
Engineering Cybernetics
TTK4550 Specialization Project

Investigating performance of Deep Reinforcement Learning
algorithms for Path-Following and Collision Avoidance in

Autonomous Vessels

Halvor Ødegård Teigen

Supervisor:
Professor Adil Rasheed

Trondheim, June 7th, 2021

Faculty of Information Technology and Electrical Engineering
DEPARTMENT OF ENGINEERING CYBERNETICS

i

Preface

This report is written as a part of TTK4550 Specialization Project at the
Department of Engineering Cybernetics at the Norwegian University of Science
and Technology (NTNU). The project started as a wide literature review of rein-
forcement learning (RL) and the use of multi-agent RL for autonomous vessels.
This was later narrowed down to exploring algorithms and investigating their
performance for this application.

I am grateful to Eivind Meyer for providing an excellent software framework
and for his help regarding this. Additionally, I would like to thank Torkel Laache
and Thomas Larsen for being great discussion partners throughout the work.
Finally, I would like to thank Professor Adil Rasheed for always being available
for questions and for his guidance and supervision during this project.

Trondheim, 7.6.2021
Halvor Ødegård Teigen

ii

Contents

Preface . i

List of Figures . v

List of Tables . vii

Nomenclature . viii

Abstract . ix

Sammendrag . x

1 Introduction 1

1.1 Motivation and Background . 1

1.1.1 State of the art . 2

1.2 Research Objectives and research questions 3

1.2.1 Objectives . 3

1.2.2 Research Questions . 3

1.3 Outline of Report . 4

2 Theory 5

2.1 Dynamics of marine vessels . 5

2.2 Deep Reinforcement Learning . 7

2.2.1 Preliminaries . 8

2.2.2 Value-based methods . 11

2.2.3 Policy-based methods . 12

2.2.4 Actor-Critic methods . 14

iii

2.2.5 DRL Algorithms . 14

3 Method and set-up 17

3.1 Set-up . 17

3.2 Method . 19

3.2.1 Installation and setup of simulator 19

3.2.2 Execution of experiment 19

3.2.3 Measuring performance 20

4 Results and Discussions 24

4.1 Results . 24

4.2 Discussion . 30

5 Conclusion and future work 35

5.1 Conclusions . 35

5.2 Future Work . 36

5.2.1 Update frameworks . 36

5.2.2 Multi-Agent Deep Reinforcement Learning (MADRL) . . . 36

5.2.3 Inverse RL . 37

5.2.4 Hyperparameter tuning 38

Appendices 43

A Hyperparameters 43

B Reward plots 45

C Progress plots 46

iv

List of Figures

2.1.1Definition of cross-track error displayed graphically. The coordi-
nate frames NED (xn, yn) and BODY (xb, yb) are also shown. . . . 7

2.2.1Overview of the most common Reinforcement Learning approaches.
The red-colored topic-boxes are not discussed in this report. . . . 8

2.2.2Overview of the Reinforcement Learning framework. 9

2.2.3Actor-Critic framework for RL . 14

3.1.1Maps of two different MovingObstacles-v0 scenarios with traffic
and obstacles. The path, traffic and obstacles are generated ran-
domly for each episode. The black dashed line is the desired path
and the red lines are trajectories of obstacle vessels. 18

3.1.2Map of the two real-world scenarios. Traffic is sampled randomly
from AIS data for each episode. The black dashed line is the
desired path and the red lines are trajectories of obstacle vessels. 18

3.2.1Plots of each metrics contribution curve in the performance and
usability functions. 23

4.1.1Plot of performance and usability for each algorithm. SAC is set
to zero because training was not completed. 24

4.1.2Plot of the generalizing performance for each algorithm in the
Trondheim and Agdenes scenarios. DDPG and TD3 Performance
is set to zero because they were not able to finish the objective. . 25

4.1.3Plots of each agents trajectory in the Agdenes scenario. The thick-
est red dashed line is the vessels trajectory and the black line is
the desired path. 28

v

4.1.4Plots of each agents trajectory in the Trondheim scenario. The
thickest red dashed line is the vessels trajectory and the black
line is the desired path. 29

5.2.1Illustration of the difference between a single-agent and multi-
agent setup. 38

B.0.1Plots of the reward gathered in each episode during training for
each of the algorithms. The moving average of the reward is dis-
played as a solid line. 45

C.0.1Plots of the progress made by the agent in each episode during
training for each of the algorithms. The moving average of the
progress is displayed as a solid line. 46

vi

List of Tables

2.1.1SNAME notation for the relevant vessel coordinates. 6

4.1.1Performance metrics for the RL algorithms. In MovingObstaclesNoRules-
v0. The metrics are averaged between two separate agents trained
with the same algorithm in the same environment for the same
amount of timesteps. The exception to this is PPO LSTM and
SAC. For PPO LSTM, only one agent was trained. SAC was only
partially trained due long training time. Values that stand out as
particularly good or bad are marked in green or red respectively. 26

4.1.2Performance metrics for the RL algorithms. In Agdenes-v0. The
agent trained first for each algorithm was used to prevent the
introduction of a bias. DDPG and TD3 are blank because they
were not able to finish the objective. Values that stand out as
particularly good or bad are marked in green or red respectively. 26

4.1.3Performance metrics for the RL algorithms. In Trondheim-v0.
The agent trained first for each algorithm was used to prevent
the introduction of a bias. DDPG and TD3 are blank because they
were not able to finish the objective. Values that stand out as par-
ticularly good or bad are marked in green or red respectively. . . 27

4.1.4Results for the separate training with tuned hyperparameters. In
MovingObstaclesNoRules-v0. 27

A.0.1Hyperparameter values for PPO algorithm. Value is the value
used for main trainings while Alt. value is the value used in the
tuned training. 43

A.0.2Hyperparameter values for PPO LSTM algorithm. Value is the
value used for main trainings while Alt. value is the value used
in the tuned training. 43

vii

A.0.3Hyperparameter values for ACKTR algorithm. Value is the value
used for main trainings while Alt. value is the value used in the
tuned training. 43

A.0.4Hyperparameter values for DDPG algorithm. Value is the value
used for main trainings while Alt. value is the value used in the
tuned training. 44

A.0.5Hyperparameter values for TD3 algorithm. Value is the value
used for main trainings while Alt. value is the value used in the
tuned training. 44

A.0.6Hyperparameter values for A2C algorithm. Value is the value
used for main trainings while Alt. value is the value used in the
tuned training. 44

A.0.7Hyperparameter values for SAC algorithm. Value is the value
used for main trainings while Alt. value is the value used in the
tuned training. 44

viii

Nomenclature

Abbreviations

A2C Advantage Actor Critic

ACKTR Actor Critic using Kronecker-Factored Trust Region

AI Artificial Intelligence

CTE Cross-Track Error

DDPG Deep Deterministic Policy Gradient

DL Deep Learning

DQN Deep Q-Network

DRL Deep Reinforcement Learning

GAIL Generative Adversarial Imitation Learning

LSTM Long Short-Term Memory

M Million, ex: 1.5M

MADRL Multi-Agent Deep Reinforcement Learning

MDP Markov Decision Process

ML Machine Learning

NED North-East-Down

PPO Proximal Policy Optimization

RL Reinforcement Learning

SAC Soft Actor-Critic

TD Temporal Difference

TD3 Twin Delayed DDPG

Other

P̄ Normalized Performance

Ū Normalized Usability

ix

Abstract

In this project, we explore various Deep Reinforcement Learning algorithms
and investigate their performance in the application of path-following and obstacle-
avoidance for autonomous vessels. This is done through training of multiple
agents for each algorithm as well as extensive generalization testing. A custom
performance function is developed to create a quantitative measure of perfor-
mance for comparison of the selected algorithms. A usability function that takes
both performance and training time into consideration is also developed.

The results show that PPO and ACKTR clearly outperform the other algo-
rithms, both in terms of performance on the training scenario and generaliza-
tion performance in real-world scenarios. PPO stands out in terms of usability
and outperforms all algorithms across all tests. This proves PPO to be the pre-
ferred algorithm in this application.

x

Sammendrag

I dette prosjektet utforsker vi et utvalg Deep Reinforcement Learning algo-
ritmer og ser på hvor egnet hver av disse er for trening av styringssystemer
for autonome fartøy. Dette inkluderer både følging av en forhåndsbestemt rute
og unngåelse av hindringer på veien. Dette gjøres gjennom trening av flere
agenter for hver algoritme, samt omfattende testing av generaliseringsevne. En
spesialtilpasset ytelsesfunksjon utvikles for å skape et kvantitativt mål på ytelse
og muliggjøre sammenligning av algoritmene. En brukbarhetsfunksjon som tar
høyde for både ytelse og treningstid utvikles også.

Resultatene viser at PPO og ACKTR er klart bedre enn alle de andre algo-
ritmene som ble testet, både når det gjelder ytelse på trenings-scenarioet og
evne til å generalisere styringsstrategien til realistiske scenarioer. PPO skiller
seg ut når det gjelder brukbarhet og overgår samtlige algoritmer over samtlige
tester. Dette viser at PPO er den foretrukne algoritmen for dette problemet.

1

Chapter 1

Introduction

In the universe of Reinforcement Learning (RL), there is a multitude of algo-
rithms to choose from, each with its own advantages and disadvantages. The
optimal choice of algorithm is highly dependent on the problem formulation
and has to be explored through testing and gathering of statistical evidence.
We extend the work of (Meyer, 2020) and investigate the performance of vari-
ous RL algorithms in the problem of path-following and obstacle avoidance for
autonomous ships.

1.1 Motivation and Background

Autonomous vessels

In recent years, the development and interest in autonomous shipping has in-
creased significantly. According to the International Chamber of Shipping (2020),
around 90% of the world’s trade is transported via shipping. This is a testament
to the high demand for development in this area. Both the Norwegian govern-
ment and EU has provided a large amount of support for research within this
field. Examples are, the European Union’s Horizon 2020 research and innova-
tion program giving 20M Euros to the AUTOSHIP project (AUTOSHIP Project,
2020), and The Norwegian Ministry of Transport and Communications giving
NOK 12.5M to the county of "Møre og Romsdal" for the development of new
autonomous passenger ferries and vessels. The Norwegian government has also
made the Trondheim Fjord into a test bed for autonomous ship trials, and es-
tablished the Norwegian Forum for Autonomous Ships (NFAS) consisting of some
of the biggest actors within the maritime industry.

According to (de la Campa Portela, 2005), it is commonly accepted that
around 80% of maritime accidents are due to human error. This is a significant
amount and there is great potential for improvement with the use of autonomy.
With autonomy comes other challenges but there is still a significant possibility
to improve overall safety for autonomous ships compared to manned (Hoem
et al., 2019). Autonomous ships also have the possibility to improve work-
ing conditions, lower damage-related and crew costs, and improve the ship’s
environmental performance (Norwegian Forum for Autonomous Ships (NFAS),

Chapter 1. Introduction 2

2020). However, this requires vessels capable of acting on their own and able
to handle unexpected changes in the environment.

