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Abstract

This thesis proposes two control laws for velocity and heading control of a remotely
operated vehicle (ROV) for autonomously traversing of an aquaculture net pen.
The primary control objective for both controllers is to achieve error-free tracking
of time-varying references enabling path following. The ROV is subject to external
disturbances, input saturation and parameter variations and uncertainties. There-
fore, it is particularly important that the control laws are robust towards these
limitations. With this development of a robust control law, the level of autonomy
of an ROV is increased in the sense that it can perform operations at the aquacul-
ture net-pen with less monitoring and management of the process by a human
operator. This may result in lower intervention costs and improved operations.

The first control law was developed using a simplified dynamic position (DP)
model as a control plant model. The resulting closed-loop system was proven
to have uniformly globally asymptotically stable (UGAS) and uniformly locally
exponentially stable (ULES) equilibrium point at the origin. When considering
robustness, saturation and integrator windup turned out to be a significant prob-
lem. This required anti-windup schemes to be implemented in the calculation
of the controller’s integral terms to handle the effects of thruster saturation. The
controller was implemented and validated using SINTEF’s simulation software Fh-
Sim, on a process plant model of the Argus Mini ROV. The controller was also
validated in a field trial at SINTEF ACE, a full-scale operational fish farm meant
for research within aquaculture technology. The results from the field trial were
very positive as the controller was able to achieve the control objective with low
tracking error. The controller achieved root-mean-square error (RMSE) of less
than 0.05m/s. The validation of these controllers considered trajectory tracking
of velocity and heading references given by a path following algorithm.

The second controller was developed using a more complex control plant model
that also considered Coriolis forces. This controller ensured that the origin of the
error systems was UGAS. This controller was also implemented and validated
with FhSim, using the same process plant model of the Argus Mini ROV. The
simulations from FhSim show that the control objective is achieved being able to
track the time-varying velocity and heading references.

To summarize, both control laws was shown with simulations achieved the control
objective. The first control law was field tested achieving great results, which a
draft paper of the results appended in this thesis to be published has been written.
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Sammendrag

Denne masteroppgaven foreslår to reguleringslover for hastighets- og retningsre-
gulering av en ROV for autonom traversering av en not for bruk i fiskeoppdrett.
Hovedmålet til begge reguleringslovene er å avviksfri følging av tidsvarierende refe-
ranseverdier som muliggjør rutefølging ved hjelp av en banefølgingslov. ROVen er
utsatt for eksterne miljøforstyrrelser, pådragsmetning, og parametervariasjoner og
usikkerheter. Derfor er det særlig viktig at reguleringslovene er robuste mot disse
begrensningene. Met utviklingen av en robust reguleringslov, øker autonomien til
ROVen ved at den i større grad kan utføre operasjoner i fiskenoten med mindre
overvåkning og prosesstyring fra en menneskelig operator. Dette fører til mer kost-
nadseffektive og forbedrede operasjoner på farmen.

Den første reguleringsloven ble utviklet for en forenklet DP-modell som kontroll-
modell. Det resulterende lukket-sløyfe-systemet ble bevist å ha UGAS og ULES
likevektspunkt i origo. For betraktning av robustheten, var pådragsmetning og in-
tegraloppnøstning et stort problem. Tiltak mot integraloppnøstningen ble imple-
mentert i utregningene for kontrollerens integral-ledd for å håndtere effektene fra
pådragsmetningen. Dette forbedret resultatene betraktelig. Regulatoren ble imple-
mentert og validert i SINTEFs simuleringsprogram FhSim, på en prosessmodell av
Argus Mini ROVen. Reguleringsloven ble også validert i et feltforsøk på SINTEF
ACE, en fullskala operasjonell fiskemerd for forskning innenfor havbruksteknolo-
gi. Resultatene fra feltforsøket var veldig gode, siden regulatorene klarte å oppnå
reguleringsmålet med lite avvik på referansefølgingen. Regulatoren oppnådde en
RMSE på mindre enn 0.05m/s. Disse forsøkene og simuleringene ble utført med
referansefølging av hastighet- og retningsreferanser gitt av en banefølgingsalgorit-
me.

Den andre regulatoren ble utviklet med en mer kompleks kontrollmodell, som
også betraktet koriolis-krefter. Denne regulatoren sørget at origo til lukket-sløyfe-
systemet var UGAS. Regulatoren ble også implementert og validert med FhSim, og
brukte samme prosessmodell av Argus Mini ROV. Simuleringene fra FhSim viste
at reguleringsmålet ble oppnådd, og klarte å følge de tidsvarierende hastighets- og
retningsreferansene.

For oppsummering, så ble begge regulatorene vist med simuleringer oppnåde regu-
leringsmålet. Den første regulatoren ble også felttestet med gode resultater. Derfor
er det skrevet et utkast for en artikkel av resultatet lagt ved denne masteroppgaven,
for publisering ved senere tidspunkt.
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Chapter 1

Introduction

This master thesis derives, assesses and tests two control laws that can be used
for speed and heading control in a step towards an autonomous remotely oper-
ated vehicle (ROV) for inspections of aquaculture net pens. The net pens are
often at locations with different time-varying environmental loads such as wind,
wave and most prominent ocean current. These environmental loads, especially
the ocean current, can be problematic for the speed and heading controllers, as
they often result in deviations from the desired set-point values complicating the
control designs. The thesis will address this problem by designing two control laws
aiming to reach the control objective and suppress the effects of the environmental
disturbances, mainly ocean currents.

1.1 Motivation
Norway is a leading producer of farmed salmon worldwide and produced 1.36 million
tonnes with a value of 68 BNOK in 2019 [1]. In order to increase production and
deal with some of the issues related to today’s production methods, e.g. sea lice
infestations, many fish farmers believe moving their facilities to more exposed
locations forestall these issues. However, many of today’s aquaculture industry
operations depend on manual labour and close human interaction. One such op-
eration is the control of ROVs. The workload on ROV operators is often quite
intense, as they are required to both navigate the ROV in a dynamically changing
environment while at the same time monitor and avoid the structures. There-
fore, increasing the level of autonomy of an ROV could be beneficial to the ROV
operators, but also the fish farmers, as it could lower the costs and improve the
effectiveness of the operations [2].

Autonomous ROVs operating in dynamic environments such as sea-based aquacul-
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ture net pens, require robust control laws to achieve the desired objectives, e.g.
maintain a specific heading angle or follow a path. At SINTEF Ocean, an Ar-
gus Mini ROV is currently used as a research vehicle for testing different control
strategies and autonomous functions. This ROV is presently equipped with PI
speed controllers in the surge and sway velocity degrees of freedom (DOF), and
a PID controller in the heading DOF. The speed controllers have a major short-
comings, as the ROV is not able to reach the desired speed when subject to strong
ocean currents and increasing the integral gains does not help since it leads to
unstable behaviour. This worsens the performance of the vehicle, when executing
tasks such as path following. As a step towards more robust autonomous oper-
ations for ROVs in general, it is, therefore, of interest to develop a more robust
control algorithm for the surge, sway and heading DOFs.

The developed controller must ensure that the ROV is capable of following a
time-varying speed and heading references while under the influence of ocean cur-
rents. The controller should also be robust towards variations and uncertainties
in the system parameters, such as mass and damping coefficients, as these are not
perfectly known. The goal of this thesis is, therefore, to primarily develop and im-
plement a robust control law for surge, sway and heading DOFs. For these control
laws, it will be attempted to prove that the closed-loop systems of their respective
control plant models have desired stability properties.

1.2 Contributions
In this thesis, two model-based control laws for marine vehicles modelled in 3-
DOF, i.e., surge, sway and yaw, are presented. The first controller is derived using
a simplified 3-DOF control plant model, while the second controller considers a
more complex 3-DOF control plant model. The first controller, referred to as C1
for the remainder of the thesis, is based upon [3] and first proposed in the pre-
project [4] that leads to this thesis, utilizes an adaption law to ensure that the
origin of the full error system is uniformly globally asymptotically stable (UGAS)
and uniformly locally exponentially stable (ULES). The second controller, re-
ferred to as C2 for the remainder of this thesis, is a modified version of C1. In C2,
the adaptive law is expanded and overparameterized to consider some unknown
quadratic ocean current terms. Furthermore, C2 utilizes a more complex control
plant model, and as such, this controller is assumed to be more robust than C1.
Due to the complexity of the control plant model, the origin for only some of the
states of the closed-loop system with C2 was only proven to be UGAS through
Lyapunov stability theory, with the origin of the remaining states being proven to
be uniformly globally stable (UGS).
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Both controllers were validated in simulations, and C1 was tested in a field exper-
iment.

The contributions can be summarized as follows:

• Velocity control laws in surge and sway were designed based on a control
plant model.

• The origin of the closed-loop system with the aforementioned control law
was proven to be uniformly globally asymptotically stable.

• The aforementioned controller was shown to be robust against some model-
ling errors using perturbation theory.

• The aforementioned controller was modified to be robust against actuator
saturation and prevents integrator windup.

• The aforementioned controller was software validated and field validated with
excellent results showing vast improvement from the previous implemented
PI control law.

• The control law was modified and extended to include the heading based on
a slightly more complex control plant model.

• The new control law was proven that some of the states uniformly globally
asymptotically converged to the origin, in addition to being bounded for the
remaining states.

• The control law was software validated with a promising yaw response.

1.3 Problem Description
The overall problem in this thesis is to improve the level of autonomy and control
robustness for underwater vehicles. The Argus Mini ROV is utilized as a test
platform. The main task to achieve this is, therefore, to design and implement
robust control laws capable of tracking time-varying references. The following
subproblems to solve this task are therefore proposed for this thesis:

1. Develop a control plant model for ROVs, with the Argus Mini ROV in mind
as a test case.

2. Develop a control law for the control plant model where the control objective
is trajectory tracking with minimal tracking error.
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3. Detect and ameliorate limitations of the controller to increase robustness.

4. Validate the control law through simulations in FhSim with a more complex
process plant model than the process plant model used in [4].

5. Validate the control law at the SINTEF ACE full scale aquaculture laborat-
ory.

6. Augment the control plant model for the ROV and modify and expand the
control law accordingly.

7. Calculate and derive the properties of this modified control law.

8. Test the modified control law through simulations in FhSim.

1.4 Outline
This thesis consists of five parts and 14 chapters.

• Part II presents the necessary relevant background theory used to model,
derive and analyze the control laws and closed-loop system in this thesis.

– Chapter 2 presents the theory for marine craft dynamics used in this
thesis to model the ROV.

– Chapter 3 presents the basic principles for guidance, navigation and
motion control of marine crafts.

– Chapter 4 presents some stability definitions, theorems and lemmas that
are used for the derivations of the control laws in this thesis.

– Chapter 5 presents the literature that this thesis builds on, in addition
to related works for the control of marine vehicles.

• Part III describes the method and derivations of control laws used in the
thesis.

– Chapter 6 presents the control objectives that the rest of the parts are
attempting to achieve.

– Chapter 7 models and simplifies the models for the Argus Mini ROV.
The two control plant models and their assumptions are presented in
this chapter.

– Chapter 8 presents the first control law based on a simplified dynamic
position control plant model. The stability proof for the closed-loop
system, limitation and robustness analysis is also presented here,
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– Chapter 9 presents the second control law based on an expanded control
plant model. Stability proofs for this nonlinear model are presented
here.

• Part IV describes the simulations and experiment setup, in addition to
presenting the results from simulations and field experiments.

– Chapter 10 presents the simulation setup.

– Chapter 11 presents the results of the first control law based on a dy-
namic position control plant model. Here the results from the sim-
ulations are presented, validating the derivations done. In addition,
results from field experiments are presented, validating the control law
in practice.

– Chapter 12 presents the results of the second control law based on the
coupled augmented control plant model. Only results from simulations
are given as a software validation for this control law.

• Part V discusses the results from previous parts, in addition to comparing
the different control laws based on these results.

The results achieved with the first control law was above expectations, and a paper
for publishing of the results has been written and a draft is given in Appendix B.
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Chapter 2

Marine Craft

When simulating a physical model, it is important to be aware that simulations
do not model reality perfectly [4]. More often than not, simplifications are done
because it is difficult to model perfectly or complex models even give numerical
unstable simulations. There are, therefore, two important distinctions in mod-
elling the designer has to be aware of when developing models of marine crafts.
In this thesis, the design of the controllers is based on a control plant model,
which models the main physical properties of reality. The designer can use it in the
stability and robustness analysis of controllers. The other distinction is a model
as close to reality as needed; this model is called the process plant model and
is used in numerical performance and robustness analysis as well as control sys-
tem testing. With a lack of process knowledge and thereby proper modelling, the
control plant model is often used in place of the process plant model, resulting in
bad controller designs [5].

Regardless, both plant models in this master’s thesis are derived based on the
same fundamental differential equations for marine crafts. The notations and
equations are represented using Fossen’s robot-like vectorial model in [6]. It is
a compact representation that exploits the physical properties and couplings in
the differential equations for a 6-DOF marine craft, inspired by the classic robotic
model representation:

M(q)q̈ + C(q, q̇)q = τ (2.1)

2.1 Notation for Marine Craft
The notation of the different DOF follows the nomenclature from SNAME given
in [7] and is regiven in Table 2.1.
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Vector Vector State Description DOF

ηnnb

pnnb

x North position 1
y East position 2
z Down position 3

Θnb

φ Attitude about x-axis 4
θ Attitude about y-axis 5
ψ Attitude about z-axis 6

νbnb

vbnb

u Surge velocity 1
v Sway velocity 2
w Heave velocity 3

ωbnb

p Roll rate 4
q Pitch rate 5
r Yaw rate 6

Table 2.1: SNAME notation conventions

In this thesis, vectors and matrices are expressed in bold. A vector with sub-
scripts and superscripts are in this thesis used as vbnb and this is read as the linear
velocity of the center of origin in BODY frame with respect to the origin of the
NED frame, expressed in the coordinates of the BODY frame. It will often also
be implicit in this thesis what the vectors describes, such that the subscripts and
superscripts are omitted.
Angular representations are done with Euler angles symbolized with the three-
dimensional Θnb and is read as the Euler angles of the BODY frame relative to
the NED frame. The position and orientation, and velocity of any marine vessels
are defined in NED and BODY frame, respectively. Therefore, they are defined in
two vectors where they contain the states of the marine craft in their appropriate
reference frames. The vectors are summarized in Table 2.1.

2.2 Reference Frames
It is convenient to express motion relatively to reference frames to analyze the
motion of marine crafts. For instance, for operations over large distances, ship
operations going from one part of the world to another, it is common to use an
Earth-centered Earth-fixed reference frame to describe the ship’s position and at-
titude. However, for operations confined to smaller areas, which the ROV in this
thesis are limited to, the reference frames as explained in [6] that are used are:

NED: The North-East-Down (NED) coordinate system which is denoted {n} =
(xn, yn, zn) with the origin on. In this frame, xn is the axis pointing towards the
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Earth’s true North, yn towards the east, and zn points downwards, normal to
the tangential plane on the Earth surface. This frame can be seen as a tangent
plane on the Earth’s surface as illustrated in Figure 2.1, which is an assumption
that holds for small areas on Earth. This frame is considered inertial in this thesis.

BODY: The BODY frame, denoted as {b} = (xb, yb, zb), is a moving coordin-
ate system that has its origin ob fixed to the object of interest. In this thesis, xb
is defined as the axis going from aft to fore, the yb axis pointing starboard and zb
going from top to bottom of the vessel, with the origin ob at a point on the craft.
An illustration of how the frame can be defined on an Argus Mini ROV is shown
in Figure 2.2.

Figure 2.1: An arbitrary NED frame on Earth’s surface. Figure inspired by [8]
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xb

yb

zb

v (sway)

u (surge)

w (heave)

φ (roll)

θ (pitch)

ψ (yaw)

Figure 2.2: BODY frame illustrated on the Argus Mini ROV. Figure inspired by
[9]

2.3 Transformations Between Frames
To relate the BODY frame, fixed on the moving vessel, and NED frame, which is
assumed inertial, a transformation matrix JΘ(η) is defined. The transformation
matrix consists of a linear velocity rotation matrix R(Θnb) ∈ R3×3 and angular
velocity transformation matrix T(Θnb) ∈ R3×3.

JΘ(η) =

[
R(Θnb) 03×3

03×3 T(Θnb)

]
(2.2)

The linear velocity rotation matrix is defined as the Euler angles rotation:

R(Θnb) =



cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ


 (2.3)

where s( · ) = sin( · ) and c( · ) = cos( · ). This matrix belongs to the special ortho-
gonal group which can be read more about in [6, p. 20], where the most important
properties are RRT = RTR = I3 and detR = 1. The angular velocity transform-
ation matrix are defined using:

Θ̇nb = TΘ(Θnb)ω
b
nb (2.4)
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This, according to [6, p. 25], results in

T−1
Θ (Θnb) =




1 0 −sθ
0 cφ cθsφ
0 −sφ cθcφ


 =⇒ TΘ(Θnb) =




1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ


 (2.5)

Here it is used that t( · ) = tan( · ).

Remark 2.1. Note that Eq.(2.5) has a singularity at θ = ±90◦ which is a well known
problem with Euler angles. To overcome this problem, writing the kinematics using
quaternions is an alternative. Quaternions are a non-minimal attitude represent-
ation. See, for instance, [6, 10] for how quaternions can be used to replace Euler
angles.

2.4 Kinematic Equations
With the transformation matrices the 6-DOF kinematic differential equation can
be written as:

η̇nnb = JΘ(η)νbnb
m

[
ṗnnb
Θ̇nb

]
=

[
R(Θnb) 03×3

03×3 T(Θnb)

] [
vbnb
ωbnb

] (2.6)

This results from the relation that the time derivative of position is the velocity.
However, since it is desired for it to be written relative to the NED frame, a
transformation from the BODY frame has to be done.

2.5 Kinetic Equations
A general 6-DOF kinetic equation of motion for marine vehicle can, according to
[6], be expressed as

Mν̇ + C(ν)ν + D(ν)ν + g(η) + g0 = τ c + τwind + τwave (2.7)

where

• M = MRB + MA is the mass matrix including the rigid body and added
mass terms

• C(ν) = CRB(ν) + CA(ν) is the Coriolis-centripetal matrix for rigid body
and added mass terms
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• D(ν) is the damping matrix, it is convenient to write the total hydrodynamic
damping as the sum of a linear part due to potential damping and possible
skin friction and nonlinear part due to quadratic damping and higher-order
terms.

• g(η) is a vector of gravitational and buoyancy forces and moments

• g0 is a vector used for pretrimming or ballast control

• τ c is a vector of control inputs

• τwind and τwave is the forces acting on the vessel caused by wind and wave
motions

The rigid-body system inertia matrix or mass matrix is unique and satisfies MRB =
MT

RB > 0 according to [6, p. 53], and it can therefore be written as:

MRB =

[
MRB

11 MRB
12

MRB
21 MRB

22

]
(2.8)

with MRB
12 = (MRB

21 )T .

For the coriolis-centripetal matrix an important property is that it is defined to
be skew-symmetric [6], and by choosing the parameterization:

CRB(ν) =

[
03×3 −S(MRB

11 ν1 + MRB
12 ν2)

−S(MRB
11 ν1 + MRB

12 ν2) −S(MRB
21 ν1 + MRB

22 ν2)

]
(2.9)

where ν1 and ν2 are the first three and last three elements of ν, respectively, this
property is satisfied.

2.5.1 Hydrodynamics

Added mass forces:
When a rigid body moves in a fluid, the additional inertia of the fluid surrounding
the body has to be considered. The fluid is accelerated by the body itself, and
a force is necessary to achieve this acceleration. The fluid exerts a reaction force
which is equal in magnitude in opposite direction. This reaction force is the ad-
ded mass contribution [10]. For MA there are in general no specific properties.
However, for a body completely submerged in fluid the matrix can be considered
positive definite. Furthermore, for a submerged body with low velocity and three-
plane symmetry, as Assumption 2.3 states, the added mass can be approximated
as:

MA = −diag{Xu̇(0), Yv̇(0), Zẇ(0), Kṗ(ωroll),Mq̇(ωpitch), Nṙ(0)} (2.10)
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where ωroll and ωpitch are the natural frequency in roll and pitch respectively, as
stated in [9]. Xu̇(0) are the inertial force along the x-axis due to an acceleration u̇
in x direction. This also yields for the other two axes as well. [6]

Likewise, the Coriolis-centripetal matrix for rigid-body, the Coriolis-centripetal
matrix for the added mass can be derived using the parameterization from Eq.(2.9).
However, in this case, the added mass matrix is used instead of the rigid-body mass
matrix, and the velocity vector ν is replaced with the relative velocity vector νr.
The relative velocity vector will be explained more in-depth in the section for ocean
current.

Damping forces:
The damping matrix for marine vessels is normally computed with a hydrodynamic
potential theory program, where viscous effects are neglected. Consequently, it is,
therefore, necessary to add viscous forces to the model manually. Without going
far into details for how damping can be modelled, it is safe to say that it is hard to
precisely model, and can for control design purposes, complicate the design more
than it benefits [6].

Hydrodynamic damping for the marine craft is mainly caused by potential damp-
ing, skin friction, wave drift damping, and damping from vortex shedding. For
vehicles operating fully submerged, especially at water depths where waves have
little effects, potential damping and other wave-related damping effects can be
neglected. The damping forces can, conveniently, in many cases, be simplified to
be the sum of its linear component and nonlinear effects:

D(νr) = D + Dn(νr) > 0 (2.11)

This damping matrix is strictly positive since it is well known that energy is
dissipated through damping [11]. Due to the neglection of wave-related damping
effects, the linear damping term stems from skin friction and the nonlinear term
from vortex shedding, which is quadratic. In low-speed manoeuvring, the linear
terms will dominate the nonlinear terms and vice versa in high speed. This theory
from [6] typically assumes slender body types and will therefore not necessarily
be accurate for ROVs [9]. One can consequently approximate the ROV to be a
box and calculate the damping from this; however, due to the cavities, exposed
cables, and other appendages such as cameras, the box approximation will lead to
underestimations [11].
Diagonal damping matrices are used in modelling of ROVs, as done in [9, 11], since
it is difficult to find values for non-diagonal damping terms with calculations or
experiments. The diagonal terms will also be dominating terms, so the removal
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of off-diagonal terms are neglible. Therefore the linear and nonlinear damping
matrices can be given as:

D = −diag{Xu, Yv, Zw, Kp,Mq, Nr}
Dn(νr) = −diag{X|u|u|ur|, Y|v|v|vr|, Z|w|w|wr|, K|p|p|pr|,M|q|q|qr|, N|r|r|rr|}

(2.12)

where these coefficients and how to find them can be approximated and found
from experiments as written about in [11].

2.6 Subsystems

2.6.1 Kinematic subsystem

For many applications, motion in certain DOFs can be neglected, and therefore
define subsystems of the differential equation Eq.(2.6). The Argus Mini ROV’s
specifications are given in [12], and for this ROV, the following assumption can be
made:

Assumption 2.1. Due to the nature of passive stabilization properties from gravity
for this ROV. The roll, φ, and pitch, θ, can be approximated to be zero. It means
that φ ≈ 0 and θ ≈ 0.

The first assumption means the vessel will not reach the singularity under
normal conditions, avoiding the numerical instability.

