not work in indoor
environments. This is problematic, as the navigation solutions should be de-
ployed in challenging environments where humans cannot necessarily reach,
and which may as well be underground or in some cave. The alternative
is to therefore only relay on onboard sensors, such as LiDAR, Camera, and

1

Introduction

Inertial Measurement Unit (IMU). To achieve this, a robust solution that
can handle inaccuracies in data, such as inaccuracies provided by sensors,
is required. One would also need to reduce latency by having fast sensors
and algorithms. The MAV is limited by its battery life, and any hardware
or software used by the MAV should work to the benefit of extending flight
time or search area.

Deep learning is a class of techniques that has proven itself to be effective
and fast in handling diverse and complex environments. In order to combine
this kind of generalization power with the ability to make effective deci-
sions, one needs an algorithmic framework around decision-making, which is
what reinforcement learning provides. This thesis presents a fast computa-
tional data-driven method that utilizes reinforcement learning and aims to
reduce any computational overhead related to construction of a consistent
online 3D map of the environment by only processing and using raw sen-
sory data to navigate within structurally complex, confined environments.
Consequently, the method presented in this thesis heavily emphasizes on fast
algorithms while also being robust and reliable. In brief, the method departs
from the current state-of-the-art where collision-free navigation methods in
previously unknown environments require the online reconstruction of the
map and instead offers an end-to-end solution starting from extremely low-
dimensionality range data and providing robot control actions for safe flight.

1.2 Related Work

There is a lot of proposed methods and work tied to fast autonomous map-
ping, navigation, and exploration. In 2017, Defense Advanced Research
Projects Agency (DARPA) launched a subterranean challenge [3], search-
ing for novel approaches where teams compete using robots to do large-scale
exploration in unknown underground environments. In the work of Reinhart
et al [30] they use a robot platform to perform autonomous exploration that
relies on a multimodal localization and mapping solution fusing Light De-
tection and Ranging (LiDAR) and Inertial Measurement Unit (IMU) data
in combination with a graph-based exploration path planner. However, a
wide set of methods focuses on learning navigation in simpler environments
emphasizing on navigation by heuristic approaches such as neural networks
[20] and classical methods. In the problem of navigating from one initial
configuration to another, it is also possible to apply simpler geometrical al-
gorithms such as Line-of-sight and Pure Pursuit guidance laws if one can
generate obstacle-free paths. Such path following algorithms rely on simpler
control strategies that do not necessarily work well if to be applied in more
complex, confined environments. In most problems it is necessary to couple
perception and control to have a fully aware agent that can navigate within
structurally challenging environments. Such perceptional-aware navigation

2

Introduction

can be formulated as an optimization problem by formulating certain action
and perception objectives. Thus, it is possible to solve this optimization
problem by leveraging a Model Predictive Control (MPC) [10].

1.3 Contributions

This thesis aims to investigate a reinforcement learning approach for map-
less navigation and collision-avoidance that will be applied onto a simulated
aerial robot. The work in this thesis overcomes these challenges by:

• Designing different simulated environments that incentive specific be-
havior within the agent during training. Thus, subsequently demon-
strating that navigation and obstacle avoidance policies can effectively
be learned end-to-end through a curricular approach in confined obstacle-
filled environments.

The training process is done by leveraging a reinforcement learning frame-
work. The additional contribution within this thesis lies in:

• The development of the feature extraction pipeline.

• Reward shaping.

• Effectively using all available data to systematically train the quad-
copter to have the desired behavior such that it can be deployed in a
diverse set of simulated environments.

1.4 Structure of the Thesis

The remainder of this thesis is structured as follows:

• Chapter 2 introduces the notation and the theoretical background of
the simulator used to simulate the MAV in this project.

• In Chapter 3 a theoretical overview is given of the perceptional part of
the system.

• Chapter 4 describes the reinforcement learning framework used in the
proposed method.

• Chapter 5 presents the learning strategies applied onto the system and
how the proposed method can be combined with a motion planner.

• Chapter 6 describes in depth the proposed method used in the thesis.

• In Chapter 7 the proposed method is evaluated and tested on a diverse
set of environments.

3

Introduction

• Chapter 8 discusses the results from the previous chapter and how well
the proposed method works.

• Lastly in Chapter 9, the findings in this thesis are concluded.

4

Chapter 2. Simulating the Quadcopter

Chapter 2

Simulating the Quadcopter

With the object of applying sophisticated control system to a Micro Air
Vehicle (MAV) to be stable and fly autonomously, it is necessary to model
it in some way. This chapter will therefore cover how to model such vehicle,
specifically a quadcopter, so that it can be used in a simulator. The equations
and notations are represented using Fossens notation from [12].

2.1 Introducing the System

The simulated quadcopter is modeled after the Resilient Micro Flyer (RMF)[6],
an aerial robot which is made out of four rotating propellers. The actuators
are spun in precise ways to control the RMF in 6 different degrees of freedom
(6-DoF), 3 translational directions and 3 rotational directions. However, to
understand how to model the RMF, it is first necessary to look at the hard-
ware specifications such that the simulated RMF realistically depicts the real
version. There are mainly 3 onboard sensors available on one of the latest
versions of RMF developed at ARL-NTNU, and the structure of the system
implies some modularity, as it is possible to change out the different sensor
components. The sensors available are:

• Inertial Measurement Unit (IMU): IMU ADIS [7].

• Light Detector And Ranging (LiDAR) sensor: OS-1 [27], OS-2 [28] and
Velodyne [37].

• Camera: mvBlueFOX [38].

In addition, there is an onboard low-level autopilot [8].
All of these components are connected to an onboard computer, NVIDIA

TX2 [34] as seen in Figure 2.1.

5

Simulating the Quadcopter

Figure 2.1: The structure of how all of the components are connected.
(Source of figures: [27], [38], [7], [34], [8])

2.2 Reference Frames and Notation

Before defining the dynamic of the system, the first thing to look at are
the available reference frames. There are two available coordinate systems,
one attached to the moving RMF {b} and the other one being the non-
accelerating coordinate system {w}. {b} = (b1, b2, b3) with origin ob consti-
tutes the set of unit vectors that describes the body-fixed coordinate frame,
and likewise {w} = (w1, w2, w3) with origin ow describes an inertial frame
that is fixed to some arbitrary point in the world as seen in Figure 2.2. Note
that the z-direction is pointing up. Throughout this thesis the position and
orientation of the RMF are described relative to the world reference frame,
while the linear and angular velocities of the vehicle are expressed in the
body-fixed frame. pwwb = [xw, yw, zw]> ∈ R3 is the position vector of the
center of mass with respect to the world frame. Euler angles, roll (φ), pitch
(θ) and yaw (ψ) are used to represent rotations. In order to express these in
the world frame, a rotation matrix R that can transform between body and
the world frame is introduced.

6

Simulating the Quadcopter

Figure 2.2: Dynamic model of the RMF (Source of Figure: [41])

However, due to representation of singularity of the Euler angles, a four-
parameter based unit quaternion q is used instead. A quaternion consists
of a real part η and three imaginary parts ε = [ε1, ε2, ε3] as depicted in
Equation (2.1)

q =

η
ε1
ε2
ε3

 . (2.1)

The rotation matrix for the unit quaternion can be expressed as in Equa-
tion (2.2) [12, eq.2.70].

R(qwb) = I3 + 2ηS(ε) + 2S2(ε), (2.2)

where I is the identity matrix and S is the skew-symmetric matrix.
Equation (2.2) can be used to express the body-fixed velocities in the

world frame seen in Equation (2.3) [12, eq.2.71]

ṗwwb = R(qwb)vbwb, (2.3)

where vbwb = [u, v, w]> is the body-fixed linear velocities. Similarly, it
is possible to express the angular velocity transformation by the body-fixed
angular velocities ωbwb = [p, q, r]> and a transformation matrix T as seen
in Equation (2.4)[12, eq.2.77]

q̇wb = T (qwb)ωbwb. (2.4)

7

Simulating the Quadcopter

Equation (2.3) and Equation (2.4) can be written in a 6-DoF kinematic
compact equation form as seen in Equation (2.5) [12, eq.2.83]

[
ṗwwb
q̇wb

]
=

[
R(qwb) 03×3
04×3 T (qwb)

][
vbwb
ωbwb

]
(2.5a)

η̇ = Jq(η)ν (2.5b)

where η = [xw, yw, zw, φ, θ, ψ]> is the state vector, V = [u, v, w, p, q,
r]> is the generalized velocity vector expressed in the body frame and Jq(η)
∈ R7×6 is a nonquadratic transformation matrix.

In addition, one should also introduce the external moments and forces
that act upon the body of the RMF, denoted by a generalized vector of
external forces and moments expressed in the body frame τ = [X, Y , Z, J ,
K, N]>.

The notation can be summarized in the following table (Table 2.1):

Body frame World frame

DOF Forces and
moments

Linear and
angular
velocities

Positions
and Euler
angles

1 Motions in the xb-direction X u xw

2 Motions in the yb-direction Y v yw

3 Motions in the zb-direction Z w zw

4 Rotation about the xb-axis
(roll)

K p φ

5 Rotation about the yb-axis
(pitch)

M q θ

6 Rotation about the zb-axis
(yaw)

N r ψ

Table 2.1: Notation of the forces, moments and states of a 6 DoF vehicle
(SNAME (1950)[23]).

2.3 RMF Dynamics

The RMF is modeled as a rigid body, and there are mainly three forces and
two moments acting on the RMF. These are the thrust force FTi , the drag
force FDi , the rolling momentMRi and the moment of the dragMDi , where
i = {0, 1, 2, 3}, acting on each of the four rotors. In addition, there is
the gravitational force FG acting on the center of the gravity of the RMF.
By applying Newton’s law and Euler’s equation it is possible to deduce the
Equations Of Motion used to simulate the dynamics of the RMF as seen in
Equation (2.6) [13, eq.8, eq.9]

8

Simulating the Quadcopter

3∑
i=0

(R(FTi + FDi︸ ︷︷ ︸
Fi

)) + FG = Mv̇wwb (2.6a)

3∑
i=0

MRi +MDi + Fi × ri = Jω̇bwb + ωbwb × Jωbwb, (2.6b)

where M = mI3 ∈ R3×3 is the mass matrix, J ∈ R3×3 is the inertia
matrix, R ∈ R3×3 denotes the rotational matrix from body to world frame
and ri depicts the vector from center of gravity of the RMF to the center of
one rotor.

2.4 Actuators

Inspecting Equation (2.6), one notes that the RMF can only induce force
in the z-direction relative to the body frame. This also implies that this is
an Underactuated System, since there are fewer actuators than the degrees
of freedom to be controlled. However, the four rotors are independently
actuated. Thus, the RMF can maneuver by alternating the rotation speed
of each rotor to yaw, pitch, roll and change altitude. It is also important
to specify that during the simulation, complex nonlinear dynamics such as
wind, vibrations and ground effect are neglected and will not affect the RMF.
In an effort to control the RMF, the generalized control force τ needs to be
distributed to the 4 motors. This is done through control allocation as in
Equation (2.7) [12, eq.11.2]

u = BT(BBT)−1τ , (2.7)

where u = [ub,1, ub,2, ub,3, ub,4]T are the four control inputs - the angular
velocities of the motors, and B Equation (2.8) is the allocation matrix.
The MAV simulator used in this project is built upon the ETH RotorS
implementation [9], and consequently the same allocation matrix is used.

B =

CT CT CT CT
0 lCT 0 −lCT
−lCT 0 lCT 0
−CTCM CTCM −CTCM CTCM

 (2.8)

where CT is the rotor thrust constant, CM is the rotor moment constant
and l is the distance from the center of origin in the body frame to the
rotors as seen in Figure 2.2, also referred to as the arm length. It is possible
to control the actions of the RMF using low level motor torque commands,
one for each of the four rotors. However, this is not a feasible command

9

Simulating the Quadcopter

structure for this problem. The provided rotors simulator already consists
of low-level PID-controllers for controlling the position, attitude and thrust.
For the purpose of applying autonomous behavior, it is necessary to abstract
from the low-level control scheme and focus on the high-level autonomous
problem. Henceforth, it would be more applicable to control the states of the
robot, through position, velocity, or the acceleration, and let the low-level
controller map those actions to appropriate rotors commands.

2.5 State Estimation

For the RMF to fully behave autonomously, the first step is to understand
the current state of the environment. The RMF needs to interpret the sensor
data provided by the onboard sensors and put them into a model of the world.
In addition, it is necessary to understand which states that are relevant for
the system and the solution to the problem. Subsequently, the first step is to
do state estimation and derive the geometrical properties of the RMF in the
world. As mentioned earlier, the position and the orientation of the RMF is
described relative to the world frame. This is estimated by measuring the
states with sensors. However, in the simulation these states are provided
by plugin sensors. In the real world the quadcopter states can be provided
by an Inertial Measurement Unit (IMU). The measurements from the IMU
come at a very high rate but are also affected by noise and time-varying bias.

IMU

The IMU ADIS [7] has a 3-axis Accelerometer which measures linear ac-
celeration and a 3-axis Gyroscope that measures angular velocity. The ac-
celerometer can be expressed in {b} as seen in Equation (2.9)[12, eq.14.29].
The linear acceleration awwmI

is given in the world frame referenced to the
IMU measurement frame {mI}.

f bimu = R(qwb)>(awwmI
− gw) + bbacc + ωbacc (2.9a)

ḃbacc = wb
b,acc (2.9b)

where f bimu is the IMU specific force (non-gravitational force per unit
mass), the gravity vector depicted as gn = [0, 0, g]T , the accelerometer bias
is the bbacc, and the additive Gaussian white measurement and bias noise are
the wb

acc and wb
b,acc, respectively.

The angular velocity measurements ωbimu also expressed in {b} from the
3-axis rate-gyroscope can be seen modeled in Equation (2.10)[12, eq.14.6 and
eq 14.7]

10

Simulating the Quadcopter

ωbimu = ωbwb + bbgyro +wb
gyro (2.10a)

ḃbgyro = wb
b,gyro (2.10b)

where the gyro bias is denoted aswbgyro. The measurement noisewbb,gyro
and bias noise bbgyro are modelled as zero-mean Gaussian white noise.

11

Chapter 3. Perception

Chapter 3

Perception

This chapter presents the theoretical part of perception related to this thesis.
An overview will be given followed by the fundamentals of 3D LiDAR and
processing of the data. Section 3.6 gives an overview of the feature extraction
process from LiDAR data.

3.1 An Overview

An autonomous system is usually said to be made up of four parts which
interplay with each other in a close manner to achieve autonomous behav-
ior. These 4 components, as seen in Figure 3.1, are Sensing, Understating,
Planning and Control. In literature, the Diagnostic component does occur
as well, which usually refers to autonomously identifying problems within
the system itself. However, this was not considered in this thesis, but an
example of such could be that the RMF identified that it had low battery
life and had to fly back to a recharge station.

Figure 3.1: The four components in an autonomous system.

One of the use cases for sensing the environment is collision checking

12

Perception

for planning algorithms. In general, the available physical sensors produce
measurements that are machine understandable. These measurements are
then used and passed through various algorithms for understanding. This
will be closer discussed in Section 4.5. When the agent is flying towards some
goal, there is also a need to do planning within the environment. This will
be closer discussed in Section 5.5. This eventually results in some control
commands which are then used by the system, the RMF, to steer towards
that goal. Consequently, the first step to produce such commands is to
percept the environment. In general, objects are required to be detected in
three-dimensional (3D) space. The reason for this is that planning happens
in 3D space as well. Hence, the measurements that are the inputs to the
navigation algorithm are required to be represented in 3D.

3.2 Different Sensors

There are many ways to produce measurements that are in 3D space, ranging
from Radar, Stereo Camera, LiDAR or some fusion where one uses all or some
of these different sensors. The quadcopter is equipped with a stereo camera,
which can for instance produce a depth map of the environment as seen in
Figure 3.2a, and a LiDAR sensor that can register the environment through
a large cloud of points as seen in Figure 3.2b.

(a) An environment perceived by a camera generating a depth image.

(b) An environment perceived by a LiDAR registering a point cloud.

Figure 3.2: The same environment sensed with a camera and LiDAR.

It is therefore only natural to compare those two sensors. The advantages
of stereo cameras:

• Low-cost.

13

Perception

• High resolution and good at detecting semantics.

• Passive sensing using a low amount of power.

• Lightweight.