Deep Reinforcement Learning

The requirement for robustness and ability to handle challenging, and in-
finitely many, situations makes the task of developing an autonomous vessel
extremely challenging. Autopilot design for path following is a well-known dis-
cipline and has robust solutions using traditional methods. The big challenges
appear when we are to combine this with situational awareness and obstacle
avoidance. With such a large space of possible actions and strategies, explic-
itly programming the behavior is near infeasible and far from practical. This,
in combination with the need for complex models of ship dynamics, leads us
towards a different approach. Using model-free Reinforcement Learning (RL)
removes the need for complex models and explicit behavioral programming.
The RL agent learns the end-to-end connection between observations and ac-
tions through the principle of trial and error, which has shown great results in
applications such as games (Silver et al., 2016), robotics (Niroui et al., 2019),
and natural language processing (He et al., 2016).

Although RL as a concept has proven powerful for a variety of problems,
the choice of RL algorithm is still highly application dependent. (Meyer, 2020)
presents a solution for the problem of obstacle avoidance and path-following
for an autonomous ship using the PPO algorithm. The motivation behind this
project is to back up the findings of (Meyer, 2020) and provide statistical evi-
dence for the performance of a selection of RL algorithms in this application.

1.1.1 State of the art

Deep Reinforcement Learning is a rapidly developing field with the state of
the art constantly evolving. There are a number of toolkits, frameworks and li-
braries available for implementing, testing and comparing reinforcement learn-
ing algorithms in various applications.

The OpenAI Gym toolkit (Brockman et al., 2016) has quickly become a state-
of-the-art framework for RL applications and is widely used in research within
this field. Its popularity reflects its ease of use, flexibility, and powerful capabil-
ities. The toolkit is made for developing and comparing RL algorithms and has
a number of predefined benchmark environments for this.

Stable Baselines (Hill et al., 2018) is a set of improved implementations of
reinforcement learning algorithms based on OpenAI Baselines. It has en easy
to use interface and many state-of-the-art algorithms implemented, such as

Chapter 1. Introduction 3

PPO (Schulman, Wolski, Dhariwal, Radford and Klimov, 2017), DDPG (Lilli-
crap et al., 2015), and A2C (Mnih et al., 2016). Deep Q-Networks (DQN) (Mnih
et al., 2013), an extension of Q-learning, is also widely used in state-of-the-art
applications.

For the application of autonomous vessels, (Meyer, 2020) presents a state-of-
the-art approach using the OpenAI Gym toolkit (Brockman et al., 2016), Stable
Baselines (Hill et al., 2018), and the PPO RL algorithm implemented there. It is
explained that PPO gave the best performance but not much evidence for this is
presented. To the best of our knowledge, no one has provided a justification of
this choice through comprehensive exploration and comparison of algorithms.

1.2 Research Objectives and research questions

1.2.1 Objectives

Our primary objective is to investigate and provide statistical evidence for the
performance of a selection of RL algorithms applied to path-following and obstacle
avoidance for an autonomous vessel.

The secondary objectives are stated as:

• Do a systematic quantitative testing of relevant algorithms applied to this
problem.

• Provide a custom performance metric to enable a quantitative comparison
of the algorithms.

• Show the generalization performance of the RL agents in realistic scenar-
ios.

1.2.2 Research Questions

To the best of our knowledge there is currently no published work on com-
paring algorithms in a systematic and quantitative way for this application. To
this end, the guiding questions governing the research can be stated as:

• Which RL algorithms show the best results for path-following and obstacle-
avoidance for autonomous vessels?

• How does the performance of different algorithms compare quantitatively?

• How do these RL agents generalize to realistic scenarios?

Chapter 1. Introduction 4

1.3 Outline of Report

The thesis comprises of the following sections and content: chapter 2 ex-
plains the fundamental theory behind the work in this project; chapter 3 dis-
sects the concrete methods and setup used; chapter 4 presents the results and a
discussion around them. The thesis concluded in chapter 5, where suggestions
for future work are also presented.

5

Chapter 2

Theory

In this chapter, we present the relevant theory for the work done in this project.
Namely a brief introduction to the dynamics of marine vessels and a dive into
Deep Reinforcement Learning and a selection of relevant RL algorithms.

2.1 Dynamics of marine vessels

In order to develop a realistic environment for the agent to train in, we need
to model the vessel dynamics. In this section, we provide a brief overview of
these dynamics. For a more comprehensive derivation, the reader is directed to
(Fossen, 2021).

To represent the position and orientation of the vessel, we define two coor-
dinate frames, NED and BODY. These are shown in Figure 2.1.1.

NED (North-East-Down) is a reference frame with the origin fixed to the
Earth’s surface and the following orientation:

• xn - axis points towards north

• yn - axis points towards east

• zn - axis points downwards, normal to the Earth’s surface

BODY is a reference frame with the origin fixed to the vessel. The position and
orientation of the vessel are described relative to the inertial reference frame,
NED. The orientation of the axes is defined as follows:

• xb - longitudinal axis (directed from aft to fore)

• yb - transversal axis (directed to starboard)

• zb - normal axis (directed from top to bottom)

Assumption 1 (3 DoF restriction). The vessel is always located on the surface,
with zero pitch and roll angle.

Including Assumption 1, the only parameters needed are position, head-
ing, and their corresponding velocities. Descriptions of these are shown in Ta-
ble 2.1.1. Our simulated vessel is modeled with an aft thruster providing a
thrust of Tu in the xb direction, and a rudder providing a moment about the
zb-axis of Tr.

Chapter 2. Theory 6

Symbol Description
xn Position in NED, along xn-axis.
yn Position in NED, along yn-axis.
ψ Rotation about the zb-axis (heading).
u Velocity in BODY, along xb-axis.
v Velocity in BODY, along yb-axis..
r Angular rate about the zb-axis (heading rate).

Table 2.1.1: SNAME notation for the relevant vessel coordinates.

Assumption 2 (No disturbances). There are no external disturbances to the vessel
such as wind, ocean currents or waves.

Using Assumption 2, the vessel dynamics (derived in Fossen (2021)) can be
expressed as

η̇ = Rz,ψ(η)ν

Mν̇ + N(ν)ν = Bf
(2.1.1)

where

• η = [xn, yn, ψ]T

• ν = [u, v, r]T

• f = [Tu, Tr] is the control input vector

• Rz,ψ is the rotation matrix for a rotation of ψ about the zn-axis

• M is the mass matrix of the vessel

• N incorporates the Coriolis and damping effects

• B is the actuator configuration matrix

Cross-track error

For the path-following part of the problem, a measurement of how well the
vessel is actually following the path is needed. This is where the cross-track
error (CTE) is used. Formally, the cross-track error is a measure of the clos-
est Euclidean distance from the path to the vessel and is commonly used as a
measure of path-following performance. Figure 2.1.1 explains the cross-track
error graphically. The path is generated as a continuous, smooth, parameter-
ized curve using 1D Piecewise Cubic Hermite Interpolator (PCHIP), which is
provided by the Python library SciPy (Virtanen et al., 2019).

Chapter 2. Theory 7

CTE

Path

Figure 2.1.1: Definition of cross-track error displayed graphically. The coordinate
frames NED (xn, yn) and BODY (xb, yb) are also shown.

2.2 Deep Reinforcement Learning

In this section, we introduce the relevant theory within the field of Deep
Reinforcement Learning (DRL). For a more comprehensive read, the reader is
directed to (Sutton and Barto, 2018) and (Li, 2018).

In the realm of Artificial Intelligence (AI), Machine Learning (ML) has been
the most popular approach in recent years. We usually categorize ML by super-
vised, unsupervised, and reinforcement learning. In supervised learning, the
desired output needs to be known in order to train the model, i.e. labeled data
is needed. This can be used in applications like regression and classification.
Unsupervised learning seeks to find patterns and relevant information within
unlabeled data. Reinforcement learning (RL) takes an altogether different ap-
proach that uses the principle of trial and error to extract an optimal strategy to
solve a problem. In this section, we will dive deeper into the topic of DRL. The
term deep refers to the use of deep neural networks in machine learning ap-
proaches. This can be incorporated into all of the above-mentioned categories.

An overview of different approaches to RL is presented in Figure 2.2.1. As
shown, we will focus on the model-free RL approach. On the one hand, we
have value-based methods based on Temporal Difference (TD) Learning, while
on the other we have policy gradient methods based on policy optimization.
The algorithms explored in this project all adopt the actor-critic framework
which combines functionality from both of these methods and is extensively
used for continuous control applications. The upcoming parts of this section will
introduce the reinforcement learning framework, explain the most important
terms needed to understand the RL algorithms and their differences, explain the
two main approaches to RL, and eventually lead to the actor-critic framework
and why it is used.

Chapter 2. Theory 8

Reinforcement Learning

Model-based RL Model-free RL

Policy Optimization Temporal Difference Learning

Derivative Free
Optimization Policy Gradient

REINFORCE

Actor-Critic

A2C
ACKTR
TRPO
PPO
DDPG
TD3
SAC

Value-Based

Q-learning
DQN

Figure 2.2.1: Overview of the most common Reinforcement Learning approaches. The
red-colored topic-boxes are not discussed in this report.

2.2.1 Preliminaries

The two main components of reinforcement learning are the environment
and the agent. These entities interact through actions, rewards, and states or
observations. From a high-level perspective, the flow can be explained as fol-
lows: The agent performs an action at on the environment which changes the
state from st to st+1. The new state st+1, or a partial observation of it, is received
by the agent along with a reward rt indicating how good the action was. This
reward is then used to improve the policy π(at|st), which is a set of rules that the
agent follows to decide which action to take next. A graphical representation of
this flow can be found in Figure 2.2.2.

An assumption made in many RL algorithms is that the problem can be for-
mulated as a Markov Decision Process (MDP). A key attribute of this is that
the future states depend only on the current state and action, not the past. The
model of a MDP is defined by a transition function T giving the probability of
moving to a state s′ given a state s and an action a, and a reward function R
giving the reward. If the model of the MDP is known, traditional optimization
techniques can be used to find the optimal policy. This is often not the case and
an approach like RL is needed to solve this.

The goal for the RL algorithm is to find the optimal policy, and it does this

Chapter 2. Theory 9

Environment

Agent

Reward State/ObservationAction

Figure 2.2.2: Overview of the Reinforcement Learning framework.

by maximizing the cumulative reward

Rt =
∞∑
k=0

γkrt+k (2.2.1)

This contains a discount factor γ ∈ (0, 1] which dictates how much the agent
cares about future rewards. A γ of 1 gives equal weight to all rewards, regard-
less of temporal conditions, while a smaller γ results in the short term rewards
getting weighted higher than the long term. A γ < 1 is usually preferred be-
cause, in general, a good action (thus a large reward) is worth more now than
far into the future.

Sequential vs Episodic

A problem can be formulated as either sequential or episodic. In a sequential
formulation the task is never-ending, which means there is no end state and
the reward must be assigned during the execution of the task. In an episodic
formulation the task at hand can be viewed as a finite time problem that has
one or more terminal states. This introduces the possibility of a reward being
assigned both during and at the end of each episode. Our problem is formulated
as episodic.