Remark 2.2. The assumption is made for most ROVs, which can be seen in other
literature such as [8, 9, 10, 13]. ROVs are usually designed to be naturally stable
in roll and pitch.

The assumption made for roll and pitch can be used to neglect the motion in
those states. This reduces the states to η =

[
xn yn zn ψn

]T , ν =
[
ub vb wb rb

]T .

In addition, the following assumption from [13] can also be made for the Argus
Mini ROV in heave:

Assumption 2.2. The vehicle is neutrally buoyant, and the motion in heave can
therefore be neglected. In addition, the vehicle center of gravity (CG) and the
center of buoyancy (CB) are located along the same vertical axis in {b}.

Remark 2.3. Most ROVs are designed to be slightly positively buoyant. Therefore,
in the case of a system shut down, the ROV will slowly rise to the surface. However,
the ROV has heave thrusters that are used to independently control the depth
of the ROV with a depth controller. The ROV can, therefore, for all practical
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purposes be assumed neutrally buoyant. One can also assume that the heave DOF
is independent from the rest and that no couplings exists between i.e. surge and
heave, sway and heave, and heading and heave.

This assumption can therefore be used to simplify the kinematic equations
even more, reducing it to a 3-DOF differential equation where η =

[
x y ψ

]T ,
ν =

[
u v r

]T and the rotation matrix

R(ψ) ,




cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


 (2.13)

Which can be seen is a principal rotation matrix about z-axis. Decoupling the
heave velocity from the horizontal velocity is an assumption that can be made to
simplify design of the horizontal controllers in this thesis.

2.6.2 Simplification for Kinetic Equations

Considering the Argus Mini ROV in this thesis, the following assumptions are
made

Assumption 2.3. The ROV is symmetric in port-starboard, fore-aft and bottom-
top

Assumption 2.4. The body-fixed frame {b} center of origin (CO) is located in
the CG.

Remark 2.4. All the Assumption 2.1-2.4 made are common assumptions in mod-
elling of ROVs, see for instance [6, 10, 13].

To summarize this section about kinetics, from the assumptions, matrices for
the ROV have the following properties:

• MRB = MT
RB = diag{mRB

11 ,m
RB
22 , ...,m

RB
66 } > 0

• ṀRB = 0

• MA = MT
A = diag{mA

11,m
A
22, ...,m

A
66}

• ṀA = 0

• D(νr) = D + Dn(νr) > 0

• D = diag{d11, d22, ..., d66}, dii > 0∀i = {1, 2, ...6}

• Dn(νr) = diag{dn11|ur|, dn22|vr|, ..., dn66|rr|}, dnii > 0∀i = {1, 2, ...6}
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• C(ν) = −C(ν)T

In addition with Assumption 2.1 and Assumption 2.2, it is possible to look at
the horizontal motion isolated for the kinetic equations. This means that for the
horizontal DOF, g(η) = g0 = 0.

2.7 Environmental Forces
When modelling marine vessels it is common to include three environmental forces
in the modelling. That is models for the wind, waves and ocean currents. In the
general kinetic equation Eq.(2.7), the wave and wind forces are assumed with the
principle of superposition and enters the equation as external generalized forces in
τwind and τwave.

Assumption 2.5. The ROV is completely submerged in deep water at all times
when the controller this thesis considers is active. Therefore, wind and wave forces
can be neglected, and the only environmental disturbance that needs to be taken into
account is the ocean current.

Remark 2.5. The velocity measurements which is needed for the velocity controllers
are only available when the camera of the ROV is directed towards the net. In
this case, it is only possible when it is submerged.

2.7.1 Ocean Current

In [6, p. 221], ocean currents are described as:

Ocean currents are horizontal and vertical circulation systems of ocean
waters produced by gravity, wind friction, water density variation in
different parts of the ocean. Besides wind-generated currents, the heat
exchange at the sea surface, together with salinity changes develop an
additional sea current component (...).

For our purposes, to simplify the controller designs, the following assumption about
ocean currents can therefore be made:

Assumption 2.6. The ocean current is constant, irrotational and bounded with
a velocity vector Vc = [Vx, Vy, Vz, 0, 0, 0]T in {n}. Being bounded means that there
exists a constant Vmax > 0 such that ||Vc|| < Vmax. Furthermore, due to the
current being constant, V̇c = 0.
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Remark 2.6. Due to the assumption that pitch and roll are neglected for the ROV,
a z-component in the ocean current would affect the heave of ROV isolated, which
is completely decoupled and controlled separately. Therefore, it will not affect the
motion in the horizontal plane for the ROVs {b}. This is an assumption that also
has been done in [13]. The current vector can therefore reduce its vector to only
be in DOF 1, 2 and 6, meaning it is written as: Vc = [Vx, Vy, 0]T in {n}.
Remark 2.7. Another remark here is that the assumption on the ocean current
is made in the NED frame, and in many earlier works on control, the current is
assumed to be constant in the BODY frame. This assumption is easily violated
during turning as it has been stated in [14]. It is, therefore, necessary to transform
the current force effects to the BODY frame.

To simulate and model the ocean currents effect on the motion of the ROV,
the relative velocity vector is defined to be:

νbr = νb − νbc (2.14)

where it is used that νbc = JTψ(ψ)Vc, where Jψ(ψ) is the rotation matrix in 3-DOF
from {b} to {n} in horizontal plane, and the transpose therefore is the opposite
rotation.
Note that the current is not constant in the BODY frame and the time derivative
of the relative velocity vector is therefore

ν̇br = ν̇b − ν̇bc (2.15)

and ν̇bc = J̇Tψ(ψ)Vc where

J̇ψ(ψ) =



−r sin(ψ) −r cos(ψ) 0
r cos(ψ) −r sin(ψ) 0

0 0 0


 (2.16)

2.8 Actuation
Most of this section was written about in [4], and regiven here in this section. A
brief theory of the actuation of the ROV is presented here. Mainly with a focus
on the control allocation matrix B and the limitations of the thrusters.
The body fixed frame has its x and y axis going in surge and sway respectively. The
angles of the thrusters are relative to the parallell frames of body fixed frame but
centered at the position where the forces of the thrusters are exerted at. For the
ROV in this thesis, which has four thrusters on the horizontal plane, the thruster
allocation matrix B for 3-DOF is given by

B =



b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34


 (2.17)
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where

b1i = cos(αi) (2.18)
b2i = sin(αi) (2.19)
b3i = xli sin(αi)− yli cos(αi) (2.20)

and i = {1, ..., 4}. Here xli and yli is the x, y-coordinates of the i’th thrusters
center relative to the BODY frame.

Furthermore, it is important to take into account the limitations of the thrusters.
One well-known limitation of any thrusters is that generating force cannot happen
instantaneously. There are limitations of how fast the thrusters can go from 0 to
max thrust, and in simulations, a simple way to model this is using a rate slew
limiter.

An upper bound of how much force a thruster can exert is another limitation
that needs to be considered. When the thrusters try to give a higher actuation
than it is physically possible capable of, it goes into saturation, an effect that
might be destabilizing for closed-loop systems in practice if the designer does not
handle this nonlinear effect properly.

The matrix B ∈ R3×n maps the control input vector f ∈ Rn, where n is num-
ber of thrusters on the ROV actuating the control forces τ ∈ R3. The control
forces are described by the vector

[
τu τv τr

]T
= Bf . The thruster allocation

matrix B has full rank for n ≥DOF, and is therefore, in this thesis, fully actuated
in surge, sway and yaw. The maximum control forces, τumax , τvmax and τrmax , when
the thrusters each can only exert a bounded force can be calculated so that it can
be taken into account for control design. The location and the positive direction
of the thrusters can look like Figure 2.3. To calculate τumax and τvmax , the vectors
from the forces in each thruster need to be summed up and decomposed in surge
and sway. These calculations are done to find the total force that the ROV can
exert in surge and sway and the total moment in yaw independent of each other.
This results in

τumax =
n∑

i=1

(|Fmax| cos(αi))

τvmax =
∑

odd i

(|Fmax| sin(αi)) +
∑

even i

(−|Fmin| sin(αi))
(2.21)

Here Fmax and Fmin are the forces each thruster has available in a positive and
negative direction, respectively. To find the maximum force in the opposite dir-
ection, Fmax and Fmin need to switch place in the calculations done above. To
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τu

τvτr

f1 f2

f3f4

Figure 2.3: Generic horizontal thruster locations on an ROV with positive force
vectors

calculate the maximum torque or moment that these thrusters can exert we need
to find the vector of the arm from centre of origin to the point where the thrusters
exert a force on the ROV. The maximum torque from the thrusters is given as the
sum of the torque of each thruster individually that contributes to that rotational
movement. The torque is calculated with

τrmax =
n∑

i=1

|ri × fi| (2.22)

where the the vectors ri =
[
xli yli 0

]T for i = {1, ..., n} and the force vectors for
each thrusters in Figure 2.3 are given as

fi =
[
|Fmax| cos(αi) |Fmax| sin(αi) 0

]T
, i = {1, 4}

fi =
[
|Fmin| cos(αi) |Fmin| sin(αi) 0

]T
, i = {2, 3}

(2.23)

More general terms, sum up the maximum force from each thruster contributing
to a positive rotational moment. The last element in all vectors is set to 0 because
the forces of these thrusters are assumed to only be effective in the horizontal
plane.
In order to make the simulations as realistic as possible, the saturations have to
be set at each thruster force which can be found by using the Moore-Penrose
pseudo-inverse of the thruster allocation matrix defined from [6, p. 405] as:

B† = BT (BBT )−1 (2.24)
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2.9 Summary
Gathering the most important result from this chapter, the kinematic and kinetic
equations for ROVs in horizontal degrees of freedoms to be used in control designs,
given in [6, p. 188], can be written as:

η̇ = Jψ(ψ)ν

MRBν̇
b + CRB(νb)νb + MAν̇

b
r + CA(νbr)ν

b
r + D(νbr)ν

b
r = Bf

(2.25)

where Jψ is the rotation from {b} to {n} using the principal rotation matrix about
the z-axis.
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Chapter 3

ROV Guidance, Navigation and
Control

The basics of marine motion control systems will be presented in this chapter. A
motion control system consists usually of three independent blocks; guidance, nav-
igation and control (GNC) systems. The interconnections between these systems
are illustrated in Figure 3.1.

η, ν η̂, ν̂τc
references

operator
Guidance

Controller Marine vessel Navigation

Disturbances

Figure 3.1: Typical GNC system interconnection. Figure inspired by [9]

The focus in this thesis will mainly stay on the controller block of the system.

3.1 Control Systems
A control system computes the necessary actuation forces to achieve some control
objective [9]. One typical control objective is, for instance, set-point regulation.
For a control system, the inputs are typically the desired reference value, also
called the set-point for a state, and state estimations to say where the vessel is
at the given moment. The control system’s output values for actuation forces to
“tell” the vessel what the actuators should do to make a move towards the desired
set-point.
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This section presents a brief introduction to marine motion control, and for further
reading, the reader is referred to [6, 10].

3.1.1 PID Controllers

A widely used controller in the industry is the PID controller and its different
combinations of P, PI, and PD controllers. It offers the simplest yet most efficient
solution to many real-world control problems [15]. It utilizes the control error
e = x − xd to calculate the actuator input τ . Where xd is the desired set-point,
and x is the state measurement or estimation. The control designer chooses the
gains Kp, Ki and Kd to scale the input to an appropriate value. With this, the
different controllers can be written as given in Table 3.1.

P τ = −Kpe

PI τ = −Kpe−Ki

∫ t
0
edt

PD τ = −Kpe−Kdė

PID τ = −Kpe−Kdė−Ki

∫ t
0
edt

Table 3.1: The control laws for different PID controllers

With a naïve approach, the control gains are tuned by looking at the system
response; however, this approach is prone to human errors, and there might exist
a set of better parameters yielding a better response. The gain Kp can be seen as a
proportional gain and affects the immediate error of the desired state and current
state. The Kd term can be interpreted as a damping gain and affects the error’s
derivative or rate of change. The Ki affects the summed error over time and is
used to reduce constant disturbance acting on the system.

A more analytical approach to tuning the different gains might be using pole place-
ment by analyzing the transfer function of the closed-loop system and analyzing its
stability margins [16]. This method, however, requires good system knowledge, and
often for nonlinear models, becomes impossible. One technique for pole placement
with nonlinear models is to view the nonlinear terms as a constant disturbance
term and place the poles based on the linear terms. The integrator part of the
controller can then handle the disturbance term.
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3.1.2 Control Design Methods

Especially when dealing with nonlinear systems, different nonlinear controller
designs are used to achieve desired closed-loop responses.

Feedback linearization controllers:
This controller design method is based on transforming nonlinear systems into
equivalent closed-loop linear systems. Then, a traditional controller like the PID
controller mentioned earlier can be used [6]. This method, however, requires that
the vessel model is known, and the system is input-output linearizable [17]. Having
modelling errors can potentially be destabilizing when using feedback linearizing.
Due to the complexity of deriving kinetic models for a marine vessel, the control-
ler’s performance using feedback linearizing can be unsatisfying in practice.

Consider the nonlinear marine craft dynamics on the form

Mν̇ + n(ν, η) = τ (3.1)

where the states ν and η are assumed available, for instance through measurements
and approximations, the coefficients in n are known. The nonlinearities can be
cancelled out by choosing the control law as:

τ = Mτ̄ + n(ν, η) (3.2)

where τ̄ is a commanded control vector that for instance can be chosen as a PID-
controller for each state [6, p. 451].

Backstepping controllers:
Backstepping controllers are another design method utilizing recursive construc-
tion of control Lyapunov functions to decide the feedback control law. Like the
feedback linearization controllers, it cancels nonlinearities, but it also gives the
designer the choice of keeping good stabilizing nonlinear terms, like, for instance,
nonlinear damping terms. This method provides the system with additional ro-
bustness, especially when it is well known that cancellation of nonlinearities re-
quires precise models, which is hard to achieve in practice [6, p. 457].

The idea of backstepping is most easily described with a demonstration. Con-
sider a simple nonlinear scalar system:

ẋ1 = f(x1) + x2

ẋ2 = u

y = x1

(3.3)
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where u is the controller input to the system, and it is desired to control y to zero.
The design starts with the system x1 and continues with x2.
A change of coordinates is introduced:

z = φ(x) (3.4)

where z is a new state vector and φ(x) is a global diffeomorphism transformation,
which in short terms means it is a mapping with smooth functions φ(x) and
φ−1(z). Hence the inverse transformation

x = φ−1(z) (3.5)

is guaranteed.

For the first step of the controller design for this system, choose the first backstep-
ping variable as z1 = x1. The state x2 is chosen as the virtual control input and is
defined to be the sum of a stabilizing function α1 and the new state variable z2.

x2 = α1 + z2 (3.6)

A control Lyapunov function (CLF) can be chosen as:

V1 =
1

2
z2

1

V̇1 = z1(f(z1) + α1 + z2)

= z1(f(z1) + α1) + z1z2

(3.7)

The attention can then be turned to design the stabilizing function, and therefore
choose

α1 = −f(z1)− k1z1 (3.8)

where k1 > 0 is the feedback gain. Now the first equation is:

ż1 = −k1z1 + z2 (3.9)

it is therefore easy to see that when z2 = 0, the system for z1 is stabilized.
The second step for the design is to compute the z2 dynamics from time differen-
tiation of Eq.(3.6).

z2 = x2 − α1

ż2 = ẋ2 − α̇1

= u− α̇1

(3.10)
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A CLF for this system is therefore

V2 = V1 +
1

2
z2

2

V̇2 = V̇1 + ż2z2

= (−k1z
2
1 + z1z2) + z2(u− α̇1)

= −k1z
2
1 + z2(u− α̇1 + z1)

(3.11)

meaning the control law can be chosen as

u = α̇1 − z1 − k2z2 (3.12)

with k2 > 0 and

α̇1 =
∂f(x1)

∂x1

ẋ1 − k1ẋ1 (3.13)

this yields:
V̇2 = −k1z

2
1 − k2z

2
2 < 0,∀z1, z2 6= 0 (3.14)

meaning that z1, z2 → 0 =⇒ x1 → 0.
To summarize the process, this design method utilizes Lyapunov functions to
choose the control input and stabilize the output.

3.1.3 Control Allocation

Control allocation is about distributing generalized control forces τ ∈ Rn to ac-
tuators in terms of control inputs u ∈ Rr. If r > n, this means the problem is
overactuated, and r < n means it is underactuated. This computation mapping
the control inputs to the generalized control forces is a model-based optimization
problem that considers physical limitations such as maximum input amplitude and
rate saturation. [6, p. 398]

3.2 Guidance Systems
Guidance can be defined as "The process for guiding the path of an object towards
a given point, which in general may be moving" [18]. Another way of formulating
this is that a guidance system computes a reference position, velocity, or accelera-
tion vectors used as inputs for the control system of the GNC interconnections [9].
The inputs to the guidance systems are usually set-points or instructions given by
a human operator. For guidance, three scenarios are usually considered [6, p. 235]:

• Set-point regulation: It is the most basic guidance system where an operator
provides a constant input or set point. Examples of set-point regulation are
constant depth, speed control, or regulation to zero value.

26



• Trajectory tracking: For instance, the position and velocity of a marine craft
track a desired time-varying position and velocity reference signals. Tracking
control can be used for course-changing manoeuvres, speed-changing, and at-
titude control. If, for instance, a constant set-point is used as an input to
a low-pass filter, also called a reference model, in an open-loop guidance
system, the outputs of the filter will be smooth time-varying reference tra-
jectories for the position, velocity, and acceleration (PVA).

• Path following: This is to follow a pre-defined path indepentent of time. This
is typical for ships in transit between continents or underwater vehicles used
to map the seabed.

3.3 Navigation Systems
The navigation part of the system involves determining and processing the states of
the vessel. It involves using sensors to collect raw data. These raw measurements
in turn have to be processed to be useful. In the first step they are handled by a
signal processing unit, or program for quality check and wild-point removal. In the
second step, these raw measurements are transmitted to the computer which have
a state estimator that is capable of noise filtering, prediction and reconstruction
of unmeasured states, wherein the most famous algorithm for state estimation is
the Kalman filter.

In this thesis, the most relevant part of the navigation system is the Doppler
Velocity Log (DVL), which is used in the ROV to measure velocities used in feed-
back to the controllers. This sensor is widespread in maritime applications. They
are usually mounted to measure the vehicle’s velocity with respect to the seabed,
but in this case, it will measure the velocity of the vehicle with respect to the
net pen. It sends multiple hydro-acoustic signals towards the seabed or net pen,
and the velocity is then calculated by measuring the Doppler shift in the reflected
acoustic signals.[13]
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Chapter 4

Mathematical Review

In this chapter, some essential mathematical identities, theorems, and lemmas used
in the thesis are presented here.

4.1 Norms and Lp-spaces
To understand the mathematics, the definitions of vector norms and Lp-spaces are
presented here and details about them can be read more about in [17]:

Definition 4.1. Norm: p-norms on Rn are defined as

‖x‖p =

(∑n
i=1 |xi|p

) 1
p

, p ∈ [1,∞)

‖x‖∞ = maxi |xi|




p− norms (4.1)

Definition 4.2. Lp-space: A piecewise continuous function, u : [0,∞)→ Rm, is
in the Lmp -space for 1 ≤ p <∞ if and only if

‖u‖Lp =

(∫ ∞

0

‖u(t)‖pdt
)1/p

<∞ (4.2)

with the special case of the L∞ being defined to be that

‖u‖L∞ = sup
t≥0
‖u(t)‖ <∞ (4.3)

Definition 4.3. κ and κ∞ functions: A continuous function α : [0, a)→ [0,∞)
is said to belong to class κ if

• it is strictly increasing.
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• it is such that α(0) = 0.

furthermore the same functions belongs to κ∞ if

• belongs to class κ

• it is such that a =∞

• it is such that limr→∞ α(r) =∞

where this definition is taken from [17].

4.2 Stability
To understand the proofs, a fundamental understanding of stability is necessary.

Definition 4.4. According to [17], the equilibrium point x = 0 of ẋ = f(t,x) is

• stable, if for each ε > 0 there exists δ = δ(ε) > 0 such that

‖x(t0)‖ < δ =⇒ ‖x(t)‖ < ε,∀t ≥ t0 ≥ 0

• uniformly stable, if for each ε > 0, there is δ = δ(ε) > 0, independent of t0,
such that the equation above is satisfied.

• unstable, if it is not stable.

• asymptotically stable if it is stable and δ can be chosen such that:

‖x(t0)‖ < δ =⇒ lim
t→∞

x(t) = 0 (4.4)

• uniformly asymptotically stable if it is uniformly stable and there is a positive
constant c, independent of t0, such that for all ‖x(t0)‖ < c, limt→∞ x(t)→ 0,
uniformly in t0.

• globally uniformly asymptotically stable if it is uniformly stable, δ(ε) can be
chosen to satisfy limε→∞ δ(ε) = ∞ and for each pair of positive numbers η
and c there is T = T (η, c) > 0 such that

‖x(t)‖ < η,∀t ≥ t0 + T (η, c),∀‖x(t0)‖ < c (4.5)

Usually the mathematics of Definition 4.4 is not used directly, but is the fun-
damentals for all stability proofs given. A more direct way of proving stability is
using Lyapunov’s stability theorem:
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Theorem 4.1. Lyapunov’s stability theorem: Let x = 0 be an equilibrium
point for ẋ = f(x) and D ⊂ Rn be a domain containing x = 0. Let V : D → R
be a continuously differentiable function such that

V (0) = 0 and V (x) > 0,∀x ∈ D\{0}
V̇ (x) ≤ 0,∀x ∈ D

Then, x = 0 is stable. Moreover, if

V̇ (x) < 0,∀x ∈ D\{0}

then x = 0 is asymptotically stable. Furthemore, if in addition ‖x‖ → ∞ =⇒
V (x)→∞, then the origin is globally asymptotically stable. [17, Theorem 4.1]

Expanding this to exponentially stability, which is a stronger stability property:

Theorem 4.2. Let x = 0 be an equilibrium point for ẋ = f(t,x) and D ⊂ Rn be
a domain containing x = 0. Let V : [0,∞)×D→ R be a continously differentiable
function such that

k1‖x‖a ≤ V (t,x) ≤ k2‖x‖a
∂V

∂t
+
∂V

∂x
f(t,x) ≤ −k3‖x‖a

∀t ≥ 0 and ∀x ∈ D, where k1, k2, k3 and a are positive constants. Then x = 0
is exponentially stable. If the assumptions hold globally then the origin is globally
exponentially stable.
[17, Theorem 4.10]

For an autonomous system that can be written on the linear form ẋ = Ax,
the following, easier applicable, theorem can also be used to show asymptotically
stability.

Theorem 4.3. Lyapunov’s indirect stability method: The equilibrium point
of ẋ = Ax is stable if and only if all eigenvalues of A satisfy Reλi ≤ 0 and for
every eigenvalue with Reλi = 0 and algebraic multiplicity qi ≥ 2, rank(A−λiI) =
n − qi where n is the dimension of x. The equilibrium point x = 0 is (globally)
asymptotically stable if and only if all eigenvalues of A satisfy Reλi < 0 [17,
Theorem 4.5].

