
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g 

Cy
be

rn
et

ic
s

M
alm

in &
 Ø

degård Teigen
RL and PSF for Safe AI in FO

W
T Control

Vebjørn Malmin
Halvor Ødegård Teigen

Reinforcement Learning and
Predictive Safety Filtering for Floating
Offshore Wind Turbine Control

A Step Towards Safe AI

Master’s thesis in Cybernetics and Robotics
Supervisor: Adil Rasheed

June 2021

M
as

te
r’s

 th
es

is





Vebjørn Malmin
Halvor Ødegård Teigen

Reinforcement Learning and Predictive
Safety Filtering for Floating Offshore
Wind Turbine Control

A Step Towards Safe AI

Master’s thesis in Cybernetics and Robotics
Supervisor: Adil Rasheed
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics





i

Preface

This report is written as a part of TTK4900 Master Thesis and concludes our
Masters Degree in Cybernetics and Robotics at the Department of Engineering
Cybernetics at the Norwegian University of Science and Technology (NTNU). The
work was supervised by Professor Adil Rasheed.

We would like to thank Thomas N. Larsen for being a great discussion partner
and for his input throughout the work. Finally, we would like to thank Professor
Adil Rasheed for always being available for questions and for his guidance and
supervision during this project.

This work was done as a part of the Operational Control for Wind Power Plants
(Grant No.: 268044/E20) project funded by the Norwegian Research Council and
its industrial partners (Equinor, Vestas, Vattenfall) in collaboration with SINTEF
Digital.

Trondheim, 7.6.2021
Halvor Ødegård Teigen
Vebjørn Malmin



i

Abstract

Artificial intelligence is seen as one of the most significant leaps in technology in
recent years, with the subcategory of reinforcement learning showing exceptional
results for previously thought-to-be impossible problems. However, one of the ma-
jor concerns with reinforcement learning methods is related to a complete lack of
guarantees on their performance and safety. This has limited their use in safety
critical and high-stakes real-life applications. To this end, our research attempts to
address the issue by developing a framework for combining reinforcement learn-
ing with an adaptation of model predictive control called the predictive safety fil-
ter. The framework, capable of guaranteeing stability and constraint satisfaction,
will bridge the gap between research and real-world applications.

The framework is applied to a floating offshore wind turbine, due to their
increasing importance and significance in both Norwegian and international in-
dustry. The complicated and constantly evolving dynamics of wind turbines pro-
mote the use of learning-based methods, eliminating the need for expensive and
time consuming derivations of mathematical models. We show that applying our
method can ensure constraint satisfaction both during the training and after the
deployment of a reinforcement learning agent controlling the turbine. We also
show that the predictive safety filter in some cases accelerates the learning.

The framework RL-PSF (Teigen and Malmin, 2021) is written in Python, and is
publicly available as open-source code under the GNU General Public License. The
implementation is designed to be highly modular, in the sense that it can be used
with any learning-based controller and is not domain or application specific. This
will enable further research in the field of safe artificial intelligence.
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Sammendrag

Kunstig intelligens blir sett på som et av de mest betydningsfulle sprangene
innen teknologi de siste årene. Underkategorien forsterkende læring har vist ek-
sepsjonelle resultater for problemer som tidligere var antatt umulige. Samtidig
er en av de største bekymringene med metoder innen forsterkende læring knyt-
tet til en fullstendig mangel på garantier for ytelse og sikkerhet. Dette har be-
grenset bruken av metoden i sikkerhetskritiske applikasjoner. Forskningen som
presenteres i denne teskten prøver å løse problemet ved å utvikle et rammeverk
som kombinerer forsterkende læring med en tilpasset versjon av modell prediktiv
kontroll. Kontrolalgoritmen har fått navnet prediktivt sikkerhetsfilter, og brukes
i rammeverket på grunn av filters evne til tilfredstille beskraninger og garantere
stabilitet. Rammeverket har som mål å bygge bro mellom forskning og virkelige
applikasjoner for sikker bruk av forsterkende læring.

Grunnet den store veksten innen utenskjærs vindkraft, i både norsk og inter-
nasjonal industri, ble rammeverket anvendt på en flytende vindturbin for å under-
søke dets ytelse og anvendbarhet. Den kompliserte dynamikken til vindturbiner
fremmer bruken av læringsbaserte metoder, noe som eliminerer behovet for dyre
og tidkrevende utledninger av matematiske modeller. Vi viser at bruk av rammev-
erket kan sikre mot brudd av beskrankninger når en forsterkningslæringsagent
styrer turbinen - både under trening og etter utplassering. I tillegg viser vi at det
prediktive sikkerhetsfilteret kan akselererer læringen i noen tilfeller.

Rammeverket RL-PSF (Teigen and Malmin, 2021) er skrevet i Python, og er
offentlig tilgjengelig som åpen kildekode under GNU General Public License. Im-
plementeringen er designet for å være svært modulær, i den forstand at den kan
brukes med en hvilken som helst læringsbasert regulator og ikke er domene-
eller applikasjonsspesifikk. Dette vil muliggjøre videre forskning innen fagområdet
sikker kunstig intelligens.
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Chapter 1

Introduction
Reinforcement Learning (RL) has gained substantial traction in recent years,
superseding the performance of state-of-the-art methods. The field has ren-
dered previously thought-to-be impossible control tasks, such as autonomous
vehicles, possible. The advancement of this technology has vast potential and
could revolutionize the industry throughout. However, its black-box nature and
the lack of safety guarantees raise concerns in industry adaptation and limit its
use-case in real-world applications.

Safety certification through adapted control methods is emerging as a
way to harness the power of RL while retaining the formal proofs of stability.
The field is novel and in need of further exploration. This thesis explores one
of these methods applied to an offshore wind turbine system and provides a
framework for further exploration of its potential in similar applications.

1.1 Motivation and background

Floating offshore wind turbines

Reports from the Intergovernmental Panel on Climate Change (IPCC, 2021)
show that climate change and global warming is in fact real, and may have enor-
mous consequences for the planet. The reports also point out that "Limiting global
warming to 1.5oC rather than 2oC above pre-industrial levels would make it markedly
easier to achieve many aspects of sustainable development, with greater potential to
eradicate poverty and reduce inequalities". With the energy sector and industrial
processes accounting for 76% of global greenhouse gas emissions in 2018 (World
Resources Institute, 2021), it is clear that this is a sector in need of renewable
alternatives.

The International Energy Agency’s (IEA) Sustainable Development Scenario
(SDS) aims to realize the goal of 1.5oC and outlines a significant transformation in
the global energy system where wind power is one of the main focuses. According
to the IEA, offshore wind power has increased significantly in recent years and
will have to continue to accelerate to reach the Sustainable Development Goals.
As seen in Figure 1.1.1, the SDS outlines a significant increase in offshore wind
power generation within 2030. The IEA reports that expansion is accelerating in
China, and the European Union has returned to growth after a slowdown in 2018,
with record installations in 2019. The European Energy Research Alliance (EERA)
has also started the JP WIND program to provide strategic leadership for research
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and to support the European wind energy industry. EERA’s DeepWind conference
presents the state of the art in on-going research and innovation related to deep-
sea offshore wind farms and is hosted annually by SINTEF in Trondheim.

Wind power is one of the fastest-growing energy sources globally, with a 53%
growth in 2020 (Global Wind Energy Council, 2021). It is not a particularly new
technology, and the Norwegian Statkraft has developed on-shore wind turbines
for around 20 years. However, these on-shore wind farms have created opposition
due to their many environmental issues. Despite its renewable energy generation,
other environmental concerns like wildlife disruption, noise pollution, and visual
intrusion on nature have raised concerns about their development. Bringing the
turbines offshore eliminates many of these concerns and has become a focus area
with projects like Vineyard Wind 1 (Vineyard Wind 1, 2021), Empire Wind 2, and
Beacon Wind 1 (NTB, 2021). Norway is a major contributor to this development,
with Equinor landing contracts for the latter two and other projects like the Norwe-
gian Offshore Wind Cluster. The Norwegian Offshore Wind Cluster was established
in 2016 to be the most vital supply chain for floating offshore wind worldwide.
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Figure 1.1.1: Offshore wind power generation according to the Sustainable Development
Scenario, 2000-2030, (IEA, 2020).

Deep reinforcement learning

Offshore wind turbines include several control systems to stabilize the turbine
and keep the power generation optimal. The downside of using traditional control
methods is the need for complex mathematical models of the dynamics (which
is rarely fully known). Individual controllers for each subsystem, and a switch
between controllers for low and high wind speeds, are also common (Jafarnejad-
sani et al., 2012). Using model-free RL removes the need for complex models and
explicit behavioral programming and creates a global controller for the whole sys-
tem. The RL agent learns the end-to-end connection between observations and
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actions through the principle of trial and error, which has shown remarkable re-
sults in applications such as games (Silver et al., 2016), robotics (Niroui et al.,
2019), and natural language processing (He et al., 2016).

Unlike some advanced model-based control strategies, like Model Predictive
Control (MPC), RL does not have to use a model or solve an optimization problem
at each timestep once the agent is trained and deployed. It exclusively uses the
learned policy, which makes it more suitable for real-time applications. Another
advantage of RL’s learning-based nature is that an agent can continue to learn
after deployment if desired. The ultimate end goal is to deploy a trained agent
onto a physical Floating Offshore Wind Turbine (FOWT) to use its knowledge of
the simulated turbine to control the real-world one safely. The belief is then that
the agent can take advantage of its robustness and, optionally, further adapt the
policy to the nonlinearities of the real-world turbine.

Although RL as a concept has proven powerful for various problems, there are
major concerns regarding safety requirements and constraint satisfaction due to its
black-box nature. This causes problems during training of the agent due to the trial
and error methodology of RL, but also after deployment because of explainability
issues. The low interpretability has reduced the applicability of RL in real-world,
safety-critical applications and is one of the most significant drawbacks of this
approach.

Safe RL and Predictive Safety Filtering

In the process of learning the dynamics of a system, an RL agent has to explore
the environment by bringing the system to a variety of states. This exploration
often leads the agent to be in unwanted and unsafe states. Even an optimal policy
(in the eyes of the agent) may perform poorly in some cases (Taha, 2013). The
agent’s perception of optimality is highly dependent on how we define it through
the so-called reward function. An important thing to note is that optimal long-
term performance does not necessarily avoid the rare occurrences of unwanted
adverse outcomes. Several methods to increase safety and constraint satisfaction
for real-world applications have been presented by researchers to reduce the risk
of this. Some of them relate to changing the RL internally, while others apply a
more modular approach, e.g., by filtering the signals from the RL externally.

García and Fernández (2015) present some of the different approaches to safe
RL that are related to changes internally. They present two main categories for
the solution, modifying the optimality criterion of the RL agent with a risk fac-
tor (Sato et al., 2001; Gaskett, 2003; Geibel and Wysotzki, 2005), or modifying
the exploration process itself (Gehring and Precup, 2013; Garcia and Fernández,
2012). A typical property of the approaches in García and Fernández (2015) is
that they reduce the risk of unsafe behavior, but there is no guarantee of risk elim-
ination. However, one of the approaches shows an exciting concept to expand on,
Teacher Advising. The concept is a way of altering the exploration process where
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a teacher with knowledge of the system can provide advice (e.g., safe actions) to
the learner when either the learner or the teacher considers it necessary to prevent
catastrophic situations (García and Fernández, 2015). This way of thinking is sim-
ilar to the approach used in this thesis, namely predictive safety filtering, which
acts as the teacher and filters the actions of the RL externally.

The combination of RL and traditional control theory is an active area of re-
search (Xie et al., 2020; Paden et al., 2016; Kamthe and Deisenroth, 2018). MPC
is an advanced control strategy known for its stability and constraint satisfaction
guarantees, and is widely used in state-of-the-art applications (Gros and Schild,
2017; Hewing et al., 2020). An adaptation of MPC, called Predictive Safety Filter
(PSF), has shown remarkable results (Wabersich and Zeilinger, 2018b) and could
be the next step towards guarantees in safe RL. Instead of advising the agent, the
PSF acts as an intermediary and filters actions that promote unsafe exploration.
The PSF is optimizing for minimal intervention, based on its understanding of the
underlying system, while still safekeeping the system. The modularity of it adds
the ability of being compatible with any controller. The field is still novel and has
seen few practical implementations.

Through adding a PSF, the RL agent no longer interacts freely with the envi-
ronment, raising questions on training progress and performance with imposed
exploration restrictions. This encouraged experimentation on a practical imple-
mentation. A FOWT was used as our dynamical system controlled by an RL agent
in conjunction with a PSF.

1.1.1 State of the art

Floating offshore wind turbine

The NREL 5MW turbine (JM et al., 2009) has for a long time been the state-of-
the-art reference wind turbine (RWT) used for research with its over 4500 citations
according to Google Scholar. This turbine has been sufficient until recent years as
the average turbine size for fixed-bottom offshore wind energy in Europe in 2018
was 6.8MW . However, the turbine capacity has increased by 16% every year from
2014 to 2019 and continued to grow to 7.8 MW in 2019 (Europe, 2019). Higher
demands for power generation and increasingly larger turbines in the industry led
to the development of a new 15MW turbine in 2020. As explained by Gaertner
et al. (2020): GE will launch its 12-MW Haliade-X offshore turbine to the market
in 2021 [...]. To be relevant now and in the coming years, a new reference wind
turbine should leap ahead of the current generation of industrial wind turbines, but
cannot leap so far that aggressive technology innovations are required. Therefore, a
reference wind turbine above 10 MW, yet below 20 MW, is needed. The IEA 15MW
(Gaertner et al., 2020) is now becoming the new state of the art within wind
turbine research. The turbine is developed as both a floating (Allen et al., 2020)
and a monopile structure (Gaertner et al., 2020).
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For control, the IEA 15MW reference turbine implements two proportional-
integral (PI) controllers, one for the generator torque and another for the blade
pitch angles. More advanced control methods for variable speed variable pitch
(VSVP) turbines have been proposed. Examples are adaptive control based on
Radial-Basis-Function Neural networks (Jafarnejadsani et al., 2012), and sched-
uled MPC (Kumar and Stol, 2009).

Reinforcement learning

RL is a rapidly developing field with the state of the art constantly evolving.
There are a number of toolkits, frameworks, and libraries available for implement-
ing, testing, and comparing RL algorithms in various applications. The OpenAI
Gym toolkit (Brockman et al., 2016) has quickly become a state-of-the-art frame-
work for RL applications and is widely used in research within this field. Its popu-
larity reflects its ease of use, flexibility, and powerful capabilities. Stable Baselines3
(SB3) (Raffin et al., 2019) is a set of improved implementations of RL algorithms
based on OpenAI Baselines. It has en easy to use interface and many state-of-the-
art algorithms implemented, such as PPO (Schulman, Wolski, Dhariwal, Radford
and Klimov, 2017), DDPG (Lillicrap et al., 2015), and TD3 (Fujimoto et al., 2018).
SB3 is the next major version of Stable Baselines and introduces backend changes
like a move from Tensorflow to Pytorch. SB3 is used in this thesis as it is considered
a future-proof and intuitive approach to RL algorithm implementation.

Meyer (2020) presents a state-of-the-art approach to the continuous control
application of autonomous vessels using the OpenAI Gym toolkit (Brockman et al.,
2016), Stable Baselines (Hill et al., 2018), and the PPO RL algorithm (Schulman,
Wolski, Dhariwal, Radford and Klimov, 2017). Teigen (2020) explains that PPO
gave the best performance in this continuous control problem.

Safety filtering frameworks

To briefly outline a constantly evolving field of joint learning-based agents
with control theory, we want to highlight two approaches. These two are high-
lighted due to their inherent modularity, in the sense of being compatible with
any learning-based agent. Control Barrier Functions (CBF) are perhaps the most
natural approach to filtering the agent’s proposed actions. Loosely stated, this con-
sists of explicitly calculating a function that describes a boundary between safe
and unsafe. CBF was first introduced in Wieland and Allgöwer (2007), which is
strongly tied to control Lyapunov function (CLF). However, the first formulation
was stronger than necessary, and the more "modern" CBS was reintroduced in
Ames et al. (2014). While there exist strong theoretical results with CBF, obtain-
ing the explicit function has proven to be challenging, and while approximate
solutions through sum-of-squares programming exist (Wang et al., 2018), this has
been one of its main criticisms. However, more recently, Robey et al. (2020) pro-
posed a learned control barrier function through expert demonstrations to address
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this issue. The reader should note that the CBF is often combined with a CLF to
obtain a controller directly, more in line with Wieland and Allgöwer (2007). An
example is Choi et al. (2020) where the model uncertainty is addressed with an
RL agent. While this is also a constrained nonlinear control problem, similar to the
task presented in the text, it differs to such a degree it will not be pursued with
the scope of the current work.

PSF was first introduced in Wabersich and Zeilinger (2018b) and builds on
Model Predictive Safety Certificates (MPSC) (Wabersich and Zeilinger, 2018a)
proposed by the same authors. By defining the safe set implicitly through a learning-
based MPC, the proposed method avoids explicitly calculating the CBF. The PSF
presented in the original paper is model-free, thus avoiding the expert insight
needed for more traditional MPC formulations. The authors further claim that
it has favorable scalability and avoid over-conservatism compared to the general
learning-based MPC (see Hewing et al. (2020) for an overview). The rigorous con-
straint satisfaction is inherently linked to traditional MPC (Mayne, 2014). It also
addresses the problem of recursive constrain satisfaction often negated in safe RL
approached previously mentioned.

1.2 Research objectives and research questions

1.2.1 Objectives

The primary objective of this work is to develop a framework for combining RL
and PSF for safe AI in wind energy applications.

The secondary objectives are stated as:

• Evaluate the conditions under which an RL agent can control the state of a
FOWT and optimize its power generation.