Exploration vs Exploitation

An important consideration in RL is the trade-off between exploration and
exploitation. On the one hand, we need the agent to explore the environment
and evaluate as many different strategies as possible and stop it from converg-
ing to a local optimum with sub-optimal performance. On the other hand, we
want the agent to exploit the information in the current policy and not have
completely random behavior. So how much of this exploration should the agent
do, and how should it do it? This is a big question within RL and comes down
to tuning for the respective algorithm and application.

Chapter 2. Theory 10

On-policy vs Off-policy

An important thing to understand in differentiating RL algorithms is the dif-
ference between on-policy and off-policy approaches.

In summary, On-policy methods attempt to evaluate or improve the policy that
is used to make decisions, whereas off-policy methods evaluate or improve a policy
different from that used to generate the data. (Sutton and Barto, 2018)

In off-policy algorithms, the policy that is improved, called the target policy,
is often an approximation to the optimal policy, which is typically determinis-
tic, whereas the data generating behavior policy is often stochastic, exploring all
possible actions in each state as part of finding the optimal policy (Maei et al.,
2010). Advantages of separating the behavior policy from the target policy are
that it allows more freedom for exploration, enables learning from data gener-
ated by a human (imitation learning), and learning from previously generated
data for better sample efficiency. Downsides to off-policy training are difficulty
getting reliable estimation, as it suffers from either high bias or high variance
(Tosatto, 2020), and the tendency to be less stable than on-policy algorithms.
Examples of off-policy algorithms are Q-learning, DQN, DDPG, TD3 and SAC.

In on-policy algorithms, the target and behavior policy are the same. This
means that the policy π is updated with data collected by π itself. As (Sutton
and Barto, 2018) states: focusing on the on-policy distribution could be beneficial
because it causes vast, uninteresting parts of the space to be ignored. This may be
beneficial in our case because exploring states far from the path is undesirable.
A downside to this is that it may get trapped in local optima resulting in a
suboptimal policy. Examples of on-policy algorithms are PPO, ACKTR, and A2C.
(Chilamkurthy, 2020)

Temporal Difference (TD) Learning

As we will see, TD learning an important concept in RL. It is based on up-
dating estimates based in part on other learned estimates, which is called boot-
strapping. This tends to reduce variance and accelerate learning (Sutton and
Barto, 2018). More importantly, TD learning has the ability to learn directly,
and iteratively, from raw experience without a model of the environment. As dis-
cussed in section 1.1, this is essential. A conceptual update rule for TD learning
can be expressed as:

NewEstimate = OldEstimate + StepSize(Target− OldEstimate) (2.2.2)

This update rule is a core component in value-based RL methods, and algo-
rithms like Q-learning and SARSA are based on it.

Chapter 2. Theory 11

2.2.2 Value-based methods

To explain value-based methods we introduce two functions, the value func-
tion and the action-value function. The value function estimates how good it is
for an agent to be in a given state. Formally, it is an expectation of the future
reward given the state, and is expressed as

Vπ(s) = E[Rt|st = s] (2.2.3)

The value function can then, through its recursive properties, be expressed
as

Vπ(s) =
∑
s′,r

T (s, a, s′)(R(s, a, s′) + γV π(s′)) (2.2.4)

where T (s, a, s′) is the transition probability of moving to a state s′ given a state
s and an action a, and R is the reward. This shows that the expected value of
the state is defined in terms of the immediate reward, through R, and values of
possible next states, through γV π, weighted by their transition probabilities.

The action-value function, or Q-value function, is defined as

Qπ(s, a) = E[Rt|st = s, at = a] (2.2.5)

In addition to the state, this takes into account the action, i.e. it gives the ex-
pected future reward for a given state-action pair.

Finding the optimal policy π∗ is a matter of finding the action that maximizes
the expected reward. Using Equation 2.2.4 we get

V ∗(s) = max
a

∑
s′,r

T (s, a, s′)(R(s, a, s′) + γV ∗(s′)) (2.2.6)

This is known as the Bellman optimality equation and gives us a recursive for-
mula for calculating the optimal value function. This can be solved with tradi-
tional optimization techniques when T and R are known. Analogous to Equa-
tion 2.2.6 the optimal action-value can be expressed as

Q∗(s, a) =
∑
s′,r

T (s, a, s′)(R(s, a, s′) + γmax
a′

Q∗(s′, a′)) (2.2.7)

The relation between Q∗ and V ∗ is then given by

V ∗(s) = max
a
Q∗(s, a)

Q∗(s, a) =
∑
s′,r

T (s, a, s′)(R(s, a, s′) + γV ∗(s′))
(2.2.8)

Chapter 2. Theory 12

and finally, the optimal action is given by

π∗(s) = a∗ = arg max
a

Q∗(s, a) (2.2.9)

The challenge in model-free approaches is that the transition and reward
models T and R are unknown, which means that Equation 2.2.9 cannot be
solved analytically. This creates a need to sample the MDP to gather statistical
knowledge about this unknown model. As we know, TD learning introduces
this ability. In Q-learning an update rule based on Equation 2.2.2 and 2.2.7
is used to find Q∗(s, a). Pseudocode for the Q-learning algorithm is presented
in algorithm 1 where this update rule is shown. A popular extension of this
is Deep Q-learning which uses a neural network to represent this action-value
function instead of a table. The reader is directed to (Mnih et al., 2013) for a
comprehensive look at this approach.

Although value-based methods have some great properties and features like
good sample efficiency and fast learning, an important thing to note is that
they, in general, do not scale well to continuous action spaces. Imagine the
action-value function Q(s, a) as a table of values for states and actions. For a
continuous action space, there are infinitely many possible action values, which
in turn means that the table will get infinitely large. Equation 2.2.9 shows that
the maximum of this table has to be found, and for an infinite set of values this
becomes very difficult and computationally expencive. Due to this weakness,
value-based methods are often combined with policy-based in what we call an
actor-critic framework when applied to continuous problems.

Algorithm 1: Q-learning, from (Sutton and Barto, 2018)
initialize Q arbitrarily
foreach episode do

s is initialized as the starting state
repeat

choose an action a ∈ A based on Q and an exploration strategy
perform action a
observe the new state s′ and received reward r
Q(s, a) = Q(s, a) + α

(
r + γ ·maxa′∈A(s′)Q(s′, a′)−Q(s, a)

)
s = s′

until s′ is a goal state;

2.2.3 Policy-based methods

While value-based methods optimize the policy through a value function,
policy-based methods have a different, and more direct, approach. The policy

Chapter 2. Theory 13

π(a|s;θ), parameterized with parameters θ, is optimized directly through gra-
dient ascent on the expected reward. The parameters θ can for instance be the
weights of a deep neural network.

This approach comes with several advantages. Policy gradient methods have
the ability to find stochastic optimal policies, something that action-value meth-
ods do not have (Sutton and Barto, 2018). In many problems, the best policy
may not be deterministic and the optimal action has to be represented with
probabilities. An example of this is in card games with imperfect information
such as poker. The policy itself may also be a simpler function to approximate
than the action-value function. In addition to this, policy parameterization is
a good way to introduce prior knowledge of the problem (Sutton and Barto,
2018), which is very useful from an engineering perspective. Earlier, we men-
tioned that value-based methods scale poorly to growing action spaces. This
problem is not as prominent in policy-based methods because instead of com-
puting learned probabilities for each of the actions, it learns statistics of the
probability distribution (Sutton and Barto, 2018). There are of course draw-
backs to policy gradient methods, with the most significant being sample inef-
ficiency and high variance.

REINFORCE (Williams, 1992) is a widely used policy gradient method that
many algorithms build upon. This algorithm is commonly used with a baseline
estimate of the reward to reduce variance. The baseline can be chosen arbitrar-
ily as long as it does not vary with the action taken (Sutton and Barto, 2018). A
good choice for this function is the advantage function δ = discounted reward -
estimated value. The advantage function can be thought of as a measure of how
much better the action that the agent took was compared to the expectation of
what would happen in that state.

Algorithm 2: REINFORCE with baseline (episodic), from (Sutton and
Barto, 2018)

Input: a differentiable policy parameterization π(a|s,θ)
Input: a differentiable state-value function parameterization v̂(s,w)
Input: algorithm parameters: step size αθ > 0, αw > 0
Initialize policy parameter θ and state-value weights w (e.g. to 0)
foreach episode do

Generate an episode S0, A0, R1, . . . , ST−1, AT−1, RT following π(·|·,θ)
foreach step of episode t = 0, 1, . . . , T − 1 do
G =

∑T
k=t+1 γ

k−t−1Rk

δ = G− v̂(St,w)
w = w + αwδ∇v̂(St,w)
θ = θ + αθγtδ∇ log π(At|St,θ)

Chapter 2. Theory 14

2.2.4 Actor-Critic methods

Environment

Critic

Reward State/ObservationAction

Actor

TD-error,
"critique"

Agent

Figure 2.2.3: Actor-Critic framework for RL

The most desirable approach would be to combine the advantages of both
value and policy-based methods, or at least mitigate some of the drawbacks
of one by leveraging the other. The actor-critic method does exactly this and
can be seen as a kind of hybrid approach. As seen in Figure 2.2.3 it uses both
a parameterized policy, in the actor, and a value function in the critic. The
actor calculates which action to take in a given state while the critic evaluates
the action taken and gives a critique, in form of an error based on the value
function, to the actor in order to improve the policy further. This brings the
benefits from value-based methods, like better sample efficiency, together with
the advantages of policy-based methods, like the ability to handle large and
continuous state and action spaces.

2.2.5 DRL Algorithms

Our problem consists of a continuous action-space, thus we focus on the al-
gorithms that support this. Discretizing the action space could be an alternative
for a single-actuator system but the configuration of this problem requires mul-
tiple control inputs, i.e. a multi-discrete action space. This is not supported for
the relevant algorithms in the current algorithm framework, Stable Baselines.

The following gives a quick introduction to the principles of each algorithm
used in this project. The focus is put on the high-level understanding of how the
algorithms compare to each other, and we do not derive the technical details
behind each of them. For this, the reader is advised to have a look at the respec-
tive papers cited. Several of the papers compare the results to other algorithms

Chapter 2. Theory 15

in some of the most common OpenAI gym (Brockman et al., 2016) continuous
control benchmark environments, like Hopper-v1, Walker2d-v1, HalfCheetah-
v1, Ant-v1, and Humanoid-v1.

• DDPG (Deep Deterministic Policy Gradient): DDPG builds on the Deep
Q-Learning algorithm and extends it to the continuous action domain.
It is an off-policy actor-critic algorithm based on the deterministic pol-
icy gradient. In terms of performance, the original paper (Lillicrap et al.,
2015) states that fewer steps of experience was used by DDPG than by
DQN-learning to find solutions in the Atari domain. It is also presented
that it robustly solves more than 20 simulated physics tasks, including
continuous control problems, but still requires a large number of training
episodes to find solutions.

• TD3 (Twin Delayed DDPG): TD3 is an off-policy algorithm that builds on
DDPG and introduces some critical changes to address a common prob-
lem with DDPG; The learned Q-function often overestimates the Q-values,
which leads to the policy exploiting these errors and eventually breaking.
The changes made are (1) learning two Q-functions and using the smaller
Q-value in the Bellman error loss function, (2) updating the policy less
frequently than the Q-function, (3) adding noise to the action making it
harder for the policy to exploit the errors in the Q-function. The original
paper (Fujimoto et al., 2018) presents results that show TD3 outperform-
ing several other algorithms such as DDPG, PPO and ACKTR in a selection
of OpenAI gym continuous control tasks.