It can also be shown that all linear systems that are (globally) asymptotically
stable are also (globally) exponentially stable. Proofs for these theorems can all
be found and read more about in [17].
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In some cases, there is often hard to prove that there exists a Lyapunov func-
tion that fulfills Theorem 4.1 or even eigenvalues to fulfill Theorem 4.3 to show
convergense of the states. Barbalat’s Lemma can in the case of autonomous sys-
tems therefore often be utilized to show convergence of some of the states.

Lemma 4.1. Barbalat’s Lemma: if f, ḟ ∈ L∞ and f ∈ Lp for some p ∈ [1,∞),
then f(t)→ 0 as t→∞ [19, Lemma 3.2.5].

For readers interested in the proof for this Lemma and examples using this
Lemma, they are then referred to [19].

Another Lemma that can be used in the same way as Barbalat’s Lemma but
be extended to also yield for time-varying systems is the integration lemma which
can be used to show that the origin is uniformly globally asymptotically stability
solution of the ordinary differential equations (ODEs).

Lemma 4.2. Integration Lemma: Consider the system

ẋ = f(t,x) (4.6)

The origin of Eq.(4.6) is UGAS if it is UGS and there exists a continuous positive
definite function γ : Rn → R≥0 and for each r, ν > 0 there exists βrν > 0, such
that for all t0 ≥ 0, |x0| ≤ r and all t ≥ t0, the solution x( · , t0,x0) satisfies

∫ ∞

t0

[γ(x, (τ , t0,x0))− ν] dτ ≤ βrν (4.7)

The proof for this Lemma and details can be read more about in [20, Lemma 2].

4.3 Robustness
Up until now the mathematical lemmas and theorems have focused on stability,
and what stability properties is it possible to prove for a general system. What
if a system is on the form of ẋ = f(t,x) + g(t,x) and it can be shown that the
nominal system ẋ = f(t,x) is exponentially stable, is it possible to say something
how robust the system is for some unmodelled perturbations g(t,x)?

Lemma 4.3. Vanishing perturbation: Let x = 0 be an exponentially stable
equilibrium point of a nominal system

ẋ = f(t,x)

31



Let V (t,x) be a Lyapunov function that satisfies Theorem 4.2 with a = 2, and in
addition satisfies ∥∥∥∥

∂V

∂x

∥∥∥∥ ≤ k4‖x‖ (4.8)

in [0,∞)×D. Then suppose the perturbation term g(t,x) satisfies

‖g(t,x)‖ ≤ γ‖x‖,∀t ≥ 0,∀x ∈ D

γ <
k3

k4

(4.9)

Then the origin is an exponentially stable equilibrium point of the perturbed system

ẋ = f(t,x) + g(t,x)

Moreover, if all assumptions hold globally, then the origin is globally exponentially
stable.
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Chapter 5

Literature review

5.1 Theorem for UGAS Systems
Recall from the example for backstepping controllers regiven in Chapter 3, it was
possible to design a control to write the system on a specific form and control
x1 → 0. In [3] this idea is extended to be even more general and for (non-)autonomous
systems that it is possible to prove it is UGAS and ULES given the system matrices
fulfills certain conditions. This system is given on the form:

ẋ1 = h(x1, t) + G(x, t)x2

ẋ2 = −PG(x, t)T
(
∂W (x1, t)

∂x1

)
,P = PT > 0

(5.1)

Note that it looks similar to the scalar system Eq.(3.3), only expanded to mul-
tivariable form. Following theorem then holds for this system, when assumptions
A1 and A2, which is regiven here, is true.

Theorem 5.1. The origin of Eq.(5.1) is UGAS and ULES

A short summary of the assumptions is that it bounds the matrices for the
general case where the system is nonautonomous. The assumptions that need to
be checked are:

Assumption 5.1. Define G0(x2, t) := G(x, t)|x1≡0. Assume there exists a con-
tinuous nondecreasing functions ρj : R≥0 → R≥0 for (j=1,2) such that for all
t ≥ 0, x ∈ Rn1+n2:

max

{
‖h(x1, t)‖,

∥∥∥∥
∂W (x1, t)

∂x1

∥∥∥∥
}
≤ ρ1(‖x1‖)‖x1‖ (5.2)

max {‖G(x, t)‖, ‖G0(x2, t)‖} ≤ ρ2(‖x‖) (5.3)
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and, for each compact set K ⊂ Rn2 there exists a constant bm > 0 such that

G0(x2, t)
TG0(x2, t) ≥ bmI (5.4)

∀(x2, t) ∈ K× R≥0

The second assumption for this theorem is simply that:

Assumption 5.2. There exist class-κ∞ functions α1 and α2 and a strictly positive
real number c > 0 such that

α1(‖x1‖) ≤W (x1, t) ≤ α2(‖x1‖) (5.5)
∂W (x1, t)

∂t
+
∂W (x1, t)

∂x1

h(x1, t) ≤ −c‖x1‖2 (5.6)

Moreover, if α2(s) ∝ s2 for sufficiently small s, then the origin is ULES.

where this second assumption says there exists a Lyapunov function, W (x1, t),
for subsystem ẋ1 = h(x1, t), such that the origin of that system is exponentially
stable per Theorem 4.2.

The proof for this theorem can be summarized in short terms that if it can be
shown that the origin of system Eq.(5.1) is uniformly globally stable, in addition
to showing that the origin has global uniform attractivity, then the origin is UGAS.
The assumptions are to give properties to the different matrices for the proof. This
method of thinking is a way of dividing the task to show asymptotically stability
for the different states.

5.2 Control Systems
This thesis is in many ways an extension of [9], which briefly presented some
strategies for motion control. However, this thesis will be going more in-depth on
the control systems so that the work done in [9] can perform optimally. In [4] some
controllers were proposed to be tested to find the most promising with respect to
robustness. Especially controllers based on adaptive feedback linearization PID
controllers were popular amongst them, which were used in [13, 14, 21, 22]. In
addition, [9] proposed a first-order sliding mode controller and a super-twisting al-
gorithm controller from [23] for the ROV, where they were simulated in the project
[4] for fall 2020. In the project, a process plant model was proposed, which all the
controllers were tested on. In addition to this, a simplified dynamic positioning
control plant model was used to propose an adaptive controller studied in this
thesis.
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The adaptive feedback linearizing controller that was proposed in [13] looked prom-
ising during the preliminary simulations done in [4]. The error for the velocity
tracking from this controller was little and more or less the same as the other
promising controller, as was concluded in the project [4]. The simulations in [13],
likewise [4], also showed that the controller more or less tracked the desired velo-
cities perfectly. However, field tests from the same article [13] showed that it had
significantly deteriorating results than the simulations. Basin wall following using
DVL showed great results where the controller managed to a large extent track
the velocity references, with some deviations. When the ROV reached a corner, it
struggled to follow the reference from what seems like a too fast and large change
so that it was not physically possible for it to reach the reference. However, the
biggest problem for this controller was that during the net-pen following trial,
where the velocity reference was constant, the closed-loop system got a constant
deviation and, at the same time, became more oscillatory. This behaviour might
be from thrusters going into saturation; however, it is hard to say for sure if the
oscillations come from saturation or other factors without information of what
happened to the ROV under the test. However, based on the data from these two
field tests in [13] it seems as the controller used was somewhat satisfactory but
still has potential for improvement since the controller had some deviations with
velocity tracking.

The first-order sliding mode controller proposed in [9] simulated in [4] was also
on par with the other nonlinear controllers in [4]. The simulations showed that
the controller had more or less perfect velocity tracking during simulations. Un-
like the feedback adaptive linearizing controller, the sliding mode controller has
not been tested in the field, and it is therefore hard to say if it would perform
as well in practice as it does in theory. However, a major difference between the
sliding mode controller and the other nonlinear controllers was that the control
input was more active or had chattering, which increases wear and tear on the
actuators of the ROV. An attempt of dealing with this problem was to introduce
a higher-order sliding mode controller, for instance, the super-twisting adaptive
algorithm from [23].

The results from [13] also suggests that the control plant model used is not good.
It was proven with the control plant model, which essentially is the process plant
model without nonlinear damping in [4], that the feedback linearization controller
resulted in an error-free trajectory tracking. In practice, this did not happen to
a large extent. This result shows how important modelling is, especially when
utilizing feedback linearizing, and the control plant models suggested in this thesis
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also has to consider how well it models reality.

The super-twisting adaptive algorithm (STA) from [23] was also proposed in [9],
and attempted to be simulated in [4]. For some reason, the simulation done in
MATLAB was unsuccessful; the step-length in the simulation was variable and
became too small such that the amount of data generated became larger than the
memory that was available from the computer. Using fixed-step length showed
that it was oscillatory, and it was not easy to understand why it did not work. An
error in the setup of the controller is also a possibility. With this many variables
that might have caused a malfunctioning controller and simulations made it hard
to justify using this controller for velocity control, but simulations using FhSim
gave results that exceeded the results from the first-order sliding mode controller.
Nonetheless, like the first-order sliding mode controller, this has not been tested
in the field, and it is hard to say that this will give better results than the other
controllers that have been studied in [4]. Since the STA controller, according to
[9] had some problems with large changes in the reference, which can ultimately
lead to high-gain instability, the controller was not further researched and tested
with field trials.

The adaptive controller, which was called the “DP controller” in [4] was the control-
ler that seemed most promising for robustness. Even though the velocity tracking
had great results, it wielded some other nice properties that increased the ro-
bustness, especially that the origin of the whole closed-loop system with the ocean
current estimations were globally asymptotically stable. However, the assumptions
made for the control plant model did not hold when simulating with the process
plant model, which again resulted in ocean current estimations that no longer was
error-free. It is, however, essential to remember the control objective, which is to
follow the time-varying references with as little error as possible and not estimate
perfectly. Even when the ocean current estimations were no longer error-free, it
was still stable in the sense that it did not oscillate or grow unbounded, and the
velocity controller still managed to reach the control objective. The robustness of
this controller needs to be discussed further, especially when there are modelling
errors and other factors present, which might affect the controller to an extent
where it no longer reaches its control objective.
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Part III

Method
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Chapter 6

Overview and Objective

In this part of the thesis, two control laws will be derived with two different control
plant models. The control laws are derived based on the same idea, with inspira-
tion from the backstepping method, and utilizes [3] to achieve properties for the
closed-loop system. The work here is a continuation of the work done in [4] and
the literature review from Chapter 5. First, the two control plant models will be
presented with their necessary assumptions and matrices. The first control plant
model is a simplified DP model, which is a simplification of the general kinetic
equation Eq.(2.25), valid for low-speed vessels. The second control plant model
is an expansion of the first control plant model, modelling the Coriolis-centripetal
forces as well. Then, control laws are derived based on the two control plant models
and are then analyzed to ensure closed-loop stability of the origin and robustness
for the given models.

The main focus will be on the control part of a typical GNC system, and therefore,
emphasis will be laid on the physical limitations that may affect the performance
of the controllers. It is mainly the actuation limitations and modelling errors that
are considered for the robustness of the controller. The controller derived for the
dynamic position model, C1, is analyzed with perturbation theory to prove that
the control objective will be attained despite modelling errors. In addition, some
improvement for C1 will be made to handle actuation saturation, which might
destabilise the closed-loop system in practice if untreated. C1 are then tested with
a more complex process plant model in FhSim for software validation before it is
tested experimentally at SINTEF ACE live fishing farm for field validation.

Then, the second controller, C2, will be designed for the second more complex
control plant model. It will be shown that the controller will give a closed-loop
system that globally converges asymptotically to the origin for the error states.
The controller is then implemented in FhSim for software validation. With prom-
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ising results, the controller can then possibly, at a later time, be field validated for
future work. For this thesis, this controller was not ready in time for field testing.

The overall objective for both controllers is error-free tracking of time-varying
references. The net following algorithm that was written about in [9] provides the
desired time-varying values ψd, ud and vd that the controllers calculate an actu-
ation τ c that makes sure the marine vessel follows with as little error as possible.
That is ψ → ψd, u → ud and v → vd in finite time. The control objective for the
controllers is therefore more formalized defined to be:

lim
t→∞

(ψ − ψd(t)) = 0 (6.1a)

lim
t→∞

(u− ud(t)) = 0 (6.1b)

lim
t→∞

(v − vd(t)) = 0 (6.1c)

6.1 Outline
This part of the thesis is organized as follows:

• In Chapter 7 the process plant model and the control plant models with the
assumptions needed for them to be valid are proposed. Furthermore, the
maximum actuation, or more specific, the total force from the thrusters in
each DOF in the horizontal plane are calculated. This is used in the software
for the controller design.

• Chapter 8 proposes and derives the first controller based on the simplified
control plant model. In addition, robustness analysis and improvement of
the control law is proposed to handle limitations of the controller as well.

• Chapter 9 proposes and derives the second controller based on an augmented
model that is closer to the process plant model, but still neglects nonlinear
damping.
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Chapter 7

Modelling of the Argus Mini ROV

7.1 Modelling the Kinetic Equations
In this section, the different plant models are presented. The section starts with
presenting the 3-DOF process plant model that was implemented in [4] in Simulink.
This model was used to test different controllers before implementing them in a
more complex simulation software: FhSim. Then the first control plant model,
which is a simplification of the process plant model, based on a simplified DP
model, is presented with the necessary assumptions to be valid. The last control
plant model is an intermediate model of the first control plant model and the
process plant model. This second control plant model will, in addition, take into
account the Coriolis-centripetal forces in the equations.

7.1.1 Process Plant Model

Like the kinematic equations, the kinetic equation can also reduce its degrees of
freedom. Assumption 2.1-2.4 suggests that the horizontal motion of the ROV is
completely decoupled from the vertical motion of the ROV. It is, therefore, possible
to only look at the horizontal motion, and model the ROV in 3-DOF; surge, sway
and yaw. The heave motion can, as it has been stated earlier, be controlled with a
separate heave controller with separate thrusters and is out of scope for this thesis.
Reducing the DOF for a marine vessel is common in many previous works, see [13,
14, 21, 22], and is done in this thesis to limit the controller design to the horizontal
plane. The different matrices and vectors in the 3-DOF model can, therefore, be
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defined as:

η = [x, y, ψ]T , ν = [u, v, r]T

Mi =



mi

11 0 0
0 mi

22 0
0 0 mi

66


 , Ci(ν) =




0 0 −mi
22v

0 0 mi
11u

mi
22v −mi

11u 0


 (7.1)

where i ∈ {RB,A}

D =



d11 0 0
0 d22 0
0 0 d66


 ,Dn(νr) =



dn11|ur| 0 0

0 dn22|vr| 0
0 0 dn66|r|


 (7.2)

where it is defined that: dnjj, djj > 0, j = {1, 2, 6}, to obtain positive definite
damping matrices.
The relative velocity vector, defined as in Section 2.7, results in:

Vn
c =



Vx
Vy
0


 , νbc = JT (ψ)Vn

c =



Vx cos(ψ) + Vy sin(ψ)
−Vx sin(ψ) + Vy cos(ψ)

0


 (7.3a)

V̇n
c =




0
0
0


 , ν̇bc =




·︷︸︸︷
J(ψ)



T

Vn
c =



−rVx sin(ψ) + rVy cos(ψ)
−rVx cos(ψ)− rVy sin(ψ)

0


 (7.3b)

νbr = νb − νbc =



ur
vr
r


 =



u− Vx cos(ψ)− Vy sin(ψ)
v + Vx sin(ψ)− Vy cos(ψ)

r


 (7.3c)

ν̇br = ν̇b − ν̇bc =



u̇+ rVx sin(ψ)− rVy cos(ψ)
v̇ + rVx cos(ψ) + rVy sin(ψ)

ṙ


 (7.3d)

The equation using these vectors and matrices is given in Eq.(2.25), and this 3-
DOF model was used as the process plant model in the preliminary simulations.
This is a more complex model than the control plant model, and a robust con-
troller designed should ideally reach the control objective with this process model
before doing physical field tests. In SINTEF’s simulation tool, FhSim, a slightly
more complex 6-DOF process plant model is used. The details of this process
plant model are not considered in this thesis. However, some of the parameters
such as damping and mass in 6-DOF are needed to set up the process plant model
in FhSim.
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7.1.2 Simplified Dynamic Positioning Model

For further simplification of the model, the low-frequency model of [5] is proposed
as the first control plant model. The main assumption for this model is that the
ROV is low-speed and is valid for low-speed manoeuvring up to approximately
2m/s according to [6, p. 152]. With only ocean current present in the system as a
disturbance term, the bias term of [5] is replaced with a relative velocity vector νr
to model the effect of this disturbance on the system. In addition, the following
assumption for damping is made:

Assumption 7.1. The damping is linear to reduce the complexity of the controllers

Remark 7.1. In general, the motion of an underwater vehicle moving at high speed
will be highly nonlinear and coupled. However, in low-speed vehicles like an ROV,
the nonlinearity can be neglected due of the effects of the coupled states are neg-
ligible. The assumption is a mild assumption for controller design since any non-
linear damping should enhance the directional stability of the vessel due to the
nature of hydrodynamic damping forces. [13, 22].

The general kinetic equation Eq.(2.25) is therefore reduced to be on the form:

MRBν̇
b + MAν̇

b
r = τ b −Dνbr (7.4)

Compared to the process plant, the main differences are that damping is assumed
linear, and the Coriolis-centripetal forces are neglected. The values for the different
matrices in this equation are identical to the matrices for the 3-DOF process plant
model: Eq.(7.1)-(7.3). According to [6], the Coriolis-centripetal forces can be
neglected when designing the DP control systems if the ocean currents are properly
compensated, which the work for the controller in this thesis will.

7.1.3 Augmented Control Plant Model

Here the control plant model also take into account the Coriolis-centripetal forces,
which it was believed from the preliminary simulations in [4] had a greater effect
on heading of the ROV than anticipated. Assumption 7.1 is still assumed for
this model. It is, more or less, an expansion of Eq.(7.4) by adding the Coriolis-
centripetal forces to the model:

MRBν̇
b + MAν̇

b
r + CRB(νb)νb + CA(νbr)ν

b
r = τ b −Dνbr (7.5)

Compared to the process plant model, the main difference is that damping is
assumed linear. The matrices are still defined as Eq.(7.1)-(7.3).
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7.2 Actuation of Argus Mini ROV
The ROV is equipped with six azimuth thrusters that each can exert a force of
approximately 120N in positive direction and 80N in opposite direction of the
thrusters, according to thruster data obtained from testing of the ROV. Four of
them are in the horizontal plane affecting surge, sway and yaw, and the remaining
two thrusters affect heave. Relative to the CO at the body-fixed coordinate sys-
tem, the four horizontal thrusters are located at the ROV according to Table 7.1.
The thruster positions are taken from [13] which is data from the same ROV that

xli yli αi
Thruster 1 0.202m −0.216m 35◦
Thruster 2 0.202m 0.216m -35◦
Thruster 3 −0.265m 0.195m 35◦
Thruster 4 −0.265m −0.195m -35◦

Table 7.1: Thruster allocations values

has been used in this thesis. The position of the locations of the horizontal work-
ing thrusters are visualized in Figure 7.1. The two heave thrusters are positioned

τu

τvτr

f1 f2

f3f4

Figure 7.1: Horizontal thruster locations showing positive force direction

between the thrusters in fore and aft of the ROV and only works in vertical direc-
tion, they are not shown in Figure 7.1.
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Using the control allocation matrix found in Section 2.8, the control inputs τ
can be transformed to the needed forces to be exerted from each thruster, which
is each saturated, then transformed back to the control inputs to the plant model
in a simulation.

Using the formulas from Section 2.8 for calculation of maximum thrust the ROV
can give in each horizontal DOF, they resulted in the values given in Table 7.2.

Upper limit Lower limit
τu 393.19N −262.13N
τv 229.43N −229.43N
τr 120.9Nm −120.9Nm

Table 7.2: The limits of actuation for Argus Mini ROV
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Chapter 8

Introducing the First Controller

Based on the simplified DP model given by Eq.(7.4), which by all earmarks seems
to be valid since the ROV is not able to reach velocities greater than 2m/s from
the thrusters alone. It can be written on component form with the matrices and
vectors from Eq.(7.1)-(7.3) as:




m11u̇+mA
11r(Vx sin(ψ)− Vy cos(ψ)) + d11(u− Vx cos(ψ)− Vy sin(ψ)) = τu

m22v̇ +mA
22r(Vx cos(ψ) + Vy sin(ψ)) + d22(v + Vx sin(ψ)− Vy cos(ψ)) = τv

m66ṙ + d66r = τr

ψ̇ = r

Here it is used that mij = mRB
ij +mA

ij.

8.1 Proposal of the Controllers

8.1.1 Yaw Controller

Yaw is decoupled from velocities, so a PD-controller for heading from Section 3.1
with feed-forward can be implemented:

τr = −kpψ ψ̃ − kdψ r̃ +m66ṙd + d66rd (8.1)

where the error terms are defined as:

ψ̃ = ψ − ψd
r̃ = r − rd

Insert for yaw and yaw rate, resulting in:
{
m66

˙̃r + d66r̃ + kpψ ψ̃ + kdψ r̃ = 0
˙̃
ψ = r̃
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[
˙̃r
˙̃
ψ

]
=

[
−d66+kdψ

m66
− kpψ
m66

1 0

][
r̃

ψ̃

]
(8.2)

Corollary 1. Choose kdψ > 0 > −d66 and kpψ > 0, then the equilibrium point
at the origin of the closed-loop system Eq.(8.2) is uniformly globally exponentially
stable (UGES).

Proof. Calculating the eigenvalues λ as the zeros in the characteristic equation:

λ2 +
d66 + kdψ
m66

λ+
kpψ
m66

= 0

with kdψ > 0 > −d66 and kpψ > 0, the eigenvalues become strictly negative. Then,
by Theorem 4.3 the origin of the closed-loop system for heading is UGES. Q.E.D.

Having a reference model for tracking of the desired heading ψd, results also in
rd → 0 and ṙd → 0 as ψ → ψd. Note that due to how yaw and yaw angular rate
is coupled then, ψ ≡ ψd =⇒ rd ≡ 0.

8.1.2 Velocity Controllers

Assumption 8.1. UGES heading: Heading of the ROV is such that ψ = ψd =⇒
r = rd = 0

Remark 8.1. The heading dynamics can be seen as an independent system in cas-
cade with the velocities dynamics. When the origin of the heading dynamics is
UGAS, with the proof of [24, 25], the interconnection of the cascade system is
bounded, and the velocity dynamics are bounded, then the origin of the whole
cascaded system is UGAS. This is utilized to prove that even with the heading
dynamics, the origin of the cascade system is UGAS. The cascade system is illus-
trated in Figure 8.1.
With Assumption 8.1, the velocity equations can therefore be written as:

{
m11u̇+ d11u− d11(Vx cos(ψd) + Vy sin(ψd)) = τu

m22v̇ + d22v + d22(Vx sin(ψd)− Vy cos(ψd)) = τv

Which can be rewritten to:
[
u̇
v̇

]
=

[ τu
m11
τv
m22

]
−
[ d11
m11

0

0 d22
m22

] [
u
v

]
+

[ d11
m11

cos(ψd)
d11
m11

sin(ψd)

− d22
m22

sin(ψd)
d22
m22

cos(ψd)

] [
Vx
Vy

]
(8.3)

The control law for the velocities can then be chosen as:

τ b2 = D2vd + M2v̇d −M2Kp2ṽ −M2G(t)V̂ c (8.4)
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Heading dynamics

Velocity dynamics

ψ̃, r

Current estimations

Heading reference

Velocity references

V̂x, V̂y

ũ, ṽ

Figure 8.1: Closed-loop dynamics of horizontal system

where the vectors are defined as: τ b2 = [τu, τv]
T , V̂ c = [V̂x, V̂y]

T , vd = [ud, vd]
T ,

v̇d = [u̇d, v̇d]
T and ṽ = [ũ, ṽ]T . The matrices are defined as

D2 =

[
d11 0
0 d22

]
,M2 =

[
m11 0

0 m22

]

Kp2 =

[
kpu 0
0 kpv

]
,G(t) =

[ d11
m11

cos(ψd)
d11
m11

sin(ψd)

− d22
m22

sin(ψd)
d22
m22

cos(ψd)

] (8.5)

This control law summarized is a sum of feedforward terms, a P-controller and a
term for handling the unknown ocean current.