• Good at measuring depth in the environment.

However, stereo cameras suffer from:

• Not working well in low-light environments.

• Difficult to use in foggy and dusty environments.

• Short range.

The advantages of LiDAR:

• Produces very accurate, dense distance measurements.

• Works well in low-light environments.

• Can have a very long range.

The weaknesses of LiDAR:

• It is an active sensor and consumes more power compared to cameras.

• Difficult to use in foggy and dusty environments.

• Heavy compared to cameras.

• Expensive.

Both options could suit our problem, but for the benefit of perimetric
perception we have for now opted to use a LiDAR.

3.3 Fundamentals of 3D LiDAR

Light Detection and Ranging (LiDAR) is a light ranging sensor and uses
time of flight measurement for a laser pulse that is reflected off an object to
determine the distance to the said object. It usually scans the environment
[0◦, 360◦] in the xy-plane and due to limitations in most LiDAR sensors in the
range [15◦, 165◦] in the xz-plane. Thus, the environment can be registered
through a 3D Point Cloud as seen in Figure 3.2b. Each 3D scan from the
sensor consists of a time stamp, the reference frame the points are given in,
number of points in the given scan, the Cartesian coordinates (xbi , ybi , zbi) of
each point, and the RGB values of each point. In this case the points should

14

Perception

be tied to the moving RMF body-fixed frame {b} with origin ob. The data
received from different LiDAR sensors may vary, and one can for instance
receive additional information such as the intensity of the points and the scan
angle. Since the measurements are tied to the reflectivity of an object, it can
create problems if the RMF is in an environment where targets are absorbing
the pulse, or the pulse may return in some way fractionally. In addition, the
pulse can be obstructed in a hazardous environment if there is a lot of smoke
or rain. What makes LiDAR sensor a very powerful instrument is that it
receives data at extremely high frequencies, and one gets fine granularity in
the distance measurements. The commercially available LiDAR sensors are
also safe for the eyes, but at the cost of not being so powerful which can affect
the performance for long distance measurements. Nevertheless, this will not
affect this problem much, as one only needs to be very aware of the distances
to many obstacles that lie in proximity within a small, confined environment.
LiDAR has also been extensively used as a perception sensor in autonomous
vehicles and has proven itself as a reliable and stable instrument.

3.4 Preprocessing LiDAR Data

A big problem with sensors used for perception is that there is often too much
information within the data that is received, and it can be computational
expensive to make use of all the information available. This is especially the
case for micro-sized aerial robots with limited payload capabilities. In Fig-
ure 3.2b one can see roughly 12800 points from one single scan. This implies
that there is a need for doing preprocessing of the data for the purpose of
speeding up computation time and give feasible data to the reinforcement
learning algorithm. In general, from a downstream perspective, one wants
to take in the minimum amount of information which will allow to produce
the satisfactory results. Any more than that and there is a waste of CPU
cycles and potentially adding noise, which can affect the results in a nega-
tive way. There are some different operations that can be used to reduce the
complexity, one of which is removing useless data which will not affect the
result. Problematic or bad data can also be removed, but this could nega-
tively affect the result. Redundant data could also be removed, which can
make the problem less computational expensive. However, with the object
of having a robust solution, there should not be done more preprocessing
than necessary to produce consistent outputs.

There already exist a lot of different methods for preprocessing LiDAR
data. One is Ranged Based Filtering, which can be thought of as an example
of removing useless or bad data. An example of this are points that are very
far away from the sensor are useless because they only provide noise, and no
sensible information. By contrast, points that are very close to the sensor
may negatively affect the system by providing false positive detections. How-

15

Perception

ever, since the RMF is supposed to operate in confined environments with a
lot of obstacles nearby, one would be more reluctant to filter out those kinds
of points. One would rather rely on having a good LiDAR sensor that works
well near obstacles. Another example of removing bad data is Angle Based
Filtering. There can be regions in the LiDARs field of view which maybe
do not work so well for various reasons. One example of such is that when
having multiple LiDAR sensors, the lasers from one LiDAR can cause false
positive detections in another LiDAR. Downsampling is usually done in or-
der to remove redundant data. Normally, one can reasonably well represent
an object with fewer points. For example, the floor can be represented by
few points falling onto a plane rather than a lot of points. The most common
approach for downsampling points is by Voxel Grid techniques. This is done
by subdividing the space into a series of boxes or cubes, and every point that
falls into a particular box is represented by a single point that lies in the cen-
ter of that cube or by approximating the center of all the points within that
box. Random sampling can also be done but is generally not recommended
because it introduces bias. In addition, it is random, which can especially
complicate things in complex environments. Lastly, downsampling can also
be done using more complicated techniques by utilizing Convolutional Neu-
ral Networks or Variational Autoencoders. However, these are non-trivial
operations since the 3D point cloud or voxels needs to be processed through
those networks and largely correspond to open research questions on their
own. In addition, even though these are valid techniques, it does to some
extent complicate the solution regarding how to interpret the output and the
latent space.

Fusing multiple point clouds together into a single consistent represen-
tation may also be considered. The reason for doing so is to have a single
and clean representation which can also be used by other algorithms within
the system. This can also be simpler for interpretation when doing analysis.
All that needs to be done is a static transform to put all the points into a
common coordinate frame.

3.5 Environmental Noise Filtering

One of the challenges related to navigation in unknown, hazardous condi-
tions is the problem with perceptual degradation. As previously mentioned,
LiDAR can be limited by adverse conditions such as mist, fog, and dust.
There already exist many intricate and sufficient ways to do noise removal,
and one of the simpler and fastest ways of denoising a point cloud is by
considering the intensity or the density of the points in the cloud. This will
be further discussed in Section 6.4.1.

16

Perception

3.6 Point Cloud Feature Extraction

After preprocessing the data, the next step would be Feature Selection. Fea-
ture selection is the process of selecting a subset of relevant features that will
be most beneficial to the solution. For instance, in an urban environment,
line features will be the most dominant feature, as they can be found in com-
mon structures. The point cloud consists of a lot of valuable information,
and one could most certainly learn object representations in some way by
applying a learning algorithm. However, given the geometrical properties
of each point in the point cloud, one could also simply sample the closest
points and feed the distances, di, to the reinforcement learning algorithm.
In this way it would be easy to use odometry states with the LiDAR states
to create behavior that emphasizes on avoiding occupied space. This will
be further discussed in Section 6.5.3. Such an intuitive solution allows for
more easily interpretable results from training the RMF. This translates to
being easier to implement and understand, in contrast to doing feature ex-
traction by for example a neural net. In addition, by carefully selecting the
most relevant distances in a simple manner, the computational overhead is
reduced because the computation is minimal. This is very important to keep
in mind, as the algorithm is bounded by the computer on the RMF. Hence,
the proposed method, further discussed in Section 6.4.1, is more broadly
applicable. It provides a solid foundation, which then permits options for
adding additional algorithms, which can improve the overall solution in the
long run.

3.6.1 Point Cloud Representation

Given the structure of the point cloud, one of the most common ways of
expressing the location of a point in 3D is using Spherical Coordinates as
seen in Figure 3.3.

17

Perception

Figure 3.3: A point represented on a sphere. (Source of figure: [1])

This is done by expressing the point by (rbi , θbi , ϕbi) in the body-frame.
rbi is the direct distance from the origin out to the point. ϕbi depicts the
angle from the positive x-axis in the xy-plane. θbi is the angle from the
positive z-axis down to the line segment from the origin to the point. The
relations between (ri, θbi , ϕbi) and (xbi , ybi , zbi) can be seen in Equation (3.1)

rbi =
√
x2bi + y2bi + z2bi , rbi ≥ 0 (3.1a)

θbi = arctan

(√x2bi + y2bi

zbi

)
, θbi ∈ [0, π] (3.1b)

ϕbi = arctan

(
ybi
zbi

)
, ϕbi ∈ [0, 2π]. (3.1c)

18

Chapter 4. Reinforcement Learning

Chapter 4

Reinforcement Learning

This chapter provides the necessary theory to understand the learning al-
gorithm used in this project. The motivation for using deep reinforcement
learning will be given. In addition, key concepts and the algorithm that was
used, the deep deterministic policy gradient algorithm, will be covered.

4.1 Motivation Behind Deep Reinforcement Learn-
ing

Before explaining the core concepts of the reinforcement learning module, it
is important to motivate why to use deep reinforcement learning as the base-
line of the solution in the first place. There already exists a lot of theory and
solutions from classical control that has been rigorously tested and applied
to real life problems both in the industry and in the academia. Traditionally,
robotics has relied on heavily engineered features as representations. These
features might leverage expensive sensors that tell exactly where things are
and give the exact location of obstacles. However, one would often need to
specify and categorize those features for every specific object or situation.
Then, when the robot moves to the next situation, it would have to do it
all over again. As the problem gets more complex, the state space becomes
sufficiently large, and machine learning would need to be applied because
traditional programming techniques, even traditional dynamic programming
techniques, are insufficient to solve these problems efficiently. So, one may
rather learn representations from very high dimensional inputs like cameras
or LiDAR and give the system, the RMF, a perceptional understanding of
the environment. As one moves toward the high dimensional control do-
mains, adding such features is not necessarily trivial using traditional meth-
ods. Hence, deep reinforcement learning is easier to scale up in terms of
state representations. Solving complex navigation problems using classical
tools can therefore be impossible, and by using the concept of learning one
is also closing the gap between how humans solve a problem and how robots

19

Reinforcement Learning

can solve a problem. In addition, in this case one cannot assume that all the
data is present, and since this is a highly nonlinear problem, it may be very
hard or impossible to apply any type of nonlinear control for guidance and
obstacle avoidance.

4.2 Reinforcement Learning - Key Concepts

Reinforcement Learning (RL) is a branch of machine learning. It can be
applied in learning control strategies that can be used to interact with a
complex environment. In RL one models a decision-making system as an in-
teraction between an agent and an environment. The environment is usually
depicted as a Markov Decision Process (MDP). The Agent, or the controller,
makes decisions in form of Actions a and the environment responds to those
decisions with observations which are called States s and Rewards r. Hence,
this creates a fully closed loop system as seen in Figure 4.1.

Figure 4.1: A flow diagram describing the general framework in reinforce-
ment learning.

A state is a concrete and immediate situation in which the agent per-
ceives, for instance odometry data, an image feed, or a point cloud. From
a given state, an agent will send out output in the form of actions to the
environment. The environment will respond with the agent’s new state st+1,
which resulted on acting on that previous state, as well as any rewards that
may be collected or penalized by reaching that particular state. One of the
most fundamental quantities in RL is the idea of learning how to interact
with the environment through rewards rt. The scalar feedback signal rt in-
dicates how well the agent is doing at a given time step t. However, rewards
can be either immediate or delayed. So, even if rewards effectively are eval-
uating the agent’s actions, the rewards might be given a long time into the
future. For example, the RMF might take many different actions but only
be given a reward if it reaches its intendent goal.

The overall job of the agent will be to maximize the cumulative reward,

20

Reinforcement Learning

by finding certain actions at and get as much reward as possible. This
process is repeated multiple times over the course of an episode. RL can be
finite horizon, which means that this is repeated a fixed number of times, or
infinite horizon, which means that the decision-making cycle goes on forever.
However, it is very common to consider not just the total return but also the
discounted sum of rewards as in Equation (4.1).

Rt =
∞∑
i=t

γiri = γtrt + γt+1rt+1 + · · ·+ γt+nrt+n, 0 < γ < 1. (4.1)

The discounting factor is depicted as γ and multiplied by the future
rewards that are discovered by the agent. This is done in order to dampen
those rewards effect on the agent’s choice of action. By doing so, future
rewards are made less important than immediate rewards, which enforces a
somewhat short-term learning in the agent. The discount factor is typically
between 0 and 1.

Another important property related to RL and the reward function is the
Q-function. The Q-function is a function that takes as input the current state
st that the agent is in and the action at that the agent takes in that state.
Then it returns the expected total future reward that the agent can receive
after that point. Thus, the Q-function can be written as Equation (4.2)

Q(st, at) = E[Rt|st, at]. (4.2)

This can be used to determine, given the state that the agent is currently
in, what is the best action to take by simply taking the action that results in
the highest expected total return. The actions which the agent produces is
based on a strategy which is referred to as a Policy, denoted as π(a|s). This
policy function takes as input the state and it tells what kind of action that
should be executed. This can be written as in Equation (4.3) by finding the
argmax of the Q-function over all possible actions that one can take at the
state. Hence, a greedy policy that maximizes the future reward is chosen.

π(at|st) = argmax
θ
Q(st, at). (4.3)

4.2.1 Stochastic and Deterministic Policies

Policies can also be categorized as either Deterministic Policies or Stochastic
Policies. A deterministic policy maps the state to action without any un-
certainty, whereas a stochastic policy gives the probability distribution over
actions. One hopes that within that set of policies, there will be a good one.
Stochastic policies tend to smooth out the optimization problem in the sense
of having a distribution of the actions in every state. The distribution can be
slightly shifted, and that will only slightly shift the expected sum of rewards.

21

Reinforcement Learning

Having a deterministic policy changing an action in a state can have a very
significant change on the outcome. Hence, it is not a very smooth solution.
This will be elaborated in Section 4.5.

4.3 Deep Reinforcement Learning Algorithms

Reinforcement learning algorithms are usually divided into two categories,
one of which will try to learn the Q-function. This is done by Value Learning
algorithms. However, it can sometimes be very challenging to understand or
intuitively guess what the Q-value is for a given state-action pair, even for
humans. They are therefore usually approximated and modeled using deep
neural networks, often referred to as Deep Q Networks (DQN). The other
category of RL algorithms is called Policy Learning algorithms because they
will try to directly learn the policy instead of using a Q-function to infer the
policy. This is a much more direct way of solving the problem, but finding
such policy is not necessarily trivial.

There are many advantages of using Q-learning, and there have previ-
ously been seen some amazing results using this approach at Atari games
[22]. Nevertheless, there are some very important downsides to this tech-
nique. The first of which is that it can only handle action spaces which are
discrete, and, secondly, it can only really handle them when the action space
is small. This is a huge drawback for the autonomous flying vehicle that
wants to predict where to go in a small, confined environment with a lot of
obstacles. The RMF cannot be limited to certain directions that may, in
worst case, not be available. RL is used to learn a continuous action space
that is not discretized into bins, but can take any real number within some
bound that the actuators can execute, a = [aLow, aHigh].

The flexibility of Q-learning is also somewhat limited. It is not able to
learn policies that can be stochastic and that cannot change according to
some unseen probability distribution. This means that they are determin-
istically computed from the Q-function through the maximum formulation.
It will always pick the action that maximally elevates the expected return.
Thus, it cannot really learn from these stochastic policies. On the other
hand, policy gradient methods address all of these issues.

4.4 Policy Gradient Methods

The key idea of policy learning is to instead of predicting the Q-values, the
policy πθ(a|s) will be directly optimized. The control policy is parameter-
ized by the parameter vector θ ∈ Rd, depicting the weights in the neural net.
The way to think of the policy would be some neural net that processes state
information through a few layers and outputs a distribution over possible ac-
tions that the agent might want to take. In order to act, the agent samples

22

Reinforcement Learning

from that distribution, observes what happens, processes and repeats as seen
earlier in Figure 4.1. This is a lot simpler, since it means that the actions can
now be directly sampled from the policy function that the agent can learn.
This is also one of the big advantages of using policy-based RL, since it is
very easy to extend too high dimensional or even continuous action spaces
because the policy is parameterized. Different representations can simply
be plugged in which then happens to capture continuous actions. Another
advantage of using a policy-based approach is that it has good convergence
properties because it is usually only dependent on stochastic gradient de-
cent during optimization. Having a nonlinear function, one will end up in
some local optima fairly reliably. This in turns means that policy learning
algorithms are quite susceptible to local optima, especially with nonlinear
function approximation. Another disadvantage with policy learning is that
it is ignoring a lot of information. This means that it might not be making
the most efficient use of all the information that is in the data that comes
at us. In some sense if the agent wants to be efficient in learning, it should
learn all that it can from all the available data, in terms of data efficiency.

4.4.1 Off- and On-Policy Learning

One also needs to differentiate between Off- and On-Policy Methods. The
main difference lies in how the data is collected. The Behavior Policy is
used to generate samples from which one can learn and update the Q-values
for different actions. The Target Policy is used to control the system during
exploitation and is essentially the policy that the agent wants to learn. If the
target policy is different from the behavior policy, one has off-policy learning
and vice versa. This is a very important difference which will be discussed
on later in Section 4.5.