• PPO (Proximal Policy Optimization): Is an on-policy method that uses
an actor-critic architecture. PPO is based on the principle of a trust region,
i.e. improving the policy as much as possible without going too far from
where we are and breaking the policy. PPO implements this in a simple
and less computationally demanding way compared to other trust-region
methods. Instead of having to solve a constrained optimization problem
like in TRPO (Schulman, Levine, Moritz, Jordan and Abbeel, 2017), PPO
uses a clipping function that is both easier to implement and computa-
tionally less expensive. The original paper (Schulman, Wolski, Dhariwal,
Radford and Klimov, 2017) presents results where PPO outperforms both
A2C and A2C + Trust Region in several continuous control tasks, most
of which are the same tasks as shown in the TD3 paper (Fujimoto et al.,
2018).

The PPO algorithm can also be used with a recurrent Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber, 1997) policy that intro-
duces the concept of memory for the agent. This is included in the project
as it was suggested by (Meyer, 2020) and was believed to improve per-
formance with moving obstacles.

Chapter 2. Theory 16

• A2C (Advantage Actor Critic): Advantage Actor Critic has two main
variants: Asynchronous Advantage Actor Critic (A3C) described in (Mnih
et al., 2016) and Advantage Actor Critic (A2C). In short, A2C is a syn-
chronous variant of the A3C algorithm. The term asynchronous refers to
the property of parallel training, where multiple agents in parallel envi-
ronments independently update a global value function. The term advan-
tage refers to the advantage function like the one discussed in subsec-
tion 2.2.3. A2C is an on-policy algorithm, like PPO, and has been found to
give equal performance to A3C (Wu, Mansimov, Liao, Radford and Schul-
man, 2017). In (Mnih et al., 2016), A3C shows good results compared
to DQN in Atari environments but no comparison for continuous control
applications is provided.

• ACKTR (Actor Critic using Kronecker-Factored Trust Region): ACKTR
is an on-policy algorithm that combines three popular techniques: actor-
critic methods, trust region optimization, and distributed Kronecker fac-
torization (Ba et al., 2017). According to (Wu, Mansimov, Liao, Grosse
and Ba, 2017), ACKTR improves sample efficiency and scalability over al-
gorithms like A2C and TRPO, and performs similarly or better than the
these algorithms in several continuous control environments.

• SAC (Soft Actor-Critic): SAC is an off-policy, actor-critic RL algorithm.
It is based on the maximum entropy reinforcement learning framework
where the actor aims to complete the task at hand while acting as ran-
domly as possible. Formally this translates to maximizing expected re-
ward while also maximizing entropy. SAC has proven to outperform both
DDPG, TD3 and PPO in some of the continuous control benchmark envi-
ronments. (Haarnoja et al., 2018)

17

Chapter 3

Method and set-up

In this chapter, we explain the specifics of how the work was conducted. This
includes presenting the setup for training and testing, as well as the method for
comparing the agents’ performance.

3.1 Set-up

This project builds upon the work of (Meyer, 2020) and uses the software
framework provided there. The vessel dynamics are based on the CyberShip II
(Skjetne et al., 2004), a 1:70 scale replica of a supply ship which has a length
of 1.255 m and mass of 23.8 kg. For training, a randomly generated artificial
environment, later referred to as MovingObstacles-v0, is used. This scenario
consists of a random path of length 8000 m, 17 moving obstacles with random
size, heading and speed representing other ships, and 11 static obstacles of
varying size. Two examples from this scenario are shown in Figure 3.1.1.

The two real-world scenarios used for generalization testing are Trondheim-
v0 and Agdenes-v0, displayed in Figure 3.1.2a and 3.1.2b respectively. Traffic
(i.e. other vessels) is sampled as a random subset of the total recorded AIS data
in the area. This allows for quantitative statistical testing through repeated trials
(Meyer, 2020).

The algorithms are all trained and tested on the same hardware, a Dell Op-
tiPlex 7060 computer with an Intel Core i7-8700 CPU, 32 GB RAM, and Intel
UHD Graphics 630.

Simulation parameters

The hyperparameters for each algorithm are listed in Appendix A. All param-
eters and values not listed in these tables, are set as default from Stable Base-
lines. A separate training run with hyperparameters inspired by RL Baselines
Zoo (RAFFIN, 2020) was also conducted to explore if this would yield different
results. RL Baselines Zoo is a collection of pre-trained RL agents together with
tuned hyperparameters for several control problems.

Remark: The default distance unit used in this package is 10 m (decameters).
Return values, such as those returned by length and position attributes, must be

Chapter 3. Method and set-up 18

multiplied by 10 to obtain the values in meters. This choice was made out of
convenience, given that the terrain data has a 10x10 metric resolution (Meyer,
2020). The distance data is converted and presented in meters in this report.

-4.0 -2.0 0.0 2.0 4.0
East (km)

-4.0

-2.0

0.0

2.0

4.0

N
or

th
 (k

m
)

Goal

Start

-4.0 -2.0 0.0 2.0 4.0
East (km)

-4.0

-2.0

0.0

2.0

4.0

N
or

th
 (k

m
)

Goal

Start

Figure 3.1.1: Maps of two different MovingObstacles-v0 scenarios with traffic and ob-
stacles. The path, traffic and obstacles are generated randomly for each
episode. The black dashed line is the desired path and the red lines are
trajectories of obstacle vessels.

10.0 15.0 20.0 25.0
East (km)

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

N
or

th
 (k

m
)

Goal

Start

(a) Trondheim-v0 scenario with traffic.

0.0 2.5 5.0 7.5 10.0 12.5
East (km)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

N
or

th
 (k

m
)

Goal

Start

(b) Agdenes-v0 scenario with traffic.

Figure 3.1.2: Map of the two real-world scenarios. Traffic is sampled randomly from
AIS data for each episode. The black dashed line is the desired path and
the red lines are trajectories of obstacle vessels.

Chapter 3. Method and set-up 19

3.2 Method

3.2.1 Installation and setup of simulator

The simulator provided by (Meyer, 2020) has served as a great tool and
framework for testing the algorithms. However, getting this setup up and run-
ning was not as trivial as first assumed. It was clear that the work on this soft-
ware had been iterative and new packages were installed as needed. This lead
to multiple dependencies of both packages and their versions, and it was a
significant amount of work to set it up correctly on a new system.

A list of installed packages was provided by Eivind Meyer, however this in-
cluded all Anaconda and Python packages on his system, not just the ones
needed for this project. The initial work then consisted of debugging to find
out which packages were needed and which versions were compatible with
each other. Cases where one package required version > x.y.z of package a
while another package required version < x.y.z of package a were also encoun-
tered. All packages were downgraded to the appropriate version in order to
make the software run. In addition, it was discovered that several resource files
needed for execution, like the data for real-world scenarios, were missing from
the GitHub repository, and that other programs like Microsoft Visual C++ 14.0
and Microsoft MPI were required. After retrieveing these files and a significant
amount of time spent on debugging the installation and fixing bugs in the code
itself, everything was set up correctly.

To make it easier for future work with this code a setup file and an installa-
tion guide (for use with windows and anaconda) was developed. This simplifies
the installation on new computers and handles the python dependencies, hope-
fully preventing others from having to repeat the work described above. The
guide, along with all the necessary code, is provided in a GitHub repository
(Ødegård Teigen, 2020). Note that GitHub does not support files larger than
100MB and Git LFS has to be used for tracking large files such as the terrain
data.

3.2.2 Execution of experiment

First, two agents for each algorithm are trained and the resulting metrics are
averaged between the two. The resulting metrics refer to the metrics averaged
over the last 100 episodes of training for each agent. We acknowledge that the
average between just two agents will not necessarily be the true mean but it is
used to reduce the probability of comparing outliers. Each agent is trained for
1.5M timesteps. This number is chosen as a compromise between reaching a

Chapter 3. Method and set-up 20

satisfactory performance level for comparing the algorithms while not making
the training time unreasonably long. As the training time varies significantly
between algorithms the number of training timesteps could also be varied but
emphasis is put on keeping this parameter equal for all algorithms to strengthen
the comparability.

An agent for each algorithm is also tested in the two real-world scenarios
to examine the generalization performance. In this case, the test is run for 100
episodes and the average for each metric is taken. The number of episodes
is chosen as a compromise between computational time and statistical signifi-
cance.

3.2.3 Measuring performance

To compare the algorithms a comparable performance metric is needed. We
design this as a combination of important metrics weighted through custom
functions. So which metrics are considered important?

Average reward from the reward function is important because it is used
in optimization during training and should indicate overall performance. The
progress metric measures how far the vessel was able to get along the path
from start to finish, given as a percentage. The episode is terminated either by
reaching the goal (100% progress), a collision, or a time-out in form of a maxi-
mum number of timesteps elapsed without reaching the goal (This time-out is
implemented in training mode only). Progress is considered one of the most im-
portant metrics because it says something about the main objective, getting to
the goal position without colliding. Average collisions are included because it is
a measurement of the obstacle avoidance performance, while cross-track error
is is included because of its connection to the path-following performance.

Even though the average reward should be a good indicator of performance,
it can be optimistically biased because it is the actual function being optimized.
As stated in (Henderson et al., 2019), local optima can make learning curves
indicate successful optimization of the policy, when in reality the policy is
not qualitatively representative of the desired behavior. A custom performance
function using additional metrics will hopefully give a better picture of the per-
formance. This function should also be constrained, for instance to an interval
of 〈0, 100〉, to make it more intuitive. We would like the performance function
to have the general form

P̄ = w1 · f1(R̄) + w2 · f2(PR) + w3 · f3(C̄) + w4 · f4(CTR) (3.2.1)

where

Chapter 3. Method and set-up 21

• wi - Weight for the respective metric where
∑4

i=1wi = 100

• fi - Contribution curve for the respective metric, bounded in 〈0, 1〉

• R̄ - Avg. reward

• PR - Avg. progress, as a percentage (0-100).

• C̄ - Avg. collisions, as a percentage (0-100). Defined as how many of the
episodes were terminated due to a collision.

• CTR - Avg. Cross-Track Error, in meters.

The weights control the importance of the metrics relative to each other, e.g.
how much we care about the collision rate compared to the progress, while the
contribution curves control the importance of the values themselves relative
to each other, e.g how how important is it that the progress value is large.
Choosing equal weights for all terms will be sufficient in our case as the metrics
can be said to have approximately equal importance. Disregarding the criteria
for the weights and setting all weights equal to 1, we design the un-normalized
performance to be

Pun =
1

1 + 1.1−0.02R̄−50
+

1

1 + e8−0.15PR
+ 1.1−C̄ + 1.05−0.04CTR (3.2.2)

Note that each term is bounded for the valid values of the metrics. Normal-
izing Equation 3.2.2 to the interval 〈0, 100〉 by multiplying by 100 and dividing
by the number of metrics used gives the Performance

P̄ = 100 · Pun
4

(3.2.3)

Taking training time into consideration to get a good picture of the algo-
rithms usability in this problem, we define the un-normalized usability to be

Uun = Pun +
1

1 + e0.5T−4
(3.2.4)

where T is the training time for 1.5M timesteps, in hours. Again, we nor-
malize by multiplying by 100 and dividing by the total number of metrics used,
giving the Usability

Ū = 100 · Uun
5

(3.2.5)

P̄ and Ū will be in the interval 〈0, 100〉 where all metrics will have equal weight.