With the error terms defined as:

ũ = u− ud
ṽ = v − vd
Ṽx = Vx − V̂x
Ṽy = Vy − V̂y

(8.6)

This results in the system for the velocities:

˙̃v = −Aṽ + G(t)Ṽ c (8.7)

where the vectors are defined as ˙̃v = [ ˙̃u, ˙̃v]T , Ṽ c = [Ṽx, Ṽy]
T and the matrix:

A =

[ d11
m11

+ kpu 0

0 d22
m22

+ kpv

]
(8.8)
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where it now becomes apparent that using the UGAS theorem [3] recited in
Section 5.1, that the first term in the closed-loop system is h(x1, t) = −Aṽ
and the second term is G(x, t)x2 in Eq.(5.1), by choosing: x1 = ṽ, x2 = Ṽ c,
G(x, t) = G(t) and:

W (x1, t) =
1

2
ũ2 +

1

2
ṽ2 =

1

2
xT1 x1

(
∂W (x1, t)

∂x1

)T
=

[
ũ
ṽ

] (8.9)

Which fulfills Assumption 5.2 of the theorem. It is therefore straightforward to
see that the second equation of Eq.(5.1) becomes:

˙̃
V c = −ΓGT (t)ṽ, Γ = ΓT > 0 (8.10)

where Γ is a tuneable diagonal matrix. Recall that ocean current is assumed con-
stant and irrotational so ˙̃

V x = − ˙̂
Vx,

˙̃
V y = − ˙̂

Vy.

Corollary 2. Let kpu > 0 and kpv > 0, then the solutions (ũ, ṽ, Ṽx, Ṽy) → 0
uniformly globally asymptotically, and sufficiently close to the origin it converges
locally uniformly and exponentially to the origin, according to [3].

Proof. For the corollary to be true the two assumptions in Section 5.1 needs to be
proven to hold. It can be easily seen that

max

{
‖h(x1, t)‖,

∥∥∥∥
∂W (x1, t)

∂x1

∥∥∥∥
}
≤ ρ1(‖x1‖)‖x1‖ (8.11)

by for instance choosing ρ1(‖x1‖) = k1‖x1‖ where it exists a k1 > 0 to fulfill
Eq.(8.11). Furthermore, the same can also be shown to also yields for
max {‖G(x, t)‖, ‖G0(x2, t)‖} ≤ ρ2(‖x‖) because it can be shown that they are
upper bounded by a constant by looking at each elements independently. Here it
is defined that G0(x2, t) = G(x, t)|x1=0, where in this case is the same matrix.
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At last, it can be shown that:

G0(x2, t)
TG0(x2, t) = ...

=




(
d11
m11

)2

cos2(ψd) +
(
d22
m22

)2

sin2(ψd)

((
d11
m11

)2

−
(
d22
m22

)2
)

cos(ψd) sin(ψd)
((

d11
m11

)2

−
(
d22
m22

)2
)

cos(ψd) sin(ψd)
(
d11
m11

)2

sin2(ψd) +
(
d22
m22

)2

cos2(ψd)




=




(
d11
m11

)2

cos2(ψd) +
(
d22
m22

)2

sin2(ψd)
1
2

((
d11
m11

)2

−
(
d22
m22

)2
)

sin(2ψd)

1
2

((
d11
m11

)2

−
(
d22
m22

)2
)

sin(2ψd)
(
d11
m11

)2

sin2(ψd) +
(
d22
m22

)2

cos2(ψd)




≥ bmI

The inequality is interpreted as “G0(x2, t)
TG0(x2, t) needs to be sufficiently posit-

ive definite”. That means that by using Sylvester’s criterion, inspection of principle
minors can be calculated to check if it is positive definite. First principle minor is
positive, being lower bounded by min{(d11/m11)2, (d22/m22)2}. The second prin-
ciple minor is calculated to be:

|G0(x2, t)
TG0(x2, t)| = ...

=

((
d11

m11

)2

cos2(ψd) +

(
d22

m22

)2

sin2(ψd)

)((
d11

m11

)2

sin2(ψd) +

(
d22

m22

)2

cos2(ψd)

)

−
((

d11

m11

)2

−
(
d22

m22

)2
)2

sin2(ψd) cos2(ψd)

=

(
d11

m11

)2(
d22

m22

)2

(sin4(ψd) + 2 cos2(ψd) sin2(ψd) + cos4(ψd))

=

(
d11

m11

)2(
d22

m22

)2

(sin2(ψd) + cos2(ψd))
2

=

(
d11

m11

)2(
d22

m22

)2

> 0

This means that Assumption 5.1 holds.

Furthermore, it can be seen that:

W (x1, t) =
1

2
xT1 x1

=
1

2
‖x1‖2

(8.12)
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which can be upper and lower bounded by class-κ∞ functions on the form of for
instance α(‖x1‖) = k‖x1‖2 for a k > 0. In addition it can also be shown that
there exists a constant c > 0 such that:

∂W (x1, t)

∂x1

h(x1, t) = −xT1Ax1 ≤ −c‖x1‖2 (8.13)

This means that Assumption 5.2 also holds. Thus, since both assumptions for the
Theorem 5.1 holds, then the corollary has been proven true. Q.E.D.

The controller was also derived in [4], and is repeated here for more thorough
robustness analysis.

8.1.3 Summary of the Controller

To summarize the two control laws, the velocity controller can be written as:

τ b2 = D2vd + M2v̇d −M2Kp2ṽ −M2G(t)V̂ c (8.14)

where the vectors are defined as: τ b2 = [τu, τv]
T , V̂ c = [V̂x, V̂y]

T , vd = [ud, vd]
T ,

v̇d = [u̇d, v̇d]
T and ṽ = [ũ, ṽ]T . The matrices are defined as:

D2 =

[
d11 0
0 d22

]
,M2 =

[
m11 0

0 m22

]

Kp2 =

[
kpu 0
0 kpv

]
,G(t) =

[ d11
m11

cos(ψd)
d11
m11

sin(ψd)

− d22
m22

sin(ψd)
d22
m22

cos(ψd)

] (8.15)

The heading controller can be written as:

τr = −kpψ ψ̃ − kdψ r̃ +m66ṙd + d66rd (8.16)

The total control law inserted into the DP model Eq.(7.4) is then:

τ b =

[
τ b2
τr

]
(8.17)

This controller will from now on be called for C1.

8.2 Analysis of Controller Robustness
This section considers two factors for the robustness of the controller: the cascade
system and the effects of modelling errors on the stability and robustness of the
controller. For the cascade system, more specific the interconnection is analyzed to
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make sure that the theorems from [24, 25] holds. Modelling errors are well known
from, for instance, [5], are always to some degree present.

The velocity and heading dynamics in cascade can be written on the closed-loop
system form:

Σ1 :





m11
˙̃u+ (d11 + kpum11)ũ− d11Ṽx cos(ψd)− d11Ṽy sin(ψd) + V T

c φuθ = 0

m22
˙̃v + (d22 + kpvm22)ṽ + d22Ṽx sin(ψd)− d22Ṽy cos(ψd) + V T

c φvθ = 0
˙̃
V c = −ΓG(t)T ṽ

Σ2 :

{
˙̃r = −d66+kdψ

m66
r̃ − kpψ

m66
ψ̃

˙̃
ψ = r̃

where θ = [r, ψ̃]T , V c = [Vx, Vy]
T , Ṽ c = [Ṽx, Ṽy]

T and:

φu =


mA11 sin(ψ̃ + ψd) −d11

(
cos(ψd)

cos(ψ̃)−1

ψ̃
− sin(ψd)

sin(ψ̃)

ψ̃

)

mA11 cos(ψ̃ + ψd) −d11

(
sin(ψd)

cos(ψ̃)−1

ψ̃
+ cos(ψd)

sin(ψ̃)

ψ̃

)

 (8.18)

φv =


−mA22 cos(ψ̃ + ψd) d22

(
sin(ψd)

cos(ψ̃)−1

ψ̃
+ cos(ψd)

sin(ψ̃)

ψ̃

)

mA22 sin(ψ̃ + ψd) −d22

(
cos(ψd)

cos(ψ̃)−1

ψ̃
− sin(ψd)

sin(ψ̃)

ψ̃

)

 (8.19)

The identities used to obtain the terms connected to r in the matrices for φi,
where i = {u, v}, are given in Appendix A. An illustration of the cascade system
is shown in Figure 8.2.

The possible singularity for ψ̃ → 0 in φu,φv can be calculated, using L’Hôpital’s
rule, going to a value bounded in the interval [−1, 1]. For more details and proof
about L’Hôpital’s rule, the reader is referred to [26]. It has already been shown
that the origin of the nominal system, in other words setting r = ψ̃ = 0, is UGAS.
The second system, Σ2, which is the input to Σ1, has been shown to have an origin
that is UGES, including UGAS. The last assumption that needs to hold for the
theorem in [25] is that the interconnection is bounded. Then by inspecting each
element in both φ separately it is apparent that the matrices are bounded by the
constants mA

11,m
A
22, d11, d22 since the varying variables are bounded by cos( · ) and

sin( · ) in the interval of −1 and 1. Therefore the last assumption on the intercon-
nection is fulfilled, and the origin of the cascade system can therefore be concluded
to be UGAS.

For robustness despite perturbation, looking at the closed-loop velocity dynam-
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Heading dynamics

Velocity dynamics

ψ̃, r

Current estimations

Heading reference

Velocity references

V̂x, V̂y

ũ, ṽ

Σ1

Σ2

Figure 8.2: Cascaded system of heading and velocities

ics with the assumption that the error in yaw is 0:

˙̃v = −Aṽ + G(t)Ṽ c

˙̃
V c = −ΓGT (t)ṽ

(8.20)

Then, if the control plant model has modelling error in the form of for instance that
the mass or damping in system is too high or low then these modelling errors can
be seen as perturbations on the system. With these modelling errors the system
can always be written as a sum of the correct system and a term of modelling
errors. Let the closed-loop system system Eq.(8.20) be the nominal system f(x),
and the perturbation term added to this be g(x). Earlier it has been proven using
[3] that the origin of the closed-loop system Eq.(8.20) is UGAS and ULES. Thus
it can be shown that it exists a strict Lyapunov function V (x) that fulfills

k1‖x‖2 ≤ V (x) ≤ k2‖x‖2

∂V

x
f(x) ≤ −k3‖x‖2

∥∥∥∥
∂V

∂x

∥∥∥∥ ≤ k4‖x‖

52



in a domain D ⊆ Rn with k1, k2, k3, k4 > 0 for x =
[
ũ ṽ r̃ ψ̃

]T
. Then if the

perturbation term is bounded such that

‖g(x)‖ ≤ γ‖x‖∀x ∈ D

γ <
k3

k4

then the origin of the perturbed system is still exponentially stable in D as stated
in Lemma 4.3 given in Chapter 4.

8.3 Other Limitations
One major limitation of this controller is integrator windup. Studying the control
law for the velocities, a parallel to a PI-controller can be drawn. Table 3.1 shows
that the PI-controller can be written on the form

τ = −Kpe−Ki

∫ t

0

edt (8.21)

or another way to write the same equation is:

τ = −Kpe−Kiz

ż = e
(8.22)

Comparing this Eq.(8.22) to the control law for C1, Eq.(8.4) for velocities, the
first and second terms can be seen as the feed-forward terms, the third term as the
proportional part or “Kpe”, and the last term is the integration part or “Kiz”. As
mentioned in Section 2.8, the physical ROV has limitations on the actuation, and
thrusters becoming saturated might become a problem for the integration term of
the controllers. This is a well-known problem called integrator windup and occurs
when actuators become saturated, and if not taken into account, the integration
term in the controller might cause oscillatory solutions and yield problematic be-
haviour [27]. There is, therefore, necessary to implement anti-windup schemes to
avoid integrator windup.

Two well-known anti-windup schemes are clamping and back calculations. The
main difference is that clamping stops the integrator when it is detected that the
actuation is in saturation, and back calculations subtract the overshooting satura-
tion value from the actual controller output in the integrator. For more details and
an example of how back calculations can be implemented, the reader is referred
to [28]. In this thesis, clamping for the anti-windup scheme is utilized. By using

53



Table 7.2, an approximation of the saturation limits for the thrusters can be used
to detect whether or not the integration term should be clamped or not.

Another tool that is utilized in this thesis alongside clamping to avoid integrator-
windup is projection. Because the integrator in this case can also be seen as an
estimation of the ocean current velocities, utilizing they are variables that are
bounded and will physically not become larger than some given value, projection
can be used to bound the integration term. In this thesis the following equation
are used to bound V̂x and V̂y separately:

˙̂
Vi = ΓiProj

(
V̂i,G(x, t)T ṽ

)

Proj(V̂i, y) ,
{
y if g(V̂i) < 0 ∨ g(V̂i) ≥ 0 ∧∇gTy ≤ 0

y − ∇g∇gT yg(V̂i)‖∇g‖2 if g(V̂i) ≥ 0 ∧∇gTy > 0

g(V̂i) =
(εVi + 1)V̂ T

i V̂i − V̂ 2
max

εViV̂
2

max

(8.23)

where g(θ̂) is a smooth function, and εθ and V̂max are tuning parameters, where
V̂max is the boundary value. This equation is taken from [29], and implemented for
bounding the integrator such that windup is prevented. The projection operator
is separately implemented for the estimations V̂i in each direction i = {x, y}.

Another limitation of the controller is that the physical ROV has limited band-
width. It is, therefore, often desirable to smooth out the reference values so that
the references do not act like a step-response causing oscillatory behaviour of the
system states. Smoothing is done by using a reference model, which in this thesis
will be a first-order reference model for the velocities and a third-order reference
model for the heading. They are made with the dynamics of the differential equa-
tion

T u̇d + ud = ur (8.24)

where ur is the step response to be smoothed out, and u̇d and ud are the dynamics,
ud is ur smoothed out with a time constant of T > 0. This model is also used for
the sway reference. For the heading, a mass-spring-damper system is used for the
reference model:

ψ̈d + 2ωnζψ̇d + ω2
nψd = ψr (8.25)

The reason for the choices of these reference models is to smooth out the reference
signal and get feed-forward variables that can be used to achieve trajectory track-
ing. The controllers should also work even without these reference models, but
then the feed-forward terms will all have to be turned off or set to 0. The reader
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is referred to [6] to read more about reference models. Note that in this whole
section about the reference model, abuse of notation occurs since ur, vr, ψr, are
used for the reference values to be smoothed out. In this thesis, especially ur and
vr are used as relative velocities, but in this section only, they are used to separate
the desired reference values into the reference model and the desired values from
the reference models inputs.
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Chapter 9

Expanding the Controller

The linear dynamic positioning model used in the previous chapter is a simpli-
fied model that holds under the assumptions that have been given for neglecting
different terms. However, is it possible to design a controller that has stability
properties for a model closer to the process plant model? Especially when the
Coriolis-centripetal force is modelled, which causes a constant deviation in the
heading. In this chapter, the theorem and ideas used to derive the velocity con-
trollers in Chapter 8 are expanded to consider this effect, especially in heading,
and attempt to suppress the deviation.

9.1 Control Plant Model
To develop this controller, the control plant model used in previous chapter given
in Eq.(7.4) is expanded to the model in Eq.(7.5) from Section 7.1.3, which in
component form is given as:




m11u̇+mA
11r(Vx sin(ψ)− Vy cos(ψ))

+ d11(u− Vx cos(ψ)− Vy sin(ψ))−m22vr −mA
22r(Vx sin(ψ)− Vy cos(ψ)) = τu

m22v̇ +mA
22r(Vx cos(ψ) + Vy sin(ψ))

+ d22(v + Vx sin(ψ)− Vy cos(ψ)) +m11ur −mA
11r(Vx cos(ψ) + Vy sin(ψ)) = τv

m66ṙ + d66r + (m22 −m11)uv + (mA
22 −mA

11)(vTφ(ψ)V c − 1
2
V T

c φ(2ψ)V c) = τr

ψ̇ = r

where it is defined that: V c =
[
Vx Vy

]T , v =
[
u v

]T and

φ(x) =

[
sin(x) − cos(x)
− cos(x) − sin(x)

]
(9.1)
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Rewrite the equations using the error terms

ũ = u− ud ⇔ u = ũ+ ud, ˙̃u = u̇− u̇d ⇔ u̇ = ˙̃u+ u̇d (9.2)

ṽ = v − vd ⇔ v = ṽ + vd, ˙̃v = v̇ − v̇d ⇔ v̇ = ˙̃v + v̇d (9.3)

ψ̃ = ψ − ψd ⇔ ψ = ψ̃ + ψd,
˙̃
ψ = ψ̇ − ψ̇d ⇔ ψ̇ =

˙̃
ψ + ψ̇d (9.4)

˙̃r = ṙ − ṙd ⇔ ṙ = ˙̃r + ṙd (9.5)

Then each degree of freedom is looked at separately to derive the control law.

9.1.1 Deriving Controller for DOF 1 Surge

For surge, rewritten with error terms, the equation is now:

m11
˙̃u+mA

11r(Vx sin(ψ)− Vy cos(ψ)) + d11(ũ− Vx cos(ψ)− Vy sin(ψ))−m22ṽr̃

−mA
22r(Vx sin(ψ)− Vy cos(ψ)) +m11u̇d + d11ud −m22(ṽrd + r̃vd + vdrd) = τu

Set
[
Vx Vy

]T
= 0 and choose control based on feedback linearization to achieve

UGES response.
τu = m11u̇d + d11ud −m22vr −m11kpuũ

The system is now
m11

˙̃u+ d11ũ+m11kpuũ = 0

which is UGES for kpu > 0. However since
[
Vx Vy

]T 6= 0, then the control law
can be augmented to:

τu = m11u̇d + d11ud −m22vr −m11kpuũ+mA
11r(V̂x sin(ψ)− V̂y cos(ψ))

−mA
22r(V̂x sin(ψ)− V̂y cos(ψ))− d11(V̂x cos(ψ) + V̂y sin(ψ))

(9.6)

which results in:

m11
˙̃u+ (mA

11 −mA
22)r(Ṽx sin(ψ)− Ṽy cos(ψ)) + d11ũ

− d11(Ṽx cos(ψ) + Ṽy sin(ψ)) +m11kpuũ = 0

˙̃u = −
(
d11

m11

+ kpu

)
ũ+

(mA
22 −mA

11)

m11

r
(
Ṽx sin(ψ)− Ṽy cos(ψ)

)

+
d11

m11

(
Ṽx cos(ψ) + Ṽy sin(ψ)

)
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9.1.2 Deriving Controller for DOF 2 Sway

Then deriving the control law for sway, start with rewriting the equation using
error terms:

m22
˙̃v +mA

22r(Vx cos(ψ) + Vy sin(ψ)) + d22(ṽ + Vx sin(ψ)− Vy cos(ψ)) +m11ũr̃

−mA
11r(Vx cos(ψ) + Vy sin(ψ)) +m22v̇d + d22vd +m11(ũrd + r̃ud + udrd) = τv

Set
[
Vx Vy

]T
= 0 and choose control based on feedback linearization to achieve

UGES response.
τv = m22v̇d + d22vd +m11ur −m22kpv ṽ

The system is now
m22

˙̃v + d22ṽ +m22kpv ṽ = 0

which is UGES for kpv > 0. However, since
[
Vx Vy

]T 6= 0 then the control law
can be augmented to

τv = m22v̇d + d22vd +m11ur −m22kpv ṽ +mA
22r(V̂x cos(ψ) + V̂y sin(ψ))

−mA
11r(V̂x cos(ψ) + V̂y sin(ψ)) + d22(V̂x sin(ψ)− V̂y cos(ψ))

(9.7)

which results in

m22
˙̃v + (mA

22 −mA
11)r(Ṽx cos(ψ) + Ṽy sin(ψ)) + d22ṽ

+ d22(Ṽx sin(ψ)− Ṽy cos(ψ)) +m22kpv ṽ = 0

˙̃v = −
(
d22

m22

+ kpv

)
ṽ − (mA

22 −mA
11)

m22

r
(
Ṽx cos(ψ) + Ṽy sin(ψ)

)

− d22

m22

(
Ṽx sin(ψ)− Ṽy cos(ψ)

)

9.1.3 Deriving Controller for DOF 6 Yaw

Likewise for yaw, start with rewriting the angular velocity and heading angle
dynamics with error terms:

m66
˙̃r + d66r̃ + (m22 −m11)uv + (mA

22 −mA
11)(vTφ(ψ)V c −

1

2
V T

c φ(2ψ)V c)

+m66ṙd + d66rd = τr
˙̃
ψ = r̃

Set
[
Vx Vy

]T
= 0 and choose control based on feedback linearization to achieve

UGES response.

τr = m66ṙd + d66rd + (m22 −m11)uv −m66kpψ ψ̃ −m66kdψ r̃
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The system is now

m66
˙̃r + d66r̃ +m66kpψ ψ̃ +m66kdψ r̃ = 0

˙̃
ψ = r̃

Which is UGES for kpψ > 0 and kdψ > 0 > −d66. However, since
[
Vx Vy

]T 6= 0
then the control law can be augmented to

τr = m66ṙd + d66rd + (m22 −m11)uv −m66kpψ ψ̃ −m66kdψ r̃

+(mA
22 −mA

11)vTφ(ψ)V̂ c −
1

2
(mA

22 −mA
11)V̂

T

c φ(2ψ)V̂ c

(9.8)

Use the control law found for yaw rate and define

ẽ =



ẽ1

ẽ2

ẽ3


 =




V 2
x − V̂ 2

x

VxVy − V̂xV̂y
V 2
y − V̂ 2

y


 (9.9)

then with the control law inserted, the closed-loop system becomes:

m66
˙̃r + d66r̃ +m66kdψ r̃ +m66kpψ ψ̃ + (mA

22 −mA
11)
(
vTφ(ψ)Ṽ c + ẽTαe

)
= 0

˙̃r = −
(
d66

m66

+ kdψ

)
r̃ − kpψ ψ̃ −

(mA
22 −mA

11)

m66

vTφ(ψ)Ṽ c −
mA

22 −mA
11

m66

ẽTαe

and
˙̃
ψ = r̃

where it is also defined that

αe =



−1

2
sin(2ψ)

cos(2ψ)
1
2

sin(2ψ)


 (9.10)

To collect the control laws derived for the ROV, Eq.(9.6)-(9.8), on the horizontal
plane, it can be written as:

τ b = Mν̇d + Dνd + s+ â−MKν̃aug −MaugG(x, t)V̂ c (9.11)

Where the vectors are defined as: ν̇d = [u̇d, v̇d, ṙd]
T , νd = [ud, vd, rd]

T , ν̃aug =

[ũ, ṽ, r̃, ψ̃]T . The feedback linearization vector is defined as:

s =




−m22vr
m11ur

(m22 −m11)uv


 (9.12)
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and the last vector for handling the quadratic unknown terms are defined as:

â =




0
0

1
2
(mA

22 −mA
11)(−V̂ 2

x sin(2ψ) + 2V̂xVy cos(2ψ) + V̂ 2
y sin(2ψ))


 (9.13)

the matrices are defined as:

M =



m11 0 0

0 m22 0
0 0 m66


 ,Maug =



m11 0 0 0

0 m22 0 0
0 0 m66 0




D =



d11 0 0
0 d22 0
0 0 d66


 ,K =



kpu 0 0 0
0 kpv 0 0
0 0 kdψ kpψ




(9.14)

and at last the G(x, t) is defined here:

G(x, t) = ...