• Evaluate the feasibility and challenges of applying PSF to guarantee con-
straint satisfaction and safety during training and deployment of an RL agent
through applying it on a FOWT system.

• Investigate the effect of a PSF on the training and learning of an RL agent in
the application of a FOWT.

1.2.2 Research questions

To the best of our knowledge, there is currently no published work on com-
bining RL and a PSF for control of a FOWT. To this end, the guiding questions
governing the research can be stated as:

• Under which conditions is an RL agent able to successfully control the state
of, and optimize power generation for, the FOWT without a PSF?
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• To what degree is a PSF able to provide safety and constraint satisfaction
guarantees for RL in practice for this application?

• How is the training progress and performance of the RL agent affected by
the PSF?

1.3 Outline of the report

The thesis comprises of five chapters. Chapter 2 explains the fundamental the-
ories behind the work in this project including some mathematical background on
dynamical systems, an introduction to wind turbines and RL as well as a presenta-
tion of the building blocks of a PSF; Chapter 3 dissects the concrete methods and
specifics of the setup used presenting our RL-PSF framework, the derivation for
our wind turbine model and specifics of both the RL and the PSF implementation;
Chapter 4 presents the results and a discussion around them looking at both the
successes and limitations of our work. The thesis is concluded in Chapter 5, where
suggestions for future work are also presented.
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Chapter 2

Theory

In this chapter, we will introduce some of the main building blocks of our thesis.
We assume that the reader is familiar with both linear and nonlinear control the-
ory. The reader should also understand general topics in optimization theory, such
as convexity and gradient descent. Furthermore, while the theory on RL introduces
the knowledge needed in this thesis, it is kept high-level, and the reader is directed
to sources like Sutton and Barto (2018) for a more comprehensive read. The chap-
ter’s primary purposes are to give the reader the background to understand our
work and establish notion and terminology.

2.1 Dynamical systems

We can express a dynamical system in the form of a system of ordinary differ-
ential equation (ODE) as

dx

dt
= ẋ =


f1(t, x1, ..., xnx , u1, ..., unu , p1, ...pnp)
f2(t, x1, ..., xnx , u1, ..., unu , p1, ...pnp)

...
fn(t, x1, ..., xnx , u1, ..., unu , p1, ...pnp)

 = f(x,u,p) (2.1.1)

where x = [x1, ..., xnx ]
ᵀ is the system state, u = [u1, ..., unu ]ᵀ is the control input

or actuation, and p = [p1, ..., pnp ]
ᵀ contains external parameters or process distur-

bances. The system evolution in a discrete timestep t+ 1 can be written as

x(t+ 1) = xt+1 = Φ(τt,xt,ut,pt) (2.1.2)

where Φ(·) is the function mapping the dynamics from continuous time to discrete
time and τ is discretization step length.

If the system is time invariant, it can be linearized around a point zlin =
[xlin,ulin]. Removing p without loss of generality, we are left with the following
equation

ẋ = ∇ᵀfx|zlin(x− xlin) +∇ᵀfu|zlin(u− ulin) + f |zlin (2.1.3)

where ∇ᵀf∗ is the gradient operator on f with respect to ∗. We can rewrite the
system dynamics as Linear Time Invariant (LTI), obtaining the familiar expression

ẋ = ∇ᵀfx|zlinx +∇ᵀfu|zlinu +∇ᵀfx|zlinxlin +∇ᵀfu|zlinulin = Ax + Bu + b (2.1.4)

The system is not linear as it contains an affine term b, however any affine function
is linear in a higher dimension. By lifting or augmenting an affine system we can
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create a linear system through stating the system in higher dimension. For an
affine continuous system the transformation can be seen below:

ẋ = Ax + Bu + b ←→ ˙̃x =

[
ẋ
1

]
=

[
A b
0 0

]
x̃ +

[
B
0

]
u = Ãx̃ + B̃u (2.1.5)

To move the origin of the system to arbitrary point in space zc0 = [xᵀ
c0
,uᵀ

c0
]ᵀ, we

redefine z = zc + zc0 and restate our system as

ẋ = Ax + Bu = A(xc + xc0) + B(uc + uc0) = Axc + Buc + b (2.1.6)

2.1.1 Polytopic constraints

A polytope X refers to a convex set of points defined by a finite number of half
spaces. The set can be unbounded in any direction, and does include its borders,
viz

X = {x|aᵀ
ix + bi ≤ 0,∀i ∈ H} (2.1.7)

where the bounding hyperplanes have indices H = {1, 2, ..., n}.

Also note that a polytope could be constrained by equality constraints ax = b,
but this could always be expressed as two inequalities

ax ≤ b ∪ −ax ≤ −b (2.1.8)

If we construct a matrix Hx = [a1, ..., an] and a vector hx = [b1, ..., bn], we can
express the polytopic constraint as a matrix of inequalities

Hxx ≤ hx ←→ rowi(Hx) ≤ rowi(hx) (2.1.9)

As an example, a square D centered at the origin with side length 2 can be
expressed as

D ←→


−1 0
1 0
0 −1
0 1

x ≤


1
1
1
1

 (2.1.10)

With polytopic constraints X ,U on state and input respectively, we can still
move our system to an arbitrary point zc0 with Equation 2.1.6. However, we also
need to move our constraints as follows,

Hzz < hz ←→ Hz(zc + +zc0) < hz ←→ Hzzc < hz −Hzzc0 (2.1.11)
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2.1.2 Runge-Kutta methods

There exist wide range of methods to evaluate the discrete system evolution.
We heavily rely on the numerical method of Runga-Kutta (RK) in its explicit form.
Its general form with ν steps and one state, input and external parameter is

xt+1 = xt

ν∑
i=1

bjf(t+ cjτt, ξj) + τt(u+ p)

ξj = xt + τt

ν−1∑
i=1

aν,if(t+ cjτt, ξi)

(2.1.12)

where ut and pt are kept constant through the step length τt. The constants aν,i, bj, ci
can be rearranged into a Butcher tableau, as seen in Table 2.1.1. The elements of
the matrix ARK are the constants aν,i, and the vector cRK ,bRK consists of bj and
ci respectively.

cRK ARK

bᵀ
RK

Table 2.1.1: Butcher tableau in matrix form.

For explicit RK-methods, we can investigate the linear stability of the method
through the stability function RE(µ) (Egeland and Gravdahl, 2002),

RE(µ) = RE(λτt) = det [I + λτt(ARK + 1bᵀ
RK)] (2.1.13)

where λ represents the eigenvalues of the linear system. The discretization is stable
if |RE(µ)| < 1. For RK4 this expression simply becomes

RE(µ) = 1 + µ+
1

2
µ2 +

1

6
µ3 +

1

24
µ4 (2.1.14)

2.1.3 Semi-definite programs

We define the matrix M ∈ Rn×n as positive semi-definite, if it is symmetric and
xᵀMx ≥ 0 for all x. The following statements are equivalent

xᵀMx ≥ 0 ←→ M � 0 (2.1.15)

Definiteness plays a large role in nonlinear control and optimization, in this
space given rise to a Semi-Definite Programs (SDP), which is defined as

min cᵀx s.t F(x) � 0 (2.1.16)
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where

F(x) = F0 +
n∑
i=1

F(xi) (2.1.17)

The inequality F(x) � 0 is a Linear Matrix Inequality (LMI). Note that solvers for
large-scale SDP, and its generalization Log-Log Convex Programs (LLCP), exists
(Diamond and Boyd, 2016; Löfberg, 2004). For a comprehensive treatment we
refer the reader to Boyd et al. (1994) and Agrawal et al. (2019).

2.2 Floating offshore wind turbines

In this section, we introduce terminology for and explain the concept of a wind
turbine. The specifications and construction of wind turbines vary significantly.
As a consequence, we limit our explanation to a high-level understanding of the
fundamentals.

A wind turbine is a device that converts the kinetic energy of wind to electrical
energy. There are two main categories of wind turbines, horizontal and vertical,
with horizontal being the most common. The turbine can be installed with sev-
eral methods depending on the use case. As presented in section 1.1, the focus
of this thesis will be offshore installations with the IEA 15MW turbine as a ba-
sis. There are three main floating offshore platform types; Tension Leg Platform,
Semi-Submersible, and Spar, with the IEA 15MW being a Semi-Submersible. The
differences are mainly related to how the platform is moored and its floating char-
acteristics. The platform types will not be a focus in this report, as severe simplifi-
cations to the platform model are made, rendering the platform mentioned above
types irrelevant. On top of the base structure is a tower that holds the remaining
components. The base and tower as a whole will be referred to as the platform in
this thesis.

The power generation of a wind turbine comes from its generator, placed in the
nacelle on top of the platform. The nacelle is then attached to a rotor, commonly
with three blades. The blades turn the wind’s translational energy to rotational
energy for the generator, which turns it into electric energy by adding a counter-
torque. We refer to the blades and generator as the rotor. The whole structure, the
platform and the rotor in combination, make up what we call the turbine.

Assuming a direct-drive generator, which is consistent with the IEA 15MW, the
rotational velocity of the rotor will be the same as that of the generator, i.e., Ωgen =
Ω. The generated power Pgen and generator torque Qgen then follow the equations

Pgen = JrΩΩ̇ = QgenΩ

Qgen =
Pgen
Ω

, Ω > 0
(2.2.1)
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where Ω is the rotor angular velocity, Ω̇ is the rotor acceleration, and Jr is the
inertia of the rotor.

Variable speed variable pitch (VSVP) turbines

The IEA 15MW is a VSVP turbine with control possibilities for both blade pitch
and generator torque. The blade pitch angle controls how much of the wind’s
energy is converted into rotational torque through the principle of lift and drag.
Imagine a straight blade directed directly towards the wind. This configuration
will lead to no rotational energy being created, while angling the blade will create
a force pushing sideways on the blade (lift), leading to rotational torque on the
rotor. The blade pitch is useful for maintaining a constant rotor velocity. A constant
blade pitch angle would lead to rotor velocity increasing with wind speed, possibly
damaging internal parts at high velocities. The wind also creates a force pushing
backwards on the blades (drag), which acts as an axial force at the nacelle, rotat-
ing and pushing the structure away from the vertical position. Adjustment of the
generator torque is used to control both the rotor velocity and the power genera-
tion. One use case of this is for maintaining the rotor velocity at lower wind speeds,
where the generator could reduce its counter-torque, letting the rotor spin more
freely. This naturally comes at the cost of less power being generated, as power
and torque are directly proportional at constant rotor speeds, see Equation 2.2.1.

Wind spectrum

Figure 2.2.1: Power spectrum of horizontal wind speed measured at Brookhaven National
Laboratory, from Van der Hoven (1957).

A power spectrum of wind speed from Brookhaven National Laboratory can be
seen in Figure 2.2.1. This shows two main peaks, one representing slow-varying
long-term variations in the weather systems at 10−2 cycles/hour, and one peak
at higher frequencies representing faster fluctuations in wind speed at 60 cy-
cles/hour.
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Maximum power point tracking

Due to the instantaneous changing nature of the wind, it is desirable to deter-
mine the optimal generator speed that ensures maximum energy yield. Thus, it is
essential to include a controller that can track the maximum peak regardless of
wind speed (Abdullah et al., 2012).

Maximum Power Point Tracking (MPPT) is a technique commonly used in wind
turbines and photovoltaic solar systems to maximize power extraction under all
conditions. In the case of wind turbines it is common to use this to control the
rotor speed using blade pitch angle.

Engineering model

Pedersen (2017) presents a simplified engineering model for the rotor system
of a wind turbine. The model is presented further in section 3.1, along with our
adaptation of it. The reader is directed to the original paper for a comprehensive
derivation.

2.3 Deep reinforcement learning

In this section, we introduce the relevant theory within the field of Deep RL. For
a more comprehensive read, the reader is directed to Sutton and Barto (2018) and
Li (2018). This section is also largely based on Teigen (2020), one of the authors’
specialization project.

Within the realm of Artificial Intelligence (AI), Machine Learning (ML) has been
the most popular approach in recent years. We usually categorize ML by super-
vised, unsupervised, and RL. In supervised learning, the desired output needs to
be known in order to train the model, i.e., labeled data is needed. This ML tech-
nique can be used in applications like regression and classification. Unsupervised
learning seeks to find patterns and relevant information within unlabeled data.
RL takes an altogether different approach that uses the principle of trial and error
to extract an optimal strategy to solve a problem. RL can also be thought of as
semi-supervised learning where the reward is a kind of time-delayed label. In this
section, we will dive deeper into the topic of Deep RL. The term deep refers to the
use of deep neural networks in ML approaches. This articture can be incorporated
into all of the categories mentioned above.

On the one hand, there are value-based methods based on Temporal Difference
(TD) Learning, while on the other, there are policy gradient methods based on pol-
icy optimization. The algorithm used in this project (PPO) adopts the actor-critic
framework, which combines functionality from both of these methods and has
shown excellent results for continuous control applications (Meyer, 2020; Schul-
man, Wolski, Dhariwal, Radford and Klimov, 2017). The upcoming parts of this
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section will introduce the RL framework, explain the two main approaches to RL
algorithms, and eventually lead to PPO and the actor-critic framework and why it
is used.

2.3.1 The reinforcement learning framework

The two main components in RL are the environment and the agent. These en-
tities interact through actions, rewards, and states or observations. From a high-
level perspective, the flow can be explained as follows: The agent performs an
action at on the environment, which changes the state from st to st+1. The new
state st+1, or a partial observation of it, is received by the agent along with a re-
ward rt indicating how good the action was. This reward is then used to improve
the policy π(at|st), which is a set of rules that the agent follows to decide which
action to take next. A graphical representation of this flow can be found in Fig-
ure 2.3.1. A common way of implementing this is that the RL agent repeats this
interaction for multiple timesteps until an end condition is met. This is defined as
an episode. The environment is then reset, and the process is repeated for many
episodes. The policy can be improved online at each timestep, sparsely at the end
of each episode, or any other custom adaptation of this depending on the algo-
rithm.

Environment

Agent

Reward State/ObservationAction

Figure 2.3.1: Overview of the RL framework.

An assumption made in most RL algorithms is that the problem can be formu-
lated as a Markov Decision Process (MDP). A key attribute of this is that the future
states depend only on the current state and action, not the past. The model of an
MDP is defined by a transition function T giving the probability of moving to a
state s′ given a state s and an action a, and a reward function R giving the reward.
If the model of the MDP is known, traditional optimization techniques can be used
to find the optimal policy. This is often not the case, and an approach like RL is
needed to solve this. Model-based RL strives to estimate this MDP model while the
model-free approach focuses on the policy, or control strategy, itself.

The goal for the RL algorithm is to find the optimal policy, and it does this by
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maximizing the cumulative future reward at each timestep t

Rt =
∞∑
k=0

γkrt+k (2.3.1)

where rt is the reward at time t. Rt also contains a discount factor γ ∈ (0, 1] which
dictates how much the agent cares about future rewards. A γ of 1 gives equal
weight to all rewards, regardless of temporal conditions, while a smaller γ results
in the short term rewards getting weighted higher than the long term. A disount
factor strictly less then 1 is usually preferred because, in general, a good action
(thus a large reward) is worth more now than far into the future.

Exploration vs exploitation

An important consideration in RL is the trade-off between exploration and ex-
ploitation. On the one hand, we need the agent to explore the environment and
evaluate as many different strategies as possible to stop it from converging to a
local optimum with sub-optimal performance. On the other hand, we want the
agent to exploit the information in the current policy to avoid completely random
behavior. So how much of this exploration should the agent do, and how should it
do it? This is a big question within RL and comes down to tuning for the respective
algorithm and application.

2.3.2 Value-based methods

Value-based methods are based around what is known as an action-value func-
tion, Q(s, a). The action-value function estimates how good it is for an agent to
be in a given state s and perform a given action a. Formally, this is the expected
future reward for a given state-action pair. The algorithms then sample the MDP to
gather statistical knowledge about the unknown model. In this way, the RL frame-
work is used to estimate the complete action-value function and use it to make an
optimal policy, i.e. choose the optimal action given a state.

Although value-based methods have some great properties and features like
good sample efficiency and fast learning, an important thing to note is that they,
in general, do not scale well to continuous action spaces. Imagine the action-value
function Q(s, a) as a table of values for states and actions. There are infinitely
many possible action values for a continuous action space, which in turn means
that the table will get infinitely large. This intractability makes it difficult and
computationally expensive to calculate and find the maximum thereof. Due to this
weakness, value-based methods are often combined with policy-based methods in
what we call an actor-critic framework when applied to problems with continuous
state and action spaces.



Chapter 2. Theory 16

2.3.3 Policy gradient methods

While value-based methods optimize the policy through a value function, policy-
based methods have a different and more direct approach. The policy π(a|s; W),
parameterized with parameters W, is optimized directly through gradient ascent
on the expected reward. The parameters W can, for instance, be the weights of a
deep neural network.

This approach comes with several advantages. Earlier, we mentioned that value-
based methods scale poorly to growing action spaces. This problem is not as
prominent in policy-based methods because instead of computing learned prob-
abilities for each of the actions; it learns statistics of the probability distribution
(Sutton and Barto, 2018). In addition, the policy itself may be a more straight-
forward function to approximate than the action-value function. Policy gradient
methods also have the ability to find stochastic optimal policies, something that
action-value methods do not have (Sutton and Barto, 2018), and policy parame-
terization is a good way to introduce prior knowledge of the problem (Sutton and
Barto, 2018), which is very useful from an engineering perspective. There are,
of course, drawbacks to policy gradient methods, with the most significant being
sample inefficiency and high variance.

2.3.4 Actor-Critic methods

Environment

Critic

Reward State/ObservationAction

Actor

TD-error,
"critique"

Agent

Figure 2.3.2: Actor-Critic framework for RL.