Chapter 3. Method and set-up 22

Explanation and justification of function terms

Each term in the performance and usability functions is designed to have
a reasonable contribution curve with regards to what values of the metric are
considered acceptable and not. Figure 3.2.1 shows plots of each terms value
contribution to the functions.

Figure 3.2.1a shows the contribution curve for the reward. From experience
with training, it is observed that none the algorithms get a positive cumulative
reward. This is the reason behind giving a term value of 100 from a reward
value of 0 and above. We then use a sigmoid function that decays appropriately
with decreasing reward. From around -3500 and below, there is minimal term
value given as this is an indication of a poorly performing agent. In the case
of the reward being -2000 or higher, we indicate that the agent is performing
relatively well and give a large term contribution.

Figure 3.2.1b shows the contribution curve for the average progress made
the episodes. We assume that an agent that, on average, completes less than
70% of the objective on average is considered poor. Being able to complete
more than 80% is considered acceptable and gives a large term contribution.

Figure 3.2.1c shows the contribution curve from the collision rate. We claim
that an agent with a collision rate of over 20% is dangerous and close to useless,
and choose a rapidly decaying exponential that has low term contribution for
these values. Assuming a collision rate of up to 10% is regarded as acceptable
performance, we give large contributions for values lower than this.

Figure 3.2.1d shows the contribution curve for the average cross-track error
of the vessel. We allow some deviation from the path for obstacle avoidance and
choose a slower decaying exponential with the approximate acceptable range
from 0 to around 500 m.

Figure 3.2.1e shows the contribution curve related to the training time of
the agents. We allow some minimum training time with a flat curve for small
values. This gives a large contribution for agents with 5 hours or less of training
time. Assuming a training time of over 10 hours is considered poor, the curve
rapidly decreases close to this time. The threshold for a reasonable training time
is set by comparing the best and worst algorithms w.r.t. this metric. We assume
a training time over 3x as long as the shortest training time is considered poor.

Resource demand

The work done in this project demands large amounts of computational re-
sources, with regards to both time and power. With an average training time
of around 15 hours (excluding the estimated training time for SAC), the time

Chapter 3. Method and set-up 23

demanded to get statistically robust results is significant. The demand for con-
stant monitoring in case of program crashes and need for manual continuation
is also an important factor.

6000 5000 4000 3000 2000 1000 0
Reward function value

0.0

0.2

0.4

0.6

0.8

1.0

Te
rm

 c
on

tri
bu

tio
n

(a)

0 20 40 60 80 100
Progress [%]

0.0

0.2

0.4

0.6

0.8

1.0

Te
rm

 c
on

tri
bu

tio
n

(b)

0 20 40 60 80 100
Collisions [%]

0.0

0.2

0.4

0.6

0.8

1.0

Te
rm

 c
on

tri
bu

tio
n

(c)

0 250 500 750 1000 1250 1500 1750 2000
Cross-track error [m]

0.0

0.2

0.4

0.6

0.8

1.0

Te
rm

 c
on

tri
bu

tio
n

(d)

0 5 10 15 20 25 30
Training time [Hours]

0.0

0.2

0.4

0.6

0.8

1.0

Te
rm

 c
on

tri
bu

tio
n

(e)

Figure 3.2.1: Plots of each metrics contribution curve in the performance and usability
functions.

24

Chapter 4

Results and Discussions

In this chapter, we present and discuss the results. This includes results from
both training and generalization testing of the agents.

4.1 Results

Remark: Note that the maximum value for Progress is ≈99% as being within
a small area around the goal position is considered finishing the episode.

The results from training of the agents are presented in Table 4.1.1 and
Figure 4.1.1. The numeric values for the performance P̄ and usability Ū are
also included. As mentioned in chapter 3 the metrics presented are averages
from the last 100 episodes of each agents training. This is then averaged over
two separate agents for each algorithm.

PPO ACKTR TD3 DDPG PPO LSTM A2C SAC
Algorithm

0

20

40

60

80

100

Pe
rfo

rm
an

ce
/U

sa
bi

lit
y

0

20

40

60

80

100
Performance
Usability

Figure 4.1.1: Plot of performance and usability for each algorithm. SAC is set to zero
because training was not completed.

The algorithms were also tested on two real-world scenarios, Agdenes-v0
and Trondheim-v0. A summarizing plot of the generalization performance for
each algorithm is presented in Figure 4.1.2. The specific results from the Ag-
denes tests are displayed in Table 4.1.2 while the results from Trondheim are

Chapter 4. Results and Discussions 25

in Table 4.1.3.

The values for DDPG and TD3 are blank because the vessel controlled by
these agents never reached a terminal state and were not able to complete an
episode. This was discovered after testing the TD3 agent for 859500 timesteps
and only getting 2.95% progress. A similar observation was made for DDPG.
The reason they are still present in the training results in Table 4.1.1 is due to
two factors; (1) The training mode includes a terminal state when reaching a
maximum number of timesteps which is not present when testing, and (2) the
training scenario is more complex to navigate in resulting in a higher chance of
collision, another terminal state.

PPO ACKTR A2C DDPG TD3
Algorithm

0

20

40

60

80

100

Pe
rfo

rm
an

ce

0

20

40

60

80

100
Trondheim
Agdenes

Figure 4.1.2: Plot of the generalizing performance for each algorithm in the Trond-
heim and Agdenes scenarios. DDPG and TD3 Performance is set to zero
because they were not able to finish the objective.

Figure 4.1.3 and 4.1.4 show examples of trajectories taken for each agent in
real-world environments. The agents are simulated for up to 10000 timesteps.
The PPO and ACKTR agents are able to finish the objective and reach the goal
position. The A2C agent gets about halfway, colliding in Agdenes, while the
DDPG and TD3 agents barely have any progress and are not able to come close
to reaching the objective.

The behavior of DDPG and TD3 agents was also investigated by running
scenarios with each agent as "autopilot" and visually inspecting the behavior in
real-time. This showed the agents making little to no progress towards the goal,
including standing still at the initial position, spinning in a seemingly random
manner, and stopping when met with an obstacle, depending on the scenario
and agent. Figure 4.1.3 and 4.1.4 show the same undesirable behavior for both

Chapter 4. Results and Discussions 26

DDPG and TD3.

The behavior of the A2C agent was investigated in the same way as DDPG
and TD3, but in the MovingObstacles scenario, and showed that the agent
seemed to disregard obstacles and collide often. Path-following performance
was adequate but it did not succeed in the obstacle avoidance part of the prob-
lem. This is confirmed by the high collision rate and relatively low cross-track
error for A2C in Table 4.1.1, and is backed by Figure 4.1.3d where the vessel
collides with the shoreline. Note that both the A2C, PPO LSTM and ACKTR
algorithms made the program crash during training.

Results after a round of hyperparameter tuning is presented in Table 4.1.4
along with a comment on how this compared to the previous tuning.

Table 4.1.1: Performance metrics for the RL algorithms. In MovingObstaclesNoRules-
v0. The metrics are averaged between two separate agents trained with
the same algorithm in the same environment for the same amount of
timesteps. The exception to this is PPO LSTM and SAC. For PPO LSTM,
only one agent was trained. SAC was only partially trained due long train-
ing time. Values that stand out as particularly good or bad are marked in
green or red respectively.

Algorithm Reward Progress Collision CTE Training P̄ Ū

PPO -775.2 97.3 % 2.0 % 547 m 3.25 h 78.8 81.3
DDPG -2211.9 4.1 % 5.5 % 315 m 9.17 h 45.0 43.1
TD3 -2021.4 4.9 % 0.5 % 471 m 9.05 h 51.7 48.8
A2C -3875.7 48.7 % 45.5 % 345 m 34.50 h 14.8 11.9
ACKTR -977.8 94.8 % 5.0 % 330 m 28.50 h 77.2 61.8
PPO LSTM -2338.9 10.7 % 8.0 % 1015 m 5.33 h 29.5 39.4
SAC - - - - - - -

Table 4.1.2: Performance metrics for the RL algorithms. In Agdenes-v0. The agent
trained first for each algorithm was used to prevent the introduction of
a bias. DDPG and TD3 are blank because they were not able to finish the
objective. Values that stand out as particularly good or bad are marked in
green or red respectively.

Algorithm Reward Progress Collisions CTE P̄
PPO -1626.84 93.59 % 10.0 % 184.9 m 72.8
DDPG - - - -
TD3 - - - -
A2C -17190.84 51.03 % 100 % 531.5 m 8.9
ACKTR -2557.04 88.9 % 16 % 182.4 m 58.9

Chapter 4. Results and Discussions 27

Table 4.1.3: Performance metrics for the RL algorithms. In Trondheim-v0. The agent
trained first for each algorithm was used to prevent the introduction of a
bias. DDPG and TD3 are blank because they were not able to finish the
objective. Values that stand out as particularly good or bad are marked in
green or red respectively.

Algorithm Reward Progress Collisions CTE P̄

PPO 1649.75 99.01 % 0.0 % 51.7 m 97.5
DDPG - - - -
TD3 - - - -
A2C -12851.36 61.22 % 79.0 % 164.7 m 19.0
ACKTR -2250.20 97.20 % 5.0 % 252.4 m 71.1

Table 4.1.4: Results for the separate training with tuned hyperparameters. In
MovingObstaclesNoRules-v0.

Algorithm Note P̄ Ū
PPO Parameters unchanged, no tuned training per-

formed
78.8 81.3

DDPG Very similar results as with previous parameters 41.2 39.4
TD3 Worse results than with previous parameters 30.7 34.6
A2C Training not finished, estimated training time over

100 h
- -

ACKTR Similar but slightly worse results, still crashed dur-
ing training

65.7 52.5

SAC Training not finished, estimated training time over
350 h

- -

Chapter 4. Results and Discussions 28

0.0 2.5 5.0 7.5 10.0 12.5
East (km)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

N
or

th
 (k

m
)

Goal

Start

(a) PPO

9.0 9.5 10.0 10.5
East (km)

1.2

1.5

1.8

2.0

2.2

2.5

2.8

3.0

N
or

th
 (k

m
)

(b) DDPG zoomed in

9.0 9.5 10.0 10.5
East (km)

1.8

2.0

2.2

2.5

2.8

3.0

3.2

3.5

N
or

th
 (k

m
)

(c) TD3 zoomed in

0.0 2.5 5.0 7.5 10.0 12.5
East (km)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

N
or

th
 (k

m
)

Goal

Start

(d) A2C

0.0 2.5 5.0 7.5 10.0 12.5
East (km)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

N
or

th
 (k

m
)

Goal

Start

(e) ACKTR

Figure 4.1.3: Plots of each agents trajectory in the Agdenes scenario. The thickest red
dashed line is the vessels trajectory and the black line is the desired path.