=




(mA22−mA11)

m11
r sin(ψ) + d11

m11
cos(ψ) − (mA22−mA11)

m11
r cos(ψ) + d11

m11
sin(ψ)

− (mA22−mA11)

m22
r cos(ψ)− d22

m22
sin(ψ) − (mA22−mA11)

m22
r sin(ψ) + d22

m22
cos(ψ)

− (mA22−mA11)

m66
(u sin(ψ)− v cos(ψ))

(mA22−mA11)

m66
(u cos(ψ) + v sin(ψ))

0 0




(9.15)

This controller, Eq.(9.11) is from now on called C2. The adaptive laws that are
utilized to obtain the estimations to be used in the control law are defined as:

˙̂
V c = Γ1G

T (x, t)

(
∂W (x1, t)

∂x1

)T
(9.16)

and for the quadratic error terms



˙̂
V 2
x
˙̂

VxVy
˙̂
V 2
y


 = −m

A
22 −mA

11

m66

Γ2αe(m66r̃ + εψ̃) (9.17)
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9.2 Stability Analysis
The closed-loop system can be written in full as:




˙̃u
˙̃v
˙̃r
˙̃
ψ


 =




−
(
d11

m11

+ kpu

)
ũ+

(mA
22 −mA

11)

m11

r
(
Ṽx sin(ψ)− Ṽy cos(ψ)

)

+
d11

m11

(
Ṽx cos(ψ) + Ṽy sin(ψ)

)

−
(
d22

m22

+ kpv

)
ṽ − (mA

22 −mA
11)

m22

r
(
Ṽx cos(ψ) + Ṽy sin(ψ)

)

− d22

m22

(
Ṽx sin(ψ)− Ṽy cos(ψ)

)

−
(
d66

m66

− kpψ ψ̃ + kdψ

)
r̃ − (mA

22 −mA
11)

m66

vTφ(ψ)Ṽ c −
mA

22 −mA
11

m66

ẽTαe

r̃




=




−
(
d11
m11

+ kpu

)
ũ

−
(
d22
m22

+ kpv

)
ṽ

−
(
d66
m66

+ kdψ

)
r̃ − kpψ ψ̃

r̃




+




0
0

−mA22−mA11
2m66

(−e1 sin(2ψ) + 2e2 cos(2ψ) + e3 sin(2ψ))

0




+




(mA22−mA11)

m11
r sin(ψ) + d11

m11
cos(ψ) − (mA22−mA11)

m11
r cos(ψ) + d11

m11
sin(ψ)

− (mA22−mA11)

m22
r cos(ψ)− d22

m22
sin(ψ) − (mA22−mA11)

m22
r sin(ψ) + d22

m22
cos(ψ)

− (mA22−mA11)

m66
(u sin(ψ)− v cos(ψ))

(mA22−mA11)

m66
(u cos(ψ) + v sin(ψ))

0 0




[
Ṽx
Ṽy

]

[
˙̃
V x

˙̃
V y

]
= −Γ1G(x, t)T

(
∂W (x1, t)

∂x1

)T
, Γ1 = ΓT

1 > 0
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Where G(x, t) is defined as in previous section, and the following vectors are
defined:

x1 =




ũ
ṽ
r̃

ψ̃


 , x2 =

[
Ṽx
Ṽy

]
,

h(x1, t) =




−
(
d11
m11

+ kpu

)
ũ

−
(
d22
m22

+ kpv

)
ṽ

−
(
d66
m66

+ kdψ

)
r̃ − kpψ ψ̃

r̃



, σ(x1, ẽ) =




0
0

−mA22−mA11
m66

ẽTαe
0




(9.18)

and in addition, define:

W (x1, t) =
1

2
m11ũ

2 +
1

2
m22ṽ

2 +
1

2
m66r̃

2 +
1

2
m66kpψ ψ̃

2 + εψ̃r̃

=
1

2

[
xT11 xT12

] [ P1 02×2

02×2 P2

] [
x11

x12

]

∂W (x1, t)

∂x1

=




m11ũ
m22ṽ

m66r̃ + εψ̃

m66kpψ ψ̃ + εr̃




(9.19)

where x11 = [ũ, ṽ]T , x12 = [r̃, ψ̃]T , P1 = diag{m11,m22}, and P2 =

[
m66 ε
ε m66kpψ

]
.

9.2.1 Stability Proof

Theorem 9.1. The origin of x = [xT1 ,x
T
2 , e

T ]T is UGS.

Proof. Choose the Lyapunov function candidate:

V (x) = W (x1, t) +
1

2
xT2 Γ−1

1 x2 +
1

2
ẽTΓ−1

2 ẽ > 0∀x 6= 0,ΓT
1 = Γ1 > 0,ΓT

2 = Γ2 > 0

where the inequality holds if P2 is positive definite, which it is when −m66

√
kpψ <

ε < m66

√
kpψ . In addition, V is radially unbounded since V → ∞ when ‖x‖ →

∞, which can be shown by lower bounding the problematic term W (x1, t) with
k1‖x1‖2. Then calculate the time derivative along the trajectories of the system
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and check if it is negative semi-definite.

V̇ (x) =
∂W (x1, t)

∂x1

(h(x1) + G(x, t)x2 + σ(x1, ẽ))

+ xT2 Γ−1
1 ẋ2 + ẽTΓ−1

2
˙̃e

=
∂W (x1, t)

∂x1

(h(x1) + G(x, t)x2)− mA
22 −mA

11

m66

(m66r̃ + εψ̃)ẽTαe

− xT2 G(x, t)T
(
∂W (x1, t)

∂x1

)T
+ ẽTΓ−1

2
˙̃e

= −xT11

[
d11 +m11kpu 0

0 d22 +m22kpv

]
x11

− xT12

[
d66 +m66kdψ − ε 1

2
ε( d66
m66

+ kdψ)
1
2
ε( d66
m66

+ kdψ) kpψε

]
x12

+ ẽTΓ−1
2

(
˙̃e− mA

22 −mA
11

m66

(m66r̃ + εψ̃)Γ2αe

)

= −xT11

[
d11 +m11kpu 0

0 d22 +m22kpv

]
x11

− xT12

[
d66 +m66kdψ − ε 1

2
ε( d66
m66

+ kdψ)
1
2
ε( d66
m66

+ kdψ) kpψε

]
x12

= −xT1Hx1

where it is defined that:

H =




d11 +m11kpu 0 0 0
0 d22 +m22kpv 0 0
0 0 d66 +m66kdψ − ε 1

2
ε( d66
m66

+ kdψ)

0 0 1
2
ε( d66
m66

+ kdψ) kpψε


 (9.20)

in addition to choosing the term:

˙̃e , Γ2αe
mA

22 −mA
11

m66

(m66r̃ + εψ̃) (9.21)

Then with some additional boundings on ε, it can be proven that the matrix H
is positive definite and V̇ ≤ 0∀x, and origin of the closed-loop system in the
beginning of Section 9.2 is uniformly globally stable per Theorem 4.1. Q.E.D.
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The following conditions must hold for ε for V̇ to be negative semidefinite:
[
d66 +m66kdψ − ε 1

2
ε( d66
m66

+ kdψ)
1
2
ε( d66
m66

+ kdψ) kpψε

]
> 0

=⇒ − ε
((

kpψ +
1

4

(
d66

m66

+ kdψ

)2
)
ε− (d66kpψ +m66kpψkdψ)

)
> 0

∨ ε < d66 +m66kdψ

(9.22)

where the first condition of the two in Eq.(9.22) holds only when:

0 < ε <
d66kpψ +m66kpψkdψ

kpψ + 1
4

(
d66
m66

+ kdψ

)2 (9.23)

It is easily seen that when Eq.(9.23) is fulfilled, the second condition ε < d66 +
m66kdψ also holds since the far right side of the inequality in Eq.(9.23) is always
smaller. Note to assure that V is positive definite, ε still needs needs to be so small
such that ε < m66

√
kpψ if the right hand of the inequality Eq.(9.23) is larger than

m66

√
kpψ .

When ε is bounded this way, there exists constants c1, c2 > 0 such that:

− c1‖x1‖2 ≤ V̇ (x) ≤ −c2‖x1‖2 ≤ 0∀x (9.24)

Then since V̇ ≤ 0 and V ≥ 0, V is lower and upper bounded by constants 0 ≤
V∞ <∞ and 0 ≤ V0 <∞, there exists a constant c > 0 such that

0 ≤ c lim
T→∞

∫ T

0

‖x1‖2dt ≤ − lim
T→∞

∫ T

0

V̇ dt ≤ V0 − V∞ <∞ (9.25)

Theorem 9.2. The system given by

ẋ1 =
[

˙̃u ˙̃v ˙̃r
˙̃
ψ

]T
(9.26)

and
ẋ2 =

[
˙̃
V x

˙̃
V y

]T
(9.27)

converges asymptotically to the origin.

Proof. A result of Eq.(9.25) is that V̇ ,x1 ∈ L2. Furthermore, due to V being
bounded means that V ∈ L∞ =⇒ x1,x2 ∈ L∞. Looking at the equations for ẋ1

it is straightforward to show that it is also bounded which means that ẋ1 ∈ L∞.
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Using this Lyapunov function, V̇ can be used to construct the integral bound to
utilize Lemma 4.2. Continuing with the Lyapunov function found earlier:

V̇ = −xT1Hx1 + xT1 x1 − xT1 x1 (9.28)

where H is positive definite matrix with the bounds for ε that was calculated
earlier.

V̇ ≤ −xT1Hx1 − xT1 x1 + |x1||x1| (9.29)

define ρ(|x|) which is a κ∞-function that bounds higher order terms of the sys-
tem that comes from the fact that the origin of the full closed-loop system being
stable and x ∈ L∞. This function ρ(|x|) can be written as a function of the num-
ber R that depends on the ball with radius r that is bounding the initial states of x.

Using this it can be written to

V̇ ≤ −φ1(t,x)2 + |x1|ρ(R(r))

≤ −φ1(t,x)2 +
1

ερ
|x1|2 + ερρ(R(r))2, ∀|x0| ≤ r

(9.30)

Where ερ is just an arbitrarily small number and φ1(t,x)2 = xT1Hx1 + xT1 x1. The
last inequality step is just a result of Young’s inequality. Defining:

ν := ερρ(R(r))2 (9.31)

then,

V̇ ≤ −[φ1(t,x)2 − ν] +
1

ερ
|x1|2

∫ ∞

t0

[φ1(t,x)2 − ν]dt ≤
∫ ∞

t0

1

ερ
|x1|2dt−

∫ ∞

t0

V̇ dt

∫ ∞

t0

[φ1(t,x)2 − ν]dt ≤ βrν

(9.32)

where it can be seen that βrν > 0 by choosing ερ small enough. It has also in
addition been shown that x1, V̇ ∈ L2 so the integrals are bounded, such that βrν
is bounded but still strictly positive. Then, it is on the form of Eq.(4.7) and
therefore by Lemma 4.2, the state x1 converges to the origin uniformly, globally
and asymptotically. Q.E.D.

Remark 9.1. It is important that the operator tuning kpψ , kdψ and ε choose them
carefully such that Eq.(9.23) holds, to assure the origin of the solutions of the
system ODEs are UGS.
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Part IV

Results
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Chapter 10

ROV Simulation Setup

In this chapter, the matrices used for the model of Argus Mini ROV are presented,
and the setup for the ROV is used in simulations and experiments. It will also
present the tools that are used during simulations.

10.1 ROV Model
The dimension of the ROV are [0.9m, 0.65m, 0.5m]T , with the assumptions that
vehicle is symmetric in all directions along the NED-axes, in addition to the CO
being placed in the CG. The matrices that are used for the 6-DOF process model
of the ROV are:

MRB =




90 0 0 0 0 0
0 90 0 0 0 0
0 0 90 0 0 0
0 0 0 10 0 0
0 0 0 0 15 0
0 0 0 0 0 13




(10.1)

which is the rigid body mass of the model. In addition, the zero-frequency added
mass matrix in 6-DOF is given as:

MA =




54 0 0 0 0 0
0 72 0 0 0 0
0 0 360 0 0 0
0 0 0 11 0 0
0 0 0 0 43.5 0
0 0 0 0 0 5.2




(10.2)
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The total mass matrix is defined as M = MRB + MA. The linear damping matrix
in 6-DOF is given as:

D =




250 0 0 0 0 0
0 200 0 0 0 0
0 0 175 0 0 0
0 0 0 20 0 0
0 0 0 0 20 0
0 0 0 0 0 15




(10.3)

and the nonlinear matrix

Dn(νr) =




350|ur| 0 0 0 0 0
0 350|vr| 0 0 0 0
0 0 400|wr| 0 0 0
0 0 0 100|p| 0 0
0 0 0 0 100|q| 0
0 0 0 0 0 75|r|




(10.4)

The total damping matrix is given by D(νr) = D + Dn(νr).

The CB is located at obb =
[
0 0 −0.18

]T . The ratio between the weight and
the buoyancy forces are given as W/B = 0.99. All the values for these 6-DOF
model are used to set up the process plant model in SINTEFs ROV simulator
FhSim.

To insert these parameters into the controller only the 3-DOF models of these
matrices are necessary. To find these matrices, the 6-DOF matrices are reduced
to their 3-DOF counter-part:

MRB =




90 0 0
0 90 0
0 0 13


 (10.5)

The zero-frequency added mass matrix in 3-DOF:

MA =




54 0 0
0 72 0
0 0 5.2


 (10.6)

The total mass matrix is as with the 6-DOF given by M = MRB+MA. The linear
damping matrix in 3-DOF is reduced to:

D =




250 0 0
0 200 0
0 0 15


 (10.7)

68



and the nonlinear damping matrix:

Dn(νr) =




350|ur| 0 0
0 350|vr| 0
0 0 75|r|


 (10.8)

The coriolis-centripetal matrices for 3-DOF are calculated to be:

CRB(ν) =




0 0 −90v
0 0 90u

90v −90u 0




CA(νr) =




0 0 −72vr
0 0 54ur

72vr −54ur 0




(10.9)

Last but not least, the thruster allocation matrix for 3-DOF is given by:

B =




cos(35◦) sin(35◦) 0.202 sin(35◦) + 0.216 cos(35◦)
cos(−35◦) sin(−35◦) 0.202 sin(−35◦)− 0.216 cos(−35◦)
cos(35◦) sin(35◦) −0.265 sin(35◦)− 0.195 cos(35◦)

cos(−35◦) sin(−35◦) −0.265 sin(−35◦) + 0.195 cos(−35◦)




T

(10.10)

with the thruster force vector f = [f1, f2, f3, f4]T numerated as the thrusters in
Figure 7.1. The saturation of the actuations are given in Table 7.2, and are more
like an upper limit. In practice if the ROV for instance are moving for instance
45◦ relative to the x-axis and y-axis in BODY-frame, the maximum actuation it
can give in surge and sway will be lower.

10.1.1 Sensors

According to [9], the Argus Mini is equipped with five sensors: an HD camera,
a fluxgate compass, a depth sensor, a gyroscope, and a Nortek DVL 1000 model.
The velocity of the ROV is measured with the DVL, which will measure the speed
relative to the net of the fish pen. The fish pen is attached to the seafloor, and
the net can therefore be seen as an earth-fixed reference point the ROV measures
its speed relative to. However, it is necessary to be aware that the velocities of
the net do change with changing ocean current velocity. But, the change of the
ocean current locally will be so slow that the dynamics of the net are more or less
nonexistent and negligible.

10.1.2 Net Following Algorithm

To be able to measure the velocity of the ROV, the ROV has to traverse along with
the net. Therefore, a net following algorithm calculating the velocity references
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and heading reference is used to test the velocity and heading controllers. In short,
the net following algorithm generates waypoints for the ROV to follow and ensures
that the ROV always points towards the net. The objective of this net following
algorithm is to follow the net pen at a constant speed and can be formalized as:

lim
t→∞

ye(t) = 0 (10.11)

lim
t→∞

(ψ(t)− ψd(t)) = 0 (10.12)

lim
t→∞

(U(t)− Ud) = 0 (10.13)

where U ,
√
u2 + v2 is the ROV speed, and Ud > 0 is the desired speed, ye cross-

track error calculated in the algorithm generating waypoints to assure that the
ROV also maintains a constant distance from the net pen. An illustration of this
net following algorithm in work from a simulation in [9] is shown in Figure 10.1
where the yellow points are the ROV and its orientation at different time steps in
the simulation.

Figure 10.1: The simulation plot is taken from [9], and show how the ROV traverse
the net pen with this algorithm
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10.2 FhSim
The simulations conducted in this thesis are done in the SINTEF developed sim-
ulation platform for marine systems, FhSim. For a more detailed description of
how FhSim is designed and works, the reader is referred to [30, 31].

FhSim is designed to solve ODEs and, more specifically, nonlinear ODEs. It is
implemented in C++, and therefore makes it possible to develop and program
object-oriented.

Each object in FhSim is implemented as what is called SimObjects, which are
the fundament of FhSim. Each part of a physical system: Kalman filter, control-
lers, vehicle models, etc., is implemented as a SimObject. Each object is associated
with a set of ODEs, which at each timestep transfers its state derivatives to an in-
tegrator. At the end of each timestep, the states are integrated based on a method
that is chosen by the user [9].

To connect each SimObject to make up the whole ROV system, they have I/O

FhSim

ModelStructureModelStructure

SimObject 1 ......

Camera

External ports

SimObject N Method 1

Integrator

Method N

File I/O

Input Scene

Visualisation

Figure 10.2: Overview of FhSim. Recreated from [30]

ports where the signal flows between the SimObjects as specified in an XML docu-
ment the user sets up to connect the SimObjects. An overview of the architecture
of FhSim is shown in Figure 10.2. The brilliant part of FhSim is that it can also
communicate with external devices through a set of external ports. It is therefore
not restricted to simulations but can be used in real-time hardware applications.
The user can then easily go from simulation on the computer to a physical field
test without changing the SimObject itself.

In the project for FhSim, several SimObjects have already been developed unre-
lated to this thesis, and through the structure of FhSim, many of these SimObjects
were used during the simulations. Among these SimObjects that were used, like in
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[9], was a 6-DOF ROV model, an environmental model, a static net cage structure,
and heave and tilt controllers.
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Chapter 11

Results for the First Controller (C1)

In this chapter, simulations and a brief discussion of the results for C1 are done.
In addition, the results from the field experiments of the ROV at SINTEF ACE
fish farm in Hitra are also presented and discussed. For this thesis, the most in-
teresting states to look at will only be the states in the horizontal plane, that is,
u, v, r, ψ. The testing of the velocity controllers are done using the net following
algorithm that gives heading and surge and sway velocity references.

11.1 Simulation Results
The velocity controllers are tuned with the values given in Table 11.1 In addition

Tuning Description
kpu 4.0 Proportional gain for surge
kpv 4.0 Proportional gain for sway
γx 3.5 Integrator tuning for V̂x
γy 3.0 Integrator tuning for V̂y
εVi 0.2 Projection tolerance
Vmax 0.5 Max Ocean velocity bound
Tu 0.5 Time constant reference model surge
Tv 0.5 Time constant reference model sway

Table 11.1: Controller simulation tuning parameters

to this tuning, the controller also had some parameters that were connected to
the modelling of ROV, such as damping and mass coefficients. For testing of
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robustness, the controller C1 is based on a control plant model with some modelling
errors. It means, therefore, that the process plant model was set to have 10%
higher damping coefficients than the damping coefficients the controller accounted
for. The simulation was done going one round the fish pen once, and for the figures
in this section only the timespan 200s− 400s of the simulation is shown.

11.1.1 Velocity Simulation Response
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Figure 11.1: Surge and sway velocity responses where the process plant model had
10% higher damping than accounted for

In Figure 11.1, the green dotted lines are the reference values given by the net
following algorithm, and the red dotted lines are the values given by the reference
model. That is the green line smoothed out with the reference model. From this
simulation, the control objective, which is to track the desired reference value, is to
some extent fulfilled by the velocity controllers. At around 320s, the sway velocity
overshoots when going from 0.35m/s to 0m/s; this might be due to the limitation
of the thruster dynamics, which does not happen instantaneously. This will be
closely looked at in the graphs for control inputs.

After 340s, especially sway velocity struggles to reach the desired reference value,
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and frankly oscillates. This might suggest that the actuation has gone into satur-
ation resulting in this response.

11.1.2 Velocity Actuation Response
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Figure 11.2: Actuation response for surge and sway

As suspected from the previous subsection, it is obvious in Figure 11.2 that
the inputs to the ROV in surge and sway struggle at about 340s, but also in the
area 290s − 320s. The red dotted lines here are the control law’s desired control
input, and the blue line is the actuation that the ROV gives. There are some
spikes from the control input that go to 0 seemingly at random times, but this
is the net following algorithm that is turning the velocity controller on and off so
that the heading and speed controllers can, to some extent, work independently.
The velocity controllers turning off is most likely why the ROV speed overshoots
at 320s.

It might seem like the ROV manages to give the desired control input, but it
oscillates, suggesting that the input goes into saturation, which should also be
present in the integrator figures. It must be noted that in this simulation, the
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operator attempts to push the control law to the limit. Under “normal” condi-
tions, the controller had no problems achieving the control objective. However,
the robustness of the controller can truly be tested when it is pushed to the cases
where it is no longer “normal” conditions. The ROV is not actually intended to
have a speed over 0.2m/s. Still, during these simulations, the speed was set to
0.35m/s, which might provoke some undesired behaviour that should be handled
and taken into account in the software and simulations before testing it physically
at the SINTEF Ace fish farm. Even though the speed might be set to a maximum
of 0.2m/s, the ROV might even become saturated at a lower speed if there are
much larger damping forces than accounted for in the ROV process model, as in
this case. However, it is seen that even though the actuation goes into saturation,
the closed-loop system is still stable, even though it does not reach the desired
control references.