The most desirable approach would be to combine the advantages of both value
and policy-based methods or at least mitigate some of the drawbacks of one by
leveraging the other. The actor-critic method does precisely this and can be seen
as a kind of hybrid approach. As seen in Figure 2.3.2 it uses both a parameterized
policy in the actor and a value function in the critic. The actor calculates which
action to take in a given state while the critic evaluates the action taken and gives a
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critique, in the form of an error based on the value function, to the actor in order to
improve the policy further. This brings the benefits from value-based methods, like
better sample efficiency, together with the advantages of policy-based methods,
like the ability to handle large and continuous state and action spaces.

Proximal Policy Optimization

Proximal Policy Optimization(PPO) is a model-free RL algorithm that uses an
actor-critic architecture. PPO is based on the principle of a trust region, i.e., im-
proving the policy as much as possible without going too far from where we are
and breaking the policy. It implements this in a simple and computationally less
demanding way compared to other trust-region methods like TRPO (Schulman,
Levine, Moritz, Jordan and Abbeel, 2017). The original paper (Schulman, Wolski,
Dhariwal, Radford and Klimov, 2017) presents results where PPO outperforms
both A2C and A2C + Trust Region (Wu et al., 2017) in several continuous control
tasks. It has also shown great results in Meyer (2020) and was deemed the best
performing algorithm for control of autonomous vessels in Teigen (2020).

2.4 Building blocks of the predictive safety filter

PSF was first introduced in Wabersich and Zeilinger (2018b) and extended in
Wabersich and Zeilinger (2021a) to accommodate learning-based system models
with uncertainty. The method is based on trajectory optimization and can be seen
as a relaxed MPC formulation. In this section, the theoretical foundation of the
PSF’s main building blocks will be introduced before returning to our PSF imple-
mentation in chapter 3.

2.4.1 Terminal set

We define a set as a safe set S if does not violate any state constraints X af-
ter entering the set S. Through this definition, the common notion of a control
invariant set C ⊆ X is with safe set. A control invariant set is described as

xt ∈ C −→ ∃ut s.t Φ(xt,ut) ∈ C, ∀t ∈ R+ (2.4.1)

The maximum control invariant set provides largest safe set, but can be very
difficult to compute. However, there exist several methods of to obtain a smaller
control invariant set.

Linear feedback controller

A well-developed method is to use a state feedback controller ut = π(xt) as a
control policy. When the system is linear, this becomes a linear feedback controller
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ut = Kxt. With Lyapunov analysis, excellently described in Khalil (2015, chap 5),
we can formulate the necessary condition to obtain the set C through the feedback
controller. The function V (x) = xᵀPx > 0 serves as the Lyapunov candidate when
considering both the continuous and discrete case.

In continuous-time formulations , the linear system is stable if the time deriva-
tive is negative for all x, viz.

dV (x)

dt
= ẋᵀPx + xᵀPẋ < 0 (2.4.2)

(A + BK)ᵀP + P(A + BK) ≺ 0 (2.4.3)

To solve the equation above, a semi-definite optimization scheme can be de-
ployed. However, most solvers only accept linear matrices, since both P and K
are unknown matrices in the system, the problem is bi-linear. Using congruence
transformation (Boyd et al., 1994), i.e. pre- and post multiplying with Q = P−1,
the problem can be restated as

QAᵀ + AQ + QKᵀBᵀ + BKQ ≺ 0 (2.4.4)

After defining the variable L = KQ, we arrive at the final linear semi-definite
expression

QAᵀ + AQ + LᵀBᵀ + BL ≺ 0 (2.4.5)

The feedback gain K can always be recuperated from L since P hence Q is
positive definite and hence full rank.

In discrete time formulation, we relax the negative definiteness of the Lua-
punov derivative. Instead, we require that at each timestep the Luapunov function
is decreasing, viz. V (xt+1) < V (xt). In matrix form that is

xᵀ
t+1Pxt+1 < xᵀ

tPxt (2.4.6)
xᵀ
k(A + BK)ᵀP(A + BK)xt < xᵀ

tPxt (2.4.7)
(A + BK)ᵀP(A + BK)−P ≺ 0 (2.4.8)

Using Schur’s complement (see Zhang (2006)), we can expand the equations
to [

P (A + BK)ᵀP
P(A + BK) P

]
≺ 0 (2.4.9)

Again the formulation is bi-linear, but using the congruence transform and a
change of variables we obtain our final expression in the discrete case:
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[
P−1 P−1(A + BK)ᵀ

P−1(A + BK) (A + BK)P−1

]
� 0 (2.4.10)[

P−1 P−1Aᵀ + P−1KᵀBᵀ

AP−1 + BKP−1 P−1

]
� 0 (2.4.11)[

E EAᵀ + YᵀBᵀ

AE + BY E

]
� 0 (2.4.12)

Ellipsoidal maximization

While any P and K that satisfies the constraints above stabilizes the system in
an unbounded case, a natural extension is to find the largest set where we can
satisfy the constraints. This is done through noting that xᵀPx spans an ellipsoid

E(P) = {x|xᵀPx ≤ 1} ∈ Rnx (2.4.13)

The eigenvalues of P are the squared reciprocal of the semi-axis spanning the
ellipse, hence the volume can be described as 4

3
π
∏

nx
λ

1
2
i . Through maximizing the

determinants of P−1 = E, we maximize the size of the ellipse E(P) (Boyd et al.,
1994).

However, the ellipsoid maximization does not encompass the state and system
constraints. Given that state and input are independent polytopic constraints, as
such

X = {x|Hxx ≤ bx} U = {u|Huu ≤ bu} (2.4.14)

we can constrain the ellipse to adhere with the following inequalities (Wabersich
and Zeilinger, 2018b): [

rowi(b
2
x) rowi(Hx)E

(rowi(Hx)E)ᵀ E

]
� 0,∀i (2.4.15a)[

rowj(bu)
2 rowj(Hu)Y

(rowj(Hu)Y)ᵀ E

]
� 0,∀j (2.4.15b)

where i and j represents the row vector in the polytopic constraints, i.e. each
half-space constraint. The problem is an LLCP, making it applicable to theory and
solvers addressed in subsection 2.1.3.

Robust stability under polytopic uncertainty

Consider the uncertain control system ẋ = A(δ)x + B(δ)u, where δ is an un-
certainty parameter. Given that ∀δ ∈ ∆, where ∆ is a polytopic uncertainty set
with vertices ∆g = {δ1, ..., δN}. The system is quadratically stable for all δ if the
following constraints hold (Scherer and Weiland, 2000):

P � 0 QA(δi)ᵀ + A(δi)Q + QKᵀB(δi)ᵀ + B(δi)KQ ≺ 0,∀i ∈ I1,N (2.4.16)
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Less formally, if we find a K which stabilizes all the "extremes" of the system,
we know that the entire system is stable. We can once again can use the notion of
invariance, where the set C∆ ⊆ X is a robust control invariant set, define as the
following

xt ∈ C∆ −→ ∃ut s.t Φ(xt,ut, δ) ∈ C∆, ∀δ ∈ ∆, ∀t ∈ R+ (2.4.17)

2.4.2 Model predictive control

MPC is a dynamic optimization technique that is the de-facto standard within
advanced control methods in the process industries (Qin and Badgwell, 1997;
Mehrizi-Sani, 2017; Johansen, 2011), due to its ability to handle constraints and
multivariate systems.

The main idea is to optimize the state trajectory for a given horizon N but only
apply the first control input. After receiving a system update, the optimization
problem is solved again for the new states. The state trajectory optimization is
done through minimizing a cost function J constrained by the state trajectory
Φ(·), state constraints X , and input constraints U a combination thereof. While a
continuous-time formulation is possible (Wang, 2001), we limit our discussion to
the discrete case. The reader should note that we simplify the notation, where xk
is really xk|t, that is the state x at optimization timestep k given the system time t.

Linear model predictive control

If the system is linear with polytopic constraints, a common formulation for
linear MPC is

min
X,U

N∑
k=0

xᵀ
k+1Qxk+1 + uᵀ

kRuk + dxx + duu (2.4.18a)

s.t.

xk=0 = xt (2.4.18b)
xk+1 = Akxk + Bkuk ∀k ∈ I≤N (2.4.18c)

Hxxk ≤ hx (2.4.18d)
Huuk ≤ hu (2.4.18e)
∆uk ≤ h∆u (2.4.18f)

where ∆uk = uk − uk−1 is a rate constraint.Q, R, dx, and du are costs associated
with state and input. When Q < 0,R � 0 the problem is convex.



Chapter 2. Theory 21

Nonlinear model predictive control

Even though linear MPC has been the most widespread, systems that exhibit
highly nonlinear properties may not lend themselves to linear MPC. Linearization
around an operating point could prove beneficial, but formulations with, for ex-
ample, long horizon could suffer dramatically. While there exist several ways to
implement the optimal nonlinear control problem (Von Stryk, 1993; Allgöwer and
Zheng, 2012), we present the numerical optimization scheme of direct multiple
shooting (Leineweber et al., 2003)

min
X,U

N∑
k=0

J (τk,xk,uk,pk) (2.4.19a)

s.t.

xk=0 = xt (2.4.19b)
xk+1 = Φ(τk,xk,uk,pk) ∀k ∈ I≤N (2.4.19c)

0 ≥ h(xk,uk,pk) (2.4.19d)

where h(·) is an arbitrary constraining function and N is number of time steps
considered (i.e. length of the horizon). X = [x1, ...,xN+1] is the state sequence,
U = [u0, ...,uN ] is the input sequence and p is the external parameters unaffected
by state and input. The formulation is not the most traditional, but is modified to
suite the problem at hand.

The term direct refers to fixing the time grid before optimization, τk = [τ0, ..., τN ].
In contrast to single shooting, multiple shooting retains the state sequence as an op-
timization variable, leading to a finite set of nonlinear algebraic equations which
has to be solved simultaneously. As a result, this approach leads to a higher num-
ber of variables and constraints, causing the problem to become "bigger". This
is often accepted due to ease of constraints and cost formulation, in addition to
advantageous numerical properties (Johansen, 2011).

Model predictive control properties

Most of the success of MPC is commonly attributed to the re-optimization of the
control problem at each timestep. However, this has also been its theoretical crux.
Before the 2000s, proofs on stability, robustness, and optimality were sparse and
primarily empirical. The highly acclaimed paper Mayne et al. (2000) can be seen
as a landmark, establishing proofs on stability and optimality. Another problem
with the re-optimization is the computational complexity. While solvers are getting
faster, this is still a primary concern (Pedersen, 2017, Chap 1). While optimality
and robustness are paramount in many cases, we refer the reader to Magni et al.
(2009) due to the scope of this text. However, a short a outline of stability, in the
sense of recursive feasibility, will be given due to its central role in this thesis. For
a comprehensive introduction to a wide array of MPC-related topics we refer the
reader to Mayne (2014) and Johansen (2011).
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We will present the nominal case (without the external parameter p), with the
notion and presence of a terminal set T ⊆ S. For robust feasibility, we refer the
reader to Mayne et al. (2011), and proofs without the terminal set can be found
in Grüne (2012).

While several methods exist to obtain the terminal set, a common approach
is to use dynamic programming to solve the Bellman equation. This equation is
also commonly seen in value-based RL methods. The control policy π(·) obtained
is associated with a set, where π(·) stabilizes the system for all time. It also has
the benefit of a necessary condition of optimality. However, the recursive stability
proof only relies on any control invariant set C, e.g., the ellipsoidal set described
in subsection 2.4.1.

Consider the case where a terminal set T exists. Let T act as a constraint on the
MPC on the last step in the horizon xk+N+1 ∈ T . Assuming that we find a feasible
control sequence U0,N = [u0,u1...,uN ] at timestep t0 that drives the system to the
terminal set, we know that the system will stay in the terminal set. At the next
timestep t > t0, we can deploy the previous sequence shifted forward U1,N , thus
entering the terminal set.
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Chapter 3

Method and setup

In this chapter, we explain the specifics of how the work was conducted. The
chapter also includes an explanation of the training framework and a derivation
of the model used. We also present the specifics of our experimental setup to give
detailed insight and enable reproducibility.

3.1 Methodology

Plant
Wind Turbine

Model 

Environment

Predictive Safety Filter 

Plant approximation

Optimize
Reward

Calculation

Observation

Reward

wind

RL Agent

Optimize

Policy

Figure 3.1.1: RL-PSF framework overview.
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3.1.1 Reinforcement learning - predictive safety filter frame-
work overview

Figure 3.1.1 shows an overview of our implemented framework. It consists of
an RL agent and an environment composed of a PSF and a plant. The RL agent’s
proposed control input uL is filtered through the PSF, before sending the safe
action u0 to the underlying plant. During training, a reward is calculated based
on the resulting system state. Together with the observation y, the reward is used
by the RL agent to optimize its policy. The PSF calculates a backup trajectory, and
alters the proposed control input in the case of future constraint violations. This
leads to the agent having to learn the combined dynamics of the plant and PSF.
Through this process the framework facilitates safe training and deployment of RL
agents on any system.

The framework is highly modular, where each component can be improved
upon with minimal dependency on the other modules. Relevant examples are re-
placing the plant and plant approximation for more accurate models, improving
the reward function, migration towards a learning-based PSF, and experimenta-
tion with various RL algorithms.

3.1.2 Model derivation

As presented in chapter 2, RL does not need to know the model of the environ-
ment a priori but can simply learn the dynamics and an optimal control strategy
from trial and error. Due to high costs and safety concerns, it is not feasible to ex-
ecute these trials on a physical FOWT. Thus a simulated environment is beneficial
for training. Figure 3.1.1 shows that we need a model of the plant to be able to see
how the system reacts to each action, which is the basis for the reward calculation.
However, this model does not have to be analytical. It can also be represented by a
neural network, or any other approach that represents the input-output dynamics
of the system. On the other hand, our adapted PSF needs an analytical model,
at least for the plant’s unstable modes. The PSF presented here contains a plant
approximation which is quite close to the simulation model, where only minor
simplifications has been done to the plant. The simplification will be described in
detail in section 3.2.

Accurate mathematical models for the dynamics of FOWTs are generally ex-
tremely complex and require a large amount of computing power to simulate. To
be able to focus on the concept of combining RL with PSF, a simple approxima-
tion of a FOWT model was needed. While our model captures some of the real
system dynamics, it is meant as a placeholder pending a more accurate model as
a potential extension of the work. As shown in Figure 3.1.2, the structural model
of the platform was approximated as a rigid body damped rod rotating about a
fixed point. The platform was also equipped with a thruster below sea level to
provide stabilization actuation, mainly aimed at suppressing platform oscillation.
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A simplified engineering model for the wind and rotor dynamics was added to
compute rotational torque on the rotor and the drag force acting on the platform.
It was assumed that the force from wind acts as a point force at the top of the
platform. This is a reasonable assumption because the platform itself is cylindrical
and sufficiently aerodynamic. Wave forces and other disturbances are neglected.

The control objective then consists of optimizing power generation and rotor
velocity while keeping the platform as vertical and stationary as possible — all of
this using RL and PSF together.

Water line

Wind

COM

Figure 3.1.2: Simplified model of a floating wind turbine (illustration proportions are not
to scale). An open-loop stable, damped platform with a thruster actuator in
the bottom, and a rotor with a generator at the top.

Platform model

The derivation of the platform model is done using Lagrangian mechanics and
is based on the illustration of our simplified wind turbine model in Figure 3.1.2.
The kinetic energy is simply

T =
1

2
Jpθ̇

2 (3.1.1)

where Jp is the inertia of the platform and θ̇ is the platform angular velocity. The
potential energy of the platform is described by

V =
1

2
kp(LS sin θ)2 +MgLCOM(1− cos θ) (3.1.2)

where θ is the platform angle, kp is the spring constant of the platform motion,
LS is the distance from the platform rotation point (water line) to the platform
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thruster, LCOM is the distance from the platform rotation point to its center of
mass, M is the platform mass including the rotor, and g is naturally the gravita-
tional acceleration.

Using Lagrangian mechanics gives rise to the platform’s equation of motion

Jpθ̈ + kpL
2
S sin θ cos θ +MgLCOM sin θ = −cpLS cos(θ)θ̇︸ ︷︷ ︸

Dampingforce

+ LSFthr︸ ︷︷ ︸
Thrusterforce

+L Fwind︸ ︷︷ ︸
Dragforce

θ̈ =
1

Jp

(
−kpL2

S sin θ cos θ −MgLCOM sin θ − cpLS cos(θ)θ̇ + LSFthr + LFwind

)
(3.1.3)

where cp is the damping constant of the platform motion, L is the distance from
the platform’s rotation point to the nacelle, Fthr is the force from the platform
thruster, and Fwind is the drag force caused by wind.

Rotor Model

The angular acceleration of the rotor, Ω̇, depends on the torque generated by
the wind, Qwind, as well as the resistance torque from the generator, Qgen. Using
Equation 2.2.1 yields

JrΩ̇ = Qwind −Qgen

Ω̇ =
1

Jr

(
Qwind −

Pgen
Ω

)
(3.1.4)

where Jr is the rotor inertia.

A problem with the generator model in Equation 2.2.1 occurs when the rotor
velocity Ω becomes small, making the generator counter-torqueQgen unreasonably
large. The range of the values would lead to large derivatives, making the system
numerically unstable, i.e. making our model invalid. This is both non-physical
and undesirable. To avoid this numerical issue in the simulation, a limit is set on
the amount of torque the generator can provide: 0 < Qgen < 28.6 MNm. The
limit is set from intuition, as 15 MW is the maximum power generation and 5
rpm is the lowest rotational speed the turbine is rated for (Gaertner et al., 2020)
(15 MW

5 rpm ≈ 28.6 MNm). The limit is also reasonably close to the rated max generator
torque of 20 MNm for the IEA 15MW. We choose to use control on the generator
power Pgen rather than Qgen because Pgen is easier to set the input range for (0 to
15 MW), and they are directly linked through Equation 2.2.1.