Chapter 4. Results and Discussions 29

10.0 15.0 20.0 25.0
East (km)

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

N
or

th
 (k

m
)

Goal

Start

(a) PPO

18.5 19.0 19.5 20.0
East (km)

2.8

3.0

3.2

3.5

3.8

4.0

4.2

4.5

N
or

th
 (k

m
)

(b) DDPG zoomed in

18.5 19.0 19.5 20.0
East (km)

3.0

3.2

3.5

3.8

4.0

4.2

4.5

4.8

N
or

th
 (k

m
)

(c) TD3 zoomed in

10.0 15.0 20.0 25.0
East (km)

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

N
or

th
 (k

m
)

Goal

Start

(d) A2C

10.0 15.0 20.0 25.0
East (km)

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

N
or

th
 (k

m
)

Goal

Start

(e) ACKTR

Figure 4.1.4: Plots of each agents trajectory in the Trondheim scenario. The thickest
red dashed line is the vessels trajectory and the black line is the desired
path.

Chapter 4. Results and Discussions 30

4.2 Discussion

From Figure 4.1.1 and 4.1.2 it is clear that PPO is the overall best algo-
rithm for this problem, and the claim from (Meyer, 2020) is confirmed. The
PPO agent has the shortest training time, and the best performance and usabil-
ity in all cases. This is also strengthened by the results in (Schulman, Wolski,
Dhariwal, Radford and Klimov, 2017) where PPO outperformed both A2C and
A2C with trust region (similar to ACKTR) in several continuous control envi-
ronments. The performance for ACKTR is also good, but we need to take in to
account that the training time is over 8x as long and that the algorithm crashes
during training. This brings the usability to a significantly lower level than the
performance.

The rest of the algorithms show overall poor performance and are not con-
sidered usable for this application. This is justified by the DDPG and TD3 agents
not being able to complete the real-world scenarios, the poor scores for A2C and
PPO LSTM, along with the unreasonable training time for SAC.

Figure 4.1.3 and 4.1.4 show that the qualitative behavior of the agents reflect
the quantitative results from the performance metric.

Training

The results discussed in this section are displayed in Table 4.1.1 and Fig-
ure 4.1.1

Training varied significantly between the algorithms. Some had reasonable
training times and completed without problems while others had longer train-
ing times and even crashed during execution. This required the training to be
manually continued from the last saved agent. The reason for this crashing is
not known with certainty but our hypothesis is that the computer ran out of
memory as the error that occurs is of type "MemoryError". This is backed by the
fact that it happens after several hours of training which reduces the chance of
it being implementation error.

The training with PPO was fast and gave excellent results. It had the overall
best performance and usability and is the preferable algorithm for this appli-
cation. If training time is taken into consideration, its lead increases over the
other algorithms.

ACKTR crashed once during training and had a total training time of 30
hours. Although the performance is good and almost on par with PPO, the
crashing is considered unacceptable and together with the long training time,
the conclusion is that ACKTR is not the preferred algorithms for this application.

Chapter 4. Results and Discussions 31

Training with A2C also crashed, up to three times, and had a total training
time of 37 hours. This is considered unacceptable and together with the overall
poor performance it makes the algorithm unusable in this application.

DDPG displayed reasonable overall performance in training but we notice a
particularly low value for the progress. This is an indicator that the vessel with
this agent may be standing still or at least not completing the episodes. This
was confirmed by the investigation explained in section 4.1. Training time is
relatively long but still within what we regard as acceptable. While the over-
all performance shows that DDPG may be applicable to this problem, the low
progress rate is alarming and it comes down to the generalization performance.

TD3 had very similar results to DDPG with the main deviation being a low
collision rate. Regardless, TD3 suffers from the same problem of a low average
progress and the same conclusion is made.

The PPO LSTM approach gave very similar results to DDPG and TD3 with a
low average progress. In addition, the algorithm crashed during training. Due
to these factors, we did not find it reasonable to use more resources in training
multiple agents or testing in real-world environments with this algorithm. It
also lead to the conclusion that it is not a good approach for this application.

SAC was initially believed to give good results as it was shown to outper-
form PPO, DDPG, and TD3 in several continuous control benchmarks (Haarnoja
et al., 2018), but this was contradicted after training started. It was discovered
that the training time would be unrealistically long. After 20 hours of training,
the algorithm had completed approximately 78 000 of 1.5M timesteps. This
lead to an estimated training time of 380 hours, or almost 16 days, which we
find to be unreasonable. Because of this, it was decided to disregard further
training and testing with this algorithm. It is also the reason for the lack of
results for SAC in Table 4.1.1.

In addition to the final results, it is interesting to look at the training history
to see the improvement over time with regards to the number of timesteps.
This is shown in Appendix B and C. Figure B.0.1 clearly shows that PPO and
ACKTR are the only agents with significant reward increase over time. This is
confirmed by the progress plots in Figure C.0.1 where PPO and ACKTR are the
only ones with increasing progress. All this indicates that the other algorithms
do not converge to a satisfactory optimum.

Generalization

As Figure 4.1.2 shows, the generalization performance of the agents is vary-
ing. Comparing the results in Figure 4.1.1 and Figure 4.1.2, the results for
training and generalization testing are similar for PPO, ACKTR and A2C. This

Chapter 4. Results and Discussions 32

indicates that these agents are generalizing well and not overfitting to, or ex-
ploiting weaknesses in, the training scenario. Even though good generalization
is indicated for the A2C agent, we argue that the generalization performance
is inconclusive. This is because it already had poor performance in the training
scenario, and a similar poor performance in real-world scenarios can then both
mean that it performs as good as in training and generalizes well, or that it sim-
ply does not generalize well at all. As shown in Figure 3.1.2b and Figure 3.1.2a
the Agdenes scenario is more difficult to navigate in than Trondheim which ex-
plains the consistently lower performance scores for Agdenes. We would like
to emphasize that a collision rate of over 10% for both ACKTR and PPO in Ag-
denes is still significant and shows that these agents might not be good enough
for actual real-world implementation yet.

The DDPG and TD3 agents were not able to complete any episodes in real-
world scenarios and one could assume that they do not generalize well. Al-
though bringing the training results into consideration, we see that the progress
they make is below 5% which is consistent with the behavior in the real-world
scenarios. It can then be argued that the same conclusion as for A2C can be
made, and that the poor performance in real-world scenarios is just a conse-
quence of an overall poor agent. Examples of this behavior are shown in Fig-
ure 4.1.3 and 4.1.4. As mentioned in previously, generalization testing was not
performed for SAC and PPO LSTM.

Hyperparameter tuning

The performance of algorithms is known to vary with different choices of hy-
perparameters. A separate round of tuning, with inspiration from the RL Base-
lines Zoo (RAFFIN, 2020), was performed to see if the results were drastically
different than the ones already presented. As shown in Table 4.1.4 it turned
out that the performance and usability of the tuned algorithms was similar, or
worse in some cases, than previously. In any case, it did not change the overall
results of our comparison. This strengthens our findings by indicating that the
poor performance of some agents was not a consequence of bad tuning.

Why do some algorithms fail in this application?

Looking at the overall results, taking the behavior itself into consideration,
it seems like the on-policy algorithms perform better than the off-policy ones.
This might be related to a statement made in (Sutton and Barto, 2018): In on-
policy methods, the agent commits to always exploring and tries to find the best
policy that still explores [...they estimate the value of a policy while using it for
control...]. In off-policy methods, the agent also explores, but learns a deterministic
optimal policy that may be unrelated to the policy followed. We see indications of

Chapter 4. Results and Discussions 33

this in the progress metric and in Figure 4.1.3 and 4.1.4 where the off-policy
algorithms DDPG and TD3 seem to have learned a target policy that is far from
optimal. Because it follows one policy µ and optimizes another π it seems like
the optimized target policy π does not have as optimal behavior as the updates
from following µ might indicate.

This is of course just one hypothesis and it does not explain the poor perfor-
mance of A2C. There may be a number of reasons why the specific algorithms
perform the way they do. One of the disadvantages with AI and machine learn-
ing methods is that the inner workings are complex and often lack explain-
ability. This is especially the case in RL and in methods where Deep Neural
Networks are used.

Performance and usability functions

The performance and usability functions are shaped to compare the specific
algorithms used in this specific problem, and are not made to be general mea-
sures for all algorithms in all applications. Which values are considered good
or acceptable for each metric is highly subjective and while we have tried to
be as objective as possible, some data from the trainings had to be used in
shaping the contribution curves. This is especially true for the reward function
value and training time, where reference values are needed in order to deter-
mine how good or bad a value is. Metrics like the progress and collision rate
are more intuitive and their contribution functions can be set independent from
the results in this implementation. The cross-track error is highly dependent on
the environment and is hard to quantify as small or large for a general function
used across multiple scenarios.

Using values from experience with training as reference values comes with
some drawbacks that we are aware of. This way of designing a function will
naturally give a bias towards differentiating the algorithms rather than creating
an objective metric. This is not seen as a major issue here, as the intention
behind creating this function is in fact differentiating the algorithms used. A
problem could occur if new algorithms were to be introduced and these perform
either better than the best or worse than the worst. The way the function is now
there would be little to no difference between the former best/worst and this
new algorithm.

A question that was considered when designing these functions was whether
to reward wanted behavior, punish unwanted behavior, or a combination of
both. We decided to reward wanted behavior to avoid negative values and make
it possible to limit the metric to an interval of 〈0, 100〉. This is an intuitive way
of looking at performance as it resembles a percentage measure.

Chapter 4. Results and Discussions 34

While we acknowledge their weaknesses, the performance and usability mea-
sures have served as good indicators of how the algorithms compare in this ap-
plication. The measures clearly separate the algorithms and have served their
purpose well.

35

Chapter 5

Conclusion and future work

In this chapter, we conclude the report, reflect on the work done, and outline
some alternatives for future work within this application.

5.1 Conclusions

The major conclusions of the thesis are:

• We have proved that the PPO RL algorithm is the best out of the selected
algorithms in the application of path-following and obstacle-avoidance for
autonomous vessels. The ACKTR agent also performed well in both train-
ing and generalization scenarios but because of the algorithm crashing
during training and a significantly longer training time, we conclude with
PPO being the best choice.

• This is justified using the custom performance and usability measures and
it was shown that PPO outperformed the other algorithms by a significant
margin with only ACKTR coming close. DDPG, TD3, A2C, PPO LSTM, and
SAC proved to perform poorly and are all considered inapplicable for this
problem.

• For the algorithms performing well, namely PPO and ACKTR, the agents
generalize well to real-world scenarios and show promising results for
realization on real vessels. We have also shown that the algorithms’ per-
formance stays consistent, relative to each other, for both training and
real-world scenarios. The generalization performance of the DDPG, TD3,
A2C, PPO LSTM and SAC agents stay inconclusive as these agents were
not able to perform well, even in the training scenario.

In doing so we answer all the research questions mentioned in subsection 1.2.2
thereby realizing all primary and secondary objectives.

Reflecting on the work done in this report, there are of course improvements
that could have been made. First of all, a selection of algorithms was chosen
based on a combination of availability from Stable Baselines and research in
algorithms that have been applied to similar problems previously. An option for
even more rigorous testing is to implement custom algorithms, either based on
Stable Baselines or through the introduction of new frameworks.