4.4.2 Policy Objective Function

To perform policy optimization, the first step is to define an objective J(θ).
The RL problem can be treated as a finite horizon problem and as stated
earlier, the policy aims to produce actions that give high expected rewards.
Thus, the objective can be formulated using the immediate rewards as in
Equation (4.4) [35, eq. 13.4]

J(θ) = Eπθ [r(τ)], (4.4)

where the expectation is over states an action and τ denotes the finite
state-action sequence s0, a0, . . . , sN , aN . It is also assumed that there is
discounting present in this case.

Continuing, with the object of computing the gradient of the expecta-
tion in Equation (4.4) it is assumed that the policy is differentiable almost

23

Reinforcement Learning

everywhere. Data samples are used to compute the gradients, but the re-
ward cannot be directly sampled followed by taking the gradient because the
samples are just numbers. It will not depend on our parameter θ. Instead,
one uses the identity derived from [2, sec. 4.11]. The gradient of this ex-
pectation in Equation (4.5) equals the expectation of a gradient, which is
the reward times the gradient of the logarithm of the policy. This is helpful,
since this gives an expected gradient that can be sampled and then be used
in an algorithm.

∇θJ(θ) = Eπθ

[N∑
t=0

∇θlogπ(at|st)Qπθ(st, at)

]
. (4.5)

4.4.3 Stochastic Gradient Ascent

Now, to optimize the objective J(θ), θ needs to be found such that it max-
imizes Equation (4.4). There are of course many ways to do this without
using gradients. One can for example use genetic algorithms or evolutionary
strategies. For this problem, stochastic gradient ascent will be used, which
turns out to be often quite efficient. It is also simple to use with deep neural
networks, as one just backpropagate the gradients. Policy gradient algo-
rithms look for a local maximum by locally looking in which the gradient of
the policy is ascending. Hence, there is some update to the parameters θ
giving Equation (4.6)

θ ← θ + α∇θJ(θ), (4.6)

where α is the learning rate. However, one would usually prefer a more
advanced optimizer, such as RMSprop or Adam optimizer [17]. An important
note is that the policy update should be sufficiently small, and one might
face problems with policy updates if an update is too big. This can be solved
by adding constraints to the optimization problem, such as trust regions [24].
This means that in most cases, the algorithms that employ such trust regions
choose a step length α that may guarantee monotonic improvement. This
forms the basis of many known algorithms in RL, such as Proximal Policy
Optimization[32] (PPO) and Trust Region Policy Optimization[33] (TRPO).

4.4.4 The Baseline

In practice, Equation (4.5) requires an impractical number of samples to
get a good estimate. In addition, using Equation (4.5) might introduce a
high variance which in turn slows down the learning. A way to solve this is
by introducing a baseline, b(s). This baseline function usually depends on
the states and cannot depend on the actions. The variance can be reduced
for instance by using a baseline that subtracts the average reward across all
actions as seen in Equation (4.7).

24

Reinforcement Learning

∇θJ(θ) = Eπθ

[N∑
t=0

∇θlogπ(at|st)(Qπθ(st, at)− b(st))
]
. (4.7)

Thus, if an action has a higher-than-expected reward, one increases the
preference of that action, and if it is lower than expected the baseline will
decrease it. Thus, by reducing the variance, the learning speed is increased.

4.5 Deep Deterministic Policy Gradient

This section aims to cover the fundamental concepts regarding the implemen-
tation of the Deep Deterministic Policy Gradient (DDPG) algorithm which
also forms the basis of the RL portion of the solution. The theory behind
this is heavily inspired by Bengio et al.[19] and Section 4.4 will be used as
the foundation to explain this method. For the actual implementation of
the algorithm, the DDPG baseline provided by OpenAI Gym [25] was used.
This is a popular platform for RL, and since everything is open source it will
make it easier to benchmark RL ideas.

4.5.1 DDPG - Key Elements

For simple problems with discrete action spaces, one can get away with hav-
ing a single network where the lower layer is learning the features of the
environment, and the upper layer splits off into outputting the critic evalu-
ation as well as the output for the actor network, similarly as in the DQN
algorithm. However, as mentioned earlier, this does not apply to this problem
as the action space has to be continuous. To solve this the DDPG algorithm
is applied. The DDPG algorithm is a type of Actor-critic Method, meaning
that there are two distinct networks. One is the Actor and the other one is
the Critic. In addition, there are two target networks, one Target Actor and
one Target Critic. Conceptually, the actor, denoted by πθ(at|st), where θ is
depicting the weights in the neural net, will decide upon which action to take.
This is done by using the current state as input {s1, s2, . . . , sn} and outputs
action value {a1, a2, . . . , am}. These are continuous numbers that correspond
to the direct input from the environment as in a deterministic policy. Simi-
larly, the critic network denoted by Q(st, at|φ), where φ denotes the weights
and biases of the neural net, will evaluate state-action pairs by taking the
current state and the corresponding action {s1, s2, . . . , sn, a1, a2, . . . , am},
given from the actor, and output a Q-value. In other words, the critic is
performing a policy evaluation for the current policy.

4.5.2 DDPG and Off-Policy learning

The DDPG algorithm is leveraging off-policy learning because it uses a Re-
play Buffer. This means that it does as few assumptions as possible concern-

25

Reinforcement Learning

ing the behavior policy, and in this case the behavior policy is stochastic.
The target policy should be an approximation to the optimal policy, and in
this algorithm it is deterministic. Off-policy learning is preferable because it
can reuse old data that comes from a previous version of the policy, for in-
stance from a replay buffer. This is beneficial since it considerably improves
the sample efficiency, as it can reuse the same data several times during
training. Another benefit with off-policy control is that it has more freedom
for exploration. It is possible to differentiate between the policy that is used
for exploration and the one that is supposed to be learned. Lastly, being
trained off-policy means that it is possible to use the replay buffer, used for
learning a particular policy, and transfer this knowledge to different poli-
cies used for different tasks. These tasks may require some past experience,
and this is often referred to as transfer learning. This will be discussed in
Section 5.3.1. Since off-policy learning is being done, the replay buffer may
effectively be quite large, and it can store a lot of past information. Using
the replay buffer to transfer experience in such way also improves the sample
efficiency.

4.5.3 Replay Buffer

In the DDPG algorithm the replay buffer is a finite sized memory bank.
When the agent transitions in the environment using some behavior policy,
one would sample from it and store the tuple (st, at, rt, st+1, d) in the
replay buffer. As information is accumulated over time, the oldest samples
are thrown away. d depicts if st+1 is a terminal state. The inspiration for
having such a buffer came from the DQN algorithm, and the intention is
to reduce correlations between each update, and by doing so reducing the
variance of the updates. Aiming to actually train the actor and the critic
the algorithm samples a mini-batch uniformly and updates the weights of the
deep neural networks. The samples do not correspond to an agent trajectory,
but instead one is simply jumping from state to state without considering the
next state. Using uniform sampling is beneficial for policy learning because
it means that one makes no assumption on the way as the behavior policy
collects the samples. There is no exploration issue and there is no bias toward
good samples. However, this way of training the RMF is only possible in
simulations which will be discussed in Section 5.2.

4.5.4 The Actor Network

The update for the actor network is done by minimizing the loss function as
seen in Equation (4.8)

Lactor = − 1

N

∑
i=1

Qφ(si, πθ(ai|si)) (4.8)

26

Reinforcement Learning

where N is the size of the mini-batch. This is somewhat different from
the policy gradient in the DDPG paper[19], but since Tensorflow will be
used one wants to put the negation of the deterministic policy gradient as
Tensorflow optimizes expected loss. One should also note that the critic
parameters are treated as constants. Intuitively, the agent should learn a
policy that takes the actions that minimizes the loss function. In practice,
states will be randomly sampled from the replay buffer and then the actor
network will be used to determine what actions it believes it should take
based on those states. Similarly, θ also needs to be updated as discussed in
Section 4.4.3.

4.5.5 The Critic Network

The next step is to plug those actions from the actor into the critic network
along with the states that are sampled from the buffer. The critic is updated
by minimizing the loss function given by Equation (4.9) [19].

Lcritic =
1

N

∑
i

(yi − (Qφ(si, ai))
2, (4.9a)

yi = ri + γ(1− d)Qφnext(si+1, πθnext(ai+1|si+1)), (4.9b)

where N is the size of the mini-batch, ri is the reward from the current
time step which is sampled from the buffer, γ is the discount factor, and
d indicates if si+1 is a terminal state. Equation (4.9) is often referred to
as the Mean Squared Bellman Error, where the error between the target yi
and the Q-value is computed for the current state and action. Similarly,
as was done with the actor network parameters, one would likewise need
to update the critic parameters φ as discussed in Section 4.4.3. In the
beginning of the training, the behavior policy will be random because the
target policy is random. When learning the critic goes well, the target policy
will improve, then the behavior policy will be biased towards better and
better samples because the samples in the replay buffer will be improved.
This loop continues as one proceeds with the training. However, due to
the problem being a more general policy search problem where the action
space is continuous, there is no guarantee that an optimal policy will always
converge as discussed in [21].

4.5.6 Noise Based Exploration

The agent starts out knowing nothing about its environment. As it pro-
gressively finds how certain states transition from one into another and how
certain actions affect those states it builds a model of the environment. How-
ever, such model will never be fully accurate. The degree to which the agent
takes off-optimal actions is known as the Explore-exploit Dilemma which is

27

Reinforcement Learning

present in all RL problems. Taking an off-optimal action is referred to as Ex-
ploration, and taking the optimal action is called Exploitation. In the DDPG
algorithm, this will be solved by taking the output of the actor network and
apply some noise as seen in Equation (4.10)[19]. In this implementation
Gaussian noise N (0, 0.12) was used as it was sufficient enough.

π′θ(st) = πθ(st) +N (4.10)

4.5.7 Batch Normalization

If the features given to the networks are on different scales such as the dis-
tance measurement and the odometry states, then associated weight param-
eters will end up taking very different values and the optimization space can
end up rather elongated. This can affect stability of the algorithm during the
optimization process. The DDPG algorithm solves with the batch normal-
ization. The batchnorm layer will maintain a moving average of the mean
and the variance to ensure effective and stable learning.

4.5.8 Target Networks

The DDPG algorithm is also making use of target networks. The reason for
this is due to the stability issues in Equation (4.9) caused by the rapidly
changing value, yi. At each time step the weights are getting updated and
the evaluation of similar states changes rapidly over the course of the sim-
ulation, causing the learning to be unstable. This can be solved by having
a target actor network, π′θ′ , where θ

′ depicts the parameters of the target
actor network, and a target critic network, Q′φ, where φ

′ depicts the pa-
rameters of the target critic network. One can slow down these updates
through a soft copy every once in a while, which is determined by some time
hyperparameter. This soft update can be seen in Equation (4.11) [19].

θ′ ← (1− τ)θ′ + τθ, (4.11a)
φ′ ← (1− τ)φ′ + τφ, (4.11b)

where τ � 0 is a hyperparameter which should be set sufficiently small in
order to slowly track the learned networks, which in turn improves stability
of the learning. To summarize, the algorithm will randomly sample states,
new states, actions, and rewards and then the target actor network will be
used to determine the actions for the new states. Then those actions will
be plugged into the target critic network to get the y′i which one wants to
shift the estimates towards for the critic. After that, the states and actions
are plugged into the critic network. These are the actions the agent actually
took that was sampled from the buffer. The full pseudocode of the DDPG
baseline provided by OpenAI Gym [25] can be seen in Appendix A.1.

28

Chapter 5. End-to-End Learning

Chapter 5

End-to-End Learning

This chapter focuses on the theory related to how to learn to combine the
state information provided by the sensors and how this can be passed through
the DDPG algorithm to create a feasible end-to-end policy for collision avoid-
ance. More specifically, it will discuss how the entire system should be
trained in simulation. It will focus on learning in the sense of machine learn-
ing and how different strategies can be used to train the RMF. Lastly, one
shall examine a state-of-the-art motion planner.

5.1 Traditional and End-To-End Control

The traditional approach to control quadcopters typically relies on the sep-
aration of state estimation, planning and control. One usually notices in
the traditional architecture that these modules are typically designed indi-
vidually rather than conjointly. In addition, these models run consecutively
rather than concurrently while it has already been discussed that perception
and actions are to some degree coupled. Furthermore, this modularity intro-
duces latency in the system. One also knows that each module is sensitive
to errors in their internal models of the environment, the sensors, and the
actuators. This means that small errors can eventually accumulate, which in
turn will affect negatively on the performance in each of the other modules.
Lastly, the traditional architecture requires extensive tuning, especially for
the controller gains. These are the reasons why one instead wants to directly
learn an end-to-end controller in the form of a neural network. So, what one
has is a controller that maps sensory inputs from LiDAR and IMU directly
to control commands in the form of thrust as illustrated in Figure 5.1.

29

End-to-End Learning

Figure 5.1: Overview of the end-to-end learning architecture.

5.2 Learning in Simulation

In this project, the networks were exclusively trained in simulation. The rea-
sons for training in simulation is that it is fast, cheap, and safe. Furthermore,
it does not require any human interference and it also allows the collection of
almost unlimited amount of data within a limited time. The key issue when
the agent is trained in simulation is that there is no guarantee that the policy
would also transfer to the real world. This is because simulation and reality
are often very different, and this is often referred to as the Sim-To-Real Gap.
The simulation is often a simplified version of reality and the real world is
something that one cannot fully control in terms of noisy data representa-
tions, an unpredictable environment, and other unforeseen events. However,
there are several key steps one can take to reduce this sim-to-real gap. The
first thing to look at is the data that is used to train the RMF. First, one
could use raw sensor data or intermediate representations. In the paper by
Zhou et al. (2019) [42] they show that the current state-of-the-art end-to-end
approaches, that uses intermediate representations, outperforms approaches
that directly map raw image pixels to control actions. A neural network is
trained faster, achieves higher task performance, and even generalizes bet-
ter to previously unseen environments when intermediate representation is
used. This can for instance be segmentation masks or depth maps. In ad-
dition, data with added noise can be added during training in simulation.
Another step one can take to reduce the sim-to-real gap is to match the
observation models in simulation with the observation models in the real
world. Hence, one should aim to make the simulation photorealistic. This
is not necessarily very simple, and given the scope of this thesis, this was
not something that one necessarily tried to achieve. Nevertheless, there do
exist open source environments where one can get fairly good cave models,
for instance provided by the DARPA SubT Challenge [3]. In order to have
consistent improvements in the training process, diverse models are needed.
It is also necessary to create scenarios of increasing difficulty which the RMF

30

End-to-End Learning

can learn from, which will be further elaborated in Section 5.3.1. From a
practical standpoint, this may be very challenging to implement. However,
the environments were made as diverse and dense as possible to better repli-
cate a chaotic and complex environment such as caves. This will be further
discussed in Section 6.7.1.

5.3 Learning Strategies

Independent identically distributed data is something that machine learning
is founded on and used throughout when training different models, as done in
the DDPG algorithm. This is different from human learning, which focuses
more on relatively prolonged inspection and consideration of a single subject
at a time. If one is to learn about a certain subject and aspire to become
an expert in a certain field, one works on it progressively, step by step. One
does not sample different facts, but rather learn all about it in the context
of all the different aspects of a larger subject. Applying this idea to machine
learning, it is possible to learn multiple subjects, but each one deeply and
with consideration. Doing so step by step, one might have a fast and reliable
way of doing machine learning.

5.3.1 Curriculum Learning

One of the most powerful ideas in deep learning is the concept of Transfer
Learning, where one can take knowledge that the neural net has learned
from one task and apply that knowledge to a separate task. Specifically, for
this problem one can use Curriculum-based Transfer Learning. When doing
standardized training with the DDPG algorithm, mini-batches are randomly
sampled from the buffer and fed to the actor and the critic. The weights are
updated by SGD at each training iteration. With curriculum learning the
networks are trained in a similar way, but the data is organized according
to some level of difficulty and the networks are exposed for more intricate
data sets as the agent progresses and converges to better results. This is
very similar to human learning, where one starts to learn simple ideas, and
progresses by increasing the difficulty. This way of learning reduces the
complexity and training time compared to learning the final objective from
scratch in one training phase. One did this by creating, evaluating, and
improving different environments and selecting the environments where the
agent had the highest positive learning curve and ended up gaining the most
rewards. Doing so with many different environments, it is possible to create a
curriculum for the RMF. When the RMF masters one environment, it moves
on to a more challenging environment and continues doing so until it has
successfully learned its end objective, being point-to-point navigation while
avoiding obstacles in confined complex environments. A challenge with this
approach is the problem of Catastrophic Forgetting. Neural networks tend

31

End-to-End Learning

to forget how to solve certain tasks if they are not exposed to them. This
can be solved by continuously mixing in easier tasks while learning the hard
ones.