Equation 3.1.3 and Equation 3.1.4 still have two terms that are unaccounted
for, Fwind and Qwind. The model for this wind force and torque is adapted from the
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engineering model in Pedersen (2017, Model 4.6):[
Fwind
Qwind

]
=

[
dr|w| −h(Ω, w, up)

h(Ω, w, up) bdr|Ω|

] [
w
−Ω

]

h(Ω, w, up) = kr(cos(up)w − sin(up)Ω`)

(3.1.5)

where up = β − β∗ is the bias corrected blade pitch input, w is the wind speed and

kr =
2ρApR

3λ∗
, bdr =

1

2
ρA(B2 16

27
− C∗P )(

R

λ∗
)3, dr =

1

2
ρACF , ` =

2Rp

3

where the constants are defined in Table 3.2.5. The point of optimal power extrac-
tion is realized at up = 0 through the use of MPPT control (Pedersen, 2017).

The validity of this simplified model was investigated by Pedersen (2017) for
a 5MW turbine, which reports that "given the simplicity of the model, superb per-
formance is obtained". We assumed that similar performance is obtained for the
15MW turbine. Pedersen (2017) emphasizes that care must be taken at low wind
speeds as the theory behind the model might fail in such conditions. The definition
of low wind speeds will naturally depend on the specifics of the turbine.

The wind speed w in Equation 3.1.5 has to be adjusted with regards to inflow
and structural concerns as shown in Pedersen (2017, Figure 5.1). The engineering
model was originally combined with a tip-loss corrected low frequency Dynamic
Vortex Theory (DVT) model for the inflow model. A further simplification to this
is assuming a static model for the inflow where it is simply assumed that wi ≈ 1

3
w0

resulting in

w = w0 − wi − ẋ ≈
2

3
w0 − L cos(θ)θ̇ (3.1.6)

where w0 is the environment wind speed, wi is the inflow, and w is the relative axial
flux, i.e. the adjusted wind speed perceived by the rotor. We acknowledge that this
is an extremely simplified approximation but it captures the main contributions to
adjusted wind, which is the purpose.

Combined model

Combining Equation 3.1.3 for the platform and Equation 3.1.4 for the rotor
gives the system:

x = [x1, x2, x3]T = [θ, θ̇,Ω]T

u = [u1, u2, u3]T = [Fthr, up, Pgen]T
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ẋ =


θ̇

1

Jp

(
−kpL2

S sin θ cos θ −MgLCOM sin θ − cpLS cos(θ)θ̇ + LSFthr + LFwind

)
1

Jr
(Qwind −

Pgen
Ω

)



=


x2

1

Jp
(−kpL2

S sinx1 cosx1 −MgLCOM sinx1 − cpLS cos(x1)x2 + LSu1 + LFwind)

1

Jr
(Qwind −

u3

x3

)


(3.1.7)

where Fwind and Qwind are given by Equation 3.1.5.

A graphical overview of how the system is interconnected is shown in Fig-
ure 3.1.3. Note that this is graphic is a coarse overview and does not include
all dependencies in the equations, e.g., the feedback between Fwind and θ̇.

To summarize the most relevant symbols: Qwind is the rotational torque on the
rotor from the wind. Fwind is drag force at the top of the turbine from the wind.
Qgen is the resistance torque from the generator. Ω is the angular velocity of the
rotor. θ and θ̇ are the angle and angular velocity of the platform, respectively.
Regarding control inputs, Pgen is the generated power, up is the bias-corrected
pitch input, and Fthr is the platform thrust force.

Figure 3.1.3: Block diagram overview of the equation system.

3.1.3 Predictive safety filter formulation

Building on section 2.4, we can now introduce our adapted nominal PSF formu-
lation. Nominal in the sense that we do not consider disturbances, but note that
our framework and methodology has the ability to extend to this realm as well. As
a consequence, we are not able to prove stability in varying wind, which in reality
is a big part of FOWT control. We therefore rely on the empirical evidence of the
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inherent robust stability of nominal MPC to handle slowly varying wind and other
simplifications done to ensure computational feasibility.

Our approach differs in some areas from the original paper (Wabersich and
Zeilinger, 2018b), with the main difference being that our PSF is not learning-
based. The downside of this is of course the explicit expert knowledge needed to
formulate state dynamics to obtain the discrete state trajectory Φ(·). Our formula-
tion is

min
X,U

(u0 − uL)ᵀR(u0 − uL) (3.1.8a)

s.t.

xk=0 = xt (3.1.8b)
xk+1 = Φ(τt,k,xk,uk,pk) ∀k ∈ I≤N (3.1.8c)

Hxxk+1 ≤ hx (3.1.8d)
Huuk ≤ hu (3.1.8e)
xN+1 ∈ T ⊆ S (3.1.8f)

where R is the quadratic cost matrix, uL is the RL proposed input, and the rest of
the variables are defined as in Equation 2.4.19. The main difference from the non-
linear MPC can be seen in the cost function, which is only dependent on the first
input in the control sequence u0 and the proposed control input uL. In addition
we have limited the constraints from Equation 2.4.19d to polytopic constraints as
described in subsection 2.1.1. At each time step, the PSF finds a backup trajectory
which minimizes the distance between u0 and uL. Deviations between the two
will occur when the input would lead to constraint violations or the state system
trajectory does not enter the terminal set at the end of the horizon. If the RL’s pro-
posed input is to be allowed directly, then u0−uL should be zero. In this scenario,
the value of R does not matter. However, once filtering is needed, the shape of the
cost function determines u0. A natural approach is to let R normalize the elements
of u0.

Conceptually we are now close to the quadratic program-based CBF proposed
in Ames et al. (2016). One could argue that the presented PSF formulation is a
special case of CFB, the difference being that the safe set is implicitly defined. The
PSF approximates the safe set S̃ ⊆ S, where the temporal span of the horizon
is therefore related to how conservative the PSF is. If we let the horizon tend
toward infinity, it will span the entire safe set. At this point, the PSF would be
at its least conservative. A naive implementation with an infinite horizon is, of
course, computationally intractable which is why we want the largest possible
terminal set. If we only have a single step in the PSF, the optimization is a direct
projection onto the terminal set. Leaving us with adjusting the length of N as a
trade-off between conservativeness and computational complexity. Figure 3.1.4 is
an illustration of the aforementioned sets.
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Figure 3.1.4: Illustrates the conceptual relation between the different sets related to the
PSF. The grey area is the system constraints X , the blue is the true safe set
S, the purple is the approximated safe set S̃, and the green is the terminal
set T . Extending the temporal span of the PSF horizon can increase the size
of S̃.

One benefit of using the PSF in combination with an RL agent, instead of a
traditional MPC, is that the tasks of optimality and safety are separated. The PSF
is left with the simple task of keeping the state within the safe set, while the task
of optimality is left to the RL agent. Due to its modularity and separation the
optimizing controller could take any form. Recursive feasibility proof outlined in
subsubsection 2.4.2 could be reapplied here in the same manner. This property is
ensured if the initial problem is feasible and and the plant approximation in PSF
is sufficiently accurate.

3.1.4 Obtaining the terminal set

Working our way from the system dynamics there are a few problems which
come in the way of obtaining the terminal set. To be able to apply the theory from
subsection 2.4.1, we must transform the nonlinear system into a linear one. This
is done through employing the robust control methods discussed, also in the same
section. We also need to handle a few other details to be able to construct the
ellipsoidal terminal set, this is discussed in the following parts.

Constructing the linear uncertainty system

As seen in Equation 2.1.3 any ODE can be approximated linearly around a
point v0. Using the combination of linearization and lifting the affine system as
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displayed in Equation 2.1.5, we can reformulate the ODE as

ẋ = ∇ᵀfx|zlin(x− xlin) +∇ᵀfu|zlin(u− ulin) + f |zlin
= ∇ᵀfx|zlinx +∇ᵀfu|zlinu + f |zlin −∇ᵀfx|zlinxlin −∇ᵀfu|zlinulin︸ ︷︷ ︸

b

(3.1.9)

˙̃x =

[
∇ᵀfx|zlin f |zlin −∇ᵀfx|zlinxlin −∇ᵀfu|zlinulin

0 0

] [
x
1

]
+

[
∇ᵀfu|zlin

0

]
u (3.1.10)

˙̃x = A(δ)x̃ + B(δ)u (3.1.11)

We can now use the robust control principles from subsection 2.4.1 to handle
the nonlinearities if we can express the system matrices as affine functions of the
uncertainty δ. The number of LMIs introduced to the formulation in Equation 2.4.1
is 2p, where p is the dimension of δ. Due to the exponential growth in system "ex-
tremes" having to be stabilized, we want to find a polytope with as few vertices as
possible which still spans the matrix space. However, only reducing the dimension
of δ, could result in an overly coarse approximation and reducing the chance find
a feedback controller satisfying the LMIs. Therefore, we also want to tighten the
constraints around the function. The problem is closely related to the minimal en-
closing box, or the more general minimal enclosing polytope (Panigrahy, 2004).
Further expansion in this direction is possible but not considered in this thesis.

When the system dynamics are of the form of Equation 3.1.11, an orthotope
(hyperrectangle) ∆ can be created through optimization. Re-expressing the sys-
tem matrices in terms of δi,j(z) = δi,j gives

[
A(δ) B(δ)

]
=


δ1,1 δ1,2 . . . δ1,nx+nu+1

δ2,1 δ2,2 . . . δ2,nx+nu+1
...

... . . . ...
δnx,1 δnx,2 . . . δnx,nx+nu+1

0 0 . . . 0

 (3.1.12)

The range of the matrices elements δi,j is found through the optimization[
δi,j, δi,j

]
=
[
min
z

δi,j,max
v

δi,j

]
, i ∈ I≤nx , j ∈ I≤nx+nu+1

s.t.

Hzz ≤ hz

(3.1.13)

where the constraint Hzz ≤ hz does not need to coincide with the PSF constraints.
The procedure creates the box ∆ = ∈ Rp, where p = nx(nx+nu+1). This approach
scales rater poorly, but this is under the assumption that every entry varies with z.
However, this is often not the case. To increase the probability of finding a linear
feedback controller and the correlated terminal set, we could adjust the range of
the external parameters. A smaller range would lead to a more specific solution
with a large ellipsoidal set.
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In a sense, we have linearized the system around every possible state and sta-
bilized the entire set at the same time. As we do not consider our system states’
derivatives, we cannot apply saturation limits to our terminal set in practice. The
extension is trivial in theory but will further decrease the size of the terminal set.
The resulting system uncertainty is now an outer approximation of the nonlin-
ear system, leading to a conservative controller (Bemporad and Morari, 1999).
However, this now lends itself to robust linear feedback control, thus realizing our
terminal set. Note that we merely require that such a system theoretically exists,
as the feedback gain is not explicitly used. As a result, we may use both the dis-
crete or the continuous-time implementation. In our implementation, we used the
latter to avoid the challenges of choosing a discretization time-step.

Details concerning the robust ellipsoid

The formulation in Equation 2.4.13 is centered at the origin, but the rotors
rotation Ω is bound above 0. We therefore need to move the ellipsoid inside the
constraints. Furthermore, the equation in Equation 2.4.15 assumes that the con-
straints are equidistant from the origin. More precisely, it constrains the ellipsoid
symmetrically around the origin. The closest constraining hyperplane is in essence
mirrored around the ellipsoid center. The method used here tries to handle both
of these concerns by finding a center (xc0 ,uc0) where the system is at steady state
and maximizes the distance to each constrain hyperplane. The latter coincides
with minimizing the distance given that cost is quadratic, leaving us with follow-
ing optimization problem

xc0 ,uc0 =arg min
x,u

(Hxx− hx)
ᵀQ(Hxx− hx)+

(Huu− hu)
ᵀR(Huu− hu)

(3.1.14a)

s.t.

ẋ = 0 (3.1.14b)
Hxx ≤ hx (3.1.14c)
Huu ≤ hu (3.1.14d)

where R and Q are normalizing diagonal matrices. The diagonal elements r of R
are found with the optimization problem

r = max u−min u s.t. Huu ≤ hu (3.1.15)

The elements of Q are found in a similar fashion. Obtaining our new origin, we
now move the system according to Equation 2.1.11 and Equation 2.1.6.

3.2 Set-up

This section contains the specifics of our setup and more detailed information
on how the work was conducted. It also addresses some of the weaknesses of the
model and justification for choices made during the work.
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3.2.1 Frameworks, packages, and hardware

The RL framework of the software was developed using the OpenAI Gym toolkit,
and Stable Baselines3 was used for RL algorithm implementations and high-level
control of agent training.

A large focus was placed on using open-source frameworks and packages. While
many programming languages offer some deep learning toolkits, the ML commu-
nity is mostly based around Python. This is in contrast to control engineering
tasks, where MATLAB is often the preferred tool. As an example, the most popular
framework for LMIs is YALMIP (Löfberg, 2004), which is implemented in MATLAB.
As Python and MATLAB are able to communicate, a dual language implementa-
tion is possible, and a working prototype was implemented using this. However,
a native python implementation is clearly beneficial with respect to licenses, exe-
cution times, and ease of installation. Through the use of the CVXPY framework
(Diamond and Boyd, 2016; Agrawal et al., 2018), we were able to eliminate the
MATLAB dependencies. CVXPY is a Python-embedded modeling language for con-
vex optimization problems that offers support for the most common solvers. While
open-source solvers are available (e.g., CVX OPT (Vandenberghe, 2010)), the com-
mercial solver MOSEK ApS (2019) was used to solve the terminal set problem in
our implementation. Other solvers should be capable, however MOSEK converged
on solutions significantly faster and with a higher success rate, leaving it as the ob-
vious choice. MOSEK is also available through a free academic license, so licensing
was not considered an issue.

The PSF was implemented in Casadi (Andersson et al., 2019), an open-source
tool for nonlinear optimization. While implemented in C, it communicates effi-
ciently with our framework through a Python interface. The core of Casadi is its
symbolic framework, which allows automatic differentiation. This can be used to
efficiently construct gradients, which can again be parsed to a wide variety of
solvers. To solve the Non-Linear Program (NLP), the interior point solver IPOPT
(Biegler and Zavala, 2009) was chosen due to its versatility.

As previously explained, our model was based on the IEA 15MW RWT. To inves-
tigate the validity of our simplified model and find appropriate coefficients for our
equations, system identification had to be performed. This was done by compar-
ing our simple model to OpenFAST simulations of the RWT. OpenFAST (Jonkman
et al., 2021) is an open-source, multi-physics, multi-fidelity tool for simulating the
coupled dynamic response of wind turbines and includes a high fidelity model of
the IEA 15MW turbine.

The fourth order Runge-Kutta-Fehlberg method (Fehlberg, 1970) was used as
the numerical solver to simulate the dynamics of the turbine. The Butcher table
for this method is shown in Table 3.2.1. Using a more complex RK method than
the simple forward Euler method increases the stability margin of the simulation
for larger time-steps, allowing faster simulations. A step size of 0.1 was used.
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Table 3.2.1: Butcher tableau for Runge-Kutta-Fehlberg method 4(5).

Two different hardware setups were used during the work. The RL agents with-
out PSF were trained on a Dell OptiPlex 7060 computer with an Intel Core i7-8700
CPU and 32 GB RAM. Introducing the PSF increased the computation time signif-
icantly, and in order to reduce the time needed for training, processes were de-
ployed on the IDUN High Performance Computing Group (Själander et al., 2019).
Although this did not speed up the training for any single agent, it allowed for
further parallelization and sped up the acquisition of results.

3.2.2 Floating offshore wind turbine model

Our model is meant to be a coarse approximation of the 15MW FOWT pre-
sented by IEA (Allen et al., 2020) capturing the general behavior of the rotor and
platform. Control inputs for the system were chosen to be [Fthr, up, Pgen]T . In the
plant block in Figure 3.1.1, i.e., the model used by the RL agent, the inputs are
low-pass filtered to create more realistic behaviors for actuators. The plant approx-
imation block in the PSF implements an approximation of this behavior through
rate saturations. The time constants in the low-pass filters and the saturation limits
for each input can be found in Table 3.2.5 and 3.2.9.

The turbine has a setpoint curve for both generated power and rotor velocity
based on the wind speed. These are shown in Figure 3.2.1 and Figure 3.2.2. It is
assumed that these curves are based on the wind speed w0 and not the adjusted
wind speed w.
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Figure 3.2.1: Generator power setpoint curve (Gaertner et al., 2020).
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Figure 3.2.2: Ω setpoint curve (Gaertner et al., 2020).

The constraints for the system are set to be as shown in Table 3.2.2. The con-
straints on Ω and Pgen are set based on the RWT specifications. When choosing the
constraints for Fthr, bollard pull was used as a basis. Ajay Menon (2021) reports
that general values of bollard pull for medium-sized tugs used in port operations
can range between 500 to 600 kN. We acknowledge that these numbers are in-
tended for tug boats and not our type of actuation, but it was assumed that we
could equip the platform with a max thrust force of 500 kN. The constraints on up
and θ are simply set based on a combination of reason, feasibility, and data from
Gaertner et al. (2020).

Table 3.2.2: System constraints.