11.1.3 Ocean Current Estimations
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Figure 11.3: Integration terms behavior

From the estimates of the ocean current or the integration term, it can be seen
that the projection operator is working to keep the estimates within a boundary.
As expected, it starts to oscillate approximately simultaneously as the velocities
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and the actuation begin to oscillate or go into saturation. For both components,
it can be seen that they are to some extent kept within the bounds of ±0.2m/s.
How this connects to the tuning parameters of projection tolerance and max ocean
velocity bound is not easy to say, but it seems like the projection operator tries
to keep a leeway from the maximum bound with the tolerance value. Either way,
this prevents integrator wind-up, which might have destabilized the closed-loop
system if it became saturated over a longer period of time.

11.2 Field Testing Results
For the field testing, another tuning was used. Experiences show that some of the
tuning parameters should be less aggressively tuned due to modelling errors. In
this case, especially the gains connected to the current estimation or the integration
terms were tuned less aggressively. Simulations showed that it was the integration
term that was most prone to modelling errors, and it is therefore natural that it
was tuned down from simulations. The tuning that was used for the experiments
at the SINTEF ACE fish farm is given in Table 11.2. Since the recordings of the

Tuning Description
kpu 5.0 Proportional gain for surge
kpv 5.0 Proportional gain for sway
γx 2.0 Integrator tuning for V̂x
γy 2.0 Integrator tuning for V̂y
εVi 1.0 Projection tolerance
Vmax 0.5 Upper bound for ocean velocity
Tu 1.0 Time constant reference model surge
Tv 1.0 Time constant reference model sway

Table 11.2: Tuning parameters for experiment number two

trials are not instantaneously starting the horizontal net following algorithm, only
a timespan where it has started in the trial is shown. In this case the timespan
200s− 400s is shown for the figures from experimental field trial 2, which is one of
the timespan where the horizontal net following is used.

11.2.1 Experimental Velocities Result

Like the simulations, in Figure 11.4, the blue lines are the velocities estimated
with a Kalman Filter implemented in the ROV, the red line is the output of the
reference model that smooths out the green dotted line, which is the output from
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Figure 11.4: Velocity result from experiment trial 2 using C1

the net following algorithm. Note that at the beginning of this time series, the ve-
locity references are close to 0, due to the net following algorithm not being active
until somewhere about 220s. It can be seen that in the net following modus, the
controllers follow the reference values pretty well. It oscillates around the reference
value. However, this might be because other factors like the sensor measurements
oscillate, and the Kalman Filter cannot sufficiently smooth the measurements.
This is, however, still great results since it tracks the desired velocity with little
to no deviation.

It is at the time 350s − 370s, the sway velocity, and to some extent, the surge
velocity gets what seems like a constant deviation from the reference value. The
figure shows that the reference model wants the ROV to go −0.4m/s in sway, which
is at a higher speed than it has previously been assumed that the ROV can manage
to go. This seems like in this timespan, the actuators of the ROV have gone into
saturation which means it is actually not physically possible for the controller to
reach the desired velocity. However, it does not oscillate like in the simulations,
possibly caused by the real actuators having some dynamics, which works like a
lowpass filter. Another possible explanation is that it is already oscillating, and it
is just not as extreme as the simulations due to the dynamics of the thrusters. Yet,

78



another hypothesis for why it does not oscillate is that the velocity estimations
was smoothed out by the output of the Kalman Filter.

In Figure 11.5 a standard PI controller runs in the same modus as with Figure 11.4.
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Figure 11.5: The velocity results from a standard PI controller at field testing

While the controller C1 manages to close the gap in sway with deviation of less
than ±0.05m/s, the standard PI controller has a deviation larger than ±0.1m/s.
The speed controller C1, designed for this master’s thesis, arguably performs a lot
better. Trying to put more concrete value for how much greater the performance
of one controller has over the other, a metric used to calculate the error is the
RMSE:

eRMS =

√√√√ 1

N

N∑

i=1

(xiref − ximeasurement)2 (11.1)

where xiref is the reference value given from the net following algorithm, and
ximeasurement is the value that the Kalman Filter estimates the velocities to be.
This means that the reference model also counts towards the performance of the
controller. This RMSE will be calculated for all data points where the ROV is
in horizontal net following modus. This resulted in Table 11.3 which gives the
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RMSE of the velocities for both trials done for C1 and one of the trials where the
PI controller was run in net following modus. If we compare the error of C1 to the

eRMS

Adaptive controller trial 1 surge 0.0293
Adaptive controller trial 1 sway 0.0481
Adaptive controller trial 2 surge 0.0448
Adaptive controller trial 2 sway 0.0475
Standard PI controller surge 0.0607
Standard PI controller sway 0.1527

Table 11.3: The RMS-error for the velocities during the field experiments

PI controller in Table 11.3, it is safe to say that it is a massive improvement, at
least in sway.

Another observation is that when the ROV uses the PI controllers for speed con-
trol, the measurements do not oscillate as much as the adaptive controller. The
difference between these two trials might be debunking the hypothesis that Kalman
Filter causes the oscillations. It seems more likely that the oscillation is caused by
the actuator going into saturation when the speed is controlled with the adaptive
controller.

11.2.2 Experimental Actuation Results

In Figure 11.6 the red dotted line is the desired control input from the designed
control law, and the blue line is the estimated actuation that the ROV gives. The
actuation of the ROV is calculated with measurements of the thrusters’ rotation
per minute related to the actuation force based on an interpolation of a thruster
curve. The estimated actuation is originally designed for the Kalman Filter and is
not a perfect estimate of the actual actuation. It is, however, precise enough for
our purposes to say if it has gone into saturation or not.

It is apparent that the input for sway velocity is saturated. The input for sway
has a constant deviation and frankly does not seem to give an actuation of more
than ±100N. It is, however, to some extent, able to reach the control objective as
shown in Figure 11.4 when the speed goes up to 0.3m/s. It oscillates somewhat,
and the cause may be that the integration term, which utilizes a projection op-
erator, oscillates. The simulations have shown that the integrator oscillates when
the estimates come close to the boundary.
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Figure 11.6: Actuation from the experiment trial 2

Other factors that might give this type of actuation response is the thruster al-
location block. In the thruster allocation block, the desired force in each DOF
is transformed to the force exerted from each thruster. The allocation block also
saturates the control input with an upper and lower bound, in addition to using a
slew rate limiter. This way, the thrusters will not be forced to their absolute limit
and reduce wear and tear for an oscillating control input signal.

11.2.3 Experimental Ocean Current Estimations

In Figure 11.7, it can be seen that especially the estimate of the u-component of
the current oscillates between 350s−370s, and slightly at the interval 240s−290s as
well. The oscillations are suspected to be the projection operator working to keep
the integration term within the bounds. It shows that the anti-windup scheme
ensures that even when the actuation is in saturation, the estimates do not grow
unbounded and do not become larger than what can be physically accounted for
by the actuator.
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Figure 11.7: Ocean current estimates from the experiment trial 2

11.3 Heading Control
Recall from the derivation of the first controller for velocities that it was assumed
that the heading was perfectly controlled, ψ → ψd UGES. The heading controller
designed for the adaptive controller was a feed-forward PD-controller. Consider-
ing the control plant model was perfect, its error state converged exponentially
to the origin of the closed-loop heading subsystem. By looking at the heading in
the process plant model and the second control plant model from Chapter 7, the
Coriolis-Centripetal force had a quadratic ocean current term that can be seen
as a constant disturbance term resulting in constant deviation if not taken into
account. It means, using the PD-controller that was designed will give a constant
deviation from the desired reference value. Therefore, a PID controller is used for
heading instead of a PD controller in the experimental field trials and simulations.
In Figure 11.8, we can see that the heading controller manages to follow the de-
sired reference with minor deviations in the simulations. Meanwhile, at the field
trial, the heading had some more issues but still follows the contour of the desired
heading, which for the trials that are done seems to be good enough. The main
issue with ψ 6= ψd is that it might affect the velocity controllers that have assumed
that ψ → ψd when t → ∞. However, as it has been shown with the plots for
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Figure 11.8: Heading response with PID controller

velocities, the velocities still manage to achieve the control objective.

The RMS-error for both heading is summarized in Table 11.4.

eRMS

PID controller simulation 0.0720
PID controller field trial 0.1930

Table 11.4: The RMS-error for the heading during the simulation and field trial

11.4 Summary
The field trials have validated that the speed controller is robust even when several
factors are not the way it was assumed in theory. Modelling errors, non-perfect
heading tracking and nonlinearities due to saturation in actuation was present
as expected. Still, the experiments done at the fish farm showed that the speed
controller worked great for our purposes. The designed controller, C1, was an
improvement from the controller that was previously used. The theoretical part
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proved that the controller was UGAS with the simplified control plant model. The
simulations with a slightly more comprehensive process plant model still showed
promising results, and the field trials validated that the controller worked well.
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Chapter 12

Results of Augmented Controller
(C2)

The augmented controller, C2, derived in Chapter 9 is implemented in FhSim
running with the same process plant model as with Chapter 11. It must, however,
be noted that the simulation with process plant model in this chapter uses the
correct matrix values as given in Eq.(10.1)-(10.4). The controller is an extension
of the adaptive controller, C1, derived in Chapter 8. Instead of assuming decoupled
heading and velocity states, it is assumed coupled through the Coriolis-centripetal
force. Thus, designing a horizontal controller that takes all the three horizontal
states into account has been suggested in Chapter 9. The controller is tuned as
given in Table 12.1.

12.1 Velocity Response
The dashed green line is the desired velocities from the net following algorithm,
the dashed red line is the desired velocity smoothed out with a reference model,
and the blue line is the velocity state of the ROV. Especially sway velocity is
interesting to look at; it reaches a fairly high velocity with up to 0.5m/s without
problems. It saturates when the desired speed is to 0.6m/s between 90s − 120s,
and 0.55m/s between 250s − 270s. Compared to Chapter 11, this process plant
model is modelled with the estimated real values and thus has lower damping than
the simulations in Chapter 11. It manages to reach the desired value with minor
problems and starts oscillating as expected when saturating. The RMSE of the
velocities compared to the desired value from the net following algorithm is given
in Table 12.2. In this table, the RMSE might become higher for C2 due to the
saturation, and it might not perfectly represent how well the controller was.
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Tuning Description
kpu 5.0 Proportional gain for surge
kpv 5.0 Proportional gain for sway
γx 0.01 Integrator tuning for V̂x
γy 0.01 Integrator tuning for V̂y
εVi 0.2 Projection tolerance
Vmax 0.5 Max Ocean velocity bound
Tu 0.5 Time constant reference model surge
Tv 0.5 Time constant reference model sway
εψ 0.1 Factor for cross-elements in matrix P2

kpψ 46.6340 Proportional gain for yaw
kdψ 14.0304 Derivative gain for yaw
γe1 0.0001 Integrator tuning for V̂ 2

x

γe2 0.0001 Integrator tuning for V̂xV̂y
γe3 0.0001 Integrator tuning for V̂ 2

x

ωψ 1.6 Bandwidth for reference model yaw (3rd order)
ζψ 1.0 Damping ratio for reference model yaw (3rd order)

Table 12.1: Tuning parameters for the augmented controller

12.2 Velocity Controller Input Response
From Figure 12.2, the maximum output it can give before it starts to oscillate
is at 200N for the input in sway, which is significantly higher than Figure 11.6,
which oscillated at 125N. This is mainly caused that the process plant model has
lower damping than the simulation done for the first designed controller. It can,
however, exert a significantly higher thruster force, which might not be explained
by the difference in damping from the previous simulations. A possible reason for
this might be the clamping and projection operator implemented in the controller.
It seems like the saturation limits are lower. The projection operator might have
been effective at a lower level causing the controller to demand less force due to the
underestimation of the damping terms used in the integrator for the controller C1.
That is, the control law calculates less thruster force in the case of C1 since the
control law is implemented with the assumption of less damping than the process
plant model has. Meanwhile, C2, in this case, manages to give more thrust until
it clamps and saturates itself since it utilizes the same coefficients in its control
plant model and the process plant model.

Another possibility explaining the saturation is that the PID controller in yaw
demands higher inputs than the heading controller used here. Since the four
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Figure 12.1: Velocity response of augmented controller

thrusters actuate surge, sway and yaw simultaneously, a higher control activity
from the heading controller gives less thrust for the velocity controllers to use.
However, the ROV in FhSim has an implemented a switch that makes sure that
the surge and sway are decoupled from yaw to some extent by switching between
the heading controller and speed controller.

12.3 Heading Simulation Response
From Figure 12.3, the heading follows the desired input to a great extent. The
desired heading in green is given from the net following algorithm and is smoothed
out with a third-order reference model resulting in the red line. The blue line
seems to follow the heading reference closely, and it has more or less no deviations
from the reference model. The more considerable change from the net following al-
gorithm are smoothed out by the reference model, giving a smaller deviation. The
RMSE of the heading and the desired heading from the net following algorithm,
in this case, is also calculated to compare this heading controller to the PID con-
troller. For calculation of the RMSE in this case, it is important to note that
when looking at error in angles, the smallest signed angle is necessary to consider
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eRMS

Surge velocity using C1 0.0175
Sway velocity using C1 0.0194
Surge velocity using C2 0.0259
Sway velocity using c2 0.0200

Table 12.2: The RMS-error for the velocities during the simulations of both con-
trollers from this thesis

to obtain the correct deviation. The RMSE between the heading and the refer-
ence model is compared since the controller follows the reference model, which is
significantly slower than a step response. The RMSE of these two cases are given
in Table 12.3. It is important to note that since a reference model is used, the

eRMS

Horizontal controller compared to desired value 0.0910
Horizontal controller compared to smoothed value 0.0204
PID controller simulation 0.0720

Table 12.3: The RMSE for the heading during the simulation of the horizontal
controller and the PID controller regiven again here

reference model’s dynamics is important as well, and if it works with the reference
model does not necessarily mean it will perform great without in this case. The
simulations in this chapter are mainly used to validate the mathematics done for
this controller and show that it works. It still needs some extensive testing to be
concluded that it works well in practice.

The thruster input seems to manage well and only goes to saturation at the
spikes connected to the significant change in heading. In addition to the more
considerable change, it also seems like the heading input goes into saturation sim-
ultaneously as the speed controller does. All in all, this seems like a good response
and could be a possible substitute for the PID controller used in the ROV, but a
controller validation in a field test is necessary to be sure that it performs better
than the PID controller.

It is also essential to notice that since the PID controller is simulated with a
process plant model with higher damping, it achieves a slower response than the
simulation using the augmented adaptive controller. This also needs to be taken
into account since, in this case, a high RMSE for the PID controller does not
entirely reflect how well it works in practice.
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Figure 12.2: Control input of augmented speed controller
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Figure 12.3: The heading response with its control input
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Part V

Discussion
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Chapter 13

Discussion

This chapter discusses the results that were found in the last part. A discus-
sion around the experiments themselves, the speed controllers and comparison of
the speed controllers are also done. The adaptive controller, C1, based on the
simplifiedDP control plant model, will be compared to the PI speed controllers
on achieving the control objective. Then, the augmented controller, C2, based on
the more complex control plant model, will be compared to C1 on achieving the
control objective. The PID controller in the heading will also be compared to the
heading part of the augmented controller.

13.1 Discussion of the Experimental Results
In this section, C1 is compared to the PI controller. This comparison will be
based on how well the controllers achieve the control objective using the RMSE
as a metric. In some cases, the metric chosen might be flawed due to some factors
that need to taken into account when discussing the RMSE. This will be discussed
more in detail in this section.

In Section 11.2.1 it was shown that C1 performed better than a regular PI con-
troller. The adaptive controller in field experiments achieved a significantly lower
RMSE than the PI controller. It makes sense, due to the RMSE from the field ex-
periments, to prefer C1 over the PI controller. However, the RMSE metric squares
the error between the desired reference value and the estimated ROV velocity be-
fore they are averaged. It means that large deviations are weighted more heavily
than small deviations with this metric. This means that a large RMSE does not
necessarily reflect what actually happened. For instance, if the step responses in
one of the tests are larger in amplitude than the other, this would have affected
the RMSE to become much larger even if the system generally follows the refer-
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ence signals well. Meanwhile, a small constant deviation and small step responses
would not have affected the RMSE as much. The RMSE for the PI controller was
still significantly higher than the adaptive controller, especially in sway; it can,
therefore, be argued that C1 objectively performed better.

In addition, in this case, looking at Figure 11.4 and Figure 11.5 the PI controllers
objectively achieve worse results due to the large constant deviation, possibly mak-
ing a metric for error measurement obsolete. But, if a metric needs to be used, the
mean absolute error (MAE) might have been a better alternative to measure the
amount of constant deviation, which weighs all error equally. This metric weigh
small constant deviations and large constant deviations equally. MAE was not
used in this thesis for consistency of what was chosen first. In this experimental
field testing, however, between the two controllers, the PI speed controllers have
bad performance overall due to a large constant deviation compared to the adapt-
ive controller, C1, in addition to a significantly high RMSE.

A source of error for comparing these two controllers that also needs to be discussed
is that the PI controller was not tested as extensively as the adaptive controller.
Out of six trials that were done this day, only one of them used the PI speed con-
troller long enough to get some comparable results. That brings up the question
if the PI controller was optimally tuned for the desired response, mainly to com-
pensate for the constant deviation in this trial. The PI controller has been tuned
in earlier field trials, and the tuning was therefore not prioritized to consider the
constant deviations during this trial. The adaptive controller was tested with two
trials the day before the PI controller, where the idea was to tune the controller
differently. Still, since the trials for the adaptive controller gave satisfying results,
only the adaptive gains were modified after the first trial run to reduce oscilla-
tions. It has been experienced from previous experiments that to compensate for
the constant deviation, the PI controller has to increase its integral gain. How-
ever, by increasing the integral gain, the system becomes more oscillatory, and
due to saturation and integral windup, the system might become destabilized with
increased integral gain. It is therefore not desired to increase the integral gain
more than necessary. It is believed that even if the constant deviation would have
been handled, the system would, in practice, be oscillatory and unstable or close
to unstable, yielding worse results. A possible solution for the oscillations from the
integral term is to add a derivative term, which can be interpreted as a damping
term. This would, however, have resulted in a slower settling time, as described
in Chapter 3.
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13.2 Discussion of the Nonlinear Controllers
It was clear that C1 outperformed the PI controller, but how did it perform com-
pared to the augmented adaptive controller, C2? Comparing Figure 11.1 and
Figure 12.1 the first observation is that C2 obtains a higher velocity than C1.
Meanwhile, it seems like C1 has a maximum velocity at 0.35m/s, C2 manages
0.5m/s without issues. This seems mainly caused by that C1 was simulated on
a process plant model with 10% higher damping coefficients. Another possibility
is that the anti-windup schemes in C1 saturate the control input before the ROV
thrusters themselves do it.

It is not easy to conclude the best performance or compare two control laws that
were simulated on, in practice, two different process plant models. Meanwhile, the
first adaptive controller was simulated on a process plant model with 10% higher
damping; the augmented controller was simulated on a process plant model with
damping as given in Eq. (10.3). Therefore, the differences between the two con-
trol laws might have several external factors and more sources of errors for these
results. One big source of error is that the difference in RMSE between these two
control laws might become significantly more different than if it was simulated
on the same process plant model. The biggest effect the different damping has
on the comparison is that the RMSE might become higher for C2 since the step
response is larger when trying to achieve a higher speed than C1. However, based
on the simulations, the biggest difference between the two process plant models
when simulating the controllers was that the saturation limit was higher for C2.
Still, the general performance of trajectory tracking was more or less the same.
Therefore, the simulations with the correct process plant model were not included
for the first adaptive controller since the response was generally similar to the
simulations that have been presented here.

The hypothesis for saturation from the anti-windup-scheme might be inspected
closer by looking at the control input plots Figure 11.2 and Figure 12.2, but also
Figure 11.6. The control input in sway for the augmented controller seems to man-
age a control input of 180N before oscillating. Meanwhile, the first adaptive con-
troller manages 125N in simulations and in practice 80N in field trials. Especially
the field trials show that the maximum actuation is lower than the simulations, so
having an anti-windup scheme clamping the integrator at a lower input might be
advantageous in this case. The first adaptive controller’s simulations show that it
oscillates but still manages to reach an actuation of the desired value, suggesting
the anti-windup scheme also affects the ROV from reaching a higher velocity.

Nonetheless, simulations are just simulations and only gives an indicator of what
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to expect in practice. Ultimately, the field trials are the results that validate the
properties and robustness of a controller. The augmented controller showed excel-
lent results in the simulations and seemed promising for an eventual experimental
field trial.

Comparing the velocities from the simulations using the RMSE in Table 12.2,
both speed controllers have small differences in RMSE. As argued earlier, a large
step response might give a higher RMSE than small deviations over time. In this
case, maybe the RMSE is not preferable to use as a basis for comparison, espe-
cially since the velocity part of the augmented controller is controlled to a higher
speed reference and set to well over what it is assumed the ROV can actuate at
several times. Even if the RMSE shows that C1 performed better, achieving a
lower RMSE, the difference is not large enough to conclude that one controller
outperforms the other based on this metric.

One difference between the two controllers is that the augmented controller uses
measurements to a larger extent than the first adaptive controller. First of all, the
augmented controller removes known nonlinearities with feedback linearization,
which is only removed perfectly if the modelling of the ROV is correct. In addi-
tion, it requires the measurements for the feedback to be close to perfect. Which,
due to measurement uncertainties, is not always the case. The DP model-based
adaptive controller does not need to do this because the control plant model is
more or less linear in all the fully known terms. This error from measurement
uncertainties is therefore not as present.

Another, more significant difference between the two controllers is the implement-
ation of the integration term. The simplified DP model-based controller constructs
the G matrix with only reference values of the heading and therefore relying on the
heading controller managing to reach this reference value. The augmented con-
troller has a G matrix that uses measurement to construct the matrix, making it
prone to measurement uncertainties and oscillations. The measurement uncertain-
ties might in simulations give excellent results if assuming perfect measurements
but unsatisfying in practice. The augmented controller is, however, not as equally
dependent on the ROV reaches the desired reference values, but it loses the prop-
erties that the heading state is decoupled from the velocities..

Another factor to be considered is the number of tuning parameters. Let us as-
sume that both controllers do not need a reference model, which means that only
ψd, ud, vd is fed to the controllers; the higher-order terms are set to zero. This
still means that the simplified DP model-based adaptive controller has six tuning
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parameters in addition to three tuning parameters for the heading PID controller,
nine in total. The augmented controller has 12 tuning parameters, which is more
tuning parameters. Some of the tuning parameters are bounded, which requires
knowledge of it, and it might be hard to interpret their impact on the response.
This means that going from simulations to a field trial might give some undesired
response, meaning figuring out which tuning parameter for the augmented control-
ler can be changed to counteract the response might become complicated. With
the reference models for both controllers, the number of tuning parameters in-
creases again. However, these are often chosen beforehand and are not affected
equally by a different environment.

13.3 Comparison of Yaw Controllers
The cardinal reason for using the more complicated augmented controller over
the simplified DP model-based adaptive controller is that it considers some of the
couplings in the ROV model, especially in the heading. The augmented controller
controls surge, sway and yaw; meanwhile, the DP model-based adaptive controller
only controls surge and sway and utilizing the well tested PID controller for yaw.
In this section, a discussion of the heading control results will be done to argue if
the augmented nonlinear controller is a viable candidate for some further develop-
ing and testing.