In practice, when doing curriculum learning, one starts with randomly
initialized weights in the networks and train all of the parameters within by
SGD. During the first phase of training, the agent is exposed to very simple
environments where the main task is to learn to navigate to a waypoint.
When having successfully trained the neural net to achieve this task, one
changes the environment to a slightly more challenging one and continues
with training while keeping the weights and biases in the net. The task
of reaching a waypoint is still present, but the agent should now start to
learn to avoid very simple obstacles. The process of training in increasingly
challenging environments is finished when the behavior converges and there
are no more improvements in the policy.

5.3.2 Imitation Learning

Another popular area of interest within deep reinforcement learning is Imi-
tation Learning. In imitation learning, an expert provides demonstrations to
replace the random neural network initializations with a better initial pol-
icy. In this way one can provide some domain knowledge. Since the DDPG
algorithm is trained off-policy, imitation learning can be done by storing the
state-action pairs that the expert is performing in the replay buffer. Then
the policy can be trained using the data from the replay buffer, which can be
much more efficient than discovering everything from scratch. Conceptually,
this makes a lot of sense. Most of what humans learn is rarely learned from
scratch. One is almost always given examples. This idea was founded on
that leveraging imitation learning would allow to build scalable deep rein-
forcement learning solutions that could learn within a reasonable amount
of time. Nevertheless, such an approach is limited to only finding provided
solutions, which may not necessarily be innovative or very different from
the provided performance. This can be a problem if the agent approaches a
situation which is very different from what was experienced during training.

5.4 Auxiliary Rewards

Another dimension of end-to-end learning is the notion of reward functions.
As mentioned in Chapter 4, rewards provide a feedback signal of how well the
agent is performing based on the actions it took. The entire goal of the agent
is to optimize its policy to receive as much reward as possible. There are
two types of reward functions, the Sparse Function, which is easy to specify
but hard to solve, and the Non-sparse Function, which is hard to specify but
easier to solve. The reward works as the only enabler for learning, and if
the reward signal is sparse and comes at the end of a sequence of actions,

32

End-to-End Learning

it will be difficult to train in environments that are severely complex. In
addition, the information received from the environment is not necessarily
sparse, meaning that the reward can be modeled based on the information
provided by the rich sensory outputs. Hence, it is desired to augment the
sparse extrinsic reward by additional dense rewards that will aid the end-to-
end learning algorithm in a much better way. In addition, policy optimization
is more compatible with auxiliary objectives. One does this by constructing
additional feedback signals that are very dense. They should be related to
the task that the agent should solve. This dense feedback signal should
be created in such way that whenever the agent succeeds in those tasks,
it is probably also going to get knowledge that can be useful for the main
objective. A standard sparse reward signal for navigation is usually tied
to guiding the agent to a goal. The RMF will fly in a 3D environment
during training with the aim of finding the waypoint. The reward function
is specified such that it will guide the RMF to that waypoint by for example
giving the agent a positive reward if it reaches the waypoint. One could also
evaluate the distance to the waypoint from the RMF and give a reward if
there is a reduction in that distance. Such sparse feedback signal would work
well in an open environment with no obstacles, but when introducing objects
to the environment, one would need to augment the whole training process
with additional reward signals. For instance, the RMF may also receive a
negative reward if it crashes or gets too close to an obstacle. In addition,
the DDPG algorithm is an off-policy learning algorithm. It estimates the
Q-value of being in a current state by predicting the total future reward
that the agent will receive given an action, which also leverages the training
process.

5.5 Planning

The ability to navigate within an environment also includes the ability to
plan out a path. When doing path planning, the algorithm is effectively
trying to find a collision free trajectory through the environment that con-
nects the start state to the goal state given a set of obstacles, constraints of
the robot and other environmental factors. The path generated consists of
an initial configuration, a trajectory, and a desired goal configuration. The
trajectory satisfies the path configurations by a function that takes time as
input, and outputs a position in 3D space such that at time 0, the trajec-
tory is at the initial configuration, and the trajectory at its end is at the
goal configuration. These paths can be generated by simple Combinatorial
Methods, but state-of-the-art methods in path and motion planning relies on
sampling-based methods.

33

End-to-End Learning

5.5.1 Sampling-based Path and Motion Planning

Sampling-based planning relies on searching for admissible paths by sam-
pling. This can for instance be done by Rapidly Exploring Trees[18] or by
Rapidly Exploring Graphs[16]. For the method to bias the exploration to-
ward unexplored space one repeatedly samples random states starting from
an initial root in the environment, and finds the nearest-neighbour. Then, a
collision-free motion from the nearest node to the new node is found in the
direction of the sample. Thus, creating a tree structure. The new node could
be the sampled point, but not necessarily. The search tree is updated be-
tween each iteration and the process is terminated when the tree has reached
the goal region. In an attempt to converge to a more optimal solution, the
search tree will be continually rewired as the number of nodes in the tree
goes to infinity. This is referred to as the RRT* method[16]. These meth-
ods are well suited for exploration in complex, confined environments, but
require a map to query. Even though such maps may be reliable, they are
computationally expensive to derive. Hence, it is advantageous to omit this
costly operation by using a method that does not need a consistent online
reconstructed 3D map of the environment. In the next chapter, Chapter 6,
a proposed method is given that needs very limited input data and ensures
collision avoidance. It does not relay on any prior information about the
environment or a constructed map. The proposed method can be combined
with a coarse planner providing sparse waypoints. However, the end-to-end-
learning algorithm in this thesis was tested with a sampling-based global
planner Graph-Based Planner (GBPlanner) by Dang et al. [5]. It relies
on the graph-based exploring version of the RRT*, the Rapidly-Exploring
Random Graph (RRG)[16] algorithm.

34

Chapter 6. Proposed Approach

Chapter 6

Proposed Approach

This chapter will go into the specifics of the proposed approach and what was
needed so that the RMF could fly autonomously, the software used and how
all the different modules that make up the autonomous system are connected
and specified.

6.1 System Overview

The proposed learning-based approach for autonomous flight within confined
environments was structured as seen in Figure 6.1. The system was devel-
oped in the open-source platform Robotic Operating System (ROS). This is a
meta-operating system that allows easy modular development by organizing
the different modules that make up the system into nodes. Each node com-
municates with the rest of the system through a message-passing process.
More specifically, ROS Melodic was used with the operating system Linux,
since it is the only operating system that ROS is capable of running on.

The system consists of six main components. The first one is the Sensory
Plugins Module. This component is mainly depicting the onboard sensors of
the real quadcopter, more specifically the IMU and the LiDAR sensor. The
sensors will measure the state of the RMF provided and then used by the
Perception Module and the Rotors Wrapper Module. The perception module
filters out noisy data and extracts relevant data. Within the rotors wrap-
per, visual and odometry data is put together with the reference waypoint
provided by the Path Planner Module. The path planning module uses the
visual information about the environment and odometry data to plan the
trajectory that should be executed. In addition, the rotors wrapper com-
putes the reward given the information from the previous components. The
state information and the reward is then fed to the DDPG Module. This
algorithm computes actions given the state and reward provided by the ro-
tors wrapper. The actions from the DDPG algorithm are then fed to the
Low-Level Control Module of the pipeline. The control laws will command

35

Proposed Approach

the actuators given the reference provided by the DDPG module. The RMF
module executes these commands and updates its state in the environment.
These updates are sensed by the sensory plugins, and the cycle continues.
The following sections will provide necessary information about each of the
modules.

Figure 6.1: Architecture overview showing the general set up for high level
control of the RMF using reinforcement learning.

6.2 Simulator

The system was developed using the RotorS Simulator [9] and Gazebo. The
Gazebo robots simulator emulates the actuators and the physics of the envi-
ronment. In addition, it offers a suite of sensors and interface for both users
and programs. The RotorS Simulator was developed by the Autonomous
Systems Lab of ETH Zurich and in this simulation environment, RMF was
modeled. It is a framework that works with the Gazebo robot simulation
tool and can be used to accurately model the dynamics and simulate the
control of the RMF with reinforcement learning. In Figure 6.2 one can see
how the RMF is simulated in the Gazebo environment.

36

Proposed Approach

Figure 6.2: An open Gazebo environment with the RMF.

The RotorS simulator consists of several components and the most impor-
tant ones is the dynamics simulator build upon the theory discussed in Sec-
tion 2.3 and the parameters specified in Table 6.1, the state sensory plugins
and the low-level MAV PID-controllers. There are a lot of different modules
and computations that need to work cohesively for the entire system to work.
In an attempt to focus on a single task in isolation, the uncertainties that are
introduced by the complex pipeline are to some degree neglected in the simu-
lation environment. In addition, using a simulator allows for simpler testing
instead of using expensive physical quadcopter platforms. Even though the
open-source RotorS framework supports simulation of sensors, such as IMUs
and cameras, perfect state information was used to circumvent the need for
state estimation algorithms. This allows for noise-free information about the
position, orientation, linear and angular velocity of the RMF. This can be
done by replacing the sensors with ideal odometry sensor plugins provided
by the Gazebo simulator. In this way, it is possible to focus on the larger
navigation problem without worrying about uncertainties in the other com-
ponents. The LiDAR plugin sensor used for this project was developed and
customized by the Autonomous Robots Lab (ARL) of Norwegian University
of Science and Technology (NTNU) and accurately depicts the Ouster OS-1
3D LiDAR sensor. In addition, in order to detect collisions, the Gazebo
contact plugin[14] was used.

37

Proposed Approach

RMF Specifications
Parameters Value
Mass (m) 0.5265

Arm length (l) 0.1
Moment of inertia about the xb-axis (Ix) 0.01
Moment of inertia about the yb-axis (Iy) 0.01
Moment of inertia about the zb-axis (Iz) 0.01

Table 6.1: Specifications of the parameters used to simulate the RMF.

6.3 Waypoints

In larger environments where the goal is far away, a path planning algorithm
would need to set out Waypoints. These waypoints essentially work as sub-
goals and usually indicate a change in the direction and altitude along the
desired trajectory. Hence, when the RMF reaches one waypoint it seeks out
the next. It is also important to set out these waypoints quite often to mini-
mize acute path angles. It is the path planner that generates these waypoints
or nodes. In Chapter 7, the proposed method is tested by manually setting
out waypoints with the GBPlanner algorithm discussed in Section 5.5. The
waypoints will be specified using Cartesian coordinates (xwi , y

w
i , z

w
i) for

i = 0, . . . , n given in the world-fixed frame {w}, where i = n represents
the final waypoint or the goal. Some boundaries or success regions are also
specified so that the RMF needs to be within some radius δr to the waypoint
before it should fly to a new one. The δr will be very small in this case, due to
the volumetric constraints provided by the narrow, confined environments.

6.4 Feature Extraction

The sensory plugins produce raw LiDAR and perfect odometry data that
is fed to the feature extraction pipeline, so that one can extract the useful
information from the raw input information.

6.4.1 Point Cloud Features

The raw LiDAR data is generated by a LiDAR simulator accurately imitating
an OS-1 Ouster LiDAR sensor. The data is sent to the perception module,
where simple filtering algorithm remove redundant points and environmental
noise as discussed in Section 3.4 and Section 3.5.

38

Proposed Approach

Statistical Outlier Removal

The conventional Statistical Outlier Removal (SOR) [43] method was used to
filter out environmental noise. The first step in the algorithm is to calculate
the mean distance d̄ between all the distances di of k-neighboring points as
seen in Equation (6.1).

d̄ =

∑k
i=1 di
k

(6.1)

The second step is to calculate the standard deviation σsor (Equation (6.2))
of these k-measurements.

σsor =

∑k
i=1(d̄− di)2

k
(6.2)

Thirdly, all distances that are greater than the sum of the mean distance
and the threshold n multiplied with the standard deviation of the mean
distance to the query point as seen in Equation (6.3) will be removed and
marked as outliers.

dout = d̄+ nσsor (6.3)

The lower the threshold n is, the more aggressive the filtering will be.
The speed and performance of this algorithm depends on the number of
neighboring k points considered.

In Figure 6.3 one can see the effect of removing outliers marked in red in
an underground mine environment. One of the challenges of denoising the
point cloud is leaving important environmental features.

Figure 6.3: A point cloud depicting an underground environment, where the
marked red points will be filtered out by the SOR algorithm.

39

Proposed Approach

Point Cloud Feature Extraction

After preprocessing the point cloud, the necessary features can be extracted.
The features can be selected from the point cloud by first dividing the 3D
point cloud into specific bins, and then sampling the closest point to the
RMF in each bin. Henceforth, the proposed method for generating a sparse
feature vector spc from a point cloud is to first divide it into N equal sectors
in the xy-plane and then divide each sector into K stacks along the z-axis
as seen in Figure 6.4. Afterwards, the closest point in each stack is sampled
and the sparse distance di to the RMF is found. Thus, one can generate a
sparse distance feature vector spc ∈ RNK×1 as seen in Equation (6.4).

spc =

d1
d2
...

dNK

 . (6.4)

Figure 6.4: Dividing the 3D point cloud into stacks and sectors. (Figure
generated by OpenGL: [1]).

These features will be continuously extracted, concurrently with the rest
of the algorithms in the system. In simulation this extracted features can
be visualized as red points as seen in Figure 6.5. The rainbow points depict
LiDAR measurements.

40

Proposed Approach

Figure 6.5: A visualization of the extracted sparse distance measurements
marked in red with the RMF in the center.

The point cloud seen in Figure 6.5 consists of approximately 12 500 points
but is compressed to a state vector spc (Equation (6.4)) of size NK. This
means that a lot of information from the data is ignored. However, the
low-cost feature extraction pipeline is not bounded by the Ouster LiDAR
simulator or something analogous. If this solution would to be applied onto
a real quadcopter one would not need to relay on an expensive 3D LiDAR
sensor. An extremely lower-cost and lightweight system consisting of few
1D LiDAR sensors would suffice. This means that the proposed feature
extraction process could be transferred to very small and cheap systems.

6.4.2 Odometry Features

Similarly, to a normal feedback control system where the output is generated
with respect to the error, the states sodom (Equation (6.5)) is given by the
difference between the current RMF states provided by a perfect noise-free
sensor and the reference value given by the waypoint. This should incentivize
the robot to fly towards and stay at the commanded position.

41

Proposed Approach

sodom =

[
pwref − pwRMF

03 − vwwb

]
=

xwref − xwRMF

ywref − ywRMF

zwref − zwRMF

−u
−v
−w

, (6.5)

where pwRMF is the position vector of the center of mass of the RMF and
pwref is the position of the waypoint, both given in the world frame. vwwb is
the RMF world-fixed linear velocity.

6.4.3 Tracking Feature

The representation of the reference path is in the form of a straight-line
segment that connects the different waypoints. At every point in time, it
is possible to take the 3D position of the RMF and calculate the error be-
tween the reference path pwref = [xwr , y

w
r , z

w
r]> and the position of the RMF

pwwb = [xw, yw, zw]> by applying Trajectory-Tracking Control as seen in
Equation (6.6) [12].

etrack = pwref − pwwb =

xwr − xwywr − yw
zwr − zw

 . (6.6)

Hence, it is possible to introduce a single state ste (Equation (6.7)) to the
DDPG algorithm that represents the tracking error with the aim of reducing
the divergence between the optimal and the actual path of the RMF. One
could describe this tracking error with three states, vertical, along, and cross
track error but only a single state ste was introduced for simplification of the
reward structure which will be discussed in Section 6.5.

ste =

∣∣∣∣∣∣∣∣−−−→W2P ·
−−−−→
W2W1

|
−−−−→
W2W1|2

−−−−→
W2W1 +

−−−→
PW2

∣∣∣∣∣∣∣∣
2

, (6.7)

where W1 and W2 are two distinct waypoints, P is the position of the
RMF. The optimal path depends on the environment and does not neces-
sarily have to be straight. This method also assumes that there is collision
checks in the planning algorithm so that the reference path is collision-free.