Variable Lower Constraint Upper Constraint Unit
up −4 20 [deg]
Fthr −5 · 105 5 · 105 [N]
Pgen 0 15 · 106 [W]
Ω 5 7.6 [rpm]
θ −10 10 [deg]



Chapter 3. Method and setup 36

System identification for platform

For our model to have the correct behavior of the turbine, we had to find the
coefficients for Equation 3.1.3. This was done by rewriting the equation as

θ̈ = C1 sin θ cos θ + C2 sin θ + C3 cos(θ)θ̇ + C4Fthr + C5Fwind (3.2.1)

The response of the IEA 15MW FOWT (Allen et al., 2020) was then analyzed
in OpenFAST and the coefficients were fitted to this data using 1-norm regression.
With this, we can construct a regression problem, viz.

min |θ̈ −Cᵀy|, C =


C1

C2

C3

C5

 , y =


sin θ cos θ

sin θ

cos(θ)θ̇
Fwind

 (3.2.2)

The steady state for the platform angle of the RWT model is approximately
θoffset = −1.5 deg (leaning into the wind), while our platform is centered at θ = 0.
The offset was subtracted from the platform angle θ = θRWT −θoffset to counteract
its influence. The reason for using 1-norm as loss is due to its ability to suppress
outliers (Zhang and Luo, 2015). Some of the OpenFAST variables are coarsely
differentiated numerically, leaving it necessary to also run the simulation multiple
times for further noise suppression. The data was gathered from 25 runs with
different initial angles. Due to large transients when initializing the turbine with
no movements, the turbine was given a predetermined rotation and wind speed
of 7.55 rpm and 12 m/s, respectively. The wind speed was then steadily changed
to random wind speed between 10 and 25 with a ramp function to further excite
the system. The coefficients C1...5 in Equation 3.2.1 were then fine-tuned manually
to fit the step response of the platform from OpenFAST with regards to the period
and damping of the θ-oscillations. They can be found in Table 3.2.3.

Table 3.2.3: Platform coefficients.

Coefficient Value
C1 4.45
C2 −4.49
C3 −5.55 · 10−3

C4 C5 · LthrL
C5 9.92 · 10−10

OpenFAST offers a wide range of data output tags. The relevant ones and their
relation, name and meaning can be seen in Table 3.2.4.
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Table 3.2.4: Data tags in OpenFAST used to obtain the platform and thrust coefficients.

Model Tag Name Description
θ PtfmRDyi Platform pitch tilt angular (rotational) displacement
θ̇ PtfmRVyi Platform pitch tilt angular (rotational) velocity
θ̈ PtfmRAyi Platform pitch tilt angular (rotational) acceleration

Fwind RotThrust Low-speed shaft thrust force

The models step response

The step response of the platform without wind can be seen in Figure 3.2.3.
The proposed model is relatively static in the frequency of θ. However, the Open-
FAST simulation shows that the reference model reacts with different frequencies
to different initializations in θ. Notice that the proposed model has a frequency
somewhere in between, lagging behind when the pitch angle is small but ahead at
large angles. In both cases, the model is erroneous but is chosen as an intermediate
estimation of the RWT.

0 10 20 30 40 50 60 70 80 90 100

Time [s]

-8

-6

-4

-2

0

2

4

6

A
n
g
le

 
R

W
T
$
 [
d
e
g
]

RWT

Model

RWT

Model

Figure 3.2.3: Response of the proposed model (Model) and the reference model (RWT)
with two different initialization. The proposed model acts intermediate esti-
mation of the RWT simulation when no wind is present. Steady state offset
is taken into account.

With a change in Fwind, we can further investigate the response of our system
under the influence of wind. The change in axial force is induced by creating a step
from no wind to 12 m/s, which is then measured as a force in the nacelle. Note
that the step is created in wind speed and not in Fwind, so the axial force will take a
different shape. The responses can be seen in Figure 3.2.4. We see that our model’s
initial response is comparable, but it fails to capture the wind’s dampening effect,
resulting in a quite different response. As a consequence, our model oscillates
heavily under the influence of a wind force. Nevertheless, our model oscillates
around the same point, which goes to show that our platform model attains some
of the basic properties of the system, like the steady-state effect of wind.



Chapter 3. Method and setup 38

0 10 20 30 40 50 60 70 80 90 100

Time [s]

-2

-1

0

1

2

3

4

5

6

7

R
W

T
 [

d
e

g
]

0

0.5

1

1.5

2

2.5

3

3.5

A
x
ia

l 
F

o
rc

e
, 

[M
N

]

RWT

Model

F
wind

Figure 3.2.4: Response to changes in wind from 0 m/s to 12 m/s. The step is instantaneous
in wind, but not in the axial force. The axial force applied at nacelle of
the proposed model and the references model(RWT) simulated OpenFAST.
Steady state offset is taken into account.

3.2.3 Reinforcement learning

Our control problem has a continuous state and action space, much like in
Meyer (2020). Teigen (2020) shows that the PPO algorithm is preferable for such
applications, which is why we use this algorithm in our implementation. We for-
mulate the problem as an episodic event where the wind conditions are varied
within certain ranges between episodes. The agent needs to train for multiple
episodes to be able to learn the dynamics. This requires us to define how an
episode is started and when it is done.

An episode is started with a random initial wind speed within a given range.
A choice was made to start the turbine in a steady state given this wind speed.
Starting the turbine in an initial state of zero rotor velocity and platform angle
would lead to a large transient on start-up. Instantly applying a step in the wind
from 0 to e.g., 20 m/s on a stationary turbine is neither in the domain of the
control problem in this thesis nor within the limits of our model’s validity. Control
of the turbine outside its rated wind speeds of 5-25 m/s is also outside the scope
of this thesis. This leads us to a solution where the desired wind is applied, and the
turbine is initialized in a steady-state solution within the constraints in Table 3.2.2.
The steady state is calculated with the assumption of Fthr being set to zero. Note
that the steady state is not necessarily the optimal state given the conditions. The
only requirement is that it is within the constraints of the system.

This gives a realistic starting point for the RL agent in each episode. The task for
the RL agent will then be to adjust the propeller thrust, blade pitch angle, and gen-
erator power generation to bring it to an optimal state and continue stabilization
with varying wind.

Similarly, the end of each episode needs to be defined. An episode is said to be
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Table 3.2.5: Model parameters and variables.

Symbol Description Value Unit
β Rotor blade pitch angle [rad]
β∗ MPPT Optimal blade pitch angle [rad]
up Bias corrected pitch input β − β∗ [rad]
Fthr Force from platform thruster [N]
Pgen Generated power [W]
w0 Environment wind speed [m

s ]
wi Inflow wind 1

3
w0 [m

s ]
w Wind speed (Relative axial flux) w0 − wi − ẋ [m

s ]
θ Platform angle [rad]
Ω Rotor angular velocity [ rad

s ]
Ω0 Setpoint for rotor angular velocity 0.75 [ rad

s ]
Fthr,max Max force from platform thruster 500 000 [N]
τthr Platform thruster time constant 2 [s]
up,max Max bias corrected pitch input 0.3491 (20 deg) [rad]
up,min Min bias corrected pitch input −0.2up,max (-4 deg) [rad]
τu Blade pitch time constant 1.3 [s]
Pgen,max Maximum power generation 15 000 000 [W]
τgen Generator power time constant 2 [s]
B Tip loss parameter 0.97 -
R Rotor radius 120 [m]
A Rotor area πR2 [m2]
Rp Tip loss corrected rotor radius B ·R [m]
Ap Tip loss corrected rotor area πR2

p [m2]
ρ Air Density 1.225 [ kg

m3 ]
C∗P Power coefficient 0.489 -
CF Force coefficient 0.8 -
λ∗ Tip speed ratio 9 -
Jr Rotor inertia 4.06890357e+07 [kg m2]
L Distance from water line to nacelle 144.45 [m]
Lthr Distance from water line to platform

thruster
50 [m]

done if either of the following conditions is met.

• A maximum number of timesteps is executed (3000 steps).

• The turbine has crashed, meaning

The platform angle, θ, is outside the [−10, 10] degrees range, or

The angular velocity of the rotor, Ω, is above 10 RPM, or

The angular velocity of the rotor, Ω, is below 3 RPM.

• The PSF fails to solve the optimization problem.
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The reason for the crash conditions on Ω being different from the constraints in
Table 3.2.2 is that we want to allow some slack for the PSF. This is done because
the simplifications in the PSF might cause it to allow the system to go slightly out-
side the constraints. The wider constraints were also observed to be beneficial for
the RL agent as it made the optimization problem easier to solve. It is also natural
to widen the constraints for the RL agent to facilitate learning by allowing more
exploration, especially in the case without PSF. Figure 3.2.5 shows the training
progress with the tighter constraints, and we clearly see that the agent does not
converge to an optimum with respect to the reward. Neither is it able to learn that
it is beneficial to keep the system within the constraints.
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Figure 3.2.5: Training progress for RL agent trained with episode conditions same as con-
straints in PSF (Table 3.2.2).

We stress that throughout this report we refer to both crash prevention, which
is defined by the conditions above, and constraint satisfaction, which is defined
as keeping the system within the tighter constraints in Table 3.2.2. By defining an
episode as crashed differently than the violating the PSF constraints, we reduce
our proof of constraint satisfaction to crash prevention.

Environment setup

Figure 3.2.6 shows the structure of the environment implementation in soft-
ware, where everything is based around a base environment containing a turbine
model as well as a PSF. This is then inherited by sub-environments that add var-
ious wind models, one for varying wind and one where the wind speed is con-
stant. The sub-environments of the variable-wind environments enable the setting
of wind mean and amplitude ranges. This is done to make it easy to extend the
framework with different and more challenging wind models.
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Figure 3.2.6: Overview of the RL environment framework.

Reward function

As explained in section 2.3, the RL agent optimizes its policy based on a re-
ward. Therefore, shaping of a reward function is an paramount to the agent’s
performance and we define it as

r(t) = r
(t)
θ + r

(t)

θ̇
+ r

(t)
Ω + r

(t)

Ω̇
+ r

(t)
P + r

(t)
PSF (3.2.3)

Each term in the reward is presented below. See Figure 3.2.9 for plots of the
first five terms’ contribution to the reward function. The coefficients used within
each of the terms are listed in Table 3.2.6. Note that the units of the variables in
the reward function are changed from standard SI units to make the curve shaping
more intuitive during development.

The main goal of the agent is to optimize the generated power, thus we intro-
duce the following term

r
(t)
P = e−γP |P−P0| − γP |P − P0| (3.2.4)

where P and P0 are given in MW. The curve for P0 is can be seen in Figure 3.2.1.

r
(t)
P is needed to guide the agent towards keeping Pgen as close to the setpoint

curve as possible. The curve is chosen as a combination of a decaying exponential
and an absolute value term. The decaying exponential is chosen to introduce the
initial rapid decay. The absolute value term is used to avoid a derivative of zero
far from the desired value as this might make it hard for the agent to optimize the
reward function by gradient ascent.

The turbine only operates when keeping Ω within a certain range. There is also
a desired setpoint curve for Ω. We want to keep Ω as close to this curve as possible
while still optimizing power generation and add the term

r
(t)
Ω = e−γΩ|Ω−Ω0| − γΩ|Ω− Ω0| (3.2.5)
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where Ω is given in RPM. The curve for Ω0 can be seen in Figure 3.2.2. The shape
of r(t)

Ω is chosen to be the same as for r(t)
P because the functions serve the same

purpose, but for different variables.

In addition to keeping Ω close to the setpoint, we want to avoid rapid oscilla-
tions in Ω. This can be realized through adding a penalty term for Ω̇,

r
(t)

Ω̇
= −γΩ̇Ω̇2 (3.2.6)

where Ω̇ is given in RPM per second. r(t)

Ω̇
also indirectly reduces rapid oscillations

in up. These rapid oscillations are undesirable because they increase wear and tear
on the turbine, especially the actuators.

Our control problem also consists of keeping the platform as vertical as possible
while keeping it stationary and minimizing oscillations. Hence, terms for θ and θ̇
were also added.

r
(t)
θ = e−γθ|θ| − γθ|θ| (3.2.7)

r
(t)

θ̇
= −γθ̇θ̇

2 (3.2.8)

where θ is given in degrees and θ̇ is given in degrees per second.

For the pure RL part of the problem, this would be all the terms needed in the
reward function but when adding the PSF we also need to consider the corrected
actions. To prevent the agent from only relying on the PSF, we add a negative
reward for actions that would violate the constraints of the system given by

r
(t)
PSF = −γPSF

∣∣∣∣∣∣∣∣uL − u0

umax

∣∣∣∣∣∣∣∣
1

= −γPSF
(∣∣∣∣Fthr − Fthr,PSFFthr,max

∣∣∣∣+

∣∣∣∣up − up,PSFup,max

∣∣∣∣+

∣∣∣∣Pgen − Pgen,PSFPgen,max

∣∣∣∣) (3.2.9)

where the subscript PSF symbolizes the corrected action given by the PSF.

r
(t)
PSF is of course, only applied if the PSF is used during training. In the case

of training an agent without the PSF, r(t)
PSF is always set to zero. The magnitude

of r(t)
PSF , can be relatively large because the difference between the PSF-corrected

action and agent action will be zero as long as the action keeps the system within
the constraints. Thus γPSF can be relatively large. The intention is for r(t)

PSF to
dominate the reward initially and teach the agent to make safe actions, then allow
the agent to optimize further through the other terms when it has learned safe
behavior and r(t)

PSF is small.

As seen in Figure 3.2.9, most of the terms in the reward function will approx-
imately be in the interval [-1,1] for reasonable values of each variable. Equa-
tion 3.2.3 gives a maximum theoretical value for the reward of 3 per timestep,
or 9000 per episode.
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Table 3.2.6: Coefficients in reward function.

Symbol Definition Value
γθ Coefficient for θ reward 0.12
γθ̇ Coefficient for θ̇ reward 3
γΩ Coefficient for Ω reward 0.285
γΩ̇ Coefficient for Ω̇ reward 4
γP Coefficient for power reward 0.1
γPSF Coefficient for PSF reward 5

The following paragraphs provide justification for each of the terms in Equa-
tion 3.2.3. Several different reward functions were explored, all of them a simple
sum of terms representing desired behavior. In many of the versions a survival
term r

(t)
survival or a crash term r

(t)
crash was added to encourage the agent to avoid

crashing. These are defined as

r
(t)
survival = 1 ∀ t

r
(t)
crash =

{
-1000 if turbine has crashed
0 otherwise

The training progress for each of these functions can be seen in Figure 3.2.7.
Note that the theoretical maximum values for the rewards are different for each
R1...7, so the comparison has to be made on qualitative progress and not exact
converged value.

The proposed reward functions are

• R1: r
(t)
P

• R2: r
(t)
P + r

(t)
crash

• R3: r
(t)

θ̇
+ r

(t)
Ω + r

(t)
P + r

(t)
PSF + r

(t)
survival

• R4: r
(t)
θ + r

(t)

θ̇
+ r

(t)
Ω + r

(t)
P + r

(t)
PSF + r

(t)
survival

• R5: r
(t)
θ + r

(t)

θ̇
+ r

(t)
Ω + r

(t)
P + r

(t)
PSF + r

(t)
crash + r

(t)
survival

• R6: r
(t)
θ + r

(t)

θ̇
+ r

(t)
Ω + r

(t)

Ω̇
+ r

(t)
P + r

(t)
PSF + r

(t)
survival

• R7: r
(t)
θ + r

(t)

θ̇
+ r

(t)
Ω + r

(t)

Ω̇
+ r

(t)
P + r

(t)
PSF

R1 and R2 were explored as attempts to keep the reward function as simple
as possible, only centering the attention on the main objective of a turbine, opti-
mizing power generation. As Figure 3.2.7a shows, this was not successful, and the
agent was not able to learn not to crash.

R3 adds terms for some of the other control objectives, namely making Ω follow
the setpoint curve and keeping the platform as stationary as possible though θ̇. A
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survival term was also added to encourage the agent not to crash. We will come
back to the PSF term later. A problem with the response of the agent trained
using R3 was that it used the platform thruster the opposite way of intended,
i.e., increasing θ. A term for θ was therefore added in R4. Comparing the training
progress of agents with R5 to R4 in Figure 3.2.7, we see that adding a crash reward
was not beneficial and actually slowed down learning.

R3 and R4 both had similar progress, appearing to be the ones giving the fastest
learning. One problem with these was that they resulted in agents using oscillatory
inputs, thus oscillatory response in Ω. A term for Ω̇ was added in R6 to counteract
this unwanted behavior. This addition slowed down learning, as seen for R6, but
resulted in a better qualitative response in up and Ω reducing wear and tear on the
turbine. The improvement in response for Ω after adding a term for Ω̇ can be seen
in Figure 3.2.8.

In an attempt to simplify the reward function, the survival term was removed
in R7. Comparing R6 and R7, we see that the general learning follows the same
shape and converges at approximately the same time. As a consequence, there
seems to be no benefit to adding the extra term. R7 therefore became the final
reward function used in Equation 3.2.3.

The PSF term was added to keep the agent from exclusively relying on the PSF
to choose actions. Without this term, we observed an instance where the trained
agent constantly set the blade pitch input up to−4o and relied on the PSF to correct
this. This behavior was significantly reduced by adding r(t)

PSF .
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Figure 3.2.7: Training progress for each version of the reward function displayed by
episode crash rate and reward mean.
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Figure 3.2.8: Response for Ω using agents trained with R4 (left) and R6 (right) as the
reward functions.
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Figure 3.2.9: Reward curve for five first terms in the reward function.

Action and observation spaces

The action space is as described by the control inputs [Fthr, up, Pgen]T . The con-
trol inputs were then normalized to make exploration and optimization easier for
the agent. Having very different ranges for different directions of the action space
might lead to one input being harder to explore than another. This can be ex-
plained by a simple example. Imagine input 1 ranges from 0 to 1000, and input
2 ranges from 0 to 1. Then an exploratory step of 0.1 would explore the action
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space significantly more in the input 2 direction than for input 1. Thus scaling
both inputs from 0 to 1 might make it easier for the agent to learn the effects of
each input.