In the result section comparing Figure 11.8 and Figure 12.3 the response looks
similar in the sense that both the augmented controller and the PID controller
seems to track the reference pretty well. Comparing the RMSE of the two using
Table 12.3 it looks like the controllers have only small differences when following
the desired reference ψd. Frankly, it seems like the reference model is the limiting
factor for the augmented controller C2. It was not simulated without a reference
model, so it is difficult to suggest that one controller performed better than the
other using this error metric. In addition, higher damping might have affected the
PID controller so that it achieved a slower response than it would in practice.

However, it has been proven that the PID controller works satisfyingly in field
experiments. Due to similarities in the simulation results, one should expect that
the augmented controller would perform somewhat the same if tested in field ex-
periments. It is, however, not accurate to use the simulations to conclude that it
will achieve the same without actually trying it in a field experiment. One can
draw parallels between the PID controller and the augmented controller by reading
it term for term. The augmented controller is a sum of feedback linearizing terms,
feedforward terms and a PID control law term. The integrator part in the PID
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term, like with the DP model-based control law, integrates a more sophisticated
error term by multiplying it with the G matrix. However, as mentioned before,
the G matrix uses measurements instead of reference values which might yield an
inadequate result due to measurement uncertainties.

Looking at the result from the field trials in Figure 11.8, unlike the velocity plots,
the heading does not have a constant deviation. This might mean that improving
the integrator term, which the augmented controller essentially does, might not
result in a better response. The problem seems to lie in the heading controller
being too slow relative to the changes occurring for yaw, which means that the
problem does not necessarily lie in the control law but rather the physical proper-
ties of the actuators in the ROV. Doing calculations for the mean absolute error
for the PID controller during the field experiments resulted in a mean absolute
error of 0.1483 rad, an average error of about 8◦, which is minor. However, it is
possible that it might have achieved less mean absolute error if it was simulated
on the correct process plant model instead of the process plant model with higher
damping. Nonetheless, the error in the heading is not that large in practice.
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Chapter 14

Conclusion

In this thesis, two control laws have been proposed and analyzed. The main task
was to design and implement robust control laws capable of trajectory tracking,
which improves the level of autonomy for underwater vehicles. Autonomous op-
erations in aquaculture increase safety and lower operational costs, and having
control laws capable of trajectory tracking is a step towards realizing this goal.

An adaptive control law was designed with a control plant model from a sim-
plified dynamic positioning model. The control law resulted in uniformly globally
asymptotically and uniformly locally exponentially stable origin of the closed-loop
system. UGAS and ULES of the control law were proven by utilizing that the
closed-loop system matrices had some bounded properties and then applying the
result from [3]. The result and proof from [3] was then used as a basis to design
the next control law.

The control plant model was expanded to consider the coupled states, mainly
from Coriolis-centripetal forces. Therefore, the first adaptive controller was modi-
fied to take this into account, mainly by modifying the integrator term and adding
an adaptive regressor to remove an unknown quadratic term in the control plant
model. The closed-loop system utilizing this augmented adaptive controller was
proven that the ROV error states converged uniformly, globally and asymptotic-
ally to the origin. Meanwhile, the rest of the states was only shown to be bounded
around the origin.

The first adaptive controller for the velocities that was developed yielded great
results through simulations and field experiments. The tracking errors for surge
and sway velocity converged to the origin and followed time-varying references,
meaning it achieved great trajectory tracking. The adaptive law, which was inter-
preted as an integrator, had a problem with integrator windup that was handled
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applying two anti-windup schemes: projection operator and clamping, which could
be used due to some knowledge of the bounds of different adaptive variables. As
expected, the field experiments showed different responses than the simulations
but still managed to perform better and had only minor tracking errors compared
to the previously used PI control law.

The second augmented adaptive controller for the velocities and yaw also showed
great results through simulations. The tracking errors for surge and sway velocity
and the heading converged to the origin and were also able to follow time-varying
references. This means that with a guidance law, in this instance, a net follow-
ing algorithm, the ROV managed great path following. The advantage with this
controller is that it also takes into account heading, possibly replacing the PID
controller in yaw. However, to take this controller to the next step, field experi-
ments need to be done to test that it also yields good results in practice. Unlike
the first adaptive controller, robustness analysis was not done with this controller
and may need to be done more extensively before doing field experiments.

In conclusion, two proposed controller was designed that achieved the control
objective set for this thesis. The adaptive controller for a simplified DP control
plant model is simple to utilize and has been field validated, giving excellent res-
ults for the velocities. The control plant model was expanded, and a control law
was designed to control heading with this expanded control plant model as well.
This second controller achieved software validation based on its great performance
during the simulations. The main advantage of using a more simple control plant
model is that it simplifies a lot of the design and essentially decouples all the
states on the horizontal plane. However, unmodelled terms might cause constant
deviation, especially in heading, which in the first controller is handled by adding
a pure integrator term, resulting in a PID controller for heading. The augmented
controller considers and addresses the deviation in heading the same way as the
deviation is handled in the velocities. Either way, it seems like both controllers
that were designed improved the existing controller used before and did well to
achieve the control objective set for the thesis.

14.1 Future Work
The controllers designed in the thesis still have potential for improvement. As it
was discussed in Chapter 13, feedback linearizing terms and G matrix in the integ-
rator term for the augmented controller are prone to measurement uncertainties
and sensor readings with error. One unattempted idea that might resolve the issue
is to split the terms containing cos( · ) and sin( · ) in G in error state terms and
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reference value terms. This is like it was done in the DP control plant model for
ψ̃ utilizing trigonometric identities. Then an analysis of the part of the G with
reference values and treating the other part of G containing the error states as a
perturbation term can be done. The part of G with reference value can be used
as part of the nominal system that is handled with the control law and attempt to
prove that it is at least locally exponentially stable. Then if this nominal system is
ULES, the perturbation theory might be used to prove that the whole system still
maintains exponential stability. The math might prove difficult, but if it works,
the integrator term in the control law might not be as prone to measurement error
as it is now.

Before attempting to improve the augmented controller, it is believed that it can
also be proven that x2 in the closed-loop system in Chapter 9 uniformly and glob-
ally converges asymptotically to the origin. The preliminary simulation results
using the control plant model showed convergence of those states as well. How-
ever, the mathematics needed to do this was out of what the author in this thesis
was capable of handling. It has already been proven that the origin for x2 is UGS,
and it is believed that the proof of [20, Lemma 2] might be utilized to prove uni-
form attractivity of the origin for x2. With this proof, x2 will have been proven
to asymptotically converge to the origin uniformly.

A paper publishing the results achieved in this thesis, are from the time this
thesis is delivered in writing. A draft paper of the paper to be published is given
in Appendix B.
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Appendix A

Trigonometric identity

cos(ψ̃ + ψd) = cos(ψd) cos(ψ̃)− sin(ψd) sin(ψ̃)− cos(ψd) + cos(ψd)

= ψ̃

[
cos(ψd)

cos(ψ̃)− 1

ψ̃
− sin(ψd)

sin(ψ̃)

ψ̃

]
+ cos(ψd) (A.1)

sin(ψ̃ + ψd) = cos(ψd) sin(ψ̃) + sin(ψd) cos(ψ̃)− sin(ψd) + sin(ψd)

= ψ̃

[
sin(ψd)

cos(ψ̃)− 1

ψ̃
+ cos(ψd)

sin(ψ̃)

ψ̃

]
+ sin(ψd) (A.2)
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Appendix B

Paper to be Submitted

The paper titled “Robust Control of Autonomous ROV at Exposed Aquaculture
Sites” is appended here.
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Abstract—This paper presents two control laws for error-free
trajectory tracking of velocity and the heading for a remotely
operated vehicle (ROV), making it possible to autonomously
traverse an aquaculture net pen in combination with a net-
following algorithm. Stability proofs for the closed-loop system
using these proposed control laws were provided. For the first
control law, the closed-loop system with an adaptive law was
proven to be uniformly globally asymptotically stable (UGAS) at
the origin for all error states. For the second control law, the
closed-loop system with the derived adaptive laws was proven to
be uniformly globally stable (UGS) at the origin. For this second
control law, proof that the error states for the velocities and
heading globally converged asymptotically and uniformly to the
origin was provided. Simulations for both controllers were done,
yielding excellent results achieving the control objective. The first
controller was also validated through sea trials, completing the
control objective in practice as well.

Index Terms—adaptive control, nonlinear control, modelling,
remotely operated vehicle (ROV), aquaculture, path following

I. INTRODUCTION

Norway is a leading producer of farmed salmon worldwide
and produced 1.36 million tonnes with a value of 68 BNOK in
2019 [1]. In order to increase production and deal with some of
the issues related to today’s production methods, e.g. sea lice
infestations, many fish farmers believe moving their facilities
to more exposed locations forestall these issues. However,
many of today’s aquaculture industry operations depend on
manual labour and close human interaction. One such opera-
tion is the control of ROVs. The workload on ROV operators
is often quite intense, as they are required to both navigate the
ROV in a dynamically changing environment while monitoring
and avoiding the structures. Therefore, increasing the level of
autonomy of an ROV could be beneficial to the ROV operators,
but also the fish farmers, as it could lower the costs and
improve the effectiveness of the operations [2].
Autonomous ROVs operating in dynamically changing envi-
ronments require robust control laws to achieve the desired
objectives, e.g. maintain a specific heading angle or follow a
path. At SINTEF Ocean, an Argus Mini ROV is currently used
as a research vehicle for testing different control strategies and
autonomous functions. This ROV is presently equipped with
PI speed controllers in the surge and sway velocity DOF and

a PID controller in the heading DOF. The speed controllers
are suboptimal, as the ROV is not able to reach the desired
speed when influenced by ocean currents. This leads to sub-
optimal performance during path following. As a step towards
more robust autonomous operations for ROVs in general, it
is, therefore, of interest to develop a more robust control
algorithm for the surge, sway and heading DOFs.
The developed controller must ensure that the ROV is capable
of following a time-varying speed and heading references
while under the influence of ocean currents. The controller
should also be robust towards variations and uncertainties in
the system parameters, such as mass and damping coefficients,
as these are not perfectly known. Therefore, this paper aims to
primarily develop a control law for surge, sway and heading
DOFs. For these control laws, it will be attempted to prove
that the closed-loop systems of their respective control plant
models have desired stability properties.
In [3] an adaptive feedback linearizing controller was proposed
for control of the horizontal DOFs for the Argus Mini ROV.
The simulations in [3] showed that the controller more or
less tracked the desired velocities perfectly. However, field
tests from the same article showed that it had significantly
deteriorating results than the simulations. Basin wall following
using DVL showed great results where the controller managed
to a large extent track the velocity references, with some
deviations. When the ROV reached a corner, it struggled to
follow the reference from what seems like a too fast and large
change so that it was not physically possible for it to reach
the reference. However, the biggest problem for this controller
was that during the net-pen following trial, where the velocity
reference was constant, the closed-loop system got a constant
deviation and, at the same time, became more oscillatory.
However, based on the data from these two field tests in [3]
it seems as the controller used was somewhat satisfactory but
still has potential for improvement since the controllers had
deviations with velocity tracking.
The contributions of this paper are two model-based control
laws for marine vehicles in 3-DOF: surge, sway and yaw,
are proposed. The first controller is derived using a simpli-
fied linearized 3-DOF control plant model, while the second



controller considers a more complex, nonlinear 3-DOF control
plant model. The first controller, referred to as C1 for the
remainder of the paper, is based upon [4], utilizes an adaption
law to ensure that the origin of the full error system is uni-
formly globally asymptotically stable (UGAS) and uniformly
locally exponentially stable (ULES), even without persistent
excited input signals. The second controller, referred to as C2
for the remainder of this paper, is a modified version of C1.
In C2, the adaptive law is expanded and overparameterized
to consider some unknown quadratic ocean current terms.
Furthermore, C2 utilizes a more complex control plant model,
and as such, this controller is assumed to be more robust than
C1. Due to the complexity of the control plant model, the
origin for only some of the states of the closed-loop system
with C2 was only proven to be UGAS through Lyapunov
stability theory, with the origin of the remaining states being
proven to be uniformly globally stable (UGS).
Both controllers were validated in simulations, and C1 was
tested in a field experiment.
In Section II the control plant models used for the control
designs are derived. Section III presents the subsystem that
generates the time-varying reference values the ROV are track-
ing.Section IV proposes two control laws and also provides the
stability proofs for the closed-loop systems. Section V presents
the limitations of C1 and suggests implementations to C1 that
handle the limitations. Section VI presents the results from
simulations and the full-scale sea trials.

II. CONTROL PLANT MODEL

The two control plant models used for the design of the
controllers are proposed in this section. The assumptions
needed for them to hold are also given here, with assumptions
that yield both models and the specific assumptions for each
of the models.
The control plant model of the ROV is described in 3 degrees
of freedom (DOF): surge, sway and yaw. The kinematics of the
vehicle are given in North-East-Down (NED) frame, denoted
{n}, meanwhile the kinetic dynamics are described in the
body-fixed coordinate frame, denoted {b}.
Assumption 1. The roll and pitch motion of the ROV can
be neglected due to the nature of the passive stabilization
properties from gravity.

Assumption 2. The ROV is neutrally buoyant, and the motion
in the heave can be neglected. In addition, the vehicle centre
of gravity (CG) and the centre of buoyancy (CB) are located
in the same vertical axis in {b}
Remark 1. Most ROVs are designed to be slightly positive
buoyant. Therefore, in the case of a system shut down, the
ROV will slowly rise to the surface. The ROV can, however,
for all practical purposes be assumed neutrally buoyant.

Assumption 3. The ROV is symmetric in port-starboard, fore-
aft and bottom-top.

Assumption 4. The body-fixed frame center of origin (CO)
is located in the CG.

xb

yb

zb

v (sway)

u (surge)

w (heave)

φ (roll)

θ (pitch)

ψ (yaw)

Fig. 1: Body frame axis on the Argus Mini ROV

Remark 2. Assumption 1-4 are common assumptions in ROV
modelling, which can be seen in other literatures such as [5,
3]

Assumption 5. The hydrodynamic damping is linear.

Remark 3. Nonlinear damping is not considered to reduce the
complexity of the controllers. For low-speed manoeuvring,
Assumption 5 is considered as a mild assumption since the
passive nature of any nonlinear hydrodynamic damping should
enhance the directional stability of the vehicle. [6, 3].

The state of the ROV is given by the vector [ηT ,νT ]T . In
this case ηn = [x, y, ψ]T is the generalized vector describing
position and orientation of the ROV in {n}. νb = [u, v, r]T

describes the linear and angular velocity of the ROV in {b}.
Assumption 6. The ROV is not able to reach speed over 2m/s.

Remark 4. The ROV has four thrusters actuating the DOF
considered in this paper, and the thrusters cannot generate
enough force for the ROV to achieve a speed over 2m/s.

Assumption 7. The ocean current is constant, irrotational and
bounded with a velocity vector Vn

c = [Vx, Vy, 0]T in {n}.
Therefore there exists a constant Vmax > 0 such that Vmax >√
V 2
x + V 2

y . Furthermore, due to the current being constant in

{n}, the time-derivative is V̇n
c = 0 in the inertial frame {n}.

Remark 5. Assumption 7 on the ocean current is made in the
{n} reference frame. In many earlier works on control the
current is assumed to be constant in the BODY frame, which
is easily violated during turning [7].

A. First Control Plant Model

With the Assumption 6, the low-frequency control plant
model of [8], similar to the linearized DP model from [9]
can be considered. In the low-frequency model the ocean
current disturbance is modelled in a bias vector, in this paper
the disturbance is instead modelled using the relative velocity



vector. The maneuvering model of the 3-DOF ROV considered
is:

η̇n = R(ψ)νb (1)

MRBν̇
b +MAν̇

b
r +Dνbr = Bf (2)

The matrix R(ψ) is the principal rotation matrix around the
z-axis. In addition, νbr , νb−νbc is the relative velocity vector
between the vehicle and the ocean current. In {b}, the current
velocity is νc = RT (ψ)Vc = [uc, vc, 0]T . The rigid-body
inertia matrix isMRB = MT

RB > 0, the hydrodynamic added
mass inertia matrix is MA = MT

A > 0 and D > 0 is the
damping matrix. The matrices R(ψ),MRB ,MA and D with
the assumptions have the following structure:

R(ψ) ,




cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


 (3)

M i ,



mi

11 0 0
0 mi

22 0
0 0 mi

33


 ,D ,



d11 0 0
0 d22 0
0 0 d33


 (4)

where i ∈ {RB,A}.
The matrix B ∈ R3×n is a constant thrust allocation matrix,
mapping the thruster control input vector f ∈ Rn to the forces
and moments acting on the vehicle, where n ≥ 3 is the number
of thrusters working on the horizontal plane. The control forces
and moments acting on the vehicle are described by the vector
[τu, τv, τr]

T , Bf .

Assumption 8. The thrust allocation matrix B has full rank,
that is rank(B) = 3, so the ROV is fully actuated in surge,
sway and yaw.

Remark 6. The size and elements of B depend on the thruster
configuration, and for generality, it will not be specified any
further here beyond the requirement in Assumption 8.

B. Component Form for First Model

To solve the control design problem it can be useful to
expand the kinematic and kinetic equations, (1) and (2), into
component form. The time-derivative of the current velocity
vector in {b} is

ν̇c =
d

dt

(
RT (ψ, r)Vc

)
= [rvc,−ruc, 0]T (5)

the 3-DOF control plant model can then be written as

ẋ = u cos(ψ)− v sin(ψ) (6a)
ẏ = u sin(ψ) + v cos(ψ) (6b)

ψ̇ = r (6c)

u̇ = − d11
m11

u+ φTuV c +
1

m11
τu (6d)

u̇ = − d22
m22

v + φTv V c +
1

m22
τv (6e)

ṙ = − d33
m33

r +
1

m33
τr (6f)

where it is defined that mij , mRB
ij +mA

ij , V c = [Vx, Vy]T .
The expressions φu, φv is defined as

φu =

[
−d11 cos(ψ) +mA

11r sin(ψ)
−d11 sin(ψ)−mA

11r cos(ψ)

]
(7a)

φv =

[
d22 sin(ψ) +mA

22r cos(ψ)
−d22 cos(ψ) +mA

22r sin(ψ)

]
(7b)

C. Second Control Plant Model

The first control plant model proposed, essentially neglects
the Coriolis-Centripetal forces comparing it to the general
maneuvering model given in [9]. This control plant model
expands the first control plant model to also consider the non-
linear term form Coriolis-Centripetal forces. The maneuvering
model of the 3-DOF ROV considered is:

η̇ = R(ψ)ν (8)
MRBν̇ +MAν̇r +Dνr +CRB(ν)ν +CA(νr)νr = τ

(9)

where the matrices and vectors are defined as with the first
control plant model (3) and (4), but in addition τ = Bf and
the Coriolis-Centripetal force matrix is defined as:

Ci(ν) =




0 0 −mi
22v

0 0 mi
11u

mi
22v −mi

11u 0


 (10)

where i ∈ {RB,A}. In component form it can be written as

ẋ = u cos(ψ)− v sin(ψ) (11a)
ẏ = u sin(ψ) + v cos(ψ) (11b)

ψ̇ = r (11c)

m11u̇+ (mA
11 −mA

22)r(Vx sin(ψ)− Vy cos(ψ))

+d11(u−Vx cos(ψ)− Vy sin(ψ))−m22vr = τu
(11d)

m22v̇ − (mA
11 −mA

22)r(Vx cos(ψ) + Vy sin(ψ))

+d22(v+Vx sin(ψ)− Vy cos(ψ)) +m11ur = τv
(11e)

m33ṙ + d33r+(m22 −m11)uv − (mA
11 −mA

22)vTφ(ψ)V c

+
1

2
(mA

11 −mA
22)V T

c (φ)(2ψ)V c = τr

(11f)

where it is defined that V c = [Vx, Vy]T , v = [u, v]T and the
matrix:

φ(x) =

[
sin(x) − cos(x)
− cos(x) − sin(x)

]
(12)

III. GUIDANCE SYSTEMS

The guidance systems used for generation of time-varying
references are presented. Two guidance systems in cascade is
used, whereas the first ensures path following for traversing
the net pen, and the second smooths out the reference value to
avoid step responses in reference values given to the control
systems.



A. Path Following Algorithm

Traversing the net pen utilizes the guidance law that was
derived in [3]. It is a path following algorithm for following
the net pen at a constant speed with a constant distance from
the net structure. Formalized the algorithm solves

lim
t→∞

ye(t) = 0 (13a)

lim
t→∞

(ψ(t)− ψd(t)) = 0 (13b)

lim
t→∞

(U(t)− Ud) = 0 (13c)

where U ,
√
u2 + v2 is the ROV speed, and Ud > 0 is the

desired speed for traversing the net pen. ye is the crosstrack-
error calculated in the algorithm to generate waypoints to
assure the ROV maintains a constant distance from the net
pen.

B. Reference model

The reference model smooths out step responses to avoid
bandwidth problems in the control system. In addition to
smoothing out the step responses, the reference model provides
reference values for higher-order reference terms. Mainly, a
first-order lowpass filter is proposed for the velocity references
smoothing out the desired velocity value. It is given as

T u̇r + ur = ud (14)

Equation (14) smooths out the reference value ud from the path
following algorithm and provides the time-varying reference
values u̇r and ur that the velocity control laws make the ROV
track. The reference value ur is essentially ud smoothed out
with a time constant T .
For the second controller, a third-order reference model for
the heading was designed. This reference model provides
reference values for yaw, yaw rate and its derivative as well.
It is given by the equation

ψ̈r + 2ωnζψ̇r + ω2
nψr = ψd (15)

where ψd from the path following algorithm is smoothed out
by this model obtaining the reference values ψ̈r, ψ̇r and ψr.

IV. CONTROL SYSTEM

This section presents the control objective to be achieved,
in addition to proposes the control law achieving this control
objective. The control objective to be achieved in this paper is:
The control law designed for the control plant model should
result in robust error-free trajectory tracking of time-varying
references. More formalized, especially achieve:

lim
t→∞

(u(t)− ud(t)) = 0 (16a)

lim
t→∞

(v(t)− vd(t)) = 0 (16b)

lim
t→∞

(ψ(t)− ψd(t)) = 0 (16c)

Moreover, the closed-loop system with the control law should
result in an UGAS equilibrium point at the origin. The control
law should be robust enough such that perfect knowledge
of the modelling parameters is not necessary. It should also

address limitations such as saturation of actuators does not
become a problem, for instance with integrator windup.