Chapter 5. Conclusion and future work 36

Another aspect is the tuning of hyperparameters. We present two different
tunings of the parameters but a more systematic and rigorous tuning is of course
preferred. We discuss this further in section 5.2.

In the initial work a lot of time was spent on setting up and understanding
the current implementation. This is of course a prerequisite for being able to
improve and update the code but thinking back, it would most likely have been
beneficial to spend time updating the algorithm implementation framework to
Stable Baselines3 (Raffin et al., 2019) or Ray RLlib(Liang et al., 2018). This
would have reduced the work related to package dependencies as there is more
support for later versions in these frameworks. More on this in section 5.2.

5.2 Future Work

5.2.1 Update frameworks

Due to the rapid development in the field of RL, implementations quickly be-
come outdated and need continuous updates. The current implementation has
many deprecation warnings due to the fact that it uses Stable Baselines, which
does not support Tensorflow 2. A suggestion is to update the code to use Stable
Baselines3 which is the successor to Stable Baselines that uses PyTorch. The
modular design of the software should make this possible. Stable Baselines3 is
currently in beta.

In terms of computational resource demand, it could be advantageous to
update the software to leverage cloud computing. An initial exploration of this
lead to the discovery of Ray RLlib which is compatible with Microsoft Azure.
RLlib is also an alternative to Stable Baselines3 and provides much of the same
functionality, in addition to a lot more.

We believe that an update to Stable Baselines3 would be the easiest but the
added functionality of RLlib could aid further development and is viewed as the
preferred and more future-proof alternative.

5.2.2 Multi-Agent Deep Reinforcement Learning (MADRL)

An illustration of the difference between a single-agent and multi-agent
setup is shown in Figure 5.2.1. The current implementation is made from a
single-agent perspective. Extending this to multi-agent environments is not
trivial and comes with both mathematical and software related challenges.
(Kapoor, 2018) lists and discusses some of these challenges. It is important
to note that multi-agent refers to more than just inserting multiple agents in an

Chapter 5. Conclusion and future work 37

environment. The multi-agent domain introduces the concept of collaboration,
in the form of both cooperative and competitive settings.

Another aspect is explained in Neto (2005):

Learning in multi-agent systems, however, poses the problem of non-
stationarity due to interactions with other agents. In fact, the RL meth-
ods for the single agent domain assume stationarity of the environment
and cannot be applied directly.

In other words, the stationarity assumption of MDP is broken in the multi-agent
case and we have to generalize it to a Markov Stochastic Game. A challenge is
that a MDP has at least one optimal policy and of the given optimal policies
at least one is stationary and deterministic. However, for many Markov games,
there is no deterministic optimal policy that is undominated because it critically
depends on the the behavior of the opponent. (Kapoor, 2018)

Other challenges include difficulty specifying a global learning goal, the
curse of dimensionality, and instability of the learning dynamics. As displayed
in Figure 5.2.1, multiple agents can share a policy. From a software perspective
this introduction of shared resources also proposes a challenge.

Stable Baselines does not currently have support for multi-agent RL algo-
rithms and software has to be revised implementing a MADRL-supported plat-
form. The OpenAI Gym framework is capable of multi-agent implementations
and has been used for this in research (OpenAI, 2019). A suggestion is to inves-
tigate the possibility of using Ray RLlib which has support for scalable multi-
agent algorithms and environments. From a software architecture point of view,
the code is made in a modular way to facilitate extensions and prevent the need
to change all parts of the code.

A selection of relevant resources for multi-agent reinforcement learning is:
(Kapoor, 2018), (Buşoniu et al., 2010), and (Liang and Liaw, 2018).

5.2.3 Inverse RL

An advantage of RL is its possibility to learn from demonstration, not only
the policy but the reward function itself. We propose an extension of this project
where the concept of inverse RL is used. This is an approach where the reward
function is learned implicitly from demonstration. Reward function design is
one of the biggest challenges in RL and is crucial for the performance of the
agent. Being able to learn the reward function from demonstration would elim-
inate this step and significantly simplify the RL design process. (Hwang et al.,
2019) shows successful steps towards realizing this which were validated in

Chapter 5. Conclusion and future work 38

 MultiAgentEnv Agent N

Policy 1

Policy 2

Policy M

 SingleAgentEnv Agent Policy

Figure 5.2.1: Illustration of the difference between a single-agent and multi-agent
setup.

several classical benchmark domains, but there is still need to experiment with
more complex environments.

Another similar approach is to learn the policy by having an expert (human)
control the vessel for some episodes first to get expert trajectories and pre-train
the agent using this. This might improve the convergence rate significantly as
the initial random exploration is reduced. An implementation of this using PPO
and GAIL (Hill et al., 2018) was attempted but did not yield great results and
the implementation was concluded to be unsuccessful. Further research into
this is suggested.

5.2.4 Hyperparameter tuning

Tuning the hyperparameters for each algorithm is an important factor in the
resulting performance. Due to the high demand for computational time and
power for testing each configuration, this is a demanding task and could be ex-
plored systematically in further research. In this project, we have experimented
with two different configurations, one of which is based on (RAFFIN, 2020). A
better approach would be to implement some sort of grid search or Bayesian
optimization for hyperparameter tuning. RLlib and Ray Tune (Liaw et al., 2018)
include options for this.

39

Bibliography

AUTOSHIP Project (2020), https://www.autoship-project.eu/. accessed:
2020-10-22.

Ba, J., Grosse, R. and Martens, J. (2017), ‘Distributed second-order optimiza-
tion using kronecker-factored approximations’.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.
and Zaremba, W. (2016), ‘Openai gym’.

Buşoniu, L., Babuška, R. and De Schutter, B. (2010), Multi-agent reinforce-
ment learning: An overview, in ‘Innovations in multi-agent systems and
applications-1’, Springer, pp. 183–221.

Chilamkurthy, K. (2020), ‘Off-policy vs on-policy vs offline reinforce-
ment learning demystified!’, https://towardsdatascience.com/

off-policy-vs-on-policy-vs-offline-reinforcement-learning-demystified-f7f87e275b48.
accessed: 2020-11-09.

de la Campa Portela, R. (2005), ‘Maritime casualties analysis as atool to im-
prove research abouthuman factors on maritimeenvironment.’.

Fossen, T. (2021), Handbook of Marine Craft Hydrodynamics and Motion Con-
trol, John Wiley & Sons.

Fujimoto, S., van Hoof, H. and Meger, D. (2018), ‘Addressing function approxi-
mation error in actor-critic methods’.

Haarnoja, T., Zhou, A., Abbeel, P. and Levine, S. (2018), ‘Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic ac-
tor’.

He, J., Chen, J., He, X., Gao, J., Li, L., Deng, L. and Ostendorf, M. (2016), ‘Deep
reinforcement learning with a natural language action space’.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D. and Meger, D.
(2019), ‘Deep reinforcement learning that matters’.

https://www.autoship-project.eu/
https://towardsdatascience.com/off-policy-vs-on-policy-vs-offline-reinforcement-learning-demystified-f7f87e275b48
https://towardsdatascience.com/off-policy-vs-on-policy-vs-offline-reinforcement-learning-demystified-f7f87e275b48

Bibliography 40

Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kanervisto, A., Traore, R., Dhariwal,
P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A., Schulman, J.,
Sidor, S. and Wu, Y. (2018), ‘Stable baselines’, https://github.com/hill-a/
stable-baselines.

Hochreiter, S. and Schmidhuber, J. (1997), ‘Long short-term memory’.

Hoem, Å., Fjørtoft, K. and Rødseth, Ø. (2019), ‘Addressing the accidental risks
of maritime transportation: Could autonomous shipping technology improve
the statistics?’.

Hwang, R., Lee, H. and Hwang, H. J. (2019), ‘Option compatible reward inverse
reinforcement learning’.

International Chamber of Shipping (2020), https://www.ics-shipping.org/
shipping-facts/shipping-and-world-trade. accessed: 2020-10-22.

Kapoor, S. (2018), ‘Multi-agent reinforcement learning: A report on challenges
and approaches’, arXiv preprint arXiv:1807.09427 .

Li, Y. (2018), ‘Deep reinforcement learning: An overview’.

Liang, E. and Liaw, R. (2018), ‘Scaling multi-agent reinforcement learn-
ing’, https://bair.berkeley.edu/blog/2018/12/12/rllib/?fbclid=

IwAR0v2zesfYwYmLpxCJ0aeUOSqiSFpgnZY04MGIOQBLt5SQ59r-SakEGckhQ&

utm_campaign=Artificial%2BIntelligence%2Band%2BDeep%2BLearning%

2BWeekly&utm_medium=web&utm_source=Artificial_Intelligence_and_

Deep_Learning_Weekly_84.

Liang, E., Liaw, R., Moritz, P., Nishihara, R., Fox, R., Goldberg, K., Gonzalez,
J. E., Jordan, M. I. and Stoica, I. (2018), ‘Rllib: Abstractions for distributed
reinforcement learning’.

Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J. E. and Stoica, I.
(2018), ‘Tune: A research platform for distributed model selection and train-
ing’, arXiv preprint arXiv:1807.05118 .

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D. and
Wierstra, D. (2015), ‘Continuous control with deep reinforcement learning’.

Maei, H. R., Szepesvári, C., Bhatnagar, S. and Sutton, R. S. (2010), ‘Toward
off-policy learning control with function approximation’.

Meyer, E. (2020), ‘On course towards model-free guidance, a self-learning ap-
proach to dynamic collision avoidance for autonomous surface vehicles’.

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://www.ics-shipping.org/shipping-facts/shipping-and-world-trade
https://www.ics-shipping.org/shipping-facts/shipping-and-world-trade
https://bair.berkeley.edu/blog/2018/12/12/rllib/?fbclid=IwAR0v2zesfYwYmLpxCJ0aeUOSqiSFpgnZY04MGIOQBLt5SQ59r-SakEGckhQ&utm_campaign=Artificial%2BIntelligence%2Band%2BDeep%2BLearning%2BWeekly&utm_medium=web&utm_source=Artificial_Intelligence_and_Deep_Learning_Weekly_84
https://bair.berkeley.edu/blog/2018/12/12/rllib/?fbclid=IwAR0v2zesfYwYmLpxCJ0aeUOSqiSFpgnZY04MGIOQBLt5SQ59r-SakEGckhQ&utm_campaign=Artificial%2BIntelligence%2Band%2BDeep%2BLearning%2BWeekly&utm_medium=web&utm_source=Artificial_Intelligence_and_Deep_Learning_Weekly_84
https://bair.berkeley.edu/blog/2018/12/12/rllib/?fbclid=IwAR0v2zesfYwYmLpxCJ0aeUOSqiSFpgnZY04MGIOQBLt5SQ59r-SakEGckhQ&utm_campaign=Artificial%2BIntelligence%2Band%2BDeep%2BLearning%2BWeekly&utm_medium=web&utm_source=Artificial_Intelligence_and_Deep_Learning_Weekly_84
https://bair.berkeley.edu/blog/2018/12/12/rllib/?fbclid=IwAR0v2zesfYwYmLpxCJ0aeUOSqiSFpgnZY04MGIOQBLt5SQ59r-SakEGckhQ&utm_campaign=Artificial%2BIntelligence%2Band%2BDeep%2BLearning%2BWeekly&utm_medium=web&utm_source=Artificial_Intelligence_and_Deep_Learning_Weekly_84
https://bair.berkeley.edu/blog/2018/12/12/rllib/?fbclid=IwAR0v2zesfYwYmLpxCJ0aeUOSqiSFpgnZY04MGIOQBLt5SQ59r-SakEGckhQ&utm_campaign=Artificial%2BIntelligence%2Band%2BDeep%2BLearning%2BWeekly&utm_medium=web&utm_source=Artificial_Intelligence_and_Deep_Learning_Weekly_84

Bibliography 41

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D.
and Kavukcuoglu, K. (2016), ‘Asynchronous methods for deep reinforcement
learning’.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.
and Riedmiller, M. (2013), ‘Playing atari with deep reinforcement learning’.