The platform propeller thrust, Fthr, is scaled to range from -1 to 1, with the un-
normalized range being from −Fthr,max to Fthr,max. The value for Fthr,max is listed
in Table 3.2.5.

The rotor blade pitch, up, is scaled to range from -0.2 to 1, with the un-normalized
range being from up,min to up,max. The values for these are listed in Table 3.2.5.

The generator power extraction, Pgen, is scaled to range from 0 to 1, with the
un-normalized range being from 0 to Pgen,max. The value for Pgen,max is listed in
Table 3.2.5.

Different observation spaces were explored to see what gave the best results.
A natural observation to add is the state, x = [θ, θ̇,Ω], as these are the variables
we want the agent to learn the dynamics of. Adding Ω̇ to the reward function also
made it natural for it to be in the agent’s observation. For the agent to be aware
of its environment conditions, the wind speed was also a natural observation to
include. The final observation used was y = [θ, θ̇,Ω, Ω̇, w0]. All elements in the
observation are measurable with no noise.

Training

To investigate the abilities of RL in this application, we implement a frame-
work with different versions of the environment. We choose to structure this as
six scenarios, or levels, that contain wind of varying difficulty. It is assumed that
the environment wind speed, w0, is between 5 and 25 m/s. All scenarios represent
wind as a slowly varying sinusoidal as defined by Equation 3.2.10. The period
Tw is set to 60 seconds which is based on Figure 2.2.1 where a peak in the wind
spectrum can be seen at about 60 cycles/hour, or 1 cycle per 60 seconds.

The simulated wind at timestep t is generated by the equation

w0 = A sin

(
2π

Tw
t+ φ

)
+ wmean (3.2.10)

where the amplitude A, wind mean wmean, and wind phase φ are sampled ran-
domly at the beginning of each episode by the equations

A = min

(
1

2
(wmax − wmin), Amax

)
· rand(0, 1) (3.2.11)

wmean = (wmax − wmin − 2A) · rand(0, 1) + wmin + A (3.2.12)
φ = 2π · rand(0, 1) (3.2.13)

where rand(0, 1) is a randomly generated number in the interval [0, 1], wmin is the
minimum specified wind mean, wmax is the maximum specified wind mean, Tw is
the wind period, and Amax is the maximum specified amplitude.
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As the equations state, the phase φ is sampled randomly in the interval [0, 2π] at
each timestep t. Amplitude and mean value of the wind are also sampled randomly
between episodes, although from different intervals depending on the level. An
example of wind simulations for a level with amplitude in the 0-3 m/s range and
mean in the 10-20 m/s range is shown in Figure 3.2.10. As we can see from the
wind generation equations above and Figure 3.2.10, the wind speed will never go
outside the specified range. A weakness of this is that larger amplitudes are not
possible for wind means close to the range extremes, e.g., the combination of the
amplitude of 3 m/s and wind mean of 19 m/s would not be possible for this a
wind mean range of 10-20 m/s.
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Figure 3.2.10: Examples of simulated winds in a level with amplitude in the 0-3 m/s
range and wind mean in the 10-20 m/s range. Phase shift is set to zero for
demonstration purposes.

Scenarios where the wind is constant were first assumed to be trivial and not
realistic in real-world applications. Thus, we disregarded this special case and
rather set up levels where the wind varied slowly. We add that this assumption
might have been made too quickly, and more investigation should have been per-
formed in constant wind scenarios. To aid investigation of our results, we also
created Level HighWinds, Level ConstantLow, and Level ConstantHigh. These lev-
els are further used in section 4.1. The main results are based on Level 0-5, and
the extra levels are made to explore specific scenarios to aid discussion.

The levels are defined by their amplitude and mean wind sample range:

• Level 0: Amplitude 0-1 m/s. Mean 13-17 m/s.

• Level 1: Amplitude 0-1 m/s. Mean 10-20 m/s.

• Level 2: Amplitude 0-1 m/s. Mean 5-25 m/s.
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• Level 3: Amplitude 0-3 m/s. Mean 10-20 m/s.

• Level 4: Amplitude 0-3 m/s. Mean 10-25 m/s.

• Level 5: Amplitude 0-3 m/s. Mean 5-25 m/s.

• (Level ConstantLow: Amplitude 0 m/s. Mean 5-13 m/s.)

• (Level ConstantHigh: Amplitude 0 m/s. Mean 13-25 m/s.)

• (Level HighWinds: Amplitude 0-3 m/s. Mean 13-25 m/s.)

The hyperparameters used for training are listed in Table 3.2.7. Parameters
not listed are kept as default from Stable Baselines3. The hyperparameters were
tuned using intuition and experimentation, not using a dedicated hyperparameter
optimization framework. Each agent was trained for 10M timesteps.

Table 3.2.7: Non-default hyperparameters for PPO.

Hyperparameter Value
n_steps 1024
learning_rate linear_schedule(init_val=1e-4)
gae_lambda 0.95
gamma 0.99
n_epochs 4
clip_range 0.2
ent_coef 0.01

Implementing RL in a specific application such as this requires being able to
view data from, and get insight into, the training process. Thus, a great effort
has been put into saving as much data as possible to debug and evaluate the
performance of agents. The current solution implements this through callbacks,
reporting to Tensorboard, and saving data to files during training.

Performance and testing

The performance of each agent was tested by running it in 100 randomly gen-
erated episodes. For training performance, this was done in the level it was trained
in. The maximum number of timesteps for each episode was also increased from
3000 to 6000 when testing to investigate if the agents are exploiting the maximum
timestep limit or are able to extend to continual operation.

The metric for performance is based on the cumulative reward and created such
that it reflects how close to the theoretical maximum of this the agent is. Perfor-
mance is set to be the cumulative reward for the episode, excluding rPSF , divided
by the theoretical maximum. It is then multiplied by 100 to make it resemble a
percentage measure. rPSF is excluded to make the metric comparable between
PSF-based and non-PSF agents. Crashes are considered as a separate metric, and
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as a result, we exclude the episodes that crashed from the average, i.e., the perfor-
mance is averaged between the episodes that did not crash. Including crashes in
the metric would make it hard to separate if the metric is low because of crashes
or because of low control performance. In addition, including crashed episodes
in the performance metric would lead late-crashing episodes to lower the metric
less than early-crashing ones, which is undesirable because a crash is considered
a crash no matter when it happens. This setup is also convenient when compar-
ing the RL performance to the performance of the RL with PSF, which optimally
should eliminate crashes altogether.

The resulting performance metric for episode i is then defined as

(Performance)i = 100 · (Cumulative Reward)i − (Cumulative PSF Reward)i
Theoretical max cumulative reward

(3.2.14)

In our case, we run 100 episodes to get a better estimate of the true perfor-
mance. The resulting average performance is then

Performance =
1

M

M∑
k=1

(Performance)k (3.2.15)

where M = 100 − (Number of episodes that crashed). Even though Performance
is meant to represent a percentage of the maximum, we emphasize that this the-
oretical maximum might not be feasible for the system, especially not in all wind
conditions. The testing uses the same performance measure.

As mentioned, excluding the crash rate from the metric helps us separate crash
rate and low control performance as two different metrics. However, it can also
create misleadingly high performance for an agent with a high crash rate. We,
therefore, stress that as long as the crash rate is non-zero, the results for perfor-
mance are not as valid and stay inconclusive. In any case, it always has to be
looked at in combination with the corresponding crash rate.

Another interesting result is to see how much the RL agent is corrected by the
PSF after it is trained. We display this PSF metric as a percentage of the minimum
PSF reward for an episode. Minimum PSF reward is derived from Equation 3.2.9,
and gives −5(2 + 1.2 + 1) = −21 for each timestep. This comes out to −21 · 6000 =
−126000 for each episode. This is then averaged between 100 episodes. In the
same way, as with the performance metric, the episodes that crashed are excluded
from the average.

(PSF metric)i = 100 · Cumulative PSF Reward
Theoretical min. cumulative PSF reward

PSF metric =
1

M

M∑
k=1

(PSF metric)k

(3.2.16)

where M = 100− (Number of episodes that crashed).
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3.2.4 The terminal set

To express the terminal set, we need the Jacobian ∇ᵀf of our system, which is
calculated to be

∇ᵀfx =


0 1 0

Θ(θ, θ̇) C3 cos(x1) C5
∂Fwind
∂x3

0 0
1

Jr
(
∂Qwind

∂u3

+
x3

x2
3

)

 (3.2.17)

Θ(θ, θ̇) = C1 cos(2x1) + C2 cos(x1)− C3 sin(x1)x2 (3.2.18)
∂Fwind
∂x3

= kr(cos(u2)w − 2 sin(u2)`x3) (3.2.19)

∂Qwind

∂x3

= −kr sin(u2)`w − 2brx3 (3.2.20)

∇ᵀfu =

 0 0 0
C4 C5kr(sin(u2)wx3 − 2 cos(u2)`x2

3) 0

0
−1

Jr
(kr(sin(u2)w2 + cos(u2)`wx3)

1

Jrx3

)

 (3.2.21)

Inspecting the Jacobian and the system equation displayed in Equation 3.1.7,
we see that p = 9. Reformulating the system as a function of constants and δ =
[δ1, ..., δp]

ᵀ, we obtain

˙̃x =


0 1 0 0
δ1 δ2 δ3 δ5

0 0 δ4 δ6

0 0 0 0

 x̃ +


0 0 0
C4 δ7 0
0 δ8 δ9

0 0 0

u , (3.2.22)

δ ∈∆ =
10×
i=1

[
δi, δi

]
(3.2.23)

Casadi was used to derive the Jacobian and automate the derivation above.
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(a) The true terminal set. (b) The alternative terminal set.

Figure 3.2.11: The different ellipsoidal sets plotted against the constraints in the PSF.
The red box defines the constraints while the black ellipsoid represents the
terminal set.

The constraints in Equation 3.1.13 were tightened to create less uncertainty in
A(δ) and B(δ). The changed constraints for system uncertainty can be found in
Table 3.2.8.

Table 3.2.8: Constraints used for obtaining system uncertainty.

Variable Lower Constraint Upper Constraint Unit
Ω 6 7 [rpm]
θ 0 8 [deg]
θ̇ 0 0 [deg/s]

The resulting terminal set is quite restricted in size due to a combination of
our system dynamics, the inherent linear conservatives of the method and input
constraints. The ellipsoidal terminal set can be seen in Figure 3.2.11a. If the states
are far from the terminal set, the PSF requires a long horizon to drive the state
into this set. Keeping the PSF timestep τk = τt relatively small (<1 s), for reasons
we will addressed in subsection 3.2.5, leads to a large number of optimization
variables (nx + nu) ∗ N . Not only does the increased complexity of the problem
lead to slow evaluation, it was observed to also lead to higher failure rates in the
solver.

The addition, the PSF filter will significantly lower the framerate of the RL train-
ing process. With a naive approach, we were only able to achieve 20 evaluations
per second during training on 12 CPU cores. This is in contrast to 1500 using just
RL agent. The RL method is dependent on high framerate during training, and to
address the issue a wide variety of actions were taken and explored.

Firstly, and perhaps most drastically, we created a new terminal set. The new set
is also an ellipsoidal one, but was created by simply maximizing it within the state
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constraints, negating the system dynamics and input constraints. The result can
be seen in Figure 3.2.11b. Obviously, we no longer have a strong proof related to
the stability of the system. While this seems to negate an important aspect of why
we introduced the PSF, we will further examine the impact of this simplification
in section 4.1.
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Figure 3.2.12: Steady state plane viewed at different angles. Colored by wind speed, blue
is low and yellow is high.

As some of our control inputs have a large numerical range where one input
is given in 106 and one as small as 10−1, we also need to scale the input to be
able to solve the terminal set and our receding horizon problem. This is related
to the same issue as when scaling the action space of the RL agent. For the PSF,
this was handled by simply scaling B(δ) by the max range of the polytopic con-
straints similarly to Equation 3.1.13. This leads to columns of B(δ) being scaled,
which also scales the columns of the polytopic constraints. The rows in [Hz,hz]
were normalized further with a constant, such that the Euclidean sum of each row
was 1. Without these normalizations, MOSEK was not able to find an adequate
solution. The algorithm of obtain the terminal set is listed in Appendix A.

3.2.5 Predictive safety filter implementation

As each state and input introduces added complexity to our problem, we chose
not to include Equation 3.1.6 in our PSF formulation. Instead, the even simpler
approximation w ≈ 2

3
w0 was used. The argument for the simplification is done on

the basis of assuming θ̇ sufficiently small. As mentioned subsection 3.2.5, we nor-
malized the differences in scale between the inputs in the PSF’s objective function.
This was done by setting R in the same manner as Equation 3.1.15. The scaling
has significant importance in our case as the differences are so big. The way we
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shaped our PSF cost function Equation 3.1.8 was also observed to improve the
solver stability.

Due to low solver speeds, the number of time steps in the PSF horizon was
set to N = 20. A longer horizon gave diminishing returns with regards to the
added computational complexity. In combination with the alternate terminal set,
the discretization step length for the PSF was chosen to be identical to the RL
simulation timestep for the initial PSF timestep, i.e. δ0 = 0.1. For the rest of the
horizon the timestep was set to 0.5 - leaving a temporal span of T = 10.1s. The
prediction horizon was observed to be sufficient to enter the terminal set for most
of the simulations. To realize the discretization function Φ(·), we used the simpler
RK4 rather than the method in Table 3.2.1. The PSF sample time δti was varied in
an attempt to prolong the PSF’s temporal horizon, where the δti increases towards
the end of the horizon. It was observed not to have a significant impact and led to
more solver errors. In general, it was observed that even for one-step prediction, a
sampling time above 1s was not able to run properly. The understanding was that
our discretization method was not stable for large time steps. We will discuss in
greater detail in section 4.2 due to its importance for the general progression and
result of this report.

We tighten the constraints from the RL agent to the constraint given in Ta-
ble 3.2.2. This was done to attain the desired operation range given by Gaertner
et al. (2020) for the RWT. Furthermore, we observed that the differences between
the approximated model in the PSF and the RL model created the need for some
leeway before the episode was deemed as crashed in the simulation. Of course,
this means that a more complex control problem is handed to the PSF than the RL
agent, but this is further addressed in section 4.2. Moreover, we constrained the
inputs in the PSF with saturation limits, which can be seen in Table 3.2.9.

Table 3.2.9: Input rate saturations in the PSF.

Variable Lower Saturation Upper Saturation Unit
u̇p -8 8 [deg/s]
Ḟthr −1.5 · 105 1.5 · 105 [N/s]
Ṗgen −5 · 106 5 · 106 [W/s]

To further increase the PSF evaluation speed, a few more changes were applied.
As most nonlinear optimization solvers, IPOPT requires an initial guess on the so-
lution to evaluate the first gradient. The default value is 0, but as mentioned pre-
viously, this lead to problems due to numerical issues as a result of zero division.
At the initialization of a new episode, all optimization variables were initialized to
their steady-state solution as given by Equation 3.1.14. The subsequent ones are
given by the previous admissible solution from the solver, known as a warm-start
strategy. This added beneficial speed-ups but also adds to the risk of solver infea-
sibility and local convergence. An increase in the aforementioned problems was
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in fact observed but the change was still deemed as necessary. The resulting PSF
evaluation speed moved from 20 to 160 evaluation per second on 12 cores as a
consequence of implemented speed-ups.
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Chapter 4

Results and Discussions

In this chapter, we present and discuss the results of our work. The results will
serve as exemplifying use cases for our framework, which will enable further dis-
cussion. First, we address the results from the agents’ training, then move on to
generalization results by testing the agents in different levels. We also look at the
system response to see the qualitative results for the agent-controllers before sum-
marizing the results with an overview. The discussion will follow the same struc-
ture but with a greater focus on the RL-PSF combination. We first aim to discuss
the result directly given our model before moving on to possible limitations and
error sources. We will also evaluate their importance and impact on our result,
paving the way for further improvements and the framework’s general outlook.
For the sake of clarity, we also refer to the combined control scheme of an RL
agent and a PSF as the combined controller. In addition, the process of applying
the PSF to the RL control actions may be referred to as simply filtering.

4.1 Results

In this section, we present the results of our study. In particular, we focus on
the progress and performance of agents during the training, test these agents in
other levels, and lastly the qualitative response of the system with the RL-PSF
controllers. The pure RL implementation serves two purposes. Firstly, it is used to
generate results which are used for benchmarking and secondly, it gives a founda-
tion for the implementation of the PSF.

In plots marked with "(smoothed)", an exponential moving average smoothing
with a weight of 0.8 was applied to make the plots more legible.

4.1.1 Training

We first focus on the training of the RL agent in the absence of a PSF, then shift
the focus to include the PSF.
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Training without the predictive safety filter
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(a) Episode crash rate (smoothed).
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Figure 4.1.1: Training progress displayed by episode crash rate and reward mean.

The agents were trained for each level 0-5 without any intervention from the
PSF. Figure 4.1.1 shows the training progress of each agent in terms of the crash
rate and episode reward. We see that the agents demanded a significant number of
timesteps to learn the dynamics, but most of them converged after about 3 million.
Figure 4.1.1b shows that Agent 2 and 5 fail to converge to a clear optimum, and
Figure 4.1.1a shows a crash rate of about 10 − 40%, even after 10M timesteps.
For Agent 0, 1, 3, and 4, the rewards converged at about 3M timesteps, which
implies that the agents found their respective optima. However, they all converged
to slightly different values as the wind conditions got more challenging for higher
levels and high rewards became less obtainable.
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Figure 4.1.2: Results for performance of agents trained at each level.