A. Surge, Sway and Yaw Control for First Model

This part proposes a control law for the first control plant
model given by (1) and (2).
To track the heading ψd(t), the following control law is
proposed:

τr = m33ṙd + d33rd − kpψ (ψ − ψd)− kdψ (r − rd) (17)

Where kpψ , kdψ > 0 is constant controller gains. This is a
PD-controller with feedforward. To track the velocities ud(t)
and vd(t) the following control law is proposed:

τ 2 = D2vd +M2v̇d −M2Kp(v − vd)−M2G(t)V̂ c

(18)
˙̂
V c = ΓGT (t)(v − vd) (19)

where the vectors are defined as: τ 2 = [τu, τr]
T , v̇d =

[u̇d, v̇d]
T , vd = [ud, vd]

T and v = [u, v]T and the matrices
are defined as:

M2 =

[
m11 0

0 m22

]
,D2 =

[
d11 0
0 d22

]
(20)

Kp =

[
kpu 0
0 kpv

]
(21)

G(t) =

[
d11
m11

cos(ψd)
d11
m11

sin(ψd)

− d22
m22

sin(ψd)
d22
m22

cos(ψd)

]
(22)

where kpu , kpv > 0 are the constant controller gains and
the matrix Γ = ΓT > 0 is a diagonal matrix containing
the constant adaption gains for V̂ c = [V̂x, V̂y]T . V̂ c are the
estimates for the ocean current Vx and Vy . This controller is
an adaptive P-controller with feedforward.
It will now be shown that the proposed controllers will make
the surge velocity, sway velocity and yaw angle converge to
their reference values.
Define the following tracking errors:

ṽ , v − vd
r̃ , r − rd
ψ̃ , ψ − ψd

(23)

and the estimation error:

Ṽ c = V c − V̂ c (24)

Inserting the control laws for surge velocity, sway velocity and
yaw, the following closed-loop error dynamics are achieved:

˙̃r = −
(
d33 + kdψ
m33

)
r̃ − kpψ

m33
ψ̃ (25a)

˙̃
ψ = r̃ (25b)
˙̃v = −(M−1

2 D2 +Kp)ṽ +G(t)Ṽ c + g(t)θ (25c)
˙̃
V c = −ΓGT (t)ṽ (25d)

where it is defined that θ , [r, ψ̃]T and it can be shown that
g(t) is a bounded matrix giving the dynamics for θ in the



velocity states. The structure of g(t) is given in the appendix.
It will be shown that since the origin of the error system for
the heading dynamics is UGES, then that term can be omitted
for the control design.

Lemma 1. The origin of the closed-loop subsystem for yaw
described by (25a) and (25b) is uniformly globally exponen-
tially stable (UGES).

Proof. Calculating the eigenvalues of the subsystem, which
is linear in r̃, ψ̃ by finding the zeros of the characteristic
equation:

λ2 +
d33 + kdψ
m33

λ+
kpψ
m33

= 0 (26)

it is then straightforward to see that the eigenvalues are strictly
negative, and thus will the solution converge uniformly and
exponentially to the origin for any initial values (r̃0, ψ̃0).

Lemma 2. The origin of the closed-loop subsystem for the
velocities and adaptive law given by (25c) and (25d) is UGAS
and ULES.

Proof. First assume that θ ≡ 0, thus omitting the last term in
(25c). It needs to be shown that the nominal system:

˙̃v = −(M−1
2 D2 +Kp)ṽ (27)

is UGES. Consider the positive definite radially unbounded
Lyapunov function:

k1‖ṽ‖2 ≤ V (ṽ) =
1

2
ṽT ṽ ≤ k2‖ṽ‖2 (28)

it can then be shown that there exists a k3 > 0 such that:

˙V (ṽ) = −ṽT (M−1
2 D2 +Kp)ṽ ≤ k3‖ṽ‖2 (29)

Then, using [10] the origin of the nominal system is UGES.
Furthermore, it can be shown that

GT (t)G(t) > 0 (30)

by utilizing Sylvester’s criterion and show that the principle
minors of the matrix is strictly positive.
Then by the theorem given in [4], all the assumptions holds
resulting in that the origin of (25c) and (25d) is UGAS.
Moreover, the origin is also ULES using the same theorem
in [4].

Theorem 1. The origin of the closed-loop system with the
adaptive laws is UGAS.

Proof. Define the closed-loop system for the heading (25a)
and (25b) as subsystem Σ1, and defined the closed-loop system
for the velocities with the adaptive laws (25c) and (25d) as the
subsystem Σ2. It can then be seen that the system Σ1 provides
the input θ to system Σ2. Illustration of the cascaded system
is given in Figure 2. It has been shown with Lemma 1 and
Lemma 2 that the origin of both subsystem in the cascade is
UGAS. Moreover, the heading dynamics are UGES and the
velocities dynamics with the adaptive laws are ULES.
Furthermore, with g(t) defined as in the appendix. Using

Heading dynamics

Velocity dynamics

ψ̃, r

Current estimations

Heading reference

Velocity references

V̂x, V̂y

ũ, ṽ

Σ1

Σ2

Fig. 2: The cascaded system

L’Hôpital’s rule for the terms with possible singularities, it can
be shown that the matrix element-wise is bounded. In other
words, the interconnection between subsystem Σ1 and Σ2 is
bounded. Then by utilizing the result and theorems from [11,
12] the origin of the fully cascaded system is UGAS.

To conclude, this means that the closed-loop system of the
first control plant model using the proposed controller obtains
UGAS equilibrium point at the origin. Moreover, the heading
dynamics have equilibrium point at the origin that is UGES
and the velocities dynamics have equilibrium point at the
origin that is ULES.

B. Surge, Sway and Yaw Control for Second Model

In this part a control law for the 3-DOF control plant model
given by (8) and (9) is proposed.

τ = Mν̇d+Dνd+s+ â−MKν̃aug−MaugG(νaug, t)V̂ c

(31)
where it is defined that M , MRB + MA, νd =
[ud, vd, rd]

T , ν̇d = [u̇d, v̇d, ṙd]
T and ν̃aug = [ũ, ṽ, r̃, ψ̃]T .

The feedback linearizing vector and the vector for handling
unknown quadratic terms are defined as:

s =




−m22vr
m11ur

(m22 −m11)uv


 (32)

â =




0
0

(mA
22 −mA

11)αTe ê


 (33)

where the vectors are defined as:

αe =



− 1

2 sin(2ψ)
cos(2ψ)
1
2 sin(2ψ)


 , ê =



V̂ 2
x

V̂xVy

V̂ 2
y


 (34)



The matrices are defined as in (4), in addition to:

Maug ,



m11 0 0 0

0 m22 0 0
0 0 m33 0


 (35)

K ,



kpu 0 0 0
0 kpv 0 0
0 0 kdψ kpψ


 (36)

G(νaug, t) ,




G11 G12

G21 G22

G31 G32

0 0


 (37)

where the values in the matrix G are defined as

G11 =
mA

22 −mA
11

m11
r sin(ψ) +

d11
m11

cos(ψ) (38a)

G12 = −m
A
22 −mA

11

m11
r cos(ψ) +

d11
m11

sin(ψ) (38b)

G21 = −m
A
22 −mA

11

m22
r cos(ψ)− d22

m22
sin(ψ) (38c)

G22 = −m
A
22 −mA

11

m22
r sin(ψ) +

d22
m22

cos(ψ) (38d)

G31 = −m
A
22 −mA

11

m33
(u sin(ψ)− v cos(ψ)) (38e)

G32 =
mA

22 −mA
11

m33
(u cos(ψ) + v sin(ψ)) (38f)

In addition the estimates for V̂ c and ê have the dynamics:

˙̂
V c = Γ1G

T (νaug, t)

(
∂W (ν̃aug)

∂νaug

)T
(39)

and the error for the adaptive quadratic term:

˙̂e = −m
A
22 −mA

11

m33
Γ2αe(m66r̃ + εψ̃) (40)

Due to assumption of constant ocean current, then it means
that ˙̃e = − ˙̂e. For the adaptive laws it is defined that Γ1 ∈
R2×2 and Γ2 ∈ R3×3 are positive definite diagonal tuning
matrices. That is, the tuning parameters are on the diagonals
of the matrices with positive values, and off-diagonal elements
are set to 0. In addition the tuning parameter ε is defined such
as:

0 < ε <
d33kpψ +m66kpψkdψ

kpψ + 1
4

(
d66
m66

+ kdψ

) ∧ ε < m66

√
kpψ (41)

Last but not least define:

W (ν̃aug) =
1

2
ν̃TaugP ν̃aug (42a)

(
∂W (ν̃aug)

∂νaug

)T
=




m11ũ
m22ṽ

m33r̃ + εψ̃

m33kpψ ψ̃ + εr̃


 (42b)

where

P =




m11 0 0 0
0 m22 0 0
0 0 m33 ε
0 0 ε m33kpψ


 (43)

Inserting the control law (31) into (9), and define the error
variables:

ũ = u− ud
ṽ = v − vd
r̃ = r − rd
ψ̃ = ψ − ψd

(44)

and the estimation errors as:

Ṽ c = V c − V̂ c

ẽ =



VxVx − V̂xVx
VxVy − V̂xVy
VyVy − V̂yVy




(45)

then the closed-loop system of the ROV can be written as:

˙̃νaug = −Aν̃aug + σ(v, ẽ) +G(νaug, t)Ṽ c (46)

where it is defined that

A =




d11
m11

+ kpu 0 0 0

0 d22
m22

+ kpv 0 0

0 0 d33
m33

+ kdψ kpψ
0 0 1 0


 (47)

and

σ(v, ẽ) =




0
0

mA11−mA22
m33

ẽTαe
0


 (48)

Lemma 3. The origin of the full closed-loop system with the
adaptive laws are UGS.

Proof. Choose the positive definite and radially unbounded
Lyapunov function candidate:

V (x) = W (ν̃aug) +
1

2
Ṽ cΓ

−1
1 Ṽ c +

1

2
ẽΓ−12 ẽ (49)

then the derivative along the trajectories of x, with the chosen
adaptive laws results in:

V̇ = −ν̃TaugHν̃aug (50)

where
H =

[
H1 02×2
02×2 H2

]
(51)

where H1 = diag{d11 +m11kpu , d22 +m22kpv} and

H2 =

[
d66 +m66kdψ − ε 1

2ε(
d66
m66

+ kdψ )
1
2ε(

d66
m66

+ kdψ ) kpψε

]
(52)

where H is positive definite, proven with Sylvester’s criterion,
when ε is chosen such that the bounds that has been set on
it in (41) holds. Thus, the origin of the closed-loop system is
UGS according to [10].



Furthermore,

Corollary 1. ν̃aug uniformly and globally asymptotically
converges to the equilibrium point at the origin.

Proof. Using the Lyapunov function it can be written to:

V̇ = −ν̃TaugHν̃aug − ν̃Taugν̃aug + ν̃Taugν̃aug

≤ −ν̃TaugHν̃aug − ν̃Taugν̃aug + |ν̃Taug||ν̃aug|
(53)

since it was proven that ν̃aug is UGS then there exists a
κ∞-function ρ(R(r)) which is a function of the number R
that depends on the ball with radius r that is bounding all the
initial states for the full system with adaptive laws. In addition
it can be shown that φ1(t, ν̃aug)2 = ν̃TaugHν̃aug + ν̃Taugν̃aug.
Thus,

V̇ ≤ −φ1(t, ν̃aug)2 + |ν̃Taug|ρ(R(r)),∀|x0| ≤ r

≤ −φ1(t, ν̃aug)2 +
1

ερ
|ν̃aug|2 + ερρ(R(r))2

(54)

where ερ > 0 and the last inequality is a result of Young’s
inequality. Then, by choosing ν := ερρ(R(r))2 then:

V̇ ≤ −[φ1(t, ν̃aug)2 − ν] +
1

ερ
|ν̃aug|2

∫ ∞

t0

[φ1(t, ν̃aug)2 − ν]dt ≤
∫ ∞

t0

1

ερ
|ν̃aug|2dt−

∫ ∞

t0

V̇ dt

∫ ∞

t0

[φ1(t, ν̃aug)2 − ν]dt ≤ βrν
(55)

Furthermore, from the properties that V̇ ≤ 0 then it can be
shown that V̇ , ν̃aug ∈ L2,L∞. This is used to show that βrν >
0 since ερ > 0 can be chosen arbitrarily small dominating the
negative term from the integration of V̇ which is bounded.
Then by [13, Lemma 2] the equilibrium point at the origin of
ν̃aug is UGAS.

V. AMELIORIATING THE FIRST CONTROL LAW

The adaptive law for the first control law can in many
ways be interpreted as an integrator term in a PI-controller. A
limitation of this adaptive law that needs to be addressed is in-
tegrator windup occurring when actuation becomes saturated.
The controller, therefore, required anti-windup schemes to be
implemented in the control laws integral terms to handle the
effects of thruster saturation. The first control law implemented
two anti-windup schemes to address this limitation.

A. Clamping

The first anti-windup scheme implemented was clamping.
It is a reasonably simple anti-windup scheme and stops the
integral states from growing when the thrusters are saturated.
The implementation for this control law was to calculate the
max actuation force the ROV can exert. The control input was
then compared to the limit and checked if the adaptive law
was growing or descending towards the origin. If the control
input was above the limit and the adaptive law was increasing,
the clamping algorithm set ˙̂

V c = 0, otherwise, the adaptive
law ran according to the equation given in (25c).

B. Projection

The second anti-windup scheme implemented was projec-
tion. It works as an operator, and are designed to keep the
integral states within a pre-defined bound. Since the adaptive
laws essentially are estimates of the ocean current in {n}, they
must therefore be upper bounded by a value V̂max ≥ Vmax.
This can be utilized by implementing the projection operator
given in [14]. If ˙̂

V c makes V̂ c out of bounds, the operator
project the change such that it is pushed back in. More
formalized the projection operator are implemented for each
V̂x and V̂y as:

˙̂
Vi = γiProj(V̂i,G

T ṽ) (56)

where

Proj(V̂i, y) ,
{
y, if g(V̂i) < 0 ∨ g(V̂i) ≥ 0 ∧∇gT y ≤ 0

y − ∇g∇gT yg‖∇g‖2 , if g(V̂i) ≥ 0 ∧∇gT y ≥ 0
(57)

and

g(V̂i) =
(εVi + 1)V̂ Ti V̂i − V 2

max

εViV
2
max

(58)

VI. SIMULATIONS AND EXPERIMENTS

This section presents the simulation results and results from
experiments for verification of the proposed control laws.
The first proposed control law was simulated, then tested
at SINTEF ACE live fish farm for aquaculture experiments.
While the second control law was only simulated. All the
results will be presented.

A. Vehicle Model

The vehicle used was a 90 kg Argus Mini ROV with di-
mensions [0.9m, 0.65m, 0.6m]T . In order to have simulations
directly compared to the experiments, a process plant model as
close to the vehicle while still satisfying all the Assumptions
1-7 is used.
The ROV has four horizontal thrusters and two vertical
thrusters. The horizontal thrusters have azimuth angles of
±35◦, actuating surge, sway and yaw DOFs. In the simu-
lations, the thrusters have been saturated, and their rate of
change limited with a slew rate limiter to achieve as realistic
response as possible.

B. Simulation Setup

The simulation results were obtained for net pen following
utilizing either one of the two control laws that have been
proposed.
All simulations are run using FhSim software, which can be
read more about in [15] and [16]. FhSim is a framework
hosted by SINTEF Ocean, which is developed for time-domain
simulations of surface vessels, underwater vehicles and marine
structure operating in fisheries and aquaculture.
The net pen is simulated with a simulation model of a static
circular net cage and is constructed from a large number of
vertices. For the guidance law, the desired distance to the net
is set to 3 m, while the desired speed Ud is set to 0.3m/s
for the first control law and 0.5m/s for the simulation of the



second control law. At the field trial, the desired speed was
varying, but at the highest, it was set to 0.3m/s.

C. Control Law 1

The first control law was essentially a PD-controller for the
heading in parallel with adaptive P-controllers for the veloc-
ities. However, due to unmodelled dynamics in the heading,
preliminary simulations showed that with a PD-controller, a
constant deviation was present. The heading controller was,
therefore, in the simulations modified also to include an inte-
gral error term, becoming a PID-controller; this modification
took care of the constant deviation.
For the simulations the reference models for the velocity
controllers were tuned with a time constant of T = 0.5s for
both surge and sway. The anti-windup scheme, the projection
operator, was tuned with a maximum ocean velocity bound
Vmax = 0.5 and projection tolerance εVi = 0.2. The adaptive
laws was tuned with γx = 3.5 for estimation of V̂x and
γy = 3.0 for estimation of V̂y . The P-controller was tuned with
the gains kpu = kpv = 4.0 for both surge and sway velocity.
The PID controller was tuned with kpψ = 15, kiψ = 0.5 and
kdψ = 0.1.
For the field trial, from experience, the controller often needs
to be tuned less aggressively. For the results presented, the
tuning that was used was therefore T = 1.0s for the reference
models in surge and sway. The anti-windup scheme was tuned
with Vmax = 0.5 and projection tolerance εVi = 1.0. The
adaptive laws was tuned with γx = γy = 2.0 and the
proportional gain kpu = kpv = 5.0. The PID controller for the
heading was tuned with kpψ = 15, kiψ = 0.5 and kdψ = 1.0.

D. Control Law 2

The second control law was implemented and simulated
with first-order reference models for the velocities and a third-
order reference model for the heading in FhSim. The first-
order reference model was tuned with time constant T = 0.5s
for both surge and sway, meanwhile the third-order reference
model was tuned with bandwidth and damping ratio ωn = 1.6
and ζ = 1.0 respectively. The projection operator was tuned
with εVi = 0.2 and Vmax = 0.5. The factor for the cross-
elements had to be tuned with a value bounded by (41) and
was chosen to be εψ = 0.1. The adaptive law for the unknown
quadratic term was tuned with γei = 0.0001 for all three
diagonal elements in Γ2, and γx = γy = 0.01 for the diagonal
elements in Γ1. The P-controller for the velocities was tuned
with kpu = kpv = 5.0. The last tuning parameter, the PD-
part of the heading controller, was tuned kpψ = 46.6340 and
kdψ = 14.0304.

E. Simulation results

Figure 3 is the simulation of C1, and shows that the
controller tracks the velocity references with less to none
error. The velocities of the ROV in Figure 3a-3b is given
in blue, the green dashed line is the desired velocity from
the net following algorithm and the red dashed line is the
reference values from the reference models. It is only due to

the dynamics of the reference model that gives an error in
the tracking of the desired value ur and vr given by the net
following algorithm by looking at the spikes. The controller
itself manages to follow the reference values more or less
perfectly.
The thruster dynamics in simulation of C1 is given in Fig-
ure 3c-3d and shows the desired control input calculated by
the control law in red and the actual actuation of the ROV
given in blue. The ROV rarely goes into saturation, and could
have been simulated to do so to demonstrate the anti-windup
schemes working. The spikes in the thruster figures is going
quickly to 0 due to the simulation set up having a switch so
that the velocity controllers are turned off, or set to 0 when
controlling the heading. It is only in short bursts it is turnt off
and due to this should not affect the velocities significantly.
The ocean current dynamics, or rather the integrator terms, are
given in Figure 3e-3f. It is not much to say for these plots,
except that it seems to work as intended achieving varying
estimations based on the position of the ROV in the net pen.
Figure 4 is the simulation of C2. The figure shows that this
controller tracks the velocity references with minor deviations.
It also seems to be limited by the reference models tracking it
more or less perfectly but having some minor deviation relative
to the desired values from the net following algorithm at the
step responses. It only seems to oscillate and struggle when
the desired speed is set at a value the ROV is not physically
able to reach due to thruster limitations. However, it oscillates
mostly when the thrusters are in saturation, which is confirmed
with the thruster plots, Figure 4c-4d, showing that it cannot
reach the desired control input.

F. Sea trials

Figure 5 shows the simulation of C1 at SINTEF ACE
live fish farm for aquaculture experiments. The velocity
figures show that it is tracking the velocities satisfyingly
with little deviations. At 350s − 370s, the thrusters goes
into saturation, where the deviation becomes significant.
The velocity references are, otherwise, tracked, showing
excellent results compared to the formerly used PI controller
in Figure 6.
Looking at Figure 5e-5f, it is seen that at the moment the
thrusters go into saturation, the estimates oscillate violently.
This shows that the projection operator works as intended and
prevents a higher integral value than the ROV can account
for. It also makes sure that the velocities do not oscillate
as much when it is in saturation, which is promising with
robustness in mind.

G. Heading

The yaw dynamics in Figure 7b only struggle when the
yaw changes significantly, much like the PID controller in
Figure 7a. However, it still manages to follow the reference
values from the reference model, suggesting that it is limited
by the reference model itself and not the ROV limitations.
The heading plots in Figure 7c, shows that the PID controller
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Fig. 3: Results from simulation of controller 1 with process plant model
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Fig. 4: Results from simulation of controller 2 with process plant model



follows the contour of the desired reference values at field
trial. As suggested earlier, it might be that the thrusters of the
ROV cannot exert enough torque so that the heading of the
ROV follows a quick varying reference value.
Overall, the simulations shows that C2 performs more or less
as good as C1 or the PID controller does. However, at field trial
the PID controller obtained worse response by not tracking the
reference perfectly. The PID controller does, however, follow
the contour of the heading which is arguably good enough for
the path following. Overall, C2 has promising heading results
and is a candidate for further testing before doing it with field
experiments.

VII. CONCLUSION AND FUTURE WORK

This paper has presented two control laws for tracking time-
varying reference values in the surge, sway, and yaw DOF to
optimally autonomously traverse an aquaculture net pen. The
main contribution of this paper is proposed control laws with
properties that asymptotically converges to the time-varying
reference values.
For C1, the closed-loop system using this controller with the
adaptive law was proven to be UGAS in the equilibrium point
at the origin. Furthermore, to consider saturation and integrator
windup that might have caused oscillations for the closed-loop
system, or in worse case destabilized it, anti-windup schemes
were implemented. The anti-windup methods, clamping and
projection, assured that the limitation of the ROV was properly
handled. The controller was then validated through simulations
and sea trials, yielding great results. C1 managed to achieve
the control objective.
For C2, the closed-loop system with the adaptive laws was
proven to be UGS in the equilibrium point at the origin.
This controller was an augmented version of C1, which
also considered the deviation in heading and attempted to
suppress the deviation. It was proven that the error states
for the velocities and yaw globally converged asymptotically
and uniformly to the equilibrium point at the origin. This
controller was validated through simulations and also showed
excellent results. It managed to track the reference values for
the velocities, as well as track the reference value for heading.
C2 was not tested extensively as C1 for robustness properties.
The robustness properties of the second controller still have to
be validated in the simulations. If the results are satisfactory,
this controller can also be validated in field trials and compared
to the first controller. This remains future work.

APPENDIX

g(t) =

[
g11 g12
g21 g22

]
(59)

where
g11 = mA

11(Vx sin(ψ) + Vy cos(ψ))

g12 = −d11(Vxβ1 + Vyβ2)

g21 = mA
22(−Vx cos(ψ) + Vy sin(ψ))

g22 = d22(Vxβ2 − Vyβ1)

(60)

and it is defined that

β1 = cos(ψd)
cos(ψ̃)− 1

ψ̃
− sin(ψd)

sin(ψ̃)

ψ̃
(61a)

β2 = sin(ψd)
cos(ψ̃)− 1

ψ̃
+ cos(ψd)

sin(ψ̃)

ψ̃
(61b)
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Fig. 5: Results from field trial at SINTEF ACE for controller 1



(a) Surge velocity at field trial on SINTEF ACE with PI controller (b) Sway velocity at field trial on SINTEF ACE with PI controller

Fig. 6: The velocities with PI controller at field trial
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