Neto, G. (2005), ‘From single-agent to multi-agent reinforcement learning:
Foundational concepts and methods, learning theory course’.

Niroui, F., Zhang, K., Kashino, Z. and Nejat, G. (2019), ‘Deep reinforcement
learning robot for search and rescue applications: Exploration in unknown
cluttered environments’.

Norwegian Forum for Autonomous Ships (NFAS) (2020), http://nfas.

autonomous-ship.org/. Accessed: 2020-10-22.

OpenAI (2019), ‘Emergent tool use from multi-agent interaction’, https://

openai.com/blog/emergent-tool-use/.

RAFFIN, A. (2020), ‘Rl baselines zoo: a collection of pre-trained reinforcement
learning agents’, https://github.com/araffin/rl-baselines-zoo.

Raffin, A., Hill, A., Ernestus, M., Gleave, A., Kanervisto, A. and
Dormann, N. (2019), ‘Stable baselines3’, https://github.com/DLR-RM/

stable-baselines3.

Schulman, J., Levine, S., Moritz, P., Jordan, M. I. and Abbeel, P. (2017), ‘Trust
region policy optimization’.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov, O. (2017), ‘Prox-
imal policy optimization algorithms’.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman,
S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach,
M., Kavukcuoglu, K., Graepel, T. and Hassabis, D. (2016), ‘Mastering the
game of go with deep neural networks and tree search.’.

Skjetne, R., Smogeli, Ø. N. and Fossen, T. I. (2004), ‘A nonlinear ship ma-
noeuvering model: Identification and adaptive control with experiments for
a model ship’.

Sutton, R. S. and Barto, A. G. (2018), Reinforcement Learning: An Introduction,
second ed., The MIT Press.

http://nfas.autonomous-ship.org/
http://nfas.autonomous-ship.org/
https://openai.com/blog/emergent-tool-use/
https://openai.com/blog/emergent-tool-use/
https://github.com/araffin/rl-baselines-zoo
https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3

Bibliography 42

Tosatto, S. (2020), ‘Enhancing sample efficiency in reinforcement learn-
ing with nonparametric methods’, https://developer.nvidia.com/blog/

enhancing-sample-efficiency-in-reinforcement-learning-with-nonparametric-methods/.
accessed: 2020-11-09.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Courna-
peau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt,
S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones,
E., Kern, R., Larson, E., Carey, C., İlhan Polat, Feng, Y., Moore, E. W., Vander-
Plas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.,
Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P.
and Contributors, S. . (2019), ‘Scipy 1.0–fundamental algorithms for scien-
tific computing in python’.

Williams, R. J. (1992), ‘Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning’.

Wu, Y., Mansimov, E., Liao, S., Grosse, R. and Ba, J. (2017), ‘Scalable trust-
region method for deep reinforcement learning using kronecker-factored ap-
proximation’.

Wu, Y., Mansimov, E., Liao, S., Radford, A. and Schulman, J. (2017), ‘Openai
baselines: Acktr & a2c’.

Ødegård Teigen, H. (2020), ‘Gym-auv github repository’, https://github.com/
halvorot/gym-auv.

https://developer.nvidia.com/blog/enhancing-sample-efficiency-in-reinforcement-learning-with-nonparametric-methods/
https://developer.nvidia.com/blog/enhancing-sample-efficiency-in-reinforcement-learning-with-nonparametric-methods/
https://github.com/halvorot/gym-auv
https://github.com/halvorot/gym-auv

43

Appendix A

Hyperparameters

Parameter Value Alt. value
Number of steps to run for each environment per update 1024 1024
Number of training minibatches per update 32 32
Factor for trade-off of bias vs variance λ 0.98 0.98
Discount factor γ 0.999 0.999
Number of epoch when optimizing the surrogate 4 4
Entropy coefficient for the loss calculation 0.01 0.01
Learning rate 2e-4 2e-4

Table A.0.1: Hyperparameter values for PPO algorithm. Value is the value used for
main trainings while Alt. value is the value used in the tuned training.

Parameter Value Alt. value
Number of steps to run for each environment per update 1024 1024
Number of training minibatches per update 1 1
Factor for trade-off of bias vs variance λ 0.98 0.98
Discount factor γ 0.999 0.999
Number of epoch when optimizing the surrogate 4 4
Entropy coefficient for the loss calculation 0.01 0.01
Learning rate 2e-4 2e-4

Table A.0.2: Hyperparameter values for PPO LSTM algorithm. Value is the value used
for main trainings while Alt. value is the value used in the tuned training.

Parameter Value Alt. value
Number of steps to run for each environment - 16
Discount factor γ - 0.99
Entropy coefficient for the loss calculation - 0.0
Learning rate - 0.06
The type of scheduler for the learning rate update - Constant

Table A.0.3: Hyperparameter values for ACKTR algorithm. Value is the value used for
main trainings while Alt. value is the value used in the tuned training.

Appendix A. Hyperparameters 44

Parameter Value Alt. value
Size of the replay buffer 1000000 50000
Normalize observations True True
Normalize returns False False
Discount factor γ 0.98 0.98
Actor learning rate 0.00156 0.00156
Critic learning rate 0.00156 0.00156
Batch size 256 256

Parameter noise type
AdaptiveParamNoise

stddev 0.287
AdaptiveParamNoise

stddev 0.1

Table A.0.4: Hyperparameter values for DDPG algorithm. Value is the value used for
main trainings while Alt. value is the value used in the tuned training.

Parameter Value Alt. value
Size of the replay buffer 1000000 50000
Update the model every "Value"
steps.

1000 -

Gradient updates after each step 1000 -
Steps before learning starts 10000 1000
Batch size - 256

Action noise type
NormalActionNoise
mean 0, stddev 0.1

NormalActionNoise
mean 0, stddev 0.1

Table A.0.5: Hyperparameter values for TD3 algorithm. Value is the value used for
main trainings while Alt. value is the value used in the tuned training.

Parameter Value Alt. value
Number of steps to run for each environment per update 16 5
Discount factor γ 0.99 0.995
Entropy coefficient for the loss calculation 0.001 0.00001
Learning rate 2e-4 0.00083
The type of scheduler for the learning rate update Linear Linear

Table A.0.6: Hyperparameter values for A2C algorithm. Value is the value used for
main trainings while Alt. value is the value used in the tuned training.

Parameter Value Alt. value
Batch size - 256
Number of steps before learning starts - 1000

Table A.0.7: Hyperparameter values for SAC algorithm. Value is the value used for
main trainings while Alt. value is the value used in the tuned training.

45

Appendix B

Reward plots

0 200 400 600 800 1000 1200
Episode

7000

6000

5000

4000

3000

2000

1000

0

R
ew

ar
d

(a) PPO, 1.5M timesteps of training equal
to approximately 1150 episodes

0 100 200 300 400 500
Episode

7000

6000

5000

4000

3000

2000

1000

R
ew

ar
d

(b) DDPG, 1.5M timesteps of training
equal to approximately 550 episodes

0 100 200 300 400 500 600 700
Episode

6000

5000

4000

3000

2000

1000

R
ew

ar
d

(c) TD3, 1.5M timesteps of training equal
to approximately 650 episodes

0 100 200 300 400 500 600
Episode

7000

6000

5000

4000

3000

2000

1000

R
ew

ar
d

(d) A2C, last 528 000 timesteps of training
equal to approximately 600 episodes

0 200 400 600 800 1000
Episode

7000

6000

5000

4000

3000

2000

1000

0

R
ew

ar
d

(e) ACKTR, last 831 000 timesteps of
training equal to approximately 1100
episodes

0 100 200 300 400 500 600
Episode

7000

6000

5000

4000

3000

2000

R
ew

ar
d

(f) PPO LSTM, first 1.27M timesteps of
training equal to approximately 600
episodes

Figure B.0.1: Plots of the reward gathered in each episode during training for each of
the algorithms. The moving average of the reward is displayed as a solid
line.

46

Appendix C

Progress plots

0 200 400 600 800 1000 1200
Episode

0%

20%

40%

60%

80%

100%

Pr
og

re
ss

 [%
]

(a) PPO, 1.5M timesteps of training equal
to approximately 1150 episodes

0 100 200 300 400 500
Episode

0%

10%

20%

30%

40%

50%

60%

Pr
og

re
ss

 [%
]

(b) DDPG, 1.5M timesteps of training
equal to approximately 550 episodes

0 100 200 300 400 500 600 700
Episode

0%

20%

40%

60%

80%

100%

Pr
og

re
ss

 [%
]

(c) TD3, 1.5M timesteps of training equal
to approximately 650 episodes

0 100 200 300 400 500 600
Episode

0%

20%

40%

60%

80%

100%

Pr
og

re
ss

 [%
]

(d) A2C, last 528 000 timesteps of training
equal to approximately 600 episodes

0 200 400 600 800 1000
Episode

0%

20%

40%

60%

80%

100%

Pr
og

re
ss

 [%
]

(e) ACKTR, last 831 000 timesteps of
training equal to approximately 1100
episodes

0 100 200 300 400 500 600
Episode

0%

10%

20%

30%

40%

50%

60%

70%

Pr
og

re
ss

 [%
]

(f) PPO LSTM, first 1.27M timesteps of
training equal to approximately 600
episodes

Figure C.0.1: Plots of the progress made by the agent in each episode during train-
ing for each of the algorithms. The moving average of the progress is
displayed as a solid line.

	Preface
	List of Figures
	List of Tables
	Nomenclature
	Abstract
	Sammendrag
	Introduction
	Motivation and Background
	State of the art

	Research Objectives and research questions
	Objectives
	Research Questions

	Outline of Report

	Theory
	Dynamics of marine vessels
	Deep Reinforcement Learning
	Preliminaries
	Value-based methods
	Policy-based methods
	Actor-Critic methods
	DRL Algorithms

	Method and set-up
	Set-up
	Method
	Installation and setup of simulator
	Execution of experiment
	Measuring performance

	Results and Discussions
	Results
	Discussion

	Conclusion and future work
	Conclusions
	Future Work
	Update frameworks
	Multi-Agent Deep Reinforcement Learning (MADRL)
	Inverse RL
	Hyperparameter tuning

	Appendices
	Hyperparameters
	Reward plots
	Progress plots