6.5 The Structure of the Reward Functions

In Chapter 4, it was discussed that the optimal policy maximizes the ex-
pected value of the discounted future reward. Hence, the reward function

42

Proposed Approach

plays a vital part in the formulation of the navigation task. The compu-
tation of the reward is done in the rotors wrapper module by using all the
information provided by the sensors and the path planner. However, the
design of such reward functions is not trivial.

6.5.1 Navigation Reward

It is possible to design an online, reactive Obstacle Avoidance Controller
based on Virtual Potential Fields with the ability to navigate towards some
goal while avoiding obstacles by coupling the odometry data with the percep-
tion data s = [s>odom, s

>
pc]
>. This can be done with respect to reinforcement

learning by shaping the reward function rt to guide the RMF towards or away
from regions in the environment. This control strategy relies on deriving ac-
tions for the RMF directly from information about the environment, and it
is a fast way to generate such actions that emphasizes on obstacle avoidance
while navigating towards a goal, even in complicated environments. For the
purpose of generating a behavior that is sufficient for the RMF to go from
its origin state to a goal while avoiding obstacles, the first step is to cre-
ate a reward function that attracts the robot to the goal state which may
be anywhere in the environment. Such a navigation reward can seemingly
be very intuitive and trivial to design. When the RMF reaches the goal,
it gets a positive reward rgoal, and if it collides, it gets a negative reward
rcollision. However, as previously discussed in Section 5.4, this makes up a
rather sparse reward function and it is more preferable to add auxiliary re-
wards at each time step. The reward function should be rather smooth so
that it can better help with guiding the RMF to the end goal region. Since
it is in general preferable being close to a waypoint opposed to being far
away, it is possible to encode such behavior onto the RMF using a quadratic
reward structure. Similarly, if the RMF should reach the goal in an efficient
way using minimum amount of energy, this logic should also be applied to
the actions. Hence, we get the reward function as seen in Equation (6.8)

rquad = −sTodom,tQsodom,t − aTt Rat, (6.8)

where Q = QT ≥ 0 and R = RT ≥ 0 are design matrix parameters,
sodom,t is the state from Equation (6.5), and at is the linear acceleration in
three dimensions at = [ax,t, ay,t, az,t]> both at a given time t. One should
also note that this is a similar quadratic scheme as the one used in Linear
Quadratic Regulators (LQR).

6.5.2 Obstacle Avoidance Reward

The second step is to make sure that there is a behavior that repulses the
RMF from any obstacles that may exist. This is done by introducing a reward
function that points the RMF away from obstacle regions and punishes the

43

Proposed Approach

RMF more when it approaches closer to obstacles. In order to perform safe
navigation, the algorithm needs to make sure that this region is sufficiently
far away from the actual obstacle. This can be represented in terms of
a Gaussian reward function (Equation (6.9)) where one sums up all the
rewards calculated based on each sparse distance spci to determine how large
the reward punishment should be.

robst = −
NK∑
i=0

1

σk
√

2π
exp(− d2i

2σ2k
), (6.9)

where N is the number of sectors, K is the number of stacks, di is one
point cloud distance feature, σk is a design parameter that depends on which
stack di lies in, where k = {0, . . . , K − 1}.

6.5.3 Combining Obstacle Avoidance with Navigation

The two reward functions are combined, the goal-oriented reward (Equa-
tion (6.8)) and the obstacle repulsive reward (Equation (6.9)), into a general
highly nonlinear reward function rt Equation (6.10) that allows the RMF to
get to its goal while safely avoiding obstacles.

rt =

−aTt Rat + rgoal, if ||pbref − pbRMF ||2 < δr and

||vbwb||2 < δv,
−aTt Rat − rcollision, if collision,
rquat + robst, otherwise.

(6.10)

δr is the radius of acceptance to the goal and δv is velocity of acceptance
within the goal region.

The 2D figure, seen in Figure 6.6, has 3 red obstacles and a yellow goal
region, and it illustrates the attractive and repulsive reward function (Equa-
tion (6.10)). The function for this environment has a unique global minimum
in the yellow goal region. The reward function also has saddle points behind
the obstacles in terms of where the goal is. Here the vector field is at a
minimum in one direction and a maximum in the opposite direction.

44

Proposed Approach

Figure 6.6: Vector field with 3 obstacles in red and a yellow goal region.

In some configurations, the global minimum will not be set perfectly at
the goal region due to close obstacles having pushed the minimum away. In
addition, in more complex configurations, where there are big obstacles or
many obstacles that are close to each other, there can be created a local
minimum. This is a problem, as the local minimum can attract the RMF if
it is nearby. This problem can be omitted to some degree by making sure
that the goal is put sufficiently close to the RMF and to some degree in line
of sight. Another solution would be to detect if the RMF is stuck in a local
minimum and override the policy by sending commands so that it moves in
a safe direction and away from the minima. The advantage of using this
approach is that this can be evaluated relatively fast.

6.5.4 Tracking Reward

It is possible to also design a simpler controller that assumes the path to
be collision-free. This controller only uses the states s = [sodom, ste]> when
allocating actions to the RMF. This Tracking Controller can be designed
similarly as the obstacle avoidance controller, but instead emphasizes on
tracking the reference path towards the goal waypoint. Initially, the purpose
of implementing and presenting the usage of the simpler tracking controller is
to better understand and compare with the obstacle avoidance controller as
done in Chapter 8. The tracking reward can be calculated with an exponen-
tial reward with inspiration from Craig Reynolds’ path following algorithm
[31]. The path that the RMF should follow has a radius δtrack. If the RMF
is outside of this radius, it will be punished by the reward routside. If it
is within this radius, it will only be gradually punished based on the dis-
tance to the optimal path. Hence, we can get then the following reward rte
(Equation (6.11)).

45

Proposed Approach

rte =

−routside, if ||pwref_path − pwRMF ||2 > δtrack,

−exp
(
s2te,t
2σte

)
+ 1, otherwise.

(6.11)

This structure assumes that the optimal path is collision free. It is also
necessary to use the navigation reward (Equation (6.8)) in order to have a
full controller that incentive the RMF to the goal while also following the
optimal reference path. Combining these two rewards gives Equation (6.12).

rt =

−aTt Rat + rgoal, if ||pbref − pbRMF ||2 < δr and

|| − vbwb||2 < δv,
−aTt Rat − rcollision, if collision,
rquat + rte, otherwise.

(6.12)

6.6 Implementation of the DDPG Algorithm

In order to apply reinforcement learning to the system, the open-source Ope-
nAI Gym[25] was used together with Google’s machine learning framework
Tensorflow [36]. Tensorflow is a library for numerical computations and
widely used for large scale machine learning problems. OpenAI Gym allows
for easier access to existing implementations of algorithms for deep learning.
Specifically, this project made use of the DDPG algorithm Appendix A.1
developed by OpenAI Gym. However, there exists several RL algorithms
for continues control tasks, each with their trade-offs and benefits. DDPG
is not necessarily considered as a state-of-the art algorithm despite being a
relatively new algorithm from 2016. Nevertheless, it is still a well perform-
ing off-policy algorithm that compares well with many modern solutions as
discussed by Henderson et al. [15], such as Proximal Policy Optimization[32]
(PPO), Actor-Critic with Experience Replay (ACER) [39] and Actor-Critic
using Kronecker-Factored Trust Region (ACKTR) [40].

6.6.1 Network Topology

The DDPG consists of four fully-connected neural nets. These are the actor
net and the critic net, and the corresponding target actor net and target critic
net, respectively. The basic idea of how a neural network learns or approx-
imates functions is that it first takes in some input data that is vectorized,
feeds it through the network, and performs a series of matrix operations layer
by layer. In addition, since the networks should be able to approximate any
kind of functions, there are additional nonlinear activation functions embed-
ded to the network function approximation. It is, however, not obvious how

46

Proposed Approach

these networks should be designed. Nevertheless, there are some obvious de-
sign choices one should make, as selecting the number of layers, the number
of nodes and which activation functions to use in each layer. The Rectified
Linear Unit (ReLU) returns 0 if it receives any negative input, and for any
positive values it returns the value back. This activation function is widely
used in the hidden layers, and is sufficient enough for this network topology.
The Q-value given from the critic is equal to or larger than 0. Hence, there
is no activation in the output layer of the critic, only a linear combination
of the activations in the last hidden layer. Due to physical limitations of the
real quadcopter the actions were constrained such that a ∈ [amin, amax].
Thus, a hyperbolic tangent (tanh) was used in the output layer of the actor
as it is symmetric around the origin and outputs values in the range of [-1,
1]. This will also further ensure stability during training.

The best way to examine which network structures that perform well is
to do some cross validation. If there are too few neurons or too few layers,
the function approximated will be highly linear and not be able to represent
the high dimensional function that is required to map all the states to the
actions such that RMF may respond well in the highly complex environment.
In contrast, having too many neurons or layers may lead to the approximated
function being highly nonlinear. Consequently, this can lead to overfitting,
or as also experienced, not being able to converge to any solution. This
implied that having too many parameters lead to unsatisfactory or unstable
results. In addition, having more parameters would deem more time spent
on training the excessive logic. It is therefore important to find a trade-
off solution that is pseudo-optimal. This trial and error process resulted in
the networks architectures described in Figure 6.7. Both controllers use the
same architecture, but they vary in in the number of inputs to the actor
and the critic. The actor and target actor network are structurally the
same. Similarly, this also applies for the critic and target critic networks.
All networks consist of 2 hidden layers each with 64 neurons. The Adam
optimization algorithm was used to update the weights during training. This
is a very computational efficient algorithm and works well for this problem.

47

Proposed Approach

(a) The fully-connected neural networks architecture used
in the DDPG algorithm by the obstacle avoidance con-
troller.

(b) The fully-connected neural networks architecture used
in the DDPG algorithm by the tracking controller.

Figure 6.7: The fully-connected neural networks architectures used by the
different controllers.

6.7 The Training Process

The two distinct controllers, the Obstacle Avoidance Controller and the
Tracking Controller were trained in a curricular fashion as discussed in Sec-
tion 5.3.1. The obstacle avoidance controller was trained by exposing the
RMF to gradually more difficult environments. The main objective was al-
ways set to reaching the goal region. When the RMF got increasingly better

48

Proposed Approach

at this behavior, more obstacles were introduced with the aim of learning
to avoid the obstacles as it navigates towards the goal region. The tracking
controller was trained in only one open environment. However, in the first
stage of training, the objective was set to only reach the goal region. In
the second stage, the objective was also set to reach the goal region, but by
strictly following the optimal straight path to the goal.

6.7.1 Environments

The available static shapes used in the Gazebo environment were the t-block
(blue), pyramid (green), u-block (red) and pillar (grey) as seen in Figure 6.8.

Figure 6.8: The shapes used in the simulations.

After some careful validation of different environments, it was decided to
use the following four environments as specified in Figure 6.9 when training
the obstacle avoidance controller. Each environment consist of a 20 × 20 m2

collidable floor. In the first environment, shown in Figure 6.9a, the objective
was to learn to navigate to one goal waypoint. In the second environment,
shown in Figure 6.9b, walls and 9 random pillars were added. The pillar
shape was used since it varies geometrically very little in the z-direction, such
that the RMF only needed to learn collision avoidance in the xy-direction. In
order to diversify the data that the DDPG algorithm collects, the obstacles
in the environments were randomly shuffled each epoch. In addition, the
initial position of the RMF and the goal position were randomly set in the
environment each time the Terminal Conditions were fulfilled. By using this
distributed scheme, the RMF was immediately exposed to many environ-
mental configurations, which further allows for accelerated learning. Hence,
in the second environment, 9 random pillars changed position each epoch

49

Proposed Approach

during training. The objective was to learn simple collision avoidance in the
xy-direction while also navigating to a waypoint. In the third environment,
shown in Figure 6.9c, more random pillar obstacles were added. The 14 pil-
lars also changed position at each epoch. The main objective was to reach
the goal waypoint and avoid obstacles in a more complex environment. In
the fourth environment, shown in Figure 6.9d, more complex shapes were
used, namely 2 t-blocks, 3 pillars, 2 pyramids and 1 u-block. These also
change position each epoch. The objective was to learn to avoid obstacles in
both in xy- and z-direction while navigating towards a waypoint.

(a) An open environment.
.

(b) A closed environment with 9 ran-
domly placed obstacles.

(c) A closed environment with 14
randomly placed obstacles.

(d) A closed environment with 8 ran-
domly placed obstacles with different
shapes.

Figure 6.9: The environments used for training the RMF.

6.7.2 Terminal Conditions

During training and simulation, it is important to set artificial boundaries
defining when to reinitialize the environment. When the episode reaches pre-
defined terminal conditions, the position of the RMF and the goal waypoint
is reset. These are the following terminal conditions used:

• If sufficient time t has passed.

• The RMF has crashed with an obstacle or with the floor.

50

Proposed Approach

In addition, it is important to understand how many episodes each simu-
lation should last. In order for the RMF to pass on to the next environment,
it should easily be able to reach the goal waypoint more or less regardless of
the position of the RMF and the waypoint within the said environment.

51

Chapter 7. Results

Chapter 7

Results

This chapter presents the results from training the system with the DDPG
algorithm. The RMF was trained independently with the reward from Equa-
tion (6.10) and from Equation (6.12) on a computer with the specifications
found in Appendix B.2. These two different approaches, the obstacle avoid-
ance controller and the tracking controller, were then independently tested
and evaluated in different simulated environments in order to analyze the
robustness and the reliability of each controller. The trained RMF was also
tested on a dataset, where it would navigate within a simulated underground
mine environment.

7.1 The Training Setup and Results with the Ob-
stacle Avoidance Controller

In the following sections, the results from using the obstacle avoidance con-
troller will be presented. The action a delivered from the DDPG algorithm
is defined as the linear accelerations in three dimensions a = [ax, ay, az]>,
where amax = [1, 1, 1]> and amin = [−1, −1, −1]> . The state space vector
used in the DDPG algorithm is defined as s = [s>odom, s

>
pc]
>. The RMF was

trained in all four environment seen in Figure 6.9, starting in the simpler
open environment and progressing to the most complicated confined environ-
ment with obstacles of different shapes in a curricular fashion. Throughout
the training, the RMF was randomly initialized at different positions with
the waypoint set out randomly with a max distance δmax to the RMF. As the
terminal conditions were fulfilled, the RMF and the waypoint were reinitial-
ized at new positions. It was specified that the RMF and the waypoint were
not to be initialized in contact with the obstacles or the floor. In addition,
the position of the RMF and the waypoint could not be set below the floor.
The topology of the networks used in the DDPG algorithm is specified in
Figure 6.7. At the very beginning, the networks were initialized with ran-
dom seeds. Furthermore, as the RMF progressed from one environment to

52

Results

the next, the weights and biases in all the networks were transferred to the
next training session. Only the hyperparameters and the parameters of the
reward were changed between each environment.

7.1.1 Hyperparameters

The DDPG algorithm consists of multiple hyperparameters. They were de-
fined in each training session as seen in Table 7.1. 1 epoch corresponds to
2000 time steps.

Parameters Values
Env 1 Env 2 Env 3 Env 4

Epochs 750 500 500 500
Batch size 32 32 32 32

Actor learning rate (αθ) 1e-05 1e-05 1e-05 1e-05
Critic learning rate (αφ) 1e-05 1e-05 1e-05 1e-05
Discounting factor (γ) 0.99 0.99 0.99 0.99

Target network update rate (τ) 0.001 0.001 0.001 0.001
Max distance to waypoint (δmax) 4.0 5.0 6.0 6.0

Table 7.1: Specifications of the hyperparameters used in the DDPG algo-
rithm in each environment during training.

The reward from Equation (6.10) was used throughout the four training
sessions, and all of the parameters were defined in each training session as
seen inTable 7.2.

Parameters Values
Env 1 Env 2 Env 3 Env 4

rgoal 10 20 30 30
rcollision 10 20 30 30

Stack 1 (σ0) 0.15 0.16 0.17 0.18
Stack 2 (σ1) 0.20 0.21 0.22 0.22
Stack 3 (σ2) 0.15 0.16 0.17 0.18

Waypoint acceptance region (δr) 0.25 0.30 0.30 0.35
Max velocity at waypoint (δv) 0.3 0.3 0.3 0.3

Table 7.2: Specifications of the reward parameters used in the reward func-
tion rt (Equation (6.10)) in each environment during training.