In addition to looking into what happens during the training, we wanted to
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investigate the performance of agents after the training. To see how well the agents
were able to learn the system dynamics and apply a valid control strategy, we test
each agent’s performance at the same level it was trained on. The performance
is averaged between 100 episodes of up to 6000 timesteps each as explained in
section 3.2. The results are shown in Figure 4.1.2. These numbers confirm the
results indicated by the training progress in Figure 4.1.1. The performances for
Agent 2 and 5 are noticeably lower than the others while also having higher crash
rates. Agent 0, 1, 3, and 4 all perform relatively similarly, although we note the
non-zero crash rate of 1% for Agent 1.

With predictive safety filter
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(b) Episode reward mean.

0 2 4 6 8 10
Timestep (in million)

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

r(t) PS
F m

ea
n

Level 0 with PSF
Level 1 with PSF
Level 2 with PSF
Level 3 with PSF
Level 4 with PSF
Level 5 with PSF

(c) Timestep PSF reward mean (smoothed).

Figure 4.1.3: Training progress for agents trained with a PSF displayed by episode crash
rate and reward mean. Mean PSF reward per timestep (smoothed) is also
included.

One of the objectives of this thesis is to investigate the effect filtering has on
the training. Therefore, the same agents mentioned in the previous section were
retrained but this time with the PSF. The training progress can be seen in Fig-
ure 4.1.3. The results here are quite different when compared to Figure 4.1.1, and
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we observe that Agent 0 is the only one that seems to converge satisfactorily and
have zero crashes during the training. In other words, the PSF fails to prevent
crashes during training and actually has a negative impact on convergence for lev-
els 1-5. For Level 0, on the other hand, we observe more desirable results with
successful crash prevention and convergence to an optimum. Similarly as for RL
without the filter, Level 2 and 5 seem to be the hardest for the combined controller
as well. Figure 4.1.3c shows that the agents are able to learn to make safer actions
as the PSF reward penalty gets smaller as training goes on. Again, Agent 0 is the
one with the best results here with a PSF penalty of close to zero at the end of
training. It is worth noting that there was a significant slow down in the framerate
with the PSF, about 140 fps versus the 1500 fps without filtering.
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Figure 4.1.4: Results for performance of agents trained with filtering at each level.

Looking at the performance of the trained agents in Figure 4.1.4, we see that
it is very similar for all levels. The performance for Agent 2 and 5 is still lower
than for the other levels, but it is increased from Figure 4.1.2. However, we make
another important observation; The crash rate is significantly increased for all
levels except Agent 0. This is the opposite of the desired effect, and it is clear that
the PSF struggles to find correct solutions for the system in the conditions in Level
1-5.

To investigate these results further, we need to look at the differences between
the levels. The seemingly most challenging levels (2 and 5) are the only ones con-
taining winds down to 5 m/s, and Level 0 is the only level that does not contain
wind speeds below 13 m/s. This, together with the fact that Level 0 is the only
level the PSF is able to prevent crashes for, leads us to believe that problems occur
in low wind speeds (<13m/s). There is also a possibility that it is the variation
in the wind that is causing the problems. Three new levels were created to ad-
dress this: Level ConstantLow consisting of constant wind in the 5-13 m/s range,
Level ConstantHigh consisting of constant wind in the 13-25 m/s range, and Level
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HighWinds consisting of varying winds with a mean wind speed in the 13-25 m/s
range and an amplitude in the 0-3 m/s range.

Comparison with and without predictive safety filter for constant winds
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(a) Episode crash rate mean, with and without
filtering (smoothed).
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Figure 4.1.5: Training progress for agents in Level ConstantLow and ConstantHigh.

Figure 4.1.5 shows the training progress for the levels with constant wind. As
our hypothesis suggests, the PSF successfully prevents crashes during training in
Level ConstantHigh, while it fails to do so for winds below 13 m/s in Level Con-
stantLow. This strengthens our hypothesis of low winds being the problem. How-
ever, we note that the RL agent alone is actually able to learn how to prevent
crashes and seems to converge for both low and high winds when they are con-
stant.
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Comparison with and without predictive safety filter for varying high winds
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(a) Episode crash rate mean, with and without
filtering (smoothed).
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tering.

Figure 4.1.6: Training progress for agents in Level 0 and Level HighWinds.

Figure 4.1.6 shows the training progress for Level HighWinds. Level 0 is also
added for reference. The most important thing to note is shown in Figure 4.1.6a;
The PSF was in fact able to prevent crashes for the entirety of training in Level
HighWinds. Together with the results for constant wind, this confirms our hypoth-
esis that low wind speeds are a problem for the PSF. It also indicates that varying
winds are not as much of a problem.

Because the PSF did not perform satisfactorily for Level 1-5, a focus is put on
Level 0 and Level HighWinds when comparing performance and training progress
to the agents without filtering. Because the performance metric always has to be
considered with the crash rate in mind, it becomes a more interesting metric once
the crash rate is zero. From Figure 4.1.6 we see that there is a clear difference in
training progress with and without the PSF, especially in the learning curvature.
For Level 0, the learning is not notably accelerated, and the two agents converge
at approximately the same time. However, this changes when changing the wind
conditions. For Level HighWinds we see a clear improvement in the learning speed
as the agent without the PSF takes almost twice as many timesteps to converge.
This is accomplished while having no crashes, as opposed to the pure RL agent
crashing every episode in the initial part of the training.
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Figure 4.1.7: Performance of agents with and without filtering for Level 0 and HighWinds.

Figure 4.1.7 confirms the findings in Figure 4.1.6 and shows that both agents
trained with and without filtering are able to prevent crashes for varying winds
above 13 m/s. The figure also shows no significant difference in performance by
adding the PSF. This is when tested at the same level as the agents were trained
in.

4.1.2 Testing

The test results are presented as heatmaps in Figure 4.1.8 and 4.1.9. On the
vertical axis, we have the train level of the agent, while on the horizontal axis is
the level in which that agent was tested. This means the top row contains values
for how the agent trained in Level 0 (Agent 0) performed in all the different lev-
els and similarly for the others. We also refer to these results as generalization
results because running agents in the other scenarios gives an indication of its
generalization performance.
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Figure 4.1.8: Generalization performance. Higher is better.

Lev
el 

0
Lev

el 
1

Lev
el 

2
Lev

el 
3

Lev
el 

4
Lev

el 
5

Test Level

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Ag
en

t T
ra

in
 L

ev
el

0% 0% 24% 0% 0% 27%

0% 1% 36% 0% 0% 27%

0% 1% 10% 2% 1% 22%

0% 0% 31% 0% 1% 28%

0% 0% 28% 0% 0% 32%

0% 4% 20% 2% 1% 22%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Crash rate

(a) Without the PSF

Lev
el 

0
Lev

el 
1

Lev
el 

2
Lev

el 
3

Lev
el 

4
Lev

el 
5

Test Level

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Ag
en

t T
ra

in
 L

ev
el

0% 19% 31% 15% 7% 35%

0% 4% 30% 2% 1% 36%

0% 26% 37% 22% 14% 37%

0% 3% 25% 4% 2% 32%

0% 23% 36% 16% 13% 42%

0% 26% 28% 31% 13% 29%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Crash rate

(b) With the PSF

Figure 4.1.9: Generalization crash rate. Lower is better.

Without predictive safety filter

Focusing on Figure 4.1.9a we see that all agents had a significant crash rate
in Level 2 and 5. This indicates that these two levels were the hardest to achieve
optimal control in, at least in the eyes of the RL agent, which is consistent with
the training results. In terms of crash rate, Level 0 was the least demanding level,
and all agents were able to complete 100 episodes without crashing here. All other
levels had one or more agents crash during the test episodes. Even Level 1, which is
meant to only be slightly more demanding than Level 0, had three out of six agents
crash in at least one episode. Figure 4.1.9a does however show that the crash rates
are low and the agents are close to learning the optimal control strategy for Level
0, 1, 3, and 4.



Chapter 4. Results and Discussions 64

In terms of performance in Figure 4.1.8a, none of the agents stand out as no-
ticeably better than all others. However, Agent 2 and 5 stand out as especially poor
again. Table 4.1.1 shows that Agent 0 actually had the best average performance
overall levels. Again Agent 2 and 5 are separated from the others. Another inter-
esting result in Figure 4.1.8a is that Agent 0 performs better in all levels compared
to the respective agent trained in that level.

Table 4.1.1: Average performance and crash rate over all levels for each agent trained
without filtering.

Agent Level Avg. Performance Avg. Crash rate
0 66.91 8.50%
1 66.31 10.67%
2 63.73 6.00%
3 66.69 10.00%
4 66.82 10.00%
5 60.09 8.17%

With predictive safety filter

From Figure 4.1.8 and 4.1.9 it is clear that the PSF has an impact on both
performance and crash rate. In terms of performance, the PSF seems to improve
performance for the lowest-performing agents without filtering. Table 4.1.2 con-
firms this but also shows that filtering has a negative impact on the other, well
performing, agents and performance are slightly degraded.

The crash rate, however, tells a different story. The agents trained with the
PSF actually have overall higher crash rates than the ones trained without. The
elevated number of crashes is especially prominent for the levels that the pure RL
agents performed well in. Figure 4.1.9b also confirms our findings in the training
results. Level 0 is again the only level where the PSF successfully guarantees crash
prevention for all agents.

Table 4.1.2: Average performance and crash rate over all levels for each agent trained
with filtering.

Agent Level Avg. Performance Avg. Crash rate
0 65.82 17.83%
1 66.25 12.17%
2 65.04 22.67%
3 66.09 11.00%
4 66.23 21.67%
5 64.89 21.17%

Using the PSF metric in Equation 3.2.16, Figure 4.1.10 shows the average per-
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centage of theoretical minimum PSF reward for each agent in each level. We ob-
serve that the amount of correction from the PSF is low, staying in the range of
0.03%− 0.52%. However, it is important to note that 100% represents the extreme
where the agent proposes actions are at one extreme of the action space, and the
PSF corrects it to the total opposite extreme. Figure 4.1.3c shows that the actual
lowest observed mean PSF reward is about −2 per timestep, which turns out to
about 9.5%. So the numbers have to be considered with that in mind. The numbers
do not show a clear pattern but Agent 0 is again one of the best performing with
Agent 4 also showing decent results.
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Figure 4.1.10: Avg. percentage of theoretical minimum PSF reward for each trained agent
in each level. The metric is defined in Equation 3.2.16.

Next, we look at the performance and crash rate if we have an agent trained
without filtering and then deploy it with a PSF. The results are shown in Fig-
ure 4.1.11. The results are overall very similar to deploying without a PSF (Fig-
ure 4.1.8a and 4.1.9a). This indicates that the PSF neither degrades nor improves
performance once the agent is trained and deployed. As clearly shown by previous
results, the PSF is not able to prevent crashes for levels 1-5.
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Figure 4.1.11: Generalization performance and crash rate for agents trained without fil-
tering but deployed with a PSF.

Lastly, we investigate the generalization performance in the successful scenarios
by testing Agent 0 in Level HighWinds, both with and without filtering. The results
can be seen in Figure 4.1.12, where we observe that the performance is noticeably
lower in Level HighWinds than in the level the agent was trained in. This is as
expected and the difference is still sufficiently small for us to consider the agent to
successfully generalize to a wider range of winds an larger wind amplitudes than
it was trained on, here from 13-17 m/s to 13-25 m/s and from 0-1 m/s to 0-3 m/s.
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Figure 4.1.12: Performance of Agent 0 in Level HighWinds. Performance in Level 0 is
added for reference.
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4.1.3 System response

Agent 0 and 5 are chosen for comparison of qualitative response since these are
the overall best and worst-performing out of the six main agents. We look at the
response of agents trained without a PSF but then compare these when deployed
with and without filtering.

To further investigate our hypothesis of bad performance for low wind speeds,
we simulate the agents in a scenario with a constant wind of 10 m/s. The response
can be seen in Figure 4.1.13. Both agents crash, and it is clear that these system
responses are undesirable. Deploying the agents with a PSF does not seem to
improve this. While the response is poor for both agents, we observe that Agent 0
is able to keep the turbine from crashing for longer than Agent 5, even if Agent 5
is trained in low winds and Agent 0 is not.
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(a) Response for constant wind of 10 m/s, agent deployed without filtering.
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(b) Response for constant wind of 10 m/s, agent deployed with PSF.

Figure 4.1.13: Response of system in constant low wind, with and without filtering.

For our main comparison in the response of agents deployed with and with-
out filtering, we keep the wind speeds above 13 m/s because results in subsec-
tion 4.1.1 and 4.1.2 indicate crashes for low winds. This is also exemplified by
Figure 4.1.13. Comparing Figure 4.1.14a to 4.1.14b and Figure 4.1.15a to 4.1.15b
we observe a clear improvement in the response of Ω for Agent 5 when deploy-
ing with a PSF. The PSF intervenes to attempt to keep the rotor speed within the
constraints set in the PSF (Table 3.2.2), and while the system still goes slightly
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outside the constraints, there is a significant improvement. The PSF does not seem
to intervene for Agent 0, which is expected because the agent nearly keeps the
system within constraints by itself. θ is virtually identical for Agent 0 and 5, both
with and without filtering. This indicates that the platform thruster does not have
much impact on the system.
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(a) Response for wind mean 16 m/s and amplitude 3 m/s, without a PSF.
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(b) Response for wind mean 16 m/s and amplitude 3 m/s, with a PSF.

Figure 4.1.14: Response of system for wind mean of 16 m/s and amplitude of 3 m/s,
shown for Agent 0 and Agent 5 deployed with and without PSF.
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(a) Response for wind mean 22 m/s and amplitude 3 m/s, without a PSF.
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(b) Response for wind mean 22 m/s and amplitude 3 m/s, with PSF.

Figure 4.1.15: Response of system for wind mean of 22 m/s and amplitude of 3 m/s,
shown for Agent 0 and Agent 5 deployed with and without filtering.

4.1.4 Main result summary

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Wind speed [m/s]

After training without PSF

During training with PSF

After training with PSF

Not working Working for constant wind only Working

Figure 4.1.16: Overview of results expressed by degree of success at given wind speeds.
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In Figure 4.1.16 we present a summary of the various cases displayed by what
wind conditions they succeed in. The results show that the RL agent without the
PSF is able to control the turbine to a satisfactory degree for wind speeds above 10
m/s for varying winds and all the way down to 5 m/s for constant winds. It also
shows that the PSF is able to successfully prevent crashes during training when
wind speeds are kept above 13 m/s but fails for lower winds. We also saw that
adding the PSF accelerated learning in some cases, an example of this is shown in
Figure 4.1.6. Crash prevention was preserved, and a satisfactory control strategy
was created for higher winds after training when deploying the agent with filering.

4.2 Discussion

Our discussion will mainly revolve around the reasons behind the observations
in section 4.1, with an emphasis on the combined RL-PSF implementation. First,
we will point out some interesting observations and suggest hypotheses based on
these. We will then bring forward possible sources of error and discuss their impact
on the results. The errors will highlight some of our framework’s shortcomings,
and by doing so, also shaping its future development.

Result summary and discussion

Our results show a clear distinction between how the implementation works for
low (<13 m/s) and high (>13 m/s) winds. Looking at the high wind scenarios in
isolation, we see that combining the PSF with the RL has several advantages. As
stated in section 1.1 and subsection 3.1.2 it is not feasible to train an RL agent on
a real-world system because of safety concerns. Our implementation shows that
this problem can be eliminated by adding a PSF, which we have shown to suc-
cessfully eliminate crashes both during training and after deployment. This result
can clearly be seen in Figure 4.1.6a. The crash prevention during training is seen
as one of the most significant contributions of our work, enabling the possibility
of training an RL agent on a real-world system assuming a sufficiently accurate
model is present in the PSF. We have also shown that agents are able to gener-
alize fairly well, especially when trained on higher winds only, however there is
naturally some degradation in performance.

Another advantage of adding a PSF is an acceleration of the learning in cer-
tain conditions. This is exemplified in Figure 4.1.6b where the agent with filering
converges much faster than the one without for Level HighWinds. This might be
because the PSF restricts the agent to only exploring relevant areas of the state and
action spaces, i.e. reducing the time spent exploring irrelevant areas. This becomes
more apparent in Level HighWinds than in Level 0, and might be because the ir-
relevant areas of the state and action space becomes larger in more challenging
levels.
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Shifting the focus to lower winds, we see that our implementation does not
perform satisfactory. An observation made regarding the agents’ training progress
is that, in some cases, the PSF seems to hinder the agent from learning optimal
safe actions. This is clear when looking at results for Level 1-5 in Figure 4.1.3a.
Figure 4.1.1a shows the agent starts out with a high crash rate but eventually
learns that actions that prevent crashing are beneficial. This is not the case with
filtering in Figure 4.1.3a where the crash rate is non-decreasing during the course
of training. The same effect can also be seen in the connection between crash rate
and reward. The crash rate and reward seem to be significantly more correlated
for the agents without filtering than with the PSF.

We then investigate the difference in training with filtering by looking at the
fully trained agents. As stated previously, performance and crash rate have to be
considered together. So even though performance is increased for Level 2 and 5
when comparing Figure 4.1.2 and Figure 4.1.4 we have to consider that the crash
rate is also increased. This suggests that the PSF causes the system to crash in the
episodes that otherwise would have lead to a low performance measure. The 1%
crash rate in Figure 4.1.2 showcases how there is no guarantee for constraint satis-
faction and avoidance of negative outcomes with RL and shows why we need the
PSF in real-world applications. Even if it looked like it learned not to crash during
training, we could see two small peaks in the crash rate for Level 1 towards the
end of training. This might be because of certain combinations of wind conditions,
most likely low wind, and states that led to the challenging control problem.

Reflecting on the results observed when applying filtering to an agent trained
without filtering, we do not see any significant differences in neither performance
nor crash rate. Performance is not improved nor deteriorated, likewise with crash
rate. In other words, the PSF still "passes through" the safe actions that lead to
high performance, and still drives the system to a crash for the actions that were
unsafe. This indicates that the PSF is able to determine if an action is safe or not
but struggles to find the correct, safe action if the original one was unsafe.