There were N = 8 sectors and K = 3 stacks used, meaning that spc
consisted of 24 sparse measurements. The constant matrices Q and R were

53

Results

remained unchanged throughout the four environments and were defined as
in Equation (7.1).

Q = diag[0.7, 0.7, 1.1, 0.03, 0.03, 0.05] (7.1a)
R = diag[0.001, 0.001, 0.0009] (7.1b)

7.1.2 Training Results

The training results from the four different environments (Figure 6.9) can
be seen in the following figures. The mean reward from each epoch can be
seen in Figure 7.1.

Figure 7.1: Simulation results of the mean reward return for each epoch.

The loss of the actor Equation (4.8) and the critic Equation (4.9) from
all four training sessions can be seen in Figure 7.2.

54

Results

(a) Simulation results of the mean
loss return of actor for each epoch.

(b) Simulation results of the mean
loss return of critic for each epoch.

Figure 7.2: The results from training depicting the loss of the actor and the
critic.

Table 7.3 shows how long it took to train the agent in each environment.
The total training time was 87 hours and 13 minutes.

Env 1 Env 2 Env 3 Env 4
Training time 9h 49min 20h 45min 28h 8min 28h 31min

Table 7.3: Training time used in each environment.

7.2 Validating the Obstacle Avoidance Solution in
Different Environments

The finalized trained RMF was evaluated on the following environments:

• Straight path environment (Figure 7.3a)

• Twisty path environment (Figure 7.4a)

• Y-path environment (Figure 7.5a)

• Large path environment with obstacles (Figure 7.6a)

• Large environment with obstacles (Figure 7.7a)

• Large environment with obstacles of different shapes (Figure 7.8a)

• Y-path environment with obstacles (Figure 7.9a)

Each environment is designed such that it tests different attributes of
the onboard controller. The cyan colored reference waypoints were manually

55

Results

placed out without any path planner. The RMF had to be within the radius
δr = 0.45 of the waypoint in order for a new waypoint to be spawned. There
were no max velocity conditions at the waypoints, except for the last one
in the environment where δv = 0.3. The trajectory is depicted in green and
the rainbow colored points are depicting the point cloud used to extract the
sparse distance features. The red point indicates the initial spawn of the
RMF.

7.2.1 Collision-free Paths

In the first three environments all of the waypoints and the initial position
of the RMF was at the same height z = 3.

The straight path environment (Figure 7.3a) mainly consists of a very
long (≈ 90m) and narrow (≈ 2.5-2.7m width) collision-free passage. The
objective is to test how capable the RMF is to traverse through a relatively
straight path that is narrow with some additional 90◦ corners. This was
done by only relying on the onboard sensors without any map construction
or any prior data as seen in Figure 7.3b.

56

Results

(a) Straight path environment.

(b) Visualization of the trajectory of the RMF in the
straight path environment.

Figure 7.3: Obstacle-free straight paths.

The twisty path environment (Figure 7.4a) also consists of a very long (≈
70m) and narrow (≈ 2.5-2.8m width) collision-free passage. The objective is
to test how capable the algorithm is to enable RMF to traverse through a
winding path that is narrow. This was done by only relying on the onboard
sensors without any map. The results can be seen in Figure 7.4b.

57

Results

(a) Twisty path environment.

(b) Visualization of the trajectory of the RMF in the twisty
environment.

Figure 7.4: Obstacle-free twisty paths.

The y-path environment (Figure 7.5a) also consists of a narrow (≈ 2.5-
2.8m width) collision-free passage with an intersection. The objective is to
test how the RMF reacts when the waypoints are not set out in a intersection.
This was done by only relying on the onboard sensors without any map. The
results can be seen in Figure 7.5b and Figure 7.5c.

58

Results

(a) Y-path environment.

(b) Visualization of the trajectory as
the RMF goes up in the y-path
environment.

(c) Visualization of the trajectory as
the RMF goes down in the y-path
environment.

Figure 7.5: Obstacle-free y-path environment.

7.2.2 Paths with Obstacles

In the next environments the waypoints were set out at different heights
z = [3, 6].

The large path environment (Figure 7.6a) consists of a short (≈ 41m)
and wide (≈ 3.7-8.m width) passage filled with obstacles. The objective
is to test how well the RMF is able to traverse to the different waypoints
while also avoiding the obstacles. This was done by only relaying on the
onboard sensors without any map construction. The results can be seen in
Figure 7.6b.

59

Results

(a) Overview of the obstacle-filled path environment.

(b) Visualization of the trajectory of the RMF within the
obstacle-filled environment.

Figure 7.6: Path environment with obstacles.

The large, confined environment (Figure 7.7a) is filled with random ob-
stacles. The objective is to test how well the RMF is able to traverse to the
different waypoints while avoiding the randomly placed obstacles. This was
done by only relying on the onboard sensors without any online constructed
map. The results can be seen in Figure 7.7b.

60

Results

(a) Overview of the large environment with obstacles.

(b) Visualization of the trajectory of the RMF within a
large environment with obstacles.

Figure 7.7: Large environment with obstacles.

The large, confined environment (Figure 7.8a) is filled with random ob-
stacles in different shapes. The objective is to test how well the RMF is
able to traverse to the different waypoints while also avoid the obstacles
that varies in all three dimensions. This was done by only relying on the
onboard sensors without any map construction. The results can be seen in
Figure 7.8b.

61

Results

(a) Overview of the large environment with obstacles of
different shapes.

(b) Visualization of the trajectory of the RMF within a
large environment with obstacles of different shapes.

Figure 7.8: Large environment with obstacles of different shapes.

The y-path environment with obstacles (Figure 7.9a) consists of a wide
passage (≈ 5.6-5.8m width) with an intersection filled with obstacles. The
objective is to test how the RMF reacts when the waypoint is not set out in
a intersection while also needing to avoid obstacles. This was done by only
relying on the onboard sensors without any map. The results can be seen in
Figure 7.9b and Figure 7.9c.

62

Results

(a) An overview of the y-path environment with obstacles.

(b) Visualization of the trajectory as
the RMF goes up in the
obstacle-filled y-path environment.

(c) Visualization of the trajectory as
the RMF goes down in the
obstacle-filled y-path environment.

Figure 7.9: Y-path environment with obstacles.

7.3 The Obstacle Avoidance Controller in and Un-
derground Mine Environment

To evaluate the proposed method in more realistic environments, the simu-
lated RMF was further tested in the Gazebo simulator with a dataset pro-
vided by the Autonomous Robots Lab. The dataset was recorded in an un-
derground mine environment, where the Autonomous Robots Lab deployed
an “Aerial Scout” robot the specifics of which are detailed in [4]. The under-
ground environment is one large room-and-pillar structure with multiple pas-
sages, and the objective of the deployed robot was to do robust autonomous

63

Results

exploration and mapping in challenging subterranean areas. The dataset
was recorded 7th of August 2019 in the Wampum Underground Facility in
Pennsylvania (US).

The aerial scout was equipped with several sensors, one of which a Velo-
dyne PuckLITE LiDAR sensor, and it conducted exploration with the on-
board expert, GBPlanner. This aerial scout is analogous to the RMF in
terms of sensor inputs. Thus, one can directly extract the recorded LiDAR
data and a local reference path provided by the expert from the dataset. The
LiDAR data had to be transformed to the body frame {b} in order for the
RMF to extract the sparse distance features spc. In addition, cyan colored
waypoints were set out along the red local reference path. The RMF used its
own odometry data and the prerecorded LiDAR data generated by the scout
drone to navigate towards the waypoints. The RMF had to be within the
radius δr = 0.45 of the waypoint in order for a new waypoint to be spawned.
There were no max velocity δv conditions.

The environment consists of a lot of environmental noise such as mist.
Some of it can be seen as green clouds below (Figure 7.11). The environ-
mental noise in the underground mine was filtered out with the SOR filter.
The threshold was set n = 0.01 and number of neighbouring points was set
k = 40 in the SOR algorithm. However, some noise was still present, and
the results can be seen below. The RMF traversed through the underground
facility starting in section 1 of the mine (Figure 7.10), then proceeded to
section 2 (Figure 7.11), where it finished in section 3 (Figure 7.12). The
trajectory of the RMF can be seen in green.

Figure 7.10: Underground mine environment section 1.

64

Results

Figure 7.11: Underground mine environment section 2.

Figure 7.12: Underground mine environment section 3.

65

Results

7.4 The Training Setup and Results with Tracking
Solution

The following sections present the results where the RMF was trained with
the reward from Equation (6.12), using the tracking reward rte and the state
vector s = [s>odom,ste]

>.
The action a and the topology of the networks were the same as the

one used in the obstacle avoidance solution. The RMF was trained in two
sessions, both in open environments (Figure 6.9a). The tracking reward
was turned off and set to rte= 0 during the first training phase and turned
on during the second. Throughout the training, the RMF was randomly
initialized at different positions with the waypoint set out randomly with a
max distance δmax to the RMF. As the terminal conditions were fulfilled the
RMF and the waypoint was reinitialized at new positions. It was specified
that the RMF and the waypoint was not to be initialized in contact or below
the floor.

At the very beginning, the networks were initialized with random seeds,
and when training was done, the weights and biases in all the networks were
transferred to the next training session. Only the hyperparameters and the
parameters of the reward were changed between each environment.

7.4.1 Hyperparameters

The hyperparameters were defined as seen in Table 7.4. 1 epoch corresponds
to 2000 time steps.

Parameters Values
Session 1 Session 2

Epochs 750 500
Batch size 32 32

Actor learning rate (αθ) 1e-05 1e-05
Critic learning rate (αφ) 1e-05 1e-05
Discounting factor (γ) 0.99 0.99

Target network update rate (τ) 0.001 0.001
Max distance to waypoint (δmax) 4.0 4.0

Table 7.4: Specifications of the hyperparameters used in the DDPG algo-
rithm during training.

The reward from Equation (6.12) was used throughout the two training
sessions and the parameters of the reward were defined as seen in Table 7.5.

66

Results

Parameters Values
Session 1 Session 2

rgoal 10 10
rcollision 10 10
routside 0* 0.11
σte 0* 5

Radius of path δtrack 0* 1
Waypoint acceptance region (δr) 0.25 0.25
Max velocity at waypoint (δv) 0.3 0.3

Table 7.5: Specifications of the reward parameters used in the reward func-
tion rt (Equation (6.12)) during training. (*rte was set to 0 during the first
training session. Hence, this parameter was not used)

The constant matrices Q and R were kept unchanged and were defined
as in Equation (7.2).

Q = diag[0.6, 0.6, 1.0, 0.03, 0.03, 0.05] (7.2a)
R = diag[0.001, 0.001, 0.001] (7.2b)

7.4.2 Training Results

The training results from the two training sessions in the open environment
(Figure 6.9a) can be seen in the following figures. The mean reward from
each epoch can be seen in Figure 7.13.

Figure 7.13: Simulation results of the mean reward return for each epoch.

The loss of the actor Equation (4.8) and the critic Equation (4.9) from
the two training sessions can be seen in Figure 7.14.

67

Results

(a) Simulation results of the mean
loss return of actor for each epoch.

(b) Simulation results of the mean
loss return of critic for each epoch.

Figure 7.14: The results from training depicting the loss of the actor and the
critic.

Table 7.6 shows how long it took to train the agent in each training
session. The total training time took 16 hours and 2 minutes.

Session 1 Session 2
Training time 9h 7min 6h 55min

Table 7.6: Training time used in each training sessions.

7.5 Validating the Tracking Controller in a Simu-
lated Environment

The finalized trained RMF was evaluated on the large path environment
with obstacles (Figure 7.6a). The conditions for traversing through the envi-
ronment were the same as the one used when testing the obstacle avoidance
controller. All of the waypoints and the initial position of the RMF was at
the same height z = 3. However, the tracking controller is not capable of
avoiding obstacles, so the waypoints needed to be placed out, such that the
trajectory was collision free. The result can be seen in Figure 7.15.

68

Results

Figure 7.15: Visualization of the trajectory of the RMF within the obstacle-
filled environment.

7.6 The Tracking Controller in an Underground En-
vironment

In this section the results are presented utilizing the tracking controller by
extracting the same data from the same dataset as when testing with the
obstacle avoidance controller. However, the tracking controller does not use
LiDAR data, and thus there is no need to filter out the environmental noise.
Waypoints were set out along the extracted local reference path. The RMF
used only the cyan waypoints and its own odometry data when performing
navigation.

The trajectory of the RMF is seen in blue, and the results can be seen
below. The RMF traversed through the mine starting from section 1 (Fig-
ure 7.16), to section 2 (Figure 7.17a), where it finished in section 3 (Fig-
ure 7.18).

69

Results

Figure 7.16: Visualization of the first section of the underground mine envi-
ronment with the reference and RMF trajectory.

70

Results

(a) Visualization of the second section of the underground
mine environment with the reference and RMF trajectory.

(b) Visualization of the trajectory and the local reference
path without any noisy LiDAR points in the second section
of the underground mine environment.

Figure 7.17: Cave environment section 2.

71

Results

Figure 7.18: Visualization of the third section of the underground mine
environment with the reference and RMF trajectory.

72

Chapter 8. Discussion

Chapter 8

Discussion

In this chapter the proposed approach from Chapter 6, the training results
and the results from the tests of the controllers from Chapter 7 will be
discussed.

8.1 The Reward Structure

One of the most influential parts of the RL system is the reward function.
Having a well-shaped reward is the best way to reduce training time and
maximize the probability of achieving set goals. Throughout the training
process it has been observed that the reward influences the behavior of the
RMF in many ways. For instance, negative rewards incentivize the RMF
to get tasks done as quickly as possible. This is a desired behavior when
the RMF should reach the final goal as quickly as possible. Nevertheless,
the negative quadratic reward rquad (Equation (6.8)) also has some limita-
tions. When the RMF is far away from the goal, there are strong indications
onto which direction it should go due to the high negativity of the reward.
However, as it gets progressively closer to the waypoint, this negative reward
gets quadratically smaller and almost approaches zero. Hence, the large pos-
itive rgoal reward was used to further encourage the RMF to reach the goal
and its terminal state. Although, if this reward was set too high, the RMF
would often overshoot, slightly oscillate, and then gradually stabilize at the
goal region. This was also the only positive reward in the reward function.
Introducing more positive rewards can yield local terminal states or other
unsatisfactory behavior due to the nature of the policy selection. Waypoints
that were set close to obstacles or the floor would often cause the RMF to
collide as it approached the waypoints. Thus, the rcollision reward was used
to influence how conservative the RMF acted within the environment. If this
reward was set very negative, the RMF would approach the goal very slowly
or not at all. It was therefore important to balance the rgoal and rcollision.

In order to respond to situations where the RMF was approaching ob-

73

Discussion

stacles, the robst (Equation (6.9)) was introduced with the aim of incentive a
behavior that would push the RMF away from the obstacles similarly as in
potential fields. Although, this introduces more nonlinearity to the overall
reward function and could also lead to diminishing effects of rewards. If the
reward from robst is highly negative the RMF will rather try to escape the
environment instead of approaching the goal. Hence, robst was designed such
that it would produce smaller negative rewards than rquad. In addition, the
escaping behavior was further suppressed by introducing walls around the
environment, which was very beneficial during the training.

In addition, to increase the difficulty of the environments, one also in-
creased the reward parameters as seen in Table 7.2. The σi were increased
when more obstacles were introduced, such that the RMF learned that it
should keep a greater distance to obstacles to further improve its response
in more difficult environments. The region of acceptance δr parameter was
increased to slack the navigation behavior such that RMF could easier focus
on the obstacle avoidance behavior. The max distance δmax to the waypoint
was also increased between the environments as seen in Table 7.1, to further
expose the RMF to more difficult scenarios.

The tracking controller was impelled through the reward rte (Equa-
tion (6.11)) to follow the reference path. If the radius of the path δtrack
was too small or too large, the RMF would end up slightly oscillating or not
improve much when following the optimal path. Hence, it was important to
find a proper radius such that the agent would improve during training. It
was also important to not let rte be too negative, as it would diminish all
of the other rewards. From Figure 7.13 on can see that the general mean
reward is reduced from the first to second training phase. This is probably
due to rte being introduced in the second phase, but the fact that the mean
reward is not improving much during training suggests that the general re-
ward structure is not tuned well or that one should consider another reward
function.