Looking at the system response in subsection 4.1.3 we note a curious result;
Agent 0 was able to keep the turbine from crashing for a longer time than Agent
5 in low winds. This is curious because Agent 5 is trained on lower winds, while
Agent 0 is not. It indicates that the problems at low wind speeds negatively im-
pact the agent more than not training in those conditions at all. This finding is
also made in Figure 4.1.8a, where Agent 0 performs better in all levels 0-5 when
compared to the agent trained in the respective level. Section 4.1.3 of course only
shows one example of a response, and we need to be careful about extrapolating
this to the general case, but together with Figure 4.1.8a it gives some interesting
insight into the relation between model problems and agent performance.

While our focus has been mostly directed towards the response in Ω, we also
want to optimize the relevant states of platform angle θ and power generation
Pgen. Power generation is mostly kept at 15 MW by both Agent 0 and 5. However,
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an interesting observation is made at low wind speeds. It looks like the agents
drop the power generation to prevent the rotor from slowing down too much, but
this clearly happens too late to be successful. It does however point towards the
expected behavior. The response in θ does not seem to be corrected much by any
of the agents, both with and without filtering. A further look into Fthr also showed
that it has a minor impact on the platform angle and that none of the agents are
able to use it to suppress platform oscillations. Using the thruster to counter-act
the force from the wind is useless. Compared to simulation peak wind forces at
Fwind = 2.6e7, the thruster has only 0.66% of its torque. In addition, Fossen (2021,
Figure 9.5) shows an example of a thrust-power curve for a variable speed fixed-
pitch propeller. The figure shows that at Fthr = 500 kN, it has a power consumption
of about 2750 kW, or about 18.3% of the FOWT energy production. This means that
a significant amount of the generated power is going towards an attempt to keep
the platform vertical that has little to no impact. Still, this kind of actuator might
become more relevant in future work when adding waves, wind gusts, and other
disturbances.

Increased system complexity and reward function

Diving deeper into the reasons behind the problematic results at low winds
speeds, we try to find the root cause by looking at the increased system complexity.
The increase in complexity of adding the PSF could be the reason to why the pure
RL agent able to learn the control strategy to a high degree of success down to
10 m/s (5 m/s with constant wind), while the combined controller fails under 13
m/s. When the PSF solver struggles to find the backup trajectory, e.g., when the
FOWT is close to the limits of its safe set, the possible abnormal or fluctuating
outputs could misleading the RL agent. The reason for the RL agent working in
constant low winds might be because the setpoints for Ω and Pgen (Figure 3.2.2
and 3.2.1) appear constant to the agent. We believe that the dynamical setpoints
are part of the problems occurring below 13 m/s, which we discuss further later.

The reward calculation is an example of where the increased system complexity
could have an impact. We acknowledge that the reward function might be over-
engineered to some degree, and a simpler function could prove beneficial. As we
explained in section 3.2, a number of different reward functions were explored
but Equation 3.2.3 gave the best results. While changes in the reward function
produce significant changes in the behavior of the agents, we believe that further
development of the reward function will have the most potential for acceleration
of the training and not for solving the cases where it fails to learn.

One theory on how training could be sped up is by keeping the lower limit of
the reward function to zero. We see an initial dip in the episode reward mean
in Figure 4.1.1b. This might be because the reward is negative at each timestep
(due to bad general performance), giving a lower cumulative reward the longer
the agent survives. This means that the agent needs to increase the performance
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by figuring out the other reward terms, such that the reward at each timestep is
above zero before it can learn that the survival is beneficial. Keeping the reward
function strictly positive might avoid this problem and possibly also accelerate
training. A side note here is that, as explained in section 3.2, we want to avoid
a reward function gradient of zero far from the optimum, as this might make it
hard to optimize by gradient descent. Note that making a reward function for RL
is highly dependent on the specific application and we point out that we do not
claim to have found the optimal reward function in any way. Finding the optimal
reward function for any problem is seen as a near-impossible task, and there is
usually room for improvement.

Predictive safety filter limitations

The overall results regarding the PSF from subsection 4.1.1 show that as soon
as wind speeds below 13 m/s are included in the training. The PSF struggles to
find correct solutions resulting in more crashes than without the filtering, even for
constant wind. There might be multiple reasons for this.

One of the more obvious reasons why the PSF fails during low variable winds
could be the assumption of constant wind made in the PSF. The inherent robust-
ness of nominal MPC is the key assumption for being able to move to slow varying
wind with a nominal PSF formulation. The robustness properties does perhaps not
transfer to the PSF formulation to the sufficient degree. In contrast to MPC, the
PSF does not drive the state trajectory toward a reference and could result in a
trajectory closer to the "stability boarder" of this system.

Nevertheless, this does not explain why it also fails to succeed at low constant
winds. Another simplification made in the PSF is the exclusion of the model for
adjusted wind (Equation 3.1.6). The PSF bypasses this by using the adjusted wind
speed w directly without including the analytical model for it. This means that
even though w0 is constant, the wind sent to the PSF w might still vary, possibly
producing problems with regards to the constant wind assumption.

Recall that to speed up the training process, we created an alternate terminal
set, and in doing so, we break the recursive feasibility required to make a claim
on its provable stability. Some crashing was expected due to this simplification.
However, to confirm its impact, we redid some of our experiments with both the
true robust ellipsoidal set and the steady-state terminal set discussed in subsec-
tion 3.2.4. This was done in both constant and variable wind, and the outcome
did not change significantly when using our alternate set. Had the alternate ter-
minal set been the sole problem, we would expect this to eliminate most of the
crashes for constant wind. This was not the case.

Difficulties might also be a result of the tighter constraints being added to the
PSF. As exemplified by Figure 3.2.5, it was observed that the RL agent was not able
to adapt to the tighter constraints. We acknowledge that, given the poor perfor-
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mance, the tight constraints are hard to justify. However, we note the justification
given in subsection 3.2.5, and further add that we still observed similar problems
with the PSF when relaxing our constraints.

The fact that the PSF successfully prevents crashes during training for levels
only containing winds above 13 m/s, including varying winds, suggests that it is
not the variation in the wind that is the main problem for the PSF but rather low
wind speeds. An interesting thing to note is that the RL agent without PSF also
struggles for low winds, especially when winds below 10 m/s are included. This
suggests that the problem could be with the model itself and not necessarily the
PSF.

Model difficulties and numerical errors

While problems related to our model’s invalidity are probable, another theory
is that wind turbines are inherently difficult to control (Butterfield et al., 2007).
This was also observed during experimentation with the high-fidelity model in
OpenFAST. There were cases where the states exploded, and the turbine became
unstable. Even with the inherent difficulties of turbine control, we believe it is
probable that our significantly simplified model is the main root of our problems.

As stated early in the thesis, our model is meant as a coarse approximation to
a FOWT and contains several simplifications and assumptions that might make
it inaccurate. The model simplification with regards to adjusted wind speed in
Equation 3.1.6, e.g., static inflow, could be a possible source of error. However,
investigating the platform’s sway velocity θ̇, we have observed that this amounts
to changes less than 1 m/s. While contributing to possible failures, we claim that
this simplification should not cause the amount of crashes that is reported.

As expressed in subsection 3.2.5, we observed an increase in solver convergence
when changing the cost function of the PSF formulation. This points towards one
of the major issues being with our model formulation. We expressed our model
using SI units, leaving a huge difference in the input range. While we scaled our
cost function to alleviate some numerical errors, we did not reformulate the model
itself, as done in the terminal set optimization. Inspecting the feedback system
A(δ)−B(δ)K, we can observe to some degree the impact of the normalization.
Given that eigenvalues are in the left half-plane, the real part dictates the rate
of decay in the transient solution, which in turn is associated with permissible
discretization timestep τ . With the scaling of B(δ) discussed in subsection 3.2.4,
we find the largest eigenvalue λnorm of the feedback system to be <(λnorm) ≈ −27.
Without the normalization we found the largest eigenvalue λ to be <(λ) ≈ −6000.
The normalization clearly impacts the permissible timestep, but the values mostly
have to be considered in relation to each other as the linear system approximates
the nonlinear FOWT model. Using the stability function RE(µ) in Equation 2.1.14,
we find that
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|RE(τ ∗ λnorm)| = |RE(0.1 ∗ λnorm) ≈ 0.99 (4.2.1)

|RE(τ ∗ λ)| = |RE(0.1 ∗ λ)| ≈ 5.36e9 (4.2.2)

The non-normalized linear feedback system has poor stability properties with
regard to discretization. Disregarding the input matrix B(δ), we still observe poor
discretization stability for the system matrix A(δ). The low stability is expressed
as values close to the stability borders for a wide array of step sizes for RK4,
and as result, decreasing the stepsize does not necessary solve the discretization
problem. Without drawing solid conclusions between the linear system and the
actual model, we would argue that it makes a strong case for the results we are
seeing. This also extends to the RL agent acting on the environment alone, where
this could manifest itself as the reason why the agents performs poorly for low
winds.

Having said that, we see that the numerical issues do not impact all of our ex-
periments to the same degree. Looking at the rotor thrust curve in Figure 4.2.1,
we see that, perhaps counter-intuitively, the axial thrust is peaking at 10.59 m/s.
At the same time, our desired power curve is going from static to dynamic once
we cross the same point. Thus, the increased complexity of dynamic setpoints is
believed to act as a catalyst for instability in our mathematical model, leaving the
model close to uncontrollable at lower wind speeds. A constant environment wind
speed does not necessarily imply a constant adjusted wind speed, as the platform
movement induces varying wind. We use the term close to and don’t claim com-
plete uncontrollability because we are able to find a steady-state solution to initial-
ize the environment for all the considered wind speeds (5-25 m/s). This means our
model can at least be steady-state stabilized for each wind speed without placing
any claims on the transients or varying wind cases.
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Summary

Through this discussion we have highlighted the contribution of our work with
a successful implementation under certain conditions. However, we have also
brought attention to multiple limitations in our work and probable causes for the
reported problems. In summary, we conclude that the combination of the model
difficulties, namely low numerical stability and a complex system with dynami-
cal setpoints, in conjunction with our PSF simplifications are believed to be the
main contributors. For higher wind speeds where the model is well behaved and
the setpoints are constant, we produce a successful implementation where RL and
the PSF are working together to learn a close to optimal control policy with crash
prevention both during training and deployment.
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Chapter 5

Conclusion and future work

In this chapter, we conclude the report, reflect on our work, and outline some
alternatives for future work within this application.

5.1 Conclusions

Within the scope of the project a reinforcement learning (RL) with predictive
safety filtering (PSF) framework was developed and tested using the application
of a floating offshore wind turbine (FOWT). The major conclusions of the thesis
can be itemized as follows:

• We have shown that an RL agent is able to control our model of the FOWT
for slowly varying winds with fluctuations of up to 3 m/s as long as the wind
speed stays above 10 m/s. For wind speeds below this, the agent fails to
produce a satisfactory control policy. The reasons behind this were discussed,
with modeling issues regarding numerical instability being presented as the
most probable.

• The PSF is able to prevent crashes both during the training and after the
deployment of the RL agent for slowly varying winds with fluctuations of up
to 3 m/s as long as the wind speed is kept above 13 m/s, but struggles as
soon as lower wind speeds are encountered. Again, modeling issues along
with the PSF simplifications are presented as the most probable causes.

• The RL agent’s ability to find an adequate control optimum and learn the
system dynamics was not degraded by adding PSF. In fact, adding the PSF
accelerated the training under high wind conditions.

In doing so, we answer the research questions mentioned in subsection 1.2.2,
thereby realizing all the project objectives. The framework’s high level of modu-
larity is beneficial for future research and will hopefully facilitate further develop-
ment.

5.2 Writer reflection

While we believe our work to be a good starting point for investigating this
direction within control, several things could have been done differently in hind-
sight. The first thing that comes to mind is that more investigation into the model
validity and accuracy in different wind conditions. This should have been per-
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formed before further implementation in varying wind. Secondly, we should have
made a bolder move, and moved directly to learning-based PSF. Our reasoning
behind not doing so, was to first be able to use the simpler case of nominal PSF
formulation, before moving on to significantly more complex controller. With the
new paper Wabersich and Zeilinger (2021b) coming out during our work this ap-
proach only got more relevant. However, this was discovered too late with the
paper not becoming available online until April. Because our framework is highly
modular, it is seen as a great opportunity for future research to investigate incor-
porating this learning-based approach. More detail on this in section 5.3. With all
of that in mind, our work was meant to investigate the use of PSF and RL together
and we believe that this was done successfully, referring to the results for high
winds.

5.3 Recommendations for future work

5.3.1 Model improvement

The models used in this report are based on a number of assumptions and
approximations. This is reflected by the issues discussed in section 4.2. Further
work should investigate incorporating more complex and accurate models in both
the model used by the RL and the approximated model in the PSF.

One direction to go is extending the current model by eliminating some of our
assumptions and make it more accurate. Examples are adding a more complex and
accurate inflow model, investigating the problems with low stability margins for
the current system, or making the platform model more realistic, e.g., by removing
the assumption of a fixed rotation point.

Another direction could be to use a neural network to represent the input-
output dynamics of the system. This was done successfully in Zhang et al. (2019),
where a neural network was trained on a dataset created by the high-fidelity model
in OpenFAST. As mentioned previously, this could replace the plant block in Fig-
ure 3.1.1 resulting in a more accurate representation of the real dynamics. This
way of modeling is also extremely relevant when working with RL, as one of the
main advantages of RL is not having a need for an explicit analytical model. Con-
tinuing in the data driven modeling direction, a natural extension to the wind
model could be to use physics guided machine learning (PGML) to calculate the
forces and torques more accurately and efficiently from the full wind field. The
PGML approach makes incorporation of domain specific knowledge into a neural
network model feasible.
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Adding more realistic platform actuation

As discussed in section 4.2, a thruster might not be the most realistic form
of actuation for the platform. This is especially true when looking at the ratio
between power consumption and impact on the system. At full thrust the platform
thruster uses about 18.3% of the generated power and still shows a low impact on
the response of the turbine.

5.3.2 Alternative reinforcement learning algorithms and hyper-
parameter tuning

This report uses an implementation with PPO as the RL algorithm, and is due
to the findings in Teigen (2020). As metioned before, it was found that PPO was
significantly better than other algorithms for a problem with similar state and ac-
tion spaces. However, the choice of algorithm is highly application dependent and
other algorithms like SAC (Haarnoja et al., 2018), DDPG (Lillicrap et al., 2015)
or TD3 (Fujimoto et al., 2018) might perform better in this specific application.
The hyperparameters of an algorithm can have a major impact on training per-
formance. This is well known by the community, and was also observed for this
project. Further tuning of hyperparameters could accelerate learning even further.

There exists a number of frameworks for automatic hyperparameter tuning, in-
cluding the one mentioned by Stable Baselines3 docs, Optuna (Akiba et al., 2019).
An alternative is replacing Stable Baselines3 with something like Ray RLlib which
includes several extremely powerful tools, one of which is Ray Tune for hyperpa-
rameter tuning. Other advantages are Microsoft Azure integration, high scalability
as well as multi agent support.

5.3.3 Predictive safety filter module

As we have seen, the FOWT model used throughout this thesis has several lim-
itations both on the numerical side and in its simplification of the dynamics. From
a control perspective, the discrepancies between the model and the actual physical
system has to be sufficiently small for stability proofs to be applicable. Improving
the accuracy of the model is therefore also paramount for the applicability and
validity of the PSF induced stability. However, the physical system will be ever-
changing and motivates the use of adaptive and learning-based methods. This is
in our opinion the most natural extension of our work. As mentioned in subsec-
tion 1.1.1, the PSF formulation in Wabersich and Zeilinger (2018b), and more
recently Wabersich and Zeilinger (2021b), has two key features not implemented
in our framework; (1) The PSF is learning-based, and (2) it uses robust MPC prin-
ciples for disturbance rejection. This continuation could eliminate many of the
PSF limitations addressed in section 4.2. In addition, this learning-based approach
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makes more sense in combination with the model-free RL as it will remove the
need for a model all together.

Other approaches to retaining the model but addressing assumption of suffi-
cient robustness of the PSF, are extensions leading to provable robustness. Tube-
based nonlinear MPC formulations (Mayne et al., 2011) could be adapted within
the framework to reclaim the provable stability of the PSF formulation under vary-
ing wind conditions. Another extension could be to introduce a scenario-based
MPC as depicted in Schildbach et al. (2014). While the complexity of the system
could increase, reclaiming the provable stability the framework could offer is of
great importance.
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Appendix A

Algorithms

Algorithm 1: Terminal set
Data:
System dynamics ẋ,
Polytopic state constraint X ,
Polytopic input constraint U ,
Polytopic external parameter constraint P.
Result:
Ellipsoidal terminal set matrix P,
Ellipsoidal center xc0.
begin

/* Given by Equation 2.1.3 */

A,B← nonlinearToLinear(ẋ)
/* Given by Equation 3.1.13 */

A,B ← polytopicUncertaintySet(A,B,X ,U ,P)
/* Given by Equation 3.1.14 */

xc0 ,uc0 ← centerOptimization(ẋ,XT ,UT )
/* Given by Equation 2.1.6 and Equation 2.1.11 */

Ac,Bc,Xc,Uc ← moveSystem(A,B,X ,U ,xc0 ,uc0)
/* Described in subsection 3.2.4 */

Bc,Uc ← rowScaling(B,U)
Uc ← columnScaling(U)
/* Described in subsection 2.4.1 */

P← robustEllipsoid(Ac,Bc,X ,U ,xc0 ,uc0)
end
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