The selection of the rewards and the reward parameters were selected on
the basis of simple analysis of the finalized behavior of the agent, as well
as trial and error. The reward structures were kept as simple as possible
to avoid introducing more nonlinearity, unwanted minima states or other
undesired behavior to the system. Nevertheless, other rewards structures
could be considered, for instance one could shape rte or robst in a quadratic
manner. The navigation reward rquat could be more adaptive and only give
a reward when there was monotonic improvement when translating towards
the goal. It is therefore important not to make any final conclusions.

74

Discussion

8.2 The States

The observation space defines the information that is provided to the DDPG
algorithm where states are mapped to actions, such that the RMF can safely
navigate through the confined environment. The state space used in the pro-
posed approach, the obstacle avoidance controller, can essentially be divided
into two main components. The first component captures the information
about the state of the RMF sodom, and the second one is related to the in-
formation about the environment spc. The latter can genuinely be thought
of as redundant during the training process in the first stage of training.
This means that during the training process in the open environment the
networks will learn that the information provided by these states should be
associated with small weights in the networks when proposing actions. This
was generally not a problem when the sparse distance feature vector was
small. When this vector had more than around 15 distance measurements,
it was hard to train and navigate in the second environment (Figure 6.9b),
where obstacles were introduced, as collisions were imminent. In the open
environment the robst ≈ 0 almost everywhere except close to the floor. In
order for the networks to not entirely neglect the distance features in the
open environment, the RMF had to be exposed to situations such that the
robst < 0. Consequently, the waypoints were purposely often set close to the
floor during the training process in the open environment. The opposite ef-
fect could be seen when moving from an open environment to a confined one
with too many random obstacles. If too many obstacles were introduced at
the beginning of the training process, the distance states would be associated
with too large weights, and the RMF would rather focus on the objective of
avoiding the obstacles rather than approaching the goal region. Henceforth,
it was necessary to gradually introduce more complicated environments to
the RMF as it got progressively better in the simpler ones.

The state space related to the tracking controller was rather small and
simple, making it easier to design the reward function, tune the parameters
and faster to train. In the first phase of the training, the reward rte = 0
was turned off. Then, after it had learned to navigate towards the goal in
the open environment, the rte was turned on in the second training phase.
It was significantly faster to train and learn the agent to track the optimal
path in this way, only focusing on one objective at a time opposed to having
the reward rte 6= 0 turned on from the beginning.

8.3 The Feature Extraction Pipeline of the Obsta-
cle Avoidance Controller

The computation of the sparse feature vector used by the obstacle avoidance
controller is a low-cost solution and gives a very explicit representation of the

75

Discussion

RMF state relatively to its goal and the volumetric space of the point cloud.
This in turn makes it easier to design the reward function. This approach
also reduces the gap between the virtual and real environments as it uses non-
abstracted observations. As one can see from the results in Figure 7.3b and
Figure 7.4b, the RMF is able to safely traverse through the narrow, long and
twisty passages only relying on the onboard sensors without any prior data or
construction of an online 3D map. In addition, the RMF is capable of staying
within the middle of the passage even when it goes diagonally. When the
RMF is exposed to intersections where the next waypoint is set out deeper
into the passage, such as the one seen in Figure 7.5, it is able to go towards
the right direction relatively effectively. The general solution also works well
when introducing obstacles to a confined environment as seen in Figure 7.6b,
Figure 7.7b and Figure 7.9. The RMF was mostly trained in environments
that only vary in the general xy-direction. It was significantly harder to train
the agent in environments where obstacles varied in all three dimensions as
in Figure 6.9d. This can be seen from Figure 7.1, where there is a significant
improvement to the mean reward from environment 1 to environment 2 to
environment 3 even though rgoal and rcollision was increased with 10 between
the 3 environments (Table 7.2). Nevertheless, even if there was a reduction
in the mean reward in environment 4 (Figure 6.9d), the reward was still
positive and it is possible to see the effect of having divided the sectors into
stacks in Figure 7.8b. The RMF is able to traverse under the u-shape and
over the t-shape without much struggle. This would not be possible if the
point cloud would only be divided in sectors. The feature extraction pipeline
works concurrently with the rest of the system which further improves the
computational time, so that the inference on board of the RMF takes less
than 150 milliseconds.

The proposed approach comes at the cost of disregarding a lot of sensory
information. For instance, if there are objects relatively close to the RMF
occupying each sector and stack, the RMF will register the entire space
around it as occupied, even if there is a lot of space between each object. This
can be solved by increasing the radial resolution of the sectors. However, the
benefit of such minimalistic approach in terms of sensing and processing is
that it is transferable and can be applied with other LiDARs. The agent was
trained with the OS-1 simulator, but there was no extra work in combining
the pipeline extraction process with the Velodyne PuckLITE LiDAR data
from the underground mine dataset. More importantly, it is not bounded
by any expensive high resolution 3D LiDAR sensors. In fact, one could even
combine the proposed method with a much cheaper and lightweight system
consisting of few 1D LiDAR sensors.

One does not necessarily have to increase the resolution of the sectors or
the stacks to be able to move in more dense environments. The extracted
sparse distances are coming from a very homogeneous divided point cloud.
The approach could be more adaptive such that it can allocate more stacks

76

Discussion

or sectors to areas with finer detail. For instance, in the collision-free test
environments (Section 7.2.1), it could be more beneficial to allocate more
sectors to the sides of the RMF.

8.4 Reliability

The tracking controller only relies on the odometry data. This significantly
affects the reliability of the controller, as there is no coupling between the
sensing and the odometry state. This can be problematic if the system does
not sufficiently register all obstacles and the path planner generates paths
that are obstacle-filled.

The obstacle avoidance controller can be thought of as more reliable com-
pared to the tracking controllers as it is capable of avoiding simple obstacles.
Nevertheless, the controller can struggle if the obstacles are large or if the
waypoint is far out of the line-of-sight. This is generally due to the lim-
itations within the reward function as discussed in Section 6.5. However,
such challenges should be handled by a global planner and not by the local
solution that the proposed method provides. In addition, the RMF does
not always keep a great distance to all obstacles. This can be a problem if
the environments become even more dense and can be improved upon by
increasing the resolution of the sectors.

The general behavior that the agent has learned after being trained in the
four environments is to simply move in the other direction when approaching
an obstacle. This learned behavior can generate oscillations in the trajec-
tory if there are a lot of obstacles nearby the RMF. The environments used
during training are also wider compared to some of the test environments
(Section 7.2.1), and it is possible to see some oscillations in the trajectory
of the RMF in these narrow passage environments. The RMF was never
exposed to such narrow situations during training, and it would not be pos-
sible to traverse through even narrower passages due to the oscillations. A
solution to this would probably be to train in environments that look more
similar to the ones in Section 7.2.1. Nevertheless, this also highlight one
of the many strengths of using machine learning. The controller is able to
generalize to many environments without any tuning, even if it has not been
exposed to all the different scenarios.

8.4.1 Consistency Challenges

There were also some consistency issues with both controllers. In Figure 7.3b
one can see that some extra waypoints were needed to go around one of the
u-turns. In Figure 7.5 one can see that the RMF is able to better traverse
through the y-path in the up-direction compared to the down-direction. In
Figure 7.17b one can see some slight oscillation when the RMF is mov-
ing in one particular direction. The problems with using machine learning

77

Discussion

compared to classical approaches is that it is very hard to analyze the final
results. Such inconsistent behavior may be due to some bias during training,
meaning that the RMF was exposed to certain scenarios more than others
and could be solved with more training.

8.4.2 Sensory Inputs

In the simulator, odometry data came at the rate of 100 Hz and LiDAR
data came at the frequency of 10 Hz. In addition, there is a difference in the
time used when extracting the odometry and LiDAR measurements. This
suggests that there could be small inconsistencies between the odometry and
the distance states when moving through the environment. However, this
inconsistency is generally thought of as very small as the feature extraction
pipeline is very fast and given the rate of the inputs this issue could be
neglected.

8.5 Comparing the Obstacle Avoidance Controller
to the Tracking Controller

The tracking controller was simpler by design and it was assumed that the
path between waypoints were collision-free. With this assumption it was not
difficult to traverse through simpler environments as seen in Figure 7.15. In
general, the controller mimics a simpler control strategy such as a line-of-
sight guidance law [12]. The tracking controller struggled a lot in the more
narrower environments, as it would most certainly crash in the steep turns.
This is where the strengths of the collision avoidance controller becomes
apparent. The reward from robst will naturally push the RMF to the center
of the path and follow the optimal reference even in steep turns if the passage
is narrow. In addition, waypoints would in practice be placed closer than
3-4 meters apart in such confined environments, which would improve the
response of the tracking controller. However, with the collision avoidance
controller there are less strict rules to where these waypoints need to be
placed compared to most classical approaches and the tracking controller.
Consequently, the obstacle avoidance controller can solve a broader set of
tasks compared to the tracking controller, and it shows the real strengths
of using machine learning to solve such tasks. In addition, checking if the
path is collision free is a very computational expensive task. By using the
obstacle avoidance controller this task can be reduced.

The proposed method also only relies on LiDAR and odometry data. In
the underground mine environments, there is a lot of environmental noise
such as mist, even after doing some filtering. One of the main drawbacks
of the proposed methods is that it strictly relies on the raw LiDAR points,
and this can affect the solution negatively if one cannot filter out all noisy

78

Discussion

points. This does affect the trajectory of the RMF as seen in Figure 7.10,
Figure 7.11 and Figure 7.12. In the first section of the mine, most of the noisy
points were filtered out and the trajectory is able to follow the reference path
quite well. In the second and third section of the mine more noisy points
are present and the trajectory of the RMF tends to diverge a lot from the
reference path.

8.5.1 The Filtering Process

One of the challenges related to point cloud filtering is removing noise with-
out also removing other environmental features. The SOR algorithm is sim-
ple, but is limited in terms of speed and accuracy. Generally, the greater the
distance from the RMF to a point was, the higher the probability of that
point being removed as an outlier. This was not a problem, as the solution
only cares about nearby points, and allowed for aggressive filtering by setting
the threshold n quite low. However, this was still not sufficient enough, and
other approaches and methods should be considered [29].

The tracking controller does not rely on any LiDAR points and there is
therefore no need to filter them out. It generally performs better compared
to the collision avoidance controller in following the reference as seen in
Figure 7.16, Figure 7.17 and Figure 7.18. Consequently, one would need to
make the collision avoidance controller more robust by for instance training
it with noisy distance measurements and maybe adding additional states
that can describe the noisy points, such as the intensity, to further improve
the training.

8.6 Comparing the Obstacle Avoidance Controller
to Sampling-based Methods

When conducting navigation and exploration in geometrically-constrained
environments a state-of-the-art sampling-based method uses
high-dimensionality sensors to map the environment. Paths are found in
the online constructed map by progressively expanding a graph outwards in
random directions until an input query can be solved. In addition, the paths
between the nodes in the graph are checked to be feasible and collision-free.
Suitable control commands are found such that the aerial robot moves along
the collision-free paths.

The proposed method solves the navigation task though and end-to-end
approach, and omits the need to reconstruct a real-time map. It maps com-
pressed sensor data to control actions. In addition, the method can be
further combined with a coarse planner providing sparse waypoints. In gen-
eral, the proposed method is extremely minimalistic in terms of sensing and
processing for the task of collision avoidance. In general, reducing expen-

79

Discussion

sive computational processes is what guided the selection of such a small
number of inputs from the LiDAR. In addition, a RL navigation policy for
collision-free flight require only minimalistic sensor input and computational
resources. Using more data would lead to an improved result, but also make
it more expensive to compute. Hence, the contributions and focus within
this project lied in compressing suitable data such that a RL could learn a
policy for collision-avoidance and navigation.

8.7 Challenges with Reinforcement Learning

The general problem with using machine learning for control is that it is
very hard to validate, and the proof of stability is absent. This can be
problematic if one aims to create a stable and reliable system that should
work in critical situations. This is very much in contrast to standard control
systems, where consistency and stability can be shown. Therefore, it is
necessary to emphasize the importance of testing controllers that rely on
machine learning as one attempted to do in Chapter 7. In addition, neural
networks should be treated very much like a "black box", and one should
therefore also be careful in making any conclusions about the system.

8.7.1 Challenges with the DDPG Algorithm

One of the main drawbacks of the DDPG algorithm and generally most
reinforcement learning algorithms is the sensitivity to hyperparameter tuning
and initialization. There are quite a few parameters that need to be set in
the DDPG algorithm as seen in Table 7.1 and it can be generally difficult to
configure these parameters such that the algorithm converges to something
satisfactory. The DDPG algorithm is also not guaranteed to converge during
training and can be generally thought of as somewhat unstable. This is
because when using a replay buffer, the samples from the buffer are generally
close enough to the current policy because the buffer is evolving with the
policy. Hence, if the replay buffer is starting to be filled with many poor
samples, the algorithm will fail. Choosing a step size is quite crucial in the
algorithm, as the policy update should not move too far from the old policy.
To ensure that this is the case, one should consider to include a constraint
that limits the step size. PPO is an algorithm that does this. One could
consider using this or something analogous, as it is also more sample efficient
and easier to tune [32].

8.8 Networks

In order to make the proposed method more stable and improve the ro-
bustness in the policy selection during training the networks where slightly

80

Discussion

overparameterized with the number of neurons in each layer. Although, one
did intentionally left the networks being rather shallow to further reduce
computation.

From Figure 7.2 one can deduce somewhat convergence in the networks in
the first 2 environments. In the more complex environments this convergence
is not present. This could imply that more time should be spent training in
the more complex environments. This can also be seen from Figure 7.1 as
the mean rewards from the last two environments have not converged yet.
From Figure 7.14 it can be hard to conclude anything. However, the loss of
the critic (Figure 7.14b) depicts oscillations in both training phases. Such
oscillations may be due to not reaching optimal convergence as discussed
earlier when interpreting Figure 7.13, and suggests that one should consider
further tune the hyperparameters of the networks and the reward.

8.9 Other Improvements

When gradually introducing more sparse distance states, it was more dif-
ficult for the networks to learn the simple objective of navigating to one
waypoint in the open environment. Larger state space implies more infor-
mation has to be learned, and this can generally pose a problem if too many
states are introduced. During the initial training process the DDPG algo-
rithm was initialized with random seeds, but if one introduces more states
imitation learning and similar approaches could give faster solutions that
emulate expected and known behavior at the beginning. One should not
need to have the system learn from scratch, and rather employ techniques
and capabilities that enable the RMF to learn faster. The algorithm could
require thousands of simulations before it is able to converge to an optimal
policy, but by utilizing imitation learning, the algorithm could see qualita-
tively better performance in much shorter time.

81

Chapter 9. Conclusion

Chapter 9

Conclusion

9.1 Overview

In this thesis a learning-based approach for fast navigation within confined
environments was presented, relying only on onboard sensors without any
prior knowledge about the environment nor any online map construction.
The proposed method was then tested and evaluated in a diverse set of
environments and in an underground mine structure. In order to develop
this method a proposed end-to-end learning strategy was used relying on a
reinforcement learning framework. The main contributions lay within the
development of the compressed states and evaluating the RL navigation pol-
icy for collision-free flight. The reinforcement learning approach displays
great robustness to confined, complex environments. It is also generalized to
a large number of different environments and can be further supported by a
path planner such as demonstrated in this thesis. The method presented in
this thesis also utilizes low computational strategies, making it attractive to
apply onto real quadcopters used for time sensitive search and rescue opera-
tions. The results also suggest that an extremely lower-cost and lightweight
system consisting of only a few 1D LiDAR sensors could replace the 3D
LiDAR sensor to solve the collision-avoidance problem.

9.2 Further Work

For future work it would be beneficial to further improve upon the current
solution as discussed in Section 8.9.

The next step in the development process would be to apply the proposed
method onto a real quadcopter. In order to migrate the solution from simu-
lation to real-world one would need to integrate the reinforcement learning
based navigation solution with the other components of the system. This
means that one would need to take into account the uncertainties in the
estimates provided by the other components. This can for instance be done

82

Conclusion

by training the reinforcement learning algorithm with noisy odometry and
LiDAR data.

Another direction in the development process would be to also further
integrate the path planner module into the reinforcement learning formula-
tion. Hence, the path planner would also solely relay on raw LiDAR and
odometry data without any construction of an online 3D map.

83

Appendix A

84

Appendix A

A.1 Deep Deterministic Policy Gradient Algorithm

Algorithm 1 Deep Deterministic Policy Gradient [26]
1: Randomly initialize actor and critic weights θ and φ.
2: Set target networks with parameters θ′ ← θ and φ′ ← φ.
3: for each epoch do
4: Receive initial observation state s.
5: Select and execute action based on current policy

a = clip(πθ(a|s) + ε, aLow, aHigh), ε ∼ N .
6: Observe snext, r, d and see if snext is terminal.
7: Store tuple (s, a, r, snext, d) in the replay buffer.
8: If snext is terminal, reset environment state.
9: if we should update then

10: for each update do
11: Sample N transitions from replay buffer.
12: Compute target value

y = r + γ(1− d)Qφ′
next

(snext, πθ′next
(anext|snext)).

13: Update critic

∇φ
1

N

∑
(s,a,r,snext,d)∈N

(Qφ(s, a)− y)2.

14: Update actor

∇θ
1

N

∑
s∈N

Qφ(s, πθ(a|s)).

15: Update target networks

θ′ ← (1− τ)θ′ + τθ,

φ′ ← (1− τ)φ′ + τφ.

16: end for
17: end if
18: end for

85

Appendix B

Appendix B

B.1 ARL-NTNU Computer Specifications

Type Specifications
Operating System (OS) Ubuntu 18.04.5 LTS

Processor AMD Ryzen threadripper 3970x 32-core
processor x 64

Graphics NVIDIA GeForce RTX 3090/PCle/SSE2
OS type 64-bit

Table B.1: Computer Specifications of the ARL-NTNU computer.

B.2 NTNU Computer Specifications

Type Specifications
Operating System (OS) Ubuntu 18.04.5 LTS

Processor Intel Core i7-8700 CPU 3.20GHz x 12
Graphics Intel UHD Graphics 630 (CFL GT2)
OS type 64-bit

Table B.2: Computer Specifications of the provided NTNU computer.

86

Bibliography

Bibliography

[1] Song Ho Ahn.OpenGL Sphere Documentation. (Accessed last: 16.05.2021).
url: http://www.songho.ca/opengl/gl_sphere.html.

[2] D.P. Bertsekas. Reinforcement Learning and Optimal Control. Athena
Scientific optimization and computation series. Athena Scientific, 2019.
url: https://books.google.no/books?id=ZlBIyQEACAAJ.

[3] DARPA SubT Challenge. SubT Tech Repo. (Accessed last: 11.05.2021).
url: https://www.subtchallenge.world/openrobotics/fuel/
collections/SubT%5C%20Tech%5C%20Repo.

[4] Tung Dang et al. “Field-hardened robotic autonomy for subterranean
exploration.” In: Field and Service Robotics (FSR) (2019).

[5] Tung Dang et al. “Graph-based Path Planning for Autonomous Robotic
Exploration in Subterranean Environments.” In: 2019 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS). 2019,
pp. 3105–3112.

[6] Paolo De Petris et al. “Collision-tolerant Autonomous Navigation through
Manhole-sized Confined Environments.” In: 2020 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR). 2020,
pp. 84–89.

[7] Digikey. IMU ADIS16460. (Accessed last: 10.06.2021. url: https:
//www.digikey.com/en/products/detail/analog-devices-inc/
ADIS16460AMLZ/5957823.

[8] Diy Drones. PIXHAWK pxIMU. (Accessed last: 10.06.2021. url: https:
//diydrones.com/profiles/blogs/pixhawk-pximu-available.

[9] M. Achtelik F. Furrer M. Burri and R. Siegwart. “Robot Operating
System (ROS): The Complete Reference (Volume 1).” In: (2016). Ed.
by Anis Koubaa, pp. 595–625. url: http://dx.doi.org/10.1007/
978-3-319-26054-9_23.

[10] Davide Falanga et al. “PAMPC: Perception-Aware Model Predictive
Control for Quadrotors.” In: CoRR abs/1804.04811 (2018). arXiv: 1804.
04811. url: http://arxiv.org/abs/1804.04811.

87

http://www.songho.ca/opengl/gl_sphere.html
https://books.google.no/books?id=ZlBIyQEACAAJ
https://www.subtchallenge.world/openrobotics/fuel/collections/SubT%5C%20Tech%5C%20Repo
https://www.subtchallenge.world/openrobotics/fuel/collections/SubT%5C%20Tech%5C%20Repo
https://www.digikey.com/en/products/detail/analog-devices-inc/ADIS16460AMLZ/5957823
https://www.digikey.com/en/products/detail/analog-devices-inc/ADIS16460AMLZ/5957823
https://www.digikey.com/en/products/detail/analog-devices-inc/ADIS16460AMLZ/5957823
https://diydrones.com/profiles/blogs/pixhawk-pximu-available
https://diydrones.com/profiles/blogs/pixhawk-pximu-available
http://dx.doi.org/10.1007/978-3-319-26054-9_23
http://dx.doi.org/10.1007/978-3-319-26054-9_23
https://arxiv.org/abs/1804.04811
https://arxiv.org/abs/1804.04811
http://arxiv.org/abs/1804.04811

Bibliography

[11] J. A. Fijalkowski. Data-based Collision Resilient Navigation for Aerial
Robots in Open Environments. 2020.

[12] T.I Fossen. Handbook of Marine Craft Hydrodynamics and Motion
Control. John Wiley & Sons, 2021.

[13] Fadri Furrer et al. “RotorS – A Modular Gazebo MAV Simulator
Framework.” In: vol. 625. Jan. 2016, pp. 595–625.

[14] Gazebo. Contact Sensor. (Accessed last: 29.05.2021). url: http://
gazebosim.org/tutorials?tut=contact_sensor&cat=sensors.

[15] Peter Henderson et al. “Deep Reinforcement Learning that Matters.”
In: CoRR abs/1709.06560 (2017). arXiv: 1709 . 06560. url: http :
//arxiv.org/abs/1709.06560.

[16] Sertac Karaman and Emilio Frazzoli. Incremental Sampling-based Al-
gorithms for Optimal Motion Planning. 2010. arXiv: 1005.0416 [cs.RO].

[17] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. 2014. url: http://arxiv.org/abs/1412.6980.

[18] Steven LaValle and James Kuffner. “Randomized Kinodynamic Plan-
ning.” In: I. J. Robotic Res. 20 (Jan. 2001), pp. 378–400.

[19] Timothy P. Lillicrap et al. “Continuous control with deep reinforcement
learning.” In: ICLR. Ed. by Yoshua Bengio and Yann LeCun. 2016.
url: http://dblp.uni-trier.de/db/conf/iclr/iclr2016.html#
LillicrapHPHETS15.

[20] Antonio Loquercio et al. “DroNet: Learning to Fly by Driving.” In:
IEEE Robotics and Automation Letters 3.2 (2018), pp. 1088–1095.

[21] Hamid Reza Maei et al. “Toward Off-Policy Learning Control with
Function Approximation.” In: Proceedings of the 27th International
Conference on International Conference on Machine Learning. ICML’10.
Haifa, Israel: Omnipress, 2010, pp. 719–726.

[22] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learn-
ing.” In: CoRR abs/1312.5602 (2013). arXiv: 1312.5602. url: http:
//arxiv.org/abs/1312.5602.

[23] Society of Naval Architects, Marine Engineers (U.S.). Technical, and
Research Committee. Hydrodynamics Subcommittee. Nomenclature
for Treating the Motion of a Submerged Body Through a Fluid: Re-
port of the American Towing Tank Conference. Technical and research
bulletin. Society of Naval Architects and Marine Engineers, 1950. url:
https://books.google.no/books?id=VqNFGwAACAAJ.

[24] J. Nocedal and S. J. Wright. Numerical Optimization. second. Springer,
2006.

[25] OpenAI. OpenAI Gym. (Accessed last: 19.03.2021. url: https://gym.
openai.com/.

88

http://gazebosim.org/tutorials?tut=contact_sensor&cat=sensors
http://gazebosim.org/tutorials?tut=contact_sensor&cat=sensors
https://arxiv.org/abs/1709.06560
http://arxiv.org/abs/1709.06560
http://arxiv.org/abs/1709.06560
https://arxiv.org/abs/1005.0416
http://arxiv.org/abs/1412.6980
http://dblp.uni-trier.de/db/conf/iclr/iclr2016.html#LillicrapHPHETS15
http://dblp.uni-trier.de/db/conf/iclr/iclr2016.html#LillicrapHPHETS15
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://books.google.no/books?id=VqNFGwAACAAJ
https://gym.openai.com/
https://gym.openai.com/

Bibliography

[26] OpenAI. Spinning Up OpenAI Gym - Deep Deterministic Policy Gra-
dient. (Accessed last: 11.05.2021). url: https://spinningup.openai.
com/en/latest/algorithms/ddpg.html.

[27] Ouster.Ouster OS1. (Accessed last: 10.06.2021. url: https://ouster.
com/products/os1-lidar-sensor/.

[28] Ouster.Ouster OS2. (Accessed last: 10.06.2021. url: https://ouster.
com/products/os2-lidar-sensor/.

[29] Ji-Il Park, Jihyuk Park, and Kyung-Soo Kim. “Fast and Accurate
Desnowing Algorithm for LiDAR Point Clouds.” In: IEEE Access 8
(2020), pp. 160202–160212.

[30] Russell Reinhart et al. “Learning-based Path Planning for Autonomous
Exploration of Subterranean Environments.” In: 2020 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). 2020, pp. 1215–
1221.

[31] Craig Reynolds. “Steering Behaviors For Autonomous Characters.” In:
(June 2002).

[32] John Schulman et al. “Proximal Policy Optimization Algorithms.” In:
CoRR abs/1707.06347 (2017). arXiv: 1707 . 06347. url: http : / /
arxiv.org/abs/1707.06347.

[33] John Schulman et al. “Trust Region Policy Optimization.” In: CoRR
abs/1502.05477 (2015). arXiv: 1502.05477. url: http://arxiv.org/
abs/1502.05477.

[34] Seeed Studio. NVIDIA Jetson TX2-modul. (Accessed last: 10.06.2021.
url: https://www.elfadistrelec.no/no/nvidia- jetson- tx2-
modul-seeed-studio-102110402/p/30176873.

[35] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. Cambridge, MA, USA: A Bradford Book, 2018.

[36] Google Tensorflow. Tensorflow. (Accessed last: 19.11.2020). url: https:
//www.tensorflow.org/.

[37] Velodyne. Velodyne LiDAR. (Accessed last: 10.06.2021. url: https:
//velodynelidar.com/products/puck-lite/.

[38] Matrix Vision. USB 2.0 board-level camera - mvBlueFOX-MLC. (Ac-
cessed last: 10.06.2021. url: https://www.matrix- vision.com/
USB2.0-single-board-camera-mvbluefox-mlc.html.

[39] Ziyu Wang et al. “Sample Efficient Actor-Critic with Experience Re-
play.” In: CoRR abs/1611.01224 (2016). arXiv: 1611 . 01224. url:
http://arxiv.org/abs/1611.01224.

89

https://spinningup.openai.com/en/latest/algorithms/ddpg.html
https://spinningup.openai.com/en/latest/algorithms/ddpg.html
https://ouster.com/products/os1-lidar-sensor/
https://ouster.com/products/os1-lidar-sensor/
https://ouster.com/products/os2-lidar-sensor/
https://ouster.com/products/os2-lidar-sensor/
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
https://www.elfadistrelec.no/no/nvidia-jetson-tx2-modul-seeed-studio-102110402/p/30176873
https://www.elfadistrelec.no/no/nvidia-jetson-tx2-modul-seeed-studio-102110402/p/30176873
https://www.tensorflow.org/
https://www.tensorflow.org/
https://velodynelidar.com/products/puck-lite/
https://velodynelidar.com/products/puck-lite/
https://www.matrix-vision.com/USB2.0-single-board-camera-mvbluefox-mlc.html
https://www.matrix-vision.com/USB2.0-single-board-camera-mvbluefox-mlc.html
https://arxiv.org/abs/1611.01224
http://arxiv.org/abs/1611.01224

Bibliography

[40] Yuhuai Wu et al. “Scalable trust-region method for deep reinforcement
learning using Kronecker-factored approximation.” In: CoRR abs/1708.05144
(2017). arXiv: 1708.05144. url: http://arxiv.org/abs/1708.
05144.

[41] Nguyen Xuan-Mung and Sung Kyung Hong. “Robust Backstepping
Trajectory Tracking Control of a Quadrotor with Input Saturation
via Extended State Observer.” In: Applied Sciences 9.23 (2019). url:
https://www.mdpi.com/2076-3417/9/23/5184.

[42] Brady Zhou, Philipp Krähenbühl, and Vladlen Koltun. “Does computer
vision matter for action?” In: CoRR abs/1905.12887 (2019). arXiv:
1905.12887. url: http://arxiv.org/abs/1905.12887.

[43] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. “Open3D: A Modern
Library for 3D Data Processing.” In: arXiv:1801.09847 (2018).

90

https://arxiv.org/abs/1708.05144
http://arxiv.org/abs/1708.05144
http://arxiv.org/abs/1708.05144
https://www.mdpi.com/2076-3417/9/23/5184
https://arxiv.org/abs/1905.12887
http://arxiv.org/abs/1905.12887

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Jan Aleksander Fijalkowski

LiDAR-based Resilient Collision-free
Navigation for Aerial Robots in
Closed Environments

Master’s thesis in Cybernetics and Robotics
Supervisor: Kostas Alexis

June 2021M
as

te
r’s

 th
es

is

	Problem Description
	Preface
	Abbreviations
	Introduction
	Motivation
	Related Work
	Contributions
	Structure of the Thesis

	Simulating the Quadcopter
	Introducing the System
	Reference Frames and Notation
	RMF Dynamics
	Actuators
	State Estimation

	Perception
	An Overview
	Different Sensors
	Fundamentals of 3D LiDAR
	Preprocessing LiDAR Data
	Environmental Noise Filtering
	Point Cloud Feature Extraction
	Point Cloud Representation

	Reinforcement Learning
	Motivation Behind Deep Reinforcement Learning
	Reinforcement Learning - Key Concepts
	Stochastic and Deterministic Policies

	Deep Reinforcement Learning Algorithms
	Policy Gradient Methods
	Off- and On-Policy Learning
	Policy Objective Function
	Stochastic Gradient Ascent
	The Baseline

	Deep Deterministic Policy Gradient
	DDPG - Key Elements
	DDPG and Off-Policy learning
	Replay Buffer
	The Actor Network
	The Critic Network
	Noise Based Exploration
	Batch Normalization
	Target Networks

	End-to-End Learning
	Traditional and End-To-End Control
	Learning in Simulation
	Learning Strategies
	Curriculum Learning
	Imitation Learning

	Auxiliary Rewards
	Planning
	Sampling-based Path and Motion Planning

	Proposed Approach
	System Overview
	Simulator
	Waypoints
	Feature Extraction
	Point Cloud Features
	Odometry Features
	Tracking Feature

	The Structure of the Reward Functions
	Navigation Reward
	Obstacle Avoidance Reward
	Combining Obstacle Avoidance with Navigation
	Tracking Reward

	Implementation of the DDPG Algorithm
	Network Topology

	The Training Process
	Environments
	Terminal Conditions

	Results
	The Training Setup and Results with the Obstacle Avoidance Controller
	Hyperparameters
	Training Results

	Validating the Obstacle Avoidance Solution in Different Environments
	Collision-free Paths
	Paths with Obstacles

	The Obstacle Avoidance Controller in and Underground Mine Environment
	The Training Setup and Results with Tracking Solution
	Hyperparameters
	Training Results

	Validating the Tracking Controller in a Simulated Environment
	The Tracking Controller in an Underground Environment

	Discussion
	The Reward Structure
	The States
	The Feature Extraction Pipeline of the Obstacle Avoidance Controller
	Reliability
	Consistency Challenges
	Sensory Inputs

	Comparing the Obstacle Avoidance Controller to the Tracking Controller
	The Filtering Process

	Comparing the Obstacle Avoidance Controller to Sampling-based Methods
	Challenges with Reinforcement Learning
	Challenges with the DDPG Algorithm

	Networks
	Other Improvements

	Conclusion
	Overview
	Further Work

	Appendix
	
	Deep Deterministic Policy Gradient Algorithm

	
	ARL-NTNU Computer Specifications
	NTNU Computer Specifications

	References

